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Résumé

Les modèles génératifs basés sur la vraisemblance sont des éléments fondamentaux
pour la modélisation statistique des données structurées. Ils peuvent être utilisés pour
synthétiser des échantillons de données réalistes, et la fonction de vraisemblance peut
être utilisée pour comparer les modèles et déduire diverses quantités statistiques. Cepen-
dant, le défi réside dans le développement de modèles capables de saisir avec précision
les schémas statistiques présentés dans la distribution des données. Les modèles exis-
tants rencontrent souvent des limitations en termes de flexibilité représentationnelle et
d’évolutivité computationnelle en raison du choix de la paramétrisation, freinant ainsi
la progression vers cet idéal.

Cette thèse présente une exploration systématique des structures appropriées qui peu-
vent être exploitées pour concevoir des modèles génératifs basés sur la vraisemblance,
allant des architectures spécialisées telles que les applications triangulaires et les ap-
plications de potentiel convexes aux systèmes dynamiques paramétriques tels que les
équations différentielles neuronales qui présentent des contraintes minimales en termes
de paramétrisation. Les modèles proposés sont fondés sur des motivations théoriques et
sont analysés à travers le prisme du changement de variable associé au processus de
génération de données. Cette perspective permet de considérer ces modèles comme des
formes distinctes de probability flows, unifiant ainsi des classes apparemment non liées
de modèles génératifs basés sur la vraisemblance. De plus, des conceptions algorith-
miques pratiques sont introduites pour calculer, approximer ou estimer les quantités
nécessaires pour l’apprentissage et l’évaluation.

Il est prévu que cette thèse suscite l’intérêt des communautés de modélisation générative
et d’apprentissage automatique Bayésien/probabiliste, et qu’elle serve de ressource
précieuse et d’inspiration pour les chercheurs et les praticiens du domaine.

Mots-clés : modèles génératifs, estimation de densité, normalizing flow, autoencodeur
variationnel, modèle autorégressif, modèle basé sur l’énergie, modèle de diffusion,
score matching.
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Abstract

Likelihood-based generative models are fundamental building blocks for statistical
modeling of structured data. They can be used to synthesize realistic data samples,
and the likelihood function can be used for comparing models and inferring various
statistical quantities. However, the challenge lies in developing models capable of
accurately capturing the statistical patterns presented in the data distribution. Existing
models often face limitations in representational flexibility and computational scalability
due to the choice of parameterization, impeding progress towards this ideal.

This thesis presents a systematic exploration of suitable structures that can be exploited
to design likelihood-based generative models, spanning from specialized architectures
like triangular maps and convex potential maps to parametric dynamical systems such
as neural differential equations that bear minimal parameterization restrictions. The
proposed models are rooted in theoretical foundations and analyzed through the lens
of the associated change of variable in the data generation process. This perspective
allows for viewing these models as distinct forms of probability flows, thereby unifying
seemingly unrelated classes of likelihood-based generative models. Moreover, practical
algorithmic designs are introduced to compute, approximate, or estimate necessary
quantities for training and testing purposes.

It is anticipated that this thesis would be of interest to the generative modeling and
Bayesian/probabilistic machine learning communities, and will serve as a valuable
resource and inspiration for both researchers and practitioners in the field.

Keywords: generative models, density estimation, normalizing flow, variational au-
toencoder, autoregressive model, energy-based model, diffusion model, score matching.
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1
Introduction and
background

Generative models play an essential role in machine learning by allowing us to explore

and analyze variations in random events that may not be fully explained by available

information [Russell and Norvig, 2002]. For example, when provided with text prompts,

generative models have the capability to generate a diverse range of images that match

the given description [Radford et al., 2021, Ramesh et al., 2021, 2022, Saharia et al.,

2022]. In addition, they can probabilistically infer molecular conformations based

on intramolecular distances [Topel and Ferguson, 2020], or generate molecules with

desired chemical properties [Jin et al., 2018, Xie et al., 2021]. Recently, there has been

a surge of interest in applying deep neural networks to model these random events. The

neural networks serve as feature extractors, effectively transforming raw data streams

into more abstract representations, or as statistical models that can translate the higher-

level representations back into the raw data format. These two procedures, known as

inference and reconstruction, are dual transformations of the description of a random

observation.

This thesis seeks to provide a unifying view on various types of transformations that

can be used as fundamental building blocks in the context of generative modeling.

Through this unifying lens, we seek to tackle the common challenges in designing these

models. Some of these challenges are computational (e.g. the computational cost of

training the model or generating samples from the model), some are representational

(e.g. whether the “compact” representation of the joint distribution of the variables

describing the random events is expressive).

Having an expressive representation of the joint distribution is of paramount importance

to general-purpose statistical modeling of structured data. This is in contrast to tradi-

1
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tional ways of modeling in scientific fields such as biology and physics, where domain

experts seek to find out the numerical value of some interpretable parameters of a model

used to describe the physics of the observations. Oftentimes, we are not faced with

a simple system that allows us to make strong assumptions about the data-generating

process. Should these erroneous assumptions be made, they would lead to model

misspecification, which is a cause of the lack of realism in the generated samples drawn

from the model that we hope would resemble the real data.

A natural price to pay for having a highly expressive model is computation. For

simpler, less expressive models, most quantities of interest, such as the likelihood of the

observations (which is needed for likelihood-based training and model evaluation), can

usually be readily computed. However, this is often not the case for model classes that

enjoy a greater degree of flexibility. For more complex models, intractability is often an

issue, which means the computation of certain quantities of interest cannot be carried

out within a reasonable amount of time. This necessitates the design of algorithms for

estimating or approximating the quantities of interest, at the cost of some tolerable error.

We refer to this tension between the two aspects as the expressivity-scalability tradeoff,

and we aim to design better statistical models in terms of both.

This thesis undertakes a comprehensive investigation of likelihood-based generative

models, encompassing specialized structures like triangular and convex potential maps,

alongside parametric dynamical systems such as neural ordinary and stochastic dif-

ferential equations. A key contribution lies in our theoretical exploration, focusing

on variable transformations within the data generation process, which unifies these

models as distinct probability flows. Additionally, we introduce practical algorithms for

efficient computation and estimation of essential quantities, addressing the expressivity-

scalability tradeoff. The primary novelty of this thesis is a unified view that bridges

disparate generative model classes, offering both theoretical insights and practical solu-

tions to enhance expressiveness while managing computational complexity in generative

modeling.

For the rest of the chapter, we will first review the formalism of learning (Section 1.1)

and some practical aspects of deep learning (Section 1.2), which will be used as a
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black box for function approximation in the later chapters. We will give an overview of

likelihood-based generative models in Section 1.3, and come back to the thesis question

in Section 1.4.

1.1 FORMALISM OF LEARNING

The objective of learning is to generalize from experience. It is usually assumed a

learner has access to finite experience, in the form of some training data that follows

an unknown probability distribution. A learner’s goal is to make sense of the data by

capturing the statistical regularity exhibited by the data when it comes in large numbers.

Formally, denote by X the data space and q(x) the probability density function of

an unknown data distribution, which is something that we would like to approximate.

We are given a training set of n data points assumed to be distributed independently

and identically (i.i.d.) from the data distribution, written as (xi)
n
i=1 ∼ q(x)n. We

assume the true data distribution lies within, or close to, a family of density models

{pπ(x) : π ∈ P(X )}, where P(X ) is the set of parameters1 that can be used to

sufficiently describe the density function whose domain is X . The goal of learning,

in the context of generative modeling, is to select the best candidate pπ∗(x) from

{pπ(x) : π ∈ P(X )} to approximate the data distribution q(x).

