
Université de Montréal

Building Sample-Efficient Reinforcement Learning

par

Max Allen Schwarzer

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de
Philosophiæ Doctor (Ph.D.)

en Informatique

May 28, 2024

© Max Allen Schwarzer, 2023

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Building Sample-Efficient Reinforcement Learning

présentée par

Max Allen Schwarzer

a été évaluée par un jury composé des personnes suivantes :

Glen Berseth

(président-rapporteur)

Aaron Courville

(directeur de recherche)

Marc Bellemare

(codirecteur)

Sarath Chandar

(membre du jury)

Dhruv Batra

(examinateur externe)

(représentant du doyen de la FESP)

Résumé

L’efficacité des données est un défi clé pour l’apprentissage par renforcement profond
(DRL), limitant souvent son utilisation aux environnements où des quantités illimitées
de données simulées sont disponibles. J’envisage une gamme de solutions pour résoudre
ce problème. Nous commençons par proposer une méthode permettant d’exploiter
des données non étiquetées pour pré-entraîner des représentations qui sont ensuite
affinées sur une petite quantité de données spécifiques à la tâche. Pour apprendre des
représentations qui capturent divers aspects de la tâche sous-jacente, j’emplois une
combinaison de modélisation des dynamiques latentes et de RL conditionné par objectif
non supervisé. Cette approche surpasse nettement les travaux antérieurs combinant le
pré-entraînement des représentations hors ligne avec l’affinement spécifique à la tâche,
et se compare favorablement à d’autres méthodes de pré-entraînement nécessitant des
ordres de grandeur plus de données. Nous identifions ensuite et discutons d’un défaut
commun des algorithmes de DRL : une tendance à se fier aux interactions précoces et à
ignorer les preuves utiles rencontrées plus tard. Les agents de DRL encourent un risque
de surapprentissage par rapport aux expériences antérieures, affectant négativement le
reste du processus d’apprentissage. Inspirés par les sciences cognitives, je fais référence
à cet effet comme étant le biais de primauté. Nous proposons un mécanisme simple
mais généralement applicable qui s’attaque au biais de primauté en réinitialisant
périodiquement une partie de l’agent. Nous appliquons ce mécanisme aux algorithmes
dans les domaines d’action discrets (Atari 100k) et continus (DeepMind Control
Suite), améliorant constamment leurs performances. Nous démontrons ensuite que,
poussée à l’extrême, cette approche basée sur la réinitialisation permet d’augmenter
considérablement les ressources computationnelles même avec des données limitées, un
phénomène que j’appelle franchir le mur du ratio de relecture. Les algorithmes basés
sur cette stratégie sont capables d’exhiber un apprentissage beaucoup plus efficace que
les travaux antérieurs, et permettent dans de nombreux cas un échange libre entre

v

computation et données. Enfin, je conclue en démontrant qu’il est également possible
de mettre à l’échelle les réseaux neuronaux utilisés dans le RL efficace en termes de
données, simplement en modifiant certains hyperparamètres. En combinaison avec les
autres avancées réalisées jusqu’à présent, cela nous permet d’atteindre une efficacité
d’apprentissage surhumaine sur Atari 100k même en apprenant purement à partir de
zéro et sans utiliser un modèle pour la planification.

Mots-clés. Apprentissage par renforcement, Apprentissage profond, Efficacité
des données, Apprentissage automatique

vi

Abstract

Data efficiency is a key challenge for deep reinforcement learning (RL), often limiting
its use to settings where unlimited quantities of simulated data are available. I consider
a range of solutions to address this problem. I begin by proposing a method to
leverage unlabeled data to pretrain representations that are then finetuned on a small
amount of task-specific data. To learn representations that capture diverse aspects
of the underlying task I employ a combination of latent dynamics modelling and
unsupervised goal-conditioned RL. This approach significantly surpasses prior work
combining offline representation pretraining with task-specific finetuning, and compares
favourably with other pretraining methods that require orders of magnitude more
data. I then identify and discuss a common flaw of deep RL algorithms: a tendency
to rely on early interactions and ignore useful evidence encountered later. Deep RL
agents incur a risk of overfitting to earlier experiences, negatively affecting the rest
of the learning process. Inspired by cognitive science, I refer to this effect as the
primacy bias. I propose a simple yet generally-applicable mechanism that tackles the
primacy bias by periodically resetting a part of the agent. I apply this mechanism to
algorithms in both discrete (Atari 100k) and continuous action (DeepMind Control
Suite) domains, consistently improving their performance. I then demonstrate
that when taken to the extreme, this reset-based approach allows computational
resources to be scaled up enormously even with limited data, a phenomenon which
I call breaking the replay ratio barrier. Algorithms based on this strategy are able
to exhibit far more efficient learning than prior work, and allow computation and
data to be freely exchanged in many cases. Finally, I conclude by demonstrating
that it is also possible to scale up the neural networks used in sample-efficient
RL, simply by changing certain hyperparameters. In combination with the other
advances made so far, this allows us to achieve super-human learning efficiency

vii

on Atari 100k even when learning purely from scratch and not using a model for planning.

Keywords. Reinforcement Learning, Deep Learning, Data Efficiency, Machine
Learning

viii

Contents

Résumé . v

Abstract . vii

List of Tables . xvii

List of Figures . xxi

Liste des sigles et des abréviations . xxxi

Remerciements .xxxiii

Chapter 1. Introduction . 1

1.1. Thesis Outline . 2

Chapter 2. Background . 5

2.1. Representation Learning. 5

2.1.1. Pretraining . 6

2.1.2. Reconstruction . 6

2.1.3. Data Augmentation . 8

2.1.4. Temporal Prediction . 8

2.1.5. Contrastive Learning . 9

2.1.5.1. Deep Contrastive Learning . 10

2.1.6. Semi-Supervised Learning . 12

2.1.6.1. Consistency-based Losses . 13

2.1.7. Bootstrap Your Own Latent . 14

ix

2.2. Reinforcement Learning . 15
2.2.1. TD Learning . 16
2.2.2. Off-Policy Learning. 16
2.2.3. Deep Reinforcement Learning . 17
2.2.4. Deep Continuous Control . 18
2.2.5. Representation Learning for Reinforcement Learning. 19
2.2.6. Data Efficiency . 20
2.2.7. DeepMind Control . 20
2.2.8. Arcade Learning Environment . 21
2.2.9. Evaluation in the ALE . 21

Chapter 3. Pretraining Representations for Data-Efficient
Reinforcement Learning . 23

3.1. Abstract . 23

3.2. Introduction. 24

3.3. Representation Learning Objectives . 25
3.3.1. Self-Predictive Representations . 27
3.3.2. Goal-Conditioned Reinforcement Learning . 27
3.3.3. Inverse Dynamics Modeling. 28

3.4. Related Work . 28
3.4.1. Data-Efficiency . 28
3.4.2. Exploratory pretraining . 29
3.4.3. Visual Representation Learning. 29

3.5. Experimental Details . 30
3.5.1. Environment and Evaluation . 30
3.5.2. Pretraining Data . 31
3.5.3. Training Details . 33

x

3.6. Results and Discussion . 34
3.6.1. Pretraining data efficiency . 36
3.6.2. Behavioural cloning is a strong baseline. 36
3.6.3. Data quality matters . 36
3.6.4. Pretraining unlocks the value of larger networks . 37
3.6.5. Combining SGI’s objectives improves performance 38
3.6.6. Naively finetuning ruins pretrained representations 39
3.6.7. Not all SSL objectives are beneficial during finetuning 40

3.7. Conclusion . 40

3.8. Acknowledgements . 41

Chapter 4. The Primacy Bias in Deep Reinforcement Learning 43

4.1. Abstract . 43

4.2. Introduction. 44

4.3. Preliminaries . 46

4.4. The Primacy Bias . 47
4.4.1. Heavy Priming Causes Unrecoverable Overfitting . 47
4.4.2. Experiences of Primed Agents are Sufficient . 49

4.5. Have You Tried Resetting It? . 50

4.6. Experiments . 50
4.6.1. Setup . 51
4.6.2. Resets Consistently Improve Performance. 52
4.6.3. Learning Dynamics of Agents with Resets . 52
4.6.4. Elements Behind the Success of Resets . 55

4.6.4.1. Replay ratio. 55
4.6.4.2. n-step targets . 56

xi

4.6.4.3. TD failure modes . 56
4.6.4.4. What and how to reset . 56

4.6.5. Summary . 58

4.7. Related Work . 58
4.7.1. Overfitting in RL. 58
4.7.2. Forgetting mechanisms . 59
4.7.3. Cognitive science . 60

4.8. Future Work and Limitations . 60

4.9. Conclusion . 61

Acknowledgements . 62

Chapter 5. Sample-Efficient Reinforcement Learning by Breaking the
Replay Ratio Barrier . 63

5.1. Abstract . 63

5.2. Introduction. 64

5.3. Related Work . 65

5.4. Effective Replay Ratio Scaling with Resets. 67

5.5. Replay Ratio Scaling Drastically Improves Sample Efficiency. 69
5.5.1. Continuous Control . 70
5.5.2. Atari 100k . 70

5.6. Algorithm Design in Light of Replay Ratio Scaling . 72
5.6.1. Analyzing the Importance of Online Interaction . 72

5.6.1.1. Iterated Offline Setting . 73
5.6.1.2. Tandem Setting . 74
5.6.1.3. Alternative Combinations of Offline and Online Updates. 75

5.6.2. What is Required for Replay Ratio Scaling in Discrete Control? 76

xii

5.6.3. Visualizing the Data/Compute Tradeoff . 78

5.7. The Limits of Replay Ratio Scaling . 79

5.8. Conclusions . 79
Acknowledgments . 81

Chapter 6. Bigger, Better, Faster: Human-Level Atari with Human-
Level Efficiency . 83

6.1. Abstract . 83

6.2. Introduction. 84

6.3. Background . 86

6.4. Related Work . 88

6.5. Method . 90

6.6. Analysis . 94

6.7. Revisiting the Atari 100k benchmark . 97

6.8. Discussion and Future Work . 100
Acknowledgements . 100
Societal impact . 101

Chapter 7. Conclusion . 103

Références bibliographiques . 105

Annexe A. Appendix for Chapter 3 . 129

A.1. Implementation Details . 130
A.1.1. Training . 130
A.1.2. Goal-Conditioned Reinforcement Learning . 130
A.1.3. Model Architectures . 131

xiii

A.1.4. Image Augmentation. 132
A.1.5. Experiments with ATC . 132

A.2. Pseudocode . 134

A.3. Full Results on Atari100k . 135

A.4. Transferring Representations between Games. 137

A.5. Uncertainty-aware comparisons . 139

Annexe B. Appendix for Chapter 4 . 147

B.1. Experimental Details and Additional Results . 148
B.1.1. Ablations . 148

B.1.1.1. Replay buffer . 149
B.1.1.2. Initialization . 149
B.1.1.3. Optimizer state . 150
B.1.1.4. Reset depth . 150
B.1.1.5. Which networks to reset . 150
B.1.1.6. Number of resets . 151
B.1.1.7. Other regularizers . 153

B.2. Per-Environment and Additional Results . 155

Annexe C. Appendix for Chapter 5 . 165

C.1. Definitions from Related Works . 166

C.2. Additional Experimental Results . 166
C.2.1. Additional Studies . 166
C.2.2. Finetuning Pretrained Representations . 169
C.2.3. Finetuning After Offline Training . 170
C.2.4. Pareto Fronts Comparison . 172
C.2.5. Comparison with Neural Fitted Q-Iteration . 172

xiv

C.3. Computational Considerations . 172

C.4. Experimental Details . 174
C.4.1. Full Experimental Results. 177

Annexe D. Appendix for Chapter 6 . 181

xv

List of Tables

1 Performance of agents used in pretraining data collection compared to
external baselines on 26 Atari games (Kaiser et al., 2019) 33

2 HNS on Atari100k for SGI and baselines. 35

3 HNS on Atari 100K for pretraining ablations of SGI. 38

4 HNS on Atari 100K for fine-tuning schemes for SGI. 39

5 HNS on Atari 100K for finetuning ablations of SGI. 40

1 Point estimates and 95% bootstrap confidence intervals for the performance
of SPR with resets and prior methods on Atari 100k. Results for SPR and
SPR + resets are over 20 seeds per game; others are taken from Agarwal
et al. (2021b) and use 100 seeds. 51

2 Point estimates and 95% bootstrap confidence intervals for the performance of
SAC and DrQ with and without resets on DMC tasks. Results are computed
over 10 seeds per task. 53

1 Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019)
after 100k steps. Agents are evaluated at the end of training, and scores
for all methods are averaged over 10 random seeds. We reproduce scores
for SPR from Schwarzer et al. (2021a), whereas ATC scores are from our
implementation. 135

2 Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019)
after 100k steps for versions of SGI with modified fine-tuning, as discussed in
Section 6.7. Agents are evaluated at the end of training, and scores for all
methods are averaged over 10 random seeds. We reproduce scores for SPR
from Schwarzer et al. (2021a). 136

xvii

3 Cliques of semantically similar games . 137

4 Mean return per episode for clique games in Atari100k (Kaiser et al., 2019)
after 100k steps. Agents are evaluated at the end of training, and scores for
all methods are averaged over 10 random seeds. Games in the same clique
are placed together. 138

5 Interquartile mean, median and mean human-normalized scores for variants
of SGI and controls, evaluated after finetuning over all 10 runs for each of the
26 Atari 100k games. Confidence intervals computed by percentile bootstrap
with 5000 resamples. 140

1 Tasks for SAC experiments and a number of training steps. Many of DMC
tasks are solved by SAC in a matter of several thousand steps; we chose
environments where SAC requires a substantial amount of training according
to the reported results from https://github.com/denisyarats/pytorch
_sac#results. 148

2 Tasks for DrQ experiments and a number of training steps. 149

3 Comparison of the performance of SAC and DrQ when augmented with
standard regularization techniques and resets. We leverage 10 runs and the
same set of evaluation tasks reported in table 1 and table 2. 154

4 Full results for SAC in terms of IQM (top), median (middle), and mean
(bottom) performance across tasks. 161

5 Raw per-game scores and aggregate human-normalized scores (HNS) for
SPR with resets and other methods on all 26 games in the Atari 100k
benchmark. We report performance for SPR and SPR + resets from our
codebase, averaged over 20 random seeds per game; other scores are taken
from Agarwal et al. (2021b) and use 100 random seeds. 163

1 Definitions of coinciding and related phenomena from previous work justifying
the effectiveness of our strategy for replay ratio scaling. 166

xviii

https://github.com/denisyarats/pytorch_sac#results
https://github.com/denisyarats/pytorch_sac#results

2 Scores for all games in Atari 100k for SR-SPR and competing algorithms at
various replay ratios. 174

3 Hyperparameters for SR-SPR. The ones introduced by this work are at the
bottom. 175

4 Hyperparameters for SR-SAC. The ones introduced by this work are at the
bottom. 176

5 The tasks from the DMC15 benchmark. We chose commonly-employed
DMC tasks for which the optimal policy is not immediately found by SAC
according to https://github.com/denisyarats/pytorch_sac#results. . 176

1 Scores and aggregate metrics for BBF and competing methods
across the 26 Atari 100k games. Scores are averaged across 50 seeds per
game for BBF, 30 for SR-SPR, 5 for IRIS, 3 for EfficientZero, and 100 for
others. 182

xix

https://github.com/denisyarats/pytorch_sac#results

List of Figures

1 An image from ImageNet (Deng et al., 2009) and two augmented views of
the same, as used in AMDIM (Bachman et al., 2019). 8

1 A schematic diagram showing our two stage pretrain-then-finetune method.
All unsupervised training losses and task-specific RL use the shared torso on
the left. 26

2 SGI finetuning performance vs. pretraining data score for all combinations
of game and dataset. Data score is estimated as clipped return per episode,
trend calculated via kernel regression. Values whitened per-game for clarity. 36

3 Finetuning performance of SGI for different CNN sizes and amounts of
pretrained data from the Mixed dataset. 37

4 Average cosine similarity between representations over pretraining, averaged
across the 26 Atari 100k games. 1 indicates representations are identical, 0
perfect dissimilarity. 37

1 Undiscounted returns on quadruped-run for SAC with and without heavy
priming on the first 100 transitions. An agent extremely affected by the
primacy bias is unable to learn even after collecting hundreds of thousands of
new transitions. Mean and std are estimated over 10 runs.. 48

2 Undiscounted returns on quadruped-run for SAC trained with 9 updates per
step. SAC failing is a standard agent; SAC with failing agent buffer
is an agent initialized with the replay buffer of the first agent, which allows it
to learn quickly. Mean and std are estimated over 10 runs. 49

3 Point estimates and 95% bootstrap confidence intervals for the performance
of SPR with resets and prior methods on Atari 100k. Results for SPR and

xxi

SPR + resets are over 20 seeds per game; others are taken from Agarwal
et al. (2021b) and use 100 seeds. 50

4 Four examples showing diverse effects of resets for SAC (32 updates per step,
resetting every 2× 105 steps) on DMC tasks. After each reset, performance
recovers quickly due to keeping the replay buffer. In cheetah-run, the
baseline agent consistently succeeds at the task and resets provide no major
benefit. In all other tasks, resets increase performance and often reduce
variance. Mean and std are estimated over 10 runs. 54

5 Performance of SAC (left) and SPR (right) and with and without resets for
different replay ratios and a fixed default n. The right-hand plots visualize
the percent improvement gained by adding resets. Agents with higher replay
ratio are more prone to the primacy bias and hence benefit more from
mitigating it. 55

6 Performance of SAC (left) and SPR (right) with and without resets for
different n-step target lengths and a fixed replay ratio (9 for SAC, default
2 for SPR). The right-hand plots visualize the percent improvement gained
by adding resets. As the target variance increases with n, the agent becomes
more susceptible to the primacy bias and benefits more from mitigating it. 55

7 Examples of TD failure modes and how resets address them. Left: A
run with TD collapse in a sparse-reward task cartpole-swingup_sparse.
Even in the presence of non-zero rewards in the buffer, the agent without
resets cannot learn a non-trivial critic. Right: A run with TD divergence
in walker-stand. Even with double Q-learning, the critic might severely
overestimate the action values. On both plots, DrQ without resets achieves
near-zero returns, while DrQ + resets learns a near-optimal policy. The
examples are not cherry-picked, such patterns of behavior occur frequently. 57

1 Scaling behavior of SAC and SR-SAC in the DeepMind Control Suite
(DMC15-500k) benchmark, and of SPR and SR-SPR in the Atari 100k
benchmark (5 seeds for point for SAC and SR-SAC, at least 20 seeds for
point for SPR and SR-SPR, 95% bootstrapped C.I.). 64

xxii

2 Performance of SR-SAC and of standard baselines on the DMC15 benchmark.
(5 seeds for SR-SAC, 20 for all other algorithms, 95% bootstrapped C.I.). . . 69

3 Performance profiles (left, higher is better) of SR-SPR at various replay
ratios, and 95% C.I.s of SR-SPR: 16 and of standard baselines on Atari 100k
(right, 20 seeds for SR-SPR and SPR, 5 seeds for IRIS, 100 seeds for all other
algorithms as taken from Agarwal et al. (2021b)) . 71

4 Scaling behavior of SAC, SR-SAC and its tandem and iterated offline
variations in the DMC15 benchmark. Each individual line shows performance
at a given number of environment steps, denoted by color, across different
numbers of agent updates. Each point in a line is obtained by measuring
performance with a different replay ratio for that number of environment
steps. Each line is computed over 5 seeds. 72

5 Learning curves (top) and evaluation performance (bottom) at replay ratio
16 for SPR and SR-SPR with and without offline updates after each reset. . 74

6 Examples of behaviors of SR-SAC and its tandem and iterated offline
variations on four environments from DMC15. (5 runs, ± std). 75

7 The replay ratio scaling behavior of SR-SPR with various components ablated. 76

8 Performance of SR-SAC in DMC15 as a function of the number of interactions
and of the number of agent updates, determined by the replay ratio. 78

1 Environment samples to reach human-level performance, in terms
of IQM (Agarwal et al., 2021b) over 26 games. Our proposed model-free
agent, BBF, results in 5× improvement over SR-SPR (D’Oro et al., 2023)
and at least 16× improvement over representative model-free RL methods,
including DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018) and
IQN (Dabney et al., 2018). To contrast with the sample-efficiency progress in
model-based RL, we also include DreamerV2 (Hafner et al., 2020b), MuZero
Reanalyse (Schrittwieser et al., 2021) and EfficientZero (Ye et al., 2021). . . . 85

2 Comparing Atari 100K performance and computational cost of
our model-free BBF agent to model-free SR-SPR (D’Oro et al., 2023),

xxiii

SPR (Schwarzer et al., 2021a), DrQ (eps) (Kostrikov* et al., 2021) and
DER (Hasselt et al., 2019) as well as model-based∗ EfficientZero (Ye et
al., 2021) and IRIS (Micheli et al., 2023). (Left) BBF achieves higher
performance than all competitors as measured by interquartile mean human-
normalized over 26 games. Error bars show 95% bootstrap CIs. (Right)
Computational cost vs. Performance, in terms of human-normalized IQM
over 26 games. BBF results in 2× improvement in performance over SR-SPR
with nearly the same computational-cost, while results in similar performance
to model-based EfficientZero with at least 4× reduction in runtime. For
measuring runtime, we use the total number of A100 GPU hours spent per
environment. 85

3 Scaling network widths for both ResNet and CNN architectures,
for BBF, SR-SPR and SPR at replay ratio 2, with an Impala-based ResNet
(left) and the standard 3-layer CNN (Mnih et al., 2015) (right). We report
interquantile mean performance with error bars indicating 95% confidence
intervals. On the x-axis we report the approximate parameter count of each
configuration as well as its width relative to the default (width scale = 1). . 86

4 (Left). Optimality Gap (lower is better) for BBF at replay ratio 8 and
competing methods on Atari 100K. Error bars show 95% CIs. BBF, has
a lower optimality gap than any competing algorithm, indicating that it
comes closer on average to achieving human-level performance across all
tasks. (Right) Performance profiles showing the distribution of scores across
all runs and 26 games at the end of training (higher is better). Area under an
algorithm’s profile is its mean performance while τ value where it intersects
y = 0.75 shows its 25th percentile performance. BBF has better performance
on challenging tasks that may not otherwise contribute to IQM or median
performance. 88

5 Evaluating the impact of removing the various components that
make up BBF with RR=2 and RR=8. Reporting interquantile mean
averaged over the 26 Atari 100k games, with 95% CIs over 15 independent
runs. 90

xxiv

6 Comparison of BBF and SR-SPR across different replay ratios. We
report IQM with 95% CIs for each point. BBF achieves an almost-constant
0.45 IQM improvement over SR-SPR at each replay ratio. 92

7 Comparison of BBF and SR-SPR at replay ratios 2 and 8 with and
without EMA target networks. Human-normalized IQM on the 26 Atari
100k games. 93

8 Validating BBF design choices at RR=2 on 29 unseen games. While
Atari 100K training set consists of 26 games, we evaluate the performance of
various components in BBF on 29 validation games in ALE that are not in
Atari 100K. Interestingly, all BBF components lead to a large performance
improvement on unseen games. Specifically, we measure the % decrease
in human-normalized IQM performance relative to the full BBF agent at
RR=2. 95

9 Evaluating BBF on ALE with and w/o sticky actions. We report
IQM human-normalized performance at replay ratio 8 on 26 games in Atari
100K as well the full set of 55 games in ALE. While performance on the full
set of 55 games is lower, neither setting has its performance significantly
affected by sticky actions. 96

10 Sample efficiency progress on ALE, measured via human-normalized
IQM over 55 Atari games with sticky actions, as a function of amount of
human game play hours, with BBF at RR=8. Shaded regions show 95% CIs. 97

11 Comparing performance on the 29 unseen games to the 26 Atari
100k games. BBF trained with sticky actions at RR=8 for 100k steps
approximately matches DQN (Nature) with 500 times more training data on
each set. While we find that the 29 games not included in the Atari 100k
setting are significantly harder than the 26 Atari 100k games, we see no
evidence that BBF has overfitted to Atari 100k compared to DQN. 98

12 Learning curves for BBF, SR-SPR and SPR at replay ratio 2,
measured via human-normalized IQM over 55 Atari games with sticky

xxv

actions, as a function of number of environment interactions. Shaded regions
show 95% CIs. 99

13 IQM Human-normalized learning curve for BBF at RR=2 with
sticky actions on the 26 Atari 100k games, with final performances
of many recent algorithms after they have trained for 100k steps. Even a
weakened BBF outperforms all by 50k steps.. 101

1 Comparisons to behavioral cloning (BC) and ATC. 141

2 Ablations over different pretraining datasets. 142

3 Ablations over various fine-tuning configurations. 143

4 Ablations over SSL objectives during fine-tuning. 144

5 Ablations over pretraining SSL objectives. 145

1 Performance of the DrQ agent with standard resets, with same-seed resets,
and with both buffer and last layer resetting (10 resets during training) on
four DMC tasks. Resetting the replay buffer in addition to the last layers
nullifies the learning progress, while preserving the random seed for drawing
re-initialized parameters delivers almost the same results as standard resets.151

2 Performance of the DrQ agent with standard resets, with optimizer-only
resets, and with parameter-only resets (10 resets during training) on four
DMC tasks. Resetting the optimizer statistics does not alter training if
the weights are preserved, while keeping the optimizer for re-initialized
parameters delivers almost the same results as standard resets. 152

3 Performance of DrQ with resetting the 3-layer heads (i.e. standard resets),
only the last layers, and random subnetworks. The overall performance of
the latter two versions is either comparable or worse. 152

4 Performance of DrQ with resets of actor, critic, and target critic networks
simultaneously (i.e. standard resets) and individually. Resetting the critic
yields the predominant effect in most environments, but resetting all networks
proved to be the most robust option. 153

xxvi

5 Performance of DrQ when using a limited number of resets. The number
of resets for reaching the best performance varies: in some environments, a
single reset suffices to overcome the primacy bias, in other environments,
keeping resetting continually is required.. 153

6 Performance of SPR when resetting different groups of parameters. The right
plot visualizes the percentage of improvement gained by resetting a certain
group of parameters compared to no resets at all. Resetting the last layer
only delivers a slightly higher IQM than resetting the 2-layer head, while
resetting the whole network severely damages the performance. 154

7 Training curves for SPR with resets on Atari 100k with different n-step
targets. Resets increase TD errors and temporarily increase gradient norms
for all values of n, while implicitly regularizing parameter norms. 156

8 Training curves for SPR with resets on Atari 100k with different replay ratios.
Resets increase TD errors and temporarily increase gradient norms for all
values of RR, while implicitly regularizing parameter norms. 157

9 Per-environment training curves for SAC for various replay ratio (RR) values
and a fixed value of n = 1. 158

10 Per-environment training curves for SAC for the extreme replay ratio (RR)
values of 128 and 256 and a fixed value of n = 1. While a standard learning
algorithm struggles to make any progress, resets allow to achieve reasonable
performance in this regime.. 159

11 Per-environment training curves for SAC for various n and a fixed value of
replay ratio RR = 9. 160

12 Per-environment training curves for DrQ with and without resets on DMC. 162

1 Sensitivity of the IQM to varying reset intervals (in terms of gradient updates)
of SR-SAC on the DeepMind Control Suite (DMC15-500k) benchmark, and
of SR-SPR on the Atari 100k benchmark. (10 seeds, 95% bootstrapped
C.I.). 167

xxvii

2 Churn-related diagnostics (based on the policy churn definition from Schaul
et al. (2022)) for the online and target networks. Different colors and RR
denote different values of replay ratio. 168

3 Performance on DMC15-500k of running IQL (RR=32) online, with and
without resets. 169

4 The performance of SR-SPR and SPR from scratch and when fine-tuning a
pre-trained encoder on Atari 100k (10 seeds. 95% bootstrapped C.I. 170

5 Performance of SR-IQL and IQL in two tasks from D4RL. Negative steps
denotes the pretraining phase (10 seeds, ± std). 171

6 Pareto fronts for SR-SAC and Tandem SR-SAC on DMC15 (5 seeds). 171

7 Learning curves for SR-SPR (solid) and SPR (dashed) at various replay
ratios. Note that all SR-SPR runs converge to similar TD errors, gradient
norms and parameter norms, while these metrics greatly differ for SPR at
different replay ratios. IQM training performance does not match evaluation
performance, as ongoing training episodes are often disrupted by the reset
procedure. 173

8 Scaling curve for SR-SAC and SAC on DMC15-1M. 177

9 Evaluation Returns on individual DMC15 environments for replay ratio 8. . 177

10 Evaluation Returns on individual DMC15 environments for replay ratio 16. 178

11 Evaluation Returns on individual DMC15 environments for replay ratio 32. 178

12 Evaluation Returns on individual DMC15 environments for replay ratio 64. 178

13 Evaluation Returns on individual DMC15 environments for replay ratio 128.179

1 Learning curves for BBF and SR-SPR at RR=2 with a ResNet
encoder at various width scales, on the 26 Atari 100k games. Larger
networks consistently have lower TD errors and higher gradient norms, and
higher parameter norms, but only BBF translates this to higher environment
returns. The large, systematic difference in TD error between BBF and

xxviii

SR-SPR is due to BBF’s use of a shorter update horizon, which makes each
step of the TD backup easier to predict. 183

2 BBF at RR=2 on the 26 Atari 100k tasks, with and without Noisy Nets. . . 184

xxix

Liste des sigles et des abréviations

RL Reinforcement Learning
DRL Deep Reinforcement Learning
DQN Deep Q-Network
SAC Soft Actor-Critic
TD Temporal Difference
DDPG Deep Deterministic Policy Gradient
TD3 Twin Delayed DDGP
ALE Atari Learning Environment
KL Kullbach-Liebler
MSE Mean Squared Error
HNS Human-Normalized Score
SSL Self-Supervised Learning
EMA Exponential Moving Average
DM Control DeepMind Control
CNN Convolutional Neural Network
RNN Recurrent Neural Network
NCE Noise-Contrastive Estimation
SSL Self-Supervised Learning
VAE Variational Auto-Encoder
MI Mutual Information
PDF Probability Density Function
PMF Probability Mass Function

xxxi

Remerciements

I am very grateful for the support I have received at Mila. I particularly wish to thank
my advisors Aaron Courville and Marc Bellemare, who have taken immense amounts of
time to introduce me to machine learning research and reinforcement learning, and have
profoundly shaped my research career thus far. I likewise owe debts to Pablo Castro
and Rishabh Agarwal, for their guidance and support during my long period at Google
Brain, and for their support in helping me do the last half of my PhD at Google.

I also wish to thank my coauthors, who have made my experience at Mila as
productive as it has been, including Evgenii Nikishin, Pierluca D’Oro, Johan Obando-
Ceron, Nitarshan Rajkumar, Ankesh Anand, Devon Hjelm, Philip Bachman, Michael
Noukhovitch, Rishabh Agarwal, Samuel Lavoie, Christos Tsirigotis, Laurent Charlin,
Ankit Vani, Pablo Castro, Pierre-Luc Bacon, Aaron Courville and Marc Bellemare.

I am also extremely thankful for the astonishing computational resources provided to
me at Mila, both through the Mila cluster and Compute Canada, and for the resources
that were later made available to me at Google.

Finally, the work reported in this thesis would not have been possible without
the financial support from: Calcul Quebec, Compute Canada, Borealis, le Fonds de
recherche du Québec, the Canada Research Chairs and CIFAR.

xxxiii

Chapter 1

Introduction

Reinforcement learning (RL) is a family of approaches for creating artificial agents for
solving sequential decision-making problems by learning to maximize a reward signal.
Deep RL combines RL approaches with deep neural networks, and has been immensely
successful in scaling RL to approach problems such as playing challenging games (Mnih
et al., 2013; Silver et al., 2016a), drug discovery (Popova et al., 2018), flying stratospheric
balloons (Bellemare et al., 2020), control for nuclear fusion (Degrave et al., 2022a) and
robotic manipulation (Akkaya et al., 2019; Lee et al., 2020). Despite such successes,
it remains very challenging to apply deep RL to tackle real-world decision making
problems. One key issue limiting the widespread use of deep RL is sample efficiency:
many RL algorithms require months (Mnih et al., 2015) to years (Schrittwieser et al.,
2020) to millenia (OpenAI et al., 2019) of real-time experience data to achieve acceptable
performance, with harder tasks consistently requiring more and more data. Humans,
by comparison, are often able to learn the same tasks to an acceptable standard with
hours to days of experience; how exactly humans do this is unknown, but it is clear
that humans leverage prior knowledge effectively (Dubey et al., 2018), is enormously
larger than most RL systems.1

In this thesis, I present a collection of works designed to address this issue by
improving the sample efficiency of deep reinforcement learning agents, with the ultimate
goal of making them more applicable to real-world problems where data is scarce and
expensive by matching or surpassing human sample-efficiency. I begin by discussing

1The precise number of neurons and synapses in the human brain is not known and varies between
individuals, but one may expect something on the order of 240 trillion (Koch, 2004) synapses; by
comparison, the largest neural network trained in this thesis has a bit over 10 million parameters.

self-supervised pretraining, in which unlabeled data is leveraged to learn representations
that then accelerate reinforcement learning. I continue with a discussion of the primacy
bias in deep reinforcement learning, a phenomenon in which reinforcement learning
agents overfit to their early experiences, and some techniques that improve sample
efficiency by mitigating the primacy bias. I then present an extension of this work,
which demonstrates that aggressively countering the primacy bias allows us to benefit
from replay ratio scaling, using more compute for fixed amounts of data. Finally, I
demonstrate that it is also possible, through a comprehensive set of hyperparameter
changes, to scale up the neural networks used in sample-efficient RL, leading to enormous
increases in performance and culminating in the creation of an algorithm that is capable
of super-human learning efficiency on standard reinforcement learning benchmarks.

1.1. Thesis Outline
I structure the thesis in six parts: a background section, consisting largely of

prior work and common terms in reinforcement learning and especially self-supervised
learning; four contribution chapters, each consisting of a contextualized reproduction of
the main body of a published work; and a conclusion, which summarizes the overall
structure and significance of the works presented here. Finally, we present a single, joint
bibliography for all chapters, followed by the appendices and supplementary materials
of the published works, which are in some cases needed to understand certain discussion
points.

• Chapter 2 discusses the pre-requisite concepts and terminology required in order
to understand this thesis, particularly aspects relating to representation learning
and reinforcement learning, and covers relevant prior work. Readers familiar
with these topics should feel empowered to skip this chapter.
• Chapter 3 discusses self-supervised algorithms to pretrain representations for

deep reinforcement learning agents from arbitrary offline data, without requiring
action or reward supervision, and how best to fine-tune networks pretrained
in this fashion to achieve high performance on sample-efficient reinforcement
learning tasks. This reproduces the following work:

– Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh
Anand, Devon Hjelm, Philip Bachman & Aaron Courville. Pretraining
Representations for Data-Efficient Reinforcement Learning. NeurIPS
(2021).

2

I led this project and performed the vast majority of experimental work, including
all of the results in the main body of the paper.
• Chapter 4 introduces the notion of the primacy bias to deep reinforcement

learning, demonstrating that reinforcement learning algorithms may overfit to
early experiences, and shows that a family of reset-based solutions can mitigate
this and lead to large performance improvements. This reproduces the following
work:

– Evgenii Nikishin*, Max Schwarzer*, Pierluca D’Oro*, Pierre-Luc Bacon
& Aaron Courville. The Primacy Bias in Deep Reinforcement Learning.
ICML (2022).

I co-led this project from its inception and performed all Atari experiments, or
roughly half of the overall results in the paper.
• Chapter 5 shows that addressing the primacy bias through frequent resets allows

the compute used by sample-efficient reinforcement learning algorithms to be
scaled up dramatically, leading to large improvements in sample efficiency. This
reproduces the following work:

– Pierluca D’Oro*, Max Schwarzer*, Evgenii Nikishin, Pierre-Luc Bacon,
Marc G Bellemare & Aaron Courville. Sample-Efficient Reinforcement
Learning by Breaking the Replay Ratio Barrier. ICLR (2023).

I co-led this project from its inception and performed all Atari experiments, or
roughly half of the overall results in the paper.
• Chapter 6 demonstrates that it is simultaneously possible to scale up the neural

networks used by sample-efficient reinforcement learning algorithms, simply by
applying the techniques from previous chapters and thoroughly re-tuning the
parameters of sample-efficient reinforcement learning algorithms to harmonize
with larger models. This reproduces the following work:

– Max Schwarzer, Johan Obando-Ceron, Marc G Bellemare, Aaron Cour-
ville, Rishabh Agarwal & Pablo Castro. Bigger, Better, Faster: Human-
Level Atari with Human-Level Efficiency. ICML (2023).

I led this project and performed the vast majority of experimental work, including
all of the results in the main body of the paper.
• Chapter 7 discusses the overall significance of these works and some overarching

lessons that may be taken from them, and reflects on the future of sample-efficient
reinforcement learning research.

3

Chapter 2

Background

In this chapter, we will provide an overview of the core concepts required to understand
the contributions presented in this proposal. Our work lies at the intersection of the fields
of representation learning and reinforcement learning, and we structure the overview
accordingly. We first introduce developments in representation learning from the 1990s
to today, with a particular focus on representation learning methods used in computer
vision that this thesis and much related work draw from. We then briefly introduce
the field of reinforcement learning, concentrating on reinforcement learning techniques
using neural networks, or Deep Reinforcement Learning. We assume knowledge of basic
techniques and terminology in deep learning, including feedforward, convolutional, and
recurrent neural networks, regularization, and gradient-based optimization, including
stochastic gradient descent. We also assume familiarity with traditional supervised
learning tasks, such as classification and regression. For readers unfamiliar with these
topics, we recommend the book Deep Learning (Goodfellow et al., 2016).

2.1. Representation Learning
In this section, we will introduce background material on representation learning in

deep learning. We begin with the early developments in the field, including generative
pretraining and autoencoding, before moving on to discuss contrastive learning. We
conclude with a discussion of recent developments in self-supervised and semi-supervised
representation learning, from which this work draws directly. This is not meant to be a
complete summary of the history of representations learning; we present only a few key
papers, and entirely omit many important historical topics not critical to understanding
the techniques used in this thesis, such as Restricted Boltzmann Machines.

Naturally, many of the works considered have used different styles of notation. For
convenience, we thus introduce some shared notation; we denote representations as z,
targets used in representation learning objectives as x, and inputs to representation
learning objectives from which representations are derived as c (when they are separate
from x). We denote parameters of neural networks as θ, and encoders as fθ and decoders
as gθ, where appropriate. We denote a dataset from which x and c are sampled as D.
We denote learned distributions, typically parameterized by neural networks, using the
subscript θ, as in pθ and qθ.

2.1.1. Pretraining

Representation learning as a topic of study in deep learning dates back to early
models of multi-layer perceptrons, where generative pretraining was proposed as a
necessary method to improve learning, since methods of the time struggled to directly
train deep neural networks (Tesauro, 1992; Bengio, 2009). This would change with the
introduction of stabilizing techniques such as the rectified linear unit (e.g., as used in
Nair et al., 2010), batch normalization (Ioffe et al., 2015), and skip connections (He
et al., 2016; Srivastava et al., 2015), but without them neural networks were often
limited to depths of at most a few layers (compared with the hundreds possible at the
time of this writing (He et al., 2016)). Thus, generative pretraining, particularly the
layer-wise pretraining proposed by deep belief nets (Bengio et al., 2007), served as a
means to aid the training of deep networks. By training each layer of neural network
individually to reconstruct its own inputs (either the input to the network or the output
from the previous layer), proceeding through the network layer-by-layer, the network
could be endowed with essentially a better weight initialization, which propagated
information through the network in a more efficient fashion. This initialization could
then be used to train the network to solve a different (generally supervised) task,
improving performance (Bengio et al., 2007).

