
Université de Montréal

Coordination in Generative Modeling,
Automatic Differentiation and Multi-Agent Learning

par

Tim M.E. Cooijmans

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

August 31, 2023

© Tim M.E. Cooijmans, 2023

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Coordination in Generative Modeling,
Automatic Differentiation and Multi-Agent Learning

présentée par

Tim M.E. Cooijmans

a été évaluée par un jury composé des personnes suivantes :

Ioannis Mitliagkas
(président-rapporteur)

Aaron Courville
(directeur de recherche)

Pascal Vincent
(membre du jury)

Jakob Foerster
(examinateur externe)

Ioannis Mitliagkas
(représentant du doyen de la FESP)

Résumé

Cette thèse présente quatre articles dans trois domaines différents : la modélisation généra-
tive de la musique, l’attribution de crédits pour les réseaux de neurones récurrents (RNN)
et l’apprentissage par renforcement multi-agents (MARL) dans des dilemmes sociaux. Un
thème commun est la coordination, c’est-à-dire la prise en compte des dépendances entre
des éléments modélisés comme indépendants.

Le premier article concerne la coordination des états informationnels. Nous développons
une approche de raffinement itératif de la composition musicale. Notre modèle produit
des prédictions conditionnellement indépendantes pour les variables dépendantes, qui
sont réconciliées par un processus de raffinement itératif. Notre processus est plus proche
de celui des compositeurs humains que des approches existantes qui produisent de la
musique du début à la fin, et plus résistant aux entrées corrompues.

Dans le deuxième article, nous considérons la coordination des communications entre
des nœuds des graphes. L’algorithme d’entraînement UORO pour les réseaux neuronaux
récurrents en mode direct simplifie le graphe de calcul des dérivées en introduisant des
fausses connexions, ce qui transforme les communications ciblées en simples diffusions.
Les véritables connexions sont rétablies en espérance, grâce à l’utilisation de secrets
partagés sous forme de bruit corrélé. Nous étudions la variance de cette approximation.
Sur la base de nos connaissances, nous introduisons une variation pratique qui réduit
considérablement la variance au prix d’une augmentation des ressources de calcul. Nous
établissons également un lien théorique entre REINFORCE et UORO, avec égalité jusqu’à
un terme dont l’espérance est zéro mais qui contribue à une variance arbitraire.

Dans les troisième et quatrième articles, nous coordonnons des processus. D’abord,
nous proposons un algorithme pour trouver des politiques fortes dans des dilemmes
sociaux en supposant un adversaire rationnel. Notre agent vise à trouver des politiques
pour lesquelles la meilleure réponse est favorable, coordonnant ainsi de manière unilatérale
les deux agents. Cette méthode est plus évolutive que les travaux antérieurs basés sur la
même idée, et elle est performante sur un benchmark exigeant impliquant des politiques
de réseaux neuronaux.

5

Ensuite, nous proposons de traiter l’apprentissage multi-agents comme un jeu et d’y
appliquer value learning. Il en résulte une fonction de méta-valeur ; un jeu modifié
dans lequel l’apprentissage naïf est coordonné. Nous démontrons une manière efficace
d’apprendre la méta-valeur en Q-learn, sans représenter explicitement l’espace d’actions
continues et sans utiliser d’estimateurs REINFORCE. La méthode trouve des politiques
fortes dans des dilemmes sociaux et se compare favorablement à une méthode similaire
basée sur une méthode policy-gradient dans la littérature.

Mots clés: reseaux neuronaux, modélisation générative, attribution des crédits, dériva-
tion automatique, apprentissage par renforcement multi-agents, dilemmes sociaux

6

Abstract

This dissertation presents four articles in three different domains: generative modeling of
music, credit assignment for recurrent neural networks (RNNs), and multi-agent reinforce-
ment learning (MARL) on social dilemmas. A common theme is coordination, by which we
mean accounting for dependencies between things that were modeled as independent.

The first article concerns coordination of information states of disjoint variables. We
develop a model that produces conditionally independent predictions for dependent
variables, which are reconciled through an iterative refinement process. Our process is
closer to that of human composers than existing approaches which produce music from
beginning to end, and more robust to corrupted inputs.

In the second article, we consider coordination of communications between graph nodes.
The forward-mode RNN training algorithm UORO simplifies the derivative computation
graph by introducing spurious connections, turning targeted communications into simple
broadcasts. The true connections are restored in expectation through the use of shared
secrets in the form of correlated noise. We study the variance of this approximation. Based
on our insights we introduce a practical variation that drastically reduces variance at
increased computational expense. We also establish a theoretical connection between RE-
INFORCE and UORO, with equality up to a term that is zero in expectation but contributes
arbitrary variance.

In the third and fourth articles, we coordinate processes. First, we propose an algorithm
for finding strong policies in social dilemmas by assuming a rational opponent. Our agent
aims to find policies for which the best response is favorable, thus unilaterally coordinating
both agents. This method scales better than prior work based on the same idea, and is
competitive on a tough benchmark involving neural network policies.

We then proceed to treat multi-agent learning as a game and apply value learning
to it. This results in a meta-value function that measures how the return improves as
learning progresses, which can be seen as a modified game in which naive learning
is coordinated. We demonstrate an efficient way to Q-learn the meta-value, without
explicitly representing the continuous action space of policy updates, and without the

7

use of REINFORCE estimators. The method finds strong policies in social dilemmas and
compares favorably to a related policy gradient-based method from the literature.

Keywords: neural networks, generative modeling, credit assignment, automatic differ-
entiation, multi-agent reinforcement learning, social dilemmas

8

Contents

Résumé. 5

Abstract . 7

List of tables . 15

List of figures . 17

List of acronyms and abbreviations. 21

Acknowledgements . 23

Chapter 1. Introduction . 25

Chapter 2. Background . 29

2.1. Supervised Learning . 29

2.2. Unsupervised and Self-Supervised Learning . 30

2.3. Generative Modeling. 31

2.4. Reinforcement Learning . 33
2.4.1. Temporal Difference Learning . 35
2.4.2. Policy Gradient Methods . 36

2.5. Multi-Agent Reinforcement Learning . 37

2.6. Neural Networks . 40

2.7. Optimization . 45

Chapter 3. Counterpoint by Convolution . 49

Prologue . 49

3.1. Introduction . 50

3.2. Related Work . 53

9

3.3. Model . 54

3.4. Evaluation . 57

3.5. Sampling . 58
3.5.1. Orderless NADE Sampling . 58
3.5.2. Gibbs Sampling . 59

3.6. Experiments . 60
3.6.1. Data Log-likelihood . 60
3.6.2. Sample Quality . 60
3.6.3. Human Evaluations . 62

3.7. Conclusion . 63

Acknowledgments . 63

References . 63

Chapter 4. On the Variance of Unbiased Online Recurrent Optimization 67

Prologue . 67

4.1. Introduction . 68

4.2. Outline of the Paper . 69

4.3. Automatic Differentiation in Recurrent Neural Networks 69

4.4. Other Approaches to Credit Assignment . 71

4.5. Unbiased Online Recurrent Optimization . 72
4.5.1. Derivation . 72
4.5.2. Greedy Iterative Rescaling . 74

4.6. Variance Analysis . 75
4.6.1. Greedy Iterative Rescaling is Greedy . 75
4.6.2. Greedy Iterative Rescaling Optimizes an Inappropriate Objective 77
4.6.3. Generalized Recursions . 77
4.6.4. A Simple Expression for the Gradient Estimate . 78
4.6.5. Computing the Variance of the Total Gradient Estimate 79

4.7. Variance Reduction . 80
4.7.1. Optimizing Q subject to restrictions on its form. 80

10

4.7.2. Variance Reduction Experiments . 83

4.8. Projection in the Space of Preactivations . 86

4.9. REINFORCE as Approximate Real-Time Recurrent Learning 89

4.10. Conclusions . 92

Acknowledgements . 92

References . 93

4.A. Supporting Results for Variance Computations . 95

4.B. Variance of a Single Jacobian Estimate . 96

4.C. Optimizing α given Q0 . 97

4.D. Online optimization of α coefficients . 99

4.E. Minimization of the Product of Traces . 100

4.F. Estimating B online . 103

4.G. Hyperparameter Settings for Variance Reduction Experiments 105

4.H. Variance of Preactivation-Space Projection . 105

Chapter 5. Best Response Shaping . 107

Prologue . 107

5.1. Introduction . 108

5.2. Background. 110
5.2.1. Multi Agent Reinforcement Learning . 110
5.2.2. Social Dilemmas and the Iterated Prisoner’s Dilemma 110

5.3. Related Work . 111

5.4. Best Response Shaping . 112
5.4.1. Best Response Agent to the Best Response Opponent . 113
5.4.2. Detective Opponent Training . 114
5.4.3. Agent training . 115

5.5. Experiments . 116
5.5.1. Iterated Prisoner’s Dilemma . 116
5.5.2. The Coin Game . 118

11

5.6. Limitations . 119

5.7. Conclusion . 120

References . 121

5.A. Experimental Details . 122
5.A.1. IPD . 122
5.A.2. Coin Game . 122

5.B. Reproducing Results . 124
5.B.1. IPD . 124
5.B.2. Coin Game . 125

5.C. League Results . 125

5.D. Self-Play . 125

5.E. Tree Search Detective . 129

5.F. Evaluation Metrics of Various Agents . 129

Chapter 6. Meta-Value Learning: a General Framework for Learning with Learning
Awareness . 135

Prologue . 135

6.1. Introduction . 136

6.2. Background. 138
6.2.1. Naive Learning . 138
6.2.2. Looking Ahead . 138
6.2.3. Going Meta . 139

6.3. Meta-Value Learning. 140
6.3.1. The Meta-Value Function. 140
6.3.2. Learning Meta-Values . 141
6.3.3. Q-learning interpretation . 141

6.4. Practical Considerations . 142
6.4.1. Reformulation as a Correction . 143
6.4.2. Variable Discount Rates . 143
6.4.3. Exploration . 143

12

6.5. Experiments . 144
6.5.1. Logistic Game . 144
6.5.2. Matrix Games . 145
6.5.3. Ablation . 148

6.6. Limitations . 148

6.7. Conclusion . 148

Acknowledgements . 150

References . 151

6.A. Normalized Bellman Equation. 154

6.B. LOLA, HOLA, COLA. 154

6.C. Detailed Algorithm Description . 155

6.D. Logistic Game Details . 155

6.E. Matrix Game Details . 157

6.F. ZD-extortion on the IPD . 159

Conclusion . 161

13

List of tables

2.1 Iterated Prisoner’s Dilemma payoffs . 38

3.1 Framewise negative log-likelihoods (NLLs) on the Bach corpus. We compare
against (Boulanger-Lewandowski et al., 2012), who used quarter-note resolution.
We also compare on higher temporal resolutions (eighth notes, sixteenth notes),
against our own reimplementation of RNN-NADE. COCONET is an instance of
orderless NADE, and as such we evaluate it on random orderings. However, the
baselines support only chronological frame ordering, and hence we evaluate our
model in this setting as well. 57

3.2 Mean (± SEM) NLL under model of unconditioned samples generated from
model by various schemes. 61

5.1 Payoff matrix for the prisoner’s dilemma game . 122

5.2 Hyperparameter search options . 124

6.1 Payoffs for the matrix games considered. 146

6.2 Head-to-head comparison of learning rules on Iterated Prisoner’s Dilemma.
MeVa extorts the naive learner, and appears to exploit LOLA to a small extent. 147

6.4 Head-to-head comparison of learning rules on Iterated Prisoner’s Dilemma. . . 158

6.5 Head-to-head comparison of learning rules on Iterated Matching Pennies. 158

6.6 Head-to-head comparison of learning rules on the Chicken Game. 158

15

List of figures

3.1 Blocked Gibbs inpainting of a corrupted Bach chorale by COCONET. At each
step, a random subset of notes is removed, and the model is asked to infer their
values. New values are sampled from the probability distribution put out by
the model, and the process is repeated. Left: annealed masks show resampled
variables. Colors distinguish the four voices. Middle: grayscale heatmaps show
predictions p(xj | xC) summed across instruments. Right: complete pianorolls
after resampling the masked variables. Bottom: a sample from NADE (left) and
the original Bach chorale fragment (right). 51

3.2 Likelihood under the model for ancestral Gibbs samples obtained with various
context distributions p(C). NADE (Bernoulli(0.00)) is included for reference. . 61

3.3 Human evaluations from MTurk on how many times a sampling procedure or
Bach is perceived as more Bach-like. Error bars show the standard deviation of a
binomial distribution fitted to each’s binary win/loss counts. 62

4.1 Training curves on the row-wise sequential MNIST task. For each setting we
have run 10 trials and plotted the mean of the classification loss and the 95%
confidence interval of the mean. For clarity of presentation, these curves have
been aggressively smoothed by a median filter prior to the computation of their
statistics. 84

4.2 Theoretical predictions and empirical measurements of quantities contributing
to total gradient variance. The “intrinsic” variance measures the expected norm
of the total gradient J L

θ , estimated by averaging across the minibatch. The
“expected” variance is a theoretical prediction of V(Q) according to Equation
4.7.6. The “actual” variance measures V(Q) empirically by the expected norm
of the total gradient estimate. 86

4.3 Evolution of log αs for some time steps s as training proceeds. At each training
step, the log αs are centered so that mins log αs = 0; this eliminates irrelevant
constant factors. 87

17

4.4 Training curves on the queue task showing interpolation between RTRL and
UORO by ablation of the spatial and temporal approximations. “neither” denotes
exact computation of the gradient using RTRL, “spatial” denotes RTRL with
J ht

zt νtν
⊤
t J

zt
θt

standing in for J ht
θt

, “temporal” denotes PREUORO computed by
Equation 4.8.1, “both” denotes UORO . Where applicable, the cut vertex zt ≡Wtat

is the preactivations. 88

5.1 The detective is trained using agents sampled from a replay buffer, which
contains agents encountered during training. Additional noise is incorporated
to broaden the range of agents encountered by the detective. The detective’s
training focuses on conditioning based on the agent’s policy, aiming to estimate
the optimal response to each policy to maximize its own return. Following
this, the agent’s training is conducted through backpropagation, through the
detective’s conditioning mechanism. 113

5.2 Illustration of the policies of agents trained with BRS and BRS-SP in a finite
Iterated Prisoner’s Dilemma game of length 6. The agents are trained against a
tree search detective maximizing its own return. BRS-SP agents learn tit-for-tat,
a policy that cooperates initially and mirrors the opponent’s behavior thereafter.
BRS agents learn cynic-tit-for-tat (CTFT), they defect initially but mirror the
opponent’s behavior thereafter. Therefore, at the initial state, BRS agents exploit
the rationality of the opponent. 117

5.3 Comparison of Agent’s trained with BRS, BRS-SP, and POLA on a 3× 3 sized
Coin Game. We evaluate the agent’s returns versus different opponents: Always
Defect opponent (AD) that takes the shortest path to all coins; Always Cooperate
opponent (AC) that takes the shortest path to its own coin but does not take the
agent’s coin; A Monte Carlo Tree Search opponent (MCTS) that do one thousand
rollouts using the agent’s policy at each state; a trained opponent (Trained) that is
trained vs the agent to maximize its own return; and agent’s performance against
itself (Self). The POLA agents are exploited by the MCTS, which approximates
the best response. It means, a rational opponent maximizing its return, harms
POLA’s return unintentionally. In contrast, BRS and BRS-SP get a higher return
against the MCTS. Although BRS agents are not inherently cooperative among
themselves, they effectively exploit the AC opponent in a rational manner. On
the other hand, BRS-SP agents exhibit greater levels of cooperation among
themselves but refrain from exploiting the AC opponent. 119

18

5.4 Evaluating BRS, BRS-SP, and POLA agents against each other. The red dot
shows the average return of each agent against the average return of the other
agent. Left: Both agents get a positive return on average. However, POLA gets a
higher return than BRS-SP agent on average, indicating exploitation. Middle:
POLA agents and BRS agents do not cooperate. BRS is able to get a higher return
than POLA on average indicating that POLA is exploited. Right: BRS agents get
a higher return than the BRS-SP agents. Effectively BRS agent is exploiting the
BRS-SP agent. 120

5.5 The presented figure illustrates the outcomes of 1-vs-1 Coin games lasting 50
rounds, involving a range of agents. The return achieved by each agent is
documented within the corresponding cell. The reported returns are an average
across 32 independent games. The numerical suffixes following the agent names
signify agents trained using distinct initialization seeds. It is important to note
that there are no games recorded between the MTCS agent and the trained agent
due to a lack of clarity regarding its meaning. 126

5.6 This figure illustrates the training of the IPD agent against the TSD. TSD samples
from the agent’s policy, represented by red arrows in the plot, while exploring all
possible actions when considering its own actions, represented by black arrows
in the plot. The agent treats the TSD as a black-box algorithm and differentiates
through it via REINFORCE. Note that the summation is over all log probabilities
and not only over the log probabilities presnet in the path. 130

5.7 This figure illustrates the performance of all the agents (Including Always
Cooperate and Always Defect) against the evaluation metrics. 131

5.8 This figure illustrates the performance of all the agents (Including Always
Cooperate and Always Defect) against each other. 132

6.1 The Logistic Game. The left panel displays the contours of player 1’s objective
f1(x), the right panel similarly for player 2. Player 1’s policy x1 is a horizontal
position, player 2’s policy x2 is a vertical position. Both players prefer solution B
over solution A, but cannot unilaterally go there. Naive learning converges to
whichever solution is closest upon initialization. 145

6.2 Logistic Game behaviors of different algorithms (rows) with different settings
(columns). 146

19

6.3 Ablation experiment on the Iterated Prisoner’s Dilemma. We show the effect
of using the V formulation over the U formulation, and disabling exploration,
target networks, λ-returns, and distributional RL. For each configuration we
train 3 models for 300 outer loops. We show short-term TD error (over k steps,
as in training) and long-term TD error (over 100 steps, as a validation); the
difference between these is due to bootstrapping. The horizontal axis measures
number of outer loops performed. We also show the returns f (x) of agents that
are being trained on the model (with γ = 0.95), and are reset every 10 outer
loops. 149

6.4 Meta-value agents extorting naive agents on the Iterated Prisoner’s Dilemma.
We train Û from four different initializations (columns). Then, we initialize a
pair of policies and show their behavior as they learn (rows). Each panel shows
the polytope of possible game returns (gray outline), the subset of possible
game returns given the current MeVa policy x1 (blue scatterplot of return pairs
obtained by pitting random policies against x1), and the actual return pair given
x1 and x2 (orange, with lines to help tell the angle of the rightmost front of the
blue region). 160

20

List of acronyms and abbreviations

A2C Advantage Actor-Critic
AC Always Cooperate
AD Always Defect
AI Artificial Intelligence
BN Batch Normalization
BPTT Back-Propagation Through Time
BRS Best Response Shaping
BRS-SP Best Response Shaping with Self-Play
CNN Convolutional Neural Network
COLA Consistent LOLA
CTFT Cynic Tit-For-Tat
DBN Deep Belief Network
GAE Generalized Advantage Estimation
GELU Gaussian Error Linear Unit
GIR Greedy Iterative Rescaling
GPU Graphics Processing Unit
GRU Gated Recurrent Unit
GSN Generative Stochastic Network
HMM Hidden Markov Model
HOLA Higher-Order LOLA
iid Independently Identically Distributed
IPD Iterated Prisoner’s Dilemma
LOLA Learning with Opponent Learning Awareness
LSTM Long Short-Term Memory
MARL Multi-Agent Reinforcement Learning
MCMC Markov Chain Monte-Carlo
MCTS Monte-Carlo Tree Search
MDP Markov Decision Process

21

MeVa Meta-Value Learning
M-FOS Model-Free Opponent Shaping
MH Metropolis-Hastings
MIDI Musical Instrument Digital Interface
MLP Multi-Layer Perceptron
MTurk Amazon’s Mechanical Turk
NADE Neural Autoregressive Distribution Estimator
NLL Negative Log-Likelihood
NN Neural Network
POLA Proximal LOLA
PSD Positive Semidefinite
PVN Policy Evaluation Networks
QA Question Answering
RBM Restricted Boltzmann Machine
ReLU Rectified Linear Unit
RL Reinforcement Learning
RNN Recurrent Neural Network
RTRL Real-Time Recurrent Learning
SEM Standard Error of the Mean
SFP Stable Fixed Point
SGD Stochastic Gradient Descent
TD Temporal Difference
TFT Tit-For-Tat
TSD Tree Search Detective
UORO Unbiased Online Recurrent Optimization

22

Acknowledgements

I am grateful for the support I’ve received from loved ones; my partner in crime
Cheng-Zhi Anna Huang, my parents Rien and Wilma, my brother Geert and his fam-
ily, my local cousin Krystle, and other family and friends back home that I don’t see often
enough.

I want to thank my advisor, Aaron Courville, for providing a great environment for
research, and for being invested in and engaged with my projects. I also very much enjoyed
my brief collaboration with James Martens, whose deep, practical understanding of so
many topics in machine learning inspired me to be bold in my own explorations. I’m
grateful to numerous fellow students in the LISA, MILA and Mila labs as well as the staff
running them over the years, as well as the administrative staff at UdeM for putting up
with us.

I’m happy to have worked with many and varied coauthors; among them Milad Agha-
johari, Faruk Ahmed, Shunichi Akatsuka, Amjad Almahairi, Akilesh Badrinaaraayanan,
Nicolas Ballas, Pablo Samuel Castro, Yi Deng, Monica Dinculescu, Chris Donahue, Juan Au-
gustin Duque, Douglas Eck, Jesse Engel, Çağlar Gülçehre, Vishal Gupta, Curtis Hawthorne,
Natasha Jaques, David Krueger, Rithesh Kumar, Anirban Laha, Hugo Larochelle, César
Laurent, Tegan Maharaj, Ethan Manilow, Amartya Mitra, Michael Noukhovitch, Shayegan
Omidshafiei, Adam Roberts, Alexander Scarlatos, Ian Simon, Rigel Swavely, Cassie Taraka-
jian, Christos Tsirigotis, Yusong Wu, Tianyu Zhang, and Yin Zheng.

Lastly, I want to acknowledge how heavily our academic research efforts depend on
the continued cooperation among huge numbers of people. These massive investments in
research of unclear practical gain are possible only in a state of luxury, where our basic
needs are met and our quibbles are comparatively minor. If we can stay away from major
wars, figure out a sustainable source of energy, keep the natural environment in shape,
and mitigate inequality just a touch, we can go a long way.

23

Chapter 1

Introduction

A common theme in computer science is the decomposition of large problems into smaller,
independent subproblems. This allows computation to be parallelized, distributed without
communication, or sometimes massively simplified by use of linearity. We can often still
gainfully do this when the subsystems are not independent, and restore or simulate the
effects of important dependencies by other means.

Coordination (Malone and Crowston, 1994) refers to the process of inducing a depen-
dency structure in (apparently) independent systems. Examples of this dynamic can be
found in biomechanics (Turvey, 1990), classical counterpoint (Fux, 1965) and jazz improvisa-
tion (Bastien and Hostager, 1988), swarm intelligence (Kennedy, 2006), encryption (Merkle,
1978) and quantum entanglement (Einstein et al., 1935). We will say that two systems are
coordinated when their states are in correspondence without a direct causal link.

In this work we will focus on specific instances of coordination in three areas. We
coordinate information states of disjoint variables in the domain of music generation, we
coordinate communications to distill broadcasts into directed messages in the context of
credit assignment, and we coordinate processes to attain cooperation in social dilemmas.

In generative modeling of music, we develop a model that composes music by re-
peatedly rewriting it, rather than the prevailing method of writing it in one pass from
beginning to end. Existing autoregressive models predict variables one-by-one and never
revisit them; mistakes made along the way tend to compound and lead this process off the
rails. We instead predict many variables simultaneously (conditionally-independently),
and use iterative refinement to coordinate the variables, smoothing out mistakes and
inconsistencies. Our process is closer to that of human composers, and explicitly robust to
corruptions in its input.

In our work on credit assignment for RNNs we study the approximate forward-mode
differentiation algorithm UORO (Tallec and Ollivier, 2018). Forward-mode differentiation
computes gradients forward in time, which is more appropriate for streaming settings

(such as language modeling) than the usual reverse-mode computation. In the context of
RNNs, the forward mode is known as Real-Time Recurrent Learning (RTRL).The main
drawback of RTRL is its space cost: it stores a parameter differential for each unit in the
current hidden state. UORO approximates RTRL by introducing spurious connections
into the computation graph, which allows simplifications that drastically reduce the space
requirement. The spurious connections derive from noise that is specifically correlated
(coordinated) to restore the original graph in expectation. In essence, UORO replaces
targeted communications between connected nodes by simple broadcasts to all nodes,
using shared secrets to mitigate cross-communication. While UORO is much more space-
efficient than RTRL, this comes at the cost of introducing variance. We develop a deep
theoretical analysis of the sources of this variance and how they may be reduced. Based
on these insights we introduce a practical variation, PreUORO, which drastically reduces
variance at increased computational expense. Moreover, we establish a deep theoretical
connection between REINFORCE and UORO.

Our work in MARL revolves around social dilemmas. These are games in which selfish
agents tend to converge to lose-lose outcomes, even though a win-win outcome is available.
The win-win outcome is unstable and requires coordination and threats to arrive at and
maintain. A real-world example is environmental pollution: we all derive value from
living in a clean environment, but no one wishes to shoulder the burden of undoing or even
just preventing pollution. In game theory, these dynamics are captured in simple repeated
matrix games, such as the well-known Iterated Prisoner’s Dilemma (IPD; Axelrod and
Hamilton, 1981). Done naively, multi-agent learning on such problems leads to lose-lose
scenarios. Foerster et al. (2018) made a breakthrough with LOLA, which considers the
effects of the policy update and actively attempts to influence the opponent’s learning
process. LOLA was the first method to systematically find the famous tit-for-tat strategy in
the IPD.

We extend the ideas of LOLA in two directions. With Best Response Shaping (Chap-
ter 5), we look infinitely far ahead to consider how a rational opponent would respond to
us, and seek a policy for which that response is favorable. The practical implementation
of this process takes the form of a conditional opponent policy that observes our current
policy and is trained to play the best response to it. Prior work that has explored the same
idea uses an explicit optimization process to find the best response, which is expensive
to compute and differentiate through (Zhang et al., 2020; Balaguer et al., 2022). Our use
of a trained conditional policy amortizes the cost of this optimization. Best Response
Shaping scales to policies parameterized by neural networks and is competitive on a tough
benchmark that requires them.

Our other work, Meta-Value Learning (Chapter 6), introduces the meta-value function:
it scores policies by how well they do on the game, now and after future optimization.

26

We propose to follow naive gradients of the meta-value function rather than those of
the game itself, and rather than those of LOLA’s surrogate, which is short-sighted and
inconsistent. The meta-value function follows from a fairly straightforward interpretation
of joint learning as a meta-game, featuring policy pairs as meta-states, policy changes as
meta-actions, and policy returns as meta-rewards (Al-Shedivat et al., 2017; Kim et al., 2021).
When used as a surrogate for the original game, it can be seen as a mollified game where
naive learning is coordinated. We apply Q-learning on this meta-game to approximate
the meta-value function, in a way that sidesteps the complications of the continuous
action space, and avoids the need for REINFORCE estimators. We visualize the method’s
behavior on a toy game, and quantify its performance on repeated matrix games.

27

Chapter 2

Background

We begin by discussing some basic machine learning topics that are foundational to the
articles in the dissertation. For more details we recommend the books Pattern Recognition
and Machine Learning by Bishop and Nasrabadi (2006), Deep Learning by Goodfellow et al.
(2016) and Reinforcement Learning: an Introduction by Sutton and Barto (2018).

2.1. Supervised Learning
In supervised learning, we generally wish to predict some information y given some

other information x. The classic example is image classification, where x are the pixels
of an image and the label y is one of a finite number of categories, e.g. cat or dog. We
draw a finite set of empirical examples {(x(i), y(i))} iid from the joint distribution p(x, y)
of images and their labels, and use these examples to “learn” a model qθ(y | x) ≈ p(y | x)
that approximates the conditional distribution of y given x.

We will restrict ourselves to parametric functions qθ where the parameter vector θ ∈ Rd

spans a range of possible models. For now, let us assume a log-linear model class:

qθ(y | x) ∝ exp(Wx + b)y

with parameters θ =
(

vec(W)⊤ b⊤
)⊤

. We will later discuss neural networks (Sec-
tion 2.6), a very powerful model class that is nevertheless easy to work with.

The model θ⋆ that best fits the data distribution is defined to be the one that minimizes
some prediction error, say the KL divergence:

θ⋆ = argminθ Ex∼p(x)DKL(p(· | x)∥ qθ(· | x))

= argminθ −Ex∼p(x)Ey∼p(y|x) log
qθ(y | x)
p(y | x)

= argmaxθ Ex,y∼p(x,y) log qθ(y | x).

In practice we use a finite training set to estimate the expectation, and we will typically use
gradient descent to find the minimizer θ⋆, repeatedly updating a candidate θ according to

θ ← θ + η∇Ex,y∼p(x,y) log qθ(y | x),

until convergence. We will discuss this algorithm in more detail later (Section 2.7).
This approach is known as maximum likelihood estimation (Bishop and Nasrabadi,

2006). According to the classical understanding of machine learning, the model will suffer
from overfitting and underfitting. Overfitting stems from the restriction to a finite sample
from p(x, y); a given sample may have exaggerated or even entirely accidental correlations
between x and y, so that the model θ that maximizes the likelihood of our sample would
not maximize the likelihood of another sample from the same distribution. Underfitting
stems from the restriction to a model class qθ that does not contain the true function
p(x | y), and whose closest fitting candidate is not particularly close.

We typically monitor overfitting and underfitting by measuring the error on the training
data as well as a held-out validation or test set. The performance on the test set indicates
how well the model will do on unseen data from p(x, y). A model is said to overfit to the
extent that the test error exceeds the training error. A model is said to underfit to the extent
that it fails to reduce even the training error.

It is worth noting that before neural networks took off in the 2010s, the conventional
wisdom was that there is a fundamental trade-off between overfitting and underfitting.
Reducing model capacity (expressiveness of the model class) to reduce overfitting at the
cost of underfitting, and for a long time this was the main regularization tool in the box.
Neural networks have significantly changed this story, thanks in part to stochastic gradient
descent, which has several implicit regularization effects (Wilson and Martinez, 2003;
Keskar et al., 2016; Zhang et al., 2021; Arpit et al., 2017). In fact, it is well established that
neural networks work best when made large (Krizhevsky et al., 2012; Belkin et al., 2019;
Nakkiran et al., 2021).

2.2. Unsupervised and Self-Supervised Learning
Sometimes supervised learning is only a means to an end. Training an image classifier,

for example, can be just a way to force a model to understand images in general, an
understanding that we can later harness for other purposes (Simonyan and Zisserman,
2014; Szegedy et al., 2015; Bommasani et al., 2021). However, training an image classifier
requires paired data (x, y) ∼ p(x, y), which can be costly to obtain. However, we can learn
to understand images x ∼ p(x) without labels y.

30

For example, autoencoders (Goodfellow et al., 2016) are latent-variable models that
consist of an encoder fθ and a decoder gθ, and are trained to minimize

Ex∼p(x)∥gθ(fθ(x))− x∥2.

This error can be seen as the negative log-likelihood under a Gaussian model
N (gθ(fθ(x)); I). The purpose of an autoencoder is to learn useful latent codes z = fθ(x)
that describe x in terms of abstract features (entities, relationships, events) rather than
surface-level properties (pixels). Regularization is required to avoid learning a trivial
identity gθ ◦ fθ = Id and instead force the model to understand the data and extract useful
features. We can do this for example by restricting the dimensionality of the latent code z,
encouraging piecewise-constant codes (Rifai et al., 2011), penalizing the latent codes to fit
some prior distribution, or adding noise to the codes (Kingma and Welling, 2013).

We highlight the denoising autoencoder (Vincent et al., 2008), which is trained to reverse
a chosen corruption process p(x̃ | x). Each time we train on an example x, we produce a
corrupted version x̃ ∼ p(x̃ | x), and ask the model to predict x given x̃. We minimize

Ex∼p(x)Ex̃∼p(x̃|x)∥gθ(fθ(x̃))− x∥2.

Common choices are elementwise iid additive or multiplicative noise. The corruption
destroys information, and the model must infer that information from what remains. The
only way to do this is to understand the correlations in the data: reconstructing half a
picture of a cat requires understanding cats. The idea of reconstructing corrupted idea is
central to our work Counterpoint by Convolution (Chapter 3). It also underlies the current
wave of diffusion models, which can be seen as denoising autoencoders that can operate
at multiple severities of corruption (Dieleman, 2022).

2.3. Generative Modeling
In generative modeling we are interested in modeling the data distribution p(x), with a

particular emphasis on convenience of drawing samples x. We will assume x ∈ {1 . . . k}n

is a vector of n categorical variables (e.g. text tokens, or discretized pixel values).
In this dissertation we will focus on autoregressive models, which model individual

elements of x given information about other elements. When the n elements of x are
independent, the model q(x) can be factored like p(x):

q(x) = q1(x1)q2(x2) · · · qn(xn) ≈ p1(x1)p2(x2) · · · pn(xn) = p(x).

The problem becomes more interesting when the elements of x correlate, in which case we
need to model the joint distribution p(x). Different situations call for different factoriza-
tions, but the most common one is to treat x as a sequence and factor the model so that we

31

can generate from beginning to end:

q(x) = q1(x1)q2(x2 | x1)q3(x3 | x1, x2) · · · qn(xn | x1 · · · xn−1).

The benefit of factoring the model is that we break up the problem into easier subproblems.
Instead of having to predict x1, x2 · · · xn as a whole, we predict the variables one at a time
and get to condition on true values at training time. We minimize the expected NLL

Ex∼p(x)[− log q(x)] = −Ex∼p(x) log
n

∏
i=1

qi(xi | x<i) = −Ex∼p(x)

n

∑
i=1

log qi(xi | x<i),

which in the simplest case boils down to training n models on n independent prediction
problems. Generally it makes sense to share parameters between these models (as in
NADE; Larochelle and Murray, 2011).

The extreme case of parameter sharing is that of recurrent models, where the variable-
length sequence x<i is recursively aggregated into a fixed-length latent vector hi:

hi = fθ(hi−1, xi) (2.3.1)

qi(xi+1 | x<i) ≜ gθ(xi+1 | hi). (2.3.2)

Now the functions fθ , gθ do not depend on the subscript i, so they can be applied repeatedly
with the same parameters. Jointly, they form a language model.

The generative procedure for autoregressive models is to predict variables xi one at
a time, each time conditioning on the variables x<i already predicted. A major problem
with this approach is compounding of errors: a mistaken prediction or unlucky random
draw for xi will deteriorate the predictions x>i that follow it (Venkatraman et al., 2015).
The process quickly goes off the rails as the observed variables x<i become less and less
like the data on which the model was trained (Bengio et al., 2015).

In Chapter 3, we discuss a modeling approach in which the model observes the values
of an arbitrary subset xC = {xj | j ∈ C} of variables, and makes conditionally independent
predictions for the unobserved variables x¬C:

q̃¬C(x¬C | xC) ≜ ∏
i/∈C

qi(xi | xC).

This structure is cheap to train, but it forms a poor model of the true distribution p(x¬C |
xC). However, we can reinterpret these conditionally independent predictions: each of
the conditionals ∏i/∈C qi(xi | xC) forms part of autoregressive factorizations with variables
reordered such that the observed variables xC come before xi and xi comes before the other
unobserved variables x¬C{i}. In fact, this model provides an autoregressive factorization
along any ordering o:

q(x; o) = ∏
i

qoi(xoi | xo<i).

32

One way to draw coordinated samples then, is to randomly choose an ordering o, and
sample autoregressively along the ordering. However, this process still suffers from
compounding errors.

Gibbs sampling (Geman and Geman, 1984) provides an alternative approach, that
coordinates variables by gradually reconciling them with one another. Formally, we start
with some initial value x(0) and then repeatedly resample variables using full conditionals:

x(t+1)
i ∼ pi(xi | x(t)¬{i}).

It can be shown that this is a special case of Metropolis-Hastings (Metropolis et al., 1953;
Hastings, 1970) with acceptance rate 1, and thus eventually converges to producing
samples from the joint distribution p(x).

The drawback is that the process tends to mix slowly: consecutive samples are highly
correlated, so samples that are intended to be iid must be taken many time steps apart.
This can be alleviated through block-Gibbs sampling (Liu, 1994), which resamples several
variables at once according to their conditional joint distribution. In our work we applied
block-Gibbs sampling with a conditional independence assumption within the block. This
lets us use the cheap conditionally independent predictions q̃¬C(x¬C | xC). By annealing
the block size down to one over time, we mitigate the downside of the assumption
without losing the computational and statistical gains of block-Gibbs sampling. Moreover,
the process is inherently robust to errors, as the repeated resampling allows them to be
corrected over time.

2.4. Reinforcement Learning
So far we have considered problems in which we learn to predict targets on a fixed

data distribution. In reinforcement learning (RL; Sutton and Barto, 2018), we consider
an agent interacting with an environment, emitting actions and observing rewards and
changes in the environment. The rewards provide a learning signal, but the agent does
not a priori know which actions it took earned it the reward. Sometimes rewards are
misleading, for example in investment, where an agent must forego reward in the short
term in order to obtain much higher reward in the long term. A central theme in RL is
credit assignment: taking all the rewards obtained and linking them to the actions that were
causally responsible.

For the sake of demonstration, we will consider a fully-observable environment.
Using the notation of Agarwal et al. (2021), this is a Markov Decision Process (MDP)
(S ,A, P, r, γ, µ) where S is the state space of the environment, A is the action space,
µ ∈ ∆(S) and P : S ×A → ∆(S) are respectively the initial and transition distributions,
r : S × A → R is the reward function, and γ is a discount rate. An agent acting in

33

an MDP gives rise to a trajectory τ = (s0, a0, r0, s1, a1, r1, . . .). We will denote prefixes by
τt = (s0,a0,r0, . . . ,st,at,rt), and suffixes by τt = (st,at,rt,st+1,at+1,rt+1, . . .). The set of all
prefixes τt (finite trajectories) will be denoted H. A policy π : H → ∆(A) observes a
finite trajectory and emits a mixed action.