Models that admit an explicit form of density that can either be readily computed or

approximated are called explicit-density models. This will be the main focus of the

thesis. Another family of models that do not admit an explicit density function are called

implicit density models, the most famous example being the Generative Adversarial

Networks, or GANs [Goodfellow et al., 2014]. We do not discuss the formalism of

learning for implicit models and refer the readers interested in this topic to Goodfellow

[2016], Mohamed and Lakshminarayanan [2016].

1We sometimes also use θ to denote the model’s parameters.
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Applications of explicit-density models abound. More broadly speaking, generative

models can be used to augment human creativity [Jordan, 2019]. The data sampler can

be used to edit high-dimensional data such as images [Kingma and Dhariwal, 2018],

encode the data in a lossy manner [Chen et al., 2016b] and represenent the data with

disentangled and interpretable features [Chen et al., 2016a]. It can also be used to tackle

inverse problems in digital processing, such as denoising, super-resolution, inpainting,

and conditional generation [Asim et al., 2020, Lugmayr et al., 2020, Whang et al., 2020,

Song et al., 2021c, Kawar et al., 2021]. A more interactive interface can also be made

possible for humans to be involved in guiding the image synthesis [Meng et al., 2021].

Having an explicit likelihood function also has many benefits. For example, likelihood

can be used as a measure of an agent’s uncertainty about the surroundings, which can

then be used to incentivize exploration [Ostrovski et al., 2017]. The learned density

model can be used to design distribution-dependent compression algorithms [Kingma

et al., 2019, Ho et al., 2019b, Hoogeboom et al., 2019], since the cross-entropy score,

i.e. the negative average log-likelihood, can be viewed as an upper bound on the optimal

code length [Cover, 1999]. Moreover, in numerous fields, including physics, economics,

climate science, computational chemistry, etc., likelihood-based models can be used to

enhance simulation-based inference [Cranmer et al., 2020], where typically, a simulator

is used to enable the prediction of the behavior of a complex system that might not

be well-suited for certain statistical inference tasks. Last but not least, learning a

probabilistic module is essential in probabilistic programming, which automatically

performs inference as a fundamental tool in probabilistic machine learning [van de

Meent et al., 2018].

Many learning frameworks, or parameter estimation principles (for obtaining π∗), exist

for models with an explicit density, that utilize the density function itself, or the density

up to some normalizing constant. A few will be presented throughout the rest of the

section.
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Maximum Likelihood Estimation Maximum likelihood estimation finds the param-

eters that maximize the chance of the data being generated by the model. Namely,

π̂ := argmax
π∈P(X )

{
n∑

i=1

log pπ(xi)

}
= argmax

π∈P(X )

Ex[log pπ(x)], (1.1)

where the latter expectation is over the empirical distribution q̂(x) := 1
n

∑n
i=1 δ(x−xi).

The Dirac delta function δ is a measure that equals 1 if and only if its argument contains

the singleton {0}. π̂ is known as the maximum likelihood estimate (MLE) for the

parameter π. We refer to models trained with the maximum likelihood principle as

likelihood-based models. We dedicate Section 1.3 to a more detailed account of different

types of likelihood-based models.

Maximum likelihood estimators enjoy many desirable properties, the most prominent

one being consistency. This essentially means that, given infinite training data, π̂ can

get arbitrarily close to the optimal parameters π∗ that perfectly describe the density

function of the data distribution pπ∗(x) = q(x) provided q(x) is within the model class.

Traditionally, the inaccuracy of the model q(x) 6≈ pπ̂(x) comes from two sources: 1©
the estimation error (variance), and 2© the approximation error (bias). This is also

commonly known as the bias-variance tradeoff in learning. The estimation error comes

from the empirical distribution q̂, which is constituted of the randomly drawn training

data, and the error can be high when we do not have enough data. Caused by model

misspecification (i.e. if {pπ(x) : π ∈ P(X )} does not contain the data distribution), the

approximation error refers to the model’s inability to approximate the true underlying

data distribution. Normally, the approximation error could be reduced by considering a

more flexible family of models, but it could also lead to an increase in the estimation

error since the model would be more capable of over-fitting the training data. The art of

learning lies in finding the sweet spot somewhere in between to minimize the overall

approximation error.
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Divergence Minimization Maximizing the likelihood of the data is equivalent to

minimizing the forward Kullback-Leibler (KL) divergence between the (empirical) data

distribution and the model distribution, assuming we can sample directly from the data

distribution q:

argmax
p

Ex∼q[log p(x)] = argmax
p

−Ex∼q[log q(x)] + Ex∼q[log p(x)]

= argmin
p

DKL(q||p),

since the entropy term −Ex∼q[log q(x)] is a constant wrt the model’s parameters π.

General statistical divergences can be used like a distance function2, since it can tell

us if two distributions are identical; the divergence from one distribution to another

is zero if and only if the two distributions are identical. There are other divergences

other than KL one can potentially choose to minimize. For example, an f -divergence is

characterized by a convex function f with f(1) = 0, defined as

Df (q||p) =
ˆ

f

(
q(x)

p(x)

)
p(x) dx. (1.2)

For example, with f(t) = t log t, we recover the KL divergence. f(t) = − log t

corresponds to the reverse3 KL divergence DKL(p||q). If f(t) = 1
2
|t − 1|, we have

the total variation distance; see Appendix B.1 for some background on total variation.

Furthermore, f -divergence is invariant to reparameterization (Proposition 36), non-

negative, and equal to zero if and only if p = q.

Score matching Another learning principle is via matching the score function of the

model with the score function of the data distribution. Score matching is convenient

when the density of the model is defined up to a normalizing constant. Within the

2However, a divergence is not always a metric, since it might not satisfy the triangle inequality, nor
symmetry, both of which are axioms of a metric.

3To clarify, q is the target distribution here, whereas p is the distribution we want to optimize.
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context of generative modeling, a score is defined as the gradient of the log-density

function wrt the data vector, i.e. ∇x log q(x). For simplicity, we sometimes suppress the

subscript x when it is clear in the context wrt which variable we are taking the gradient.

Let Λ be a positive-definite matrix. Then it can be used to define a norm ‖x‖Λ := x⊤Λx.

The Λ-explicit score matching (ESM) loss, or just the score matching loss for short, is

LESM = Ex∼q

[
1

2
||sθ(x)−∇ log q(x)||2Λ

]
, (1.3)

where sθ is a parametric score function, which can be taken to be the gradient of a

parametric density function if the latter is the trainable degree of freedom, i.e. sθ =

∇ log pθ. Score matching can also be useful for training energy-based models, where the

density is defined up to a normalizing constant via an energy function (see Section 1.3).

Or even more loosely, we can directly parameterize a score function, without restricting

it to be the gradient field of an energy potential.

