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Abstract. Multielectrode array neuronal recordings in atrial ganglionated plexi

are characterized by low firing rates, marked non-stationarity, interplay with the

cardiovascular and pulmonary systems and artifacts generated by myocardial activity,

which creates challenges very different from brain recordings. To explore population

dynamics of intrinsic cardiac neurons, a jitter-based synchrony index has been defined

to quantify pairwise synchrony between neurons. In this paper, we extend this

synchrony index to multiple time series in order to monitor global (multivariate)

synchrony. Numerical techniques are developed to efficiently compute synchrony

indices and their statistical significance in a large number of time windows. A scale-

time graphical representation is proposed to visualize synchrony in sliding windows of

varying lengths. This approach is validated in synthetic time series and in experimental

data sets recorded in 11 dogs. Results show the ability of the method to monitor

synchrony over time in neuron populations, between neurons and the cardiopulmonary

system and between neuron firing and electrical stimulation. These tools will facilitate

the exploration and robust quantitative analysis of multiple-hour recordings in cardiac

ganglionated plexi to efficiently identify relevant periods of activity in relation to

physiological or external stimuli and cardiac arrhythmia.
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1. Introduction

The heart receives sympathetic and parasympathetic efferent innervation via the

intrinsic cardiac nervous system in order to regulate its electrical and mechanical

activity (Armour et al. 1994, Ardell 2004). Populations of cardiac neurons in atrial

and ventricular ganglionated plexi receive inputs from central neurons and from

mechano- and chemoreceptors located in the heart and adjacent vessels (Armour and

Kember 2004). Local circuit neurons are hypothesized to form a local processor of

information, the “little brain in the heart” (Armour 2007, Armour 2008), that coordinate

regional cardiac indices under the influence of efferent central neurons. The structure

and function of this network, however, remain largely unknown.

To study this neural network, electrophysiological recordings in ganglionated plexi

can be performed by inserting an electrode in the nervous tissue. Linear multielectrode

array technology enabled simultaneous recording of a small population of cardiac

neurons (5 to 28) in canine right atrium ganglionated plexi for multiple hours (Beaumont

et al. 2013). These data opened the way to new investigation about the organization

of these neurons and their interactions with the cardiovascular system, but also created

signal analysis challenges.

In a previous study, we adapted the synchrony index (SI) developed in Agmon

(2012) to quantify the synchrony between pairs of cardiac neurons and between neurons

and the cardiovascular and pulmonary systems (Longpré et al. 2014). This SI is well-

normalized, independent of variations in firing rate and relies on analytical formulas so

that its statistical significance can be assessed without explicit generation of numerous

surrogate spike trains. Such properties are required in the context of cardiac neurons

because their firing rates are relatively low (0.1 to 5 Hz typically) and highly non-

stationary, notably due to the modulation by the cardiovascular and pulmonary systems.

Owing to low firing rates, synchrony among cardiac neurons could possibly be small, so

its quantification needs to remain applicable and sensitive at low values.

The aim of this paper is to extend this work to create a multivariate synchrony

index (MSI) amenable to fast computations for a large number of time windows. This

is important for the following reasons. Due to highly non-stationary activity, synchrony

is expected to vary along time, possibly switching between periods of insignificant

synchrony and periods of synchronized activity. To identify and characterize these

periods, sliding windows of varying durations may be used. Since the analysis needs

to be carried out in many time intervals, computational efficiency becomes critical. By

pooling the data from multiple neurons together, aMSI may facilitate the identification

of these periods of synchronized activity and provide a single symmetric measure of the

synchrony of a group of neurons. Further analysis may then be performed on a pair or

a subset of neurons.

Several techniques for measuring the synchrony of central neuron populations have

been developed, as reviewed in Pereda et al. (2005). A straightforward multivariate

technique consists in taking the average of pairwise synchrony (Kreuz et al. 2009, Kreuz
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et al. 2013). Another approach is to create a model of the multivariate point

process representing neuron firing, for instance using multinomial generalized linear

models (Ba et al. 2014), multivariate autoregressive models (Ba et al. 2014), directed

transfer function (Kaminski and Blinowska 1991) or gravity transform (Lindsey and

Gerstein 2006). Model-based methods are however sensitive to parameter estimation

which requires enough data to be accurate. Some measures use a cumulative spike train

obtained by pooling all the different spike trains together (Hunter et al. 1998, Tiesinga

2004). Another multivariate measure may be obtained by computing the coefficient of

variation of the interspike intervals (Kreuz et al. 2009). Gersch and Goddard (1970) used

partial coherence that takes into account a third time series to correct the estimation of

the coherence of two time series. There is some debate on the reliability of this technique

relative to noise contamination (Albo et al. 2004, Baccala and Sameshima 2006). Allefeld

and Kurths (2004) developed a measure based on phase synchronization of an ensemble

of different oscillators (recording sites) relative to the phase of a statistical cluster, the

later being defined as a weighted mean of the phase of the individual oscillators.