2.1.2. Reconstruction

One of the oldest and most popular techniques for deep representation learning
is reconstruction, often (although not always) in the context of autoencoding. In
autoencoding, an encoder fθ maps a high-dimensional input x (e.g., an image) to a
lower-dimensional representation z (e.g., a 100-dimensional vector). Then, a decoder gθ

6

produces a reconstruction of x, generally by maximizing the likelihood pθ(x|z) under a
distribution parameterized by g.1

Popular variants, such as the variational autoencoder (VAE, Kingma et al., 2013)
or Wasserstein autoencoder (WAE, Tolstikhin et al., 2018) introduce a regulariza-
tion term to ensure that z has a certain desired structure (e.g., that it be nor-
mally distributed), and in doing so improve the quality of representations lear-
ned (Higgins et al., 2016). For example, the VAE formulates its encoder as pa-
rameterizing a distribution qθ(z|x) instead of the standard deterministic encoder
f(x). The VAE then jointly maximizes pθ(x|z) and regularizes qθ by minimizing
the Kullbach-Liebler divergence2 between qθ(z|x) and a prior p(z) for the representa-
tion: LV AE = Ex∼D

[
Ez∼qθ(z|x) [− log pθ(x|z)] + KL(qθ(z|x)||p(z))

]
; the prior is typically

chosen to be an isotropic Gaussian distribution, although other choices are not unknown.
The WAE, on the other hand, uses a separate critic network to estimate and minimize
the Wasserstein distance between qθ(z) and p(z).3

In more general contexts, input and target output may not be identical. The encoder
is given some input c and the decoder is asked to maximize the probability of a different
target p(x|z). For example, the denoising autoencoder (Vincent et al., 2008) applies
noise to the input to f , as a form of regularization. In a task such as video prediction,
on the other hand, c might be an individual frame of a video, and x the next frame.

In practical terms, however, reconstruction objectives face a common tendency to
disregard smaller objects or visual features, which will typically receive less weight in a
calculation of p(x|z). This is particularly true of regularized variants such as variational
autoencoders (VAEs), with an entire subfield of research developing around fixing this
problem (e.g., Alemi et al., 2018).

1Many methods in reconstruction calculate the mean squared error between a prediction from a
deterministic decoder x̂ = gθ(z) and x; this is equivalent to maximizing p(x|z) under a fixed-variance
Gaussian distribution.

2The KL divergence is defined as KL(q(z)||p(z)) = Ez∼q[log q(z)
p(z)]

3The Wasserstein distance between two probability measures µ and ν is defined in its minimal form
as Wp(µ, ν) = (infΓ∈P (X∼µ,Y ∼ν) EΓ[c(X, Y)]), where Γ is a probability distribution with marginals µ

and ν and c is a cost function, chosen here to be a metric. In practice, this must be approximated via
duality, using a critic network (Tolstikhin et al., 2018).

7

Figure 1. An image from ImageNet (Deng et al., 2009) and two augmented views of the same, as
used in AMDIM (Bachman et al., 2019).

2.1.3. Data Augmentation

As representation learning has developed, the use of data augmentation has become
increasingly foundational. Originally used in supervised learning (see Yaeger et al.,
1997; Simard et al., 2003; Krizhevsky et al., 2012), data augmentation stochastically
generates alternative “views” of data by adding noise, ideally while preserving quantities
of interest (Gontijo-Lopes et al., 2020). When applied to images, as in many of the works
to follow, data augmentation typically involves operations such as rotations, cropping,
blurring, flipping, and color distortion (e.g., see Grill et al., 2020); when applied to
other data, it is common to apply Gaussian noise or other non-spatial distortions. See
Fig. 1 for an example due to Bachman et al. (2019).

The use of image augmentation in representation learning can be traced back to early
reconstruction-based methods such as the denoising autoencoder (Vincent et al., 2008),
in which inputs to an autoencoder are perturbed by noise as a form of regularization.
However, image augmentation also enables other classes of representation learning
objectives designed to directly exploit the structure created by augmentation.

2.1.4. Temporal Prediction

When temporal structure is present, as in language or video, representation learning
techniques that leverage temporal prediction may be used. The most well-known such
task is without a doubt language modeling in natural language processing. In this
problem the probability of a string of tokens t is factorized as p(t1:N) =

∏n
i=1 p(ti|tk<i).

When used for representation learning, a model of the conditional distribution pθ(ti|tk<i)
is parameterized by a neural network capable of accepting inputs of variable length, such

8

as a recurrent neural network or transformers (Vaswani et al., 2017), allowing parameters
to be entirely shared between each pθ(ti|tk<i). As ti is generally a discrete token chosen
from a finite vocabulary, the true probability distribution p(ti|tk<i) takes the form of
a categorical distribution, which can be conveniently represented by neural networks
using the softmax function (Goodfellow et al., 2016). This allows the probability of
the data under the neural network model pθ to be directly maximized via maximium
likelihood estimation, using −

∑N
i=1 log pθ(ti|tk<i) as an objective. Networks pretrained

in this fashion on large corpora of natural language data have been shown to have
representations extremely useful in solving problems such as sentiment analysis, natural
language inference, and question answering (Radford et al., n.d.; Brown et al., 2020;
OpenAI, 2023). In many cases it has been desirable to only model a portion of this
distribution, conditioning on some tokens and predicting others, to enable the use of
bidirectional transformer models, as in (Devlin et al., 2019).

Outside of linguistic domains, a wider variety of options have been chosen. While
some algorithms have directly used reconstruction (analogous to categorical prediction
of tokens), such as PredNet (Lotter et al., 2016) and the Dreamer family (Hafner
et al., 2020a; Hafner et al., 2020b; Hafner et al., 2023), others such as CPC and
CPC|Action (Oord et al., 2018; Hénaff et al., 2019; Mazoure et al., 2020) combine
contrastive objectives (see section 2.1.5) with temporal prediction. It is also possible
to combine temporal prediction with the direct (non-constrastive) prediction of latent
representations of states at other point in time, as in DeepMDP (Gelada et al., 2019),
PBL (Guo et al., 2020) and SPR (Schwarzer et al., 2021a). This often involves either
minimizing the mean squared error (DeepMDP and PBL) or maximizing the cosine
similarity (SPR) between a prediction of the representation of a future state and its
true representation.

2.1.5. Contrastive Learning

In most reconstruction-based approaches, an explicit, normalized model of the target
x given representation z is learned, as pθ(x|z). In contrastive models, this explicit,
normalized reconstruction is replaced with an implicit, unnormalized potential function
fθ(x, z), trained indirectly to encourage fθ(x, z) to match p(x|z) if properly normalized.
To do this, fθ(x, z) is maximized for x sampled from the true distribution pθ(x|z) and
minimized for x sampled from a separate noise distribution. This method was originally
proposed as a means to learn non-normalized statistical models, by (Gutmann et al.,

9

2010); later, it was adapted by the deep learning community as a tool for representation
learning.

2.1.5.1. Deep Contrastive Learning. In the deep learning formulation of contras-
tive learning, the distribution p(x|c) to be learned is generally either generated by
augmentation (in which case p(x|c) is typically the distribution of possible views of an
image of which c is itself an augmented view) (as used in various fashions in Hjelm
et al., 2019; Bachman et al., 2019; Hénaff et al., 2019; Chen et al., 2020a; Chen et al.,
2020b; He et al., 2020) or by temporal structure (for example, where c is a frame in a
video, and p(x|c) is the distribution of future frames) (as in Oord et al., 2018; Anand
et al., 2019; Mazoure et al., 2020). Moreover, modeling conditional distributions enables
the noise distribution to take the form of the marginal p(x), a choice made by all of
the methods cited above due to its convenience.

The most common loss function used in contrastive Learning is the InfoNCE loss,
introduced by (Oord et al., 2018), defined as

LInfoNCE = EX

[
− log fk(x+, c)∑

xj∈X fk(xj, c)

]
(2.1.1)

Where X is a minibatch of examples drawn uniformly from a dataset D, x+ is a positive
sample drawn from p(x|c), and all other elements of X are negative samples drawn from
p(x). In all of the methods considered, fk typically involves the creation of intermediate
representations zc and zx, where zc is the representation used in downstream tasks.
The final step of fk generally consists of the application of a learnable energy function
hk(zc, zx), such as the dot product zc · zx or a learned bilinear function zcWzx. If zc

and zx are generated by different encoders, the encoder used to generate zc is referred
to in this work as the online encoder and the encoder used to generate zx as the target
encoder. When used with these distributions, minimizing the InfoNCE loss is equivalent
to maximizing a lower bound on mutual information between zx and zc. 4 However,
recent work suggests that mutual information maximization is not critical to the success
of contrastive methods (Tschannen et al., 2019).

Deep contrastive learning methods are thus the first deep self-supervised methods
we will consider, as they use their own representations (zx) as targets. This stands
in sharp contrast to reconstruction and language modeling contexts, where data x is
itself used as a target. We will now consider a selection of deep contrastive learning

4This is the origin of the word info in the term InfoNCE

10

algorithms, focusing on several methods that appeared between June 2018 to June
2020, a period of rapid evolution during which the state-of-the-art top-1 accuracy on
ImageNet (generally the most common benchmark used, Deng et al., 2009) among
self-supervised methods advanced from 48.7% (Oord et al., 2018) to 79.6% (Grill et al.,
2020).

One of the first works to introduce deep contrastive learning at a large scale was
CPC (Oord et al., 2018). CPC uses a contrastive temporal prediction objective for
video and audio data, training its representation of an initial observation c to predict
the representations of observations x later in the time series with an autoregressive
model, and directly optimizing a sum of InfoNCE objectives, one for each predicted
time step in the future. On images, CPC uses essentially an adaptation of the same
type of prediction loss, but using image position instead of time. CPC crops images
into vertically-overlapping patches, and then uses representations of the upper patch to
predict those in the lower patch.

Later approaches to contrastive learning introduce the notion of enforcing consistency
under augmentation, and of using contrastive losses that exploit the spatial structure
of images by forcing global representations to contain local information. Thus, DIM
and AMDIM (Hjelm et al., 2019; Bachman et al., 2019) introduce spatial losses. In this
DIM-style of spatial loss, multiple targets p(xi|c) are defined to be the spatial locations
in convolutional feature maps at one or more layers of the encoder as it processes the
image c; separate InfoNCE losses are computed for each and then averaged. AMDIM
augments DIM primarily by using different random augmentations for c and x and in
drawing targets xi from more layers of the encoder, in total dramatically increasing the
scale of the method.

More recent innovations to the contrastive learning paradigm, moreover, added
momentum encoders and emphasized the use of cosine similarity, both of which would be
critical for future methods. These methods also achieved state-of-the-art performance
without the use of spatially-structured comparisons (e.g., the patch representations
used in DIM and AMDIM), leading to substantially simpler algorithms.

SimCLR (Chen et al., 2020a) pioneered the use of auxiliary projection networks;
instead of directly calculating H(zc, zx) as a dot product or bilinear function of zc and zx,
SimCLR applies a learnable non-linear function 5 to zc and zx, as g(zc) and g(zx), where
g is trained to minimize the same InfoNCE loss. SimCLR then defines its energy function

5i.e., a two-layer MLP

11

using the cosine similarity between these projections, as H(zc, zx) = t g(zc)·g(zx)
∥g(zc)∥∥g(zx)∥ , where

t is a fixed temperature hyperparameter. Using the cosine similarity instead of a simple
dot product regularizes the objective, preventing the network from easily reducing
its loss by modifying the magnitude of its predictions, at the cost of introducing an
important hyperparameter t which must be tuned.

MoCo (Momentum Contrastive Representation Learning, He et al., 2020) augmented
the contrastive framework used in previous works with the use of a polyak-averaged (Po-
lyak et al., 1992) target encoder to encode targets x, using an exponential moving
average (nicknamed momentum). Denoting the parameters of the target encoder as
θm and those of the online encoder as θo, the parameters of the target encoder are
updated as θm ← τθm + (1− τ)θo, where τ is a hyperparameter. The primary role of
the momentum target network in MoCo is to enable the use of a memory buffer of
negative examples which are used to dramatically increase the effective batch size of
the algorithm (up to 65,536 examples), although recent work indicates that momentum
target encoders can themselves improve training due to their stabilizing influence (Grill
et al., 2020). As the difficulty of a contrastive task is directly related to the number of
negative samples (see the definition of the InfoNCE loss above; increasing the number of
negative examples increases the denominator of the softmax, monotonically increasing
the loss), introducing this large memory buffer enables for more finely-tuned representa-
tions. Later, innovations from SimCLR were combined with MoCo, leading to a hybrid
method with strong performance (Chen et al., 2020c).

2.1.6. Semi-Supervised Learning

Most of the methods considered thus far have been optimized separately from
a supervised task such as regression or classification. Instead, they largely focus
on pretraining, using a representation learning method separately from the ultimate
downstream objective, which is optimized separately either by adapting the entire
network (e.g., Bengio et al., 2007) or by training a separate low-capacity algorithm such
as a linear classifier with the algorithm’s encoder as a preprocessing step applied to
inputs (as done during evaluation by Oord et al., 2018; He et al., 2020; Bachman et al.,
2019; Chen et al., 2020a).

However, when the goal is to design a representation learning method to solve a
specific downstream task, it is natural to instead jointly optimize a representation
learning loss alongside a supervised learning loss. Doing so is generally referred to

12

as semi-supervised learning,6 and may offer improvements to the data efficiency for
the supervised learning task, reducing the number of (often costly, human-generated)
labels necessary to reach a certain level of performance. Both constrastive (e.g., Hénaff
et al., 2019; Chen et al., 2020b) and reconstructive (e.g., Rasmus et al., 2015) objectives
have been used in semi-supervised learning; in linguistic domains, it is common to
employ temporal prediction tasks in the form of language modeling. This has become
particularly prominent in problems where labeled data is scarce. When a great deal of
unlabeled data is available, the representation learning objective may be optimized over
both labeled and unlabeled data, while the supervised learning objective is optimized
over only the labeled subset (e.g., Hénaff et al., 2019; Vedantam et al., 2019; Chen et al.,
2020b), although some techniques show benefits for representation learning techniques
even when no additional unlabeled data is available (see experiments in Hénaff et al.,
2019; Chen et al., 2020b; Tarvainen et al., 2017).

2.1.6.1. Consistency-based Losses. A number of self-supervised learning methods
have been proposed in which a “student” network is trained to directly match its
outputs to those of a “teacher” network under noise or various other perturbations,
predominantly (but not exclusively) in semi-supervised learning. In the most general
formulation of this type of objective, the “student” and “teacher” networks are presented
with different augmented views of an input, or are otherwise subjected to differing noise,
e.g., by dropout (Srivastava et al., 2014). Although invariance to noise or perturbation
is a key aspect of many contrastive works (as examined by Wang et al., 2020b), these
methods differ in having no notion of “contrast”; instead, only a divergence is minimized,
such as KL divergence (when teacher outputs are interpreted as distributions, as in
Sohn et al., 2020; Fortunato et al., 2018) or mean squared error (when they are treated
viewed only as vectors, as in Tarvainen et al., 2017).

Mean Teacher (Tarvainen et al., 2017) proposes to instantiate the “teacher” network
as an exponential moving average (EMA) of the student (Much as was later done
in contrastive learning by He et al., 2020), showing large boosts in performance on
classification tasks with only a small number of labels available. Moreover, they
show that using an EMA teacher network leads to a substantial boost in performance
over the alternative where the teacher is identical to the student, and demonstrate
that subjecting the teacher to additional noise (image augmentation, dropout) greatly
improves performance. Mean Teacher is also notable for minimizing the squared error

6Not to be confused with self-supervised learning, with which it shares acronyms.

13

between the final output layer of the student and that of the teacher, prefiguring both
these works and later works in pure self-supervised learning (Grill et al., 2020).

Noisy Student (Xie et al., 2020) modifies this general algorithm by adopting an
iterated approach, freezing the “teacher” network occasionally and reinitializing a larger
“student” network from scratch; after learning from the teacher for a set period of
time, the student becomes the new teacher and the cycle begins again. Noisy Student,
unlike Mean Teacher, applies no augmentation or noise whatsoever to the inputs to
the teacher; instead, Noisy Student uses enormous quantities of additional unlabeled
data (300 million images). Also unlike Mean Teacher, Noisy Student uses the teacher
to generate inferred labels and trains the student via classification using these labels
as targets. As a result of these innovations, Noisy Student shows large improvements
of performance even when trained with all ImageNet labels, including large gains on
robustness measures.

Fix-Match (Sohn et al., 2020) differs from Noisy Student in returning to the
teacher paradigm employed by Mean Teacher. Fix-Match also further refines the
distinction between augmentations used for teacher and student; the student is presented
with radically distorted images, while the teacher’s inputs are subjected to only mild
augmentation. Fix-Match also introduces a confidence threshold to avoid training the
student when the teacher is uncertain, by only treating the teacher’s predictions as
equivalent to classification labels if they are sufficiently confident.

2.1.7. Bootstrap Your Own Latent

Bootstrap Your Own Latent (BYOL, Grill et al., 2020) shows that this type of
objective is also viable in purely unsupervised learning, outperforming comparable
contrastive methods despite having no theoretical incentive to avoid representational
collapse. Essentially comparable to contrastive learning methods such as SimCLR but
with “contrastive” elements of its loss removed, BYOL directly maximizes the cosine
similarity between representations of different views of an input, achieving state-of-
the-art performance with a substantially simpler method.7 Were representations to
collapse to a constant vector the BYOL loss would be minimized, but empirically this

7The authors of BYOL describe their method as minimizing normalized L2 distance, similar to
Mean Teacher’s choice of MSE (Tarvainen et al., 2017), but also acknowledge that this is equivalent
up to a loss scaling factor to maximing cosine similarity.

14

never occurs; the precise reason for this remains unknown (private correspondence with
authors of Grill et al., 2020).

This results in a dramatically simpler algorithm than that used by comparable
contrastive and reconstruction-based alternatives, which respectively need to employ
negative samples or train a decoder. Experiments demonstrate that reintroducing
negative samples to BYOL in fact reduces performance, contrary to arguments by (Wang
et al., 2020b) that the representational uniformity enforced by negative samples in
contrastive methods is critical to their success. Despite the presence of infinitely many
spurious minima of the BYOL loss (online and target outputs collapsing to a shared
constant vector is sufficient to achieve zero loss), this does not in practice occur, with
the exponential moving average target encoder identified as a key reason.

2.2. Reinforcement Learning
Reinforcement learning is a subfield of machine learning that studies how agents learn

behavioral patterns, or policies, to maximize an objective, or reward, while interacting
with an environment. In the standard reinforcement learning setting (see Sutton et al.,
2018), agents interact with a Markov Decision Process (MDP), defined as consisting
of a set of states S, a set of possible actions A, a set of possible rewards R, a state
transition distribution p(s′|s, a) and a reward distribution p(r|s′, s, a).8

Agents interact with their environment by choosing actions according to a policy
π(a|s), which is a probability mass (or density, if A is infinite) function. After choosing
an action, agents observe a reward and the next state; this sequence of state-action-
reward-state is commonly referred to as a transition. Agents’ interactions are commonly
divided into episodes, sequences of transitions, and are written as s0, a0, r0, s1, a1, r1,
These episodes may be infinite, in which case the quantity of interest for optimization
is the average reward received by the agent across timesteps. In the setting considered
here, however, the quantity of interest is the discounted sum of rewards (or return),
defined as Gt ≜ rt + γrt+1 + γ2rt+2 + . . . =

∑∞
k=t γt−krk, where γ ∈ [0, 1] is a discount

factor that causes the agent to prioritize nearer rewards (Sutton et al., 2018).

It is common for agents to estimate these returns with a learned value function,
V : S → R, which is trained to approximate the true expected return of a state

8These take the form either of probability mass functions or probability density functions, depending
on the finiteness of S and R.

15

vπ(s) ≜ Eπ[Gt|st = s]. Alternatively, many algorithms instead estimate an action-
conditioned variant of the value function, generally denoted as Q : S ×A → R, which
is trained to approximate Q∗(s, a) ≜ E[Gt|st = s, at = a]. When actions are selected
according to a policy π, estimating Q is strictly more general than estimating V , as
a value function V can be recovered by taking the expectation of Q over actions:
V (s) = Ea∼π(a|s)[Q(s, a)].

2.2.1. TD Learning

Although a wide variety of methods have been proposed to estimate Q and V , the
methods used in this thesis are based on temporal-difference (TD) learning. In TD
methods, agents learn from individual transitions of the form (st, at, rt, st+1), updating
their estimates of V (st) or Q(st, at) using their estimate for the value of st+1. In the
context of value learning, the TD error of a transition is defined as δt ≜ rt + γV (st+1)−
V (s). With infinite data and certain assumptions about optimization, the correct
value function can be learned by iteratively minimizing this error (Sutton et al., 2018),
converging at a rate governed by γ.

In these works, we largely focus on Q-learning, a variant of TD learning used to
jointly estimate the optimal policy π∗ , defined as π∗ ≜ arg maxπ Eπ,so [G0] , and the
optimal value function, defined as q∗(s, t) = Eπ∗ [Gt|st = s, at = a] . When the MDP
in question is perfectly known and states and actions can be enumerated, an agent’s
estimate of Q can iteratively improved by applying the Bellman optimality operator,
defined as Qi+1(St, At) = E[rt + γ maxa Qi(St+1, a)] (Sutton et al., 2018); this operator
converges to the optimal policy π = π∗ and Q function Q = q∗ at its fixed point. When
this is not the case and Q must be learned from data, this is generally done by minimizing
a TD error corresponding to the operator δt ≜ rt + γ maxat+1 Q(st+1, at+1)−Q(s, a).

2.2.2. Off-Policy Learning

The objectives defined for TD learning contain a number of expectations, over
the agent’s policy, the reward distribution of the environment, and the environment’s
transition function. When the MDP in question is fully known, these expectations are
not problematic, as they can be directly evaluated. In practice, however, this is often
not the case, and these expectations must generally be approximated by samples taken
from the agent’s interactions with the environment.

16

Approaches for doing so can be divided into two classes: on-policy and off-policy,
based on whether data used is collected according to the current policy π or some other
policy or set of policies. Off-policy methods offer significant theoretical advantages,
enabling agents to learn from arbitrarily-collected data, but often suffer from instability,
especially when combined with TD learning and function approximation such as neural
networks (Sutton et al., 2018).

Moreover, some methods are intrinsically off-policy. In Q-learning, for example, the
agent’s policy is deterministic; although this allows the agent to learn what is strictly
the optimal policy, it means that the agent will generally not select a wide-enough
variety of actions to explore its environment, potentially causing the best action for a
state to go undiscovered. As a result, it is common in Q-learning for agents to collect
data in their environment according to stochastic exploration policy based on π but
with added noise. As a result, data for Q-learning is never sampled according to the
agent’s actual policy.

2.2.3. Deep Reinforcement Learning

When states and actions can be enumerated, Q can be learned as a |S|× |A| matrix,
and V can be learned as a |A| vector. In more general settings, however, function
approximation must be used for Q and V . Among parametric function approximation
methods, both linear regression and neural networks are common choices. When linear
function approximation is used, some guarantees of stability or performance are available
(Sutton et al., 2018). However, in practice nonlinear function approximation is required
in many cases, particularly those with visual inputs (for example, see Mnih et al., 2015).

When using parametric function approximation with Q-learning, as we do here, the
classical approach is to minimize the following objective via gradient descent on the
parameters of Q:

LQ(st, at, rt, st+1) = (Q(st, at)− E[rt + γ max
a

Qt(st+1, a)])2 (2.2.1)

where Qt is a separate “target” function reflecting an older version of Q. It is key
that Q not be modified by gradients taken through the target Qt, even when Qt is
defined to be the same as Q; failing to do this leads the algorithm to arrive at incorrect
solutions (Sutton et al., 2018).

17

In practice, this precise objective is not used; we refer the reader to Rainbow (Hessel
et al., 2018) for an example of a modern Q-learning algorithm that combines a wide range
of algorithmic improvements in search of better performance. Important differences
that are relevant to the works presented here are that the loss used by Rainbow is
actually a cross-entropy objective on categorical distributions, which captures the agent’s
uncertainty about its future returns (Bellemare et al., 2017b), that the value target is
actually taken from st+n for some n (generally 3, 5 or 10) with all rewards from t to t+n

summed and discounted appropriately, and that numerous other stabilizing measures
have been taken to reduce overestimation and improve sample efficiency (Van Hasselt
et al., 2016b; Wang et al., 2016b).

Generally, these objectives are optimized using samples taken from the environment.
Data collected by the agent is placed in a replay buffer, a buffer of the agent’s most
recent experiences; typical buffer sizes may be up to several million transitions. This
was originally introduced to stabilize training (Mnih et al., 2015), but recent research
suggests that allowing the agent to learn from old experience has a strong positive effect
even in newer, more stable methods (Fedus et al., 2020). Samples are typically drawn
from the replay buffer proportionally to a measure of their priority (Schaul et al., 2016),
to focus training on experiences where the agent has relatively more to learn.

2.2.4. Deep Continuous Control

DQN, the method introduced above, is in practice specific to the discrete control
setting, where A is finite. This is due to the maxa Q(s, a) operation that must be
performed as part of both optimization and action selection; when A is discrete and
reasonably small, enumerating Q(s, a) for all actions in A is a reasonably efficient way
of finding maxa Q(s, a).

However, when A is continuous or otherwise infinite, finding maxa Q(s, a) is non-
trivial. One of the most common alternatives to DQN is to thus learn a separate policy
network as at = πθ(st) to approximate arg maxa Q(s, a). This method, known as Deep
Deterministic Policy Gradient (Lillicrap et al., 2016) leads to the following objective
analogous to DQN:

LQ(st, at, rt, st+1) = (Q(st, at)− rt + γQt(st+1, πθ(st+1)])2 . (2.2.2)

πθ is trained directly to maximize Q, by differentiating through the Q network:

18

Lπ(s) = −Q(s, πθ(s)) (2.2.3)

Note that the parameters being optimized, θ, occur only in the policy network, so
the only way this optimization can reduce its loss is by modifying the πθ to produce
actions deemed more favorable by the Q network.

More refined variants of this algorithm were introduced by Twin Delayed
DDGP (TD3, Fujimoto et al., 2018), which introduces techniques to fight value
over-estimation and instability due to function approximation error, and Stochastic
Actor-Critic (Haarnoja et al., 2018), which learns a stochastic policy πθ(a|s), using
entropy regularization to force πθ to maintain a certain level of randomness. This
results in the following Q-learning loss:

LQ(st, at, rt, st+1) =
(
Q(s, a)− Eat+1∼π(a|st+1)[rt + γQt(St+1, at+1)]

)2
. (2.2.4)

2.2.5. Representation Learning for Reinforcement Learning

One popular approach to resolving instability in Deep Reinforcement learning is to
focus on improving the representations learned by the neural networks used (Lesort
et al., 2018). This has in the past taken the form either of directly integrating methods
from unsupervised representation learning (Oord et al., 2018; Srinivas et al., 2020;
Yarats et al., 2021b), or in using alternative techniques designed specifically for deep
reinforcement learning (e.g., Schwarzer et al., 2021a; Gelada et al., 2019; Dabney
et al., 2021; Guo et al., 2020). The most common approach used to combine DRL
and representation learning is to jointly optimize both reinforcement learning and
representation learning losses (as in Schwarzer et al., 2021a; Oord et al., 2018; Srinivas
et al., 2020; Yarats et al., 2021b; Guo et al., 2020; Gelada et al., 2019). In this sense,
reinforcement learning with representation learning is treated somewhat analogously to
semi-supervised learning, with rewards serving as supervision, the equivalent of labels
in a supervised learning context, and the reinforcement learning loss the role of the
supervised classification or regression loss. Some methods (e.g., Lee et al., 2019) employ
extra data without supervision by rewards, while others (e.g., Schwarzer et al., 2021a;
Yarats et al., 2021b) do without additional data, although it is possible that their
performance could be improved if additional data were used.

19

This approach generally requires choosing a hyperparameter λ governing the weight
given to the representation learning loss relative to the reinforcement learning loss.
The main alternative formulation would be learning representations with a method
from section 2.1 and then doing reinforcement learning using these representations,
analogous to a pretraining-based approach in representation learning. Although linear
reinforcement learning applied to frozen representations would have some guarantees
of stability, it lacks any means of correcting sub-optimal representations, unlike in the
standard approach. Moreover, this two-stage process is impractical when only a limited
amount of interaction time is available, where it is vital that reinforcement learning
progress happen as quickly as possible; by the time a dataset of sufficient size to fully
train the representation learning method had been collected, little time would remain
for the reinforcement learning algorithm to train.

2.2.6. Data Efficiency

Data efficiency is a major challenge in deep reinforcement learning. Although recent
algorithms have been able to effectively solve a number of challenging tasks, such as DotA
2 (OpenAI et al., 2019), Starcraft 2 (Vinyals et al., 2019), and Atari (Badia et al., 2020),
they have done so using enormous amounts of experience. As a result, it has become
increasingly common to focus on improving the data efficiency of reinforcement learning,
generally defined as improving performance with limited environment interaction time.
A number of methods have been proposed to this end, from model-based methods that
aim to accelerate learning by learning an explicit model of environment dynamics and
reward distributions (e.g., Kaiser et al., 2019) to tweaked versions of existing algorithms
that were previously optimized for performance in large-data regimes (for example,
Data-Efficient Rainbow from Hasselt et al., 2019).

2.2.7. DeepMind Control

(Tassa et al., 2020) introduced DeepMind Control (DM Control), a new benchmark
for continuous control tasks, adapting the MuJoCo (Todorov et al., 2012) framework.
DM Control environments have been widely used in previous work (see Kostrikov* et al.,
2021; Hafner et al., 2020a; Laskin et al., 2020), and represent the current standard for
continuous control. DM Control includes the option to provide agents with either state
representations (vectors representing the state of the environment) or pixels (images
representing the state of the environment) as inputs, with performance given pixel

20

inputs traditionally lagging far behind performance with state representations (see for
example Yarats et al., 2021b).

2.2.8. Arcade Learning Environment

(Bellemare et al., 2013) introduced the Arcade Learning Environment (ALE), a
challenging reinforcement learning task in which agents learn to play Atari 2600 games
using visual inputs. This task (often referred to in the community as simply “Atari”)
is different from many of those traditionally studied in reinforcement learning in that
nonlinear function approximation (e.g., neural networks) is critical to success. Atari
2600 games are discrete control tasks, in which agents choose between up to 18 actions
at each step. The traditional goal, surpassing human performance, has now been
achieved on all 57 Atari 2600 games in the ALE (Badia et al., 2020), but only when
algorithms are given effectively infinite interaction time. In the limited-time regime,
agent performance remains far below human-level performance on many tasks, especially
when no pretraining or planning is used (compare results in Badia et al., 2020; Schwarzer
et al., 2021a).

2.2.9. Evaluation in the ALE

Performance on the ALE is generally calculated as the human-normalized score,
calculated separately on each game as agent_score−random_score

human_score−random_score , where agent_score refers
to the game score achieved by the agent being trained, human_score refers to the score
achieved by a human player given two hours of time to learn the game (as reported
in Van Hasselt et al., 2016b) and random_score refers to the score achieved by a
uniform random policy over all valid actions (generally also taken from Van Hasselt
et al., 2016b). Unlike in many continuous control domains such as DM Control, where
algorithm hyperparameters are often selected on a per-task basis, the standard in deep
reinforcement learning for the ALE has since (Mnih et al., 2015) been to use identical
hyperparameters on all games. This has important effects on algorithm design; by
forcing methods to be successful on a wide range of games, approaches requiring finely-
tuned hyperparameters are relatively disadvantaged, and encourages the development
of methods that organically tune hyperparameters during training, such as Agent57.
As a result, performance by methods that do not adhere to this standard, such as
Sunrise (Lee et al., 2021), cannot be compared to that of methods that do.

21

Chapter 3

Pretraining Representations for
Data-Efficient Reinforcement Learning

This chapter reproduces, with some formatting changes, the following work:

• Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand,
Devon Hjelm, Philip Bachman & Aaron Courville. Pretraining Representations
for Data-Efficient Reinforcement Learning. NeurIPS (2021).

This work advances the goals of this thesis by introducing self-supervised algorithms to
pretrain representations for deep reinforcement learning agents from arbitrary offline
data, without requiring action or reward supervision, and demonstrating how best to fine-
tune networks pretrained in this fashion to achieve high performance on sample-efficient
reinforcement learning tasks.

The accompanying supplemental materials for this work may be found in Appendix A.
I led this project and performed the vast majority of experimental work, including all
of the results in the main body of the paper.

3.1. Abstract
Data efficiency is a key challenge for deep reinforcement learning. We address this

problem by using unlabeled data to pretrain an encoder which is then finetuned on a
small amount of task-specific data. To encourage learning representations which capture
diverse aspects of the underlying MDP, we employ a combination of latent dynamics
modelling and unsupervised goal-conditioned RL. When limited to 100k steps of
interaction on Atari games (equivalent to two hours of human experience), our approach

significantly surpasses prior work combining offline representation pretraining with
task-specific finetuning, and compares favourably with other pretraining methods that
require orders of magnitude more data. Our approach shows particular promise when
combined with larger models as well as more diverse, task-aligned observational data –
approaching human-level performance and data-efficiency on Atari in our best setting.
We provide code associated with this work at https://github.com/mila-iqia/SGI.

3.2. Introduction

Deep reinforcement learning (RL) methods often focus on training networks ta-
bula rasa from random initializations without using any prior knowledge about the
environment. In contrast, humans rely a great deal on visual and dynamics priors
about the world to perform decision making efficiently (Dubey et al., 2018; Lake et al.,
2017). Thus, it is not surprising that RL algorithms which learn tabula rasa suffer
from severe overfitting (Zhang et al., 2018) and poor sample efficiency compared to
humans (Tsividis et al., 2017).

Self-supervised learning (SSL) provides a promising approach to learning useful
priors from past data or experiences. SSL methods leverage unlabelled data to learn
strong representations, which can be used to bootstrap learning on downstream tasks.
Pretraining with self-supervised learning has been shown to be quite successful in
vision (Hénaff et al., 2019; Grill et al., 2020; Chen et al., 2020a) and language (Devlin
et al., 2019; Brown et al., 2020) settings.

Pretraining can also be used in an RL context to learn priors over representations
or dynamics. One approach to pretraining for RL is to train agents to explore their
environment in an unsupervised fashion, forcing them to learn useful skills and repre-
sentations (Hansen et al., 2020; Liu et al., 2021b; Campos et al., 2021). Unfortunately,
current unsupervised exploration methods require months or years of real-time ex-
perience, which may be impractical for real-world systems with limits and costs to
interaction — agents cannot be run faster than real-time, may require significant human
oversight for safety, and can be expensive to run in parallel. It is thus important to
develop pretraining methods that work with practical quantities of data, and ideally
that can be applied offline to fixed datasets collected from prior experiments or expert
demonstrations (as in Stooke et al., 2020).

24

https://github.com/mila-iqia/SGI

To this end, we propose to use a combination of self-supervised objectives for repre-
sentation learning on offline data, requiring orders of magnitude less pretraining data
than existing methods, while approaching human-level data-efficiency when finetuned
on downstream tasks. We summarize our work below:
RL-aligned representation learning objectives: We propose to pretrain representations
using a combination of latent dynamics modeling, unsupervised goal-conditioned rein-
forcement learning, and inverse dynamics modeling – with the intuition that a collection
of such objectives can capture more information about the dynamical and temporal
aspects of the environment of interest than any single objective. We refer to our method
as SGI (SPR, Goal-conditioned RL and Inverse modeling).
Significant advances for data-efficiency on Atari: SGI’s combination of objectives per-
forms better than any in isolation and significantly improves performance over previous
representation pretraining baselines such as ATC (Stooke et al., 2020). Our results are
competitive with exploration-based approaches such as APT or VISR (Liu et al., 2021b;
Hansen et al., 2020), which require two to three orders of magnitude more pretraining
data and the ability to interact with the environment during training, while SGI can
learn with a small offline dataset of exploration data.
Scaling with data quality and model size: SGI’s performance also scales with data quality
and quantity, increasing as data comes from better-performing or more-exploratory
policies. Additionally, we find that SGI’s performance scales robustly with model
size; while larger models are unstable or bring limited benefits in standard RL, SGI
pretraining allows their finetuning performance to significantly exceed that of smaller
networks.

We assume familiarity with RL in the following sections.

3.3. Representation Learning Objectives
A wide range of SSL objectives have been proposed for RL which leverage various

aspects of the structure available in agent interactions. For example, the temporal
dynamics of an environment can be exploited to create a forward prediction task (e.g.,
Gelada et al., 2019; Guo et al., 2018; Stooke et al., 2020; Schwarzer et al., 2021a)
in which an agent is trained to predict its immediate future observations, perhaps
conditioned on a sequence of actions to perform.

Structure in RL goes far beyond forward dynamics, however. We propose to combine
multiple representation learning objectives, covering different agent-centric and temporal

25

Figure 1. A schematic diagram showing our two stage pretrain-then-finetune method. All unsuper-
vised training losses and task-specific RL use the shared torso on the left.

aspects of the MDP. Based on the intuition that knowledge of an environment is best
represented in multiple ways (Hessel et al., 2021; Degris et al., 2012), we expect this to
outperform monolithic representation learning methods such as temporal contrastive
learning (e.g., Stooke et al., 2020). In deciding which tasks to use, we consider questions
an adequate representation should be able to answer about its environment, including:

• If I take action a in state s, what state s′ am I likely to see next?
• If I transitioned from state s to state s′, what action a did I take?
• What action a would I take in state s so that I reach another state s′ as soon as

possible

Note that none of these questions are tied to task reward, allowing them to be
answered in a fully-unsupervised fashion. Additionally, these are questions about the
environment, and not any specific policy, allowing them to be used in offline pretraining
with arbitrary behavioral policies.

In general, the first question may be answered by forward dynamics modeling, which
as mentioned above is well-established in RL. The second question corresponds to inverse
dynamics modeling, which has also been commonly used in the past (Lesort et al.,
2018). The third question corresponds to self-supervised goal-conditioned reinforcement
learning which has the advantage of being structurally similar to the downstream target
task, as both require learning to control the environment.

26

To facilitate their joint use, we formulate these objectives so that they operate in
the latent representation space provided by a shared encoder. We provide an overview
of these components in Figure 1 and describe them in greater detail below; we also
provide detailed pseudocode in the appendix.

3.3.1. Self-Predictive Representations

SPR (Schwarzer et al., 2021a) is a representation learning algorithm developed for
data-efficient reinforcement learning. SPR learns a latent-space transition model, directly
predicting representations of future states without reconstruction or negative samples.
As in its base algorithm, Rainbow (Hessel et al., 2018), SPR learns a convolutional
encoder, denoted as fo, which produces representations of states as zt = fo(st). SPR
then uses a dynamics model h to recursively estimate the representations of future states,
as ẑt+k+1 = h(ẑt+k, at+k), beginning from ẑt ≜ zt. These representations are projected
to a lower-dimensional space by a projection function po to produce ŷt+k ≜ po(ẑt+k).

Simultaneously, SPR uses a target encoder fm to produce target representations
z̃t+k ≜ fm(st+k), which are further projected by a target projection function pm to
produce ỹt+k ≜ pm(z̃t+k). SPR then maximizes the cosine similarity between these
predictions and targets, using a learned linear prediction function q to translate from ŷ

to ỹ:

LSPR
θ (st:t+K , at:t+K) = −

K∑
k=1

q(ŷt+k) · ỹt+k

||q(ŷt+k)||2 · ||ỹt+k||2
. (3.3.1)

The parameters of these target modules θm are defined as an exponential moving average
of the parameters θo of fo and po: θm = τθm + (1− τ)θo.

3.3.2. Goal-Conditioned Reinforcement Learning

Inspired by works such as Dabney et al. (2021) that show that modeling many
different value functions is a useful representation learning objective, we propose to
augment SPR with an unsupervised goal-conditioned reinforcement learning objective.
We define goals g to be normalized vectors of the same size as the output of the agent’s
convolutional encoder (3,136- or 4,704-dimensional vectors, for the architectures we
consider). We use these goals to annotate transitions with synthetic rewards, and train
a modified version of Rainbow (Hessel et al., 2018) to estimate Q(st, a, g), the expected

27

return from taking action a in state st to reach goal g if optimal actions are taken in
subsequent states.

We select goals using a scheme inspired by hindsight experience replay (Andrychowicz
et al., 2017), seeking to generate goal vectors that are both semantically meaningful
and highly diverse. As in hindsight experience replay, we begin by sampling a state
from another trajectory or the future of the current trajectory. However, we take the
additional step of applying stochastic noise to encourage goals to lie somewhat off of
the current representation manifold. We provide details in the appendix.

3.3.3. Inverse Dynamics Modeling

We propose to use an inverse dynamics modeling task (Lesort et al., 2018), in which
the model is trained to predict at from st and st+1. Because this is a classification
task (in discrete control) or regression task (continuous control), it is naturally not
prone to representational collapse, which may complement and stabilize our other
objectives. We directly integrate inverse modeling into the rollout structure of SPR,
modeling p(at+k|ŷt+k, ỹt+k+1) for each k ∈ (0, . . . , K−1), using a two-layer MLP trained
by cross-entropy.