Given an initial state s0 ∼ µ, we obtain the following process:

at ∼ π(τt)

st+1 ∼ P(st+1 | st, at),

which induces a probability distribution over trajectories

Prπ
µ (τ) = µ(s0)π(a0 | τ0)P(s1 | s0, a0)π(a1 | τ1) · · ·

An agent generally seeks to adopt a policy π that maximizes the expected return

Eτ∼Prπ
µ

R(τ) ≡ Eτ∼Prπ
µ

∞

∑
t=0

γtr(st, at),

and the discount rate γ controls the extent to which the agent values future reward.
If we view the expected return as a function of the initial state distribution µ, we obtain

the state-value function:

Vπ(µ) = Eτ∼Prπ
µ

∞

∑
t=0

γtr(st, at). (2.4.1)

Thanks to the Markov property, the value of a given state is independent of the trajectory
through which it was encountered. When applied to a pure state (i.e. a deterministic state
distribution) encountered on a trajectory, the value function gives the expected return for
the rest of the trajectory. It satisfies the Bellman equation, around which reinforcement
learning revolves:

Vπ(s) = Ea|s∼πEs′|s,a∼P[r(s, a) + γVπ(s′)]. (2.4.2)

Closely related to the state-value function is the action-value function with Bellman
equation

Qπ(s, a) = r(s, a) + γEs′|s,a∼PEa′|s′∼πQπ(s′, a′).

The two are related by

Vπ(s) = γEa|s∼πQπ(s, a)

Qπ(s, a) = r(s, a) + Es′|s,a∼PVπ(s).

The appeal of Q-functions is the ability to convert them into policies, particularly the
optimal policy π(τt) = argmaxa Qπ(st, a).

34

2.4.1. Temporal Difference Learning

Given a policy π, the straightforward way to learn value function approximations
V̂ϕ(s) ≈ Vπ(s) or Q̂ϕ(s, a) ≈ Qπ(s, a) with parameters ϕ, is to collect finite trajectories τ

and minimize the error between both sides of Equation 2.4.1.

argminϕ Eτ∼Prπ
µ
(R(τ)− V̂ϕ(s0))

2, or

argminϕ Eτ∼Prπ
µ
(R(τ)− Q̂ϕ(s0, a0))

2.

However, a more sample-efficient approach is to learn to satisfy the Bellman equation
(2.4.2), effectively using our own predictions to provide biased but low-variance estimates
of R(τt) for all steps t:

argminϕ Eτ∼Prπ
µ ∑

t
(rt + γV̂ϕ(st+1)− V̂ϕ(st))

2 or,

argminϕ Eτ∼Prπ
µ ∑

t
(rt + γQ̂ϕ(st+1, at+1)− Q̂ϕ(st, at))

2.

This is called bootstrapping, and it greatly speeds up learning.
Usually, an RL agent does not have the luxury of learning upfront from an idly collected

set of trajectories – it has to learn while acting on the environment and incurring rewards
and punishments. In this setting there is a crucial tradeoff between exploration and
exploitation: do I do what I think is best, or do I try something new in hopes of discovering
something even better?

A classic approach to retain exploration is ϵ-greedy: take the greedy action
argmaxa Q̂ϕ(s, a) most of the time, but with vanishing probability take a uniformly
random action instead. Sarsa provides an algorithm for learning the values for such an
ergodic policy:

ϕt+1 = ϕt + η(rt + γQ̂ϕt(st+1, at+1)− Q̂ϕt(st, at))∇ϕQ̂ϕt(st, at).

Sarsa learns values for the noisy policy; as the noise is annealed away, its values converge
to those of the optimal policy.

A related algorithm is Q-learning, which allows learning the values of the optimal
policy directly, while acting according to an exploratory policy:

ϕt+1 = ϕt + η(rt + γ max
a

Q̂ϕt(st+1, a)− Q̂ϕt(st, at))∇ϕQ̂ϕt(st, at).

When the model Q̂ϕt is a deep neural network, the algorithm is not guaranteed to converge.
However, it generally converges in practice with some engineering tricks (Mnih et al., 2015;
Hessel et al., 2018).

35

2.4.2. Policy Gradient Methods

In Q-learning, we implicitly learned a policy by learning its action values. We can also
directly learn a policy by maximizing

E
τ∼Pr

πθ
µ

∞

∑
t=0

R(τ)

with gradient descent. Whereas in supervised learning we had an expectation over a fixed
data distribution p(x), now we have an expectation over a trajectory distribution Prπθ

µ (τ)

that depends on our policy parameter θ. In taking the gradient of the expectation, we can
no longer simply take the expectation of the gradient.

REINFORCE (Williams, 1992) gives us the gradient of the expected return in the form
of an expected gradient which we can sample as usual:

∇θE
τ∼Pr

πθ
µ

R(τ) =
∫

R(τ)∇θ Prπθ
µ (τ)dτ

=
∫

R(τ)
Prπθ

µ (τ)

Prπθ
µ (τ)

∇θ Prπθ
µ (τ)dτ

=
∫

R(τ)Prπθ
µ (τ)

∇θ Prπθ
µ (τ)

Prπθ
µ (τ)

dτ

=
∫

R(τ)Prπθ
µ (τ)∇θ log Prπθ

µ (τ)dτ

= E
τ∼Pr

πθ
µ

R(τ)∇θ log Prπθ
µ (τ).

It is worth unpacking R(τ) and Prπθ
µ (τ) to omit noncausal terms r(st′ , at′) log πθ(at | st)

with t′ < t; these terms have mean zero but contribute variance to the estimator. We are
left with

∇θE
τ∼Pr

πθ
µ

R(τ) = E
τ∼Pr

πθ
µ
∇θ

∞

∑
t=0

γtR(τt) log πθ(at | st).

The mechanism of REINFORCE is intuitive: reward or punish actions according to the
returns they achieve down the line. Unfortunately, the estimator has high variance. A
typical variance reduction technique is to subtract a baseline prediction V̂(st) of the future
return R(τt):

∇θE
τ∼Pr

πθ
µ

R(τ) = E
τ∼Pr

πθ
µ
∇θ

∞

∑
t=0

γt(R(τt)− V̂(st)) log πθ(at | st).

As the notation suggests, the ideal baseline is V̂(st) = Vπθ(st), and we saw in the previous
section how we may learn to predict it. We may further reduce variance by writing R(τt)

in terms of R(τt+1) and replacing the noisy sample R(τt+1) by a deterministic prediction

36

V̂(st+1):

Eτ∼Prπ
µ

R(τt) = Eτ∼Prπ
µ

rt + γR(τt+1)

= Eτt∼Prπ
µ

rt + γEτt+1|τt∼Prπ
µ

R(τt+1)

= Eτt∼Prπ
µ

Est+1|st,at∼P rt + γVπ(st+1)

≈ Eτt∼Prπ
µ

Est+1|st,at∼P rt + γV̂(st+1).

While this reduces variance, it does so at the cost of introducing a bias insofar as the
prediction V̂(st+1) deviates from the true value Vπθ(st+1).

This substitution, a form of bootstrapping, brings us to the advantage actor-critic
estimator (A2C; Mnih et al., 2016):

∇θE
τ∼Pr

πθ
µ

R(τ) ≈ E
τ∼Pr

πθ
µ
∇θ

∞

∑
t=0

γt(rt + γV̂(st+1)− V̂(st)) log πθ(at | st).

This estimator is routinely used in practice and works well with neural network actors πθ

and critics V̂ϕ.

2.5. Multi-Agent Reinforcement Learning
When multiple agents interact with and learn from a shared environment, the single-

agent perspective considered so far becomes problematic. Multi-Agent Reinforcement
Learning (MARL) lies at the intersection of game theory and reinforcement learning.

The generalization of the earlier MDP formalism is straightforward: we now have a
joint action space A = A1 × · · · × An, the transition P : S ×A 7→ ∆(S) operator takes
joint actions, and the reward function r : S × A 7→ Rn emits a vector of rewards, one
for each of the n agents. The agents follow a joint policy π = (π1, . . . , πn), producing
conditionally independent actions. Each agent seeks a policy πi that maximizes its own
expected return EτRi(τ).

A multi-agent learning problem is similar to a multi-objective optimization problem in
that there exists no notion of joint maximum. The closest notion is that of a Pareto optimum
(Pareto, 1919), a solution π⋆ for which there is no other solution π that makes some player
better off without making others worse off, i.e.

E
τ∼Prπ⋆

µ
Ri(τ) ⩾ Eτ∼Prπ

µ
Ri(τ)

for all π, i. However, Pareto optima were developed in an economics context where the
joint policy π can be imposed by a central authority.

In multi-agent systems, the joint policy instead comes about through agents choosing
their own policies. If some agent can improve their outcome at the expense of others,
then they will do so. Effectively, this restricts us to joint policies where no agent wishes

37

to change their policy. This is the notion of a Nash equilibrium (Nash Jr, 1950), a choice
of joint policy (π1, . . . , πn) for which it holds that each πi maximizes EτRi(τ) given the
other πj, j ̸= i. For example, in two-player systems:

π1 ∈ argmaxx E
τ∼Prx,π2

µ
R1(τ)

π2 ∈ argmaxy E
τ∼Pr

π1,y
µ

R2(τ).

The problem with Nash equilibria is that they are generally not unique, and different
equilibria will provide different utility to different agents.

We will take the Iterated Prisoner’s Dilemma (Axelrod and Hamilton, 1981) as a running
example. The IPD is a repeated matrix game where, each round, players choose to either
cooperate or defect, after observing the joint action from the prior round. Formally, the
state space S = {∅, CC, CD, DC, DD} consists of a special initial state ∅ and the set of joint
actions. The payoff matrix in Table 2.1 specifies the joint reward function as a function of
the joint action.

C D
C (−1,−1) (−3,−0)
D (−0,−3) (−2,−2)

Table 2.1. Iterated Prisoner’s Dilemma payoffs

In this game, players have a tendency to defect, even though they both prefer CC
to DD. Arriving at and maintaining CC requires coordination. The famous tit-for-tat
policy (Axelrod and Hamilton, 1981) uses threats of defection to induce cooperation in its
opponents. Tit-for-tat cooperates, but it punishes defection with defection. This can be
used as a way to coordinate joint policies without a central authority.

In IPD, the solution where both players defect all the time is a Nash equilibrium, but
both players would prefer the Nash equilibrium where both players play tit-for-tat. The
latter is both a Pareto optimum and a (weak) Nash equilibrium at once, which is ideal. In
general, however, these sets of solutions are disjoint, and it is unclear how to characterize
what solution is desirable. Nevertheless, it should be one goal in MARL to avoid equilibria
that are dominated (in the Pareto sense) by other equilibria. The IPD, as simple as it is,
provides a basic testbed.

There is one other complication to be discussed: we will be learning policies, that is,
gradually improving them using gradient descent. The characterizations of Nash equi-
librium and Pareto optimality instead are global, speaking of argmaxes and existences
without regard for the topology of the joint policy space and the path by which an im-
proved solution may be reached.

We can view the multi-agent MDP as a differentiable game, a function f (x) that maps
joint policies x to joint expected returns. The joint gradient (better known as the naive or

38

simultaneous gradient) will be written as

∇̄ f (x) =

(
∇x1 f1(x)
∇xn fn(x)

)
.

The local analog of a Nash equilibrium is a stable fixed point, a point at which the gradient
is zero and the curvature is negative (roughly; see Letcher (2018) for the intricate details).
Basically, a point where, if you start close enough to it, gradient descent with small enough
learning rate will converge to it.

Naive learning is the simplest way to apply RL to multi-agent systems; we simply let
each agent learn independently, treating other agents as part of the environment. In RL
terms, naive learning makes the environment nonstationary – the transition probabilities P
in each agent’s MDP would come to depend on the policies of other agents, which change
over time.

In optimization terms, the gradient becomes less reliable as an improvement direction
even locally. The gradient derives from a first-order approximation of f , which measures
independent contributions of each element of x to f (x). This is already violated in single-
objective optimization, e.g. neural network training, but at least there the different elements
of x are being updated in service of a shared objective f . When different elements optimize
for different objectives, the gradient may lose its meaning entirely.

Several approaches address the issue by “looking ahead” (Zhang and Lesser, 2010),
effectively performing naive learning on a modified game f̃ that evalutes f after an
imagined naive update:

f̃ (x) = f (x + α∇̄ f (x)).

Learning with Opponent Learning Awareness (LOLA; Foerster et al., 2018) proposed
to capture the second-order dependency on x through the imagined update. It was the
first general learning algorithm to consistently find tit-for-tat on the IPD. However, it has
an inconsistency: each player assumes its opponent to be naive, just like naive learning
assumes its opponent to stand still.

A consistent version of LOLA would use the definition

f̃ (x) = f (x + α∇̄ f̃ (x)),

however this is an implicit equation that is not useful in practice. COLA (Willi et al., 2022)
proposed to approximate f̃ with a model trained to minimize the inconsistency.

POLA (Zhao et al., 2022) improved the basic LOLA algorithm by replacing all gradient
updates by proximal updates, which are improvement directions subject to function-space
step size penalties. The result is an approximately parameterization-invariant LOLA that
can be applied in the case where policies x are represented by neural network parameters.

39

In Chapter 5 we will discuss an approach that essentially takes LOLA to an extreme
of looking infinitely many steps ahead. The lookahead process is amortized by a learned
parametric model, which at the same time serves to smooth the result, as it will typically
be almost piecewise constant with respect to x.

In order to look farther ahead in optimization time, some have turned to the meta-game
in which joint policies are meta-states and returns f (x) are meta-rewards. Now we seek to
maximize the expected meta-return

EΩ

∞

∑
t=0

γt f (x(t)), (2.5.1)

under the optimization process

x(t+1)
1 ∼ Ω1(· | x(t))

x(t+1)
2 ∼ Ω2(· | x(t))

governed by the meta-policies Ω1, Ω2.
Meta-PG (Al-Shedivat et al., 2017) first considered this meta-game, and Meta-

MAPG (Kim et al., 2021) specialized it to the multi-agent setting. Both propose to use
(simultaneous) policy gradients to maximize (2.5.1) with respect to x. However, both
estimate the gradient of (2.5.1) using naive rollouts (i.e. Ω being a deterministic naive
gradient update) and hence are not consistent with the true process by which x is being
updated.

M-FOS (Lu et al., 2022) solves the inconsistency by allowing arbitrary parameteric
meta-policies Ωθ, and using (simultaneous) policy gradients to maximize (2.5.1) with
respect to θ. Now the meta-policy can be used both in the rollouts to estimate (2.5.1) and as
the true meta-policy.

We propose in Chapter 6 our own method based on the meta-game formalism. Our
method uses a model of (2.5.1) to solve the inconsistency in Meta-MAPG, while retaining
a gradient-based meta-policy Ω. In essence, we replace the original game f by a modified
game

V(x) = f (x) + γV(x + α∇̄V(x)),

on which naive gradient descent is coordinated.

2.6. Neural Networks
Neural networks are an ancient and venerable order of extremely flexible differentiable

functions that, despite some false starts, turns out to be easy to optimize. The nature of
this apparently free lunch is still under active study (Zhang et al., 2021; Belkin et al., 2019;
Nakkiran et al., 2021).

40

The simplest example is a single-layer network – an affine transformation followed by
a nonlinear activation function:

f (x; θ) = σ(Wx + b).

The weight matrix W and bias vector b make up the parameters θ =
(

vec(W)⊤ b⊤
)⊤

of the model. By adjusting their values, we can express different functions f (·; θ). The
activation is typically either a threshold function (e.g. the ReLU σ(x) = max{x, 0}) or a
squashing function (e.g. the hyperbolic tangent σ(x) = tanh(x)).

In modern times we treat this basic structure as a building block. Networks get much
more interesting when we arrange multiple blocks in sequence. For example, a deep neural
network with L layers:

h(0) = x

h(l) = f (l)(h(l−1); θ(l)) = σ(W(l)h(l−1) + b(l))

f (x; θ) = h(L),

with parameters θ =
(

θ(1)⊤ · · · θ(L)⊤
)⊤

.
The expressivity of neural networks grows exponentially in the number of layers

(Montufar et al., 2014), which in part explains the success of deep learning. Each layer has
its own hidden units h(l); functions of the input x that it is free to choose and that will often
come to represent useful abstract features of the input (except for the last layer, whose
values will be constrained to match data). If x represents an image of a face, for example,
such features include the pose, the lighting, the expression, the presence or absence of
facial hair and glasses, and so on. These are features that would be very hard to extract
by manually writing a program, but neural networks often learn to extract them just as
a means to some downstream end. The power of neural network depth stems from the
ability to reuse features for multiple purposes.

In order to train a neural network, we construct a performance metric that tells us
how good (or bad) the model is, and then iteratively improve it. Typically, we construct a
per-example loss L(θ; x, y) as a function of the parameters and minimize its expectation
using some form of gradient descent:

θ ← θ − ηEx,y∇L(θ; x, y).

The expectation here is over a large set of training examples, but in practice we often use
small randomized subsets to estimate the expectation. This is stochastic gradient descent,
and it exploits a common theme in optimization, which is that taking many cheap but
approximate steps is more efficient than taking few costly but accurate steps.

41

Either way, we need to compute the gradient ∇L(θ; x, y) to proceed. For the sake of
demonstration, we let the per-example loss be the squared error between the network’s
output and the target y:

L(θ; x, y) = D(y, f (x; θ)), D(y, ŷ) =
1
2
∥ŷ− y∥2.

By the chain rule of differentiation, we can relate the error to the model output:

(∇L(θ; x, y))⊤ =
∂D
∂ŷ

(y, f (x; θ))
∂ f
∂θ

(x; θ)

= (f (x; θ)− y)⊤
∂ f
∂θ

(x; θ).

This takes the form of a vector-Jacobian product u⊤ ∂ f
∂θ (x; θ), which we can compute

cheaply by backpropagation Rumelhart et al., 1986:

u⊤
dh(L)

dh(L)
= u⊤

u⊤
dh(L)

dh(l−1)
= u⊤

dh(L)

dh(l)
∂ f (l)

∂h(l−1)
(h(l−1); θ(l))

= u⊤
dh(L)

dh(l)
σ′(W(l)h(l−1) + b(l))W(l).

We iterate over the layers in reverse order, maintaining the projected derivatives u⊤ dh(L)

dh(l)

with respect to the current layer’s output. We could compute the entire Jacobian ∂ f
∂θ (x; θ)

using similar recursions, before finally reducing it with the vector u. What makes back-
propagation efficient is that we do not need to explicitly compute any Jacobians, and only
ever work with vectors shaped like h(l).

Given u⊤ dh(L)

dh(l)
, we can compute the layer’s contribution to the gradient using its input

h(l−1) only:

u⊤
dh(L)

dθ(l)
= u⊤

dh(L)

dh(l)
∂ f (l)

∂θ(l)
(h(l−1); θ(l))

=

(
vec

((
u⊤ dh(L)

dh(l)
σ′(z(l))

)⊤
(h(l−1))⊤

)⊤
u⊤ dh(L)

dh(l)
σ′(z(l))

)
,

where z(l) = W(l)h(l−1) + b(l). In practice we rarely need to derive these gnarly expressions
by hand – we use automatic differentiation software instead that can handle general di-
rected acyclic computation graphs, such as Theano (Al-Rfou et al., 2016), Tensorflow (Abadi
et al., 2016), PyTorch (Paszke et al., 2019) and JAX (Bradbury et al., 2018).

What we have described is the simple case: a series of fully-connected layers. It is often
useful to restrict the connectivity W between units in consecutive layers, e.g. to enforce
domain knowledge. A prominent example is a convolutional neural network (CNN;

42

LeCun, Bengio, et al., 1995), in which we have sequences (or 2D arrays as in images) of
hidden vectors h(l)t and a short sequence of weight matrices W(l)

k to aggregate information

from neighboring hidden vectors h(l)t−k:

h(l)t = ∑
k

W(l)
k h(l−1)

t−k + b(l).

With an appropriate flattening of dimensions, this can be seen as a regular layer with a
Toeplitz structure in W. This restriction makes the transformation equivariant to transla-
tions; in images for example, it means that if a network is able to recognize a cat in the
bottom left, it will also be able to recognize it anywhere else. This alleviates the need to
collect a large variety of training data. The notion of convolution can be generalized to
graphs that aren’t uniform grids (Bronstein et al., 2021), where it brings similar benefits.

Next, we will consider a network structure that is central to the work discussed in
Chapter 4: recurrent neural networks (RNNs; Elman, 1990). Like CNNs, RNNs map
sequences to sequences, but they can effectively aggregate information over much longer
horizons (infinitely long in principle, although we still struggle to train them). An RNN
has the structure

ht = fθ(ht−1, xt),

for example
ht = σ(Wht−1 + Uxt + b),

a simple nonlinear transformation, repeatedly applied over time t. RNNs are special in that
the computational path from h1 to ht goes through t− 1 activation functions, producing a
very nonlinear dependency. Moreover, as the time t grows, the dynamics of the backprop-
agation procedure to compute u⊤ dht

dh1
become hard to control, mainly due to the spectral

norm of W. The backpropagated vector u⊤ dht
dh1

will tend to either grow or shrink expo-
nentially; this is known as exploding gradients and vanishing gradients respectively (Bengio
et al., 1994). Best practice is to use a saturating nonlinearity with contractive Jacobian,
such as the hyperbolic tangent, to avoid exploding in favor of vanishing. Vanishing can
subsequently be alleviated through the use of skip-connections, as in Long Short-Term
Memory (LSTM; Hochreiter and Schmidhuber, 1997).

RNNs are often used for streaming tasks such as language modeling, where a text
comes in one word at a time and the model is tasked with predicting the next word. In this
case, at each time step, the model’s input is the current word, the output is a categorical
distribution q(xt+1 | ht) over the next word (e.g. from a classifier on top of the hidden state
ht), and the loss is the negative log-likelihood of correctly predicting the next word:

L(θ; x) = ∑
t
Lt(ht; x) = −∑

t
log q(xt+1 | ht).

43

The causal structure of the gradient dL(θ;x)
dθ admits two convenient factorizations:

dL
dθ

= ∑
t

dL
dht

∂ht

∂θ︸ ︷︷ ︸
reverse mode

= ∑
t

∂Lt

∂ht

dht

dθ︸ ︷︷ ︸
forward mode

,

where we have used the simplified notation

dL
dht

=
dL(θ; x)

dht
,

∂Lt

∂ht
=

∂Lt

∂h
(ht; xt+1),

∂ht

∂θ
=

∂ fθ

∂θ
(hs−1, xs).

The reverse-mode factorization can be computed cheaply by Back-Propagation Through
Time (BPTT; Werbos, 1990), using the recursions

dL
dht

=
dL

dht+1

∂ht+1

∂ht
+

∂Lt

∂ht

gt = gt+1 +
dL
dht

∂ht

∂θ
.

to compute g0 = dL
dθ . These recursions go backward in time, so the practical implementation

on (infinite) streaming tasks is to take a short chunk, run the model forward and then back
up to compute the gradient on the chunk.

Real-Time Recurrent Learning (RTRL; Williams and Zipser, 1989) exploits the forward-
mode factorization to compute gtmax =

dL
dθ :

dht

dθ
=

∂ht

∂ht−1

dht−1

dθ
+

∂ht

∂θ

gt = gt−1 +
∂Lt

∂ht

dht

dθ
.

RTRL is computed forward in time in lockstep with the model, and the terms accumulated
into gt can be directly used to update the parameters to enable online learning. However,
whereas BPTT maintains a vector dL

dht
, RTRL maintains a matrix dht

dθ , which makes it very
expensive in terms of both time and space to compute.

UORO (Tallec and Ollivier, 2018) and its predecessor NoBackTrack (Ollivier et al., 2015)
address this computational expense through a rank-one approximation:

dht

dθ
= ∑

s⩽t

dht

dhs

∂hs

∂θ
≈
(

∑
s⩽t

dht

dhs
νs

)(
∑
s⩽t

ν⊤s
∂hs

∂θ

)
≜ h̃tw̃⊤t ,

where the νs are iid random vectors that satisfy E[νtν
⊤
t] = I, for example νt ∼ N (0, I).

The projection onto random vectors makes the approximation cheap to maintain:

h̃t =
∂ht

∂ht−1
h̃t−1 + νt

w̃⊤t = w̃⊤t−1 + ν⊤t
∂ht

∂θ
.

44

Effectively, it destroys information about the spatial (between units) and temporal (be-
tween time steps) connectivity of the model. However, the coordinated structure of these
projections serves to restore the true graph in expectation.

BPTT, RTRL and UORO will be discussed extensively in Chapter 4.

2.7. Optimization
In the previous section, we introduced (stochastic) gradient descent:

θ ← θ − ηg,

where g = Ex,y∇L(θ; x, y) is the (stochastic) gradient of the task loss. Much of deep
learning revolves around improving the speed and quality of this optimization process.
However, we are not ultimately interested solely in reducing the training loss; we wish in
particular to find solutions that generalize well beyond the training set.

If we think of the task loss Ex,yL(θ; x, y) as the height of a landscape at different spatial
locations θ, then gradient descent is the algorithm that aims to find the lowest point by
always going down in the steepest direction available, at a rate proportional to the slope.
This is a very naive way of finding the lowest point, and it has some issues:

• It can get stuck in local optima – solutions that are better than their immediate
neighborhood, but worse than some other more remote solutions. Bowls, for
example, provide local minima for soup to get stuck in.
• It can spend a lot of time traversing plateaus, where there is a definite direction of

improvement but the slope is minimal. Increasing the learning rate helps, but hurts
when the end of the plateau is reached.
• It can overshoot the lowest point and spend time oscillating around it. Reducing

the learning rate helps.
• It can spend a lot of time around saddle points – solutions of mixed curvature,

where the gradient is very small.
One of the most important techniques to improve optimization is momentum

(Sutskever et al., 2013). Momentum uses an exponentially decaying sum of past gradients
to update the parameter, which effectively adapts the learning rate for each parameter
element:

µ ← βµ− ηg

θ ← θ + µ.

Intuitively, momentum accelerates on plateaus and saddles and dampens oscillations in
narrow valleys.

45

Another set of techniques is based on the idea of taking the sign of each gradient ele-
ment, discarding its scale (Riedmiller and Braun, 1993; Lydia and Francis, 2019). The most
popular of these is RMSProp (Tieleman, Hinton, et al., 2012), which keeps an exponential
moving estimate of the second moment of each gradient element, and divides the gradient
by the square root of it:

ν ← βν + (1− β)g2

θ ← θ +
g

ϵ +
√

ν
.

This is helpful because large gradient elements correspond to sensitive parameters which
we would like to change carefully, and vice versa. AdaGrad (Duchi et al., 2011) combines
the ideas of momentum and sign methods; its successor Adam (Kingma and Ba, 2014) is
currently the most popular optimization method by far.

In deep learning, we can improve optimization not just by adjusting the optimiza-
tion algorithm; we may also adjust the optimization problem. We are free to modify
(reparameterize) the neural network architecture, as long as the function class fθ remains
sufficiently flexible. Several techniques have been discovered to combat the tendency of
gradients to vanish as they propagate through many layers.

The earliest breakthrough in this direction is the skip-connection: a shortcut between
layers that would otherwise be far apart. Such shortcuts reduce the effective depth, while
maintaining the expressiveness of the network. The idea is used to great effect in Long
Short-Term Memory (LSTM; Hochreiter and Schmidhuber, 1997), an RNN architecture. It
was later carried over to feed-forward neural networks to enable training neural networks
with hundreds of layers (Srivastava et al., 2015; He et al., 2016).

Another advance was to switch to rectified linear units (ReLUs) as activation functions,
away from squashing functions such as the logistic function and hyperbolic tangent which
easily saturate and yield small gradients (Krizhevsky et al., 2012). Much work has gone
into drawing good values θ from which to start optimization, to avoid starting out on such
plateaus in the first place (Glorot and Bengio, 2010; He et al., 2015).

Batch Normalization (Ioffe and Szegedy, 2015) pioneered the idea of standardizing
activations by subtracting their means and dividing by their standard deviations, before
passing to the next step in the computation. Typical use is to standardize before the
activation function, with a parametric scale and shift to enable the network to control the
distribution going into the activation function. The use of normalization makes networks
stable by default: the means and variances of hiddens coming out of a layer no longer
depend on those of the hiddens coming into the layer. Batch Normalization was a true
breakthrough that sped up training by an order of magnitude. It inspired several variations

46

(Ba et al., 2016; Salimans and Kingma, 2016; Ulyanov et al., 2016), including an extension
to recurrent neural networks by myself (Cooijmans et al., 2016).

Finally, we must mention Dropout (Srivastava et al., 2014), a fully general regularization
technique that makes optimization slower but greatly improves generalization. Dropout
simply randomly zeroes out a subset of the activations going into the next layer, thus
breaking the model’s ability to rely on all features being available at all times. The overall
procedure can be interpreted as training an ensemble of randomly pruned networks with
shared parameters.

All of these ideas are considered best practice today, and deep learning would not be
possible without them.

47

Chapter 3

Counterpoint by Convolution

Cheng-Zhi Anna Huang∗† Tim Cooijmans∗† Adam Roberts♯

Aaron Courville† Douglas Eck♯

∗ Equal contribution † Mila & Université de Montréal ♯ Google Brain

Machine learning models of music typically break up the task of composition into a
chronological process, composing a piece of music in a single pass from beginning to end.
On the contrary, human composers write music in a nonlinear fashion, scribbling motifs
here and there, often revisiting choices previously made. In order to better approximate
this process, we train a convolutional neural network to complete partial musical scores,
and explore the use of blocked Gibbs sampling as an analogue to rewriting. Neither the
model nor the generative procedure are tied to a particular causal direction of composition.
Our model is an instance of orderless NADE (Uria et al., 2014), which allows more direct
ancestral sampling. However, we find that Gibbs sampling greatly improves sample
quality, which we demonstrate to be due to some conditional distributions being poorly
modeled. Moreover, we show that even the cheap approximate blocked Gibbs procedure
from Yao et al. (2014) yields better samples than ancestral sampling, based on both log-
likelihood and human evaluation.

Prologue
This project was conceived during an internship at Google Brain in the summer of

2016. Anna Huang, Kyle Kastner, Natasha Jaques and myself interned with the Magenta
project, focused on the intersection of machine learning and music. Fresh on our minds
was the recent work on PixelCNN (Oord et al., 2016a), an autoregressive model of images
that predicts pixels one by one in scanline order (left to right, top to bottom). The results
were impressive at the time, but the prediction ordering felt awkward: whether the model
generates a cat or a dog is decided somewhere along the way from the top to the bottom.
In theory, any ordering can lead to a valid model of the data distribution, but it seemed
like the ordering could matter quite a bit in practice. Moreover, predicting variables one

by one without ever revisiting past predictions struck us as unnatural regardless of the
ordering, especially in our chosen domain of music composition.

Anna initiated the project and came up with the original idea of an “inpainting” model
that could fill in arbitrary blanks in musical scores. She also came up with the idea of
using a block-Gibbs sampling procedure to let this model revisit its own predictions. I
implemented generative procedures, fast batched evaluation, and batch normalization.
After our internships ended, we continued the work at Mila (then LISA) with my advisor
Aaron. Anna and I worked together closely; we both ran many experiments, and sat down
to listen to samples multiple times per day. I worked out a formal interpretation of the
training procedure as learning to predict along all possible orderings, and from it derived a
few modifications to ensure uniform training. We ultimately discovered that this analysis
had already been done by Uria et al. (2014), and credit that work accordingly. In the end,
we found our iterative, orderless approach produced considerably higher-quality music
than a single-pass ordered approach.

3.1. Introduction
Counterpoint is the process of placing notes against notes to construct a polyphonic

musical piece (Fux, 1965). This is a challenging task, as each note has strong musical
influences on its neighbors and notes beyond. Human composers have developed systems
of rules to guide their compositional decisions. However, these rules sometimes contradict
each other, and can fail to prevent their users from going down musical dead ends.
Statistical models of music, which is our current focus, is one of the many computational
approaches that can help composers try out ideas more quickly, thus reducing the cost of
exploration (Fernández and Vico, 2013).

Whereas previous work in statistical music modeling has relied mainly on sequence
models such as Hidden Markov Models (HMMs; Baum and Petrie, 1966) and Recurrent
Neural Networks (RNNs Rumelhart et al., 1988), we instead employ convolutional neural
networks due to their invariance properties and emphasis on capturing local structure.
Nevertheless, they have also been shown to successfully model large-scale structure (Oord
et al., 2016a; Oord et al., 2016b). Moreover, convolutional neural networks have shown to
be extremely versatile once trained, as demonstrated by a variety of creative uses such as
DeepDream (Mordvintsev et al., 2015) and style transfer (Gatys et al., 2015).

We introduce COCONET, a deep convolutional model trained to reconstruct partial
scores. Once trained, COCONET provides direct access to all conditionals of the form
p(xi | xC) where C selects a fragment of a musical score x and i /∈ C is in its complement.
COCONET is an instance of deep orderless NADE (Uria et al., 2014), which learns an
ensemble of factorizations of the joint p(x), each corresponding to a different ordering. A

50

Fig. 3.1. Blocked Gibbs inpainting of a corrupted Bach chorale by COCONET. At each
step, a random subset of notes is removed, and the model is asked to infer their values.
New values are sampled from the probability distribution put out by the model, and the
process is repeated. Left: annealed masks show resampled variables. Colors distinguish
the four voices. Middle: grayscale heatmaps show predictions p(xj | xC) summed across
instruments. Right: complete pianorolls after resampling the masked variables. Bottom: a
sample from NADE (left) and the original Bach chorale fragment (right).

51

related approach is multi-prediction training of deep Boltzmann machines (Goodfellow
et al., 2013), which also gives a model that can predict any subset of variables given its
complement.

However, the sampling procedure for orderless NADE treats the ensemble as a mixture
and relies heavily on ordering. Sampling from an orderless NADE involves (randomly)
choosing an ordering, and sampling variables one by one according to the chosen ordering.
This process is called ancestral sampling, as the order of sampling follows the directed
structure of the model. We have found that this produces poor results for the highly
structured and complex domain of musical counterpoint.

Instead, we propose to use blocked-Gibbs sampling, a Markov Chain Monte-Carlo
(MCMC) method to sample from a joint probability distribution by repeatedly resampling
subsets of variables using conditional distributions derived from the joint probability
distribution. An instance of this was previously explored by Yao et al. (2014) who employed
a NADE in the transition operator for a Markov chain, yielding a Generative Stochastic
Network (GSN). The transition consists of a corruption process that masks out a subset
x¬C of variables, followed by a process that independently resamples variables xi (with
i /∈ C) according to the distribution pθ(xi | xC) emitted by the model with parameters θ.
Crucially, the effects of independent sampling are amortized by annealing the probability
with which variables are masked out. Whereas Yao et al. (2014) treat their procedure as
a cheap approximation to ancestral sampling, we find that it produces superior samples.
Intuitively, the resampling process allows the model to iteratively rewrite the score, giving
it the opportunity to correct its own mistakes.

COCONET addresses the general task of completing partial scores; special cases of this
task include "bridging" two musical fragments, and temporal upsampling and extrapo-
lation. Figure 3.1 shows an example of COCONET populating a partial piano roll using
blocked-Gibbs sampling. Code and samples are publically available.1 Our samples on a
variety of generative tasks such as rewriting, melodic harmonization and unconditioned
polyphonic music generation show the versatility of our model. In this work we focus on
Bach chorales, and assume four voices are active at all times. However, our model can
be easily adapted to the more general, arbitrarily polyphonic representation as used by
Boulanger-Lewandowski et al. (2012).

Section 3.2 discusses related work in modeling music composition, with a focus on
counterpoint. The details of our model and training procedure are laid out in Section 3.3.
We discuss evaluation under the model in Section 3.4, and sampling from the model in
Section 3.5. Results of quantitative and qualitative evaluations are reported in Section 3.6.

1
Code: https://github.com/czhuang/coconet
Data: https://github.com/czhuang/JSB-Chorales-dataset
Samples: https://coconets.github.io/

52

https://github.com/czhuang/coconet
https://github.com/czhuang/JSB-Chorales-dataset
https://coconets.github.io/

3.2. Related Work
Computers have been used since their early days for experiments in music composition.

A notable composition is Hiller and Isaacson’s string quartet Illiac Suite (Hiller Jr and
Isaacson, 1957), which experiments with statistical sequence models such as Markov chains.
One challenge in adapting such models is that music consists of multiple interdependent
streams of events. Compare this to typical sequence domains such as speech and language,
which involve modeling a single stream of events: a single speaker or a single stream of
words. In music, extensive theories in counterpoint have been developed to address the
challenge of composing multiple streams of notes that coordinate. One notable theory is
due to Fux (Fux, 1965) from the Baroque period, which introduces species counterpoint as a
pedagogical scheme to gradually introduce students to the complexity of counterpoint. In
first species counterpoint only one note is composed against every note in a given fixed
melody (cantus firmus), with all notes bearing equal durations and the resulting vertical
intervals consisting of only consonances.

Computer music researchers have taken inspiration from this pedagogical scheme by
first teaching computers to write species counterpoint as opposed to full-fledged counter-
point. Farbood and Schoner (2001) use Markov chains to capture transition probabilities of
different melodic and harmonic transitions rules. Herremans and Sörensen (2012; 2013)
take an optimization approach by writing down an objective function that consists of
existing rules of counterpoint and using a variable neighbourhood search to optimize it.

J.S. Bach chorales has been the main corpus in computer music that serves as a starting
point to tackle full-fledged counterpoint. A wide range of approaches have been used to
generate music in the style of Bach chorales, for example rule-based and instance-based
approaches such the recombinancy method from Cope (1991). This method involves first
segmenting existing Bach chorales into smaller chunks based on music theory, analyzing
their function and stylistic signatures and then re-concatenating the chunks into new
coherent works. Other approaches range from constraint-based (Pachet and Roy, 2001)
to statistical methods (Conklin, 2003). Fernández and Vico (2013) give a comprehensive
survey of AI methods used not just for generating Bach chorales, but also algorithmic
composition in general.