While these methods provide valuable insight into multivariate synchrony, they

require the use of surrogate data to assess if synchrony is statistically significant. To

bypass this shortcoming, we propose to create a multivariate extension of the SI that

was described in Longpré et al. (2014). In addition, to deal with sparsely distributed

neuronal activity inherent to cardiac neurons, we devised a window analysis tool able

to rapidly and systematically search a whole recording for intervals of various durations

where multivariate synchrony is measurable and statistically significant.

This article is organized as follows. The definition of the SI and MSI measures

and their calculation in sliding windows are first described. A methodology to generate

synthetic data characterized by a given MSI is introduced. Then, synthetic and

experimental time series are used to illustrate the applications of our approach to

compute the SI between cardiac neurons and physiological signals and the MSI among

cardiac neurons.

2. Material and methods

2.1. Synchrony index

In the framework of Agmon’s approach, neuron synchronization is analyzed by pair of

neurons (Agmon 2012). Since the synchrony index is not symmetric, one neuron is

considered the reference and the other one the target. During the interval of analysis,

the reference neuron fires at times t1 = (t11, . . . , t
1
n1
) and the target neuron at times

t2 = (t21, . . . , t
2
n2
).

Coincidence is defined as the reference and target neurons both firing within a time

window of duration τs. For each spike i of the reference neuron, the occurrence of a
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coincidence is expressed as the vector S(t1, t2) of dimension n1 whose entries are:

Si =

 1 if t1i ∈
n2⋃
j=1

[t2j − τs, t
2
j + τs]

0 otherwise

(1)

The number of coincidences Nc can be computed as the scalar product:

Nc(t
1, t2) = S(t1, t2) · 1n1 (2)

where 1n is the vector of dimension n with all components set to 1. Some of these

coincidences may occur by pure chance. These random coincidences are identified by

counting those remaining after random jitter of the spikes of the reference neuron within

time windows of duration 2τJ , with the constraint τJ > τs (Agmon 2012). If the firing

time of the i-th spike of the reference neuron is uniformly distributed in the interval

[t1i−τJ , t
1
i+τJ ], the probability of coincidence is given by the vector p(t1, t2) of dimension

n1 whose entries are

pi =
1

2τJ
µ

(
[t1i − τJ , t

1
i + τJ ] ∩

n2⋃
j=1

[t2j − τs, t
2
j + τs]

)
(3)

where µ(W ) is the measure (total length) of the set W .

The occurrence SJ
i of coincidence after jitter is a Bernoulli random variable

with mean pi. The number of random coincidences is NJ
c =

∑n1

i=1 S
J
i . Since the

random variables SJ
i are independent, the mean ⟨NJ

c ⟩ =
∑n1

i=1 pi and variance σ2
J =∑n1

i=1 pi(1− pi) of N
J
c can be expressed as:

⟨NJ
c ⟩(t1, t2) = p · 1n1 (4)

σ2
J(t

1, t2) = v · 1n1 (5)

where the components of v(t1, t2) are vi = pi(1 − pi). Agmon’s synchrony index SI is

defined as

SI(t1, t2) = β
Nc − ⟨NJ

c ⟩
n1

(6)

where β = τJ/(τJ − τs) if τJ ≥ 2τs and β = 2 otherwise.

To test the hypothesis that the synchrony is not due to chance, the observed

coincidence count is compared to the distribution of random coincidences. The p-value

is defined as the probability that NJ
c > Nc when SI > 0 and the probability that

NJ
c < Nc when SI < 0. The distribution is approximately normal so the p-value is

related to the Z-score (Agmon 2012):

Z(t1, t2) =
Nc − ⟨NJ

c ⟩
σJ

=
n1SI

βσJ

. (7)
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2.2. Multivariate synchrony index

Suppose we have m neurons with firing time series tk of size nk for k = 1, . . . ,m. The

total number of spikes n1 + · · · + nm is denoted by ntot. The time series t̃k is defined

as the combination of the spikes of all neurons other than k, i.e. the concatenation

t̃k = [t1; . . . ; tk−1; tk+1; . . . ; tm] whose size is ntot − nk. For better computational

efficiency, the vector t̃k is sorted.

