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Résumé

En finance, les modèles d’évaluation des actifs tentent de comprendre les différences
de rendements observées entre divers actifs. Hansen and Richard (1987) ont montré
que ces modèles sont des représentations fonctionnelles du facteur d’actualisation sto-
chastique que les investisseurs utilisent pour déterminer le prix des actifs sur le marché
financier. La littérature compte de nombreuses études économétriques qui s’intéressent
à leurs estimations et à la comparaison de leurs performances, c’est-à-dire de leur capa-
cité à expliquer les différences de rendement observées. Cette thèse, composée de trois
articles, contribue à cette littérature.

Le premier article examine l’estimation et la comparaison des modèles d’évalua-
tion des actifs dans un environnement riche en données. Nous mettons en œuvre deux
méthodes de régularisation interprétables de la distance de Hansen and Jagannathan
(1997, HJ ci-après) dans un contexte où les actifs sont nombreux. Plus précisément,
nous introduisons la régularisation de Tikhonov et de Ridge pour stabiliser l’inverse
de la matrice de covariance de la distance de HJ. La nouvelle mesure, qui en résulte,
peut être interprétée comme la distance entre le facteur d’actualisation d’un modèle et
le facteur d’actualisation stochastique valide le plus proche qui évalue les actifs avec
des erreurs contrôlées. Ainsi, ces méthodes de régularisation relâchent l’équation fon-
damentale de l’évaluation des actifs financiers. Aussi, elles incorporent un paramètre
de régularisation régissant l’ampleur des erreurs d’évaluation. Par la suite, nous pré-
sentons une procédure pour estimer et faire des tests sur les paramètres d’un modèle
d’évaluation des actifs financiers avec un facteur d’actualisation linéaire en minimisant
la distance de HJ régularisée. De plus, nous obtenons la distribution asymptotique
des estimateurs lorsque le nombre d’actifs devient grand. Enfin, nous déterminons la
distribution de la distance régularisée pour comparer différents modèles d’évaluation
des actifs. Empiriquement, nous estimons et comparons quatre modèles à l’aide d’un
ensemble de données comportant 252 portefeuilles.

iv



Le deuxième article estime et compare dix modèles d’évaluation des actifs, à la
fois inconditionnels et conditionnels, en utilisant la distance de HJ régularisée et 3
198 portefeuilles s’étendant de juillet 1973 à juin 2018. Ces portefeuilles combinent
les portefeuilles bien connus triés par caractéristiques avec des micro-portefeuilles. Les
micro-portefeuilles sont formés à l’aide de variables financières mais contiennent peu
d’actions (5 à 10), comme indiqué dans Barras (2019). Par conséquent, ils sont analogues
aux actions individuelles, offrent une grande variabilité de rendements et améliorent le
pouvoir discriminant des portefeuilles classiques triés par caractéristiques. Parmi les
modèles considérés, quatre sont des modèles macroéconomiques ou théoriques, dont le
modèle de CAPM avec consommation (CCAPM), le modèle de CAPM avec consom-
mation durable (DCAPM) de Yogo (2006), le modèle de CAPM avec capital humain
(HCAPM) de Jagannathan and Wang (1996), et le modèle d’évaluation des actifs avec
intermédiaires financiers (IAPM) de He, Kelly, and Manela (2017). Cinq modèles basés
sur les anomalies sont considérés, tels que les modèles à trois (FF3) et à cinq facteurs
(FF5) proposés par Fama and French, 1993 et 2015, le modèle de Carhart (1997) inté-
grant le facteur Momentum dans FF3, le modèle de liquidité de Pástor and Stambaugh
(2003) et le modèle q5 de Hou et al. (2021). Le modèle de consommation de Lettau and
Ludvigson (2001) utilisant des données trimestrielles est également estimé. Cependant,
il n’est pas inclus dans les comparaisons en raison de la puissance de test réduite. Par
rapport aux modèles inconditionnels, les modèles conditionnels tiennent compte des
cycles économiques et des fluctuations des marchés financiers en utilisant les indices
d’incertitude macroéconomique et financière de Ludvigson, Ma, and Ng (2021). Ces
modèles conditionnels ont des erreurs de spécification considérablement réduites. Les
analyses comparatives des modèles inconditionnels indiquent que les modèles macroé-
conomiques présentent globalement les mêmes pouvoirs explicatifs. De plus, ils ont un
pouvoir explicatif global inférieur à celui des modèles basés sur les anomalies, à l’excep-
tion de FF3. L’augmentation de FF3 avec le facteur Momentum et de liquidité améliore
sa capacité explicative. Cependant ce nouveau modèle est inférieur à FF5 et q5. Pour les
modèles conditionnels, les modèles macroéconomiques DCAPM et HCAPM surpassent
CCAPM et IAPM. En outre, ils ont des erreurs de spécification similaires à celles des
modèles conditionnels de Carhart et de liquidité, mais restent en deçà des modèles FF5
et q5. Ce dernier domine tous les autres modèles.

Le troisième article présente une nouvelle approche pour estimer les paramètres du
facteur d’actualisation linéaire des modèles d’évaluation d’actifs linéaires mal spécifiés
avec de nombreux actifs. Contrairement au premier article de Carrasco and Nokho
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(2022), cette approche s’applique à la fois aux rendements bruts et excédentaires. La
méthode proposée régularise toujours la distance HJ : l’inverse de la matrice de second
moment est la matrice de pondération pour les rendements bruts, tandis que pour les
rendements excédentaires, c’est l’inverse de la matrice de covariance. Plus précisément,
nous dérivons la distribution asymptotique des estimateurs des paramètres du facteur
d’actualisation stochastique lorsque le nombre d’actifs augmente. Nous discutons éga-
lement des considérations pertinentes pour chaque type de rendements et documentons
les propriétés d’échantillon fini des estimateurs. Nous constatons qu’à mesure que le
nombre d’actifs augmente, l’estimation des paramètres par la régularisation de l’inverse
de la matrice de covariance des rendements excédentaires présente un contrôle de taille
supérieur par rapport à la régularisation de l’inverse de la matrice de second moment
des rendements bruts. Cette supériorité découle de l’instabilité inhérente à la matrice
de second moment des rendements bruts. De plus, le rendement brut de l’actif sans
risque présente une variabilité minime, ce qui entraîne une colinéarité significative avec
d’autres actifs que la régularisation ne parvient pas à atténuer.

Mots clés : Econométrie financière, modèles d’évaluation des actifs, modèles de
grande dimension, distance de Hansen-Jagannathan, sélection de modèles, spécification
erronée d’un modèle, méthodes de régularisation.
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Abstract

In finance, asset pricing models try to understand the differences in expected returns
observed among various assets. Hansen and Richard (1987) showed that these models
are functional representations of the discount factor investors use to price assets in the
financial market. The literature counts many econometric studies that deal with their
estimation and the comparison of their performance, i.e., how well they explain the
differences in expected returns. This thesis, divided into three chapters, contributes to
this literature.

The first paper examines the estimation and comparison of asset pricing models
in a data-rich environment. We implement two interpretable regularization schemes
to extend the renowned Hansen and Jagannathan (1997, HJ hereafter) distance to a
setting with many test assets. Specifically, we introduce Tikhonov and Ridge regulariza-
tions to stabilize the inverse of the covariance matrix in the HJ distance. The resulting
misspecification measure can be interpreted as the distance between a proposed pricing
kernel and the nearest valid stochastic discount factor (SDF) pricing the test assets with
controlled errors, relaxing the Fundamental Equation of Asset Pricing. So, these me-
thods incorporate a regularization parameter governing the extent of the pricing errors.
Subsequently, we present a procedure to estimate the SDF parameters of a linear asset
pricing model by minimizing the regularized distance. The SDF parameters completely
define the asset pricing model and determine if a particular observed factor is a priced
source of risk in the test assets. In addition, we derive the asymptotic distribution of
the estimators when the number of assets and time periods increases. Finally, we de-
rive the distribution of the regularized distance to compare comprehensively different
asset pricing models. Empirically, we estimate and compare four empirical asset pricing
models using a dataset of 252 portfolios.

The second paper estimates and compares ten asset pricing models, both unconditio-
nal and conditional, utilizing the regularized HJ distance and 3198 portfolios spanning
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July 1973 to June 2018. These portfolios combine the well-known characteristic-sorted
portfolios with micro portfolios. The micro portfolios are formed using firms’ obser-
ved financial characteristics (e.g. size and book-to-market) but contain few stocks (5
to 10), as discussed in Barras (2019). Consequently, they are analogous to individual
stocks, offer significant return spread, and improve the discriminatory power of the
characteristics-sorted portfolios. Among the models, four are macroeconomic or theo-
retical models, including the Consumption Capital Asset Pricing Model (CCAPM),
Durable Consumption Capital Asset Pricing Model (DCAPM) by Yogo (2006), Human
Capital Capital Asset Pricing Model (HCAPM) by Jagannathan and Wang (1996),
and Intermediary Asset pricing model (IAPM) by He, Kelly, and Manela (2017). Five
anomaly-driven models are considered, such as the three (FF3) and Five-factor (FF5)
Models proposed by Fama and French, 1993 and 2015, the Carhart (1997) model incor-
porating momentum into FF3, the Liquidity Model by Pástor and Stambaugh (2003),
and the Augmented q-Factor Model (q5) by Hou et al. (2021). The Consumption model
of Lettau and Ludvigson (2001) using quarterly data is also estimated but not included
in the comparisons due to the reduced power of the tests. Compared to the unconditio-
nal models, the conditional ones account for the economic business cycles and financial
market fluctuations by utilizing the macroeconomic and financial uncertainty indices
of Ludvigson, Ma, and Ng (2021). These conditional models show significantly redu-
ced pricing errors. Comparative analyses of the unconditional models indicate that the
macroeconomic models exhibit similar pricing performances of the returns. In addi-
tion, they display lower overall explanatory power than anomaly-driven models, except
for FF3. Augmenting FF3 with momentum and liquidity factors enhances its explana-
tory capability. However, the new model is inferior to FF5 and q5. For the conditional
models, the macroeconomic models DCAPM and HCAPM outperform CCAPM and
IAPM. Furthermore, they have similar pricing errors as the conditional Carhart and
liquidity models but still fall short of the FF5 and q5. The latter dominates all the
other models.

This third paper introduces a novel approach for estimating the SDF parameters
in misspecified linear asset pricing models with many assets. Unlike the first paper,
Carrasco and Nokho (2022), this approach is applicable to both gross and excess returns
as test assets. The proposed method still regularizes the HJ distance : the inverse of
the second-moment matrix is the weighting matrix for the gross returns, while for
excess returns, it is the inverse of the covariance matrix. Specifically, we derive the
asymptotic distribution of the SDF estimators under a double asymptotic condition
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where the number of test assets and time periods go to infinity. We also discuss relevant
considerations for each type of return and document the finite sample properties of
the SDF estimators with gross and excess returns. We find that as the number of test
assets increases, the estimation of the SDF parameters through the regularization of the
inverse of the excess returns covariance matrix exhibits superior size control compared
to the regularization of the inverse of the gross returns second-moment matrix. This
superiority arises from the inherent instability of the second-moment matrix of gross
returns. Additionally, the gross return of the risk-free asset shows minimal variability,
resulting in significant collinearity with other test assets that the regularization fails to
mitigate.

Keywords : Financial Econometrics, Asset Pricing models, High-dimensional mo-
dels, Hansen-Jagannathan distance, Model selection, Model misspecification, Regulari-
zation methods.
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Chapitre 1

Hansen-Jagannathan distance with

many assets
∗

1.1 Introduction

Dynamic Asset Pricing Models mainly strive to understand the difference in expec-
ted returns among assets. Models differ according to the researcher’s systemic risk : for
example, CAPM proposes the market portfolio as the main relevant risk factor. Several
alternative models (anomalies) have been tested in the literature following the rejection
of the CAPM. These models can always be obtained by the relationship between the
stochastic discount factor (SDF), pricing kernel, and the proposed risk factors.

A well-known measure of model misspecification is the Hansen-Jagannathan (HJ)
distance, which measures the distance between a proposed pricing kernel and the closest
valid one (see Hansen and Jagannathan (1997)). The distance is similar to the GMM
one except for the weighting matrix which is equal to the inverse of the second moment
matrix of the returns. With this distance, the the null hypothesis of correct specification
is often rejected (Hodrick and Zhang (2001) ; Ludvigson, 2013). Therefore, models are
usually misspecified. In addition, the distance is used to estimate a parameter of the
SDF and evaluate whether a risk factor is a priced source of risk.

Even when the models are considered misspecified, one would like to compare the
performance of competing asset pricing models. This task has been difficult as many as-
set pricing models seem to perform very well in explaining the well-known 25 portfolios
sorted on size (S) and book-to-market (B-M) of Fama and French (1992). As pointed

∗. This chapter is co-authored with Marine Carrasco.

1



out by Daniel and Titman (2012), this is chiefly due to the characteristics of the for-
med portfolios which cover a restricted dimension of the returns. Lewellen, Nagel, and
Shanken (2010) mention the strong covariance structure of the S/B-M portfolios and
suggest increasing the number of test assets, among other recommendations. Kan and
Robotti (2009) augment the dataset with the 49 US industry portfolios and compare
the HJ distance of several asset pricing models. However, they could not differentiate
them due to the high variability of the data.

With the HJ distance, test assets cannot be expanded infinitely without worrying
about the weighting matrix. The latter’s estimation is quickly unreliable and unstable
as the return covariance is near singular or downright non-invertible when the number
of assets is larger than the length of the time-series. Cochrane (2005) advanced that a
number of assets larger than 1/10 of the time periods frequently leads to a near singular
covariance matrix. Using this weighting matrix is equivalent to testing asset pricing mo-
dels with a particular portfolio built from the original returns or test assets. However,
a near-singular matrix produces exceptionally leveraged portfolios that are economi-
cally not reasonable. Therefore, one ends up focusing on uninteresting portfolios. The
situation is exacerbated when, for example, researchers use a considerable amount of
individual returns as test assets.

The same issue arises frequently, and the well-known generalized least-squares (GLS)
is another example as pointed out by Cochrane (2005). In the presence of heterosce-
dasticity, OLS estimates are still consistent ; however, GLS will be more efficient. Ne-
vertheless, inaccurate estimation or modeling of the errors’ covariance matrix leads to
a deterioration of the GLS results. Therefore, it is sometimes even better to stop at the
OLS level of estimation. Furthermore, standard GMM presents the same issue as Ja-
gannathan et al. (2010) discussed. Therefore, when the GMM optimal matrix is poorly
estimated, using an identity matrix for the first-step GMM may offer greater robustness
compared to using the estimated optimal matrix.

This paper examines the evaluation and comparison of asset pricing models with
many test assets, therefore an unstable covariance matrix. Our main contributions can
be summarized as follows. First, relying on the inverse problem literature (see Carrasco
et al. (2007)), we extend the HJ distance to account for many test assets while assuming
that all models are inherently misspecified. Specifically, we implement Tikhonov and
Ridge regularizations of the inverse of the covariance matrix in the HJ distance. We
show that these regularizations relax the Fundamental Equation of Asset Pricing. In
addition, the new misspecification measures can be interpreted as the distance between

2



a proposed pricing kernel and the closest valid SDF pricing returns with controlled
errors. All these methods depend on a regularization parameter that controls the level
of misspecification. Second, we provide the asymptotic distribution of SDF parameters
obtained by minimizing the regularized distance. This permits to determine whether a
particular factor is a priced source of risk in the returns and is essential to compare
models. In our setting, we allow the number of assets to be higher than the number of
time series data. Third, to compare models in the most general manner, we derive the
distribution of the regularized distance. All the results are derived under the double
asymptotics where the number of assets N and the number of observations T go to
infinity simultaneously.

Our work is related to several strands of the literature at the intersection of asset
pricing model evaluation and machine learning in finance. Several papers proposed
methods to examine asset pricing misspecification (Hansen and Jagannathan, 1997 ;
Almeida and Garcia, 2012). This paper is close to Kan and Robotti, 2008 and Kan
and Robotti, 2009 who derived asymptotic distribution of the SDF parameter and
model comparison methods using the HJ distance under a misspecified setting. As
we are interested in estimating the parameters that minimize the HJ distance under
misspecification (pseudo-true value), this paper is also related to Antoine et al. (2020).
However, unlike their approach, we employ the unconditional version of the HJ distance
with many assets. Several papers also propose methods to either stabilize or improve
the estimation of covariance matrices (Carrasco and Rossi, 2016 ; Carrasco et al., 2019 ;
Ledoit and Wolf, 2003 ; Ledoit and Wolf, 2020). This paper is also related to the work of
Korsaye et al. (2019). They propose a general method of finding a Smart SDF (S-SDF),
a strictly positive SDF that tolerates pricing errors for dubious assets. Our method finds
the distance between the empirical SDF of the researcher and the S-SDF, without the
non-arbitrage constraint. Barillas and Shanken (2018) put forth a method to compare
asset pricing models. They also show that returns of the test assets are irrelevant when
comparing asset pricing models with just traded factors. However, the test assets become
essential when one deals with non-traded factors. In this paper, we are dealing with
both types of factors. Finally, as we evaluate models under a misspecified setting, our
paper is related to Hall and Inoue (2003) who established the distribution of estimated
parameters with a misspecified GMM.

The paper is organized as follows. Section 1.2 presents the framework under which
we evaluate models and the issues related to the weighting matrix. Section 1.3 intro-
duces several regularization methods as well as their interpretations. The section also
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presents the asymptotic properties of the SDF parameter estimator. Section 1.4 treats
model comparison using regularization, and section 1.5 contains the results of the si-
mulations. Section 1.6 compares four empirical asset pricing models using a dataset of
252 portfolios. Finally, section 1.7 concludes. The proofs are collected in the appendix.

1.2 Asset pricing model under misspecification

1.2.1 Pricing errors and model specification using excess re-

turns

Let rt be the excess returns of N assets. Given the availability of K factors ft, the
estimation of Asset Pricing Models can be summarized in finding the expression of the
relevant stochastic discount factor yt. The latter must satisfy the fundamental equation
of asset pricing : E[rt.yt] = 0.

Define Yt =

"
ft

rt

#
. Its mean and covariance matrix are given by µ = E[Yt] =

"
µ1

µ2

#

and V = V (Yt) =

"
V11 V12

V21 V22

#
. We define also r̃t = rt � µ2 and f̃t = ft � µ1. In this

paper, we focus on linear candidate SDF, yt(✓) = 1� f̃
0
t✓. It is common to choose ✓ by

minimizing the aggregate pricing errors e(✓) = E[rt.yt(✓)] = µ2 � V21✓ via

QW = e(✓)
0
We(✓), (1.1)

where W is a positive-definite matrix.
The SDF prices correctly the returns, when one can find ✓ such that QW (✓) = 0.

Otherwise, the model is considered globally misspecified.

Remark 1. The reason for demeaning the factors is the following. When models are
misspecified, Proposition 1 of Kan and Robotti (2008) shows that the ranking of asset
pricing models using QW with raw factors can be altered by performing an affine trans-
formation of the factors. To impose invariance to affine transformations of the factors,
one should demean the factors.

In the particular case, where W = V �1
22 , the covariance of the returns, QW is a

modified Hansen and Jagannathan (1997) distance, where the mean of the SDF is
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constrained to 1. Let

QV22 = �2 = (µ2 � V21✓)
0
V �1
22 (µ2 � V21✓). (1.2)

We define ✓HJ as the solution to the minimization of (1.2).

✓HJ = argmin
✓

�2 = (V12V
�1
22 V21)

�1V12V
�1
22 µ2.

✓HJ can also be written as V �1
11 (�0V �1

22 �)
�1�0V �1

22 µ2 = V �1
11 � where � = V21V

�1
11 is the

exposure of the returns to the factors ft and � = (�0V �1
22 �)

�1�0V �1
22 µ2 represents the risk

premium. This particular form shows that the SDF parameter can also be estimated
via the �s. Such representation is not new as a well-known equivalence between SDF
representation, beta-representation and minimum-variance efficiency has been already
established (see Cochrane (2005, p. 261), chapter 7 of Ferson (2019) or Goyal (2012)). In
this setting, the asset pricing model is misspecified when e = µ2�V21V

�1
11 � = µ2��� 6=

0.

We represent a misspecified linear asset-pricing model with SDF yt = 1� f̃
0
t✓ by the

following formulation

rt = e+ �(f̃t + �) + ✏t, (1.3)

where � is a matrix N ⇥ K, e 2 RN , � 2 RK , the N ⇥ 1 error terms ✏t are assumed
uncorrelated with the factors. In addition, the errors have mean 0 and variance V (✏t |

ft) = ⌃✏ = [�i,j]i,j=1,··· ,N of full rank where �i,j = E [✏it✏jt]. We note �2
i = �i,i and

✏ = [✏1, ..., ✏T ]
0 . Remark that Equation (1.3) does not impose a factor structure on rt

because the error term ✏t is allowed to be serially correlated (see Assumption 2 below).
Moreover, the intercept ei may vary with the asset i.

Let R = [r1, · · · , rT ]
0 and F = [f1, · · · , fT ]

0 be respectively the T ⇥ N and T ⇥K

matrices of returns and factors. The OLS estimates of � is given by

�̂ = (R̄
0
F̄ )(F̄

0
F̄ )�1 = V̂21V̂

�1
11

where R̄ = R � 1T µ̂
0
2 and F̄ = F � 1T µ̂

0
1. R̄ =

2

664

r̄
0
1
...
r̄
0
T

3

775 and F̄ =

2

664

f̄1
...
f̄T

3

775 with r̄t = rt � µ̂2

and f̄t = ft � µ̂1. µ̂1 =
1
T

PT
t=1 ft and µ̂2 =

1
T

PT
t=1 rt are respectively the estimators of
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µ1 and µ2.
The SDF parameter is estimated by

✓̂HJ = V̂ �1
11 (�̂0V̂ �1

22 �̂)
�1�̂0V̂ �1

22 µ̂2,

and
�̂2 = µ̂

0

2V̂
�1
22 µ̂2 � µ̂

0

2V̂
�1
22 V̂21(V̂12V̂

�1
22 V̂21)

�1V̂12V̂
�1
22 µ̂2

= µ̂
0

2V̂
�1
22 µ̂2 � µ̂

0

2V̂
�1
22 �̂(�̂

0
V̂ �1
22 �̂)

�1�̂
0
V̂ �1
22 µ̂2.

Using excess returns, Lemma 4 of Kan and Robotti (2008) gives the asymptotic
distribution of ✓̂HJ under a misspecified setting and for N fixed. Specifically,

p

T (✓̂HJ � ✓HJ) ! N(0K , V (✓̂HJ)),

where

V (✓̂HJ) =
1X

j=�1

E[qtq
0

t+j], (1.4)

qt = HV12V
�1
22 (rt � µ2)yt +H[(ft � µ1)� V12V

�1
22 (rt � µ2)]ut + ✓HJ , H = (V12V

�1
22 V21)�1

and ut = e
0
V �1
22 (rt � µ2).

1.2.2 Issues with the weighting matrix

When models are misspecified, the SDF parameter, that minimizes (1.1), depends
on the weighting matrix. Therefore, its choice is primordial.

One possibility is to use the GMM framework. in this case, W = S�1, where

S =
1X

j=�1

E[(rt.yt) , (rt�j.yt�j)
0
].

However, using this setting to compare asset pricing models may be misleading for
several reasons.

First, in this case, the objective function (1.1) equates to the over-identification
test of Hansen (1996). However, it has been shown that this diagnostic is model-
dependent and tends to reward models with volatile SDF and pricing errors as their
over-identification statistics tends to be lower (Ludvigson (2013, p. 810)).

Second, from a perspective of looking at the GMM estimator as a portfolio opti-
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mization with the inverse of the eigenvalues of S as weights, it tends to produce huge
leverage portfolios as S is near singular with many assets (Cochrane (1996, p. 592)).

Other matrices can be used. For example, the inverse of V22�V21V
�1
11 V12, the residuals

of the regression of r on f , is used in Shanken (1985) and Shanken and Zhou (2007)
to estimate the risk premium �. One can also use the identity matrix to circumvent
the invertibility issue. Nonetheless, the models estimated will depend on the assets
included. This setting is not preferable for researchers looking for results independent
of particular dataset.

As shown in Kan and Robotti (2008), the use of V �1
22 as weighting matrix enables the

HJ distance to be model-independent and suitable for asset pricing model comparison.
However, V �1

22 is often near singular as securities are very correlated and N is often
large. This singularity may be even higher than that of S. Therefore, it brings forth the
same issues as pointed out by Cochrane (2005, p. 216). In addition, near singularity
deteriorates the small sample properties of the SDF estimator or misspecification test.

1.3 Regularized SDF parameter estimator

As stated earlier, inference using the modified HJ distance may not be robust to
a large number of correlated securities that makes the weighting matrix near singular.
Relying on the literature on inverse problems in an infinite dimensional space (see Kress
(2014) and Carrasco et al. (2007)), we introduce two regularization methods to stabilize
the weighting matrix and improve the estimation of asset pricing models.

1.3.1 Types of regularization

Before introducing the regularization techniques, we introduce several objects to
recast the problem as an inverse problem. ⌃ = V22

N = E
h
(rt�µ2)(rt�µ2)

0

N

i
= E

h
r̃tr̃

0
t

N

i
=

E
h
R̃

0
R̃

NT

i
is a N ⇥N matrix, where r̃t = rt � µ2 and R̃ =

h
(r1 � µ2)

0
· · · (rT � µ2)

0
i0

is T ⇥ N matrix. We endow RN with the norm k � k
2
N=

�
0
1�2

N with associated inner

product < �1,�2 >N=
�
0
1�2

N , and RT with norm k v k
2
T=

v
0
v

T generated by inner product

< v1, v2 >T=
v
0
1v2
T . Let H be the operator from RN to RT defined by H� = R̄�

N and H⇤,
the adjoint of H. H⇤v = R̄

0
v

T , operator from RT to RN . With that, we have the operator

H⇤H� = R̄
0
R̄

NT � = ⌃̂� which goes from RN to RN . Let
⇢q

�̂j, �̂j, v̂j

�
j = 1, 2, ... be the
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singular value decomposition of H such that H�j =
q
�̂j v̂j and H⇤vj =

q
�̂j�̂j. Note

that
n
�̂j, �̂j

o
, j = 1, 2, ...,min(N, T ) are the non zero eigenvalues and eigenvectors of

⌃̂.

In addition, we define other norms that will be useful in the sequel.

Definition 1.

(i) For a vector v 2 RN , k v k is the euclidian norm.

(ii) For an arbitrary (K ⇥ N) matrix V, the operator norm of V is k V k= sup
k�k=1

k

V � k. Therefore, for any vector u 2 RN , k V u kk V kk u k .

(iii) Let {�j}j=1,··· ,N be a complete orthonormal basis in RN . For any � 2 RN , k � k
2
N=PN

i=1 < �,�j >2
N and if V is a (N⇥N) symmetric matrix, we define the following

operator norm k V kN= sup
k�kN=1

< V �,� >N .

(iv) We define the Frobenius norm as k V kF=
�
tr(V

0
V )

� 1
2 . We have k V kk V kF

and for any vector u 2 RN , k V u kk V kFk u k.

(v) If k v kN< 1 when N ! 1, we note k v k1 its limit value.

Assumption 1. As N ! 1,

(i) 1
N

PN
i=1 �

0
i�i ! ⌃� where ⌃� is positive-definite matrix.

(ii) k e kN= O(1).

Remark 2. The first part of assumption 1 is the same as assumption 2 of Raponi et al.
(2020). Positive-definite ⌃� excludes spurious factors and cross sectionally constant �i.
Also, this assumption implies that k �k k1< 1, k = 1, · · · , K.

Assumption 2. (i) The process xt = (✏it, fkt)t=1,2,··· ,T is stationary and strong mixing
with mixing coefficients ↵x(l) verifying

1X

l=1

l↵x(l)
⇢

2+⇢ < 1,

for some ⇢ > 0. ↵x(l) = sup
i,k�1

sup
A,B

⇥
| P (A \B)� P (A)P (B) |: A 2 F

0
�1, B 2 F

1
l

⇤
,

where l � 1 and F
v
u = �(xt : u  t  v) is the sv-field generated by the data from

a time u to a time v for v � u.

(ii) V11 is non singular.
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(iii) E[✏4+2⇢
it ] < c, for i = 1, 2, · · · , where c is a constant.

Remark 3. Assumption 2 implies that E[k ✏t k2N ] = O(1) as N ! 1.

Lemma 1. Under assumption 1 and 2, for a linear asset pricing model, we have the
following results as N ! 1,

1. E[k rt k2N ] = O(1).
2. tr(⌃) = O(1).

Remark 4. Lemma 1 indicates that the expected norm of the returns is finite when
N is large. In addition, ⌃ is trace class, i.e the sum of its eigenvalues is finite. This
implies that ⌃ is in the family of Hilbert-Schmidt operators which are compact. The
result has several implications. First, the set of eigenvalues is countable and its largest
one is bounded (see Theorem 2.39 of Carrasco, Florens, and Renault (2007)). Second,
as N ! 1, its smallest eigenvalue decreases to 0.

Let ↵ > 0 be a regularization parameter. We consider two techniques which consist
in replacing the singular or nearly singular matrix ⌃̂ by a well-conditioned matrix before
inverting the matrix. These two regularization schemes give the following inverses :

1. Ridge regularization

⌃̂�1
↵ = (⌃̂+ ↵IN)

�1.

2. Tikhonov regularization

⌃̂�1
↵ = (⌃̂2 + ↵IN)

�1⌃̂.

For ↵ small, the regularized inverse will be close to the actual inverse while being much
more stable. In practice, the tuning parameter ↵ is chosen to go to zero with the sample
size. Its choice is discussed later.

Definition 2. (i) For an operator A : G ! E that maps a Hilbert Space G (with
norm k . kG) into a Hilbert Space E (with norm k . kE), the range, R(A), is the
set { 2 E :  = A� for some � 2 G such that k � kH< 1}.

(ii) For a positive self-adjoint compact operator with spectrum {�j,'j, j = 1, · · · }

⌃ : G ! G that maps a Hilbert Space G (equipped with the inner product
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< . >G) into itself, the !�regularity space of the operator ⌃ , for all ! > 0, is

�! =

(
� : � 2 G and

1X

j=1

|< �,'j >G|
2

�2!j
< 1

)
.

(iii) The reproducing Kernel Hilbert pace (RKHS) H(⌃) of the operator ⌃ corresponds
to ! = 1

2 .

Remark 5. �! is a decreasing family of subspaces of RN as ! > 0 increases. The regu-
larity space parameter ! qualifies the smoothness of �. It also permits to characterize
the regularization bias.

Remark 6. Notice that as �̂ = R̄
0
PF
T , where PF = F̄ ( F̄

0
F̄

T )�1 =
h
P 1
F · · · PK

F

i
. Then, �̂

can be rewritten as �̂ =
h
H⇤P 1

F · · · H⇤PK
F

i
. Therefore, �̂k 2 R(H⇤), k = 1, · · · , K.

From Proposition 6.2 of Carrasco, Florens, and Renault (2007), R(H⇤) = H(⌃̂) =

R(⌃̂
1
2 ) where H(⌃̂) is the Reproducing Kernel Hilbert Space of ⌃̂.

We make a stronger assumption on the �k and e.

Assumption 3. (i) �k, e 2 �!, with ! = 3.

(ii) As N ! 1, C� = 1
N �

0
⌃�1� =< ⌃� 1

2�,⌃� 1
2� >N! C, where C is positive-

definite matrix.

Assumption 3(i) implies that �k and e belong to the range of ⌃! so that objects
⌃�!�k and ⌃�!e are well defined even when N goes to infinity.

1.3.2 Regularization as penalization

As pointed out by Kan and Robotti (2008), �2 gives the distance between the pro-
posed SDF yt and the set of correct SDFs of mean 1 in M, set of square integrable
random variables.

�2 = min
mt2M,E[mt]=1

E (mt � yt)
2 subject to E[mtrt] = 0. (1.5)

To account for increasing N , we normalize rt by N , omit the subscript t to simplify
the presentation, and get the problem below

min
m2M,E[m]=1

E (m� y) 2 subject : to : E[
r

N
m] = 0.
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Using the saddle problem, and the fact that E[y] = 1, Kan and Robotti (2008)
rewrite the problem as below

�2 = min
m

: max
⌫12RN ,⌫22R

E
n
(y �m)2 + 2⌫

0

1

r

N
m+ 2⌫2(E[m]� 1)

o

= min
m

: max
⌫12RN ,⌫22R

E
n
(y � ⌫

0

1

r

N
� ⌫2 �m)2 + 2⌫

0

1

r

N
y + 2⌫2y

�⌫
0

1

rr
0

N2
⌫1 � 2⌫

0

1

r

N
⌫2 � ⌫22 � 2⌫2

�
.

Fixing the Lagrange multipliers and solving the minimization problem with respect
to m yields 2 the following dual problem

�2 = max
⌫12RN ,⌫22R

E

⇢
2⌫

0

1

r

N
y � ⌫

0

1

rr
0

N2
⌫1 � 2⌫

0

1

r

N
⌫2 � ⌫22

�
.

The first order condition related to ⌫2 is given by E
n

r
N

0
⌫1 + ⌫2

o
= 0. We can eliminate

⌫2 from the previous problem and obtain

�2 = max
⌫12RN

E
n
y2 � (y � ⌫

0

1(
r

N
�

µ2

N
))2 + 2⌫

0

1

µ2

N

o
. (1.6)

The resulting ⌫1 is ⌫⇤1 = ⌃�1e, where e = E[ry] and

�2 =
e
0
⌃�1e

N
.