3.4. Related Work

3.4.1. Data-Efficiency

In order to address data efficiency in RL, Kaiser et al. (2019) introduced the Atari
100k benchmark, in which agents are limited to 100,000 steps of environment interac-
tion, and proposed SimPLe, a model-based algorithm that substantially outperformed
previous model-free methods. However, Hasselt et al. (2019) and Kielak (2020) found
that simply modifying the hyperparameters of existing model-free algorithms allowed
them to exceed SimPLe’s performance. Later, DrQ (Kostrikov* et al., 2021) found that
adding mild image augmentation to model-free methods dramatically enhanced their
sample efficiency, while SPR (Schwarzer et al., 2021a) combined data augmentation
with an auxiliary self-supervised learning objective. SGI employs SPR as one of its
objectives in offline pretraining, leading to significant improvements in data-efficiency.

28

3.4.2. Exploratory pretraining

A number of recent works have sought to improve reinforcement learning via the
addition of an unsupervised pretraining stage prior to finetuning on the target task.
One common approach has been to allow the agent a period of fully-unsupervised
interaction with the environment, during which the agent is trained to maximize a
surrogate exploration-based task such as the diversity of the states it encounters, as in
APT (Liu et al., 2021b) or ProtoRL (Yarats et al., 2021a), or to learn a set of skills
associated with different paths through the environment, as in DIAYN (Eysenbach
et al., 2018), VISR (Hansen et al., 2020), and DADS (Sharma et al., 2019). Others have
proposed to use self-supervised objectives to generate intrinsic rewards encouraging
agents to visit new states; e.g. Pathak et al. (2017) and Burda et al. (2018) use the loss
of an inverse dynamics model like that used in SGI, while Sekar et al. (2020) uses the
disagreement between an ensemble of latent-space dynamics models. Finally, Campos
et al. (2021) report strong results based on massive-scale unsupervised pretraining.

Many of these methods are used to pretrain agents that are later adapted to specific
reinforcement learning tasks. However, SGI differs in that it can be used offline and is
agnostic to how data is collected. As such, if no pre-existing offline data is available,
one of the methods above can be used to generate a dataset for SGI; we use Burda
et al. (2018) for this in Section 3.5.2.

3.4.3. Visual Representation Learning

Computer vision has seen a series of dramatic advances in self-supervised represen-
tation learning, including contrastive methods (Oord et al., 2018; Hjelm et al., 2019;
Bachman et al., 2019; He et al., 2020; Chen et al., 2020a) as well as purely predictive
ones (Grill et al., 2020). Variants of these approaches have also been shown to improve
performance when coupled with a small quantity of labeled data, in a semi-supervised
setting (Chen et al., 2020b; Hénaff et al., 2019), and several self-supervised methods
have been designed specifically for this case (for example, Sohn et al., 2020; Tarvainen
et al., 2017).

These advances have spurred similar growth in methods aimed specifically at
improving performance in RL. We refer the reader to Lesort et al. (2018) for a review
of earlier methods, including inverse dynamics modeling which is used in SGI. Recent
research has focused on leveraging latent-space dynamics modeling as an auxiliary

29

task. Gelada et al. (2019) propose a simple next-step prediction task, coupled with
reward prediction, but found it is prone to latent space collapse and requires an
auxiliary reconstruction loss for experiments on Atari. Guo et al. (2020) use a pair of
networks for both forward and backward prediction, and show improved performance
in extremely large-data multi-task settings. Mazoure et al. (2020) use a temporal
contrastive objective for representation learning, and show improvement in continual
RL settings. Concurrently, SPR (Schwarzer et al., 2021a) proposed a multi-step latent
prediction task with similarities to BYOL (Grill et al., 2020).

Two works similar to ours, Anand et al. (2019) and Stooke et al. (2020), propose
reward-free temporal-contrastive methods to pretrain representations. Anand et al.
(2019) show that representations from encoders trained with ST-DIM contain a great
deal of information about environment states, but they do not examine whether or
not representations learned via their method are, in fact, useful for reinforcement
learning. However, Stooke et al. (2020) employ a similar algorithm and find only
relatively minor improvements in performance compared to standard baselines in the
large-data regime; our controlled comparisons show that SGI’s representations are far
better for data-efficiency. Concurrent to our work, FERM (Zhan et al., 2020) propose
contrastive pretraining from human demonstrations in a robotics setting. As FERM
is quite similar to ATC, we are optimistic that our improvements over ATC in Atari
100k would translate to FERM’s setting. Finally, Yang et al. (2021) propose a family
of algorithms for learning representations for DRL from state observations; we believe
that these might be promising in DRL from pixels, but they have not yet been adapted
to that setting.

3.5. Experimental Details
In our experiments, We seek to address two main challenges for the deployment of

RL agents in the real world (Dulac-Arnold et al., 2020): (1) training the RL agent with
a limited budget of interactions in the real environment, and (2) leveraging existing
interaction data of arbitrary quality.

3.5.1. Environment and Evaluation

To address the first challenge, we focus our experimentation on the Atari 100k
benchmark introduced by Kaiser et al. (2019), in which agents are allowed only 100k

30

steps of interaction with their environment.1 This is roughly equivalent to the two
hours human testers were given to learn these games by Mnih et al. (2015), providing a
baseline of human sample-efficiency.

Atari is also an ideal setting due to its complex observational spaces and diverse tasks,
with 26 different games included in the Atari 100k benchmark. These factors have led
to Atari’s extensive use for representation learning and exploratory pretraining (Anand
et al., 2019; Stooke et al., 2020; Campos et al., 2021), and specifically Atari 100k for
data-efficient RL (e.g., Kaiser et al., 2019; Kostrikov* et al., 2021; Schwarzer et al.,
2021a), including finetuning after exploratory pretraining (e.g., Hansen et al., 2020; Liu
et al., 2021b), providing strong baselines to compare to.

Our evaluation metric for an agent on a game is human-normalized score (HNS),
defined as agent_score−random_score

human_score−random_score
. We calculate this per game by averaging scores

over 100 evaluation trajectories at the end of training, and across 10 random seeds for
training. We report both mean (Mn) and median (Mdn) HNS over the 26 Atari-100K
games, as well as on how many games a method achieves super-human performance
(>H) and greater than random performance (>0). Following the guidelines of Agarwal
et al. (2021b) we also report interquartile mean HNS (IQM) and quantify uncertainty
via bootstrapping in the appendix.

3.5.2. Pretraining Data

The second challenge pertains to pretraining data. Although some prior work on
offline representational pretraining has focused on expert-quality data (Stooke et al.,
2020), we expect real-world pretraining data to be of greatly varying quality. We
thus construct four different pretraining datasets to approximate different data quality
scenarios.

• (R)andom To assess performance near the lower limit of data quality, we use a
random policy to gather a dataset of 6M transitions for each game. To encourage
the agent to venture further from the starting state, we execute each action for a
random number of steps sampled from a Geometric(1

3) distribution.
• (E)xploratory To emulate slightly better data that covers a larger range of the

state space, we use an exploratory policy. Specifically, we employ the IDF (inverse
dynamics) variant of the algorithm proposed by (Burda et al., 2018). We log the

1Note that sticky actions are disabled under this benchmark.

31

first 6M steps from an agent trained in each game. This algorithm achieves better-
than-random performance on only 70% of tasks, setting it far below the performance
of more modern unsupervised exploration methods.

To create higher-quality datasets, we follow Stooke et al. (2020) and use experience
gathered during the training of standard DQN agents (Mnih et al., 2015). We opt to
use the publicly-available DQN Replay dataset (Agarwal et al., 2020), which contains
data from training for 50M steps (across all 57 games, with five different random seeds).
Although we might prefer to use data from recent unsupervised exploration methods
such as APT (Liu et al., 2021b), VISR (Hansen et al., 2020), or CPT (Campos et al.,
2021), none of these works provide code or datasets, making this impractical. We
address using data collected from on-task agents with a behavioural cloning baseline in
Section 3.6.2, with surprising findings relative to prior work.

• (W)eak We first generate a weak dataset by selecting the first 1M steps for each
of the 5 available runs in the DQN Replay dataset. This data is generated with
an ϵ-greedy policy with high, gradually decaying ϵ, leading to substantial action
diversity and many suboptimal exploratory actions. Although the behavioral policies
used to generate this agent are not especially competent (see Table 1), they have
above-random performance on almost all games, suggesting that that this dataset
includes more task-relevant transitions.
• (M)ixed Finally, for a realistic best-case scenario, we create a dataset of both

medium and low-quality data. To simulate a real-world collection of data from
different policies, we concatenate multiple checkpoints evenly spread throughout
training of a DQN. We believe this is also a reasonable approximation for data from
a modern unsupervised exploration method such as CPT (Campos et al., 2021); as
shown in Table 1, the agent for this dataset has performance in between CPT and
VISR, with median closer to CPT and mean closer to VISR. This data is also lower
quality than the expert data originally used in the method most similar to ours,
ATC (Stooke et al., 2020). 2 We create a dataset of 3M steps and a larger dataset of
6M steps; all M experiments use the 3M step dataset unless otherwise noted.

We compare the agents used for our datasets to those for unsupervised exploration
pretraining baselines in Table 1. We estimate the performance of the Weak and Mixed
agents as the average of the corresponding logged evaluations in the Dopamine (Castro

2Our data-collection agents are weaker than those used by ATC on seven of the eight games they
consider.

32

Tableau 1. Performance of agents used in pre-
training data collection compared to external
baselines on 26 Atari games (Kaiser et al., 2019)

Method Mdn Mean >H >0 Data

Exploratory Pretraining Baselines

VISR@0 0.056 0.817 5 19 250M
APT@01 0.038 0.476 2 18 250M
CPT@0 0.809 4.945 12 25 4B

Offline Datasets

Exploratory 0.039 0.042 0 18 6M
Weak2 0.028 0.056 0 23 5M
Mixed2 0.618 1.266 10 26 3M

1 Calculated from ICLR 2021 OpenReview sub-
mission; unreported in arXiv version.

2 Upper-bound estimate from averaging evalua-
tion performance of corresponding agents in
Dopamine.

et al., 2018) baselines. Even our largest dataset is quite small compared to the amounts
of data gathered by unsupervised exploration methods (see the “Data” column in
Table 1); this is intentional, as we believe that unsupervised interactional data may
be expensive in real world applications. We show the performance of the non-random
data collection policies in Table 2 (note that a fully-random policy has a score of 0 by
definition).

3.5.3. Training Details

We optimize our three representation learning objectives jointly during unsupervised
pretraining, summing their losses. During finetuning, we optimize only the reinforce-
ment learning and forward dynamics losses, following Schwarzer et al. (2021a) (see
Section 3.6.7), and lower the learning rates for the pretrained encoder and dynamics
model by two orders of magnitude (see Section 3.6.6).

33

We consider the standard three-layer convolutional encoder introduced by Mnih
et al. (2015), a ResNet inspired by Espeholt et al. (2018), as well as an enlarged
ResNet of the same design. In other respects, our implementation matches that of SPR
and is based on its publicly-released code. Full implementation and hyperparameter
details are provided in the appendix. We refer to agents by the model architecture and
pretraining dataset type used: SGI-R is pretrained on Random, SGI-E on Exploratory,
SGI-W on Weak, and SGI-M on Mixed. To investigate scaling, we vary the size of
the encoder used in SGI-M: the standard Mnih et al. (2015) encoder is SGI-M/S (for
small), our standard ResNet is simply SGI-M and using a larger ResNet is SGI-M/L
(for large)3. For SGI-M/L we also use the 6M step dataset described earlier. All
ablations are conducted in comparison to SGI-M unless otherwise noted. Finally,
agents without pretraining are denoted SGI-None; SGI-None/S would be roughly
equivalent to SPR (Schwarzer et al., 2021a).

For baselines, we compare to no-pretraining Atari 100k methods (Kaiser et al., 2019;
Hasselt et al., 2019; Kostrikov* et al., 2021; Schwarzer et al., 2021a). For our models
trained on Random and Exploratory data we compare against previous pretraining-
via-exploration approaches applied to Atari 100k (Liu et al., 2021b; Hansen et al.,
2020; Campos et al., 2021). In the higher quality data regime, we compare to recent
work on data-agnostic unsupervised pretraining, ATC (Stooke et al., 2020), as well as
behavioural cloning (BC).

3.6. Results and Discussion

We find that SGI performs competitively on the Atari-100K benchmark; presenting
aggregate results in Table 2, and full per-game data in the appendix. Our best setting,
SGI-M/L, achieves a median HNS of 0.753, approaching human-level sample-efficiency
and outperforming all comparable methods except the recently proposed CPT (Campos
et al., 2021). With less data and a smaller model, SGI-M achieves a median HNS of
0.679, significantly outperforming the prior method ATC on the same data (ATC-M).
Meanwhile, SGI-E achieves a median HNS of 0.456, matching or exceeding other
exploratory methods such as APT (Liu et al., 2021b) and VISR (Hansen et al., 2020),
as well as ATC-E.

3See the appendix for details on these networks

34

https://github.com/mila-iqia/spr

Tableau 2. HNS on Atari100k for SGI and
baselines.

Method Mdn Mn >H >0 Data

No Pretraining (Finetuning Only)

SimPLe 0.144 0.443 2 26 0
DER 0.161 0.285 2 26 0
DrQ 0.268 0.357 2 24 0
SPR 0.415 0.704 7 26 0
SGI-None 0.343 0.565 3 26 0

Exploratory Pretraining + Finetuning

Method Mdn Mn >H >0 Data

VISR 0.095 1.281 7 21 250M
APT 0.475 0.6661 7 26 250M
CPT@02 0.809 4.945 12 25 4000M

ATC-R3 0.191 0.472 4 26 6M
ATC-E3 0.237 0.462 3 26 6M
SGI-R 0.326 0.888 5 26 6M
SGI-E 0.456 0.838 6 26 6M

Offline-data Pretraining + Finetuning

Method Mdn Mn >H >0 Data

ATC-W3 0.219 0.587 4 26 3M
ATC-M3 0.204 0.780 5 26 3M
BC-M@0 0.139 0.227 0 23 3M
BC-M 0.548 0.858 8 26 3M
SGI-W 0.589 1.144 8 26 5M
SGI-M/S 0.423 0.914 8 26 3M
SGI-M 0.679 1.149 9 26 3M
SGI-M/L 0.753 1.598 9 26 6M

1 APT claims 0.6955, but we calculate 0.666
from their reported per-game scores.
2 CPT@0 does not do any finetuning.
3 Our implementation (see appendix)

35

Figure 2. SGI finetuning performance vs. pretraining data score for all combinations of game and
dataset. Data score is estimated as clipped return per episode, trend calculated via kernel regression.
Values whitened per-game for clarity.

3.6.1. Pretraining data efficiency

SGI achieves strong performance with only limited pretraining data; our largest
dataset contains 6M transitions, or roughly 4.5 days of experience. This compares
favourably to recent works on unsupervised exploration such as APT or CPT, which
require far larger amounts of data and environment interaction (250M steps or 193 days
for APT, 4B steps or 8.45 years for CPT). We expect SGI would perform even better
if used in these large-data settingss, as we find that it scales robustly with data (see
Section 3.6.4).

3.6.2. Behavioural cloning is a strong baseline

Although ATC pretrains with expert data, they did not investigate behavioral
cloning as a baseline pretraining objective. We do so on our Mixed dataset, the
only one to be generated by policies with significantly above-random performance.
Behavioral cloning without finetuning (BC-M@0) performs poorly, perhaps due to
the varying behavioural quality in the dataset. But when finetuned, BC-M yields very
respectable performance, surpassing ATC-M but not SGI-M. All fine-tuning settings
for BC-M match SGI-M.

3.6.3. Data quality matters

In principle, SGI can be used with any offline dataset but we demonstrate that it
scales with the quality of its data. Near the lower bound of data quality where all actions

36

Figure 3. Finetuning performance of SGI for
different CNN sizes and amounts of pretrained
data from the Mixed dataset.

Figure 4. Average cosine similarity between re-
presentations over pretraining, averaged across the
26 Atari 100k games. 1 indicates representations
are identical, 0 perfect dissimilarity.

are selected randomly, SGI-R still provides some benefit over an otherwise-identical
randomly-initialized agent (SGI-None) on 16 out of 26 games, with a similar median
but 57% higher mean HNS. With better data from an exploratory policy, SGI-E
improves on 16/26 games, gets 33% higher median HNS, and surpasses APT (Liu et al.,
2021b) which used 40 times more pretraining data. With similarly weak data but
possibly more task-specific transitions, SGI-W gets 72% higher median HNS compared
to SGI-None and with realistic data from a mixture of policies, SGI-M improves to
98%.

Importantly, the pattern we observe is very different from what would be expected for
imitation learning. In particular, SGI-W’s strong performance shows that expert data
is not required. To characterize this, we plot the average clipped reward 4 experienced
per episode for each of our pretraining datasets in Figure 2. Normalizing across tasks,
we find a strong positive correlation between task reward engagement (p < 0.0001)
and finetuning performance. Moreover, we find diminishing returns to further task
engagement.

3.6.4. Pretraining unlocks the value of larger networks

The three-layer network introduced by Mnih et al. (2015) has become a fixture
of deep reinforcement learning, and has been employed by previous works examining
pretraining in this field (e.g. Liu et al., 2021b; Stooke et al., 2020). However, we

4Unclipped rewards are not available for the offline DQN dataset.

37

Tableau 3. HNS on Atari 100K
for pretraining ablations of SGI.

Pretraining Mdn Mean >H

None 0.343 0.565 3
S 0.009 -0.054 0
G 0.060 0.181 1
I 0.411 0.943 7
S+G 0.029 0.098 0
G+I 0.512 1.004 9
S+I 0.629 0.978 8

SGI-M 0.679 1.149 9

find that representational pretraining with this network (SGI-M/S) provides only
minor benefits compared to training from scratch. In contrast, larger networks struggle
without pretraining but shine when pretrained as shown in Figure 3.

This finding is consistent with recent work in unsupervised representation learning
for classification, which has observed that unsupervised pretraining benefits dispropor-
tionately from larger networks (Chen et al., 2020a). In particular, our results suggest
that model size should increase in parallel with amount of pretraining data, matching
recent work on scaling in language modeling (Kaplan et al., 2020; Hernandez et al.,
2021). SGI thus provides a simple way to use unlabeled data to extend the benefits of
large networks, already well-known in the large-data regime (e.g., Schrittwieser et al.,
2020; Espeholt et al., 2018), to data-efficient RL.

3.6.5. Combining SGI’s objectives improves performance

We test all possible combinations of our three SSL objectives, denoted by combi-
nations of the letters S, G and I to indicate which objectives they employ. Results in
Table 3 show that performance monotonically increases as more objectives are used,
with inverse dynamics modeling combined with either of the other objectives performing
respectably well. This illustrates the importance of using multiple objectives to obtain
representational coverage of the MDP.

We note that including inverse modeling appears to be critical, and hypothesize that
this is related to representational collapse. To measure this, we plot the average cosine

38

Tableau 4. HNS on Atari 100K for
fine-tuning schemes for SGI.

Method Mdn Mean >H

No pretrain 0.343 0.565 3
Naive 0.429 0.845 8
Frozen 0.499 0.971 8
Reduced LRs 0.679 1.149 9

similarity between representations yt of different states for several pretraining methods
in Figure 4, using our ResNet encoder on the Mixed dataset. We observe that S, G
and S+G all show some degree representational collapse, while configurations that
include inverse dynamics modeling avoid representational collapse, as does ATC, whose
contrastive loss implicitly optimizes for representational diversity (Wang et al., 2020b).
Intriguingly, we observe that increased representational diversity does not necessarily
improve performance. For example, SGI outperforms ATC, G+I and I in finetuning
but has less diverse pretraining representations. We also observe that adding SPR (S)
consistently pulls representations towards collapse (compare S+I and I, S+G and G,
and SGI and G+I); how this relates to performance is a question for future work.

3.6.6. Naively finetuning ruins pretrained representations

We find that properly finetuning pretrained representations is critical, as results in
Table 4 show. Although allowing pretrained weights to change freely during finetuning
is better than initializing from scratch (Naive vs No Pretrain), freezing the pretrained
encoder (Frozen) leads to better performance than either. SGI’s approach of reducing
finetuning learning rates for pretrained parameters leads to superior performance
(Reduced LRs, equivalent to SGI-M).

We thus hypothesize that representations learned by SGI are being disrupted by gra-
dients early in finetuning, in a phenomenon analogous to catastrophic forgetting (Zenke
et al., 2017; Hadsell et al., 2020). As representations may not generalize between
different value functions across training (Dabney et al., 2021), allowing the encoder to
strongly adapt early in training could make it worse at modeling later value functions,
compared to the neutral initialization from SGI. We also note that there is a long
history in computer vision of employing specialized finetuning hyperparameters (Li
et al., 2020; Chu et al., 2016) when transferring tasks.

39

Tableau 5. HNS on Atari 100K for finetuning ablations of SGI.

Finetune SSL Mdn Mean >H

Without SGI pretraining

None 0.161 0.315 2
S Only 0.343 0.565 3

With SGI pretraining

None 0.452 1.114 8
SGI 0.397 1.011 8
S Only 0.679 1.149 9

3.6.7. Not all SSL objectives are beneficial during finetuning

Although SGI uses S during finetuning, we experiment with a variant that optimizes
only the standard DQN objective, roughly equivalent to using DrQ (Kostrikov* et al.,
2021) with DQN hyperparameters set to match SGI. We find that finetuning with S
has a large impact with or without pretraining (compare None and S Only entries
in Table 5.). Although, SGI without S manages to achieve roughly the same mean
human-normalized score as SGI with S, removing S harms performance on performance
on 19 out of 26 games and reduces median normalized score by roughly 33%. We
also find no benefit to using all of SGI’s constituent objectives during finetuning (All
Losses in Table 5) compared to using S alone, although the gap between them is not
statistically significant for metrics other than median.

3.7. Conclusion

We present SGI, a fully self-supervised (reward-free) approach to representation
learning for reinforcement learning, which uses a combination of pretraining objectives to
encourage the agent to learn multiple aspects of environment dynamics. We demonstrate
that SGI enables significant improvements on the Atari 100k data-efficiency benchmark,
especially in comparison to unsupervised exploration approaches which require orders
of magnitude more pretraining data. Investigating the various components of SGI, we
find that it scales robustly with higher-quality pretraining data and larger models, that

40

all three of the self-supervised objectives contribute to the success of this approach, and
that careful reduction of fine-tuning learning rates is critical to optimal performance.

3.8. Acknowledgements
We would like to thank Mila and Compute Canada for computational resources.

We would like to thank Rishabh Agarwal for useful discussions. Aaron Courville would
like to acknowledge financial support from Microsoft Research and Hitachi. We would
also like to thank Wancong (Kevin) Zhang for his helpful comments to the codebase on
GitHub.

41

Chapter 4

The Primacy Bias in Deep Reinforcement
Learning

This chapter reproduces, with some formatting changes, the following work:

• Evgenii Nikishin*, Max Schwarzer*, Pierluca D’Oro*, Pierre-Luc Bacon &
Aaron Courville. The Primacy Bias in Deep Reinforcement Learning. ICML
(2022).

This work advances the goals of this thesis by finding and resolving a key issue hindering
the sample-efficiency of deep reinforcement learning: the primacy bias. It demonstrates
that reinforcement learning algorithms may overfit to early experiences, and shows
that a family of reset-based solutions can mitigate this and lead to large performance
improvements.

The accompanying supplemental materials for this work may be found in Appendix B.
I co-led this project and performed all Atari experiments, or roughly half of the overall
results in the paper.

4.1. Abstract
This work identifies a common flaw of deep reinforcement learning (RL) algorithms:

a tendency to rely on early interactions and ignore useful evidence encountered later.
Because of training on progressively growing datasets, deep RL agents incur a risk of
overfitting to earlier experiences, negatively affecting the rest of the learning process.
Inspired by cognitive science, we refer to this effect as the primacy bias. Through a
series of experiments, we dissect the algorithmic aspects of deep RL that exacerbate

this bias. We then propose a simple yet generally-applicable mechanism that tackles the
primacy bias by periodically resetting a part of the agent. We apply this mechanism
to algorithms in both discrete (Atari 100k) and continuous action (DeepMind Control
Suite) domains, consistently improving their performance.

4.2. Introduction
Bob is learning a difficult passage on a guitar to rehearse it with his band. After long

nights of practice, he is able to play it but with straining finger positions and unclean
sound. Alice, another fellow guitarist, shows him a less fatiguing and nicer-sounding
way to play the passage which Bob is theoretically able to understand and execute well.
Nonetheless, in subsequent rehearsal sessions, Bob’s unconscious mind automatically
resorts to the first bad-sounding solution, discouraging him and his bandmates from
trying more technically challenging pieces of music. Bob is experiencing an instance of
the primacy bias, a cognitive bias demonstrated by studies of human learning (Marshall
et al., 1972; Shteingart et al., 2013).

The outcomes of first experiences can have long-lasting effects on subsequent learning
and behavior. Thanks to Alice, Bob has already collected new data sufficient for
improving his performance on that passage and guitar playing in general; however,
because of the priming provided by his long training nights with a bad technique, he
is unable to leverage his new experience. The primacy bias generates a vicious circle:
since Bob cannot improve his guitar skills in the face of new data, he will not be able
to collect more interesting data by playing more challenging guitar passages, crippling
his overall learning.

The central finding of this paper is that deep reinforcement learning (RL) algorithms
are susceptible to a similar bias. We refer to the primacy bias in deep RL as a tendency to
overfit early interactions with the environment preventing the agent from improving its
behavior on subsequent experiences. The consequences of this phenomenon compound:
an agent with poor performance will collect data of poor quality and the poor data will
amplify the difficulty of recovering from an overfitted solution.

Standard components of deep RL algorithms magnify the effect of the primacy
bias. For instance, experience replay (Mnih et al., 2015) allows efficient data reuse but
exposes the agent to its initial samples more than recent ones. In the interest of sample
efficiency, deep RL algorithms often additionally use a high replay ratio (Hasselt et al.,

44

2019; Fedus et al., 2020) updating the agent more times on the same data. Such design
choices can improve the agent’s performance but come with a risk of exacerbating the
effects of early interactions.

How can a deep RL algorithm avoid the primacy bias? Coming back to Bob, he
could re-establish his learning progression by simply forgetting his bad practices and
directly learning from newer experience. Similarly, deep RL agents affected by the
primacy bias can forget parts of a solution which was derived by overfitting to early
experiences before continuing the learning process.

As a remedy for the primacy bias, we propose a resetting mechanism allowing the
agent to forget a part of its knowledge. Our strategy is simple and compatible with any
deep RL algorithm equipped with a replay buffer: we periodically re-initialize the last
layers of an agent’s neural networks, while maintaining the experience within the buffer.

Despite its simplicity, this resetting mechanism consistently improves performance
of agents on benchmarks including the discrete-action ALE (Bellemare et al., 2013)
and the continuous-action DeepMind Control Suite (Tassa et al., 2020). Our strategy
imposes no additional computational costs and requires only two implementation choices:
which parts of the neural networks to reset and how often to reset them. We also
show that resetting enables training regimes with higher replay ratio and longer n-
step targets (Sutton et al., 2018), where an agent without resets would be overfitting
otherwise.

To summarize the contributions of this paper, we:

(1) Provide demonstrations of the existence of the primacy bias in deep RL, a
tendency of an agent to harm its future decision making by overfitting to early
data and ignoring subsequent interactions;

(2) Expose plausible causes of this phenomenon and show how algorithmic aspects
in modern deep RL amplify its consequences;

(3) Propose a mechanism for alleviating the primacy bias by periodically resetting
a part of the agent;

(4) Empirically demonstrate both qualitative and quantitative improvements in
performance when applying resets to strong baseline algorithms.

45

4.3. Preliminaries

We adopt the standard formulation of reinforcement learning (Sutton et al., 2018)
under the Markov decision process (MDP) formalism where the agent observes a
state s from a space S, chooses an action a from a space A, and receives a reward r

according to a mapping r : S ×A → R. The environment then transitions into a state
s′ according to a distribution p : S ×A → ∆(S) and the interaction continues. The
initial state s0 is sampled from a distribution ρ ∈ ∆(S). The goal of the agent is to
learn a policy π : S → ∆(A) that maximizes the expected discounted sum of rewards
Eπ [

∑∞
t=0 γtr(st, at)] with γ ∈ [0, 1).

RL methods typically learn an action-value function

Qπ(s,a) = Eπ

[
∞∑

t=0

γtr(st, at)|s0 = s, a0 = a

]
,

through temporal-difference (TD) learning (Sutton, 1988) by minimizing the difference
between Qπ(s,a) and Ep(s′|s,a),π(a′|s′) [r(s,a) + γQπ(s′,a′)]. Many RL algorithms store
past experiences in a replay buffer (Mnih et al., 2015) that increases sample efficiency
by leveraging a single data point more than once. The number of resampling times of
given data is controlled by the replay ratio (Hasselt et al., 2019; D’Oro et al., 2020)
which plays a critical role in the algorithm’s performance. Set too low, the agent would
underuse the data it has and become sample-inefficient; set too high, the agent would
overfit the existing data.

The core idea behind temporal-difference methods is bootstrapping, lear-
ning from agent’s own value estimates without the need to wait until the end
of the interaction. TD learning can be generalized by using n-step targets
Eπ [r(st,at) + γr(st+1, at+1) + · · ·+ γnQπ(st+n,at+n)]. Here, n controls a trade-off
between the (statistical) bias of Qπ estimates and the variance of the sum of future
rewards.

In the rest of the paper, we consider deep RL algorithms where Qπ and π (when
needed) are modelled by neural network function approximators.

46

4.4. The Primacy Bias
The main goal of this paper is to understand how the learning process of deep

reinforcement learning agents can be disproportionately impacted by initial phases of
training due to an effect called the primacy bias.

The Primacy Bias in Deep RL: a tendency to overfit early experiences that
damages the rest of the learning process.

This definition is wide-ranging: the primacy bias has multiple roots and leads to
multiple negative effects for the training of an RL agent, but they are all connected to
improper learning from early data.

The rest of this section presents two experiments, with the goal of demonstrating
the existence and the dynamics of the phenomenon in isolation. First, we show that
excessive training of an agent on the very first interactions can fatally damage the rest
of the learning process. The second experiment demonstrates that data collected by
an agent impacted by the primacy bias is adequate for learning, although the agent
cannot leverage it due to its accumulated overfitting.

4.4.1. Heavy Priming Causes Unrecoverable Overfitting

The degree of reliance of an agent on early data is a crucial factor in determining
how much any primacy effect is going to affect the learning process. At the same
time, in the interest of sample efficiency, it is vital to leverage initial experiences at
their full potential to expedite the training. This trade-off is particularly evident for
algorithms with a replay buffer, which can be used to update the agent several times
before interacting further with the environment.

To uncover in an explicit way the effect of the primacy bias in RL, we probe excessive
reliance to early data to its extreme: could overfitting on a single batch of early data be
enough to entirely disrupt an agent’s learning process?

To investigate this question, we train Soft Actor-Critic (Haarnoja et al., 2018) on
the quadruped-run environment from DeepMind Control suite (DMC) (Tassa et al.,
2020). We use default hyperparameters, which imply a single update for both policy
and value function per step in the environment. Then, we train an identical version of
the algorithm in an experimental condition that we refer to as heavy priming: after

47

Figure 1. Undiscounted returns on quadruped-run for SAC with and without heavy priming on the
first 100 transitions. An agent extremely affected by the primacy bias is unable to learn even after
collecting hundreds of thousands of new transitions. Mean and std are estimated over 10 runs.

collecting 100 data points, we update the agent 105 times using the resulting replay
buffer, before resuming standard training. Figure 1 shows that even after collecting
and training on almost one million new transitions, the agent with heavy priming is
unable to recover from the initial overfitting.

This experiment conveys a simple message: overfitting to early experiences might
inexorably damage the rest of the learning process. Even if no practical implementation
would use such a large number of training steps on such a limited dataset, we will
see in Section 4.6 that even a relatively small number of updates per step can cause
similar issues. The finding suggests that the primacy bias has compounding effects:
an overfitted agent gathers worse data that itself leads to less efficient learning that
further damages the ability to learn and so on.

48

Figure 2. Undiscounted returns on quadruped-run for SAC trained with 9 updates per step. SAC

failing is a standard agent; SAC with failing agent buffer is an agent initialized with the replay
buffer of the first agent, which allows it to learn quickly. Mean and std are estimated over 10 runs.

4.4.2. Experiences of Primed Agents are Sufficient

Once the agent is heavily impacted by the primacy bias, it might struggle to reach
satisfying performance. But is the data collected by an overfitted agent unusable for
learning? To answer this question, we train a SAC agent with 9 updates per step in
the MDP: due to the primacy bias, this agent performs poorly. Then, we initialize the
same agent from scratch but use the data collected by the previous SAC agent as its
initial replay buffer. Figure 2 demonstrates that returns collected by this agent improve
rapidly approaching the optimal task performance.

This experiment articulates that the primacy bias is not a failure to collect proper
data per se, but rather a failure to learn from it. The data stored in the replay buffer is
in principle enough to have better performance but the overfitted agent lacks the ability
to distill it into a better policy. In contrast, the randomly initialized neural networks

49

are not affected by the primacy bias and thus capable of fully leveraging the collected
experience.

4.5. Have You Tried Resetting It?
The previous section provided controlled experiments demonstrating the primacy

bias phenomenon and outlined its consequences. We now present a simple technique
that mitigates the effect of this bias on an agent’s training. The solution, which we call
resetting in the rest of the paper, is summarized as follows:

Given an agent’s neural network, periodically re-initialize the parameters of its
last few layers while preserving the replay buffer.

The next section analyzes both quantitatively and qualitatively the performance
improvements provided by resetting as a mean to address the overfitting to early data.

4.6. Experiments

Figure 3. Point estimates and 95% bootstrap confidence intervals for the performance of SPR with
resets and prior methods on Atari 100k. Results for SPR and SPR + resets are over 20 seeds per game;
others are taken from Agarwal et al. (2021b) and use 100 seeds.

The goals of our experiments are mostly twofold. First, we demonstrate across
different algorithms and domains the performance gains of using resets as a remedy

50

Method IQM Median Mean

SPR + resets 0.478 (0.46, 0.51) 0.512 (0.42, 0.57) 0.911 (0.84, 1.00)
SPR 0.380 (0.36, 0.39) 0.433 (0.38, 0.48) 0.578 (0.56, 0.60)
DrQ(ϵ) 0.280 (0.27, 0.29) 0.304 (0.28, 0.33) 0.465 (0.46, 0.48)
DER 0.183 (0.18, 0.19) 0.191 (0.18, 0.21) 0.351 (0.34, 0.36)
CURL 0.113 (0.11, 0.12) 0.102 (0.09, 0.12) 0.261 (0.25, 0.27)

Tableau 1. Point estimates and 95% bootstrap confidence intervals for the performance
of SPR with resets and prior methods on Atari 100k. Results for SPR and SPR +
resets are over 20 seeds per game; others are taken from Agarwal et al. (2021b) and use
100 seeds.

for the primacy bias; then, we analyze the learning dynamics induced by resetting,
including its effects on TD learning and interaction with critical design choices of RL
algorithms such as the replay ratio and n-step TD targets. Finally, we provide an
ablation study of the proposed resetting strategy.

4.6.1. Setup

We focus on two domains: discrete control, represented by the 26-task Atari
100k benchmark (Kaiser et al., 2019), and continuous control, represented by the
DeepMind Control Suite (Tassa et al., 2020). We apply resets to three baseline
algorithms: SPR (Schwarzer et al., 2021a) for Atari, and SAC (Haarnoja et al., 2018)
and DrQ (Kostrikov* et al., 2021) for continuous control from dense states and raw
pixels respectively. The appendix provides all environment names and the number of
training steps in each domain.

Since both the architectures and the number of training iterations vary across
methods, the reset strategy needs slight customization. For SPR, we reset only the
final linear layer of the 5-layer Q-network over the course of training spaced 2 × 104

steps apart; for SAC, we reset agent’s networks entirely every 2× 105 steps since the
networks have only 3 layers; for DrQ, we reset the last 3 out of 7 layers of the policy and
value networks 10 times over the course of training1. SAC and DrQ re-initialize target

1In fact, the reset periodicity in a few environments is higher due to action repeats (default is 2),
a practice following (Hafner et al., 2019) used in the codebase we build upon, but using the action
repeat of 2 for all environments delivers the same results.

51

networks and both Q-networks (due to the use of double Q-learning (Van Hasselt et al.,
2016a)); SPR does not have these extra networks. We also reset the corresponding
optimizer statistics (Kingma et al., 2015). Experiments in the appendix, however, show
the relative robustness to these design choices.

The replay buffer is preserved between resets; SPR and SAC store in the buffer all
prior interactions, while DrQ includes only the most recent 100k transitions due to
memory limitations of storing image observations. SAC and DrQ sample transitions
uniformly from the buffer, while SPR uses prioritized experience replay (Schaul et al.,
2016). The difference between buffer configurations suggests that effects of resets hold
for varying buffer sizes and sampling schemes.

After resetting, we do not perform any form of pre-training for the newly initialized
parameters (Igl et al., 2021) and return directly to standard training, including keeping
intact the cycle between environment interactions and agent updates. To provide
rigorous evaluation of all algorithms, we follow the guidelines of Agarwal et al. (2021b)
with the focus on the interquartile mean (IQM) of the performance across tasks.

4.6.2. Resets Consistently Improve Performance

Tables 1 and 2 report the aggregated results for the three algorithms. In both tables,
we report the best results over different values of replay ratio and n for methods with
and without resets. The empirical evidence suggests that resets mitigate the primacy
bias and provide significant benefits across a wide range of tasks (discrete or continuous
action spaces), input types (raw images or dense features), replay buffer configurations
(matching or shorter than total number of steps, prioritized replay or random sampling),
and depth of the employed neural networks (deep convolutional networks or 3-layer
fully-connected networks). Remarkably, the magnitude of improvement provided by
resets for SPR is comparable to advancements of prior algorithms, while not requiring
additional computation costs.

4.6.3. Learning Dynamics of Agents with Resets

At first glance, resetting may appear as a drastic (if not wasteful) measure as the
agent must learn the parameters of the randomly initialized layers from scratch each
time. We show in this section how, against all odds, this strategy still leads to improved
performance and fast learning in a wide range of situations.

52

Method IQM Median Mean

SAC + resets 656 (549, 753) 617 (538, 681) 607 (547, 667)
SAC 501 (389, 609) 475 (407, 563) 484 (420, 548)

DrQ + resets 762 (704, 815) 680 (625, 731) 677 (632, 720)
DrQ 569 (475, 662) 521 (470, 600) 535 (481, 589)

Tableau 2. Point estimates and 95% bootstrap confidence intervals for the performance
of SAC and DrQ with and without resets on DMC tasks. Results are computed over 10
seeds per task.

Figure 4 gives four representative examples of the learning trajectories induced by
resets. By default, SAC uses policy and value function architectures which typically
contain three layers; in this context, we found that resetting the whole network is an
effective strategy. For environments in which the primacy bias does not appear to be
an issue, such as cheetah-run, resetting causes some spikes of reduced performance in
the learning curves, but the agent is able to return to the previous state in just a few
thousands of steps. Instead, when dealing with environments where the algorithm is
susceptible to the primacy bias, such as hopper-hop and humanoid-run, resetting not
only brings performance back to the previous level but also allows the agent to surpass
it.

But why is an RL agent able to recover so fast after each reset? A decisive factor
for the effectiveness of resetting resides in preserving the replay buffer across iterations.
Indeed, periodically emptying the replay buffer is highly detrimental for performance,
as we show in the appendix. We conjecture that a model-based perspective can offer
an explanation: since the replay buffer can be seen as a non-parametric model of the
world (Vanseijen et al., 2015; Hasselt et al., 2019), after a reset, the agent forgets
the behaviors learned in the past while preserving its model in the buffer as the core
of its knowledge. On the neural network training side, Zhang et al. (2019) observe
that learning mostly amounts to recovering the right representations – that is, with
the preserved buffer and representations, learning an actuator might be relatively
straightforward.

Resets affect learning in a generally positive way, by triggering a virtuous circle.
After resetting, the agent is free from the negative priming provided by its past training
iterations: it can better leverage the data collected so far, thus improving its performance
and unlocking the possibility to generate higher quality data for its future updates.

53

Figure 4. Four examples showing diverse effects of resets for SAC (32 updates per step, resetting
every 2× 105 steps) on DMC tasks. After each reset, performance recovers quickly due to keeping the
replay buffer. In cheetah-run, the baseline agent consistently succeeds at the task and resets provide
no major benefit. In all other tasks, resets increase performance and often reduce variance. Mean and
std are estimated over 10 runs.