We propose that the multivariate synchrony index (MSI) is defined as:

MSI(t1, . . . , tm) =
m∑
k=1

nk

ntot

SI
(
tk, t̃k

)
(8)

=
β

ntot

m∑
k=1

(
S(tk, t̃k)− p(tk, t̃k)

)
· 1nk

. (9)

This definition is symmetric with respect to any permutation of the variables t1, . . . , tm,

and the constraint −2 ≤ SI ≤ 1 also applies to MSI. This equation can be rewritten

as

MSI(t1, . . . , tm) = β
N tot

c − ⟨NJ
c ⟩tot

ntot

(10)

where N tot
c =

∑m
k=1 S(t

k, t̃k) ·1nk
is the total number of coincidences between all pairs of

neurons and ⟨NJ
c ⟩tot = p(tk, t̃k) · 1nk

is the corresponding expected number of random

coincidences. Note the similarity with (6). The variance of the number of random

coincidences is given by

σtot2

J (t1, . . . , tm) =
m∑
k=1

v(tk, t̃k) · 1nk
. (11)

As a result, the Z-score can be expressed as

Ztot(t1, . . . , tm) =
ntot MSI(t1, . . . , tm)

β σtot
J (t1, . . . , tm)

. (12)

2.3. Synchrony index in a time window

To compute the synchrony index SI(t1, t2; a, b) of neuronal activity within a given time

window ]a, b], only the terms involving spikes at time tki ∈ ]a, b] are included. The

synchrony index can be expressed using the vector function I(t; a, b) with the same size

as t defined by Ii(t; a, b) = 1 if ti ∈]a, b] and 0 otherwise. Using this notation,

SI(t1, t2; a, b) =
β

n1

(
S(t1, t2)− p(t1, t2)

)
· I(t1; a, b) (13)

σ2
J(t

1, t2; a, b) = v · I(t1; a, b) . (14)

Once the vectors S, p and v are determined for the whole recording, the synchrony index

can be easily computed in time windows from expressions of the form f(a, b; t,w) =

w · I(t; a, b). In practical applications with sliding windows, we would like to evaluate
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f(a, b; t,w) for many values of a and b but the same w and t. The cumulative

distribution function

F (c; t,w) =
∑

i : ti≤c

wi (15)

is a single-variable function of c, for t and w fixed, that is constant by intervals with

discontinuities at {ti}. This function can therefore be evaluated exactly based on

look-up tables with nearest-neighbor interpolation. Then, the relation f(a, b; t,w) =

F (b; t,w) − F (a; t,w) is used. This leads to considerable speedup as compared to

computing the SI separately in each time window. The same method applies to the

computation of the MSI.

2.4. Generation of synthetic time series

The estimation of the synchrony index will be first assessed in synthetic signals. Our

aim is to generate in the time interval [0, T ] two time series t1 and t2 with firing rates

f1 and f2 such that their synchrony index SI(t1, t2) has a given positive value SI. The

number of spikes in each time series n1 and n2 will be given by f1T and f2T , rounded to

the nearest integer; SI will be assumed to be of the fractional form SI = nc/n1 where

nc is an integer smaller than n2.

The target time series t2 is generated as a realization of a Poisson process with

firing rate f2 and a refractory period of 2τs to prevent successive spikes from being too

close to each other (Fig. 1A). To generate the reference time series t1, note that when a

single spike is added at time t to the reference neuron, the synchrony index as a function

of t is SI(t, t2). This function, shown on Fig. 1B, is piecewise linear with discontinuities

in slope or value at t = t2j ± τs or t = t2j ± (τs + τJ) for all j.

One way to obtain a synchrony index of SI = nc/n1 is to place nc spikes

in the set Ω1 = {t | SI(t, t2) = 1} =
⋃m1

k=1[ak, bk] and n1 − nc spikes in the set

Ω0 = {t | SI(t, t2) = 0} =
⋃m0

k=1[ck, dk]. Since the intervals [ak, bk] are short (typically of

length 2τs), nc of the m1 intervals are randomly selected and spikes are added randomly

(uniform distribution in [ak, bk]) in these selected intervals (Fig. 1C). To place the

remaining n1−nc spikes, the intervals [ck, dk] are put together to form a unique interval

of duration T0 =
∑m0

k=1 dk − ck. The n1 − nc spikes are distributed in the interval [0, T0]

according to a Poisson process with firing rate (n1 − nc)/T0 and a refractory period of

2τs. These spikes are then moved back in their respective interval [ck, dk] (Fig. 1C).

For the generated time series t1 and t2, the number of coincidences Nc is nc. By

excluding spikes outside Ω0 ∪ Ω1, the average number of random coincidences ⟨NJ
c ⟩ is

guaranteed to be zero, so that the synchrony index SI(t1, t2) is nc/n1 as expected.

Reciprocally, because of the refractory period in the generation of the Poisson process,

SI(t2, t1) is nc/n2. As a result, MSI(t1, t2) = 2nc/(n1 + n2), which means that two

time series t1 and t2 with a given multivariate synchrony index of MSI are generated

when nc = MSI (n1 + n2)/2 is used. Note the general constraint

MSI ≤ 2/(1 + max(n1, n2)/min(n1, n2)) ≤ 1 . (16)
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In other words, the MSI cannot be arbitrarily large when the two time series have very

different firing rates.