The ESM loss is in fact also known as the Fisher divergence. But this divergence cannot

be directly minimized as we do not have access to the ground-truth score ∇ log q;

otherwise score matching is simply a regression problem. A few alternative losses can

be used, which are all equal to one another up to a constant, including implicit score

matching [Hyvärinen and Dayan, 2005, ISM], sliced score matching [Song et al., 2020,

SSM], and denoising score matching [Vincent, 2011, DSM]. The losses are summarized

in Table 1.1, and are related through the following identity (see Section A.1 for the

derivation):

LESM −
1

2
I(q(x)) = LISM = LSSM = LDSM −

1

2
Ex0 [I(q(x | x0))], (1.4)

where I(q) = E[||∇ log q||2Λ] is a constant. It is worth noting that they are all equal

to the ESM loss up to some constant (wrt the model sθ), and can all be computed or

estimated without knowing∇ log q.
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Method Loss

LESM
1
2
E[||sθ(x)−∇ log q(x)||2Λ]

LISM E[1
2
||sθ(x)||2Λ +∇ · (Λ⊤

sθ)]
LSSM E[1

2
||sθ(x)||2Λ + v⊤∇(Λ⊤

sθ)v]
LDSM

1
2
E[||sθ(x)−∇ log q(x | x0)||2Λ]

Table 1.1: Score matching losses. v follows the Rademacher distribution. For the DSM loss, x, x0 ∼
q(x, x0) live in the same probability space, and q(x) is the marginal distribution. It is usually assumed
q(x | x0) takes a simple form such as a Gaussian distribution, in which case the loss becomes the mean
squared error for training a denoising autoencoder. See Vincent [2011] or the appendix (section A.1) for
more details.

1.2 DEEP LEARNING

Learning with deep neural networks allows one to progressively extract higher levels

of features from the raw input, such that the features can represent more abstract and

compact information useful for the underlying application. To put it in a somewhat

reductionistic, but perhaps pragmatic manner, neural nets can be seen as a black-box

function approximator that can be used to approximate any mapping of interest to

arbitrary precision. In this section, we review some basic feedforward architectures

used as deep neural nets and optimization methods used for training. For a more

comprehensive review, we refer the readers to [Goodfellow et al., 2016].

Feed-forward Networks The simplest form of deep neural networks has a feed-

forward structure, one that does not form a loop for the output to be fed back as an input.

Let X and Y be the spaces of the input data and the output. A feed-forward network is

a function f : X → Y of the form

f = fL ◦ fL−1 ◦ · · · ◦ f1, (1.5)

where fl is a layer of the network. Each intermediate (or hidden) layer is normally

composed of a linear transformation Ll(x) and an elementwise non-linear activation
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σl(x). These non-linear transformations coupled with the linear mappings allow the

network to represent complex functions of the input vector. Usually, a single activation

function is used repeatedly across the entire network, denoted by σ, except for the last

layer, which can be parameterized by simply a linear function (e.g. for regression) or

be activated by a nonlinear function that constrains the range of the output (e.g. for

classification, where one would normally use the softmax activation).

Multilayer perceptrons (MLPs) are the vanila neural networks for which Ll(x) =

Wlx + bl is simply a dot product with a weight matrix Wl which is dense. Since the

nodes between fl and fl−1 are fully connected, MLPs are also known as the fully

connected networks, and each individual layer as a dense layer. The bias term bl allows

for the shifting of the entire curve prior to activation, which is not achievable through

the weight alone.

Although MLPs are powerful (as we shall see in the next section) and commonly

adopted where no prior knowledge on the input space is known, it does not take into

account the characteristics of the domain of the input data.

This leads us to the second class of feed-forward networks called the convolutional

neural networks (CNNs, or ConvNets, LeCun et al. [1989]). ConvNets are an example

of imposing a strong inductive bias for image data in the architectural design of the

model that is inspired by neuroscience. It was discovered by Hubel and Wiesel [1959]

that some mammals’ visual system contained neurons that responded to particular

orientations of shapes. If we want to represent elementary concepts of shapes and

orientations in our network design, then one way to do it is to measure the similarity

between an adaptable template which can be thought of as a lookup table that has a sim-

ilar topology as the data and the data itself. Mathematically, we define a convolutional

layer4 using the convolution operator ∗ to be

C(X)i,j = (X ∗K)i,j =
∑

m

∑

n

Xi+m−1,j+n−1Km,n,

4This is technically a valid 2D cross-correlation, but we refer to them as convolutions, following the
convention of some machine learning libraries.
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where the indices for the summations m,n range from 1 to the height and width of the

convolutional kernel K (usually smaller than the input X). Intuitively, the output value

of the convolutional layer will have a large positive value if locally the input is well

aligned with the pattern of the kernel. Through training, the kernels can be adapted

to recognize edges and lines. Through composition, these kernels can then be used to

recognize more complex objects while the receptive field, i.e. the “visible” region of

the input data X that can be seen by a particular output neuron, gets bigger. Notably,

convolutions are translation-equivariant, which means if we move the object in the

input, its representation output will move by the same amount but its value will remain

unchanged.

Universal Approximation Theorem Neural networks are powerful tools for ap-

proximating functions. There are many forms of theorems developed to describe the

approximating capabilities of neural networks, of which we review a classical one

concerning the asymptotic universality of MLPs.

To start with, we need some notion of distance so that we can talk about whether

functions are close to each other. Formally, we let (F , d) be a metric space, where F is

the family of functions that we would like to approximate, and d is a distance function,

or a metric, that measures the distance between a pair of elements in F , i.e.

d : F × F → [0,∞).

Fixing f ∈ F , we want to know if for any error tolerance ǫ > 0, there exists an MLP f ′

of a certain form that satisfies d(f, f ′) < ǫ. If the neural net f ′ lies in the family F , then

we can say that there exists a sequence of neural networks that converges to the limit f .

This is because for any sequence of decreasing ǫn that goes to 0, we can find a sequence

of neural networks fn with d(f, fn) < ǫn. Hence limn d(f, fn) < limn ǫn = 0. If this

is true for any f ∈ F , then we say the set of neural networks is dense in F . If a subset

is dense in a set, then every point in the set is either a point in the subset or a limiting
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point of the subset, which means it can be approximated arbitrarily well by the elements

in the subset.

We consider the set of continuous functions on [0, 1]d, denoted by C([0, 1]d), and the

metric induced by the the uniform norm ‖f(x)‖ = supx∈[0,1]d |f(x)|:

d(f, g) = ‖f(x)− g(x)‖ .

The following theorem due to Cybenko [1989] establishes the universality of 1-hidden

layer MLP in the space of continuous functions on a compact domain.

Theorem 1 (Universal function approximation, UFA). Let σ be a continuous sig-

moidal activation function; i.e. σ(x) → 1 as x → ∞ and σ(x) → 0 as x → −∞.

Neural networks f ′(x) of the form

f ′(x) =
N∑

j=1

ujσ(w
⊤
j x+ bj)

are dense in C([0, 1]d).

Training Deep Networks Learning can be formulated as an optimization problem,

such as the maximum likelihood principle. For simple models, the optimization problem

can be solved analytically, and the MLE can be expressed in closed form as a function

of the training data. However, in more general cases when the model is given enough

capacity to describe a wider family of distributions, this is no longer the case. Therefore,

training of deep models necessitates iterative optimization algorithms such as gradient

descent.

Gradient descent works as follows. Let l : Θ→ R be a loss function that we want to

minimize, where Θ is the space of parameters. Then starting from θ, the loss function

decreases fastest when taking the negative gradient direction −∇l(θ), which can be
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computed efficiently using the back-propagation algorithm [Rumelhart et al., 1985],

which is also known as the reverse-mode automatic differentiation [Baydin et al., 2018].

When the step size coefficient η > 0 is small enough, the update rule

θk+1 = θk − η∇l(θk)

is guaranteed to decrease.

For most large-scale problems, however, even gradient descent might not be an option

as it scales progressively with the size of the dataset. Commonly, the loss function can

be written as an average, e.g.

l(θ) =
1

n

n∑

i=1

li(θ).