Sequence models such as HMMs and RNNs are natural choices for modeling music.
Successful application of such models to polyphonic music often requires serializing or
otherwise re-representing the music to fit the sequence paradigm. For instance, Liang
(BachBot 2016) serializes four-part Bach chorales by interleaving the parts, while Allan and
Williams (2005) construct a chord vocabulary. Boulanger-Lewandowski et al. (2012) adopt
a piano roll representation, a binary matrix x where xit = 1 iff some instrument is playing
pitch i at time t. To model the joint probability distribution of the multi-hot pitch vector xt,

53

they employ a Restricted Boltzmann Machine (RBM; Smolensky, 1986; Hinton et al., 2006)
or Neural Autoregressive Distribution Estimator (NADE; Larochelle and Murray, 2011) at
each time step. Similarly Goel et al. (2014) employ a Deep Belief Network (Hinton et al.,
2006) on top of an RNN.

Hadjeres et al. (2016) instead employ an undirected Markov model to learn pairwise
relationships between neighboring notes up to a specified number of steps away in a
score. Sampling involves Markov Chain Monte-Carlo (MCMC) using the model as a
Metropolis-Hastings (MH) objective. The model permits constraints on the state space to
support tasks such as melody harmonization. However, the Markov assumption can limit
the expressivity of the model.

DeepBach (Hadjeres and Pachet, 2016) models note predictions by breaking down its
full context into three parts, with the past and the future modeled by stacked LSTMs going
in the forward and backward directions respectively, and the present harmonic context
modeled by a third neural network. The three are then combined by a fourth neural
network and used in Gibbs sampling for generation.

Lattner et al. (2016) imposes higher-level structure by interleaving selective Gibbs
sampling on a convolutional RBM and gradient descent that minimizes cost to template
piece on features such as self-similarity. This procedure itself is wrapped in simulated
annealing to ensure steps do not lower the solution quality too much.

We opt for an orderless NADE training procedure which enables us to train a mixture
of all possible directed models simultaneously. Finally, an approximate blocked Gibbs
sampling procedure from Yao et al. (2014) allows fast generation from the model.

3.3. Model
We employ machine learning techniques to obtain a generative model of musical

counterpoint in the form of piano rolls. Given a dataset of observed musical pieces
x(1) . . . x(n) posited to come from some true distribution p(x), we introduce a model pθ(x)
with parameters θ. In order to make pθ(x) close to p(x), we maximize the data log-
likelihood ∑i log pθ(x(i)) (an approximation of Ex∼p(x) log pθ(x)) by stochastic gradient
descent.

The joint distribution p(x) over D variables x1 . . . xD is often difficult to model directly
and hence we construct our model pθ(x) from simpler factors. In the NADE (Larochelle
and Murray, 2011) framework, the joint pθ(x) is factorized autoregressively, one variable
at a time, according to some ordering o = o1 . . . oD, such that

pθ(x) = ∏
d

pθ(xod | xo<d). (3.3.1)

54

For example, it can be factorized in chronological order:

pθ(x) = pθ(x1)pθ(x2|x1) . . . pθ(xD|xD−1 . . . x1) (3.3.2)

In general, NADE permits any one fixed ordering, and although all orderings are equivalent
from a theoretical perspective, they differ in practice due to effects of optimization and
approximation.

Instead, we can train NADE for all orderings o simultaneously using the orderless
NADE (Uria et al., 2014) training procedure. This procedure relies on the observation that,
thanks to parameter sharing, computing pθ(xod′ | xo<d) for all d′ ≥ d is no more expensive
than computing it only for d′ = d.2 Hence for a given o and d we can simultaneously
obtain partial losses for all orderings that agree with o up to d:

L(x; o<d, θ) = −∑
od

log pθ(xod | xo<d , o<d, od) (3.3.3)

An orderless NADE model offers direct access to all distributions of the form pθ(xi|xC)

conditioned on any set of contextual variables xC = xo<d that might already be known.
This gives us a very flexible generative model; in particular, we can use these conditional
distributions to complete arbitrarily partial musical scores.

To train the model, we sample a training example x and context C such that |C| ∼
U(1, D), and update θ based on the gradient of the loss given by Equation 3.3.3. This
loss consists of D− d + 1 terms, each of which corresponds to one ordering. To ensure
all orderings are trained evenly we must reweight the gradients by 1/(D− d + 1). This
correction, due to Uria et al. (2014), ensures consistent estimation of the joint negative
log-likelihood log pθ(x).

In this work, the model pθ(x) is implemented by a deep convolutional neural net-
work (Krizhevsky et al., 2012). This choice is motivated by the locality of contrapuntal
rules and their near-invariance to translation, both in time and in pitch space.

We represent the music as a stack of piano rolls encoded in a binary three-dimensional
tensor x ∈ {0, 1}I×T×P. Here I denotes the number of instruments, T the number of time
steps, P the number of pitches, and xi,t,p = 1 iff the ith instrument plays pitch p at time t.
We will assume each instrument plays exactly one pitch at a time, that is, ∑p xi,t,p = 1 for
all i, t.

Our focus is on four-part Bach chorales as used in prior work (Allan and Williams,
2005; Boulanger-Lewandowski et al., 2012; Goel et al., 2014; Liang, 2016; Hadjeres et al.,
2016). Hence we assume I = 4 throughout. We constrain ourselves to only the range that
appears in our training data (MIDI pitches 36 through 88). Time is discretized at the level

2Here xo<d is used as shorthand for variables xo1 . . . xod−1 that occur earlier in the ordering.

55

of 16th notes for similar reasons. To curb memory requirements, we enforce T = 128 by
randomly cropping the training examples.

Given a training example x ∼ p(x), we present the model with values of only a strict
subset of its elements xC = {x(i,t) | (i, t) ∈ C} and ask it to reconstruct its complement x¬C.
The input h0 ∈ {0,1}2I×T×P is obtained by masking the piano rolls x to obtain the context
xC and concatenating this with the corresponding mask:

h0
i,t,p = 1(i,t)∈C xi,t,p (3.3.4)

h0
I+i,t,p = 1(i,t)∈C (3.3.5)

where the time and pitch dimensions are treated as spatial dimensions to convolve over.
Each instrument’s piano roll h0

i and mask h0
I+i is treated as a separate channel and con-

volved independently.
With the exception of the first and final layers, all convolutions preserve the size of the

hidden representation. That is, we use “same” padding throughout and all activations have
the same number of channels H, such that hl ∈ RH×T×P for all 1 < l < L. Throughout our
experiments we used L = 64 layers and H = 128 channels. After each convolution we
apply batch normalization (Ioffe and Szegedy, 2015) (denoted by BN(·)) with statistics tied
across time and pitch. Batch normalization rescales activations at each layer to have mean
β and standard deviation γ, which greatly improves optimization. After every second
convolution, we introduce a skip connection from the hidden state two levels below to
reap the benefits of residual learning (He et al., 2016).

al = BN(Wl ∗ hl−1; γl, βl) (3.3.6)

hl =

ReLU(al + hl−2)

if 3 < l < L− 1 and l mod 2 = 0
ReLU(al) otherwise

hL = aL (3.3.7)

The final activations hL ∈ RI×T×P are passed through the softmax function to obtain
predictions for the pitch at each instrument/time pair:

pθ(xi,t,p | xC, C) =
exp

(
hL

i,t,p

)
∑p exp

(
hL

i,t,p

) (3.3.8)

56

Model Temporal resolution
quarter eighth sixteenth

NADE (Boulanger-Lewandowski et al.) 7.19
RNN-RBM (Boulanger-Lewandowski et al.) 6.27
RNN-NADE (Boulanger-Lewandowski et al.) 5.56
RNN-NADE (our implementation) 5.03 3.78 2.05
COCONET (chronological) 7.79± 0.09 4.21± 0.05 2.22± 0.03
COCONET (random) 5.03± 0.06 1.84± 0.02 0.57± 0.01

Table 3.1. Framewise negative log-likelihoods (NLLs) on the Bach corpus. We compare
against (Boulanger-Lewandowski et al., 2012), who used quarter-note resolution. We also
compare on higher temporal resolutions (eighth notes, sixteenth notes), against our own
reimplementation of RNN-NADE. COCONET is an instance of orderless NADE, and as such
we evaluate it on random orderings. However, the baselines support only chronological
frame ordering, and hence we evaluate our model in this setting as well.

The loss function from Equation 3.3.3 is then given by

L(x; C, θ) = − ∑
(i,t)/∈C

log pθ(xi,t | xC, C) (3.3.9)

= − ∑
(i,t)/∈C

∑
p

xi,t,p log pθ(xi,t,p | xC, C)

where pθ denotes the probability under the model with parameters θ = W1, γ1, β1, . . . ,
WL−1, γL−1, βL−1. We train the model by minimizing

E
x∼p(x)

E
C∼p(C)

1
|¬C|L(x; C, θ) (3.3.10)

with respect to θ using stochastic gradient descent with step size determined by
Adam (Kingma and Ba, 2014). The expectations are estimated by sampling piano rolls x
from the training set and drawing a single context C per sample.

3.4. Evaluation
The log-likelihood of a given example is computed according to Algorithm 1 by re-

peated application of Equation 3.3.8. Evaluation occurs one frame at a time, within which
the model conditions on its own predictions and does not see the ground truth. Unlike
notewise teacher-forcing, where the ground truth is injected after each prediction, the
framewise evaluation is thus sensitive to accumulation of error. This gives a more repre-
sentative measure of quality of the generative model. For each example, we repeat the
evaluation process a number of times to average over multiple orderings, and finally aver-
age across frames and examples. For chronological evaluation, we draw only orderings
that have the tls in increasing order.

57

Algorithm 1 Framewise log-likelihood evaluation

Given a piano roll x
Lm,i,t ← 0 for all m,i,t
for multiple orderings m = 0 . . . M do

C ← ∅, x̂← x
Sample an ordering t1, t2 . . . tT over frames
for l = 0 . . . T do

Sample an ordering i1, i2 . . . iI over instruments
for k = 0 . . . I do

πp ← pθ(xik,tl ,p | x̂C, C) for all p
Lm,ik,tl ← ∑p xik,tl ,p log πp
x̂ik,tl ∼ Cat(P, π)
C ← C ∪ (ik, tl)

end for
x̂C ← xC

end for
end for
return − 1

T ∑t log 1
M ∑m exp ∑i Lm,i,t

3.5. Sampling
We can sample from the model using the orderless NADE ancestral sampling procedure,

in which we first sample an ordering and then sample variables one by one according to
the ordering. However, we find that this yields poor samples, and we propose instead to
use Gibbs sampling.

3.5.1. Orderless NADE Sampling

Sampling according to orderless NADE involves first randomly choosing an ordering
and then sampling variables one by one according to the chosen ordering. We use an
equivalent procedure in which we arrive at a random ordering by at each step randomly
choosing the next variable to sample. We start with an empty (zero everywhere) piano
roll x0 and empty context C0 and populate them iteratively by the following process.
We feed the piano roll xs and context Cs into the model to obtain a set of categorical
distributions pθ(xi,t|xs

Cs , Cs) for (i, t) /∈ Cs. As the xi,t are not conditionally independent,
we cannot simply sample from these distributions independently. However, if we sample
from one of them, we can compute new conditional distributions for the others. Hence
we randomly choose one (i, t)s+1 /∈ Cs to sample from, and let xs+1

i,t equal the one-hot
realization. Augment the context with Cs+1 = Cs ∪ (i,t)s+1 and repeat until the piano roll
is populated. This procedure is easily generalized to tasks such as melody harmonization
and partial score completion by starting with a nonempty piano roll.

58

Unfortunately, samples thus generated are of low quality, which we surmise is due to
accumulation of errors. This is a well-known weakness of autoregressive models (Venka-
traman et al., 2015; Bengio et al., 2015; Huszár, 2015; Lamb et al., 2016). While the model
provides conditionals pθ(xi,t|xC, C) for all (i, t) /∈ C, some of these conditionals may be
better modeled than others. We suspect in particular those conditionals used early on in
the procedure, for which the context C consists of very few variables. Moreover, although
the model is trained to be order-agnostic, different orderings invoke different distribu-
tions, which is another indication that some conditionals are poorly learned. We test this
hypothesis in Section 3.6.2.

3.5.2. Gibbs Sampling

To remedy this, we allow the model to revisit its choices: we repeatedly mask out some
part of the piano roll and then repopulate it. This is a form of blocked Gibbs sampling (Liu,
1994). Blocked sampling is crucial for mixing, as the high temporal resolution of our
representation causes strong correlations between consecutive notes. For instance, without
blocked sampling, it would take many steps to snap out of a long-held note. Similar
considerations hold for the Ising model from statistical mechanics, leading to the Swendsen-
Wang algorithm (Swendsen and Wang, 1987) in which large clusters of variables are
resampled at once.

We consider two strategies for resampling a given block of variables: ancestral sampling
and independent sampling. Ancestral sampling invokes the orderless NADE sampling pro-
cedure described in Section 3.5.1 on the masked-out portion of the piano roll. Independent
sampling simply treats the masked-out variables x¬C as independent given the context xC.

Using independent blocked Gibbs to sample from a NADE model has been stud-
ied by Yao et al. (2014), who propose to use an annealed masking probability αn =

max(αmin, αmax − n(αmax − αmin)/(ηN)) for some minimum and maximum probabilities
αmin, αmax, total number of Gibbs steps N and fraction η of time spent before settling
onto the minimum probability αmin. Initially, when the masking probability is high, the
chain mixes fast but samples are poor due to independent sampling. As αn decreases, the
blocked Gibbs process with independent resampling approaches standard Gibbs where
one variable at a time is resampled, thus amortizing the effects of independent sampling.
N is a hyperparameter which as a rule of thumb we set equal to IT; it can be set lower
than that to save computation at a slight loss of sample quality.

Yao et al. (2014) treat independent blocked Gibbs as a cheap approximation to ancestral
sampling. Whereas plain ancestral sampling (3.5.1) requires O(IT) model evaluations,
ancestral blocked Gibbs requires a prohibitive O(ITN) model evaluations and independent
Gibbs requires only O(N), where N can be chosen to be less than IT. Moreover, we find

59

that independent blocked Gibbs sampling in fact yields better samples than plain ancestral
sampling.

3.6. Experiments
We evaluate our approach on a popular corpus of four-part Bach chorales. While the

literature features many variants of this dataset (Allan and Williams, 2005; Boulanger-
Lewandowski et al., 2012; Liang, 2016; Hadjeres et al., 2016), we report results on that
used by Boulanger-Lewandowski et al. (2012). As the quarter-note temporal resolution
used by Boulanger-Lewandowski et al. (2012) is frankly too coarse to accurately convey
counterpoint, we also evaluate on eighth-note and sixteenth-note quantizations of the
same data.

It should be noted that quantitative evaluation of generative models is fundamentally
hard (Theis et al., 2015). The gold standard for evaluation is qualitative comparison by
humans, and we therefore report human evaluation results as well.

3.6.1. Data Log-likelihood

Table 3.1 compares the framewise log-likelihood of the test data under variants of
our model and those reported in Boulanger-Lewandowski et al. (2012). We find that the
temporal resolution has a dramatic influence on the performance, which we suspect is an
artifact of the performance metric. The log-likelihood is evaluated by teacher-forcing, that
is, the prediction of a frame is conditioned on the ground truth of all previously predicted
frames. As temporal resolution increases, chord changes become increasingly rare, and the
model is increasingly rewarded for simply holding notes over time.

We evaluate COCONET on both chronological and random orderings, in both cases
averaging likelihoods across an ensemble of M = 5 orderings. The chronological orderings
differ only in the ordering of instruments within each frame. We see in Table 3.1 that fully
random orderings lead to significantly better performance. We believe the members of
the more diverse random ensemble are more mutually complementary. For example, a
forward ordering is uncertain at the beginning of a piece and more certain toward the end,
whereas a backward ordering is more certain at the beginning and less certain toward the
end.

3.6.2. Sample Quality

In Section 3.5 we conjectured that the low quality of NADE samples is due to poorly
modeled conditionals pθ(xi,t | xC, C) where C is small. We test this hypothesis by evaluating
the likelihood under the model of samples generated by the ancestral blocked Gibbs
procedure with C chosen according to independent Bernoulli variables. When we set the

60

Sampling scheme Framewise NLL
Ancestral Gibbs, ρ = 0.00 (NADE) 1.09± 0.06
Ancestral Gibbs, ρ = 0.05 1.08± 0.06
Ancestral Gibbs, ρ = 0.10 0.97± 0.05
Ancestral Gibbs, ρ = 0.25 0.80± 0.04
Ancestral Gibbs, ρ = 0.50 0.74± 0.04
Independent Gibbs (Yao et al., 2014) 0.52± 0.01

Table 3.2. Mean (± SEM) NLL under model of unconditioned samples generated from
model by various schemes.

inclusion probability ρ to 0, we obtain NADE. Increasing ρ increases the expected context
size |C|, which should yield better samples if our hypothesis is true. The results shown
in Table 3.2 confirm that this is the case. For these experiments, we used sample length
T = 32 time steps and number of Gibbs steps N = 100.

Figure 3.2 shows the convergence behavior of the various Gibbs procedures, averaged
over 100 runs. We see that for low values of ρ (small C), the chains hardly make progress
beyond NADE in terms of likelihood. Higher values of ρ (large C) enable the model to get
off the ground and reach significantly better likelihood.

Fig. 3.2. Likelihood under the model for ancestral Gibbs samples obtained with various
context distributions p(C). NADE (Bernoulli(0.00)) is included for reference.

61

Fig. 3.3. Human evaluations from MTurk on how many times a sampling procedure or
Bach is perceived as more Bach-like. Error bars show the standard deviation of a binomial
distribution fitted to each’s binary win/loss counts.

3.6.3. Human Evaluations

To further compare the sample quality of different sampling procedures, we carried
out a listening test on Amazon’s Mechanical Turk (MTurk). The procedures include
orderless NADE ancestral sampling and independent Gibbs (Yao et al., 2014), with each we
generate four unconditioned samples of eight-measure lengths from empty piano rolls. To
have an absolute reference for the quality of samples, we include first eight measures of
four random Bach chorale pieces from the validation set. Each fragment lasts thirty-four
seconds after synthesis.

For each MTurk hit, participants are asked to rate on a Likert scale which of the two
random samples they perceive as more Bach-like. A total of 96 ratings were collected, with
each source involved in 64 (=96*2/3) pairwise comparisons. Figure 3.3 shows the number
of times each source was perceived as closer to Bach’s style. We perform a Kruskal-Wallis
H test on the ratings, χ2(2) = 12.23, p < 0.001, showing there are statistically significant
differences between models. A post-hoc analysis using the Wilcoxon signed-rank test
with Bonferroni correction showed that participants perceived samples from independent
Gibbs as more Bach-like than ancestral sampling (NADE), p < 0.05/3. This confirms the
loglikelihood comparisons on sample quality in 3.6.2 that independent Gibbs produces
better samples. There was also a significance difference between Bach and ancestral
samples but not between Bach and independent Gibbs.

62

3.7. Conclusion
We introduced a convolutional approach to modeling musical scores based on the

orderless NADE (Uria et al., 2016) framework. Our experiments show that the NADE

ancestral sampling procedure yields poor samples, which we have argued is because some
conditionals are not captured well by the model. We have shown that sample quality
improves significantly when we use blocked Gibbs sampling to iteratively rewrite parts of
the score. Moreover, annealed independent blocked Gibbs sampling as proposed by Yao
et al. (2014) is not only faster but in fact produces better samples.

Acknowledgments
We thank Kyle Kastner, Guillaume Alain, Gabriel Huang, Curtis (Fjord) Hawthorne,

the Google Brain Magenta team, as well as Jason Freidenfelds for helpful feedback, discus-
sions, suggestions and support. We also thank Calcul Québec and Compute Canada for
computational support.

References
Allan, Moray and Christopher KI Williams (2005). “Harmonising chorales by probabilistic

inference”. In: Advances in neural information processing systems 17, pp. 25–32.
Baum, Leonard E and Ted Petrie (1966). “Statistical inference for probabilistic functions of

finite state Markov chains”. In: The annals of mathematical statistics 37.6, pp. 1554–1563.
Bengio, Samy et al. (2015). “Scheduled sampling for sequence prediction with recurrent

neural networks”. In: Advances in Neural Information Processing Systems, pp. 1171–1179.
Boulanger-Lewandowski, Nicolas, Yoshua Bengio, and Pascal Vincent (2012). “Modeling

Temporal Dependencies in High-Dimensional Sequences: Application to Polyphonic
Music Generation and Transcription”. In: International Conference on Machine Learning.

Conklin, Darrell (2003). “Music generation from statistical models”. In: Proceedings of the
AISB 2003 Symposium on Artificial Intelligence and Creativity in the Arts and Sciences.
Citeseer, pp. 30–35.

Cope, David (1991). “Computers and musical style”. In.
Farbood, Mary and Bernd Schoner (2001). “Analysis and synthesis of Palestrina-style

counterpoint using Markov chains”. In: Proceedings of the International Computer Music
Conference, pp. 471–474.

Fernández, Jose D and Francisco Vico (2013). “AI methods in algorithmic composition: A
comprehensive survey”. In: Journal of Artificial Intelligence Research 48, pp. 513–582.

Fux, Johann Joseph (1965). The study of counterpoint from Johann Joseph Fux’s Gradus ad
Parnassum. 277. WW Norton & Company.

63

Gatys, Leon A, Alexander S Ecker, and Matthias Bethge (2015). “A neural algorithm of
artistic style”. In: arXiv preprint arXiv:1508.06576.

Goel, Kratarth, Raunaq Vohra, and JK Sahoo (2014). “Polyphonic music generation by
modeling temporal dependencies using a RNN-DBN”. In: International Conference on
Artificial Neural Networks. Springer, pp. 217–224.

Goodfellow, Ian et al. (2013). “Multi-prediction deep Boltzmann machines”. In: Advances in
Neural Information Processing Systems, pp. 548–556.

Hadjeres, Gaëtan and François Pachet (2016). “DeepBach: a Steerable Model for Bach
chorales generation”. In: arXiv preprint arXiv:1612.01010.

Hadjeres, Gaëtan, Jason Sakellariou, and François Pachet (2016). “Style Imitation and
Chord Invention in Polyphonic Music with Exponential Families”. In: arXiv preprint
arXiv:1609.05152.

He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 770–778.

Herremans, Dorien and Kenneth Sörensen (2012). “Composing first species counterpoint
with a variable neighbourhood search algorithm”. In: Journal of Mathematics and the Arts
6.4, pp. 169–189.

Herremans, Dorien and Kenneth Sörensen (2013). “Composing fifth species counterpoint
music with a variable neighborhood search algorithm”. In: Expert systems with applica-
tions 40.16, pp. 6427–6437.

Hiller Jr, Lejaren A and Leonard M Isaacson (1957). “Musical composition with a high
speed digital computer”. In: Audio Engineering Society Convention 9. Audio Engineering
Society.

Hinton, Geoffrey E, Simon Osindero, and Yee-Whye Teh (2006). “A fast learning algorithm
for deep belief nets”. In: Neural computation 18.7, pp. 1527–1554.

Huszár, Ferenc (2015). “How (not) to Train your Generative Model: Scheduled Sampling,
Likelihood, Adversary?” In: arXiv preprint arXiv:1511.05101.

Ioffe, Sergey and Christian Szegedy (2015). “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift”. In: arXiv preprint arXiv:1502.03167.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E Hinton (2012). “Imagenet classification
with deep convolutional neural networks”. In: Advances in neural information processing
systems, pp. 1097–1105.

Lamb, Alex M et al. (2016). “Professor forcing: A new algorithm for training recurrent
networks”. In: Advances In Neural Information Processing Systems, pp. 4601–4609.

Larochelle, Hugo and Iain Murray (2011). “The Neural Autoregressive Distribution Esti-
mator.” In: AISTATS. Vol. 1, p. 2.

64

Lattner, Stefan, Maarten Grachten, and Gerhard Widmer (2016). “Imposing higher-level
Structure in Polyphonic Music Generation using Convolutional Restricted Boltzmann
Machines and Constraints”. In: arXiv preprint arXiv:1612.04742.

Liang, Feynman (2016). “BachBot: Automatic composition in the style of Bach chorales”.
In: Masters thesis, University of Cambridge.

Liu, Jun S (1994). “The collapsed Gibbs sampler in Bayesian computations with applications
to a gene regulation problem”. In: Journal of the American Statistical Association 89.427,
pp. 958–966.

Mordvintsev, Alexander, Christopher Olah, and Mike Tyka (2015). Inceptionism: Going
Deeper into Neural Networks. URL: https://research.googleblog.com/2015/06/
inceptionism-going-deeper-into-neural.html (visited on 11/04/2016).

Oord, Aaron van den, Nal Kalchbrenner, and Koray Kavukcuoglu (2016a). “Pixel Recur-
rent Neural Networks”. In: Proceedings of The 33rd International Conference on Machine
Learning, pp. 1747–1756.

Oord, Aaron van den et al. (2016b). “WaveNet: A Generative Model for Raw Audio”. In:
arXiv preprint arXiv:1609.03499.

Pachet, François and Pierre Roy (2001). “Musical harmonization with constraints: A sur-
vey”. In: Constraints 6.1, pp. 7–19.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1988). “Learning represen-
tations by back-propagating errors”. In: Cognitive modeling 5.3, p. 1.

Smolensky, Paul (1986). Information processing in dynamical systems: Foundations of harmony
theory. Tech. rep. DTIC Document.

Swendsen, Robert H and Jian-Sheng Wang (1987). “Nonuniversal critical dynamics in
Monte Carlo simulations”. In: Physical review letters 58.2, p. 86.

Theis, Lucas, Aäron van den Oord, and Matthias Bethge (2015). “A note on the evaluation
of generative models”. In: arXiv preprint arXiv:1511.01844.

Uria, Benigno, Iain Murray, and Hugo Larochelle (2014). “A Deep and Tractable Density
Estimator.” In: ICML, pp. 467–475.

Uria, Benigno et al. (2016). “Neural Autoregressive Distribution Estimation”. In: arXiv
preprint arXiv:1605.02226.

Venkatraman, Arun, Martial Hebert, and J Andrew Bagnell (2015). “Improving Multi-Step
Prediction of Learned Time Series Models.” In: AAAI, pp. 3024–3030.

Yao, Li et al. (2014). “On the equivalence between deep nade and generative stochastic
networks”. In: Joint European Conference on Machine Learning and Knowledge Discovery in
Databases. Springer, pp. 322–336.

65

https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html
https://research.googleblog.com/2015/06/inceptionism-going-deeper-into-neural.html

Chapter 4

On the Variance of Unbiased Online Recurrent
Optimization

Tim Cooijmans∗† James Martens†

∗ Mila & Université de Montréal † DeepMind

The recently proposed Unbiased Online Recurrent Optimization (UORO) algorithm (Tallec
and Ollivier, 2018) uses an unbiased approximation of RTRL to achieve fully online
gradient-based learning in RNNs. In this work we analyze the variance of the gradient
estimate computed by UORO, and propose several possible changes to the method which
reduce this variance both in theory and practice. We also contribute significantly to the
theoretical and intuitive understanding of UORO (and its existing variance reduction
technique), and demonstrate a fundamental connection between its gradient estimate and
the one that would be computed by REINFORCE if small amounts of noise were added to
the RNN’s hidden units.

Prologue
This work was done as part of my internship at DeepMind in 2017. I worked with

James Martens, who has worked extensively on optimization and automatic differentiation.
We had a common interest in recurrent neural networks (RNNs) in particular, and both
felt that the dominant approach, backpropagation through time (BPTT), was awkward.
BPTT computes gradients in reverse order, which means the RNN must pause every so
many steps to work backwards. Real-Time Recurrent Learning (RTRL), which computes
gradients in forward order, has a much more suitable computational structure, but scales
poorly as the number of parameters grows. We set out to find an efficient approximation
to RTRL.

I initially developed a stochastic approximation to RTRL based on random linear com-
pression and decompression of the Jacobian carry. James later showed that we could skip
several compression-decompression steps without biasing the estimator, at which point

we obtained the UORO algorithm by Tallec and Ollivier (2018). From there we studied the
algorithm’s sources of variance, and ways to reduce them. The pragmatic design choices
made in our variance reduction scheme are due to James. I discovered PREUORO, which
drastically reduces variance simply by choosing to put the random projections elsewhere
along the computational graph. I also formalized the link to REINFORCE, although I relied
on James to show what happens in the limit as the noise vanishes. All implementations
and experiments were my work. James and I contributed about equally to writing the
paper.

4.1. Introduction
All learning algorithms are driven by some form of credit assignment—identification

of the causal effect of past actions on a learning signal (Minsky, 1961; Sutton, 1984). This
enables agents to learn from experience by amplifying behaviors that lead to success, and
attenuating behaviors that lead to failure. The problem of performing efficient and precise
credit assignment, especially in temporal agents, is a central one in artificial intelligence.

Knowledge of the inner workings of the agent can simplify the problem considerably,
as we can trace responsibility for the agent’s decisions back to its parameters. In this
work, we consider credit assignment in recurrent neural networks (RNNs; Elman, 1990;
Hochreiter and Schmidhuber, 1997), where the differentiability of the learning signal with
respect to past hidden units allows us to assign credit using derivatives. But even with
this structure, online credit assignment across long or indefinite stretches of time remains a
largely unsolved problem.

Typically, differentiation occurs by Backpropagation Through Time (BPTT; Rumelhart et
al., 1986; Werbos, 1990), which requires a “forward pass” in which the network is evaluated
for a length of time, followed by a “backwards pass” in which gradient with respect to
the model’s parameters is computed. This is impractical for very long sequences, and a
common trick is to “truncate” the backwards pass after some fixed number of iterations
(Williams and Peng, 1990). As a consequence, parameter updates are infrequent, expensive,
and limited in the range of temporal dependencies they reflect.

BPTT’s more natural dual, Real-Time Recurrent Learning (RTRL; Williams and Zipser,
1989), carries gradient information forward rather than backward. It runs alongside the
model and provides parameters updates at every time step. To do so, however, it must
retain a large matrix relating the model’s internal state to its parameters. Even when this
matrix can be stored at all, updating it is prohibitively expensive. Various approximations
to RTRL have been proposed (e.g. Mak et al., 1999) in order to obtain cheaper gradient
estimates at the cost of reducing their accuracy.

68

In this paper we consider Unbiased Online Recurrent Optimization (UORO; Ollivier
et al., 2015; Tallec and Ollivier, 2018), an unbiased stochastic approximation to RTRL that
compresses the gradient information through random projections. We analyze the variance
of the UORO gradient estimator, relate it to other gradient estimators, and propose various
modifications to it that reduce its variance both in theory and practice.

4.2. Outline of the Paper
We begin with a detailed discussion of the relationship and tradeoffs between RTRL

and BPTT in Section 4.3. Before narrowing our focus to approximations to RTRL, we briefly
review other approaches to online credit assignment in Section 4.4. We then contribute a
novel and arguably more intuitive derivation of the UORO algorithm in Section 4.5.

In Sections 4.6 and 4.7 we give our main contribution in the form of a thorough analysis
of UORO and the variance it incurs., and derive a new variance reduction method based on
this analysis. Sections 4.6.1 and 4.6.2 discuss limitations of the variance reduction scheme
of Tallec and Ollivier (2018), and in Section 4.6.3 propose to augment its scalar coefficients
with matrix-valued transformations. We develop a framework for analysis of UORO-style
estimators in Sections 4.6.4 and 4.6.5, which allows us to determine the total variance
incurred when accumulating consecutive gradient estimates over time. Working within
this framework, we derive a formula for matrices that gives the optimal variance reduction
subject to certain structural constraints (Section 4.7.1). We evaluate our theory in a tractable
empirical setting in Section 4.7.2, and explore avenues toward a practical algorithm in
Section 4.7.1.

Section 4.8 introduces a variant of UORO that avoids one of its two levels of approx-
imation. It exploits the fact that gradients with respect to weight matrices are naturally
rank-one. We show this reduces the variance by a factor on the order of the number of
hidden units, at the cost of increasing computation time by the same factor.

Finally, we study the relationship between UORO and REINFORCE (Williams, 1992)
in Section 4.9. The analysis uncovers a close connection when REINFORCE is used to
train RNNs with perturbed hidden states. We show that when this noise is annealed, the
REINFORCE estimator converges to the UORO estimator plus an additional term that has
expectation zero but unbounded variance.

4.3. Automatic Differentiation in Recurrent Neural Net-
works

Recurrent Neural Networks (RNNs; Elman, 1990; Hochreiter and Schmidhuber, 1997)
are a general class of nonlinear sequence models endowed with memory. Given a sequence

69

of input vectors xt, and initial state vector h0, an RNN’s state evolves according to

ht = F(ht−1, xt; θt)

where F is an arbitrary continuously differentiable transition function parameterized by θt

that produces the next state ht given the previous state ht−1 and the current observation xt.
Typically, F will take the form of an affine map followed by a nonlinear function:

at = (h⊤t−1 x⊤t 1)⊤

ht = f (Wtat). (4.3.1)

Here f (·) is the “activation function”, which is assumed to be continuously differentiable
(and is typically nonlinear and coordinate-wise), and Wt is a square matrix parameter
whose vectorization is θt.

The defining feature of recurrent neural networks as compared to feed-forward neural
networks is the fact that their weights are tied over time. That is, we have θt = θ. However,
we will continue to distinguish the different θt’s in the recurrence, as this allows us to refer
to individual “applications” of θ in the analysis (which will be useful later).

Although we will treat the sequence as finite, i.e. 1 ⩽ t ⩽ T for some sequence length
T, we are interested mainly in streaming tasks for which T may as well be infinite.

At each time step t, we incur a loss Lt which is some differentiable function of ht. In
order to minimize the aggregate loss L = ∑T

t=1 Lt with respect to θ, we require an estimate
of its gradient with respect to θ. We will write J y

x (or occasionally Jx(y)) for the Jacobian
of y with respect to x. We can express the gradient as a double sum over time that factorizes
in two interesting ways:

J L
θ =

T

∑
t=1

T

∑
s=1
J Lt

θs
=

T

∑
s=1

(
T

∑
t=s
J Lt

hs

)
J hs

θs︸ ︷︷ ︸
reverse accumulation

=
T

∑
t=1
J Lt

ht

(
t

∑
s=1
J ht

θs

)
︸ ︷︷ ︸
forward accumulation

(4.3.2)

Each of the terms J Lt
θs

indicates how the use of the parameter θ at time s affected the
loss at time t. This is a double sum over time withO(T2) terms, but since future parameter
applications do not affect past losses, we have J Lt

θs
= 0 for s > t. Both factorizations exploit

this triangular structure and allow the gradient to be computed in O(T) by recursive
accumulation.

By far the most popular strategy for breaking down this computation goes by the
name of Back-Propagation Through Time (BPTT; Werbos, 1990). It is an instance of what is
known as reverse-mode accumulation in the autodifferentiation community, and relies on the
reverse factorization in Equation 4.3.2. BPTT computes gradients of total future loss J L

ht

with respect to states ht in reverse chronological order by the recursion

J L
ht
= J L

ht+1
J ht+1

ht
+ J Lt

ht
. (4.3.3)

70

At each step, a term J L
θt
= J L

ht
J ht

θt
of the gradient is accumulated.

Since the quantities J ht+1
ht

, J Lt
ht

and J ht
θt

generally depend on ht and Lt, the use of BPTT

in practice implies running the model forward for T steps to obtain the sequence of hidden
states ht and losses Lt, and subsequently running backward to compute the gradient.

Its converse, Real-Time Recurrent Learning (RTRL; Williams and Zipser, 1989), is
an instance of forward-mode accumulation. It exploits the forward factorization of the
gradient in Equation 4.3.2, computing Jacobians J ht

θ of hidden states ht with respect to
past applications of the parameter θ recursively according to

J ht
θ = J ht

ht−1
J ht−1

θ + J ht
θt

. (4.3.4)

What RTRL provides over BPTT is that we can run it forward alongside our model, and
at each time-step t update the model parameters θ immediately (using J Lt

θ = J L
ht
J ht

θ),
thus performing fully online learning. This is to be contrasted with BPTT, where we must
run the model forward for T time-steps before we can make a parameter update, thus
introducing a long delay between the reception of a learning signal Lt and the parameter
update that takes it into account.

There is a caveat to the above, which is that as soon as we update our parameter θ, the
Jacobian J ht

θ accumulated by RTRL is no longer quite correct, as it is based on previous
values of θ. However, as argued by Williams and Zipser (1995) and Ollivier et al. (2015)
this problem can be mostly ignored as long as the learning rate is small enough in relation
to the rate of the natural decay of the Jacobian (which occurs due to the vanishing gradient
phenomenon).

The main drawback of RTRL is that the accumulated quantity J ht
θ is a large matrix. If

the size of the parameters θ is O(H2) where H is the hidden state size, then this matrix
requires O(H3) space to store. This is typically much larger than BPTT’s O(TH) space.
Moreover, the RTRL recursions involve propagating a matrix forward by the matrix-matrix
product J ht

ht−1
J ht−1

θ , which takes O(H4) time. BPTT on the other hand only propagates a
vector through time at a cost of O(H2). Although RTRL frees us to grow T and capture
arbitrarily-long-term dependencies, the algorithm is grossly impractical for models of even
modest size.

4.4. Other Approaches to Credit Assignment
A number of techniques have been proposed to reduce the memory requirements of

BPTT. Storage of past hidden states may be traded for time by recomputing the states
on demand, in the extreme case resulting in a quadratic-time algorithm. Better choices
for this tradeoff are explored by Chen et al. (2016) and Gruslys et al. (2016). Reversible
Recurrent Neural Networks (MacKay et al., 2018; Gomez et al., 2017) allow the on-demand

71

computation of past states to occur in reverse order, restoring the linear time complexity
while limiting the model class. Stochastic Attentive Backtracking (Ke et al., 2018) sidesteps
the storage requirements of backprop through long periods of time by retaining only a
sparse subset of states in the distant past. This subset is selected based on an attention
mechanism that is part of the model being trained. Gradient from future loss is propagated
backwards to these states only through the attention connections. Synthetic gradients
(Jaderberg et al., 2017) approximates BPTT by use of a predictive model of the total future
gradient J L

hs
, which is trained online based on BPTT.