2.5. Experimental data

Eleven mongrel dogs underwent bilateral open chest surgery in a study approved by

the Institutional Animal Care and Use Committee of East Tennessee State University

and described in detail in (Beaumont et al. 2013). In this protocol, different electrical

stressors were applied to elicit a neuronal response in the right atrium ganglionated

plexus. The activity generated by neurons located in this ganglionated plexus was

recorded for about 5 hours by means of a multichannel microelectrode array (Linear

Microelectrode Array, MicroProbes Inc., Guithersberg, MD) in situ under anesthesia (α-

chloralose) and controlled respiration (using an artificial respirator). This microelectrode

array, consisting of 16 platinum/iridium electrodes (25 µm diameter electrode with

an exposed tip of 2 mm; impedance 0.3-0.5 MΩ at 1 kHz), was embedded in the fat

that contained the ganglionated plexus such that its tip was placed adjacent to right

atrial myocardium. In addition, a bipolar electrode was sewn to the atrial myocardium

close to the ganglionated plexus to provide a reference atrial electrogram and assist the

identification of atrial activity in neuronal recordings. Left ventricular chamber pressure

was continuously recorded using a pressure transducer catheter. Respiration cycles were

monitored using a gauge pressure sensor in the exit tube of the respirator. The signals

were digitized at a sampling frequency of 5.26 kHz (neuronal signals) or 0.877 kHz (other

signals) via a Cambridge Electronics Design data acquisition system (model 1401).

Trains of five electrical stimuli (0.3-1.2 mA, 1 ms duration, 5 ms pulse interval) were

delivered for up to 20 seconds to selected mediastinal nerve sites during the refractory

period of each atrial beat. This stimulation protocol was used to assess vulnerability

to neurogenic atrial fibrillation (AF). Electrical stimuli were delivered via a roving

bipolar probe electrode (1.5 mm spacing) connected to a constant current generator

(PSIU6, Grass Instruments, Quincy, MA) affixed to a Grass S88 stimulator (S88, Grass

Instruments, Quincy, MA).

Spike sorting was performed and validated using Spike2 software (Beaumont

et al. 2013). Between 3 and 21 different neuronal waveforms were identified in each of the

11 dogs. When supra-threshold activity was simultaneously present in >2 channels, the

spike was classified as myocardial electrical activity or motion artifact and all channels

were blanked in a 26-ms window around that spike. This identification was validated

using the right atrium electrogram.

The data used in this paper are: (1) for each neuron, the time series of spike timings;

(2) the left ventricular pressure signal; (3) the respiration pressure signal; and (4) the

timing ot the mediastinal nerve stimulation pulses.
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3. Results

3.1. Multivariate synchrony in synthetic time series

3.1.1. Two neurons. Two synthetic time series t1 and t2 of duration 7 min were

generated, following the method of sect. 2.4. Their activity was stationary in each of

the 7 consecutive one-minute intervals, but their firing rates f 1
k and f 2

k and multivariate

synchrony index MSI varied according to Table 1. As a result, the activity was

characterized by periods of high and low activity and by periods of significant and

insignificant synchrony. The coincidence parameters were set to τJ/2 = τs = 40 ms as

in Longpré et al. (2014).

Interval (k) 1 2 3 4 5 6 7

f 1
k , f

2
k (Hz) 1 1 1 4 1 4 1

MSI(t1, t2) 0 0.3 0 0.3 0 0 0

Table 1. Firing rate and MSI value in each of the 7 intervals of simulated data.

Using t1 and t2, total firing rate and MSI were calculated in time windows ranging

from 10 to 60 s in length (by steps of 1 s) and centered on each second of simulated data.

For this 420 s simulation, total firing rate and MSI were evaluated in 51×421 = 21, 471

windows. Figure 2B and C depict, respectively, the mean total firing rate and the mean

MSI resulting from 5,000 realizations of t1 and t2.

The spikes in t1 and t2 were placed so that MSI = 0.3 when calculated in a 60 s

window centered at 90 s (interval 2) or 210 s (interval 4). Figure 2C shows that the mean

MSI over a sufficient number of realizations of t1 and t2 was also 0.3 for shorter windows

inside interval 2 (or 4). The mean MSI value decreased when evaluated in a window

partially outside interval 2 (or 4) and became zero for windows completely outside the

interval. The rate at which MSI decreased as windows progressively moved out of an

interval where spikes were synchronized was faster for interval 2 (lower firing rate) than

for interval 4 (higher firing rate). For all window sizes, MSI = 0.15 when half of a

window was inside interval 2, while MSI = 0.24 when interval 4 was considered. This

was due to the total firing rate being greater in interval 4 (8 Hz) relative to intervals

3 and 5 (2 Hz), but remaining identical in interval 2 and intervals 1 and 3 (2 Hz).