If the primacy bias is a special form of overfitting, resets can be seen as a tailor-made
form of regularization. The appendix shows that the particular nature of resets allows
the agent to overcome the primacy bias even when other forms of regularization such
as L2 and dropout would not.

On a practical side, resets are an easy-to-use strategy for addressing the primacy
bias. Their use requires making only two choices: the periodicity of the resets and the
number of layers of the neural networks to be reinitialized. Moreover, the infrequent
re-initialization of a neural network comes with no additional computational cost.

54

Figure 5. Performance of SAC (left) and SPR (right) and with and without resets for different replay
ratios and a fixed default n. The right-hand plots visualize the percent improvement gained by adding
resets. Agents with higher replay ratio are more prone to the primacy bias and hence benefit more
from mitigating it.

4.6.4. Elements Behind the Success of Resets

The large improvement in performance provided by resets across algorithms and
environments naturally raises a question about the conditions under which they are
maximally useful. To find an answer, we focus the discussion on the interaction of resets
with crucial algorithmic aspects and hyperparameters impacting the risk of overfitting.

4.6.4.1. Replay ratio. The initial experiments in section 4.4 suggest that the degree
of reliance on early data is a critical determinant of the strength of the primacy bias.
As a consequence, we observe that the impact of resets depends heavily on the replay
ratio, the number of gradient updates per each environment step. fig. 5 shows that
the higher the replay ratio is, the larger the effects from resets: they improve SPR’s
performance by over 40% at four updates/step and allow SAC to achieve its highest
performance at the high replay ratio of 32, where adding resets increases performance
by over 100%. Even when pushing SAC to the extreme replay ratios of 128 and 256,
where learning is barely possible in most environments, resets allow the agent to obtain

Figure 6. Performance of SAC (left) and SPR (right) with and without resets for different n-step
target lengths and a fixed replay ratio (9 for SAC, default 2 for SPR). The right-hand plots visualize
the percent improvement gained by adding resets. As the target variance increases with n, the agent
becomes more susceptible to the primacy bias and benefits more from mitigating it.

55

reasonable performance (see appendix). Resets thus allow less careful tuning of this
parameter and improve sample efficiency by performing more updates per each data
point without being severely affected by the primacy bias.

4.6.4.2. n-step targets. The parameter n in TD learning controls a bias-variance
trade-off, with larger values of n decreasing the bias in value estimates but increasing the
variance (and vice versa). We hypothesize that an agent learning from higher variance
targets would be more prone to overfitting to the initial data and the effects of resets
would increase with increasing n. Figure 6 confirms the intuition and demonstrates up
to 40% improvement for SPR for n = 20 and opposed to no improvement for n = 3.
Likewise, SAC attains 50–60% improvement for increased values of n compared to 40%
for the default n = 1.

The results with varying replay ratios and n-step targets suggest that resets reshape
the hyperparameter landscape creating a new optimum with higher performance.

4.6.4.3. TD failure modes. Temporal-difference learning, when employed jointly
with function approximation and off-policy training, is known to be potentially uns-
table (Sutton et al., 2018). In sparse-reward environments, the critic network might
converge to a degenerate solution because of bootstrapping mostly on it’s own out-
puts (Kumar et al., 2020a); having the non-zero reward data might not sufficient to
escape a collapse. For example, Figure 7 (left) demonstrates the behavior of DrQ in
cartpole-swingup_sparse, where a collapsed agent makes no learning progress. Howe-
ver, after a manual examination of a replay buffer, we found that the agent was reaching
goal states in roughly 2% of trajectories. This observation provides evidence for an
explanation that mitigating the primacy bias addresses more the issues of optimization
than exploration. Likewise, if divergence in temporal difference learning occurs, it is
essentially unrecoverable by standard optimization, with predicted values failing to
decay to normal magnitudes after hundreds of thousands of steps. Figure 7 shows that
adding resets solves this problem by giving the agent a second chance to find a stable
solution. Even though there exist works studying in detail the pathological behaviors
of TD learning (Bengio et al., 2020) and this is not the main scope of our work, resets
naturally address the outlined failures.

4.6.4.4. What and how to reset. Our particular choice of the resetting strategy
calls for a number of ablations. This paragraph provides only the conclusions while

56

Figure 7. Examples of TD failure modes and how resets address them. Left: A run with TD collapse
in a sparse-reward task cartpole-swingup_sparse. Even in the presence of non-zero rewards in the
buffer, the agent without resets cannot learn a non-trivial critic. Right: A run with TD divergence in
walker-stand. Even with double Q-learning, the critic might severely overestimate the action values.
On both plots, DrQ without resets achieves near-zero returns, while DrQ + resets learns a near-optimal
policy. The examples are not cherry-picked, such patterns of behavior occur frequently.

the appendix presents supporting figures. The number of layers to reset is a domain-
dependent choice. For the SAC algorithm learning from dense state features, it is
possible to reset the agent entirely. Resetting in SPR attains the best performance
for the last layer only (out of 5 total layers), while for DrQ resetting the last layer is
slightly worse than resetting last 3 out of 7 layers. We conjecture that the difference lies
in the degree of representation learning required for each domain: a significant chunk
of knowledge in Atari is contained in the agent’s representations; it might be notably
easier to learn features in DeepMind Control, especially when dealing with dense states.
In DrQ, when resetting both actor and critic, resetting critic proved to be slightly more
important than the actor; likely because the DrQ encoder learns from critic loss only, a
practice proposed in (Yarats et al., 2021b).

Another seemingly important choice is whether to reset the state of the optimizer.
We find that resetting the optimizer has almost no impact on training because the
moment estimates are updated quickly. Regarding the resets frequency, the optimal
choice should depend on how fast an algorithm can recover and how much it is affected by
the primacy bias; we found that sometimes even a single reset improves the performance
of baseline agents. We briefly experimented with resetting a random subnetwork and
observed that the performance was either comparable or worse than with resetting the
last layers. Lastly, when sampling new weights after a reset, it is natural to use a new

57

random seed; we observed that even with the same seed resets alleviate the primacy
bias supporting the conclusions of Bjorck et al. (2022) that pathologies in deep RL
algorithms are not due to problems with the initialization. Overall, while we see certain
differences when varying the discussed design choices, resetting showed itself to be
robust the choice of hyperparameters.

4.6.5. Summary

In short, the experimental results suggest that resets improve expected returns
across a diverse set of environments and algorithms. They act as a form of regularization
thus preventing overfitting to early data, unlock new hyperparameter configurations
with possibly higher performance and sample efficiency, and address the optimization
challenges arising in deep RL. While with a more thorough hyperparameter search and
additional modifications it is possible to even further improve the performance upon the
baselines, it is exciting to see that the proposed simple resetting scheme gives benefits
comparable to previous algorithmic advancements.

4.7. Related Work
The primacy bias in deep RL is intimately related to memorization, optimization in

RL, and cognitive science. Various aspects of our work existed in the literature.

4.7.1. Overfitting in RL

Generalization and overfitting have many faces in deep reinforcement learning.
Generalization of values to similar states is a setting where the most classical form of
overfitting can arise when using function approximation (Sutton et al., 2018). Kumar et
al. (2020a) and Lyle et al. (2022a) show that an approximator for value function gradually
loses its expressivity due to bootstrapping in TD learning; we conjecture that this
amplifies the effect of first data points. Dabney et al. (2021) propose to treat holistically
the sequence of value prediction tasks, arguing that if an agent focuses too much on a
single prediction problem might overspecialize learned representations. Laroche et al.
(2022) show that policy gradient updates can be slow in unlearning previous behaviors.
Song et al. (2019) study observational overfitting by examining saliency maps in visual
domains and argue that agents might pick up spurious correlations for decision making.
The prioneering work (Farahmand et al., 2008) and a more recent one (Liu et al., 2021c)

58

argue in favor of using regularization in RL. Finally, overfitting can happen in settings
with learning from offline datasets (Fujimoto et al., 2019) and with multiple tasks (Teh
et al., 2017). Surveys by Kirk et al. (2021) and Zhang et al. (2018) give a taxonomy of
generalization aspects in RL.

Techniques similar to our resets also existed before. Anderson et al. (1993) propose
to reset individual neurons of a Q-network based on a variance criterion and observes
faster convergence. Forms of non-uniform sampling including re-weighting recent
samples (Wang et al., 2020a) and prioritized experience replay (PER) (Schaul et al.,
2016) can be seen as a way to mitigate the primacy bias. We observe that SPR, built on
top of Rainbow (Hessel et al., 2018) and already using PER, still benefits from resets.
Igl et al. (2021) provide demonstrations in the supervised case that learning from a
pretrained network can be worse than learning from scratch for non-stationary datasets
and propose a method ITER that fully resets the agent’s network in an on-policy
buffer-free setting with distillation from the previous generation as a knowledge transfer
mechanism. The difference contrasts the approach with our resetting scheme that uses
a replay buffer as a basis for knowledge transfer after a reset.

Our work sheds light on another special form of overfitting in deep RL and proposes
a simple solution for mitigating it.

4.7.2. Forgetting mechanisms

In contrast to the well-known phenomenon of catastrophic forgetting (French, 1999),
several works have noted the opposite effect of catastrophic memorization (Robins,
1993; Sharkey et al., 1995) similar to the primacy bias. Achille et al. (2018) observe the
existence of critical phases in learning that have a determining effect on the resulting
network. Erhan et al. (2010) notice higher sensitivity of the trained network with respect
to first datapoints. While the effect of the early examples in supervised problems might
be present, the consequences of overfitting to initial experiences in deep RL would be
much more drastic because the agent itself collects the data to learn from. Dohare et al.
(2021) adjust stochastic gradient descent for the continual learning setting; we highlight
that in continual learning the agent does not have influence over the stream of data,
while the primacy bias in deep RL arises because data collection is in the training loop.

The idea of resetting subnetworks recently received more attention in supervised
learning. Taha et al. (2021) studies this process from an evolutionary perspective
and shows increased performance in computer vision tasks. Zhou et al. (2022) show

59

that some degree of forgetting might improve generalization and draw a connection
to the emergence of compositional representations (Ren et al., 2019). Zhang et al.
(2019) demonstrate that resetting different layers affect differently the performance of
a network. Alabdulmohsin et al. (2021) demonstrate that resets increase margins of
training examples and induce convergence to flatter minima.

These works complement the evidence about the existence of the primacy bias in
deep RL and add to our analysis of the regularization effect of resets.

4.7.3. Cognitive science

The primacy bias (also known as the primacy effect) is a well-studied cognitive bias
in human learning (Marshall et al., 1972). Given a sequence of facts, humans often
form generalizations based on the first ones and pay less attention to the later ones.
Asch (1961) shows that this tendency can foster a creation of harmful prejudices by
examining the difference in responses after presenting the same data but in different
order. Shteingart et al. (2013) argue that outcomes of first experiences affect future
decision making and have a substantial and lasting effect on subsequent behavior.
Yalnizyan-Carson et al. (2021) use RL as a framework to test a hypothesis that some
degree of forgetting in natural brains is beneficial for decision making. Resets can be
linked to cultural transmission between generations (Kirby, 2001), where an agent before
a reset transmits its knowledge to an agent after the reset through a buffer. Lastly,
studies of a critical period (Johnson et al., 1989) show that if a child fails to develop
a skill during a particular stage of its development, it might much more difficult to
acquire the skill later, drawing the connection to proper learning from early experiences.

Even though humans and RL systems learn under different conditions, our paper
provides evidence that artificial agents exhibit the primacy bias noted in humans.

4.8. Future Work and Limitations

This paper focuses on empirical investigation of the primacy bias phenomenon.
An exciting avenue for future work is developing theoretical understanding of risks
associated to overfitting to first experiences. Likewise, deriving guarantees for learning
with resets similarly to the results of Li et al. (2021) in games and Besson et al. (2018)
for bandits would make the technique more theoretically sound.

60

Our version of resets is appealing because of its simplicity. However, the reset
periodicity is a hyperparameter that an RL practitioner needs to choose. A version of
the technique based on the feedback from the RL system or even meta-learning the
resetting strategy can potentially improve the performance even further.

Finally, we note that brief collapses in performance induced by resetting may be
undesirable from a regret minimization perspective. Potential remedies include having a
period of offline post-training after each reset or sampling actions from an interpolation
between pre- and post-reset agents for some period of time after each reset.

4.9. Conclusion

This paper identifies the primacy bias in deep RL, a damaging tendency of artificial
agents to overfit early experiences. We demonstrate dangers associated with this form
of overfitting and propose a simple solution based on resetting a part of the agent.
The experimental evidence across domains and algorithms suggests that resetting is an
effective and generally applicable technique in RL.

The general trend in RL research for many years was to first establish a sound
algorithm for the tabular case and then use a neural network for representing parts of
the agent. The last step was not rarely seen as just a technical detail. The primacy bias,
however, is a phenomenon specific to RL with function approximation. The findings of
our paper point at the importance of studying the profound interaction of reinforcement
and deep learning. Similarly to techniques like Batch Normalization (Ioffe et al., 2015)
that revolutionized training of supervised models, future progress might come not only
from advancements in core RL but rather by approaching the problem in conjunction.
It is striking that something as simple as periodic resetting improves performance so
drastically, suggesting that there is still much to understand about the behavior of deep
RL.

Overall, this work sheds light on the learning processes of deep RL agents, unlocks
training regimes that were unavailable without resets, and opens possibilities for further
studies improving both understanding and performance of deep reinforcement learning
algorithms.

61

Acknowledgements
The authors thank Rishabh Agarwal, David Yu-Tung Hui, Ilya Kostrikov, Ankit

Vani, Zhixuan Lin, Tristan Deleu, Wes Chung, Mandana Samiei, Hattie Zhou, Marc G.
Bellemare for insightful discussions and useful suggestions on the early draft, Compute
Canada for computational resources, and Sara Hooker for Isaac Asimov’s quote. This
work was partially supported by Facebook CIFAR AI Chair, Samsung, Hitachi, IVADO,
and Gruppo Ermenegildo Zegna.

We acknowledge the Python community (Van Rossum et al., 1995; Oliphant, 2007)
for developing the core set of tools that enabled this work, including JAX (Bradbury
et al., 2018; Babuschkin et al., 2020), Jupyter (Kluyver et al., 2016), Matplotlib (Hunter,
2007), numpy (Oliphant, 2006; Van Der Walt et al., 2011), pandas (McKinney, 2012),
and SciPy (Jones et al., 2014).

62

Chapter 5

Sample-Efficient Reinforcement Learning by
Breaking the Replay Ratio Barrier

This chapter reproduces, with some formatting changes, the following work:

• Pierluca D’Oro*, Max Schwarzer*, Evgenii Nikishin, Pierre-Luc Bacon, Marc
Bellemare & Aaron Courville. Sample-Efficient Reinforcement Learning by
Breaking the Replay Ratio Barrier. ICLR (2023).

This work advances the goals of this thesis by demonstrating that correctly addressing
the primacy bias allows dramatically more computational resources to be used for a
fixed amount of data, leading to large improvements in sample efficiency through scaling
by resetting.

The accompanying supplemental materials for this work may be found in Appendix C.
I co-led this project and performed all Atari experiments, or roughly half of the overall
results in the paper.

5.1. Abstract
Increasing the replay ratio, the number of updates of an agent’s parameters per

environment interaction, is an appealing strategy for improving the sample efficiency of
deep reinforcement learning algorithms. In this work, we show that fully or partially
resetting the parameters of deep reinforcement learning agents causes better replay
ratio scaling capabilities to emerge. We push the limits of the sample efficiency of
carefully-modified algorithms by training them using an order of magnitude more
updates than usual, significantly improving their performance in the Atari 100k and

Figure 1. Scaling behavior of SAC and SR-SAC in the DeepMind Control Suite (DMC15-500k)
benchmark, and of SPR and SR-SPR in the Atari 100k benchmark (5 seeds for point for SAC and
SR-SAC, at least 20 seeds for point for SPR and SR-SPR, 95% bootstrapped C.I.).

DeepMind Control Suite benchmarks. We then provide an analysis of the design choices
required for favorable replay ratio scaling to be possible and discuss inherent limits and
tradeoffs.

5.2. Introduction
In many real world scenarios, each interaction with the environment comes at a

cost, and it is desirable for deep reinforcement learning (RL) algorithms to learn with
a minimal amount of samples (François-Lavet et al., 2018). This can be naturally
achieved if an algorithm is able to leverage more computational resources during training
to improve its performance. Given the online nature of deep RL, there is a peculiar
way to aim at having such behavior: to train the agent for longer, given a dataset of
experiences, before interacting with the environment again.

A method based on this idea can be said to be scaling the replay ratio, the number
of updates of an agent’s parameters for each environment interaction. Despite generally
providing limited benefit when applied to standard baselines (Fedus et al., 2020; Kumar
et al., 2020a), replay ratio scaling has been shown to bring performance improvements to
well-tuned algorithms. Recent approaches were able to achieve better sample efficiency
by increasing it to higher values, up to 8 for discrete control (Kielak, 2020) or 20 for
continuous control (Chen et al., 2021b; Smith et al., 2022).

In this paper, we show that it is possible, with minimal but careful modifications to
model-free algorithms mostly based on parameter resets (Ash et al., 2020; Nikishin et al.,
2022), to reach new levels of replay ratio scaling and push the sample efficiency limits of

64

deep RL. Both in continuous control, with SAC in DeepMind Control Suite (Haarnoja
et al., 2018; Tassa et al., 2020), and discrete control, with SPR in Atari 100k (Schwarzer
et al., 2021a; Kaiser et al., 2020), we break the replay ratio barrier, unlocking a training
regime in which orders of magnitude of additional agent updates can be used to increase
the performance of an algorithm for a given budget of interactions with the environment.
By doing so, we obtain better aggregated scores than strong baselines, with a general
blueprint to improve sample efficiency of potentially any off-policy deep RL algorithm.

To understand how this can be feasible, it is useful to reflect on one of the most
common patterns observed in the development of deep RL algorithms (Mnih et al.,
2015). With a few exceptions, researchers typically ground their methods on the
well-established dynamic programming mathematical machinery, combining it with
optimization strategies common in deep learning. However, the RL setting is inherently
different from the one in which most deep learning architectures and optimization
methods were developed. In deep RL, neural networks have to deal with dynamic
datasets, whose composition changes over the course of training; their training actively
determines the value of future inputs, but also the value of future targets. We argue
that the recently identified tendency of neural networks to lose their ability to learn
and generalize from new information during training (Chaudhry et al., 2018; Ash et al.,
2020; Berariu et al., 2021; Igl et al., 2021; Dohare et al., 2022; Lyle et al., 2022a;
Lyle et al., 2022b; Nikishin et al., 2022), against which most RL methods deploy no
countermeasures, has been the main roadblock in achieving better sample efficiency
through replay ratio scaling.

After presenting and evaluating our algorithmic solution leading to better replay
ratio scaling, we discuss some of the aspects of thinking about deep RL algorithms
under the lens of this paradigm. We show some examples of algorithm design decisions
important, or not important, for effective replay ratio scaling to be possible, with
particular attention to the role of online interaction. Then, we visualize in an explicit
way the data-computations tradeoff implied by this approach and, after having shown
the potential of replay ratio scaling, we discuss its inherent limits.

5.3. Related Work
Loss of Ability to Learn and Generalize in Neural Networks A growing

body of evidence suggests that artificial neural networks lose their ability to learn and
generalize during training. The phenomenon is not clearly visible when learning with

65

a static dataset on a fixed task, but it starts appearing when the data distribution
changes. In the continual learning setting, an alleviation of the problem by partially
resetting the network parameters already provides a consistent improvement (Ash
et al., 2020). Berariu et al. (2021) provides an in-depth study of how this phenomenon
happens, including how many training updates are required for the performance of a
network on future tasks to be unrecoverably damaged. The phenomenon becomes even
more prominent in deep RL, where it has been identified in multiple settings. In the
context of on-policy algorithms, it has been investigated as a consequence of transient
non-stationarity and mitigated via self-distillation (Igl et al., 2021); in off-policy RL,
it has been studied under the name of capacity loss (Lyle et al., 2022a), counteracted
by the use of auxiliary tasks; in the sparse reward setting, it has been mitigated by
post-training policy distillation (Lyle et al., 2022b). To address what they call loss
of plasticity, Dohare et al. (2022) proposes a variation of backpropagation compatible
with continual learning, also applying it to the continual RL context. In this paper, we
primarily leverage a periodic hard resetting method (Zhou et al., 2022), investigated
in Nikishin et al. (2022) as a solution to the primacy bias phenomenon. Our work
demonstrates that addressing this phenomenon allows for increased sample efficiency
by scaling the replay ratio to much higher values than other model-free methods. We
report in Appendix C.1 a more precise summary and glossary of the different related
definitions from previous work.

Scaling in Deep and Reinforcement Learning The topic of understanding and
exploiting the scaling behavior of a deep learning algorithm’s performance with respect
to the amount of resources used for training has recently gained attention. Hestness
et al. (2017) pioneered the idea of empirically studying and predicting performance
when increasing a model’s size, and subsequent work investigated scaling with respect to
both model and dataset size, as well as training time (Kaplan et al., 2020; Bahri et al.,
2021; Djolonga et al., 2021). Recent work in language modeling has also highlighted the
importance of having high-quality data and the right training setup for efficient scaling
to be possible (Hoffmann et al., 2022). In RL, scaling with respect to model size has been
investigated in the offline setting for decision transformers (Lee et al., 2022) and with
respect to planning-time in model-based RL (Hamrick et al., 2021). For what concerns
replay ratio scaling, moderately increasing the replay ratio for standard baselines has
been shown to be a competitive data-efficient baseline for both discrete and continuous
control when compared to model-based RL methods (Holland et al., 2018; Hasselt et al.,

66

2019; Kielak, 2020; D’Oro et al., 2020), despite clear limitations (Kumar et al., 2020a).
Recent approaches in continuous control leveraged high replay ratios as a strategy
to improve sample efficiency through the use of ensembles of value functions (Chen
et al., 2021b; Hiraoka et al., 2022; Wu et al., 2022) or normalization strategies (Smith
et al., 2022); we argue that explicitly alleviating the progressive loss of ability to learn
and generalize pushes the replay ratio scaling capabilities much further than those
techniques can achieve.

5.4. Effective Replay Ratio Scaling with Resets
Most off-policy deep RL algorithms make use of a replay buffer (Lin, 1992) for

storing transitions encountered over (a window of) an agent’s lifespan. At a fixed
frequency, such methods sample a batch of transitions from the buffer, update the
parameters of the agent by following the gradient of some loss function, and let the
agent interact again with the environment before adding new experience to the buffer.
The number of agent updates per environment step is usually called replay ratio1 (Wang
et al., 2016a; Fedus et al., 2020), and most standard algorithms are trained with a value
around 1 (Mnih et al., 2015; Haarnoja et al., 2018). It is natural to view increasing
the replay ratio beyond these values as a way to improve sample efficiency. For ease
of discussion, we now explicitly state and give a name to this idea, which has been an
object of interest in previous studies (Hasselt et al., 2019; Kumar et al., 2020a).

Replay Ratio Scaling

Change in an agent’s performance caused by doing more updates for a fixed
number of environment interactions.

This definition does not have any positive connotation per se; any deep RL algorithm
will have a certain replay ratio scaling behavior, and a desirable property for an algorithm
is to have particularly favorable replay ratio scaling, so that its performance can improve
by increasing the replay ratio.

In contrast to other performance scaling properties analyzed for deep learning
algorithms (Kaplan et al., 2020), replay ratio scaling is intertwined with the online RL
paradigm: if the agent has a significantly better data-collection policy due to more

1Related quantities are also known as update-to-data (UTD) ratio (Chen et al., 2021b; Smith
et al., 2022).

67

training, the next collected sample will be potentially different with respect to the one
collected if doing less training before the interaction; by this virtue, also future learning
will be directly impacted by the presence of different data in the replay buffer. In
other words, this type of scaling can only be understood by considering the interaction
of an agent with an environment: training more on a small dataset of interactions,
without any further collection of data, will eventually lead to challenges associated to
off-policy learning (Ostrovski et al., 2021); but training more while the data is collected
can drastically change the stream of incoming data and the overall learning dynamics.

Given its appeal, what are the limiting factors to increasing the replay ratio? We
argue that the main factor inhibiting effective replay ratio scaling in existing deep
RL algorithms has been the progressive loss of the ability to learn and generalize in
neural networks (Dohare et al., 2022; Lyle et al., 2022b; Nikishin et al., 2022). It
has been shown that this property hinders a neural network’s performance under task
switches (Ash et al., 2020; Berariu et al., 2021) and, from the perspective of a neural
network employed by the agent, what is deep RL if not a long sequence of related but
distinct tasks (Dabney et al., 2021)?

Recent studies showed that, even under smooth task changes, the more training has
been done on a previous task, the worse the performance will eventually be in a new
task (Ash et al., 2020; Berariu et al., 2021). Since higher replay ratio correspond to an
increased amount of training, this gives a natural explanation to the limit in increasing
it. The ability to learn and generalize can, however, be restored. For instance, Nikishin
et al. (2022) periodically reset the network’s parameters, with a frequency that is fixed
with respect to the number of environment steps. In this work, we argue that the key
to surprisingly effective replay ratio scaling is a periodic restoration of the ability to
learn and generalize of the network, via partial (Ash et al., 2020) or total (Nikishin
et al., 2022) resets of its parameters, with a reset frequency that only depends on the
number of updates and thus implicitly also on the replay ratio. This means the more an
algorithm updates its neural networks, the more frequent the restoration of its ability to
learn and generalize will be, leading to better performance, as we now show in practice.

68

DMC15-500k

Method IQM Median Mean

SR-SAC 740 (642, 818) 667 (573, 742) 658 (589, 722)
REDQ 511 (440, 577) 493 (442, 544) 494 (452, 534)
SAC 391 (334, 448) 424 (376, 468) 424 (386, 461)
DDPG 392 (334, 445) 410 (364, 454) 408 (371, 442)

DMC15-1M

Method IQM Median Mean

SR-SAC 805 (726, 867) 729 (628, 790) 710 (643, 775)
REDQ 586 (514, 649) 546 (490, 596) 539 (498, 576)
SAC 535 (467, 597) 525 (471, 567) 519 (480, 557)
DDPG 514 (450, 572) 492 (440, 540) 489 (450, 526)

Figure 2 & Tableau 1. Performance of SR-SAC and of standard baselines on the DMC15 benchmark.
(5 seeds for SR-SAC, 20 for all other algorithms, 95% bootstrapped C.I.).

5.5. Replay Ratio Scaling Drastically Improves
Sample Efficiency

We apply two different reset strategies to two standard continuous control and
discrete control algorithms and study their replay ratio scaling behavior. We consider
Soft Actor-Critic (SAC) (Haarnoja et al., 2018), which optimizes an actor and a critic
by maximizing policy entropy alongside the environment’s reward, and SPR (Schwarzer
et al., 2021a), a model-free DQN-based reinforcement learning algorithm that augments
a sample-efficient variant of Rainbow (Hasselt et al., 2019) with a model-based latent
dynamics prediction objective designed to improve representation learning in the low-
data regime. The two curves in Figure 1 show that it is possible, with the same
algorithm, to almost double the performance for the same number of environment steps,
by just varying the replay ratio. We call the modified versions of these two algorithms
Scaled-by-Resetting SAC (SR-SAC) and Scaled-by-Resetting SPR (SR-SPR). In the
rest of this section, we are going to describe the precise the details of the reset strategies
that we employ for the two algorithms, as well as the benchmarks to which they are
applied, by describing our decisions first in continuous control and then in discrete
control. For evaluation and comparisons, we follow the protocol suggested by Agarwal
et al. (2021b).

69

5.5.1. Continuous Control

The DMC15 Benchmark To appropriately compare the performance of different
algorithms, we consider a benchmark based on 15 environments from DeepMind Control
Suite (Tassa et al., 2020). Our selection of tasks, reported in Table 5, is a set for which
discussing sample efficiency is sensible (i.e., neither immediately solvable nor unsolvable
by common deep RL algorithms). For ease of comparison, we specialize the benchmark
to DMC15-500k, in which 5× 105 interactions with the environment are allowed, and
DMC15-1M, in which 106 interactions are allowed.

Reset Strategy We adapt the approach of Nikishin et al. (2022), and completely
reset all the agent parameters every 2.56 × 106 of its updates. This lets us avoid
individually specifying the moments at which resets should happen for different replay
ratios. In terms of environment steps, resets will just occur more often at higher replay
ratios. For instance, for replay ratio 128 (128x higher than what typically used by
SAC), a reset occurs once every 20000 steps of interaction with the environment.

Results In Figure 2, we compare a version of SR-SAC that uses a replay ratio of 128
to standard deep RL baselines. This also includes the recently proposed REDQ (Chen
et al., 2021b), which obtained state-of-the-art sample efficiency by using a replay ratio
of 20. At any budget of interactions with the environment, SR-SAC compares favorably
with REDQ, despite being a simpler algorithm. SR-SAC establishes a new state-of-
the-art result for model-free continuous control. Following (Agarwal et al., 2021b) we
focus on interquartile mean (IQM) performance, defined as the 25% trimmed mean
performance over all runs on all considered tasks, and report 95% bootstrap confidence
intervals.

5.5.2. Atari 100k

Reset Strategy We follow Nikishin et al. (2022) in performing one reset every
40,000 updates; at replay ratio 16, the highest considered, this corresponds to a reset
every 2,500 environment steps, or roughly once every three minutes of interaction.
However, Nikishin et al. (2022) only reset a subset of the agent’s parameters when
training on the ALE, leaving the agent’s convolutional encoder untouched by resets.
While this leaves the encoder vulnerable to plasticity loss, fully resetting the encoder
is impractical, as Nikishin et al. (2022) observe. As an intermediate solution, we
apply soft resets, using a variant of Shrink and Perturb (Ash et al., 2020) in which

70

Atari 100k

Method IQM Median Mean

SR-SPR 0.632 (0.60, 0.66) 0.685 (0.60, 0.77) 1.272 (1.18, 1.37)
IRIS 0.501 (0.44, 0.56) 0.289 (0.25, 0.41) 1.046 (0.96, 1.13)
SPR 0.380 (0.36, 0.39) 0.433 (0.38, 0.48) 0.578 (0.56, 0.60)
DrQ(ϵ) 0.280 (0.27, 0.29) 0.304 (0.28, 0.33) 0.465 (0.46, 0.48)
DER 0.183 (0.18, 0.19) 0.191 (0.18, 0.21) 0.351 (0.34, 0.36)

Figure 3 & Tableau 2. Performance profiles (left, higher is better) of SR-SPR at various replay
ratios, and 95% C.I.s of SR-SPR: 16 and of standard baselines on Atari 100k (right, 20 seeds for
SR-SPR and SPR, 5 seeds for IRIS, 100 seeds for all other algorithms as taken from Agarwal et al.
(2021b))

encoder parameters are interpolated between their previous value and a random re-
initialized parameter vector on each reset: θt = αθt−1 + (1− α)ϕ, ϕ ∼ initializer.
This formulation is different from that used by (Ash et al., 2020) but allows easy
interpolation between completely resetting a layer and leaving it unchanged; we use
α = 0.8 by default. We examine the impact of this decision in Section 5.6.2.

Target Networks By default, SPR does not employ a separate target network,
unlike traditional DQNs (Mnih et al., 2015). However, we find that this leads replay
ratio scaling to stop improving performance at relatively low replay ratios, which we
hypothesize is due to fundamental variance in optimization limiting the accuracy to
which the value function may be estimated. To alleviate it, we directly adopt the target
strategy employed by SR-SAC, with an exponential moving average (EMA) target
network with coefficient τ = 0.005, which we find allows beneficial replay ratio scaling
out to at least replay ratio 16. Moreover, following (Ghavamzadeh et al., 2011), SR-SPR
also uses its target network for action selection. We elaborate on this design decision in
Section 5.6.2.

Results Figure 3 shows performance profiles of SR-SPR at various replay ratios,
demonstrating that replay ratio scaling consistently improves performance up to at
least replay ratio 16. We also compare a version of SR-SPR that uses replay ratio 16 to
standard baselines (DrQ, DER, Kostrikov et al., 2022; Hasselt et al., 2019) and recent
work (IRIS, Micheli et al., 2023) in table 2. SR-SPR establishes a new state-of-the-art for

71

Figure 4. Scaling behavior of SAC, SR-SAC and its tandem and iterated offline variations in the
DMC15 benchmark. Each individual line shows performance at a given number of environment steps,
denoted by color, across different numbers of agent updates. Each point in a line is obtained by
measuring performance with a different replay ratio for that number of environment steps. Each line is
computed over 5 seeds.

model-free control on Atari 100k, and rivals prior work that has aggressively pretrained
on additional data (Liu et al., 2021a; Schwarzer et al., 2021b). We present full results
and per-game scores for SR-SPR in table 2, and show training curves in fig. 7. We report
IQM performance, as well as plotting a performance profile (Agarwal et al., 2021b),
which visualizes the full distribution of performance across all runs2 and demonstrates
that increasing SR-SPR ’s replay ratio comprehensively improves performance.

5.6. Algorithm Design in Light of Replay Ratio Sca-
ling

5.6.1. Analyzing the Importance of Online Interaction

When training with high replay ratios and short reset intervals, the training regime
an agent is subjected to begins to resemble offline RL; the agent is primarily learning
from data collected by policies unrelated to its own, with only a small amount of
online data available to correct its policy. Given many classical analyses from offline
RL (Levine et al., 2020), it is perhaps surprising that an agent trained in a pseudo-offline
setting with no explicit regularization towards conservatism (e.g., Kumar et al., 2020b)
can learn successfully. What is then the role of the incoming stream of interactions? To
gain some understanding, in this section we attack the problem from different angles
and study the scaling behavior of variants of SR-SAC. We consider different data
collection patterns and how interleaving them with agent optimization changes the

2Broadly speaking, a transposed and clipped plot of the cumulative distribution function of
performance.

72

training dynamics. The appendix also presents a comparisons with NFQI (Riedmiller,
2005) and with the online use of an offline RL algorithm.

5.6.1.1. Iterated Offline Setting. Changing the replay ratio in a deep RL algorithm
can be seen as a specific way of increasing the proportion of offline training an agent is
subject to. Specifically, the agent’s parameters are updated a number of times exactly
equal to the replay ratio before a new sample is collected. This implies a uniform
distribution of the number of offline updates across time steps. Is this an important
variable for determining the replay ratio scaling behavior of an algorithm?

To answer this question, we resort to what we call iterated offline RL (Matsushima
et al., 2021; Riedmiller et al., 2021), which alternates between purely offline updates
and data collection. In this setting, a certain value of replay ratio is not distributed
uniformly during the course of the interactions with the environment. Instead, the
agent is not updated during data collection, and an amount of updates equal to the
one that would be due in that data collection time frame in virtue of the replay ratio is
applied completely offline, right after each reset.

As visible in Figure 4, the iterated offline paradigm has a different replay ratio
scaling behavior. Applying a very large number of updates with a fixed dataset, with
an algorithm such as SAC, incurs serious risk of generating a degenerate policy, not
able to outperform the previous one. As exemplified in Figure 6, in the absence of
any mechanism for stopping this natural degeneration to happen, this circle is broken
only when enough data is collected. Collecting enough data in this sense is possible
for easy tasks such as hopper-stand and walker-run, with a cost in sample efficiency,
or impossible on hard tasks such as humanoid-stand and quadruped-walk. This is
unfortunate: the iterated offline RL paradigm can be quite useful in practical settings,
in which the agent is allowed to only collected batches of data without any update
(perhaps for safety reasons); however, current backbone algorithms (such as SAC) are
not currently compatible with such a setting, that thus leads to favorable replay scaling
only when closer to the online setting. This explains the sudden increase in the curve
of Figure 4, when the number of agent updates, and consequently the reset frequency,
becomes large enough. An interesting question, left for future work, is whether this
behavior could change if combined with conservative algorithms created for the offline
RL setting.

73

5.6.1.2. Tandem Setting. With high replay ratios, an agent’s training begins to
resemble offline RL: although the agent still has the possibility to interact with the
environment, it is very infrequent relative to the amount of training. Thus, an agent
after a reset has a small stream of interactions collected by the agent itself, while the
vast majority of its data was collected by potentially unrelated agents. How important,
then, is this small stream of online interaction? To answer this question, we leverage
the tandem setting, as presented in Ostrovski et al. (2021). Two copies of the same
agent, identical apart from the initialization, are created. With the same algorithm
(SR-SAC in this case), they are trained on the replay buffer collected by the active
agent. The passive agent thus never directly interacts with environment, and cannot
collect data to correct its own misconceptions about the environment.

Figure 5. Learning curves (top) and evaluation performance (bottom) at replay ratio 16 for SPR and
SR-SPR with and without offline updates after each reset.

74

As shown in Figure 4, the behavior of Tandem SR-SAC offers an alternative
perspective on the importance of online interactions: despite the performance of the
algorithm being hurt, the overall replay ratio scaling capabilities remain similar. We can
look at the performance of the passive agent to understand what the exact effect of online
interactions is on training. As evident in the environments from Figure 6, especially
in hopper-stand and quadruped-walk, there is a qualitative difference between the
behavior of an active agent (blue curve) and a passive agent (green curve): right after a
reset, with the initial high replay ratio training, the performance of both agents is greatly
improved; after a few thousands steps, training remains stable for the active agent but
causes performance collapse in the passive agent. This experiment thus demonstrates
the power of having online interactions as an implicit regularization mechanism.

For the design of future replay ratio-scalable algorithms, one should keep in mind
that it is indeed possible to scale an algorithm potentially affected by extreme off-
policyness; however, online data collection slows down performance collapse when
training aggressively, as shown in both the iterated offline and the tandem experiments.

Figure 6. Examples of behaviors of SR-SAC and its tandem and iterated offline variations on four
environments from DMC15. (5 runs, ± std).

5.6.1.3. Alternative Combinations of Offline and Online Updates. The iterated
offline setting can be seen as the extreme in which all of the updates are done offline,
compared to the even distribution used in the online setting. What if we use an
intermediate strategy?

For SR-SPR, we find that directly mixing offline and online RL by performing
half the updates allotted to each interval immediately after each reset can actually
improve performance by some metrics, such as training return (see Figure 5 upper),
by mitigating the performance drop otherwise experienced after each reset. Although
we find that this has essentially no impact on final evaluation performance (Figure 5
lower), it may allow SR-SPR to be used when cumulative regret is important.

75

5.6.2. What is Required for Replay Ratio Scaling in Discrete
Control?

Figure 7. The replay ratio scaling behavior of SR-SPR with various components ablated.

76

Although replay ratio scaling is relatively straightforward for SR-SAC, achieving
robust replay ratio scaling for SR-SPR requires more complex design decisions due
to its shorter training period and more complex function approximation. As a result,
unlike SR-SAC, SR-SPR contains additional modifications from the variant of SPR
used by Nikishin et al. (2022). We study the impact of these design decisions on scaling
behavior and report results in Figure 7.

Inspired by the findings of Berariu et al. (2021) that plasticity loss is concentrated
in the final layers of the network but affects all layers, we apply Shrink and Perturb
(SP) to the encoder; this is responsible for roughly a constant increase of IQM 0.04
past replay ratio 4. We note however that applying Shrink and Perturb alone to all the
parameters of the network is not sufficient to enable beneficial scaling; it is important
that at least the network’s final layers be completely reset. We explain this using the
observations from (Berariu et al., 2021) that the last layers are more responsible for the
loss of plasticity.

That said, the most important factor in allowing SR-SPR to continue scaling well
is its use of a target network. This effect is primarily due to better action selection
through the target network; we found that the stabilizing effect on optimization was a
less important factor. This is reminiscent of speedy Q-learning (Ghavamzadeh et al.,
2011), where the use of an exponential moving average policy was shown to improve
convergence speed, and can also be understood in relationship to the policy churn
phenomenon (Schaul et al., 2022) (see Figure 2 in the appendix).

Meanwhile, removing both Shrink and Perturb and the target network is roughly
equivalent to taking the method of Nikishin et al. (2022) but setting reset intervals as
in SR-SPR. As Figure 7 suggests, this alone suffices to yield some replay ratio scaling
but not as efficient compared to SR-SPR. However, maintaining a fixed reset interval
(in terms of environment steps) when varying replay ratio, as done by Nikishin et al.
(2022), leads to poor performance at replay ratios above 4.