In this case, the computational cost and memory both scale O(n).

One way to address this scalability issue is to have a constant-cost random estimate of

the gradient. For example, the gradient of a uniformly drawn li is an unbiased estimate

of the actual (full-batch) gradient. A mid-point between the full-batch gradient and the

one-sample estimate is the mini-batch gradient estimator, which is

1

B

B∑

j=1

∇lkj(θk),

where kj is a sequence of random integers drawn uniformly between 1 and n. This is

known as the (minibatch) stochastic gradient descent (SGD) algorithm. With a fixed

batch size B, it has a constant memory and compute cost, unlike the full-batch gradient,

which allows it to scale to larger-scale problems. Generally, SGD can also be applied to

cases where the loss function can be written as an expectation, i.e. l(θ) = Eξ[l(θ, ξ)],

where l(·, ·) depends on the parameters θ and a random noise ξ. Then under some

mild assumption on l(·, ·), we can push the gradient through the expectation to obtain

∇Eξ[l(θ, ξ)] = Eξ[∇l(θ, ξ)]. With this observation, we can use ∇l(θ, ξ) with random

ξ as an unbiased estimate of the gradient. With some conditions on the learning rate
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and the loss function, SGD is guaranteed to converge to a local minimum [Robbins and

Monro, 1951, Bottou, 1998]. See Bottou et al. [2018] for more discussion.

The step size η plays an important role in the convergence speed of SGD (or even just

full-batch gradient descent): if it is too big, the algorithm might overshoot; if it is too

small, the algorithm may barely make any progress. A practical remedy for this is to

use an adaptive learning rate and momentum, including some popular optimizers such

as RMSProp [Tieleman et al., 2012] and Adam [Kingma and Ba, 2015].

Finally, an iterative optimization algorithm also has the additional benefit of controlling

how the capacity of the network grows, since in practice the stopping criterion of the

optimization algorithm is normally based on the evaluation on a hold-out (validation)

set. At initialization, the parametric function tends to be smoother, and its effective

complexity is limited by the number of updates we are allowed to make in order to

adapt its parameters. This can be thought of as a form of inductive bias for simpler

and smoother functions. The training algorithm terminates when the function starts to

overfit and it exhibits a drop in performance on the validation set. This procedure is

known as early stopping [Wang et al., 1993].
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Likelihood-based
models

Exact
likelihood

Autoregressive
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Approximate
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models

Figure 1.1: A taxonomy of likelihood-based deep generative models.

1.3 LIKELIHOOD-BASED MODELS

Likelihood-based models are trained by maximizing the likelihood of the data {xi :

i ∈ [n]}, which are i.i.d. realizations of a random variable x. With slight abuse of

notation, we let q (resp. pθ) denote the probability mass function (pmf) of the data

distribution (resp. the model) if it is discrete-valued, or the probability density function

(pdf) if it is continuous. Suppose x has d dimensions, and each dimension can take

on 1 out of K possible values. Then the full joint distribution requires Kd − 1 degrees

of freedom5 to describe the probability of all Kd possible values of the pmf. This

becomes unmanageable for large d, both from a statistical point of view and in terms

of space-and-time complexity, therefore necessitating a more compact representation

of high dimensional distributions. This is just for discrete-valued data. If the data is

a continuous variable, traditionally we either make excessively simple assumptions

on the family of distributions, or resort to the histogram estimator and kernel density

estimation (KDE), both of which scale poorly in dimensionality [Wasserman, 2006].

In this section, we review a few generative models that are designed to compactly

represent joint probability distributions parameterized by deep neural networks. De-

pending on whether the exact log-likelihood can be tractably computed or requires

approximation, they can be categorized according to Figure 1.1.

5The minus one is because the probability sums to one.
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Autoregressive Models For any random variable x, we can have the following de-

composition known as the chain rule (or product rule) of probability

q(x) =
∏

j

q(xj | x<j),

where x<j is short for the realization ∩j′<jxj′ . This is the inspiration for the parameter-

ization of autoregressive models pθ(x) =
∏

j pθ(xj | x<j). Instead of tackling the joint

probability directly, we can more compactly represent it via the conditional distributions

pθ(xj | x<j).

Autoregressive models are commonly used in language modeling. Consider a sequence

of tokens (such as a set of common words used in a language), where the set of tokens is

of size d. The joint probability can be represented by of table of size Kd, which grows

exponentially as the length of the sequence d increases. We can instead model the

conditionals q(xj | x<j) using pθ(xj | x<j), where the latter can be parameterized by an

autoregressive architecture, such as the recurrent neural networks (RNN) [Rumelhart

et al., 1986].

A common criticism of RNN is that the computation cost of these conditionals depends

on the length of the data, which is problematic for longer sequences especially during

training. A parallelizable architecture called MADE [Germain et al., 2015] addresses

this issue. MADE is an autoencoder with dense layers and makes use of binary masks

to enforce the internal nodes of an MLP to not depend on certain input features, so

that the j’th block of output nodes is merely a function of x<j , and can be used

to parameterize the conditional distribution pθ(xj | x<j). Other more specialized,

parallelizable architectures include PixelCNN [Oord et al., 2016b] for image data,

WaveNet for raw audio waveforms [Oord et al., 2016a], and the transformer architecture

for large-scale language modeling [Vaswani et al., 2017].

Generative Flows Alternatively, we can define a generative model using invertible

maps. Let Z ∈ Rd ∼ pZ be a real-valued random vector following a prior distribution
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pZ , and f : Rd → Rd be a differentiable, invertible mapping. Then the pdf of the

random variable X = f−1(Z) can be computed by the change of variable formula

[Folland, 1999, Theorem 2.47]

pX(x) = pZ(f(x))

∣∣∣∣det
df(x)

dx

∣∣∣∣ (1.6)

where df
dx

denotes the Jacobian matrix.6

In practice, we usually parameterize the function f that transforms the structured data

into the prior space7, hoping that f(x) would be approximately distributed according to

the prior pZ(z). The log likelihood of a data point x under the density pθ(x) := pX(x)

can be readily computed [Dinh et al., 2014, 2017] by (i) evaluating the log-likelihood of

f(x) under the prior density pZ , and (ii) computing the log-determinant of the Jacobian

df/dx. The first term ensures the encoded data is likely under the prior, and the

determinant of the Jacobian penalizes the infinitesimal change of volume due to the

change of variable f , making sure that the encoding f(x) does not collapse to a point

mass in the prior space. Once this is achieved, we can then sample z ∼ p(z) and obtain

the synthetic data via x = f−1(z), which is the generative flow from the prior to the

data.

The main computational requirements of designing generative flows are: (1) f needs to

be bijective and differentiable. (2) The log-determinant of df/dx is easy to compute; in

general, computing the determinant of a full-rank matrix requires O(d3) computation

(using the LU-decomposition), which is costly for large matrices. (3) For the model

to be used as a generative model, the inversion of f should also be cheap; there exist

invertible functions that are not analytically invertible, which necessitates numerical

methods such as bisection search or fixed-point methods. As a result, in order to fulfill

6We also use ∇ to denote the Jacobian interchangeably when it’s clear in the context that f is
vector-valued.

7An alternative is to parameterize the mapping f−1 directly and let f be its inverse. But we would
then have to ensure the inverse function f and its gradient can be efficiently computed since they are
needed for likelihood evaluation and training according to (1.6).
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these requirements, the expressivity of the mapping f is usually severely restricted.

