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Résumé

La protéomique moderne – l’analyse à grande échelle des protéines (Graves and Haystead,
2002) - dépend fortement de l’analyse de données expérimentales de série chronologique
complexes. Dans un flux de travail typique de spectrométrie de masse en shotgun, où l’objectif
est d’identifier les protéines en solution, un mélange complexe de protéines est préparé, digéré,
fractionné par exemple par catégorie de masse ou par hydrophobicité, ionisé et injecté dans
un spectromètre de masse, ce qui donne ce que l’on appel un spectre de masse. Dans le
mode de spectrométrie de masse en tandem, il représente des signaux à la résolution des
acides aminés sur les peptides présentes. Le spectre doit être nettoyé pour se prêter à une
analyse plus approfondie, puis les pics définis par les couples de valeurs m/z et d’intensité
dans le spectre peuvent être mis en correspondance avec une séquence de pics attendue selon
la séquence hypothétique du peptide présent dans le spectre (qui sont souvent obtenus par
digestions in-silico du protéome de l’espèce source) ; il s’agit du processus d’identification des
peptides proprement dit.

Dans ce travail, nous sélectionnons et résolvons certaines limitations actuelles spécifiques
au côté informatique de la recherche sur l’identification des peptides. Nous introduisons
d’abord un nouveau moteur d’identification axé sur la recherche. Une question majeure à
la frontière actuelle en protéomique est l’intégration et la viabilité de nouveaux algorithmes
basés sur l’apprentissage profond dans un contexte d’identification. Très peu de travail a été
effectué sur ce sujet jusqu’à présent, Prosit (Gessulat et al., 2019) étant le seul logiciel de
ce type à voir l’intégration dans un moteur de recherche préexistant, au meilleures de nos
connaissances (bien que des algorithmes de rescoring comme Percolator (Käll et al., 2007) ,
qui utilisent généralement des algorithmes d’apprentissage automatique plus classiques, sont
habituellement utilisés depuis un certain temps maintenant, ils sont simplement appliqués
comme étape de post-traitement et non intégrés dans le moteur). Pour étudier ce problème,
nous développons et présentons un nouvel algorithme d’apprentissage en profondeur qui ef-
fectue la prédiction de la longueur des peptides à partir d’un spectre (le premier algorithme
de ce type), et calculons des métriques basées sur cette prédiction. Nous utilisons l’algorithme
résultant pour démontrer des identifications de peptides constamment améliorées après in-
tégration dans notre engin. De plus, nous proposons un nouvel algorithme de prédiction de
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spectres complets (conforme à PredFull (Liu et al., 2020) plutôt qu’à Prosit) ainsi qu’un
nouvel algorithme et paradigme de rescoring basé sur la forêt aléatoire, que nous intégrons
encore à notre moteur de recherche. En somme, les outils d’apprentissage en profondeur
que nous proposons démontrent une amélioration de plus de 20% des taux d’identification
de peptides à un seuil de taux de fausse découverte (FDR) de 1%. Ces résultats suggèrent
pour la première fois que les algorithmes d’apprentissage profonds proposés en protéomique
peuvent en effet largement améliorer les identifications.
Mots clefs : Apprentissage profond, Apprentissage automatique, peptide, protéomique
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Abstract

Modern proteomics – the large-scale analysis of proteins (Graves and Haystead, 2002) –
relies heavily on the analysis of complex raw experimental, time series-like data. In a typical
shotgun mass spectrometry workflow where the goal is to identify proteins in solution, a
complex protein mixture is prepared, digested, fractionated for example by mass range,
ionized and injected into a mass spectrometer, resulting in a so-called mass spectrum which,
in tandem mass spectrometry, achieves obtain amino acid-resolution signals for the detected
peptides. The spectrum must be cleaned up to become suitable for further analysis, then
the peaks defined by the m/z to intensity values in the spectrum can be matched to some
expected peak sequence from a set of candidate peptides (which are often simply in silico
digests from the source specie’s proteome), which is the process of peptide identification
proper.

In this work, we select and solve some current limitations in the computational side of
peptide identification research. We first introduce a new, research-oriented search engine.
A major question at the boundary of current proteomics research is the integration and
viability of new deep learning-driven algorithms for identification. Very little work has been
done on this topic so far, with Prosit (Gessulat et al., 2019) being the only such software
to see integration in an existing search engine, as far as we are aware (although rescoring
algorithms like Percolator (Käll et al., 2007), which typically use more classical machine
learning algorithms, have been in routine use for a while by now, they are merely applied as
a postprocessing step and not integrated in the engine per se). To investigate this, we develop
and present a new deep learning algorithm that performs peptide length prediction from a
spectrum (a first, as far as we are aware). We compute metrics based on this prediction
that we use during rescoring, and demonstrate consistently improved peptide identifications.
Moreover, we propose a new full spectrum prediction algorithm (in line with PredFull (Liu
et al., 2020) rather than Prosit) and a novel, random forest-based rescoring algorithm and
paradigm, which we integrate within our search engine. Altogether, the deep learning tools
we propose show an increase of over 20% in peptide identification rates at a 1% false discovery
rate (FDR) threshold. These results provide strong evidence that deep learning-based tools
proposed for proteomics can greatly improve peptide identifications.
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Chapter 1

Introduction

This work presents a software-oriented approach to proteomics research. Its primary goal
is to improve peptide identifications from mass spectrometry data after the wetlab experi-
ments are already complete, in part by developing deep learning algorithms using the large
amount of data that has been made available relatively recently in the field. This repre-
sents a multi-disciplinary endeavor at the cutting edge of proteomics and machine learning
research. Here we attempt to cover the most important background elements of those dis-
parate domains, and discuss some of the important challenges arising from the qualities of
the data and tools relevant to this work.

1. Proteomics
Proteomics is the study of proteomes and their function (Dupree et al., 2020). Many

tasks and paradigms are considered within the scope of proteomics (Han et al., 2008a), such
as quantification (Urban, 2016) or identification (Bandeira, 2010). Proteomics protocols
can also entail many strategies, such as bottom-up (in the sense of analysing a collection
of peptides, also called peptide-centric), top-down (refering to analysing protein mixtures
rather than first breaking them down into peptide mixtures) (Reid and McLuckey, 2002) or
middle-down (using limited digestion of proteins) (Duncan et al., 2010; Han et al., 2008a),
and can also be differentiated between sequence-based and structure-based methods (Serpa
et al., 2012; Krissinel, 2007; Shin et al., 2008). Another common dichotomy in sequential pro-
teomics is the Data-Dependent Acquisition (DDA) vs Data-Independent Acquisition (DIA)
methologoies (Li et al., 2021; Kitata et al., 2022). This non-exhaustive list demonstrates the
wide breadth of methods and techniques in use in proteomics, which displays the versatility
of proteomics for various types of workflow useful to different analyses of interest.

In this work, we focus specifically on the bottom-up identification setting with data from
data-dependent acquisition experiments. Moreover, our results do not consider structural



data due to various limitations on availability, quality, and resource requirements, which
represent various bottlenecks for deep learning-based methods.

In our study setting, mass spectrometry has shown to be both fast and accurate, as well
as being capable of generating large amounts of data (Han et al., 2008a,b). Indeed, some
large, high-quality datasets of proteomics data acquired by mass spectrometry are readily
available to the public, such as ProteomeTools (Zolg et al., 2017), the NIST mass spectra
library (Stein, 2008), or the MassIVE-KB invivo and synthetic peptide datasets (Wang et al.,
2018) for human data. Unfortunately, such quality data is less available for other organisms.
As a result, the work presented in this thesis is primarily evaluated against those high-quality
human-centric datasets. We occasionally use other datasets to demonstrate generalization
and limitations across species or modalities, notably the One Hour Yeast Proteome (Hebert
et al., 2014), for instance.

This chapter is organized in three main segments: in the first, we describe the organization
of mass spectrometry experiments as per our study setting; that segment is further organized
into wetlab and drylab parts, mirroring the usual workflow in these experiments. In the
second, we review deep learning bases, including some prerequisite notions from machine
learning and statistical learning (i.e. pre-deep learning, so to speak) as well as the common
deep learning model building blocks. In the third, we cover some recent and important
developments at the intersection of deep learning and mass spectrometry-based proteomics
relevant to the identification setting this work covers.

1.1. Mass Spectrometry

Mass spectrometry is the most suitable tool for the mass processing of proteins at the
scale needed for omics experiments. Here we summarize key concepts in mass spectrometry,
especially in the context of bottom up, peptide identification proteomics using DDA.

1.1.1. Spectra, Peptides. Before describing the workflow of an identification experiment
using a mass spectrometry, it is useful to understand the fragmentation process within a
mass spectrometer as well as the data involved in the process. Peptides are small amino acid
chains. Longer peptides are called polypeptides, and polypeptides with molecular mass of 10
kilo-dalton (kDa) or more are called proteins. Peptide sequences are commonly presented by
strings of 1 or 3-letter codes for their amino acids in a linear sequences. Table 1 lists common
amino acids and their corresponding codes. The goal in identification-based proteomics is
to identify peptides present in a prepared, purified mixture, usually to resolve the proteins
that were originally present in the sample of interest.

After a peptide sample is injected into a mass spectrometer, it outputs a so-called mass
spectrum. Mass spectra are intensity signals presented as a function of mass to charge (m/z,
whose unit is commonly referred to as the thompson (Th), although neither thompson nor
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Amino Acid 3 Letters 1 Letter Mass (Da)
Alanine Ala A 71.0788
Arginine Arg R 156.1875
Aspartic Acid Asp D 114.1038
Asparagine Asn N 115.0886
Cysteine Cys C 103.1388
Glutamic Acid Glu E 129.1155
Glutamine Gln Q 128.1307
Glycine Gly G 57.0519
Histidine His H 137.1411
Isoleucine Ile I 113.1594
Leucine Leu L 113.1594
Lysine Lys K 128.1741
Methionine Met M 131.1926
Phenylalanine Phe F 147.1766
Proline Pro P 97.1167
Serine Ser S 87.0782
Threonine Thr T 101.1051
Tryptophane Trp W 186.2132
Tyrosine Tyr Y 163.1760
Valine Val V 99.1326

Table 1 – List of common amino acids, their 3- and 1-letter codes, and their average
molecular mass

dalton are standard international units, and some authors prefer referring to mass to charge
units in daltons (Da) or “atomic mass units” (AMU or U)). An example raw spectrum
is presented in Figure 2A. In Figure 2B, the same spectrum has been processed through
typical processing phases, namely smoothing (smoothing out variances in intensity measure-
ment that are likely due mostly to instrument sensitivity, i.e. experimental noise), baseline
correction (to remove the base intensity bias, another source of experimental noise due to
calibration, which shifts over time during a mass spectrometry experiment), and intensity
normalization (to put the intensities within a value regime more easily processed by fur-
ther tools) (Stanford et al., 2016). In Figure 2C, m/z-intensity levels that correspond to
peaks are identified. This final processed spectrum is a graphical representation of the signal
that would then be analyzed by peptide identification software. Figure 2E shows this final
processed spectrum with the theoretical fragment masses generated in-silico (Figure 2D)
matching the m/z values in the experimental spectrum within 20 ppm (parts per million,
calculated as in Equation 1.1). As shown in the figure, few of the theoretical peaks actually
match in the experimental spectrum, indicating that many expected peaks are missing.

|mztheoretical − mzexperimental|
mzexperimental

106 (1.1)
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While different fragmentation methods result in different fragmentation patterns, Fig-
ure 1 shows an example fragmentation diagram on a given peptide. The labels (e.g. b and y
and the following numbers) are composed of two parts: an ion series identifier (the letter),
and a number representing the sequence number of the ion in the series. Series labeled from
letters at the end of the alphabet, such as x, y or z, represent fragmentation starting at
the N terminal, while those labeled from the start of the alphabet, like a, b or c, represent
fragmentation beginning at the C terminal (Wysocki et al., 2005; CHONG and LEONG,
2012).

Figure 1 – Diagram representation of the fragmentation process of a peptide injected in
a mass spectrometer. Rn is the Nth residue (i.e. what is identified in the amino acid
string representation of a peptide). The peptide retains the same overall structure during
fragmentation as residues fragments off a side of the molecule.

Amino acid masses cannot easily be resolved to m/z peaks in the spectrum even beyond
noise in the data so easily due to issues with mass conflicts: some di- and tri-amino acids
have the same masses, as do some amino acids and di-amino acids. Indeed, some amino
acids are indistinguishable from their mass alone, especially when taking into account the
resolution of some instruments. In Table 1, Lysine and Glutamine have nearly identical
mass, while Leucine and Isoleucine, which have the same molecular composition but not the
same structure, have exactly identical masses. Other examples include the di-amino acids
VA vs LG and AD vs SV, the di-amino acid GE vs the single amino acid W, or GV vs R,
and more.

Beyond the noisy nature of the data, mass spectra are complicated to analyse with our
current understanding of proteomics. As the annotations in Figure 2D suggest, many of the
peaks cannot be properly explained (that is, either they come from contaminants (Brewis
and Brennan, 2010), are artifacts of the processing pipeline, or are simply not understood
at all, and further work in the area are required to complete our understanding of them
(Vu et al., 2014)). Some are known to derive from unexpected physical effects like collision
with water molecules in the spectrometer (Neta et al., 2014), and many peaks are missing
unexpectedly (Cleveland and Rose, 2013). This has long affected so-called de novo sequencing
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Figure 2 – Idealized mass spectrum with corresponding peptide in various stages of a
usual preprocessing pipeline. A: Raw. B: From top to bottom: after smoothing, baseline
correction (“baselining”) and intensity normalization. C: With peaks identified. D: The
corresponding in-silico generated theoretical spectrum for the peptide sequence. E: Final
peaks with overlaid matching theoretical peaks.

software, which attempts to determine the peptide sequence in a spectrum based solely on
the mass spectrometer output (e.g. the spectrum, precursor peaks, retention time, and
other metadata; as opposed to methods that rely on spectral databases, which are the
more common and successful software at present) (Cleveland, 2013; Fischer et al., 2005; Lu
and Chen, 2003), and negatively impacts the performance of other methodologies as well.
Moreover, peptide separation (explained in the below sections) may be incomplete and cause
the mass spectra to show the signal associated with two peptides instead of just one (referred
to as chimeric spectra) (Houel et al., 2010). For these reasons, peptide identification requires
sophisticated algorithms and complicated processing for confident results.

1.1.2. Workflow. In shotgun mass spectrometry experiments, a typical workflow can be
decomposed into 6 major phases (Graves and Haystead, 2002; Brewis and Brennan, 2010):
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(1) Protein mixture isolation;

(2) Protein separation, e.g. by gel electrophoresis;

(3) Cleavage, e.g. by digestion with Trypsin;

(4) Peptide separation, e.g. by liquid chromatography;

(5) Mass spectrometric measurement;

(6) Software analysis.

This workflow is also illustrated in Figure 3. In modern experiments, the second step is
often skipped (Brewis and Brennan, 2010), i.e. all proteins may be digested (step 3) and
then separated (step 4) without a prior fractionation step at the protein level.

A vast array of technology combinations can be used to satisfy the steps of this workflow
at every stage. Due to the wide variety of options at each stage, and because this work
primarily focuses on computational approaches for peptide identifications, we only cover a
few possibilities to illustrate their impact on the overall identification process in the following
text.

1.1.3. Sample Preparation. Samples are typically selected from cell mixtures or biological
fluids (Brewis and Brennan, 2010) in most real-world conditions, however various experimen-
tal settings may call for other preparations, such as synthetic peptide mixtures (Frank, 2002;
Zolg et al., 2017) or immunopeptides (Laumont et al., 2018, 2016), for instance. In the more
usual case, the initial cell sample may be subjected to subcellular fractionation, just as a
biological fluid sample may be subjected to protein depletion (Brewis and Brennan, 2010),
or the entire sample may be used, depending on the goals of the experiments. In any case,
the resulting proteins (if applicable, e.g. unlike in the case where the input product is al-
ready a set of peptides as in the above examples) are solubilized in preparation for further
processing. Unlike in other omics fields like genomics and transcriptomics, physiochemical
properties in the sample differ. Therefore, no universal buffer or method for sample prepara-
tion exists as of yet (Dupree et al., 2020). Meanwhile, just as any steps in the usual workflow
has downstream consequences throughout the analysis process, and just as inefficiencies at
previous steps tend to compound errors downstream, the sample preparation quality can be
considered most impactful in the success of proteomics experiments (Dupree et al., 2020).

1.1.4. Protein Separation. Protein separation, or fractionation, may optionally be per-
formed before peptide digestion (Dupree et al., 2020; Brewis and Brennan, 2010). Good
fractionation strategies are important to ensure the qualities of the sample are sufficiently
uniform for further processing (Brewis and Brennan, 2010). In some experiments, the entire
sample is digested and no protein separation is performed (Brewis and Brennan, 2010). If
protein separation is to be performed, various technologies can be used, although perhaps
the most common is two dimensional polyacrylamide gel electrophoresis (2D-PAGE) (Dupree
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Figure 3 – Illustration of a typical shotgun mass spectrometry workflow. A: The overall
workflow steps, from sample preparation to computational peptide identification. B Sim-
plified diagram of a mass spectrometer (a QExactive). Samples enter the device and are
ionised (e.g. by ESI). The ions are then focused through a lens and filtered for charge in the
bended guide (non-charged peptides are not guided and thus do not proceed into the next
chamber). They enter Q1, a quadrupole that operates in mass filtering mode. Species that
survive the mass to charge filtering are then guided to the orbitrap mass analyzer (along
path A), a device which traps ions in orbit around the central core, allowing measuring
the mass spectrum. In tandem mass spectrometry, the ions also traverse the C-trap (a ra-
dio frequency-based trap used to cool down the ions before the next phase) to a second
quadrupole, q2, in a collision chamber containing neutral gas. The resulting fragments are
once again submitted to the orbitrap as they come back along path B from the HCD round.
An MS/MS spectra is collected based on the image current caused by the current induced
on the outer electrode by the movement of ions in the trap.

et al., 2020; Graves and Haystead, 2002; Brewis and Brennan, 2010). Other methods, like
Sodium Dodecyl Sulfate (SDS) PAGE, which performs one dimensional separation, as op-
posed to 2D-PAGE, may be used alternatively (Graves and Haystead, 2002). SDS-PAGE has
high resolution range and is simple to perform, but it can only separate proteins along one
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Enzyme Cleavage Note
Trypsin K or R not followed by P Most common choice
Chymotrypsin W, F or Y; L, M, A, D or E More efficient for W, F, Y
Elastase N, V, L, I, G or S
LysC K Longer peptides than trypsin
LysN Any followed by K Longer peptides, more highly charged in ETD
GluC E, some D
ArgC R
AspN Any followed by D

Table 2 – List of some common enzymes used for protein cleavage. Cleavage happens after
the listed amino acids, as per the conditions described. Table adapted from Zhang et al.
(2013). ETD: electron-transfer dissociation

property (i.e. mass difference). By comparison, 2D methods like 2D-PAGE can separate pro-
teins along two dimensions (as the name implies), such as both mass and net charge, which
is often sufficient to identify post-translationally modified proteins, for example (Graves and
Haystead, 2002).

1.1.5. Digestion. While the enzyme Trypsin is a popular choice for protein digestion due
to its high efficiency, predictability, and generated peptide sizes (Dupree et al., 2020), many
other choices (some listed in Table 2) may be viable depending on experimental context.
In practice, around 96% of data in the Global Proteome Machine Database relate to tryp-
sic peptides as of 2020 (Dupree et al., 2020). This may be problematic for non-standard
workflows, such as proteomics experiments aiming to identify cell surface markers (Laumont
et al., 2016), as the relative lack of data can make successful analysis workflow development
more complicated. In addition, computational tools are tested on available data, which may
induce a bias for trypsic peptide identifications (this can potentially lead to high-confidence,
low quality (in fact, false) hits in peptide identification engines, for example if false discovery
rate estimation is overtuned toward trypsic peptide patterns).

1.1.6. Peptide Separation. Similarly to protein separation, many technologies can be
used, such as capillary electrophoresis or high-performance liquid chromatography (HPLC)
(Dupree et al., 2020; Graves and Haystead, 2002; Zhang et al., 2013) (the latter having
largely supplanted the former in common experimental settings (Dupree et al., 2020)), as
well as many other approaches, such as cation-exchange chromatography or multidimensional
peptide identification (Graves and Haystead, 2002) may also be used. In addition, there are
many ways to operate the same basic technology: reversed-phase HPLC and size-exclusion
chromatography are two popular operation mode for HPLC-based workflows (Dupree et al.,
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2020). These different technologies can leave different patterns in the mass spectrum gen-
erated by a mass spectrometry experiment, as they may be more or less efficacious in pu-
rifying peptide mixtures, depending on the overlap in properties in the sample (for exam-
ple, reversed-phased HPLC separates peptides based on hydrophobicity while size-exclusion
chromatography separates by peptide size). Poor separation can result in “chimeric spectra”
(Houel et al., 2010), where the tandem mass spectrum captured by the instrument actu-
ally contains peaks at m/z values corresponding to multiple peptides, affecting downstream
analysis. This can also potentially lead to batch effects if one were interested in combining
multiple datasets for tool development.

There are many ways to analyse the fractionated peptide mixture by mass spectrometry.
The general steps are: ionisation, mass analysis, and fragmentation. The fragmentation step
can be “repeated” zero or more times, If it is not applied, the experiment is sometimes re-
ferred to as “MS1”, or simply “MS”, and provides peptide-level m/z and intensity sensitivity.
Identification typically uses the peptide mass fingerprinting paradigm in this case (Zhang
et al., 2013). If it is performed once, the experiment may be referred to as “MS2”, “MS/MS”
or “tandem” mass spectrometry (Graves and Haystead, 2002; Zhang et al., 2013), which
can provide amino acid-level resolution. In any case, the mass spectrometer detects a signal
corresponding to a fragment’s mass to charge, and this record forms the mass spectrum that
is further analyzed using computational tools.

Multiple different technologies can be used for ionisation and injection. The most com-
mon choice today is electrospray ionisation (ESI). Other possibilities include Matrix-Assisted
Laser Desorption/Ionisation (MALDI). Similarly, intensity measurement can be performed in
the mass spectrometer cell in many ways, such as by Time Of Flight (TOF) or quadrupoles,
for example. In an MS1 experiment, various methods like High-Energy Collision Dissociation
(HCD), Collision-Induced Dissociation (CID) or Electron-Transfer Dissociation (ETD) may
be used. In an MS2 experiment, depending on the selection criterion (Selected Reaction
Monitoring (SRM), Data-Dependent Acquisition (DDA) or Data-Independent Acquisition
(DIA)), the second round of fragmentation is usually performed by collision with neutral
molecules, such as argon, helium or nitrogen. Those various methods are also often param-
eterised, for example HCD can be performed at various energy levels, resulting in various
spectrum qualities.

Overall, the mix of technologies and their parameterisations can have a wide impact on
the type and quality of spectrum generated. For example, MALDI-based ionisation mostly
generates fragments that have a charge of 1+, whereas ESI-based ionisation generally gener-
ates fragments in the 2+ and 3+ charge range. The ProteomeTools synthetic peptide dataset
paper (Zolg et al., 2017) reports that a normalized collision energy (NCE) of around 25
achieves better quality spectra than other settings, and this same observation is repeated in
other work (Diedrich et al., 2013). The interpretation of the intensity value of peaks depends
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Figure 4 – Different fragmentation technologies and parameters result in differing spectra
distributions for the peptide ELGQAGVDTYLQTK. a: CID fragmentation. b-f HCD frag-
mentation at different NCE. Image reproduced from Diedrich et al. (2013).

on various experimental parameters (Fazal, 2013), and different fragmentation methods will
fragment peptides along different ion series (Zhang et al., 2013), and so forth.

1.2. Peptide Fragmentation

In light of the above, while a survey of fragmentation methods, their parameterization,
and their resulting patterns is outside the scope of this work, Collision-Induced Dissociation
(CID) and HCD are briefly compared here to illustrate how the choice of method once again
impacts the generated data.

In Figure 4, the fragmentation patterns of CID and HCD at various energy levels are
demonstrated for one example peptides. As can be observed in the Figure and as previously
reported in Diedrich et al. (2013), some ion types such as internal ions, i.e. fragments that do
not contain either terminus, are specific to HCD fragmentation. Moreover, there is energy-
specificity in the distribution of ions: internal and immunonium ions (low-mass amino acid
markers useful to identify the presence of specific amino acids and help resolve mass conflicts)
begin to appear at higher energy levels. In addition, the intensity of high mass peaks tends
to go down as collisional energy increases, while the intensity of low mass peaks increases in
the same direction. Between CID and HCD, HCD results in higher-resolution spectra at the
cost of acquisition speed (Jedrychowski et al., 2011).

Figure 3B illustrates an MS2 mass spectrometry run assuming HPLC fractionation, HCD
fragmentation, inert gas collision MS2 and quadrupole collision cell and mass filters and so
forth (i.e. a QExactive mass spectrometer), because this matches the instruments used in
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Name Type Mass Range Resolution Accuracy
Waters LCT Premier TOF 18 000 10 000 2-5
Agilent LC/MSD TOF TOF 7 000 10 000 2-5
Bruker MicroTOF TOF 3 000 10 000 2-5
Waters QTOF Ultima QTOF 17 500 32 000 2-5
Waters QTOF Micro QTOF 30 000 5 000 2-5
MDS Sciex Qstar XL QTOF 20 000/40 000 10 000 2-5
Bruker BioTOF QTOF 10 000 20 000 2-5
Bruker Apex IV FT-MS 66 000 100 000 <1
Ion Spec FT-MS 18 000 1 300 000 1
Thermo LTQ FT FT-MS 2 000 500 000 2
Thermo Q Exactive Plus MS Orbitrap 6 000 140 000 <1

Table 3 – List of common mass spectrometry instruments with their resolution (FWHM),
accuracy (ppm) and mass range (m/z). FWHM: Full width at half maximum, i.e. the m/z
of a peak divided by the width of the peak at half the maximum intensity for that peak.

the generation of the datasets used in this work (Zolg et al., 2017; Hebert et al., 2014; Wang
et al., 2018).