The regions delimiting the boundaries between MSI = 0 and the first windows where

MSI > 0 on each side of interval 2 (or 4) can be represented by straight lines with a

slope of 2 (left) or -2 (right). The absolute value of this slope is the result of identifying

a window timing using its center, so that there is a delay of half a window length when

the edge of a window touches the edge of interval 2 (or 4). The earliest window where

mean MSI > 0 was a 60 s window centered at 31 s. There was then a 25 s period over

which SI > 0 started to occur in progressively smaller windows until a 10 s window

entered interval 2 at 56 s.
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3.1.2. Four neurons. Four synthetic time series t1, t2, t3 and t4 of duration 11 min were

generated by applying the method of sect. 2.4 twice (once for t1, t2 and, independently,

once for t3, t4). Their activity was stationary in each of the 11 consecutive one-minute

intervals, but their firing rates f 1
k = f 2

k and f 3
k = f 4

k and multivariate synchrony index

MSI varied according to Table 2. Non-synchronized portions of the time series were

generated as a realization of a Poisson process with a refractory period of 2τs. As a

result, the activity was characterized by periods of high and low activity and by periods

of significant and insignificant synchrony.

Interval (k) 1 2 3 4 5 6 7 8 9 10 11

f 1
k , f

2
k (Hz) 1 1 1 4 1 4 1 1 1 1 1

f 3
k , f

4
k (Hz) 1 1 1 4 1 4 1 1 1 0 1

MSI(t1, t2) 0 0.3 0 0.3 0 0 0 0.3 0 0.3 0

MSI(t3, t4) 0 0.3 0 0.3 0 0 0 0 0 0 0

Table 2. Firing rates and MSI values in each of the 11 intervals of simulated data.

Total firing rate and MSI were calculated in time windows of 10 to 60 s duration.

The mean total firing rate and mean MSI resulting from 5,000 realizations of tl for

l = 1, 2, 3, 4 are shown in Fig. 3B and C, respectively.

In interval 2, spikes were placed to obtainMSI(t1, t2) = 0.3 andMSI(t3, t4) = 0.3.

When the mean MSI(t1, t2, t3, t4) was calculated using all 4 time series, we found

MSI = 0.2575 for a 60-s window centered at 90 s, and MSI = 0.2613 when a 10-s

window centered at 65 or 115 s was used. This decrease in MSI reflects the increased

number of expected random coincidences that get subtracted when evaluating Eq. (9).

The two mean MSI(t1, t2, t3, t4) values were halved when the windows were centered

on an edge of interval 2, since total firing rates were the same in intervals 1, 2 and

3. Interval 4 also had MSI(t1, t2) = MSI(t3, t4) = 0.3, but the firing rate of each

time series was higher at 4 Hz, as compared to 1 Hz in interval 2. This resulted in

a MSI(t1, t2, t3, t4) of 0.1291 when evaluated in a 60-s window centered at 210 s. As

it was discussed in section 3.1.1, the higher total firing rate in interval 4 relative to

intervals 3 and 5 led to a slower decrease in MSI when calculated in windows partially

outside the interval. For a 60 s window half outside interval 4, MSI = 0.103.

To further investigate the interplay between synchronized and randomly firing

neurons, it is interesting to compare interval 2 to intervals 8 and 10, where only one pair

of time series was synchronized so that MSI(t1, t2) = 0.3. In interval 8, the randomness

added by t3 and t4 reduced MSI(t1, t2, t3, t4) down to 0.1278 when evaluated in a

60 s window centered at 510 s, a value even lower than what was found in interval

2. MSI values obtained in windows inside interval 8 were halved when the window

center was moved to an edge of the interval. In interval 10, no spikes were placed

in t3 and t4, which made it possible to get MSI(t1, t2, t3, t4) = 0.3. However, when

MSI(t1, t2, t3, t4) was calculated in windows partially outside the interval, its value
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decreased faster than MSI(t1, t2), since the contribution of spikes from t3 and t4 in

intervals 9 and 11 increased the total number of spikes ntot used in Eq. (8) and added

random coincidences after jitter. For that reason, MSI = 0.1 for windows half outside

interval 10.

3.1.3. Computational time. The analysis software was implemented in Matlab, with

some critical parts of the code written in C and integrated as mex files. The performance

of the sliding windows analysis tool was tested by monitoring the CPU time needed to

compute MSI values as a function of the number of windows and the total number of

spikes (Table 3). When the number of windows was small, 103 or 104, an increase in

the number of spikes from 105 to 106 was reflected by a computational time that was

10 or 5 times longer, respectively. This indicates that the calculation of MSI for the

total signal was the bottleneck step in this case. When the number of windows was

large (> 105), the number of spikes did not affect the execution time significantly. This

suggests that, in this situation, the step limiting the speed of the calculation was the

interpolation associated with windowing following the evaluation of the MSI of the

whole signal.