To take into account the large number of assets (big N), we penalize the Lagrange
multiplier ⌫1 in (1.6) as follows :

�2R = max
⌫12RN

E
n
y2 � (y � ⌫

0

1(
r

N
�

µ2

N
))2 + 2⌫

0

1

µ2

N

o
�
↵

N
⌫

0

1⌫1.

This yields ⌫⇤1↵ = [⌃+ ↵IN ]�1E[ry] = [⌃+ ↵IN ]�1e and

�2R =
e
0
[⌃+ ↵IN ]�1e

N
.

As a consequence, this penalization leads to the Ridge regularization where the weigh-
ting matrix is (⌃+ ↵IN)�1 .

2. The minimum is attained by setting m = y � ⌫
0

1
r

N
� ⌫2
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In the same vein, we obtain the Tikhonov regularization through the problem below
where the penalization depends on ⌃�1.

�2K = max
⌫12RN

: E
n
y2 � (y � ⌫

0

1(
r

N
�

µ2

N
))2 + 2⌫

0

1

µ2

N

o
� ↵⌫

0

1V
�1
22 ⌫1

= max
⌫12RN

: E
n
y2 � (y � ⌫

0

1(
r

N
�

µ2

N
))2 + 2⌫

0

1

µ2

N

o
�
↵

N
⌫

0

1⌃
�1⌫1.

It yields ⌫⇤1↵ = [⌃2 + ↵IN ]�1⌃E[ry] = [⌃2 + ↵IN ]�1⌃e.

�2K =
e
0
[⌃2 + ↵IN ]�1⌃e

N
.

1.3.3 Regularization as Minimum Discrepancy SDF solution

There is another interpretation of the regularized HJ-distance. �2↵ measures how far
y is to the closest valid SDF of mean 1 which prices returns with errors controlled by
↵. To prove it, we make the following assumption.

Assumption 4. 9m0 2 L2 : E [m0] = 1, and k E[m0r] k2N< 1.

Remark 7. Assumption 4 guarantees the existence of at least one SDF with finite pricing
error.

Proposition 1. Under assumption 4, we have the following results :
1. For ridge,

�2R = inf
m2M,E[m]=1

E[(m� y)2] +
1

↵
k E[mr] k2N , (1.7)

2. For Tikhonov,

�2K = inf
m2M,E[m]=1

E[(m� y)2] +
1

↵
k E[mr] k2N,⌃, (1.8)

where k x k
2
N,⌃=

x
0
⌃x
N for any x 2 RN .

Remark 8. The previous proposition shows that regularization is equivalent to relaxing
the constraint of problem (1.5). Low values of ↵ put the emphasis on the fundamental
equation of asset pricing, while high values allow for possible errors in the pricing of
assets.
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Now we investigate how Tikhonov regularization acts on the constraint. As assets
with very low eigenvalues tend to have abnormally bigger weights in the HJ-distance, the
Tikhonov regularization induces a rebalancing of the weights. Using the diagonalization
of ⌃ = P

0
⇤P , where P is the matrix of eigenvectors and ⇤, the matrix of eigenvalues

�j, we can rewrite the penalization as following :

1

↵
k E[mr] k2N,⌃ =

1

↵
(E[mr])

0
P

0
⇤PE[mr])

=
1

↵
(E[mPr])

0
⇤(E[mPr])

=
NX

j=1

!jE[m(Pr)j]
2,

where !j =
�j

↵ . (Pr)j can be interpreted as the principal component of r.
The Tikhonov penalization entails the repackaging of the assets into N portfolios

(Pr)j with weights given by !j. The lower the eigenvalues �j is, the lower the contri-
bution of asset (Pr)j to the minimization, and vice-versa.

Remark 9. Korsaye, Quaini, and Trojani (2019) propose a Smart SDF (S-SDF), M .
The latter is a non-negative random variable that tolerates pricing errors for D 2 N
dubious assets (Rd) while pricing correctly S 2 N sure assets (Rs).

E[MRs]� qs = 0N and h(E[MRd]� qd)  ⌧,

where ⌧ > 0 and h : RD
! [0,+1] is a closed and convex pricing function. qs and qd

are the prices of the sure and dubious assets. Such SDF always exists in an arbitrage-
free economy with frictions. In the search of a minimum dispersion S-SDF, the latter
materialized itself as a penalization of the portfolio weights of the dubious assets in the
dual portfolio problem. This penalization represents transaction costs which equal to
the minimum execution cost for buying the dubious assets.

Remark that it is equivalent to penalize the norm kE [mr]k2 in (1.7) or to impose a
constraint of the form kE [mr]k2  ⌧ so our approach is very similar to that of Korsaye,
Quaini, and Trojani (2019). However, we do not impose M 2 L2

+, i.e non-negative L2

random variable. In Proposition 1, we have one sure asset Rs = 1 with price qs = 1 and
N dubious assets.
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1.3.4 Asymptotic distribution of the regularized SDF parame-

ter of misspecified models

For any regularization schemes, the estimator of ✓HJ is given by

✓̂↵HJ = argmin
✓

(µ̂2 � V̂21✓)
0
⌃̂�1

↵ (µ̂2 � V̂21✓). (1.9)

✓̂↵HJ = V̂ �1
11 (�̂0⌃̂�1

↵ �̂)�1�̂0⌃̂�1
↵ µ̂2

and the regularized HJ-distance is

�̂2↵ =
µ̂

0
2⌃̂

�1
↵ µ̂2

N
�

µ̂
0
2⌃̂

�1
↵ V̂21

N

 
V̂12⌃̂�1

↵ V̂21

N

!�1
V̂12⌃̂�1

↵ µ̂2

N

=
µ̂

0
2⌃̂

�1
↵ µ̂2

N
�

µ̂
0
2⌃̂

�1
↵ �̂

N

 
�̂

0
⌃̂�1

↵ �̂

N

!�1
�̂

0
⌃̂�1

↵ µ̂2

N
.

⌃̂�1
↵ is the regularized inverse of ⌃̂ obtained either by Ridge or Tikhonov regularization.

Using the definition of the asset pricing model, the average of the excess return can
be rewritten as

µ̂2 = �̂(µ̂1 � µ1 + �) + (� � �̂)(µ̂1 � µ1 + �) + e+ ✏̄,

where ✏̄ = 1
T

PT
t=1 ✏t and ✓̂↵HJ can be decomposed as such

✓̂↵HJ � ✓HJ = (V̂ �1
11 � V �1

11 )� + V̂ �1
11 (µ̂1 � µ1) (1.10)

+ V̂ �1
11 (�̂0⌃̂�1

↵ �̂)�1 [ �̂0⌃̂�1
↵ (� � �̂)(� + µ̂1 � µ1)

+ �̂
0
⌃̂�1

↵ e+ �̂0⌃̂�1
↵ ✏̄ ].

Equivalence between Ridge and Tikhonov.

Because �̂ depends on r, it is possible to rewrite Ridge as Tikhonov regularization.
Ridge regularization gives
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⌃̂�1
↵ �̂ = (

R
0
R

NT
+ ↵IN)

�1R
0
F

T

=
min(N,T )X

j=1

q(↵,
p
�j)q

�̂js
< F ,�j >N �j,

where q (µ) = µ
↵+µ and {�j,�j} are the eigenvalues and eigenvectors of ⌃ (see Appendix

for more details). Tikhonov regularization gives the same formula but with q(↵,
p
�j)

replaced by q(↵,�j). So both regularizations give basically the same results (the only
difference is that the optimal rate for ↵ which may be different). For this reason, we
focus on Tikhonov regularization. From now on, ✓̂↵HJ and �̂2↵ correspond to the estimators
obtained by Tikhonov regularization.

The following assumption is needed to derive the distribution of regularized SDF
parameter when N and T go to 1.

Assumption 5. For ⇢ > 0 defined in Assumption 2 (i), we assume :

(i) E[f 4+2⇢
kt ] <1 for k = 1, . . . , K .

(ii) lim
N!1

E[k ✏t k
4+2⇢
N ] < 1 .

(iii) lim
N!1

E[k rt k
4+2⇢
N ] < 1 .

(iv) lim
N,T!1

V ar( 1p
T

PT
t=1 < rt,⌃�1e >N) > 0.

(v) lim
N,T!1

V ar( 1p
T

PT
t=1 < ⌃�1�, rt >N) > 0.

(vi) lim
N,T!1

V ar( 1p
T

PT
t=1 < ✏t,⌃�1e >N) > 0.

Proposition 2. Suppose Assumption 1-5 are satisfied.
As T , N go to infinity and ↵ goes to zero, if ↵ is chosen such that ↵T ! 1 and

↵2T ! 0 , we have the following results for Tikhonov regularization
1. ✓̂↵HJ

P
�! ✓HJ

2.
p
T (✓̂↵HJ � ✓HJ)

d
! N (0K , V

�1
11 ⌦V �1

11 )

where ⌦ = lim
N,T!1

var
h

1p
T

PT
t=1 ht

i
. ht is defined as

ht = eftyt + � + C�1
�

�
0
⌃�1

N (✏tyt � r̃tũt + e) + C�1
� V �1

11
eft ✏

0
t⌃

�1e
N , and ũt =

r̃
0
t⌃

�1e
N .

Proposition 2 can also be used when the model is correctly specified by setting
e = 0. ⌦ can be estimated using a nonparametric heteroskedasticity and autocorrelation
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consistent (HAC) estimator of Newey and West (1987) using the sample analog of ht .
The results of Proposition 2 are key to compare competing asset pricing models.

The regularization parameter must be chosen in a way such that the bias vanishes as
T ! 1. In general, as T and N go to 1, if ↵ ⇠

1
T ,  2]12 ; 1[, the rates of convergence

of Proposition 2 are satisfied. In practice, we let the data choose ↵.

1.3.5 Choice of the regularization parameter

We rely on a data-driven approach to choose the regularization parameter ↵. For
a given sample size T , we divide the historic data in two parts. We use the first part
to estimate � and employ it to predict returns in the second part. We choose a that
maximizes the out-of-sample R-square, R2

oos.

R2
oos = 1�

(µo
2 � �o�̂↵)

0
(µo

2 � �o�̂↵)

µo0
2 µ

o
2

, (1.11)

where quantity with .o are estimated from the withheld sample.

1.4 Tests of equality of HJ distance of two asset pri-

cing models

The analysis of this section is similar to section 2 of Kan and Robotti (2009). We
compare two competing models (Models 1 and 2) using their regularized HJ distances.
Their SDFs are defined as y1t(⌘) = 1�(x1t�E[x1t])

0
✓1 and y2t(�) = 1�(x2t�E[x2t])

0
✓2.

x1t = [f
0
1t, f

0
2t]

0 and x2t = [f
0
1t, f

0
3t]

0 are two sets of factors, that are used in Model 1
and Model 2, respectively. fit is of dimension Ki ⇥ 1, : i = 1, 2, 3. ✓1 = [✓

0
11, ✓

0
12]

0and
✓2 = [✓

0
21, ✓

0
22]

0 .
The two asset pricing models are respectively

rt = e1 + �1(x1t � E[x1t] + �1) + ✏1t, (1.12)

and

rt = e2 + �2(x2t � E[x2t] + �2) + ✏2t,

with ✓1 = �1�1 and ✓2 = �2�2. em represents the vector of pricing errors of model
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m = 1, 2. We note �2m,m = 1, 2 the HJ distances of the two models.

�2m = µ
0

2V
�1
22 µ2 � µ

0

2V
�1
22 V21,m(V12,mV

�1
22 V21,m)

�1V12,mV
�1
22 µ2

Model m is estimated using solely factors in xm.
When K1 = 0, the two models do not share factors. When K2 = 0 or K3 = 0, one

of the models nests the other one. Finally, when K1 > 0, K2 > 0, and K3 > 0, the two
models are non-nested with overlapping factors.

Two asset-pricing models have equal HJ distance under two circumstances. They
can have the same SDF or aggregate pricing errors when their SDFs are distinct. As a
result, we can compare asset pricing models by looking at the SDF parameters when
the models are nested or non-nested with overlapping factors. When the models are
non-nested with distinct SDFs, we will rely on the expression of their aggregate pricing
errors, the regularized HJ distance.

1.4.1 Comparison of nested models

In this section, we assume without loss of generality that K2 = 0. When the models
are nested, the equality of HJ-distances is equivalent to the equality of the SDFs of two
models as pointed out by Kan and Robotti (2009). We define C2 =

�
V12,2V

�1
22 V21,2

��1and
partition it as below

C2 =

"
C2,11 C2,12

C2,21 C2,22

#
.

We assume C�1
2,22 is a full rank matrix. Kan and Robotti (2009) shows that the difference

of HJ distances (�21 � �22) between the two models is equal to

�21 � �22 = ✓
0

22C
�1
2,22✓22. (1.13)

The following proposition can be viewed as a generalization of Kan and Robotti
(2009) Proposition 2 where N and T are allowed to go to 1 using regularization.

Proposition 3. Suppose Assumption 1-5 are satisfied. We have the following results :
1. �21 = �22 (y1 = y2) if and only if ✓22 = 0K3

2. Under the hypothesis ✓22 = 0K3, as T , N go to infinity and ↵ goes to zero, if ↵ is
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chosen such that ↵T ! 1 and ↵2T ! 0,

T (�̂21,↵ � �̂22,↵)
d
!

K3X

j=1

⇠j�
2
j(1)

where �2
j(1) are independent chi-square random variables and ⇠j are eigenvalues

defined in Appendix.

Remark 10. Proposition 3 implies that we can perform two kinds of tests to compare
Model 1 with factor f1 and Model 2 with factors f1 and f3. On one hand, we can focus
on the SDF parameter �2 and test H0 : �2 = 0K3 using Proposition 2 in a framework
where returns are governed by (1.12). On the other hand, we can compute the HJ
distance difference of the two models using the same level of penalization or (1.13) and
use the statistics T (�̂21,↵ � �̂22,↵) to compare them.

1.4.2 Comparison of non-nested models

In this section, we assume K1 > 0, K2 > 0, and K3 > 0. The two models are non-
nested with overlapping factors. In this case, equality of HJ-distance can be achieved
in two cases. The first case corresponds to the setting where the SDFs coincide. The
second is when y1 6= y2but �21 = �22. Both cases need to be treated separately.

1.4.2.1 Test of SDFs equality

Consider C1 =
�
V12,1V

�1
22 V21,1

��1, partition it as below

C1 =

"
C1,11 C1,12

C1,21 C1,22

#
,

and assume C1,22 is a full rank matrix. The difference between the HJ distances is

�21 � �22 = �✓
0

12C
�1
1,22✓12 + ✓

0

22C
�1
2,22✓22.

The following proposition outlines the principal result.

Proposition 4. Suppose Assumption 1-5 are satisfied. We have the following result :
1. y1 = y2 if and only if ✓12 = 0K2 and ✓22 = 0K3 and
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2. For Tikhonov, under the hypothesis ✓12 = 0K2 and ✓22 = 0K3 , as T , N go to
infinity and ↵ goes to zero, if ↵ is such that ↵T ! 1 and ↵2T ! 0,

T (�̂21,↵ � �̂22,↵)
d
!

K3X

i=1

⇠i�
2(1) (1.14)

where ⇠i are the eigenvalues of V

 "
✓̂12

✓̂22

#! 1
2
"
�C�1

1,22 0K2⇥K3

0K3⇥K2 C�1
2,22

#
V

 "
✓̂12

✓̂22

#! 1
2

, and �2
j(1)

are independent �2(1) random variables.

Remark 11. Proposition 4.1. shows that to compare asset pricing models with overlap-
ping factors, one can test the simultaneous nullity of the common factors of the two
SDFs (✓12 and ✓22). In our regularized setting, each parameter can be estimated sepa-
rately. Their variances given in Proposition 2 can be used to construct a classic Wald
test. We can also realize the test by estimating the asset pricing model with factors
f1, f2, and f3 and test the nullity of the parameter associated with f2 and f3. These
options do not directly test the nullity of the difference in HJ distance, but the equality
of the SDF of the two models.

1.4.2.2 Comparison of non-nested models with distinct SDFs

To compare two non-nested models with distinct SDFs (y1 6= y2), one has to rely on
the distribution of the aggregate pricing errors or �2 under misspecification. Hansen,
Heaton, and Luttmer (1995) and Kan and Robotti (2008) have already given the distri-
bution of the HJ distance and the modified HJ distance when models are misspecified.

Specifically Hansen, Heaton, and Luttmer (1995) showed, in the case of gross returns,
that when � 6= 0

p

T (�̂2 � �2)
d

�! N (0, v1)

where v1 = var( 1p
T

PT
t=1 qt), qt = y2t � (yt�⌫ 0r

g
t )

2
�2⌫

0
1N ��2, and rgt is a N⇥1 vector

of gross returns. The term ⌫ is the Lagrange multiplier (⌫ = E[rgt r
g0

t ]
�1(E[rgt yt]� 1N))

of the unconstrained HJ distance saddle problem of Hansen and Jagannathan (1997).
Kan and Robotti (2008) adapted the results for the case of excess returns. They

showed that the modified HJ distance has the following distribution

p

T (�̂2 � �2)
d

�! N (0, v2)
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where v2 = var( 1p
T

PT
t=1 q

m
t ) and qmt = y2t � (yt � ⌫

0
(rt � µ2))2 + 2⌫

0
µ2 � �2 with ⌫ is

the Lagrange multiplier (⌫ = V �1
22 E[rtyt]) of problem (1.5).

It is noteworthy to see that the distribution of the distance does not need to take
into account the uncertainty brought forth by the estimation of the Lagrange multiplier
⌫.

Using Assumptions 1-4, we give the distribution of the penalized HJ distance when
models are misspecified. To do so, we use the following expression of the penalized HJ
distance (�2p)

�2p = max
⌫12RN

E
⇥
qPt (⌫1)

⇤
,

where qPt (⌫1) = y2t � (yt � ⌫
0
1(

rt
N �

µ2

N ))2 + 2⌫
0
1
µ2

N +  (⌫1) and  : RN
! R is a concave

function representing the penalty.  (⌫1) = �↵ k ⌫1 k
2
N for Ridge and  (⌫1) = �↵ k

⌫1 k2N,⌃�1 for Tikhonov.
The pricing errors are estimated using ê = 1

T

PT
t=1 rtyt.

Assumption 6. For 0 < ↵ < 1, qPt (⌫1) is differentiable on an open set N of ⌫1↵ and

E


sup
⌫12N

k rqPt (⌫1) k< 1

�
.

The previous assumption ensures the interchangeability between integration and
differentiation for any 0 < ↵ < 1.

Proposition 5. Let �̂2↵ be the regularized Hansen-Jagannathan distance with Ridge or
Tikhonov regularization. Suppose Assumption 1-5 are satisfied and � 6= 0. As T , N go
to infinity and ↵ goes to zero, ↵T ! 1, and ↵2T ! 0,

p

T
⇣
�̂2↵ � �2

⌘
d

�! N (0, v4),

where

v4 = lim
N,T!1

var

"
1

p
T

TX

t=1

l̃t

#
,

where l̃t = 2yt⌫
0
1
r̃t
N � ⌫1

r̃tr̃
0
t⌫1

N2 � E
h
2yt⌫

0
1
r̃t
N � ⌫1

r̃tr̃
0
t⌫1

N2

i
= 2ytũt � ũ2

t � �2 + 2⌫
0
1µ2

N , ũt =

r̃
0
⌃�1e/N, and ⌫1 = ⌃�1e.

Proposition 6 gives the distribution of Penalized HJ distance using the errors. It can
be used to compare two asset pricing models as presented in following Proposition.
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Proposition 6. Let �̂2↵ be the regularized Hansen-Jagannathan distance with Ridge or
Tikhonov regularization. Suppose Assumption 1-5 are satisfied, y1 6= y2, and �21, �22 6= 0.
As T , N go to infinity and ↵ goes to zero, if ↵ is chosen such that ↵T ! 1 and
↵2T ! 0,

p

T
⇣
(�̂21↵ � �̂22↵)� (�21 � �22)

⌘
d

�! N (0, v5),

where

v5 = lim
N,T!1

var

"
1

p
T

TX

t=1

⇣
l̃1t � l̃2t

⌘#
,

where l̃M,t = 2yM,t⌫
0
1
r̃t
N � ⌫

0
M,1

r̃tr̃
0
t

N2 ⌫M,1 � E
h
2yM,t⌫

0
1
r̃t
N � ⌫

0
M,1

r̃tr̃
0
t

N2 ⌫M,1

i
for M = 1, 2.

yM,t is the SDF of model M and ⌫M,1 = ⌃�1eM, where eM represents the pricing
errors of model M.

When using Proposition 6 to compare two asset pricing models, one should use the
same value of penalization.

Summary. The various asymptotic distributions employed in comparing asset pricing
models suggest the following sequential procedure. When evaluating nested or non-
nested models with overlapping factors, the initial step involves testing the hypothesis
H0 : y1 = y2 using Proposition 3 and 4. If this hypothesis is rejected, then we proceed
to test H0 : �21 = �22 6= 0 by using Proposition 6. Denote ⇣1 and ⇣2 the significance level
of the first and second tests, the global significance level of this sequential procedure
is max {⇣1, ⇣2}. Alternatively, we can directly apply Proposition 6 by assuming that
models with differing factors inherently possess different Stochastic Discount Factors
(SDFs), as suggested by Kan and Robotti (2009).

1.4.3 Multiple comparison

When several models are being evaluated, pairwise comparisons might not clearly
identify the best-performing model. In this section, we establish a formal test for com-
paring multiple models, applicable to both non-nested and nested models. The test is
based on the work of Wolak (1989).

Suppose we have p + 1 models with HJ distance given by �i, i = 1, . . . , p + 1.
We are interested in testing whether a benchmark model (model 1) has an aggregate
pricing errors as low as the other p models. Let di = �21 � �2i , i = 2, . . . , p + 1 be the
difference between the HJ distance of the benchmark and the remaining models and
d =

⇣
d2 · · · dp+1

⌘
. The null hypothesis of the test is H0 : d  0pwhile the alternative
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is H1 : d 2 Rp. To have the same framework as Wolak (1989), we rely on the fact that
as N, T ! 1 and ↵ ! 0,

p

T (d̂↵ � d)
d
! N (0p,⌦d)

using Proposition 6. The latter is valid only when �i > 0 and the models have distinct
SDFs. The test uses the sample counterpart of d, ie d̂↵ =

⇣
d1↵ · · · dp+1↵

⌘
for a fixed

value of ↵ of the benchmark model. Let d̃↵ be the optimal solution in the following
quadratic programming problem

min
d

(d̂↵ � d)
0
⌦̂�1

d,↵(d̂↵ � d) s.t. d  0p,

where ⌦̂d,↵ is a consistent estimator of ⌦d when N, T ! 1 and ↵ ! 0. The likelihood
ratio statistic of the null hypothesis is

LR↵ = T (d̂↵ � d̃↵)
0
⌦̂�1

d,↵(d̂↵ � d̃↵). (1.15)

The distribution of the previous statistics is obtained under the least favorable value,
ie d = 0. We have LR↵

d
!

Pp
i=0 wp�i(⌦d)�2(i), where the weights wi sum up to one 3

and �2(i) are independent Chi-square random variables with i degrees of freedom.

1.5 Monte Carlo Simulations

In this section, we run several Monte Carlo simulations to showcase the value of the
regularization schemes described previously. We describe the approach used to generate
misspecified linear asset pricing model with parameters calibrated to data. We generate
the excess returns and factors from a multivariate normal distribution with mean µ and

covariance V , where µ = E

"
ft

rt

#
=

"
µ1

µ2

#
and V = V ar

"
ft

rt

#
=

"
V11 V12

V21 V22

#
. Without

loss of generality we set µ1 = 0. We use the framework of Gospodinov et al. (2013) and
choose µ2 such that the model is misspecified. The pseudo-true SDF parameter ✓HJ

associated with the SDF yt = 1� f
0
t✓ is given by

✓HJ = (V
0

21V
�1
22 V21)

�1V
0

21V
�1
22 µ2.

3. Appendix C of Gospodinov et al. (2013) gives the procedure to compute wi(⌦d) and the p-value
of the test
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So, we have the following first-order condition V
0
21V

�1
22 (V21✓HJ � µ2) = 0. We set µ2 =

V21✓HJ+z, where z is N⇥1 vector of constants. This implies that the first order condition
is V 0

21V
�1
22 z = 0. A convenient choice of z is ê = µ̂2� V̂

0
21(V̂

0
21V̂

�1
22 V̂21)�1V̂

0
21V̂

�1
22 µ̂2 because

V̂
0
21V̂

�1
22 ê = 0.

Without loss of generality, assume that ft =

"
f1t

f2t

#
, where f1t and f2t are K1⇥1 and

K2⇥1 vector with K1+K2 = K. In order to verify the size of the test H0 : ✓HJ,1 = 0K1 ,
where ✓HJ,1 is the SDF parameter of the first K1 factors, we can choose

✓HJ =

"
0K1

(V
0
21,cV

�1
22 V21,c)�1V

0
21,cV

�1
22 µ2

#
.

In the previous expression, V21,c = E[rtf
0
2t] is a N ⇥K2 matrix.

The parameters of the generated returns µ2 and V are calibrated using a monthly
dataset of 252 combined portfolios going from 1964 to 2019 extracted from the Ken-
neth French’s Website. We remove portfolios with missing values. The portfolios list is
presented in Table 2.10 in the Appendix.

1.5.1 SDF parameter estimates

In this section, we analyze the small sample properties of the SDF parameter test.
In the latter, we are interested in testing whether a particular factor is priced in the
returns (similar to a t-test). This corresponds to testing whether a SDF parameter is
null. We compare the small size properties of our test with the one in Kan and Robotti
(2008) using (1.4).

We simulate the three factor model of Fama and French (1993) (FF3), where the
risk factors are the market excess return (rmkt), the return difference between portfolios
of small and large stocks (rSMB), and the return difference between portfolios of high
and low book-to-market ratios (rHML). The SDF is written as below

y = 1� ✓mkt (rmkt � E [rmkt])� ✓SMB (rSMB � E [rSMB])� ✓HML (rHML � E [rHML]) .

We also simulate the durable consumption CAPM (DCCAPM) of Yogo (2006) with the
excess market return, the log consumption growth rate of non-durable goods (�cndur)
and the log consumption growth rate of the stock of durable goods (�cdur) as risk
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factors. The SDF of the model is

y = 1� ✓mkt (rmkt � E [rmkt])� ✓ndur (�cndur � E [�cndur])� ✓dur (�cdur � E [�cdur]) .

Finally, we simulate a polynomial type of model used in Dittmar (2002). The SDF
of the model is given by

y = 1� ✓mkt (rmkt � E [rmkt])� ✓mkt,2

�
r2mkt � E

⇥
r2mkt

⇤�
� ✓mkt,3

�
r3mkt � E

⇥
r3mkt

⇤�

For each model, we ran the following simulation : we generate data with expected
return such that the model is misspecified, and one of the factors is not priced and
estimate a full model with it. After running 10000 simulations, we compute the empirical
level and power of the test. We set N = 251 and T = 150, 350, and 650. For all the
models, the theoretical HJ distance is around 1.02.

Table 1 reports the empirical size of the SDF parameter test using the approach of
Kan and Robotti (2008). We use the Moore-Penrose inverse of the covariance matrix
as N > T . For the FF3 model, we noticed that the SDF parameter of the factors
keep their theoretical size. For the durable consumption CAPM, the tests concerning
the macroeconomic factors represented by the durable and nondurable consumption
growth rate are oversized for all values of T . The same size distortion is observed for
the polynomial model. The over-rejection of the macroeconomic variable is pervasive
(see Gospodinov et al. (2014)). Therefore, we can conclude that taking the generalized
inverse does not guarantee appropriate test behavior when N is large.
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Table 1.1 – Empirical size of the Kan and Robotti (2008) test with 252 assets
T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.101 0.048 0.010 0.102 0.050 0.010 0.104 0.051 0.010

350 0.094 0.048 0.009 0.098 0.048 0.009 0.098 0.048 0.009

650 0.095 0.049 0.009 0.097 0.048 0.009 0.097 0.048 0.009

Panel B : Linear durable consumption CAPM of Yogo (2006)

✓mkt ✓ndur ✓dur
150 0.133 0.072 0.017 0.478 0.395 0.256 0.474 0.394 0.253

350 0.126 0.067 0.017 0.269 0.185 0.082 0.267 0.182 0.078

650 0.109 0.056 0.012 0.131 0.070 0.016 0.134 0.072 0.020

Panel C : Non-linear model of Dittmar (2002)

✓mkt ✓mkt,2 ✓mkt,3

150 0.371 0.28 0.154 0.458 0.373 0.235 0.453 0.371 0.229

350 0.241 0.16 0.06 0.248 0.172 0.069 0.255 0.175 0.075

650 0.151 0.087 0.021 0.132 0.069 0.017 0.136 0.072 0.019

We use the Tikhonov regularization, through Proposition 2, to implement our t-test.
We select the value of alpha by evaluating a grid of 15 values ranging from 0.001 to
0.1 aiming to maximize the out-of-sample R2 : we use half of the sample as training
data and the remaining as a test. Particularly, we choose the smallest value of ↵ for
T = 650. Table 1.2 presents the empirical size of the t-test for the factors in each
simulated model. For FF3 (Panel A), we notice that the rejection rate is always close
to their theoretical level. In addition, the Tikhonov regularization is able to correct the
over-rejection of the t-test in the consumption (Panel B) and non-linear model (Panel
C).

We now turn our attention to the empirical power of our t-test. Table 1.3 presents
the rejection rate of the factors when their SDF parameter is non null. For the FF3
(Panel A), the rejection rate of the market (rmkt) and HML factor reach more than
50% when T = 350. The power is approaching 1 when T = 650. However, the SMB

factor requires much more time series data to reach an acceptable power level, still lower
than the level seen with the market and the value factor. For the durable consumption
CAPM (Panel B), except for the market factor, power is lower compared to the FF3.
The market factor has a higher rejection rate than the macroeconomic factors.

The low power can be attributed to the strength of the factor, i.e. the number of
portfolios’ returns significantly correlated with the factor. A low correlation between
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factor and returns induces a low � and a bigger variance through the inverse of � 0
⌃�1�.

Using an average of 442 individual securities and 145 factors, Bailey et al. (2021) show
that more than 60 percent of the factors are not significantly correlated to more than
55 percent of the securities. This aspect needs to be taken into account in future work.

For the non-linear model (panel C), the rejection rate of the t-test is better than in
the consumption model. The market has the highest power followed by its square and
cubic counterpart.

Table 1.2 – Empirical size of the Tikhonov test under misspecification with 252 assets.

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.099 0.047 0.008 0.109 0.056 0.010 0.100 0.049 0.010

350 0.102 0.051 0.010 0.125 0.068 0.016 0.111 0.059 0.013

650 0.100 0.051 0.009 0.114 0.060 0.013 0.123 0.070 0.015

Panel B : Linear durable consumption CAPM of Yogo (2006)

✓mkt ✓ndur ✓dur
150 0.084 0.037 0.006 0.053 0.021 0.002 0.056 0.022 0.002

350 0.095 0.044 0.008 0.087 0.041 0.007 0.084 0.039 0.007

650 0.111 0.059 0.011 0.078 0.036 0.005 0.081 0.038 0.006

Panel C : Non-linear model of Dittmar (2002)

✓mkt ✓mkt,2 ✓mkt,3

150 0.079 0.036 0.006 0.062 0.025 0.002 0.066 0.026 0.003

350 0.111 0.055 0.010 0.107 0.052 0.010 0.110 0.057 0.012

650 0.091 0.047 0.009 0.118 0.060 0.012 0.085 0.037 0.006
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Table 1.3 – Empirical power of the Tikhonov test under misspecification with 252
assets .

T 10% 5% 1% 10% 5% 1% 10% 5% 1%

Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.518 0.385 0.168 0.122 0.064 0.015 0.448 0.323 0.133

350 0.822 0.729 0.493 0.163 0.097 0.025 0.763 0.651 0.403

650 0.968 0.936 0.814 0.301 0.195 0.071 0.957 0.915 0.775

Panel B : Linear durable consumption CAPM of Yogo (2006)

✓mkt ✓ndur ✓dur
150 0.309 0.200 0.063 0.066 0.028 0.003 0.062 0.025 0.002

350 0.471 0.355 0.165 0.109 0.058 0.011 0.107 0.053 0.010

650 0.805 0.706 0.470 0.098 0.049 0.010 0.173 0.095 0.023

Panel C : Non-linear model of Dittmar (2002)

✓mkt ✓mkt,2 ✓mkt,3

150 0.441 0.351 0.190 0.091 0.044 0.006 0.086 0.039 0.007

350 0.482 0.406 0.259 0.185 0.105 0.027 0.188 0.108 0.026

650 0.896 0.829 0.636 0.484 0.347 0.147 0.224 0.138 0.042

1.5.2 Model comparison tests

In this section, we present the finite sample behavior of the pairwise and multiple
comparison tests. Table 1.4 presents the results.

Panel A presents the tests developed in proposition 4. The latter verifies the equality
of two non-nested SDFs. The simulated data are from FF3 and the non linear models. To
evaluate the size, we set the mean of the returns such that the non-overlapping factors
have null SDF parameters and the two models are misspecified. Then, we estimated
each model. The Wald test uses the estimated parameters as well as the variance from
Proposition 2 to see whether the non-overlapping factors have null SDF parameter, while
the Weighted �2 test uses (1.14). To analyze the power, we set the SDF parameters of
the non-overlapping factors to non-null values and repeat the tests. The regularization
parameter lies between 0.001 and 0.1. We choose ↵ by running a single model with all
the factors and using (1.11). The results show that the two tests exhibit perfect size
control despite the squared and cubic market variable. This would not be the case if one
uses the approach of Kan and Robotti (2008) as the test over rejects for the polynomial
factors. In addition, the empirical power is high.