Beside the far-ranging impact of the slew of potential technical choices that may be
made in the data generation process, other properties of the instruments used to perform
the analysis, such as accuracy across mass ranges and resolution, also have important reper-
cussions for peptide identification software: methods that work in low-resolution routinely
work poorly for high-resolution data, and vice versa. Resolution is defined as the ability to
separate ions at a given m/z, i.e. how closely two peaks can be and still be differentiated;
while accuracy relates to the ability to measure said m/z, i.e. how close the reported and
true m/z for a peak are. Higher-accuracy instruments help resolve nearly-isobaric masses to
the right amino acid, such as distinguishing between asparagine (with a mass of 114.04293)
and aspartic acid (with a mass of 115.02694). An instrument with higher resolution allows
for distinguishing those same two amino acids instead of having to combine their signal.

In Table 3, the accuracy and resolution of common instruments is indicated.
As shown in the table, the choice of instrument will vary the accuracy and resolution of the

captured data. This has downstream implications on the choice and output of identification
software. In Kilpatrick and Kilpatrick (2017), the authors outline how the mass calculation
for amino acid sequences can veer off of accurate values as the accumulation of small mass
errors at the amino acid level, derived from calculations based on lower-accuracy masses,
can shift longer sequence theoretical masses by values of the order of 5 Da. Additionally,
using software that expects high resolution data to analyze low resolution data will result
in poor quality identifications due to a lack of well-defined high-resolution mass patterns for
precise match scoring. On the flipside, using software designed for low-accuracy data with
a high accuracy mass spectrum will also result in poor performance as the additional high
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PTM Class Mass Difference Amino Acid
Methylation 14.0157 R, K, E, M, H
Phosphorylation 79.9663 R, K, S, T, Y, H
Oxidation 15.9949 M, M, C, K, E, Y, W, H
Acetylation 42.0106 C, K, S, W, Y
Glycation Variable Variable
Lipidation Variable C

Table 4 – List of PTM classes, their respective amino acids, and their mass difference
respective of this amino acid. Only single-modifications are shown for simplicity, however
modifications can apply multiple times to the same amino acid. For example, lysine can
be double- or triple-methylated. We refer the interested reader to Kitamura and Galligan
(2023) for a more detailed review of common (human) PTMs

resolution peaks can’t be taken into account and will instead act as noise against the scoring
algorithm and its reference database.

1.3. Post-Translational Modifications

In addition to protocol variations, peptides may also undergo post-translational modifi-
cations (PTMs), which are chemical modifications to the peptide’s amino acids. Common
PTM classes are shown in Table 4.

Modifications can be applied as part of the experimental protocol. For example, car-
bamidomethyl cysteine is often used to prevent cysteine residues from forming disulfide
bonds between or within proteins. When such modifications are applied, they are referred
to as “static”, since they are universally present, as opposed to “dynamic” modifications,
which may or may not be present on an amino acid.

Since modifications shift the mass of amino acids, they can cause further mass conflicts.
In Kim et al. (2016), the authors found that lower accuracy instruments like ion-trap mass
spectrometers would fail to distinguish about half the modifications in the UniMod database.
On the other hand, a high accuracy instrument with a 1 ppm mass accuracy would be able
to distinguish almost all non-isobaric modifications. More than 10% of modifications are
isobaric.

1.4. Identification Software

Peptide identification software paradigms largely fall into one of two categories: de novo
sequencing software, and database-driven sequencing software. Examples of de novo se-
quencing software include NovoHMM (Fischer et al., 2005), PepNovo (Frank and Pevzner,
2005), PNovo (Chi et al., 2010), DeepNovo (Tran et al., 2017) GraphNovo (Lu and Chen,
2003), and QuasiNovo (Cleveland, 2013), among many others. Database software include
PeaksDB (Zhang et al., 2011), Andromeda (Cox et al., 2011), Comet (Eng et al., 2012) (an
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open version of the earlier SEQUEST (Eng et al., 1994)), X!Tandem (Craig and Beavis,
2004), Mascot (Perkins et al., 1999), and plenty more. Generally, de novo methods have not
been particularly successful in the unconstrained case. In constrained scenarios, e.g. when
the exact sequence is not known but its structure and length are constrained, some methods
have shown some success (Bhatia et al., 2012). As such, database-driven methods are a lot
more popular for most experimental settings. Despite their success, identification rates in
real datasets using database-driven methods are far from perfect. For example, Michalski
et al. (2011) report that a significant amount of peptide species are not detectable with
common mass spectrometry analysis software. Generally, in a non-synthetic sample, it is
common to detect around 50% of peptides only (Hebert et al., 2014).

The following text describes the main concepts in database-driven peptide identification
pipelines. In Chapter 2, we present a new database-driven search engine and explain in more
details the operations in such software.

1.4.1. Spectrum Databse. Spectrum databases are essential for database-driven peptide
identification: they are the database that are searched against the experimental spectra
provided as input queries in an identification pipeline. Two major approaches are currently
in use to generate this database: experimental spectra from peptides that have already been
generated or identified, and in-silico database generation.

Spectral Libraries. In general, searches against spectral libraries result in higher sen-
sitivity Deutsch et al. (2018). However, spectral libraries may be incomplete Deutsch et al.
(2018) and thus less desirable than in-silico digested searches against generated spectra in
some appllcations. Moreover, as previously discussed, the various choice dimensions in ex-
perimental designs result in different fragment distributions in spectra, thus not all libraries
may be suitable for all experiments.

Sequence Libraries. The primary alternative approach is to generate spectra from in-
silico digested peptide sequences. This increases the complexity of the identification pipeline
greatly at several levels: the simulated digestion may not match the stochastic distribution
of real-life digestion products even with well-known and well-behaved enzymes like trypsin,
classical spectrum generation methods do not generate overly realistic spectra (although
novel methods address this issue, if but in a subset of settings) Gessulat et al. (2019); Tiwary
et al. (2019); Liu et al. (2020), and more variables are introduced in the software pipeline
requiring care with statistical analysis, and tuning for optimal peptide retrieval performance.

Implications for Software. Spectrum library and sequence library software have typ-
ically operated by similar mechanisms with slight, but notable, differences. Likely the most
popular approach for spcetrum library search is normalized dot-product-based scoring meth-
ods Griss (2016). At their most simple, these methods compute a dot product or analog
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between a spectrum to search for and a reference library of spectra of known peptides. How-
ever, care must be taken to account for bias due to potentially overwhelming contribution
of a few high-intensity peaks to the score, or the statistical distribution of dot products vs
the score obtained for a spectrum pair, as done in SpectraST Lam et al. (2007, 2008); Shao
et al. (2013). These methods also do not readily allow for open PTM searches, although ex-
tensions to these algorithms endow them with the ability to perform such searches Ma and
Lam (2014). Other posstible extensions include spectrum clustering to allow identifications
from unlabeled mass spectra Önder et al. (2014), and projected dot product for chimeric
spectrum resolution as in M-Split (Wang et al., 2010).

For spectrum generation, correlation-based approaches such as Comet Eng et al. (2012)
or X!Tandem Craig and Beavis (2004) are usual. Some approaches attempt to provide
probability-like scores (like X!Tandem, which corresponds to an inverse likelihood, or Mas-
cot Perkins et al. (1999), the first engine to offer a probabilistically interpretable scoring
function). Match quality evaluation metrics like p-value or q-value Käll et al. (2008) can be
more readily applied to these scoring algorithms to obtain relevance estimate for predicted
match scores.

Unlike for spectral libraries, sequence libraries also require care around source proteome
selection, digestion rule, and spectrum generation: algorithms must be properly parameter-
ized and implemented so as to allow for the modeling of events like missed cleavages, partial
digestion, probabilistic amino acid-based digestion affinity, and more or less complete sets of
digestion rules. Yet, it is common for digestion algorithms to only implement in trypsin, for
example, digestion before K or R but not when preceded by P. Some software like ExPASy’s
PeptideCutter Gasteiger (2003) support more complete rules, but such software often does
not support the full scope of potential digestion modeling options simultaneously. Those
parameters are also often tuned differently per experiment, including such parameters as
variable and static modification generation, with some rare tools like IdentiPy Levitsky et al.
(2018) offering automatic tuning of a subset of these parameters. Once peptide sequences
are generated, the spectra can be generated from these sequences. Modern, deep-learning
driven approaches like DeepMass Tiwary et al. (2019), Prosit Gessulat et al. (2019) or Pred-
full Liu et al. (2020) can achieve very high correlations between predicted mass spectra and
experimental spectra for the same peptide sequence, modifications and charge in a subset of
cases. More classical approaches may generate major ion series such as the complete y-, and
b-series, taking into account the target experimental parameters and their characteristics.
Intensity prediction in these methods is typically not available Gessulat et al. (2019); Tiwary
et al. (2019). Feature support varies widely, with some tools only generating the main series,
while others are able to generate immonium ions, internal fragmentation, neutral losses, etc.,
although adding more predited peaks can increase the amount of spurious matches against
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the database and reduce overall recall rate, again often requiring manual parameter tuning
for each experiment.

A related problem is the generation of decoy peptides, which is equally critical for the
target-decoy approach to false discovery (TDA-FDR)-based evaluation of search results.
Databases generated by in-silico digestion, and hybrid or deep learning-driven approaches,
can naturally generate decoys using the same methodology as they generate target peptides,
and the quality of the decoy database thus depend almost entirely on the quality of decoy
peptide sequence selection (so as to satisfy the prerequisite conditions for valid TDA-FDR
evaluation (Elias and Gygi, 2007)). On the other hand, decoy generation for spectral libraries
generated from inventoried experimental spectra is more complicated, and work on improving
the situation is relatively recent (Lam et al., 2009). Alternative approaches like probabilistic
approaches implemented in SpectraST Shao et al. (2013) offer a decoy-free evaluation method
that can potentially outperform decoy-based approaches in some cases.

In the TDA-FDR error correction method, peptides that should not exist in the sample
being analyzed (decoy peptides) is submitted to the same spectrum generation process as
used for those peptides possibly in the sample (target peptides). Under several regularity
assumptions which are reviewed more thoroughly in Chapter 4, including the assumption
that the likelihood of an identification on the wrong peptide for a given spectrum is equal to
the likelihood of identifying a peptide in the decoy database, one can pose FDR = Nincorrect

Ncorrect
=

Ndecoy

Ntarget
= Ndecoy

Nincorrect+correct
Elias and Gygi (2007). Many alternative formulations and attempted

corrections to this estimation method exist. Some common variations add 1 to the numerator
leveraging different sets of assumptions, while others suggest using 2Ndecoy

Ndecoy+Ntarget
, but there

is little evidence in the wild for a universally superior method and the choice of formula
remains debated Jeong et al. (2012).

For decoy database generation, common methods can generally be categorized as protein-
level, peptide-level, and distributional, that is: methods that generate decoys based on
transformation of whole source protein sequences, of peptide sequences, or from modeling
amino acid distributions. Examples in the first category include reversing protein sequences
and then performing in-silico digestion, or randomly shuffling amino acids along a protein
sequence before performing digestion. Similar methods can be used at the peptide level,
i.e. after in-silico digestion. Finally, distributional methods such as deep learning, hidden
markov model, or de bruijn methods try to model amino acid distributions and generate new
sequences without other basis from the initial sequences Lee et al. (2022). Variants of these
methods, such as performing protein reverse decoy generation but keeping K and R amino
acids in place (because trypsin digests before these amino acids), e.g.. “pseudo-reverse”
methods, are sometimes used as well. In general, there is evidence that the protein-reverse
method is the least biased Jeong et al. (2012), although choice of method remains varried in
the literature.
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1.4.2. Query Processing. Input MS/MS spectra may be very noisy for various reasons,
including the presence of contaminants, calibration issues, experimental noise, and more.
To achieve confident peptide identification, it is important to properly filter the spectrum
to improve its signal to noise ratio. To do so, many strategies exist, the most common of
which are probably intensity normalization as performed in common tools like Comet and
X!Tandem (Eng et al., 2012; Craig and Beavis, 2004), peak count-based spectrum removal
(Levitsky et al., 2018) and de-isotoping (Levitsky et al., 2018; Teo et al., 2020) as in IdentiPy
and others, and wavelet-based noise peak removal such as with MSConvert (French et al.,
2014; Kessner et al., 2008). The choice, parameterization, and effect of these transformations
differ based on search engine and preprocessing choices and is usually left up to the user. To
the best of our knowledge, there has not been any comprehensive evaluation of the effect of
these filtering methods outside tool-specific evaluation relying on final identification rates, or
comparable metrics. In particular, deep learning-driven methods are well known, in general,
to deal well with large, noisy datasets. With the advent of deep learning-based algorithms to
improve various parts of the software proteomics workflow, the suitability of these transforms
(i.e. both the question of whether those filtering methods should be applied at all, and if
not, which transforms are most appropriate, as well as which parameters thereof are suitable
in this new paradigms) may not match their suitability in the more historically standard
pipeline.

1.4.3. Scoring. Scoring is arguably the most important part in a peptide search engine. It
relates a candidate peptide (via its spectrum as per the database used in the software) to an
experimental spectrum. Many scoring methods have been proposed, like those of OMSSA,
Comet, X!Tandem, and X!Tandem’s K-Score (a precursor to comet’s) (Geer et al., 2004;
Eng et al., 2012; Craig and Beavis, 2004; MacLean et al., 2006), and many are proprietary
and only partially publicly explained, like PeaksDB’s or Andromeda’s (Ma et al., 2003; Cox
et al., 2011). Pioneered by Mascot (Perkins et al., 1999), an important development is
that of probabilistic scores, which allows the easy computation of quality metrics such as
p-values and E-values (Eng et al., 2012) to better guide hit retention. Scoring functions
typically combine both intensity and difference in m/z between expected and experimental
peaks, as in Comet and X!Tandem (Havilio et al., 2003; Eng et al., 2012; Craig and Beavis,
2004). Deep learning methods like PredFull (Liu et al., 2020) and Prosit (Gessulat et al.,
2019) have been proposed for intensity prediction (or full-spectrum prediction in the case of
PredFull), and while they achieve accurate predictions for those quantities, no algorithm is
currently able to leverage them at the scoring level. Indeed, while Prosit was introduced into
Andromeda recently (Wilhelm et al., 2021), the authors could only generate an additional
match quality metric after the completion of the normal Andromeda search process, and
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provide this metric to Percolator for rescoring 1. Scoring is complicated by many factors,
including degraded performance based on spectrum library size in light of evaluation metrics
like TDA-FDR-based evaluation (for example, due to the count of one-hit wonders, i.e. rare
incorrect identifications that score extremely well, increasing as library size increases) (Yen
et al., 2011). For illustration purposes, the popular Comet algorithm (which is also used in
Sequest and in X!Tandem with the k-score plugin) is presented below:

1.4.4. Rescoring. Rescoring is a very popular strategy that increases peptide identification
at a given FDR threshold, however the tendency to treat it as a blackbox is a mistake (Gupta
et al., 2011a). Methods like Percolator (Käll et al., 2007; Spivak et al., 2009; Granholm
et al., 2012) and others like PeptideProphet (Ma et al., 2012) are very popular, especially
the former. Percolator trains a support vector machine (SVM, described in the machine
learning section below in more details), which is a machine learning model that finds optimal
weighing factors for each input feature according the the maximum separating hyperplane for
the samples. However, the feature given as input to percolator can be completely arbitrary
and are typically (but not always, which is even more dangerous) generated by the developer
of a search engine that wants to leverage percolator for rescoring. Without careful evaluation
of the effect of the choice of features, it could leak information to percolator, allowing it to
enrich for false hits (i.e. targets that are not the true peptide represented in the spectrum),
exactly as described in Gupta et al. (2011a). We discuss this in more details in Chapter 4.

1.4.5. Protein Inference. In a typical shotgun mass spectrometry experiment where the
goal is to identify proteins in a sample of interest, once peptides have been found, further
processing is required to finish the identification task: to resolve the collection of peptides
found previously into a set of proteins. While the prevailing paradigm is to use either a
probabilistic model relating the count of distinct peptides relating to the same protein to
the likelihood this protein was in the sample (Eng et al., 2012; Ma et al., 2003), or simply
to only select proteins with 2 or more peptide hits, the latter approach has been argued to
be brittle and likely inappropriate (Gupta and Pevzner, 2009), while the former may be a
major reason why protein-level FDR control tends to fail harder than at the peptide level
(Jeong et al., 2012).

Protein inference is a very complex topic that is outside the scope of this work. We focus
instead on only the problem of peptide identification for various reasons, including the lack of
similarly high-quality data for whole-protein identities, complications related to error control
and common heuristics Gupta and Pevzner (2009); Wu et al. (2018); Bogdanow et al. (2016),
and the exponential complications involved in dealing first with novel peptide identification
methods and second the choice of protein-level algorithms to identify proteins from peptides.

1. According to personal communications, the authors tried to use Prosit as part of the scoring process
proper but ultimately failed
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Another reason we focus on peptide identifications is because improvements in peptide iden-
tifications typically correlate strongly with identification performance for proteins Zhang
et al. (2015), as we confirm in our limited measurements.

Common strategies for protein inference include the two peptide rule, a popular but
contested method Gupta and Pevzner (2009); The et al. (2016), Fisher’s method of combin-
ing p-values, the best-peptide approach, and the posterior error probability multiplication
method. The interested reader is directed to The et al. (2016) for a more complete overview
of protein inference considerations with percolator.

The two peptide rule states that a protein is identified when two peptides pass false
discovery selection and match the same protein. This approach aims to solve the one-hit
wonder problem, that is the identification of proteins by incorrect single peptide matches,
by requiring a more stingent match criterion to call a protein. However, previous work has
cast doubt on the validity of the technique Gupta and Pevzner (2009); The et al. (2016), and
evidence that one-hit wonders truly can be observed suggest this rule may serve to remove
correct hits more often than thought (Gupta et al., 2007).

In the Fisher method, the Fisher Combined Probability Test computes the statistic X2 =
−2 ∑k

i=1 log pi where pi is the p-value of the ith identification, which is chi-square distributed
under some regularity assumptions. This aims to reduce one-hit wonders by penalizing
identifications leading to many spurious matches and shares the same basic idea as the
multiplication of peptide posterior error probability method, which simply takes the product
of all peptide posterior error probabilities for a given protein (in this case, spurious hits
will have a posterior error probability near 1, thus controlling for one-hit wonders). Both
methods also share the same objection: the requisite independence assumption between the
peptide identifications is dubious The et al. (2016).

Finally, the best peptide approach takes only the best single peptide identification for a
protein when considering protein identifications. In Savitski et al. (2015), the authors found
that selecting the best-scoring PSM as the representative for the protein (thus using the
peptide’s identity as decoy or target for protein identification and error control) performs
best in a small dataset. This result was reproduced in The et al. (2016) and is the method
implemented in Percolator.

1.4.6. Evaluation. Since in typical experiments, there is no robust method to know what
a sample contains, peptide identification quality is assessed using ad-hoc approaches, such
as thresholds on the score provided by identification software (Zolg et al., 2017; Cox et al.,
2011). Currently, the most popular quality control approach is the target decoy approach
to false discovery rate estimation (TDA-FDR) (Elias and Gygi, 2007), however there is an
important body of literature demonstrating that this method is not appropriate: on one hand,
an obsession for maximizing identification rates at a fixed false discovery rate threshold has
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caused software developers and scientists to bypass the basic assumptions underlying FDR
estimation (covered later), thus rendering TDA-FDR estimation ineffective (and typically
greatly underestimated) (Gupta et al., 2011a; Wang et al., 2015; Hubler et al., 2019), on
the other, there are systemic weaknesses in the use of TDA-FDR for quality assessment,
including the ad-hoc decision to choose a threshold (compare the choices made in papers
such as Hebert et al. (2014); Gupta et al. (2011a); Laumont et al. (2016); Zolg et al. (2017)),
the different mathematical models implying different FDR values at the same decoy/target
ratios (Balgley et al., 2007a; Käll et al., 2008; Elias and Gygi, 2007), the limitations this
approach implies through the assumptions underlying the mathematical model, and so forth
(Jagannadham et al., 2021; Couté et al., 2020; Martiánez-Bartolomé et al., 2008; Wang et al.,
2015; Hubler et al., 2019). This makes comparison of various search engines impossible in
practice, since the identification count at a so-called fixed FDR threshold actually represents
a completely different threshold for each engine due to chronic misestimation (Yuan et al.,
2014; Gupta et al., 2011a; Kandasamy et al., 2009; Välikangas et al., 2017; Jeong et al.,
2012).

Additionally, these methods can be biased based on how the decoy database is generated
and how the search is performed (e.g. separate search vs combined, reversed peptide sequence
decoys vs random protein sequence decoys, and many other factors) (Gupta et al., 2011a;
Jeong et al., 2012).

While the TDA-FDR quality control strategy is often used both at the peptide and
protein level, beyond the pitfalls described above, it has also been suggested that TDA-FDR
control at the peptide level is more reliable than at the protein level (Jeong et al., 2012; Elias
and Gygi, 2009).

We believe evaluation is a major weakness in the field and a significant hurdle to further
software development for peptide identification. Evaluation and its issues, especially in light
of the common modern paradigm of applying rescoring methods on top of a first pass search,
is the subject of Chapter 4.

2. Machine Learning & Deep Learning
Deep learning algorithms are a subset of the machine learning class of algorithms differ-

entiated by the depth of the architecture involved (LeCun et al., 2015; Schmidhuber, 2015).
Therefore, it is sensible to cover more general, basic concepts in machine learning before
tackling deep learning-specific topics. In the following, we cover the notions of “learning”,
“inference” (which, in this context, will be used interchangeably with other terms, such as
prediction, discrimination, generation or classification depending on context) and the eval-
uation of models in the context of machine learning, briefly mention a select few relevant
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machine learning algorithms, and finally take a more focused, deeper dive into essential deep
learning building blocks.

2.1. Machine Learning

Machine learning describes a class of algorithms which differ from others in that instead
of describing program behavior, they instead describe how to adapt values in the program
that parameterize program behavior. While various experts have different ideas of what
the first example of machine learning is (LeCun et al., 2015; Schmidhuber, 2015) (in part
because there is no consensus about where statistical methods end and machine learning
begins (Bzdok et al., 2018; LeCun et al., 2015; Schmidhuber, 2015)). The three important
steps in machine learning development are (1) learning; (2) inference; and (3) evaluation.

“Learning” is the process of finding values that parameterize the model so as to achieve
some objective, such as maximizing classification performance, or minimize regression error.
Various algorithms are used for different models, as is discussed with some examples in the
below section. In order to ensure the model does not overfit the data, it is important to
have multiple subsets of the data for training and for the evaluation of the model’s ability
to generalize. Many strategies exist, such as cross-validation, bootstrapping, and various
set splitting strategies (Xu and Goodacre, 2018). In deep learning, it is almost universal
practice to split the dataset in use in three parts: a training set, which is used to train the
model, a validation set, which is used to ensure the model is not overfitting the subset of the
data it is using for training, and is often the basis for hyperparameter optimization, and a
test set, which is used to verify the actual performance of the model once the optimization
of parameters and hyperparameters is complete (James et al., 2013). This common practice
stems from the large amounts of data required to train deep learning models: since the
dataset is so large, the model typically does not have a harder time converging to a solution
from the split procedure, as opposed to the regime where little data is available. In this
latter scenario, the cross-validation approach is favored.

Cross-validation involves splitting the dataset the same way as described in the three-
way split for deep learning, however only two splits are performed: one for the development,
or training, set, and one for the validation set. Then, the split is repeated 2, the model is
retrained on the new train set, and reevaluated on the new validation set. The measurements
from the repeated training-evaluation workflow can then be used to assess how well the
model generalizes, and how sensitive it is to the exact training examples in the dataset.
The literature suggests that the fewer examples are retained in the validation set, the better
(i.e. N-split cross-validation for a dataset of N examples is optimal) in terms of controlling
for overfitting, at least in the few samples case (Larsen and Goutte, 1999). It is often

2. Depending on strategy, this can be with (less common) or without (more usual) replacements, for
example
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reported that 5-10 splits work well in practice (Arlot and Celisse, 2010), while using too few
splits, such as in 3-way cross-validation, can cause significant performance misestimation (and
therefore the misinterpretation of a poorly generalizing model). 10-way cross-validation is a
very common choice among practitioners, so as to retain good quality generalization while
minimizing compute requirements. Overall, the rule of thumb seems to be: 5-way cross-
validation at minimum, more is better, with 10-way cross-validation a good default choice.

We use the term “inference” loosely to refer to “obtaining an output from the model”.
For example, “inference” for a classification model consists of using the model to predict
the class of some input, while “inference” for a generative model consists of generating some
data using the model.

There are several evaluation strategies, such as simply evaluating on a held-out test set,
or reserving a “gold set”, referring to a well-curated dataset meant to be representative
of the task of interest. Correct evaluation can be complicated, as it is not always easy to
completely separate training and evaluation data: if the data has strong dependency between
input features, then even though two input vectors (one in the training data and one in the
evaluation data) are identical for a few features but different for the rest, the trained model
may still achieve high performance simply from having overfit on those few common features,
but this begs the question of how much overlap is too much. More concretely, consider the
case of peptide detection in a mass spectrum. Mass spectra among replicates, even for
synthetic peptide samples, can vary widely (Liu et al., 2020; Gessulat et al., 2019), due to
various factors such as slight variations in environmental conditions, instrument precision,
contamination, and more. In this case, it is likely wiser to completely separate the sets based
on the peptides, i.e. the label of interest, rather than the input, i.e. the feature vectors.
However, even then, it is not necessarily clear if that is sufficient separation, since there may
be strong correlation between the spectra of the peptides PEPTID and EEPTIDE.