The results of Table 3 show that it took approximately 13 s to calculate the MSI

in 106 time windows when there were 106 spikes in the whole signal. The use of parallel

computing would provide further speedup. For a small number of windows, CPU time

was proportional to the number of spikes (CPU load was dominated by coincidence

identifications). For a very large number of windows, CPU time was not very sensitive

to the number of spikes (CPU load was dominated by nearest-neighbor interpolations).

The number of spikes that were typically found in the experimental data we work with

(< 5 × 104), as well as the number of windows we used while performing its analysis

(< 105) are considerably smaller than in the example from Table 3, illustrating the

efficiency of our method in the context of intrinsic cardiac neurons.

# spikes

105 106

# windows

103 0.05 ± 0.0004 s 0.48 ± 0.003 s

104 0.12 ± 0.0006 s 0.59 ± 0.002 s

105 1.13 ± 0.005 s 1.69 ± 0.008 s

5× 105 6.14 ± 0.02 s 6.84 ± 0.02 s

106 12.60 ± 0.03 s 13.37 ± 0.03 s

Table 3. Mean computational time (± standard deviation) in seconds of 100 random

realizations as a function of the number of spikes and the number of windows. The

number of spikes was equally distributed among 10 neurons. The duration of windows

ranged from 10 to 180 s.
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3.2. Synchrony between cardiac neurons and physiological signals

3.2.1. Left ventricular pressure (LVP). Figure 4 shows the firing rate of a neuron as

well as the SI between that neuron and a time series generated from the timings of the

peak value of LVP signal in each cardiac cycle. LVP time series were considered the

“target neuron,” so that the SI quantifies the fraction of neuron firings that occurred

near peaks of LVP. The SI was calculated using a τs of 30 ms in windows from 10 to 180

s in duration centered every 10 s of the experiment. There was no clear link between

firing rate and SI, but we observed that higher firing rates tended to reduce the SI by

adding random coincidences. Annotated AF episodes all corresponded to periods of low

SI, suggesting that AF may disturb cardiovascular related neuronal firing. Over the

selected 5,000 s interval, SI > 0.1 in 72% and SI > 0.3 in 18% of the windows where

synchrony was statistically significant at the p < 0.01 level, suggesting that this neuron

received some cardiovascular-related input.

3.2.2. Respiration. The SI between a neuron and the time series constructed from the

peaks of the respiration signal is depicted in Fig. 5 in a 12,000-s region where respiration

frequency was 0.14 − 0.19 Hz. SI was calculated using a coincidence window of 1.5 s,

as suggested by Longpré et al. (2014), in time windows from 10 to 180 s in duration

centered every 10 s of the recording. To estimate the fraction of neuronal firings that

took place in the vicinity of respiratory peaks, the respiration time series was treated

as the “target neuron”. SI was > 0.5 in 98% and SI = 1 in 65% of the windows

where it was statistically significant (p < 0.01), making the reference neuron strongly

respiratory related in that period. AF episodes tended to lower the otherwise high

SI values between the neuron and respiration, suggesting that AF could influence the

activity of respiratory related neurons by feeding additional inputs.

3.2.3. Mediastinal nerve stimulation. Previous studies suggested that most recorded

cardiac neurons in ganglionated plexi were local circuit neurons, which made it less likely

to observe direct response to nerve stimulation (Beaumont et al. 2013). Computation

of SI in sliding windows provides a convenient and time-efficient way to identify direct

response to stimulation when they occur. An example of a neuron synchronized with

mediastinal nerve stimulation (MNS) times is shown in Fig. 6. The SI was calculated

using a τs of 30 ms in windows from 10 to 180 s in duration centered every 10 s. To

quantify the fraction of neuron spikes that occurred within a coincidence window of MNS

timings, MNS was treated as the “target neuron”. Statistically significant synchrony

occurred during a 18-s long MNS that was unable to induce AF. Considering all windows

completely or partially inside that MNS interval, SI values ranged from 0.36 to 0.9. The

highest SI value occurred in a 25 s window centered 3 s after the end of the MNS. The

straight line with a slope of 2 drawn on Fig. 6C represents the expected slope of the

side of the “triangle” of windows when synchrony was localized in a specific interval and

no statistically significant coincidences occurred outside that interval. The slope of the
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SI “triangle” is in good agreement with what was expected, meaning the neuron spikes

synchronized with MNS timings were confined to a 10 s or smaller interval.