Instead of transporting derivatives through time, we may assign credit by transporting
value over time. For example, actor-critic architectures (Konda and Tsitsiklis, 2000; Barto
et al., 1983) employ Temporal Difference Learning (Sutton, 1988) to obtain a predictive
model of the total future loss. By differentiation, the estimated total future loss may be
used to estimate the total future gradient. More commonly, such estimates are used directly
as a proxy for the total future loss, or as a REINFORCE baseline. Along similar lines as our
analysis of REINFORCE in Section 4.9, we may interpret these methods as effectively differ-
entiating the estimate in expectation. RUDDER (Arjona-Medina et al., 2018) redistributes
the total loss L over time, replacing the immediate losses Ls by surrogates L′s determined by
a process similar to backpropagation through a critic. These surrogates preserve the total
loss but in an RL setting may better reflect the long-term impact of the action taken at time
s. Temporal Value Transport (Hung et al., 2018) relies on attention weights to determine
which past time steps were relevant to which future time steps, and injects the estimated
total future loss from the future time steps into the immediate loss for the associated past
time steps.

4.5. Unbiased Online Recurrent Optimization
The recently proposed Unbiased Online Recurrent Optimization algorithm (UORO; Tal-

lec and Ollivier, 2018) and its predecessor NoBackTrack (Ollivier et al., 2015) approximate
RTRL by maintaining a rank-one estimate h̃tw̃⊤t of the Jacobian J ht

θ . We now briefly derive
the basic algorithm.

4.5.1. Derivation

First, we note that J ht
θ can be written as J ht

θ = ∑s⩽t J ht
hs
J hs

θs
. We then perform a rank-

one projection of each term in this sum using a random vector νs (which is chosen to satisfy
E[νsν

⊤
s] = I). This gives us the estimator

J ht
θ ≈ ∑

s⩽t
J ht

hs
νsν
⊤
s J hs

θs
.

72

Unbiasedness follows from a simple application of linearity of expectation:

E
[
∑
s⩽t
J ht

hs
νsν
⊤
s J hs

θs

]
= ∑

s⩽t
J ht

hs
E[νsν

⊤
s]J hs

θs
= ∑

s⩽t
J ht

hs
J hs

θs
.

We will refer to this projection as the spatial projection to distinguish it from the temporal
projection that is to follow.

It is interesting to note that J ht
hs

νs can be interpreted as a “directional Jacobian”, which
measures the instantaneous change in ht as a function of hs’s movement along the direction
νs. Similarly ν⊤s J hs

θs
is essentially the gradient of ν⊤s hs with respect to θs, and thus measures

the instantaneous change of hs along the direction of νs, as a function of the change in
θs. Thus the intuition behind this first approximation is that we are guessing the relevant
direction of change in hs and performing the gradient computations only along that
direction.

We can generalize the spatial projection from the standard UORO method by projecting
in the space of any cut vertex zs on the computational path from θs to hs. For UORO,
zs ≡ hs; other choices include zs ≡ θs for projection in parameter space, and zs ≡ Wsas

for projection in preactivation space. We will make extensive use of this choice in later
Sections.

This gives the generalized estimator

J ht
θ ≈ ∑

s⩽t
J ht

hs
J hs

zs νsν
⊤
s J zs

θs
,

which is unbiased following a similar argument as before.
The random projections serve to reduce the large J hs

θs
matrix into the more manageable

vector quantities J hs
zs νs and ν⊤s J zs

θs
. But because the sum of rank-one matrices is not itself

rank one, the resultant estimator will still be too expensive to maintain and update online.
In order to obtain a practical algorithm we make a second rank-one approximation,

now across time instead of z-space. To this end we introduce random scalar coefficients τs

satisfying E[τsτr] = δsr (where δsr is the Kronecker delta which is 1 if s = r and 0 otherwise)
and define the following rank-one estimator:

J ht
θ ≈ h̃tw̃⊤t ≜

(
∑
s⩽t

τsJ ht
hs
J hs

zs νs

)(
∑
s⩽t

τsν
⊤
s J zs

θs

)
= ∑

r⩽t
∑
s⩽t

τsτrJ ht
hs
J hs

zs νsν
⊤
r J zr

θr
.

By linearity of expectation this is an unbiased estimate of the previous spatially pro-
jected estimator ∑r⩽t J ht

zs νsν
⊤
s J zs

θs
, and is thus also an unbiased estimator of J ht

θ , although
with potentially much higher variance.

Going forward we will assume that τs ∼ U{−1,+1} are iid random signs and νs ∼
N (0, I) are iid standard normal vectors, so that we may treat the product τsνs as a single
Gaussian-distributed random vector us ∼ N (0, I), which will simplify our analysis.

73

The two factors h̃t and w̃t of the rank-one approximation are maintained by the follow-
ing pair of recursions:

h̃t = γtJ ht
ht−1

h̃t−1 + βtJ ht
zt

ut

w̃⊤t = γ−1
t w̃⊤t−1 + β−1

t u⊤t J
zt

θt
, (4.5.1)

with h̃0, w̃0 initialized to zero vectors. Notably these recursions are similar in structure to
that used by RTRL to compute the exact Jacobian J ht

θ (c.f. Equation 4.3.4). As with the RTRL

equations, their validity follows from the fact that J ht
hs

= J ht
ht−1
J ht−1

ht−2
· · · J hs+1

hs
.

In these recursions we have introduced coefficients γt and βt to implement the variance
reduction technique from Tallec and Ollivier (2018) and Ollivier et al. (2015), which we will
refer to as greedy iterative rescaling (GIR). We will discuss GIR in detail in the next subsection.

Finally, at each step we estimate J Lt
θ = J Lt

ht
J ht

θ using the estimator J Lt
ht

h̃tw̃⊤t . This is a
small deviation from the one given by Tallec and Ollivier (2018), which uses backpropaga-
tion to compute J Lt

θt
exactly, and the remaining part of the gradient, ∑s<t J Lt

θs
, is estimated

as J Lt
ht−1

h̃t−1w̃⊤t−1. Although our version has slightly higher variance, it is conceptually
simpler.

The projected Jacobians that appear in Equation 4.5.1 can be computed efficiently
without explicitly handling the full Jacobians. Specifically, u⊤t J

zt
θt

can be computed by
reverse-mode differentiating zt with respect to θt, and substituting u⊤t in place of the
adjoint J L

zt
. By a similar trick, one can compute J ht

ht−1
h̃t−1 and J ht

zt ut using forward-
mode differentiation. The resulting algorithm has the same O(H2) time complexity as
backpropagation through time, but its O(H2) storage does not grow with time.

4.5.2. Greedy Iterative Rescaling

This subsection explains GIR and the role of the coefficients γt, βt > 0 in Equation 4.5.1.
Whereas our above derivation of the algorithm introduced a temporal projection,

Ollivier et al. (2015) and Tallec and Ollivier (2018) interpret the algorithm given by Equa-
tion 4.5.1 as implementing a series of projections. Under this view, h̃tw̃⊤t is a rank-one
estimate of the rank-two matrix that is the sum of the forwarded previous Jacobian estimate
J ht

ht−1
h̃t−1w̃⊤t−1 and the approximate contribution J ht

zt utu⊤t J
zt

θt
:

h̃tw̃⊤t = (γtJ ht
ht−1

h̃t−1 + βtJ ht
zt

ut)(γ
−1
t w̃⊤t−1 + β−1

t u⊤t J
zt

θt
)

= J ht
ht−1

h̃t−1w̃⊤t−1 + J ht
zt

utu⊤t J
zt

θt
+ τtγtβ

−1
t J

ht
ht−1

h̃t−1ν⊤t J
zt

θt
+ τtβtγ

−1
t J ht

zt
νtw̃⊤t−1 .

The temporal “cross-terms” τtγtβ
−1
t J

ht
ht−1

h̃t−1ν⊤t J
zt

θt
and τtβtγ

−1
t J

ht
zt

νtw̃⊤t−1 , which
are zero in expectation (but contribute variance), constitute the error introduced in the
transition from time t− 1 to t. The coefficients γt and βt provide an extra degree of freedom
with which we can minimize this error. As shown by Ollivier et al. (2015), the minimizers

74

ensure the terms γtJ ht
ht−1

h̃t−1, βtJ ht
zt ut and their w̃t counterparts have small norm, so that

their contribution to the variance is small as well.
The total (trace) variance of h̃tw̃⊤t with respect to τt is given by the expected squared

Frobenius norm ∥·∥2
F of the error:

Eτt

[∥∥∥h̃tw̃⊤t −Eτt [h̃tw̃⊤t]
∥∥∥2

F

]
= Eτt

[∥∥∥τtγtβ
−1
t J

ht
ht−1

h̃t−1ν⊤t J
zt

θt
+ τtβtγ

−1
t J ht

zt
νtw̃⊤t−1

∥∥∥2

F

]
.

As the common sign τt does not affect the norm, this is simply

γ2
t β−2

t

∥∥∥ J ht
ht−1

h̃t−1ν⊤t J
zt

θt

∥∥∥2

F
+ β2

t γ−2
t

∥∥∥ J ht
zt

νtw̃⊤t−1

∥∥∥2

F
+ 2
〈
J ht

ht−1
h̃t−1ν⊤t J

zt
θt

, J ht
zt

νtw̃⊤t−1

〉
F
,

where ⟨·, ·⟩F denotes the Frobenius inner product.
The coefficients γt and βt affect the error through the single degree of freedom γ2

t β−2
t .

By differentiation and use of the identity ∥xy⊤∥2
F = ∥x∥2∥y∥2 we find that the optimal

choices satisfy

γ2
t β−2

t ∥J
ht

ht−1
h̃t−1∥2∥ν⊤t J

zt
θt
∥2 = β2

t γ−2
t ∥J ht

zt
νt∥2∥w̃t−1∥2.

This includes the solution γ2
t = ∥w̃t−1∥/∥J ht

ht−1
h̃t−1∥, β2

t = ∥ν⊤t J
zt
θt
∥/∥J ht

zt νt∥ from Ollivier et al.
(2015).

Examining their use in Equation 4.5.1 we can see that for this particular solution γt

plays the important role of contracting w̃t, which would otherwise grow indefinitely
(being a sum of independent random quantities). While division by γt in the recursion
for h̃t causes an expansive effect, this is more than counteracted by the natural contractive
property of the Jacobian J ht

ht−1
(which is due to gradient vanishing in well-behaved RNNs).

Thus we can interpret the role of γt as distributing this contraction evenly between h̃t and
w̃t, which limits the growth of both quantities and thus keeps the variance of their product
under control. A formal treatment of the growth of variance over time is given by Massé
(2017).

4.6. Variance Analysis
In this section we analyze the variance behavior of UORO-style algorithms. We first

discuss limitations of the GIR variance reduction scheme discussed in Section 4.5.2, namely
that it is greedy (Section 4.6.1) and derives from a somewhat inappropriate objective
(Section 4.6.2). We then generalize the algorithm and develop a more holistic theoretical
framework for its analysis (Sections 4.6.3 through 4.6.5).

4.6.1. Greedy Iterative Rescaling is Greedy

In Section 4.5.2 we discussed how GIR can be interpreted as minimizing the variance
of a rank-one estimate h̃tw̃⊤t of a rank-two matrix J ht

ht−1
h̃t−1w̃⊤t−1 + J

ht
zt νtν

⊤
t J

zt
θt

(which is a

75

stochastic approximation that occurs at each step in UORO). Here we unify this sequence of
approximations into a single temporal rank-one estimation (as introduced in Section 4.5.1),
which helps us reveal the inherent limitations of GIR.

Recall that the UORO recursions (Equation 4.5.1) maintain past contributions in the
form of sums h̃t and w̃t, and at each step GIR applies respective scaling factors γt+1 and
γ−1

t+1 (resp.) to these sums. This gives rise to an overall scaling α
(t)
s = βsγs+1γs+2 . . . γt (and

similarly (α
(t)
s)−1) of contributions made at time step s and propagated forward through

time step t. We can write the estimates h̃tw̃⊤t produced by UORO in terms of α
(t)
s as follows:

J ht
θ ≈ h̃tw̃⊤t =

(
∑
s⩽t

α
(t)
s J ht

zs us

)(
∑
r⩽t

1

α
(t)
r

u⊤r J zr
θr

)
= ∑

r⩽t
∑
s⩽t

α
(t)
s

α
(t)
r

τsτrJ ht
hs
J hs

zs νsν
⊤
r J zr

θr
.

Note that each such estimate is but one element in a sequence of estimates. In the next
section, we will establish a notion of the variance for this sequence, so that we may speak
meaningfully about its minimization. For now, we will consider the minimization of
the variance of h̃tw̃⊤t at each time step t as an independent problem, with independent
decision variables α

(t)
s . The optimal coefficients given by (α

(t)
s)2 = ∥ν⊤s J

zs
θs
∥/∥J ht

zs νs∥ (derived
in Appendix 4.B) minimize the variance of h̃tw̃⊤t with respect to τs.

This solution is generally different from that of GIR, which is constrained to have the
form α

(t+1)
s = γt+1α

(t)
s for s ⩽ t (where γt+1 is independent of s). This relationship between

α
(t+1)
s and α

(t)
s breaks the independence of consecutive variance minimization problems,

and therefore the resulting coefficients cannot in general be optimal for all t.
We can see this by writing the optimal coefficients α

(t+1)
s for s ⩽ t that minimize the

variance of h̃t+1w̃⊤t+1 in terms of the coefficients α
(t)
s that minimize the variance of h̃tw̃⊤t :

(α
(t+1)
s)2 =

∥ν⊤s J zs
θs
∥

∥J ht+1
zs νs∥

=
∥ν⊤s J zs

θs
∥

∥J ht
zs νs∥

∥J ht
zs νs∥

∥J ht+1
zs νs∥

= (α
(t)
s)2 ∥J

ht
zs νs∥

∥J ht+1
zs νs∥

= (α
(t)
s)2

∥∥∥∥J ht+1
ht

J ht
zs νs

∥J ht
zs νs∥

∥∥∥∥−1

.

We see that in order to minimize the variance of h̃t+1w̃⊤t+1 given coefficients α
(t)
s that min-

imize the variance of h̃tw̃⊤t , we should divide each contribution α
(t)
s J ht

zs νs by the square
root of its contraction due to forward-propagation through J ht+1

ht
, and multiply each

(α
(t)
s)−1ν⊤s J zs

θs
by the same factor. Crucially, this factor depends on s and therefore cannot

be expressed by GIR, which is constrained to rescale all past contributions by a constant
factor yt+1 independent of s. This is true of any algorithm that maintains past contributions
in a reduced form such as h̃t, w̃t.

76

4.6.2. Greedy Iterative Rescaling Optimizes an Inappropriate Objective

In the previous subsection, we saw a sense in which GIR is greedy: its ability to
minimize the variance of h̃tw̃⊤t is hampered by its own past decisions. To see this, we
took a holistic view of the sequence of variance minimization problems solved by GIR,
and showed that the choice of coefficients γs, βs at time s constrains the choice of future
coefficients. Here we take a further step back, and argue that the variance of h̃tw̃⊤t is not
the right objective in light of the downstream application of these estimates.

The Jacobian estimates h̃tw̃⊤t ≈ J
ht

θ are used to determine a sequence of gradient
estimates J Lt

ht
h̃tw̃⊤t ≈ J

Lt
θ , which are accumulated by a gradient descent process. We argue

that the quantity of interest is the variance of the total gradient estimate ∑t⩽T J Lt
ht

h̃tw̃⊤t ≈
J L

θ incurred during T steps of optimization (which estimates the total gradient J L
θ).

Since consecutive gradient contributions depend largely on the same stochastic quan-
tities, the variance of this sum is not simply the sum of the individual variances. Hence
even if we could independently minimize the variances of the Jacobian estimates, doing so
is not equivalent to minimizing the variance of the total gradient estimate.

4.6.3. Generalized Recursions

Before proceeding with the variance computation we will generalize the UORO recur-
sions by replacing the γt and βt coefficients by an invertible matrix Qt as follows:

h̃t = J ht
ht−1

h̃t−1 + J ht
zt

Qtut

w̃⊤t = w̃⊤t−1 + u⊤t Q−1
t J

zt
θt

(4.6.1)

Qt can be interpreted as modifying the covariance of the noise vector ut (although differ-
ently for either recursion). Analogously to the standard UORO recursions, our generalized
recursions compute the following sums:

h̃t = ∑
s⩽t
J ht

hs
J hs

zs Qsus and w̃t = ∑
s⩽t

u⊤s Q−1
s J zs

θs
.

We can view Qs as a matrix-valued generalization of the GIR coefficients, with equiva-
lence when Qs = βsγs+1γs+2 . . . γT I. The extra degrees of freedom allow more fine-grained
control over the norms of cross-terms,1 as can be seen when we expand both the temporal
and the spatial projections in the estimator h̃tw̃⊤t :

J ht
θ ≈ h̃tw̃⊤t = ∑

r⩽t
∑
s⩽t

∑
ijkl
J ht

zri
(Qr)ikurkusl(Q−1

s)l jJ
zsj

θs

1By “cross-term” we mean a term that appears in the expanded sum which is zero in expectation but
contributes variance.

77

Each term’s scaling depends not just on temporal indices r, s but now also on the indices
i, j of units. As we shall see, in expectation, terms where both the temporal indices r = s
and units i = j correspond remain unaffected, and it is only the undesired cross-terms for
which r ̸= s or i ̸= j that are affected.

Tallec and Ollivier (2018) hint at a related approach which would correspond to
choosing Qs = αs diag(qs) to be diagonal matrices. However, they derive their choice
q2

si ∝ ∥J zsi
θs
∥/∥J hs

zsi ∥ by optimizing the norms of only temporally corresponding terms for
which r = s, and ignoring temporal cross terms r ̸= s which make up the bulk of the
error. We instead consider a class of Qs matrices that is not constrained to be diagonal, and
whose value minimizes a measure of variance that is more relevant to the optimization
process.

Thus our recursion in Equation 4.6.1 is a strict generalization of the UORO recursion in
Equation 4.5.1. The Qs matrices can express a broad class of variance reduction mecha-
nisms, including GIR. That said, our analysis of this system will be limited to cases where
the Qs are independent of the noise vectors ut for all s, t. Notably, this precludes GIR

because of its complex nonlinear interaction with the noise.

4.6.4. A Simple Expression for the Gradient Estimate

In this subsection we will derive a simple expression for the gradient estimate J Lt
ht

h̃tw̃⊤t
which will prove useful in our subsequent computations.

To reduce visual clutter we define the following notational aliases, which we will make
heavy use of throughout the rest of the manuscript:

b(t)s = J Lt
zs and Js = J zs

θs
.

First, we observe that that 1s⩽tb
(t)
s = b(t)s , as derivatives of past losses with respect to

future activations are zero. Next we observe that

J Lt
ht

h̃t = ∑
s⩽t
J Lt

ht
J ht

hs
J hs

zs Qsus = ∑
s⩽t

b(t)⊤s Qsus.

Given these observations we may express the estimate of each gradient contribution J Lt
θ

as

J Lt
ht

h̃tw̃⊤t =
(
∑
s⩽t

b(t)⊤s Qsus

)(
∑
s⩽t

u⊤s Q−1
s Js

)
=
(

∑
s⩽T

1s⩽tb
(t)⊤
s Qsus

)(
∑
s⩽T

1s⩽tu⊤s Q−1
s Js

)
=
(

∑
s⩽T

b(t)⊤s Qsus

)(
∑
s⩽T

1s⩽tu⊤s Q−1
s Js

)
= b(t)⊤Quu⊤Q−1S(t) J,

78

where in the last step we have:
– consolidated the temporal and spatial projections by concatenating the b(t)s into a

single vector b(t), and the noise vectors us into a single vector u,
– stacked the Js’s into the matrix J,
– defined Q to be the block-diagonal matrix diag(Q1, Q2, . . . , QT), and
– introduced the “truncated identity matrix” S(t) with diagonal blocks S(t)

s = 1s⩽t I.
Finally, the total gradient estimate is given by

∑
t⩽T
J Lt

ht
h̃tw̃⊤t = ∑

t⩽T
b(t)⊤Quu⊤Q−1S(t) J. (4.6.2)

The S(t) matrix accounts for the fact that at time t of the algorithm, contributions J zs
θs

from future steps s > t are not included in w̃⊤t . Omitting this matrix would introduce
terms that are zero in expectation and hence would not bias the total gradient estimate,
but they would still contribute to the variance of the estimator (to a degree which would
adversely affect the usefulness of our subsequent analysis).

It is easy to see that this estimator is unbiased as long as E
[
Quu⊤Q−1] = I. This can

happen, for example, when Q and u are independent with E[uu⊤] = I. We will focus our
analysis on this case.

4.6.5. Computing the Variance of the Total Gradient Estimate

In this section we derive the variance of the total gradient estimate. We assume that Q
is independent of u, so that we may use the general results from Appendix 4.A.

By bilinearity, the covariance matrix of the total gradient estimate is

Var
[
∑
t⩽T
J Lt

ht
h̃tw̃⊤t

]
= ∑

t⩽T
∑
s⩽T

Cov
[
J Lt

ht
h̃tw̃⊤t ,J Ls

hs
h̃sw̃⊤s

]
.

Combining this with the identity J Lt
ht

h̃tw̃⊤t = b(t)⊤Quu⊤Q−1S(t) J from the previous sub-
section and applying Corollary 3 (with κ = 0) yields the following expression for the same
quantity:

∑
s⩽T

∑
t⩽T

tr
(

b(s)b(t)⊤QQ⊤
)

J⊤S(s)(QQ⊤)−1S(t) J + J⊤b(s)b(t)⊤ J.

Corollary 3 also yields the following expression for the total variance2 of the total gradient
estimate:

∑
s⩽T

∑
t⩽T

tr
(

b(s)b(t)⊤QQ⊤
)

tr
(

J⊤S(s)(QQ⊤)−1S(t) J
)
+ tr

(
J⊤b(s)b(t)⊤ J

)
. (4.6.3)

2We define the “total variance” to be the trace of the covariance matrix.

79

4.7. Variance Reduction
We now turn to the problem of reducing the variance given in Equation 4.6.3. In

Sections 4.7.1 through 4.7.1 we develop an improved (though as yet impractical) variance
reduction scheme. Finally, we evaluate our theory in Section 4.7.2.

4.7.1. Optimizing Q subject to restrictions on its form

Denote by V(Q) the part of the total variance (Equation 4.6.3) that depends on Q.
Making use of the cyclic property of the trace, and the fact that Q is block-diagonal, we
can write this as

V(Q) = ∑
s⩽T

∑
t⩽T

tr
(

∑
r⩽T

b(s)r b(t)⊤r QrQ⊤r
)

tr
(

∑
r⩽T

S(t)
r Jr J⊤r S(s)

r (QrQ⊤r)
−1
)

. (4.7.1)

We wish to optimize V(Q) with respect to Q in a way that leads to a practical online
algorithm. To this end, we require that Qs be of the form Qs = αsQ0, with αs a scalar
and Q0 a constant matrix. This restriction makes sense from a practical standpoint; we
envision an algorithm that maintains a statistical estimate of the optimal value of Q0. The
stationarity assumption enables us to amortize over time both the sample complexity of
obtaining this estimate, and the computational cost associated with inverting it.

We furthermore assume projection occurs in preactivation space, that is, zr ≡ Wrar.
This assumption gives Jr = J hr

zr = I ⊗ a⊤r , which is a convenient algebraic structure to
work with. Even given this restricted form we cannot find the jointly optimal solution for
Q0 and α. Instead, we will consider optimizing Q0 while holding the αs’s fixed, and vice
versa.
Optimizing αs coefficients given Q0.

Let us first simplify the expression for V(Q). Given the restricted form Qs = αsQ0 we
may write

V(Q) = ∑
r⩽T

∑
q⩽T

α2
r

α2
q

Cqr, (4.7.2)

where we have collected the factors that do not depend on α into the matrix C with
elements

Cqr = ∑
s⩽T

∑
t⩽T

tr
(

b(s)r b(t)⊤r Q0Q⊤0
)

tr
(

S(t)
q Jq J⊤q S(s)

q (Q0Q⊤0)
−1
)

= tr
(T

∑
s=q

T

∑
t=q

b(s)r b(t)⊤r Q0Q⊤0
)

tr
(

Jq J⊤q (Q0Q⊤0)
−1
)

=
∥∥∥ T

∑
t=q

b(t)⊤r Q0

∥∥∥2∥∥∥Q−1
0 Jq

∥∥∥2

F
. (4.7.3)

80

Now we wish to solve

α⋆ = argmin
α>0

∑
r⩽T

∑
q⩽T

α2
r

α2
q

Cqr. (4.7.4)

The optimization problem considered here differs from that given in Section 4.6.1. Al-
though the objective considered there can similarly be written in terms of a matrix like C,
that matrix would have rank one (see Appendix 4.B). This difference is a consequence of
V(Q) being the variance of the total gradient estimate rather than that of a single contribu-
tion J Lt

ht
h̃tw̃⊤t . In particular, the rank-one property is lost due to our inclusion of the S(t)

matrix that discards noncausal terms (see Section 4.6.4).
We analyze the problem in Appendix 4.C, and find that it is an instance of matrix

equilibration (see e.g. Idel, 2016, for a review), for which no closed-form solution is known.
Instead, we give a second-order steepest-descent update rule that solves for α numerically,
which we use in our experiments. (Empirically, first-order updates routinely get stuck in
cycles on this problem.)

However, solving Equation 4.7.4 directly does not lead to a practical algorithm. Along
the lines of the discussion in Section 4.6.1, any algorithm that maintains past contributions
as a single sum must take αs to be βsγs+1γs+2 . . . γT for some coefficient sequences {βs}
and {γs}. In principle, if C were known upfront, one could choose βs = α⋆s with γs = 1,
and hence this parameterization appears to be degenerate. However, C is not known; it
depends on gradients b(t)r = J Lt

zr and Jacobians Jt = J zt
θt

from future time steps t > s. In
light of this, we can view βs as merely an estimate of α⋆s , to be corrected by future γt’s as
more information becomes available.

One way of formalizing this idea of “incomplete information” is as follows. Suppose
C were the final element C(T) of a sequence of matrices C(1) . . . C(T), where each C(s)

incorporates all “information” available up to time s. Then a natural way to choose βs and
γs at time s would be solve the following optimization problem based on C(s):

β⋆
s , γ⋆

s = argmin
βs,γs

min
β>s,γ>s

∑
r⩽T

∑
q⩽T

α2
r

α2
q

C(s)
qr . (4.7.5)

Past coefficients β<s, γ<s are known (and fixed), and the unknown future coefficients
β>s, γ>s are estimated by the inner minimization.

In Appendix 4.D we explore a natural choice for C(s) where future gradients/Jacobians
are treated as though they were 0, which leads to formulas for the coefficients that are
similar to GIR’s, although not identical. This approach can be improved by incorporating
statistical predictions or estimates of unknown future information in C(s). We leave further
exploration of such schemes to future work.
Optimizing Q0 given the αs coefficients.

81

Given our assumption that zr ≡ Wrar we have Jr = I ⊗ a⊤r and Jr J⊤r = (I ⊗ a⊤r)(I ⊗
ar) = (I ⊗ a⊤r ar) = ∥ar∥2 I. Thus,

S(t)
r Jr J⊤r S(s)

r (QrQ⊤r)
−1 = 1r⩽t1r⩽s∥ar∥2α−2

r (Q0Q⊤0)
−1,

and V(Q) becomes

∑
s⩽T

∑
t⩽T

tr
(

∑
r⩽T

α2
r b(s)r b(t)⊤r Q0Q⊤0

)
tr
(min(s,t)

∑
r=1

∥ar∥2α−2
r (Q0Q⊤0)

−1
)

.

Now we can move the scalar ∑
min(s,t)
r=1 ∥ar∥2α−2

r leftward and group the terms that depend
on s and t, giving

V(Q) = tr(BQ0Q⊤0) tr((Q0Q⊤0)
−1), (4.7.6)

where

B = ∑
s⩽T

∑
t⩽T

(min(s,t)

∑
q=1

α−2
q ∥aq∥2

)(
∑
r⩽T

α2
r b(s)r b(t)⊤r

)
= ∑

q⩽T
∑
r⩽T

α2
r

α2
q
∥aq∥2

(T

∑
s=q

b(s)r

)(T

∑
t=q

b(t)r

)⊤
.

(4.7.7)
The matrix B is PSD (it is a sum of PSD matrices), and we will further assume it is

invertible. By Theorem 5 (which is stated and proved in Appendix 4.E) any choice of Q0

satisfying ηBQ0Q⊤0 = (Q0Q⊤0)
−1 for some constant η > 0 will be a global minimizer of

V(Q). One such choice is

Q0 = B−1/4.

This solution, or any other globally optimal one, gives us

V(Q) = tr(B1/2)2,

where λ is the vector of eigenvalues of B1/2. We can compare this to the variance attained
by temporal scaling only (Q0 = I):

V(Q) = tr(B) tr(I).

Writing tr(B1/2)2 = (⃗1⊤λ)2 and tr(B) tr(I) = ∥⃗1∥2∥λ∥2, where 1⃗ is the vector of ones and
λ is the vector of eigenvalues of B1/2, we have by the Cauchy-Schwarz inequality that

tr(B1/2)2 = (⃗1⊤λ)2 ⩽ ∥⃗1∥2∥λ∥2 = tr(B) tr(I).

This approaches equality as λ approaches a multiple of 1⃗, or in other words, as the spectrum
of B1/2 becomes flat. Conversely, the inequality will be more extreme when the spectrum is
lopsided, indicating improved variance reduction when using Q0 = B−1/4 over the default
choice Q0 = I.

82

Practical Considerations. In practice, the proposed choice of Q0 requires computing
the B matrix and its eigendecomposition. Computing B involves four levels of summations
over time and seemingly cannot be computed online. However, we can estimate it using
quantities similar to the ones we use to estimate the gradient. Appendix 4.F derives the
following unbiased estimator of B:

B ≈ 1
2
(m̃Tñ⊤T + ñTm̃⊤T)

where m̃t is given by

∑
s⩽t

(
∑
q⩽s

σqα−1
q
∥∥aq
∥∥)(∑

r⩽s
τrαrb(s)⊤r νr

)(
∑
r⩽s

νr

)
and ñt is like m̃t except with spatial noise µr instead of and independent of νr. In these
expressions, σ, µ are temporal and spatial noise vectors distributed identically to τ, ν. This
extra layer of stochastic approximation severely degrades the quality of the estimates.
Additionally, the estimator depends on unknown future quantities, such as the total future
gradient with respect to all time steps. As detailed in Appendix 4.F, we may compute
intermediate estimates based on m̃t, ñt for t < T. To the extent that B is stationary, a
moving average of these intermediate estimates can serve as a good approximation to B.

Empirically however, computing Q0 based on this kind of estimator does not seem to
improve optimization performance, due to its high variance. We leave a broader explo-
ration of approximation algorithms for B to future work, while noting that an estimator
for B need not be unbiased in order for us to obtain an unbiased estimate of the gradient.
Indeed, any invertible choice of Q0 will result in an unbiased estimate of the gradient,
as was shown in Section 4.6.4. Unbiasedness may not even be a particularly desirable
property for the B estimator to have, compared to other reasonable-sounding properties
such as positive-semidefiniteness.

Once we have our estimate B̂ of B and wish to compute its fourth root, the O(H3) cost
of factorization could be amortized by only performing it every so often or maintaining the
estimate in factored form. It is often advisable to “dampen” or “regularize” the estimate
by adding a multiple of the identity, i.e.

Q0 = (B̂ + λI)1/4

where the hyperparameter λ serves to control the amount of trust placed in the estimate
by biasing it towards a flat eigenvalue spectrum (i.e. towards Q0 ∝ I).

4.7.2. Variance Reduction Experiments

We empirically evaluate four settings for Qs = αsQ0 in a controlled setting based on the
sequential MNIST task (Le et al., 2015). We choose this task because it is episodic; it gives

83

Fig. 4.1. Training curves on the row-wise sequential MNIST task. For each setting we have
run 10 trials and plotted the mean of the classification loss and the 95% confidence interval
of the mean. For clarity of presentation, these curves have been aggressively smoothed by
a median filter prior to the computation of their statistics.

us access to gradients b(t)s and Jacobians Js for all s, t by BPTT. Thus we can compute the
matrices B and C from Section 4.7.1 exactly. In order to curb the cost of these computations,
we simplify the task to be row-by-row instead of pixel-by-pixel (i.e. T = 28 as opposed
to T = 784). Moreover, the model is tasked with classifying the digit at every step rather
than only at the end, as otherwise Lt = 0 and therefore b(t)s = 0 for t < T, trivializing the
total gradient estimate (Equation 4.6.2).

For αs, we compare the GIR-style coefficients

γ2
s =

∥w̃s−1∥
∥J hs

hs−1
h̃s−1∥

and β2
s =

∥∥∥u⊤s Q−1
0 J

zs
θs

∥∥∥
∥J hs

zs Q0us∥

against the ones prescribed by our analysis. In the latter case, we use the algorithm
described in Appendix 4.C to solve Equation 4.7.4 for α. Given α, we derive a sequence of
γ, β coefficients by setting γs equal to the geometric average ratio of consecutive αs’s, and
solving for β such that αs = βsγs+1 . . . γT for all s.3

For Q0, we consider the naive choice Q0 = I as well as the solution Q0 = B−1/4 from
Section 4.7.1. Recall that the optimal Q0 depends on the choice of α and both choices of
α depend on the choice of Q0. We break this circularity by maintaining an exponential

3The simpler choice γs = 1, βs = αs may run into numerical issues but is otherwise equivalent, as the
distribution of the total scaling α across γ, β does not affect the variance.

84

moving average B̄ of B across episodes, which we use to compute Q0 according to

Q0 =
(

B̄ + λ
tr(B̄)
tr(I)

I
)1/4

,

where the amount of damping/regularization is controlled by the hyperparameter λ.
Given Q0, we compute α exactly, process the episode and update the parameters by the
total gradient estimate (Equation 4.6.2). At the end of the episode, we compute B exactly
based on the α used in the episode, average it across the minibatch, and use the result to
update B̄.

The model consists of an LSTM (Hochreiter and Schmidhuber, 1997) with 50 hidden
units. At each step, the digit is classified by softmax regression based on the hidden state
ht. As the classifier parameters do not affect ht, their gradient is obtained by backprop.
The gradients are averaged across a minibatch of 50 examples and across the duration of
each episode, before being passed to the Adam (Kingma and Ba, 2014) optimizer. The
settings of the learning rate, momentum and B̄ decay and dampening hyperparameters
are detailed in Appendix 4.G.

Figure 4.1 shows the training curves for each of the four configurations. While there is
a clear advantage to using both our proposed α and Q0 choices, that advantage appears to
be lost when only one of the two is used.

In order to test our variance analysis, we show in Figure 4.2 predictions and measure-
ments of several quantities that contribute to the variance, recorded during optimization.
Recall from Section 4.6.5 that the variance of the total gradient estimate takes the form

Var
[
∑
t⩽T
J Lt

ht
h̃tw̃⊤t

]
= V(Q) +

∥∥J L
θ

∥∥2.

The actual variance in Figure 4.2 measures V(Q) empirically by computing

E
[∥∥∑

t⩽T
J Lt

ht
h̃tw̃⊤t−1 −J L

θ

∥∥2 −
∥∥J L

θ

∥∥2
]
,

where the expectation is estimated by averaging across the minibatch. The intrinsic vari-
ance is similarly computed as E

[
∥J L

θ ∥2]. The expected variance measures the theoretical
prediction of V(Q) by plugging the corresponding choice of Q0 into Equation 4.7.6.

We see that the theoretical predictions of V(Q) are correct when alpha=ours, but that
they overestimate V(Q) when alpha=GIR. When we derived V(Q) in Section 4.6.5, we
started with the assumption that Q and u be independent; this assumption is violated
by the GIR coefficients, which depend on the noise u. Finally, we see that our proposals
indeed reduce the actual variance; significantly so when both Q0=ours, alpha=ours.

We furthermore highlight in Figure 4.3 the difference in behavior of the α coefficients
under the four configurations. The GIR coefficients appear to take on more extreme values,
especially early on in training. Presumably, poor initialization causes increased levels of

85

Fig. 4.2. Theoretical predictions and empirical measurements of quantities contributing to
total gradient variance. The “intrinsic” variance measures the expected norm of the total
gradient J L

θ , estimated by averaging across the minibatch. The “expected” variance is a
theoretical prediction of V(Q) according to Equation 4.7.6. The “actual” variance measures
V(Q) empirically by the expected norm of the total gradient estimate.

gradient vanishing, which subsequently causes γs to be large in order to compensate. How-
ever, when we combine the GIR coefficients with our choice of Q0, the effect is exacerbated.
This may be because the GIR coefficients and our Q0 optimize for conflicting objectives.
Curiously, when both Q0=ours, alpha=ours, the relative ordering of the coefficients is
reversed, so that αs < αt for s < t.

4.8. Projection in the Space of Preactivations
Recall from Section 4.5 how the spatial rank-one approximation breaks down the Jaco-

bian J ht
θt

= J ht
zt νtν

⊤
t J

zt
θt

into more manageable quantities J ht
zt νt and ν⊤t J

zt
θt

by projecting
in the space of some cut vertex zt. Assuming the transition function F takes the form given
in Equation 4.3.1, we observe that the Jacobian can be factored as J ht

θt
= J ht

Wtat
(I ⊗ a⊤t)

where⊗ denotes the Kronecker product, i.e. it is already rank-one. By choosing zt to be the
preactivations Wtat, we can avoid the projection, and we obtain the following recursion:

h̃t = γtJ ht
ht−1

h̃t−1 + βtτtJ ht
Wtat

(4.8.1)

w̃t = γ−1
t w̃t−1 + β−1

t τtat

86

Fig. 4.3. Evolution of log αs for some time steps s as training proceeds. At each training
step, the log αs are centered so that mins log αs = 0; this eliminates irrelevant constant
factors.

The vector-valued h̃t has been replaced by a matrix h̃t, and the contributions J ht
Wtat

and at

are multiplied by scalar noise τs ∼ N (0,1) rather than projected down. At each step, the
gradient contribution J Lt

θ is computed as vec((J Lt
ht

h̃t)⊤w̃⊤t). The GIR coefficients

γ2
t = ∥w̃t−1∥/∥J ht

ht−1
h̃t−1∥F, β2

t = ∥at∥/∥J ht
Wtat
∥F

can be derived like in Section 4.5. We will refer to this variant of UORO as “PREUORO ”.
This algorithm has also been discovered by Mujika et al. (2018).