2.1.1. Common Algorithms. Three popular machine learning algorithms (excluding deep
learning) include random forests, support vector machines (SVM) (Boser et al., 1992), and
hidden markov models (HMM).

SVMs attempt to find the “best” hyperplane that optimally separates two sets of points,
where the “best” line is the one that maximizes the distance between the closest exemplars
of each set, i.e. it finds the optimal margin classifier. The classical algorithm consists of
solving a set of primal/dual optimization problems via quadratic programming, although
the more commonly used algorithm as of the time of writing is the Sequential Minimal
Optimization algorithm first presented in Platt (1998). SVMs only possess a solution in the
case of a linearly separable dataset, in which case they provide a decision boundary suitable
for classification between two classes. Extensions exist to adapt SVMs in multi-class contexts
(Hsu and Lin, 2002), and applying a kernel to the data allows the use of SVMs for non-linear
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classification (in this setting, the resulting algorithm is often called “kernel SVM”, even
though this setting was already discussed in the original svm paper by Boser, et al. (Boser
et al., 1992)). SVM-based machine learning algorithms have been used in proteomics, such
as to perform rescoring in Käll et al. (2007), which is the most popular rescoring algorithm
in current use.

Decision trees are not so commonly used on their own in modern machine learning work-
flows, but they are a necessary element of the popular random forests, described below.
Decision trees follow a tree-like model to identify interactions between input variates. At
a high level, decision trees are inferred from splitting the hypothesis space recursively ac-
cording to some criterion, such as parsimony or entropy. Common algorithms for decision
tree inference include ID3, CD4.5 and CART. Inference then proceeds by selecting appro-
priate tree branches at each decision points based on the new input datum to be classified
or regressed Rokach and Maimon (2005).

Random forests are an ensemble method that pools the predictions from many individual
decision trees (Breiman, 2001). There exists various ways to organize the overall learning
procedure. One option is to subset the input data and to assign each subset to one tree to
learn from. Another is to randomize the original data’s output before presentation to each
tree (Breiman, 2001). Typically, result aggregation (i.e. from the prediction of individual
trees into a single prediction for the entire forest) is performed by majority vote (Breiman,
2001). The subletting and potentially stochastic nature of the algorithm greatly helps in re-
ducing overhitting risk inherent to tree-based algorithms (Breiman, 2001). Along with SVMs,
random forests are popular, general-purpose classification algorithms. Random forests have
been used in such applications as MHC-I affinity prediction (Boehm et al., 2019), and Pepid
(presented in Chapter 2) features an optional random forest-based rescoring algorithm.

Hidden markov models (Baum and Petrie, 1966) are machine learning algorithms that
model sequences that are assumed to be markov, i.e. such that the value at a given timestep
can be generated from only the single previous value, without dependencies on the rest of
the value history. HMMs assume an inference chain through time of latent variables, that
is, hidden states (states which are not known from the data), and mutually independent
observed variables which are generated from the corresponding hidden state at the given
timestep. HMMs owe their names from the process being modeled assuming a markov tran-
sition process over hidden states (which is inferred from observed states). A hidden markov
model are ultimately defined by the distribution functions g(ht+1|ht), called transition prob-
abilities, which is the distribution function from which transitions are generated from the
current to the next hidden state, and f(xt|ht), the emission probability distribution from
which outputs are generated given the current hidden state. The viterbi algorithm (Viterbi,
1967) is commonly used to infer those distributions, which allows a trained HMM to be
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quite efficient. Algorithms such as NovoHMM (Fischer et al., 2005) use HMMs for de novo
sequencing of mass spectra.

2.2. Deep Learning

As a subclass of machine learning, deep learning algorithms are also defined by the
concept of “learning”, with the main axis of differentiation with broader machine learning
approaches being the depth of the models involved. While many types of deep learning mod-
els have been proposed (from deep belief networks (Hinton et al., 2006) to deep boltzmann
machines (Salakhutdinov and Hinton, 2009) or even earlier work such as Ivakhnenko (1971)),
modern approaches have converged on a few common points:

(1) Complete models are composed from basic building blocks;
(2) Training is driven by gradient descent;
(3) Models are organized in neural networks using hierarchical “layers” of independent

“neurons”;
(4) “neurons” in a layer implement the simple affine transform followed by a non-linearity

(proving the full layer activation function form σ (Wx + b));
Due to their pervasive importance as building blocks of virtually all modern deep learning
models, convolutional neural networks (CNNs), fully connected neural networks (FNNs)
and recurrent neural networks (RNNs) are covered in their respective subsections below.
While various algorithms have been described for training neural networks, from hebbian
learning (Journé et al., 2023; Hopfield, 1982) to contrastive divergence (Carreira-Perpiñán
and Hinton, 2005), or various derivative-free approaches (Rios and Sahinidis, 2012), gradient-
based learning remains a mainstay due to the efficiency of this learning technique in practice.
A brief discussion of the main advantages and disadvantages of gradient-based learning is
provided below.

The hierarchical, layer-wise, independent-neurons organization of modern deep learning
neural networks and the simple function of each neuron likely derive in large parts from
computational simplicity, especially due to matrix multiplications and additions on stream
processors such as GPUs being so efficient (able to achieve speedups over CPU implemen-
tations on the order of 50x (Schmidhuber, 2015), but relying on the problem being highly
regular for representation as a set of matrix operations.

Although deep learning is far less sensitive to the quality of the data preprocessing
pipeline, a good choice of data representation can still have significant impact on a model’s
learning speed and capacity requirements. Figure 5 shows two common representations for
a mass spectrum (peak list and vector of m/z bins) followed by intensity value range nor-
malisation, which are common choices for machine- and deep-learning based pipelines taking
mass spectra as input (Gessulat et al., 2019; Tiwary et al., 2019; Tran et al., 2017).
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Figure 5 – Data, such as a mass spectrum (displayed in A), can be represented in multiple
ways (such as a list of peaks and intensities, or as a vector of intensities where the index
in the vector corresponds to a m/z bin, here presented in 0.1 Da increments). Proper
representation (A to B top) and preprocessing (B top to bottom, with the abstract final
SpEcTrUm representation) can vastly increase a model’s ability to learn.

2.2.1. Gradient-based optimization. Deep learning models are almost exclusively trained
(equivalently, “learn”, or “are optimized”) using gradient-based algorithms. The most basic
such algorithm is stochastic gradient descent (Kiefer and Wolfowitz, 1952), where instead of
taking the gradient with regard to the entire dataset (corresponding to an “epoch”), a subset
(i.e. a batch) of examples is used at a time (although some authors would argue that it is
more accurately called batch gradient descent to differentiate between gradients estimated
from single examples or minibatches of examples (Khirirat et al., 2017)). This formulation is
useful due to the potentially very large amount of data that can be used to train those models
vs the reality of computing resource limitations, as well as due to the stochastic effect of
batch selection on the gradient descent path helping the optimization process “escape” local
minima (Kleinberg et al., 2018). In practice, the ADAM algorithm (Kingma and Ba, 2014)
is likely the most common algorithm choice due to its good performance and its relative
insensitivity to its hyperparameters (Kingma and Ba, 2014). Overall, weight updates take
the form w := w − η ∂L

∂w
where η is a learning rate hyperparameter, L is the loss function, or

objective that the model is minimizing, and w is a weight. This can be efficiently computed
due to the overall model architecture using the gradient chain rule.

2.2.2. Building blocks. For all intents and purposes, all modern deep learning-based neu-
ral networks are defined in terms of just three basic building blocks: the convolutional neural
network (CNN), the fully-connected neural network (FNN) and the recurrent neural network
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(RNN). Those building blocks are presented in Figure 6. While modern paradigms such as
associative memory (Gulcehre et al., 2017), attention (Gregor et al., 2015; Vaswani et al.,
2017) and skip connections (Srivastava et al., 2015) are commonly used in most large archi-
tectures, those patterns are themselves simply implemented using the same basic building
blocks described here.

FNNs are simple stacked layers of neurons where each neuron in a given layer is connected
to all neurons in the layer immediately above. They are also called feedforward neural
networks. When they possess at least one hidden layer, they can also be referred to as
multi-layer perceptrons (MLPs) (Haykin, 1994). They are most suitable for data on which
no further structural prior (e.g. spatial codependence) is expected. They can learn input
vector position-specific patterns (such as “if the first unit is above the value 10, then output
a positive value”), but aren’t inherently capable of position-equivariance, which can make
them suboptimal for the analysis of data with positional patterns where the pattern may
equivalently appear anywhere in the input (e.g. images or sound data). For efficiency
reasons, FNNs are expressed as matrix operations (i.e. where each column represents the
weights corresponding to a connected neuron, and each row consists of a feature vector as
input, along with the addition of a bias vector), which easily dispatch to stream processors
for maximum throughput.

RNNs (Rumelhart et al., 1986), of which the most popular renditions are the Long Short
Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and the Gated Recurrent Units
(GRU) (Cho et al., 2014), are specifically suited for sequence processing. Conceptually, they
are FNNs that input and output two feature sets: a “state” that is updated as the input
sequence is processed, and the proper input, are passed to the initial layers, while the output
is composed of a local, or temporary output, along with an updated value for the state. This
conceptual FNN is then repeatedly applied through the elements of the sequence. RNNs
can be seen as a extension, or generalization, of HMMs. Due to the temporal dependencies
during training and inference, RNNs tend to be slower than both CNNs (see below) and
FNNs, but they are capable of learning relations that are theoretically unlimited in time
(Hochreiter and Schmidhuber, 1997) (although that does not necessarily hold in practice (Li
et al., 2023)), as opposed to CNNs (limited by kernel size) and can be shown to be turing
complete (Siegelmann and Sontag, 1992). A common variation is to operate two independent
RNNs, one across the input sequence and one in reverse. This is often referred to as a BiRNN
(for bidirectional RNN), especially BiLSTM or BiGRU when LSTMs or GRUs are used as
the RNN.

CNNs (LeCun et al., 1989, 1998) are similar to FNNs, except they replace the matrix
multiplication with a convolution (which is often implemented as a matrix multiplication
in fourier space (Frigo and Johnson, 2002)). They are position-equivariant by design, but
require suitable data and capacity to be able to learn sufficiently complete features to achieve
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Figure 6 – Illustration of basic neural network building blocks that form the foundation
of virtually all modern deep learning neural networks, and of a combined architecture. In
these examples, a mass spectrum (SpEcTrUm), as processed in Figure 5, is the input of
each neural network. A: FNN. Each connector represents a link between an input (left) and
output (right) following the basic equation o = σ(wi + b) for some activation σ, weight w
and bias b. B: CNN. While various designs are possible, iterating convolutional (Conv) and
pooling (Pool) layers is a common design. Convolutional layers’ kernels can be stacked to
alter output dimensions (from 1 to 2 in the example). Pooling layers apply a function such as
the maximum over a window in the input (the entire input in this example). C A single-step
diagram of an RNN, the state (pink) from each timestep is carried to the next and the output
is accumulated to obtain the final prediction. D The same RNN unrolled through time, i.e.
across the spectrum. E: A high-level diagram of the length prediction model described in this
work. A FNN processing metadata (MeTa) as well as another FNN processing the spectrum
and a CNN processing the same spectrum are combined by concatenation of their output,
which is then processed through additional FNNs to output length probabilities, where the
probability that the spectrum represents a peptide of length L is output at index L in the
vector.
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scale- or rotation-equivariance (commonly achieved by performing data augmentation on the
input data (Shorten and Khoshgoftaar, 2019)).

Complete neural networks are usually composed of one or multiple of those building
blocks, as illustrated in Figure 6D, which presents the architecture of the peptide length
prediction model which is described in Chapter 3.

2.3. Activation Functions

While the choice of activation function typically only results in minute differences in
training convergence efficiency and inference-time performance when the model is properly
designed taking input data into account, some activation functions have seen more general
success than others. An interesting case is that of the logistic sigmoid, once the most popular
general-purpose activation function, now relegated for use only in output layers. Cited
reasons include issues with saturation: the output of a logistic, defined as 1

1+e−x , at an input of
0 is of 0.5, the logistic of 0.5 is 0.622, and so forth, thus in “deep” models, 0 values can saturate
at higher layers, preventing good learning. Its immediate popular successor has been the
hyperbolic tangeant sigmoid, defined as ex−e−x

ex+e−x , which does not saturate about 0 and ranges
between -1 and 1. More recently, the rectified linear activation (ReLU), defined as max(x, t)
for a threshold t (typically held at 0), has become the de facto standard activation, owing to
its efficient hardware implementation and good practical performance during optimization,
despite the nonexistence of gradients at t (although this does not generally affect gradient-
based learning, which can simply use an arbitrary subgradient instead). Many variants of
ReLU have been proposed, but their use over plain ReLU remain debated.

Beside general-purpose activation functions and the logistic sigmoid used for probability-
like outputs, another common activation function is the softmax, defined as exi∑

j
exj for an

output vector x. The softmax transforms output values into a probability-like vector and
is the standard activation function used for categorical outputs, where output elements can
then readily be interpreted as the probability of the input being in each class as represented
by the output vector.

3. Proteomics Meets Machine Learning
Over the years, many machine learning algorithms have been proposed to solve various

aspects of identification proteomics, from HMM-based de novo sequencing (Fischer et al.,
2005) to SVM-based rescoring (Käll et al., 2007) or intensity prediction using random forests
(Degroeve and Martens, 2013). More recently, many deep learning models have shown success
in various parts of the proteomics workflow (Guo et al., 2016; Bengio et al., 2013), efficiently
predicting such varied properties as retention time (Giese et al., 2021), to mhc compatibility
(Andreatta and Nielsen, 2015), or intensity prediction (Gessulat et al., 2019; Tiwary et al.,
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2019) to full spectrum prediction (Liu et al., 2020), among many others (Zeng et al., 2022;
Tran et al., 2017; Wen et al., 2020; Meyer, 2021; Schoenholz et al., 2018b). Unfortunately,
nearly none have ever been applied to full, standard mass spectrometry workflows, let alone
in a reusable way. Exceptions include Prosit, which has been integrated into Andromeda
(Wilhelm et al., 2021), and the de novo models that are part of PeaksDB searches (Ma et al.,
2003; Tran et al., 2017). Meanwhile, rescoring, almost always by Percolator (although other
tools like PeptideProphet Ma et al. (2012), the linear discriminant analysis method in Du
et al. (2008) or the non-parametric method of Zhang et al. (2008), have also been proposed
and used in some cases), has become the de facto standard in proteomics identification
pipelines, despite the rather large body of work, as described in Section 1.4.6, showing
concerning systemic issues with this paradigm. We believe the main reason why so few
of these apparently groundbreaking machine learning and deep learning tools have been
integrated into commonly used pipelines is due to the relative complexity of performing
this integration, on both a technical (existing identification tools are designed as if they
are meant to operate as a blackbox method on top of wetlab experiments, which affects
how difficult modifying and extending them can be, as opposed to if they were designed
as tools (or set of tools) that should be adapted for the current experiments; this seems
to lead to the development of new tools for each experiment class instead of extensions to
existing methods) and social (licenses and source availability, for example) levels. We address
this by introducing a drylab research-oriented peptide search engine in Chapter 2. We also
propose a novel view on deep learning tool development for proteomics and combine a new
deep learning model with our proposed search engine in Chapter 3, showing the practicality
of the proposed search engine’s architecture and the power of deep learning on realistic
identification workloads.

To better showcase how machine learning is used in practice to improve proteomics, we
go over Prosit (Gessulat et al., 2019) and Percolator (Käll et al., 2007) in detail below.
While both methods are flawed, they nevertheless exemplify full processing pipelines for dif-
ferent parts of the mass spectrometry-based identification workflow. Prosit was successfully
integrated in a real identification software solution by using percolator, and rescoring by
percolator is nowadays a standard step of most identification pipelines, and those methods
bear relevant to the rest of this work.

3.1. Percolator

Percolator went through various changes since its original version (Käll et al., 2007;
Spivak et al., 2009; Granholm et al., 2012). In this section, we describe the latest iteration
as of this writing (namely the version as of Granholm et al. (2012), although we deliberately
avoid discussion of new development in the codebase that have not been analyzed for validity
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yet). Percolator’s central component is the SVM machine learning algorithm: provided a
set of PSMs as input into its custom Percolator INput (PIN) format, Percolator attempts to
find optimal weights for each of the search engine- or user-computed features from which the
input file was generated, so as to best discriminate between decoys and targets (illustrated
in Figure 7. The SVM ultimately provides a distance between the separating hyperplane
and the point of interest, which is an increasingly positive value for inputs that the model
believes more strongly to be targets, or an increasingly negative value for inputs that the
model believes to be decoys.

Figure 7 – The central piece of the Percolator rescoring system, an SVM that separates
decoys from targets. The SVM identifies the maximum margin hyperplane based on the
positive and negative hyperplaned defined by the support vectors (the feature vectors that
are closest to the separating plane). The distance to the maximum margin hyperplane
indicates the separation “confidence”, as elements closest to the hyperplane are harder to
separate than those further away. For Percolator, decoys are labeled as -1 (hence, any
negative distance to the hyperplane marks a predicted decoy)

In an attempt to avoid overfitting, Percolator operates with a 3-fold cross-validation
approach, proceeding as follows:

(1) The dataset is split in 3 parts;

(2) Percolator sequentially selects one of the 3 parts to serve as a validation set, and
combines the remaining 2 parts to serve as a training set;

(3) The SVM is trained on the training set, and the optimal parameters are saved.

Since the optimum in each subset may differ, which would cause the predicted “decoy-
ness” or “targetness” from the model to differ for the same input depending on the specific
SVM used, Percolator performs a “normalization” adjustment to the output of each SVM
to try to make the outputs comparable across the models. Finally, Percolator uses the SVM
corresponding to the held-out set each point corresponds to in order to rescore it as per
the scoring-normalization pipeline. The adjustment method consists of setting the score
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threshold for 1% q-value (an alternative measure of FDR with similar values and properties
(Käll et al., 2008)) as the target 0 value on a line, with the median decoy PSM score as
-1 for the same line, then projecting the score values unto the line within each fold in the
cross-validation. The overall process is illustrated in Figure 8

Figure 8 – Overall process for Percolator rescoring. A: The high-level steps. B: Illustration
of the most important steps in the pipeline.

The initial direction selection consists of finding the best input feature as computed by
the amount of targets identified at 1% q-value (or whatever target is set in the settings by the
user). Percolator performs this step to determine which feature to use as the “score” feature
(instead of being provided the engine score feature name explicitly). This is used as a sanity
check to verify that the SVM training process does not fail beyond a certain level as well
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as to determine the labels for the training process (i.e. PSMs passing the q-value threshold
on the basis of this “score” feature form the “positive” examples, while all decoys – not
the PSMs failing below the threshold – are “negative” examples). After the first iteration,
Percolator uses the accumulated normalized SVM weights so far to compute new scores for
the data, using those new scores to identify the next positive and negative sets to use.

3.2. Prosit

Prosit uses a deep learning model to predict both indexed retention time (iRT) and the
intensity of b- and y-series ions given an input sequence. The iRT prediction depends only
on the sequence, but for intensity prediction, other features, such as the normalized collision
energy (NCE) and the precursor charge, are also provided to the model. The architecture
is a pretty straightforward and classical arrangement of deep learning building blocks as
presented previously, and is illustrated in Figure 9. Briefly, the sequence part is processed by
a neural network composed of an embedding layer (equivalent to a specially structured fully-
connected layer), two BiGRU layers, and an attention layer (i.e. an arrangement of fully-
connected layers). The metadata processing part takes the concatenated metadata (namely
the NCE and charge) and processes it through a fully-connected network. The outputs
from these two parts are elementwise-multiplied together, after which another BiGRU layer
takes the resulting features as input. Finally, a fully connected network is applied to each
timestep in the output sequence of the last BiGRU to produce the final fragment intensity
value corresponding to each fragmentation point in the input sequence.

As discussed previously, processing the input data correctly is important for efficient
learning. To this end, Prosit uses fairly standard representations for its inputs: the sequence
is represented as an integer index sequence, where each integer is the index in an array of
amino acids. The sequence is padded with zeros after the sequence is encoded, to ensure all
sequences in a minibatch are of the same (maximum) length. For the metadata, the NCE
is presented as a normalized value between 0 and 1, while the charge is a one-hot encoding,
that is a vector of values containing a 1 at the index representing the charge for this instance,
and zeros everywhere else.

The model outputs intensity estimates only for y- and b-series ions, and for all charge
levels up to the precursor charge level, inclusive.

To integrate the Prosit intensity predictions as part of a full database-driven search
workflow, the authors first perform a standard database search with the usual theoretical
spectrum generation facilities, then compute the prosit predictions for the retained PSMs
only and calculate the quality of the match between the prosit-generated spectrum and the
experimental spectrum in the PSM. The match quality value is provided to Percolator as a
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Figure 9 – Illustrated Prosit model. A: The sequence, encoded as a vector of amino acid
indices, is converted via an embedding layer that converts each entry into an optimized
vector. B: The metadata is processed by a simple FNN to output iRT. The output of the
model (before the iRT output layer) is also used as part of the intensity prediction model
segment. C: The embedded sequence is processed by layers of BiGRUs, illustrated once
here. An attention layer attends to the output sequence from the BiGRU, after which the
result is elementwise-multiplied with the output of the iRT prediction model’s hidden layer.
Finally, the multiplied vectors are processed by another BiGRU, followed by a FNN applied
individually to each output. D: The final output: b- and y-ion intensities for each valid
charge level, corresponding to the fragmentation between each amino acid pair.
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feature, and percolator performs rescoring by relying on this metric to better separate decoys
from targets.

Prosit is a good illustration of the power of deep learning: the model does not use any
particular tricks or tuning specific to the data (only to the data type, e.g. by encoding charge
as one-hot and so forth), and especially not to the experiment, i.e. the same architecture
can readily be reused on other datasets, for example for different fragmentation type, charge
range, length range, etc. Despite this flexibility, the model achieved state-of-the-art results
at the time. Similarly, our Pepid search engine (in Chapter 2) integrates a full-spectrum
prediction model (that is, it predicts both the m/z and intensity of peaks instead of being
limited to known series like Prosit) as an optional and experimental module based on a
standard CNN-based architecture.
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The work presented in this thesis started with a series of deep learning-centric data
exploration experiments. These experiments eventually revolved around concepts in de novo
sequencing, due to the inherent lack of required scaffolding (such as peptide databases and
non-data-driven algorithms for their processing), the existence of previous work in end-to-
end machine learning and deep learning approaches for de novo sequencing, and the presence
of good ground truth data in the forms of datasets like ProteomeTools and Massive-KB,
discussed later in the text. These experiments culminated in the discovery that deep learning
can predict the length of a peptide present in a spectrum, and that a model trained this
way generalizes across datasets and even species. Even more impressively, these predictions
can readily be used to improve database-driven peptide identification. This is the topic of
Chapter 3. The original manuscript was based on combining those predictions with the
IdentiPy search engine in an attempt to minimize the risk of software error, and to speed up
the research process (peptide search engines can be fairly complicated software, as they need
to balance execution throughput and identification performance, and may have to process
very large datasets that do not fit in memory, among other concerns. They are also sensitive
to slight programming errors. Indeed, we discovered a critical flaw in the IdentiPy scoring
function that nevertheless only had minor identification implications simply because the
peptide mass generation function in IdentiPy was coincidentally such that the bug triggered
mostly in less important regions of the spectra. This bug was later corrected when the
IdentiPy authors introduced a “fast” version of their scoring function, but it is not clear if
they noticed the bug in the original version or if the bug was fixed by coincidence as well).

IdentiPy was chosen for four main reasons: it promised higher identification performance
than other engines, it was open source and therefore easily modifiable, it was specifically
designed with some customization features like pluggable user functions, and it was written
in python, which allowed ready integration of our deep learning models. Unfortunately, we
found, during the process of modifying IdentiPy for combination with our length predic-
tor, that the inherent design of this tool (mostly based on one-to-one processing of query-
candidate pairs maximizing in-memory processing) was not particularly amenable to the
efficient execution of deep learning primitives. In addition, the modification process was
fairly complicated beyond having to change the processing paradigm from “one-to-one” to
batch-oriented because many of the components’ processing functions are designed with
the other steps in mind. Surveying other open source engines, such as x!tandem, comet,
morpheus and ms-gf+, we found that none featured a mix of suitable customizability for
faster research iteration (as the pluggable functions in IdentiPy putatively allow, or to a
much lesser extent the pluggable score in x!tandem), batch-oriented design (as is available
in comet and x!tandem), and controls on the output of PSMs (to be able to analyze results
for debugging and function development). In particular, it appears that current peptide
search engines are concerned only with outputting identifications, as opposed to facilitating
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research in bioinformatics methods for the identification of peptides. Therefore, Chapter 2 is
concerned with the development of a more suitable search engine called Pepid, which is con-
cerned primarily with the development of drylab methods for peptide identifications. Pepid
features competitive identification rates while being faster than common search engines in
its basic configuration. To showcase its ease of use for research, we develop a new machine
learning-based rescoring algorithm as well as a deep learning-based full spectrum prediction
algorithm, which are also discussed in that chapter. We show that combining these tools,
as well as the length prediction algorithm from Chapter 3, allows significantly more peptide
identifications than the baseline configuration and other search engines. These results from
combining deep learning with a classical database search approach were made possible in
large parts (in fact, almost exclusively given the relative difficulty of doing the same with
other engines in our experience) due to the batch-oriented, phase-by-phase design of our
engine, and the easily pluggable functions across its pipeline.