Below are some examples.

1. Block-wise Affine Coupling: Dinh et al. [2017] propose the affine coupling:

fθ(xa, xb) = concat(xa, sθ(xa)⊙ xb +mθ(xa)), (1.7)

where sθ and mθ are parameterized by neural networks, xa and xb are two partitioning

of the data vector, and concat is an operator that concatenates the input vectors.

Since the composition of invertible maps is invertible, Dinh et al. [2014, 2017] propose

to compose multiple layers of block-wise affine transformations intertwined with a

permutation of elements of x. This is known as RealNVP in the literature, which

stands for real-valued non-volume-preserving transformation Dinh et al. [2017]. Its

predecessor, NICE [Dinh et al., 2014], is a special case with sθ = 1, which restricts

the transformation to be volume-preserving (since the Jacobian determinant is 1). A

RealNVP block can be easily inverted, via

f−1
θ (ya, yb) = concat(ya, (yb −mθ(ya))/sθ(ya)),

where the division is elementwise. The Jacobian determinant of (1.7) is the product of

the elements of sθ(xa), which can be computed in linear time.

2. Inverse Autoregressive Affine Coupling: While RealNVP is computationally

efficient for evaluation and for sampling (inversion), the common criticism is that it

requires a longer chain of transformations to reach the same performance level as other

flow methods [Rezende and Mohamed, 2015, Kingma et al., 2016]. RealNVP can be

extended so that all of the data is transformed in one pass [Kingma et al., 2016]:

fθ(x)i = sθ,i(x<i) · xi +mθ,i(x<i), (1.8)

for i iterating over the indices of the features. Since this transformation can be viewed

as the inverse function of an autoregressive model, we refer to it as the inverse autore-
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gressive flow (IAF)8. To see that, we notice the inversion of (1.8) satisfies the following

recursive formula

f−1
θ (y)i = (yi −mθ,i(f

−1
θ (y)<i))/sθ,i(f

−1
θ (y)<i). (1.9)

Similar to RealNVP, the Jacobian determinant of (1.8) is
∏

i sθ,i(x<i), which can be

computed in linear time. The scale and shift coefficients sθ and mθ can be implemented

via PixelCNN or MADE so that all of the computations involved in training can be

done in parallel.

Variational Autoencoders Another natural way to define a generative model is via

latent variables, which allow us to abstractly represent data in a latent space. Let

z ∈ Rk ∼ p(z) be a random vector following a prior pZ(z) (below we suppress

the subscript to avoid cluttering in notation). We assume the data x follows a data

generation process given the latent representation z, in the form of a conditional

distribution p(x | z). Then the marginal pdf of x is

p(x) =

ˆ

p(x | z)p(z) dz, (1.10)

which is in general not tractable if the prior p(z) is not conjugate to the conditional

p(x | z), or if the conditional involves complex nonlinear mappings of z. For example,

we will not be able to easily simplify the integration in the marginal density if we

parameterize the conditioning by a neural network, i.e. p(x; NN(z)). We can instead

approximately maximize the log marginal likelihood, by maximizing a variational

lower bound. First, we define an auxiliary distribution9 q(z | x). Then we have

8We refer to IAF as MAF, which stands for masked autoregressive flow [Papamakarios et al., 2017],
when we use it for generative modeling (or density estimation). We call it IAF if it is used to improve
variational inference, which is what it was originally designed for (see the following paragraphs).

9It is also known as the variational distribution, the encoder, the recognition model, the inference
machine, or the approximate posterior, for a reason that will soon be clear.
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log p(x) = log

ˆ

p(x | z)p(z) dz (1.11)

= log

ˆ

q(z | x)
q(z | x)p(x | z)p(z) dz (1.12)

≥
ˆ

q(z | x) log p(x | z)p(z)
q(z | x) dz (1.13)

= Eq(z|x) [log p(x | z)]−DKL(q(z | x)||p(z)) := L. (1.14)

We inserted the identity q/q to obtain (1.12), which results in a change of measure

p(z) dz → q(z | x) dz, and then we applied Jensen’s inequality wrt this new measure

to obtain a lower bound (1.13). As the marginal likelihood is often called the evidence

in Bayesian inference, this lower bound is called the Evidence Lower BOund, or ELBO

for short.

We also parameterize q(z | x) using a neural network, so as to amortize the inference

process for all data points x [Dayan et al., 1995, Gershman and Goodman, 2014].

Assume q is a conditional Gaussian with diagonal covariance matrix. Then the latent

variable z can be reparameterized as µ(x) + σ(x) ⊙ e where e is a standard normal

noise. This allows us to rewrite the ELBO as

L = Ee∼N (0,I)[log p(x | µ(x) + σ(x)⊙ e)]
︸ ︷︷ ︸

reconstruction error

−DKL(q(z | x)||p(z))︸ ︷︷ ︸
regularization

. (1.15)

The first term is the reconstruction error of a randomized code z = µ(x) + σ(x)⊙ e.

The second term can be decomposed into the entropy −Eq[log q(z | x)], which ensures

the approximate posterior does not shrink to a point mass, and the cross-entropy

Eq[log p(z)], which penalizes the latent code if it deviates too far away from the prior. As

the ELBO can be seen as the loss function of a regularized, stochastic autoencoder, we

call the generative model p along with the inference model q the variational autoencoder

(VAE) [Kingma and Welling, 2014, Rezende et al., 2014].

The change of variable (aka the reparameterization trick) allows us to decouple the noise
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source from the parameters we would like to update (parameters of the encoder), so that

the gradient of the expectation can be estimated via Monte Carlo10, enabling standard

deep learning optimization methods such as variants of SGD. The change of variable

is known as the law of the unconscious statistician in the statistics literature (LOTUS)

[DeGroot and Schervish, 2012], and the gradient estimator is called the pathwise

derivative, a fundamental tool in infinitesimal perturbation analysis [Glasserman and

Ho, 1991]. See the recent review Mohamed et al. [2020] for more details on gradient

estimators.

The gap in the inequality of Equation (1.14) is equal to the KL divergence between the

approximate posterior and the true posterior:

log p(x)− L = DKL(q(z | x)||p(z | x)), (1.16)

which means maximizing the lower bound to update the model p(x, z) may not nec-

essarily improve the marginal log p(x) if q(z | x) 6= p(z | x). This also means q

approximates the true posterior, since we are essentially minimizing the KL divergence

when we maximize the lower bound by updating q. The bias introduced by the lower

bound can be reduced by considering a richer family of variational distributions for q.

A flexible choice of parameterization is to use a neural network as a noise generator that

transforms a random variable e sampled by some base distribution q(e). However, with

arbitrary neural nets, we cannot guarantee the range of the output matches the entire

latent space (over which the prior density is defined – usually the real space).

1. Normalizing flows: To induce a richer family of tractable densities, we can

leverage the idea of generative flows. Essentially, we can generalize the Gaussian

reparameterization to an arbitrary invertible map f(x, e) (f is invertible in e given x),

which induces a more flexible density through the change of variable. The invertible

map ensures the density is non-zero everywhere in the desired domain, and that the

10Note that reparameterization is just one way to estimate the gradients. There are other options such
as REINFORCE (also known as the score function estimator) [Williams, 1992]. The reparameterization
trick often gives lower variance in practice, although it is not always the case. See 3.1.2 of Gal [2016] for
a detailed study.
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entropy term in the ELBO (1.14) can be efficiently estimated by

−Ez∼q(z|x)[log q(z | x)] = −Ee∼q(e)

[
log q(e)

∣∣∣∣det
∂f(x, e)

∂e

∣∣∣∣
−1
]

(1.17)

≈ − log q(e) + log

∣∣∣∣det
∂f(x, e)

∂e

∣∣∣∣ , (1.18)

where e is drawn from some base distribution with a pdf q(e). As the Jacobian deter-

minant guarantees that the induced density is normalized (integrating to 1), following

the convention in the literature, we call an invertible map used to enhance variational

inference normalizing flow [Tabak et al., 2010, Tabak and Turner, 2013, Rezende and

Mohamed, 2015].