Define b(t)s = J Lt
zs , the gradient of the loss at time t with respect to the projection

variable at time s. Then the total gradient J L
θ can be expressed as

J L
θ = ∑

t⩽T
J Lt

θ = ∑
t⩽T

∑
s⩽t

b(t)⊤s (I ⊗ a⊤s) = ∑
t⩽T

∑
s⩽t

vec(b(t)s a⊤s),

where vec is the vectorization operator that serializes its matrix argument into a row vector
in row-major order. We can express the total gradient estimate as

vec
(

∑
t⩽T

(J Lt
ht

h̃t)
⊤w̃⊤t

)
= vec

(
∑
t⩽T

(
∑
s⩽t

τsαsb
(t)
s
)(

∑
r⩽t

τrα−1
r a⊤r

))
= vec

(
∑
t⩽T

B̄(t)⊤Q̄ττ⊤Q̄−1S̄(t) J̄
)

, (4.8.2)

87

Fig. 4.4. Training curves on the queue task showing interpolation between RTRL and
UORO by ablation of the spatial and temporal approximations. “neither” denotes exact
computation of the gradient using RTRL, “spatial” denotes RTRL with J ht

zt νtν
⊤
t J

zt
θt

standing
in for J ht

θt
, “temporal” denotes PREUORO computed by Equation 4.8.1, “both” denotes

UORO . Where applicable, the cut vertex zt ≡Wtat is the preactivations.

where we have defined the matrices

B̄(t)⊤ =
(

b(t)1 · · · b(t)T

)
, Q̄ = diag(α), S̄(t)

ij = δij1i⩾t, J̄ =
(

a1 · · · aT

)⊤
.

that mirror similarly-named quantities from Section 4.6.4. The expression in Equation 4.8.2
is analogous to that in Equation 4.6.2, but with the crucial difference that no summation
across space is involved. Hence the noise vector τ has much smaller dimension T rather
than TN (with N being the dimension of the projection space).

We show in Appendix 4.H that the variance contribution V(Q) of PREUORO can be
written

∑
s⩽T

∑
t⩽T

tr
(

B̄(s)B̄(t)⊤Q̄Q̄⊤
)

tr
(
S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1)

and the variance contribution V(Q) of UORO ’s total gradient estimate from Section 4.6.4
(Equation 4.6.2) can be written:

∑
s⩽T

∑
t⩽T

tr
(

B̄(t)Q0Q⊤0 B̄(s)⊤Q̄Q̄⊤
)

tr
(
S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1) tr

(
(Q0Q⊤0)

−1)
The latter has an extra factor tr((Q0Q⊤0)

−1). If Q0 = I, then this factor is equal to tr(I).
Spatial projection thus causes the dominant term of the variance to be multiplied by the
dimension of the preactivations, which typically ranges in the thousands. Avoiding the
spatial projection avoids this multiplication and hence achieves drastically lower variance.

88

Figure 4.4 confirms the corresponding improvement in optimization performance. This
figure shows training curves of four variations on RTRL: RTRL, RTRL plus spatial projection
(UORO minus temporal projection), PREUORO (UORO minus spatial projection), and UORO

which performs both spatial and temporal projection. The task under consideration is the
queue task, in which the model is trained to emit its input stream with a delay. Effectively,
the model learns to implement a queue.

The model is similar to that described in 4.7.2, except with 50 hidden units. The model
observes a random binary input stream and has to predict a binary output stream that is
equal to the input stream but with a delay of 4 time steps. The J Lt

θ estimates are averaged
across a minibatch of 100 examples, and applied to the parameters by Adam (Kingma and
Ba, 2014) with momentum 0.5 and learning rate set to 0.008 for “neither”, 0.008 for “spatial”,
0.0008 for “temporal”, 0.002 for “both” (found by grid search).

The main drawback of this method is its computational complexity: the algorithm
involves propagating multiple vectors forward, which increases the computation time
by the same factor N that we removed from the variance. The dominant operation is the
matrix-matrix multiplication J ht

ht−1
h̃t−1, which has computational cost O(N3) (recall N is

the dimension of the projection space). This is better than RTRL’s J ht
ht−1
J ht−1

θ which costs
O(N4), but worse than UORO and BPTT which propagate vectors at a cost of O(N2). The
space complexity is O(N2), which matches that of UORO.

4.9. REINFORCE as Approximate Real-Time Recurrent Learn-
ing

In this section we show a fundamental connection between REINFORCE (Williams,
1992) and UORO. The REINFORCE algorithm provides gradient estimates for systems with
stochastic transitions. It can also be used to train recurrent neural networks if we artificially
induce stochasticity by adding Gaussian noise to the hidden states. We will show that in
this setting, the REINFORCE estimator is closely related to the UORO estimator.

REINFORCE aims to estimate the gradient of the expected loss Eχ∼p(χ;θ)[L(χ)] which
depends on the parameter θ through some distribution p(χ; θ) over stochastic context χ

that determines the loss L(χ). Conceptually, χ = (χt) is the trajectory of the state of an
agent and its external environment, and θ parameterizes a stochastic policy over actions,
which induces a distribution p(χ; θ) on χ.

The gradient of the expected loss can be rewritten as an expected gradient as follows:

∇θEχ∼p(χ;θ)[L(χ)] = ∇θ

∫
L(χ)p(χ; θ)dχ =

∫
L(χ)∇θ p(χ; θ)dχ

=
∫

L(χ)∇θ(log p(χ; θ))p(χ; θ)dχ,

89

where we have used the fact that ∇θ log p(χ; θ) = ∇θ p(χ;θ)/p(χ;θ). With this modified
expression, we can estimate ∇θEχ∼p(χ;θ)[L(χ)] by sampling from p(χ; θ).

In our case, χ will be the trajectory of the stochastic hidden states of the RNN, and
sampling from p(χ; θ) will correspond to the following recursions:

ht = F(h̄t−1, xt; θt)

h̄t = ht + σut, (4.9.1)

with additive Gaussian noise ut ∼ N (0, I). The stochastic hidden state h̄t is effectively
sampled from a state transition policy p(h̄t|h̄t−1, θt) ∝ exp

(
− 1

2σ2∥h̄t − ht∥2
)

.

For each state h̄t so visited, we compute the score ∇θ log p(h̄⩽t; θ) of the trajectory
h̄⩽t = (h̄0, h̄1, . . . , h̄t) that brought us there, and multiply it by an immediate loss Lt so
obtained. Intuitively, higher rewards “reinforce” directions in parameter space that bring
them about. We will assume Lt is a differentiable function of h̄t.

By the chain rule of probability, the score ∇θ log p(h̄⩽t; θ) of the trajectory is simply the
sum ∇θ ∑t

s=1 log p(h̄s|h̄s−1, θs), which we can recursively maintain according to

w̄⊤t = w̄⊤t−1 +∇θ log p(h̄t|h̄t−1, θt) = w̄⊤t−1 −
1

2σ2J
∥h̄t−ht∥2

ht
J ht

θt

= w̄⊤t−1 +
1
σ2 (h̄t − ht)

⊤J ht
θt

= w̄⊤t−1 +
1
σ

u⊤t J
ht

θt
.

Note that in the above computations, “h̄t” and “h̄t−1” are not the variables themselves but
particular values. (This is a consequence of our adoption of the standard abuse of notation
for random variables.) Thus they are treated as constants with respect to differentiation.
The only quantity that depends on θ is ht, which when we condition on the value of h̄t−1,
only depends on θ via θt.

This recursion is very similar to UORO’s recursion for w̃⊤t , and it computes a similar
type of sum:

w̄⊤t =
1
σ ∑

s⩽t
u⊤s J hs

θs
. (4.9.2)

Once we have ∇θ log p(h̄⩽t; θ), we need to multiply it by the loss Lt to obtain a REIN-
FORCE gradient estimate of J Lt

θ . We can express the loss by its Taylor series around the
point u = 0 where the noise is zero, as follows:

Lt = Lt|u=0 +
(
∑
s⩽t
J Lt

us |u=0us

)
+

1
2

(
∑
r⩽t

∑
s⩽t

u⊤r HLt
ur,us

∣∣∣
u=0

us

)
+ · · ·

= Lt|u=0 + σ
(
∑
s⩽t
J Lt

hs
|u=0us

)
+O(σ2),

90

where HLt
ur,us denotes the Hessian of Lt with respect to ur and us. The last step uses the

fact that σus affects Lt in exactly the same way that hs does, so that J Lt
us = σJ Lt

hs
and

HLt
ur,us = σ2HLt

hr,hs
.

Plugging the Taylor series for Lt into the REINFORCE gradient estimate and using
Equation 4.9.2, we get:

Ltw̄⊤t = Lt|u=0w̄⊤t +
(
∑
s⩽t
J Lt

hs
|u=0us

)(
∑
s⩽t

u⊤s J hs
θs

)
+O(σ). (4.9.3)

Here we see the UORO gradient estimator appear in the second term, but with an important
difference: the J hs

θs
’s are evaluated in the noisy system, whereas the J Lt

hs
|u=0 are evaluated

with zero noise. Thus this term doesn’t estimate J Lt
θ for any value of u. However, the

equivalence becomes exact when we let the noise go to zero by taking the limit σ→ 0.
To see this we first observe that letting σ go to 0 is equivalent to letting u go to 0 in

the recursions for hs (Equation 4.9.1). Furthermore, since F is continuously differentiable,
so is hs (w.r.t. all of its dependencies). Therefore J hs

θs
is a continuous function of u, and it

follows that

lim
σ→0
J hs

θs
= lim

u→0
J hs

θs
= J hs

θs
|u=0.

And therefore we have

lim
σ→0

[(
∑
s⩽t
J Lt

hs
|u=0us

)(
∑
s⩽t

u⊤s J hs
θs

)
+O(σ)

]
=
(
∑
s⩽t
J Lt

hs
|u=0us

)(
∑
s⩽t

u⊤s J hs
θs
|u=0

)
,

which is identical to the standard UORO estimate J Lt
ht

h̃tw̃⊤t of J Lt
θ (without any variance

reduction).
Thus we can see that in the limit as σ → 0, REINFORCE becomes equivalent to UORO

(sans variance reduction), except that it includes the additional term:

Lt|u=0w̄⊤t =
1
σ

Lt|u=0 ∑
s⩽t

u⊤s J hs
θs

.

From the right-hand side we see that this term has mean zero, and thus the limiting
behavior of REINFORCE is to give an unbiased estimate of the gradient of the noise-free
model. However, the variance of the additional term goes to infinity as σ → 0. For
models where the noise is bounded away from zero this term represents the main source
of variance for REINFORCE estimators. It can however be addressed by subtracting an
estimate of Lt|u=0 from Lt before multiplying by the score function. This is known as a
“baseline” in the REINFORCE literature (Williams, 1992).

The appearance of the UORO estimator as part of the REINFORCE estimator suggests an
additional opportunity for variance reduction in REINFORCE. If in Equation 4.9.1 we had

91

instead defined
h̄t = ht + σQtut,

that is, the noise added to ht has covariance σ2Q⊤t Qt, then we would have found

w̄⊤t =
1
σ ∑

s⩽t
u⊤s Q−1J hs

θs
and ∑

s⩽t
J Lt

us |u=0 = σ ∑
s⩽t
J Lt

hs
|u=0Qsus.

Putting these two together as in Equation 4.9.3 and passing to the limit σ→ 0 as before,
we get

lim
σ→0

Ltw̄⊤t = Lt|u=0w̄⊤t +
(
∑
s⩽t
J Lt

hs
|u=0Qsus

)(
∑
s⩽t

u⊤s Q−1
s J hs

θs
|u=0

)
,

where now the second term is identical to UORO with the generalized variance reduction
described in Section 4.6.3. Thus the Qs matrices that enable variance reduction in UORO

correspond directly to a choice of covariance on the exploration noise in REINFORCE.

4.10. Conclusions
We have contributed a thorough analysis of UORO-style approximate differentiation

algorithms and their variance behavior. The theory takes a holistic view of the algorithm
as part of an optimization process, where the sequence of mutually dependent gradient
estimates J Lt

θ ≈ J
Lt

ht
h̃tw̃⊤t produced by UORO are accumulated as per gradient descent.

Our analysis considers the variance of this total gradient estimate. This is in contrast
to UORO’s variance reduction scheme (GIR) which minimizes the variance of individual
Jacobian estimates J ht

θ ≈ h̃tw̃⊤t , without accounting for the way in which they are used.
We have developed a generalization of GIR, and suggested avenues toward a practical
implementation. Empirical evaluation confirms our theoretical claims.

Furthermore we have described a variation on UORO that avoids “spatial” projection,
greatly reducing the variance at the cost of increased computational complexity. Finally,
we have drawn a deep connection between UORO and REINFORCE when the latter is used
to train an RNN with perturbed hidden states.

Acknowledgements
The authors thank Max Jaderberg, David Sussillo, David Duvenaud and Aaron

Courville for helpful discussion, and Chris Maddison and Grzegorz Swirszcz for reviewing
drafts of this paper. This research was enabled by computational resources courtesy of
Compute Canada.

92

References
Arjona-Medina, Jose A et al. (2018). “RUDDER: Return Decomposition for Delayed Re-

wards”. In: arXiv preprint arXiv:1806.07857.
Barto, Andrew G, Richard S Sutton, and Charles W Anderson (1983). “Neuronlike adaptive

elements that can solve difficult learning control problems”. In: IEEE transactions on
systems, man, and cybernetics, pp. 834–846.

Chen, Tianqi et al. (2016). “Training deep nets with sublinear memory cost”. In: arXiv
preprint arXiv:1604.06174.

Elman, Jeffrey L (1990). “Finding structure in time”. In: Cognitive science 14.2, pp. 179–211.
Gomez, Aidan N et al. (2017). “The reversible residual network: Backpropagation without

storing activations”. In: Advances in Neural Information Processing Systems, pp. 2214–
2224.

Gruslys, Audrunas et al. (2016). “Memory-efficient backpropagation through time”. In:
Advances in Neural Information Processing Systems, pp. 4125–4133.

Heath, Michael T (2018). Scientific computing: an introductory survey. Vol. 80.
Hochreiter, Sepp and Jürgen Schmidhuber (1997). “Long short-term memory”. In: Neural

computation 9.8, pp. 1735–1780.
Hung, Chia-Chun et al. (2018). “Optimizing Agent Behavior over Long Time Scales by

Transporting Value”. In: arXiv preprint arXiv:1810.06721.
Idel, Martin (2016). “A review of matrix scaling and Sinkhorn’s normal form for matrices

and positive maps”. In: arXiv preprint arXiv:1609.06349.
Jaderberg, Max et al. (2017). “Decoupled Neural Interfaces using Synthetic Gradients”. In:

International Conference on Machine Learning, pp. 1627–1635.
Ke, Nan Rosemary et al. (2018). “Sparse Attentive Backtracking: Temporal credit as-

signment through reminding”. In: Advances in Neural Information Processing Systems,
pp. 7651–7662.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980.

Konda, Vijay R and John N Tsitsiklis (2000). “Actor-critic algorithms”. In: Advances in neural
information processing systems, pp. 1008–1014.

Le, Quoc V, Navdeep Jaitly, and Geoffrey E Hinton (2015). “A simple way to initialize
recurrent networks of rectified linear units”. In: arXiv preprint arXiv:1504.00941.

MacKay, Matthew et al. (2018). “Reversible Recurrent Neural Networks”. In: Advances in
Neural Information Processing Systems, pp. 9042–9053.

Mak, Man-Wai, Kim-Wing Ku, and Yee-Ling Lu (1999). “On the improvement of the real
time recurrent learning algorithm for recurrent neural networks”. In: Neurocomputing
24.1-3, pp. 13–36.

93

Massé, Pierre-Yves (2017). “Around the Use of Gradients in Machine Learning”. PhD thesis.
Université Paris-Saclay. URL: https://tel.archives-ouvertes.fr/tel-01744761.

Minsky, Marvin (1961). “Steps toward artificial intelligence”. In: Proceedings of the IRE 49.1,
pp. 8–30.

Mujika, Asier, Florian Meier, and Angelika Steger (2018). “Approximating Real-Time
Recurrent Learning with Random Kronecker Factors”. In: Advances in Neural Information
Processing Systems. Vol. 31, pp. 6594–6603.

Ollivier, Yann, Corentin Tallec, and Guillaume Charpiat (2015). “Training recurrent net-
works online without backtracking”. In: arXiv preprint arXiv:1507.07680.

Rumelhart, David E, Geoffrey E Hinton, and Ronald J Williams (1986). “Learning represen-
tations by back-propagating errors”. In: Nature 323.6088, p. 533.

Sutton, Richard S (1984). “Temporal credit assignment in reinforcement learning”. PhD
thesis. University of Massachusetts Amherst.

Sutton, Richard S (1988). “Learning to predict by the methods of temporal differences”. In:
Machine learning 3.1, pp. 9–44.

Tallec, Corentin and Yann Ollivier (2018). “Unbiased Online Recurrent Optimization”. In:
International Conference on Learning Representations.

Werbos, Paul J (1990). “Backpropagation through time: what it does and how to do it”. In:
Proceedings of the IEEE 78.10, pp. 1550–1560.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connection-
ist reinforcement learning”. In: Reinforcement Learning, pp. 5–32.

Williams, Ronald J and Jing Peng (1990). “An efficient gradient-based algorithm for on-line
training of recurrent network trajectories”. In: Neural computation 2.4, pp. 490–501.

Williams, Ronald J and David Zipser (1989). “A learning algorithm for continually running
fully recurrent neural networks”. In: Neural computation 1.2, pp. 270–280.

Williams, Ronald J and David Zipser (1995). “Gradient-based learning algorithms for
recurrent networks and their computational complexity”. In: Backpropagation: Theory,
architectures, and applications 1, pp. 433–486.

94

https://tel.archives-ouvertes.fr/tel-01744761

4.A. Supporting Results for Variance Computations
In this section we prove several technical results supporting our variance computations

in the main text.
Definition 1 (Standard random vector). A standard random vector is any real vector u
whose elements ui are drawn iid from a distribution that is symmetric around zero and
has unit variance.

Standard random vectors u satisfy E[u] = 0 and E[uu⊤] = I, which is required for our
algorithms to be unbiased. Moreover, by symmetry the odd moments of their elements ui

are zero. The results below will involve the “excess kurtosis” E[u4
1]− 3 of the distribution

of the elements of u. The standard normal distribution N (0, 1) has excess kurtosis 0,
whereas the uniform distribution on signs U{−1, + 1} has excess kurtosis -2.
Proposition 2. Suppose A, B, C, D are constant matrices, and u is a standard random vector with
excess kurtosis κ. Then we have

E[Auu⊤BCuu⊤D] = tr(BC)AD + 2ABCD + κA((BC)⊙ I)D.

PROOF. By linearity of expectation,

E[Auu⊤BCuu⊤D] = ∑
jklm

E[ujukulum]Aij(BC)klDmn.

In order to evaluate the expectation E[ujukulum], we make use of the fact that ui and uj are
independent unless i = j. This allows us to express the product inside the expectation as
a product of powers up(i)

i , with the power p(i) equal to the multiplicity of i in (j, k, l, m).

By independence, the expectation of this product then factors into a product ∏i E[up(i)
i] =

∏i µp(i) of moments µp ≜ E[up
1] of the elements ui. Moreover, since by symmetry the

odd moments of ui are zero, we need only consider cases in which all indices have even
multiplicity. Thus we get

∑
jklm

E[ujukulum]Aij(BC)klDmn = ∑
jklm

µ4Aij(BC)jjDjn if j = k = l = m

µ2
2Aij(BC)jlDln if j = k ̸= l = m

µ2
2Aij(BC)kjDkn if j = l ̸= k = m

µ2
2Aij(BC)kkDjn if j = m ̸= k = l

0 else

.

Casting this back into matrix form, we have

E[Auu⊤BCuu⊤D] = µ2
2 tr(BC)AD + 2µ2

2ABCD + (µ4 − 3µ2
2)A((BC)⊙ I)D

= tr(BC)AD + 2ABCD + κA((BC)⊙ I)D,

95

where µ2
2 = 1 follows from the fact that u is a standard random vector, and µ4 − 3µ2

2 =

µ4 − 3 = κ is its excess kurtosis.
□

Corollary 3. Suppose x and y are constant vectors, V and W are constant matrices, and u is a
standard random vector with excess kurtosis κ. Then

Cov[x⊤uu⊤V, y⊤uu⊤W] = (x⊤y)V⊤W + V⊤xy⊤W + κV⊤((xy⊤)⊙ I)W

and

tr
(
Cov[x⊤uu⊤V, y⊤uu⊤W]

)
= (x⊤y) tr(V⊤W) + 2 tr(V⊤xy⊤W)

+ κ tr
(
V⊤((xy⊤)⊙ I)W

)
.

PROOF. x⊤uu⊤V and y⊤uu⊤W are row vectors and so their covariance is given by

Cov[x⊤uu⊤V, y⊤uu⊤W] = E[(x⊤uu⊤V)⊤(y⊤uu⊤W)]−E[x⊤uu⊤V]⊤E[y⊤uu⊤W]

= E[V⊤uu⊤xy⊤uu⊤W]−E[V⊤uu⊤x]E[y⊤uu⊤W].

By Proposition 2,

E[V⊤uu⊤xy⊤uu⊤W] = tr(xy⊤)V⊤W + 2V⊤xy⊤W + κV⊤((xy⊤)⊙ I)W

= (x⊤y)V⊤W + 2V⊤xy⊤W + κV⊤((xy⊤)⊙ I)W.

And by linearity of expectation we have E[y⊤uu⊤W] = y⊤E[uu⊤]W = y⊤W and simi-
larly E[V⊤uu⊤x] = V⊤x, so that E[V⊤uu⊤x]E[y⊤uu⊤W] = V⊤xy⊤W. Combining these
equations yields

Cov[x⊤uu⊤V, y⊤uu⊤W] = (x⊤y)V⊤W + V⊤xy⊤W + κV⊤((xy⊤)⊙ I)W.

The formula for tr
(
Cov[x⊤uu⊤V, y⊤uu⊤W]

)
follows immediately. □

4.B. Variance of a Single Jacobian Estimate
Section 4.6.1 discusses the following expression for the UORO Jacobian estimate at time

t in terms of the overall coefficients α
(t)
r :

J ht
θ ≈ h̃tw̃⊤t =

(
∑
s⩽t

α
(t)
s J ht

zs us

)(
∑
r⩽t

1

α
(t)
r

u⊤r J zr
θr

)
= ∑

r⩽t
∑
s⩽t

α
(t)
s

α
(t)
r

τsτrJ ht
hs
J hs

zs νsν
⊤
r J zr

θr
. (4.B.1)

This section concerns the variance of this estimate and the coefficients α
(t)
s that minimize it.

We will omit the superscript on α
(t)
s to avoid notational clutter.

96

Defining R⊤ =
(
J ht

z1 ν1 · · · J ht
zt νt

)
, J̃⊤ =

(
J̃1 · · · J̃t

)
for J̃⊤s = ν⊤s J zs

θs
, and the

diagonal matrix A = diag(α), we can write Equation 4.B.1 as

h̃tw̃⊤t = R⊤Aττ⊤A−1 J̃.

Its variance with respect to the temporal noise τ is given by

Eτ

[
∥R⊤Aττ⊤A−1 J̃∥2

F
]
−
∥∥Eτ[R⊤Aττ⊤A−1 J̃]

∥∥2
F

= tr
(
Eτ[R⊤Aττ⊤A−1 J̃ J̃⊤A−1ττ⊤AR]

)
− ∥R⊤ J̃∥2

F

= tr(RR⊤A2) tr(J̃ J̃⊤A−2) + ∥R⊤ J̃∥2
F − 2 tr

(
R⊤((J̃ J̃⊤)⊙ I)R

)
,

where in the last step we have made use of Proposition 2 (with κ = −2) to evaluate the
second moment. The part that depends on α is

tr(RR⊤A2) tr(J̃ J̃⊤A−2) = ∑
q⩽t

∑
r⩽t

α2
r

α2
q
∥J ht

zr νr∥2∥ν⊤q J
zq

θq
∥2 = ∑

q⩽t
∑
r⩽t

α2
r

α2
q

Cqr

where Cqr ≜ mqnr ≜ ∥J ht
zr νr∥2∥ν⊤q J

zq
θq
∥2. From the analysis in Appendix 4.C we know that

this is minimal iff

e⊤k A2CA−2⃗1 = e⊤k A−2C⊤A2⃗1,

where ek is the kth column of the identity matrix and 1⃗ is the vector of ones. Using the
rank-one structure of C, we have

α2
kmkn⊤A−2⃗1 = α−2

k nkm⊤A2⃗1,

which leads to the solution

α4
k =

nk
mk

m⊤A2⃗1
n⊤A−2⃗1

∝
nk
mk

=
∥ν⊤k J

zk
θk
∥2

∥J ht
zk νk∥2 .

4.C. Optimizing α given Q0

Section 4.7.1 introduced the following optimization problem (Equation 4.7.4):

α⋆ = argmin
α>0

∑
r⩽T

∑
q⩽T

α2
r

α2
q

Cqr

Here we analyze this problem in terms of a logarithmic parameterization α2
i = exp(ζi).

The coefficients exp(ζi) give rise to diagonal column- and row-scaling matrices Z, Z−1

with Zij = δij exp(ζi). These matrices act on C to produce a modified matrix C̄ = Z−1CZ,
of which V(Q) is the elementwise sum:

V(Q) = ∑
r⩽T

∑
q⩽T

exp
(
−ζq

)
Cqr exp(ζr) = 1⃗⊤Z−1CZ⃗1 = 1⃗⊤C̄⃗1.

97

By 1⃗ we denote the vector of ones.
We will make use of the matrix differential

dC̄
dζk

= eke⊤k C̄− C̄eke⊤k

which measures the first-order change in C̄ with respect to ζk. Here ek is the kth column of
the identity matrix. From this we get the derivative of V(Q) with respect to ζk:

dV(Q)

dζk
= 1⃗⊤

dC̄
dζk

1⃗ = e⊤k C̄⃗1− 1⃗⊤C̄ek.

The stationary points of V(Q) satisfy C̄⃗1 = C̄⊤⃗1, i.e. the modified matrix C̄ has equal
column and row sums.

Using the matrix differential dC̄
dζk

twice, we find the elements of the Hessian H:

Hij =
d

dζi

d
dζ j

1⃗⊤C̄⃗1 =
d

dζi
1⃗⊤
(
eje⊤j C̄− C̄eje⊤j

)⃗
1

= 1⃗⊤
(
eje⊤j eie⊤i C̄− eje⊤j C̄eie⊤i − eie⊤i C̄eje⊤j + C̄eie⊤i eje⊤j

)⃗
1

= δije⊤i C̄⃗1− e⊤j C̄ei − e⊤i C̄ej + δi j⃗1⊤C̄ei

which in matrix form is

H = diag(C̄⃗1)− C̄ + diag(C̄⊤⃗1)− C̄⊤ = diag((C̄ + C̄⊤)⃗1)− (C̄ + C̄⊤).

It is easily shown that the Hessian is positive semidefinite everywhere and hence V(Q) is
convex in ζ for all real vectors v:

v⊤Hv = v⊤ diag((C̄ + C̄⊤)⃗1)v− v⊤(C̄ + C̄⊤)v = ∑
ij
(v2

i − vivj)(C̄ + C̄⊤)ij

=
1
2 ∑

ij
(2v2

i − 2vivj)(C̄ + C̄⊤)ij =
1
2 ∑

ij
(v2

i + v2
j − 2vivj)(C̄ + C̄⊤)ij

=
1
2 ∑

ij
(vi − vj)

2(C̄ + C̄⊤)ij.

As (vi − vj)
2 ⩾ 0 and (C̄ + C̄⊤)ij ⩾ 0 due to positivity of the entries of C, each term in the

sum is nonnegative and therefore the whole sum is nonnegative. This implies H is positive
semidefinite and hence V(Q) is convex.

Given that V(Q) is smooth and convex, its stationary points are global minimizers. In
our experiments we solve for the stationary points by Newton’s method, according to the
update

ζ ← ζ − η(H + λI)−1(C̄− C̄⊤)⃗1

where η is a learning rate and λ is a damping factor on H, which is necessary because one
of its eigenvalues is zero. In our experiments, we use η = 1 and λ = 10−8.

98

4.D. Online optimization of α coefficients
This Appendix demonstrates how the incremental formulation of the optimization

with respect to α from Section 4.7.1 (Equation 4.7.5) may be used to derive practical values
for the γ, β coefficients. Recall that the optimization problem is defined in terms of a matrix
C(s) that stands in for the unknown C. We will work with a naive choice that assumes
future gradients and Jacobians are zero:

C(s)
qr ≜

∥∥ s

∑
t=q

b(t)⊤r Q0
∥∥2∥∥Q−1

0 Jq
∥∥2

F.

Note that ∥∑s
t=q b(t)⊤r Q0∥2 is zero unless q ⩽ s and r ⩽ s, and thus C(s)

qr = 1q⩽s1r⩽sC
(s)
qr .

Using this property, we can rewrite the problem (Equation 4.7.5) as

β⋆
s , γ⋆

s = argmin
βs,γs

∑
r⩽s

∑
q⩽s

α2
r

α2
q

C(s)
qr .

Expanding
α2

r
α2

q
=

β2
r γ2

r+1 . . . γ2
T

β2
qγ2

q+1 . . . γ2
T
=

β2
r γ2

r+1 . . . γ2
q

β2
qγ2

q+1 . . . γ2
r

reveals that only terms with either q = s or r = s depend on βs and/or γs, and thus

β⋆
s , γ⋆

s = argmin
βs,γs

β2
s

γ2
s

∑
q<s

β−2
q γ−2

q+1 . . . γ−2
s−1C(s)

qs +
γ2

s
β2

s
∑
r<s

β2
r γ2

r+1 . . . γ2
s−1C(s)

sr .

Note that βs and γs appear through the single degree of freedom β2
s/γ2

s , and by differentia-
tion we find the stationary points

γ4
s

β4
s
=

∑q<s β−2
q γ−2

q+1 . . . γ−2
s−1C(s)

qs

∑r<s β2
r γ2

r+1 . . . γ2
s−1C(s)

sr

From our definition of C(s) we have that

C(s)
qs = ∥b(s)⊤s Q0∥2∥Q−1

0 Jq∥2
F and C(s)

sr = ∥b(s)⊤r Q0∥2∥Q−1
0 Js∥2

F,

which leads to the natural solution

β4
s =

∥Q−1
0 Js∥2

F

∥b(s)⊤s Q0∥2
and γ4

s =
∑q<s ∥β−1

q γ−1
q+1 . . . γ−1

s−1Q−1
0 Jq∥2

F

∑r<s ∥βrγr+1 . . . γs−1b(s)⊤r Q0∥2
.

It can be shown that the above solution can be expressed in terms of ratios of expectations
of familiar quantities:

β4
s =

Eu∥u⊤s Q−1
0 J

zs
θs
∥2

F

Eu∥J Ls
hs
J hs

zs Q0us∥2
and γ4

s =
Eu∥w̃s−1∥2

F

Eu∥J Ls
hs
J hs

hs−1
h̃s−1∥2

99

These coefficients are closely related to those of GIR as derived in Section 4.5.2. In fact, had
we defined

C(s)
qr ≜ ∥J hs

zr Q0∥2∥Q−1
0 Jq∥2

F,

the projection onto J Ls
zs would disappear from the coefficients, making the similarity even

more striking. However, this choice is not consistent with our objective of minimizing the
variance V(Q) of the total gradient estimate.

Note that we were able to solve for the coefficients in closed form thanks to the property
C(s)

qr = 1q⩽s1r⩽sC
(s)
qr . In general, solving Equation 4.7.5 involves joint optimization of

β⩾s, γ⩾s, which requires a numerical approach similar to the one described in Appendix
4.C. Moreover, βs and γs will in general be independent parameters.

4.E. Minimization of the Product of Traces
Minimizing the total variance of our estimators involves minimizing a product of traces

by choice of a noise-shaping matrix. Here we characterize the optimal choice of such a
matrix in a general setting.
Definition 4. Define c(A) = tr(XA) tr(YA−1) for PD matrices X and Y.

The goal of this section will be to prove the following theorem.
Theorem 5. A PD matrix A is a global minimizer of c(A) over the set of PD matrices if and only
if

XA = γA−1Y

for some scalar γ > 0.
Note that a similar result to Theorem 5 one was used implicitly by Ollivier et al. (2015),

but wasn’t given rigorous justification. It is relatively easy to characterize the critical points
of c(A), but proving that any critical point is a global minimizer is much more involved. It
would be tempting to use convexity to prove such a result but unfortunately c(A) is not
convex in general.

We begin by stating and proving some basic technical claims.
Claim 6. Let U be a matrix and V be a PD matrix with V = CC⊤ for some C. Then the eigenvalues
of UV are the same as the eigenvalues of C⊤UC.

PROOF. Observe that

C⊤(UV)C−⊤ = C⊤(UCC⊤)C−⊤ = C⊤UC.

Thus UV is similar to the matrix C⊤UC and so has the same eigenvalues. □

Corollary 7. If U and V are PD matrices then they have all positive eigenvalues and tr(UV) > 0.
Claim 8. A is a critical point of c if and only if XA = γA−1Y for some γ > 0.

100

PROOF. Differentiating c(A) with respect to A, we find

dc(A)

dA
=

d
dA

tr(XA) tr(YA−1)

= tr(YA−1)
d

dA
tr(XA) + tr(XA)

d
dA

tr(YA−1)

= tr(YA−1)X⊤ − tr(XA)A−⊤Y⊤A−⊤.

Setting this to zero and rearranging terms gives

XA =
tr(XA)

tr(A−1Y)
A−1Y.

Because A, A−1, X, and Y are all PD matrices, and the trace of a product of PD matrices is
positive by the previous claim, the result follows. □

Claim 9. c(A) = tr((XY)1/2)2 for critical points A, where (XY)1/2 is the (unique) positive square
root of XY.

PROOF. Let A be a critical point. By Claim 8 we have XA = γA−1Y for some γ > 0. This
implies that X = γA−1YA−1 and thus XY = γA−1YA−1Y = γ(A−1Y)2. Because A−1

and Y are PD matrices we have by Claim 6 that A−1Y has all positive eigenvalues. Thus
A−1Y = γ−1/2(XY)1/2 where (XY)1/2 is the (unique) positive square root of XY. We also
have that Y = γ−1AXA which implies that XY = γ−1(XA)2, and so by a similar argument
to the one above we have that XA = γ1/2(XY)1/2. Thus

c(A) = tr(XA) tr(YA−1) = tr(γ1/2(XY)1/2) tr(γ−1/2(XY)1/2) = tr((XY)1/2)2.

□

Observation. Note that tr((XY)1/2)2 depends only on the eigenvalues of XY and so for
any other matrix V with the same eigenvalues tr(V1/2)2 would also give us the value of
c(A) at critical points. By Claim 6 such choices include X1/2YX1/2 and Y1/2XY1/2.
Definition 10. Let λmin(V) denote the minimum eigenvalue of V.

Note that we may restrict our analysis of c to the following domain:

A1 = {A : A is PD and λmin(A) = 1}.

This is because c(αA) = tr(X(αA)) tr(Y(αA)−1) = α tr(XA)α−1 tr(YA−1) = c(A), and so
we can always replace A with A/λmin(A) ∈ A1 without changing the objective function
value. (Note that λmin(A) > 0 since A is PD, so the new matrix A/λmin(A) remains PD.)

The remainder of this section will be devoted to showing that c, when restricted to
A1, attains its minimum on that set. Combining this with the fact that c is continuously
differentiable on the (larger) set of PD matrices, we will thus have that some critical point
is a global minimizer of c on the set of all PD matrices.

101

And since all critical points have the same objective function value by Claim 9, it will
follow that all critical points are global minimizers. And so by Claim 8, we will have that
A is a global minimizer if and only if

XA = γA−1Y

for some γ > 0.
Claim 11. Let A be some PD matrix with eigendecomposition given by A = U diag(d)U⊤. Then
we have

c(A) =
(
∑

i
di(u⊤i Xui)

)(
∑

i
d−1

i (u⊤i Yui)
)

,

where ui is the i-th column of U (i.e. the i-th eigenvector of A) and di is the i-th entry of the vector
d.

PROOF. Observe that

tr(XA) = tr(XU diag(d)U⊤) = tr(U⊤XU diag(d)).

Noting that the i-th diagonal element of U⊤XU is u⊤i Xui, so that the i-th diagonal element
of U⊤XU diag(d) is di(u⊤i Xui), it follows that

tr(XA) = ∑
i

di(u⊤i Xui).

Observing that A−1 = U diag(d)−1U⊤ so that A−1U = U diag(d)−1, and that the i-th
diagonal element of diag(d)−1 is just d−1

i we can apply a similar argument to the above to
show that

tr(YA−1) = ∑
i

d−1
i (u⊤i Yui).

Combining these equation equations establishes the claim. □

Claim 12. A1 is a closed set.

PROOF. Note that λmin(A) is a continuous function of A, and {1} is a closed set. Morever
the set of PSD matrices is a closed set. We therefore have that the intersection of the
preimage of λmin(A) on {1} and the set of PSD matrices is a closed set (i.e. the set
{A : A is PSD and λmin(A) = 1}) is closed. But this set is precisely A1 since any PSD
matrix with λmin(A) = 1 is also clearly PD. □

Definition 13. A function f : S → R defined on a set S ⊂ Rn is called “coercive” if we
have

f (v)→ ∞ as ∥v∥ → ∞.

The following is a standard result in finite dimensional analysis Heath, 2018, Chapter 6:
Theorem 14. If f : S→ R is coercive and continuous and S ⊂ Rn is a closed set then f obtains
in minimum on S.

102

Note that the theorem applies equally to the space of finite dimensional real-valued
matrices where the norm is any valid matrix norm, including the standard spectral norm
(which our notation will assume).
Claim 15. c(A) is coercive on the set A1.

PROOF. Let A ∈ A1 with eigendecomposition given by A = U diag(d)U⊤. By Claim 11
we have that

c(A) =
(
∑

i
di(u⊤i Xui)

)(
∑

i
d−1

i (u⊤i Yui)
)

.