Panel B presents the test of equality of the HJ distances of two models when y1 6= y2.

27



The test uses the statistic of Proposition 6. To evaluate the size of the test, we simulate
two misspecified models with three factors. The two models have rSMB and rHML. For
each model, we add the market factor rmkt plus a normally distributed error mean
0 and variance 20% of the market variance. This guarantees that the models have
different SDFs and the same HJ distance of 1.026. To evaluate the power, we simulate a
misspecified model with the durable consumption factor and a FF3 model. The durable
consumption model has a HJ of 1.042. We observe that the test is very conservative.
This is not the case when N is small as shown in Gospodinov et al. (2013). On the
other hand, it is able to detect the difference between the durable consumption and the
FF3 model. One must keep in mind that when comparing models, it is essential to use
the same penalization value. A small value of penalization provides maximum power
without compromising size, while a larger value diminishes it. This comes from the fact
that as the penalization increases the regularized HJ of the compared models decreases.
Therefore, it is advisable to use the least amount of penalization when comparing the
model using the distribution o �2.

Panel C shows the finite sample behavior of the comparison test of multiple models.
The test uses the statistic (1.15). To evaluate the size, we repeat the same process as in
Panel B. For p = 1, we use two FF3s and for p = 2, three FF3s. To evaluate the power,
we simulate a model with the durable consumption factor (benchmark) and a FF3 for
p = 1. For p = 2, we use the model with durable consumption factor (benchmark), the
FF3 and the non-linear model. The latter has a misspecification of 1.029. We employ
the ↵ of the benchmark model to run the tests. The results show that the Wolak test is
conservative and exhibits high empirical power. Particularly, the pairwise test (p = 1)
has a higher empirical power than the Normal pairwise test of Panel B.
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1.6 Empirical application

We employ the earlier presented asset pricing models to illustrate the regularized HJ
distance. We consider the Fama and French (1993) model (FF3), the durable consump-
tion CAPM of Yogo (2006), and the non-linear model of Dittmar (2002). We also add
the Fama and French (2015) model (FF5). The latter add two new factors to the FF3 :
the profitability and investment factors. These two factors are built similarly to the
value factor in FF3. The profitability factor (Robust Minus Weak) is the difference
between the return on the robust operating profitability portfolios minus the return
on the weak operating profitability portfolios. The investment factor (Conservative Mi-
nus Aggressive) is the difference between the return on the low investment portfolios
(conservative) minus the return on the high investment portfolios (aggressive).

For this analysis, we combined 252 portfolios formed on the firm characteristics such
as size, book-to-market, market beta, size, operational profitability, investment, Earning
price ratio, cashflow price ratio, dividend yield, and industries. These portfolios are from
Kenneth French’s website and range from 1964 to 2019. Table 2.10 of the appendix
presents the details of these portfolios. We estimate the SDF parameters of the four
models and then compare their pricing performance. It is essential to keep the same
level of penalization to compare the models. We use a data-driven approach to estimate
the SDF parameters with values of ↵ ranging from 0.001 to 0.1 and a penalization level
of 0.001 for the comparison of the models.

Table 1.5 presents the estimation of the SDF parameters of the four models. For
the FF3, we note that the market and the value factors are the only priced variables.
Their SDF parameters are non-null with a confidence of 5%. For the consumption model
of YOGO, the consumption variables are not priced in the SDF. This model has an
aggregate pricing error higher than FF3. For the non-linear model, no factor exhibits
significant SDF parameters. Finally, in the FF5 model, the size factor is significant. In
addition, the profitability and investment patterns are priced. However, the value factor
disappears. This outcome is in lined the results of with Fama and French (2015), who
argues that the value factor is redundant as the model with the five factors does not
improve the model with just the four factors without HML. The model exhibits the
lowest pricing errors.
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Table 1.5 – SDF parameter estimates under a misspecified setting

FF3 YOGO

Factors ✓mkt ✓SMB ✓HML ✓mkt ✓ndur ✓dur

SDF 0.034*** 0.016 0.051** 0.025*** 0.348 0.507

t-ratio 2.807 1.063 2.541 2.226 0.575 0.646

↵ 0.001 0.001

HJ 0.123 0.139

Non-linear model

Factors ✓mkt ✓mkt,2 ✓mkt,3

SDF -0.174 -0.010 0.476

t-ratio -0.676 -0.021 0.872

↵ 0.015

HJ 0.0428

FF5

Factors ✓mkt ✓SMB ✓HML ✓RMW ✓CMA

SDF 0.046*** 0.037** 0.009 0.086*** 0.077**

t-ratio 3.806 2.118 0.321 2.888 2.138

↵ 0.001

HJ 0.100
∗∗∗,∗∗,∗ indicate that the null hypothesis of unpriced source of risk is rejected at the 1%, 5%, and 10% levels.

We also examine whether the models exhibit different explanatory power, assessed
through the HJ distance. To achieve this, we initially perform pairwise comparison tests
utilizing the distribution of the squared HJ distance when N is large. Table 1.6 presents
the results of the tests. The results can be summarized as follows : FF3, YOGO, and
the non-linear model show no statistically significant differences in pricing performance,
as indicated by the high p-values for the differences in squared HJ distance. Meanwhile,
FF5 outperforms all other models. We also augment the basic non-linear model with the
return on human capital (rlt) as in Dittmar (2002). The latter is a two-month moving
average of the growth rate in labor income :

rlt =
Lt�1 + Lt�2

Lt�2 + Lt�3
� 1,

where Lt is the per capita labor income (difference between total personal income
and dividend payments divided by the total population). Specifically, we include cubic
polynomial expressions of rlt. This model does not outperform the others in pricing.
FF5 dominates it, though the evidence is now weaker, with a p-value of 0.07.
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Table 1.6 – Pairwise HJ distance comparison tests

YOGO Non-linear
Non-linear with

FF5
human capital

FF3 -0.020 -0.015 -0.011 0.023*
(0.280) (0.278) (0.537) (0.069)

YOGO 0.0010 0.0039 0.039**
(0.920) (0.820) (0.019)

Non-linear 0.003 0.038**
(0.780) (0.040)

Non-linear with -0.035*
human capital (0.073)

P-values are in brackets. ∗∗∗,∗∗,∗ indicate that the null hypothesis of unpriced source of risk is rejected at the 1%, 5%,
and 10% levels.

Finally, we implement the multiple model comparison of Wolak (1989). The test
compares the square HJ distance of a benchmark model against the square HJ distance
of more than two models. In our context, we consider each model as a benchmark and
compare it against the others. For each test, we remove alternative models nested by
the benchmark model as H0 is verified by construction (the benchmark has already
lower pricing errors (HJ)). Within the remaining alternatives, we also remove models
nested by others. Finally, we remove alternative models that nest the benchmark as
the asymptotic normality assumption on di does not hold under the null of di = 0. For
example, to compare the FF3 again the models, we remove FF5 from the alternative.

Table 2.9 presents the results of these comparisons. Each line represents the bench-
mark model. For FF3, the p-value of 0.6 suggests that its pricing performance is not
significantly different from the alternatives (YOGO and the non-linear model). For
YOGO and the non-linear model, the low p-values indicates that these models are do-
minated by one of the alternatives. Finally, the null hypothesis cannot be rejected for
FF5. In conclusion, the FF5 dominates FF3, the consumption and non-linear models.

Table 1.7 – Multiple model comparison tests
Benchmark p �̂2

↵
LR p-value

FF3 2 0.123 0.399 0.601
YOGO 2 0.139 2.744 0.025**
Non-linear 2 0.138 2.105 0.042**
Non-linear with

2 0.135 1.608 0.077*
human capital
FF5 2 0.100 0.4166 0.5834

∗∗∗,∗∗,∗ indicate that the null hypothesis of unpriced source of risk is rejected at the 1%, 5%, and 10% levels.
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1.7 Conclusion

In this paper, we develop a measure of model misspecification when many assets
are involved. Specifically, we use Tikhonov and Ridge regularizations to extend the
HJ distance. Our approach consists of finding the distance between the empirical SDF
proposed by the researcher and the closest valid SDF that prices the returns with errors.
The latter depends on a regularization parameter that we choose using a data-driven
technique through the out-of-sample R2. The regularization permits to stabilize the
inverse of the covariance matrix. Therefore, the SDF parameter can always be estimated
as the minimum of the regularized Hansen-Jagannathan distance even if N is greater
than T .

We also proposed several comparison tests that used the regularized distance. These
tests compare the explanatory power of asset pricing models. As the paper focused on
linear asset pricing models, we have analytical formulas that can be simply implemented.
We run extensive Monte Carlo simulations to gauge the finite sample behavior of the
various tests. They show that our regularization method corrects the oversized nature
of the classical tests proposed in the literature when the number of assets is large.

There is room for improvement. There is a need to develop tests adapted to the
factors that tend to have a low correlation with the returns. In addition, the methods
proposed here are only applicable to linear asset pricing models. So, inference on non-
linear models represents an interesting extension.

1.8 Appendix A : Short review on regularization

A regularization method replaces the explosive eigenvalues of ⌃�1, 1
�j
, j = 1, · · · , N

by q(↵,µj)
�j

, where q : (0,+1) ⇥ (0,max
j

µj) ! R+ is a bounded damping function such
that

1. |
q(↵,µ)

µ |< c(↵) for all µ

2. lim
↵!0

q(↵, µ) ! 1 for any given µ

↵ is the regularization parameter and the expression of q(↵, µj) depends on the regu-
larization scheme considered. Taking into account the damping function, the general
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expression of the regularized weighting matrix noted (⌃�1
↵ ) is given by

⌃�1
↵ Y =

NX

j=1

q(↵, µj)

�j
< Y,�j >N �j

where Y is a conformable vector.
We consider two types of function q(↵, µj).

1. Ridge regularization

In this regularization, µj = �j and the damping function is given by the following
expression :

q(↵,�j) =
�j

�j + ↵
.

This is the same as replacing the matrix ⌃�1 by ⌃�1
↵ = (⌃+ ↵IN)�1.

2. Tikhonov regularization

It consists of replacing µj by �2j . In addition, the damping function is

q(↵,�2j) =
�2j

�2j + ↵
.

The method sums up in changing ⌃�1 by ⌃�1
↵ = (⌃2 + ↵IN)�1⌃.

1.9 Appendix B : Proofs

1.9.1 Proof of lemma 1

tr(⌃) = tr
⇣

E(rtr
0
t)

N

⌘
� tr(µ2µ

0
2

N ). By Equation (1.3), we have

E(rtr
0
t) = ee

0
+ e�

0
�

0
+ ��e

0
+ E[�f̃tf̃

0
t�

0
] + ���

0
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0
+ E(✏t✏

0
t). Therefore,

tr(E(rtr
0

t)) = tr(ee
0
) + tr(e�

0
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0
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0
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0
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0
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From assumption 1, tr( ee
0

N ) =k e k2N= O(1).
From Cauchy-Schwarz inequality, we have | tr( e�

0
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0

N ) | tr( ee
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0
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0
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N ) . Also
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0
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0
�
0

N ) 
q

tr( (��
0 )2

N2 ).tr((�� 0)2)  tr(��
0

N )tr(��
0
).The

last inequality comes from the fact | tr(AB) | trAtrB when A and B are positive
semi-definite matrices (see Bernstein (2009) ). As a result, tr(���

0
�
0

N ) = O(1).

34



Moreover, tr(E[�f̃tf̃
0
t�

0
]

N ) = tr(�
0
�

N E(f̃tf̃
0
t )) = O(1).

We can conclude that

tr(E[
rtr

0
t

N
]) = E[k rt kN ] = O(1).

For the mean of the returns , µ2 = e+ ��. Therefore,

tr(µ2µ
0

2) = tr(ee
0
) + tr(��e

0
) + tr(e�

0
�

0
) + tr((��)(��)

0
).

Using the same arguments as before, we have tr(µ2µ
0
2

N ) = O(1).

Therefore tr(⌃) = O(1). Hence the result.

1.9.2 Proof of Proposition 1

We transform the primal problem to be able to use the Fenchel-Rockafellar Duality
(See Bauschke and Combettes, 2017, chapter 15) or Borwein and Lewis (1992) as well
as Korsaye, Quaini, and Trojani (2019).

Define X =

"
2r
N

2

#
.

Let fy : L2
! R be the function defined by fy(x) = E[(x� y)2] and A : L2

! RN+1

be the operator such that A(m) = E[mX].
Let g : RN+1

! (�1,+1] be defined by g(x) = h(x1) + �{2}(x�1) where x =

(x
0
1, x�1)

0RN
⇥ R, �{2} is the characteristic function of the set {2}, i.e

�{2}(x) =

8
<

:
0 if x = 2

1 otherwise

and h(x) = N
4↵ k x k

2.
Problem (1.7) can be rewritten as below

�2R = inf
m2L2

{fy(m) + g(A(m))} .

It is straightforward to see that g is a convex function. Moreover, fy is convex as
x 7! x2 is convex and A is bounded. From Theorem 4.2 of Borwein and Lewis, 1992,
strong duality holds if (ri dom(g))

T
(riA(dom(fy))) 6= ;. 4

4. For convex set S ✓ RN , ri S is its relative interior. The latter is the interior with respect
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The previous condition is met when Assumption 4 is satisfied. As 9m0 2 L2, E(m0�

y)2 < 1 , m0 2 dom(fy), and A(m0) 2 riA(dom(fy)). In addition, because E [2m0] = 2,
and k E[m0r] k

2
N< 1, g(A(m0)) = N

4↵ k E[m2r
N ] k

2= 1
↵ k E[m0r] k

2
N< 1 , and

A(m0) 2 ri dom(g). Finally, (ri dom(g))
T
(riA(dom(fy))) 6= ;.

The previous result implies that

�2R = � min
⌫2RN+1

�
f ⇤
y (�A⇤(⌫)) + g⇤(⌫)

 
,

where f ⇤
y and g⇤ are the conjugate functions of fy and g respectively and A⇤ is the

adjoint of A.
Let us determine the relevant conjugate functions.

f ⇤
y (z) = E

⇢
sup
w2L2

zw � (w � y)2
�

= E
�
zy + 1

4z
2
 

5, A⇤ : RN+1
! L2 and A⇤(✓) =

X
0
✓. Finally g⇤(⌫) = h⇤(⌫1)+�⇤

{2}(⌫2) as � and h are two independent functions. Their
conjugates are given by �⇤

{2}(⌫2) = sup
x2{2}

x⌫2 = 2⌫2 and h⇤(⌫1) =
↵
N k ⌫1 k2. 6

So, g⇤(⌫) = 2⌫2 +
↵
N k ⌫1 k2.

Therefore

�2R = � min
⌫12RN ,⌫22R

E

⇢
�2y⌫

0

1

r

N
� 2y⌫2 �

⌫1rr
0
⌫1

N2
� ⌫22 � 2

⌫
0
1r⌫2
N

+ 2⌫2 +
↵

N
k ⌫1 k

2

�

= max
⌫12RN ,⌫22R

E

⇢
2y⌫

0

1

r

N
+ 2y⌫2 �

⌫1rr
0
⌫1

N2
� ⌫22 � 2

⌫
0
1r⌫2
N

� 2⌫2 �
⌧

N
k ⌫1 k

2

�

Now, we use the fact that E[y] = 1. As a result,

�2R = max
⌫12RN ,⌫22R

E

⇢
2y⌫

0

1

r

N
�
⌫

0
1rr

0
⌫1

N2
� ⌫22 � 2

⌫
0
1r⌫2
N

�
↵

N
k ⌫1 k

2

�
,

which is the penalized version (1.6). The resulting ⌫1 is given by

⌫1 = (⌃+ ↵I)�1e = ⌃�1
↵ e.

We can do the same for Tikhonov by setting h(x) = N
4↵ k x k

2
⌃ . The latter can be

to the affine hull of S, aff S. Specifically, ri S = {x 2 S : B✏(x)
T

aff S ✓ S} ,where aff S =
{✓1x1 + · · ·+ ✓kxk : x1, . . . , xk 2 S, ✓1 + · · ·+ ✓k = 1} and B✏(x) =

�
y 2 RN :k y � x k< ✏

 
.

5. This comes from the definition of the functional conjugate of a convex function Luenberger (1969,
p. 196) and the use of Riesz Theorem in the L2 space equipped with the usual inner product.

6. To determine the conjugate of h, note that the conjugate of 1
2 k x k

2 is still 1
2 k x k

2 . In addition,
if f(x) = ag(x) + b, then f⇤(x) = ag⇤(x

a
) + b.
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rewritten as h(x) = N
2↵n(x), where n(x) = 1

2 k x k
2
⌃. Therefore the convex conjugate of

h is h⇤(z) = N
2↵n

⇤( z
N
2↵

).

n⇤(z) = sup
w2RN

⇢
w

0
z �

w
0
⌃w

2

�
.

The expression in brackets is maximized at w = ⌃�1z. Therefore, n⇤(z) = z
0
⌃�1z
2 . As a

result, h⇤(z) = ↵
N k x k

2
⌃�1 .

1.9.3 Proof of Proposition 2

The proof of proposition 2 uses the following lemmas.

Lemma 2. Suppose Assumption 2 is satisfied. Then, k ✏0F̄ k
2
F= Op(NT ), where ✏ is a

T ⇥N matrix with (t,i) element ✏ti.

Proof : We note Y✏f,t = ✏tf̄
0
t .

First,

E[k
✏0F̄

T
k
2
F ] = E

2

4tr

8
<

:

 
1

T

TX

t=1

✏tf̄
0

t

!0  
1

T

TX

t=1

✏tf̄
0

t

!9=

;

3

5

= E

2

4tr

8
<

:

0

@ 1

T 2

TX

t=1

Y
0

✏f,tY✏f,t +
1

T 2

TX

t 6=t0

Y
0

✏f,tY✏f,t0

1

A

9
=

;

3

5

=
1

T
E
h
tr(Y

0

✏f,1Y✏f,1)
i
+

2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

✏f,1Y✏f,1+l)
i

We have

trE[Y
0

✏f,tY✏f,t] = E[tr(f̄t✏
0

t✏tf̄
0

t )]

= trE[f̄
0

t f̄t✏
0

t✏t]

From Cauchy-Schwarz, | E[f̄
0
t f̄t✏

0
t✏t] |

p
E[k f̄t k4]E[k ✏t k4] = O(N). Therefore,

1
TE

⇥
tr(Y

0
✏f,1Y✏f,1)

⇤
= O(NT ).

Using Davydov’s inequality (Davydov (1968), Rio (1993)) 7 (with q = r = 2 + ⇢),

7. For any positive real numbers p, q, r such that 1
p
+ 1

q
+ 1

r
= 1, the covariance between two r.vs
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trE
h
(Y

0

✏f,1Y✏f,1+l)
i

=
NX

i=1

KX

k=1

E
⇥�
f̄k1✏i1

� �
f̄k1+l✏i1+l

�⇤

=
NX

i=1

KX

k=1

cov(f̄k1✏i1, f̄k1+l✏i1+l)

 12
NX

i=1

KX

k=1

↵x(l)
⇢

2+⇢E[(f̄kt✏it)
2+⇢]

2
2+⇢ .

As a result,

2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

✏f,1Y✏f,1+l)
i


24

T

NX

i=1

KX

k=1

E[(f̄kt✏it)
2+⇢]

2
2+⇢

TX

l=1

(1�
l

T
)↵x(l)

⇢
2+⇢


24

T

NX

i=1

KX

k=1

E[(f̄kt✏it)
2+⇢]

2
2+⇢

TX

l=1

l↵x(l)
⇢

2+⇢ .

From Assumption 2(iii), and Cauchy-Schwarz, | E[(f̄kt✏it)2+⇢] | E[f̄ 4+2⇢
kt ]

1
2E[✏4+2⇢

it ]
1
2 

c
1
2E[f̄ 4+2⇢

kt ]
1
2 .

So,
2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

✏f,1Y✏f,1+l)
i
= O(

N

T
).

Hence, E[k ✏0F̄
T k

2
F ] = O(NT ). In conclusion,

k ✏0F̄ k
2
F= Op(NT ).

Lemma 3. Suppose Assumption 2 is satisfied.k �̂ � � k
2
F= Op(

N
T ).

X and Y is bounded as follows : cov(X,Y )  12↵(�(X),�(Y ))
1
pE [| X |

q]
1
q E [| Y |

r]
1
r , where �(X) is

the sigma algebra generated by X. So, ↵ is the strong mixing coefficient.
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Proof : Using the fact that k ✏0F̄ k
2
F= Op(NT ), we have

k

⇣
�̂ � �

⌘
k
2
F = k

✏
0
F̄

T
V̂ �1
11 k

2
F

= k
✏
0
F̄

T
V �1
11 +

✏
0
F̄

T
(V̂ �1

11 � V �1
11 ) k2F

 k
✏
0
F̄

T
V �1
11 k

2
F + k

✏
0
F̄

T
(V̂ �1

11 � V �1
11 ) k2F

 k
✏
0
F̄

T
V �1
11 k

2
F + k

✏
0
F̄

T
k
2
F . k V̂ �1

11 � V �1
11 k

2
F

= Op(
NT

T 2
) +Op(

NT

T 2
.
1

T
)

= O(
N

T
).

Therefore,
k

⇣
�̂ � �

⌘
k
2
F= Op(

N

T
)

Lemma 4. For k = 1, · · · , K,
f
�̂k � �k

f
N = Op(

1p
T
).

Proof : As k �̂ � � k
2
F= Op(

N
T ), we have 1

N tr
h
(�̂ � �)

0
(�̂ � �)

i
= Op(

1
T ).

(�̂ � �)
0
(�̂ � �) =

KX

k=1

((�̂k � �k)(�̂k � �k)
0
).

As a result,

1

N
tr

"
KX

k=1

((�̂k � �k)(�̂k � �k)
0
)

#
=

KX

k=1

k �̂k � �k k
2
N= Op(

1

T
)

In conclusion, k�̂k-�kkN = Op(
1p
T
).

Lemma 5. Under Assumption 3, we have the following result :

k ⌃̂�1
↵ �̂k � ⌃�1�k k

2
N= Op(

1

↵T
) +O(↵2).

Proof : We follow the proof of Lemma 3 of Carrasco (2012).
We have the following decomposition.
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k ⌃̂�1
↵ �̂k � ⌃�1�k k

2
N  3 k ⌃̂�1

↵

⇣
�̂k � �k

⌘
k
2
N (1.16)

+ 3 k

⇣
⌃̂�1

↵ � ⌃�1
↵

⌘
�k k

2
N (1.17)

+ 3 k
�
⌃�1

↵ � ⌃�1
�
�k k

2
N (1.18)

We have k ⌃�1
↵ kN= sup

k�kN1
k ⌃�1

↵ � kN . So,

k ⌃�1
↵ � k

2
N =

1X

j=1

q(↵,�2j)
2

�2j
(�j,�)

2
N

 sup
j

q(↵,�2j)
2

�2j
k � k

2
N

 sup
j

q(↵,�2j)

�2j


1

↵
.

Therefore, (1.16) is OP (
1
↵T ).

Let � = ⌃�1
↵ �k. For the second line of the decomposition, (1.17), we have

k

⇣
⌃̂�1

↵ � ⌃�1
↵

⌘
�k k

2
N = k ⌃̂�1

↵

⇣
⌃̂↵ � ⌃↵

⌘
� k

2
N

 k ⌃̂�1
↵ k

2
Nk

⇣
⌃̂↵ � ⌃↵

⌘
� k

2
N ,

where
⌃↵Y =

X

j/q 6=0

�j
q(↵,�2j)

(�j, Y )N�j

is the generalized inverse of ⌃�1
↵ .

We rewrite
⇣
⌃̂↵ � ⌃↵

⌘
� as follows

(⌃̂↵ � ⌃↵)� = (⌃̂� ⌃)�+ (⌃̂↵ � ⌃̂)�+ (⌃� ⌃↵)�

= (⌃̂� ⌃)�+
X

j/q 6=0

�̂j

 
1� q(↵, �̂2j)

q(↵, �̂2j)

!
(�̂j,�)N �̂j

+
X

j/q 6=0

�j

✓
q(↵,�2j)� 1

q(↵,�2j)

◆
(�j,�)N�j.
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Therefore,

k (⌃̂↵ � ⌃↵)� k
2
N  3 k (⌃̂� ⌃)� k

2
N

+3
X

j/q 6=0

�̂2j

 
1� q(↵, �̂2j)

q(↵, �̂2j)

!2

(�̂j,�)
2
N

+3
X

j/q 6=0

�2j

✓
q(↵,�2j)� 1

q(↵,�2j)

◆2

(�j,�)
2
N .

We have

X

j/q 6=0

�2j

✓
q(↵,�2j)� 1

q(↵,�2j)

◆2

(�j,�)
2
N = ↵2

X

j/q 6=0

1

�2j
(�j,�)

2
N .

= O(↵2)

as �k 2 �3. As a result, k (⌃̂↵�⌃↵)� k
2
N= OP (

1
T )+OP (↵2) and k

⇣
⌃̂�1

↵ � ⌃�1
↵

⌘
�k k2N=

Op(
1
↵T ) +O(↵)

Finally, the term (1.18) satisfies

k
�
⌃�1

↵ � ⌃�1
�
�k k

2
N =

X

j

✓
q(↵,�2j)� 1

�j

◆2

(�j, �k)
2
N

= ↵2
X

j

1

�2j(�
2
j + ↵)2

(�j, �k)
2
N

 ↵2
X

j

1

�6j
(�j, �k)

2
N = O(↵2)

as �k 2 �3.

Lemma 6. Let

XT,N =
1

p
T

TX

t=1

< r̃t, u >N=
1

p
T

TX

t=1

Yt,T,N ,

where u 2 RN isnot random and k u kN= O(1). If Assumptions 2(i) and 5(iii) hold,
then

XT,N
d
! N (0, �2)

when T,N go simultaneously to 1.
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Proof : Consider the case when {rt}t=1,··· ,T are independent. From Assumptions
5 (iii), E

⇥
k rt k

2+⇢
N

⇤
= O(1) when N goes to infinity for ⇢ > 0. To establish the central

limit theorem, we need to verify the Lindeberg condition for a double indexed process
of Phillips and Moon (1999)(see their Theorem 2). In our setting, this condition can be
rewritten as

lim
N,T!1

1

�2
T,N

TX

t=1

E
⇥
Y 2
t,T,N1|Yt,T,N |>�T,N"

⇤
! 0

for every " > 0, with �2
T,N = T.var( 1p

T

PT
t=1 Yt,T,N) = T.u

0
⌃u
N ⌘ T�2

N > 0 .
To see that this condition is satisfied, observe that when |

Yt,T,N

�T,N" |> 1,

"⇢
Y 2
t,T,N

�2
T,N


Y 2+⇢
t,T,N

�2+⇢
T,N

.

Therefore,

"⇢E

"
Y 2
t,T,N

�2
T,N

1|Yt,T,N |>�T,N"

#
 E

"
Y 2+⇢
t,T,N

�2+⇢
T,N

1|Yt,T,N |>�T,N"

#
 E

"
Y 2+⇢
t,T,N

�2+⇢
T,N

#
.

Moreover

lim
N,T!1

TX

t=1

E

"
Y 2+⇢
t,T,N

�2+⇢
T,N

#
= lim

N,T!1

1

T ⇢/2

1

�2+⇢
N

E
⇥
< r̃t, u >N

2+⇢
⇤
= 0

as �N = O(1), E [|< r̃t, u >N |
2+⇢]  E

⇥
k r̃t k

2+⇢
N

⇤
k u k

2+⇢
N = O(1) by Assumption 5(iii).

For the dependent case, by Davydov’s inequality (Davydov (1968), Rio (1993))
(with q = r = 2 + ⇢),

var(
1

p
T

TX

t=1

Yt,T,N) = E[Y 2
1,T,N ]+ 2

TX

l=1

(1�
l

T
)E [Y1,T,NY1+l,T,N ]

var(
1

p
T

TX

t=1

Yt,T,N)  E[Y 2
1,T,N ]+ 24

�
E[| Yt,T,N |

2+⇢]
� 2

2+⇢

TX

l=1

(1�
l

T
)↵x(l)

⇢
2+⇢

 E[Y 2
1,T,N ]+ 24

�
E[| Yt,T,N |

2+⇢]
� 2

2+⇢

TX

l=1

l↵x(l)
⇢

2+⇢ .

As a result, 0 < lim
N,T!1

var( 1p
T

PT
t=1 Yt,T,N) < 1. In addition, the central limit theorem
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of Francq and Zakoïan (2005) applies as the Lindeberg condition (iii) of Page 1168 still
applies when N goes to infinity. Hence, XT,N asymptotically converges to a normal
distribution when T,N go to 1.

Lemma 7. Suppose Assumption 5 is satisfied. For any u, v 2 RN with k u k1< 1 and
k v k1< 1, as N and T go to 1, if

0 < �2
u,v = lim

N,T!1
var

"
1

p
T

TX

t=1

(< r̃t, v >N< r̃t, u >N �E (< r̃t, v >N< r̃t, u >N))

#
,

then
p
T <

⇣
⌃̂� ⌃

⌘
v, u >N converges to a gaussian distribution of mean 0 and va-

riance �2
u,v.

Proof : We have the following decomposition of ⌃̂� ⌃ :

⌃̂� ⌃ =
1

NT

TX

t=1

(rt � µ̂2) (rt � µ̂2)
0
�

1

N
E[r̃tr̃

0

t]

=
1

NT

TX

t=1

(rt � µ2 + µ2 � µ̂2) (rt � µ2 + µ2 � µ̂2)
0
�

1

N
E[r̃tr̃

0

t]

=
1

NT

TX

t=1

⇣
r̃tr̃

0

t � E[r̃tr̃
0

t]
⌘
+ (µ2 � µ̂2)

1

NT

TX

t=1

(rt � µ2)
0

+
1

NT

TX

t=1

(rt � µ2) (µ2 � µ̂2)
0

+
1

N
(µ2 � µ̂2) (µ2 � µ̂2)

0
.

Therefore,

<
p

T
h
⌃̂� ⌃

i
v, u >N=

1
p
T

TX

t=1

{< v, r̃t >N< r̃t, u >N �E [< v, r̃t >N< r̃t, u >N ]}

+ < v, (µ2 � µ̂2) >N
1

p
T

TX

t=1

< r̃t, u >N

+
1

p
T

TX

t=1

< v, r̃t >N< (µ2 � µ̂2) , u >N

+
p

T < v, (µ2 � µ̂2) >N< (µ2 � µ̂2) , u >N .
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Following Lemma 6, < v, (µ2 � µ̂2) >N
1p
T

PT
t=1 < r̃t, u >N= Op(

1p
T
), 1p

T

PT
t=1 <

v, r̃t >N< (µ2 � µ̂2) , u >N= Op(
1p
T
), and

p
T < v, (µ2 � µ̂2) >N< (µ2 � µ̂2) , u >N=

Op(
1p
T
). As a result,

<
p

T
h
⌃̂� ⌃

i
v, u >N=

1
p
T

TX

t=1

{< v, r̃t >N< r̃t, u >N �E [< v, r̃t >N< r̃t, u >N ]}+Op(
1

p
T
)

From here, the proof is similar to that of Lemma 6. To apply the central limit
theorem of Francq and Zakoïan (2005), we need

lim
N!1

sup
t
E[(< v, r̃t >N< r̃t, u >N)

2+⇢] < 1

for some ⇢ > 0. This condition is met because of Assumption 5 (iii).

Proof of Proposition 2 Consistency :

Recall that by Equation (1.3), we have

µ̂2 =
1

T

X

t

rt = e+ � (� + µ̂1 � µ1) + ✏̄,

µ2 = e+ ��.

This yields the following decomposition of the ✓̂HJ :

✓̂↵HJ � ✓HJ = (V̂ �1
11 � V �1

11 )� (1.19)

+ V̂ �1
11 (µ̂1 � µ1)

+ V̂ �1
11 (

�̂0⌃̂�1
↵ �̂

N
)�1

"
�̂0⌃̂�1

↵ (� � �̂)

N
(� + µ̂1 � µ1)

+
�̂0⌃̂�1

↵ e

N
+
�̂0⌃̂�1

↵ ✏̄

N

#
.

For the first two rows, (V̂ �1
11 � V �1

11 )� et V̂ �1
11 (µ̂1 � µ1) converge to 0 in probability

by the law of large numbers and Assumption 2 (i).
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�̂0⌃̂�1
↵ �̂

N
=

"
�̂0
k1⌃̂

�1
↵ �̂k2
N

#

k1,k2=1,··· ,K

=< �̂k1 , ⌃̂
�1
↵ �̂k2 >N ;k1,k2=1,··· ,K .

We have

< �̂k1 , ⌃̂
�1
↵ �̂k2 >N = < �̂k1 � �k1 , ⌃̂

�1
↵ �̂k2 � ⌃�1�k2 >N + (1.20)

< �̂k1 � �k1 ,⌃
�1�k2 >N + (1.21)

< �k1 , ⌃̂
�1
↵ �̂k2 � ⌃�1�k2 >N + (1.22)

< �k1 ,⌃
�1�k2 >N �Ck1,k2 + (1.23)

Ck1,k2 . (1.24)

where C was defined in Assumption 3. |(3.12)|k �̂k1��k1 kNk ⌃̂�1
↵ �̂k1�⌃�1�k1 kN!

0 as N, T ! 1, and ↵T ! 1 using Lemma 5.
For (3.13), we have

|< �̂k1 � �k1 ,⌃
�1�k2 >N |k �̂k1 � �k1 kNk ⌃� 1

2�k2 kN! 0

as N, T ! 1, using Lemma 4.
The same is true for (3.14).
Finally, using assumption 3, (3.15) goes to 0 as N goes to 1.
In conclusion, �̂0⌃̂�1

↵ �̂
N ! C as N, T ! 1, ↵T ! 1, and ↵ ! 0.