A common pain point encountered in the work discussed in the previous chapters is
evaluation. We found that the typical target-decoy based false discovery rate-controlled
identification count metric used in the literature can be inconsistent with the true identifi-
cation count as measurable when ground truth peptide identities are available (such as in
the ProteomeTools and Massive-KB datasets), which we already show without discussion
in Chapter 2. Indeed, there is a notable body of work in the literature evaluating and dis-
cussing this discrepancy. In Chapter 4, we explore this issue once more, especially in light
of the current paradigm of the use of rescoring (in particular the Percolator algorithm) as a
post-processing step to any and all peptide identification pipelines. We point out that the
identification-based metric invalidates cross-search-engine comparisons, that rescoring algo-
rithms inherently bypass the required assumptions for FDR calculation, and demonstrate
experimentally that this effect is notable in practice. We conclude that any comparison be-
tween search quality should, at present, use a dataset containing ground truth peptides at
least for “result calibration” purposes as we are aware of no existing method that properly
controls for incorrect evaluation of FDR, or may control false discovery rate, with or without
the use of decoys.
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Abstract
Current peptide search engines are optimized for wet-lab workflows, i.e. they operate

in an “end-to-end” manner to achieve good identification results, not to be modified or
provide algorithmic insight. This makes developing new software methods to solve problems
in peptide identification methods difficult, often requiring a full engine rewrite. Recently,
many deep learning methods were proposed as solutions to various parts of the peptide
identification task, but virtually none of those methods have been implemented in any actual
peptide search process. We believe that the lack of a reliable bioinformatics research platform



for peptide identification that enables such integrations is slowing down proteomics research
as a whole.

Indeed, peptide identification from the software point of view is a series of complicated
steps, and decisions made at one step may have critical influence in the next step. For
example, the choice of candidate generation method for use in the TDA-FDR evaluation
methodology will impact the relative count of decoys vs. targets in the search database,
which may bias the accuracy of the FDR evaluation, for which methods have been proposed
to address this issue both at the candidate generation step or at the FDR calculation step
(Elias and Gygi, 2009; Wang et al., 2015; Hubler et al., 2019; Jeong et al., 2012).

Meanwhile, the lack of properly engineered engine to make software modifications pain-
less has prevented the ready integration of modern, deep learning-driven tools into search
pipelines, making evaluation of those methods on practical workflows nigh impossible and
forcing developers and researchers interested in using these methods to implement a new
search engine altogether, or to leverage extensive software development skills to restructure
an existing engine for which both source code and license are amenable to modifications and,
when desired, publication of results.

We present pepid, a bioinformatics research-oriented peptide search engine. Unlike other
search engines, pepid is specifically designed with ease of computational research in mind.
Our design is highly flexible and allows easy modifications with little required software
development expertise, allowing researchers to focus on analysing and improving peptide
identification methods. It also takes recent computational trends into account, such as the
recent slew of deep learning publications in proteomics, and features a multi-phased batched
operations design that is more appropriate than the spectrum batch “end-to-end” designs
of existing search engines for those approaches. We show that pepid is competitive with
common engines in terms of both identification rates and runtime, forming a minimum
required baseline to enable further identification research.

The design of Pepid, which emphasizes modularity, operates in a computationally efficient
way on the batch level,and retains intermediary information for evaluation and reuse, have
been instrumental for the development of the follow-up chapter on length predictions, whose
improvements in peptide identifications have also been evaluated in the results presented in
this paper.

Pepid is available as open source software under the MIT license at https://github.
com/lemieux-lab/pepid. Keywords Peptide Identification, Search Engine, Proteomics
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2.1. Introduction
Peptide identifcation is a technically and scientifically difficult problem both on the wet-

and dry-lab side. Current peptide search engines are designed for “end-to-end” operations,
i.e. to provide a streamlined process for proteomics experiments considering wet-lab users,
with non-separable operations from spectrum and protein processing all the way to scoring
and output. This has the unintended consequence of making computational research in
peptide identification harder, because deviating from the established paradigms effectively
requires rewriting the entire engine. Recently, many deep-learning algorithms have been
proposed to solve various problems relevant to peptide identification, such as theoretical
spectrum generation (Gessulat et al., 2019; Liu et al., 2020), retention time prediction (Zeng
et al., 2022; Giese et al., 2021), peptide-spectrum scoring, and so on (we direct interested
readers to more comprehensive reviews of deep learning methods in proteomics, such as Wen
et al. (2020) and Meyer (2021)). Unfortunately, these methods cannot be readily tested
on top of most labs’ software workflow because making the requisite changes requires good
software development expertise, as well as time and financial budget that may not always
seem like a good use of resources to most labs. As a result, it is not clear which of these
methods, if any, is actually useful for database-driven peptide searches, and even in the rare
cases where those methods are implemented with an existing search engine (Wilhelm et al.,
2021), it is not readily possible to port those changes to another engine to benefit from a
proven method because two different engines may operate in totally different ways.

State-of-the-art peptide-centric search engines for peptide identifications can be classified
in many different ways. One classification axis relevant to the difficulties in modifying engines
for actual use with novel techniques is their license status (i.e. proprietary or not), and
source status (i.e. closed vs. open, published vs. unpublished). Breakthrough deep learning
algorithms have been proposed, but they cannot be added to proprietary search engines and
released legally (except by such search engines’ authors themselves), slowing down research
and making convincing experiments to demonstrated added value on top of some commonly
used engines difficult. In addition, current open-source search engines do not have deep
learning methods in mind and are designed in such a way that integrating machine learning
models to their pipeline is difficult: for example, deep learning algorithms are designed for
efficient batch processing, potentially at one specific stage of the process, whereas current
engines are desgined to perform all processing steps across groups of inputs.

In this paper, we propose Pepid: a new, open-source search engine that is designed from
the ground up with dry-lab research and deep learning methods in mind and, in general,
to further research and development of tools and algorithms for peptide identification. Our
search engine features a multi-phase, batched pipeline design. Each step in the pipeline is
fully optional, uses configurable user function attachments, and supports a variety of user
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settings to customize computational schedules. We believe this is a more appropriate design
for applications such as deep learning than the usual “end-to-end” approach of other options,
at the cost of incurring some overhead that we show to be negligible overall.

We implement two common scoring algorithms and their extensions as well as a combina-
tion score function, and we show that Pepid is competitive in both runtime and identification
rates. We believe that deep learning is already instrumental to achieving best-in-class perfor-
mance in peptide identification, and that further research at the intersection of deep learning
and proteomics is critical to next-generation peptide identification research. We provide ex-
perimental deep leanring methods with our source release to demonstrate how one might
go about integrating such algorithms, although discussion of those details falls outside the
scope of this paper.

2.2. System and methods
Existing search engines present various tradeoffs based on their implementation and de-

sign. We discuss a select few common examples and describe how Pepid addresses flaws in
current choices. The selected engines showcase some orthogonal design characteristics that
make them suboptimal for Pepid’s usecase (research into computational methods for pep-
tide identification, as opposed to maximum identification rates or counts, and incidentally,
throughput).

2.2.1. IdentiPy

IdentiPy (Levitsky et al., 2018) is an open-source search engine written in python 2.7,
using cython in parts to improve performance. Its main feature is its high configurability,
providing users with custom extension points allowing staff with limited technical skills
to provide and apply arbitrary python functions at limited parts of the pipeline. This
paradigm also means the intermediary computation steps are exposed to the user, allowing
more flexibility in how the pipeline operates and runs. It makes use of multiple processors via
multi-processing and performs task dispatch on the unit spectrum level (that is, each query
spectrum is individually processed by the next available process on a first-come-first-served
basis with no task batching).

However, only a small set of extension points are supported, and the single task dispatch
design means that operations with short computations and long preparation times (e.g. those
leveraging GPUs for general-purpose computing, as would be desired for a deep learning-
driven workflow, or those that should load data from the disk in chunks) limits what kind of
functions can feasibly be implemented this way due to wallclock time concerns. Moreover, it
is implemented in Python 2.7, which is incompatible with Python 3.0+ and is deprecated as
of January 1st, 2020; conversion is not difficult but remains a burden on potential users. It
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also operates fully in-memory, which, combined with the multi-processing paradigm, makes it
susceptible to the “memory explosion” problem – that is, as the task schedule is unpredictable
and may use large amounts of memory, potentially exceeding available memory; this may
cause the entire run to fail. It also means that the database size used in the search, as well as
the query set used in any one run, are artificially restricted based on hardware availability.

2.2.2. X!Tandem

X!Tandem (Craig and Beavis, 2004) is an open-source version of the proprietary Univer-
sity of Washington’s SEQUEST engine (Eng et al., 1994). X!Tandem is reasonably fast and
efficacious, however it is designed to operate “end-to-end” for identifications, meaning there
is no way to halt the process at arbitrary points. On the other hand, X!Tandem supports
custom scores via a “score plugin” system. An example of a popular score plugin is the
“k-score”, which is the same basic scoring method that was later implemented in Comet
(Tabb, 2015).

Score plugins in X!Tandem are developed in C++, which requires a certain technical
sophistication from the programmer as well as providing a rather slow development cycle
when working on iteratively improving the score function. By comparison, languages such
as Python, Julia or Lua, which may feature slower operation at runtime, but provide better
facilities for rapid application development, may be more appropriate for computational re-
search purposes, since a better optimized version of the algorithm may replace the prototype
after a novel approach is found to be advantageous.

X!Tandem also does not allow outputting more than the single best-scoring peptide match
for each spectrum except when applying a filter on the score (e.g. there is no way to output
an unfiltered best-10 score), which makes disambiguation with potentially close-in-quality
matches impossible without further manipulation of the software, and score distribution
analysis only possible with sufficient hardware to store all scores on disk, as well as tem-
porarily in memory during X!Tandem’s processing. This may also affect the performance of
post-processing methods like Percolator (Käll et al., 2007) as they may exploit the greater
amount of available data if provided to them.

2.2.3. Comet

Comet (Eng et al., 2012) is a reputedly fast search engine whose main scoring function
is a function of the inner product between the theoretical spectrum of a candidate peptide
and the empirical spectrum of the query input (where both spectra are represented as fixed-
length vectors of mass to charge intervals to intensity values), normalized by the average of
the same score across a window around each peak window. Comet also features a so-called
E-value score, which is based on a regression over the score distribution’s log-histograms (i.e.
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the E-value score is an ordinary least-square approximation of the estimated log-CDF of the
score distribution). Similar to X!Tandem, Comet is designed for “end-to-end” operations
and does not innately support any modification to its runtime procedure. Unlike X!Tandem,
it also does not support a plugin system for scores or other aspects of the computations.

Comet operates in a batch-oriented way, processing a user-specifiable amount of spectra
at a time, thus bounding memory requirements, potentially at the cost of processing time.
This design is more amenable to be modified to support heterogeneous compute capabilities.
Indeed, Tempest (Adamo and Gerber, 2016) is such a modified version of comet and can run
on CPUs or GPUs using OpenCL for faster processing.

2.2.4. Others

A plethora of other search engines exist, some proprietary like PeaksDB (Zhang et al.,
2011), Andromeda (Cox et al., 2011), or the Thermo Fisher version of SEQUEST (Eng et al.,
1994), and some open-source, such as Morpheus (Kim and Pevzner, 2014a) or MS-GF+ (Kim
and Pevzner, 2014b), to give but a few arbitrary examples. To the best of our knowledge,
beside potential additional issues related to licensing and availability of source code, all
commonly used search engines share an “end-to-end” focus causing similar challenges to
those described in the previous sections. Selection of the above search engines for longer
exposition does not imply endorsement, and was not made on the basis of subjective of
objective criteria other than the following:

— All three engines are open-source, allowing examination of internals;
— IdentiPy has inbuilt user extension points;
— Comet and X!Tandem are in common use in practice.
This provides a comparison background that enables us to estimate Pepid’s viability in

practice (by proxy, using X!Tandem and Comet for comparison) as well as for flexibility
(especially by comparison with IdentiPy, which allows the most customization to workflow
among engines we are aware of).

A qualitative summary of some search engines compared to the proposed Pepid engine
is provided in Table 1.
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Engine Language Extensible License Source Phased Runs PSM Output Speed
X!Tandem C++ Little Permissive Open None Filtered Fast
Comet C++ No Permissive Open None Top N | Filtered Very Fast
IdentiPy Python 2.7† Somewhat Permissive Open None Top N Slow
SEQUEST* C++ No Proprietary Closed None Top N | Filtered Very Fast
PeaksDB Java No Proprietary Closed None Filtered Slow
Andromeda C# No Proprietary Published None Filtered Slow
Pepid Python 3 Fully Permissive Open All Any× Fast

Table 1 – Qualitative summary of some search engines. Source is the status of the engine’s source code. Published Source
means partial or snapshot source releases are available, for example accompanying a publication. Phased Runs means an engine
can perform only a subset of its operations at a time and outputs artifacts that can be used to continue a run at a later time
from where the engine left off. PSM Output qualifies if an engine can output only the top N outputs, or if it can filter based
on score. *: SEQUEST is commonly used to refer both to the University of Washington and the Thermo Fisher versions of the
software. The listing here is for the latter. †: The IdentiPy developers are in the process of updating their engine to Python 3 at
the time of writing. ×: Pepid outputs artifacts containing all scores that were above 0, and provides a condensed output with
the Top N peptides for each spectrum by default. This is fully user-configurable.67



2.2.5. Datasets

ProteomeTools is a dataset of synthetic human peptides. The dataset was generated
using synthesized peptides based on the SwissProt database (Bateman et al., 2020).

Due to corruption in the dataset (causing some of the archive files to fail to decompress),
we only use the First Pool data (which is uncorrupted). We select only the higher-energy
collision dissociation (HCD) data at a normalized collision energy (NCE) of 25 as this seems
to produce the best quality results out of the available settings (Zolg et al., 2017).

The One Hour Yeast Proteome is a dataset of non-synthetic yeast peptides with a baseline
generated by the Thermo Fisher version of the SEQUEST search engine (Hebert et al., 2014).
We use the “batched” dataset, which combines the result of all the hour-long runs.

The Massive-KB dataset contains spectra from real experiments and use a best-representative
and consensus identification approach to provide a high-confidence peptide identity (Wang
et al., 2018). We select the “human hcd in-vivo” subset and remove cross-digestion experi-
ments (such as HeLa Trypsin-Lysc experiments) by excluding those entires whose provenance
dataset contains keywords lysc, argc, or chymotryp. This dataset segment does not contain
the ProteomeTools data which is included in the “full” Massive-KB dataset.

The ProteomeTools data provides an inordinately clean baseline using artificial peptides
and pools designed to minimize mass conflicts, while the yeast dataset is a realistic real-world
peptide dataset. Together, they allow us to qualitatively observe Pepid’s suitability in both
settings, as each may provide a different yet useful setup for research purposes.

Properties for the datasets used in this work are listed in Table 2.

Dataset #Specs #Peps #Cands Frag @ NCE
Massive-KB 1 566 292 956 580 8 410 825 HCD @ 25
ProteomeTools 1 454 139 113 583 8 410 825 HCD @ 25
Yeast 400 665 47 650 2 160 144 HCD @ 30

Table 2 – Features of the datasets used to evaluate Pepid. Peptides (#Peps) are unique
pepide sequences, excluding modifications. Candidates (#Cands) are the count of Pepid-
generated candidate peptides in total (i.e. including modifications, missed cleavages, and so
forth) for the species database. Spectra (#Specs) are the total spectra in the query dataset.

2.2.6. Evaluation

Each search engine uses a different method for evaluation and reporting: for example,
classical false discovery rate vs. q-value (Käll et al., 2008), different formulae for their
computation (Elias and Gygi, 2007, 2009), etc. In order to ensure comparisons can be made,
we use the same external evaluation method for each search engine rather than relying on
their native tools. The code for evaluation is available in the script gen_fdr_report.py in
the Pepid source release. We compute q-value using the FDR formula in Elias and Gygi
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(2007). In addition, since FDR can be untrustworthy (Gupta et al., 2011b; He et al., 2015;
Elias and Gygi, 2009; Matrix Science Ltd, 2010; Danilova et al., 2019; Jeong et al., 2012), we
also report the false discovery proportion (FDP) using ProteomeTools’s groundtruth labels
as computed using the same algorithm as for FDR.

2.2.7. Spectrum Generation

We present a spectrum generation model designed for integration into a search pipeline.
Spectrum generation quality is benchmarked against Predfull, using code and model ob-
tained on 2023-05-16, labelled as version 2022.05.19. The pretrained model was obtained
from the PredFull Google Drive indicated in the PredFull github-hosted repository (https:
//github.com/lkytal/PredFull). Since this pretrained model was trained on Proteome-
Tools and thus may exhibit some overfitting compared to our model. The code was obtained
from the master branch of the same github repository. We choose to compare to PredFull
rather than alternatives (like Prosit or DeepMass) for the following reasons: first, PredFull
was previously compared to other models and found to perform better even with only the
theoretical peak sequence. Second, our method also performs full spectrum prediction, mak-
ing the comparison more directly appropriate. Third, PredFull is easily reproducible and is
still maintained, whereas other models like Prosit have not seen an update since 2018 (as
of the time of writing) and can no longer be loaded with the currently available versions of
existing dependencies.

2.3. Algorithm
Pepid is designed to operate in restartable, customizable phases. Each phase can be

customized both by user parameters describing behavior settings (for example, how to mul-
tiprocess the program), or by custom (i.e. fully user-written), user-specified functions (the
score function, the peptide candidate generation function and the rescoring function, for
example, are all user-provided, with sensible defaults implemented by Pepid). Pepid uses
python’s dynamic capabilities to read the name of the functions provided in a configuration
file and dispatches work through these functions as appropriate during operations. In addi-
tion, users may elect to perform a subset of phases before directly examining or modifying
the data, and then proceeding with remaining phases.

2.3.1. Inputs and Outputs

User configuration to the pipeline is composed of a single file: a user configuration doc-
ument in an INI-like format compatible with the python configparser module, for which
a default configuration set is provided in the data/default.cfg file in the release distribu-
tion. The default file features explanatory comments for each configuration option to guide
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modifications. The set of query spectra as specified in the configuration file must be in
the Mascot Generic Format (mgf) and the database of candidate proteins must be in the
protein fasta format. Pepid’s output is a database of processed queries, candidate sequences
(generated in-silico from the fasta input database), and peptide-spectrum matches (PSMs)
as SQLite databases. An optional pipeline step also extracts the top N (for some user-
selected N) matches per query spectrum and outputs them as a tab-separated value (tsv)
file. We do not use PSI formats because they are flawed in various ways both for storage,
regularity, and processing in particular due to their xml nature (Deutsch, 2012; Röst et al.,
2015; Shah et al., 2010; Lin et al., 2005). Instead, we choose mgf as input format since it is
widely supported by existing tools and that converters exist to and from other formats to
mgf (for example, Proteomatic or msconvert (Kessner et al., 2008)), and output to a format
similar in spirit to the default Percolator output, leveraging familiarity with what is most
likely the most popular an ubiquitous peptide identification tool in current use. Afterward,
the pipeline optionally runs percolator (Käll et al., 2007) or a custom random-forest-based
rescoring method on the output, and can generate a graphical report about identification
performance using the target-decoy approach, false discovery rate (TDA-FDR) methodology,
both after and before rescoring.

2.3.2. Pipeline

The search engine features a pipeline design composed of 6 steps: Query and Database
Processing, Input Postprocessing, Search, Report, Rescoring, Final Report, which we explain
in more details below. The pipeline is graphically illustrated in Figure 1A.

In the Query Processing step, the input query file is processed in a more suitable format
for further operations and is stored in a SQLite database. In the Database Processing step,
peptides are generated from a fasta protein database. The resulting peptides are saved in
a SQLite database. User-specified functions are used to process the queries as well as to
generate peptide candidates.

In the Input Postprocessing step, user-defined functions are applied to the processed
queries and peptides. The user is thus able to insert arbitrary data into the database.

Besides the arbitrary post-processing function, the user-specified spectrum prediction
function is applied to the database candidates. The default spectrum prediction function
simply generates the theoretical b and y ion series for the candidate modified sequence for
each charge level indicated by the user. The output spectrum object can be an arbitrary
python object and will be inserted as a binary blob into the database. Users can change
the defaults by specifying the generation of other series, such as a, c, x and z in the default
implementation, or any other properties like amonia or water loss through cutomization.
The default settings are chosen to achieve a good mix of identifications while avoiding the
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Figure 1 – Comparison between Pepid and commonly-used search engines on Proteome-
Tools first pool (1 458 831 spectra). RF: using the random forest-based rescorer instead of
Percolator. All: using both the spectrum generator and peptide length prediction models.
IdentiPy cannot process the spectra witin resource limits, so the file had to be split 10-ways,
and the process run once per split. X!Tandem is only capable of outputting a single top PSM
when not applying a score filter, other engines output the top 10. A: High-level processing
pipeline steps of Pepid. B: Runtime performance. C: Count of identifications (for FDP, as
per ProteomeTools baseline) at a q-value of 1% (PSMs on left, peptides on right, TDA-FDR
on top, FDP on bottom).

spurious bad identifications that overloading such a generated spectrum with peak types can
result in. Since the cleavage expression is a regex, users can add arbitrary cleavage rules,
such as methionine cleavage rules.

In the Search step, a user-specified scoring function is applied to a set of queries and a
set of candidates for each query. The candidates are a subset of the entire database that
matches a user-specified tolerance threshold around the mass of the query precursor neutral
mass, as is usually done in other engines to restrict the set of candidates to search against.

The Report step prepares a graphical report containing a mix of performance metrics
based on the TDA-FDR methodology, along with score distribution data plotted against
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basic PSM statistics, to help identify potential biases or weaknesses in the score function. The
Report step also outputs a serialized artifact containing the statistics computed during the
report generation for further analysis. This artifact can also be used to generate comparison
plots using the pepid_compare.py script which is discussed further below.

The Rescoring step applies an arbitrary rescoring function, which is Percolator by default,
to the results.

The Final Report step produces the same report artifacts as the Report step, only after
the rescoring function is applied.

Pepid phases are reusable and optional throughout its process: unlike other search en-
gines, the intermediary artifacts remain between each step and the software can rerun only
the steps of interest to the user. This also enables the user to perform part of the steps, then
use custom software to modify the resulting artifact, then proceed with additional steps, with-
out Pepid having to know anything about the intermediary user processing scripts, granting
additional pipeline flexibility beyond the basic pipeline proposed by the Pepid system. It
also allows users to perform perhaps lengthy processing (especially for peptide generation –
that is, in-silico digestion by more complex algorithms and/or spectrum for candidate pep-
tides) only once and to reuse this database for as many query searches as required. Another
potential use case is to first generate the preprocessed database on one machine (or multiple
machines and then performing a merge step), and making that database available on multi-
ple hosts for search across a cluster (before performing a synchronized final merge of these
databases). This design also affords some robustness regarding computational disruptions.

Pepid also provides additional utility scripts: pepid_compare.py takes two report ar-
tifacts and generates a combined report visualization that makes comparing search results
between two conditions convenient. pepid_files.py outputs the paths to the files generated
by Pepid as part of the search process, given the class of files of interest (for example, just
report artifacts or just database artifacts).

2.3.3. Preprocessing

The query preprocessing step simply adds useful metadata, such as the count of peaks in
the spectrum and the precursor neutral mass, to the reformated input data, and places it in
a database for more efficient further processing. The user can specify criteria used to filter
query spectra for quality, such as the peak count range that is allowable and the maximum
and minimum precursor mass.

On the other hand, the database processing step is more involved. Its main substeps are
as follow: In-silico Digestion, Filtering, Post-translational Modification (PTM) generation,
Deduplication.
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In the first step, a user-specified regular expression (regex) is applied to the protein
sequences in the database to extract “digested” peptides. The regex specified by default cor-
responds to tryptic digestion using the EXPASY rule. Users can additionally specify max-
imum missed cleavages. The resulting peptides are then filtered by user-specified minimum
and maximum mass and length for the sequences. Next, user-specified maximum variable
modifications, variable modification types, and fixed modifications are applied against the
peptides kept from the previous step, triggering a refiltering for mass. Finally, duplicate
peptide-modification tuples are merged by joining the source protein identifiers to retain a
single entry for each unique such tuple.

2.3.4. Search

The search procedure proper first selects a batch of candidates matching a certain toler-
ance window as specified by the user around the precursor neutral mass of each individual
query spectrum, then applies a user-specified scoring function to the batch of candidates
for the input query spectrum. Any resulting match scoring more than 0 is kept in the final
results database (it is the responsibility of the score implementation to adapt to this 0 cutoff
based on other user settings to achieve the desired behavior). The complete artifact takes
the form of the query spectrum identifier (the title provided in the input mgf file), the source
protein identifier (the protein identification line from the fasta files, or multiple lines merged
with semicolons if duplicate peptides were generated in the preprocessing step), the score,
and an arbitrary python metadata artifact as a binary blob. It is up to the scoring function
implementer to ensure that the artifact contains all the data necessary to apply the rescoring
function if such a step is desired later.

The default scoring function provided by Pepid is a combination of an implementation of
the Xcorr function based on the Comet codebase and an implementation of the Hyperscore
function based on the X!Tandem codebase, a strategy that has been shown in the past
to improve search result qualities (Shteynberg et al., 2013). We also modify our Xcorr
and Hyperscore implementations in two major ways: first, we expose many implementation
details of those algorithms as user modifiable parameters in our configuration file, and second,
we expand in multiple directions upon those algorithms. Our extensions are as follows:

— We generalized comet’s so-called "flanking peaks" feature to support using arbitrary
amount of intensity bins on either side of the current bin during spectrum correction;

— We implement a gaussian kernel and a generalized version of the original comet kernel
using the exponential falloff (1

2)n to weigh intensity values n bins away;
— We implement dynamic bin boundary settings based on ppm calculations at the level

of individual spectra, supporting 3 operating modes: in "max" mode, the highest
m/z in the spectrum is used to compute a m/z difference equivalent and is the basis
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for setting the distance between bins; in "precursor" mode, calculation proceeds as
in "max" mode, but operates off of the percursor neutral mass; in "bins" mode, bin
boundaries are iteratively computed from the maximum allowable mass down to the
user-provided minimum mass interval using the distance metric computed as in "max"
mode.