Intriguingly, we note that these modifications are beneficial specifically for replay
ratio scaling ; at replay ratios 1 or 2 they do not improve performance (although for
the most part they do not significantly harm performance either). We thus hypothesize
that there may be other modifications to complex algorithms such as SPR that could
be made to further improve replay ratio scaling properties, but that are today not in
widespread use because they do not improve performance in standard low replay ratio
settings.

77

5.6.3. Visualizing the Data/Compute Tradeoff

If an order of magnitude more of updates can be used for improving the performance
of an algorithm, additional tradeoffs start to emerge. The type of computations that
replay ratio scaling implies are fundamentally different than other concepts of scaling,
(e.g., about larger models): scaling here is inherently sequential. Thus, obtaining
more hardware does not help faster execution of the algorithm. When collecting new
transitions is not very expensive, the choice between collecting new samples in the
environment and spending more time updating an agent could become nontrivial.

Figure 8. Performance of SR-SAC in DMC15 as a function of the number of interactions and of the
number of agent updates, determined by the replay ratio.

We visualize this tradeoff in Figure 8. The plot is obtained by combining runs of
SR-SAC with doubling replay ratio from 0.25 to 128, and considering, for a fixed data
budget (in terms of environment steps), the total computational budget (in terms of
total number of agent updates at that point), as well as the achieved performance.
There exists multiple ways to achieve the same level of performance, as denoted by
the color. This plot shows that resets provide a knob on replay ratio scaling and
allows to tradeoff data for computation. If, for a given problem, sample efficiency is

78

more important than computational considerations, one can spend about two orders of
magnitude of additional agent updates to obtain the same performance that can be
obtained by waiting for 800000 additional samples to be collected from the environment.
The peculiar feature of the approach we advocate for in this paper is that it allows to
act on this tradeoff with an algorithm basically as simple as the employed backbone.

5.7. The Limits of Replay Ratio Scaling
We have seen what becomes possible when higher level of replay ratio scaling are

unlocked by resets. What are the limits of this paradigm? First of all, replay ratio scaling
is always possible up to a finite value, at which there is simply not enough information
left to be extracted from the existing dataset of experience. Current methods, including
the one proposed in this paper, are not able to automatically identify when this limit is
reached, and they are therefore still subject to performance collapse when increasing
the replay ratio too much. Second, replay ratio scaling cannot go beyond the intrinsic
limitations of the given deep RL algorithm: for example, if the task is simply impossible
to solve because of hard credit assignment or exploration, then replay ratio scaling is
only of limited help. Third, the strategy we proposed for replay ratio scaling is based
on keeping the entire history of interactions with the environment in the replay buffer.
While this is feasible for the kind of sample-efficiency benchmarks that we have used in
this paper, it might also require special consideration to be applied to larger problems;
for instance, it is possible to keep a large replay buffer on permanent storage, albeit at
the cost of slower batch retrieval. Lastly, replay ratio scaling can inherently become
time-consuming for a training agent, which can limit the applicability of methodologies
like ours to settings requiring high-frequency interactions with an environment.

5.8. Conclusions
In this paper, we have shown that, by leveraging partial or full resets of an agent’s

parameters, it is possible to unlock new levels of favorable replay ratio scaling and,
consequently, of sample-efficiency for model-free deep RL algorithms. We demonstrated
this by a careful evaluation on the DeepMind Control Suite and Atari 100k benchmarks,
where our approach (SR-SAC and SR-SPR) demonstrated far superior performance
compared to strong baselines, with minimal amounts of additional algorithmic com-
plexity. Then, we discussed which algorithmic design choices are important for achieving

79

such levels of replay ratio scaling with a deep RL algorithm, as well as the tradeoffs
implied by this paradigm. Through our empirical analysis, we showed the value of
online data collection, offering a perspective on its relationship with offline RL (Levine
et al., 2020).

More generally, this paper is about how to leverage a discovery for the design
of future deep RL algorithms. We believe this work to be an example of how the
development of effective deep RL methods should be achieved not only through ex-
tending existing algorithms or creating new ones, but also through the discovery of
new phenomena related to deep RL systems, and of techniques for exploiting them
to increase performance. It is natural to wonder whether deeper understanding or
exploitation of surprising empirical properties (Ostrovski et al., 2021; Schaul et al.,
2022) beyond the one behind this work could lead to the emergence of new capabilities
in deep RL algorithms.

80

Acknowledgments. The authors thank Zhixuan Lin for adapting the REDQ baseline,
Nathan U. Rahn, Rishabh Agarwal, David Yu-Tung Hui, Jesse Farebrother for insightful
discussions and useful suggestions on the early draft, the Mila community for creating
a stimulating research environment, Digital Research Alliance of Canada and Nvidia
for computational resources. This work was partially supported by CIFAR, Samsung,
Hitachi, Facebook AI Chair, Borealis, IVADO, and Gruppo Ermenegildo Zegna.

We acknowledge the Python community (Van Rossum et al., 1995; Oliphant, 2007)
for developing the core set of tools that enabled this work, including JAX (Bradbury
et al., 2018; Babuschkin et al., 2020), Jupyter (Kluyver et al., 2016), Matplotlib (Hunter,
2007), numpy (Oliphant, 2006; Van Der Walt et al., 2011), pandas (McKinney, 2012),
and SciPy (Jones et al., 2014).

81

Chapter 6

Bigger, Better, Faster: Human-Level Atari
with Human-Level Efficiency

This chapter reproduces, with some formatting changes, the following work:

• Max Schwarzer, Johan Obando-Ceron, Marc Bellemare, Aaron Courville,
Rishabh Agarwal & Pablo Castro. Bigger, Better, Faster: Human-Level Atari
with Human-Level Efficiency. ICML (2023).

This work advances the goals of this thesis by demonstrating that it is possible to leverage
model scaling in sample-efficient RL through intelligent hyperparameter selection,
allowing for much larger neural networks to be used in sample-efficient RL and ultimately
leading to an algorithm, BBF, that possesses human-level sample-efficiency.

The accompanying supplemental materials for this work may be found in Appendix D.
I led this project and performed the vast majority of experimental work, including all
of the results in the main body of the paper.

6.1. Abstract
We introduce a value-based RL agent, which we call BBF, that achieves super-human

performance in the Atari 100K benchmark. BBF relies on scaling the neural networks
used for value estimation, as well as a number of other design choices that enable this
scaling in a sample-efficient manner. We conduct extensive analyses of these design
choices and provide insights for future work. We end with a discussion about updating
the goalposts for sample-efficient RL research on the ALE. We make our code and
data publicly available.

https://github.com/google-research/google-research/tree/master/bigger_better_faster
https://github.com/google-research/google-research/tree/master/bigger_better_faster

6.2. Introduction

Deep reinforcement learning (RL) has been central to a number of successes including
playing complex games at a human or super-human level, such as OpenAI Five (OpenAI
et al., 2019), AlphaGo (Silver et al., 2016b), and AlphaStar (Vinyals et al., 2019),
controlling nuclear fusion plasma in a tokomak (Degrave et al., 2022b), and integrating
human feedback for conversational agents (Ouyang et al., 2022). The success of these RL
methods has relied on large neural networks and an enormous number of environment
samples to learn from – a human player would require tens of thousands of years of
game play to gather the same amount of experience as OpenAI Five or AlphaGo. It is
plausible that such large networks are necessary for the agent’s value estimation and/or
policy to be expressive enough for the environment’s complexity, while large number of
samples might be needed to gather enough experience so as to determine the long-term
effect of different action choices as well as train such large networks effectively. As such,
obtaining human-level sample efficiency with deep RL remains an outstanding goal.

Although advances in modern hardware enable using large networks, in many
environments it may be challenging to scale up the number of environment samples,
especially for real-world domains such as healthcare or robotics. While approaches such
as offline RL leverage existing datasets to reduce the need for environment samples
(Agarwal et al., 2020), the learned policies may be unable to handle distribution shifts
when interacting with the real environment (Levine et al., 2020) or may simply be
limited in performance without online interactions (Ostrovski et al., 2021).

Thus, as RL continues to be used in increasingly challenging and sample-scarce
scenarios, the need for scalable yet sample-efficient online RL methods becomes more
pressing. Despite the variability in problem characteristics making a one-size-fits-all
solution unrealistic, there are many insights that may transfer across problem domains.
As such, methods that achieve “state-of-the-art” performance on established benchmarks
can provide guidance and insights for others wishing to integrate their techniques.

In this vein, we focus on the Atari 100K benchmark (Kaiser et al., 2020), a well-
known benchmark where agents are constrained to roughly 2 hours of game play,
which is the amount of practice time the professional tester was given before human
score evaluation. While human-level efficiency has been obtained by the model-based
EfficientZero agent (Ye et al., 2021), it has remained elusive for model-free RL agents.
To this end, we introduce BBF, a model-free RL agent that achieves super-human

84

Figure 1. Environment samples to reach human-level performance, in terms of IQM (Agarwal
et al., 2021b) over 26 games. Our proposed model-free agent, BBF, results in 5× improvement over
SR-SPR (D’Oro et al., 2023) and at least 16× improvement over representative model-free RL methods,
including DQN (Mnih et al., 2015), Rainbow (Hessel et al., 2018) and IQN (Dabney et al., 2018). To
contrast with the sample-efficiency progress in model-based RL, we also include DreamerV2 (Hafner
et al., 2020b), MuZero Reanalyse (Schrittwieser et al., 2021) and EfficientZero (Ye et al., 2021).

Figure 2. Comparing Atari 100K performance and computational cost of our model-free BBF
agent to model-free SR-SPR (D’Oro et al., 2023), SPR (Schwarzer et al., 2021a), DrQ (eps) (Kostrikov*
et al., 2021) and DER (Hasselt et al., 2019) as well as model-based∗ EfficientZero (Ye et al., 2021) and
IRIS (Micheli et al., 2023). (Left) BBF achieves higher performance than all competitors as measured
by interquartile mean human-normalized over 26 games. Error bars show 95% bootstrap CIs. (Right)
Computational cost vs. Performance, in terms of human-normalized IQM over 26 games. BBF results
in 2× improvement in performance over SR-SPR with nearly the same computational-cost, while
results in similar performance to model-based EfficientZero with at least 4× reduction in runtime. For
measuring runtime, we use the total number of A100 GPU hours spent per environment.

85

Figure 3. Scaling network widths for both ResNet and CNN architectures, for BBF, SR-SPR
and SPR at replay ratio 2, with an Impala-based ResNet (left) and the standard 3-layer CNN (Mnih
et al., 2015) (right). We report interquantile mean performance with error bars indicating 95%
confidence intervals. On the x-axis we report the approximate parameter count of each configuration
as well as its width relative to the default (width scale = 1).

performance – interquartile mean (Agarwal et al., 2021b) human-normalized score above
1.0 – while being much more computationally efficient than EfficientZero (Figure 2).
Achieving this level of performance required a larger network than the decade-old 3-layer
CNN architecture (Mnih et al., 2013), but as we will discuss below, scaling network
size is not sufficient on its own. We discuss and analyze the various techniques and
components that are necessary to train BBF successfully and provide guidance for
future work to build on our findings. Finally, we propose moving the goalpost for
sample-efficient RL research on the ALE.

6.3. Background
The RL problem is generally described as a Markov Decision Proces (MDP) (Puter-

man, 2014), defined by the tuple ⟨S,A,P ,R⟩, where S is the set of states, A is the set
of available actions, P : S×A → ∆(S)1 is the transition function, and R : S×A → R is
the reward function. Agent behavior in RL can be formalized by a policy π : S → ∆(A),
which maps states to a distribution of actions. The value of π when starting from s ∈ S
is defined as the discounted sum of expected rewards: V π(s) := Eπ,P [

∑∞
t=0 γtr (st, at)],

where γ ∈ [0, 1) is a discount factor that encourages the agent to accumulate rewards
1∆(S) denotes a distribution over the set S.

86

sooner rather than later. The goal of an RL agent is to find a policy π∗ that maximizes
this sum: V π∗ ≥ V π for all π.

While there are a number of valid approaches (Sutton et al., 2018), in this paper we
focus on model-free value-based methods. Common value-based algorithms approximate
the Q∗-values, defined via the Bellman recurrence:
Q∗(s, a) := R(s, a) + γEs′∼P(s,a)[maxa′∈A Q∗(s′, a′)]. The optimal policy π∗ can then be
obtained from the optimal state-action value function Q∗ as π∗(x) := maxa∈A Q∗(s, a).
A common approach for learning Q∗ is the method of temporal differences, optimizing
the Bellman temporal difference:(

r (st, at) + γ max
at+1

Q (st+1, at+1)
)
−Q (st, at) .

We often refer to
(
r (st, at) + γ maxat+1 Q (st+1, at+1)

)
as the Bellman target.

Mnih et al. (2015) introduced the agent DQN by combining temporal-difference
learning with deep networks, and demonstrated its capabilities in achieving human-level
performance on the Arcade Learning Environment (ALE) (Bellemare et al., 2013).
They used a network consisting of 3 convolutional layers and 2 fully connected layers,
parameterized by θ, to approximate Q (denoted as Qθ). We will refer to this architecture
as the CNN architecture. Most of the work in value-based agents is built on the original
DQN agent, and we discuss a few of these advances below which are relevant to our
work.

Hessel et al. (2018) combined six components into a single agent they called Rainbow:
prioritized experience (Schaul et al., 2016), n-step learning (Sutton, 1988), distribu-
tional RL (Bellemare et al., 2017a), double Q-learning (Hasselt et al., 2016), dueling
architecture (Wang et al., 2016b) and NoisyNets (Fortunato et al., 2018). Hessel et al.
(2018) and Ceron et al. (2021) both showed that Multi-step learning is one of the most
crucial components of Rainbow, in that removing it caused a large drop in performance.

In n-step learning, instead of computing the temporal difference error using a
single-step transition, one can use n-step targets instead (Sutton, 1988), where for a
trajectory (s0, a0, r0, s1, a1, · · ·) and update horizon n: R

(n)
t :=

∑n−1
k=0 γkrt+k+1, yielding

the multi-step temporal difference: R
(n)
t + γn maxa′ Qθ(st+n, a′)−Qθ(st, at).

Most modern RL algorithms store past experiences in a replay buffer that increases
sample efficiency by allowing the agent to use samples multiple times during learning,
and to leverage modern hardware such as GPUs and TPUs by training on sampled
mini-batches. An important design parameter is the replay ratio, the ratio of learning

87

updates to online experience collected (Fedus et al., 2020). It is worth noting that DQN
uses a replay ratio of 0.25 (4 environment interactions for every learning update), while
some sample-efficient agents based on Rainbow use a value of 1.

Nikishin et al. (2022) showed that the networks used by deep RL agents have a
tendency to overfit to early experience, which can result in sub-optimal performance.
They proposed a simple strategy consisting of periodically resetting the parameters of
the final layers of DQN-based agents to counteract this. Building on this promising
work, D’Oro et al. (2023) added a shrink-and-perturb technique for the parameters of
the convolutional layers, and showed that this allowed them to scale the replay ratio to
values as high as 16, with no performance degradation.

Figure 4. (Left). Optimality Gap (lower is better) for BBF at replay ratio 8 and competing methods
on Atari 100K. Error bars show 95% CIs. BBF, has a lower optimality gap than any competing
algorithm, indicating that it comes closer on average to achieving human-level performance across all
tasks. (Right) Performance profiles showing the distribution of scores across all runs and 26 games
at the end of training (higher is better). Area under an algorithm’s profile is its mean performance
while τ value where it intersects y = 0.75 shows its 25th percentile performance. BBF has better
performance on challenging tasks that may not otherwise contribute to IQM or median performance.

6.4. Related Work
Sample-Efficient RL on ALE: Sample efficiency has always been an import aspect of
evaluation in RL, as it can often be expensive to interact with an environment. Kaiser
et al. (2020) introduced the Atari 100K benchmark, which has proven to be useful for
evaluating sample-efficiency, and has led to a number of recent advances.

Kostrikov* et al. (2021) use data augmentation to design a sample-efficient RL
method, DrQ, which outperformed prior methods on Atari 100K. Data-Efficient Rainbow
(DER) (Hasselt et al., 2019) and DrQ(ϵ) (Agarwal et al., 2021b) simply modified the

88

hyperparameters of existing model-free algorithms to exceed the performance of existing
methods without any algorithmic innovation.

Schwarzer et al. (2021a) introduced SPR, which builds on Rainbow (Hessel et al.,
2018) and uses a self-supervised temporal consistency loss based on BYOL (Grill et al.,
2020) combined with data augmentation. SR-SPR (Schwarzer et al., 2021a) combines
SPR with periodic network resets to achieve state-of-the-art performance on the 100K
benchmark. Ye et al. (2021) used a self-supervised consistency loss similar to SPR (Chen
et al., 2021a).

EfficientZero (Ye et al., 2021), an efficient variant of MuZero (Schrittwieser et al.,
2020), learns a discrete-action latent dynamics model from environment interactions,
and selects actions via lookahead MCTS in the latent space of the model. Micheli et al.
(2023) introduce IRIS, a data-efficient agent that learns in a world model composed of
an autoencoder and an auto-regressive Transformer.

Scaling in Deep RL: Deep neural networks are useful for extracting features from
data relevant for various downstream tasks. Recently, there has been interest in the
scaling properties of neural network architectures, as scaling model size has led to
commensurate performance gains in applications ranging from language modelling to
computer vision.

Based on those promising gains, the deep RL community has begun to investigate
the effect of increasing the model size of the function approximator. Sinha et al.
(2020) and Ota et al. (2021) explore the interplay between the size, structure, and
performance of deep RL agents to provide intuition and guidelines for using larger
networks. Kumar et al. (2022) find that with ResNets (up to 80 million parameter
networks) combined with distributional RL and feature normalization, offline RL can
exhibit strong performance that scales with model capacity. Taiga et al. (2023) show
that generalization capabilities on the ALE benefit from higher capacity networks, such
as ResNets. Cobbe et al. (2020) and Farebrother et al. (2023) demonstrate benefits
when scaling the number of features in each layer of the ResNet architecture used by
Impala (Espeholt et al., 2018), which motivated the choice of feature width scaling in
this work. Different from these works, our work focus on improving sample-efficiency in
RL as opposed to offline RL or improving generalization in RL.

In the context of online RL, Hafner et al. (2023) demonstrate that increased
dynamics model size, trained via supervised learning objectives, leads to monotonic
improvements in the agent’s final performance. Recently, AdA (Bauer et al., 2023)

89

Figure 5. Evaluating the impact of removing the various components that make up BBF
with RR=2 and RR=8. Reporting interquantile mean averaged over the 26 Atari 100k games, with
95% CIs over 15 independent runs.

scales transformer encoder for a Muesli agent up to 265M parameters. Interestingly,
AdA required distillation from smaller models to bigger models to achieve this scaling,
in the spirit of reincarnating RL (Agarwal et al., 2022). However, it is unclear whether
findings from above papers generalize to scaling typical value-based deep RL methods
in sample-constraint settings, which we study in this work.

6.5. Method
The question driving this work is: How does one scale networks for deep RL

when samples are scarce? To investigate this, we focus on the well-known Atari
100K benchmark (Kaiser et al., 2020), which includes 26 Atari 2600 games of diverse
characteristics, where the agent may perform only 100K environment steps, roughly
equivalent to two hours of human gameplay2. As we will see, näively scaling networks
can rarely maintain performance, let alone improve it.

The culmination of our investigation is the Bigger, Better, Faster agent, or BBF in
short, which achieves super-human performance on Atari 100K with about 6 hours on
single GPU. Figure 2 demonstrates the strong performance of BBF relative to some of
the best-performing Atari 100K agents: EfficientZero (Ye et al., 2021), SR-SPR (D’Oro
et al., 2023), and IRIS (Micheli et al., 2023). BBF consists of a number of components,
which we discuss in detail below.

2100k steps (400k frames) at 60 FPS is 111 minutes.

90

Our implementation is based on the Dopamine framework (Castro et al., 2018)
and uses mostly already previously-released components. For evaluation, we use
rliable (Agarwal et al., 2021b) and in particular, the interquartile mean (IQM) metric,
which is the average score of the middle 50% runs combined across all games and seeds.

Base agent. BBF uses a modified version of the recently introduced SR-SPR agent
(D’Oro et al., 2023). Through the use of periodic network resets, SR-SPR is able to
scale up its replay ratio (RR) to values as high as 16, yielding better sample efficiency.
For BBF, we use RR=8 in order to balance the increased computation arising from
our large network. Note that this is still very high relative to existing Atari agents –
Rainbow and its data-efficient variant DER (Hasselt et al., 2019) use RR=0.25 and 1,
respectively.

As we expect that many users will not wish to pay the computational costs of
running at replay ratio 8, we also present results for BBF and ablations at replay ratio
2 (matching SPR). For all experiments we state which replay ratio is being used in the
captions.

Harder resets. The original SR-SPR agent (D’Oro et al., 2023) used a shrink-and-
perturb method for the convolutional layers where parameters were only perturbed 20%
of the way towards a random target, while later layers were fully reset to a random
initialization. An interesting result of our investigation is that using harder resets of
the convolutional layers yields better performance. In our work, we move them 50%
towards the random target, resulting in a stronger perturbation and improving results
(see Figure 5). This may be because larger networks need more regularization, as we
find that they reduce loss faster (Figure 1).

Larger network. Scaling network capacity is one of the motivating factors for our work.
As such, we adopt the Impala-CNN (Espeholt et al., 2018) network, a 15-layer ResNet,
which has previously led to substantial performance gains over the standard 3-layer
CNN architecture in Atari tasks where large amounts of data are available (Agarwal
et al., 2022; Schmidt et al., 2021). Additionally, BBF scales the width of each layer in
Impala-CNN by 4×. In Figure 3, we examine how the performance of SPR, SR-SPR
and BBF varies with different choices of scaling width, for both the ResNet and original
CNN architectures. Interestingly, although the CNN has roughly 50% more parameters
than the ResNet at each scale level, the ResNet yields better performance at all scaling
levels for both SR-SPR and BBF.

91

Figure 6. Comparison of BBF and SR-SPR across different replay ratios. We report IQM
with 95% CIs for each point. BBF achieves an almost-constant 0.45 IQM improvement over SR-SPR
at each replay ratio.

What stands out from Figure 3 is that BBF’s performance continues to grow as
width is increased, whereas SR-SPR seems to peak at 1-2× (for both architectures).
Given that ResNet BBF performs comparably at 4× and 8×, we chose 4× to reduce the
computational burden. While reducing widths beyond this could further reduce compu-
tational costs, this comes at the cost of increasingly sharp reductions in performance
for all methods tested.

Receding update horizon. One of the surprising components of BBF is the use of an
update horizon (n-step) that decreases exponentially from 10 to 3 over the first 10K
gradient steps following each network reset. Given that we follow the schedule of D’Oro
et al. (2023) and reset every 40k gradient steps, the annealing phase is always 25%
of training, regardless of the replay ratio. As can be seen in Figure 5, this yields a
much stronger agent than using a fixed value of n = 3, which is default for Rainbow, or
n = 10, which is typically used by Atari 100K agents like SR-SPR.

92

Figure 7. Comparison of BBF and SR-SPR at replay ratios 2 and 8 with and without
EMA target networks. Human-normalized IQM on the 26 Atari 100k games.

Our n-step schedule is motivated by the theoretical results of Kearns et al. (2000) –
larger values of n-step leads to faster convergence but to higher asymptotic errors with
respect to the optimal value function. Thus, selecting a fixed value of n corresponds
to a choice between having either rapid convergence to a worse asymptote, or slower
convergence to a better asymptote. As such, our exponential annealing schedule closely
resembles the optimal decreasing schedule for n-step derived by Kearns et al. (2000).
Increasing discount factor. Motivated by findings that increasing the discount factor γ

during learning improves performance (François-Lavet et al., 2015), we increase γ from
γ1 to γ2, following the same exponential schedule as for the update horizon. Note that
increasing γ has the effect of progressively giving more weights to delayed rewards. We
choose γ1 = 0.97, slightly lower than the typical discount used for Atari, and γ2 = 0.997
as it is used by MuZero (Schrittwieser et al., 2021) and EfficientZero (Ye et al., 2021).
As with the update horizon, Figure 5 demonstrates that this strategy outperforms using
a fixed value.
Weight decay. We incorporate weight decay in our agent to curb statistical overfitting,
as BBF is likely to overfit with its high replay ratio. To do so, we use the AdamW

93

optimizer (Loshchilov et al., 2019) with a weight decay value of 0.1. Figure 5 suggests
the gains from adding weight decay are significant and increase with replay ratio,
indicating that the regularizing effects of weight decay enhance replay ratio scaling with
large networks.

Removing noisy nets. Finally, we found that NoisyNets (Fortunato et al., 2018), used in
the original SPR (Schwarzer et al., 2021a) and SR-SPR, did not improve performance.
This could be due to NoisyNets causing over-exploration due to increased policy
churn (Schaul et al., 2022) from added noise during training, or due to added variance
in optimization, and we leave investigation to future work. Removing NoisyNets results
in large computational and memory savings, as NoisyNets creates duplicate copies of
the weight matrices for the final two linear layers in the network, which contain the
vast majority of all parameters: turning on NoisyNets increases the FLOPs per forward
pass and the memory footprint by a factor of 2.5× and 1.6×, respectively, which both
increases runtime and reduces the number of training runs that can be run in parallel
on a single GPU. Removing NoisyNets is thus critical to allowing BBF to achieve
reasonable compute efficiency despite its larger networks. We found that this decision
had no significant impact on task performance (see Figure 2 in appendix).

6.6. Analysis
In light of the importance of BBF’s components, we discuss possible consequences

of our findings for other algorithms.

The importance of self-supervision. One unifying aspect of the methods compared in
Figure 2 is that they all use some form of self-supervised objective. In sample-constrained
scenarios, like the one considered here, relying on more than the temporal-difference
backups is likely to improve learning speed, provided the self-supervised losses are
consistent with the task at hand. We test this by removing the SPR objective (inherited
from SR-SPR) from BBF, and observe a substantial performance degredation (see
fig. 5). It is worth noting that EfficientZero uses a self-supervised objective that is
extremely similar to SPR, a striking commonality between BBF and EfficientZero.

Sample efficiency via more gradient steps. The original DQN agent (Mnih et al., 2015)
has a replay ratio of 0.25, which means a gradient update is performed only after
every 4 environment steps. In low-data regimes, it is more beneficial to perform more
gradient steps, although many algorithms cannot benefit from this without additional

94

Figure 8. Validating BBF design choices at RR=2 on 29 unseen games. While Atari 100K
training set consists of 26 games, we evaluate the performance of various components in BBF on
29 validation games in ALE that are not in Atari 100K. Interestingly, all BBF components lead
to a large performance improvement on unseen games. Specifically, we measure the % decrease in
human-normalized IQM performance relative to the full BBF agent at RR=2.

regularization (D’Oro et al., 2023). As Figure 6 confirms, performance of BBF grows
with increasing replay ratio in the same manner as its base algorithm, SR-SPR. More
strikingly, we observe a linear relationship between the performance of BBF and SR-
SPR across all replay ratios, with BBF performing roughly 0.45 IQM above SR-SPR.
While the direction of this relationship is intuitive given the network scaling introduced
by BBF, its linearity is unexpected, and further investigation is needed to understand
the nature of the interaction between replay ratio and network scaling.

One interesting comparison to note is that, although EfficientZero uses a replay
ratio of 1.2, they train with a batch size that is 8 times larger than ours. Thus, their
effective replay ratio is comparable to ours.

The surprising importance of target networks. Many prior works on Atari 100k, such as
DrQ and SPR (Kostrikov* et al., 2021; Schwarzer et al., 2021a) chose not to use target
networks, seeing them unnecessary or an impediment to sample efficiency. Later, D’Oro
et al. (2023) re-introduced an exponential moving average target network, used both
for training and action selection, and found that it improved performance somewhat,
especially at high replay ratios. With network scaling, however, using a target network

95

Figure 9. Evaluating BBF on ALE with and w/o sticky actions. We report IQM human-
normalized performance at replay ratio 8 on 26 games in Atari 100K as well the full set of 55 games
in ALE. While performance on the full set of 55 games is lower, neither setting has its performance
significantly affected by sticky actions.

becomes a critical, but easy-to-overlook, component of the algorithm at all replay ratios
(see Figure 7).

Reset Strength. Increasing the replay ratio is in general challenging, as explored by
Fedus et al. (2020) and Kumar et al. (2020a). Periodic resetting, as suggested by
Nikishin et al. (2022) and D’Oro et al. (2023), has proven effective to enable scaling to
larger replay ratios, quite possibly a result of reduced overfitting. This is confirmed
in Figure 5, where the importance of resets is clear. Further, Figure 5 and Figure 8
demonstrate the added benefit of more aggressive perturbations, relative to SR-SPR.

Scale is not enough on its own. The naïve approach of simply scaling the capacity of
the CNN used by SR-SPR turns out to be insufficient to improve performance. Instead,
as Figure 3 shows, the performance of SR-SPR collapses as network size increases. As
discussed in section 6.5, it is interesting to observe that the smaller Impala-CNN ResNet
(as measured by number of parameters and FLOPs) yields stronger performance at all
width scales.

Computational efficiency. As machine learning methods become more sophisticated, an
often overlooked metric is their computational efficiency. Although EfficientZero trains
in around 8.5 hours, it requires about 512 CPU cores and 4 distributed GPUs. IRIS

96

Figure 10. Sample efficiency progress on ALE, measured via human-normalized IQM over 55
Atari games with sticky actions, as a function of amount of human game play hours, with BBF at
RR=8. Shaded regions show 95% CIs.

uses half of an A100 GPU for a week per run. SR-SPR, at its highest replay ratio of 16,
uses 25% of an A100 GPU and a single CPU for roughly 24 hours. Our BBF agent at
replay ratio 8 takes only 10 hours with a single CPU and half of an A100 GPU. Thus,
measured by GPU-hours, BBF provides the best trade-off between performance and
compute (see Figure 2).

6.7. Revisiting the Atari 100k benchmark
A natural question is whether there is any value in continuing to use the Atari 100K

benchmark, given that both EfficientZero and BBF are able to achieve human-level
performance (IQM ≥ 1.0) in just 100K steps. When considering this, it is important to
remember that IQM is an aggregate measure. Indeed, in the left panel of Figure 4 we
can see there is still room for improvement with regards to the optimality gap, which
measures the amount by which each algorithm fails to meet a minimum score of 1.0
(Agarwal et al., 2021b). Specifically, despite monotonic progress over the years, no
agent is yet able to achieve human-level performance on all 26 games, which would
yield an optimality gap of zero, without using dramatically more than two hours of
data (Kapturowski et al., 2022).

97

Figure 11. Comparing performance on the 29 unseen games to the 26 Atari 100k games.
BBF trained with sticky actions at RR=8 for 100k steps approximately matches DQN (Nature) with
500 times more training data on each set. While we find that the 29 games not included in the Atari
100k setting are significantly harder than the 26 Atari 100k games, we see no evidence that BBF has
overfitted to Atari 100k compared to DQN.

Overfitting on Atari 100K. Another important consideration is that the Atari
100K benchmark uses only 26 of the 55 games from the full ALE suite, and it does
not include sticky actions3 (Machado et al., 2018), which may make tasks significantly
harder. Since we extensively benchmark BBF on Atari 100K, this raises the question of
whether BBF works well on unseen Atari games and with sticky actions.

Fortunately, it does. In Figure 9, we compare the performance of BBF on all
55 games with sticky actions, and show that sticky action do not significantly harm
performance. We do observe that the held-out games not included in the Atari 100k set
are significantly more challenging than the 26 Atari 100k games (see Figure 11) – but
this is even more true for baselines such as DQN (Nature) that did not use Atari 100k.
Furthermore, as shown in Figure 8, we find that BBF’s design choices generally provide
even more benefit on these held-out games, possibly due to their increased difficulty.
New Frontiers. In fact, BBF works so well on the standard Atari setting that it is able
to roughly match DQN’s performance at 256 hours with only two hours of gameplay

3With 25% probability, the environment will execute the previous action again, instead of the
agent’s executed action.

98

Figure 12. Learning curves for BBF, SR-SPR and SPR at replay ratio 2, measured via
human-normalized IQM over 55 Atari games with sticky actions, as a function of number of environment
interactions. Shaded regions show 95% CIs.

time (Figure 10). This suggests a clear new milestone for the community: can we match
Rainbow’s final performance with just two hours of gameplay? To facilitate future
research toward this, we release scores on the set of 55 games with sticky actions, at
various scales and replay ratios.

Data Scaling. Prior works have indicated that many sample-efficient RL algorithms
plateau in performance when trained for longer than they were originally designed
for (e.g., Agarwal et al., 2022). To examine this phenomenon, we train BBF, SPR and
SR-SPR at replay ratio 2 out to one million environment steps (Figure 12), keeping all
parameters unchanged (including conducting resets as normal past 100k steps). We
observe that SPR and SR-SPR experience stagnating performance, with SR-SPR’s
advantage over SPR fading by 1M steps. BBF, however, remains consistently ahead of
both, matching DQN’s final performance before 200k environment steps and matching
Rainbow’s performance at 20M environment steps by 1M steps. We note that this
experiment costs only 2.5 times more than training at replay ratio 8 to 100k steps, so
we encourage other researchers to run similar experiments.

Additionally, we note in Figure 13 that it is possible to compare algorithms even
with extremely small amounts of data, such as 20k or 50k steps, by which point BBF at
replay ratio 2 (even with sticky actions enabled) outperforms most recently proposed
algorithms (Robine et al., 2023; Micheli et al., 2023; Hafner et al., 2023), which did
not use sticky actions. We thus suggest that compute-constrained groups consider this
setting, as training BBF at replay ratio 2 for 40k environment steps takes only half of
an A100 for 1 hour.

99

6.8. Discussion and Future Work
We introduced BBF, an algorithm that is able to achieve super-human level per-

formance on the ALE with only 2-hours of gameplay. Although BBF is not the first
to achieve this milestone, it is able to do so in a computationally efficient manner.
Furthermore, BBF is able to better handle the scaling of networks and replay ratios,
which are crucial for network expressivity and learning efficiency. Indeed, Figure 3
suggests that BFF is better-able to use over-parameterized networks than prior agents.

The techniques necessary to achieve this result invite a number of research questions
for future work. Large replay ratios are a key element of BFF’s performance, and
the ability to scale them is due to the periodic resets incorporated into the algorithm.
These resets are likely striking a favourable balance between catastrophic forgetting
and network plasticity. An interesting avenue for future research is whether there are
other mechanisms for striking this balance that perhaps are more targeted (e.g. not
requiring resetting the full network, as was recently explored by Sokar et al. (2023)).
We remarked on the fact that all the methods compared in Figure 2 use a form of
self-supervision. Would other self-supervised losses (e.g. (Mazoure et al., 2020; Castro
et al., 2021; Agarwal et al., 2021a)) produce similar results? Surprisingly, Li et al.
(2022) argue that self-supervision from pixels does not improve performance; our results
seem to contradict this finding.

Recent attention has shifted towards more realistic benchmarks (Fan et al., 2022) but
such benchmarks exclude the majority of researchers outside certain resource-rich labs,
and may require an alternative paradigm (Agarwal et al., 2022). One advantage of the
Atari 100k benchmark is that, while still a challenging benchmark, it is relatively cheap
compared to other benchmarks of similar complexity. However, despite its apparent
saturation, scientific progress can still be made on this benchmark if we expand its
scope. We hope our work provides a solid starting point for this.

Overall, we hope that our work inspires other researchers to continue pushing
the frontier of sample efficiency in deep RL forward, to ultimately reach human-level
performance across all tasks with human-level or superhuman efficiency.

Acknowledgements

Many thanks to Ross Goroshin, Georg Ostrovski, and Gopeshh Subbaraj for their
feedback on an earlier draft of this paper. The authors would like to thank the

100

anonymous reviewers for useful discussions and feedback on this paper. We would
also like to thank the Python community (Van Rossum et al., 1995; Oliphant, 2007)
for developing tools that enabled this work, including NumPy (Harris et al., 2020),
Matplotlib (Hunter, 2007) and JAX (Bradbury et al., 2018).

Societal impact

Although the work presented here is mostly academic, it aids in the development of
more capable autonomous agents. While our contributions do not directly contribute to
any negative societal impacts, we urge the community to consider these when building
on our research.

Figure 13. IQM Human-normalized learning curve for BBF at RR=2 with sticky actions
on the 26 Atari 100k games, with final performances of many recent algorithms after they have
trained for 100k steps. Even a weakened BBF outperforms all by 50k steps.

101

Chapter 7

Conclusion

In this thesis, we presented a series of works that more than doubled the state-of-the-art
performance of sample-efficient RL agents. Two of these works, Pretraining Repre-
sentations for Data-Efficient Reinforcement Learning and The Primacy Bias in Deep
Reinforcement Learning were more exploratory, while Sample-Efficient Reinforcement
Learning by Breaking the Replay Ratio Barrier and Bigger, Better, Faster: Human-Level
Atari with Human-Level Efficiency represented a focused line of work on scaling up
sample-efficient RL.

It is perhaps interesting to reflect on the state of RL when the work in this thesis
began in 2020. The state-of-the-art on Atari 100k (which had just been introduced) was
about 20% of human-normalized learning efficiency, which I was about to increase to
40% in my master’s thesis (published academically as Schwarzer et al., 2021a). Within
two years, through the works in this thesis, we were able to achieve fully super-human
learning efficiency on these tasks, representing a surprising leap in capabilities.

This result is particularly remarkable given the (anecdotally widespread) perceptions
in the ML community that (1) reinforcement learning essentially did not work and
(2) exploration, pretraining and model-based learning were going to be key to fixing
sample efficiency. While our work on the primacy bias did suggest a way in which RL
was fundamentally “broken”, it was surprisingly easy to fix with resets. Our works on
scaling, meanwhile, represent proof that perception (2) was not correct, and suggest
that the reason RL appeared not to work was simply that it was being deployed at too
small of scales to show any particularly impressive learning behavior. In hindsight, I
think it is clear that the field (to some extent also including myself) underestimated
both the power of scaling and the surprisingly strong capabilities of pure model-free

RL, once properly scaled and tuned. If I were to re-do my PhD, I would have pivoted
to thinking about scaling even earlier and even more exclusively than I actually did.

The other direction I would have wanted to investigate in more depth is fine-tuning
pretrained models, even beyond the first work in this thesis, Pretraining Representations
for Data-Efficient Reinforcement Learning. This is a vital topic for the future of sample-
efficient RL, for it appears likely from progress in language modeling (Brown et al., 2020;
OpenAI, 2023) that we are rapidly approaching the point where general-purpose models
capable of flexible instruction following can be used for arbitrary tasks; it is now up to
us to figure out how to fine-tune, adapt and leverage these models to advance the goals
of reinforcement learning research. While Bigger, Better, Faster demonstrated that it
is possible to stably perform value learning with larger models, and while Breaking the
Replay Ratio Barrier showed that it is possible to leverage resets to efficiently fine-tune
pretrained models, GPT-4 is (according to publicly-available non-OpenAI estimates)
more than five orders of magnitude larger than the networks used by BBF. It is almost
certain that the methods proposed here will not directly transfer to models of this size,
but we may be optimistic that the ideas and research practices that gave rise to them
may eventually guide us towards solutions that work with even AGI-scale models.

104

Références bibliographiques

[1] Alessandro Achille, Matteo Rovere, and Stefano Soatto. “Critical learning periods
in deep networks.” In: International Conference on Learning Representations.
2018.

[2] Rishabh Agarwal, Marlos C Machado, Pablo Samuel Castro, and Marc G Bel-
lemare. “Contrastive behavioral similarity embeddings for generalization in
reinforcement learning.” In: arXiv preprint arXiv:2101.05265 (2021).

[3] Rishabh Agarwal, Dale Schuurmans, and Mohammad Norouzi. “An optimistic
perspective on offline reinforcement learning.” In: International Conference on
Machine Learning. PMLR. 2020, pp. 104–114.

[4] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron C Courville,
and Marc Bellemare. “Deep reinforcement learning at the edge of the statistical
precipice.” In: Advances in Neural Information Processing Systems 34 (2021).

[5] Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville, and
Marc G Bellemare. “Reincarnating Reinforcement Learning: Reusing Prior Com-
putation to Accelerate Progress.” In: Advances in Neural Information Processing
Systems. 2022.

[6] Ilge Akkaya, Marcin Andrychowicz, Maciek Chociej, Mateusz Litwin, Bob Mc-
Grew, Arthur Petron, Alex Paino, Matthias Plappert, Glenn Powell, Raphael
Ribas, et al. “Solving rubik’s cube with a robot hand.” In: arXiv preprint
arXiv:1910.07113 (2019).