Using the same argument as before, we have �̂0⌃̂�1
↵ (���̂)
N = �̂0⌃̂�1

↵ �
N �

�̂0⌃̂�1
↵ �̂
N

P
! 0 as

N, T ! 1, ↵T ! 1, and ↵ ! 0.
For �̂0⌃̂�1

↵ e
N , we have ⌃̂�1

↵ �̂
P
! ⌃�1� when as N, T ! 1, and ↵T ! 1. Moreover,

�0⌃�1e = 0 as the first order condition of (1.2). Therefore when as N, T ! 1, and
↵T ! 1, �̂0⌃̂�1

↵ e
N

P
! 0.

The same is true for �̂0⌃̂�1
↵ ✏̄, which converges in probability to 0 as N, T ! 1, and

↵T ! 1.

Distribution :

We detail the proof of the asymptotic normality proof for Tikhonov estimator. The
result for ridge could be shown similarly. We analyze the decomposition (1.19) using
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the following results :

— �̂ � � = 1
T

PT
t=1 ✏tf̄t

0
V̂ �1
11

— Note that Ĉ� = �̂0⌃̂�1
↵ �̂
N and we already have shown that Ĉ� � C�

P
! 0K,K .

— �̂0⌃̂�1
↵ e = (�̂ � �)

0
⌃̂�1

↵ e + �
0
(⌃̂�1

↵ � ⌃�1)e + �
0
⌃�1e. The last term is 0K,1 as the

population first order condition of (1.2).

— We have

�
0
(⌃̂�1

↵ � ⌃�1)e = ��
0
⌃̂�1

↵ (⌃̂↵ � ⌃)⌃�1e

= ��
0
⌃̂�1

↵ (⌃̂↵ � ⌃� ⌃̂+ ⌃̂)⌃�1e

��
0
⌃̂�1

↵ (⌃̂� ⌃)⌃�1e� �
0
⌃̂�1

↵ (⌃̂↵ � ⌃̂)⌃�1e.

Therefore,

p

T
⇣
✓̂↵HJ � ✓HJ

⌘
+
p

T V̂ �1
11 Ĉ�1

� �
0
⌃̂�1

↵ (⌃̂↵ � ⌃̂)⌃�1 e

N
(1.25)

= V̂ �1
11

(
�

p

T (V̂11 � V11)V
�1
11 �

+
1

p
T

TX

t=1

(ft � µ1)

+ Ĉ�1
�

"
�

1
p
T

TX

t=1

�̂0⌃̂�1
↵ ✏tf̄

0
t

N
V̂ �1
11 (� + µ̂1 � µ1)

�

p

T�
0
⌃̂�1

↵ (⌃̂� ⌃)⌃�1 e

N

+
1

p
T

TX

t=1

V̂ �1
11

f̄t✏
0
t⌃̂

�1
↵ e

N

+
1

p
T

TX

t=1

�̂0⌃̂�1
↵ ✏t
N

#)
.

We prove the asymptotic normality of each component of (1.25) to get the result of
proposition 2.
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— Note that

p

T (V̂11 � V11)V
�1
11 � =

1
p
T

TX

t=1

⇣
f̃tf̃

0

t✓HJ � �
⌘
+ (µ1 � µ̂1)

1
p
T

TX

t=1

(rt � µ2)
0
✓HJ

+
1

p
T

TX

t=1

(rt � µ2) (µ2 � µ̂2)
0
✓HJ

+
p

T (µ2 � µ̂2) (µ2 � µ̂2)
0
✓HJ

=
1

p
T

TX

t=1

⇣
f̃tf̃

0

t✓HJ � �
⌘
+ op(1).

— Normality of the second row comes from assumption 2.

— For the third row, µ̂1
P
! µ1 and 1p

T

PT
t=1 ✏tf̄

0
t V̂

�1
11 (� + µ̂1 � µ1) has a gaussian

distribution. To see this, we have

1
p
T

TX

t=1

�̂0⌃̂�1
↵ ✏tf̄

0
t

N
V̂ �1
11 (� + µ̂1 � µ1) =

�̂0⌃̂�1
↵

N
[
1

p
T

TX

t=1

✏tf̃
0

tV
�1
11 � (1.26)

+
1

p
T

TX

t=1

✏tf̄
0

t (V̂
�1
11 � V �1

11 )� (1.27)

�
1

p
T

TX

t=1

✏t(µ̂1 � µ1)
0
V �1
11 � (1.28)

+
1

p
T

TX

t=1

✏tf̄
0

t V̂
�1
11 (µ̂1 � µ1)] (1.29)

The term (1.27) can be rewritten as T� 1
2 �̂0⌃̂�1

↵
✏
0
F̄
N (V̂ �1

11 � V �1
11 )�. From Lemma 2, k

✏
0
F̄ k

2
F= Op(NT ). So k ✏

0
F̄ k

2= Op(NT ). From Lemma 5, k ⌃̂�1
↵ �̂k � ⌃�1�k kN!

0, as N, T ! 1, and ↵T ! 1. In addition, k (V̂ �1
11 � V �1

11 )� k
2= Op(

1
T ). Therefore,

(1.27) is op(1) when N, T ! 1, and↵T ! 1.
For (1.28), using the fact that ✓HJ = V �1

11 �, we can rewrite it as

(�̂0⌃̂�1
↵ � �

0
⌃�1)

1

N
p
T
✏
0
⇥(µ̂1 � µ1) +

 
1

p
T

TX

t=1

< ⌃�1�, ✏t >N

!
(µ̂1 � µ1)

0
V �1
11 �,
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with ⇥ =

2

664

✓
0
HJ
...

✓
0
HJ

3

775 is a T ⇥K matrix. We have k ✏
0
⇥ k

2= OP (N), k µ̂1 � µ1 k
2= OP (

1
T ).

As a result, (�̂0⌃̂�1
↵ � �

0
⌃�1) 1

N
p
T
✏
0
⇥(µ̂1 � µ1) is op(1) when N, T ! 1, and ↵T ! 1.

Using Lemma 6, 1p
T

PT
t=1 < ⌃�1�, ✏t >N is Op(1) as k ⌃�1� kN< 1 and ✏t has the

same characteristics as r̃t. Then the second term is op(1) when N, T ! 1. Therefore,
(1.28) is op(1).

For (1.29), we can rewrite it as

T� 1
2

N
(�̂0⌃̂�1

↵ � �
0
⌃�1)(� � �̂)(µ̂1 � µ1).

From Lemma 3 and 5, the expression is op(1) N, T ! 1, and↵T ! 1.
Finally, (1.26) is equal to

1

N
p
T

⇣
�̂0⌃̂�1

↵ � �
0
⌃�1

⌘
✏
0
F̃ V �1

11 � +
1

p
T

TX

t=1

< ⌃�1�, ✏tf̃
0

tV
�1
11 � >N .

The first part is oP (1) when N, T ! 1, and ↵T ! 1. For the second part, 8m 2

RK ,
1

p
T

TX

t=1

< ⌃�1�m, ✏tf̃
0

tV
�1
11 � >N

converges to a normal distribution by virtue of Lemma 6. Therefore, 1p
T

PT
t=1 <

⌃�1�, ✏tf̃
0
tV

�1
11 � >N has a gaussian distribution when N, T ! 1 by the Cramer Wold

device.

— 1p
T

PT
t=1 V̂

�1
11

f̄t✏
0
t⌃̂

�1
↵ e

N has a gaussian distribution by using the following decompo-
sition

1
p
T

TX

t=1

V̂ �1
11

f̄t✏
0
t⌃̂

�1
↵ e

N
= V �1

11

1
p
T

TX

t=1

f̃t✏
0
t⌃̂

�1
↵ e

N
(1.30)

+
1

N
p
T

⇣
V̂ �1
11 � V �1

11

⌘
F̄

0
✏⌃̂�1

↵ e (1.31)

+
1

N
p
T
V �1
11 (µ1 � µ̂1)

TX

t=1

✏
0

t⌃̂
�1
↵ e. (1.32)

By Lemma 6 and the Cramer Wold device, (1.30) converges to a gaussian distribution.

48



Using Lemmas 2 and 5, (1.31) and (1.32) are op(1) when N, T ! 1, and ↵T ! 1.

— As as N , T ! 1, ↵ ! 0 and ↵T ! 1, normality of
p
T�

0
⌃̂�1

↵ (⌃̂ � ⌃)⌃�1 e
N

emanates from lemma 7. Indeed,

p

T �̂
0
⌃̂�1

↵ (⌃̂� ⌃)⌃�1 e

N
=

p

T�
0
⌃�1(⌃̂� ⌃)

⌃�1e

N
+ op(1).

Using the proof of Lemma 7 , we can rewrite < ⌃�1�,
p
T (⌃̂ � ⌃)⌃�1e >N as

below

< ⌃�1�,
p

T
h
⌃̂� ⌃

i
⌃�1e >N =

1
p
T

TX

t=1

[< r̃t,⌃
�1e >N< r̃t,⌃

�1� >N

�E[< r̃t,⌃
�1e >N< r̃t,⌃

�1� >]] + op(1).

This term is asymptotically gaussian.

— For the term
p
T�

0
⌃̂�1

↵ (⌃̂↵ � ⌃̂)⌃�1 e
N , notice that

�
0

k⌃̂
�1
↵ (⌃̂↵ � ⌃̂)⌃�1 e

N
=

X

j/q 6=0

�̂j

 
1� q(↵, �̂2j)

q(↵, �̂2j)

!
< �̂j,⌃

�1e >N< �̂j, ⌃̂
�1
↵ �k >N .

So | �
0
k⌃̂

�1
↵ (⌃̂↵ � ⌃̂)⌃�1 e

N |= ↵ |
P

j/q 6=0
1
�̂j

< �̂j,⌃�1e >N< �̂j, ⌃̂�1
↵ �k >N | . We

have

|

X

j/q 6=0

1

�̂j
< �̂j,⌃

�1e >N< �̂j, ⌃̂
�1
↵ �k >N | 

0

@
X

j/q 6=0

1

�̂j
< �̂j,⌃

�1e >2
N

1

A

1
2

.

0

@
X

j/q 6=0

1

�̂j
< �̂j,⌃

�1e >2
N

1

A

1
2

 1

as �k, e 2 �3. So, k
p
T�

0
⌃̂�1

↵ (⌃̂↵ � ⌃̂)⌃�1 e
N k

2= Op(↵2T ).

In conclusion, the term
p
T�

0
⌃̂�1

↵ (⌃̂↵�⌃̂)⌃�1 e
N is op(1) as N, T,↵T ! 1 and ↵2T ! 0.

Using the previous results, we have

p

T
⇣
✓̂↵HJ � ✓HJ

⌘
� V̂ �1

11 .A
p
! op(1),
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where

A =

 
�

1
p
T

TX

t=1

f̃tf̃
0

t✓HJ + �

!
+

1
p
T

TX

t=1

f̃t + C�1
�

"
�

1
p
T

TX

t=1

�
0
⌃�1 ✏tf̃

0
t✓HJ

N

+
1

p
T

TX

t=1

V �1
11 f̃t

✏
0
t⌃

�1e

N
� �

0
⌃�1(

1
p
T

TX

t=1

(
r̃tr̃

0
t

N2
�

⌃

N
))⌃�1e+

1
p
T

TX

t=1

�
0
⌃�1✏t
N

#
.

=
1

p
T

TX

t=1

ht

and

ht = �f̃tf̃
0

t✓HJ + � + f̃t � C�1
� �

0
⌃�1 ✏tf̃

0
t✓

N
+ C�1

� V �1
11 f̃t

✏
0
t⌃

�1e

N

� C�1
� �

0
⌃�1 r̃tr̃

0
t

N2
⌃�1e+ C�1

�

�
0
⌃�1e

N
+ C�1

�

�
0
⌃�1✏t
N

.

As all the component of A are normally distributed, we have

p

T
⇣
✓̂↵HJ � ✓HJ

⌘
d
! N (0K , V

�1
11 ⌦V �1

11 ),

where ⌦ = lim
N,T!1

var
h

1p
T

PT
t=1 ht

i
.

Using the fact that yt = 1 � f̃
0
t✓HJ and noting ũt =

r̃
0
t⌃

�1e
N , ht can be rewritten as

follows

ht = f̃tyt + � +
C�1

� �
0
⌃�1

N
(✏tyt � r̃tũt + e) + C�1

� V �1
11

eft
✏0t⌃

�1e

N
.

1.9.4 Proof of Proposition 3

We follow the proof of proposition 3 of Kan and Robotti (2009).

�21 � �22 =
µ

0
2⌃

�1µ2

N
�

µ
0
2⌃

�1V21,1

N

✓
V12,1⌃�1V21,1

N

◆�1 V12,1⌃�1µ2

N
�

�
µ

0
2⌃

�1µ2

N
+

µ
0
2⌃

�1V21,2

N

✓
V12,2⌃�1V21,2

N

◆�1 V12,2⌃�1µ2

N
.

The population SDF parameter of model 1 and 2 are respectively

✓1 = (V12,1⌃
�1V21,1)

�1V12⌃
�1µ2
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and
✓2 = (V12,2⌃

�1V21,2)
�1V12,2⌃

�1µ2.

Therefore

(V12,2⌃�1V21,2)

N
✓2 =

V12,2⌃�1µ2

N
.

Noting that V21,2 =
h
V21,1 V21,r

i
where V21,r is the remaining of the matrix V21,2, and

V21,1 =
h
V21,1 V21,r

i " IK1

0K3,K1

#
= V21,2

"
IK1

0K3,K1

#
,

we have

�21 � �22 = ✓
0

2

✓
V12,2⌃�1V21,2

N

◆
✓2

�
µ

0
2⌃

�1

N
V21,2

2

4
⇣

V12,1⌃�1V21,1

N

⌘�1

0K1,K3

0K3,K1 0K3,K3

3

5V12,2
⌃�1µ2

N

= ✓
0

2

✓
V12,2⌃�1V21,2

N

◆
✓2

�✓
0

2

✓
V12,2⌃�1V21,2

N

◆2

4
⇣

V12,1⌃�1V21,1

N

⌘�1

0K1,K3

0K3,K1 0K3,K3

3

5
✓
V12,2⌃�1V21,2

N

◆
✓2

= ✓
0

2

✓
V12,2⌃�1V21,2

N

◆
✓2

�✓
0

2

2

4

⇣
V12,1⌃�1V21,1

N

⌘ ⇣
V12,1⌃�1V21,r

N

⌘

⇣
V12,1⌃�1V21,r

N

⌘0 ⇣
V12,1⌃�1V21,r

N

⌘0 ⇣
V12,1⌃�1V21,1

N

⌘�1 ⇣
V12,1⌃�1V21,r

N

⌘

3

5 ✓2

= ✓
0

22


V12,r⌃�1V21,r

N �

⇣
V12,1⌃�1V21,r

N

⌘0 ⇣
V12,1⌃�1V21,1

N

⌘�1 ⇣
V12,1⌃�1V21,r

N

⌘�
✓22

= ✓
0

22C
�1
2,22✓22.

If C�1
2,22 is full rank, �21 � �22 = 0 if and only if ✓22 = 0. This is the first result of

proposition 3.
For Tikhonov, under the hypothesis ✓22 = 0, z =

p
TV (✓̂↵22)

� 1
2 ✓̂↵22

d
! N (0, IK3) as

T , N and ↵T go to infinity and ↵2T goes to zero.
T (�̂21,↵ � �̂22,↵) = T ✓̂↵

0
22Ĉ

�1
2,22,↵✓̂

↵
22 = z

0
V (✓̂↵22)

1
2 Ĉ�1

2,22,↵V (✓̂↵22)
1
2 z. Ĉ�1

2,22,↵ converges in pro-
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bability to C�1
2,22 as Ĉ�1

2,22 , a function of Ĉ2 which converges to C2 when N, T and
↵T ! 1 and ↵ ! 0 (see the proof of the consistency of ✓̂↵HJ). Therefore

T (�21,↵ � �22,↵)
d
! z

0
V (✓̂↵22)

1
2C�1

2,22V (✓̂↵22)
1
2 z.

The results follows from the singular value decomposition of V (✓̂↵22)
� 1

2C�1
2,22V (✓̂↵22)

� 1
2 .

1.9.5 Proof of Proposition 4

The proof is similar to the one of Proposition 3. First, note that

�21 � �22 = (�21 � �20)� (�22 � �20),

where �20 represents the population HJ distance of the model with factor f1.
From Proposition 3, we have

�21 � �20 = �✓
0

12C
�1
1,22✓12,

and
�22 � �20 = �✓

0

22C
�1
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The results follows from the singular value decomposition of
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1.9.6 Proof of Proposition 5
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Therefore, for Ridge and Tikhonov,
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↵ ê� ⌃�1e kN

+ k ⌃�1e� ⌃�1
↵ e kN= op(1)

when N , T , ↵T ! 1 and ↵ ! 0. So, equation (1.36) is equal to

|
2

p
T

TX

t=1

✓
yt
r̃t
N

� E


yt
r̃t
N

�◆0

(⌫̂1↵ � ⌫1↵) |  k
2

p
T

TX

t=1

✓
yt
r̃t
N

� E


yt
r̃t
N

�◆0

kNk ⌫̂1↵ � ⌫1↵ kN

= op(1).

while Equation (1.37) is bounded by

|<
p
T (⌃̂� ⌃)⌫1↵, ⌫̂1↵ � ⌫1↵ >N | k

p

T (⌃̂� ⌃) kNk ⌫1↵ kNk ⌫̂1↵ � ⌫1↵ kN

k

p

T (⌃̂� ⌃) kNk ⌫1 kNk ⌫̂1↵ � ⌫1↵ kN

= op(1),

when N , T , ↵T ! 1 and ↵ ! 0.
Therefore, as N , T , ↵T ! 1 and ↵ ! 0 ,

p
TrÊ
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Equation (1.34) can be rewritten as below
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as e 2 �3. Therefore, |
p
T (�2↵ � �2) |2= O(↵2T ).

1.9.7 Proof of Proposition 6

The distribution of the difference of HJ distances follows from Proposition 5, which
gives the distribution for each model.

1.10 Appendix C : List of the Portfolios used in the

simulations

Table 1.8 – List of portfolios

25 Portfolios Formed on Size and Book-to-Market

49 Portfolios Formed Industry

25 Portfolios Formed on Size and market beta

10 Portfolios formed on Industry

Portfolios Formed on Operating Profitability

Portfolios Formed on Investment

Portfolios Formed on Size

Portfolios Formed on market beta

Portfolios Formed on Book-to-Market

Portfolios Formed on Earnings/Price

Portfolios Formed on Cashflow/Price

Portfolios Formed on Dividend Yield
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Chapitre 2

Comparison of Misspecified Asset

Pricing Models Using Many

Characteristic-sorted and Micro

Portfolios
∗

2.1 Introduction

In the asset pricing literature, financial economists have proposed a combination of
more than 400 risk factors, often termed anomalies, to explain the difference in expected
returns in the financial market. These factors primarily relate to a company’s profita-
bility, investment strategies, value, and market trading frictions such as liquidity and
volatility, among others. In contrast to these proposed anomaly-driven models, macroe-
conomic or theoretical models represent a class using a general equilibrium framework
to understand holistically the expected return differences in the final markets. Even
though testing whether a particular factor carries a non-null risk premium is essential,
it is equally important to compare the performance of the different asset pricing models
proposed in the literature.

Past comparisons of these asset pricing models reveal a similar performance, i.e.,
they equally explain the difference in expected returns among assets. Part of the results
emanates from the low number of test assets or portfolios to be explained by the models.

∗. I thank Marine Carrasco for her invaluable guidance and the participants of the 2023 Dagenais
seminar.
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Researchers typically use the 25 size- and BM-sorted portfolios of Fama and French
(1993), sometimes supplemented by the 49 industry portfolios from the suggestion of
Lewellen et al. (2010). In recent studies, the number of test assets used to assess the
models has expanded. For instance, He et al. (2017) utilized 124 portfolios covering a
range of asset classes (such as US bonds, sovereign bonds, options, credit default swaps,
commodities, and foreign exchange) to evaluate their model.

Another difficulty stems from the portfolios’ construction method as pointed out by
Barras (2019). Researchers do not use individual stocks to compare models. They re-
group them into portfolios using some of their characteristics, e.g., size, book-to-market,
and industry. Blume (1970) pioneered this approach. It alleviates the error-in-variables
issue when the beta between test assets and factors is used as regressors to estimate
asset pricing models. These so-called characteristics-sorted portfolios contains a consi-
derable number of stocks and might weaken idiosyncratic information. In addition, as
argued by Barras (2019) they lead to correlated beta across risk factors and a lack of
discrimination power of the test assets despite the large spread of expected return they
produce.

This paper estimates and compares several asset pricing models with more than
3000 test assets that combine the well-known characteristic-sorted portfolios with mi-
cro portfolios Barras (2019) suggested. These micro portfolios are also formed using
observed financial characteristics but contain 5 to 10 stocks. Consequently, they are
analogous to individual stocks, offer significant return spread, and might improve the
lack of discriminatory power of the characteristics-sorted portfolios.

Estimating asset pricing models relies on the well-known Hansen and Jagannathan
(1997, HJ hereafter) distance. It is a misspecification measure that indicates the dis-
tance between the stochastic discount factor (SDF) based on the risk factors of the
proposed models and the true SDF that prices exactly the test assets. When a risk-free
asset is available, Kan and Robotti (2008) show that it corresponds to a GMM distance
with the inverse covariance matrix of excess returns as the weighting matrix. Interestin-
gly, in this case, the distance is also the difference between two squared Sharpe Ratios :
the squared Sharpe Ratio of the test assets and the squared Sharpe Ratio of the mimi-
cking portfolio of the factors proposed by the model. There is also a closed connection
to the cross-sectional R2, as pointed out by Kan, Robotti, and Shanken (2013). Using
the distance with 3000 test assets is empirically impossible as the covariance matrix is
not invertible.

Carrasco and Nokho (2022) introduce a new version of the distance where a regu-
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larized version replaces the covariance matrix. This extension is equivalent to allowing
for the presence of pricing errors for the true SDF and permits to account for measu-
rement errors or market frictions as discussed in Korsaye, Quaini, and Trojani (2019).
The distance can also be used to estimate SDF parameters.

Using the regularized HJ distance to compare models is identical to comparing their
squared Sharpe ratios. Barillas and Shanken (2017) address such comparisons with
models made of traded factors. They show that test assets are irrelevant in this case,
and the extent to which each model can price the factors in the other model is the most
important. This observation does not apply here as we also compare models without
traded factors, i.e., macroeconomic models. In addition, we do not impose the traded
factor restriction in the models as their factor-mimicking portfolios will replicate them
very well.

Our statistical comparison uses the pairwise framework of Gospodinov et al. (2013)
and depends on the relation between the models. When the factors of a model are
entirely in another model (nested case), the sample HJ of the smaller model will always
be higher. The comparison, then, determines if the inequality is strict or equality holds.
Most of the time, models have only a set of common factors. In this case, they are non-
nested, and the comparison determines whether the non-common factors have non-null
SDF or whether the sample difference of their Sharpe ratios is significant. Finally, our
method directly looks at the HJ differences when the models do not have common
factors. We also use the multiple comparison method, where more than two models are
simultaneously compared.

Our main contributions can be summarized as follows. We estimate and compare ten
unconditional and conditional asset pricing models using the regularized distance and a
combination of 3198 portfolios ranging from July 1973 to June 2018 (T = 540). Four are
macroeconomic or theoretical models : the Consumption Capital Asset Pricing Model
(CCAPM), the Durable Consumption Capital Asset Pricing Model (DCAPM) of Yogo
(2006), the Human capital Capital Asset Pricing Model (HCAPM) of Jagannathan and
Wang (1996), and the Intermediary Asset pricing model (IAPM) of He, Kelly, and Ma-
nela (2017). Five are anomaly-driven : the three (FF3) and Five-factor (FF5) Models
of Fama and French, 1993 and 2015, the Carhart (1997) model, which adds momentum
to FF3, the Liquidity Model of Pástor and Stambaugh (2003), and the Augmented
q-Factor Model (q5) of Hou et al. (2021). We also estimate the Consumption model of
Lettau and Ludvigson (2001) using quarterly data. We did not include the Consump-
tion model of Lettau and Ludvigson (2001) in the comparisons as the lower amount of
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data reduces the tests’ power. In contrast to unconditional models, conditional models
consider the economic business cycles and fluctuations of financial market conditions.
We use the macroeconomic and financial uncertainty indices of Ludvigson, Ma, and Ng
(2021) to build conditional models. We find that these two variables significantly reduce
the models’ pricing errors. Comparisons of unconditional models reveal that macroe-
conomic models display similar performance in explaining the cross-section of returns.
However, they have lower explanatory power than the anomaly-driven models. FF3 is
the sole exception. Furthermore, augmenting the FF3 with momentum and liquidity
factors enhances the model’s explanatory capability. Nevertheless, this augmented mo-
del is inferior to the FF5 and q5. For conditional models, the DCAPM and HCAPM
improve and dominate CCAPM and IAPM. These models also have similar pricing er-
rors as the conditional Carhart and liquidity models but are still inferior to FF5 and q5.
Overall, FF5 and q5 are indistinguishable in the unconditional and conditional setting
and dominate all the other models.

This work is mainly related to the literature on the evaluation and comparison of
asset pricing models. Notably, it is closest to the paper of Barillas et al. (2020). They use
the same distance to compare models with fewer test assets. In addition, they emphasize
on the anomaly-driven models and incorporate only the model of He et al. (2017) as a
macroeconomic model, which we also include in this paper. In addition, they did not
consider conditional models. This paper is also close to Kan and Robotti (2009). They
develop a pairwise comparison framework in the context of gross returns and compare
several models. They find the data too noisy to uncover differences in conditional and
unconditional models. Finally, our work is related to the paper of Barras (2019). He
compares asset pricing models using a new metric different from the HJ distance. This
metric computes the proportion of mispriced micro portfolios for each asset pricing
model.

The remainder of the paper is organized as follows : Section 2.2 introduces the regula-
rized Hansen Jagannathan distance, our model comparison method, and the estimation
of conditional models. Section 2.3 describes the construction of the micro-portfolios,
the Characteristic-sorted portfolios used, and the conditioning variables we employ for
the conditional models. Section 2.4 presents in detail the competing models. Finally,
Section 2.5 exposes the estimation and comparison results of the models.
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2.2 Asset pricing models with many assets and condi-

tional models

In this section, we elucidate the strategy employed to estimate and compare asset
pricing models in a large financial market. These models primarily aim to explain the
difference in expected returns observed among companies. We extend the prominent
approach of Hansen and Jagannathan (1997) to take into account many number of
companies.

2.2.1 Dealing with many test assets

For a vector of N random excess returns (companies) rt 2, if the law of one price
holds, there exists a square-integrable random variable mt that satisfies the fundamental
Equation below

E [rtmt] = 0N . (2.1)

The random variable mt is the marginal rate of substitution or the stochastic discount
factor (SDF). It generalizes the idea of discounting. Linear asset pricing models posit
a particular empirical SDF, yt(✓, ft) = ✓

0
ft, function of a vector of K factors, ft, and

unknown parameters ✓ 2 ⇥. In the context of excess returns, the proposed SDF should
be specified such that ✓ = 0 is not a solution to the equation 2.1. In this paper, we fix
the mean of y as in Kan and Robotti (2008) 3and consider SDF of the form

yt(✓, ft) = 1� ✓
0
(ft � E[ft]).

For a small number of test assets N , Kan and Robotti (2008) propose to evaluate
models using the following distance

�2 = inf
m2M,E[m]=c

E
⇥
(mt � yt)

2
⇤

s.t E [mtrt] = 0N .

This is a modified version of the Hansen and Jagannathan (1997) distance as the mean
of the true SDF has a fixed value. This measure of misspecification leads to the following

2. Excess return equals the return earned by a company minus the risk free rate (rf ).
3. Fixing the mean of the empirical SDF yt is similar to requiring the model to correctly price the

risk free return rf . Particularly, the risk free return verifies E [rfyt] = 1. So, E[yt] =
1
rf

= c.
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GMM distance
�2 = e(✓)

0
V �1
r e(✓),

where e(✓) = E [rtyt(✓)] and Vr = cov(rt). Suppose we have T observations on rt and
ft at our disposal. The SDF parameter ✓ can be estimated by minimizing the empirical
counterpart of �2. However, when N > T , i.e., the number of test assets is large, the
empirical inverse of Vr does not exist and �2 cannot be used.

When N is large, Carrasco and Nokho (2022) propose to evaluate the models by
measuring how far the proposed y is to the closest valid SDF that prices test portfolios
with errors up to ⌧ as below

�2⌧ = inf
m2M,E[m]=c

E
⇥
(mt � yt)

2
⇤

s.t k E [mtrt] k
2
N,⌃ ⌧. (2.2)

In the previous problem, ⌃ = Vr
N andk x k

2
N,⌃=

x
0
⌃x
N for any x 2 RN . As a result, the

constraint k E [mtrt] k2N,⌃ ⌧ imposes only a bound on the Fundamental Equation of
asset pricing instead of its exact nullity. Allowing for the presence of pricing errors for the
true SDF permits to account for measurement errors or market frictions as discussed
in Korsaye, Quaini, and Trojani (2019). This is quite plausible when we use a large
number of test assets. We did not impose the no arbitrage constraint in the evaluation
of the models (mt > 0) as problem (2.2) yields closed-form analytical expressions. So,
the models are just approximations and are assumed to be misspecified.

A similar and more tractable manner to see problem (2.2) is to rewrite it as a
penalization

�2↵ = inf
m2M,E[m]=1

E
⇥
(mt � yt)

2
⇤
+

1

↵
k E [mtrt] k

2
N,⌃,

where ↵ controls the level of pricing errors allowed to the true SDF. This leads to the
following regularized HJ distance

�2↵ =
e(✓)

0
⌃�1

↵ e(✓)
0

N
,

where ⌃�1
↵ = (⌃2 + ↵IN)

�1 ⌃. Using the linear SDF yt(✓, ft) = 1 � ✓
0
f̃t where f̃t =

ft � E[ft] , we have
�2↵ =

1

N
(µr � Vrf✓)

0
⌃�1

↵ (µr � Vrf✓), (2.3)

where µr = E[rt], Vrf = E[rtf̃
0
t ].
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Carrasco and Nokho (2022) study the estimation of ✓, the minimizer of �2, using
the empirical counterpart of (2.3) when N and T goes to infinity and ↵ goes to zero.
They also take into account the fact that e 6= 0 for most models, i.e., they are globally
misspecified. The parameter ✓ is estimated by

✓̂↵ = (V̂
0

rf ⌃̂
�1
↵ V̂rf )

�1V̂
0

rf ⌃̂
�1
↵ µ̂r,

where V̂rf = 1
T

PT
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0
t , f̃t = ft�

1
T

PT
t=1 ft µr =

1
T

PT
t=1 rt, and ⌃̂�1

↵ =
⇣
⌃̂2 + ↵IN

⌘�1

⌃̂

with ⌃̂ the estimated covariance matrix of rt. They show that when N, T,↵T ! 1,

and ↵,↵2T ! 0
p

T (✓̂↵ � ✓) �! N (0K , V
�1
f ⌦V �1

f ), (2.4)
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i
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�1e
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r̃t = rt�E[rt], Vf = cov(ft), ũt =
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N , ✏t is the residuals from projecting rt on ft and
a constant, � = VrfV

�1
f , C� = 1

N �
0⌃�1� , and � = V �1

f ✓ is the risk premium. Also, we
can express the distance as

�2↵ = µ
0

r⌃
�1
↵ µr � µ

0

r⌃
�1
↵ �(�

0
⌃�1

↵ �)�1�
0
⌃�1

↵ µr. (2.5)

�̂2↵ has an interesting economic interpretation. In particular, the regularized HJ coin-
cides with the difference between the squared Sharpe Ratio of the tangency portfolio
formed by test assets and the mimicking portfolio of the K factors. The mimicking
portfolio of the K factors is an investment position designed to closely follow ft using
only rt. The returns of this portfolio is given by f ⇤

t = Art, t = 1, . . . , T , where A is a
K⇥N matrix that represents the weights. Its unconditional mean is µ⇤ = E[f ⇤

t ] = Aµr

and its variance is V ⇤ = V ar(f ⇤
t ) = A

0
V �1
r A. We estimate the mimicking portfolio

weights, A, via the following regression

ft = a+ Art + ut, t = 1, . . . , T

where A is a K ⇥ N matrix and a is a vector of size K. Because we have a large
number of test assets (explanatory variables) in the regression, we employ the following
penalized minimization for each factor k

min
Ak

E
h
(f̃kt � A

0

kr̃t)
2
i
+ ↵A

0

k⌃
�1Ak, k = 1, . . . , K. (2.6)
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In the previous expression, we consider A = [A1, · · ·AK ]
0 , where Ak, k = 1, . . . K,

are vectors of dimension N . So A = ⌃�1
↵ Vrf and its estimation is Â↵ = ⌃̂�1

↵ V̂rf . In
addition, the estimated mean and variance of the mimicking portfolio are µ̂⇤

↵ = V̂fr⌃̂�1
↵ µ̂r

and V̂ ⇤
↵ = V̂fr⌃̂�1

↵ V̂rf if we estimate ⌃ by ⌃̂↵. Therefore ✓̂↵ = V̂ ⇤�1
↵ µ̂⇤

↵ , which is the
normalized mean of the mimicking portfolio. Furthermore, the squared Sharpe Ratio of
the tangency portfolio constructed from the K factor mimicking portfolios is given by

µ̂⇤0
↵ V̂

⇤�1
↵ µ̂⇤

↵ =
⇣
µ̂r⌃̂

�1
↵ V̂rf

⌘⇣
V̂

0

rf ⌃̂
�1
↵ V̂rf

⌘�1 ⇣
V̂

0

rf ⌃̂
�1
↵ µ̂r

⌘

⌘

⇣
µ̂

0

r⌃̂
�1
↵ �̂

⌘⇣
�̂

0
⌃̂�1

↵ �̂
⌘�1 ⇣

�̂
0
⌃̂�1

↵ µ̂r

⌘
.