We similarly apply modifications to the hyperscore algorithm as follows:
— We keep the top N best-matching sequences, with user-provided N and user-provided

series selection criterion (i.e. answering the question "best N what?"): "charge" in-
structs Pepid to keep the top N charges, counting matches across all series for the
same charge level; "series" does the converse (selecting the two best series across all
charge levels); "both" selects the best matching vectors (i.e. series-charge sequences).

— We make the theoretical spectrum weighing scheme used by X!Tandem (corresponding
to the input parameter ‘refine, spectrum synthesis‘) user-settable and optional.

— We add a score reformulation option that modifies the model to assume that the sum
of intensities (all sequences) is caused by the selected best-matching sequence(s) alone
(rather than the joint of all selected sequences as in the original X!Tandem model).

We show that some of those modifications can greatly improve peptide identification
rates in Section 2.4. Additionally, we deliberately abstain from implementing the X!Tandem
hyperscore protein-level peptide score adjustment and the Comet E-Value scoring function
because it is well known that both methods defeat appropriate TDA-FDR evaluation (for
example, it was noted by Zhang et al. (2012); Gupta et al. (2011b); Matrix Science Ltd
(2010); Jeong et al. (2012) and indirectly observed in Elias and Gygi (2009)).

The uncombined version of each scoring function (i.e. Xcorr and Hyperscore) are also
made available to users by default by selecting the right function in the configuration file. The
base functions were verified to behave identically when using the same parameters compared
to their reference implementation in Comet and X!Tandem, respectively.

2.3.5. Input Postprocessing

In Input Postprocessing, a user-specified function receives an input python dictionary-like
object describing the corresponding entries in the database that are to be user-processed, and
outputs an arbitrary python datum that is then serialized as binary and saved in the database
in an extra column. It is up to the user to implement the correct processing functions at the
correct stages of the pipeline to make use of this data, or to rely on the primitives already
provided by the engine.

In previous work, we added a deep-learning length prediction system as an input post-
processing step applied to the set of queries. The length prediction module adds a vector
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of probabilities corresponding to the predicted probability of the peptide being of a given
length as a metadata item to each query spectrum.

We also add a deep learning-driven spectrum prediction input postprocessing module to
the input postprocessing step for candidates. For each candidate, the deep learning module
predicts a full spectrum (i.e. both the m/z and the intensity across the entire spectrum,
not just the intensity for preselected masses as in Prosit (Gessulat et al., 2019) or DeepMass
(Tiwary et al., 2019)), which is added as a metadata item. We do not use this module as
the main spectrum generation function because, as with Gessulat et al. (2019); Wilhelm
et al. (2021), we find that our predicted spectrum is better used as a feature for a rescoring
algorithm like Percolator.

2.3.6. Postsearch

A postprocessing phase following the search, dubbed “postsearch” to avoid ambiguity
with other postprocessing phases, is applied before the rescoring phase. When using the
length prediction module mentioned above, this phase can add various computed features
based on the PSM characteristics to the metadata for each search result. This design was
chosen mostly as a demonstration of the pipeline’s flexibility, as it could be more efficient
to only perform this step as an out-of-pipeline operation as we do to append groundtruth
labels to the data (described in implementation), so as to only generate predictions for those
entries that will be used for rescoring. Nevertheless, this design allows examining the results
to drive potential insights and further peptide identification research.

2.3.7. Rescoring

The rescoring module runs the user-specified function on the input results rows. The
default rescoring function generages a Percolator INput file (PIN), and uses Percolator for
rescoring, converting the Percolator OUTput file (POUT) at the end of the Percolator rescor-
ing process into a Pepid output tsv. Alternatively, Pepid also provides a random forest-based
rescoring method.

We also provide an experimental random forest-based rescorer that is pretrained on
Massive-KB (Wang et al., 2018) (a dataset of non-synthetic human peptides with a consensus-
based ground truth), in the style of the original formulation of PeptideProphet (Ma et al.,
2012). We show that this rescoring method appears to generalize as it successfully rescores
both ProteomeTools and One Hour Yeast Proteome search results beyond what Percolator
is capable of at both the FDR and FDP level despite no finetuning being applied.
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2.3.8. Reports

The Report and Final Report steps are the same, except at different stages of the pipeline:
the Final Report operating after rescoring. The result of this step are text file artifacts con-
taining data about PSM quality across FDR thresholds and graphical artifacts summarizing
the results (see Figure 4 for an example of the output graphical artifacts).

2.3.9. Out-of-pipeline Operations

The phased, pipeline design of Pepid allows interrupting the process at any time and
using arbitrary functions to alter the contents of the databases used to store the queries,
candidates or search results. We showcase this capability by implementing such an out-
of-pipeline insertion of fields from the mgf file that aren’t otherwise recorded by the query
processing step (namely the ground truth sequence from ProteomeTools used exclusively for
FDP evaluation, which is introduced in the mgf data by the SEQ= field).

2.4. Implementation
Pepid is implemented in Python 3. It is accelerated using a custom multiprocessing mod-

ule available under pepid_mp.py in the source repository, which allows greater flexibility for
reporting and debugging than usual python options such as multiprocessing. The scoring
functions are also accelerated using numba, and extensive use of numpy and vectorization
provides additional speed advantages. For the experimental deep learning facilities, pytorch
is used for both training and inference.

The sqlite database is used as the backing store for the artifacts at each stages. During
search, heavy sharding is used to ensure maximum throughput. This means that Pepid is
highly sensitive to the storage medium and properties for the destination of the artifacts. To
avoid performance degradation due to operations on a large SQLite database, each process
creates a new shard whenever a user-specified result count threshold is exceeded.

The condensed output generation (i.e. the output to a human-readable tsv file) and the
PIN generation steps can be very slow if operated sequentially, so they are multiprocessed
as well. To avoid data races, a file lock is used to negotiate write access to the appropriate
file. This is sufficient to speed the process up to 2000% compared to sequential operations.

In the current version, Pepid relies on unix-specific facilities to perform both the multi-
processing (UNIX sockets are used for communication), as well as for the file lock facility.

2.4.1. Search Parameters

Search parameters for the cross-engine comparison using ProteomeTools were selected to
match as well as possible between the search engines used, while enabling any special method
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available to each engine as would normally be enabled in a real search. A summary in the
Pepid configuration format is provided with the software. For the yeast search, parameters
for Pepid were optimized so as to represent realistic performance statistics for more accurate
comparison on the basis of wallclock time. All parameters used in the experiments in this
paper (including mass tolerance, cleavage rule, search algorithm choice and specification, etc.)
are available in the pepid repository at https://github.com/lemieux-lab/pepid in the
configuration files: the example_proteometools.cfg file represents the configuration used
for the ProteomeTools experiments, the example_yeast.cfg file represents the configuration
for the one hour yeast proteome experiments, and the example_proteometools_ml.cfg file
contains the configuration for the ProteomeTools experiment employing all the machine
learning tools integrated in pepid.

While Pepid supports rescoring by Percolator or by a partially pretrained random forest
method, we only compare engines with percolator due to the pervasiveness of this method
across established pipelines. We show the results of the pretrained random forest method
compared to previously shown Pepid results to demonstrate generalization and increased
identification rates separately. Due to its pretrained nature, this random forest approach
cannot equitably be applied to other search engines.

2.4.2. Length Feature Extraction

When the length prediction module is in use, several features are computed in postsearch
and added to every PSM from the search step. In particular, we compute the difference
between the most-probable predicted length and the candidate length, the predicted prob-
ability that the peptide present in the spectrum is of the candidate’s length, the difference
between the probability of the candidate’s length and the best, worst, next best and next
worse length probability. Those features are simply extracted during the rescoring step and
used as extra features in the Percolator-based pipeline, for example.

2.4.3. Spectrum Generation

We developed a deep learning-based approach to full-spectrum prediction. To the best
of our knowledge, the only previous work to have ever successfully used this approach was
PredFull (Liu et al., 2020). Our approach differs in several aspects: first, we use fully stan-
dard convolutional neural network instead of PredFull’s mix of “Spike and Excitation” units
and multi-scale convolutions. Second, we output a predicted spectrum for each charge level
(equivalent to using 5 different networks that heavily share weights). Third, we constrain
the output spectrum so that any intensity less than 1 · 10−3 is dropped to 0 so as to obtain
a sparse spectrum (we find that resulting spectra are usually very sparse, at around 1-3
non-null peaks per 1000 bins, with a total of 50000 bins, i.e. an average of up to 150 peaks
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per generated spectrum). We do this mostly due to storage constraints when applying the
model during peptide search, although this also acts like a noise removal pass. The model is
trained using the ADAM algorithm.

The model’s architecture and input processing are presented in Figure 2. It is can be
understood as an encoder (a convolutional layer processing the whole sequence at once), 5
processing stages (using convolutional residual layers with a kernel size of 1), and 5 decoders
(one per charge level), each independently transmuting a size 1024 latent representation
into a size 50000 predicted spectrum corresponding to each input in the sequence, which
is then averaged over those sequence elements. The result is a predicted total spectrum in
rasterized (i.e. a vector for which each bin has a 0.1 Da width) format for each charge level.
This design allows the model to be used efficiently to preprocess a database of candidate
peptides, without having to repeat this relatively slow prediction process when iterating
upon scoring mechanisms or parameters.

We train the model using the Massive-KB data to avoid potential overfitting vs Pro-
teomeTools as much as possible, and we show some results on ProteomeTools and the Yeast
dataset to demonstrate that the resulting model is generalizable. Finally, we apply it during
candidate post-processing and store it using the compressed sparse row representation using
the SciPy module, version 1.10.0 (Virtanen et al., 2020).

We do not use the same training set as in PredFull because PredFull uses a private subset
mix of the ProteomeTools, Massive-KB and Nist data with some data cleaning applied.
Instead, we use the Massive-KB data with no ProteomeTools overlap and do not apply
special cleaning before processing.

2.4.4. Rescoring

Beside the classical Percolator-based pipeline, we also present a ground truth-based,
pretrained, random forest rescorer using the Massive-KB dataset so as to avoid overfitting
as much as practical. To demonstrate its capabilities, we measure performance both for
ProteomeTools search results with Pepid, and Yeast search results, both on the basis of
FDP and FDR identifications over common value ranges. The model is implemented in
scikit-learn (Pedregosa et al., 2011) version 1.3.3 as a pipeline composed of a standard scaler
followed by the random forest with default parameters (in short, using the gini critierion
for impurity and the square root of number of samples for split consideration. Thorough
details are available in the software and in pepid’s source code). The model is trained in
a 10-way cross validation setting and the best-performing model on the basis of separation
between ground truth and other hits is saved (along with the scaler). The model and scaler
are then loaded and applied to the search results to rescore (i.e. those of ProteomeTools and
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Figure 2 – Architecture and input transformation for the Spectrum Generation model. A:
The input peptide sequence is encoded similarly to PredFull (Liu et al., 2020) with a one-hot
peptide sequence, but without one-hot charge, and using mass divided by a fixed scaling
factor (2000 here). B: The model architecture is composed of straightforward convolutional
layers (kernel size, embedding output size). The final pooling layer averages over the sigmoid
outputs across each of the 41 input sequence elements, in effect gathering the consensus from
the spectrum implied by each amino acid. The output is 50000 intensity levels for each output
charge level. The dashed circle with + represents elementwise addition.
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Massive-KB ProteomeTools Yeast
PredFull 0.629 0.573 0.320
Ours 0.632 0.616 0.320

Table 3 – Spectrum generation average cosine similarity compared to PredFull. Perfor-
mance on Massive-KB is on the held out set only for our method. Note that PredFull uses
the pretrained model from predfull.com, which used a combination of proteometools, NIST
(Stein, 2008) and Massive-KB data for training.

Yeast in this case), and a second random forest-based rescorer is trained to identify high-
scoring vs low-scoring targets (where low-scoring means those with a score below the median
score for the collection of PSMs including decoys). This is used as a fine-tuning phase, and
the output probability is averaged with the pretrained ground-truth-based random forest
probability outputs to generate the final score. The fine-tuning is required to adapt the
score to some different experimental conditions, such as search parameters or species under
investigation, as we show using the Yeast dataset.

2.4.5. MGF Field Insertion

To compute FDP-based metrics, a separate module (pepid_mgf_meta.py) is provided
in the Pepid distribution. It takes the configuration file and a field name and inserts the
field in each entry of the mgf file into the corresponding entry in the queries database (if the
mgf entry was present in the database). This serves also as a demonstrate of working with
out-of-pipeline processes to achieve even higher flexibility in overall processing.

2.4.6. Results

Pepid was compared against other search engines to demonstrate that it forms a solid
baseline, without which its utility as a research platform would prove limited. It was also
compared against itself using different datasets to show how Pepid scales based on dataset
size in terms of runtime.

For the comparison between search engines, runtime and identification rates are consid-
ered. We use the ProteomeTools dataset as a comparison basis because it contains a large
set of clean spectra which, combined with our hardware capabilities, serve to better explore
real-world performance metrics than would a smaller dataset.

2.4.7. Performance

Performance results for the spectrum generation task on the whole spectrum are presented
in Figure 3. We note that our model is trained only on the Massive-KB data, while the
PredFull model is trained on Massive-KB, ProteomeTools, and Nist peptide datasets. Despite
this, our model performs slightly better on Massive-KB, and much better on ProteomeTools.
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Further comparison to other spectrum generation methods can be found in the PredFull
paper (Liu et al., 2020). The indistinguishable, yet low, performance on the One Hour Yeast
Proteome dataset is likely due to reaching a ceiling due to the dataset not having a real ground
truth (it uses Sequest search results instead) and the spectra in the dataset not being quality-
selected, such as by originating from synthetic peptides, or being collected from consensus
as in ProteomeTools and Massive-KB respectively. Another potential discrepancy is the
difference in NCE. Higher NCE typically results in more relatively pronounced low-mass
peaks. Since our model is trained on Massive-KB, it could be underestimating intensities at
lower m/z values compared to the expected yeast spectrum.

We note that our method is the only one that can be applied after candidate peptides
are generated from in-silico digestion in practice, because our model outputs all possible
charged spectra without requiring foreknowledge of the query spectrum’s input charge, as is
a required feature in all other approaches (thus the need to run the same algorithm once per
potential charge state for other approaches, which is often intractable). This kind of design
concern is often not apparent when developing tools in isolation rather than as part as a
full system like Pepid, therefore further stressing the importance of such tools for peptide
identification research.

Runtime performance was evaluated on a machine with the following relevant hardware:
— RAM: 192GB
— CPU: Intel(R) Xeon(R) Gold 6130 CPU @ 2.10GHz (64 pseudo-cores)
— GPU: 1x Nvidia GeForce RTX 2080 (12GB VRam)
— Disk: Intel Corporation NVMe Datacenter SSD [3DNAND, Beta Rock Controller]

Model: SSDPE2KE016T8
— OS: CentOS, kernel version 3.10.0
Figure 1B summarizes the runtime performance of various engines on ProteomeTools so

as to demonstrate Pepid viability in a realistic workload, while Figure 3 compares Pepid’s
scaling performance on our datasets and demonstrates that the added flexibility in the hyper-
score and xcorr implementations can be beneficial for identifications in some contexts. The
combined xcorr and hyperscore scoring function is used in all experiments. We match our
parameters to that of other engines as closely as possible for the cross-engine comparisons.
For the Pepid performance scaling experiments, we vary the parameters to show the relative
performance of our engine in these scenarios when performing a realistic search function.
We find that for both dataset, although especially the yeast dataset, we can improve upon
results provided by plain xcorr or hyperscore by using our algorithm extensions, as shown
in Figure 3E. We make use of Pepid’s phased design to quickly iterate upon search settings
or parameters to find the best choices without having to incur input processing and input
postprocessing costs (or even search costs when iterating on just pre-rescoring features),
while we had to optimize the results the “hard way” for the other search engines, resulting
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Figure 3 – Performance scaling data for Pepid. Lgt: length predictions. Spec: deep
learning spectrum generation. Both: Lgt+Spec. RF: random forest-based rescoring. A,B:
Runtime breakdown by phase per dataset. Right compares the runtime for computing all
machine learning features vs non-ML (“rest”) tasks. C: Indicative database sizes (queries and
candidates). D: Overall runtime comparison. E: PSM and peptide identifications depending
on which of Pepid’s modules are in use.

in a slower and more painful iteration process. Due to the relatively painless nature of Pepid
development, exposing more parameters and function variants of the hyperscore and xcorr
scoring functions was straightforward.

Figure 3A,B demonstrates that while the phased design of Pepid incurs an overhead
for preprocessing and output, this overhead diminishes quickly when dataset size increases,
allowing search and rescoring wallclock time to dominate the overall process duration. This
also appears to be true for the overhead of the machine learning algorithms, although they
remain quite expensive to run overall. Thankfully, the phased design employed by Pepid
means they only need to be run one per query set or candidate database respectively, and
the resulting computed features are “portable” (i.e. they can be reused in different settings
without regeneration).

As presented in Figure 1A, despite Pepid keeping all results in the final database on disk,
while other engines typically work in-memory and maintain a limited set of top PSMs, it
remains competitive in runtime compared to other common search engines. We show that
Pepid is faster than currently used search engines, demonstrating that the design’s impact
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on overall speed is minimal in the current iteration. On the other hand, space usage may
be an issue, as storing all the data for the One Hour Yeast Proteome search results takes
about 160GB on disk, while for Proteometools, 2.8TB are required. However, deep learning-
based methods increase runtime considerably at this time. Though that may be the case,
the identification performance impact of our methods are significant in the settings tested
in this paper, despite our approaches leaving space for refinement across the board (both for
runtime performance and for metric performance).

In Figure 1C, performance between the selected search engines is compared, showing that
Pepid performs well compared to other engines in similar parameter settings. A baseline of
this level is important as a starting point for further research, as it shows that Pepid works
reasonably well without a significant algorithmic update. We believe that this demonstrates
once again that Pepid is a suitable tool for further research in peptide identification.

As shown in the figure, with all tools enabled, Pepid outperforms other methods at the
FDR level, and greatly outperforms at the peptide level. Moreover, it performs approxi-
mately equally to other tools at the FDP level. In a realistic scenario where FDP is not
available, it is important for tools to not overestimate FDR, and critical that they do not
underestimate it. Other engines include methods that defeat FDR (Gupta et al., 2011a)
which are enabled for this comparison. Pepid, on the other hand, is configured in the default
files to use conservative parameters, as this is critical to compare algorithmic variations for
peptide identification research. Some of these methods, such as Comet’s protein-level sta-
tistics applied to peptide-level scoring, which effectively perform “local rescoring”, cause the
“pre-resore” score reported in the figure to be an inaccurate comparison, because in fact,
those engines perform partial rescoring or other score adjustments. This is supported by the
shrunken identification gap when rescoring is applied across all engines.

2.4.8. Visualization

It is well known that the hyperscore and xcorr scores are biased, notably for peptide
length (i.e. they tend to generate higher scores for longer peptides) (Wang et al., 2015;
Hubler et al., 2019; Jeong et al., 2012) or charge (Granholm et al., 2012). For peptide
identification algorithm research, it is important to have at least two basic metrics: accuracy
(that which we aim to optimize, e.g. peptide identification rate) and bias (which we would
like to minimize). Pepid currently offers basic visualization aids to expose common sources
of biases relating to precursor charge, precursor mass, peptide length, identifications at a
selected q-value FDR threshold at the peptide level, spectrum level, and PSM level, and
identifiations over FDR, among others. These tools can be used to quickly identify biases,
distribution skews, algorithm performance, etc. In Figure 4, a report plot for the xcorr
function on the One Hour Yeast Proteome is shown. As previously reported in the literature,
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Figure 4 – Example unretouched analysis output from the default Pepid “report” module
(run on the One Hour Yeast Proteome data).

we find peptide length bias in the score distribution, demonstrating the potential usefulness
of this tool for further development.

2.5. Discussion
We have developed a research platform for peptide identification research that is compet-

itive with state-of-the-art methods in runtime and identification rate performance. Overall,
Pepid showcases a design that is specifically oriented toward bioinformatics research and
is suitable, in the authors’ experience, to combination with deep learning methods, all the
while retaining runtime and identification performance in line or superior to commonly used
“search-only” engines (that is, engines designed for throughput, not for modification and
research).

We have shown that Pepid can easily be adapted to include deep learning methods
in the search process, demonstrating the added value of the phased design. The custom
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function extension points displayed their value both during the development process (allowing
simple configuration modifications to easily compare performance in different conditions)
and the research process (allowing the easy extension of the Pepid run to use deep learning
models). Furthermore, we have shown that the inclusion of deep learning tools for parts of
the peptide identification pipeline can greatly increase identification rates across the board,
and that those deep learning tools can be generalized to different species and, to some extent,
experimental settings.

Currently, Pepid does not feature a score filtering system. That is because in this initial
design, Pepid was developed for peptide identification research first, where we would like to
keep as many search results as possible so that we may identify where search algorithms show
weaknesses. This data is also usable to train deep learning models in various ways, where
the presence of low-quality search results is important to help models explore a richer and
more accurate data distribution. In a future update, we plan to address the disadvantage
this brings in terms of space constraints.

Pepid’s phased design allows it to naturally operate in a distributed environment even
though no such feature is officially supported at present; a simple scheme to achieve this is
as follows:

— Perform input processing on a single node;
— Migrate the database artifacts to each computer that will be used for search;
— Perform only the search step on each computer, providing a mgf file subset appropriate

for each;
— Migrate the resulting search databases to a single node;
— Perform output, report and rescoring on that node, as desired.
In a future update, more attention will be given to user-friendliness, for example by

providing easy name association for enzymes instead of requiring the user enter a regular
expression directly. In similar veins, An official utility script akin to the comparison and
filepath generation scripts described previously will be provided to make other operations,
like distributed processing, more convenient. In addition, although Pepid’s preprocessing
function can be changed by a user’s arbitrary function instead, better defaults will be pro-
vided, for example expanding modification support and fragmentation types.

Finally, Pepid currently relies on UNIX facilities. While it may or may not operate under
Windows using WSL2, a future release may get rid of the UNIX-specific facilitie in favor of
a cross-platform option.

Regarding the newly introduced models, the spectrum generator is not aware of NCE
during generation and therefore may require postprocessing-based adjustment, or the inte-
gration of larger datasets with a range of NCEs, to work better in different NCE scenarios.
The lack of quality synthetic or consensus data of sufficient size, especially for non-human
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peptides and for non-tryptic digests, makes accurate evaluation of this, and the length pre-
diction model, difficult. Similarly, the lack of reliable ground truth peptide identities makes
proper FDP evaluation (to qualify FDR estimation quality) less than ideal, a problem that
also affects other search engines as shown in our figures (for example, Comet appears to find
fewer peptides than X!Tandem with 1% FDR control, but far more at the 1% FDP level.
This shows that X!Tandem’s algorithm causes underestimation of FDP by the TDA-FDR
method, and that Comet should be preferred in this example. The question to solve is: how
can we obtain such confidence when we have no access to ground truth peptides?)

Our search engine is publicly available online at https://github.com/lemieux-lab/
pepid.
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Abstract
The current mainstream software for peptide-centric tandem mass spectrometry data

analysis can be categorized as either database-driven, which rely on a library of mass spectra
to identify the peptide associated with novel query spectra, or de novo sequencing-based,
which aim to find the entire peptide sequence by relying only on the query mass spectrum.
While the first paradigm currently produces state-of-the-art results in peptide identification
tasks, it does not inherently make use of information present in the query mass spectrum
itself to refine identifications, where by “information”, we are not referring to the literal peak
m/z or intensity value as in classical algorithms like SEQUEST Eng et al. (1994) or even local
such patterns as in some PTM localization algorithms such as PTMiner An et al. (2019),
but of the complex interaction between the peaks in the whole spectrum which may reveal
global clues as to the nature of the peptide. Meanwhile, de novo approaches attempt to
solve a complex problem in one go, without any search space constraints in the general case,



leading to comparatively poor results. In this paper, we decompose the de novo problem
into putatively easier subproblems, and we show that peptide identification rates of database-
driven methods may be improved in terms of peptide identification rate by solving one such
subsproblem without requiring a solution for the complete de novo task. We demonstrate
this using a de novo peptide length prediction task as the chosen subproblem. As a first
prototype, we show that a deep learning-based length prediction model increases peptide
identification rates in the ProteomeTools dataset as part of an Pepid-based identification
pipeline. Using the predicted information to better rank the candidates, we show that
combining ideas from the two paradigms produces clear benefits in this setting. We propose
that the next generation of peptide-centric tandem mass spectrometry identification methods
should combine elements of these paradigms by mining facts “de novo” about the peptide
represented in a spectrum, while simultaneously limiting the search space with a peptide
candidates database.
Keywords Deep Learning, Peptide Identification, Proteomics
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3.1. Introduction
Mass spectrometry (MS) is currently the only high-throughput method that allows the

analysis of peptides and proteins at scale (Duncan et al., 2010). Tandem MS is typically
needed to accurately identify the fragments under study as mass conflicts make precursor
fragment masses an insufficient proxy for peptide identity in peptide-centric experiments. In
this paper, we focus on the tandem MS paradigm and use the term “mass spectrometry” to
refer to “data-dependent tandem mass-spectrometry” (in particular in the peptide-centric
identification setting) for the sake of brevity. Due to the large and complex data generated by
mass spectrometry experiments, analysis by computer software of the mass spectra output
is necessary to process the data at a reasonable rate. The main paradigms for such analysis
are:

— de novo, or tag-based approaches, where the software tries to identify parts, or com-
plete, sequences from the spectrum (Tran et al., 2017);

— correlation-based approaches (Zhang et al., 2011), which attempt to describe the
strength of the correspondence between an experimental spectrum and a spectrum
from a database, possibly generated in silico based on a candidate sequence (Eng
et al., 1994), and

— probabilistic models, which compute the probability that a certain amount of observed
peak matches between an experimental spectrum and an expected spectrum (usually
generated from a database) occurs by chance as a proxy for the likelihood of a match
between the experimental spectrum and the peptide represented by the database
spectrum (Cox et al., 2011)

Some of the most widely used mass spectrometry analysis software tools are proprietary.
While the high-level ideas behind these methods are sometimes published (Perkins et al.,
1999; Cox et al., 2011; Zhang et al., 2011), their finer-grained details remain trade secrets
(Ma et al., 2003; Perkins et al., 1999; Cox et al., 2011), which makes iterating or probing
these methods complicated. This means that for algorithm development and comparisons,
only open-source software is viable (although this is not sufficient, as the design of the tool in
question may make the integration of some algorithms hard or impossible). In many contexts,
however, closed source tools are preferred for use in practice for peptide identifications (Zhang
et al., 2011; Cox et al., 2011). Nevertheless, these proprietary methods see wide use as
practitioners empirically find them to work best for their usual workloads, as reported in
the literature (Yuan et al., 2014; Välikangas et al., 2017). Many open-source solutions
are available (MS-GF+ (Kim and Pevzner, 2014b), Comet (Eng et al., 2012) or Morpheus
(Kim and Pevzner, 2014a) for example), but they don’t always respond to the community’s
expectations, often producing results of insufficient quality, although the situation may be
changing. For example, IdentiPy (Levitsky et al., 2018) was recently proposed as a new
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open-source algorithm that performs better than its other open-source peers, representing a
further step toward closing the gap between open-source and proprietary methods.