[7] Ibrahim Alabdulmohsin, Hartmut Maennel, and Daniel Keysers. “The Impact of
Reinitialization on Generalization in Convolutional Neural Networks.” In: arXiv
preprint arXiv:2109.00267 (2021).

[8] Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin
Murphy. “Fixing a broken ELBO.” In: International Conference on Machine
Learning. 2018, pp. 159–168.

[9] Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre Côté,
and R Devon Hjelm. “Unsupervised state representation learning in atari.” In:
NeurIPS. 2019.

[10] Charles W Anderson et al. “Q-learning with hidden-unit restarting.” In: Advances
in Neural Information Processing Systems (1993), pp. 81–81.

[11] Marcin Andrychowicz, Filip Wolski, Alex Ray, Jonas Schneider, Rachel Fong,
Peter Welinder, Bob McGrew, Josh Tobin, OpenAI Pieter Abbeel, and Wojciech
Zaremba. “Hindsight experience replay.” In: Advances in neural information
processing systems. 2017, pp. 5048–5058.

[12] Solomon E Asch. Forming impressions of personality. University of California
Press, 1961.

[13] Jordan Ash and Ryan P Adams. “On warm-starting neural network training.” In:
Advances in Neural Information Processing Systems 33 (2020), pp. 3884–3894.

[14] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. “Layer normalization.”
In: arXiv preprint arXiv:1607.06450 (2016).

[15] Igor Babuschkin et al. The DeepMind JAX Ecosystem. 2020. url: http://gith
ub.com/deepmind.

[16] Philip Bachman, R Devon Hjelm, and William Buchwalter. “Learning represen-
tations by maximizing mutual information across views.” In: NeurIPS. 2019.

[17] Adrià Puigdomènech Badia, Bilal Piot, Steven Kapturowski, Pablo Sprechmann,
Alex Vitvitskyi, Daniel Guo, and Charles Blundell. “Agent57: Outperforming
the atari human benchmark.” In: ICML. 2020.

[18] Yasaman Bahri, Ethan Dyer, Jared Kaplan, Jaehoon Lee, and Utkarsh Sharma.
“Explaining neural scaling laws.” In: arXiv preprint arXiv:2102.06701 (2021).

[19] Jakob Bauer et al. “Human-Timescale Adaptation in an Open-Ended Task Space.”
In: Proceedings of the 40th International Conference on Machine Learning. Ed.
by Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt,
Sivan Sabato, and Jonathan Scarlett. Vol. 202. Proceedings of Machine Learning
Research. PMLR, July 2023, pp. 1887–1935. url: https://proceedings.mlr
.press/v202/bauer23a.html.

[20] Marc G Bellemare, Salvatore Candido, Pablo Samuel Castro, Jun Gong, Marlos C
Machado, Subhodeep Moitra, Sameera S Ponda, and Ziyu Wang. “Autonomous
navigation of stratospheric balloons using reinforcement learning.” In: Nature
588.7836 (2020), pp. 77–82.

106

http://github.com/deepmind
http://github.com/deepmind
https://proceedings.mlr.press/v202/bauer23a.html
https://proceedings.mlr.press/v202/bauer23a.html

[21] Marc G. Bellemare, Will Dabney, and R. Munos. “A Distributional Perspective
on Reinforcement Learning.” In: ICML. 2017.

[22] Marc G Bellemare, Will Dabney, and Rémi Munos. “A distributional perspective
on reinforcement learning.” In: International Conference on Machine Learning.
PMLR. 2017, pp. 449–458.

[23] Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. “The arcade
learning environment: An evaluation platform for general agents.” In: Journal of
Artificial Intelligence Research 47 (2013).

[24] Emmanuel Bengio, Joelle Pineau, and Doina Precup. “Interference and Generali-
zation in Temporal Difference Learning.” In: arXiv preprint arXiv:2003.06350
(2020).

[25] Yoshua Bengio. “Learning Deep Architectures for AI.” In: Machine Learning 2.1
(2009), pp. 1–127.

[26] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. “Greedy
layer-wise training of deep networks.” In: Advances in neural information proces-
sing systems. 2007, pp. 153–160.

[27] Tudor Berariu, Wojciech Czarnecki, Soham De, Jorg Bornschein, Samuel Smith,
Razvan Pascanu, and Claudia Clopath. “A study on the plasticity of neural
networks.” In: arXiv preprint arXiv:2106.00042 (2021).

[28] Lilian Besson and Emilie Kaufmann. “What doubling tricks can and can’t do for
multi-armed bandits.” In: arXiv preprint arXiv:1803.06971 (2018).

[29] Johan Bjorck, Carla P Gomes, and Kilian Q Weinberger. “Is High Variance
Unavoidable in RL? A Case Study in Continuous Control.” In: International
Conference on Learning Representations. 2022.

[30] Rishi Bommasani, Drew A Hudson, Ehsan Adeli, Russ Altman, Simran Arora,
Sydney von Arx, Michael S Bernstein, Jeannette Bohg, Antoine Bosselut, Emma
Brunskill, et al. “On the opportunities and risks of foundation models.” In: arXiv
preprint arXiv:2108.07258 (2021).

[31] James Bradbury et al. JAX: composable transformations of Python+NumPy
programs. Version 0.2.5. 2018. url: http://github.com/google/jax.

[32] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, et al. “Language models are few-shot learners.” In: arXiv pre-
print arXiv:2005.14165 (2020).

107

http://github.com/google/jax

[33] Yuri Burda, Harri Edwards, Deepak Pathak, Amos Storkey, Trevor Darrell, and
Alexei A. Efros. Large-Scale Study of Curiosity-Driven Learning. 2018. arXiv:
1808.04355 [cs.LG].

[34] Víctor Campos, Pablo Sprechmann, Steven Stenberg Hansen, Andre Barreto,
Charles Blundell, Alex Vitvitskyi, Steven Kapturowski, and Adria Puigdome-
nech Badia. Coverage as a Principle for Discovering Transferable Behavior in
Reinforcement Learning. 2021. url: https://openreview.net/forum?id=INhw
JdJtxn6.

[35] Pablo Samuel Castro, Tyler Kastner, Prakash Panangaden, and Mark Rowland.
“MICo: Improved representations via sampling-based state similarity for Markov
decision processes.” In: Advances in Neural Information Processing Systems.
Ed. by A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan. 2021.
url: https://openreview.net/forum?id=wFp6kmQELgu.

[36] Pablo Samuel Castro, Subhodeep Moitra, Carles Gelada, Saurabh Kumar, and
Marc G. Bellemare. “Dopamine: A Research Framework for Deep Reinforcement
Learning.” In: CoRR abs/1812.06110 (2018). arXiv: 1812.06110. url: http://a
rxiv.org/abs/1812.06110.

[37] Johan Samir Obando Ceron and Pablo Samuel Castro. “Revisiting rainbow:
Promoting more insightful and inclusive deep reinforcement learning research.”
In: International Conference on Machine Learning. PMLR. 2021, pp. 1373–1383.

[38] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajanthan, and Philip HS
Torr. “Riemannian walk for incremental learning: Understanding forgetting and
intransigence.” In: Proceedings of the European Conference on Computer Vision
(ECCV). 2018, pp. 532–547.

[39] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. “A
simple framework for contrastive learning of visual representations.” In: ICML
(2020).

[40] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey
Hinton. “Big Self-Supervised Models are Strong Semi-Supervised Learners.” In:
NeurIPS. 2020.

[41] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. “Improved baselines with
momentum contrastive learning.” In: arXiv preprint arXiv:2003.04297 (2020).

108

https://arxiv.org/abs/1808.04355
https://openreview.net/forum?id=INhwJdJtxn6
https://openreview.net/forum?id=INhwJdJtxn6
https://openreview.net/forum?id=wFp6kmQELgu
https://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110
http://arxiv.org/abs/1812.06110

[42] Xinlei Chen and Kaiming He. “Exploring simple siamese representation learning.”
In: Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition. 2021, pp. 15750–15758.

[43] Xinyue Chen, Che Wang, Zijian Zhou, and Keith Ross. “Randomized ensem-
bled double q-learning: Learning fast without a model.” In: arXiv preprint
arXiv:2101.05982 (2021).

[44] Brian Chu, Vashisht Madhavan, Oscar Beijbom, Judy Hoffman, and Trevor
Darrell. “Best Practices for Fine-Tuning Visual Classifiers to New Domains.” In:
Nov. 2016, pp. 435–442. isbn: 978-3-319-49408-1. doi: 10.1007/978-3-319-49
409-8_34.

[45] Karl Cobbe, Chris Hesse, Jacob Hilton, and John Schulman. “Leveraging procedu-
ral generation to benchmark reinforcement learning.” In: International conference
on machine learning. PMLR. 2020, pp. 2048–2056.

[46] Pierluca D’Oro and Wojciech Jaśkowski. “How to Learn a Useful Critic? Model-
based Action-Gradient-Estimator Policy Optimization.” In: Advances in Neural
Information Processing Systems 33 (2020).

[47] Pierluca D’Oro, Max Schwarzer, Evgenii Nikishin, Pierre-Luc Bacon, Marc G.
Bellemare, and Aaron Courville. “Sample-Efficient Reinforcement Learning by
Breaking the Replay Ratio Barrier.” In: To appear in The Eleventh International
Conference on Learning Representations. 2023. url: https://openreview.net
/forum?id=OpC-9aBBVJe.

[48] Will Dabney, André Barreto, Mark Rowland, Robert Dadashi, John Quan,
Marc G Bellemare, and David Silver. “The Value-Improvement Path: Towards
Better Representations for Reinforcement Learning.” In: Proceedings of the AAAI
Conference on Artificial Intelligence. Vol. 35. 8. 2021, pp. 7160–7168.

[49] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. “Implicit quantile
networks for distributional reinforcement learning.” In: International conference
on machine learning. PMLR. 2018, pp. 1096–1105.

[50] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tra-
cey, Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki,
Diego de Las Casas, et al. “Magnetic control of tokamak plasmas through deep
reinforcement learning.” In: Nature 602.7897 (2022), pp. 414–419.

109

https://doi.org/10.1007/978-3-319-49409-8_34
https://doi.org/10.1007/978-3-319-49409-8_34
https://openreview.net/forum?id=OpC-9aBBVJe
https://openreview.net/forum?id=OpC-9aBBVJe

[51] Jonas Degrave et al. “Magnetic control of tokamak plasmas through deep rein-
forcement learning.” In: Nature 602.7897 (2022), pp. 414–419. doi: 10.1038/s41
586-021-04301-9. url: https://doi.org/10.1038/s41586-021-04301-9.

[52] Thomas Degris and Joseph Modayil. “Scaling-up knowledge for a cognizant robot.”
In: AAAI Spring Symposium on Designing Intelligent Robots: Reintegrating AI.
2012.

[53] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. “Imagenet:
A large-scale hierarchical image database.” In: 2009 IEEE conference on computer
vision and pattern recognition. Ieee. 2009, pp. 248–255.

[54] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. “BERT:
Pre-training of Deep Bidirectional Transformers for Language Understanding.”
In: ACL. 2019.

[55] Josip Djolonga, Jessica Yung, Michael Tschannen, Rob Romijnders, Lucas Beyer,
Alexander Kolesnikov, Joan Puigcerver, Matthias Minderer, Alexander D’Amour,
Dan Moldovan, et al. “On robustness and transferability of convolutional neural
networks.” In: Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition. 2021, pp. 16458–16468.

[56] Shibhansh Dohare, A Rupam Mahmood, and Richard S Sutton. “Continual
Backprop: Stochastic Gradient Descent with Persistent Randomness.” In: arXiv
preprint arXiv:2108.06325 (2021).

[57] Shibhansh Dohare, Richard S. Sutton, and A. Rupam Mahmood. Continual
Backprop: Stochastic Gradient Descent with Persistent Randomness. 2022. url:
https://openreview.net/forum?id=86sEVRfeGYS.

[58] Rachit Dubey, Pulkit Agrawal, Deepak Pathak, Tom Griffiths, and Alexei Efros.
“Investigating Human Priors for Playing Video Games.” In: International Confe-
rence on Machine Learning. 2018.

[59] Gabriel Dulac-Arnold, Nir Levine, Daniel J. Mankowitz, Jerry Li, Cosmin Padu-
raru, Sven Gowal, and Todd Hester. “An empirical investigation of the challenges
of real-world reinforcement learning.” In: (2020).

[60] Dumitru Erhan, Aaron Courville, Yoshua Bengio, and Pascal Vincent. “Why does
unsupervised pre-training help deep learning?” In: Proceedings of the thirteenth
international conference on artificial intelligence and statistics. JMLR Workshop
and Conference Proceedings. 2010, pp. 201–208.

110

https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://doi.org/10.1038/s41586-021-04301-9
https://openreview.net/forum?id=86sEVRfeGYS

[61] Lasse Espeholt et al. “IMPALA: Scalable Distributed Deep-RL with Importance
Weighted Actor-Learner Architectures.” In: CoRR abs/1802.01561 (2018). arXiv:
1802.01561. url: http://arxiv.org/abs/1802.01561.

[62] Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and Sergey Levine. “Diver-
sity is All You Need: Learning Skills without a Reward Function.” In: International
Conference on Learning Representations. 2018.

[63] Linxi Fan, Guanzhi Wang, Yunfan Jiang, Ajay Mandlekar, Yuncong Yang, Haoyi
Zhu, Andrew Tang, De-An Huang, Yuke Zhu, and Anima Anandkumar. “Mine-
Dojo: Building Open-Ended Embodied Agents with Internet-Scale Knowledge.”
In: Thirty-sixth Conference on Neural Information Processing Systems Datasets
and Benchmarks Track. 2022.

[64] Amir Farahmand, Mohammad Ghavamzadeh, Shie Mannor, and Csaba Szepesvári.
“Regularized policy iteration.” In: Advances in Neural Information Processing
Systems 21 (2008).

[65] Jesse Farebrother, Joshua Greaves, Rishabh Agarwal, Charline Le Lan, Ross
Goroshin, Pablo Samuel Castro, and Marc G Bellemare. “Proto-Value Networks:
Scaling Representation Learning with Auxiliary Tasks.” In: Submitted to The
Eleventh International Conference on Learning Representations. under review.
2023. url: https://openreview.net/forum?id=oGDKSt9JrZi.

[66] William Fedus, Prajit Ramachandran, Rishabh Agarwal, Yoshua Bengio, Hugo
Larochelle, Mark Rowland, and Will Dabney. “Revisiting fundamentals of expe-
rience replay.” In: International Conference on Machine Learning. PMLR. 2020,
pp. 3061–3071.

[67] Meire Fortunato et al. “Noisy Networks For Exploration.” In: ICLR. 2018. url:
https://openreview.net/forum?id=rywHCPkAW.

[68] Vincent François-Lavet, Raphael Fonteneau, and Damien Ernst. “How to discount
deep reinforcement learning: Towards new dynamic strategies.” In: arXiv preprint
arXiv:1512.02011 (2015).

[69] Vincent François-Lavet, Peter Henderson, Riashat Islam, Marc G Bellemare,
and Joelle Pineau. “An introduction to deep reinforcement learning.” In: arXiv
preprint arXiv:1811.12560 (2018).

[70] Robert M French. “Catastrophic forgetting in connectionist networks.” In: Trends
in cognitive sciences 3.4 (1999), pp. 128–135.

111

https://arxiv.org/abs/1802.01561
http://arxiv.org/abs/1802.01561
https://openreview.net/forum?id=oGDKSt9JrZi
https://openreview.net/forum?id=rywHCPkAW

[71] Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine.
“D4rl: Datasets for deep data-driven reinforcement learning.” In: arXiv preprint
arXiv:2004.07219 (2020).

[72] Scott Fujimoto, Herke Hoof, and David Meger. “Addressing function approxi-
mation error in actor-critic methods.” In: International conference on machine
learning. PMLR. 2018, pp. 1587–1596.

[73] Scott Fujimoto, David Meger, and Doina Precup. “Off-policy deep reinforcement
learning without exploration.” In: International Conference on Machine Learning.
PMLR. 2019, pp. 2052–2062.

[74] Carles Gelada, Saurabh Kumar, Jacob Buckman, Ofir Nachum, and Marc G
Bellemare. “Deepmdp: Learning continuous latent space models for representation
learning.” In: ICML (2019).

[75] Mohammad Ghavamzadeh, Hilbert Kappen, Mohammad Azar, and Rémi Munos.
“Speedy Q-Learning.” In: Advances in Neural Information Processing Systems.
Ed. by J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger.
Vol. 24. Curran Associates, Inc., 2011. url: https://proceedings.neurips.c
c/paper/2011/file/ab1a4d0dd4d48a2ba1077c4494791306-Paper.pdf.

[76] Raphael Gontijo-Lopes, Sylvia J Smullin, Ekin D Cubuk, and Ethan Dyer.
“Affinity and Diversity: Quantifying Mechanisms of Data Augmentation.” In:
arXiv preprint arXiv:2002.08973 (2020).

[77] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,
2016.

[78] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H
Richemond, Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan
Daniel Guo, Mohammad Gheshlaghi Azar, et al. “Bootstrap Your Own Latent:
A New Approach to Self-Supervised Learning.” In: NeurIPS. 2020.

[79] Daniel Guo, Bernardo Avila Pires, Bilal Piot, Jean-bastien Grill, Florent Altché,
Rémi Munos, and Mohammad Gheshlaghi Azar. “Bootstrap Latent-Predictive
Representations for Multitask Reinforcement Learning.” In: ICML. 2020.

[80] Zhaohan Daniel Guo, Mohammad Gheshlaghi Azar, Bilal Piot, Bernardo A Pires,
and Rémi Munos. “Neural predictive belief representations.” In: ICML (2018).

[81] Michael Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation: A new
estimation principle for unnormalized statistical models.” In: Proceedings of the

112

https://proceedings.neurips.cc/paper/2011/file/ab1a4d0dd4d48a2ba1077c4494791306-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/ab1a4d0dd4d48a2ba1077c4494791306-Paper.pdf

Thirteenth International Conference on Artificial Intelligence and Statistics. 2010,
pp. 297–304.

[82] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. “Soft actor-
critic: Off-policy maximum entropy deep reinforcement learning with a stochastic
actor.” In: ICML. 2018.

[83] Raia Hadsell, Dushyant Rao, Andrei A. Rusu, and Razvan Pascanu. “Embracing
Change: Continual Learning in Deep Neural Networks.” In: Trends in Cognitive
Sciences (2020). doi: https://doi.org/10.1016/j.tics.2020.09.004. url:
http://www.sciencedirect.com/science/article/pii/S136466132030219
9.

[84] Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. “Dream
to control: Learning behaviors by latent imagination.” In: ICLR (2020).

[85] Danijar Hafner, Timothy Lillicrap, Ian Fischer, Ruben Villegas, David Ha,
Honglak Lee, and James Davidson. “Learning latent dynamics for planning from
pixels.” In: ICML. 2019.

[86] Danijar Hafner, Timothy Lillicrap, Mohammad Norouzi, and Jimmy Ba. “Mas-
tering atari with discrete world models.” In: arXiv preprint arXiv:2010.02193
(2020).

[87] Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering
Diverse Domains through World Models. 2023. doi: 10.48550/ARXIV.2301.041
04. url: https://arxiv.org/abs/2301.04104.

[88] Jessica B Hamrick, Abram L. Friesen, Feryal Behbahani, Arthur Guez, Fabio
Viola, Sims Witherspoon, Thomas Anthony, Lars Holger Buesing, Petar Velič-
ković, and Theophane Weber. “On the role of planning in model-based deep
reinforcement learning.” In: International Conference on Learning Representa-
tions. 2021. url: https://openreview.net/forum?id=IrM64DGB21.

[89] Steven Hansen, Will Dabney, Andre Barreto, David Warde-Farley, Tom Van
de Wiele, and Volodymyr Mnih. “Fast Task Inference with Variational Intrinsic
Successor Features.” In: International Conference on Learning Representations.
2020.

[90] Charles R. Harris et al. “Array programming with NumPy.” In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://d
oi.org/10.1038/s41586-020-2649-2.

113

https://doi.org/https://doi.org/10.1016/j.tics.2020.09.004
http://www.sciencedirect.com/science/article/pii/S1364661320302199
http://www.sciencedirect.com/science/article/pii/S1364661320302199
https://doi.org/10.48550/ARXIV.2301.04104
https://doi.org/10.48550/ARXIV.2301.04104
https://arxiv.org/abs/2301.04104
https://openreview.net/forum?id=IrM64DGB21
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

[91] Hado P van Hasselt, Matteo Hessel, and John Aslanides. “When to use parametric
models in reinforcement learning?” In: NeurIPS. 2019.

[92] Hado van Hasselt, Arthur Guez, and David Silver. “Deep Reinforcement Learning
with Double Q-learning.” In: Proceedings of the Thirthieth AAAI Conference On
Artificial Intelligence (AAAI), 2016. cite arxiv:1509.06461Comment: AAAI 2016.
2016.

[93] Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. “Momentum
contrast for unsupervised visual representation learning.” In: CVPR. 2020.

[94] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. “Deep residual
learning for image recognition.” In: CVPR. 2016.

[95] Olivier J Hénaff, Aravind Srinivas, Jeffrey De Fauw, Ali Razavi, Carl Doersch,
SM Eslami, and Aaron van den Oord. “Data-efficient image recognition with
contrastive predictive coding.” In: arXiv preprint arXiv:1905.09272 (2019).

[96] Danny Hernandez, Jared Kaplan, Tom Henighan, and Sam McCandlish. Scaling
Laws for Transfer. 2021. arXiv: 2102.01293 [cs.LG].

[97] Matteo Hessel, Ivo Danihelka, Fabio Viola, Arthur Guez, Simon Schmitt, Laurent
Sifre, Theophane Weber, David Silver, and Hado van Hasselt. “Muesli: Combining
improvements in policy optimization.” In: Proceedings of the 38th International
Conference on Machine Learning (2021).

[98] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
“Rainbow: Combining improvements in deep reinforcement learning.” In: Thirty-
second AAAI conference on artificial intelligence. 2018.

[99] Joel Hestness, Sharan Narang, Newsha Ardalani, Gregory F. Diamos, Heewoo
Jun, Hassan Kianinejad, Md. Mostofa Ali Patwary, Yang Yang, and Yanqi Zhou.
“Deep Learning Scaling is Predictable, Empirically.” In: CoRR abs/1712.00409
(2017). arXiv: 1712.00409. url: http://arxiv.org/abs/1712.00409.

[100] Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Mat-
thew Botvinick, Shakir Mohamed, and Alexander Lerchner. “beta-vae: Learning
basic visual concepts with a constrained variational framework.” In: (2016).

[101] Takuya Hiraoka, Takahisa Imagawa, Taisei Hashimoto, Takashi Onishi, and
Yoshimasa Tsuruoka. “Dropout Q-Functions for Doubly Efficient Reinforcement
Learning.” In: International Conference on Learning Representations. 2022. url:
https://openreview.net/forum?id=xCVJMsPv3RT.

114

https://arxiv.org/abs/2102.01293
https://arxiv.org/abs/1712.00409
http://arxiv.org/abs/1712.00409
https://openreview.net/forum?id=xCVJMsPv3RT

[102] R Devon Hjelm, Alex Fedorov, Samuel Lavoie-Marchildon, Karan Grewal, Phil
Bachman, Adam Trischler, and Yoshua Bengio. “Learning deep representations
by mutual information estimation and maximization.” In: ICLR (2019).

[103] Jordan Hoffmann et al. “Training Compute-Optimal Large Language Models.”
In: ArXiv abs/2203.15556 (2022).

[104] G Zacharias Holland, Erin J Talvitie, and Michael Bowling. “The effect of
planning shape on dyna-style planning in high-dimensional state spaces.” In:
arXiv preprint arXiv:1806.01825 (2018).

[105] John D Hunter. “Matplotlib: A 2D graphics environment.” In: IEEE Annals of
the History of Computing 9.03 (2007), pp. 90–95.

[106] Maximilian Igl, Gregory Farquhar, Jelena Luketina, Wendelin Boehmer, and
Shimon Whiteson. “Transient Non-stationarity and Generalisation in Deep Rein-
forcement Learning.” In: International Conference on Learning Representations.
2021. url: https://openreview.net/forum?id=Qun8fv4qSby.

[107] Sergey Ioffe and Christian Szegedy. “Batch Normalization: Accelerating Deep
Network Training by Reducing Internal Covariate Shift.” In: ICML. 2015.

[108] Jacqueline S Johnson and Elissa L Newport. “Critical period effects in second
language learning: The influence of maturational state on the acquisition of
English as a second language.” In: Cognitive psychology 21.1 (1989), pp. 60–99.

[109] Eric Jones, Travis Oliphant, and Pearu Peterson. SciPy: Open source scientific
tools for Python. 2014.

[110] Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Miłos, Błażej Osiński, Roy H
Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski,
Sergey Levine, et al. “Model Based Reinforcement Learning for Atari.” In: ICLR.
2019.

[111] Lukasz Kaiser et al. “Model-Based Reinforcement Learning for Atari.” In: ArXiv
abs/1903.00374 (2020).

[112] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess,
Rewon Child, Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. “Scaling
laws for neural language models.” In: arXiv preprint arXiv:2001.08361 (2020).

[113] Steven Kapturowski, Víctor Campos, Ray Jiang, Nemanja Rakićević, Hado van
Hasselt, Charles Blundell, and Adrià Puigdomènech Badia. “Human-level Atari
200x faster.” In: arXiv preprint arXiv:2209.07550 (2022).

115

https://openreview.net/forum?id=Qun8fv4qSby

[114] Michael J Kearns and Satinder Singh. “Bias-Variance Error Bounds for Temporal
Difference Updates.” In: COLT. 2000, pp. 142–147.

[115] Kacper Piotr Kielak. Do recent advancements in model-based deep reinforcement
learning really improve data efficiency? 2020. url: https://openreview.net/f
orum?id=Bke9u1HFwB.

[116] Diederik P Kingma and Jimmy Ba. “Adam: A Method for Stochastic Optimiza-
tion.” In: ICLR (Poster). 2015.

[117] Diederik P Kingma and Max Welling. “Auto-Encoding Variational Bayes.” In:
(2013).

[118] Simon Kirby. “Spontaneous evolution of linguistic structure-an iterated learning
model of the emergence of regularity and irregularity.” In: IEEE Transactions on
Evolutionary Computation 5.2 (2001), pp. 102–110.

[119] Robert Kirk, Amy Zhang, Edward Grefenstette, and Tim Rocktäschel. “A
survey of generalisation in deep reinforcement learning.” In: arXiv preprint
arXiv:2111.09794 (2021).

[120] Thomas Kluyver, Benjamin Ragan-Kelley, Fernando Pérez, Brian E Granger,
Matthias Bussonnier, Jonathan Frederic, Kyle Kelley, Jessica B Hamrick, Ja-
son Grout, Sylvain Corlay, et al. Jupyter Notebooks-a publishing format for
reproducible computational workflows. Vol. 2016. 2016.

[121] Christof Koch. Biophysics of computation: information processing in single
neurons. Oxford university press, 2004.

[122] Ilya Kostrikov. JAXRL: Implementations of Reinforcement Learning algorithms
in JAX. Oct. 2021. doi: 10.5281/zenodo.5535154. url: https://github.com
/ikostrikov/jaxrl.

[123] Ilya Kostrikov, Ashvin Nair, and Sergey Levine. “Offline Reinforcement Learning
with Implicit Q-Learning.” In: ArXiv abs/2110.06169 (2022).

[124] Ilya Kostrikov*, Denis Yarats*, and Rob Fergus. “Image Augmentation Is All You
Need: Regularizing Deep Reinforcement Learning from Pixels.” In: International
Conference on Learning Representations. 2021.

[125] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. “Imagenet classification
with deep convolutional neural networks.” In: Advances in neural information
processing systems 25 (2012), pp. 1097–1105.

116

https://openreview.net/forum?id=Bke9u1HFwB
https://openreview.net/forum?id=Bke9u1HFwB
https://doi.org/10.5281/zenodo.5535154
https://github.com/ikostrikov/jaxrl
https://github.com/ikostrikov/jaxrl

[126] Aviral Kumar, Rishabh Agarwal, Xinyang Geng, George Tucker, and Sergey
Levine. Offline Q-Learning on Diverse Multi-Task Data Both Scales And Gene-
ralizes. 2022. doi: 10.48550/ARXIV.2211.15144. url: https://arxiv.org/ab
s/2211.15144.

[127] Aviral Kumar, Rishabh Agarwal, Dibya Ghosh, and Sergey Levine. “Implicit
Under-Parameterization Inhibits Data-Efficient Deep Reinforcement Learning.”
In: International Conference on Learning Representations. 2020.

[128] Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. “Conservative
q-learning for offline reinforcement learning.” In: Advances in Neural Information
Processing Systems 33 (2020), pp. 1179–1191.

[129] Brenden M Lake, Tomer D Ullman, Joshua B Tenenbaum, and Samuel J Gersh-
man. “Building machines that learn and think like people.” In: Behavioral and
brain sciences 40 (2017).

[130] Romain Laroche and Remi Tachet Des Combes. “Beyond the Policy Gradient
Theorem for Efficient Policy Updates in Actor-Critic Algorithms.” In: Internatio-
nal Conference on Artificial Intelligence and Statistics. PMLR. 2022, pp. 5658–
5688.

[131] Michael Laskin, Kimin Lee, Adam Stooke, Lerrel Pinto, Pieter Abbeel, and
Aravind Srinivas. “Reinforcement Learning with Augmented Data.” In: NeurIPS.
2020.

[132] Alex X Lee, Anusha Nagabandi, Pieter Abbeel, and Sergey Levine. “Stochastic
latent actor-critic: Deep reinforcement learning with a latent variable model.” In:
arXiv preprint arXiv:1907.00953 (2019).

[133] Joonho Lee, Jemin Hwangbo, Lorenz Wellhausen, Vladlen Koltun, and Marco
Hutter. “Learning quadrupedal locomotion over challenging terrain.” In: Science
robotics 5.47 (2020), eabc5986.

[134] Kimin Lee, Michael Laskin, Aravind Srinivas, and Pieter Abbeel. “Sunrise: A
simple unified framework for ensemble learning in deep reinforcement learning.”
In: International Conference on Machine Learning (2021).

[135] Kuang-Huei Lee et al. “Multi-Game Decision Transformers.” In: ArXiv
abs/2205.15241 (2022).

[136] Timothée Lesort, Natalia Díaz-Rodríguez, Jean-Franois Goudou, and David
Filliat. “State representation learning for control: An overview.” In: Neural
Networks 108 (2018).

117

https://doi.org/10.48550/ARXIV.2211.15144
https://arxiv.org/abs/2211.15144
https://arxiv.org/abs/2211.15144

[137] Sergey Levine, Aviral Kumar, George Tucker, and Justin Fu. “Offline Reinfor-
cement Learning: Tutorial, Review, and Perspectives on Open Problems.” In:
CoRR abs/2005.01643 (2020). arXiv: 2005.01643. url: https://arxiv.org/a
bs/2005.01643.

[138] Chris Junchi Li, Yaodong Yu, Nicolas Loizou, Gauthier Gidel, Yi Ma, Nicolas
Le Roux, and Michael I Jordan. “On the convergence of stochastic extragra-
dient for bilinear games with restarted iteration averaging.” In: arXiv preprint
arXiv:2107.00464 (2021).

[139] Hao Li, Pratik Chaudhari, Hao Yang, Michael Lam, Avinash Ravichandran,
Rahul Bhotika, and Stefano Soatto. “Rethinking the Hyperparameters for Fine-
tuning.” In: International Conference on Learning Representations. 2020. url:
https://openreview.net/forum?id=B1g8VkHFPH.

[140] Xiang Li, Jinghuan Shang, Srijan Das, and Michael S Ryoo. “Does Self-supervised
Learning Really Improve Reinforcement Learning from Pixels?” In: Advances
in Neural Information Processing Systems. Ed. by Alice H. Oh, Alekh Agarwal,
Danielle Belgrave, and Kyunghyun Cho. 2022. url: https://openreview.net
/forum?id=fVslVNBfjd8.

[141] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom
Erez, Yuval Tassa, David Silver, and Daan Wierstra. “Continuous control with
deep reinforcement learning.” In: ICLR (Poster). 2016.

[142] Long-Ji Lin. Reinforcement learning for robots using neural networks. Carnegie
Mellon University, 1992.

[143] Hao Liu and Pieter Abbeel. “Aps: Active pretraining with successor features.”
In: International Conference on Machine Learning. PMLR. 2021, pp. 6736–6747.

[144] Hao Liu and Pieter Abbeel. Unsupervised Active Pre-Training for Reinforcement
Learning. 2021. url: https://openreview.net/forum?id=cvNYovr16SB.

[145] Zhuang Liu, Xuanlin Li, Bingyi Kang, and Trevor Darrell. “Regularization
Matters in Policy Optimization - An Empirical Study on Continuous Control.”
In: International Conference on Learning Representations. 2021. url: https:
//openreview.net/forum?id=yr1mzrH3IC.

[146] Ilya Loshchilov and Frank Hutter. “Decoupled Weight Decay Regularization.” In:
International Conference on Learning Representations. 2019. url: https://ope
nreview.net/forum?id=Bkg6RiCqY7.

118

https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://arxiv.org/abs/2005.01643
https://openreview.net/forum?id=B1g8VkHFPH
https://openreview.net/forum?id=fVslVNBfjd8
https://openreview.net/forum?id=fVslVNBfjd8
https://openreview.net/forum?id=cvNYovr16SB
https://openreview.net/forum?id=yr1mzrH3IC
https://openreview.net/forum?id=yr1mzrH3IC
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7

[147] William Lotter, Gabriel Kreiman, and David Cox. “Deep Predictive Coding
Networks for Video Prediction and Unsupervised Learning.” In: (2016).

[148] Clare Lyle, Mark Rowland, and Will Dabney. “Understanding and Preventing
Capacity Loss in Reinforcement Learning.” In: arXiv preprint arXiv:2204.09560
(2022).

[149] Clare Lyle, Mark Rowland, Will Dabney, Marta Z. Kwiatkowska, and Yarin Gal.
“Learning Dynamics and Generalization in Reinforcement Learning.” In: ArXiv
abs/2206.02126 (2022).

[150] Marlos C. Machado, Marc G. Bellemare, Erik Talvitie, Joel Veness, Matthew
Hausknecht, and Michael Bowling. “Revisiting the Arcade Learning Environment:
Evaluation Protocols and Open Problems for General Agents.” In: J. Artif. Int.
Res. 61.1 (2018), 523–562. issn: 1076-9757.

[151] Philip H Marshall and Pamela R Werder. “The effects of the elimination of
rehearsal on primacy and recency.” In: Journal of Verbal Learning and Verbal
Behavior 11.5 (1972), pp. 649–653.

[152] Tatsuya Matsushima, Hiroki Furuta, Yutaka Matsuo, Ofir Nachum, and Shixiang
Gu. “Deployment-Efficient Reinforcement Learning via Model-Based Offline
Optimization.” In: International Conference on Learning Representations. 2021.

[153] Bogdan Mazoure, Remi Tachet des Combes, Thang Long Doan, Philip Bachman,
and R Devon Hjelm. “Deep Reinforcement and InfoMax Learning.” In: Advances
in Neural Information Processing Systems 33 (2020).

[154] Wes McKinney. Python for data analysis: Data wrangling with Pandas, NumPy,
and IPython. " O’Reilly Media, Inc.", 2012.

[155] Vincent Micheli, Eloi Alonso, and François Fleuret. “Transformers are Sample-
Efficient World Models.” In: ICLR. 2023. url: https://openreview.net/foru
m?id=vhFu1Acb0xb.

[156] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis An-
tonoglou, Daan Wierstra, and Martin Riedmiller. “Playing Atari with deep
reinforcement learning.” In: arXiv:1312.5602 (2013).

[157] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. “Human-level control through deep reinforcement learning.” In:
Nature 518.7540 (2015).

119

https://openreview.net/forum?id=vhFu1Acb0xb
https://openreview.net/forum?id=vhFu1Acb0xb

[158] Vinod Nair and Geoffrey E Hinton. “Rectified linear units improve restricted
boltzmann machines.” In: ICML. 2010.

[159] Andrew Y Ng, Daishi Harada, and Stuart Russell. “Policy invariance under reward
transformations: Theory and application to reward shaping.” In: Proceedings of
the International Conference on Machine Learning (ICML). 1999.

[160] Evgenii Nikishin, Max Schwarzer, Pierluca D’Oro, Pierre-Luc Bacon, and Aaron
Courville. “The Primacy Bias in Deep Reinforcement Learning.” In: Proceedings
of the 39th International Conference on Machine Learning. Ed. by Kamalika
Chaudhuri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan
Sabato. Vol. 162. Proceedings of Machine Learning Research. PMLR, 2022,
pp. 16828–16847.

[161] Travis E Oliphant. A guide to NumPy. Vol. 1. Trelgol Publishing USA, 2006.
[162] Travis E Oliphant. “Python for scientific computing.” In: Computing in Science

& Engineering 9.3 (2007), pp. 10–20.
[163] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. “Representation learning with

contrastive predictive coding.” In: arXiv preprint arXiv:1807.03748 (2018).
[164] OpenAI et al. “Dota 2 with Large Scale Deep Reinforcement Learning.” In: arXiv

preprint arXiv:1912.06680 (2019). url: https://arxiv.org/abs/1912.06680.
[165] R OpenAI. “GPT-4 technical report.” In: arXiv (2023), pp. 2303–08774.
[166] Georg Ostrovski, Pablo Samuel Castro, and Will Dabney. “The Difficulty of

Passive Learning in Deep Reinforcement Learning.” In: Advances in Neural
Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin, P. Liang,
and J. Wortman Vaughan. 2021. url: https://openreview.net/forum?id=n
PHA8fGicZk.

[167] Kei Ota, Devesh K Jha, and Asako Kanezaki. “Training larger networks for deep
reinforcement learning.” In: arXiv preprint arXiv:2102.07920 (2021).

[168] Long Ouyang et al. “Training language models to follow instructions with human
feedback.” In: Advances in Neural Information Processing Systems. Ed. by Alice
H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. 2022. url:
https://openreview.net/forum?id=TG8KACxEON.

[169] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury,
Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga,
et al. “Pytorch: An imperative style, high-performance deep learning library.” In:
NeurIPS. 2019.

120

https://arxiv.org/abs/1912.06680
https://openreview.net/forum?id=nPHA8fGicZk
https://openreview.net/forum?id=nPHA8fGicZk
https://openreview.net/forum?id=TG8KACxEON

[170] Deepak Pathak, Pulkit Agrawal, Alexei A Efros, and Trevor Darrell. “Curiosity-
driven exploration by self-supervised prediction.” In: ICML. PMLR. 2017.

[171] Ethan Perez, Florian Strub, Harm De Vries, Vincent Dumoulin, and Aaron
Courville. “Film: Visual reasoning with a general conditioning layer.” In: Thirty-
Second AAAI Conference on Artificial Intelligence. 2018.

[172] Boris T Polyak and Anatoli B Juditsky. “Acceleration of stochastic approximation
by averaging.” In: SIAM journal on control and optimization 30.4 (1992), pp. 838–
855.

[173] Mariya Popova, Olexandr Isayev, and Alexander Tropsha. “Deep reinforcement
learning for de novo drug design.” In: Science advances 4.7 (2018), eaap7885.

[174] Martin L Puterman. Markov decision processes: discrete stochastic dynamic
programming. John Wiley & Sons, 2014.

[175] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training.

[176] Antti Rasmus, Mathias Berglund, Mikko Honkala, Harri Valpola, and Tapani
Raiko. “Semi-supervised learning with ladder networks.” In: Advances in neural
information processing systems. 2015, pp. 3546–3554.

[177] Yi Ren, Shangmin Guo, Matthieu Labeau, Shay B Cohen, and Simon Kirby.
“Compositional languages emerge in a neural iterated learning model.” In: Inter-
national Conference on Learning Representations. 2019.

[178] Martin A. Riedmiller, Jost Tobias Springenberg, Roland Hafner, and Nicolas
Manfred Otto Heess. “Collect & Infer - a fresh look at data-efficient Reinforcement
Learning.” In: CoRL. 2021.

[179] Martin Riedmiller. “Neural fitted Q iteration–first experiences with a data efficient
neural reinforcement learning method.” In: European Conference on Machine
Learning. 2005.

[180] Jan Robine, Marc Höftmann, Tobias Uelwer, and Stefan Harmeling. “Transformer-
based World Models Are Happy With 100k Interactions.” In: arXiv preprint
arXiv:2303.07109 (2023).