The estimated squared Sharpe Ratio of the test asset is µ̂
0
r⌃̂

�1
↵ µ̂r. So, the HJ distance

measures how close the squared Sharpe Ratio of the factor mimicking portfolio is to
the squared Sharpe Ratio of the test assets.

We choose ↵ by maximizing the out-of-sample R2. We divide the sample into two
parts, and then choose the best ↵ between 0.0001 and 0.2 that maximizes

R2
oos,↵ = 1�

(µ̂o
r � V̂ o

rf ✓̂↵)
0
(µ̂o

r � V o
rf ✓̂↵)

µ̂o0
r µ̂

o
r

.

In the previous equation, ✓̂↵ is estimated from the first part of the sample and quantities
with .o are estimated from the second part sample.

Aside from the estimation of the SDF parameter, we compare the ability of the mo-
dels to correctly explain the difference in expected returns of the test assets. The regu-
larized HJ distance offers a very good framework for that. Let F1 = {y1t(✓1, .); ✓1 2 ⇥1}

and F2 = {y2t(✓2, .); ✓2 2 ⇥2} be the proposed linear SDF families of two models. In
addition, �21 and �22 are the aggregate pricing errors of the models. The comparison of
the two models investigates whether �21 = �22. From (2.5), it is noteworthy to see that
this exercise amounts to comparing the Sharpe ratio of the mimicking portfolios of
the two models. This test can be conducted using the fact when N, T,↵T ! 1, and
↵,↵2T ! 0 and �1, �2 6= 0,

p

T
⇣
�̂21↵ � �̂22↵ � (�21 � �22)

⌘
d

�! N (0, v), (2.7)

where v = lim
N,T!1

var
h

1p
T

PT
t=1 l1t � l2t

i
. lmt = 2ymtũmt � ũ2

mt � �2m + 2 e
0
m⌃�1µR

N ,
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umt =
r
0
t⌃

�1em
N , and m = 1, 2. When models are misspecified, the equality �21 = �22 can

happen under two circumstances. The first is when y1 = y2. In this case, the previous
distribution degenerates to 0. The second is when y1 6= y2, and the aggregate errors are
the same �21 = �22. This observation leads to a sequential test to compare the performance
of two models. If the models are nested (F1 ⇢ F2 or F2 ⇢ F1), or overlapping (F1⇢⇢⇢F2

or F2⇢⇢⇢F1, F1\F2 6= ;), we first test whether y1 = y2 through a Wald test of the nullity
of the uncommon factors between the two models using distribution (2.4). If y1 = y2 is
rejected, we compare the pricing errors of the two models using (2.7). However if y1 = y2

cannot be rejected, we conclude the equal performance of the two models. When the
two models are strictly non-nested (F1 \ F2 6= ;), we directly use (2.7).

When considering the comparison of multiple models, the significance level of a
series of pairwise tests is not known. Instead, we can use a multiple-model comparison
test of Wolak (1989). The test determines whether a benchmark model with �21 performs
at least as well as the q = p� 1 others with squared HJ given by �2i , i = 2, . . . , p. So, we
test H0 : d = (d2, . . . , dp)  0q against H1 : d 2 Rq, where di = �21 � �2i . The differences
of HJ are normally distributed according to (2.7). We note ⌦d the covariance matrix of
the vector d. The likelihood-ratio type statistics of the null hypothesis is

LR↵ = T (d̂↵ � d̃↵)
0
⌦̂�1

d,↵(d̂↵ � d̃↵),

where ⌦̂d,↵ is a consistent estimator of ⌦d and d̃↵ = argmin
d

(d̂↵ � d)
0
⌦̂�1

d,↵(d̂↵ �

d) s.t. d  0p. As N, T ! 1 and ↵ ! 0, this statistics converges to
Pq

i=0 wq�i(⌦d)�2(i),
where �2(i) are independent �2 random variables with i degrees of freedom, �2(0) is
zero, and the weights wi sum up to one 4. This distribution can be used to obtain valid
p-values.

2.2.2 Conditional models

We describe the estimation of conditional asset pricing models. The previous ap-
proach has a major drawback. Estimated parameters do not vary with time. It forces
prices of risk to be invariant to business cycles. This might limit the ability of the mo-
dels to price correctly the assets. So, we also estimate and compare conditional asset
pricing models.

4. Appendix C of Gospodinov et al. (2013) gives the procedure to compute wi(⌦d) and the p-value
of the test
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We take into account business cycles by explicitly modeling the SDF parameters as
linear function of J macroeconomic variables represented by the column vector xt

yt = 1� ✓(xt�1)
0
(ft � E(ft)) ,

and
✓k(xt�1) = ✓0k + ✓1kx1t�1 + · · ·+ ✓jkxJt�1 for k = 1, · · · , K.

This yields the following SDF yt = 1�✓
0
0f̃t�✓

0
�0(f̃t⌦xt�1), where ⌦ is the Kronecker

product, ✓0 is a K-dimensional column vector associated to the demeaned factors, ✓�0

is a KJ-dimensional column vector associated to the interaction variables, and f̃t =

ft � E(ft). We demeaned the interaction terms to keep the mean of the SDF to 1. So
empirically, we use yt = 1� ✓

0
0f̃t � ✓

0
�0(f̃t ⌦ xt�1 �E(f̃t ⌦ xt�1)). Therefore, estimating

this type of conditional model is the same as estimating an unconditional model with
scaled factors.

It is noteworthy to see that the conditioning variables do not directly influence the
SDF as factors. It would have been the case if the model had a constant SDF parameter,
as is when one uses gross returns to estimate asset pricing models. The conditioning
variables differ from the SDF factors in that they can encompass any variable that tracks
business cycles or specific financial events. Conversely, the SDF factors typically arise
from portfolio analyses for the case of anomaly-driven models or a theoretical framework
for the macroeconomic or theoretical models. Our modeling approach emphasizes and
clarifies this distinction.

We also incorporate conditioning informations by adding scaled returns. This ap-
proach uses the conditional version of the fundamental Equation of asset pricing which
is

E [mtrt | It�1] = 0N .

where It�1 is the information set available at time t� 1. We can multiply both side of
the previous equation by xt�1 2 It�1 and take the unconditional expectation to have
E [mtrtxt�1] = 0N . rtxt�1 are now the payoffs to managed portfolios. Characteristic-
sorted portfolios, i.e., portfolio sorted using financial indicator such as size, book-to-
market, industry, beta, are all managed portfolios. Therefore, we use the Characteristic-
sorted portfolios to add conditioning informations to the main test assets.
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2.3 Test Assets and conditioning variables

We describe the test assets rt used to evaluate the models. It is usual to regroup
individual returns into portfolios. This reduces the volatility of the returns and the
estimation errors of the SDF parameters. The mainstream approach consists in sorting
individual returns by observed financial characteristics such as size and averaging the
returns. This yields the characteristics-sorted portfolios. They can also be considered as
managed portfolios because their composition changes per year. However, the number of
individual returns per portfolio is considerable, which might dilute crucial information
about returns in the financial market. We supplement them with portfolios of small
number of individual returns called micro portfolios.

2.3.1 Micro portfolios formation

We form several thousands micro portfolios using the approach of Barras (2019).
The latter is different from the mainstream approach of portfolio sorting and flexible
enough to accommodate several characteristics at the same time. Furthermore, it strikes
a balance between analyzing returns from individual companies and those from portfolio
sorting and is based on the local averaging methods of Efron (2010, chap. 9).

We link the Computstat and the CRSP dataset using the cusip of the companies.
We work with non-financial firms. We match all the financial informations available
at the fiscal yearend Y e � 1 with returns from July Y e to June Y e + 1. This ensures
that these variables are known to the returns they are trying to explain (see Fama and
French (1992)). For each Year Y e, we divide the companies into three size groups using
the 20th and 50th percentiles of their NYSE market capitalization. The first group
represents the tiny companies, the second and third group include the small and big
companies.

We repeat the following process for each size group. We estimate the expected return
of each company i at time t as follows µ̂it = ⇢̂tcit. In the previous equation, cit is a vector
of observed characteristics including a constant and ⇢̂t is the vector of coefficients from
the Fama and MacBeth (1973) cross-sectional regression of the returns prior to t on the
characteristics

ris = ⇢
0

scis + uis,

s < t 5. Similar to Barras (2019), we use book-to-market ratio, investment, and the

5. The Fama and MacBeth cross-sectional regression is a two-step process. First, we run a cross-
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profitability of the firms as characteristics to track the expected returns. For each for-
mation year ta, we rank the companies using their standardized estimated expected
returns µ̂s

ita – the monthly expected returns are cross-sectionally demeaned and sca-
led. Then, we take the nine closest stocks in terms of expected return and build an
equal-weighted micro portfolio for each stock i. Finally, we link micro portfolio returns
over time. Specifically, for each pair (i, j) of micro portfolios in years ta and ta + 1, we
compute | µ̂s

ita � µ̂s
jta+1 | and link the portfolios with the lowest value.

The portfolios obtained through this process present missing values for months we
do not have returns. We remove portfolios with less than 60 returns and use a matrix
completion method to obtain a balanced micro portfolio data. The matrix completion
approach relies on an assumption that the full matrix can be written as a low-rank
version of a noisy matrix. The low-rank assumption is reasonable in asset pricing models,
where a factor model is usually assumed for the return matrix. The method has been
used in Giglio et al. (2021).

Specifically, the goal is to recover the N ⇥ T low-rank matrix R of the micro port-
folios, where N is the number of micro portfolios and T is the number of time points.
Suppose that Y , a N ⇥ T matrix, is a “noisy version” of R and can be written as
Y = R + E, and E is the noise. In addition, Y is not fully observed. We introduce X

as the N ⇥ T matrix whose (i, t) element is 1 if the Yit is observed and 0 otherwise. So
Y ? = Y �X is the observed noisy data, where ◦ represents the element-wise matrix pro-
duct. We employ the following nuclear-norm penalized regression approach to recover
the full micro portfolio data R :

R̂ = argmin
R

k Y ?
�R �X k

2 +⌫ k R kn, (2.8)

where k R kn is the matrix nuclear norm of R and ⌫ > 0 is a tuning parameter.
The solution to problem (2.8) is given by

R̂ = S⌧⌫/2(R̂l � ⌧X � (⌦ � R̂l � Y ?)) (2.9)

for ⌧ > 0. For a matrix Y , Sa(Y ) = UDaV
0 , where U,V are the left and right matrix of

singular value decomposition of Y , and Da is a modified version of the diagonal singular
value matrix. Da replaces the singular values, Dii by max(Dii � a, 0). So Da applies a

sectional regression for each s < t to obtain ⇢̂s. This lead to a time series of ⇢̂. Then, we compute
⇢̂t =

1
t�1

P
s=t�1
s=1 ⇢̂s.
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soft-thresholding on the singular value of Y .
Solution (2.9) suggests an iterative approach to retrieve the final matrix R̂ as follows

R̂l+1 = S⌧⌫/2(R̂l � ⌧X � (⌦ � R̂l � Y ?)), (2.10)

where R̂l is the solution of the l-th iteration. The parameter ⌧controls the step size of
each iteration. We choose ⌧ = 0.9. We take R̂0 = Y ? as the starting value.

The tuning parameter ⌫ controls the rank of the recovered matrix. A high value of
⌫ reduces the rank of the recovered matrix, while a low value does the opposite. As a
result, it is important to choose it carefully. We choose it by relying on the method of
Chernozhukov et al. (2019), where

⌫ = 2(1 + c)Q̄(k X � Z kn; 1� �NT ). (2.11)

Q̄(W ;m) is the mth quantile of a random variable W, Z is an N ⇥ T matrix whose
elements zit are generated as N (0, �2

ei) independent across (i, t), �2
ei is the variance of

Eit, and �NT = 0.05.
We employ the empirical variance of Y ?

it as the initial estimate of �2
ei to compute the

first value of the tuning parameter. The initial value is used to compute the solution
R̂init of (2.9) using the iterative equation (2.10). Then, we recompute a new value ⌫
using the recovered solution. For this value of ⌫, E = Y ?

� R̂init � X. We repeat this
process until the difference between the old and new solution is small enough. We
present the major steps of the matrix completion algorithm below.

Algorithm 2.1 Matrix completion
1: Compute initial ⌫ using (2.11)
2: Compute initial solution R̂init using (2.10)
3: R̂ = R̂init

4: while (diff < crit) do

5: R̂old = R̂
6: Compute new � using (2.11)
7: Compute R̂ using (2.10)
8: diff = kR̂� R̂oldk

9: end while

Using this approach, we end up with 2465 micro portfolios (1596 tiny, 441 small,
and 428 big portfolios) with returns ranging from July 1973 to June 2018 . Panel A of
Table 2.1 presents the cross-sectional quantiles of the return moments and the observed
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characteristics for the micro portfolios. The average return and volatility are annualized.
The median of the average returns and volatilities are 11.06% and 19.44%. Returns are
mostly leptokurtic. Tiny-cap micro portfolios have slightly higher return and volatility
while the big-cap portfolios present lower return and volatility.

2.3.2 Characteristic-sorted Portfolios

We also use test assets issued from portfolio sorts – characteristic-sorted portfolios.
As stated in Subsection 2.2.2, they are managed portfolios and can be used to introduce
conditioning informations. The 25 portfolios sorted independently on size and book-to-
market are commonly used to test factors or evaluate asset pricing models for they offer
a sufficient range of returns to be explained. To increase the number of returns to be
explained, we also include all the available portfolios from the Kenneth French website.
We suppressed 5 portfolios with missing data. This amounts to 733 portfolios. The
complete list of portfolios used is given in Table 2.10. Panel B of Table 2.1 shows the
cross-sectional quantiles of the return moments for the combined characteristics-sorted
portfolios.

2.3.3 Conditioning variables

We describe the variables used to scale the factors in the conditional asset pricing
models. We draw upon the economic uncertainty literature, which introduces a range of
new indicators intricately linked to the real business cycles. As pointed out by Bloom
(2014), uncertainty is a concept related to the agents’ uncertainty about future possible
states of the economy or the uncertainty over the path of a particular macro variable like
the GDP and micro variable such as the growth rate of firms. Usually, these indicators
rise during recessions and drop during economic booms. We employ a pair of indicators
as conditioning variables.

We use the macroeconomic uncertainty index of Jurado, Ludvigson, and Ng (2015)
to account for the real business cycles into the asset pricing models. The uncertainty
of a series is defined as the conditional volatility of the h-period ahead of its forecast
errors. So, this definition of uncertainty quantifies the level of unpredictability of the
economy’s future states. Their macroeconomic uncertainty index is the equal-weighted
aggregate of 132 macroeconomic activity measures.

Panel A Figure 2.1 plots the macro uncertainty index. Researchers have typically
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used the cyclical part of the natural logarithm of the US Industrial Production Index
as a conditioning variable. Hodrick and Zhang (2001) find significant predictive power
of the variable for the value-weighted return from the CRSP. So, we also plot the
cyclical part of the US industrial production (IP). The two indicators exhibit a strong
negative correlation during recessions. The cyclical component of US IP goes down while
uncertainty rises. However, during these periods, uncertainty seems to be timelier as its
spikes come before the decrease of the IP. The contemporaneous correlation between
the series is -0.19, while the correlation between the cyclical component with the one
and two-period lagged uncertainty is -0.25 and -0.31.

As Real/Macro uncertainty does not always translate to the financial market and
vice versa, we also use the financial uncertainty index of Ludvigson, Ma, and Ng (2021).
The indicator is the aggregate uncertainty of 148 financial series, such as the dividend-
price and earnings-price ratios, spreads, yields, and sorted portfolios such as size, book-
to-market, and momentum. Panel B Figure 2.1 plots the financial uncertainty index.
In addition to the trough spikes, we observe additional ones outside these periods. A
notable example is the spike of the 1987 stock market crash.
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Table 2.1 – Descriptive statistics of the micro and characteristic portfolios
Panel A : All micro portfolios

Quantile 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
Mean 5.56 8.43 11.06 13.30 16.39
Std 13.27 17.48 19.44 21.09 23.40 Profitability -0.96 -0.12 0.02 0.08 0.21
Kurtosis 5.11 5.85 6.40 7.07 12.61 Investment -0.24 0.02 0.11 0.26 1.02
skewness -0.52 -0.34 -0.11 0.08 0.75 Book to market 0.13 0.37 0.67 1.13 2.46

Panel A1 : Tiny-cap micro portfolios
Quantile 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
Mean 8.42 10.78 12.54 14.22 17.11
Std 16.86 18.88 20.22 21.49 23.52 Profitability -1.04 -0.12 0.01 0.07 0.20
Kurtosis 5.85 6.33 6.71 7.60 16.20 Investment -0.27 -0.01 0.09 0.24 1.02
Skewness -0.28 -0.11 0.02 0.18 1.01 Book to market 0.13 0.41 0.73 1.20 2.59

Panel A2 : Small-cap micro Pportfolios
Quantile 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
Mean 5.83 7.70 8.83 10.49 12.58
Std 15.04 16.71 18.33 20.32 23.25 Profitability -0.69 0.00 0.06 0.10 0.23
Kurtosis 5.19 5.59 5.84 6.24 8.84 Investment -0.06 0.07 0.18 0.38 1.29
Skewness -0.61 -0.48 -0.42 -0.35 -0.01 Book to market 0.10 0.27 0.46 0.76 1.61

Panel A3 : Big-cap micro portfolios
Quantile 0.05 0.25 0.50 0.75 0.95 0.05 0.25 0.50 0.75 0.95
Mean 4.58 5.69 6.48 8.07 9.60
Std 12.11 13.17 14.86 17.28 21.67 Profitability -0.45 0.03 0.07 0.11 0.23
Kurtosis 4.88 5.21 5.39 5.67 6.59 Investment -0.01 0.09 0.17 0.36 1.41
Skewness -0.51 -0.41 -0.36 -0.31 -0.16 Book to market 0.08 0.22 0.38 0.66 1.29

Panel B : Characteristic-sorted portfolios
Quantile 0.05 0.25 0.50 0.75 0.95
Mean 5.37 8.24 10.20 12.23 14.77
Std 15.13 17.58 19.36 21.69 26.86
Kurtosis 4.34 5.06 5.63 6.31 8.23
Skewness -0.66 -0.49 -0.36 -0.22 0.34

This leftmost side of this table presents the cross-sectional quantiles (0.05, 0.25, 0.5, 0.75, 0.95) of the average
annualized excess returns (mean), annualized volatility (std), kurtosis and skewness of the micro portfolios. The
rightmost side presents the cross-sectional quantiles of the characteristics used to construct the micro portfolios.
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Panel A : Cyclical component of the US industrial production and macroeconomic uncertainty

Panel B :Financial uncertainty

Figure 2.1 – Conditioning variables
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2.4 Competing Models

We estimate and compare ten asset pricing models proposed in the literature. They
are categorized in two types : theoretical or macroeconomic and anomaly-driven ones.
Theoretical models often incorporate macroeconomic factors, whether derived from ge-
neral equilibrium models or not, while anomalies-driven models directly derive factors
from accounting-related data. We succinctly summarize each one of them.

Consumption Capital Asset Pricing Model (CCAPM). This model, presented
in Hansen and Singleton (1982), assumes a representative agent with power utility
function u(ct) =

c1��
t
1�� , where � is the relative risk aversion. The model yields a SDF of

the form Yt = �
⇣

Ct+1

Ct

⌘��

, where � is the discount rate. Using the fact that non-linear
models can be approximated by first order log linear function as

Yt

E[Yt]
t 1 + yt � E[yt],

where yt is the logarithm of Yt, the initial SDF can be rewritten as Yt
E[Yt]

t 1 �

�
⇣
log(Ct+1

Ct
)� E(log(Ct+1

Ct
))
⌘
. Therefore, in our specification, we use

y = 1� ✓ndur (�cndur � E [�cndur]) ,

where �cndur is the log consumption growth rate of non durable goods (seasonally ad-
justed at annual rates). Nondurable consumption is the sum of real personal consump-
tion expenditures on nondurable goods and services obtained from the US Bureau of
Economic Analysis (BEA). ✓ndur is directly interpretable as the relative risk aversion
coefficient.

Durable Consumption Capital Asset Pricing Model (DCAPM). In this mo-
del, as described by Yogo (2006), representative household has an intra period utility
function that depends on durable and non durable goods. Non durable goods are consu-
med immediately after purchase, while durable goods last for more than one period. The

model has an intra period utility given by u(C,D) =
h
(1� ↵)C1� 1

⇢ + ↵D1� 1
⇢

i 1

1� 1
⇢ ,where

C is the units of non durable goods, D is the stock of durable goods. ↵ 2 (0, 1) and
⇢ � 0 is the elasticity of substitution between the two consumption goods. D follows
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the following equation
Dt+1 = (1� �)Dt + Et, (2.12)

where � is the depreciation rate and Et is units of a durable consumption good. The
inter temporal utility function is defined recursively as Ut+1 = {(1� �)u(Ct, Dt)1�

1
� +

�Et(U
1

t+1)}

1/(1� 1
� ) ,  = (1 � �)/(1 � 1/�). The parameter � 2 (0, 1) is the house-

hold’s subjective discount factor, � � 0 is the Intertemporal Elasticity of Substitu-
tion, and � > 0 determines the relative risk aversion. In addition, the household in-
vests in an economy with N risky assets. The model yields the following SDF Yt+1 =
�
⇣

Ct+1

Ct

⌘� 1
�
⇣

v(Dt+1/Ct+1)
v(Dt/Ct)

⌘1/⇢�1/�

R
1� 1


W,t+1

�
, where v(D/C) =

h
1� ↵ + ↵(DC )

1� 1
⇢

i 1

1� 1
⇢ .

The SDF can be approximated as

Yt

E[Yt]
t 1� b1(�ct � E[�ct]) + b2(�dt � E[�dt]) + b3(rwt � E[�dt]),

where b1, b2, and b3 are non linear function of ↵, , � and ⇢. So, their interpretation
is not as straightforward as in CCAPM. We use this specification in our linear SDF as
follows :

y = 1� ✓mkt (rmkt � E [rmkt])� ✓ndur (�cndur � E [�cndur])� ✓dur (�cdur � E [�cdur]) ,

where rmkt is the excess return on the value-weighted combined NYSE-AMEX-NASDAQ
index, �cdur is log consumption growth rate of the per capita stock of durable goods.
We construct the stock of durable goods by using the flow of personal consumption
expenditures of durable goods from the BEA and Equation (2.12) with � = 0.06 and
D0 = E0

g+� . g is the average growth rate of the durable personal consumption expendi-
ture.

Conditional Consumption Capital Asset Pricing Model (CCAY). The third
model is the conditional CCAPM of Lettau and Ludvigson (2001). It improves on
the CCAPM by scaling the consumption variable with the log consumption–aggregate
(human and non-human) wealth ratio. The latter summarizes the agent’s expectations
of future returns and has good forecasting power for excess returns. High consumption-
wealth ratio goes with high wealth return in the future or low consumption growth rates
and vice-versa. In practice, they use the cointegrating residual between log consumption,
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c, log asset (nonhuman) wealth, a, and log labor income, y as the observable version of
the ratio, hence the cay notation. The SDF of this model is

y = 1� ✓ndur (�cndur � E [�cndur])� ✓ndur,cay (�cndur ⇤ cay � E [�cndur ⇤ cay]) ,

where �cndur ⇤ cay is the interaction between nondurable consumption and the log
consumption–aggregate wealth ratio.

Intermediary Asset Pricing Model (IAPM). All the theoretical models pre-
sented so far place household decisions at the center of the SDF. Intermediary asset
pricing theory proposes a new perspective to understand risk in financial markets.
In its setting, financial intermediaries such as traditional commercial banks, invest-
ment banks, and hedge funds act as marginal investors (see He and Krishnamurthy
(2013)). Given the households’ relative lack of expertise in trading assets, this view
is quite cogent. He, Kelly, and Manela (2017) consider a two-agent economy popula-
ted by Households and Financial intermediaries. The Financial intermediaries are the
marginal investors and maximize a power utility function E

´1
0 e⇢tu(ct)dt, where ⇢ is

the discount rate and u(ct) = c1��
t
1�� . As the financial intermediaries’ consumption is a

fraction of its wealth, the SDF that arises in general equilibrium is ⇤t = e⇢t(↵W I
t )

��,
where ↵ is a positive constant and W I

t is the wealth of the financial intermediaries.
Let ⌘t be the intermediary sector’s share of aggregate wealth in the economy. Then
⇤t = e⇢t(d⌘tWt)��. Using the fact that for any asset i with instantaneous return dRi

t,
Et(dRi

t)� rf,tdt = �Et(dRi
t.

d⇤t+1

⇤t
), we have the following beta representation

Et(dR
i
t)� rf,tdt = �i

W,t�W + �i
⌘,t�⌘,

where � is the exposure of the factors to the returns. He, Kelly, and Manela (2017) use
the capital ratio Equityt

Assetst
of the Federal Reserve Bank of New York primary dealers as ⌘t.

They employ the growth rate of capital ratio, ⌘�t , as a factor to implement the model.
The latter is ⌘�t = ut

⌘t�1
, where ut is the innovations from the following AR(1) model

⌘t = ⇢0 + ⇢⌘t�1 + ut. This implementation is equivalent to using an SDF of the form

yt = 1� ✓W (rW,t � E[rW,t])� ✓⌘(⌘
�
t � E[⌘�t ]).

Finally, they also use the Federal Reserve Bank of New York primary dealers’ value-
weighted return as a factor and find similar pricing performance of the model.
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Human Capital Capital Asset Pricing Model (HCAPM). The fifth model is
the Human capital CAPM of Jagannathan and Wang (1996). This model mainly tries
to improve on the CAPM model by including a variable related to the business cycle
through the yield spread between BAA- and AAA-rated bonds and a variable related
to the aggregate wealth through the growth rate of the per capita labor income. Its
SDF is

y = 1� ✓jmkt (rjmkt � E [rjmkt])� ✓prem(rprem � E [rprem])� ✓lab(rlab � E [rlab]),

where rjmkt is the return on the valued-weighted combined NYSE-AMEX-NASDAQ
index, rprem is the lagged yield spread between BAA and AAA rated corporate bonds,
and rlab is the growth rate in per capita labor income. The latter is a two month moving
average of the per capita labor income Lt. So, rlab,t = Lt�1+Lt�2

Lt�2+Lt�3
� 1. The two month

moving average reduces the influence of measurement errors.

FF3. Besides the market, Fama and French (1993) uncovered two additional factors
related to firms’ size and value that can explain the cross-section of returns. Value
is measured using the book-to-market ratio (BM), defined as the division of a firm’s
common stock’s book value (BE) by its market value (ME). To build the factors, they
sort the universe of stocks into two groups (small and big) using the NYSE stocks’
median market value of Equity. In addition, they also break the stocks into three book-
to-market (BM) groups. The breakpoints are the 30th (low), 40th (medium), and 70th
(high) percentile of the ranked values of BM for the NYSE stocks. This process yields
six value-weighted portfolios sorted independently on size and book-to-market. The size
factor (Small Minus Big) is the difference between the average return on the three small
portfolios and the average return on the three big portfolios, while the book-to-market
factor (High Minus Low) factor is the difference between the average return on the two
portfolios with low BM (value portfolios) and the average return on the two portfolios
with high BM (growth portfolios). The SDF of this model is given by

y = 1� ✓mkt (rmkt � E [rmkt])� ✓SMB (rSMB � E [rSMB])� ✓HML (rHML � E [rHML]) ,

where rmkt is the excess return on the value-weighted combined NYSE-AMEX-NASDAQ
index, rSMB is the size factor and rHML is the value factor.
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Carhart. Researchers have proposed several anomalies besides the size and value
factor. Jegadeesh and Titman (1993) documented the tendency of past well-performing
stocks to outperform in the future. So, we include the Carhart (1997) model, which
adds the momentum factor. This factor captures the returns associated with investing
in winning stocks in contrast to losing stocks. For a month t, the momentum of a stock
is the cumulative return of the stock during the 11 months covering month t�11 to t�1.
In the literature, researchers build the momentum factor using the sorting method of
Fama and French (1993), except that the sort takes place each month, and momentum
replaces BM. The SDF of this model is given by

y = 1� ✓mkt (rmkt � E [rmkt])� ✓SMB (rSMB � E [rSMB])� ✓HML (rHML � E [rHML])

�✓MOM (rMOM � E [rMOM ]) ,

where rMOM is the momentum factor.

Liquidity. We also estimate the liquidity model of Pástor and Stambaugh (2003). It
adds the liquidity factor to the Cahart model. Liquidity refers to the facility with which
one can trade a security without significant price impact. A liquid stock tends to be
available to trade. As such, compared to an illiquid stock, it experiences lower price
change. Pástor and Stambaugh (2003) measure the liquidity of a stock i in month t,
�it, using the following model :

ri,d+1,t � rm,d+1 = ✓i,t + �i,tri,d,t + �i,tsign(ri,d,t � rm,d,t)vi,d,t + ✏i,d+1,t,

where ri,d,t is the return on stock i on day d in month t, rm,d+1 is the return on the
CRSP value-weighted market return on day d in month t, and vi,d,t is the dollar volume
for stock i on day d in month t. For a market with N stocks, the aggregate market
liquidity is given by �̂t =

⇣
Vt
V1

⌘
1
N

PN
i=1 �̂i,t. Vt is the total dollar value at the end of

month t � 1 of the stocks included in the previous average in month t, and month 1
corresponds to August 1962. In their model, they use a factor related to the innovations
or unexpected changes of aggregate liquidity. The aggregate liquidity innovation is
given by ��̂t =

⇣
Vt
V1

⌘
1
Nt

PNt

i=1(�̂i,t � �̂i,t�1). Instead of using the previous variable, they
remove the long-run mean and potential correlation by running the following regression
��̂t = a+ b��̂t�1 + c

⇣
Vt
V1

⌘
�̂t�1 + ut and then define Lt =

1
100 ût as the main aggregate

liquidity innovation. In addition, each year, they sort stocks into 10 groups using their
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liquidation innovation beta of the previous year from the model below

ri,t = �0
i + �i,MKT rmkt,t + �i,SMBrSMB,t + �i,HMLrHML,t + �i,LLt + ✏i,t,

where ri,t is the excess return of stock i during period t and rmkt,t , rSMB,t , rHML,t , and
Lt are the market factor, size factor, value factor, and liquidity innovation, respectively,
in month t. The liquidity factor rLIQ is the difference between decile ten portfolio and
decile one. Finally, the SDF of the model is given by

y = 1� ✓mkt (rmkt � E [rmkt])� ✓SMB (rSMB � E [rSMB])� ✓HML (rHML � E [rHML])

�✓MOM (rMOM � E [rMOM ])� ✓LIQ (rLIQ � E [rLIQ]) .

FF5. The Fama and French (2015) model adds a profitability and an investment
factor to FF3 and has the following SDF.

y = 1� ✓mkt (rmkt � E [rmkt])� ✓SMB (rSMB � E [rSMB])� ✓HML (rHML � E [rHML])

�✓RMW (rRMW � E [rRMW ])� ✓CMA (rCMA � E [rCMA]) .

The variable, rRMW , is the RMW (Robust Minus Weak) or profitability factor. Its
construction is similar to the value factor, only operating profitability replaces BM.
So, RMW is the difference between the return on the robust operating profitability
portfolios minus the return on the weak operating profitability portfolios. In the same
vein, the variable, rCMA, is the CMA (Conservative Minus Aggressive) factor or invest-
ment factor. It is the difference between the return on the low investment portfolios
(conservative) minus the return on the high investment portfolios (aggressive).

q5. The tenth model is the q-factor model of Hou et al. (2021), which assumes that

y = 1� ✓mkt (rmkt � E [rmkt])� ✓ME (rME � E [rME])� ✓I/A
�
rI/A � E

⇥
rI/A

⇤�

�✓ROE (rROE � E [rROE])� ✓Eg (rEg � E [rEg]) .

The variable, rME, is the difference between the return on small size portfolios
and the return on the big size portfolios. The factor, rI/A , represents the invest-
ment of companies. It is the difference (low-minus-high) between the return on low
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I/A (investment-to-assets, which is the annual change in total assets divided by 1-
year-lagged total assets) portfolios and the returns on the high I/A portfolios. The
variable, rROE, is the return on equity factor, and is the difference (high-minus-low)
between the return on high ROE portfolios and the return on the low ROE portfo-
lios. Hou et al. (2021) construct the three factors using a triple 2-by-3-by-3 sort on
size, investment, and ROE (profitability). Finally, rEg is the expected growth factor.
It is the difference (high-minus-low) between the simple average of the returns on high
expected investment-to-assets changes portfolios and the returns on the low expected
investment-to-assets changes portfolios.

Panel A of Table 2.2 presents the characteristics of the traded factors of the different
models described earlier : mean, volatility and cross-correlation. For macroeconomic
variables, we build a mimicking portfolio using (2.6). Every factor carries a significant
positive risk premium. Therefore, an investment in portfolios that follows these factors
will yield positive returns in excess of the risk free rate. The expected growth factor has
the highest risk premium (0.62%) followed by the momentum factor (0.60%), and the
market factor (0.59%). The Financial intermediary factor provides the smallest positive
return followed by the macroeconomic factors. However, macroeconomic factors present
the highest t-stat. This is mainly due to their low volatilities.