Even with a wet lab protocol that is optimally tuned for a given (preselected) downstream
analysis tool, the results obtained leave space for further improvement on the basis of correct
peptide identification rate (Michalski et al., 2011; Zolg et al., 2017; Duncan et al., 2010).
In addition, the various state of the art methods share a notable flaw: they rely heavily on
input databases (and their specific contents, entry count, composition, and so forth) to query
against candidates (Ma et al., 2003; Perkins et al., 1999; Cox et al., 2011; Duncan et al., 2010),
which makes results highly dependent on the input database design. In applications where
a large specialized or extended database might be useful, the mainstream algorithms place
technical restrictions on the size of the databases vs correctly identified peptides, leading
the community to develop various sub-optimal tricks to work around these issues (Laumont
et al., 2018). Recently, to address the above, the Pepid project (https://github.com/lemieux-
lab/pepid) has attempted to build a platform designed specifically for experimenting with
peptide search algorithms, which may accelerate improvements in open-source search engines
and to the development of more robust identification pipelines.

De novo sequencing methods are tandem mass spectrometry analysis methods that do
not make use of databases, instead relying purely on the mass spectrum. Solving de novo
sequencing has been attempted for decades with limited success (Lu and Chen, 2003; Chi
et al., 2010; Frank and Pevzner, 2005; Cleveland, 2013; Fischer et al., 2005; Tran et al., 2017).
However, some of these methods optimize metrics that implicitly imply good performance
on other tasks: the recent method DeepNovo (Tran et al., 2017), for example, computes
amino acid-level errors over length of ground truth peptide, and errors over length of pre-
dicted peptide, in their experiments. Such a metric is consistent with the model’s ability
to predict peptide length. This suggests that the auxiliary peptide length prediction task
may both be easier than, and a required component of, de novo sequencing. Moreover, the
fact that DeepNovo performs well for the aforementioned metric, which implicitly measures
length prediction performance (despite optimizing for de novo sequencing outcome), strongly
suggests that peptide length can be predicted from just the spectrum.

There has been attempts to use de novo sequencing outputs to further improve database
searches (Zhang et al., 2011), though those attempts have lead to unconvincing results in
the general case, probably in no small part due to the disappointing performance of de novo
sequencing methods when used in this context (Lu and Chen, 2003; Chi et al., 2010; Frank
and Pevzner, 2005; Cleveland, 2013; Fischer et al., 2005; Tran et al., 2017). On the other
hand, de novo sequencing methods have shown successful uses in constrained applications
on clean spectra (Bhatia et al., 2012). This demonstrates that de novo methods are sensible
as a class of approaches, though hampered by the complexity of spectra from peptides of
unconstrained structures. To the best of our knowledge, there has been no attempt so far
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to decompose the de novo problem into distinct subproblems (which could be easier than
full, end-to-end de novo sequencing, and therefore achieve the subproblem’s objective better
than de novo approaches can perform end-to-end) and to use solutions to those subproblems
for database-driven methods. In this work, we propose one such decomposition. We then
focus on peptide length prediction as a subtask of the full de novo sequencing problem to
demonstrate its potential usefulness in database-driven peptide identification. Previously,
software like MaxQuant (Cox and Mann, 2008) have modeled the relation between peptide
length and scores generated by methods such as Mascot (Perkins et al., 1999), and to derive
more confident identifications using that model. This is different from our methodology,
where we propose to model the length of the peptide based on the spectrum only, and
combine that with an external scoring method.

While there can be many ways to consider a decomposition for de novo sequencing, we
choose the following model:

(1) Peptide length prediction
(2) Amino acid composition prediction
(3) Amino acid ordering

We show that solving one subproblem from this example decomposition (namely, peptide
length prediction) is both reliably achievable using deep learning, as well as proving a valuable
asset as part of a state-of-the-art database-driven peptide identification pipeline.

In this paper, we demonstrate that a deep learning-based method can accurately predict
peptide length from the spectrum, and that the predictions from such a method can further
be used to achieve higher peptide identification rates at a fixed false discovery rate (FDR)
as well as at fixed false discovery proportions (FDP) using the SPOT (Frank, 2002) peptide
dataset ProteomeTools (Zolg et al., 2017).

3.2. Methods
In order to establish a proper evaluation of the proposed methods, we make use of Pro-

teomeTools (Zolg et al., 2017), a dataset of synthetic (SPOT (Frank, 2002)) peptides. This
gives us access to a reasonable ground-truth for the peptide identities in the dataset as well
as enabling FDP evaluation rather than relying on target-decoy FDR estimation. The avail-
ability of ground-truth data also allows a richer performance comparison between proposed
and competing methods. The length model is trained on the Massive-KB (Wang et al.,
2018) dataset, so as to keep the evaluation data and the train data as separate as possible
to show the applicability of our method. To further demonstrate the generalization power of
our length prediction method, we also present measures on the One Hour Yeast Proteome
(Hebert et al., 2014) dataset.

We present two measures of the effectiveness of our proposed approach:
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(1) Identifications under False Discovery Proportion (FDP)

(2) Identifications under Target-decoy approach-based FDR (TDA-FDR)

Since we have access to reasonable ground-truth, we can compute FDP (sometimes called
factual FDR (Jeong et al., 2012)), which is not usually available in non-synthetic datasets
where the identity of the peptides in a pool is not known. We compare the relative results
(i.e. between the ground-truth and our proposed method) using the aforementioned metrics
and note that due to the availability of ground-truth data, the identities at various FDP
thresholds is most likely the most relevant. The FDR metrics serve as reference and offer a
different, more common view of the results.

3.2.1. Data

ProteomeTools is a dataset of spectra obtained with an Orbitrap Fusion Lumos on a
pool of synthetic peptides determined by in silico tryptic digestion of the 20 428 sequences
of human proteins found in the Swiss-Prot database at the time of recovery of the release
in this paper. ProteomeTools data is available on the PRIDE archive with accession ID
PXD004732 (Zolg et al., 2017).

In the original ProteomeTools paper, spectrum quality was assessed using the Andromeda
score (Cox et al., 2011) for the ground-truth peptide (if it was identified at all by Andromeda).
We show statistics related to spectrum quality in Figure 1. The distribution of masses vs
peptide length with a linear fit in Figure 1A gives an idea of task difficulty. In Figure 1B,
we show the distribution of peptide lengths across the dataset. Figure 1C and D show score
distributions, where an Andromeda score of less than 100 is considered “low quality” for the
spectrum (Zolg et al., 2017; Cox et al., 2011). It can be seen that while there are many low-
quality spectra, the majority are of relatively good quality. We used only the data from the
higher-energy collision dissociation (HCD) experiments at a 25 normalized collision energy
(NCE) as these seem to produce the best scored results out of the available data according to
the analysis in the original ProteomeTools paper (Zolg et al., 2017). The length distribution
of peptides in the dataset (fig. 1B) shows a preference for small peptides with 44.28% of the
spectra in the dataset covering peptides shorter than 12 amino acids (which corresponds to
38.54% of unique peptide sequences). There are very few samples for large peptides, and
the most common peptides are in the length ranges 7-14 (this is the smallest range spanning
approximately 2/3 of the data). The full extent of lengths in the dataset is 6 to 40 amino
acids.

The One Hour Yeast Proteome is a dataset of non-synthetic yeast peptides with a baseline
generated by the Thermo Fisher version of the SEQUEST search engine (Hebert et al., 2014).
We use the “batched” dataset, which combines the result of all the hour-long runs. URLs
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to the ChorusProject submissions of the data are available in the One Hour Yeast Proteome
paper (Hebert et al., 2014).

The Massive-KB dataset builds consensi based on various proteomics experiments sub-
mitted to the project, thus combining more realistic peptide pool searches with reasonably
confident ground truth identities (Wang et al., 2018). It is the largest of the 3 datasets
(about 4x the size of the ProteomeTools’ dataset of 63 004 183 spectra) and contains HCD-
fragmented spectra of human peptides. The data may be obtained at https://massive.
ucsd.edu/ProteoSAFe/static/massive-kb-libraries.jsp

To use Massive-KB for evaluation by the length prediction combination with Pepid,
a subset of the data where the ground truth peptides may only be modified with fixed
modification C(CAM) and variable modification M(ox) was used (by correspondence with
ProteomeTools, and due to resource constraints).

In the same setting, the performance for the yeast dataset was obtained by performing the
search only on the subset of the data with a ground truth identification (representing about
50% of the dataset) and uses SEQUEST search results rather than known real identities
(hence the high accuracy vs pepid).

To ensure that the reported performance metrics generalize to never-before-seen pep-
tides and spectra, the Massive-KB dataset, which is used for training, was split three-way
according to the following criteria:

(1) Data (spectra, spectrum metadata, associated peptide) is split into groups depending
on the peptide they represent, with each group corresponding to one unique peptide
sequence;

(2) The collection of groups is then split 3-ways into sets: 80% for training, 10% for
validation, and 10% for testing.

In total, the Massive-KB dataset we used contained 3 178 174 peptides, forming a training
set of 2 542 539 peptides, and 317 817 peptides each for testing and validation. All models
are trained using the training set, whereas the validation set is used to optimize the model
choice and hyperparameters. Finally, the held-out test set is used to report all results in this
work for length prediction performance. For experiments combining length prediction with
pepid, the Massive-KB, ProteomeTools or One Hour Yeast Proteome dataset are used, as
and where indicated, with the ProteomeTools and Yeast data serving as fully held-out data.

3.2.2. Model

We developed a deep learning approach using combined multiple modalities to process the
spectrum and metadata, as illustrated in Figure 2A. The mass is encoded as a simple number,
while the spectrum is encoding as a rasterized vector of fixed size 50000, summing in each
vector element vi the intensity of all peaks in the spectrum with m/z from i ·10 to (i+1) ·10.
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Figure 1 – ProteomeTools dataset properties. A: Distribution of peptide lengths vs pre-
cursor masses in the dataset. The line represents a linear regression. Dark markers are
precursor masses from the spectra with the correct length label using this linear regression,
lighter markers are incorrectly labeled. Although the correlation is very high (>0.96), the
distribution is wide and thus mass is poorly predictive. B: Distribution of peptide lengths
in the dataset showing a large proportion of shorter peptides. C: Precursor masses vs An-
dromeda scores. 52.44% of peptide-spectrum pairs pass the suggested quality threshold of
100, as suggested by the Andromeda developers (Cox et al., 2011), shown by the dashed line
on the graph. D: Distribution of peptide lengths to Andromeda scores.

The model includes a fully connected network, a convolutional neural network, and a different
network integrating metadata such as the mass in the captured spectrum (Figure 2B). At this
stage, latent representations of those modalities are extracted by each network. We train an
auxiliary length prediction task following each of these latent representations (Figure 2D). In
Figure 2C, the different networks’ outputs are combined using another deep learning network.
This network is trained independently of the subnetworks that provide modality-specific
latent representations, and gradients do not flow below it: the subnetworks are trained
using only the signal from their auxiliary training networks, with a different, independent
predictive subnetwork ’head’ per modality, as depicted in Figure 2E.
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The optimization algorithm is Adam (Kingma and Ba, 2014). When the validation loss
does not achieve a new minimum in 10 epochs, the learning rate is divided by 10 and the best
performing model is loaded to continue training with this new learning rate. This method
is iterated 3 times starting at a learning rate of 10−3, after which no further improvement
on the held-out validation set could be observed. The optimization problem is described as
follows:

min
θ,ϕ

1
|X|

|X|∑
j=1

L(xj,·, yj,·)

L(xj,·, yj,·) = −
|C|∑
i=1

yj,ilog(cϕ(Fθ̄(xj,i)))

−
N∑
n=1

|C|∑
i=1

yj,ilog(gn,ψ(fn,θ(xj,i))

where X ∋ (xi, yi ∈ R|C|) is the training data, |X| is its size and |C| = 40 − 6 length categories are
considered (i.e. the model classifies between classes 6 and 40, inclusively), using cross entropy loss.
Optimization is performed over hyperparameters ψ for each prediction network used to help drive
the subnetworks, θ which are the subnetwork parameters, and ϕ which are the combiner network’s
hyperparameters. The neural networks fi are the subnetwork ’processors’, F is the concatenation
of those networks, N is the count of subnetworks (3 in this case). c is the combiner network, and gi
is the subnetwork prediction output network for subnetwork fi. Additionally, we use the notation
θ̄ to represent θ with gradients disabled, i.e. interpreted as a constant. The full hyperparameters
are described in Supplementary Material section B.

The model is designed to predict the probability vector of all classes present in the dataset, thus
its output ranges from 6-40 (with index 0 being the probability of length 6, index 1 the probability
of length 7, and so forth).

3.2.3. Search Engine Integration

To show that length prediction can improve real peptide search result metrics, we integrate
the score from peptide search using Pepid with our length prediction model by producing several
features for rescoring by Percolator, as described later in the text. We chose Pepid because its
flexible design, good wallclock performance, and high baseline identification performance allowed
us to quickly implement the integration and to iterate on feature design for Percolator. This
provides a realistic look at what length prediction can achieve in real-world search scenarios.

To showcase the advantage of length prediction in a familiar setting, we compute statistics of
the length prediction. We use the following statistics:

(1) The probability output from the model for the candidate’s length given the spectrum

(2) The difference between (1) and the best-scoring length

(3) The difference between (1) and the next-best scoring length

(4) The difference between (1) and the previous-best scoring length
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Figure 2 – Diagram representation of the proposed length prediction model, depicting the
two-step training procedure. Darker boxes represent layers that don’t receive updates from
the training process. Step 1, left: A: Inputs: fixed-size (i.e. padded) binarized spectrum
(for network 1 and 2, independently), and mass scalar (for network 3). B: Modality-specific
networks process their respective inputs. C: Separate prediction heads for each network try
to predict length probability vectors. Step 2, right: D: The same networks and inputs are
used, but the prediction heads are discarded. The latent representations learned in Step
1 are used as input to a new combiner network (taking the concatenated layer outputs as
inputs) which is fed into a final prediction network, akin to greedy layerwise pretrianing or
other pretraining-based workflows.

(5) The difference between (1) and the worst scoring length

(6) The absolute difference between the best-scoring predicted length and candidate length

(7) The relative difference between the best-scoring predicted length and candidate length (i.e.
the absolute difference divided by candidate length)

We provide these statistics to Percolator (Käll et al., 2007) to combine length statistics with
the search score, thus providing final identification results.

3.3. Results
We assessed the feasibility of the length prediction task by looking at the distribution of distinct

lengths vs the mass of precursors in the dataset, which is shown in Figure 1A, clearly showing that
the relation is linear but the range of possible lengths for any mass is wide. To establish a baseline
accuracy, we used a simple linear regression, which was trained and tested on the entire dataset
(i.e. performance is reported on the same dataset used for training), achieving an accuracy of
38.53%. This suggests the task is not trivial and that methods based on precursor mass and peak-
matching-based scores may not be able to exploit implicit peptide length data. We then used a
linear regression baseline fit on the Massive-KB data to assess performance (reusing the full set
already used for fitting as an indication of performance upper bound), with results as per Table 1.
As shown in the table, accuracy and MAE strongly correlate.
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Accuracy (%) MAE
ProteomeTools 40.8 0.88
Massive 30.4 1.31
Yeast 42.0 0.83

Table 1 – Linear regression baseline performance (trained on Massive-KB, tested on each
dataset). MAE: Mean Absolute Error.

Figure 3 – Pepid with a peptide length “oracle” (values obtained from the ground truth
peptides in ProteomeTools). A: Identifications across false discovery proportions. B: Iden-
tifications under target-decoy-based false discovery thresholds.

We note that the performance on the Yeast and ProteomeTools datasets are higher than on
Massive-KB, despite the model being trained on the same Massive-KB subset that it is being tested
on. This is likely due to Massive-KB being the more realistic of the three, as the ground truth
for the Yeast dataset is actually Sequest predictions, while ProteomeTools is a dataset of synthetic
peptides.

To demonstrate that length prediction can positively impact peptide identifications beyond
state-of-the-art methods, we show in Figure 3 that the Pepid search engine with artificial perfect
length predictions generated from the ProteomeTools groundtruth followed by rescoring by Percola-
tor (Käll et al., 2007) can consistently achieve higher identifications across common false discovery
ranges. We also show that this holds for FDP (i.e. the real metric of interest).

The results show a modest, but consistent, improvement across the board using just Percolator.
Combination using other strategies, such as candidate filtering, using more sophisticated, non-linear
rescoring methods, ad hoc scoring functions that taken the length prediction into account, and so
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on, could potentially result in further improvements even with the oracle, although it is as yet
unclear which of these methods might be most suitable, and how to best combine and prove them
for next generation proteomics peptide analysis.

The length prediction model’s performance is presented as a confusion matrix in Figure 4. Since
this task, to the best of our knowledge, has never been attempted before, we use the Pepid search
engine’s results as a baseline by taking the length of the best-scoring PSM for each spectrum as a
proxy for the “predicted length” from Pepid to be compared to our length prediction model’s output.
In Table 2, prediction accuracy for the model trained on the Massive-KB dataset is compared based
on the range of length of peptide sequences in amino acid, using either the dataset’s, or the pepid
top-ranking predictions, as ground truth sequences from which the length is computed.

We note that the length prediction performance is worse for longer peptides. This is due in
large parts to the lack of representative data in the dataset, as shown in Figure 1. We choose
to zoom into the data to the 7-14 length which consists of a much higher amount of samples
in the data (approximately 2/3 of the dataset), as it represents the majority of common human
peptides (indeed, ProteomeTools peptides are synthetically engineered based on in-silico digests of
the human proteome).

We note that the deep learning model works significantly better than the baseline linear regres-
sion on Massive-KB (compare Table 1 and Table 2), despite only using a disparate subset when
testing the deep learning model, unlike in the linear regression case which presents results obtained
on the same set used during fitting, despite showing more modest improvements for ProteomeTools
and the Yeast dataset. As noted previously, we attribute these results to the lack of a real ground
truth in the yeast dataset, and to the synthetic nature of the ProteomeTools data. Nevertheless,
we find that the spectrum data clearly improves length prediction across the board. In particular,
we note that the performance between the Pepid top-hit (pepid uses an algorithm very similar
to Sequest) for all three predictions are quite closer between the linear regression and the length
prediction model, than on the ground truth from the data. Since common search engines provide
mass statistics to Percolator for rescoring, this may be a hint that Percolator can effectively exploit
mass – but not length – information to achieve improved identification rates.

To further see why the mass-based and spectrum-based length predictions differ, consider the
consistent improvements obtained by providing length information to Percolator, both in oracular
and in prediction forms. These results demonstrate that (1) real length information (as in the
oracle) can help identifications quite a bit despite Percolator’s apparent ability to leverage mass to
separate hits in rough length-like categories (on account of the inherent correlation between mass
and length), and (2) spectrum-based length prediction also provides information in excess of what
Percolator can exploit using only its default features and masses.

Additional analysis of the behavior of the length predictions under ProteomeTools are provided
in Supplementary Material section B.1. Overall, these results emphasize that data availability
has a major impact on performance. Beside this effect, the results also suggest that the length
predictor works better on smaller (equivalently: lighter) peptides. The data also shows the strong
correspondence between absolute length prediction error and accuracy. Meanwhile, it does not
appear to be negatively impacted by PTM counts (so much as data availability) although further
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Figure 4 – Length prediction model’s confusion matrix showing the total count predicted
vs actual ground truth length from the ProteomeTools set. Only lengths 7-14 (corresponding
to the most represented classes in ProteomeTools) are shown for easier viewing. Colors in
the matrix are for percentage relative to ground truth counts (green is higher, blue is lower).
The bottom row displays marginals on all the classes, with coloring as per absolute counts.

Length Range 6-40 7-14
Ground Truth Data Pepid Data Pepid
ProteomeTools 42.7 40.4 52.8 50.6
Massive 47.7 35.8 65.1 51.5
Yeast 44.2 43.2 54.2 53.6

Table 2 – Length prediction model’s accuracy as a proportion of correctly predicted exact
peptide lengths on the test set. Pepid: using the Pepid search engine’s top-scoring PSM’s
peptide length as the reference length (i.e. correlation with length distribution of identified
peptides). Data: using the length of the peptide indicated in the ground truth data (i.e.
true peptide)

analysis with large datasets of highly modified peptides would be required to properly assess this.
The lack of availability of reliable, large sets of such data limit such analyses at present.

Overall, as shown in Supplementary Material section B, the addition of length prediction (non-
oracular) achieves identifications that overlap about 95% of peptides identified without it, but
enriches identifications by about 3% while losing less than 2% of peptides identified without it.
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Figure 5 – Pepid with the proposed length prediction model achieves improved performance
compared to baseline. A: Identifications across false discovery proportions on ProteomeTools.
B: Identifications under target-decoy-based false discovery thresholds.

Length prediction integration results are shown in Figure 5, demonstrating modest but consis-
tent identification improvements across FDR thresholds similar, but less, than in the oracle version.
These results show that the proposed deep learning model can already help improve peptide iden-
tification results, despite leaving space for further improvements. This is also reiterated in Table 3
which shows identification numbers under target-decoy (i.e. classic) and ground truth (i.e. FDP
based on dataset ground truth peptides) false discovery rates at select common threshold values. In
this table, + percolator refers to just the base percolator algorithm, whereas + length also provides
the length information to percolator.

ID @ 1% FDR ID @ 1% FDP ID @ 5% FDR ID @ 5% FDP
Pepid 1 031 333 388 771 1 179 915 1 051 333
+ Percolator 1 072 146 967 607 1 222 694 1 105 596
+ Length 1 083 066 990 546 1 228 584 1 112 063
Oracle 1 089 048 995 584 1 235 215 1 121 710

Table 3 – Performance results for the Pepid platform with and without the length model
on ProteomeTools.

We would also like to point out that while the improved identifications over target-decoy based
FDR is advantageous, the more important metric is the increased identifications under false dis-
covery proportion. As shown in our results, length prediction is significantly (around 2×) more
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impactful when considering true peptide identifications as opposed to target peptide identifications.
Due to difficulties in obtaining robust ground truth peptide identities in practice, this metric is often
overlooked in favor of the easier to compute TDA-FDR, yet we show here a divergence between the
quality of the improvement under both metrics, showing that only considering TDA-FDR during the
development and evaluation of refinements to peptide identification pipelines may be misleading.
This observation may also impact the feature design for rescoring algorithm like Percolator, or the
different score designs for common engines like Comet (Eng et al., 2012) or X!Tandem (Craig and
Beavis, 2004): better TDA-FDR identifications may hide lower FDP identifications(Jeong et al.,
2012).

3.4. Conclusion
In this work, we have shown that mass spectra contain exploitable information beyond just

serving as the basis for matching against a candidate database. We have proposed a deep learning-
based method that can exploit query spectra to predict the length of the peptide which generated
the fragmentation pattern, and we have demonstrated that this information can successfully be
used to improve peptide identification at fixed FDP or FDR thresholds. We believe this is the first
time it has been shown that peptide lengths can reliably be recovered directly from the spectrum.
Our results were compared to the recent Pepid engine, a modern engine implementing the popular
search algorithm Comet’s scoring function, demonstrating that length prediction can be of practical
interest to improve peptide identification rates in real experiments.

In the typical FDR-based comparison setup, both using FDP and the more classical TDA-FDR
estimation, our approach slightly but consistently increased the amount of identified peptides across
a range of FDR values, and especially around the common lower FDR ranges (i.e. around 1%).
When using FDP, our method similarly enables better separation of false vs true hits, causing
an increase in the amount of correctly identified peptides over the baseline Pepid model. Our
improvements are consistent across a variety of metrics. For example, length prediction improves
unique protein identification at 1% FDR from 61 465 to 62 655 in ProteomeTools, and for unique
peptides, the improvement is from 108 161 to 109 794. Thus, at the peptide, PSM, or protein level,
and whether comparing FDP or FDR, length prediction consistently improve overall search results.
Randomly sampled representative spectra and a venn diagram of unique peptides at 1% FDR are
presented in Supplementary Material section B.

The length-based model leaves room for improvement, achieving limited accuracy across the
range of peptide lengths present in the ProteomeTools dataset. Despite this low performance on
the task the model was trained for, its output can already be used to improve peptide identification,
demonstrating that the proposed approach can unlock further improvements for peptide identifi-
cation. Beside our oracle’s performance demonstrating what is possible at the upper bound with
a much improved model, this also suggests that extracting more information from the spectrum
(rather than trying for full de novo sequencing, for example) may provide more tools to further im-
prove peptide identification in database-driven peptide identification tasks: perhaps properties like
hydrophobicity, or the presence of specific amino acids in the sequence, can also be predicted and
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used in this manner. Furthermore, these approaches can create a toolbox of algorithms that could
lead to similar improvements in a de novo peptide sequencing framework by greatly restricting the
potential search space for peptide candidates.