[181] Anthony Robins. “Catastrophic forgetting in neural networks: the role of rehearsal
mechanisms.” In: Proceedings 1993 The First New Zealand International Two-
Stream Conference on Artificial Neural Networks and Expert Systems. IEEE.
1993, pp. 65–68.

121

[182] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zhmoginov, and Liang-
Chieh Chen. “Mobilenetv2: Inverted residuals and linear bottlenecks.” In: Procee-
dings of the IEEE conference on computer vision and pattern recognition. 2018,
pp. 4510–4520.

[183] Tom Schaul, André Barreto, John Quan, and Georg Ostrovski. “The Phenomenon
of Policy Churn.” In: Advances in Neural Information Processing Systems (2022).

[184] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. “Prioritized
Experience Replay.” In: International Conference on Learning Representations.
2016.

[185] Dominik Schmidt and Thomas Schmied. “Fast and data-efficient training of
rainbow: an experimental study on atari.” In: arXiv preprint arXiv:2111.10247
(2021).

[186] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan,
Laurent Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis,
Thore Graepel, et al. “Mastering atari, go, chess and shogi by planning with a
learned model.” In: Nature 588.7839 (2020), pp. 604–609.

[187] Julian Schrittwieser, Thomas Hubert, Amol Mandhane, Mohammadamin Bare-
katain, Ioannis Antonoglou, and David Silver. “Online and offline reinforcement
learning by planning with a learned model.” In: Advances in Neural Information
Processing Systems 34 (2021), pp. 27580–27591.

[188] Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron Courville,
and Philip Bachman. “Data-Efficient Reinforcement Learning with Self-Predictive
Representations.” In: International Conference on Learning Representations. 2021.

[189] Max Schwarzer, Nitarshan Rajkumar, Michael Noukhovitch, Ankesh Anand,
Laurent Charlin, R Devon Hjelm, Philip Bachman, and Aaron Courville. “Pre-
training Representations for Data-Efficient Reinforcement Learning.” In: Advances
in Neural Information Processing Systems. Ed. by A. Beygelzimer, Y. Dauphin,
P. Liang, and J. Wortman Vaughan. 2021. url: https://openreview.net/for
um?id=XpSAvlvnMa.

[190] Ramanan Sekar, Oleh Rybkin, Kostas Daniilidis, Pieter Abbeel, Danijar Hafner,
and Deepak Pathak. “Planning to explore via self-supervised world models.” In:
ICML. 2020.

[191] Noel E Sharkey and Amanda JC Sharkey. “An analysis of catastrophic interfe-
rence.” In: Connection Science (1995).

122

https://openreview.net/forum?id=XpSAvlvnMa
https://openreview.net/forum?id=XpSAvlvnMa

[192] Archit Sharma, Shixiang Gu, Sergey Levine, Vikash Kumar, and Karol Hausman.
“Dynamics-Aware Unsupervised Discovery of Skills.” In: International Conference
on Learning Representations. 2019.

[193] Hanan Shteingart, Tal Neiman, and Yonatan Loewenstein. “The role of first
impression in operant learning.” In: Journal of Experimental Psychology: General
142.2 (2013), p. 476.

[194] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, et al. “Mastering the game of Go with deep neural networks
and tree search.” In: nature 529.7587 (2016), pp. 484–489.

[195] David Silver et al. “Mastering the game of Go with deep neural networks and
tree search.” In: Nature 529 (2016), pp. 484–503. url: http://www.nature.com
/nature/journal/v529/n7587/full/nature16961.html.

[196] Patrice Y Simard, David Steinkraus, John C Platt, et al. “Best practices for
convolutional neural networks applied to visual document analysis.” In: Icdar.
Vol. 3. 2003.

[197] Samarth Sinha, Homanga Bharadhwaj, Aravind Srinivas, and Animesh Garg.
“D2RL: Deep Dense Architectures in Reinforcement Learning.” In: arXiv preprint
arXiv:2010.09163 (2020).

[198] Laura Smith, Ilya Kostrikov, and Sergey Levine. “A Walk in the Park: Learning
to Walk in 20 Minutes With Model-Free Reinforcement Learning.” In: ArXiv
abs/2208.07860 (2022).

[199] Kihyuk Sohn, David Berthelot, Chun-Liang Li, Zizhao Zhang, Nicholas Carlini,
Ekin D Cubuk, Alex Kurakin, Han Zhang, and Colin Raffel. “Fixmatch: Sim-
plifying semi-supervised learning with consistency and confidence.” In: arXiv
preprint arXiv:2001.07685 (2020).

[200] Ghada Sokar, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. “The
Dormant Neuron Phenomenon in Deep Reinforcement Learning.” In: ICML. 2023.

[201] Xingyou Song, Yiding Jiang, Yilun Du, and Behnam Neyshabur. “Observational
Overfitting in Reinforcement Learning.” In: The International Conference on
Learning Representations (ICLR). 2019.

[202] Aravind Srinivas, Michael Laskin, and Pieter Abbeel. “Curl: Contrastive unsu-
pervised representations for reinforcement learning.” In: ICML. 2020.

123

http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html
http://www.nature.com/nature/journal/v529/n7587/full/nature16961.html

[203] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan Salakhutdinov. “Dropout: a simple way to prevent neural networks from
overfitting.” In: jmlr (2014).

[204] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmidhuber. “Highway
networks.” In: arXiv preprint arXiv:1505.00387 (2015).

[205] Adam Stooke and Pieter Abbeel. “rlpyt: A research code base for deep reinforce-
ment learning in pytorch.” In: arXiv preprint arXiv:1909.01500 (2019).

[206] Adam Stooke, Kimin Lee, Pieter Abbeel, and Michael Laskin. “Decoupling
Representation Learning from Reinforcement Learning.” In: arXiv preprint
arXiv:2009.08319 (2020).

[207] Richard S Sutton. “Learning to predict by the methods of temporal differences.”
In: Machine learning 3.1 (1988), pp. 9–44.

[208] Richard S. Sutton and Andrew G. Barto. Reinforcement learning: An introduction.
2nd. MIT Press, 2018.

[209] Ahmed Taha, Abhinav Shrivastava, and Larry S Davis. “Knowledge Evolution
in Neural Networks.” In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 2021, pp. 12843–12852.

[210] Adrien Ali Taiga, Rishabh Agarwal, Jesse Farebrother, Aaron Courville, and
Marc G Bellemare. “Investigating Multi-task Pretraining and Generalization in
Reinforcement Learning.” In: Submitted to The Eleventh International Conference
on Learning Representations. under review. 2023. url: https://openreview.n
et/forum?id=sSt9fROSZRO.

[211] Mingxing Tan and Quoc Le. “EfficientNet: Rethinking Model Scaling for Convo-
lutional Neural Networks.” In: International Conference on Machine Learning.
2019, pp. 6105–6114.

[212] Antti Tarvainen and Harri Valpola. “Mean teachers are better role models: Weight-
averaged consistency targets improve semi-supervised deep learning results.” In:
NeurIPS. 2017.

[213] Yuval Tassa, Saran Tunyasuvunakool, Alistair Muldal, Yotam Doron, Siqi Liu,
Steven Bohez, Josh Merel, Tom Erez, Timothy Lillicrap, and Nicolas Heess.
dm_control: Software and Tasks for Continuous Control. 2020. arXiv: 2006.129
83 [cs.RO].

124

https://openreview.net/forum?id=sSt9fROSZRO
https://openreview.net/forum?id=sSt9fROSZRO
https://arxiv.org/abs/2006.12983
https://arxiv.org/abs/2006.12983

[214] Yee Whye Teh, Victor Bapst, Wojciech M Czarnecki, John Quan, James Kirk-
patrick, Raia Hadsell, Nicolas Heess, and Razvan Pascanu. “Distral: Robust
multitask reinforcement learning.” In: NIPS. 2017.

[215] Gerald Tesauro. “Practical issues in temporal difference learning.” In: Advances
in neural information processing systems. 1992, pp. 259–266.

[216] E. Todorov, T. Erez, and Y. Tassa. “MuJoCo: A physics engine for model-based
control.” In: 2012 IEEE/RSJ International Conference on Intelligent Robots and
Systems. 2012, pp. 5026–5033.

[217] Ilya Tolstikhin, Olivier Bousquet, Sylvain Gelly, and Bernhard Schoelkopf. “Was-
serstein Auto-Encoders.” In: International Conference on Learning Representa-
tions. 2018. url: https://openreview.net/forum?id=HkL7n1-0b.

[218] Michael Tschannen, Josip Djolonga, Paul K Rubenstein, Sylvain Gelly, and
Mario Lucic. “On mutual information maximization for representation learning.”
In: arXiv preprint arXiv:1907.13625 (2019).

[219] Pedro Tsividis, Thomas Pouncy, Jaqueline L. Xu, Joshua B. Tenenbaum, and
Samuel J. Gershman. “Human Learning in Atari.” In: AAAI Spring Symposia.
2017.

[220] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. “The NumPy array:
a structure for efficient numerical computation.” In: Computing in science &
engineering 13.2 (2011), pp. 22–30.

[221] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning
with double Q-learning.” In: aaai (2016).

[222] Hado Van Hasselt, Arthur Guez, and David Silver. “Deep reinforcement learning
with double q-learning.” In: AAAI. 2016.

[223] Guido Van Rossum and Fred L Drake Jr. Python tutorial. Vol. 620. Centrum
voor Wiskunde en Informatica Amsterdam, 1995.

[224] Harm Vanseijen and Rich Sutton. “A Deeper Look at Planning as Learning
from Replay.” In: Proceedings of the 32nd International Conference on Machine
Learning. Ed. by Francis Bach and David Blei. Vol. 37. Proceedings of Machine
Learning Research. Lille, France: PMLR, July 2015, pp. 2314–2322. url: https:
//proceedings.mlr.press/v37/vanseijen15.html.

[225] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. “Attention is all you need.”
In: Advances in neural information processing systems. 2017, pp. 5998–6008.

125

https://openreview.net/forum?id=HkL7n1-0b
https://proceedings.mlr.press/v37/vanseijen15.html
https://proceedings.mlr.press/v37/vanseijen15.html

[226] Ramakrishna Vedantam, Karan Desai, Stefan Lee, Marcus Rohrbach, Dhruv
Batra, and Devi Parikh. “Probabilistic Neural Symbolic Models for Interpretable
Visual Question Answering.” In: International Conference on Machine Learning.
2019, pp. 6428–6437.

[227] Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol.
“Extracting and composing robust features with denoising autoencoders.” In:
Proceedings of the 25th international conference on Machine learning. 2008,
pp. 1096–1103.

[228] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, An-
drew Dudzik, Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds,
Petko Georgiev, et al. “Grandmaster level in StarCraft II using multi-agent
reinforcement learning.” In: Nature (2019).

[229] Che Wang, Yanqiu Wu, Quan Vuong, and Keith Ross. “Striving for simplicity
and performance in off-policy DRL: Output normalization and non-uniform
sampling.” In: International Conference on Machine Learning. PMLR. 2020,
pp. 10070–10080.

[230] Tongzhou Wang and Phillip Isola. Understanding Contrastive Representation
Learning through Alignment and Uniformity on the Hypersphere. 2020. arXiv:
2005.10242 [cs.LG].

[231] Ziyu Wang, Victor Bapst, Nicolas Heess, Volodymyr Mnih, Remi Munos, Koray
Kavukcuoglu, and Nando de Freitas. “Sample efficient actor-critic with experience
replay.” In: arXiv preprint arXiv:1611.01224 (2016).

[232] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado Hasselt, Marc Lanctot, and Nando
Freitas. “Dueling Network Architectures for Deep Reinforcement Learning.” In:
Proceedings of the 33rd International Conference on Machine Learning. Vol. 48.
2016, pp. 1995–2003.

[233] Yanqiu Wu, Xinyue Chen, Che Wang, Yiming Zhang, Zijian Zhou, and Keith
W. Ross. Aggressive Q-Learning with Ensembles: Achieving Both High Sample
Efficiency and High Asymptotic Performance. 2022. url: https://openreview
.net/forum?id=NOApNZTiTNU.

[234] Qizhe Xie, Minh-Thang Luong, Eduard Hovy, and Quoc V Le. “Self-training with
noisy student improves imagenet classification.” In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2020, pp. 10687–10698.

126

https://arxiv.org/abs/2005.10242
https://openreview.net/forum?id=NOApNZTiTNU
https://openreview.net/forum?id=NOApNZTiTNU

[235] Larry S Yaeger, Richard F Lyon, and Brandyn J Webb. “Effective training of a
neural network character classifier for word recognition.” In: Advances in neural
information processing systems. 1997, pp. 807–816.

[236] Annik Yalnizyan-Carson and Blake A Richards. “Forgetting Enhances Episodic
Control with Structured Memories.” In: bioRxiv (2021).

[237] Mengjiao Yang and Ofir Nachum. “Representation matters: Offline pretraining
for sequential decision making.” In: arXiv preprint arXiv:2102.05815 (2021).

[238] Denis Yarats, Rob Fergus, Alessandro Lazaric, and Lerrel Pinto. “Reinforcement
learning with prototypical representations.” In: arXiv preprint arXiv:2102.11271
(2021).

[239] Denis Yarats, Amy Zhang, Ilya Kostrikov, Brandon Amos, Joelle Pineau, and
Rob Fergus. “Improving Sample Efficiency in Model-Free Reinforcement Learning
from Images.” In: Proceedings of the AAAI Conference on Artificial Intelligence.
Vol. 35. 12. 2021, pp. 10674–10681.

[240] Weirui Ye, Shaohuai Liu, Thanard Kurutach, Pieter Abbeel, and Yang Gao.
“Mastering atari games with limited data.” In: Advances in Neural Information
Processing Systems 34 (2021), pp. 25476–25488.

[241] Friedemann Zenke, Ben Poole, and Surya Ganguli. “Continual learning through
synaptic intelligence.” In: ICML. 2017.

[242] Albert Zhan, Philip Zhao, Lerrel Pinto, Pieter Abbeel, and Michael Laskin.
A Framework for Efficient Robotic Manipulation. 2020. arXiv: 2012 . 07975
[cs.RO].

[243] Chiyuan Zhang, Samy Bengio, and Yoram Singer. “Are all layers created equal?”
In: arXiv preprint arXiv:1902.01996 (2019).

[244] Chiyuan Zhang, Oriol Vinyals, Remi Munos, and Samy Bengio. “A study on
overfitting in deep reinforcement learning.” In: arXiv preprint arXiv:1804.06893
(2018).

[245] Hattie Zhou, Ankit Vani, Hugo Larochelle, and Aaron Courville. “Fortuitous
Forgetting in Connectionist Networks.” In: International Conference on Learning
Representations. 2022. url: https://openreview.net/forum?id=ei3SY1_zYs
E.

127

https://arxiv.org/abs/2012.07975
https://arxiv.org/abs/2012.07975
https://openreview.net/forum?id=ei3SY1_zYsE
https://openreview.net/forum?id=ei3SY1_zYsE

Annexe A

Appendix for Chapter 3

A.1. Implementation Details

We base our work on the code released for SPR (Schwarzer et al., 2021a), which in
turn is based on rlpyt (Stooke et al., 2019), and makes use of NumPy (Harris et al.,
2020) and PyTorch (Paszke et al., 2019).

A.1.1. Training

We set λSPR = 2 and λIM = 1 during pre-training. Unless otherwise noted, all
settings match SPR during fine-tuning, including batch size, replay ratio, target network
update period, and λSPR. We use a batch size of 256 during pre-training to maximize
throughput, and update both the SPR and goal-conditioned RL target network target
networks with an exponential moving average with τ = 0.99. We pre-train for a number
of gradient steps equivalent to 10 epochs over 6M samples, no matter the amount of
data used. Due to the cost of pretraining, we pre-train a single encoder per game
for each configuration tested. However, we use 10 random seeds at fine-tuning time,
allowing us to average over variance due to exploration and data order. Finally, we
reduce fine-tuning learning rates for pretrained encoders and dynamics models by a
factor of 100, and by a factor of 3 for other pretrained weights. We find this crucial to
SGI’s performance, and discuss it in detail in Section 3.6.6.

We trained SGI on standard GPUs, including V100s and P100s. We found that
pretraining took roughly one to three days and finetuning between four and 12 hours
per run on a single GPU, depending on the size of the network used and type of GPU.

A.1.2. Goal-Conditioned Reinforcement Learning

We generate goals in a three-stage process: a goal g for state st is initially chosen
to be the target representation of a state sampled uniformly from the near future,
g ← z̃t+i, i ∼ Uniform(50), before being combined with a normalized vector of isotropic
Gaussian noise n as g ← αn+(1−α)g, where α ∼ Uniform(0, 0.5). Finally, we exchange
goal vectors between states in the minibatch with probability 0.2, to ensure that some
goals correspond to states reached in entirely different trajectories.

In defining our synthetic goal-conditioned rewards, we take inspiration from potential-
based reward shaping (Ng et al., 1999). Using the target representations z̃t ≜ fm(st)

130

and z̃t+1 ≜ fm(st+1), we define the reward as follows:

R(z̃t,z̃t+1, g) = d(z̃t, g)− d(z̃t+1, g) (A.1.1)

d(z̃t, g) = exp
(

2 z̃t · g
||z̃||2 · ||g||2

− 2
)

. (A.1.2)

As this reward function depends on the target encoder fm, it changes throughout
training, although using the slower-moving fm rather than the online encoder fo may
provide some measure of stability. Like SPR, however, this objective is technically
vulnerable to collapse. If all representations z̃t collapse to a single constant vector then
all rewards will be 0, allowing the task to be trivially solved.

We estimate Q(st, at, g) using FiLM (Perez et al., 2018) to condition the DQN on
the goal g, which we found to be more robust than simple concatenation. A FiLM
generator j produces per-channel biases βc and scales γc, which then modulate features
through a per-channel affine transformation:

FiLM(Fc|γc, βc) = γcFc + βc (A.1.3)

We use these parameters to replace the learned per-channel affine transformation in a
layer norm layer (Ba et al., 2016), which we insert immediately prior to the final linear
layer in the DQN head.

We apply FiLM after the first layer in the DQN’s MLP head. We parameterize our
FiLM generator j as a small convolutional network, which takes the goal g (viewed as
a 64× 7× 7 spatial feature map) as input and applies two 128-channel convolutions
followed by a flatten and linear layer to produce the FiLM parameters γ and β.

A.1.3. Model Architectures

In addition to the standard three-layer CNN encoder introduced by (Mnih et al.,
2015), we experiment with larger residual networks (He et al., 2016). We use the
design proposed by Espeholt et al. (2018) as a starting point, while still adopting
innovations used in more modern architectures such as EfficientNets (Tan et al., 2019)
and MobileNetv2 (Sandler et al., 2018). In particular, we use inverted residual blocks
with an expansion ratio of 2, and batch normalization (Ioffe et al., 2015) after each
convolutional layer. We use three groups of three residual blocks with 32, 64 and 64
channels each, downscaling by a factor of three in the first group and two in each
successive group. This yields a final representation of shape 64× 7× 7 when applied
to 84× 84-dimensional Atari frames, identical to that of the standard CNN encoder.

131

In our scaling experiment with a larger network, we increase to five blocks per group,
with 48, 96 and 96 channels in each group, as well as using a larger expansion ratio
of 4, producing a representation of shape 96× 7× 7. This enlargement increases the
number of parameters by roughly a factor of 5. Finally, our DQN head has 512 hidden
units, as opposed to 256 in SPR.

A.1.4. Image Augmentation

We use the same image augmentations as used in SPR (Schwarzer et al., 2021a),
which itself used the augmentations used in DrQ (Kostrikov* et al., 2021), in all
experiments, including during both pretraining and fine-tuning. Specifically, we employ
random crops (4 pixel padding and 84x84 crops) in combination with image intensity
jittering.

A.1.5. Experiments with ATC

As ATC (Stooke et al., 2020) was not tested on the Atari100k setting, and as its
hyperparameters (including network size and fine-tuning scheme) are very different from
those used by SGI, we modify its code1 to allow it to be fairly compared to SGI. We
replace the convolutional encoder with that used by SGI, and use the same optimizer
settings, image augmentation, pre-training data, and number of pre-training epochs as
in SGI. However, we retain ATC’s mini-batch structure (i.e., sampling 32 subsequences
of eight consecutive time steps, for a total batch size of 512), as this structure defines
the negative samples used by ATC’s InfoNCE loss. During fine-tuning, we transfer the
ATC projection head to the first layer of the DQN MLP head, as in SPR; we otherwise
fine-tune identically to SGI, including using SPR.

1https://github.com/astooke/rlpyt/tree/master/rlpyt/ul

132

https://github.com/astooke/rlpyt/tree/master/rlpyt/ul

133

A.2. Pseudocode
Algorithm 1: Pre-Training with SGI
1 Denote parameters of online encoder fo, projection po and Q-learning head as θo;
2 Denote parameters of target encoder fm, projection pm and Q-learning target

head as θm;
3 Denote parameters of transition model h, predictor q, inverse model I as ϕ;
4 Denote the maximum prediction depth as K, batch size as N ;
5 Denote distance function in goal RL reward as d;
6 initialize offline dataset D;
7 while Training do
8 sample a minibatch of sequences of (st, a, s + t + 1) ∼ D ; // sample

unlabeled data

/* sample goals */

9 for i in range(0, N) do
10 si ← augment(si); s′i ← augment(s′i) ; // augment input images

11 j ∼ Discrete Uniform(1, 50) ; // sample hindsight goal states

12 gi ← fm(sn
j) ; // encode goal states

13 α ∼ Uniform(0, 0.5), n ∼ Normal(0, 1) ; // sample noise parameters

14 gi ← αgi + (1− α)n ; // apply noise

/* Permute to make some goals very challenging to reach */

15 permute ∼ Bernoulli(0.2)
16 if permute then
17 j ∼ Discrete Uniform(N)
18 gi ← gj ; // permute goal

19 end
20 end

/* compute SGI loss */

21 for i in range(0, N) do
22 ẑi

0 ← fθ(si
0) ; // compute online representations

23 li ← 0;
/* compute SPR loss */

24 for k in (1, . . . , K) do
25 ẑi

k ← h(ẑi
k−1, ai

k−1) ; // latent states via transition model

26 z̃i
k ← fm(si

k) ; // target representations

27 ŷi
k ← q(po(ẑi

k)), ỹi
k ← gm(z̃i

k) ; // projections

28 li ← li − λSPR
(

ỹi
k

||ỹi
k||2

)⊤ (
ŷi

k

||ŷi
k||2

)
; // SGI loss at step k

29 end
/* compute inverse modeling loss */

30 for k in (1, . . . , K) do
31 li ← λIM · Cross-entropy loss(ai

k−1, I(ŷk−1, ỹk))
32 end

/* compute goal RL loss */

33 ri ← d(gi, z̃t)− d(gi, z̃t+1) ; // Calculate goal RL reward

34 li ← li + RL loss(si, ai, ri, s′i) ; // Add goal RL loss for batch

35 end
36 l← 1

N

∑N
i=0 li ; // average loss over minibatch

37 θo, ϕ← optimize((θo, ϕ), l) ; // update online parameters

38 θm ← τθo + (1− τ)θm ; // update target parameters

39 end
40 return (θo, ϕ) ; // return parameters for fine-tuning

134

A.3. Full Results on Atari100k
We report full scores for SGI agents across all 26 games in Table 1. We do not

reproduce the per-game scores for APT and VISR provided by Liu et al. (2021b), as
we believe that the scores in the currently-available version of their paper may contain
errors.2

Tableau 1. Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019)
after 100k steps. Agents are evaluated at the end of training, and scores for all methods
are averaged over 10 random seeds. We reproduce scores for SPR from Schwarzer et al.
(2021a), whereas ATC scores are from our implementation.

Random Human SPR ATC-M SGI-R SGI-E SGI-W SGI-M/S SGI-M SGI-M/L

Alien 227.8 7127.7 801.5 699.0 1034.5 857.6 1043.8 1070.5 1101.7 1184.0
Amidar 5.8 1719.5 176.3 95.4 154.8 166.8 206.7 185.9 168.2 171.2
Assault 222.4 742.0 571.0 509.8 446.6 583.1 759.5 632.4 905.1 1326.5
Asterix 210.0 8503.3 977.8 454.1 754.6 953.6 1539.1 651.8 835.6 567.2
Bank Heist 14.2 753.1 380.9 534.9 397.4 514.8 426.3 547.4 608.4 567.8
Battle Zone 2360.0 37187.5 16651.0 13683.8 4439.0 16417.0 7103.0 12107.0 13170.0 14462.0
Boxing 0.1 12.1 35.8 16.8 57.7 33.6 50.2 40.0 36.9 73.9
Breakout 1.7 30.5 17.1 16.9 23.4 17.8 35.4 23.8 42.8 251.9
Chopper Command 811.0 7387.8 974.8 870.8 784.7 1136.2 1040.1 1042.7 1404.0 1037.9
Crazy Climber 10780.5 35829.4 42923.6 74215.5 50561.2 76356.3 81057.4 75542.1 88561.2 94602.2
Demon Attack 152.1 1971.0 545.2 524.6 2198.7 357.5 1408.5 1135.5 968.1 5634.8
Freeway 0.0 29.6 24.4 5.7 2.1 15.1 26.5 12.5 30.0 28.6
Frostbite 65.2 4334.7 1821.5 222.6 349.3 981.4 247.7 861.1 741.3 927.8
Gopher 257.6 2412.5 715.2 946.2 1033.9 964.9 1846.0 1172.4 1660.4 2035.8
Hero 1027.0 30826.4 7019.2 6119.4 7875.2 6863.7 7503.9 7090.4 7474.0 9975.9
Jamesbond 29.0 302.8 365.4 272.6 263.9 383.8 425.1 413.2 366.4 394.8
Kangaroo 52.0 3035.0 3276.4 603.1 923.8 1588.9 598.6 1236.8 2172.8 1887.5
Krull 1598.0 2665.5 3688.9 4494.7 5672.6 4070.7 5583.2 6161.3 5734.0 5862.6
Kung Fu Master 258.5 22736.3 13192.7 11648.2 13349.2 11802.1 14199.7 16781.8 16137.8 17340.7
Ms Pacman 307.3 6951.6 1313.2 848.9 411.0 1278.3 1970.8 1519.5 1520.0 2218.0
Pong -20.7 14.6 -5.9 -13.5 -3.9 4.2 4.7 9.7 7.6 7.7
Private Eye 24.9 69571.3 124.0 95.0 95.3 100.0 100.0 84.7 90.0 83.8
Qbert 163.9 13455.0 669.1 572.2 595.0 717.6 855.6 804.7 709.8 702.6
Road Runner 11.5 7845.0 14220.5 7989.3 5476.0 9195.2 18011.9 12083.5 18370.2 18306.8
Seaquest 68.4 42054.7 583.1 415.7 735.3 615.2 656.1 728.2 728.4 1979.3
Up N Down 533.4 11693.2 28138.5 84361.2 67968.1 63612.9 84551.4 42165.6 79228.8 46083.3

Median HNS 0.000 1.000 0.415 0.204 0.326 0.456 0.589 0.423 0.679 0.755
Mean HNS 0.000 1.000 0.704 0.780 0.888 0.838 1.144 0.914 1.149 1.590

#Games > Human 0 0 7 5 5 6 8 6 9 9
#Games > 0 0 26 26 26 25 26 26 26 26 26

2In particular, we observed that VISR claimed to have a score below −21 on Pong, which is
impossible with standard settings.

135

Tableau 2. Mean return per episode for the 26 Atari100k games (Kaiser et al., 2019)
after 100k steps for versions of SGI with modified fine-tuning, as discussed in Section 6.7.
Agents are evaluated at the end of training, and scores for all methods are averaged
over 10 random seeds. We reproduce scores for SPR from Schwarzer et al. (2021a).

Random Human SGI-None Naive Frozen No SPR Full SSL SGI-M

Alien 227.8 7127.7 835.9 1049.3 1242.8 1060.7 1117.6 1101.7
Amidar 5.8 1719.5 107.6 133.6 147.7 154.2 206.0 168.2
Assault 222.4 742.0 657.7 752.1 869.2 756.3 1145.2 905.1
Asterix 210.0 8503.3 832.9 1029.3 433.1 575.5 603.1 835.6
Bank Heist 14.2 753.1 613.2 726.5 273.6 365.8 323.4 608.4
Battle Zone 2360.0 37187.5 13490.0 15708.0 11754.0 13692.0 11689.8 13170.0
Boxing 0.1 12.1 6.6 24.0 61.5 34.7 42.7 36.9
Breakout 1.7 30.5 12.1 29.3 34.0 43.0 62.6 42.8
Chopper Command 811.0 7387.8 1085.2 1081.2 916.5 925.5 965.8 1404.0
Crazy Climber 10780.5 35829.4 19707.6 55002.4 65220.0 69505.6 69052.0 88561.2
Demon Attack 152.1 1971.0 778.8 850.0 1329.4 981.7 1783.8 968.1
Freeway 0.0 29.6 17.2 28.1 24.4 13.2 10.9 30.0
Frostbite 65.2 4334.7 1475.8 662.1 1045.4 482.1 1664.9 741.3
Gopher 257.6 2412.5 438.2 626.1 2214.1 1561.7 1998.7 1660.4
Hero 1027.0 30826.4 6472.0 5538.3 6353.3 5249.6 8715.4 7474.0
Jamesbond 29.0 302.8 157.4 324.2 358.2 346.8 407.6 366.4
Kangaroo 52.0 3035.0 3802.8 3091.6 800.0 685.6 999.5 2172.8
Krull 1598.0 2665.5 3954.0 5202.7 6073.7 5722.8 5323.9 5734.0
Kung Fu Master 258.5 22736.3 7929.4 11952.2 19374.6 15039.8 18123.2 16137.8
Ms Pacman 307.3 6951.6 990.2 1276.4 1663.3 1753.3 1779.3 1520.0
Pong -20.7 14.6 -4.4 -4.2 3.8 3.9 -0.1 7.6
Private Eye 24.9 69571.3 62.8 385.9 96.7 90.5 90.0 90.0
Qbert 163.9 13455.0 720.0 664.8 587.6 681.3 3015.8 709.8
Road Runner 11.5 7845.0 5428.4 14629.7 14311.9 17036.5 13998.2 18370.2
Seaquest 68.4 42054.7 577.8 509.0 1054.4 1397.8 989.4 728.4
Up N Down 533.4 11693.2 46042.6 48856.6 29938.4 105466.9 45023.5 79228.8

Median HNS 0.000 1.000 0.343 0.425 0.499 0.452 0.397 0.679
Mean HNS 0.000 1.000 0.565 0.849 0.971 1.114 1.011 1.149

#Games > Human 0 0 3 8 8 8 8 9
#Games > SPR 0 19 10 14 15 14 17 20

136

A.4. Transferring Representations between Games
One advantage of pretraining representations is the possibility of representations

being useful across games. Intuitively, we expect better transfer between similar games
so we chose five “cliques” of games with similar semantics and visual elements. The
cliques are shown in Table 3. We pretrain on a dataset of 750k frames from each game
in a clique (i.e. 3M frames for a clique of 4) and finetune on a single game. To show
whether pretraining on other games is beneficial, we compare to a baseline of pretraining
on just the 750k frames from the single Atari 100k game we use for finetuning.

Our results in Table 4 show that pretraining with the extra frames from the clique
games is mostly unhelpful to finetune performance. Only Kangaroo shows a modest
improvement, a few games show no difference in performance, and most games show
a decrease in performance when pretraining with other games. We believe that Atari
may not be as suitable to transferring representations as other domains, and previous
work using Atari to learn transferable representations has also had negative results
(Stooke et al., 2020). Though game semantics can be similar, we note that even small
differences in rule sets and visual cues can make transfer difficult.

Tableau 3. Cliques of semantically similar games

Clique Games

space Space Invaders, Assault, Demon Attack, Phoenix
pacman MsPacman, Alien, Bank Heist, Wizard Of Wor
platformer Montezuma Revenge, Hero, Kangaroo, Tutankham
top scroller Crazy Climber, Up N Down, Skiing, Journey Escape
side scroller Chopper Command, James Bond, Kung Fu Master, Private

Eye

137

Tableau 4. Mean return per episode for clique games in Atari100k (Kaiser et al.,
2019) after 100k steps. Agents are evaluated at the end of training, and scores for all
methods are averaged over 10 random seeds. Games in the same clique are placed
together.

Game Single Clique

Assault 738.5 554.1
Demon Attack 1171.8 695.0

Alien 1183.9 830.2
Bank Heist 448.8 303.0
Ms Pacman 1595.8 1352.1

Kangaroo 489.2 994.0

Crazy Climber 52036.0 21829.8
Up N Down 18974.7 13493.9

James Bond 397.6 325.4
Kung Fu Master 16402.6 16499.0
Chopper Command 933.6 854.6

138

A.5. Uncertainty-aware comparisons
Concurrent work (Agarwal et al., 2021b) has found that many prior comparisons in

deep reinforcement learning are not robust and may be entirely incorrect, particularly
in the Atari 100K setting. They demonstrate that these misleading comparisons are
partially due to undesirable properties of the per-game median and mean normalized
scores, the most commonly-used aggregate metrics, and propose using the inter-quartile
mean (IQM) normalized score, calculated over runs rather than tasks. Moreover, they
suggest providing percentile bootstrap confidence intervals to quantify uncertainty, to
avoid misleading comparisons based on highly-variable point estimates.

As raw per-run data is required for this, which was not reported for prior work, we do
so only for experiments conducted ourselves. In the interests of improving practices in
the community moving forward, we also commit to making this data for our experiments
available to other researchers in the future.

In Figure 1 through Figure 5 we show estimated uncertainty via bootstrapping
for the various comparisons drawn throughout Section 6.7, while Table 5 gives IQM
human-normalized scores and 95% bootstrap confidence intervals for the same results.
All comparisons in Figure 1 through Figure 5 are statistically significant (p < 0.05)
except for:

• ATC-M vs SGI-None in Figure 1 (p≫ 0.05)
• SGI-M vs SGI-W in Figure 2 (p ≈ 0.05)
• SGI-M vs SGI-M w/ SGI FT in Figure 4 (p ≈ 0.4)
• SGI-M vs G+I and S+I in Figure 5 (p ≈ 0.1)

139

Tableau 5. Interquartile mean, median and mean human-normalized scores for variants
of SGI and controls, evaluated after finetuning over all 10 runs for each of the 26 Atari
100k games. Confidence intervals computed by percentile bootstrap with 5000 resamples.

Method IQM 95% CI Median 95% CI Mean 95% CI

SGI-M/L 0.745 (0.687, 0.805) 0.753 (0.625, 0.850) 1.598 (1.486, 1.676)
SGI-M 0.567 (0.524, 0.612) 0.679 (0.473, 0.739) 1.149 (0.974, 1.347)
SGI-M/S 0.444 (0.404, 0.487) 0.423 (0.341, 0.577) 0.914 (0.822, 1.031)
SGI-W 0.510 (0.476, 0.547) 0.589 (0.434, 0.675) 1.144 (0.981, 1.345)
SGI-E 0.363 (0.326, 0.404) 0.456 (0.309, 0.482) 0.838 (0.692, 1.008)
SGI-R 0.302 (0.275, 0.331) 0.326 (0.253, 0.385) 0.888 (0.776, 1.004)
SGI-None 0.242 (0.212, 0.274) 0.343 (0.268, 0.401) 0.565 (0.440, 0.711)

Baselines

ATC-M 0.235 (0.210, 0.262) 0.204 (0.182, 0.291) 0.780 (0.601, 0.971)
ATC-W 0.221 (0.199, 0.244) 0.219 (0.170, 0.290) 0.587 (0.504, 0.673)
ATC-E 0.214 (0.193, 0.236) 0.237 (0.169, 0.266) 0.462 (0.420, 0.504)
ATC-R 0.187 (0.174, 0.202) 0.191 (0.139, 0.202) 0.472 (0.454, 0.491)
BC-M 0.481 (0.438, 0.524) 0.548 (0.390, 0.685) 0.858 (0.795, 0.924)

Pretraining Ablations

S+I 0.522 (0.488, 0.559) 0.629 (0.494, 0.664) 0.978 (0.900, 1.061)
G+I 0.521 (0.486, 0.558) 0.512 (0.386, 0.582) 1.004 (0.892, 1.129)
S+G 0.032 (0.027, 0.039) 0.029 (0.025, 0.044) 0.098 (0.061, 0.146)
I 0.435 (0.404, 0.470) 0.411 (0.334, 0.489) 0.943 (0.783, 1.126)
G 0.060 (0.048, 0.072) 0.060 (0.037, 0.081) 0.181 (0.145, 0.218)
S 0.007 (0.002, 0.011) 0.009 (0.002, 0.014) -0.054 (-0.082, -0.026)

Finetuning Ablations

SGI-M (No S) 0.448 (0.412, 0.484) 0.419 (0.335, 0.524) 1.114 (0.921, 1.321)
SGI-None (No S) 0.139 (0.118, 0.162) 0.161 (0.123, 0.225) 0.315 (0.274, 0.356)
SGI-M (All SGI) 0.541 (0.498, 0.585) 0.397 (0.330, 0.503) 1.011 (0.909, 1.071)
SGI-M (Frozen) 0.510 (0.476, 0.543) 0.499 (0.406, 0.554) 0.971 (0.871, 1.088)
SGI-M (Naive) 0.453 (0.422, 0.485) 0.429 (0.380, 0.500) 0.845 (0.754, 0.952)

140

Figure 1. Comparisons to behavioral cloning (BC) and ATC.

141

Figure 2. Ablations over different pretraining datasets.

142

Figure 3. Ablations over various fine-tuning configurations.

143

Figure 4. Ablations over SSL objectives during fine-tuning.

144

Figure 5. Ablations over pretraining SSL objectives.

145

Annexe B

Appendix for Chapter 4

Task Steps

walker-run 1× 106

cheetah-run 1× 106

acrobot-swingup 1× 106

finger-turn_hard 1× 106

fish-swim 1× 106

humanoid-stand 1× 106

humanoid-run 1× 106

quadruped-run 1× 106

swimmer-swimmer15 1× 106

hopper-hop 1× 106

Tableau 1. Tasks for SAC experiments and a number of training steps. Many of DMC
tasks are solved by SAC in a matter of several thousand steps; we chose environments
where SAC requires a substantial amount of training according to the reported results
from https://github.com/denisyarats/pytorch_sac#results.

B.1. Experimental Details and Additional Results
We use an open-source JAX implementation (Kostrikov, 2021) of the SAC and DrQ

algorithms and an open-source JAX implementation1 of SPR. This SPR implementation
exhibit a slightly higher aggregate performance than the scores in Schwarzer et al. (2021a)
based on a PyTorch implementation. All algorithms use default hyperparameters unless
specified otherwise (for example, in experiments with replay ratio and n-step targets).
SAC and DrQ experiments use 10 random seeds for evaluating the performance, SPR
uses 20 random seeds.

Tables 1 and 2 report the sets of DeepMind Control Suite tasks for testing SAC
and DrQ algorithms respectively. Note that SAC learns from dense states, while DrQ
learns from raw pixel observations. SPR trains on a standard set of 26 tasks from the
Atari 100k benchmark used by Kaiser et al. (2019), Hasselt et al. (2019), and Schwarzer
et al. (2021a). The list of all Atari environments is available in Table 5.

B.1.1. Ablations

Section 4.6.4 outlines the interaction of different moving parts of RL algorithms and
our proposed reset strategy. This appendix elaborates on our observations and provides

1https://github.com/MaxASchwarzer/dopamine/tree/atari100k_spr

148

https://github.com/denisyarats/pytorch_sac#results
https://github.com/MaxASchwarzer/dopamine/tree/atari100k_spr

Task Steps

walker-stand 5× 105

finger-spin 5× 105

cartpole-balance 5× 105

cartpole-swingup 5× 105

walker-walk 5× 105

cartpole-balance_sparse 5× 105

pendulum-swingup 1× 106

hopper-stand 1× 106

quadruped-walk 2× 106

walker-run 2× 106

finger-turn_easy 2× 106

cheetah-run 2× 106

acrobot-swingup 2× 106

finger-turn_hard 2× 106

cartpole-swingup_sparse 2× 106

quadruped-run 2× 106

reacher-easy 2× 106

reacher-hard 2× 106

hopper-hop 2× 106

Tableau 2. Tasks for DrQ experiments and a number of training steps.

supporting figures to help understanding the effect of resets. We now show, one by one,
how resetting behaves under a diverse set of controlled settings.