Panel B describes the correlation between factors. Numerous factors within FF3 and
q5 exhibit strong correlations. The correlation between the size factors are normal given
they use the same characteristics variable. IA is very correlated with HML (0.68) and
CMA (0.90). ROE and RMW have a correlation of 0.67. So the two models might span
the same SDF. In the intermediary asset pricing model of He, Kelly, and Manela (2017),
the intermediary factor is highly correlated with the market (0.80). Macroeconomic
factors do not display high correlations with other variables but exhibit a moderate level
of correlation among themselves. Particularly, durable and non durable consumption
have a correlation of 0.58.
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2.5 Results

First, we provide the results of the estimation of the different asset pricing mo-
dels using the regularized HJ distance (2.3). Second, we include additional information
through the uncertainty indices to estimate the conditional version of the models. Third,
we compare the unconditional and conditional asset pricing models.

2.5.1 SDF parameter estimates

In this segment, we are mainly interested in the SDF parameters estimates ✓̂ as well
as their t-ratios. The t-ratio of a particular factor provides the statistics of the test
H0 : ✓ = 0. It is computed using the distribution (2.4). A statistically significant non-
null parameter is evidence that the factor is a priced source of risk in the financial market
and investor cares about it. Table 2.3 presents the results when the micro portfolios are
the sole test assets. For each model, we report the SDF parameter estimates (✓̂), the
t-ratio, the regularized HJ, and the level of penalization (↵). One should keep in mind
that the higher the penalization is, the lower the regularize HJ distance is.

For the consumption-based models, the nondurable consumption is significantly pri-
ced in the CCAPM at 10% level. It is interesting to see how this factor behaves in the
different size classes of micro-portfolios 6. The SDF parameter is significant at 1% with
the tiny and small capitalization micro-portfolios, whereas it is not priced in the big
firms. These observations might be explained by the fact that consumption variable
and returns of smaller capitalization firms are more pro-cyclical. In the DCAPM of
Yogo (2006), after taking into account the market factor, the nondurable and durable
consumption are not priced anymore. Finally, the conditional variable in the model
of Lettau and Ludvigson (2001) is only statistically significant in the small-cap micro
portfolios.

For the IAPM model of He, Kelly, and Manela (2017), the intermediary factor (ca-
pital ratio growth rate) does not carry a significant value. However, the SDF parameter
is significant when we use the value weighted return of the financial intermediaries. In
addition, despite not being priced globally, the capital ratio growth rate is priced in the
tiny and big-cap portfolios. The evidence is stronger in the big-cap portfolios.

6. We report the tables for tiny, small, and big-cap portfolios in the appendix for ease of presentation.
See Section 2.9.
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Table 2.3 – Estimates and misspecification-robust t-ratios of SDF parameters : Micro
portfolios and unscaled factors

CCAPM DCAPM HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 2.684 0.025 0.757 0.908 0.027 0.043 -0.771

t-ratio 1.771 1.750 1.181 1.135 1.512 0.048 -0.435

HJ 0.034 0.218 0.103

↵ 0.200 0.0001 0.004

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF 0.051 88.101 -0.047 7.339 0.043 0.027 0.088

t-ratio 0.046 1.357 -0.948 1.625 2.830 1.414 3.068

HJ 0.475 0.220 0.201

↵ 0.0001 0.0001 0.0001

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.053 0.023 0.102 0.033 0.053 0.024 0.102 0.032 0.669

t-ratio 3.331 1.311 3.881 1.451 3.312 1.331 3.898 1.457 0.213

HJ 0.193 0.193

↵ 0.0001 0.0001

FF5 Q5

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF 0.052 0.025 0.031 -0.001 0.116 0.075 0.050 0.135 -0.069 0.216

t-ratio 3.442 1.165 0.744 -0.015 2.226 3.458 2.579 3.079 -1.299 1.940

HJ 0.192 0.175

↵ 0.0001 0.0001
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated
using the monthly returns of the 2159 micro portfolios. Data are monthly from July 1973 to June 2018. CCAY model
uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the regularized HJ and the
penalization level ↵.

In the FF3 model, results are very similar to what we observe in the literature.
Globally, only the market and the value factors are significantly priced at 1% level.
These factors are also the ones that are priced in the big-cap portfolios. The value factor
is important regardless of the size of the micro portfolios. For the tiny-cap portfolios,
in addition to the value factor, the size is significant. We estimate several extensions
of the FF3. In the CAHART model, adding the momentum factor does not lead to
much change. However, the factor is significant at 10% when we remove the tiny-cap
portfolios. Therefore, the phenomenon is driven mainly by the big firms. Furthermore,
the inclusion of the liquidity factor to the CAHART model does not improve the models.
We have the same level of pricing errors. In the FF5, pricing errors improve slightly. In
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addition, the CMA factor drives out the other risk factors. The profile of the model is
different across the micro portfolio sizes. We obtain the same results with the small-cap
returns. The value factor is the sole priced variable in the tiny-cap returns. For the
big-cap returns, all the factors have significant SDF parameters except the value factor.

In the q5 model, except for the ROE factor, all the factors are significant sources of
risk in the micro portfolios. Contrary to the FF5, the q5 factors perform well in the tiny-
cap returns. The SDF parameters have absolute t-ratios higher than 1.67. Therefore,
they are priced at least at a 10% level. For the small and big-cap returns, market, size
and investment are the main sources of risk.

So far, our attention has been directed toward the micro portfolios, yet characteristic-
sorted portfolios represent an alternative class of test assets commonly employed for
assessing asset pricing models. Table 2.4 presents the SDF parameter estimates and
t-ratios of the ten models using them.
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Table 2.4 – Estimates and misspecification-robust t-ratios of SDF parameters :
Characteristic-sorted portfolios and unscaled factors

CCAPM Yogo HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 2.171 0.030 0.086 0.293 0.033 0.129 0.314

t-ratio 2.106 2.499 0.340 0.640 2.581 0.425 0.941

HJ 0.088 0.650 0.647

↵ 0.033 0.0001 0.0001

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF param 0.116 -80.943 -0.003 2.687 0.039 0.016 0.070

t-ratio 0.175 -2.126 -0.083 0.858 2.754 0.976 2.818

HJ 0.090 0.082 0.022

↵ 0.2 0.041 0.200

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.050 0.020 0.084 0.060 0.045 0.021 0.067 0.047 3.563

t-ratio 3.373 1.287 3.780 3.467 3.093 1.443 3.201 3.193 1.622

HJ 0.051 0.582

↵ 0.016 0.0001

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF 0.056 0.041 -0.014 0.086 0.135 0.073 0.076 0.145 0.054 0.164

t-ratio 4.143 2.428 -0.470 2.899 3.360 3.385 3.531 2.406 0.890 1.153

HJ 0.116 0.004

↵ 0.004 0.200
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated
using the monthly returns of the 738 characteristics-sorted portfolios. Data are monthly from July 1973 to June 2018.
CCAY model uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the regularized
HJ and the penalization level ↵.

For the characteristic-sorted portfolios, the nondurable consumption is priced in
the CCAPM and when it is associated with the consumption–aggregate wealth ratio
in CCAY. However, the durable consumption is not a source of risk in DCAPM. In
HCAPM, the market is the only priced risk factor. The intermediary factor in IAPM
does not have a significant value. This is the case even when we use traded version
of the factor (value-weighted return of the financial intermediaries). For the FF3 and
its extensions, compared to the micro portfolios, we note that the momentum factor
is strongly priced. Overall, the results are similar to the big-cap portfolios analyzed
previously. This might be due to the use of the value-weighted portfolios.

All the portfolios, despite being different in their construction, should still satisfy
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the fundamental Equation of Asset pricing. Therefore, we estimate the models using
the combined portfolios. Using the combined portfolios as test assets yields more robust
results. Furthermore, as the characteristic-sorted portfolios are also managed payoffs,
one can consider them as conditional asset pricing models, where the conditional infor-
mation is incorporated in the test assets. The SDF parameters and their t-stats are in
Table 2.5.

Table 2.5 – Estimates and misspecification-robust t-ratios of SDF parameters : All
the portfolios and unscaled factors

CCAPM DCAPM HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 1.877 0.027 0.254 0.708 0.026 0.308 -0.453

t-ratio 1.823 2.130 0.682 1.022 1.725 0.336 -0.301

HJ 0.107 0.444 0.105

↵ 0.008 0.0001 0.008

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF 0.287 -90.224 -0.042 6.410 0.037 0.037 0.103

t-ratio 0.435 -1.823 -1.056 1.788 2.453 1.860 3.562

HJ 0.038 0.117 0.009

↵ 0.200 0.004 0.200

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.043 0.040 0.110 0.028 0.043 0.040 0.110 0.028 -0.409

t-ratio 2.652 2.284 4.079 1.046 2.767 2.168 4.809 0.800 -0.020

HJ 0.007 0.007

↵ 0.200 0.200

FF5 Q5

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF 0.064 0.036 -0.057 0.025 0.293 0.105 0.067 0.122 -0.168 0.494

t-ratio 3.143 1.557 -0.757 0.435 2.343 3.807 2.379 2.106 -2.452 2.937

HJ 0.005 0.003

↵ 0.200 0.200
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated
using the monthly returns of the 3198 characteristics-sorted and micro portfolios. Data are from July 1973 to June
2018. CCAY model uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the
regularized HJ and the penalization level ↵.

Overall, we note that the nondurable consumption have significant SDF parameter
in the CCAPM and CCAY models. But, when one takes into account the market, the
factor and its durable counterpart are no longer priced. The labor variable is not priced
in the HCAPM model, while the intermediary factor of IAPM is significant at 10%.
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In the FF3, the size factor is now priced at 10% in addition to the market and value
factor. The additional factors of the CAHART and LIQ models are not priced anymore.
In the FF5, market and CMA are significant, while all the factors in the Q5 have non
null SDF parameters.

2.5.2 Conditional models

So far, the analysis assumes that the SDF parameters remain constant over time. We
can relax this assumption by modeling them as a function of observable variables called
conditioning variables. We use the Ludvigson, Ma, and Ng (2021) macro and financial
uncertainty indicators as conditioning variables. Conditional models have many SDF
parameters. Therefore, we only present the Wald statistics of the test that the SDF
parameters associated with the conditioning variables are simultaneously null. This
test is equivalent to a HJ equality test between the conditional and the unconditional
models. As a result, rejecting the null hypothesis implies a significant HJ difference
between the conditional and unconditional models and conditional variables provide
useful additional information.

Table 2.6 presents the results of Wald tests on the factors of the conditional models.
In general, six out of the nine models present significant improvements upon conditio-
ning with the uncertainty indicators for the micro-portfolios. The Financial uncertainty
indicator seems to be the crucial conditioning variable, as most models are not improved
when we use the macro uncertainty indicator or the cycle component of US IP alone.
Its importance emanates from the fact it also tracks events specific to the financial
market. Except for CCAPM, all the macroeconomic models have significant smaller
pricing errors after conditioning. For the anomalies-based models, FF3 and CAHART
do not improve. Therefore, increasing the number of variables is not a panacea for si-
gnificantly decreasing pricing errors. When we consider the full conditional models with
the characteristic-sorted and micro portfolios as the test assets, all the models improved
except CCAPM and IAPM.

Three models display interesting results (see Table 2.14 in Section 2.9.4 for more
details). The first is the DCAPM, where the durable consumption scaled by the ma-
croeconomic uncertainty index is significantly priced at 5%. There is also the case for
HCAPM. In this model, the scaled labor variable shows a t-stat of 1.957. Finally, the
momentum factor of the CAHART model has a non-null value. It remains significant
even when we add the liquidity variable.

87



Table 2.6 – Wald test of conditional models : factors scaled by Macro and Financial
Uncertainty indicators

CCAPM DCAPM HCAPM IAPM FF3 CAHART LIQ FF3 Q5
Micro portfolios

↵ 0.004 0.0001 0.0042 0.0001 0.0001 0.0001 0.2000 0.0083 0.2000
HJ 0.100 0.144 0.034 0.178 0.173 0.160 0.001 0.013 0.000
Wald 0.023 15.539 19.819 10.578 8.666 8.943 19.239 23.191 32.484

p-val 0.989 0.017 0.003 0.032 0.193 0.347 0.037 0.010 0.000
Tiny-cap Micro portfolios

↵ 0.004 0.0001 0.0001 0.2000 0.0001 0.0001 0.0001 0.0001 0.0001
HJ 0.111 0.144 0.084 0.003 0.171 0.154 0.113 0.140 0.086
Wald 0.126 14.775 25.502 17.719 6.008 9.362 20.752 20.029 33.604

p-val 0.939 0.022 0.000 0.001 0.422 0.313 0.023 0.029 0.000
Small-cap Micro portfolios

↵ 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
HJ 0.071 0.031 0.036 0.050 0.049 0.030 0.022 0.026 0.025
Wald 0.265 13.277 16.531 6.253 4.742 4.992 6.708 9.263 9.494

p-val 0.876 0.039 0.011 0.181 0.577 0.758 0.753 0.507 0.486
Big-cap Micro portfolios

↵ 0.0001 0.0001 0.0001 0.0001 0.200 0.0001 0.0001 0.0001 0.0001
HJ 0.101 0.037 0.036 0.059 0.000 0.023 0.022 0.022 0.014
Wald 0.072 9.420 4.538 1.289 5.617 8.439 6.903 11.191 11.115

p-val 0.965 0.151 0.604 0.863 0.467 0.392 0.735 0.343 0.349
Characteristic-sorted portfolios

↵ 0.1062 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
HJ 0.043 0.605 0.614 0.646 0.601 0.551 0.545 0.491 0.477
Wald 3.183 14.539 7.373 3.180 15.363 18.651 16.463 24.565 17.987

p-val 0.204 0.024 0.288 0.528 0.018 0.017 0.087 0.006 0.055
Micro and Characteristic-sorted portfolios

↵ 0.0123 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001
HJ 0.092 0.395 0.397 0.447 0.408 0.367 0.365 0.314 0.282
Wald 1.564 11.780 13.786 3.396 11.405 21.218 23.438 16.362 29.329

p-val 0.458 0.067 0.032 0.494 0.077 0.007 0.009 0.090 0.001
The table presents the estimation results of nine conditional asset pricing models. Factors are scaled with the macroeco-
nomic and financial uncertainty indices. Data are monthly from July 1973 to June 2018. We report the Wald statistics
of the test that the SDF parameters associated with the scaled variables are simultaneously null, the regularized HJ and
the penalization level ↵.

2.5.3 Model comparison

In this section, we investigate whether the models estimated above present diffe-
rences in expected returns’ explanatory power, as measured by squared HJ distance.
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The difference in squared HJ of two models is analog to the difference between the
squared Sharpe Ratios of the factor-mimicking portfolio generated by each model. As
a result, this test examines which model can extract higher investment gains from the
test assets. We compare the models by assuming none can generate the exact squared
Sharpe Ratio if one invests directly in the test assets : this is the misspecification as-
sumption. In addition, we choose a single value of ↵ to compare models. Changing ↵
for each comparison leads to different errors in the fundamental Equation of Asset pri-
cing, whereas the comparisons necessitate putting all the models on the same scale. We
choose the smallest ↵ (↵ = 0.0001) to put the emphasis on the Fundamental Equation
of Asset Pricing. Panel A of Table 2.7 presents the difference in sample squared Sharpe
Ratio or regularized square HJ of the models and Panel B gives the p-value of the test.

Table 2.7 – Comparison of regularized squared HJ distances : characteristic-sorted
and micro portfolios with non scaled factors

Panel A : Sample regularized squared HJ distance difference between models

DCAPM HCAPM HKM FF3 CAHART LIQ FF5 Q5

CCAPM 0.025 0.012 0.011 0.038 0.067 0.070 0.087 0.114

DCAPM -0.013 -0.014 0.013 0.043 0.046 0.062 0.090

HCAPM 0.000 0.026 0.056 0.059 0.075 0.103

HKM 0.027 0.056 0.059 0.075 0.103

FF3 0.030 0.033 0.049 0.077

CAHART 0.003 0.019 0.047

LIQ 0.016 0.044

FF5 0.028

Panel B : P-value of the equality test of two regularized square HJ distances

DCAPM HCAPM HKM FF3 CAHART LIQ FF5 Q5

CCAPM 0.273 0.362 0.391 0.101 0.013 0.012 0.002 0.000

DCAPM 0.517 0.685 0.641 0.130 0.108 0.078 0.005

HCAPM 0.934 0.178 0.021 0.020 0.004 0.000

HKM 0.135 0.018 0.017 0.002 0.000

FF3 0.054 0.038 0.009 0.006

CAHART 0.248 0.432 0.055

LIQ 0.520 0.089

FF5 0.316

Panel A presents the sample difference in squared HJ distance between models in row i and models in column j, �̂2↵,i��̂2↵,i.
Factors are not scaled. The models are estimated using the monthly returns of the 3198 characteristics-sorted and micro
portfolios. Data are from July 1973 to June 2018. Panel B reports the the p-value of the test H0 : �2i = �2j . ↵ = 0.0001.

The comparison between two models depends on the form of their SDFs. If the
SDF of one model 1, y1, nests the SDF of model 2, y2, we first conduct a pretest of
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whether the factors of the bigger model (model 2) have null SDF parameters. We do
that because the normality test (2.7) requires that y1 6= y2. For example, to compare
CCAPM and DCAPM, we first test that the SDF parameter of the market and durable
consumption are non-null. We employ a Wald test that comes from the asymptotic
normal distribution of the SDF parameters. If the null hypothesis of the test is accepted,
we conclude directly that the two models are the same. However, if we reject the null
hypothesis, then yCCAPM 6= yDCAPM . Then, we proceed with test (2.7), for which the
rejection of the null hypothesis entails that the model with lower pricing errors performs
better.

When the models are non-nested but have common factors, we also use a sequential
test. For example, IAPM and FF3 are non-nested models. To compare these two models,
we first test whether the non overlapping factors of the models are simultaneously non-
null, i.e, the intermediary, size, and value factor are non-null. We use the normality test
only when the null hypothesis is rejected.

As displayed in Table 2.7, the result of the pairwise unconditional model comparisons
can be summarized as follows. First, macroeconomic models do not exhibit significant
differences in pricing errors. The differences in regularized squared HJ have p-values hi-
gher than 0.273. Furthermore, the models have the same performance as FF3. Second,
dissimilarities between the macroeconomic and anomalies-based models emerge when
one adds factors to the FF3. For example, CAHART dominates all the macroeconomic
models with p-values higher than 0.021, except DCAPM. Third, for anomalies-based
models, FF3 is dominated by CAHART and LIQ. Therefore, adding the momentum
and liquidity factors, despite non-significant SDF parameters, improves the pricing per-
formance of the models. The two models have the same pricing errors as FF5. However,
q5 outperformed them. Finally, we do not observe a significant difference between FF5
and q5.

We also compare the conditional models as their performance is better than their
unconditional counterparts. Table 2.8 presents the difference in regularized squared HJ
and the p-value of the equality tests. Compared to unconditional pairwise compari-
sons, new results emerge. Notably, the conditional models of DCAPM and HCAPM
improved such that, except for q5, their differences with anomaly-based models are in-
significant. In addition, they dominate CCAPM and HKM at 5% and 10%, respectively.
The conditional FF3 is significantly different from CCAPM and IAPM.

Until now, we have resorted to pairwise comparison tests that lead to many tests
per model. To compare one model against the rest, we perform eight tests. The size of
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the series of tests might be larger than the theoretical one we are looking at. A solution
to this problem is the multiple models’ comparison test of Wolak (1989) presented
in Section 2.2. It simultaneously tests the null hypothesis that a given model, the
benchmark, performs at least as well as a group of models against the hypothesis that
one of the models has a lower squared HJ distance (or perform better).

As in the previous pairwise comparisons, we take certain precautions before using
the multiple comparison test. We remove alternative models nested by the benchmark
model as they already have lower pricing errors (HJ). Within the remaining alternatives,
we also remove models nested by others. Finally, we remove alternative models that nest
the benchmark as these models have at least a lower square HJ distance. For example,
to compare CCAPM against the other models, we removed DCAPM, which nests it.
Within the alternatives, we remove FF3 nested by FF5 and CAHART nested by LIQ.
As a result, we compare CCAPM against the five remaining models.

Table 2.8 – Comparison of regularized squared HJ distances : Characteristic-sorted
and micro portfolios with factors scaled by macro and financial uncertainty indicators

Panel A : Sample regularized squared HJ distance difference between models

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.070 0.068 0.017 0.056 0.098 0.100 0.151 0.183

DCAPM -0.002 -0.055 -0.013 0.028 0.030 0.081 0.113

HCAPM -0.053 -0.011 0.030 0.032 0.083 0.115

IAPM 0.039 0.081 0.082 0.133 0.166

FF3 0.041 0.043 0.094 0.127

CAHART 0.002 0.053 0.085

LIQ 0.051 0.083

FF5 0.032

Panel B : P-value of the equality test of two regularized square HJ distances

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.017 0.023 0.364 0.067 0.001 0.001 0.001 0.000

DCAPM 0.944 0.071 0.696 0.457 0.419 0.095 0.004

HCAPM 0.082 0.750 0.447 0.406 0.121 0.008

IAPM 0.099 0.000 0.000 0.001 0.000

FF3 0.028 0.022 0.005 0.001

CAHART 0.735 0.116 0.008

LIQ 0.132 0.011

FF5 0.434
Panel A presents the sample difference in squared HJ distance between models in row i and models in column j,
�̂2↵,i� �̂2↵,i. Factors are scaled with the macroeconomic and financial uncertainty indices. The models are estimated using
the monthly returns of the 3198 characteristics-sorted and micro portfolios. Data are from July 1973 to June 2018. Panel
B reports the the p-value of the test H0 : �2i = �2j . ↵ = 0.0001.
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Table 2.9 presents the results of the multiple comparison tests for the unconditional
and conditional models. The test determines whether the benchmark model (each line)
performs at least as well as the remaining models. With unconditional models, we note
that the null hypothesis is rejected for all the theoretical models, i.e., these models do
not perform at least as well as the alternatives. We reached the same conclusion for
FF3 and CAHART but at 5 and 10 percent. Therefore, LIQ, FF5, and q5 best all the
other models. However, we cannot significantly differentiate the three models. We have
the same results when we use scaled factors (conditional models), except that LIQ is
significantly dominated by FF5 and q5.

Table 2.9 – Multiple comparison tests of conditional and unconditional models

Benchmark q
Unconditional Conditional

�̂2
↵

LR p-Value �̂2
↵

LR p-Value
CCAPM 5 0.468 7.685 0.000 0.463 13.076 0.000
DCAPM 5 0.444 5.731 0.003 0.395 9.623 0.000
HCAPM 5 0.457 7.529 0.001 0.397 3.564 0.015
IAPM 5 0.458 10.092 0.000 0.447 16.906 0.000
FF3 4 0.431 3.718 0.012 0.408 5.169 0.003
CAHART 5 0.401 1.852 0.099 0.367 4.041 0.018
LIQ 5 0.398 1.449 0.141 0.365 3.698 0.025
FF5 5 0.382 0.503 0.363 0.314 0.306 0.411
q5 5 0.354 0.503 0.363 0.282 0.210 0.790

The table presents the sample squared HJ distance for unconditional and conditional models, the Wolak LR statistics,
and its P-value. q is the number of alternative models. The models are estimated using the monthly returns of the 3198
characteristics-sorted and micro portfolios. Data are from July 1973 to June 2018. ↵ = 0.0001.

2.5.4 Robustness analysis

We perform additional comparison analyses by changing the variables used to form
the micro portfolios and the number of stocks in each micro portfolio. First, we re-
form micro portfolios of 10 stocks using the earning-price ratio, investment and return
on equity (Section 2.10.1). Second, we reform the micro portfolios by using portfo-
lios of 5 stocks (Section 2.10.2). There are slight differences among the macroecono-
mic/theoretical models. However, we still observe the dichotomy between the macroe-
conomic/theoretical and the anomaly-based models, which display better performance.
The multiple comparisons display that FF5 and q5 dominate all the models, but we
cannot differentiate them. These two models dominate all the others.
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2.6 Conclusion

In this paper, we use 3198 test assets that combined the characteristics-sorted and
micro portfolios to estimate and compare ten unconditional and conditional asset pricing
models. The micro portfolios are formed using a small group of stocks (5 to 10 stocks).
Hence they are analogous to individuals stocks. We use a regularized version of the
well-known HJ distance. The extension allows for the use of a large number of test
assets by replacing the covariance matrix with a regularized version. In addition, it is
equivalent to allowing pricing errors for the true SDF. In the case of excess returns,
using the regularized HJ distance to compare models is identical to comparing their
Sharpe ratios or their cross-sectional R2.

We studied four macroeconomic/theoretical models such as the Consumption Ca-
pital Asset Pricing Model (CCAPM), the Durable Consumption Capital Asset Pricing
Model (DCAPM) , the Human Capital Asset Pricing Model, and the Intermediary As-
set pricing model (IAPM). In addition, we included five anomaly-driven models such as
the three (FF3) and Five-factor (FF5) Model, the Carhart model, which adds momen-
tum to FF3, the Liquidity Model, and the Augmented q-Factor Model. We also looked
at the conditional version of these models by modeling the SDF parameters as a func-
tion of the recent macroeconomic and financial uncertainty indices. Our results show
that conditional models are much better that their unconditional counterpart. Further-
more, the anomaly-driven models have bigger explanatory power than the macroeco-
nomic/theoretical models. Finally, the Five-factor (FF5) and the Augmented q-Factor
Models are similar and dominate all the models.

Our analysis can be extended in a number of ways. For example, it would be desirable
to develop approaches to compare linear and non linear models with a large number of
test assets. Future research should also address the use of the HJ distance in unbalanced
datasets as we had recourse to a matrix completion to balance the micro portfolios data.

2.7 Appendix A : definition of the financial ratios

We use the CRSP and quarterly Computstat datasets. The characteristics used to
compute the stocks’ average returns are : book-to-market ratio, profitability, investment,
earning-price ratio and return on equity. We use the same definitions as Barras (2019)
and present them below for completeness.
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Book-to-market ratio. It is equal to the ratio of the book value of equity to the
market value of equity. Bali et al. (2016, P. 177) give a detailed implementation of this
ratio. The book value for year is defined as total assets minus liabilities, plus balance
sheet deferred taxes and investment tax credit (if available), minus preferred shares
stock liquidating values (if available), or carrying value (if available) in the fiscal year
ending in the calendar year t � 1. The market value for year t equals the price times
shares outstanding at the end of December of year t� 1.

Profitability. It is defined as revenues minus cost of goods sold, minus selling, general,
and administrative expenses, minus interest expense all divided by the book value of
equity. Each of these variables is computed using data in the fiscal year ending in the
calendar year t� 1.

Investment. Investment for year t is computed as the relative change in total assets
between the fiscal years ending in calendar years t� 2 and t� 1.

Earning-price ratio. It is the ratio of income before extraordinary items in the fiscal
year ending in the calendar year t�1 to market value measured at the end of December
of year t� 1.

Return on equity. ROE for year t is defined as income before extraordinary items
in the fiscal year ending in the calendar year t� 1 divided by book equity in the fiscal
year ending in the calendar year t� 2.

94



2.8 Appendix B : list of characteristic portfolios

Table 2.10 – List of characteristic-sorted portfolios

100 Portfolios Formed on Size and Book-to-Market

100 Portfolios Formed on Size and Operating Profitability

100 Portfolios Formed on Size and Investment

25 Portfolios Formed on Book-to-Market and Operating Profitability

25 Portfolios Formed on Book-to-Market and Investment

25 Portfolios Formed on Operating Profitability and Investment

32 Portfolios Formed on Size, Book-to-Market, and Operating Profitability

32 Portfolios Formed on Size, Book-to-Market, and Investment

32 Portfolios Formed on Size, Operating Profitability, and Investment

6 Portfolios Formed on Size and Earnings/Price

6 Portfolios Formed on Size and Cashflow/Price

6 Portfolios Formed on Size and Dividend Yield

25 Portfolios Formed on Size and Momentum

25 Portfolios Formed on Size and Short-Term Reversal

25 Portfolios Formed on Size and Long-Term Reversal

25 Portfolios Formed on Size and Accruals

25 Portfolios Formed on Size and Market Beta

25 Portfolios Formed on Size and Net Share Issues

25 Portfolios Formed on Size and Variance

25 Portfolios Formed on Size and Residual Variance

49 Portfolios Formed Industry
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2.9 Appendix C : Asset pricing models by type of

micro portfolios

2.9.1 Asset pricing models for tiny-cap micro portfolios

Table 2.11 – Estimates and misspecification-robust t-ratios of SDF parameters : Tiny-
cap Micro portfolios and unscaled factors

CCAPM DCAPM HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 2.664 0.034 0.590 1.111 0.041 -0.658 -1.075

t-ratio 2.600 1.817 0.778 1.116 2.412 -1.146 -1.235

HJ 0.077 0.229 0.238 0.238 0.238

↵ 0.016 0.0001 0.0001

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF 2.796 -97.169 -0.053 8.124 0.019 0.078 0.115

t-ratio 1.293 -0.461 -0.943 1.649 0.862 2.422 3.510

HJ 0.020 0.231 0.197

↵ 0.200 0.200 0.0001 0.0001

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.034 0.064 0.126 0.027 0.034 0.065 0.129 0.026 6.529

t-ratio 1.107 1.678 3.542 0.900 1.154 1.895 3.753 0.961 1.596

HJ 0.193 0.186

↵ 0.0001 0.0001

FF5 Q5

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF param 0.002 0.095 0.129 -0.045 0.041 0.060 0.070 0.205 -0.120 0.226

t-ratio 0.070 1.420 1.866 -0.566 0.412 1.736 2.346 3.080 -1.670 1.726

HJ 0.055 0.170

↵ 0.004 0.0001
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated

using the monthly returns of the 1596 tiny-cap micro portfolios. Data are monthly from July 1973 to June 2018. CCAY
model uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the regularized HJ

and the penalization level ↵.
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2.9.2 Asset pricing models for small-cap micro portfolios

Table 2.12 – Estimates and misspecification-robust t-ratios of SDF parameters : small-
cap Micro portfolios and unscaled factors

CCAPM DCAPM HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 1.799 0.029 0.946 0.473 1.836 9.361 0.238

t-ratio 3.186 1.884 1.507 0.522 1.822 0.183 0.071

HJ 0.073 0.064 0.154

↵ 0.0001 0.0001 0.0001

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF 1.836 9.361 0.017 2.133 0.032 0.039 0.050

t-ratio 1.822 0.183 0.477 0.643 1.579 1.047 1.809

HJ 0.154 0.070 0.063

↵ 0.0001 0.0001 0.0001

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.058 0.006 0.066 0.045 0.055 0.012 0.061 0.043 -8.057

t-ratio 2.224 0.132 2.474 1.526 1.936 0.251 2.287 1.400 -1.598

HJ 0.055 0.047

↵ 0.0001 0.0001

FF5 Q5

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF 0.046 0.052 -0.059 0.065 0.152 0.061 0.060 0.093 0.006 0.131

ts 2.293 1.360 -1.033 1.343 2.039 2.508 1.848 1.888 0.115 1.219

HJ 0.054 0.051

↵ 0.0001 0.0001
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated

using the monthly returns of the 441 small-cap micro portfolios. Data are monthly from July 1973 to June 2018. CCAY
model uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the regularized HJ

and the penalization level ↵.
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2.9.3 Asset pricing models for big-cap micro portfolios

Table 2.13 – Estimates and misspecification-robust t-ratios of SDF parameters : Big-
cap Micro portfolios and unscaled factors

CCAPM DCAPM HCAPM

✓̂ndur ✓̂mkt ✓̂ndur ✓̂dur ✓̂hmkt ✓̂prem ✓̂lab

SDF 1.570 0.050 -1.155 1.177 0.037 0.297 0.485

t-ratio 1.482 2.438 -0.921 1.246 1.947 0.230 0.276

HJ 0.047 0.070 0.078

↵ 0.004 0.000 0.0001

CCAY IAPM FF3

✓̂ndur ✓̂ndur.cay ✓̂mkt ✓̂⌘ ✓̂mkt ✓̂SMB ✓̂HML

SDF -0.699 161.399 -0.058 8.458 0.039 0.050 0.088

t-ratio -0.326 1.196 -1.302 2.094 2.497 1.176 2.527

HJ 0.187 0.066 0.065

↵ 0.0001 0.0001 0.0001

Cahart Liquidity

✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂mkt ✓̂SMB ✓̂HML ✓̂MOM ✓̂LIQ

SDF 0.077 -0.002 0.112 0.108 0.058 0.060 0.141 0.067 -7.444

t-ratio 2.727 -0.025 2.549 1.636 1.698 0.659 2.174 0.816 -0.631

HJ 0.001 0.000

↵ 0.200 0.2

FF5 Q5

✓̂mkt ✓̂SMB ✓̂HML ✓̂RMW ✓̂CMA ✓̂mkt ✓̂ME ✓̂I/A ✓̂ROE ✓̂Eg

SDF 0.045 0.079 -0.016 0.087 0.120 0.030 0.117 0.188 0.136 -0.112

t-ratio 3.200 2.737 -0.315 2.395 1.907 0.750 2.772 2.033 1.193 -0.379

HJ 0.052 0.007

↵ 0.0001 0.004
The table presents the estimation results of ten asset pricing models with unscaled factors. The models are estimated
using the monthly returns of the 428 big-cap micro portfolios. Data are monthly from July 1973 to June 2018. CCAY
model uses quarterly data. We report parameter estimates ✓̂, t-ratios under model misspecification, the regularized HJ

and the penalization level ↵.
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2.9.4 Conditional models of DCAPM, HCAPM, and CARHART

Table 2.14 – Conditional models of DCAPM, HCAPM, and CARHART
DCAPM HCAPM MOM

✓̂ t-ratio ✓̂ t-ratio ✓̂ t-ratio

✓mkt -0.070 -0.511 ✓jmkt -0.026 -0.216 ✓mkt 0.008 0.059

✓ndur 3.883 1.436 ✓prem 1.934 1.342 ✓SMB -0.219 -0.900

✓dur -0.992 -0.306 ✓lab 3.189 1.141 ✓HML 0.431 3.410

✓mkt⇤MU 0.190 1.040 ✓mkt⇤MU 0.157 0.589 ✓MOM 0.232 2.361

✓ndur⇤MU -4.819 -1.572 ✓prem⇤MU 0.860 0.485 ✓mkt⇤MU 0.448 2.155

✓dur⇤MU 7.019 2.886 ✓lab⇤MU 4.409 1.365 ✓SMB⇤MU 0.104 0.477

✓mkt⇤FU -0.134 -0.549 ✓jmkt⇤FU -0.161 -0.441 ✓HML⇤MU 0.099 0.393

✓ndur⇤FU 1.436 0.343 ✓prem⇤FU -2.903 -1.173 ✓MOM⇤MU -0.022 -0.144

✓dur⇤FU -8.291 -1.628 ✓lab⇤FU -10.323 -1.957 ✓mkt⇤FU -0.619 -2.120

✓SMB⇤FU 0.209 0.403

✓HML⇤FU -0.662 -2.034

✓MOM⇤FU -0.220 -0.965

↵ ↵ ↵

0.0001 0.0001 0.0001

�̂2↵ �̂2↵ �̂2↵

0.395 0.397 0.367
The table presents the estimation results of DCAPM, HCAPM, and CARHART with factors scaled by the

macroeconomic (MU) and financial uncertainty (FU) indices. The models are estimated using the monthly returns of
the 3198 characteristics-sorted and micro portfolios. Data are monthly from July 1973 to June 2018. We report
parameter estimates ✓̂, t-ratios under model misspecification, the regularized HJ and the penalization level ↵.