We also note that the performance is much higher in the regime where data is widely available in
Massive-KB (the dataset used during training), and suffers primarily when data is not very available.
This can best be observed in the full confusion matrix in Supplementary Material section B. That
is despite ensuring that the training dataset and the testing datasets (one hour yeast proteome or
ProteomeTools) are disjoint.

Combining the length prediction from our model with a classical peaks-matching-based ap-
proach (i.e. that of Pepid in our case) is a complex problem. We used a two-step approach in this
work and not an end-to-end approach because we aimed to compare the contribution of our de
novo subproblem model to an existing baseline following common modern identification workflow
practices, and thus to minimize code and architecture changes to just those required to combine
our method and the Pepid scoring method. In light of our encouraging results, we believe that an
end-to-end scoring approach may further improve peptide identification compared to the results
presented in this work. While we do not have the means to combine this method with some of the
commonly used software like PeaksDB or MaxQuant’s Andromeda as they are proprietary, it would
be interesting to verify that this method can improve performance when combined with them.

The results presented in this work are limited in the breadth of parameters in the experiments
from which the data was obtained: all the data comes form HCD fragmented spectra at about the
same NCE, and two of the datasets were on human peptides with one on yeast peptides. Moreover,
our method works well with PTMs, but only static CAM and variable M(ox) were considered.
There are several significant hurdles to testing the method on more data spanning a larger set of
parameters, most notably the lack of suitably large datasets of that nature with proper ground
truth peptide identities. However, our method’s ability to generalize to other species and datasets
using different instruments, although with similar parameters, suggests that it is not overly reliant
on the specific parameters, species and instruments used during training.

Our method only encodes mass in the metadata segment in the current formulation. Previously,
we have attempted to encode other metadata, such as the charge, retention time, and precursor
intensity, but we have not observed any change in performance when adding these data regardless
of format or processing method. We also used different combination methods, including attention-
based, multiple metadata elements, and one large metadata input block. It is unlikely that these
data would not have any use for length prediction, therefore we avoid presenting these incomplete
results. Rather, these results suggest that properly leveraging these data is a more complicated topic
that warrants further investigation, and that their proper exploitation require different processing
methods.

We believe that the above results clearly show that a mixed approach, i.e. combining ideas from
the de novo sequencing and from the database-driven peptide identification, has a lot of potential
to improve upon the current state-of-the-art. A database can be used to initially constrain the
search space to a manageable subset, and information inherently present in the query spectrum can
further be used to reduce this subset by more confidently ranking candidates based on additional
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information not present in peak matching alone, although initial attempts at using this method
for search space constraints based on retaining peptides based either on a length-based probabil-
ity threshold or in a window around the most-likely length have been marginal, indicating that
performing the task well is more difficult, using this method, than improved identifications with
superior scoring. This proposed approach does not suffer from what is arguably de novo sequencing
approaches’ biggest weakness: the combinatorial search space and increased error probability scal-
ing with peptide length, while making use of their strength: the ability to mine information from
the spectrum in advance. Beside peptide length from just the spectrum, data like peptide amino
acid composition, or properties like hydrophobicity, could be extracted to further improve identi-
fication rates. In addition, predictions from the sequence candidates, such as spectrum prediction
or retention time prediction, could further be used in tandem with these spectrum-based feature
extractors to improve identifications even further.

Our code is available as open source software as an integrated package in the Pepid frame-
work starting with version v1.1.0. The repository may be accessed at https://github.com/
lemieux-lab/pepid.
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Abstract
Many methods have been proposed for evaluating the quality of peptide-spectrum matches

(PSMs) identified by peptide search engines. The proteomics community has almost entirely con-
verged upon target decoy-based false discovery rate (FDR) estimation, partly because it is easy to
implement and understand, and partly because it stands on solid statistical foundations. However,
those foundations rely on assumptions that, when violated, skew, or even completely invalidate,
FDR estimation. Currently, the most common identification pipeline setup involves a first search
pass using a trusted search engine, and a post-processing pass using so-called rescoring meth-
ods. Those methods rely on arbitrary calculated metrics relating to each PSM provided to usually
machine-learning based models, that may either be pretrained (Ma et al., 2012) or, more commonly,
trained de novo on the provided dataset, usually following a cross-validation protocol in an attempt
to avoid overfitting (Käll et al., 2007; Granholm et al., 2012; Degroeve and Martens, 2013). Previous
work has shown that after rescoring, the amount of PSMs identified at a selected FDR threshold is
approximately the same regardless of search engine used in the first pass (Tu et al., 2015). In this



chapter, we demonstrate that this observation does not hold for the amount of true hits identified
by the pipeline and explore other pitfalls of rescoring approaches in a TDA-FDR-evaluated pipeline.
Keywords False Discovery Rate, Target Decoy Approach, Rescoring
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4.1. Introduction
Current state-of-the-art peptide search pipelines can be schematically divided into four main

phases:

(1) Pre-processing

(2) Candidate generation

(3) Scoring

(4) Post-processing

During pre-processing, some search engines perform quality- and parameter-based filtering of
spectra (Craig and Beavis, 2004; Eng et al., 2012; Levitsky et al., 2018): quality-based filtering
uses engine-specific metrics and criteria while parameter-based filtering is based on user filtering
parameters, such as the number of peaks or their mass. This step also includes “smoothing” the
spectra to improve downstream identification rates, e.g. by wavelet methods (Kessner et al., 2008;
French et al., 2014) or by retaining only top scoring peaks in a moving window (Levitsky et al.,
2018; Craig and Beavis, 2004). Pre-processing can also be an external process: one popular option
is MS-Convert and its spectra cleaning tools (Kessner et al., 2008).

In the candidate generation phase, an input database, eventually a protein database, is processed
to generate potential peptide candidates for the downstream scoring step. In this step, decoy
peptides will also optionally be generated (Eng et al., 2012; Craig and Beavis, 2004; Levitsky et al.,
2018). Alternatively, some search engines may also generate decoys for a later so-called “separate
search”, where decoys and targets do not compete for identification at the scoring step.

Common strategies for candidate generation include the use of sequence libraries (such as from
proteomes generated from species-specific genomes Bateman et al. (2020)), using in-silico digestion
by trypsin; or the use of spectral libraries, though they are classically limited to known species
even as methods exist to artificially generate spectra from sequence shufflings Lam et al. (2009).
In the case of sequence libraries, candidates are often generated either by shuffling or reversing
the amino acids in the protein before in-silico digestion, or by doing the same to post-digestion
peptides. Reversing typically yields slightly less biased sequence distributions Gupta et al. (2011b);
Danilova et al. (2019). In this case, spectra are then generated also in-silico based on the sequences
obtained. Generally, only m/z values are predicted (based on theoretical fragment masses at given
charge levels), although recent work has shown that it is also possible to accurately predict intensity
Gessulat et al. (2019); Wilhelm et al. (2021); Tiwary et al. (2019); Liu et al. (2020) (however,
perhaps surprisingly, further work is needed to properly use those predicted spectra to improve,
rather than decrease, identification rates, with the only known method so far being to provide
match scores to rescoring algorithms Wilhelm et al. (2021)). Typically, the main ion series (b-
and y-ions) and optionally also common losses (like water and ammonia losses) are modeled (see
for example Tabb (2015)), but an overabundance of peaks to match from either side is known to
lead to false positive matches with either one high-intensity peaks in the experimental spectrum,
or many low-intensity peaks, and to foil some search algorithms (although this is often addressed
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via experimental spectrum filtering rather than improved spectrum generation, as in Pirttilä et al.
(2022)).

While scoring, candidates from the previously-generated set are chosen and matched against
an input spectrum (which will also be referred to in this paper as a “query spectrum”). The
scoring process is entirely database-specific (as opposed to previous steps, where most engines have
converged to a few or a single operation mode, or rely almost entirely on user-specified parameters).
Common archetypes include: probability-like scoring (Perkins et al., 1999) or probability-inspired
scoring (Craig and Beavis, 2004; Levitsky et al., 2018), correlation-based scoring (Eng et al., 2012),
and peak match counting-based scoring (Craig and Beavis, 2004; Levitsky et al., 2018; Cox et al.,
2011). Scoring may be performed using a multi-step approach (especially a two-step approach), as
was once common with X!Tandem (Craig and Beavis, 2004), although there is a significant risk of
FDR bias when using these approaches (Everett et al., 2010; Bern and Kil, 2011).

Finally, the post-processing step consists mostly of two substeps: score-based filtering (i.e. error
control) and rescoring. Score-based filtering removes PSMs that do not match a certain match
quality threshold and was often set based on recommendations by the search engine developers and
sometimes by experience or examination, or simply by selecting the top N matches for a spectrum
(with a user-selected N, such as 1 or 10) (Cox et al., 2011; Eng et al., 2012; Craig and Beavis,
2004). Rescoring is now ubiquitous in peptide searches and is typically performed by external tools
such as PeptideProphet (Ma et al., 2012), Percolator (Käll et al., 2007), MS2PIP (Degroeve and
Martens, 2013) (which uses Percolator internally), etc.

After a search is complete (i.e. after the post-processing step), search results are filtered based
on a quality criterion. The most popular approach is to filter at a select FDR threshold using the
hits against the decoy database as a proxy for false hits. Thus, performance metrics reported in the
literature usually take the form of PSMs or peptides identified at 1% (or some other level) FDR
(Cox et al., 2011; Levitsky et al., 2018; Eng et al., 2012; Craig and Beavis, 2004; Käll et al., 2007;
Spivak et al., 2009; Granholm et al., 2012; Degroeve and Martens, 2013; Ma et al., 2012).

In this paper, we explore the validity of the target decoy-based FDR estimation method, espe-
cially under the lens of rescoring, which has become ubiquitous to peptide identification workflows.
We show, consistent with previous work, that under realistic conditions, the TDA-FDR method
misestimates false discovery proportions. We show quantiatively for the first time as far as we’re
aware that common rescoring methods like Percolator exacerbate this problem and suggest that this
is due to the statistics provided by search engines showing different distributions between false hits
in the target database and hits in the decoy database, allowing rescoring methods to discriminate
more easily and muddying the estimated identifications.

There exists alternative approaches for FDR estimation. One example, the entrapment sequence
strategy Granholm et al. (2011); Feng et al. (2017). In this strategy, sequences unlikely to exist
in the data of interest is selected (a common choice is a proteome of a different species). Hits to
the entrapment database are then assumed to be distributed like false hits to the target database,
much like in the TDA-FDR case.

However, such a method has several important downsides: first, it prevents novel peptides sim-
ilar to those present in the entrapment database from being correctly identified. Second, there is
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no evidence that the peptides are distributed similarly in both proteomes, especially when com-
paring vastly different species like homo sapiens vs archeae. Third, it suffers from much the same
downsides as TDA-FDR, as will be described in more details in the rest of the work.

Several works describe the use of the Pyrococcus Furiosus proteome for entrapment in humans.
P. Furiosus is highly adapted to live in volcanic environments and possesses a very specialized
proteome that has virtually no (tryptic) overlap with humans, yet uses the same amino acids in
similar abundances with the same kind of protein length distribution. However, if such properties
were sufficient, amino acid shuffling-based decoy generation methods would be even more ideal,
yet shuffling methods are known to be less reliable than inversion methods (Gupta et al., 2011b;
Danilova et al., 2019). As we explore in this paper, such hasty assumptions may be harming FDR
estimation and should be re-evaluated.

Another common strategy is that of decoy spectrum libraries such as in Lam et al. (2009),
which shuffles the matched peptide sequence amino acids and similarly rearranges the peaks in the
spectrum to match the shuffled sequence. However, using spectral libraries also enables the use of
decoy-free methods like Shao et al. (2013), which essentially leverages the fact that the refernece
spectra in the library are real to derive a distribution of match scores that remains robust outside
the dataset used for distribution fitting. As we will show in the rest of the work, though through
the lens of TDA-FDR alone, that is likely a more robust strategy in practice as compared to decoy
spectra.

Indeed, the majority of this paper applies to any method that assumes and cannot prove at
evaluation time some properties of the distribution of a set of peptides that are meant to stand for
false target hits, whether by decoy generation, decoy spectral libraries or for entrapment “decoys”:
all can be strawmen rather than appropriate false hit representations. We focus specifically on the
target decoy approach as it has become the most popular on average.

In Tu et al. (2015), as well as in Xu et al. (2013) (among other works), it was observed that fol-
lowing rescoring using Percolator (or Pepid’s random forest method), the search engines tested here
achieve similar performance on the identified PSM at 1% FDR metric despite more discrepancies
before rescoring. In this paper, we show that this does not hold for true hits by using the Pro-
teomeTools dataset (Zolg et al., 2017) of synthetic peptides, which provides clean, high-confidence
ground truth for evaluating true peptide identification rates.

Importantly, we also show that TDA-FDR systematically misestimates the false discovery pro-
portion (FDP, also sometimes called factual FDR (Jeong et al., 2012)) in a usual operational
scenario, and does so inconsistently depending on search engine used. This suggests that compari-
son results reported in the literature that do not present FDP performance results and cannot be
taken to be valid (that is, they do not show what a reader may be led to believe and likely what
the authors believed them to show, as the so-called false discovery rate is actually unrelated to
the false discovery proportion across engines). This has previously been reported in the literature
(Kandasamy et al., 2009; Jeong et al., 2012; Wang et al., 2008; Bogdanow et al., 2016). We expand
on previous work by showing this, and related effects, under application of rescoring by Percolator,
rather than arguing using artificial rescoring scenarios.
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We also demonstrate that trust in the choice of parameters outputted for the sake of rescoring
by modern search engines may be a backdoor to skew reported results regardless of other user-
specified settings, and urge practitioners looking for the right search engine for their experiments to
re-evaluate their outputs independently using a collection of spectra with confident identification
results, rather than trusting FDR-based numbers, let alone identification numbers across search
engines.

This paper aims to show that typical TDA-FDR-based evaluation methodologies do not use
decoys vs targets for FDR estimation, but rathre targets vs strawmen, defining strawman in line
with the Oxford Languages dictionary: a [...] misrepresented [peptide sequence] that is set up
because it is easier to [differentiate from targets] than a [database’s] real [decoys].

4.2. Data
We use the ProteomeTools (Zolg et al., 2017) data, which is a dataset of Higher-energy Collision

Dissociation (HCD)-fragmented synthetic human peptides covering most of the SwissProt human
proteome. Proteometools provides an unusually clean dataset, hence an upper bound on the po-
tential amount of identifications at given FDRs, which will serve as our main evaluation metric for
demonstration purposes.

ProteomeTools data was acquired from the PRIDE archive with accession ID PXD004732. Due
to data corruption in some of the metadata files in the second pool data, we only keep the first pool
data. To make comparison between datasets easier by reducing the amount of potential confounding
factors, we select only the spectra corresponding to HCD fragmentation at a normalized collision
energy of 25, which seems to provide the best overall quality for spectra in the dataset based on the
ProteomeTools data analysis presented in Zolg et al. (2017). In total, there are 1 458 831 spectra
in the dataset. Some statistics of the data are presented in Figure 1.

For the protein database, the human proteome from SwissProt (Bateman et al., 2020) with ID
UP000005640 was used for all experiments. .

4.3. Methods
We use two popular search engines: X!Tandem (Craig and Beavis, 2004), version Alanine,

and Comet (Eng et al., 2012), version 2021.02 rev. 0 (commit 3c62af2), which use two different
algorithms (X!Tandem uses the Hyperscore, while Comet uses the Xcorr – we do not use the
X!Tandem Xcorr plugin). We also use the IdentiPy search engine (Levitsky et al., 2018), version
JPR_paper, and the recent Pepid search engine (https://github.com/lemieux-lab/pepid v1.2)
to show that the effect is not limited to those two popular engines. Search parameters are arranged
so that both engines operate with identical parameters wherever possible, and as similar as possible
otherwise. For rescoring, the most popular software, which is Percolator (Käll et al., 2007; Spivak
et al., 2009; Granholm et al., 2012), version 3.05, is used in all experiments. Execution consisted
of the following command in all cases:

percolator <file.pin> -Y
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Figure 1 – Statistics of the query spectra from ProteomeTools after filtering as described.

-m <file_pout_psm.tsv> -M <file_pout_decoys_psm.tsv>
Threshold calculation is performed using q-value rather than raw FDR (Käll et al., 2007, 2008).

This differs only very slightly from FDR in that the minimum FDR (in reverse order) in the score
threshold ordering is the current q-value, thus q-value is monotonously increasing whereas FDR
is not. This makes calculations more straightforward and rewards search results that rank targets
better than decoys overall instead of considering high-ranking decoy runs as being no worse than
low-ranking decoy runs in the same overall proportion of decoys to targets. This evaluation metric
is computed on the outputted results from each search without relying on search engine filtering or
threshold outputs in order to ensure comparability. However, X!Tandem doe not allow outputting
more than 1 top-scoring PSM, whereas both Comet and IdentiPy can output arbitrarily many.
This has important repercussions for rescoring because Percolator is designed to accept as many
search results as is presented for training, and more data typically improves holdout set performance
(because the dataset covers a larger portion of the search space) and reduces overfitting rate (because
the data is more representative of the true distribution) in machine learning and related algorithms.

Standard searches were run with the engines under consideration and performance was evaluated
with and without rescoring with Percolator. The classical PSM at FDR metric with the usual 1%
threshold was measured and are shown in Figure 3. Results are similar to those found in the
literature (Balgley et al., 2007b; Xu et al., 2013). We note that, owing to the high cleanliness of
the data, identification rates at 1% FDR may be higher than in more standard scenarios.

111



4.4. Results
The goal of rescoring is to help better separate true hits from decoys without enriching for

incorrect hits (i.e. targets, excluding true hits). Percolator uses the targets at 1% FDR as a proxy
for true hits, and learns to discriminate between members distributed more as per decoy or as per
targets at 1% FDR. Hence, disparate distributions of targets at 1% FDR vs true hits would cause
percolator to enrich for incorrect hits (if those targets inconsistent with the true hit distribution
have higher scores) or true hits (if they tend to display lower scores). The latter is the most
desirable scenario. We show what the distribution of scores for these two groups actually look like
in Figure 2.

It is reported in the literature that while X!Tandem follows the same pattern as most search
engines regarding understimating FDP (i.e. FDP is higher than FDR), Comet, on the other hand,
tends to overestimate, or only slightly underestimate, it (Jeong et al., 2012). This is also consistent
with search results presented in Figure 3, where X!Tandem seems to perform about as well before
rescoring as Comet does after rescoring on the basis of FDR, yet when considering FDP, the reality
couldn’t be more different: the difference before and after rescoring is significant in every case, not
slight as for FDR, X!Tandem perform very poorly even after rescoring compared to Comet, and
while Comet seems to underestimate FDP before rescoring, it is much closer after rescoring. In
Figure 2, the X!Tandem distributions of interest (i.e. true vs false hits) are far less consistent with
the distributions learned by Percolator (i.e. hits passing 1% FDR vs all decoys) than for Comet,
which can explain these observations. We also note that the distributions, while much closer in
Comet, are still not a direct match.

This example also demonstrates why it is impossible to compare search engines on the basis of
their identifications under an FDR threshold: not only are identifications at 1% FDP wildly different
than under 1% FDR, indicating a significant misestimation of FDP by the TDA-FDR method, we
also arrive at opposite conclusions on the basis of one metric over the other regarding the quantity
of error-controlled identifications depending on each search engine. Therefore, identification rates
at a fixed FDR do not actually indicate the amount of true error-controlled hits, nor are they even
related in a consistent manner.

What happens when a search engine performs a series of post-processing events that amount to
rescoring prior to using Percolator? The distributions shown in Figure 2C,D show the distribution
of Percolator scores after rescoring as an example of the kind of input distributions that Percolator
would receive (i.e. repeated Percolator runs). Unlike expectations, the distributions of interest
(which separation would be reflected in FDP-based identifications) become more intertwined after
the first pass of rescoring, even though the discriminated distributions (which separation impact
FDR-based metrics) are more separated. Therefore, search engines that perform rescoring-like
tasks (as Comet does by using protein-level metrics, or X!Tandem does in two-phase mode) may be
biasing the distribution of scores beyond the kind of skew already implied by the likes of Percolator.
(which separation impact FDR-based metrics) are more separated. Therefore, search engines that
perform rescoring-like tasks (as Comet does by using protein-level metrics, or X!Tandem does in
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Figure 2 – Distribution of the scores for the subsets of the data of interest for our analysis.
The blue distributions, displayed on top of the 0 line, represent the real distributions that
we want to separate. The orange distributions, on the bottom, are the distributions that the
Percolator algorithm is trained to discriminate. A,B: Comet and X!Tandem, respectively,
before Percolator. C,D Comet and X!Tandem, respectively, after Percolator.

two-phase mode) may be biasing the distribution of scores beyond the kind of skew already implied
by the likes of Percolator.

Another useful visualization is the evolution of FDR curves over FDR. We show such curves
in Figure 4. Beside the obvious misestimated FDP across the board, we also notice that the
misestimation rate is non-linear across the range. This showcases the possibility of a rescoring
method (or other score modification algorithm) to, for instance, overwhelmingly underestimate FDR
at low FDP values, but misestimating FDR less at higher values, or vice versa. One implication
is that even if two engines had similarly good FDP identifications at a fixed level such as 1%, and
their results are therefore comparable, this does not necessarily hold at another level, such as 5%,
and the adjustment factor would also not necessarily be a simple matter of scaling (rather, the
entire FDP misestimation profile would need to be accounted for). The other implication is that
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Figure 3 – Identification rates for ProteomeTools data with and without rescoring (Per-
colator by default, Pepid’s Random Forest rescorer in Pepid’s case). A: TDA-FDR PSM
identifications under 1% q-value. B: Identifications under 1% q-value using FDP. C: Real
FDP at 1% FDR.

some systems may be biased in a range of FDR (i.e. there is high uncertainty if FDR is between
some bounds, because the FDP values that could have resulted in a given TDA-FDR estimate
span a large range) while offering accurate estimation in a different range. This paradigm could
encourage the development of different algorithms depending on the FDP control regime of interest
for a given experimental setup. Conversely, one might want to choose an algorithm, even knowing it
underestimates FDP, based on how linear its misestimation curve is, as this may make identification
quality more predictable regardless of experimental concerns.

In both Figure 4 and Figure 3, we show results with and without rescoring. So far we have
mostly discussed the overall issues with TDA-FDR in general. However, it is interesting to note
just to which extent rescoring affects the FDR vs FDP tableau.

Indeed, in Figure 3C, we note that the FDP at 1% FDR between search engines follow very
different patterns: Pepid with the random forest rescorer grossly underestimates FDP beyond the
level prior to rescoring. Meanwhile, Comet and IdentiPy’s overestimation is somewhat subdued
after rescoring (as is the case when performing rescoring of Pepid by Percolator). Not so for
X!Tandem. We also note by comparing identifications (Figure 3A,B) that the amount by which
FDP is underestimated does not correspond to the raw amount of identifications. This means
detecting these issues in practice ought to be difficult even to experts, using summary identification

114



Figure 4 – TDA-estimated FDR curves across the range of FDPs in ProteomeTools.

statistics. In similar veins, we note that prior to rescoring, TDA-FDR-controlled identifications do
not necessarily correspond to FDP underestimation. Compare IdentiPy and X!Tandeom.

In Figure 4, two main patterns are readily observable: the overall shape of the curve (i.e.
how linear it is) and its inclination (i.e. how misestimation scales with FDP). Regarding the
shape of the curve, we notice that on some curves, notably X!Tandem’s, rescoring affects an initial
overrepresentation “offset value” (i.e. the nearly vertical increase in FDR at the beginning of the
curve). Another interesting characteristic is smoothness: compare the unrescored X!Tandem curve
with the unrescored Comet curve. Overall, rescoring seems to make the resulting curve less linear
(examine before and after curves for Pepid and IdentiPy especially), but has mixed effects on the
“offset value” (for example the X!Tandem curve’s “offset” is greatly increased, but the IdentiPy
“offset” is largely reduced. Likewise, the Comet “offset” benefits from rescoring). Reduced offset
values imply less error (as a function of the approximate linear part of the function of misestimation)
at lower FDP, but does not necessarily mean the same for higher FDP values (more dependent on
the shape of the curve). Smoothness gives clues as to how repeatable identifications can be at any
given threshold: smoother curves imply the amount of identifications vary more smoothly with
FDP (when threshold is set by TDA-FDR), and is therefore less error prone within a short range
of values. Lastly, more linear curves are more predictable regarding overestimation. Here we see
that rescoring always makes the curve less linear (while X!Tandem’s curve seems smoother, it is
now endowed with two (larger) “bumps”: one at the beginning of the curve (i.e. the “offset”), and
another around 1.7% FDP. The former is smaller in the original curve while the latter is simply
not present at all).

Although methods like percolator and the random forest rescorer are non-linear, rendering thor-
ough analysis otherwise difficult, we can examine the separation threshold of various features used
as inputs to these tools using Comet and X!Tandem outputs on ProteomeTools as in Figure 5, which
illustrate that decoys generated by a state-of-the-art method do not follow the same distribution
as false hits as would be required for accurate FDR estimation. This provides hints as to why FDR
may be so misestimated: rescoring algorithms can discriminate between decoys and targets on the
basis of distribution skews in some of the features rather than through meaningful combination
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Figure 5 – Distribution skew in ProteomeTools search results using Comet along the Xcorr
feature. The distribution pairs match those used by Percolator during model fitting: roughly
speaking, Percolator is fit to differentiate between decoys and targets that pass a 1% FDR
threshold (top), but the real metric of interest is the separation between true hits and
incorrect hits (second from top). There is a slight skew between decoys and incorrect hits
(third from top) as well as targets passing 1% FDR threshold and true hits (bottom). The
pink zone represents values putatively categorized as true hits by Percolator score at 1%
FDR.

of features. Previous work has found that other decoy generation methods suffer from similar or
worse problems (see for example Gupta et al. (2011b)). We also show that the same problem can
be observed in the Massive-KB dataset Wang et al. (2018) as in Figure 6. Additional results across
a slew of parameters from X!Tandem and Comet are presented in Supplemental Material C.1
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Figure 6 – Distribution skew in Massive-KB search results using Comet along the Xcorr
feature with a unifired visualization. The pink zone represents the zone passing a 1% FDR
threshold with percolator score for this feature. The red histograms are mirrored for easier
comparison in the top and bottom sections. True hits and targets at 1% FDR (resp. blue
and grey) are shown to differ, showing distributional bias that could affect TDA-based FDR
estimation.