3.3. Multivariate synchrony index for intrinsic cardiac neurons

Figure 7 shows a 5,000-s portion of an experiment where 13 neurons were active. Total

firing rate and MSI were calculated in time windows ranging from 10 to 180 s in

duration and centered every 10 s. Looking at AF intervals delimited by vertical dashed

lines, we notice that some neurons started firing during AF episodes, which contributed

to increase total firing rate (Fig. 7B) and interestingly resulted in an increase in MSI

(Fig. 7C).

Figure 8 displays a density plot representing the relation betweenMSI and the total

firing rate for 10 dogs, where each point included in the density calculation corresponds

to the MSI and firing rate data of a time window. Only data from windows where

MSI was statistically significant (p < 0.01) were used. The plot shows that in most

windows, MSI < 0.2 and that higher synchrony values occurred less frequently and

were associated with low (< 1 Hz) firing rates. There is no data points near MSI = 0

because it would require a lot of data to identify a low but statistically significant

value of MSI. There was no clear correlation between MSI and firing rate suggesting

that the MSI provides additional information about intrinsic cardiac neurons that is

independent from firing rate analysis.

Based on Eq. (16), it is possible to estimate an upper bound for MSI (assuming

there are only two neurons) as a function of the total firing rate and the lowest (minimal)

firing rate of the two neurons

MSI ≤ 2 fmin/ftot . (17)

Assuming fmin = 0.5 Hz, Eq. (17) is displayed as dashed line on Fig. 8, to which our

data complies satisfactorily. The theoretical curve merely highlights the fact that a

maximal MSI is only attainable when two spike trains are characterized by the same

frequency (0.5 Hz in this case).

4. Discussion

The analysis of intrinsic cardiac neuron activity, a very recent field of research, has

created new challenges. The relatively small density of neurons in ganglionated plexi,

low firing rates, non-stationarity, the difficulty to obtain consistent response following

repeated stimuli (average evoked response), and the interactions with and the multiple

inputs from the cardiovascular and pulmonary systems require the development of

dedicated tools different from what is known to work best for neuronal recordings in the

brain.

In this article, we introduced a multivariate synchrony index (MSI) to provide

a mean of characterizing synchrony in an ensemble of cardiac neurons with a single
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symmetric measure that can be evaluated in a very large number of sliding windows over

whole multiple-hour experiments. This index is structured as a sum of weighted SIs so

that neurons with very low firing rates have a small contribution to the overall MSI,

thus preventing possible neuron identification errors from introducing a large bias in the

MSI. Each term of the sum involves the SI between a neuron and the combined time

series of all other neurons, which increases the number of random coincidences in each SI

contributing toMSI. On the other hand, theMSI may reveal global information about

an ensemble of neurons that remains hidden when synchrony is evaluated pairwise. Note

that the computational complexity of MSI is proportional to the number of neurons,

while pairwise synchrony analysis depends on its square.

Cardiac neurons exhibit non-stationary activity, possibly switching between periods

of high and low activity. These transitions may be triggered or modulated by external

stimuli, the sympathetic or parasympathetic tone, changes in cardiovascular indices or

cardiac rhythms such as the occurrence of arrhythmias. Neuron synchrony may also

vary independently of firing rate, as suggested by Fig. 8. The identification of periods

of interest (where significant changes in synchrony or firing rate are observed) is a

critical task that may be time consuming when multiple hours of signal have to be

examined. Automated analysis in sliding time windows of varying duration is a possible

solution to that problem. However, most synchrony measures require explicit generation

of surrogate data to assess statistical significance of synchrony so their application to

104–105 windows would become excessively computationally expensive. We extended

Agmon’s method to enable near real-time computation of synchrony in sliding windows

over hours of data at about 10-s resolution.

We proposed a two-dimensional scale-time representation of the firing rate and

synchrony in sliding time windows (e.g. Figs. 2 and 3). This representation is similar

to spectrograms used in time-frequency analysis and greatly facilitates the exploration

of the data set. In each window, the same weight was given to all the spikes. A smooth

window function (such as Hamming window) could have been used in order to limit

boundary effects. The cost of applying a window function would be to prevent the

use of Eq. (15) and thus to considerably slow down computations. Consequently, the

windowed approach might be used in a second stage after periods of interest have been

identified.

Our approach was validated on synthetic time series, demonstrating its ability to

independently assess firing rate and synchrony. For that purpose, we modified and

extended Agmon’s approach for synthetic signal generation to ensure an exact control

of the SI and MSI. The method is however still limited to positive synchrony between

a pair of neurons. The constraints involved in the simultaneous generation of more

than two time series with given MSI remain unknown. The results on synthetic time

series illustrated how to interpret experimental scale-time plots, notably in the case of

abrupt transitions which are associated with a triangular pattern in the diagram (with

characteristic slope of ±2).