B.1.1.1. Replay buffer. The reset mechanism we propose is a form of forgetting
based on retaining all of the collected knowledge, stored in the replay buffer, and not
retaining a part of the learned behavior, stored in the parameters of an agent’s function
approximators. How critical is it to preserve the knowledge in the replay buffer? We
test its importance in DrQ by periodically resetting the replay buffer in addition to
the last layers. Figure 1 shows that keeping the buffer is essential; resetting it amounts
to learning almost from scratch. These results suggests that knowledge retention is
significantly more important than behavior retention for preventing the negative effects
of the primacy bias and simultaneously being able to recover from resets.

B.1.1.2. Initialization. After each reset, the new parameters are sampled from a
canonical initialization distribution followed by the algorithms. To understand whether
the susceptibility of an agent to the primacy bias is just a consequence of an unlucky

149

initialization of one of the layers of its neural networks, we run DrQ with resets, but
set the value of the re-initialized parameters to the one they had at the beginning of
training (i.e., by initializing them with the same seed). The results in Figure 1 show that
the performance of this variant of our reset strategy is almost identical to the original
version: the problem alleviated by resets is not one of pathological initializations, in line
with findings of other works (Bjorck et al., 2022), but instead one resulting from the
peculiar interactions happening when learning from a growing dataset of interactions.

B.1.1.3. Optimizer state. As highlighted in the main text, resetting the optimizer’s
moment estimates together with the corresponding neural network parameters have
almost no effect. We show results demonstrating this for DrQ (see fig. 2). We believe this
is mostly due to the momentum-based optimizers: with Adam with default parameters,
the first moment (β1 = 0.9) will vanish in about 10 updates, the second moment
(β2 = 0.999) after 1000 updates. On the scale of our tasks, it is indeed a quite rapid
recovery time.

B.1.1.4. Reset depth. One of the two hyperparameters introduced by our reset
strategy on top of any backbone algorithm is the number of layers of the agent’s neural
networks to be re-initialized. We investigated the impact of this choice for both SPR
and DrQ, while sticking for SAC to the default choice of re-initializing all networks.
Results for DrQ in Figure 3 demonstrate that resetting the last layer yields slightly
inferior performance to resetting the entire Q-learning head (3 layers). For SPR, as
shown in Figure 6, we found the reverse to be true. Thus, how many layers to reset is a
hyperparameter that may need tuning, and the choice can be informed by the difficulty
of representation learning for each domain. We recommend starting the exploration of
this hyperparameter from resetting the last 1-3 layers.

B.1.1.5. Which networks to reset. In our experiments, we reset a subset of the
value function parameters in SPR and a subset of the parameters of all the trained
neural networks in DrQ and SAC. The latter two algorithms use three groups of function
approximators: an actor, a critic, and a target critic. We investigate the impact of
resetting each one of these modules in DrQ. Results in fig. 4 show that a simultaneous
reset of all the neural networks is generally the most robust technique to improve
performance over the backbone algorithm, while resetting the critic had the most
impact on the performance. We have also tried a version of resets where each weight

150

Figure 1. Performance of the DrQ agent with standard resets, with same-seed resets, and with both
buffer and last layer resetting (10 resets during training) on four DMC tasks. Resetting the replay
buffer in addition to the last layers nullifies the learning progress, while preserving the random seed for
drawing re-initialized parameters delivers almost the same results as standard resets.

is re-initialized with probability 0.5. Figure 3 shows that such a random subnetwork
resetting was either on par or worse than the standard scheme.

B.1.1.6. Number of resets. Intuitively, the primacy bias affects the agent in a
progressively milder way after each reset. It is natural to ask whether a limited number
of resets, or even a single one, is sufficient to overcome the effects of overfitting to initial
experiences. We test this hypothesis using DrQ, showing in fig. 5 that, despite the first
reset contributing the most to mitigating the primacy bias, it is not always sufficient to
reach the same performance of the standard continual resetting strategy. As a default
choice, we recommend using the reset periodicity resulting in 3-10 resets over the course
of training.

151

Figure 2. Performance of the DrQ agent with standard resets, with optimizer-only resets, and with
parameter-only resets (10 resets during training) on four DMC tasks. Resetting the optimizer statistics
does not alter training if the weights are preserved, while keeping the optimizer for re-initialized
parameters delivers almost the same results as standard resets.

Figure 3. Performance of DrQ with resetting the 3-layer heads (i.e. standard resets), only the
last layers, and random subnetworks. The overall performance of the latter two versions is either
comparable or worse.

152

Figure 4. Performance of DrQ with resets of actor, critic, and target critic networks simultaneously
(i.e. standard resets) and individually. Resetting the critic yields the predominant effect in most
environments, but resetting all networks proved to be the most robust option.

Figure 5. Performance of DrQ when using a limited number of resets. The number of resets for
reaching the best performance varies: in some environments, a single reset suffices to overcome the
primacy bias, in other environments, keeping resetting continually is required.

B.1.1.7. Other regularizers. Resets can be seen as a form of regularization because
they implicitly constrain the final solutions to be not too far from the initial parameters.
However, they specifically tackle the primacy bias better than other common forms
of regularization. To test this conjecture, we repeat the heavy priming experiment
on the quadruped-run task with standard L2 regularization of both critic and actor
weights of SAC. We find that no value of regularization coefficient among the set
[10−5, 3 · 10−5, 10−4, 3 · 10−4, 10−3, 3 · 10−3, 10−2, 3 · 10−2, 10−1, 3 · 10−1, 1.0] can overcome
heavy priming, obtaining results almost identical to the ones reported on fig. 1. The
heavy priming setting artificially creates the conditions for the effect of the primacy bias
to be particularly highlighted. To test whether resets offer superior performance also in

153

Figure 6. Performance of SPR when resetting different groups of parameters. The right plot visualizes
the percentage of improvement gained by resetting a certain group of parameters compared to no
resets at all. Resetting the last layer only delivers a slightly higher IQM than resetting the 2-layer
head, while resetting the whole network severely damages the performance.

the context of standard training of reinforcement learning algorithms, we compare the
performance of SAC and DrQ enriched with standard regularization methods to that
of SAC and DrQ augmented with resets. In particular, we leverage L2 regularization
of both the actor and the critic, as well as dropout (Srivastava et al., 2014). We
report in table 3 the best value over the grid [10−4, 5 · 10−4, 10−3, 5 · 10−3] suggested by
(Liu et al., 2021c) for L2 and the standard grid [0.5, 0.1] for dropout. For SAC-based
approaches, we also sweep over the replay ratios [1, 9, 32] and report the best result
for other regularizers. The table shows that not only standard regularization methods
are not better than resets in the context of these RL algorithms, but that they do not
provide any benefit, on aggregate performance, compared to the baselines.

Method IQM Median Mean

SAC 501 (389, 609) 475 (407, 563) 484 (420, 548)
SAC + resets 656 (549, 753) 617 (538, 681) 607 (547, 667)
SAC + dropout 219 (160, 285) 254 (204, 307) 258 (216, 300)
SAC + L2 412 (299, 524) 415 (337, 495) 416 (351, 481)

DrQ 569 (475, 662) 521 (470, 600) 535 (481, 589)
DrQ + resets 762 (704, 815) 680 (625, 731) 677 (632, 720)
DrQ + dropout 492 (414, 567) 480 (420, 541) 479 (431, 527)
DrQ + L2 463 (362, 566) 473 (403, 541) 472 (415, 529)

Tableau 3. Comparison of the performance of SAC and DrQ when augmented with
standard regularization techniques and resets. We leverage 10 runs and the same set of
evaluation tasks reported in table 1 and table 2.

154

B.2. Per-Environment and Additional Results
The remainder of the appendix presents results for each task and supplementary

plots for training with varying replay ratios and n-step targets.
Figure 7 demonstrates learning curves for SPR. We note that the low loss and

high parameter norm for high n and replay ratios might indicate the symptoms of
overfitting. Whilst resets implicitly control the weight norm, doing so explicitly through
L2 regularization proved to be less effective for mitigating heavy priming.

Table 4 presents the aggregate metrics for the combinations of n and replay ratios
in SAC. We additionally probe extreme replay ratios of 128 and 256 and observe that,
even in these cases, learning with resets delivers meaningful performance, while the
no-reset agent achieves near-zero returns.

Lastly, per-environment training curves for SAC as well as the results for varying
replay ratios and n-step targets are available in Figures 9 and 11 respectively. Per-
environment training curves for DrQ are available in Figure 12. Table 5 provides scores
for SPR in all Atari 100k tasks.

155

Figure 7. Training curves for SPR with resets on Atari 100k with different n-step targets. Resets
increase TD errors and temporarily increase gradient norms for all values of n, while implicitly
regularizing parameter norms.

156

Figure 8. Training curves for SPR with resets on Atari 100k with different replay ratios. Resets
increase TD errors and temporarily increase gradient norms for all values of RR, while implicitly
regularizing parameter norms.

157

Figure 9. Per-environment training curves for SAC for various replay ratio (RR) values and a fixed
value of n = 1.

158

Figure 10. Per-environment training curves for SAC for the extreme replay ratio (RR) values of
128 and 256 and a fixed value of n = 1. While a standard learning algorithm struggles to make any
progress, resets allow to achieve reasonable performance in this regime.

159

Figure 11. Per-environment training curves for SAC for various n and a fixed value of replay ratio
RR = 9.

160

HHH
HHH

HH
RR

n 1 3 5

resets no resets resets no resets resets no resets

1 401 (308,497), 500 (389,609) 431 (366,499), 452 (347,556) 434 (333,533), 399 (304,493)
9 628 (514,730), 459 (341,576) 656 (549,752), 413 (319,517) 597 (490,699), 392 (298,488)
32 651 (542,750), 301 (193,430) 642 (541,737), 342 (241,452) 588 (482,684), 291 (200,394)
128 584 (487,679), 149 (86,242) — —
256 520 (418,619), 39 (18,79) — —

H
HHH

HHHH
RR

n 1 3 5

resets no resets resets no resets resets no resets

1 415 (342,478), 474 (406,562) 425 (382,481), 448 (375,527) 409 (346,492), 398 (328,475)
9 575 (500,656), 473 (395,557) 616 (537,680), 436 (365,519) 547 (476,632), 403 (333,480)
32 602 (527,677), 372 (297,469) 599 (532,674), 398 (317,476) 554 (475,626), 352 (279,433)
128 568 (496,640), 268 (192,349) — —
256 518 (444,595), 152 (92,221) — —

HH
HHH

HHH
RR

n 1 3 5

resets no resets resets no resets resets no resets

1 410 (354,467), 484 (419,549) 433 (393,473), 451 (387,515) 419 (360,478), 407 (348,467)
9 577 (511,642), 476 (409,543) 607 (547,666), 443 (381,504) 553 (488,617), 407 (346,469)
32 600 (537,662), 384 (314,456) 601 (543,659), 397 (332,464) 549 (486,611), 358 (294,422)
128 566 (507,626), 275 (212,341) — —
256 520 (457,581), 165 (115,220) — —

Tableau 4. Full results for SAC in terms of IQM (top), median (middle), and mean
(bottom) performance across tasks.

161

Figure 12. Per-environment training curves for DrQ with and without resets on DMC.

162

Random Human DER DrQ(ϵ) SPR SPR+resets

Alien 227.8 7127.7 802.3 865.2 901.2 911.2
Amidar 5.8 1719.5 125.9 137.8 225.4 201.7
Assault 222.4 742.0 561.5 579.6 658.6 953.0
Asterix 210.0 8503.3 535.4 763.6 1095.0 1005.8
Bank Heist 14.2 753.1 185.5 232.9 484.7 547.0
Battle Zone 2360.0 37187.5 8977.0 10165.3 10873.5 8821.2
Boxing 0.1 12.1 -0.3 9.0 27.6 32.2
Breakout 1.7 30.5 9.2 19.8 16.9 23.4
Chopper Command 811.0 7387.8 925.9 844.6 1454.0 1680.6
Crazy Climber 10780.5 35829.4 34508.6 21539.0 23596.9 28936.2
Demon Attack 152.1 1971.0 627.6 1321.5 1291.7 2778.0
Freeway 0.0 29.6 20.9 20.3 9.7 18.0
Frostbite 65.2 4334.7 871.0 1014.2 1746.2 1834.3
Gopher 257.6 2412.5 467.0 621.6 642.4 930.4
Hero 1027.0 30826.4 6226.0 4167.9 7554.5 6735.6
Jamesbond 29.0 302.8 275.7 349.1 383.2 415.7
Kangaroo 52.0 3035.0 581.7 1088.4 1674.8 2190.6
Krull 1598.0 2665.5 3256.9 4402.1 3412.1 4772.4
Kung Fu Master 258.5 22736.3 6580.1 11467.4 16688.6 14682.1
Ms Pacman 307.3 6951.6 1187.4 1218.1 1334.1 1324.6
Pong -20.7 14.6 -9.7 -9.1 2.1 -9.0
Private Eye 24.9 69571.3 72.8 3.5 76.1 82.2
Qbert 163.9 13455.0 1773.5 1810.7 3816.2 3955.3
Road Runner 11.5 7845.0 11843.4 11211.4 13588.5 13088.2
Seaquest 68.4 42054.7 304.6 352.3 519.7 655.6
Up N Down 533.4 11693.2 3075.0 4324.5 8873.4 60185.0

Median HNS 0.000 1.000 0.189 0.313 0.453 0.512
Mean HNS 0.000 1.000 0.350 0.465 0.579 0.901

#Games > Human 0 0 2 3 4 7
#Games > 0 0 28 25 25 26 26

Tableau 5. Raw per-game scores and aggregate human-normalized scores (HNS) for
SPR with resets and other methods on all 26 games in the Atari 100k benchmark. We
report performance for SPR and SPR + resets from our codebase, averaged over 20
random seeds per game; other scores are taken from Agarwal et al. (2021b) and use 100
random seeds.

163

Annexe C

Appendix for Chapter 5

C.1. Definitions from Related Works

Tableau 1. Definitions of coinciding and related phenomena from previous work
justifying the effectiveness of our strategy for replay ratio scaling.

Expression Definition Used In

Damage from
Warm-Starting

[Phenomenon for which] “a warm-started network performs worse
on test samples than a network trained on the same data but with
a new random initialization”

Ash et al.
(2020)

Damage from Non-
Stationarity

“A memory effect where these transient non-stationarities can per-
manently impact the latent representation and adversely affect
generalisation performance”

Igl et al.
(2021)

Capacity Loss “Reduced ability to fit new targets in deep neural networks”
Lyle et al.
(2022b), Lyle
et al. (2022a)

Loss of Plasticity “Loss of the ability of the model to keep learning”

Berariu
et al. (2021),
Dohare et al.
(2022)

Primacy Bias
“A tendency to overfit initial experiences that damages the rest of
the learning process”

Nikishin
et al. (2022)

To further clarify our description of previous work from the related work section, we
report in Table 1 definitions of the different terms used to refer to the loss of the ability
to learn and generalize in neural networks. Each definition is directly taken from one of
the papers corresponding to it. Note that, despite their overlap, they reflect slightly
different perspectives on the nature of this phenomenon, and it can be worth for future
investigations to pin down which one of these is more relevant for replay ratio scaling
or reinforcement learning as a whole.

C.2. Additional Experimental Results

C.2.1. Additional Studies

Reset Interval. An important hyperparameter for both SR-SAC and SR-SPR is the
interval at which resets are performed, as denominated in terms of number of agent
updates. In Figure 1, we study how performance is impacted by this choice, at different
replay ratios. Overall, both SR-SAC and SR-SPR perform well for a vast range of
reset intervals, with favorable replay ratio scaling and generally smooth performance

166

Figure 1. Sensitivity of the IQM to varying reset intervals (in terms of gradient updates) of SR-SAC on
the DeepMind Control Suite (DMC15-500k) benchmark, and of SR-SPR on the Atari 100k benchmark.
(10 seeds, 95% bootstrapped C.I.).

degradation. Note that, for large intervals (e.g., the last point on the right for SR-SAC
with RR = 16, and last two points in the bottom right for SR-SPR), this is equivalent
to actually performing no resets, just running the unmodified baseline algorithms. Thus,
performance experiences non-smooth drops only in these easily avoidable cases.

167

Figure 2. Churn-related diagnostics (based on the policy churn definition from Schaul et al. (2022))
for the online and target networks. Different colors and RR denote different values of replay ratio.

Counteracting Policy Churn by Acting with the Target Network. Schaul et al. (2022)
defined the policy churn as the change in the agent’s policy due to optimization. It
was shown that a certain amount of policy churn can be beneficial for exploration in
the absence of external noise (e.g., coming from ϵ-greedy exploration); however, it is
intuitive that excessive churn can actually hurt performance, for instance by breaking
the the consistency of trajectories. We hypothesize that mitigating excessive policy
churn is a major reason why SR-SPR performs better when actions are selected with
the target network rather than the online network. Figure 2 shows that, if we measure
churn before each interaction with the environment, increasing the replay ratio will
naturally increase it, while acting with the target network will decrease it. When the
replay ratio is too high, it is likely that the benefits coming from additional offline
computations might be nullified by the inconsistency in the exploration data; acting

168

Figure 3. Performance on DMC15-500k of running IQL (RR=32) online, with and without resets.

with the target network reduces these inconsistencies without giving up on the more
efficient optimization, at the cost of introducing minimal delays in the improvement of
the data-collecting policy.

Using an offline RL algorithm online. In Section 5.6.1, we conducted a set of experiments
with the goal of highlighting the importance of online interactions, concluding that
a consistent stream of online interaction data and neural networks able to learn and
generalize from a dataset of experiences are key factors behind effective replay ratio
scaling. Online RL algorithms such as SAC are naturally reliant on the online stream of
interactions; but it is natural to ask whether algorithms created for offline RL setting,
where no interaction with the environment is assumed to be possible during training, can
make the most out of the computational budget granted through high replay ratios in the
online setting. To test this hypothesis, we run the Implicit Q-learning (IQL) (Kostrikov
et al., 2022) algorithm as an online RL algorithm on DMC15-500k with a replay ratio
of 32. Results in Figure 3 show that, despite being by design more robust to more
aggressive training, the conservative nature of offline RL algorithms makes them not
amenable to effective online learning, regardless of the presence of resets. This shows
the effectiveness of online interactions as a strong supervision mechanism, able, when
supported by resets, to make online RL algorithms robust to high replay ratios without
the need of overly conservative behaviors.

C.2.2. Finetuning Pretrained Representations

Finetuning pretrained representations has become increasing common in reinforce-
ment learning and elsewhere (Schwarzer et al., 2021b; Liu et al., 2021a; Bommasani et
al., 2021). One obvious question to ask is whether or not replay scaling as demonstrated
in the tabula rasa setting here can also be used to make this finetuning more sample
efficient. In Figure 4 we answer this question in the affirmative. We initialize SPR

169

Figure 4. The performance of SR-SPR and SPR from scratch and when fine-tuning a pre-trained
encoder on Atari 100k (10 seeds. 95% bootstrapped C.I.

and SR-SPR with pretrained encoders (taken for experimental convenience from SPR
agents trained at replay ratio 1 for one million steps), and initialize all other parameters
randomly. We then train at a range of replay ratios for 100k steps. For SR-SPR, we
apply shrink and perturb towards the pretrained encoder weights rather than random
parameters, but otherwise train as normal.

We find that while both SPR and SR-SPR benefit from the pretrained representations
at low replay ratios, only SR-SPR is able to improve fine-tuning performance by replay
scaling. Standard SPR with pretrained representations rapidly degrades in performance
as the replay ratio is increased, while the performance of SR-SPR steadily increases at
higher replay ratios. Although the gap between SR-SPR with and without pretraining
closes somewhat at higher replay ratios, this is to be expected, as higher replay-ratio
agents have more opportunities to improve their own representations even without
pretraining.

C.2.3. Finetuning After Offline Training

The efficiency of SR-SAC and SR-SPR makes the general approach behind their
design potentially appealing for the setting of offline RL with an additional fine tuning
phase. In Figure 5, we provide preliminary evidence that the paradigm we advocated
for in this paper may indeed be particularly beneficial in this setting. We test IQL with
the same pretraining scheme presented in Kostrikov et al. (2022), consisting in a million
offline training steps followed by a million interactions with the environment for fine
tuning. We implement SR-IQL by using a replay ratio of 10 and resetting, every two

170

Figure 5. Performance of SR-IQL and IQL in two tasks from D4RL. Negative steps denotes the
pretraining phase (10 seeds, ± std).

Figure 6. Pareto fronts for SR-SAC and Tandem SR-SAC on DMC15 (5 seeds).

million updates, all of the parameters of its neural networks during the fine tuning phase.
We compare SR-IQL to IQL on two tasks from the D4RL benchmark (Fu et al., 2020).
As shown in Figure 5, SR-IQL is roughly on par with IQL in the antmaze-umaze-v0 task,
but reaches superior performance during fine tuning in antmaze-umaze-diverse-v0.
We believe this sets the stage to experimenting with our replay ratio scaling paradigm
in this setting as a promising research direction for future work.

171

C.2.4. Pareto Fronts Comparison

With the same approach used for studying the data/computation tradeoffs of SR-
SAC, it also becomes possible to directly compare the performance of different replay
ratio-scalable algorithms. As a simple example, we compare SR-SAC, its tandem version
and SAC in Figure 6. The different lines are Pareto curves, obtained by retaining the
points that are dominating the other ones in terms of either data or computational
budget, to reach an IQM of at least 600. On this plot, SAC simply appears as a point
because, not allowing for effective replay ratio scaling, it can only reach the prescribed
performance by using more data and a relatively small amount of computational
resources.

C.2.5. Comparison with Neural Fitted Q-Iteration

The approach we demonstrated for replay ratio scaling, for its relationship with
offline RL and its use of resets, could resemble the classic NFQI algorithm (Riedmiller,
2005), which train from scratch, after each large batch of transitions, a Q-function. Our
approach propagates information across resets mainly through the use of the replay
buffer, having a fast target network updated alongside the regular agent training; NFQI
instead propagates information primarily through a target network, which is updated
once per reset. We implement an-friendly variant of NFQI on SR-SPR at replay ratio 16,
performing one target network update upon each reset. However, we find that this leads
to very poor performance (IQM 0.350), achieving barely half that of standard SR-SPR.
Although we hypothesized that 2,500 environment steps (the standard reset interval for
SR-SPR at replay ratio 16) might be too infrequent for target network updates, making
this interval shorter did not improve performance. Although we cannot rule out the
possibility that NFQI might be competitive at dramatically higher replay ratios, its
inherent slowness in propagating information is likely to lead it to lag in data-efficient
settings; any reset interval that is sufficiently long to allow for accurate estimation of
the value function may lead to insufficiently rapid value propagation via target updates,
and vice versa.

C.3. Computational Considerations
For DMC, the running time depends on the individual environment, due to diffe-

rences in dimensionality of the observation as well as physics simulation time. On an

172

Figure 7. Learning curves for SR-SPR (solid) and SPR (dashed) at various replay ratios. Note that
all SR-SPR runs converge to similar TD errors, gradient norms and parameter norms, while these
metrics greatly differ for SPR at different replay ratios. IQM training performance does not match
evaluation performance, as ongoing training episodes are often disrupted by the reset procedure.

NVIDIA V100 GPU, at this highest replay ratio of RR=128, our code takes about
10.5 hours on acrobot-swingup and about 15 hours on humanoid-run to complete
500k environment steps. For a replay ratio of RR=32, which yields remarkable, even if
not best, performance, the time goes down to just about 3 hours and about 4 hours
respectively. which is well-below the typical demands of modern model-based RL
methods. With careful seed parallelization, running SR-SAC with RR=32 for 5 seeds
for all tasks in the DMC15-500k benchmark takes less than 4 GPU/days on an NVIDIA
V100. For Atari 100k, running time depends primarily on the replay ratio chosen. At
the highest replay ratio used (16) and with five seeds running in parallel, our code
takes roughly 25 hours to complete 100k steps on an NVIDIA A100, yielding a cost of
roughly 5 GPU/hours per training run.

173

Tableau 2. Scores for all games in Atari 100k for SR-SPR and competing algorithms
at various replay ratios.

Game Random Human IRIS SR-SPR:2 SR-SPR:4 SR-SPR:8 SR-SPR:16

Alien 227.8 7127.7 420.0 877.9 964.4 1015.5 1107.8
Amidar 5.8 1719.5 143.0 189.2 211.8 203.1 203.4
Assault 222.4 742.0 1524.4 891.9 987.3 1069.5 1088.9
Asterix 210.0 8503.3 853.6 836.7 894.2 916.5 903.1
Bank Heist 14.2 753.1 53.1 253.6 460.0 472.3 531.7
Battle Zone 2360.0 37187.5 13074.0 14493.5 17800.6 19398.4 17671.0
Boxing 0.1 12.1 70.1 36.1 42.0 46.7 45.8
Breakout 1.7 30.5 83.7 24.5 26.1 28.8 25.5
Chopper Command 811.0 7387.8 1565.0 1609.4 1933.7 2201.0 2362.1
Crazy Climber 10780.5 35829.4 59324.2 28004.7 38341.7 43122.3 45544.1
Demon Attack 152.1 1971.0 2034.4 2969.0 3016.2 2898.1 2814.4
Freeway 0.0 29.6 31.1 24.1 24.5 24.9 25.4
Frostbite 65.2 4334.7 259.1 1450.4 1809.9 1752.8 2584.8
Gopher 257.6 2412.5 2236.1 735.3 717.5 711.2 712.4
Hero 1027.0 30826.4 7037.4 6832.1 7195.7 7679.6 8524.0
Jamesbond 29.0 302.8 462.7 412.9 408.8 392.8 389.1
Kangaroo 52.0 3035.0 838.2 1651.2 2024.1 3254.9 3631.7
Krull 1598.0 2665.5 6616.4 5206.4 5364.3 5824.8 5914.4
Kung Fu Master 258.5 22736.3 21759.8 14165.6 17656.5 17095.6 18649.4
Ms Pacman 307.3 6951.6 999.1 1472.6 1544.7 1522.6 1574.1
Pong -20.7 14.6 14.6 -10.5 -5.5 -3.0 2.9
Private Eye 24.9 69571.3 100.0 98.8 95.8 95.8 97.9
Qbert 163.9 13455.0 745.7 3431.7 3699.8 3850.6 4044.1
Road Runner 11.5 7845.0 9614.6 12199.0 14287.3 13623.5 13463.4
Seaquest 68.4 42054.7 661.3 714.7 766.6 800.5 819.0
Up N Down 533.4 11693.2 3546.2 61851.2 91435.2 95501.1 112450.3

Games > Human 0 0 9 7 8 9 9
IQM (↑) 0.000 1.000 0.501 0.444 0.544 0.589 0.632
Optimality Gap (↓) 1.000 0.000 0.512 0.516 0.470 0.452 0.433
Median (↑) 0.000 1.000 0.289 0.336 0.523 0.560 0.685
Mean (↑) 0.000 1.000 1.046 0.910 1.111 1.188 1.272

C.4. Experimental Details

We report in Table 5 the full list of tasks for the DMC15 benchmark. Our imple-
mentation of continuous control algorithms is based on the jaxrl codebase (Kostrikov,
2021). For REDQ, we use the best hyperparameters, as recommended by Chen et al.
(2021b), as well as a replay ratio of 20. For discrete control, we use a version of SPR

174

Tableau 3. Hyperparameters for SR-SPR. The ones introduced by this work are at
the bottom.

Parameter Setting

Gray-scaling True
Observation down-sampling 84x84
Frames stacked 4
Action repetitions 4
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K
Update Distributional Q
Dueling True
Support of Q-distribution 51
Discount factor 0.99
Minibatch size 32
Optimizer Adam
Optimizer: learning rate 0.0001
Optimizer: β1 0.9
Optimizer: β2 0.999
Optimizer: ϵ 0.00015
Max gradient norm 10
Priority exponent 0.5
Priority correction 0.4 → 1
Exploration Noisy nets
Noisy nets parameter 0.5
Training steps 100K
Evaluation trajectories 100
Min replay size for sampling 2000
Replay period every 1 step
Updates per step Variable (1, 2, 4, 8, 16)
Multi-step return length 10
Q network: channels 32, 64, 64
Q network: filter size 8× 8, 4× 4, 3× 3
Q network: stride 4, 2, 1
Q network: hidden units 512
Non-linearity ReLU
Target network update period 1
λ (SPR loss coefficient) 2
K (SPR prediction depth) 5
Data Augmentation Shifts (±4 pixels)

Intensity(scale=0.05)
τ (EMA coefficient) 0.995

Reset Interval (gradient steps) 40,000
Layers getting hard reset Final 2
Shrink and Perturb α 0.8
Action selection Target network

implemented in Jax (Bradbury et al., 2018) in Dopamine (Castro et al., 2018). See
Table 3 for a full list of the employed hyperparameters.

175

Tableau 4. Hyperparameters for SR-SAC. The ones introduced by this work are at
the bottom.

Parameter Setting

Discount factor 0.99
Minibatch size 256
Optimizer (all) Adam
Optimizer (all): learning rate 0.0003
Optimizer (all): β1 0.9
Optimizer (all): β2 0.999
Optimizer (all): ϵ 0.00015
Networks (all): activation ReLU
Networks (all): # hidden layers 2
Networks (all): hidden units 256
Initial Temperature 1
Replay Buffer Size 106

Updates per step Variable (1 to 128)
Target network update period 1
τ (EMA coefficient) 0.995

Reset Interval (gradient steps) 2560000
Layers getting hard reset All

Tableau 5. The tasks from the DMC15 benchmark. We chose commonly-employed
DMC tasks for which the optimal policy is not immediately found by SAC according to
https://github.com/denisyarats/pytorch_sac#results.

Environment Tasks

walker run

quadruped run, walk

reacher hard

humanoid run, walk, stand

swimmer swimmer6

cheetah run

hopper hop, stand

acrobot swingup

pendulum swingup

finger turn_hard

fish swim

176

https://github.com/denisyarats/pytorch_sac#results

C.4.1. Full Experimental Results

In Figure 8, we show the scaling curve for DMC15-1M.
We report in Table 2 the full per-game results for SR-SPR and in Figure 9,10,11,12,13

full experimental results for SR-SAC. For completeness, we also report the performance
of the modified settings and of REDQ at the same replay ratios.

Figure 8. Scaling curve for SR-SAC and SAC on DMC15-1M.

Figure 9. Evaluation Returns on individual DMC15 environments for replay ratio 8.

177

Figure 10. Evaluation Returns on individual DMC15 environments for replay ratio 16.

Figure 11. Evaluation Returns on individual DMC15 environments for replay ratio 32.

Figure 12. Evaluation Returns on individual DMC15 environments for replay ratio 64.

178

Figure 13. Evaluation Returns on individual DMC15 environments for replay ratio 128.

179

Annexe D

Appendix for Chapter 6

Random Human DER DrQ(ϵ) SPR IRIS SR-SPR EfficientZero BBF

Alien 227.8 7127.7 802.3 865.2 841.9 420.0 1107.8 808.5 1173.2
Amidar 5.8 1719.5 125.9 137.8 179.7 143.0 203.4 148.6 244.6
Assault 222.4 742.0 561.5 579.6 565.6 1524.4 1088.9 1263.1 2098.5
Asterix 210.0 8503.3 535.4 763.6 962.5 853.6 903.1 25557.8 3946.1
BankHeist 14.2 753.1 185.5 232.9 345.4 53.1 531.7 351.0 732.9
BattleZone 2360.0 37187.5 8977.0 10165.3 14834.1 13074.0 17671.0 13871.2 24459.8
Boxing 0.1 12.1 -0.3 9.0 35.7 70.1 45.8 52.7 85.8
Breakout 1.7 30.5 9.2 19.8 19.6 83.7 25.5 414.1 370.6
ChopperCommand 811.0 7387.8 925.9 844.6 946.3 1565.0 2362.1 1117.3 7549.3
CrazyClimber 10780.5 35829.4 34508.6 21539.0 36700.5 59324.2 45544.1 83940.2 58431.8
DemonAttack 152.1 1971.0 627.6 1321.5 517.6 2034.4 2814.4 13003.9 13341.4
Freeway 0.0 29.6 20.9 20.3 19.3 31.1 25.4 21.8 25.5
Frostbite 65.2 4334.7 871.0 1014.2 1170.7 259.1 2584.8 296.3 2384.8
Gopher 257.6 2412.5 467.0 621.6 660.6 2236.1 712.4 3260.3 1331.2
Hero 1027.0 30826.4 6226.0 4167.9 5858.6 7037.4 8524.0 9315.9 7818.6
Jamesbond 29.0 302.8 275.7 349.1 366.5 462.7 389.1 517.0 1129.6
Kangaroo 52.0 3035.0 581.7 1088.4 3617.4 838.2 3631.7 724.1 6614.7
Krull 1598.0 2665.5 3256.9 4402.1 3681.6 6616.4 5911.8 5663.3 8223.4
KungFuMaster 258.5 22736.3 6580.1 11467.4 14783.2 21759.8 18649.4 30944.8 18991.7
MsPacman 307.3 6951.6 1187.4 1218.1 1318.4 999.1 1574.1 1281.2 2008.3
Pong -20.7 14.6 -9.7 -9.1 -5.4 14.6 2.9 20.1 16.7
PrivateEye 24.9 69571.3 72.8 3.5 86.0 100.0 97.9 96.7 40.5
Qbert 163.9 13455.0 1773.5 1810.7 866.3 745.7 4044.1 14448.5 4447.1
Roadrunner 11.5 7845.0 11843.4 11211.4 12213.1 9614.6 13463.4 17751.3 33426.8
Seaquest 68.4 42054.7 304.6 352.3 558.1 661.3 819.0 1100.2 1232.5
UpNDown 533.4 11693.2 3075.0 4324.5 10859.2 3546.2 112450.3 17264.2 12101.7

Games > Human 0 0 2 3 6 9 9 14 12
IQM (↑) 0.000 1.000 0.183 0.280 0.337 0.501 0.631 1.020 1.045
Optimality Gap (↓) 1.000 0.000 0.698 0.631 0.577 0.512 0.433 0.371 0.344
Median (↑) 0.000 1.000 0.189 0.313 0.396 0.289 0.685 1.116 0.917
Mean (↑) 0.000 1.000 0.350 0.465 0.616 1.046 1.272 1.945 2.247

Tableau 1. Scores and aggregate metrics for BBF and competing methods
across the 26 Atari 100k games. Scores are averaged across 50 seeds per game for
BBF, 30 for SR-SPR, 5 for IRIS, 3 for EfficientZero, and 100 for others.

182

Figure 1. Learning curves for BBF and SR-SPR at RR=2 with a ResNet encoder at
various width scales, on the 26 Atari 100k games. Larger networks consistently have lower TD
errors and higher gradient norms, and higher parameter norms, but only BBF translates this to higher
environment returns. The large, systematic difference in TD error between BBF and SR-SPR is due to
BBF’s use of a shorter update horizon, which makes each step of the TD backup easier to predict.

183

Figure 2. BBF at RR=2 on the 26 Atari 100k tasks, with and without Noisy Nets.

184

	Couverture
	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	Liste des sigles et des abréviations
	Remerciements
	Chapter 1. Introduction
	1.1. Thesis Outline

	Chapter 2. Background
	2.1. Representation Learning
	2.1.1. Pretraining
	2.1.2. Reconstruction
	2.1.3. Data Augmentation
	2.1.4. Temporal Prediction
	2.1.5. Contrastive Learning
	2.1.5.1. Deep Contrastive Learning

	2.1.6. Semi-Supervised Learning
	2.1.6.1. Consistency-based Losses

	2.1.7. Bootstrap Your Own Latent

	2.2. Reinforcement Learning
	2.2.1. TD Learning
	2.2.2. Off-Policy Learning
	2.2.3. Deep Reinforcement Learning
	2.2.4. Deep Continuous Control
	2.2.5. Representation Learning for Reinforcement Learning
	2.2.6. Data Efficiency
	2.2.7. DeepMind Control
	2.2.8. Arcade Learning Environment
	2.2.9. Evaluation in the ALE

	Chapter 3. Pretraining Representations for Data-Efficient Reinforcement Learning
	3.1. Abstract
	3.2. Introduction
	3.3. Representation Learning Objectives
	3.3.1. Self-Predictive Representations
	3.3.2. Goal-Conditioned Reinforcement Learning
	3.3.3. Inverse Dynamics Modeling

	3.4. Related Work
	3.4.1. Data-Efficiency
	3.4.2. Exploratory pretraining
	3.4.3. Visual Representation Learning

	3.5. Experimental Details
	3.5.1. Environment and Evaluation
	3.5.2. Pretraining Data
	3.5.3. Training Details

	3.6. Results and Discussion
	3.6.1. Pretraining data efficiency
	3.6.2. Behavioural cloning is a strong baseline
	3.6.3. Data quality matters
	3.6.4. Pretraining unlocks the value of larger networks
	3.6.5. Combining SGI's objectives improves performance
	3.6.6. Naively finetuning ruins pretrained representations
	3.6.7. Not all SSL objectives are beneficial during finetuning

	3.7. Conclusion
	3.8. Acknowledgements

	Chapter 4. The Primacy Bias in Deep Reinforcement Learning
	4.1. Abstract
	4.2. Introduction
	4.3. Preliminaries
	4.4. The Primacy Bias
	4.4.1. Heavy Priming Causes Unrecoverable Overfitting
	4.4.2. Experiences of Primed Agents are Sufficient

	4.5. Have You Tried Resetting It?
	4.6. Experiments
	4.6.1. Setup
	4.6.2. Resets Consistently Improve Performance
	4.6.3. Learning Dynamics of Agents with Resets
	4.6.4. Elements Behind the Success of Resets
	4.6.4.1. Replay ratio
	4.6.4.2. n-step targets
	4.6.4.3. TD failure modes
	4.6.4.4. What and how to reset

	4.6.5. Summary

	4.7. Related Work
	4.7.1. Overfitting in RL
	4.7.2. Forgetting mechanisms
	4.7.3. Cognitive science

	4.8. Future Work and Limitations
	4.9. Conclusion
	Acknowledgements

	Chapter 5. Sample-Efficient Reinforcement Learning by Breaking the Replay Ratio Barrier
	5.1. Abstract
	5.2. Introduction
	5.3. Related Work
	5.4. Effective Replay Ratio Scaling with Resets
	5.5. Replay Ratio Scaling Drastically Improves Sample Efficiency
	5.5.1. Continuous Control
	5.5.2. Atari 100k

	5.6. Algorithm Design in Light of Replay Ratio Scaling
	5.6.1. Analyzing the Importance of Online Interaction
	5.6.1.1. Iterated Offline Setting
	5.6.1.2. Tandem Setting
	5.6.1.3. Alternative Combinations of Offline and Online Updates

	5.6.2. What is Required for Replay Ratio Scaling in Discrete Control?
	5.6.3. Visualizing the Data/Compute Tradeoff

	5.7. The Limits of Replay Ratio Scaling
	5.8. Conclusions
	Acknowledgments

	Chapter 6. Bigger, Better, Faster: Human-Level Atari with Human-Level Efficiency
	6.1. Abstract
	6.2. Introduction
	6.3. Background
	6.4. Related Work
	6.5. Method
	6.6. Analysis
	6.7. Revisiting the Atari 100k benchmark
	6.8. Discussion and Future Work
	Acknowledgements
	Societal impact

	Chapter 7. Conclusion
	Références bibliographiques
	Annexe A. Appendix for Chapter 3
	A.1. Implementation Details
	A.1.1. Training
	A.1.2. Goal-Conditioned Reinforcement Learning
	A.1.3. Model Architectures
	A.1.4. Image Augmentation
	A.1.5. Experiments with ATC

	A.2. Pseudocode
	A.3. Full Results on Atari100k
	A.4. Transferring Representations between Games
	A.5. Uncertainty-aware comparisons

	Annexe B. Appendix for Chapter 4
	B.1. Experimental Details and Additional Results
	B.1.1. Ablations
	B.1.1.1. Replay buffer
	B.1.1.2. Initialization
	B.1.1.3. Optimizer state
	B.1.1.4. Reset depth
	B.1.1.5. Which networks to reset
	B.1.1.6. Number of resets
	B.1.1.7. Other regularizers

	B.2. Per-Environment and Additional Results

	Annexe C. Appendix for Chapter 5
	C.1. Definitions from Related Works
	C.2. Additional Experimental Results
	C.2.1. Additional Studies
	C.2.2. Finetuning Pretrained Representations
	C.2.3. Finetuning After Offline Training
	C.2.4. Pareto Fronts Comparison
	C.2.5. Comparison with Neural Fitted Q-Iteration

	C.3. Computational Considerations
	C.4. Experimental Details
	C.4.1. Full Experimental Results

	Annexe D. Appendix for Chapter 6