2. Hierarchical inference: Another way to make sure the density is well-defined and

nonzero for a variational distribution parameterized by a neural network is to add a

bit of perturbation around the output of the network. This amounts to a hierarchical

variational posterior; i.e. the approximate posterior itself is also a latent-variable model.

In general, the density of z of this hierarchical model is also intractable, but its entropy

can be lower bounded via another variational inequality

−Eq(z)[log q(z)] ≥ −Eq(z)

[
log q(z) +DKL(q(e | z)||p(e | z))

]

= −Eq(z)

[
log q(z) + Eq(e|z)[log q(e | z)− log p(e | z)]

]

= −Eq(z)q(e|z)
[
log q(z) + log q(e | z)− log p(e | z)

]

= −Eq(z)q(e|z)
[
log q(z | e) + log q(e)− log p(e | z)

]
,

due to the non-negativity of the KL divergence between the "posterior" of the variational

distribution q(e | z) and its variational approximation p(e | z). The tightness of this

bound depends on how close p(e | z) is to q(e | z).

If one just maximizes the first term alone, there is no incentive for q(z | e) to use

e. In some sense p(e | z) forces q(z | e) to “specialize” by using the conditioning

information e, as the gradient from p will flow through z to affect the parameter updates

of q(z | e).
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Energy-based models Our last family of generative models, which enjoy a great

degree of flexibility, is defined via an energy function E(x), which is an unconstrained

scalar function of the input data. Energy-based models, or EBMs, are characterized by

an unnormalized density p(x) ∝ exp(−E(x)). Sampling from EBM can be done with

the assistance of Markov chain Monte Carlo methods, such as discretizing the Langevin

diffusion

dX = ∇ log p(X) dt+
√
2 dBt (1.19)

= −∇E(X) dt+
√
2 dBt, (1.20)

where Bt is a Brownian motion. In physics, the Langevin equation is used as a model

of molecular dynamics to account for the friction caused by a viscous solvent, and the

energy function E in our case is analogous to the interaction potential of the atoms.

We now turn to the maximum likelihood training of EBM. Immediately, we are faced

with a computational challenge: computing the likelihood requires normalizing the

density

p(x) =
1

Z
exp(−E(x)) where Z =

ˆ

exp(−E(x′)) dx′. (1.21)

The constant Z, which is known as the partition function in statistical mechanics, is

to ensure the density p integrates to 1, and is in general computationally intractable.

Fortunately, we can still estimate the gradient of the log-likelihood

∇θ log p(x) = −∇θE(x)−∇θ log

ˆ

exp(−E(x′)) dx′ (1.22)

= −∇θE(x)− 1

Z

ˆ

exp(−E(x′))(−∇θE(x′)) dx′ (1.23)

= −∇θE(x) +

ˆ

exp(−E(x′))

Z
(∇θE(x′)) dx′ (1.24)

= −∇θE(x) +

ˆ

p(x′)∇θE(x′) dx′. (1.25)

Taking the average over the data distribution q (or q̂ for the empirical distribution), we
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have

∇θEq[log p(x)] = Eq[−∇θE(x)] + Ep[∇θE(x)]. (1.26)

That is, we draw positive samples from the data distribution x ∼ q, and minimize

the energy. We also draw negative samples from the model x ∼ p, and maximize the

energy. Intuitively, this means only the regions where the data is likely (under q) will

have high model density (lower energy), and elsewhere the model will be forced to

have low density (higher energy). The model samples are typically drawn via MCMC,

and the resulting algorithm for training is called the contrastive divergence algorithm

[Hinton, 2002].

Contrastive divergence and its variants are notoriously slow and unstable, due to the

need to draw negative samples from the model. For this reason, some other learning

principles which do not require estimating the log-partition function or its gradient

might be preferred, including the score matching principle we have seen in section 1.1.

1.4 THESIS QUESTION AND THESIS STRUCTURE

Having introduced different families of likelihood-based generative models, we might

wonder if some models are better than others. If some models are indeed superior in

some respects, can we draw inspiration from them to design better models? In general,

there are two attributes that we would like to optimize when designing models:

• Expressivity:

We would like to design models that are capable of approximating the data

distribution arbitrarily well. This is especially important in the large-data regime,

where the statistical estimation error is less of a concern and we would rather

spend our resources bringing down the approximation error to achieve a high

level of realism in the generated samples or good held-out likelihood estimates.
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• Scalability:

After a model class is specified, we need to be able to train the model efficiently.

Loosely speaking, the scalability of a model refers to the space-and-time com-

plexity of training, which in the case of gradient-based likelihood optimization

pertains to the growth of the memory and computational costs in computing,

approximating, or estimating log-likelihood gradients, as we increase the model

complexity or consider larger-scale problems. Improving scalability is the first

step towards making these computations tractable for high-dimensional problems.

Crucially, it will also enable us to consider more powerful model classes that are

normally more computationally demanding.

Note that these two aspects are by no means representative of the complete picture of

likelihood-based models. For example, besides expressivity, there are other aspects

that might be useful for attaining good performance, such as the inductive biases

of the architecture, model specification, or even the training algorithm that we use

to obtain the parameter estimates. Though we focus on improving the space-time

complexity of training, that does not mean inference (such as sample generation) would

be automatically more efficient. For example, MAF is efficient for training thanks to

parallel computing but slow for sampling.

We focus on these two aspects as they are the key ingredients for a general-purpose

statistical model, but oftentimes they are mutually exclusive. More expressive models

are usually less scalable, due to the lack of structure to be leveraged to make computation

cheaper. For example, computing the determinant of a free-form Jacobian matrix takes

O(d3) time, whereas the same computation takesO(d) time for RealNVP and IAF. This

makes the latter more suitable for higher-dimensional problems. However, making this

compromise would not necessarily lead to a significant gain in performance, as a less

expressive model may be limited in the level of realism it can achieve. While a highly

expressive model can, in theory, attain better performance given unlimited resources,

in reality this is never the case, and we are always bound by finite computing budgets.

The ideal direction we would like to move towards in the space of models should lead

us to both higher scalability and expressivity (see Figure 1.2).
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Figure 1.2: (left) An illustration of models of different scalability and expressivity, and the levels
of realism achievable within a reasonable amount of time. The ideal kind of progress would benefit
from the combined improvement made in both aspects. (right) An illustration of how models improve
throughout training. A highly expressive, less scalable model can, in theory (green line), eventually
attain a higher level of realism, but may not be able to do so within a fixed time budget. A more scalable,
yet representationally restricted model (blue line) may appear to make more progress early on during
training, but will eventually hit a plateau due to limited expressivity. A desirable improvement on the
Pareto front should lead to both improved expressivity and scalability, allowing the model (orange line)
to achieve superior realism within the time frame.

The aim of the thesis is to design better likelihood-based models in these two aspects.