Since A ∈ A1 we can assume without loss of generality that d1 = 1. We can also assume
without loss of generality that d2 is the largest eigenvalue of A so that d2 = ∥A∥.

Because A, X and Y are all PD we have that u⊤i Xui ⩾ λmin(X) > 0 and u⊤i Yui ⩾

λmin(Y) > 0 for each i. And thus

c(A) ⩾ λmin(X)λmin(Y)
(

1 + ∥A∥+ ∑
i>2

di

)(
1 + ∥A∥−1 + ∑

i>2
d−1

i

)
⩾ λmin(X)λmin(Y)(1 + ∥A∥)(1 + ∥A∥−1).

Clearly this goes to infinity as ∥A∥ does, which establishes the claim. □

Claim 16. c(A) attains its minimum on the set A1.

PROOF. This follows directly from Claims 12 and 15 and Theorem 14. □

4.F. Estimating B online
The optimal Q0 derived in Section 4.7.1 depends on the matrix B (Equation 4.7.7)

which is unknown due to its dependence on future coefficients and gradients. To obtain
a practical algorithm, we must approximate it online. We will consider B to be the final
element in a sequence B(1) . . . B(T) of matrices that accumulate information observed so
far:

B(k) = ∑
s⩽k

∑
t⩽k

(min(s,t)

∑
q=1

α−2
q ∥aq∥2

)(min(s,t)

∑
r=1

α2
r b(s)r b(t)⊤r

)
.

The remainder of this section develops an online algorithm that produces an unbiased
estimate of B(s) at each step s. Although this will not yield an unbiased estimate of B(T)

until the final time step T, to the extent that B(s) is stationary we may use its intermediate
estimates B(s) for s < T as approximations to B(T).

First, we factorize the sums over q and r using the now-familiar random projections
onto independent temporal noise vectors σ and τ:

min(s,t)

∑
q=1

α−2
q ∥aq∥2 = Eσ

[(
∑
q⩽s

σqα−1
q ∥aq∥

)(
∑
q⩽t

σqα−1
q ∥aq∥

)]

103

and
min(s,t)

∑
r=1

α2
r b(s)r b(t)⊤r = Eτ

[(
∑
r⩽s

τrαrb(s)r

)(
∑
r⩽t

τrαrb(t)r

)⊤]
.

By doing so we have broken up the dependency on min(s, t) into separate factors. Defining
ãs = ∑q⩽s σqα−1

q ∥aq∥, we may now express B(k) as

B(k) = Eσ,τ

[
∑
s⩽k

∑
t⩽k

ãs ãt

(
∑
r⩽s

τrαrb(s)r

)(
∑
r⩽t

τrαrb(t)r

)⊤]
= Eσ,τ

[(
∑
s⩽k

ãs
(
∑
r⩽s

τrαrb(s)r
))(

∑
t⩽k

ãt
(
∑
r⩽t

τrαrb(t)r
)⊤)]

= Eσ,τ[mkm⊤k],

the expectation of a rank-one estimator given by the outer product of the vector

mk ≜ ∑
s⩽k

ãs

(
∑
r⩽s

τrαrb(s)r

)
with itself. As this vector has zero mean, B(k) is its covariance.

The scalar ãs is readily accumulated online, but the vector ∑r⩽s τqαrb(s)r requires ap-
proximate forward differentiation. We can estimate mk by

m̃k ≜ ∑
s⩽k

ãs

(
∑
r⩽s

τrαrb(s)⊤r νr

)(
∑
r⩽s

νr

)
which can be computed efficiently according to the recursions

ãt = γ−1
t ãt−1 + σtβ

−1
t ∥at∥

h̃t = ηtγtJ ht
ht−1

h̃t−1 + ζtτtβtJ ht
zt

νt

ν̃t = η−1
t ν̃t−1 + ζ−1

t νt

m̃t = m̃k−1 + ãtJ Lt
ht

h̃tν̃t.

The coefficients ηt, ζt can be used to reduce the variance of h̃tν̃
⊤
t , e.g. by the GIR choice

η2
t = ∥ν̃t−1∥/∥γtJ

ht
ht−1

h̃t−1∥, ζ2
t = ∥νt∥/∥τtβtJ

ht
zt νt∥.

Although Eν[m̃k] = mk (i.e. m̃k is an unbiased estimator of mk), Eν[m̃km̃⊤k] ̸=
Eν[m̃k]Eν[m̃⊤k] and therefore m̃km̃⊤k is not an unbiased estimator of B(k). To estimate
B(k), we require a replication ñk of m̃k with independent spatial noise µ in place of ν:

ñk ≜ ∑
s⩽k

ãs

(
∑
r⩽s

τrαrb(s)⊤r µr

)(
∑
r⩽s

µr

)
computed by similar recursions as m̃k. Now

Eσ,τ,ν,µ[m̃kñ⊤k] = Eσ,τ
[
Eν[m̃k]Eµ[ñ⊤k]

]
= Eσ,τ[mkm⊤k] = B(k).

104

It should be noted that although B(k) is symmetric PSD, the estimates m̃kñ⊤k are not.
Symmetry may however be restored by use of the estimator 1/2(m̃kñ⊤k + ñkm̃⊤k).

4.G. Hyperparameter Settings for Variance Reduction Exper-
iments

The following table lists the hyperparameter settings used for the experiments in
Section 4.7.2:

Q0 α Learning rate Momentum B̄ decay B̄ dampening

identity GIR 0.005 0.8
identity ours 0.005 0.5
ours GIR 0.005 0.5 0.9 0.008
ours ours 0.003 0.8 0.9 0.005

These settings were found by grid search on learning rate in {0.001,0.003,0.005,0.007,0.009},
momentum in {0.5,0.8}, B̄ decay rate in {0.8, 0.9, 0.95} and B̄ dampening coefficient in
{5× 10−3, 5× 10−4, 5× 10−5}.

4.H. Variance of Preactivation-Space Projection
This appendix explores the variance of the estimator from Section 4.8 and its relation-

ship to the variance of the usual total gradient estimator from Section 4.6.4 (Equation 4.6.4).
The former is given by Equation 4.8.2:

vec
(

∑
t⩽T

B̄(t)⊤Q̄ττ⊤Q̄−1S̄(t) J̄
)

with matrices B̄(t)⊤ =
(

b(t)1 · · · b(t)T

)
, Q̄ = diag(α), S̄(t)

ij = δij1i⩾t, J̄ =
(

a1 · · · aT

)⊤
that mirror similarly-named quantities from Section 4.6.4.

Noting that for a matrix X,

tr
(
Var[vec(X)]

)
= E

[
∥ vec(X)∥2]− ∥∥E[vec(X)]

∥∥2

= E
[
∥X∥2

F
]
−
∥∥E[X]

∥∥2
F = tr

(
E[XX⊤]

)
−
∥∥E[X]

∥∥2
F

105

we have by Proposition 2 (with κ = 0) that

tr
(

Var
[
vec
(

∑
t⩽T

B̄(t)⊤Q̄ττ⊤Q̄−1S̄(t) J̄
)])

= ∑
s⩽T

∑
t⩽T

tr
(
E[J̄⊤S̄(s)Q̄−⊤ττ⊤Q̄⊤B̄(s)B̄(t)⊤Q̄ττ⊤Q̄−1S̄(t) J̄]

)
− ∥J L

θ ∥2
F

= ∑
s⩽T

∑
t⩽T

tr(B̄(s)B̄(t)⊤Q̄Q̄⊤) tr(S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1) + ∥J L
θ ∥2

F. (4.H.1)

The variance of the usual estimator (Section 4.6.4) is given by Equation 4.6.3:

tr
(

Var
[
∑
t⩽T

b(t)⊤Quu⊤Q−1S(t) J
])

= ∑
s⩽T

∑
t⩽T

tr(b(s)b(t)⊤QQ⊤) tr(S(t) J J⊤S(s)(QQ⊤)−1) + ∥J L
θ ∥2

F. (4.H.2)

We will now relate Equation 4.H.2 to Equation 4.H.1 using the following observations:

b(t)⊤ = vec(B̄(t)), Q = Q̄⊗Q0, S(t) = S̄(t) ⊗ I, and J J⊤ = J̄ J̄⊤ ⊗ I.

Thus tr(b(s)b(t)⊤QQ⊤) can be written

tr(b(s)b(t)⊤QQ⊤) = vec(B̄(t))⊤(Q̄Q̄⊤ ⊗Q0Q⊤0) vec(B̄(s))

= vec(B̄(t))⊤ vec(Q0Q⊤0 B̄(s)⊤Q̄Q̄⊤)

= tr(B̄(t)Q0Q⊤0 B̄(s)⊤Q̄Q̄⊤)

and tr(S(t) J J⊤S(s)(QQ⊤)−1) can be written

tr(S(t) J J⊤S(s)(QQ⊤)−1) = tr
(
(S̄(t) ⊗ I)(J̄ J̄⊤ ⊗ I)(S̄(s) ⊗ I)(Q̄−2 ⊗ (Q0Q⊤0)

−1)
)

= tr
(
S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1)⊗ (Q0Q⊤0)

−1)
= tr

(
S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1) tr

(
(Q0Q⊤0)

−1).
This results in the following expression for the dominant term of the variance in Equation
4.H.2:

∑
s⩽T

∑
t⩽T

tr
(

B̄(t)Q0Q⊤0 B̄(s)⊤Q̄Q̄⊤
)

tr
(
S̄(t) J̄ J̄⊤S̄(s)(Q̄Q̄⊤)−1) tr

(
(Q0Q⊤0)

−1).

106

Chapter 5

Best Response Shaping

Milad Aghajohari∗† Tim Cooijmans∗† Juan Augustin Duque†

Shunichi Akatsuka‡ Aaron Courville†

∗ Equal contribution † Mila & Université de Montréal ‡ Hitachi

We investigate the challenge of multi-agent deep reinforcement learning in partially
competitive environments, where traditional methods struggle to foster non-exploitable
cooperation. LOLA and POLA agents learn non-exploitable cooperative policies by
differentiation through look-ahead optimization steps of their opponent. However, there
is a key limitation in these techniques as they are susceptible to exploitation by further
optimization. In response, we introduce a novel approach, Best Response Shaping (BRS),
which differentiates through an opponent approximating the best response, termed the
“detective”. To condition the detective on the agent’s policy for complex games we
propose a state-aware differentiable conditioning mechanism, facilitated by a question
answering (QA) method that extracts a representation of the agent based on its behaviour
on specific environment states. To empirically validate our method, we showcase its
enhanced performance against a Monte Carlo Tree Search (MCTS) opponent, which
serves as an approximation to the best response in the Coin Game. This work expands
the applicability of multi-agent RL in partially competitive environments and provides a
new pathway towards achieving improved social welfare in general sum games.

Prologue
Best Response Shaping is one of two projects that came out of our multi-agent learning

group. We spent several years developing an understanding of the problem of multi-agent
coordination and the proposals in the literature. We were especially interested in learning
reciprocity, which naive learning generally does not do. Milad and Aaron came up with
the idea of training against the best response as a function of the current policy, taking
account of the gradient through the best response. The agent thus tries to choose a policy
that will incentivize the opponent to cooperate – tit-for-tat is one such policy. We iterated
over many months to find an effective way to approximate that ideal.

Initially, we explored the possibility of using Monte-Carlo Tree Search to approximate
the best response. I implemented Monte-Carlo Tree Search in JAX, in such a way that we
could use REINFORCE to (approximately) propagate gradients through it with respect
to the agent’s policy. Unfortunately, the variance on these gradients turned out to be too
high. I also briefly investigated a Neural ODE approach, which would have allowed us
to explicitly find the best response through optimization, without having to differentiate
through this optimization trajectory. Milad experimented with a variety of policy finger-
printing approaches, and ultimately found success by observing behavior versus a random
agent. Finally, I took responsibility for understanding and training the POLA baseline,
helping Zhao et al. (2022a) find and fix several bugs in their implementation. The paper
was written primarily by Milad, Juan and Shunichi, with some proofreading and math
checks by myself.

5.1. Introduction
Reinforcement Learning (RL) algorithms have enabled agents to perform well in com-

plex high-dimensional games like Go (Silver et al., 2016) and StarCraft (Vinyals et al., 2019).
The end goal of RL is to train agents that can help humans solve challenging problems.
Inevitably, these agents will need to integrate in real-life scenarios that require interacting
with humans and other learning agents. While multi-agent RL training shines in fully
cooperative or fully competitive environments, it often fails to find non-exploitable cooper-
ation in partially competitive environments. One such example is the failure of multi-agent
RL (MARL) agents to learn non-exploitable cooperative policies like tit-for-tat (TFT) in the
Iterated Prisoner’s Dilemma (IPD) (Foerster et al., 2018b).

Despite the toy-ish character of common general-sum games such as IPD, these sorts
of problems are ubiquitous in both society and nature. Consider a scenario where two
countries (agents), strive to maximize their industrial output while also ensuring a suitable
climate for production by limiting carbon emissions. On the one hand, each country (agent)
would like to see the other country fulfill it’s obligations to limit carbon emissions. Yet on
the other hand, each one is motivated to emit more carbon themselves to achieve higher
industrial yields. An effective climate treaty would compel each country – likely through
the threat of penalties – to abide by the agreed limits to carbon emissions. If these agents
fail to develop such tit-for-tat-like strategies they will likely converge to an unfortunate
mutual escalation of consumption and carbon emission.

Foerster et al. (2018b) proposed Learning with Opponent-Learning Awareness (LOLA),
an algorithm that successfully learns TFT behavior in the IPD setting by differentiating
through an assumed single naive gradient step taken by the opponent. Building upon this,
Zhao et al. (2022b) introduced proximal LOLA (POLA), which further enhances LOLA

108

by assuming a proximal policy update for the opponent. This improvement allows for
the training of Neural Network (NN) policies in more complex games, such as the Coin
Game (Foerster et al., 2018b). To the best of our knowledge, POLA is the only method that
reliably trains non-exploitable cooperative agents in the Coin Game.

Despite its success on the Coin Game, POLA has its limitations. POLA assumes
a limited number of look-ahead optimization steps by the opponent, which renders it
vulnerable to exploitation by opponents engaging in additional optimization. Additionally,
this constraint may hinder POLA’s scalability, as the agent cannot differentiate through
additional stages of opponent optimization. In particular, our analysis of POLA agents
trained on the Coin Game demonstrates that POLA is susceptible to exploitation by the
best response opponent. When the opponent is specifically trained to maximize its own
return against a fixed policy trained by POLA, the first exploits the former.

In this paper, we present a novel approach called Best Response Shaping (BRS). Our
method is based on the construction of an opponent that approximates the best response
policy against any agent. We refer to this opponent as the "detective." The overall concept
is depicted in Figure 5.1: the detective undergoes training against agents sampled from a
diverse distribution. To train the agent, we differentiate through the detective opponent.
Unlike approaches such as LOLA and POLA, which assume few look-ahead optimization
steps, our method relies on the detective issuing the best response to the current agent
through policy conditioning.

The detective conditions on an embedding of the agent’s policy that effectively captures
its behavior across various states of the environment. Extracting such a representation
is a non-trivial task (Harb et al., 2020). A straightforward approach of concatenating all
policy parameters into a single representation results in a loss of architectural information
and requires a large number of samples to be effective. Alternatively, conditioning the
representation on the agent’s behavior in specific query states, as done in Harb et al. (2020),
can be attempted. However, learning these query states to enable generalization of the
agent’s behavior is, by itself, a difficult problem.

To address this, we introduce a question-answering (QA) mechanism dependent on
the current state of the environment, which serves as a means to extract a representation of
the agent policy. The detective evaluates the agent’s policy (answers) based on specific
environment states (questions) given the current state.

BRS gives us a strong agent against the best response opponent. However, it also has a
tendency to produce agents that exploit policies that exhibit excessive levels of cooperation.
If more cooperative behavior is desired, we propose self-play with reward sharing as a
regularization technique. Throughout the paper, we refer to this approach as Best Response
Shaping with Self-Play (BRS-SP).

109

We empirically validate our method on Iterated Prisoner’s Dilemma (IPD) and the
Coin Game. Given the dependency on the opponent’s policy for an agent’s outcomes,
it is not always straightforward to evaluate and compare policies of different agents in
games. This is especially true in non-zero-sum games that exhibit both cooperative and
competitive aspects. In this paper, we advocate that a reasonable point of comparison is
the agent’s outcome when facing a best response opponent, which we approximate by
Monte Carlo Tree Search (MCTS). We show that while the MCTS best response opponents
learn to exploit POLA agents, they also learn to cooperate with our BRS agents. To the
best of our knowledge, Best Response Shaping is the only method that enables training
non-exploitable cooperative agents parameterized by neural networks.
Main Contributions. We summarize our main contributions below:

– We identify that POLA agents are exploited by the best response opponent, approx-
imated by the Monte Carlo Tree Search (MCTS).

– To address this vulnerability, we introduce the BRS method, which trains an agent
by differentiating through an opponent approximating the best response (referred to
as the ’detective opponent’). We empirically validate our method and demonstrate
that agents trained with BRS are not exploited by the MCTS as shown in Figure 5.3.

– Additionally, we propose a state-aware differentiable conditioning mechanism for
the detective opponent, enabling it to condition on the agent’s policy.

5.2. Background

5.2.1. Multi Agent Reinforcement Learning

An N-agent Markov Games is denoted by a tuple (N,S ,
{
Ai}N

i=1, P,
{

ri}N
i=1, γ). Here,

N represents the number of agents, S the state space of the environment, and A :=
A1 × · · · × AN the set of actions for each agent. Transition probabilities are denoted by
P : S ×A → ∆(S) and the reward function by ri : S ×A → R. Lastly, γ ∈ [0,1] is the
discount factor. In a multi-agent reinforcement learning problem each agent attempts to
maximize their return Ri = ∑∞

t=0 γtri
t. The policy of agent i is denoted by πi

θi
where θi are

policy parameters. In Deep RL these policies are neural networks. These policies will be
trained via gradient estimators such as REINFORCE (Sutton et al., 1999).

5.2.2. Social Dilemmas and the Iterated Prisoner’s Dilemma

In the context of general sum games, social dilemmas emerge when individual agents
striving to optimize their personal rewards inadvertently undermine the collective outcome
or social welfare. This phenomenon is most distinct when the collective result is inferior
to the outcome that could have been achieved through full cooperation. Theoretical

110

studies, such as the Prisoner’s Dilemma, illustrate scenarios where each participant, though
individually better off confessing, collectively achieves a lower reward compared to
remaining silent.

However, in the Iterated Prisoner’s Dilemma (IPD), unconditional defection ceases to
be the dominant strategy. For instance, against an opponent following a tit-for-tat (TFT)
strategy, perpetual cooperation results in a higher return for the agent. It might be expected
that MARL, designed to maximize each agent’s return, would discover the TFT strategy,
as it enhances both collective and individual returns, and provides no incentive for policy
change, embodying a Nash Equilibrium. Yet, empirical observations reveal that standard
RL agents, trained to maximize their own return, typically converge to unconditional
defection.

This exemplifies one of the key challenges of multi-agent RL in general sum games:
during training, agents often neglect the fact that other agents are also in the process
of learning. To address this issue, and if social welfare is the primary consideration,
one could share the rewards among the agents during training. For instance, training
both agents in an IPD setup to maximize the collective return would lead to a constant
cooperation. However, this approach is inadequate if the goal is to foster reciprocation-
based cooperation. A policy is sought that incites the opponent to cooperate in order to
maximize their own return. While TFT is one such policy, manually designing a similar
TFT policies in other domains is neither desirable nor feasible, underscoring the necessity
to develop novel training algorithms that can discover these policies.

5.3. Related Work
LOLA (Foerster et al., 2018b) attempts to shape the opponent by taking the gradient of

the value with respect to a one-step look ahead of the opponent’s parameters. Instead of
considering the expected return under the current policy parameter pair, V1(θ1

i , θ2
i), LOLA

optimizes V1(θ1
i , θ2

i + ∆θ2
i) where ∆θ2

i denotes a naive learning step of the opponent. To
make a gradient calculation of the update ∆θ2

i , LOLA considers the surrogate value given
by the first order Taylor approximation of V1(θ1

i , θ2
i + ∆θ2

i). Since for most games the exact
value cannot be calculated analytically, the authors introduce a policy gradient formulation
that relies on environment roll-outs to approximate it. This method is able to find tit-for-tat
strategies on the Iterated Prisoner’s Dilemma.

POLA (Zhao et al., 2022b) introduces an idealized version of LOLA that is invariant
to policy parameterization. To do so, each player attempts to increase the probability of
actions that lead to higher returns while penalizing the Kullback-Leibler divergence in
policy space relative to their policies at the previous time step. Similar to the proximal
point method, each step of POLA constitutes an optimization problem that is solved

111

approximately through gradient descent. Like LOLA, POLA uses trajectory roll-outs to
estimate the value of each player and applies the reinforce estimator to compute gradients.
POLA effectively achieves non exploitable cooperation on the IPD and the Coin Game
improving on the shortcomings of its predecessor.

Lu et al. (2022) consider a meta-game where at each meta-step a full game is played
and the meta-reward is the return of that game. The agent is then a meta-policy that learns
to influence the opponent’s behaviour over these rollouts. M-FOS changes the game and
is not comparable to our method which considers learning a single policy. Baker (2020)
changes the structure of the game where each agent is sharing reward with other agents.
The agents are aware of this grouping of rewards via a noisy version of the reward sharing
matrix. In the test time, the representation matrix is set to no reward sharing and no noise
is added to this matrix.

Diplomacy is a zero-sum game, but locally the agents need to form a retaliatory alliance
in order to gain support for winning the game. Previous approaches like Paquette et al.
(2019) and FAIR et al. (2022) utilize human data to learn this behavior. However, self-play
without human data, as shown by Bakhtin et al. (2021), leads to significantly different
policies where agents struggle to cooperate with human players effectively.

Policy Evaluation Networks (PVN) conditions a neural network on a policy by consid-
ering the policy’s behavior on a set of learned states from the environment (Harb et al.,
2020). This aligns closely with our QA idea for conditioning the detective opponent on the
agent’s policy. However, the PVN representation is not dependent on the current state.

5.4. Best Response Shaping
Our Best Response Shaping (BRS) algorithm trains an agent by differentiating through

an approximation to the best response opponent (as described in Section 5.4.1). This
opponent, called the detective, conditions on the agent’s policy via a question answering
mechanism to select its actions (Section 5.4.2). Subsequently, we train the agent by differen-
tiating through the detective using the REINFORCE gradient estimator (Sutton et al., 1999)
(Section 5.4.3). For situations where a cooperative policy is desired, we propose Self-Play
with reward sharing as a regularization method, encouraging the agent to explore cooper-
ative policies. We refer to this method as BRS with Self-Play (BRS-SP). The pseudo-code
for BRS and BRS-SP is provided in Algorithm 2.

112

Fig. 5.1. The detective is trained using agents sampled from a replay buffer, which contains
agents encountered during training. Additional noise is incorporated to broaden the range
of agents encountered by the detective. The detective’s training focuses on conditioning
based on the agent’s policy, aiming to estimate the optimal response to each policy to
maximize its own return. Following this, the agent’s training is conducted through
backpropagation, through the detective’s conditioning mechanism.

5.4.1. Best Response Agent to the Best Response Opponent

Our notation and definitions follow from Agarwal et al., 2021, we denote τ as a
trajectory whose distribution, Prθ1,θ2

µ (τ), with initial state distribution µ is given by

Prθ1,θ2
µ (τ) = µ(s0)πθ1(a0|s0)πθ2(b0|πθ1 , s0)P(s1|s0, a0, b0) . . .

The best response opponent is the policy that gets the highest expected return against
a given agent. Formally, given θ1, the best response opponent policy θ∗2 solves for the
following:

θ∗2 = arg max
θ2

E
τ∼Pr

θ1,θ2
µ

[
R2(τ)

]
(5.4.1)

Subsequently, we train the agent’s policy to get the highest expected return against the
best response agent. This training of the agent’s policy is solving for the following:

θ∗∗1 = arg max
θ1

E
τ∼Pr

θ1,θ∗2
µ

[
R1(τ)

]
(5.4.2)

We hypothesize that the agent π∗∗θ1
exhibits characteristics of a non-exploitable agent, as it

learns retaliatory strategies in response to a defecting opponent, thereby creating incentives
for a rational opponent to cooperate. Note that (θ∗∗1 , θ∗2) is a nash equilibrium by definition.

113

5.4.2. Detective Opponent Training

In deep reinforcement learning, the training of agents relies on the utilization of
gradient-based optimization. Consequently, we need a differentiable opponent approx-
imating a best response opponent. We call this opponent the detective. The detective’s
policy conditions on the agent’s policy in addition to the state of the environment, which
we denote πθ2(a|πθ1 , s). We train the detective to maximize its own return against various
agents. Formally, the detective is trained by the following gradient step:

∇θ2 E
θ1∼B

E
τ∼Pr

θ1,θ2
µ

[
R2(τ)

]
(5.4.3)

where B represents a distribution of diverse policies for agent 1.
Conditioning on Agent’s Policy. To effectively train the agent’s policy against the detective
using gradient ascent on the agent’s return, it is essential to establish a differentiable
mechanism for the detective’s conditioning. In scenarios involving toy environments with
simple policy spaces, a straightforward approach of directly incorporating the agent’s
parameters as an input to the detective’s policy works. However, it proves to be infeasible
for larger policy spaces. This becomes particularly challenging when the agent’s policy
is represented by a neural network, as conditioning on the parameters would require an
impractical number of samples. To address this limitation in more complex cases, we
employ two strategies:

– State aware conditioning Extracting a general representation that encapsulates the
whole agent behavior is a complex task. Instead, the detective extracts a representa-
tion for the current state of the game.

– Conditioning on behavior The detective queries the behaviour of the agent on various
states of the game. To do so, the detective evaluates the agent’s action probabilities
(the answer) on a state of the game (the question). Formally, let Qψ(θ1, s) be the
function used by the detective to extract a state-aware representation of the agent.
We call Q a question answering (QA) function if Q can be expressed as only having
access to the policy function, i.e. Qψ(πθ1 , s). There are many possible ways to
architect a QA function. Next, we outline a method that has shown significant
success in the context of the Coin Game.

Simulation Based Question Answering. The behavior of the agent in possible continua-
tions of the game starting from state s holds valuable information. More specifically, we
can assess the behavior of the agent against a random agent starting from game state s.
Formally Let δA be defined as the following where τ is a trajectory starting from state s at

114

time t:

δA := E
τ∼Prθr ,θ2

µ

[
R2(τ)|st = s

]
(5.4.4)

where πθr is an opponent that chooses action A at time t and afterwards samples from a
uniform distribution over all possible actions:

πθr(ai = A|si) =

 1
|A| if i > t

1{ai=A} if i = t
(5.4.5)

Detective estimates δA by monte-carlo rollouts of the game to a certain length between the
agent and the random opponent, πθr . We denote the estimate of δA by δ̂A. Then we define
Qsimulation = [δ̂A1 , δ̂A2 , · · · , δ̂A|A|]. The number of samples used to estimate the returns of the
game and the length of the simulated games are considered hyperparameters ofQsimulation

QA. Note that theQsimulation can be differentiated with respect to agent’s policy parameters
via REINFORCE (Sutton et al., 1999) term. Specifically, we use the DiCE operator (Foerster
et al., 2018a).

5.4.3. Agent training

Differentiating Through the Detective. The agent’s policy is trained to maximize its
return against the detective opponent via REINFORCE gradient estimator. However,
because the detective’s policy is taking the agent’s policy as input, the REINFORCE term
will include an additional detective-backpropagation term over the usual REINFORCE
term:

E
τ∼Pr

θ1,θ2
µ

R1(τ)
T

∑
t=1

∇θ1 log
(
πθ1(at|st)

)
+ ∇θ1 log

(
πθ2(bt|πθ1 , st)

)︸ ︷︷ ︸
detective-backpropagation term

 (5.4.6)

This extra term can be thought of as the direction in policy space in which changing
the agent’s parameters encourages the detective to take actions that increase the agent’s
own return.
Cooperation Regularization via Self-Play with Reward Sharing. Agents that are trained
against rational opponents tend to rely on the assumption that the opposing agent is
lenient towards their non-cooperative actions. This reliance on rational behavior allows
them to exploit the opponent to some extent. Consequently, they may not effectively
learn to cooperate with their own selves. In scenarios where the objective is to foster
more cooperative behavior, particularly encouraging the agent to cooperate with itself,
a straightforward approach is to train the agent in a self-play setting, assuming that the
opponent’s policy mirrors the agent’s policy. Formally, we update the agent using the

115

Algorithm 2 BRS/BRS-SP pseudo code: a single iteration

Input: Replay Buffer of Agent Parameters B, Agent parameters θ1, Detective parameters
θ2, learning rates α1, α2, α3, Do Self-Play with Reward Sharing flag SP, Standard Error of
Noise σ
Detective Training Step:
Sample agent parameter θ1′ from B
θ1 ← θ1 + z, where z ∼ N (0, σ)
Rollout trajectory τ2 using policies (πθ1′, πθ2)

θ2 ← θ2 + α2R2(τ2)∑T
t=1∇θ2 log

(
πθ2(at|πθ1′, st)

)
Agent Training Step:
Rollout trajectory τ1 using policies (πθ1 , πθ2)

θ1 ← θ1 + α1R1(τ)∑T
t=1∇θ1 log

(
πθ1(at|st)

)
+∇θ1 log

(
πθ2(bt|πθ1 , st)

)
Self Play Reward Sharing Step:
if SP = True then

Rollout trajectory τ3 using policies (πθ1 , πθ1)

θ1 ← θ1 + α3R1(τ3)∑T
t=1∇θ1

[
log
(
πθ1(at|st)

)
+ log

(
πθ1(bt|st)

)]
end if
Push θ1 to B
Output: θ1, θ2

following update rule:

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
(5.4.7)

We prove that in symmetric games like IPD and Coin Game, this is equivalent to training
an agent with self-play with reward sharing (see proof in §5.D). This training brings out
the cooperative element of general-sum games. In zero-sum games, this update will have
no effect as the gradient would be zero (see proof in §5.D). We refer to this regularization
loss term as Self-Play with reward sharing throughout the paper.

5.5. Experiments

5.5.1. Iterated Prisoner’s Dilemma

Following Foerster et al. (2018b), we study Iterated Prisoner’s Dilemma (IPD) game
where the agents observe the last actions taken by the agents. Therefore, all possible agent
observations would be S = {C, CC, CD, DC, DD}, where C is the initial state, and each
agent’s policy can be described by indicating the probability of cooperation for each s ∈ S .
We consider the IPD game that is six steps long. As shown by Foerster et al. (2018b) and
Zhao et al. (2022b), training two naïve-learning agents leads to strategies that always defect.
Although this is a Nash Equilibrium, both agents will receive negative returns.

116

We test our method by training the agent against a tree search detective. The tree search
detective constructs a tree, commencing from the current state. During this process, the
agent’s actions are sampled from the agent’s policy, while the tree branches explore all
possible choices for the detective’s actions. The detective selects the actions that maximize
its return, i.e. the actions that construct the best response path within the tree. The agent
receives the return that corresponds to this particular path (see §5.E for details). Our agent
is a two-layer MLP that receives the five possible states and outputs the probability of
cooperation. We choose an MLP to showcase the possibility of training neural networks
via BRS. We update our agent policy via policy gradient.

Fig. 5.2. Illustration of the policies of agents trained with BRS and BRS-SP in a finite
Iterated Prisoner’s Dilemma game of length 6. The agents are trained against a tree
search detective maximizing its own return. BRS-SP agents learn tit-for-tat, a policy that
cooperates initially and mirrors the opponent’s behavior thereafter. BRS agents learn
cynic-tit-for-tat (CTFT), they defect initially but mirror the opponent’s behavior thereafter.
Therefore, at the initial state, BRS agents exploit the rationality of the opponent.

In Figure 5.2, we show the result of training the BRS agent against a tree search detective
opponent. The agents learn a variant of tit-for-tat that defects initially but has the same
probability of cooperation as tit-for-tat in {CC, CD, DC, DD}. We name this policy cynic-tit-
for-tat (CTFT). This is because the agent assumes the opponent is a rational opponent that
chooses the best response w.r.t to the agent’s policy. The best response to a cynic-tit-for-tat
in an infinite IPD game is always cooperating because if the opponent defects initially, the
agent will defect in the next turn. In other words, the BRS agent learns to exploit the fact
that the opponent (detective) is rational.

As shown in Figure 5.2 we also train the BRS with Self-Play (BRS-SP) agent against the
same opponent. The trained agents learn tit-for-tat policy. Unlike CTFT, TFT cooperates
in the first step, thus it cooperates with the best response opponent and with itself. The
downside is that it is exploited by the always-defect opponent at the first step.

117

5.5.2. The Coin Game

The Coin Game, introduced by Lerer and Peysakhovich (2017), is a two-player general
sum game that takes place in a grid. The game involves two players: the red player and the
blue player. At each episode, a coin, either red or blue, spawns somewhere in the grid and
players compete to pick it up. The color of the spawning coin changes after each episode.
If a player picks any coin, they receive a positive reward of +1. If the coin corresponding
to their color is picked by the other player, they are punished with a negative reward of
−2. Ideally, players should cooperate by taking only the coins of their associated color in
fear of future retaliation from the other agent.

We follow Zhao et al. (2022b) in training a GRU (Cho et al., 2014) agent on a 3× 3 sized
Coin Game with a game length of 50 and a discount factor of 0.96. The detective opponent
is also a GRU agent with an MLP that conditions on the result of the QA (for more details
see §5.A).

We evaluate our agent against four policies: an opponent that always takes the shortest
path towards the coin regardless of the coin’s color (Always Defect), an opponent that
takes the shortest path towards its associated coin but never picks up the agent’s associated
coin (Always Cooperate), a Monte Carlo Tree Search opponent that evaluates multiple
rollouts of the game against the agent in order to take an action (MCTS), an opponent that
is trained to maximize its own return against the current agent (Trained), and itself (Self).
Note that the MCTS will approximate the best response opponent given enough samples.
Figure 5.3 visually presents the evaluation metrics for the BRS, BRS-SP, and POLA agents.
In the subsequent paragraphs, we present a comprehensive analysis and interpretation of
these results.
Is cooperation the best response?. MCTS opponent and the Trained opponent approxi-
mate the best response opponent. The cooperation exhibited by these opponents towards
the agents indicates the extent to which the agents have fostered retaliatory behavior. Com-
paring returns, BRS and BRS-SP outperform POLA against MCTS, and BRS-SP surpasses
both BRS and POLA against the Trained opponent (Figure 5.3). 1

Does Always Cooperate regret its cooperation with the agent?. Ideally, an agent should
be retaliatory in such a way that the best response would be always cooperation. In other
words, the Always-Cooperate should not regret cooperating with the agent. As shown in
Figure 5.3, the Always Cooperate’s return is close the MCTS opponent’s return against the
BRS-SP. However, the MCTS return against the BRS and POLA is significantly higher than
the Always-Cooperate’s return.

1Note that our MCTS opponent, with 1000 rollouts at each state, provides a significantly stronger approxima-
tion of the best response compared to the Trained agent which is a GRU agent trained using policy gradient
for 3000 steps.

118

Fig. 5.3. Comparison of Agent’s trained with BRS, BRS-SP, and POLA on a 3× 3 sized
Coin Game. We evaluate the agent’s returns versus different opponents: Always Defect
opponent (AD) that takes the shortest path to all coins; Always Cooperate opponent (AC)
that takes the shortest path to its own coin but does not take the agent’s coin; A Monte
Carlo Tree Search opponent (MCTS) that do one thousand rollouts using the agent’s policy
at each state; a trained opponent (Trained) that is trained vs the agent to maximize its own
return; and agent’s performance against itself (Self). The POLA agents are exploited by the
MCTS, which approximates the best response. It means, a rational opponent maximizing
its return, harms POLA’s return unintentionally. In contrast, BRS and BRS-SP get a higher
return against the MCTS. Although BRS agents are not inherently cooperative among
themselves, they effectively exploit the AC opponent in a rational manner. On the other
hand, BRS-SP agents exhibit greater levels of cooperation among themselves but refrain
from exploiting the AC opponent.

Does always defect exploit the agent?. As shown in Figure 5.3 BRS agents and POLA
agents get near zero return against Always Defect. However, the return of the Always
Defect against POLA is higher. BRS-SP agent gets a lower return compared to BRS and
POLA indicating it is exploited more by the AD policy (Note that BRS-SP still retaliates
but to a lesser degree).
Does the agent cooperate with itself?. As shown in Figure 5.3 BRS agents get near zero
return against themselves. Indicating that they are not cooperating with themselves. BRS-
SP agents always cooperate with themselves. The POLA agents cooperate with themselves
less than BRS-SP and more than BRS and also with higher variance.
BRS, BRS-SP, and POLA. As shown in Figure 5.4, BRS and POLA agents exploit BRS-SP
agents and BRS exploits POLA agents on average.

5.6. Limitations
This paper focuses on the implementation of our proposed idea in two-player games.

However, extending this approach to games with more than two players presents a
non-trivial challenge. Additionally, the detective agent approximates the best response
opponent, and the accuracy of this approximation is crucial for obtaining correct gradients

119

Fig. 5.4. Evaluating BRS, BRS-SP, and POLA agents against each other. The red dot shows
the average return of each agent against the average return of the other agent. Left: Both
agents get a positive return on average. However, POLA gets a higher return than BRS-SP
agent on average, indicating exploitation. Middle: POLA agents and BRS agents do not
cooperate. BRS is able to get a higher return than POLA on average indicating that POLA
is exploited. Right: BRS agents get a higher return than the BRS-SP agents. Effectively BRS
agent is exploiting the BRS-SP agent.

during the agent’s training process. It is particularly important to train the detective against
a diverse set of agents in order to ensure the correct gradient estimation. In this study,
we introduce a replay buffer that contains a noisy version of agents encountered during
training, which serves as a proxy for a diverse agent set. Nevertheless, for more complex
settings, this level of diversity may be insufficient. While we employ simulation-based
question answering against a random agent to condition the detective in the Coin Game, it
should be noted that a random agent might not provide adequate conditioning for more
intricate games.