2.10 Appendix D : tables for the robustness analysis

We present the tables related to the robustness analysis.

2.10.1 Analysis with 10 stocks per micro portfolios using the

earning-price ratio, investment and return on equity

Table 2.15 presents the pairwise comparisons of asset pricing models using the
characteristics-sorted and micro portfolios. The micro portfolios contains 10 stocks and
are formed using the earning-price ratio, investment and return on equity.
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Table 2.15 – Comparison of regularized squared HJ distances : Characteristic-sorted
and micro portfolios with factors scaled by macro and financial uncertainty indicators

Panel A : Sample regularized squared HJ distance difference between models

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.096 0.081 0.032 0.077 0.118 0.124 0.173 0.197

DCAPM -0.015 -0.064 -0.019 0.022 0.028 0.077 0.101

HCAPM -0.049 -0.004 0.037 0.043 0.092 0.116

IAPM 0.045 0.086 0.092 0.141 0.165

FF3 0.041 0.047 0.096 0.120

CAHART 0.006 0.055 0.079

LIQ 0.049 0.073

FF5 0.024

Panel B : P-value of the equality test of two regularized square HJ distances

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.004 0.012 0.170 0.030 0.000 0.000 0.000 0.000

DCAPM 0.651 0.026 0.553 0.534 0.445 0.087 0.016

HCAPM 0.091 0.910 0.336 0.275 0.070 0.014

IAPM 0.084 0.000 0.000 0.001 0.000

FF3 0.065 0.061 0.008 0.007

CAHART 0.519 0.089 0.018

LIQ 0.121 0.026

FF5 0.449

Table 2.16 presents the multiple comparison tests of asset pricing models using the
characteristics-sorted and micro portfolios. The test determines whether the benchmark
model (each line) performs at least as well as the remaining models. The micro portfolios
contains 10 stocks and are formed using the earning-price ratio, investment and return
on equity.

Table 2.16 – Multiple comparison tests of conditional and unconditional models

Benchmark q
Unconditional Conditional

�̂2
↵

LR p-Value �̂2
↵

LR p-Value
CCAPM 5 0.485 10.013 0.000 0.475 14.093 0.000
DCAPM 5 0.459 4.556 0.006 0.385 2.928 0.040
HCAPM 5 0.468 8.556 0.000 0.399 3.029 0.031
IAPM 5 0.468 8.929 0.000 0.449 11.114 0.000
FF3 4 0.444 4.557 0.006 0.403 3.627 0.018
CAHART 5 0.414 2.842 0.044 0.363 2.906 0.056
LIQ 5 0.412 2.451 0.029 0.357 2.580 0.073
FF5 5 0.389 0.755 0.283 0.308 0.287 0.483
q5 5 0.355 0.755 0.283 0.284 0.287 0.224
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2.10.2 Analysis with 5 stocks per micro portfolios using the

book-to-market ratio, investment and profitability

Table 2.17 presents the pairwise comparisons of asset pricing models using the
characteristics-sorted and micro portfolios. The micro portfolios contains 5 stocks and
are formed using the book-to-market ratio, investment and profitability.

Table 2.17 – Comparison of regularized squared HJ distances : Characteristic-sorted
and micro portfolios with factors scaled by macro and financial uncertainty indicators

Panel A : Sample regularized squared HJ distance difference between models

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.059 0.049 0.019 0.057 0.099 0.100 0.144 0.175

DCAPM -0.010 -0.041 -0.002 0.041 0.041 0.085 0.116

HCAPM -0.031 0.009 0.051 0.051 0.095 0.127

IAPM 0.038 0.080 0.080 0.124 0.156

FF3 0.042 0.042 0.087 0.118

CAHART 0.000 0.044 0.076

LIQ 0.044 0.076

FF5 0.031

Panel B : P-value of the equality test of two regularized square HJ distances

DCAPM HCAPM IAPM FF3 CAHART LIQ FF5 Q5

CCAPM 0.030 0.055 0.374 0.085 0.002 0.002 0.001 0.000

DCAPM 0.697 0.129 0.960 0.259 0.258 0.061 0.003

HCAPM 0.208 0.787 0.153 0.153 0.059 0.003

IAPM 0.112 0.001 0.001 0.002 0.000

FF3 0.027 0.026 0.011 0.002

CAHART 0.876 0.178 0.016

LIQ 0.181 0.017

FF5 0.363

Table 2.18 presents the multiple comparison of asset pricing models using the
characteristics-sorted and micro portfolios. The test determines whether the bench-
mark model (each line) performs at least as well as the remaining models. The micro
portfolios contains 5 stocks and are formed using the book-to-market ratio, investment
and profitability.
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Table 2.18 – Multiple comparison tests of conditional and unconditional models

Benchmark q
Unconditional Conditional

�̂2
↵

LR p-Value �̂2
↵

LR p-Value
CCAPM 5 0.449 7.913 0.000 0.446 12.670 0.000
DCAPM 5 0.439 5.673 0.003 0.393 4.422 0.010
HCAPM 5 0.445 7.997 0.000 0.403 4.404 0.009
IAPM 5 0.445 8.417 0.001 0.431 12.564 0.000
FF3 4 0.419 3.754 0.011 0.394 4.600 0.006
CAHART 5 0.391 2.047 0.084 0.352 2.988 0.048
LIQ 5 0.387 1.622 0.070 0.352 2.903 0.051
FF5 5 0.369 0.551 0.342 0.308 0.414 0.386
q5 5 0.341 0.551 0.342 0.276 0.414 0.182
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Chapitre 3

Pseudo-true SDF parameters

estimation with many assets : a

comparison between gross and excess

returns
∗

3.1 Introduction

Researchers in empirical asset pricing vastly use linear models. In an asset pri-
cing model, the linear models assign a free parameter to each factor of the Stochastic
Discount factor (SDF), in contrast to nonlinear ones. Therefore, they are easily in-
terpretable. In addition, the ability to linearize virtually any model makes them the
workhorse of the empirical literature.

The SDF parameter estimation often relies on the minimization of the Hansen and
Jagannathan (1997) distance, which assesses how close the proposed linear SDF is to
the theoretical SDF that perfectly prices the set of assets in the financial market. As the
models are just an approximation of reality, they are usually considered misspecified,
i.e., the model’s SDF never equals the true SDF that prices all the assets.

There are two approaches to estimating the SDF parameters depending on the type
of returns (gross or excess returns) one employs, as shown in Cochrane (2005). When
the test assets are gross returns, the HJ distance is a Generalized Method of Moments
(GMM) distance on the pricing errors of the model with a weighting matrix represented

∗. I thank Marine Carrasco for her invaluable guidance.
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by the inverse of the second-moment matrix of the returns. The risk-free rate is usually
among the test assets if available. On the other hand, the use of excess returns is
prevalent. In this case, Kan and Robotti (2008) proposed a modification of the initial
HJ distance. The new misspecification measure is also a GMM distance of the pricing
errors but with the covariance matrix of the excess returns as the weighting matrix.
This result comes from the fact that, in the case of excess returns, the mean of the
linear SDF is fixed beforehand. In either case, the approach uses a GMM framework.
However, as the models are considered misspecified, the inference centers around the
SDF parameter that minimizes the GMM distances called the pseudo-true parameter
(see Hall and Inoue (2003), Gospodinov et al. (2013), and Antoine et al. (2020)). Finally,
these two approaches are generally used in a setting of a small number of test assets.

This paper proposes a novel approach for estimating the SDF parameters in the
misspecified asset pricing models (pseudo-true parameters) with many assets. Our main
contributions can be summarized as follows. We regularize the Hansen-Jagannathan dis-
tance, stabilizing the covariance/second-moment matrix of returns. This regularization
relaxes the Fundamental Equation of Asset pricing models and permits an arbitrage-
free market with frictions. See Korsaye, Quaini, and Trojani (2019) who introduced
the latter as Smart-SDF. In contrast to Carrasco and Nokho (2022) where only ex-
cess returns are used as test assets, the approach proposed here applies both gross and
excess returns as test assets. We use a mean value expansion of the regularized Hansen-
Jagannathan distance, along with the misspecified GMM framework studied by Hall
and Inoue (2003), to derive the asymptotic distribution of the SDF estimator as the
number of test assets and time points approach infinity. We also discuss the specificities
that apply to each type of return. Finally, we document the finite sample properties of
the SDF estimator with gross and excess returns. Specifically, we compare the size and
power of the test of whether the SDF parameter is null. This test verifies whether a
particular factor helps to price the test assets.

Our findings indicate that as the number of assets increases, the estimation of the
SDF parameter, achieved by regularizing the inverse of the excess returns covariance
matrix, demonstrates superior size control compared to the gross returns. This re-
sult stems from the inherent instability of the second-moment matrix of gross returns.
Additionally, the risk-free asset’s gross return displays minimal variability, leading to
pronounced collinearity with the other test assets, which the regularization fails to
mitigate.

The remaining of the paper is organized as follows. The next section introduces the
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HJ distance in a general setting with gross and excess returns with their regularized
versions. Section 3.3 discusses the estimation of the SDF parameter using the regularized
HJ distance. It presents the basic assumptions and the asymptotic properties of the
sample SDF parameter. Section 3.4 presents the choice of the regularization parameter.
Finally, Section 3.5 explores the finite sample properties of the SDF parameter tests,
utilizing gross and excess returns as test assets.

3.2 Minimum discrepancy distance for empirical asset

pricing models with many assets

Let xt be a vector of N gross returns. We include the risk-free (xrf,t) among the
assets. We define q = [1, . . . , 1]

0
as the cost of the N assets. Let mt be an admissible

Stochastic Discount factor (SDF) for the gross returns. mt 2 M, the set of square
integrable random variables. The SDF mt is admissible if E[mtxt] = q. We suppose a
proxy SDF yt(✓), where ✓ 2 ⇥ is an unknown parameter and ⇥ is the parameter space.
We consider the following regularized Hansen and Jagannathan (1997) problem :

�2↵ = inf
m2M

E
⇥
(mt � yt(✓))

2
⇤
+

1

↵
k E[mtxt]� q k2N,⌦, (3.1)

where ↵ > 0, ⌦ = Vxx
N , Vxx = E[xtx

0
t] and k l k2N,⌦=

l
0
⌦l
N for any l 2 RN . �2↵ evaluates the

performance of the proxy SDF yt with respect to the true SDF m. However, we relax
the constraint E[mtxt] = q due to measurement errors or market frictions as discussed
in Korsaye, Quaini, and Trojani (2019). The regularization parameter ↵ controls the
pricing errors E[mtxt]� q allowed. Low values of ↵ emphasize on lower pricing errors,
while high values of ↵ allow higher pricing errors.

This optimization problem (3.1) is cast in an infinite dimension space. Making use
of Borwein and Lewis (1992), we consider the simpler dual problem 2 given by

�2↵ = max
�2RN

E


2
x

0
t�

N
yt(✓)�

�
0
xtx

0
t�

N2
�

2�
0
q

N

�
� ↵ k � k

2
N,⌦�1 . (3.2)

We note ⌦�1
↵ = (⌦2+↵IN)�1⌦ , and e(✓) = E[xtyt(✓)� q]. The Lagrange multiplier

is �↵ = ⌦�1
↵ e(✓). The squared distance between the theoretical and empirical SDF is

2. For ease of presentation, we present the regularity conditions of the dual in section 3.8.
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given by

�2↵ =
e(✓)

0
⌦�1

↵ e(✓)

N
. (3.3)

From (3.3), we can observe that the misspecification measure �2↵ is a GMM distance
with moments given by the vector of pricing errors e(✓) and weighting matrix given
by the regularized inverse of the second-moment matrix of the gross returns ⌦�1

↵ . As
a result, the main effect of the regularization parameter ↵ is to stabilize the weighting
matrix.

One can also use excess returns to evaluate the distance between the proxy SDF
and m. Define rit = xit � xrf,t, the difference between each payoff and the risk-free
payoff, and rt, the vector of Ñ = N � 1 excess returns. In the case of excess returns,
q = 0Ñ . The mean of SDF is not identified, and one must specify it. Kan and Robotti
(2008) recommend centering the factor in the SDF such that E[yt(✓)] = 1. As a result,
the initial problem requires an additional constraint on the mean of the SDF. As pointed
out by Kan and Robotti (2008), the latter leads to the use of the covariance matrix
of excess return Vrr = E[r̃tr̃

0
t], r̃t = rt � E[rt] as a weighting matrix. Therefore, the

modified problem is

�̃2↵ = inf
m2M,E[m]=1

E
⇥
(mt � yt(✓))

2
⇤
+

1

↵
k E[mtrt] k

2
Ñ,⌃

,

where ⌃ = Vrr

Ñ
. The regularization parameter ↵ plays the same role as in the initial

problem (3.1).
The modified problem has been solved in Carrasco and Nokho (2022). The dual is

given by

max
�2RÑ

E

⇢
2
�

0
rt

Ñ
yt(✓)�

�r̃tr̃
0
t�

Ñ2

�
� ↵ k � k

2
Ñ,⌃�1 . (3.4)

The Lagrange multiplier is �↵ = ⌃�1
↵ e(✓), where ⌃�1

↵ = (⌃2 + ↵IÑ)
�1⌃. It leads to the

following regularized distance

�̃2↵ =
e(✓)

0
⌃�1

↵ e(✓)

Ñ
. (3.5)

�̃2↵ is the regularized modified squared HJ distance. It is also a GMM distance with
the weighting matrix given by the covariance matrix of the excess returns.

For the remaining of the paper, we endow RN with the norm k � k
2
N=

�
0
1�2

N with

associated inner product < �1,�2 >N=
�
0
1�2

N , and RT with norm k v k
2
T=

v
0
v

T generated
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by inner product < v1, v2 >T=
v
0
1v2
T .

3.3 Estimation and asymptotic properties of estima-

tors

In this section, we present the estimation of SDF parameters using the regularized
HJ distance for gross and excess returns in the framework of linear asset pricing models.
We describe the form of the SDF for each type of return as well as the assumptions
needed to obtain their distribution when N and T go to 1.

3.3.1 Gross returns specification

We assume the availability of a vector of K observed factors ft. When we use gross

returns as test asset, the linear specification of the proxy SDF is yt(✓) = ✓0+✓01ft, where
✓ = [✓0, ✓1]. With this specification, the parameter space ⇥ is RK+1 and e(✓) = D✓� q,

with D = E[xtF
0
t ] and Ft =

h
1 f

0
t

i0

. In addition,

✓↵ = (D
0
⌦�1

↵ D)�1D
0
⌦�1

↵ q

is the minimizer of (3.3). So ✓↵ is the result of a cross-sectional regression of q on D.
To take into account many test assets, we estimate ✓ as following

✓̂↵ = argmin
✓

max
�2RN

QN,T (✓,�;↵)

where QN,T (�, ✓;↵) =
1
T

PT
t=1 'N,t(�, ✓;↵) and 'N,t(�, �;↵) = 2x

0
t�
N yt(✓)�

�
0
xtx

0
t�

N2 �
2�

0
q

N �

1
N�

0
⇣
⌦̂↵ � ⌦̂

⌘
�. ✓̂↵ can also be rewritten using a simpler analytic expressions :

✓̂↵ = argmin
✓

eT (✓)⌦̂�1
↵ eT (✓)

N
, (3.6)

where eT (✓) =
1
T

PT
t=1(rtF

0
t ✓ � q) = D̂✓ � q and ⌦̂�1

↵ = (⌦̂2 + ↵IN)�1⌦̂ .
In this framework, we have one free parameters ↵ which is the penalization of the

Lagrange multiplier. Solving (3.6) leads to the following SDF estimator
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✓̂↵ = (D̂
0
⌦̂�1

↵ D̂)�1D̂
0
⌦̂�1

↵ q.

The Lagrange multiplier is given by

�̂↵ = ⌦̂�1
↵ eT (✓̂↵).

Without the regularization, we note ✓?, the unique pseudo-true value that solves

✓? = argmin
✓

e(✓)⌦�1e(✓)

N

= (D
0
⌦�1D)�1D

0
⌦�1q

and
�? = ⌦�1e(✓?).

Gospodinov et al. (2013) use the return specification (3.2) to derive the asymptotic
distribution of ✓̂ when N is finite and ↵ = 0. They show that

p

T (✓̂ � ✓?)
d

�! N(0k, V (✓̂)), (3.7)

where V (✓̂) =
P1

j=�1 E[ltl
0
t+j], with

lt = (D
0
V �1
xx D)�1


D

0
V �1
xx et(✓) +

⇢
@yt(✓HJ)

@✓
�D

0
V �1
xx xt

�
ut

�

ut = e(✓HJ)
0
V �1
xx xt, and Vxx = E[xtx

0
t].

We introduce the following assumptions to study the behavior (consistency and
distribution) of ✓̂↵.

Assumption 7. Assume that

(i) e(✓) 6= 0, 8✓ 2 RK+1.

(ii) The process {xt, ft} is stationary and strong mixing with mixing coefficients ↵(l)
verifying

1X

l=1

l↵(l)
⇢

2+⇢ < 1,

for some ⇢ > 0.

(iii) E[f 4+2⇢
kt ] < 1, for k = 1, 2, · · ·K.
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(iv) E[x4+2⇢
it ] < c, for i = 1, 2, · · · , where c is a constant.

(v) E[k xt k
4+2⇢
N ] < 1.

(vi) k ⌦�!e kN= O(1), ! � 3.

(vii) k ⌦�!Dk kN= O(1) , ! � 3 for k = 1, · · · , K + 1. Dk are the columns of D.

(viii) k D kF= O(N) and CD = D
0
⌦�1D
N ! C1 when N ! 1, where C1 is a full rank

matrix of size K + 1.

Remark 12. Assumption 1 (i) imposes global misspecification usually observed in asset
pricing models. Assumption 1 (iv) is a moment condition on the cross-section average
of the squared returns. It implies that ⌦ is a trace-class matrix and the compactness
of the operator ⌦. Assumption 1 (v) is a moment restriction on the norm of the gross
returns. Assumption 1 (vi) implies that e 2 R(⌦), i.e ⌦�1e exists (! = 1). This as-
sumption will also characterize the rate of converge of the bias on e. It implies that
k (⌦�1

↵ � ⌦�1) e kN= O(↵2) as e 2 R(⌦3).

The following proposition establishes the consistency of ✓̂↵ when the number of
assets increases to infinity.

Proposition 7. If Assumption 7 is verified, ✓̂↵ converges in probability to ✓? as N ,T ,
↵

1
2T ! 1, ↵ ! 0.

From a mean value expansion of r✓QN,T (✓̂↵, �̂↵) around (✓?,�?), we have the follo-
wing

✓̂↵ � ✓? =

 
D̂

0
⌦̂�1

↵ D̂

N

!�1 
�
1

T

TX

t=1

Ft
x

0
t�?
N

+

+D̂
0
⌦̂�1

↵

1

T

TX

t=1

xtyt(✓?)� q

N
�

xtx
0
t�?

N2
�

(⌦̂↵ � ⌦̂)�?
N

!
.

To derive the asymptotic distribution of the SDF parameter, we add the following
assumptions.

Assumption 8. Suppose

1. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 Ft

x
0
t�?

N ) < 1.

2. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 D

0
⌦�1 xtyt(✓?)

N ) < 1.
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3. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 D

0
⌦�1 xtx

0
t�?

N2 ) < 1.

Proposition 8. Suppose Assumptions 7 and 8 are verified. As N, T ! 1, if ↵ ! 0,
↵T ! 1, and ↵2T ! 0, then

p

T
⇣
✓̂↵ � ✓?

⌘
d

�! N(0K , V (✓)), (3.8)

where V (✓) = lim
N,T!1

V ar

⇣
D

0
⌦�1D
N

⌘�1 ⇣
1p
T

PT
t=1 Ft

x
0
t�?

N +D
0
⌦�1 1p

T

PT
t=1

xtyt(✓?)�q
N �

xtx
0
t�?

N2

⌘�
.

Remark 13. The previous proposition establishes the distribution of the SDF parameter
estimator in a misspecified linear model when the regularized HJ distance with gross
returns is used. For this distance, the inverse of the second-moment matrix is the main
weighting matrix. The rates of convergence are identical to the one obtained in Carrasco
and Nokho (2022).

3.3.2 Excess returns specification

In the case of excess returns, a common specification is yt(✓) = 1 � ✓
0
ft, with

E[ft] = 0. So, the stochastic discount factor depends on the factor innovations and has
a mean equal to 1. The previous specification has been used, for example, in Giglio
and Xiu (2021) and Feng et al. (2020). In this specification, e(✓) = µr � Vrf✓, with
µr = E[rt] and Vrf = E[rtf

0
t ]. Furthermore,

✓̃↵ = (V
0

rf⌃
�1
↵ Vrf )

�1Vrf⌃
�1
↵ µr

minimizes (3.5). Similar to the gross returns, we can estimate ✓̃ as below

ˆ̃✓↵ = argmin
✓

max
�2RN

Q̃N,T (✓,�;↵),

where Q̃Ñ,T (�, ✓;↵) = 1
T

PT
t=1 '̃Ñ,t(�, ✓;↵) and '̃Ñ,t(�, �;↵) = 2�

0
rt

Ñ
yt(✓) �

�r̃tr̃
0
t�

Ñ2 �

1
Ñ
�0
⇣
⌃̂↵ � ⌃̂

⌘
�.

As a result, the estimator of ✓̃ is given by

ˆ̃✓↵ = (V̂
0

rf ⌃̂
�1
↵ V̂rf )

�1V̂rf ⌃̂
�1
↵ µ̂r,

where µ̂r =
1
T

PT
t=1 rt ,V̂rf = 1

T

PT
t=1 rtf̃t , and ⌃̂�1

↵ = (⌃̂2 + ↵IÑ)
�1⌃̂.
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The parameter ↵ stabilizes the covariance matrix of the excess returns.
The Lagrange multiplier is given by

ˆ̃�↵ = ⌃̂�1
↵ eT (

ˆ̃✓↵).

Without the regularization, we note ✓̃?, the unique pseudo-true value that solves

✓̃? = argmin
✓

e(✓)⌃�1e(✓)

Ñ

= (V
0

rf⌃
�1Vrf )

�1Vrf⌃
�1µr

and
�̃? = ⌃�1e(✓?).

We impose the following assumptions similar to Assumptions 7 and 8 to obtain the
distribution of ˆ̃✓↵.

Assumption 9. Assume that

1. k ⌃�!e kÑ= O(1), for ! � 3.

2. k ⌃�!Vrf,k kÑ= O(1), ! � 3 for k = 1, · · · , K + 1. Vrf,k are the columns of Vrf .

3. k Vrf kF= O(Ñ) and Cv =
V

0
rf⌃

�1Vrf

Ñ
! C2 when Ñ ! 1, where C2 is a full rank

matrix of size K.

The preceding assumption closely resembles Assumption 3 proposed by Carrasco
and Nokho (2022), with the distinction that it concerns Vrf instead of � in this context.

Assumption 10. Suppose

1. lim
N!1

E[k rt k
4+2⇢

Ñ
] < 1 for ⇢ > 0.

2. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 ft

r
0
t�̃?

Ñ
) < 1.

3. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 V

0
rf⌃

�1 rtyt(✓̃?)

Ñ
) < 1.

4. 0 < lim
N,T!1

V ar( 1p
T

PT
t=1 V

0
rf⌃

�1 r̃tr̃
0
t�̃?

Ñ2 ) < 1.

Proposition 9. Suppose Assumption 9 and 10 are verified. As Ñ , T ! 1, if ↵ ! 0,
↵T ! 1, and ↵2T ! 0, then

p

T
⇣
ˆ̃✓↵ � ✓̃?

⌘
d

�! N(0K , V1(✓̃)), (3.9)
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where V1(✓̃) = lim
N,T!1

V ar

"✓
V

0
rf⌃

�1Vrf

Ñ

◆�1 ⇣
1p
T

PT
t=1 ft

r
0
t�̃?

Ñ
+ V

0
rf⌃

�1 1p
T

PT
t=1

rtyt(✓̃?)

Ñ
�

r̃tr̃
0
t�̃?

Ñ2

⌘#
.

Remark 14. This previous result is the counterpart of Proposition 8. Particularly, it
uses a stochastic discount factor given by yt(✓) = 1 � ✓

0
ft, with E[ft] = 0. The excess

return vector rt replaces xt, Vrf replaces D and we use the covariance matrix ⌃ in place
of the second moment matrix ⌦. So the proof of the proposition is not repeated.

So far, we assumed that E[ft] = 0. However, in the particular context of excess returns,
it is frequent to estimate the mean of the factors for the purpose of demeaning them.
Keep in mind that subtracting the factors’ mean sets the mean of the SDF yt to 1. We
employ the Generalized Method of Moments (GMM) in a misspecified setting studied
by Hall and Inoue (2003) to estimate the SDF parameter ✓ and take into account the
estimation of the factors’ mean µf . We have the following population moment condition

E[gt(�)] = E

"
ft � µf

rt(1� f̃
0
t✓)

#
= 0Ñ+K ,

where µf = E[ft] and � =

"
µf

✓

#
. The sample moments are given by ḡT (�) =

1
T

PT
t=1

"
ft � µf

rt(1� f̃
0
t✓)

#
.

From Cochrane (2005, chap. 11), the estimator �̂↵ =

"
µ̂f

ˆ̃✓↵

#
can be written as the solu-

tion of the equations
AT ḡT (�) = 02K,1,

where AT =

"
IK 0K,N

0K,K V̂
0
rf ⌃̂

�1
↵

#
. The preceding equation combines the first order condi-

tions of min
✓

(µ̂r � V̂rf✓)
0
⌃̂�1

↵ (µ̂r � V̂rf✓) and min
µf

(µ̂f � µf )0(µ̂f � µf ).

A mean value expansion of ḡT (�) around �? = (µ
0
f , ✓̃

0
?)

0 yields the following

0 = AT ḡT (�̂↵) = AT ḡT (�?) + ATGT .(�̂↵ � �?),

where GT = @ḡT
@✓0

(✓?) =

"
�IK 0K,K

µ̂r✓
0
? �V̂rf

#
. This leads to

(�̂↵ � �?) = �(ATGT )
�1AT ḡT (�?).

The following proposition gives the asymptotic distribution of ✓̂↵ in the case of the
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excess returns when the mean of the factors is estimated.

Proposition 10. Suppose Assumption 9 and 10 are satisfied. For excess returns, as-
sume µf 6= 0. As Ñ , T ! 1, if ↵ ! 0, ↵T ! 1, and ↵2T ! 0, then

p

T
⇣
ˆ̃✓↵ � ✓̃?

⌘
d

�! N(0K , V2(✓̃)), (3.10)

where

V2(✓̃) = lim
N,T!1

V ar

"
1

p
T

TX

t=1

lt

#
,

and lt = ✓?(yt(✓?)�1)�C�1
v

V
0
rf⌃

�1

Ñ
(rtyt(✓?)� r̃tũt�e(✓?))�C�1

v f̃tũt and ũt =
r̃
0
t⌃

�1e(✓?)

Ñ
.

Remark 15. The previous proposition applies to a misspecified model with excess re-
turns where one estimates the mean of the factors and has many assets. Using a miss-
pecified GMM framework, it introduces an alternative approach distinct from that of
Carrasco and Nokho (2022), who rely on the representation of linear asset pricing mo-
dels in terms of �. The method also differs from the asymptotic analysis of Kan and
Robotti (2008), where the authors use a delta method to derive the distribution of the
SDF parameter.

3.3.3 Link between the HJ distance with gross returns and the

modified version with excess returns

When the gross risk-free rate is available, there is a relation between the HJ distance
computed on the gross returns and the modified version on the excess returns first
proposed in Kan and Robotti (2008). To see the link, note that E[xtyt(✓)] = 0 can be
decomposed by the following two equalities :

E[rtyt(✓)] = 0

E[xrfyt(✓)] = 1,

where rt is the vector of excess returns (xt � xrf ) and xrf is the gross return of the
risk-free asset. The time dependence of the risk-free asset is removed as it does not vary
a lot. The pricing errors of using the previous system to make inference on ✓ using a
linear SDF is

e(✓) = E

"
rt(✓0 � ✓1ft)

xrf (✓0 � ✓1ft)� 1

#
,
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and the squared HJ distance is given by

�2 = e(✓)
0
⌦̃�1e(✓),

where ⌦̃ is the second moment matrix of
h
xrf r

0
t

i0

. Lemma 2 of Kan and Robotti
(2008) shows that the previous HJ distance (�2) using the previous errors is related to
the modified squared HJ distance based on excess return (�̃2) as follows

�2 =
�̃2

xrf
.

The squared distance �̃2 is obtained from the SDF y(✓1) = 1 � ✓
0
1(ft � E(ft)) and the

pricing errors e(✓1) = E[rtyt(✓1)] = µr � Vrf✓1.
In population, minimizing the distance with the gross returns is equivalent to mi-

nimizing the modified distance with the excess returns when risk-free asset return is
constant. However, in reality, the return of the risk-free asset is not constant over time.
Therefore, in a finite sample, the properties of the SDF parameters estimated using the
two distances might differ. We investigate the differences in finite samples in 3.5.

3.4 Choice of the regularization parameters

The estimation of SDF parameters is contingent upon the regularization parameter
↵. We now describe the process of selecting its appropriate value. For a given sample
size T , we divide the data in two parts. We use the first part to estimate ✓. We choose
↵ that maximizes the out-of-sample R-square R2

oos, which expression depends on the
type of return. For the gross returns,

R2
oos = 1�

(µo
r +Do ✓̂

0
1,↵

✓̂0,↵
�

q

✓̂0,↵
)
0
(µo

r +Do ✓̂
0
1,↵

✓̂0,↵
�

q

✓̂0,↵
)

µo0
r µ

o
r

where quantity with .o are estimated from the withheld sample.
For the excess returns,

R2
oos = 1�

(µo
r � V o

rf
ˆ̃✓↵)

0
(µo

r � V o
rf
ˆ̃✓↵)

µo0
r µ

o
r

.
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3.5 Simulations

In this section, we study the finite sample behavior of the t-test issued from the
distribution given in the previous propositions by simulating linear asset pricing models.

We simulate a vector of 393 gross returns (392 portfolios gross returns plus the
monthly gross risk-free rate) such that the linear asset pricing models are misspecified.
The simulations follow the design of Gospodinov et al. (2013). For sake of completeness,
we present the approach. We generate gross returns and factors from a multivariate

normal distribution with mean µ and covariance V , where µ = E

"
ft

rt

#
=

"
µf

µr

#
and

V = V ar

"
ft

rt

#
=

"
Vff Vfr

Vrf Vrr

#
.

The parameter of the distribution are calibrated to actual data to reflect the typi-
cal characteristic of linear asset pricing models in the literature. We use 392 monthly
portfolio returns ranging from January 1964 to December 2019. For the factors, we use
two sets. The first set is the three factors of Fama and French : the market return,
the small minus big factor (SMB), and the High Minus Low factor (HML). The second
set of factors are from the Durable Capital Asset Pricing Model of Yogo (2006) : the
gross market return, the log consumption growth of non durable goods, and the log
consumption growth of durable goods. The 392 portfolio returns and the Fama-French
Factors comes from the Kenneth French’s website, whereas the consumption aggregates
are from the U.S Bureau of Economic Analysis.

For each model, V is equal to empirical covariance matrix of the data. In addition,
the distribution of the SDF parameter given in (3.8) does not depend on the mean of
the factors. As a result, we set µf = 0.

For each model, we choose µr such that restrictions on ✓? are verified and e(✓) 6= 0N ,

8✓. To do so, notice that for an invertible covariance matrix, the pseudo-true SDF
parameter is equivalent to

✓? = (D
0
⌃�1D)�1D

0
⌃�1q, with D = E[rtFt] =

h
µr Vrf

i
. Using the expression of

D, and multiplying ✓? by D
0
⌃�1D, we have the following system

8
<

:
µ

0
r⌃

�1(µr✓0 + Vrf✓1 � q) = 0

Vfr⌃�1(µr✓0 + Vrf✓1 � q) = 0k�1

.