As argued, additional structures usually need to be imposed in exchange for tractability

or scalability. We may ask: what kind of structure is suitable for general-purpose

likelihood-based generative modeling? By suitable, we mean that the expressivity of

the model class would not be undermined too much, and we would still be able to

approximate the data distribution arbitrarily well. The imposed structure will allow us

to compute the quantities of interest scalably. The thesis is organized in three parts to

answer this question.

Part I: Universal flows with specialized structure

In this part of the thesis, we are concerned with designing generative flows that are

capable of universally approximating a broad class of distributions. We first introduce

a design principle that guarantees universality in Chapter 2. Following the principle,

we propose a few specialized invertible structures that can be leveraged to largely
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reduce the computational cost of likelihood evaluation and training, including mono-

tone functions in Chapter 3, triangular maps in Chapter 4, and convex potentials in

Chapter 5. Importantly, the triangular maps connect flow-based generative models with

autoregressive models, which allows us to reuse the architectures designed for the latter

to improve generative flows.

Part II: Improving expressivity via augmentation

We present an interlude chapter (Chapter 6) to introduce a technique that can be used to

enhance the expressivity of any type of generative flow. Notably, we draw a connection

between latent variable models such as VAEs and generative flows, marrying the two

families of models. The implication is twofold: (1) it allows flow-based models to

admit a low-dimensional representation of the data, like VAEs, and (2) it relaxes the

typical independence assumption of VAEs by generalizing the encoding and decoding

transformations.

Part III: Continuous-time flows

The last part of the thesis centers around the use of continuous-time dynamical systems

as generative models, which form an important class of probability flows, as the

parameterization only requires very minimal assumptions, unlike the discrete-time

flows presented in Part I. In Chapter 7, we review the flow maps induced by neural

ordinary differential equations [Chen et al., 2018, Neural ODEs], which can be seen

as an infinitely deep residual flow [Behrmann et al., 2019, Chen et al., 2019a], and we

prove that they are universal approximators for distributions. The cost of expressivity

is that we need to resort to numerical solvers during training: the computational cost

scales O(m), where m is the number of function evaluations, typically depending on

a pre-specified error tolerance. In Chapter 8, we generalize neural ODEs to neural

stochastic differential equations (neural SDE). The added degree of freedom as a by-

product of variational inference allows us to design algorithms to largely cut down

the computational complexity of training to O(1), making it much more scalable than

neural ODEs. Furthermore, we show that by parameterizing the model in a certain

way, the likelihood training loss is equal to the score-matching loss typically used for
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Figure 1.3: (top left) discrete-time models with lossless representation include normalizing flows
(see Part I) and injective flows [Kumar et al., 2020]. (bottom left) discrete-time models with lossy
representation such as VAE, or more generally augmented normalizing flows (see Part II) and SurVAE
flows [Nielsen et al., 2020]. (top right) dynamical models such as the flow map induced by a neural
ordinary differential equation (see Chapter 7). (bottom right) stochastic continuous-time models, such as
diffusion models (see Chapter 8).

training EBMs. This theoretical discovery sheds light on the recent advancements in

score-based generative models [Song et al., 2021c].

In all three parts of the thesis, we derive the likelihood of the model(s) via the change

of variable associated with the flow map, or more generally the data generating process

if the flow is stochastic such as augmented models and SDEs. In fact, this means all

likelihood-based models summarized by Figure 1.1 in the previous section are now

unified, as they can all be seen as special cases of probability flows (hence the title

of the thesis). We can further divide the span of these models along two orthogonal

dimensions: discrete-time vs continuous-time models, and models with lossless vs lossy

representations (see Figure 1.3). We hope that this unification will inspire more cross-

over in the design of likelihood-based generative models and more cross-pollination of

research ideas from different sub-fields.

Personal contributions This thesis is mainly comprised of the contents of the fol-

lowing papers, majorly reorganized and with the addition of some new results, in
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chronological order. I am the main driver of all of the work in terms of theoretical

development and experiments, except for the first article for which I share the co-first

authorship.

1. Neural autoregressive flows

Chin-Wei Huang, David Krueger, Alexandre Lacoste, Aaron Courville

International Conference on Machine Learning (ICML), 2018

Chapter 3 and 4.

I identified the difficulty of modeling multimodal distributions, came up with DSF/DDSF,

developed the universality proof, and ran the synthetic experiments as well as the varia-

tional inference experiments.

2. Augmented normalizing flows: Bridging the gap between generative flows and

latent variable models and Solving ode with universal flows: Approximation

theory for flow-based models

Chin-Wei Huang, Laurent Dinh, Aaron Courville

ICLR 2020 Workshop on Integration of Deep Neural Models and Differential

Equations

Chapter 2, 6 and 7.

I developed the main theory of the work and ran all the experiments.

3. Convex potential flows: Universal probability distributions with optimal transport

and convex optimization

Chin-Wei Huang, Ricky T. Q. Chen, Christos Tsirigotis, Aaron Courville

International Conference on Learning Representations (ICLR), 2021

Chapter 3 and 5.

I came up with the idea of using gradients of a convex function as normalizing flow,

developed the theory of invertibility, universality and optimality, implemented the CG

method for stochastic gradient estimation, explored different ICNN variants, and ran the

variational inference tasks on the tabular data.

4. A variational perspective on diffusion-based generative models and score match-

ing
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Chin-Wei Huang, Jae Hyun Lim, Aaron Courville

Neural Information Processing Systems (NeurIPS), 2021

Chapter 8.

I developed the main theory of the work and ran the CIFAR experiments.

Accompaniments In order to maintain a coherent narrative, a few other projects and

publications that were conducted and completed during my Ph.D. are not included in

the thesis. I list them below for completeness.