5.7. Conclusion
Motivated by differentiating through optimization steps of our opponent in order to

achieve non-exploitable cooperation, we introduced BRS that differentiates through an
approximated best response opponent. We evaluated BRS agents in detail, examining
the implications of such an assumption. In particular, we show that BRS agents are not
exploited by an MCTS agent. We also introduced BRS-SP for situations in which more
cooperative policies are needed. The BRS-SP agent reaches a policy where always cooperate
is the best response to that policy. We hope this work helps improving the scalability and
non-exploitability of agents in Multi Agent Reinforcement Learning enabling agents that
learn reciprocation-based cooperation in complex games.

120

References
Agarwal, Alekh et al. (2021). Reinforcement Learning: Theory and Algorithms.
Baker, Bowen (2020). Emergent Reciprocity and Team Formation from Randomized Uncertain

Social Preferences. arXiv: 2011.05373 [cs.LG].
Bakhtin, Anton et al. (2021). “No-press diplomacy from scratch”. In: Advances in Neural

Information Processing Systems 34, pp. 18063–18074.
Cho, Kyunghyun et al. (Oct. 2014). “On the Properties of Neural Machine Translation:

Encoder–Decoder Approaches”. In: Proceedings of SSST-8, Eighth Workshop on Syntax,
Semantics and Structure in Statistical Translation. Doha, Qatar: Association for Computa-
tional Linguistics, pp. 103–111. DOI: 10.3115/v1/W14-4012.

FAIR, Meta Fundamental AI Research Diplomacy Team et al. (2022). “Human-level play in
the game of Diplomacy by combining language models with strategic reasoning”. In:
Science 378.6624, pp. 1067–1074.

Foerster, Jakob et al. (2018a). “Dice: The infinitely differentiable monte carlo estimator”. In:
International Conference on Machine Learning. PMLR, pp. 1529–1538.

Foerster, Jakob et al. (2018b). “Learning with Opponent-Learning Awareness”. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems.

Harb, Jean et al. (2020). “Policy evaluation networks”. In: arXiv preprint arXiv:2002.11833.
Lerer, Adam and Alexander Peysakhovich (2017). “Maintaining cooperation in complex

social dilemmas using deep reinforcement learning”. In: arXiv preprint arXiv:1707.01068.
Lu, Chris et al. (2022). Model-Free Opponent Shaping. arXiv: 2205.01447 [cs.AI].
Paquette, Philip et al. (2019). “No-press diplomacy: Modeling multi-agent gameplay”. In:

Advances in Neural Information Processing Systems 32.
Schulman, John et al. (2018). High-Dimensional Continuous Control Using Generalized Advan-

tage Estimation. arXiv: 1506.02438 [cs.LG].
Silver, David et al. (2016). “Mastering the game of Go with deep neural networks and tree

search”. In: nature 529.7587, pp. 484–489.
Sutton, Richard S et al. (1999). “Policy gradient methods for reinforcement learning with

function approximation”. In: Advances in neural information processing systems 12.
Vinyals, Oriol et al. (2019). “Grandmaster level in StarCraft II using multi-agent reinforce-

ment learning”. In: Nature 575.7782, pp. 350–354.
Zhao, Stephen et al. (2022a). “Proximal Learning With Opponent-Learning Awareness”. In:

Advances in Neural Information Processing Systems 35, pp. 26324–26336.
Zhao, Stephen et al. (2022b). “Proximal Learning With Opponent-Learning Awareness”. In:

Advances in Neural Information Processing Systems 35, pp. 26324–26336.

121

https://arxiv.org/abs/2011.05373
https://doi.org/10.3115/v1/W14-4012
https://arxiv.org/abs/2205.01447
https://arxiv.org/abs/1506.02438

5.A. Experimental Details

5.A.1. IPD

In IPD experiments, we are experimenting on IPD with 6 steps and discount factor of
1., i.e. no discount factor. The payoff matrix of the IPD game is shown in 5.1.

Player 2
Player 1 Cooperate Defect

Cooperate −1
−1

−3
0

Defect 0
−3

−2
−2

Table 5.1. Payoff matrix for the prisoner’s dilemma game

Our agent’s policy is parameterized by a two-layer MLP (Multi-Layer Perceptron) with
a tanh non-linearity. The choice of tanh non-linearity is motivated by its smoothing effect
and its ability to prevent large gradient updates.

During training, the agent is trained against the Tree Search Detective (TSD) (see
Appendix 5.E) using a policy gradient estimator. We employ a learning rate of 3e-4 with
the SGD (Stochastic Gradient Descent) optimizer. In the BRS-SP experiments, the Self-Play
with reward sharing loss is optimized using SGD with the same learning rate of 3e-4. To
reduce variance, the policy gradients incorporate a baseline.

For replicating the exact results presented in the paper, we provide the code in Ap-
pendix 5.B. Running the code on an A100 GPU is expected to take approximately an
hour. The plots and error bars are averaged over 10 seeds for both BRS and BRS-SP. The
hyperparameter search was conducted by iterating over various learning rates including
1e-4,3e-4,1e-3, and the optimizers were explored between SGD and Adam.

5.A.2. Coin Game

The game. Our coin game implementation exactly follows the POLA implementation
(Zhao et al., 2022b). Similar to POLA, we also experiment with the game length of 50 and a
discount factor of 0.96.
Agent’s architecture. In the coin game, we have an actor-critic setup. The policy of
our agent is parameterized by a GRU (Gated Recurrent Unit) architecture, following the
approach outlined in the POLA repository (source). However, we introduce a modification
compared to POLA by including a two-layer MLP on top of the observations before they
are fed into the GRU instead of a single-layer MLP. Additionally, we utilize two linear
heads to facilitate separate learning for policy and value estimation.

122

https://github.com/silent-zebra/pola

Detective’s architecture. The architecture of the detective is as follows: The sequence of
observations is fed into a GRU (Gated Recurrent Unit), which is the same architecture
used by the agent. At each time step, the agent’s representation is extracted using the
QA (Question-Answering) module of the detective. In our experiments, we employed 16
samples of continuing the game for the next 4 steps from the current state.
Environment Simulations. The QA for the BRS experiments changes the environment
seed each time simulating the environment. However, in the BRS-SP runs we are using
the same environment seed for the simulation which reduces the variance in simulations
further but fixes the place that the next coin will appear given the same sequence of events.

Subsequently, the output of the QA module and the GRU are concatenated and passed
through a two-layer MLP with ReLU non-linearities. The resulting output from this
MLP is then fed into a linear layer for estimating the value (critic), and a linear layer for
determining the policy (actor).
Separate optimizers for the two terms. The agent uses separate optimizers for the two
terms in the policy gradient. That is, it uses two separate optimizers for the two terms
indicated in 5.A.1.

E
τ∼Pr

θ1,θ2
µ

R1(τ)
T

∑
t=1

∇θ1 log
(
πθ1(at|st)

)︸ ︷︷ ︸
Term 1

+∇θ1 log
(
πθ2(bt|πθ1 , st)

)︸ ︷︷ ︸
Term 2

 (5.A.1)

Losses and optimizers. The value functions in our setup are trained using the Huber loss.
On the other hand, the policies are trained using the standard policy gradient loss with
Generalized Advantage Estimation (GAE) (Schulman et al., 2018). However, it is important
to note that our hyperparameter search led us to set the GAE parameter, λ, to 1, which
results in an equivalent estimation of the advantage using the Monte-Carlo estimate. This
choice is similar to the hyperparameters reported by POLA (source).

In the BRS experiments, the agent’s policy is trained using a learning rate of 1e-3, while
in the BRS-SP experiments, an Adam optimizer with a learning rate of 3e-4 is utilized. The
value functions of both the agent and the detective in all experiments are trained using
Adam with a learning rate of 3e-4. Similarly, the detective’s policy is trained using Adam
with a learning rate of 3e-4 in all experiments.
Replay buffer of previous agents. During the training, we keep a replay buffer of previous
agents seen during the training. In BRS experiments we keep 2048 previous agents and in
BRS-SP experiments we keep the last 512 agents. For training the detective, we sample a
batch from this replay buffers uniformly. We add a normal noise with variance of 0.01 to
the parameters of these agents to ensure the detective is trained against a diverse set of
agents.

123

https://github.com/silent-zebra/pola

Hyperparameter search. We conducted a hyperparameter search using random search
over the configurations explained Table 5.2. the entropy coefficient β, which is multiplied
by the entropy of the log probabilities associated with the actions of the corresponding
player, is added to the policy gradient loss of the corresponding player for controlling the
exploration-exploitation trade-off.
Plots and error bars. The results on the paper are computed over two seeds for the BRS,
three seeds for the BRS-SP and six seeds for POLA.2 It is worth noting that the error bars
are calculate over seeds, i.e. checkpoints. The result of games between each pair of agents
is averaged over 32 independent games between those two agents.

Hyperparameter Values
inner game length in QA 4, 8, 12, 16
samples in QA 16, 64, 256, 1024
replay buffer of agent’s size 10, 512, 4096, 16384
value learning algorithm TD-0, Monte-Carlo
GAE λ 0.9, 0.96, 0.99, 0.999, 1.0
agent policy gradient learning rate 0.001, 0.0003
agent entropy β 0.0, 1.0, 2.0, 5.0, 10.0
detective entropy β 0.0, 1.0, 2.0, 5.0, 10.0

Table 5.2. Hyperparameter search options

Compute. Our BRS/BRS-SP runs are run for 48 hours on a single A100 GPU with 40
Gigabytes of memory3.
Batch size. We use a batch size of 128.
POLA agent’s training. To evaluate the POLA agents, we trained them by executing the
POLA repository here (Zhao et al., 2022b).

5.B. Reproducing Results

5.B.1. IPD

To replicate the results on IPD (Iterated Prisoner’s Dilemma), please refer to the instruc-
tions available at here. By running the provided Colab notebook, you will obtain the IPD
plot that is included in the paper.

2The reason we have fewer seeds for BRS and BRS-SP than POLA is computational constraints due to
conference deadlines. Especially, one of our BRS checkpoints was not pickled properly and could not be
loaded in the last minute. That is why we don’t have three BRS seeds equal to BRS-SP
3A single A100 GPU is 80 Gigabytes, but it can be split into two 40 Gigabyte equivalents and we train on one
of these splits

124

https://github.com/silent-zebra/pola
https://colab.research.google.com/drive/1YRmkQdXNvMElEq2vowcdmPxqnpZ8Mill?usp=sharing

5.B.2. Coin Game

To replicate the outcomes of the coin game, please refer to the instructions available
at here. In essence, the provided guidelines encompass training scripts designed for the
purpose of training agent checkpoints. Subsequently, there is an exporting phase in which
these checkpoints are transformed into their lightweight counterparts. Finally, a script is
provided to facilitate the execution of a league involving multiple agents.

5.C. League Results
In order to visualize the results of our training in complete detail, in Figure 5.5 we

visualize a matrix, in the format of a heatmap, of the returns of various agents against each
other. All the results are averaged over 32 independent games between the corresponding
agents. The game is the Coin game of length 50. 4

5.D. Self-Play
Lemma D.1. Denote o ∈ S to be the state s ∈ S from the perspective of the opponent. For a

symmetric game, if it holds that µ(s0) = µ(o0) for all s0, o0 ∈ S , then

E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= E

τ∼Pr
θ1,θ1
µ

[
R2(τ)

]
where R2 := ∑∞

t=0 γtr2(ot, bt, at) and r2 denotes r1 from the perspective of the opponent.

Proof. Denote τ̄ = o0, b0, a0, o1, . . ., then notice that

µ(s0)π
1
θ1
(a0|s0)π

1
θ1
(b0|o0)P(s1|s0,a0,b0) . . . = µ(o0)π

1
θ1
(b0|o0)π

1
θ1
(a0|s0)P(o1|o0,b0,a0) . . .

⇐⇒ Prθ1,θ1
µ (τ) = Prθ1,θ1

µ (τ̄)

4Note that there is no meaning to test the trained agent against a trained agent. It is because the trained agent
assumes a fixed agent and trains against it. Similarly, there is no meaning to train a trained agent against
MCTS. Because the MCTS is not a fixed policy assigning probability to actions given different trajectories.
Also, there is no meaning to train MCTS against MCTS because the MCTS needs to roll-out the agent’s policy
to choose an action. However, MCTS against MCTS implies an infinite loop of rolling out the other agent’s
policy

125

https://anonymous.4open.science/r/extramodels-411D/README.md

Fig. 5.5. The presented figure illustrates the outcomes of 1-vs-1 Coin games lasting 50
rounds, involving a range of agents. The return achieved by each agent is documented
within the corresponding cell. The reported returns are an average across 32 independent
games. The numerical suffixes following the agent names signify agents trained using
distinct initialization seeds. It is important to note that there are no games recorded
between the MTCS agent and the trained agent due to a lack of clarity regarding its
meaning.

126

now by symmetry we have that r1(st, at, bt) = r2(ot, bt, at), therefore

E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= E

τ∼Pr
θ1,θ1
µ

[
∞

∑
t=0

γtr1(st, at, bt)

]

= ∑
τ

Prθ1,θ1
µ (τ)

∞

∑
t=0

γtr1(st, at, bt)

= ∑̄
τ

Prθ1,θ1
µ (τ̄)

∞

∑
t=0

γtr2(ot, bt, at)

= E
τ∼Pr

θ1,θ1
µ

[
R2(τ)

]

E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= E

τ∼Pr
θ1,θ1
µ

[
∞

∑
t=0

γtr1(st, at, bt)

]

= ∑
τ

Prθ1,θ1
µ (τ)

∞

∑
t=0

γtr1(st, at, bt)

= ∑̄
τ

Prθ1,θ1
µ (τ̄)

∞

∑
t=0

γtr2(ot, bt, at)

= E
τ∼Pr

θ1,θ1
µ

[
R2(τ)

]
where we just rename τ̄ in the last equality. ■

Proposition D.2 states that the gradient in Equation 5.4.7 is equivalent to that of self-play
with reward-sharing.

Proposition D.2. For a symmetric game,

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
∝

∇θ1 E
τ∼Pr

θ1,θ2
µ

[
R1(τ) + R2(τ)

]
+∇θ2 E

τ∼Pr
θ1,θ2
µ

[
R1(τ) + R2(τ)

]
θ2=θ1

.

127

Proof. We write the gradient as follows:

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= ∑

τ

R1(τ)∇θ1Prθ1,θ1
µ (τ)

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 log Prθ1,θ1

µ (τ)

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)∇θ1 log µ(p0)π

1
θ1
(a0|s0)π

1
θ1
(b0|o0) . . .

= ∑
τ

R1(τ)Prθ1,θ1
µ (τ)

∞

∑
t=0
∇θ1 log π1

θ1
(at|st) +∇θ1 log π1

θ1
(bt|ot)

= E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

∞

∑
t=0
∇θ1 log π1

θ1
(at|st) +∇θ1 log π1

θ1
(bt|ot)

]
.

Now by symmetry and Lemma D.1. we have

E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= E

τ∼Pr
θ1,θ1
µ

[
R2(τ)

]
,

and by linearity of expectation,

E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
∝ E

τ∼Pr
θ1,θ1
µ

[
R1(τ) + R2(τ)

]
.

Hence

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
∝ E

τ∼Pr
θ1,θ1
µ

[(
R1(τ) + R2(τ)

) ∞

∑
t=0
∇θ1 log π1

θ1
(at|st) +∇θ1 log π1

θ1
(bt|ot)

]

=

 E
τ∼Pr

θ1,θ2
µ

[(
R1(τ) + R2(τ)

) ∞

∑
t=0
∇θ1 log π1

θ1
(at|st) +∇θ2 log π2

θ2
(bt|ot)

]
θ2=θ1

=

 E
τ∼Pr

θ1,θ2
µ

[(
R1(τ) + R2(τ)

)(
∇θ1 log Prθ1,θ2

µ (τ) +∇θ2 log Prθ1,θ2
µ (τ)

)]
θ2=θ1

=

∇θ1 E
τ∼Pr

θ1,θ2
µ

[
R1(τ) + R2(τ)

]
+∇θ2 E

τ∼Pr
θ1,θ2
µ

[
R1(τ) + R2(τ)

]
θ2=θ1

,

which was to be shown. ■

Corollary D.3. For a symmetric, zero-sum game it holds that

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
= 0

128

Proof. By definition of zero-sum game, we have that

r1(st, at, bt) + r2(st, bt, at) = 0

=⇒
∞

∑
t=0

γt
(

r1(st, at, bt) + r2(st, bt, at)
)
= 0

⇐⇒ R1(τ) = −R2(τ) for all τ

From proposition D.2. we get

∇θ1 E
τ∼Pr

θ1,θ1
µ

[
R1(τ)

]
∝

∇θ1 E
τ∼Pr

θ1,θ2
µ

[
R1(τ) + R2(τ)

]
︸ ︷︷ ︸

=0

+∇θ2 E
τ∼Pr

θ1,θ2
µ

[
R1(τ) + R2(τ)

]
︸ ︷︷ ︸

=0

θ2=θ1

=
[
∇θ10 +∇θ20

]
θ2=θ1

= 0,

completing the proof. ■

5.E. Tree Search Detective
In this section, we describe the Tree Search Detective (TSD) used in the IPD experi-

ments.The intuition behind TSD is that by simulating all possible trajectories based on the
agent’s policy, the opponent can select the path that maximizes its own returns. Conse-
quently, the agent achieves the return associated with that specific path.

TSD implements this idea. TSD builds a tree structure in which the agent’s actions are
directly sampled from its policy. When it comes to TSD’s action, a branch is formed for
each action to explore the potential outcomes of that specific action.

The agent will treat TSD as a black-box algorithm that queries the agent’s policy on a
set of states and returns a single return, i.e. the return that corresponds to the agent’s return
in the path that yielded the highest return for the TSD. This black-box can be differentiated
through via policy gradient estimators. It is worth noting that when calculating the policy
gradient loss, the sum of all log probabilities should be considered, not just the ones
present in the chosen path. This is crucial because the agent’s actions in states outside
of the selected path are significant in TSD’s decision-making process for selecting that
particular path. This idea has been depicted in Figure 5.6.

5.F. Evaluation Metrics of Various Agents
In Figure 5.7 we plotted the evaluation metrics for all the agents against the evaluation

opponents. Note that for BRS, we used two seeds. For BRS-SP we used three seeds,
and for POLA we used six seeds. Indeed, the POLA agents have more variance in their

129

Fig. 5.6. This figure illustrates the training of the IPD agent against the TSD. TSD samples
from the agent’s policy, represented by red arrows in the plot, while exploring all possible
actions when considering its own actions, represented by black arrows in the plot. The
agent treats the TSD as a black-box algorithm and differentiates through it via REINFORCE.
Note that the summation is over all log probabilities and not only over the log probabilities
presnet in the path.

130

Fig. 5.7. This figure illustrates the performance of all the agents (Including Always Coop-
erate and Always Defect) against the evaluation metrics.

131

Fig. 5.8. This figure illustrates the performance of all the agents (Including Always Coop-
erate and Always Defect) against each other.

132

performance in contrary to the fact that we used more seeds to compute the error bars for
them. In Figure 5.8 we visualized the average result of 32 games between different agents.

133

Chapter 6

Meta-Value Learning: a General Framework for
Learning with Learning Awareness

Tim Cooijmans∗ Milad Aghajohari∗ Aaron Courville∗

∗ Mila & Université de Montréal

Gradient-based learning in multi-agent systems is difficult because the gradient derives
from a first-order model which does not account for the interaction between agents’
learning processes. LOLA (Foerster et al., 2018c) accounts for this by differentiating
through one step of optimization. We propose to judge joint policies by their long-term
prospects as measured by the meta-value, a discounted sum over the returns of future
optimization iterates. We apply a form of Q-learning to the meta-game of optimization,
in a way that avoids the need to explicitly represent the continuous action space of policy
updates. The resulting method, MeVa, is consistent and far-sighted, and does not require
REINFORCE estimators. We analyze the behavior of our method on a toy game and
compare to prior work on repeated matrix games.

Prologue
Meta-Value Learning is the other work to come out of our multi-agent learning project.

Recall that the main problem with naive learning is that each agent assumes it is the only
learning agent, effectively treating the other agents as static aspects of the environment.
This makes the environment nonstationary; the transition probabilities for example now
depend on the policies of the other agents, which change as these agents learn. From an
optimization perspective, the gradient becomes uninformative, as the first-order model
from which it derives ignores interactions between the agents’ derivatives.

LOLA was at the time the only method that would reliably find tit-for-tat on the
Iterated Prisoner’s Dilemma. LOLA’s inconsistency seemed like an important shortcoming
– solving it might lead us to game theory of mind. I eventually came up with the idea of
using a learned surrogate trained to satisfy an implicit, consistent equation (like COLA,
although this was well before COLA was published). Around the same time, we were

discussing the ideas that ultimately became Best Response Shaping, and this is where I
started thinking about using a Bellman equation to look farther ahead. I developed the Q-
learning interpretation, the efficient parameterization, the correction term formulation and
the exploration scheme. Milad suggested using the full gradient instead of semigradient,
and training a single model for different values of γ. The code, experiments and paper are
all my own work.

6.1. Introduction
Multi-agent reinforcement learning (Busoniu et al., 2008) has found success in two-

player zero-sum games (Mnih et al., 2015; Silver et al., 2017), cooperative settings (Lauer,
2000; Matignon et al., 2007; Foerster et al., 2018a; Panait and Luke, 2005), and mixed settings
with intra-team cooperation and inter-team competition (Lowe et al., 2017). General-sum
games, however, have proven to be a formidable challenge.

The classic example is the Prisoner’s Dilemma, a matrix game in which two players
must decide simultaneously whether to cooperate or defect. Both players prefer cooperate-
cooperate over defect-defect, but unilaterally both players prefer to defect. The game
becomes qualitatively different when it is infinitely repeated and players can see what their
opponents did in previous rounds: this is known as the Iterated Prisoner’s Dilemma (IPD).
This gives players the ability to retaliate against defection, which allows cooperation with
limited risk of exploitation. The most well-known retaliatory strategy is tit-for-tat (Axelrod
and Hamilton, 1981), which cooperates initially and from then on copies its opponent. It
was only recently discovered that there exist ZD-extortion policies (Press and Dyson, 2012)
which force rational opponents to accept considerable losses. Such exortionate policies,
however, perform worse against themselves than tit-for-tat does.

The problem of learning to coordinate in general-sum games has received considerable
attention over the years (Busoniu et al., 2008; Gronauer and Diepold, 2022). The naive ap-
plication of gradient descent (see §6.2.1) fails to find tit-for-tat on the IPD unless initialized
sufficiently close to it (Foerster et al., 2018c). Instead, it converges to always-defect, to the
detriment of both players. Several works approach the problem through modifications
of the objective, e.g. to share reward (Baker, 2020), to explicitly encourage interaction
(Jaques et al., 2019) or encourage fairness (Hughes et al., 2018). While these approaches
may achieve cooperation, they could well do so for the wrong reasons. We instead are
interested in achieving cooperation only where self-interest warrants it. Otherwise our
policies may end up exploitable by other self-interested agents.

We take inspiration from the recent work Learning with Opponent-Learning Awareness
(LOLA; Foerster et al., 2018c; Foerster et al., 2018b), the first general learning algorithm
to find tit-for-tat on IPD. LOLA mitigates the problems of simultaneous gradient descent

136

by looking ahead: it simulates a naive update and evaluates the objective at the resulting
point. By differentiating through the naive update, LOLA effectively uses second-order
information to account for the opponent’s learning process.

Much of the work following LOLA focused on opponent shaping: intentionally influ-
encing the opponent’s learning process to our benefit. This typically refers to dynamical
exploitation of the opponent’s learning process, but similar effects can in some cases be
achieved by taking on a fixed policy with a threat (such as tit-for-tat or a ZD-extortion
policy).

Our proposal improves on LOLA in two aspects. It is self-consistent: it does not assume
its opponent is naive, and it is aware of its own learning as well. Moreover, it looks
more than one step ahead, through a discounted sum formulation. The discounted sum
corresponds to the value function of a meta-game in which policies are meta-states and
policy changes are meta-actions. We are not the first to consider this meta-value. Meta-PG
(Al-Shedivat et al., 2017) and Meta-MAPG (Kim et al., 2021) use policy gradients to find
policies with high meta-value. However, they estimate the meta-value by extrapolation
using naive learning, and hence are inconsistent with the true process by which policies
are being updated.

M-FOS (Lu et al., 2022) uses policy gradients to find arbitrary parametric meta-policies.
This solves the inconsistency, as the learned meta-policy can be used for extrapolation.
However, we argue that this throws out the baby with the bathwater: the meta-policy
no longer takes the form of gradual policy improvement that is characteristic of learning.
M-FOS does not learn to learn with learning awareness so much as learn to act with learning
awareness. Nevertheless, its ability to derail naive and LOLA learners through arbitrarily
abrupt policy changes does provide an interesting upper bound on what can be achieved
through opponent shaping.

We make the following contributions:
– We propose Meta-Value Learning (MeVa), a general framework for learning with

learning awareness. In §6.3 we propose our objective, which is naturally consistent
and readily accounts for longer-term and higher-order interactions.

– Unlike prior work, our approach is based on value learning and does not require
policy gradients anywhere. However, we provide a variant (§6.4.1) that mitigates
the downsides of bootstrapping, generally at the cost of requiring policy gradients
on the inner game.

– Our Q-function is implemented implicitly through a state-value function V (§6.3.3).
We approximate the greedy (argmax) action as the gradient of V, sidestepping the
need to explicitly represent the continuous meta-action space.

137

– We demonstrate the importance of looking far ahead in §6.5.1, and show quali-
tatively how the gradient of the meta-value leads to the Pareto-efficient solution
regardless of initialization.

– In a tournament on repeated matrix games (§6.5.2), MeVa exhibits opponent-
shaping behavior that nearly matches that of M-FOS. In particular, we find ZD-
extortion (Press and Dyson, 2012) on the IPD, and dynamical exploitation on
Iterated Matching Pennies.

Code is available at https://github.com/MetaValueLearning/MetaValueLearning.

6.2. Background
We consider differentiable games f : R2×n 7→ R2 that map pairs of policies to pairs of

expected returns, (
y1

y2

)
= f

(
x1

x2

)
,

or y = f (x) for short. For simplicity, we assume x1, x2 ∈ Rn are real-valued parameter
vectors that represent policies through some fixed parametric class (e.g. a lookup table or
a fixed neural network architecture).

6.2.1. Naive Learning

Under naive learning (also known as “simultaneous gradient descent”), agents update
their policies according to

x(t+1) = x(t) + α∇̄ f (x(t)) (6.2.1)

where α is a learning rate and ∇̄ f (x) = blockdiag(f ′(x)) =
(

∂ f1
∂x1

(x) ∂ f2
∂x2

(x)
)⊤

denotes
the simultaneous gradient.

Naive learning is the straightforward application of standard gradient descent which
works extremely well when optimizing a single objective, e.g. a single-agent system or a
supervised learning problem. However, the gradient derives from a local first-order model
– for each element of x, it reflects the change in f that can be attained by modifying that
element, but only if all other elements remain constant. For optimization problems with a
single objective, this assumption can profitably be violated, but when different elements
of x optimize different objectives, the gradient generally fails to be a reliable direction of
improvement.

6.2.2. Looking Ahead

A number of approaches in the literature aim to address these issues by “looking
ahead”, considering not just the current parameter values x(t) but also an extrapolation

138

https://github.com/MetaValueLearning/MetaValueLearning

based on an imagined update. They essentially replace the game f with a surrogate game
f̃ that evaluates f after an imagined naive update with learning rate α:1

f̃ (x) = f (x + α∇̄ f (x)). (6.2.2)

This surrogate was to our knowledge first suggested with LookAhead (Zhang and Lesser,
2010), though in computing the associated update ∇̄ f̃ , the authors considered ∇̄ f (x) con-
stant with respect to x. LOLA (Foerster et al., 2018c) introduced the idea of differentiating
through the imagined update ∇̄ f (x), thus incorporating second-order information that
accounts for interactions between the learning of agents.

Unfortunately, this surrogate trades one assumption for another: while it no longer
assumes players to stand still, it now assumes players to update according to naive
learning. The LOLA authors also proposed Higher-Order LOLA (HOLA (Foerster et al.,
2018c)), where HOLA0 assumes opponents are fixed, HOLA1 assumes opponents are naive
learners, HOLA2 assumes opponents use LOLA, and so on. Nevertheless there is always a
gap where each player assumes it looks one step further ahead than their opponent. To
avoid such an assumption, we should like to use a consistent surrogate such as

f̃ ⋆(x) = f (x + α∇̄ f̃ ⋆(x)), (6.2.3)

however this is an implicit equation; it is unclear how to obtain the associated update
∇̄ f̃ ⋆(x).

COLA (Willi et al., 2022) solves the implicit equation by replacing the surrogate with a
model ĝ(x; θ) ≈ ∇̄ f̃ ⋆(x). The model is trained to satisfy

ĝ(x; θ) = ∇̄ f (x + αĝ(x; θ)) (6.2.4)

by minimizing the squared error between both sides. When the equation is tight, ĝ(x; θ) =

∇̄ f̃ ⋆(x) which lets us train policies according to the consistent surrogate (6.2.3).

6.2.3. Going Meta

Several approaches address LOLA’s short-sightedness through a meta-game, where
meta-states are policy pairs x and meta-rewards are policy returns f (x). The meta-value is
generally defined as the infinitely discounted sum

Vπ(x(t)) = E
x(>t)

∞

∑
τ=t

γτ−t f (x(τ)), (6.2.5)

1LookAhead (Zhang and Lesser, 2010), LOLA (Foerster et al., 2018c) and COLA (Willi et al., 2022) differ
slightly from (6.2.2) in that each player extrapolates only their opponent and not themselves. We provide an
exact formulation of LOLA and COLA in Appendix 6.B.

139

where the optimization process

x(t+1)
1 ∼ π1(· | x(t))

x(t+1)
2 ∼ π2(· | x(t))

comes about through a pair of (assumed Markov) meta-policies π1,π2. In this context,
gradient methods like naive learning and LOLA can be seen as deterministic meta-policies,
although they become stochastic when policy gradients are involved, and non-Markov
when path-dependent information like momentum is used.

Meta-PG (Al-Shedivat et al., 2017) was the first to consider such a meta-game, applying
policy gradients to maximize Vπ with respect to x, with π assumed to be naive learning
on f . Meta-MAPG (Kim et al., 2021) tailored Meta-PG to multi-agent learning, taking
the learning process of other agents into account. However, Meta-MAPG (like Meta-PG)
assumes all agents use naive learning, and hence is inconsistent like LOLA.

M-FOS (Lu et al., 2022) allows arbitrary parametric meta-policies πθ, training θ to
maximize Vπθ , thus solving the inconsistency. However, the move to arbitrary meta-
policies, away from gradient methods, discards the gradual dynamics that are characteristic
of learning. M-FOS disrupts naive and LOLA learners through arbitrarily fast policy
changes.

6.3. Meta-Value Learning
We now describe our method. First we introduce the meta-value function, a consistent

and far-sighted surrogate, to be used in place of the original game f . Next, we make a con-
nection to reinforcement learning, which yields a straightforward way of approximating
the surrogate.

6.3.1. The Meta-Value Function

We propose to use the surrogate

V(x) = f (x) + γV(x + α∇̄V(x)) (6.3.1)

which consists of the original objective f plus a discounted sum of objective values at
future optimization iterates. Like the popular surrogate from (6.2.2), it looks ahead in
optimization time, but it does so in a way that is consistent and naturally covers multiple
steps. Our meta-value function is a special case of (6.2.5), with a deterministic meta-policy
pair θ1,θ2 that updates x according to

x(t+1) = x(t) + α∇̄V(x(t)). (6.3.2)

140

This can be viewed as a consistent version of Meta-MAPG (Kim et al., 2021), and a version
of M-FOS (Lu et al., 2022) with gradient-based meta-policy π. Unlike those approaches,
we do not require any REINFORCE-style gradient approximations.

6.3.2. Learning Meta-Values

We do not have direct access to the meta-value function, but we can learn an approx-
imation V̂(x; θ) with parameters θ. In its simplest form, the learning process follows a
nested loop (see Algorithm 3). In the inner loop, we collect a policy optimization trajectory
according to

x(t+1) = x(t) + α∇̄V̂(x(t); θ). (6.3.3)

Then in the outer loop, we train V̂ by minimizing with respect to θ the TD error

∑
t
∥ f̂ (x(t)) + γV̂(x(t+1); θ̄)− V̂(x(t); θ)∥2 (6.3.4)

along the trajectory. Here f̂ (x(t)) is in general an empirical estimate of the expected return
f (x(t)) based on a batch of Monte-Carlo rollouts, although in our experiments we use the
exact expected return. The target involves θ̄, typically a target network that lags behind θ

(Mnih et al., 2015).
We write V̂(x; θ) for convenience. However, in order to ensure self-interest, we maintain

a separate model for each agent, with disjoint parameters:

V̂(x; θ) =

(
V̂1(x; θ1)

V̂2(x; θ2)

)
, θ =

(
θ1

θ2

)
.

As training progresses, V̂ → V and hence ∇̄V̂ → ∇̄V, and so (6.3.3) approaches the
proposed update (6.3.2). Note that rather than emitting entire gradients (as COLA does)
or emitting entire policies (as M-FOS does), we model scalars, and estimate the gradient
of the scalar by the gradient of the estimated scalar. The resulting algorithm is related to
Value-Gradient Learning (Fairbank and Alonso, 2012), but we do not directly enforce a
Bellman equation on the gradients ∇̄V̂.

6.3.3. Q-learning interpretation

In this section we establish a theoretical link between the gradient ∇̄V and the action
that greedily (if locally) maximizes the state-action value Q. Focusing on player 1, we have

Q1(x,x1 + ∆1) = E
∆2∼π2

V1(x + ∆),

for some proposed updates ∆1,∆2. We construct a first-order Taylor approximation Q̃ of Q
around x:

Q̃1(x,x1 + ∆1) = V1(x) + ∆⊤1 ∇x1V1(x) + ∆⊤2 ∇x2V2(x).

141

Algorithm 3 Meta-Value Learning.

Require: Learning rates η,α, rollout length T, fixed discount rate γ.
Initialize models θ1,θ2.
while θ has not converged do

Initialize policies x(0).
for t=0,. . . ,T do

x(t+1) = x(t) + α∇̄V̂(x(t); θ)
end for
θ ← θ − η∇θ

1
T ∑t ∥ f (x(t)) + γV(x(t+1); θ)−V(x(t); θ)∥2

end while

This approximation is justified when ∥∆∥2 is small, i.e. both agents are making small
updates.

We now proceed to maximize (6.3.3) to find the argmax of Q̃, as a proxy for the argmax
of Q. If we use a soft norm penalty, we arrive at exactly our update:

argmax∆1
Q̃(x,x1 + ∆1)−

1
2α
∥∆1∥2 = α∇x1V1(x).

Alternatively, we may apply a hard norm constraint, which would admit a treatment from
the perspective of a game with a well-defined local action space. Either way, the argmax
update will be proportional to ∇x1V1(x), which lends an interpretation to our use of the
gradient in (6.3.2) as choosing actions greedily in Q.

Our method is thus related to independent Q-learning (Watkins and Dayan, 1992;
Busoniu et al., 2008), which we must point out is not known to converge in general-sum
games. It nevertheless does appear to converge reliably in practice, and we conjecture that
applying it on the level of optimization effectively simplifies the interaction between the
agents’ learning processes.

6.4. Practical Considerations
We use a number of established general techniques to improve the dynamics of value

function approximation (Hessel et al., 2018). The prediction targets in (6.3.4) are computed
with a target network (Mnih et al., 2015) that is an exponential moving average of the
parameters θ. We use distributional reinforcement learning with quantile regression
(Dabney et al., 2018). Instead of the fully-bootstrapped TD(0) error, we use λ-returns
(Sutton and Barto, 2018) as the targets, computed individually for each quantile.

The rest of this section describes a number of additional techniques designed to mitigate
the negative effects of bootstrapping and to encourage generalization. Algorithm 4 in
Appendix 6.C lays out the complete learning process in detail.

142

6.4.1. Reformulation as a Correction

We provide a variant of the method that provides a correction to the naive gradient ∇̄ f
rather than replacing it entirely. If we define U(x) = V(x′) with x′ = x + α∇̄V(x)) then
we have the Bellman equation

U(x) = V(x′) = f (x′) + γU(x′).

Now agents follow the gradient field ∇̄ f (x) + γ∇̄U(x), and we minimize

∑
t
∥ f̂ (x(t+1)) + γÛ(x(t+1); θ)− Û(x(t); θ)∥2

with respect to the parameters θ of our model Û(x; θ).
This variant is more strongly grounded in the game f and helps avoid the detachment

from reality that plagues bootstrapped value functions. A drawback of this approach is
that now the naive gradient term ∇̄ f (x) will usually have to be estimated by REINFORCE
(Williams, 1992).

6.4.2. Variable Discount Rates

We also set up the model (be it Û or V̂) to condition on discount rates γ1, γ2, so that
we can train it for different rates and even rates that differ between the players. This
is helpful because it forces the model to better understand the given policies, in order
to distinguish policies that would behave the same under some fixed discount rate but
differently under another. During training, we draw γ1, γ2 ∼ Beta(1/2, 1/2) from the
standard arcsine distribution to emphasize extreme values.

Varying γ affects the scale of V,U and hence the scale of our approximations to them.
This in turn results in a change in the effective learning rate when we take gradients. To
account for this, we can normalize the outputs and gradients of V,U by scaling by 1− γ

before use. However, we instead choose to multiply the meta-reward term f (x) in the
Bellman equation by 1− γ. This ensures our models learn the normalized values instead,
which will fall in the same range as f (x). Appendix 6.A has a derivation.

When the context calls for it, we will make this structure explicit by writing (1− γ)⊙
f (x) + γ⊙ Û(x; θ,γ), where γ is now a vector and ⊙ denotes the elementwise product.

6.4.3. Exploration

Our model V̂ provides a deterministic (meta-)policy for changing the inner policies
x. For effective value learning, however, we need exploration as well as exploitation. A
straightforward way to introduce exploration into the system is to perturb the greedy
transition in (6.3.3) with some additive Gaussian noise (Heess et al., 2015). However,

143

this leads to a random walk that fails to systematically explore the state space. Instead
of perturbing the actions, we perturb the policy by applying noise to the parameters θ,
and hold the perturbed policy fixed over the course of an entire optimization trajectory.
Specifically, we randomly flip signs on parameters in the final layer of V̂; this results in a
perturbed value function that incentivizes different high-level characteristics of the inner
policies x. The trajectories so collected are entirely off-policy and serve only to provide a
variety of states. In order to train our model on a given state x, we do a short on-policy
rollout with the unperturbed parameters θ and minimize TD error there. In Algorithm 4
we implement this in a strided fashion: the off-policy exploration is halted every k steps to
perform k steps of on-policy rollout.