If the model is misspecified, then e(✓?) = z 6= 0N . Then, µr✓0 = q � Vrf✓1 + z. As a
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result, the previous system becomes
8
<

:
z
0
⌃�1q = �z

0
⌃�1z

Vfr⌃�1z = 0k�1

. (3.11)

To have a misspecified model, one needs to choose an adequate vector z that satisfies
(3.11). A convenient choice is z = ê with ê = (D̂

0
⌃�1D̂)�1D̂

0
⌃�1q � q , and D̂ =h

µ̂r Vrf

i
. This is because D̂

0
⌃�1q = 0. So, it also verifies ê

0
⌃�1q = �ê

0
⌃�1ê, and

Vfr⌃�1ê = 0k�1.

So setting µr =
q�Vrf ✓1+z

✓0
=
h
q Vrf

i " 1/✓0
✓1/✓0

#
+ z

✓0
= X⌘ + ⌘0ê gives a misspecified

model with ✓? as solution. To set a plausible value of ✓?, we can first pick ⌘, by solving
the following constraint problem

min
⌘

(µ̂r �X⌘)
0
⌃�1(µ̂r �X⌘) s.t g(⌘) = 0k,

where the constraint g(⌘) = 0 is used to set a particular parameter to 0 to verify the

size of a test. Let ⌘1 =
h
⌘

0
1a ⌘

0
1b

i0

, where ⌘1a is a ka⇥ 1 vector and ⌘1b is a kb⇥ 1 vector
with ka+kb = k�1. We can set ⌘1b = 0, by choosing ⌘ = (X

0
c⌃

�1Xc)�1X
0
c⌃

�1µ̂r, where
Xc =

h
q Vrf,c

i
with Vrf,c is the matrix Vrf where the last kb columns are equal to 0kb .

Without the constraint, ⌘ = (X
0
⌃�1X)�1X

0
⌃�1µ̂r.

3.5.1 Models with the risk-free asset

Here, we present the finite sample properties of the t-test on the SDF parameters
when the test assets include gross return and the risk free rate.

Table 3.1 presents the result of t-test on the SDF parameters using the asymptotic
distribution given in (3.7) for each simulated model. This asymptotic distribution is
only valid when the covariance matrix ⌦ is invertible. In our simulation, when N > T ,
we use the generalized inverse of the matrix. The generalized inverse of the matrix
remove the null eigenvalues before computing the inverse.
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Table 3.1 – Empirical size of the Gospodinov et al. (2013) test with 392 portfolios
gross returns and the monthly risk-free asset

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.169 0.091 0.019 0.108 0.057 0.012 0.106 0.052 0.01
350 0.116 0.063 0.013 0.12 0.063 0.012 0.157 0.091 0.026
650 0.107 0.051 0.01 0.102 0.051 0.009 0.111 0.055 0.013

Panel C : Durable consumption CAPM of Yogo (2006)
✓mkt ✓ndur ✓dur

150 0.132 0.071 0.014 0.188 0.109 0.032 0.132 0.071 0.014
350 0.174 0.105 0.030 0.698 0.641 0.533 0.174 0.105 0.030
650 0.113 0.059 0.012 0.236 0.153 0.059 0.113 0.059 0.012

For the three factors model of Fama and French (1993), the t-test presents adequate
size when T is large (T = 650). This shows that for adequate sample size the SDF
parameter test of Gospodinov et al. (2013) is well behaved. For smaller sample size, it
exhibits distorted size for the market (T = 150) and HML (T = 350).

The results are worse for the Durable consumption CAPM of Yogo (2006). All the
variables present distorted rejection rates. The market and the durable consumption
factors present higher rejection when N > T . The test on the non durable consumption
variable shows large over-rejections for all values of T . As a result, one will tend to
falsely declare these factors as essential in pricing the returns.

In table 3.2, we show the finite sample properties of the SDF parameter t-test SDF
using gross returns and the Tikhonov regularization given in proposition 8.

Table 3.2 – Empirical size of the Tikhonov test under misspecification with 392 port-
folios gross returns and the monthly risk-free asset

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.317 0.268 0.197 0.195 0.142 0.073 0.161 0.111 0.054
350 0.34 0.270 0.186 0.185 0.126 0.059 0.138 0.086 0.034
650 0.413 0.330 0.209 0.203 0.136 0.062 0.122 0.074 0.024

Panel B : Linear durable consumption CAPM of Yogo (2006)
✓mkt ✓ndur ✓dur

150 0.325 0.273 0.203 0.092 0.043 0.005 0.089 0.038 0.005
350 0.341 0.278 0.191 0.107 0.053 0.01 0.096 0.049 0.008
650 0.41 0.333 0.208 0.117 0.062 0.013 0.097 0.050 0.009
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In general, when applying the Tikhonov regularization to the models, we have a
noticeable over-rejection of the t-test. Therefore, the regularization does not bring any
value. In fact, the properties are much worse than without regularization. This is chiefly
due to the poor estimation of the second moment matrix of gross returns. In the matrix,
the gross return of the risk-free asset does not vary a lot and is much closer to 1. The-
refore, we have a near perfect collinearity between the risk-free and the remaining test
assets, which adds to the collinearity between test assets. In the previous simulations,
its effect is completely removed by the generalized inverse. The poor performance of
the second moment matrix of returns, as noted by Kan and Zhou (2004, p. 5), is no-
ticeable even when dealing with a low number of assets. In addition, Kan and Robotti
(2009) use the covariance matrix, instead of the second moment matrix, for numerical
purposes. In our case, the covariance matrix gives numerically the same result.

Instead of using the gross returns, one can resort to the excess returns. Therefore, we
can transform the simulated gross returns into excess returns and utilize the modified
HJ to conduct inference on the SDF parameters. This approach has the advantage of
eliminating the need for the risk-free asset. In addition, the mean of the SDF is fixed
to 1 (see Section 3.3.2).

So, in Table 3.3, we present the empirical size of the t-test using the Tikhonov
penalization with excess returns (Proposition 9).

Table 3.3 – Empirical size of the Tikhonov test under misspecification with 392 excess
returns.

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.06 0.029 0.005 0.058 0.028 0.006 0.053 0.022 0.004
350 0.065 0.03 0.005 0.068 0.034 0.007 0.064 0.029 0.005
650 0.068 0.032 0.006 0.083 0.04 0.010 0.072 0.035 0.007

Panel B : Linear durable consumption CAPM of Yogo (2006)
✓mkt ✓ndur ✓dur

150 0.038 0.015 0.002 0.035 0.015 0.002 0.03 0.012 0.001
350 0.043 0.018 0.002 0.061 0.033 0.007 0.071 0.032 0.006
650 0.055 0.023 0.003 0.088 0.051 0.015 0.132 0.068 0.016

The t-test size of the factors in Fama and French (1993) remains below the theoretical
level. So the test is slightly conservative. The market and non durable consumption
factors in Yogo (2006) present the same characteristic. The size of the test for the
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durable consumption factors is slightly higher but still remains close to the theoretical
value when T is large.

Table 3.4 presents the empirical power of the t-test based on the Tikhonov penali-
zation of the SDF parameter and the excess returns. The test does not exhibit uniform
power over all the factors in both models. For the Fama and French model, the rejection
rate is very high for the market and the HML factors. However, it is lower for SMB.
In the durable CAPM of Yogo (2006), the rejection rate of the market is still high. It
is lower for the consumption factors. This result is mainly due to the strength of the
factors.

Table 3.4 – Empirical power of the Tikhonov test under misspecification with 392
excess returns.

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.389 0.267 0.105 0.067 0.032 0.005 0.314 0.204 0.066
350 0.73 0.602 0.341 0.107 0.055 0.012 0.683 0.538 0.270
650 0.943 0.888 0.702 0.168 0.09 0.021 0.923 0.856 0.627

Panel B : durable CAPM of Yogo (2006)
✓mkt ✓ndur ✓dur

150 0.176 0.091 0.021 0.034 0.014 0.002 0.034 0.013 0.002
350 0.33 0.203 0.059 0.07 0.037 0.009 0.065 0.028 0.006
650 0.485 0.357 0.148 0.11 0.061 0.021 0.118 0.062 0.015

3.5.2 Models without the risk-free asset

In this section, we conduct the same simulations for the gross returns without in-
cluding the gross risk-free asset. The latter exhibits minimal variation, remains close
to 1, and introduces additional correlations between the test assets. Table 3.5 displays
the size of the t-test for both models.
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Table 3.5 – Empirical size of the Tikhonov test with 392 portfolios gross returns
without the monthly risk free

T 10% 5% 1% 10% 5% 1% 10% 5% 1%
Panel A : Three factors model of Fama and French (1993)

✓mkt ✓SMB ✓HML

150 0.072 0.031 0.005 0.081 0.036 0.006 0.092 0.042 0.008
350 0.111 0.056 0.010 0.094 0.045 0.008 0.144 0.082 0.019
650 0.147 0.083 0.019 0.106 0.053 0.011 0.207 0.123 0.040

Panel C : Durable consumption CAPM of Yogo (2006)
✓mkt ✓ndur ✓dur

150 0.02 0.006 0.000 0.033 0.009 0.000 0.027 0.006 0.000
350 0.051 0.019 0.002 0.105 0.047 0.005 0.062 0.028 0.002
650 0.16 0.085 0.014 0.239 0.146 0.028 0.107 0.056 0.011

Compared to Table 3.2, we observe lower rejection rates when we exclude the risk-
free asset for the Fama and French model. However, we note a rejection rate higher
than the theoretical one for the market and HML factors. In the consumption model
by YOGO, we also observe a higher rejection rate for the market and non durable
consumption.

3.6 Conclusion

In conclusion, this paper introduces a novel approach to estimating the Stochas-
tic Discount Factor (SDF) parameters in misspecified asset pricing models, commonly
called pseudo-true parameters. Leveraging regularization techniques on the Hansen-
Jagannathan (HJ) distance, the proposed approach accommodates many test assets,
addressing the limitations of existing approaches. In addition, unlike the prior work
of Carrasco and Nokho (2022) on excess returns, our method applies to the gross and
excess returns.

Typically, the HJ distance equates to a GMM distance with a particular weighing
matrix and the pricing errors of the asset pricing model as the moments. When one uses
gross returns, this weighting matrix is the inverse of the second-moment matrix, while
it is the inverse of the covariance matrix for excess returns. The regularization of the
distance equates to the stabilization of the appropriate weighting matrix. This paper
explores the varying modeling approaches found in the literature, depending on whether
researchers utilize gross or excess returns. Additionally, it establishes the asymptotic
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distribution of the Stochastic Discount Factor (SDF) estimator in each scenario as the
number of assets increases. We also compare the finite sample performance of the t-test
using the distribution of the estimated SDF parameter.

Our results show that when the number of assets increases, the SDF parameter
estimation through the excess returns, using regularization, presents much better size
control than the gross returns. This result emanates from the unstable nature of the
second-moment matrix of gross returns. Furthermore, the gross return of the risk-free
asset exhibits minimal variability. Consequently, this results in a significant collinearity
between the risk-free asset and the remaining test assets that the regularization cannot
dampen.

3.7 Appendix A : Notations for the proofs

We endow RN with the norm k � k
2
N=

�
0
1�2

N with associated inner product <

�1,�2 >N=
�
0
1�2

N , and RT with norm k v k
2
T=

v
0
v

T generated by inner product <

v1, v2 >T=
v
0
1v2
T .

⌦ is a trace-class matrix. We note {�j,�j}, j = 1, 2, ..., N , the non zero eigenvalues and
eigenvectors of ⌦. The Tikhonov regularization consists of using ⌦�1

↵ = (⌦2 + ↵IN)�1⌦

or

⌦�1
↵ � =

NX

j=1

q(↵,�2j)

�j
< �,�j >N �j,

where q(↵,�2j) =
�2
j

�2
j+↵

.

To obtain the regularized inverse of ⌦̂�1
↵ , it suffices to replace �j by �̂j and �j by

�̂j, for j = 1, . . . ,min(N, T ).
Similarly, ⌦↵ denotes the generalized inverse of ⌦�1

↵ .

3.8 Appendix B : Penalized HJ-distance using gross

returns in detail

In this section, we present a formal proof of (3.4). We remove the subscript t for
ease of presentation. We assume that the set D = {m 2 M :k E[mx] � q k

2
N< 1} is

not empty.
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As in Carrasco and Nokho (2022), we define X = 2x
N , Let fy : L2

! R be the
function defined by fy(x) = E[(x � y)2] and A : L2

! RN be the operator such that
A(m) = E[mX]. In addition, g(l) = N

4↵k l � 2q
N k

2
N,⌦. So the initial problem (3.1) can be

rewritten as below
�2 = inf

m2L2

{fy(m) + g(A(m))} .

As D 6= ;, strong duality holds, i.e., (ri dom(g))
T
(riA(dom(fy))) 6= ;

3(see Theorem
4.2 of Borwein and Lewis, 1992). Therefore,

�2 = �min
�2RN

�
f ⇤
y (�A⇤(�)) + g⇤(�)

 

f ⇤
y (z) = E[zy + 1

4z
2], A⇤ : RN

! L2 with A⇤(�) = X
0
�, and

g⇤(z) = sup
w2RN

⇢
w

0
z �

N

4↵
k w �

2q

N
k
2
N,⌦

�

=
2q

0
z

N
+ sup

h2RN

⇢
h

0
z �

N

4↵
k h k

2
N,⌦

�

=
2q

0
z

N
+
↵

N
k z k

2
N,⌦�1

by using h = w �
2q
N .

The dual is given by

�2 = �min
�2RN

�
f ⇤
y (�A⇤(�)) + g⇤(�)

 

= �min
�2RN

⇢
�2

x
0
�

N
+
�

0
xx

0
�

N2
+

2q
0
�

N
+
↵

N
k � k

2
N,⌦�1

�

= max
�2RN

⇢
2
x

0
�

N
�
�

0
xx

0
�

N2
�

2q
0
�

N
�
↵

N
k � k

2
N,⌦�1

�
.

3. For convex set S ✓ RN , ri S is its relative interior. The latter is the interior with respect
to the affine hull of S, aff S. Specifically, ri S = {x 2 S : B✏(x)

T
aff S ✓ S} ,where aff S =

{✓1x1 + · · ·+ ✓kxk : x1, . . . , xk 2 S, ✓1 + · · ·+ ✓k = 1} and B✏(x) =
�
y 2 RN :k y � x k< ✏

 
.
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3.9 Appendix C : Proofs

3.9.1 Preliminary lemmas

Lemma 8. Under assumption 7,

1. k D̂ �D k
2
N= Op(

1
T ).

2. k eT (✓)� e(✓) k2N= Op(
1
T ) for all ✓ 2 RK+1.

Proof : First, we show that

k D̂ �D k
2
F= Op(

N

T
).

We note D̂ �D = 1
T

PT
t=1 YxF,t, where YxF,t = xtF

0
t � E[xtF

0
t ]. We have

E[k D̂ �D k
2
F ] = E

h
tr
⇣
(D̂ �D)(D̂ �D)

0
⌘i

= E
h
tr
⇣
(D̂ �D)

0
(D̂ �D)

⌘i

= E

"
tr

 
1

T

TX

t=1

Y
0

xF,t

! 
1

T

TX

t=1

YxF,t

!#

= E

2

4tr

0

@ 1

T 2

TX

t=1

Y
0

xF,tYxF,t +
1

T 2

TX

t 6=t0

Y
0

xF,tYxF,t0

1

A

3

5

=
1

T
E
h
tr(Y

0

xF,tYxF,t)
i
+

2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

xF,1YxF,1+l)
i
.

trE[Y
0

xF,tYxF,t] = trE[Ftx
0

txtF
0

t ]� tr(D
0
D)

= E[F
0

tFtx
0

txt]� tr(D
0
D)

From Cauchy-Schwarz, | E[F
0
tFtx

0
txt] |

p
E[k Ft k

4]E[k xt k
4] = O(N). Therefore,

1
TE

⇥
tr(Y

0
xF,tYxF,t)

⇤
= O(NT ).

Using Davydov’s inequality (Davydov (1968)),

123



trE
h
(Y

0

xF,1YxF,1+l)
i

=
NX

i=1

K+1X

k=1

E [(Fk1xi1 � E(Fk1xi1)) (Fk1+lxi1+l � E(Fk1xi1+l))]

=
NX

i=1

K+1X

k=1

cov(Fk1xi1, Fk1+lxi1+l)

 12
NX

i=1

K+1X

k=1

↵(l)
⇢

2+⇢E[(Fktxit)
2+⇢]

2
2+⇢ .

As a result,

2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

xF,1YxF,1+l)
i


24

T

NX

i=1

K+1X

k=1

E[(Fktxit)
2+⇢]

2
2+⇢

TX

l=1

(1�
l

T
)↵(l)

⇢
2+⇢


24

T

NX

i=1

K+1X

k=1

E[(Fktxit)
2+⇢]

2
2+⇢

TX

l=1

l↵(l)
⇢

2+⇢ .

From Assumption 7(iv), and Cauchy-Schwarz, | E[(Fktxit)2+⇢] | [E(F 4+2⇢
kt )]

1
2 [E(x4+2⇢

it )]
1
2 

c
1
2E[F 4+2⇢

kt ]
1
2 .

So,
2

T

TX

l=1

(1�
l

T
)E

h
tr(Y

0

xF,1YxF,1+l)
i
= O(

N

T
).

Furthermore, E[k D̂ �D k
2
F ] = O(NT ). In conclusion,

k D̂ �D k
2
F= Op(

N

T
).

For 2., note that for all ✓ 2 RK+1, eT (✓)� e(✓) = 1
T

PT
t=1 Yxy,t, where Yry,t = xtyt(✓)�

E(xtyt(✓)). We use the same approach as in 1. to show that k eT (✓)� e(✓) k2F= Op(
N
T ).

Lemma 9. Under Assumption 7 and 9,

1. As N, T ! 1, ↵T ! 1, ↵ ! 0, k ⌦̂�1
↵ D̂k � ⌦�1Dk kN

p
! 0.

2. As N, T ! 1, ↵ 1
2T ! 1, ↵ ! 0, k ⌦̂

� 1
2

↵ D̂k � ⌦� 1
2Dk kN

p
! 0.

3. As N, T ! 1, ↵ 1
2T ! 1, ↵ ! 0, k ⌦̂

� 1
2

↵ eT (✓)� ⌦� 1
2 e(✓) kN

p
! 0.

4. As N, T ! 1, ↵T ! 1, ↵ ! 0, k ⌃̂�1
↵ V̂rf,k � ⌃�1Vrf,k kÑ

p
! 0.

5. As N, T ! 1, ↵ 1
2T ! 1, ↵ ! 0, k ⌃̂

� 1
2

↵ V̂rf,k � ⌃� 1
2Vrf,k kN

p
! 0.
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Proof : We follow the proof of Lemma 7 of Carrasco and Nokho (2022) as we have the
same conditions. From Lemma 8, we have k D̂k �Dk k

2
N= Op(

1
T ) , k V̂rf,k � Vrf,k k

2
Ñ
=

Op(
1
T ), and k eT (✓)�e(✓) k2N= Op(

1
T ) for all ✓ 2 RK+1. In addition, k ⌦�1

↵ kN= sup
k�kN1

k

⌦�1
↵ � kN

1
↵ . The result follows.

Lemma 10. 1. Under Assumption 7, when N, T ! 1, ↵ ! 0, and ↵
1
2T ! 1,

1
N D̂

0
⌦̂�1

↵ D̂
P
! C1.

2. Under Assumption 9, when N, T ! 1, ↵ ! 0, and ↵ 1
2T ! 1, 1

N V̂
0
rf ⌦̂

�1
↵ V̂rf

P
!

C2.

Proof : For 1), we can rewrite 1
N D̂

0
⌦̂�1

↵ D̂ as follows


1

N
D̂k1⌦̂

�1
↵ D̂k2

�

k1,k2=1,··· ,K+1

=< ⌦̂
� 1

2
↵ D̂k1 , ⌦̂

� 1
2

↵ D̂k2 >N ;k1,k2=1,··· ,K+1 .

We have

< ⌦̂
� 1

2
↵ D̂k1 , ⌦̂

� 1
2

↵ D̂k2 >N = < ⌦̂
� 1

2
↵ D̂k1 � ⌦� 1

2Dk1 , ⌦̂
� 1

2
↵ D̂k2 � ⌦� 1

2Dk2 >N +(3.12)

< ⌦̂
� 1

2
↵ D̂k1 � ⌦� 1

2Dk1 ,⌦
� 1

2Dk2 >N + (3.13)

< ⌦� 1
2Dk1 , ⌦̂

� 1
2

↵ D̂k2 � ⌦� 1
2Dk2 >N + (3.14)

< ⌦� 1
2Dk1 ,⌦

� 1
2Dk2 >N �C1k1,k2 + (3.15)

C1k1,k2 . (3.16)

We have |(3.12)|k ⌦̂
� 1

2
↵ D̂k1�⌦� 1

2Dk1 kNk ⌦̂
� 1

2
↵ D̂k1�⌦� 1

2Dk1 kN! 0 as N, T ! 1,
and ↵ 1

2T ! 1 using Lemma 9 (2).
For (3.13), we have

|< ⌦̂
� 1

2
↵ D̂k1 � ⌦� 1

2Dk1 ,⌦
� 1

2Dk2 >N |k ⌦̂
� 1

2
↵ D̂k1 � ⌦� 1

2Dk1 kNk ⌦� 1
2Dk2 kN! 0

as N, T ! 1, and ↵ 1
2T ! 1 using Lemma 9 (2).

The same is true for (3.14).
Finally, using Assumption 7(viii), (3.15) goes to 0 as N goes to 1.
In conclusion, D̂0⌦̂�1

↵ D̂
N ! C1 as N, T ! 1, and ↵ 1

2T ! 1, and, ↵ ! 0.
For 2), we follow the same approach as 1).
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3.9.2 Proof of Proposition 7

We use Theorem 2.7 of Newey and McFadden (1994). We need to show that QT,N(✓)
p

�!

Q(✓), where QT,N(✓) =
eT (✓)⌦̂�1

↵ eT (✓)
N , and Q(✓) = �(✓) for all ✓ 2 RK+1.

We have

| QT,N(✓)�Q(✓) ||k ⌦̂
� 1

2
↵ eT (✓) k

2
N � k ⌦� 1

2 e(✓) k2N | .

As, N, T ! 1, ↵ 1
2T ! 1,

|k ⌦̂
� 1

2
↵ eT (✓) kN � k ⌦� 1

2 e(✓) kN |k ⌦̂
� 1

2
↵ eT (✓)� ⌦� 1

2 e(✓) kN
P

! 0

using Lemma 9 (3).
Therefore | QT,N(✓) � Q(✓) |

p
! 0 for all ✓ 2 RK+1. Concavity of QT,N(✓) leads to

the desired result.

3.9.3 Proof of Proposition 8

To obtain the Mean value expansion, notice that we can obtain ✓̂↵ and �̂↵ by solving
the following problem

argmin
✓

max
�2RN

QN,T (✓,�;↵),

where QN,T (✓,�;↵) =
1
T

PT
t=1

h
2x

0
t�
N yt(✓)�

�
0
xtx

0
t�

N2 �
2�

0
q

N

i
�

1
N�

0
⇣
⌦̂↵ � ⌦̂

⌘
�, ⌦̂↵ is the

generalized inverse of ⌦̂�1
↵ . We note ⇡ =

"
✓

�

#
. A Mean value expansion of @QN,T

@⇡ around

⇡? =

"
✓?

�?

#
yields

0 =
@QN,T

@⇡
(✓̂, �̂) =

@QN,T

@⇡
(✓?,�?) +

@2QN,T (✓̄, �̄)

@⇡@⇡0 (⇡̂ � ⇡?).

We have @QN,T

@⇡ (✓?,�?) =

2

4
1
T

PT
t=1 2

�
0
?xt

N
@yt(✓?)

@✓

1
T

PT
t=1 2

xtyt(✓?)�q
N � 2xtx

0
t�?

N2 � 2
(⌦̂↵�⌦̂)�?

N

3

5, and @2QN,T (✓̄,�̄)

@⇡@⇡0 =

"
Ik �2 D̂

N

�2 D̂
0

N �2 ⌦̂↵
N

#
. As a result, the first row of

h
@2QN,T (✓̄,�̄)

@⇡@⇡0

i�1

=

"
Ik �2 D̂

N

�2 D̂
0

N �2 ⌦̂↵
N

#�1

is given
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by h⇣
D̂

0
⌦̂�1

↵ D̂
N

⌘�1

�

⇣
D̂

0
⌦̂�1

↵ D̂
N

⌘�1

D̂
0
⌦̂�1

↵

i
,

and

p

T
⇣
✓̂ � ✓?

⌘
=

 
D̂

0
⌦̂�1

↵ D̂

N

!�1
1

p
T

TX

t=1

�
�

0
?xt

N

@yt(✓?)

@✓

�

 
D̂

0
⌦̂�1

↵ D̂

N

!�1

D̂
0
⌦̂�1

↵

1
p
T

TX

t=1

xtyt(✓?)� q

N
�

xtx
0
t�?

N2
�

⇣
⌦̂↵ � ⌦̂

⌘
�?

N
.

Using the fact that @Q
@⇡ (✓?,�?) =

2

4
E
⇣

�
0
?xt

N
@yt(✓?)

@✓

⌘

E
⇣

xtyt(✓?)�q
N � 2xtx

0
t�?

N2

⌘

3

5 =

"
0K

0N

#
(first order condi-

tion of the population dual),

p

T
⇣
✓̂ � ✓?

⌘
=

 
D̂

0
⌦̂�1

↵ D̂

N

!�1
1

p
T

TX

t=1

�
Ftx

0
t�? � E(Ftx

0
t�?)

N

�

 
D̂

0
⌦̂�1

↵ D̂

N

!�1

D̂
0
⌦̂�1

↵

1
p
T

TX

t=1

✓
xtyt(✓?)� E(xtyt(✓?))

N

�
xtx

0
t�? � E(xtx

0
t�?)

N2
�

⇣
⌦̂↵ � ⌦̂

⌘
�?

N

1

A . (3.17)

We obtain the asymptotic distribution of the previous expression by determining
the distribution of each component.

As ↵ ! 0, ↵ 1
2T ! 1, D̂

0
⌦̂�1

↵ D̂
N � CD

p
! 0. In addition, 8l 2 RK

l
0
CD

1
p
T

TX

t=1

Ftx
0
t�? � E(Ftx

0
t�?)

N
=

1
p
T

TX

t=1

y
0
rf,t�?
N

,

where yrf,t = l
0
CDFtx

0
t�E[l

0
CDFtx

0
t]. Using Lemma 5 of Carrasco and Nokho (2022), we

have 1p
T

PT
t=1

y
0
rf,t�?

N converges to a normal distribution with variance lim
N,T!1

V ar( 1p
T

PT
t=1

y
0
rf,t�?

N ).
In the same vein,

l
0
CDD

0
⌦�1 1

p
T

TX

t=1

xtyt(✓?)� E(xtyt(✓?))

N
=

1
p
T

TX

t=1

y
0
ry,tu

N
,
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where u = l
0
CDD

0
⌦�1 and yry,t = rtyt(✓?)�E(rtyt(✓?)). Therefore it has an asymptotic

normal distribution.
Using Lemma 6 of Carrasco and Nokho (2022)

l
0
CDD

0
⌦�1 1

p
T

TX

t=1

xtx
0
t�? � E(xtx

0
t�?)

N2

has also a normal distribution.
Finally,

p
T

N
D̂

0
⌦̂�1

↵

⇣
⌦̂↵ � ⌦̂

⌘
⌦�1e(✓?)

N
(3.18)

is the bias. We note e = e(✓?). Notice that

(⌦̂↵ � ⌦̂)⌦�1e =
X

j/q 6=0

�̂j

 
1� q(↵, �̂2j)

q(↵, �̂2j)

!
(�̂j,⌦

�1e)N �̂j.

So, k (⌦̂↵ � ⌦̂)⌦�1e k2N=
P

j/q 6=0 �̂
2
j

✓
1�q(↵,�̂2

j )

q(↵,�̂2
j )

◆2

(�̂j,⌦�1e)2N . We have

X

j/q 6=0

�̂2j

 
1� q(↵, �̂2j)

q(↵, �̂2j)

!2

(�̂j,⌦
�1e)2N  sup

j/q 6=0

1

q(↵,�2j)

X

j

�̂2j

⇣
q(↵, �̂2j)� 1

⌘2

(�̂j,⌦
�1e)2N .

 sup
j/q 6=0

�̂2j
q(↵,�2j)

X

j

�̂2!j

⇣
q(↵, �̂2j)� 1

⌘2 (�̂j,⌦�1e)2N
�̂2wj

.

We have sup
j/q 6=0

�2
j

q(↵,�2
j )

= �̂2j + ↵ is bounded. On the other hand,

X

j

�̂2!j

⇣
q(↵, �̂2j)� 1

⌘2 (�̂j,⌦�1e)2N
�̂2wj

 sup
j
�̂2!j

⇣
q(↵, �̂2j)� 1

⌘2X

j

(�̂j,⌦�1e)2N
�̂2wj

is OP (↵2) if k ⌦�3e k
2
N< 1. Therefore, the squared normed of term (3.18) is Op(↵2T )

if k ⌦�3e(✓?) k2N< 1.
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3.9.4 Proof of Proposition 10

We use the following equation

(�̂↵ � �?) = �(ATGT )
�1AT ḡT (�?),

where � =

"
µf

✓

#
, AT =

"
IK 0K,N

0K,K
1
Ñ
V̂

0
rf ⌃̂

�1
↵

#
, ḡT (�) = 1

T

PT
t=1

"
ft � µf

rt(1� f̃
0
t✓)

#
, and GT =

@ḡT
@�0 (�?) =

"
�IK 0K,K

µ̂r✓
0
? �V̂rf

#
.

We have

ATGT =

"
�IK 0K,K

( 1
Ñ
V̂

0
rf ⌃̂

�1
↵ µ̂r✓

0
?) (� 1

Ñ
V̂

0
rf ⌃̂

�1
↵ V̂rf )

#

and

(ATGT )
�1 =

"
�IK 0K,K

�(V̂
0
rf ⌃̂

�1
↵ V̂rf )V̂

0
rf ⌃̂

�1
↵ µ̂r✓

0
? �(

V̂
0
rf ⌃̂

�1
↵ V̂rf

Ñ
)�1

#
.

=

"
�IK 0K,K

�✓̂↵✓
0
? �(

V̂
0
rf ⌃̂

�1
↵ V̂rf

Ñ
)�1

#

Also, AT ḡT (✓?) =

"
1
T

PT
t=1 ft � µf

1
Ñ
V̂

0
rf ⌃̂

�1
↵

1
T

PT
t=1 rt(1� f̃

0
t✓?)

#
. The second row can be rewritten as

follows

1

Ñ
V̂

0

rf ⌃̂
�1
↵ eT (✓?) =

1

Ñ
V̂

0

rf ⌃̂
�1
↵ (eT (✓?)� e(✓?))

+
1

Ñ
(V̂

0

rf � V
0

rf )⌃̂
�1
↵ e(✓?)

+
1

Ñ
V

0

rf (⌃̂
�1
↵ � ⌃�1)e(✓?)

+
1

Ñ
V

0

rf⌃
�1e(✓?).
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Therefore, using the fact that V
0
rf⌃

�1e(✓?) = 0, we have

p

T (✓̂↵ � ✓?) = �(✓̂↵✓
0

?)
1

p
T
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Notice that we have the same components as in (3.17), plus the extra term taking
into account the estimation of the factor mean. We can use the previous decomposition
to prove the asymptotic normally of

p
T (✓̂↵ � ✓?).

We obtain the asymptotic distribution of the previous expression by determining
the distribution of each component.

As N, T ! 1,↵ ! 0, ↵ 1
2T ! 1, V̂

0
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where yrf,t = l
0
Cvftrt �E[l

0
Cvftrt]. Using Lemma 5 of Carrasco and Nokho (2022), we

have 1p
T
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y
0
rf,t�?

Ñ
converges to a normal distribution with variance lim

N,T!1
V ar( 1p

T

PT
t=1

y
0
rf,t�?

Ñ
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In the same vein,
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where u = l
0
CvV

0
rf⌃

�1 and yry,t = rtyt(✓?)�E(rtyt(✓?)). Therefore it has an asymptotic
normal distribution.

Using Lemma 6 of Carrasco and Nokho (2022)
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has also a normal distribution.
Finally,

p
T

Ñ
V̂rf ⌃̂

�1
↵

⇣
⌃̂↵ � ⌃̂

⌘
⌃�1e(✓?)

Ñ

is the bias. The squared norm of this bias is Op(↵2T ) if k ⌃�3e(✓?) k2Ñ< 1. As a result,
we conclude the normal distribution when N, T,↵T ! 1 and ↵,↵2T ! 0.

The previous decomposition is equivalent to
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Using the fact that yt(✓) = 1 � f̃
0
t✓ and ũt = r̃

0
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, lt can be simplified as lt =
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0
rf⌃
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Ñ
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3.10 Appendix D : List of the Portfolios used in the

simulations

Table 3.6 – List of portfolios

100 Portfolios Formed on Size and Book-to-Market
100 Portfolios Formed on Size and Operating Profitability
25 Portfolios Formed on Size and Operating Profitability
25 Portfolios Formed on Book-to-Market and Investment
25 Portfolios Formed on Operating Profitability and Investment
25 Portfolios Formed on Size and Momentum
25 Portfolios Formed on Size and Short-Term Reversal
25 Portfolios Formed on Size and Long-Term Reversal
49 Portfolios Formed Industry
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