Applications of the scale-time representation of synchrony and firing rates were
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illustrated using dog experiments. Examples of time-dependent synchrony between a

neuron and left ventricular pressure (Fig. 4), respiration (Fig. 5) and external stimulation

(Fig. 6), and time-dependent multivariate synchrony of a group of neurons (Fig. 7)

were shown. These examples are not necessarily representative of the recorded neuron

population. Indeed, many of them do not respond to cardiovascular, mechanical

or respiratory inputs. The tools developed here are intended to identify those who

respond synchronously and to test whether this synchrony is statistically significant and

maintained over time. This methodology could be used to study in deeper details the

interplay between the vulnerability to neurogenic atrial fibrillation and the synchrony

of cardiac neurons.
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Figure legends
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SI(t, t2)

(D)

1

-1

W1

W0

1 s

Figure 1. Two synthetic time series characterized by a chosen synchrony index of 0.3.

(A) Target time series generated as realization of a Poisson process with a refractory

period of 2τs. (B) Synchrony index as a function of time with respect to a reference

spike added at time t. (C) The intervals where SI(t, t2) = 1 and SI(t, t2) = 0 are

represented by the sets Ω1 and Ω0, respectively. (D) Spikes are placed in the sets Ω1

and Ω0 in order to get the desired SI(t1, t2) value.
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Figure 2. Mean firing rate and mean MSI from 5,000 realizations of two synthetic

time series. Sliding windows used for calculation are between 10 and 60 s in duration

at 1-s resolution. (A) An example realization of two synthetic time series with variable

MSI and firing rate. In intervals 2 and 4, spikes were placed to get SI = 0.3. (B)

Mean total firing rate from 5,000 realizations of the time series. (C) Mean MSI.
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Figure 3. Mean firing rate and mean MSI from 5,000 realizations of four synthetic

time series are calculated in sliding windows between 10 and 60 s in duration at 1-s

resolution. (A) A random realization of four synthetic time series. Firing rate of each

time series was set to 4 Hz in intervals 4 and 6, and to 1 Hz in all other intervals. SI

of paired times series (two pairs) was set to 0.3 in intervals 2, 4, 8 and 10 (only one

pair). (B) Mean total firing rate from 5,000 realizations of the time series. (C) Mean

MSI.
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Figure 4. SI between left ventricular pressure (LVP) and the spikes of a neuron

calculated in sliding windows between 10 and 180 s in duration at 10-s resolution.

Intervals where atrial fibrillation (AF) episodes take place are indicated by arrows.

Duration of AF episodes ranges from 5 to 20 s. (A) Firing rate of the neuron in time

windows. (B) SI between neuronal spikes and LVP peaks. Neuronal spike train is

considered the “reference” neuron in the computation of SI.
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Figure 5. SI between respiration peaks and the spikes of a neuron calculated in sliding

windows between 10 and 180 s in duration at 10-s resolution. Intervals where atrial

fibrillation (AF) episodes take place are indicated by arrows. (A) Neuronal time series

from a 12,000 s segment of an experiment. (B) Firing rate of the neuron calculated in

sliding windows. (C) SI between spikes of the neuron and the repiration peaks, with

the neuronal spike train acting as the “reference” neuron.



Fast computation of multivariate synchrony index 21

w
in

do
w

 w
id

th
 [s

]

 

 10

95

180 F
iri

ng
 r

at
e 

[H
z]

0

0.6

1.2

time [s]

w
in

do
w

 w
id

th
 [s

]

 

 

0 100 200 300 400 500 600

10

95

180

S
I

0

0.45

0.9

(A)

(B)

(C)

Neuron

MNS

Expected slope = 2 

AF

Figure 6. SI between MNS times and the spikes of a neuron calculated in sliding

windows between 10 and 180 s in duration at 10-s resolution. An interval where an

atrial fibrillation (AF) episode takes place is shown. (A) Neuronal spikes and MNS

times from a 600 s segment of an experiment. (B) Firing rate of the neuron calculated

in sliding windows. (C) SI between the neuron and MNS in time windows with the

neuronal spike train taken as the “reference” neuron. A “triangle” of windows with a

slope of 2 is expected when all significant coincidences occur only in a given interval

(10 s in this case).
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Figure 7. Neuronal time series with total firing rate and MSI calculated in sliding

windows between 10 and 180 s in duration at 10-s resolution. Intervals where atrial

fibrillation (AF) episodes occur are indicated by arrows. (A) Neuronal time series from

a 5,000 s interval of an experiment. (B) Total firing rate calculated in sliding windows.

(C) MSI in time windows.
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Figure 8. Density plot illustrating the relation between MSI and total firing rate

calculated in sliding windows for all dogs. Only data from windows where MSI was

statistically significant (p < 0.01) was used. Density is color-coded with white for low

values (= 0) and red for high values. The dashed line refers to the upper bound for

MSI calculated using 2 fmin/ftot where ftot is the total firing rate and fmin = 0.5 Hz.