6.5. Experiments
The method is evaluated on four environments. First, we demonstrate the advantage

of being able to look farther ahead on a two-dimensional game that is easy to visualize.
Next, we evaluate opponent shaping on the IPD, IMP and Chicken games by pitting MeVa
head-to-head against naive and LOLA agents.

6.5.1. Logistic Game

We analyze the behavior of several algorithms on the Logistic Game (Letcher, 2018), a
two-player game where each player’s policy is a single scalar value. Thus the entire joint
policy space is a two-dimensional plane, which we can easily visualize. The game is given
by the function2

f (x) = −
(

4σ(x1)(1− 2σ(x2))

4σ(x2)(1− 2σ(x1))

)
−

x2
1x2

2 + (x1 − x2)
2(x1 + x2)

2

10000
. (6.5.1)

Figure 6.1 shows the structure of the game. There are two stable fixed points – one
in the lower left (A) and one in the upper right (B). Both players prefer B to A, however
to get from A to B requires coordination: the horizontal player prefers left if the vertical
player plays low and vice versa.

We look at this game through the lens of basins of attraction, and how different algo-
rithms affect them (Figure 6.2b). Following naive gradients (LOLA/HOLA2 with α = 0),
players converge to whichever solution is nearest; the basins of attraction meet at a diago-
nal line through the origin. LOLA grows the basin of the preferred solution B, but only
slightly and increasing the extrapolation step size α does not help much. HOLA2 grows the
basin of B around the edges, but suffers from instabilities around the origin (a saddlepoint).

2Letcher (2018) use the divisor 1000 in Eqn (6.5.1), however it does not match their plots. Moreover we have
flipped the sign to turn this into a maximization problem in accordance with our notation.

144

Fig. 6.1. The Logistic Game. The left panel displays the contours of player 1’s objective
f1(x), the right panel similarly for player 2. Player 1’s policy x1 is a horizontal position,
player 2’s policy x2 is a vertical position. Both players prefer solution B over solution A,
but cannot unilaterally go there. Naive learning converges to whichever solution is closest
upon initialization.

We found HOLA3 to be significantly worse than HOLA2 and did not pursue that direction
further. COLA (our implementation) makes significant improvements around the edges
and around the origin. Finally, MeVa is able to make the basin of B arbitrarily large. When
γ > 0.9, it converges to the preferred solution B from anywhere in the surveyed area. We
also show some actual optimization trajectories in Figure 6.2a.

The meta-value approach gives us an additional hyperparameter γ to control the extent
to which we look ahead. By increasing γ, we can make the basin of B arbitrarily large.
Even if agents initialize close to A, it is worth moving in a direction that immediately
decreases f , because they know (through the gradient of the meta-value) that doing so will
eventually increase f .

Experiment details can be found in Appendix 6.D.

6.5.2. Matrix Games

We evaluate our method on several repeated matrix games by going head-to-head
with naive learners and LOLA. M-FOS is the closest method from the literature. However,
we do not provide head-to-head comparison with M-FOS as doing so would require
training M-FOS and MeVa jointly, which is prohibitively complex. Instead, we compare
our performance versus Naive and LOLA with that of M-FOS.

145

(a) Optimization trajectories. We took a
random set of policy pairs and, for each
panel, optimized them according to the al-
gorithm under consideration. Each curve
shows an optimization trajectory, typically
finishing in or close to either A or B.

(b) Basins of attraction. For each panel, we took a grid
of policy space points and optimized them according to
the algorithm under consideration. White cells indicate
that the corresponding point ended up in the positive
quadrant x1,x2 > 0, black cells ended up in other quad-
rants (typically the negative quadrant).

Fig. 6.2. Logistic Game behaviors of different algorithms (rows) with different settings
(columns).

Table 6.1. Payoffs for the matrix games considered.

A B
A (−1,− 1) (−3, 0)
B (0,− 3) (−2,− 2)

(a) Iterated Prisoner’s
Dilemma

A B
A (+1,− 1) (−1, + 1)
B (−1, + 1) (+1,− 1)

(b) Iterated Matching Pennies

A B
A (0, 0) (− 1, + 1)
B (+1,− 1) (−100,− 100)

(c) Chicken Game

We use the same setup as Lu et al. (2022): policies xi ∈ R5 consist of five binary logits,
corresponding to the probability of playing action A or B in each of five possible states
(the initial state and the previous joint action AA, AB, BA, BB). We use the exact value
function given in Foerster et al. (2018c) with discount rate 0.96 (not to be confused with our
meta-discount rate γ). Unlike Foerster et al. (2018c) and Lu et al. (2022), we work with the
normalized value, and hence our learning rates must be 1/(1− 0.96) = 25 times larger to
match theirs. The games differ only in their payoff matrices, which are shown in Table 6.1.

146

Naive LOLA M-FOS MeVa
Naive -1.99 -1.56 -2.02 -1.98
LOLA -1.49 -1.09 -1.02 -1.08
M-FOS -0.56 -1.02 -1.01
MeVa -0.57 -0.98 -1.06

Table 6.2. Head-to-head comparison of learning rules on Iterated Prisoner’s Dilemma.
MeVa extorts the naive learner, and appears to exploit LOLA to a small extent.

Naive LOLA M-FOS MeVa
Naive 0.00 0.02 -0.20 -0.23
LOLA -0.02 -0.02 -0.19 -0.16
M-FOS 0.20 0.19 0.00
MeVa 0.23 0.16 0.00

(a) Head-to-head comparison of learning rules
on Iterated Matching Pennies. Like M-FOS,
MeVa is able to significantly (dynamically) ex-
ploit both the naive learner and LOLA.

Naive LOLA M-FOS MeVa
Naive 0.01 -0.71 -1.03 -0.93
LOLA 0.70 -5.32 0.79 0.86
M-FOS 0.97 -1.16 -0.01
MeVa 0.92 -1.11 -0.05

(b) Head-to-head comparison of learning rules
on the Chicken Game. MeVa exploits the naive
learner while avoiding disasters against itself.
LOLA exploits every opponent but does poorly
against itself, an observation also made by Lu
et al. (2022).

For each game, we train 10 models from different seeds, and produce 2048 policy pairs
from each model. We use meta-discount rate γ = 0.95, and learning rates α = 25 (except
on the Chicken Game, where we use α = 1 to accommodate the large payoffs). For M-FOS
we found different numbers than those reported in Lu et al. (2022), so to be sure we trained
30 models with 4096 policy pairs each, using their code and hyperparameters (α = 25 on
IPD and the Chicken Game, α = 2.5 on IMP). Further detail, including standard errors on
these results, can be found in Appendix 6.E.

On the Iterated Prisoner’s Dilemma (Table 6.2), MeVa extorts the naive learner (details
in Appendix 6.F), and LOLA to a small extent. The behavior is similar to that of M-FOS,
although M-FOS leads the naive agent to accept returns below -2, indicating dynamical
exploitation.

On Iterated Matching Pennies (Table 6.3a), M-FOS and MeVa both significantly exploit
naive and LOLA learners. ZD-extortion is not possible in zero-sum games, so MeVa
exhibits dynamical exploitation just like M-FOS.

On the Chicken Game (Table 6.3b), LOLA exploits every opponent but does poorly
against itself (as also observed in (Lu et al., 2022)). MeVa exploits the naive learner while
avoiding disasters against itself. However, it yields to LOLA, more so than the naive
learner. This is consistent with M-FOS’s results.

147

6.5.3. Ablation

To evaluate the impact of the practical techniques from § 6.4, we perform an ablation
experiment on the Iterated Prisoner’s Dilemma. In Figure 6.3, we show the effect of using
the V formulation over the U formulation, disabling exploration, disabling target networks,
disabling λ-returns, and disabling distributional RL in favor of least squares regression.

The configurations differ in the extent to which they reduce the true error (estimated by
the long-term TD error), while minimizing the loss (measured by the short-term TD error).
The difference between these two is due to bootstrapping. Moreover, there are differences
in the rate at which the agents find cooperation, and the stability of that state.

We found the U formulation to be the most impactful; abandoning it hurts the conver-
gence and stability of the process. Target networks and λ-returns appear detrimental to
the speed of learning as part of their stabilizing effect. Exploration appears to have the
least marginal impact.

6.6. Limitations
The meta-value function is a scalar function over (joint) policies. In practice, policies will

often take the form of neural networks, and so will our approximations to the meta-value
function. Conditioning neural networks on other neural networks is a major challenge
(Harb et al., 2020). In addition, the large parameter vectors associated with neural networks
will quickly prohibit handling batched optimization trajectories.

During training and opponent shaping, we assume opponent parameters to be visible
to our agent. This is not necessarily unrealistic – we learn and use the meta-value only as a
means to the end of finding good policies x for the game f that can then be deployed in
the wild without further training. Nevertheless, the algorithm could be extended to work
with opponent models, or more directly, the model could observe policy behaviors instead
of parameters.

The meta-discount rate γ, like LOLA’s step size α, is hard to interpret. Its meaning
changes significantly depending on the learning rate α and the parameterization of both
the model V̂ and the policies x. Future work could explore the use of proximal updates,
like POLA (Zhao et al., 2022) did for LOLA.

Finally, it is well known that LOLA fails to preserve the Nash equilibria of the original
game f . The method presented here shares this property.

6.7. Conclusion
We have introduced Meta-Value Learning (MeVa), a naturally consistent and far-sighted

approach to learning with learning awareness. MeVa derives from a meta-game similar to

148

Fig. 6.3. Ablation experiment on the Iterated Prisoner’s Dilemma. We show the effect
of using the V formulation over the U formulation, and disabling exploration, target
networks, λ-returns, and distributional RL. For each configuration we train 3 models for
300 outer loops. We show short-term TD error (over k steps, as in training) and long-
term TD error (over 100 steps, as a validation); the difference between these is due to
bootstrapping. The horizontal axis measures number of outer loops performed. We also
show the returns f (x) of agents that are being trained on the model (with γ = 0.95), and
are reset every 10 outer loops.

149

that considered in prior work (Al-Shedivat et al., 2017; Kim et al., 2021; Lu et al., 2022), and
can be seen as the Q-learning complement to the policy gradient of M-FOS (Lu et al., 2022),
although we choose different meta-action spaces. MeVa requires no REINFORCE-style
gradient approximations, and avoids explicitly modeling the continuous action space by
parameterizing the action-value function implicitly through a state-value function.

The opponent-shaping capabilities of our method are similar to those of M-FOS, al-
though we are strictly dominated in that respect. We do find ZD-extortion on the general-
sum IPD, and dynamical exploitation on the zero-sum IMP.

The main weakness of the method as it stands is scalability, particularly to policies
that take the form of neural networks. We aim to address this in future work using policy
fingerprinting (Harb et al., 2020).

Finally, we note that although we develop our method in the context of multi-agent
reinforcement learning, it is a general meta-learning approach that readily applies to
optimization problems with a single objective.

Acknowledgements
This research was enabled in part by compute resources provided by Mila. We used the

JAX (Bradbury et al., 2018) library for scientific computing. We thank Cheng-Zhi (Anna)
Huang, Kyle Kastner, David Krueger, Christos Tsirigotis, Michael Noukhovitch, Amartya
Mitra, Juan Augustin Duque and Shunichi Akatsuka for helpful discussion.

150

References
Axelrod, Robert and William D Hamilton (1981). “The evolution of cooperation”. In: science

211.4489, pp. 1390–1396.
Baker, Bowen (2020). “Emergent reciprocity and team formation from randomized un-

certain social preferences”. In: Advances in Neural Information Processing Systems 33,
pp. 15786–15799.

Bradbury, James et al. (2018). JAX: composable transformations of Python+NumPy programs.
Version 0.3.13. URL: http://github.com/google/jax.

Busoniu, Lucian, Robert Babuska, and Bart De Schutter (2008). “A comprehensive survey
of multiagent reinforcement learning”. In: IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews) 38.2, pp. 156–172.

Dabney, Will et al. (2018). “Distributional reinforcement learning with quantile regression”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 32. 1.

Fairbank, Michael and Eduardo Alonso (2012). “Value-gradient learning”. In: The 2012
international joint conference on neural networks (ijcnn). IEEE, pp. 1–8.

Foerster, Jakob et al. (2018a). “Counterfactual multi-agent policy gradients”. In: Proceedings
of the AAAI conference on artificial intelligence. Vol. 32. 1.

Foerster, Jakob et al. (2018b). “Dice: The infinitely differentiable monte carlo estimator”. In:
International Conference on Machine Learning. PMLR, pp. 1529–1538.

Foerster, Jakob et al. (2018c). “Learning with Opponent-Learning Awareness”. In: Interna-
tional Conference on Autonomous Agents and Multiagent Systems.

Gronauer, Sven and Klaus Diepold (2022). “Multi-agent deep reinforcement learning: a
survey”. In: Artificial Intelligence Review, pp. 1–49.

Harb, Jean et al. (2020). “Policy evaluation networks”. In: arXiv preprint arXiv:2002.11833.
He, Kaiming et al. (2016). “Deep residual learning for image recognition”. In: Proceedings of

the IEEE conference on computer vision and pattern recognition, pp. 770–778.
Heess, Nicolas et al. (2015). “Learning continuous control policies by stochastic value

gradients”. In: Advances in neural information processing systems 28.
Hendrycks, Dan and Kevin Gimpel (2016). “Gaussian error linear units (gelus)”. In: arXiv

preprint arXiv:1606.08415.
Hessel, Matteo et al. (2018). “Rainbow: Combining improvements in deep reinforcement

learning”. In: Proceedings of the AAAI conference on artificial intelligence. Vol. 32. 1.
Hughes, Edward et al. (2018). “Inequity aversion improves cooperation in intertemporal

social dilemmas”. In: Advances in neural information processing systems 31.
Jaques, Natasha et al. (2019). “Social influence as intrinsic motivation for multi-agent

deep reinforcement learning”. In: International conference on machine learning. PMLR,
pp. 3040–3049.

151

http://github.com/google/jax

Kim, Dong Ki et al. (2021). “A policy gradient algorithm for learning to learn in multia-
gent reinforcement learning”. In: International Conference on Machine Learning. PMLR,
pp. 5541–5550.

Kingma, Diederik and Jimmy Ba (2014). “Adam: A method for stochastic optimization”.
In: arXiv preprint arXiv:1412.6980.

Lauer, Martin (2000). “An algorithm for distributed reinforcement learning in cooperative
multiagent systems”. In: Proc. 17th International Conf. on Machine Learning.

Letcher, Alistair (2018). “Stability and Exploitation in Differentiable Games”. MA thesis.
Loshchilov, Ilya and Frank Hutter (2017). “Decoupled weight decay regularization”. In:

arXiv preprint arXiv:1711.05101.
Lowe, Ryan et al. (2017). “Multi-Agent Actor-Critic for Mixed Cooperative-Competitive

Environments”. In: Advances in Neural Information Processing Systems. Ed. by I. Guyon
et al. Vol. 30. Curran Associates, Inc. URL: https://proceedings.neurips.cc/paper_
files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf.

Lu, Christopher et al. (2022). “Model-free opponent shaping”. In: International Conference
on Machine Learning. PMLR, pp. 14398–14411.

Matignon, Laëtitia, Guillaume J Laurent, and Nadine Le Fort-Piat (2007). “Hysteretic
q-learning: an algorithm for decentralized reinforcement learning in cooperative multi-
agent teams”. In: 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems.
IEEE, pp. 64–69.

Mnih, Volodymyr et al. (2015). “Human-level control through deep reinforcement learning”.
In: nature 518.7540, pp. 529–533.

Panait, Liviu and Sean Luke (2005). “Cooperative multi-agent learning: The state of the
art”. In: Autonomous agents and multi-agent systems 11, pp. 387–434.

Press, William H and Freeman J Dyson (2012). “Iterated Prisoner’s Dilemma contains
strategies that dominate any evolutionary opponent”. In: Proceedings of the National
Academy of Sciences 109.26, pp. 10409–10413.

Al-Shedivat, Maruan et al. (2017). “Continuous adaptation via meta-learning in nonsta-
tionary and competitive environments”. In: arXiv preprint arXiv:1710.03641.

Silver, David et al. (2017). “Mastering the game of go without human knowledge”. In:
nature 550.7676, pp. 354–359.

Srivastava, Rupesh Kumar, Klaus Greff, and Jürgen Schmidhuber (2015). “Highway net-
works”. In: arXiv preprint arXiv:1505.00387.

Sutton, Richard S and Andrew G Barto (2018). Reinforcement learning: An introduction. MIT
press.

Watkins, Christopher JCH and Peter Dayan (1992). “Q-learning”. In: Machine learning 8,
pp. 279–292.

152

https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/68a9750337a418a86fe06c1991a1d64c-Paper.pdf

Willi, Timon et al. (2022). “COLA: consistent learning with opponent-learning awareness”.
In: International Conference on Machine Learning. PMLR, pp. 23804–23831.

Williams, Ronald J (1992). “Simple statistical gradient-following algorithms for connection-
ist reinforcement learning”. In: Reinforcement Learning, pp. 5–32.

Zhang, Chongjie and Victor Lesser (2010). “Multi-agent learning with policy prediction”.
In: Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 24. 1, pp. 927–934.

Zhao, Stephen et al. (2022). “Proximal Learning With Opponent-Learning Awareness”. In:
Advances in Neural Information Processing Systems 35, pp. 26324–26336.

153

6.A. Normalized Bellman Equation
We introduce a slight tweak to the usual Bellman equation

V(st) = rt + γV(st+1)

to address a scaling issue. Suppose the rewards fall in the range (0, 1). Then V will take
values in the range

(
0, 1

1−γ

)
. We can multiply through by 1− γ to obtain a new equation

that will force values Ṽ into the same range as the rewards:

(1− γ)V(st) = (1− γ)rt + γ(1− γ)V(st+1)

Ṽ(st) = (1− γ)rt + γṼ(st+1).

This is useful in our case because otherwise changing γ would affect the scale of the
gradient ∇̄V and hence change the effective learning rate. We also found it helpful when
using distributional RL with a fixed binning – the convex-combination form of the right-
hand side guarantees it will fall within the same range as the left-hand side. Finally, we
find the normalized values easier to interpret.

6.B. LOLA, HOLA, COLA
In §6.2 we described LOLA, HOLA and COLA on an abstract level, ignoring in particu-

lar that each of them involves extrapolating only the opponent. In this section we provide
exact definitions for completeness.

For notational convenience in working with the concatenated vector x we define the
slicing matrices

S1 =
dx
dx1

⊤
=
(

In 0n

)
, S2 =

dx
dx2

⊤
=
(

0n In

)
,

where In is the n × n identity matrix and 0n the n × n zero matrix, n = dim(x1) being
the dimensionality of a policy parameter vector. Now x1 = S1x, x2 = S2x and x =

S⊤1 x1 + S⊤2 x2.
LOLA (Foerster et al., 2018b) (sans Taylor approximation) uses the update

∇̄ f LOLA(x) = ∇̄
(

f1(x + αS⊤2 S2∇̄ f (x))
f2(x + αS⊤1 S1∇̄ f (x))

)
.

This differs from what we presented in (6.2.2) in that each player only considers their
opponent’s update, and not their own.

154

HOLAn (Foerster et al., 2018c; Foerster et al., 2018b) (again sans Taylor approximation)
applies the LOLA surrogate recursively to itself:

∇̄ f HOLA(n)(x) = ∇̄
(

f1(x + αS⊤2 S2∇̄ f HOLA(n−1)(x))
f2(x + αS⊤1 S1∇̄ f HOLA(n−1)(x))

)
,

with base case ∇̄ f HOLA(0)(x) = ∇̄ f (x). Notice that HOLA1 recovers LOLA:
∇̄ f HOLA(1)(x) = ∇̄ f LOLA(x).

COLA (Willi et al., 2022) considers

∇̄ f COLA(x) = ∇̄
(

f1(x + αS⊤2 S2∇̄ f COLA(x))
f2(x + αS⊤1 S1∇̄ f COLA(x))

)
,

an implicit equation similar to (6.2.3). The equation is solved with a model ĝCOLA(x; θ) ≈
∇̄ f COLA(x) of the gradient of the implicit surrogate. The model is trained to satisfy

ĝCOLA(x; θ) = ∇̄
(

f1(x + αS⊤2 S2 ĝCOLA(x; θ))

f2(x + αS⊤1 S1 ĝCOLA(x; θ))

)
by minimizing the squared distance between the two sides of this equation.

6.C. Detailed Algorithm Description
Algorithm 4 describes the learning algorithm in detail, including the modifications

discussed in §6.4.
After introducing quantile distributional RL, we have a model Û(x; γ,θ) ∈ RM that

produces a vector of M quantiles. We denote by ÛE(x; γ,θ) the expectation over the
quantile distribution, which is just the uniform average of the quantile values

ÛE(x; γ,θ) =
1
M

M

∑
m=1

Û(x; γ,θ)m.

The divergence D(ŷ,y) is the quantile regression loss from (Dabney et al., 2018) between
the predicted quantiles ŷ and the target quantiles y.

6.D. Logistic Game Details
We use the V̂(x; θ,γ) formulation. While conceptually, each agent maintains their own

model V̂1(x; θ1,γ), the implementation combines the computation of both models. The
structure of the resulting single model can be seen in the following diagram:

155

Algorithm 4 Meta-Value Learning incorporating the techniques discussed in §6.4.

Require: Learning rates η,α, exploration trajectory length T, stride k, bootstrapping rate
λ, target network inertia ρ.
Initialize meta-value functions θ1,θ2 and target networks θ̄ = θ.
while θ has not converged do ▷ outer loop

Initialize policies x̃(0); draw γ̃ (§6.4.2); draw θ̃ (§6.4.3).
t← 0
while t < T do ▷ inner loop

for τ = t . . . t + k do ▷ take k exploration steps
x̃(τ+1) = x̃(τ) + α∇̄(1− γ̃)⊙ f̂ (x̃(τ)) + α∇̄γ̃⊙ ÛE(x̃(τ); θ̃,γ̃)

end for
t← t + k
Let x(0) = x̃(t); draw γ (§6.4.2). ▷ prepare to train Û on x̃(t)
for τ = 0 . . . k− 1 do ▷ produce an on-policy trajectory of length k

x(τ+1) = x(τ) + α∇̄(1− γ)⊙ f̂ (x(τ)) + α∇̄γ⊙ ÛE(x(τ); θ,γ)
end for
for i ∈ 1,2 do

Y(k)
i = Ûi(x(k); θ̄i,γ) ∈ RM

for τ = k− 1 . . . 0 do ▷ compute λ-return distributions
Y(τ)

i = (1− γi) f̂i(x(τ+1)) + γi

(
(1− λ)Ûi(x(τ+1); θ̄i,γ) + λY(τ+1)

i

)
end for
θi ← θi − η∇Li(θi) where Li(θi) =

1
k ∑k−1

τ=0 D(Ûi(x(τ); θi,γ), Y(τ)
i).

end for
θ̄ ← θ̄ + (1− ρ)(θ − θ̄) ▷ update target networks

end while
end while

(
x1

γ1

)
MLP1 z1

(
z1

z2

)
MLP2 V̂1

(
x2

γ2

)
MLP1 z2

(
z2

z1

)
MLP2 V̂2

We first feed the xi,γi pairs into a multi-layer perceptron (MLP) to obtain a representa-
tion zi of each agent. Then for each agent we concatenate their own representation with
that of their opponent. This is run through a second MLP which outputs the quantile
estimates.

The dotted lines in the diagram indicate parameter sharing between the two players
(θ1 = θ2), which exploits the symmetry of the games under consideration (specifically
f1(x1,x2) = f2(x2,x1)) to improve sample efficiency of the learning process.

156

The MLPs consist of a residual block (Srivastava et al., 2015; He et al., 2016) sandwiched
between two layer-normalized GELU (Hendrycks and Gimpel, 2016) layers. The residual
block uses a layer-normalized GELU as nonlinearity, and uses learned unitwise gates to
merge with the linear path. Each layer has 64 units.

We use the same model structure for COLA, albeit without quantile regression. In the
case of COLA we pass the inner learning rate α in place of γ, and we trained a single model
for values of α ∼ U[0,10].

Policies x̃(0)i ∼ U(−8, + 8) are initialized uniformly on an area around the origin.
We used hyperparameters α = 1,M = 16,T = k = 50. In this experiment we do not

use a target network or λ-returns (i.e. λ = 0), nor do we use exploration (i.e. θ̃ = θ). The
model is trained for 1000 outer loops using Adam (Kingma and Ba, 2014) with learning
rate η = 10−3 and batch size 128. Training takes about a minute on a single GPU.

6.E. Matrix Game Details
As matrix games are a step up in complexity, we use the Û(x; θ,γ) formulation. We

use a similar shared-model structure as for the Logistic Game (see the diagram in the
previous section), but introduce an elementwise scale and shift on z1,z2 that is not shared,
in order to break the equivariance when the opponent is not a MeVa agent. This makes it
straightforward to still model the opponent’s own meta-value, which as an auxiliary task
may help learn the primary task.

In the final nonlinear layer, the GELU is replaced by a hyperbolic tangent – a signed
nonlinearity that enables our exploration scheme. During exploration, we flip signs on the
units in this layer with Bernoulli probability 1/16 (see §6.4.3).

Policy logits are initialized from a standard Normal distribution, i.e. x̃(0) ∼ N (0,I).
We used hyperparameters α = 2,M = 32,T = 100,k = 10,ρ = 0.99,λ = 0.9. The model

is trained for 2000 outer loops, using batch size 128 and AdamW (Loshchilov and Hutter,
2017) with learning rate 10−4 and 10−2 weight decay. Training the model on a matrix game
takes about half an hour on a single GPU.

Tables 6.4, 6.5 and 6.6 report tournament results with standard errors. This is the
standard deviation of the average of the seed performance. To estimate this, we first
average the performances of the policy pairs under each seed. Then we compute the
standard deviation of these results across seeds, and divide by the square root of the
number of seeds to obtain the standard error. The results between naive and LOLA
learners have no such errors, as they don’t involve learning models from seeds.

157

Naive LOLA M-FOS MeVa
Naive -1.99 -1.56 -2.02±0.06 -1.98±0.01
LOLA -1.49 -1.09 -1.02±0.00 -1.08±0.00
M-FOS -0.56±0.03 -1.02±0.00 -1.01±0.00
MeVa -0.57±0.02 -0.98±0.01 -1.06±0.01

Table 6.4. Head-to-head comparison of learning rules on Iterated Prisoner’s Dilemma.

Naive LOLA M-FOS MeVa
Naive 0.00 0.02 -0.20±0.00 -0.23±0.01
LOLA -0.02 -0.02 -0.19±0.00 -0.16±0.01
M-FOS 0.20±0.00 0.19±0.00 0.00±0.01
MeVa 0.23±0.01 0.16±0.01 0.00±0.00

Table 6.5. Head-to-head comparison of learning rules on Iterated Matching Pennies.

Naive LOLA M-FOS MeVa
Naive 0.01 -0.71 -1.03±0.00 -0.93±0.03
LOLA 0.70 -5.32 0.79±0.12 0.86±0.03
M-FOS 0.97±0.00 -1.16±0.12 -0.01±0.13
MeVa 0.92±0.03 -1.11±0.03 -0.05±0.01

Table 6.6. Head-to-head comparison of learning rules on the Chicken Game.

158

6.F. ZD-extortion on the IPD
Figure 6.4 shows how MeVa shapes a naive opponent. MeVa immediately takes on a

ZD-extortion policy to induce cooperation in the naive agent, indicated by a > 1 slope
on the blue front. Then, it appears to dynamically exploit the naive learner to reach and
maintain a position of maximum extortion (nearly vertical front).

159

Fig. 6.4. Meta-value agents extorting naive agents on the Iterated Prisoner’s Dilemma. We
train Û from four different initializations (columns). Then, we initialize a pair of policies
and show their behavior as they learn (rows). Each panel shows the polytope of possible
game returns (gray outline), the subset of possible game returns given the current MeVa
policy x1 (blue scatterplot of return pairs obtained by pitting random policies against x1),
and the actual return pair given x1 and x2 (orange, with lines to help tell the angle of the
rightmost front of the blue region).

160

Conclusion

We made several contributions to obtain effective coordination among systems that have
been disconnected. Counterpoint by Convolution (Chapter 3) considered coordination of
information states of variables, transmuting independent distributions into joint ones.
On the Variance of UORO (Chapter 4) discussed coordinated communication between
graph nodes in, using broadcasts to send targeted messages. Finally, Best Response Shaping
(Chapter 5) and Meta-Value Learning (Chapter 6) reconciled the dynamics of decentralized
learning processes, allowing self-interested learners to reach and maintain cooperation.
We close with a brief afterword on each of these projects.

In generative modeling of music (Chapter 3), we went beyond the usual unnatural
approach of producing a composition in a single pass from front to back. We instead
designed an algorithm, COCONET, that can generate in any order. Our method consists of
a model that can fill in arbitrary musical blanks, and an iterative refinement that reconciles
the model’s conditionally independent predictions. Besides composing music from scratch,
COCONET can be used to complete arbitrary musical fragments, which allows considerable
control over the output. The versatility of the algorithm led Louie et al. (2020) to build
composition software around it.

On March 21, 2019, COCONET was featured on Google’s front page as the engine behind
the Bach Doodle (Team, 2019; Huang et al., 2019a). The doodle would prompt users to
compose a soprano melody, and our model would provide a harmonization in the alto,
tenor and bass voices. Over the course of a day, we harmonized over 50 million melodies
from users around the world (Huang et al., 2019b; Dinculescu, 2019).

COCONET produces a coordinated multivariate output by iteratively refining indepen-
dent predictions. We were surprised at first to find that this works better than making
properly conditioned autoregressive predictions. This finding has however been more
than confirmed by the present success of diffusion models (see Croitoru et al. (2023) for
a review), which essentially take a similar corrupt-and-reconstruct approach, albeit with
a different mathematical interpretation. Diffusion models predict the corruption, rather
than the reconstruction, and apply it in Langevin dynamics as the gradient of the potential.

Dieleman (2022) links diffusion models to denoising autoencoders and generative stochas-
tic networks, which are in turn related to the orderless NADE model on which COCONET

is based Yao et al. (2014).

Our work on credit assignment for RNNs (Chapter 4) has provided a deep theoretical
understanding of the UORO algorithm, its sources of variance, and the ways in which
they might be reduced. We proposed a practical variation, PreUORO, which destroys
less information and as such has drastically lower variance, but increased computational
expense. These findings are confirmed empirically. Finally, we made a theoretical connec-
tion between REINFORCE and UORO: as the noise vanishes, the two estimators become
equal up to a mean-zero but high-variance term. The connection opens the door for
cross-pollination of ideas.

It seems unlikely that the forward mode (RTRL-likes, including UORO) will ever
displace the reverse mode (BPTT-likes) for practical training of RNNs. The gradient
estimates are simply too noisy. However, recent work on Evolution Strategies (ES; Eigen,
1973) has found applications where exact gradient computation is not worth it in the first
place, such as distributed reinforcement learning (Salimans et al., 2017) and meta-learning
(Li et al., 2023). ES can be interpreted as REINFORCE with Gaussian perturbations on the
parameters, and is hence related to UORO with projection in parameter space.

It is worth noting that RNNs have now fallen out of favor in part due to their sequential
computational structure. Transformers (Vaswani et al., 2017) have an essentially feed-
forward structure that allows parallel training. Additionally, they have practically random
access to historical sequence elements, which enables much better long-term gradient flow.
The downside is that Transformers have a finite horizon, whereas RNNs have infinite
horizon. However this is only a theoretical point: the effective horizon of Transformers is
much longer than that of RNNs due to difficulties in optimizing RNNs. As such, improving
the speed or quality of gradient estimation may be less important than improving the
optimization dynamics.

In multi-agent learning, we have proposed Best Response Shaping (Chapter 5), an
agent that finds a good policy by training against the best response. The crucial ingredient
is differentiation through the best response as a function of the agent’s policy. This leads
the agent to take on policies like tit-for-tat, which use threats to force a rational agent into
cooperative behavior. While previous works perform an explicit optimization process
to arrive at the best response (Zhang et al., 2020; Balaguer et al., 2022), we amortize this
by training a conditional policy – a differentiable model that observes the policy and
implements the best response. Conditioning on policies is complex when policies may
be neural networks, but we demonstrated an approach that appears to scale well. We

162

found that Best Response Shaping beats POLA (the strongest baseline) on the Coin Game
(a benchmark that requires scaling) along most dimensions of comparison.

We view our other work in this area, Meta-Value Learning (Chapter 6), as an extension
of LOLA’s idea of learning with learning awareness. Meta-Value Learning revolves around
a function called the meta-value, which judges a meta-state (e.g. a policy pair) by its
performance on the game, now and after continued optimization. We treat the meta-value
function as a drop-in replacement for the original game, one on which naive learning is
coordinated. Our Q-learning approach to approximating the meta-value avoids explicitly
handling the continuous action space, and does not require any REINFORCE estimators.
Meta-Value Learning competes with M-FOS (Lu et al., 2022) on repeated matrix games,
matching its ability to extort naive learners and LOLA.

Meta-Value Learning was developed in the context of multi-agent learning and learning
with learning awareness. However, it is a general meta-learning approach that uses the
generalization power of neural networks to understand the optimization landscape and
find better directions than the gradient. Scalability aside, meta-value learning should
generally be helpful also in settings with a single objective, such as single-player games
and supervised learning. In fact the thought of applying this to RNNs, which still suffer
from pathological curvature and bad local optima, never left my mind. In the immediate
future I aim to evaluate this possibility, first on optimization toy tasks, then on RNN toy
tasks, which I believe are already within reach.

163

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of acronyms and abbreviations
	Acknowledgements
	Chapter 1. Introduction
	Chapter 2. Background
	2.1. Supervised Learning
	2.2. Unsupervised and Self-Supervised Learning
	2.3. Generative Modeling
	2.4. Reinforcement Learning
	2.4.1. Temporal Difference Learning
	2.4.2. Policy Gradient Methods

	2.5. Multi-Agent Reinforcement Learning
	2.6. Neural Networks
	2.7. Optimization

	Chapter 3. Counterpoint by Convolution
	Prologue
	3.1. Introduction
	3.2. Related Work
	3.3. Model
	3.4. Evaluation
	3.5. Sampling
	3.5.1. Orderless Nade Sampling
	3.5.2. Gibbs Sampling

	3.6. Experiments
	3.6.1. Data Log-likelihood
	3.6.2. Sample Quality
	3.6.3. Human Evaluations

	3.7. Conclusion
	Acknowledgments
	References

	Chapter 4. On the Variance of Unbiased Online Recurrent Optimization
	Prologue
	4.1. Introduction
	4.2. Outline of the Paper
	4.3. Automatic Differentiation in Recurrent Neural Networks
	4.4. Other Approaches to Credit Assignment
	4.5. Unbiased Online Recurrent Optimization
	4.5.1. Derivation
	4.5.2. Greedy Iterative Rescaling

	4.6. Variance Analysis
	4.6.1. Greedy Iterative Rescaling is Greedy
	4.6.2. Greedy Iterative Rescaling Optimizes an Inappropriate Objective
	4.6.3. Generalized Recursions
	4.6.4. A Simple Expression for the Gradient Estimate
	4.6.5. Computing the Variance of the Total Gradient Estimate

	4.7. Variance Reduction
	4.7.1. Optimizing Q subject to restrictions on its form
	4.7.2. Variance Reduction Experiments

	4.8. Projection in the Space of Preactivations
	4.9. reinforce as Approximate Real-Time Recurrent Learning
	4.10. Conclusions
	Acknowledgements
	References
	4.A. Supporting Results for Variance Computations
	4.B. Variance of a Single Jacobian Estimate
	4.C. Optimizing given Q0
	4.D. Online optimization of coefficients
	4.E. Minimization of the Product of Traces
	4.F. Estimating B online
	4.G. Hyperparameter Settings for Variance Reduction Experiments
	4.H. Variance of Preactivation-Space Projection

	Chapter 5. Best Response Shaping
	Prologue
	5.1. Introduction
	5.2. Background
	5.2.1. Multi Agent Reinforcement Learning
	5.2.2. Social Dilemmas and the Iterated Prisoner's Dilemma

	5.3. Related Work
	5.4. Best Response Shaping
	5.4.1. Best Response Agent to the Best Response Opponent
	5.4.2. Detective Opponent Training
	5.4.3. Agent training

	5.5. Experiments
	5.5.1. Iterated Prisoner's Dilemma
	5.5.2. The Coin Game

	5.6. Limitations
	5.7. Conclusion
	References
	5.A. Experimental Details
	5.A.1. IPD
	5.A.2. Coin Game

	5.B. Reproducing Results
	5.B.1. IPD
	5.B.2. Coin Game

	5.C. League Results
	5.D. Self-Play
	5.E. Tree Search Detective
	5.F. Evaluation Metrics of Various Agents

	Chapter 6. Meta-Value Learning: a General Framework for Learning with Learning Awareness
	Prologue
	6.1. Introduction
	6.2. Background
	6.2.1. Naive Learning
	6.2.2. Looking Ahead
	6.2.3. Going Meta

	6.3. Meta-Value Learning
	6.3.1. The Meta-Value Function
	6.3.2. Learning Meta-Values
	6.3.3. Q-learning interpretation

	6.4. Practical Considerations
	6.4.1. Reformulation as a Correction
	6.4.2. Variable Discount Rates
	6.4.3. Exploration

	6.5. Experiments
	6.5.1. Logistic Game
	6.5.2. Matrix Games
	6.5.3. Ablation

	6.6. Limitations
	6.7. Conclusion
	Acknowledgements
	References
	6.A. Normalized Bellman Equation
	6.B. LOLA, HOLA, COLA
	6.C. Detailed Algorithm Description
	6.D. Logistic Game Details
	6.E. Matrix Game Details
	6.F. ZD-extortion on the IPD

	Conclusion