4.5. Discussion
Do so-called Target-Decoy approaches to FDR estimation discriminate between targets and

decoys, or between targets and strawmen?
In this paper, we have shown that state-of-the-art evaluation relies on assumptions that can be

violated in practice, using realistic data and engines, and that the consequence of violating these
assumptions can invalidate search result error correction schemes: FDR estimation no longer knows
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about decoys and targets, but rather targets and strawmen. Currently, few datasets with solid
ground truth peptide identities are available: some notable ones include ProteomeTools (Zolg et al.,
2017), the NIST peptide dataset (Stein, 2008) and MASSive-KB (Wang et al., 2018). These data
are biased by the digestion and fragmentation methods and parameters available and, importantly,
they are mostly human-only datasets. This greatly limits capacity for accurate evaluation of peptide
identifications without relying on hard (or impossible) to verify assumptions about the data, such
as using classical FDR metrics, leading to higher risk of development and proliferation of biased
methods, as exposed in this paper.

While our results are based on ProteomeTools data mostly, which is a very specific kind of
data (synthetic human peptides based on HCD fragmentation and tryptic digestion), our results
are consistent with the literature. For example, in Jeong et al. (2012), the authors used ISB
Standard Protein Mix database, Arabidopsis and Yeast data with an orbitrap to perform TDA-
FDR misestimation analysis. They consistently analyzed several factors that lead to misestimation
of FDP by TDA-FDR methods While many of those conditions were artificial and not controllable in
practice, they still showcase misestimation issues across different databases, species, search engines,
error control formulae, etc.

Our experiments show that current best practices for decoy peptide generation result in dis-
tributional differences between decoy and false hit peptides, and moreover that those distribution
shifts are very different depending on the engine and dataset used. Previous work like Gupta et al.
(2011b); Jeong et al. (2012) show that other methods demonstrate similar issues. Other strategies
for decoy peptide generation, such as using deep learning tools, have not been studied substantially.
Tools like DeepCoy Imrie et al. (2021), which generate decoy molecules with matched physiochem-
ical properties from an input molecule, may prove to be instrumental in enhancing target-decoy
approaches, but to the best of our knowledge, no previous work studies the distributional properties
of targets and decoys to assess this. DeepCoy itself is meant for smaller molecules and it is not
clear how well it would perform on much larger molecules like peptides. In addition, while this is a
good first step, the performance remains less than optimal for this use-case, as even in the molecule
case, DeepCoy still only reduces docking-based virtual screening performance as AUC ROC from
0.70 to 0.63.

Overall, we recommend that all peptide identification methods be evaluated on the basis of
factual FDR using large datasets with groundtruth peptide identities where possible: for exam-
ple for any all-purpose search method, or any that are specific to human peptides from tryptic
digests. With this baseline established, the reliability of TDA-FDR evaluation on other datasets
becomes better understood, which greatly reduces the chance of overfitting this metric, as in our
demonstrations.

Additionally, we would like to emphasize that datasets with ground truth peptide identities are
not simply useful, but currently a necessity, for accurate evaluation of identification methods, which
is a required step in ensuring advancements in peptide identification research instead of “metric
hacking”. The current lack of coverage for these datasets should be addressed with high priority,
perhaps using relatively cheaper methods like that employed by the MASSive-KB project, i.e. based
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on consensus from various experiments, when necessary, and preferring synthetic peptide-based data
generation, as done by ProteomeTools, when possible.
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Chapter 5

Discussion

In this work, we have presented a new platform for peptide identifications. To the best of our
knowledge, this is the first platform that is focused on the investigation of novel computational
methods for peptide identifications, not just for black-box identification from wetlab experiments.
We showed how flexible this method is by providing a suite of functions for various parts of the
search process, which can easily be enabled, disabled, or swapped. In addition, our platform allows
users to plug in any function in python which they may provide in their own module, so long as it’s
visible by the importlib python library. We further show how the design of this platform benefits
research in deep learning tools for peptide identifications by developing a spectrum-based peptide
length prediction tool, a full spectrum generator from peptides, and a novel rescoring algorithm
based on random forests. We show that the simplicity of integrating these methods in Pepid, and
demonstrate that this kind of combination can significantly improve peptide identification rates.

An important feature of Pepid is that it saves all results in a database on disk, which allows
further examination of the artifacts from any part of the pipeline. This allows incremental im-
provements where the pain points lie from quantitative analysis data, a capability never before
available. Analysis of the final output of the pipeline (through a large list of hits, not just the top
scoring hit as is a common output in many peptide search engines) helped us identify that peptide
length prediction could improve identification performance across the board, which we successfully
validated (discussed below); what insight is yet to be gained from observing not just the final
output artifacts but those of intermediary stages has yet to be explored. For example, perhaps
existing correlation-based scoring functions are already performing remarkably well, but that the
bottleneck is really theoretical peak sequence generation (evidence for this hypothesis include the
significantly improved quality of results when using the same scoring algorithm, but with a library
of experimental spectra instead of theoretical sequences). Pepid enables such analysis for the first
time.

We develop a deep learning-based length prediction algorithm for peptide sequences from mass
spectra. We frame the length prediction problem as a substep of a de novo process, and propose
that this problem decomposition approach to de novo peptide sequencing may lead to a collection
of easier problems which can be exploited for database-driven peptide identifications, as we have



shown using length prediction, but also potentially to improve de novo peptide sequencing, thus
providing a new potential avenue for de novo sequencing development and for research in the
combination of de novo and database-driven methods.

As far as we are aware, this is the first time length prediction from mass spectra was demon-
strated. We have shown, through the improved rescoring performance of Percolator and our custom
rescorer using length prediction, that this feature cannot be extracted by those algorithm from other
peptide spectrum match parameters, and we have established through a linear regression baseline
based on mass that length prediction from the spectrum is more powerful than from mass alone,
indicating that the mass spectrum encodes information that can be used to reconstruct features,
like length, of the encoded peptide.

There are two main implications for proteomics and deep learning: first, until now, compu-
tational proteomics has been almost chiefly concerned with correlation between experimental and
database (theoretical or library-based) data, without regard to what else could be done with in-
formation provided by the spectrum. We have shown that peptide length can be retrieved from it
and further used to improve peptide identification. This begs the question: what other information
can we extract from the spectrum alone in order to improve database-driven searches? De novo
practitioners have attempted to predict whole peptide sequences from just the spectrum, with lim-
ited successes. Can extracting other data from the spectrum first help drive the de novo process?
Of particular interest would be the potential of such approaches to limiting the search space. For
example, as we have successfully performed length prediction, this information could be used to
limit de novo peptide sequence generation to within a certain peptide length, plus or minus one
amino acid (a range within which our prediction model has extremely high accuracy), which may
make the de novo process much more likely to yield correct peptides. Second, we have shown that
deep learning does, in fact, work to improve peptide identifications in a database-driven setting.
Many deep learning algorithms to perform various proteomics tasks have been proposed so far, but
few have ever been integrated in search engines. We have shown evidence that this endeavor can be
worthwhile. Going forward, deep learning-driven proteomics may become the preferred paradigm
for next generation mass spectrometry data analysis.

Finally, we have shown that rescoring methods can mix poorly with target-decoy based false
discovery rate estimation, and that ground truth based false discovery should be used when com-
paring different algorithms, a critical concern during the development and iteration of new scoring
algorithms.

Does it matter? These methods have remained in use for years despite their demonstrated
flaws. In truth, poorly estimated FDP through the TDA-FDR method does not mean that the
entire framework need be eliminated. The hits that pass a so-called 1% FDR threshold are still
of relatively good quality and the resulting identification list is still useable. Methods that are
demonstratively incompatible with the prerequisite assumptions in TDA-FDR-based FDP estima-
tion do not necessarily skew the results disproportionally. Simply, it is important to understand
the existence and scope of this issue because it makes some common use-case of metrics resulting
from the use of TDA-FDR, such as comparing identification at a fixed FDR threshold between two
conditions or two engines, invalid. This is especially true because derived metrics like identifications
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past a fixed FDR change in highly non-linear and hard to predict ways as FDR changes (therefore,
as FDR diverges from FDP), so even the scale within which the comparison is invalid cannot easily
be assessed, i.e. even if an engine appears to provide 50% more identifications, it may not actually
be the case at all.

More concretely, the impacts of the discrepancy between TDA-FDR and FDP in practical
settings, especially but not limited to the effect of rescoring, spans various levels in a full mass
spectrometry-based proteomics workflow, affecting a variety of domains:

Mass Spectrometry Mass spectrometrists know to visually validate (at least some of) the
outputs from identification pipelines. Poorly tuned peptide identification affects all other down-
stream tasks (from label-free quantification to protein identification) and results in too many false
positives and negatives to sort through manually. This may result in mass spectrometrists dis-
carding too many matches out of quality concerns, or to spend too much time on visual inspection
compared to what would be required with more robust tuning.

Pipeline Selection In order to minimize experimental expenses, it is important to maximize
output quality in the task of interest, so that fewer samples must be processed to achieve the
same identification confidence. However, since TDA-FDR is ad-hoc, it is impossible to compare
two different engines – core tools of a proteomics pipeline – on even ground, though it remains
possible to compare an engine to itself when minor modifications are applied. This means that
significant costs may be incurred by poorly tuned pipelines that were selected on the grounds of a
highly flawed metric. It should be of interest to the mass spectrometry community to assess those
potential costs.

Algorithm Development In the asbsence of robust metrics, it is impossible to develop new al-
gorithms that quantitatively improve identification count or quality. We suggest that using datasets
with quality ground truth peptide sequences (like ProteomeTools or Massive-KB) is a reasonable
compromise, but those datasets are few and highly biased (for example, both ProteomeTools and
Massive-KB are HCD fragmentation datasets of human peptides mostly digested by trypsin). As a
result, algorithm development must instead rely heavily on qualitative assessment by expert mass
spectrometrists to determine if the algorithm seems to achieve preferred (as opposed to improved)
results. This necessarily slows down algorithm development significantly, a problem that some
practicioners have decided to avoid by simply not using any robust assessment of their results at
all.

In addition, rescoring algorithm are an obvious paradigm for the improvement of search results.
They are widely employed in document retrieval domains like semantic text searches and other
common applications. However, in the context of peptide search, they are incompatible with the de
facto standard error correction scheme in proteomics, that is TDA-FDR, as this metric requires the
distribution of false hits and of decoys to match approximately exactly to remain valid. In particular,
it is not necessarily clear that TDA-FDR should be assessed after rescoring – that is, it is not clear
that rescoring should be seen as a way to improve search counts. Instead, perhaps rescoring should
be thought of much like it is in any other domain: as a way, only after an error-controlled search,
to fix preference between those items that have already passed our selected threshold, i.e. as a way
to learn what to prioritize among the set of hits that pass at our desired fixed FDR level, but not
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as a way to further filter results per se. Such an approach would no longer bias the distribution of
targets and decoys and allows the separation of concerns between error controlled recall of peptide
sequences, and preferential selection for further processing, which can be assessed by different and
well understood quality metrics from the document retrieval reranking literature.

Computational Proteomics In practice, it is not clear that the TDA-FDR metric, especially
in light of the use of rescoring, is any more or less relevant than the previous paradigm of expert-
selected search score threshold. It could be argued that expert selection is more powerful because
it essentially allows the mass spectrometrist to insert expert knowledge into the computational
pipeline, reducing overall workload. It is not clear that this causes an increase in false positives or
negatives after visual filtration of results from either paradigms. On the other hand, the illusion
of statistical rigour from common uses of TDA-FDR in combination with rescoring may be dam-
aging across the proteomics pipeline, increasing workload and sample preparation requirements for
the same fidelity of results due to the false expectation of achieving a fixed, specified error threshold.

Proteomics is still going through growing pains as the field remains quite young compared to its
siblings, genomics and transcriptomics. Many early proteomics tools were plagued with significant
algorithmic and mathematical flaws. As the field aged, those flaws have largely been patched or
otherwise addressed. Nevertheless, the field has yet to achieve computational maturity and is ripe
for improvements in most facets of its computational workflows, in large parts owing to the com-
plicated biochemistry involved, as compared to that of nucleic acids. Deep learning has improved
explosively over the past decades and has now become the most powerful approach for processing
complicated, noisy data, so long as sufficiently large datasets are available to train neural network
models. Since mass spectrometry can produce those large datasets, deep learning seems to be
the right fit to push proteomics through to the next level. Indeed, many machine learning and
deep learning-based tools have been proposed for proteomics, showing improvements, sometimes
by leaps and bounds, on isolated tasks. In this work, we presented new deep learning tools and
platforms to further research in both drylab and wetlab proteomics through more robust peptide
identifications driven by bioinformatics research and development. Many algorithm types have been
proposed in the past, but few have seen any integration in a search pipeline, let alone a full peptide
search engine. The proposed Pepid platform forms an ideal testing ground for these methods, to
demonstrate that they do, in fact, improve peptide identification in real terms. This forms the
basis of the most obvious direction in which this work could be extended. While the deep learning
algorithms we developed can be combined with a search engine to yield improved search results
in reasonable time, the overhead they incur is still quite large (sometimes increasing total runtime
by almost an order of magnitude). Better evaluation-time performance of deep learning models
following integration, perhaps through more specialized runtime systems, could further improve
the usability of search engines that would heavily rely on deep learning capabilities. A third di-
rection in which this work could be expanded is in attempting to combine multiple parts of the
search pipeline using end-to-end deep learning networks, for example by performing direct peptide
sequence-spectrum matches instead of generating a theoretical sequence and correlating it to the
experimental spectrum. Previous work on the topic includes DeepMatch Schoenholz et al. (2018a)
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and SpeCollate Tariq and Saeed (2021). These methods train deep learning models from existing
data to directly predict PSM scores. In the case of DeepMatch, the model contains 3 stages: a
fragment representation network, followed by a spectral representation network, and a readout net-
work. The fragment representation network maps amino acids to vectors repersenting fragments,
using bidirectional LSTMs. The spectral representation network is a fully-connected network that
maps the set of fragment reprsentations into a whole-spectrum representation, assigning fragments
to m/z bins on the spectrum. Finally, the readout network compares the fragments with corre-
sponding spectrum peaks using the spectral representation mapping. For SpeCollate, the model is
composed of two independent paths: one uses bidirectional LSTMs to encode the peptides followed
by a fully-connected network to map the output to a latent representation. On the other side, a
fully connected network processes the normalized spectrum into a latent representation of the same
dimensionality as the first part. Then, the online sextuplet mining method (it is trained on sextu-
plets of a positive spectrum and peptide pair, a negative example pair for the selected spectrum and
a negative example pair for the seleted peptide) is used to optimize a final network which measures
match scores between peptides and spectra. However, these methods also do not exploit data that
can be extracted from spectra to reduce search spaces and improve PSM scoring, but instead focus
on only sequence-to-spectrum matching problem. Moreover, just as it is non-trivial to integrate far
better predicted spectra to existing search frameworks, it is unclear how these methods would fare
in practice.
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Appendix A

Pepid

A.1. Code Organization
A.1.1. main.py

Entry point. A search may be launched with python pepid.py config.cfg, import peppid;
pepid.run("config.cfg") or python -mpepid config.cfg where config.cfg is the user con-
figuration file. This will first read a default configuration file at data/default.cfg at the local
path to fill in all necessary parameters with sensible defaults, then read the user configuration
file to overwrite any options the user may like to change. The program will then read the com-
pleted configuration data and launch the required task for the various enabled pipeline steps, such
as launching the pepid_search module’s run function to perform the preprocessing, search, and
results extraction (again based on user configuration for these steps).

A.1.2. pepid_search.py

Operates the “search” part of the pipeline, including preprocessing, user postprocessing, and
PSM scoring (see below for more details on each step).

A.1.3. search.py

The search module handles the search proper. It invokes the scoring function on candidate
peptide and spectrum pairs. Multiprocessing dispatches on batches of candidates within a user-
specified tolerance of the precursor neutral mass of the given query, one query at a time. All
matches are saved in the final results database so long as the score has a value higher than 0. It is
then possible to extract the top N scores (with a user-specified N) to a tsv file for further analysis,
or to use the database itself in any way required for the current experiment, including performing
rescoring on the entire set of results instead of just the top N results.



A.1.4. queries.py

Query processing functions are contained in this file. Multiprocessing dispatches on query
batches.

A.1.5. db.py

Functions relevant to processing the input fasta database are contained in db.py. This includes
database processing and input into the temporary database as well as helper functions to count
peptides and in-silico digestion and post-translational modification (PTM) generation. Multipro-
cessing dispatches on batches of protein sequences for in-silico digestion and PTM generation, and
on batches of peptides for further processing.

A.1.6. blackboard.py

This module contains the behavior that must repeatedly be invoked upon process creation (see:
*node.py below) as well as shared context state such as the configuration data for the program. It
contains functions to prepare databases and database connections.

A.1.7. pepid_mp.py

Due to various bugs and misfeatures in available multiprocessing packages for python, a custom
solution was developed based on unix select and socket. This solution also presents several
advantages such as better control over input and output, explicitly clean working process memory
(each process is started from scratch without forking or copying working memory over to the new
process), explicit protocols to relay information to and from the slave nodes back to the master
node, and better task status identification for task monitory due to the explicit script name and
parameters during task launch.

A.1.8. {search_,queries_,db_,pin_,output_}node.py

Files implementing the actual multiprocessing behavior specific to each task. As the names
imply, node.py is the base behavior for the system that contains boilerplate for launch (e.g. it
decodes basic launch message codes and calls the specific node behavior for startup and shutdown)
and rescue (currently, it shuttles error messages back to the master node if any error happens
during subprocess execution) and relegates processing to the specific nodes. Other *_node.py files
contain the specific behavior for proper search, queries processing, and input database processing,
and output (to percolator input, PIN, format, or to tsv output format), respectively.

A.1.9. pepid_io.py

Contains output processing functions, mostly to extract the top N results (with N as specified
in user configuration) and output them to a tsv file for downstream processing such as direct
application of percolator or other rescoring tools.
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A.1.10. pepid_rescore.py

Implements the basic rescoring workflow, dispatching the rescoring and output tasks to the ap-
propriate user module (in the default release, that is the pepid_percolator.py or pepid_randomforest.py
modules, as described in the user configuration file).

A.1.11. pepid_percolator.py

A wrapper around percolator for rescoring. Also handles Pepid TSV to percolator IN (PIN)
file conversion.

A.1.12. pepid_rf_finetune.py

Implements a custom rescoring algorithm based on random forests. Relies on a pretrained seg-
ment which can be regenerated using the train_rf_rescorer.py utility script in the ml directory.

A.1.13. pepid_utils.py

Generic utilities, such as for in-silico peptide fragmentation or calculating peptide mass.

A.1.14. extensions.py

Extension facilities, including spectrum generation, length prediction, and related.
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Appendix B

Length Prediction



Supplementary Material
Length Confusion Matrix

Supplementary Figure 1 – Full length prediction confusion matrix across the lengths
the model was trained for (6-40 inclusive). The bottom row shows marginal counts for each
class.

144



Model Details

The model architecture is presented in the main text. Here we describe the exact hyperparam-
eters in the final model.

The convolutional layers in the preprocessing stack were procedurally determined using the
starting dimensions of the input. In total, 13 layers, composed of a convolution, a batch nor-
malization (batchnorm), and rectified linear (ReLU), and a pooling layer. All pooling layers were
mean-pools of size and stride 2. For the convolutional layers, they had a dimension of 11, unless
the input size was not compatible, in which case they were 12. The last layer had a kernel size of
1. All layers used an embedding size of 500 except the final layer, which converts the 500 latent
units into our output size of 35. The pattern of kernel sizes was thus: 11, 12, 11, 12, 12, 11, 12, 11,
12, 12, 11, 11, 1. The final layer is followed by a non-linearity of log-softmax rather than a ReLU.

To convert the convolution outputs to a latent representation compatible with the prediction
“head”, a convolution of kernel size 1 and a pooling layer of size and stride 2 was applied.

The linear layers processing the spectrum are composed of 8 fully-connected layers with 500
units in their latent spaces. The input of the first network is the whole spectrum, of size 50000. A
9th fully-connected layer converts the latent output to our output size of 35.

The linear metadata-processing network is composed of 4 fully-connected layers with 100 units
each, followed by one last layer with 35 outputs. The combination network has the same topology,
but while the metadata network takes just the input mass as a feature, the combination network
takes 1100 features, namely the latent representations of the other networks as a concatenated
vector.
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Additional Results

Supplementary Figure 2 – Venn diagram of unique peptides with and without length
identified in ProteomeTools at 1% FDR
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Supplementary Figure 3 – Top spectra in the set of identified PSMs past 1% FDR in
ProteomeTools, without using peptide length features. A: high scorers not present in the
length-augmented results. B: low scorers not present in the length-augmented results.



Supplementary Figure 4 – Top spectra in the set of identified PSMs past 1% FDR in
ProteomeTools, using peptide length features. A: high scorers not present in the length-free
results. B: low scorers not present in the length-free results.



B.1. Analysis of Length Prediction Biases
This section shows the distribution of accuracies and absolute length differences (between pre-

dicted and ground truth lengths) against several key features of peptides to assess biases. The
results suggest that the main source of bias is due to data availability, but the model also performs
better on shorter or lighter peptides. In the figures shown below, the orange dots are relative
counts in each category (computed as the count for the category divided by total count), while the
bars represent the average value in the category for the metric (either accuracy or absolute length
difference).

Supplementary Figure 5 – Average accuracy vs percursor charge.



Supplementary Figure 6 – Average accuracy vs percursor mass.

Supplementary Figure 7 – Average accuracy vs ground truth peptide length.



Supplementary Figure 8 – Average accuracy vs predicted peptide length.

Supplementary Figure 9 – Average accuracy vs count of static modifications.



Supplementary Figure 10 – Average accuracy vs count of variable modifications.

Supplementary Figure 11 – Average accuracy vs count of all (variable and static) modi-
fications.



Supplementary Figure 12 – Average length difference vs percursor charge.

Supplementary Figure 13 – Average length difference vs percursor mass.



Supplementary Figure 14 – Average length difference vs ground truth peptide length.

Supplementary Figure 15 – Average length difference vs predicted peptide length.



Supplementary Figure 16 – Average length difference vs count of static modifications.

Supplementary Figure 17 – Average length difference vs count of variable modifications.



Supplementary Figure 18 – Average length difference vs count of all (variable and static)
modifications.



Appendix C

False Discovery Rate Estimation

C.1. Distributional skew visualization for single features
with Percolator rescoring

General figure description in this section The distribution pairs match those used by
Percolator during model fitting: roughly speaking, Percolator is fit to differentiate between decoys
and targets that pass a 1% FDR threshold (top), but the real metric of interest is the separation
between true hits and incorrect hits (second from top). There is a slight skew between decoys and
incorrect hits (third from top) as well as targets passing 1% FDR threshold and true hits (bottom).
The pink zone represents values putatively categorized as true hits by Percolator score at 1% FDR.
Figures represent select distributions representative of the kind of skews present in the data.



C.1.1. Distribution Skews With Comet

Supplementary Figure 1 – Distribution skew in ProteomeTools search results using Comet
along the Xcorr feature.
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Supplementary Figure 2 – Distribution skew in ProteomeTools search results using Comet
Sp feature.
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Supplementary Figure 3 – Distribution skew in ProteomeTools search results using Comet
along the difference between best and second-best score (deltCn) feature.
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Supplementary Figure 4 – Distribution skew in ProteomeTools search results using Comet
along the difference between best and worst score (deltLCn) feature.
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Supplementary Figure 5 – Distribution skew in ProteomeTools search results using Comet
along the ion intensity fraction (IonFrac) feature.
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Supplementary Figure 6 – Distribution skew in ProteomeTools search results using Comet
along the natural logarithm of the expectation (lnExpect) feature.
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Supplementary Figure 7 – Distribution skew in Massive-KB search results using Comet
along the Xcorr feature.
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Supplementary Figure 8 – Distribution skew in Massive-KB search results using Comet
along the Sp feature.
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Supplementary Figure 9 – Distribution skew in Massive-KB search results using Comet
along the difference between best and second-best score (deltCn) feature.

20



Supplementary Figure 10 – Distribution skew in Massive-KB search results using Comet
along the difference between best and worst score (deltLCn) feature.
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Supplementary Figure 11 – Distribution skew in Massive-KB search results using Comet
along the ion intensity fraction (IonFrac) feature.
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Supplementary Figure 12 – Distribution skew in Massive-KB search results using Comet
along the natural logarithm of the expectation (lnExpect) feature.
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C.1.2. Distribution Skews With X!Tandem

Supplementary Figure 13 – Distribution skew in ProteomeTools search results using
X!Tandem along the Hyperscore feature.
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Supplementary Figure 14 – Distribution skew in ProteomeTools search results using
X!Tandem along the max intensity (maxI) feature.
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Supplementary Figure 15 – Distribution skew in ProteomeTools search results using
X!Tandem along the sum of intensity of matched ions (sumI) feature.
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Supplementary Figure 16 – Distribution skew in ProteomeTools search results using
X!Tandem along the natural logarithm of the expectation (lnExpect) feature.
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