1. Bayesian Hypernetworks

David Krueger, Chin-Wei Huang, Riashat Islam, Ryan Turner, Alexandre La-

coste, Aaron Courville

NIPS Workshop on Bayesian Deep Learning, 2017

2. Neural Language Modeling by Jointly Learning Syntax and Lexicon

Yikang Shen, Zhouhan Lin, Chin-Wei Huang, Aaron Courville

International Conference on Learning Representations (ICLR), 2018

3. Improving explorability in variational inference with annealed variational objec-

tives

Chin-Wei Huang, Shawn Tan, Alexandre Lacoste, Aaron Courville

Neural Information Processing Systems (NeurIPS), 2018

4. Hierarchical Importance Weighted Autoencoders

Chin-Wei Huang, Kris Sankaran, Eeshan Dhekane, Alexandre Lacoste, Aaron

Courville

International Conference on Machine Learning (ICML), 2019

5. Probability Distillation: A Caveat and Alternatives

Chin-Wei Huang, Faruk Ahmed, Kundan Kumar, Alexandre Lacoste, Aaron



30 INTRODUCTION AND BACKGROUND

Courville

Association for Uncertainty in Artificial Intelligence (UAI), 2019

6. vGraph: A Generative Model for Joint Community Detection and Node Repre-

sentation Learning

Fan-Yun Sun, Meng Qu, Jordan Hoffmann, Chin-Wei Huang, Jian Tang

Neural Information Processing Systems (NeurIPS), 2019

7. Stochastic Neural Network with Kronecker Flow

Chin-Wei Huang, Ahmed Touati, Pascal Vincent, Gintare Karolina Dziugaite,

Alexandre Lacoste, Aaron Courville

International Conference on Artificial Intelligence and Statistics (AISTATS),

2020

8. AR-DAE: Towards Unbiased Neural Entropy Gradient Estimation

Jae Hyun Lim, Aaron Courville, Chris Pal, Chin-Wei Huang

International Conference on Machine Learning (ICML), 2020

9. A benchmark of medical out of distribution detection

Tianshi Cao, Chin-Wei Huang, David Yu-Tung Hui, Joseph Paul Cohen

ICML Workshop on Uncertainty and Robustness in Deep Learning, 2020

10. Bijective-Contrastive Estimation

Jae Hyun Lim, Chin-Wei Huang, Aaron Courville, Chris Pal

Symposium on Advances in Approximate Bayesian Inference, 2020

11. Problems in the deployment of machine-learned models in health care

Joseph Paul Cohen, Tianshi Cao, Joseph D Viviano, Chin-Wei Huang, Michael

Fralick, Marzyeh Ghassemi, Muhammad Mamdani, Russell Greiner, Yoshua

Bengio

Canadian Medical Association Journal (CMAJ), 2021

12. Learning to Dequantise with Truncated Flows

Shawn Tan, Chin-Wei Huang, Alessandro Sordoni, Aaron Courville

International Conference on Learning Representations (ICLR), 2022
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13. Riemannian Diffusion Models

Chin-Wei Huang, Milad Aghajohari, Joey Bose, Prakash Panangaden, Aaron

Courville

Neural Information Processing Systems (NeurIPS), 2022
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Universal flows with specialized structure

In this part, we address the research question about the structure needed to be imposed

for generative flows to have a tractable density that can be efficiently optimized via max-

imum likelihood. Recall that we want the flow f to satisfy a few practical requirements

and desiderata, which we summarize below:

RD1 f needs to be invertible and sufficiently smooth.

RD2 log
∣∣det ∂f

∂x

∣∣ and ∇θ log
∣∣det ∂f

∂x

∣∣ can be easily computed or estimated.

RD3 f−1 has an exact formula or can be numerically approximated.

RD4 f is sufficiently flexible.

RD1 is obviously needed to invoke the change of variable formula. RD2 is a com-

putational requirement since otherwise, it will be intractable to train a flow on high

dimensional data. RD3 is needed when we want to invert the flow for sampling, i.e.

when the flow is used for generative modeling. One of the main goals of this part of

the thesis is to provide a principled way to design flows that not only satisfy RD1-3,

but are also sufficiently expressive (RD4) for the purpose of density modeling. This

is especially important if we would like to learn the structure of the data generative

process directly from the data when there is little prior knowledge available.

We will first present a design principle for generative flows that are guaranteed to be

distributionally universal (for the definition of distributional universality, see Section

2.1). It will allow us to design and analyze specialized architectures different from

standard deep neural net architectures. Typically, the Jacobian matrix of the flow would

have some special structure that can be leveraged to accelerate the computation or

estimation of its determinant. This makes it different from the free-form Jacobian of an

unconstrained neural network (we will see more of this in the part III). Such specialized

structure is required to satisfy the above-mentioned requirements and desiderata. While

they restrict the function class expressible by the invertible neural net, the design
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principle will allow us to show that they are sufficiently powerful in the sense that they

can approximate a large family of distributions that might be of interest.



2 Designing universal flows

An essential aspect of this thesis revolves around the expressive power of a model class.

How expressive is the model? How can we determine its capacity to approximate any

data distribution of interest, provided sufficient computational resources? In this chapter,

we address these questions by introducing the concept of distributional universality.

We then propose a design principle for universal flows – a family of invertible models

capable of effectively translating arbitrary probability measures. This principle serves

as a foundation for the parameterization of the flows discussed in Chapters 3, 4, and 5

that satisfy some of the requirements and desiderata (RD1-4). Furthermore, it allows us

to demonstrate the distributional universality of these models, including the continuous-

time flows introduced in Chapter 7.

Setup and notation: Given a base probability measure µ and an invertible map f

applied to µ, we denote by f#µ := µ◦f−1 the pushforward measure of µ under f . That

is, if x ∼ µ is a random variable distributed according to µ and if we set y := f(x),

then the law of y, denoted by ν, satisfies ν = f#µ. When µ and ν admit probability

densities pX and pY , we also write pY = f#pX .

35
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2.1 DISTRIBUTIONAL UNIVERSALITY

Since our subject of interest is the distribution induced by the flow, we need to introduce

a concept of stochastic convergence that tells us the distribution induced by the flow

is indeed getting closer to some target distribution that we would like to approximate.

Some notion of convergence is needed because it tells us that we can take a sequence

of distributions to approximate the target, and the sequence of distributions will be

represented by flows parameterized in a certain way.

We first define a set of functions called test functions, which can be used to distinguish

unique distributions. Test functions should be a large enough class of functions if we

want to use them to detect whether two distributions are the same or not. At the same

time, we also want them to be easy to work with. For example, we consider Cb, the class

of bounded, continuous functions. A classic result in probability theory tells us that two

probability measures µ and ν on (Rd,B(Rd)) are equal if and only if
´

φ dµ =
´

φ dν

for all φ ∈ Cb. This motivates the definition of weak convergence of measures.

Definition 2 (Weak convergence). We say µn converges weakly to ν, denoted by

µn ⇀ ν, if for any φ ∈ Cb, limn→∞
´

φ dµn =
´

φ dν.

The intuition is that if two measures differ on some subsets of Rd, then we can choose

φ to emphasize those regions so that the equality would not hold. We note that smaller

sets of test functions can also be used in place of Cb, such as C∞
c , the class of compactly

supported, smooth functions, and the class of bounded, Lipschitz functions, which will

come in handy soon1. This definition is also equivalent to the notion of convergence in

distribution of random variables. The laws of a sequence of random variables converge

weakly to some target distribution if their corresponding (cumulative) distribution

functions converge at all continuity points.

This definition might not be the easiest to work with. Below we give a few equivalent

1This is known as the Portmanteau Lemma, which provides multiple equivalent definitions of
weak convergence of probability measures. See chapter 2 of Billingsley [1999] for more discussion.
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conditions. Let || · ||BL denote the bounded Lipschitz norm on functions, i.e.

||φ||BL = ||φ||∞ + ||φ||L,

where ||φ||∞ = supx |φ(x)| is the uniform norm and ||φ||L = sup{|φ(x)− φ(y)|/||x−
y|| : x 6= y} is the Lipschitz seminorm. Let µ and ν be probability measures. We define

ρ(µ, ν) := sup

{∣∣∣∣
ˆ

φ dµ−
ˆ

φ dν

∣∣∣∣ : ||φ||BL ≤ 1

}
. (2.1)

ρ can be shown to be a metric on the space of probability measures on Rd (or on any

metric space). It is a type of integral probability metric [Müller, 1997], known as the

Dudley metric. The following theorem shows ρ metrizes the weak convergence of

probability measures.

Theorem 3 (Characterization of weak convergence, Theorem 11.3.3 of Dudley

[2018]). Let {µn} and ν be probability measures on (Rd,B(Rd)). The following

are equivalent:

1.
´

φ dµn →
´

φ dν for all φ ∈ Cb (weak convergence).

2.
´

φ dµn →
´

φ dν for all φ ∈ BL, where BL := {φ : ||φ||BL <∞}.

3. ρ(µn, ν)→ 0.

Equipped with the notion of weak convergence, we now are ready to define the concept

of universal approximation suitable for generative models such as normalizing flows.

Definition 4 (Distributional universality). Let M and N be two families of probability

measures. Given a family of mappings F , we say that F is M-N distributionally

universal if for any µ ∈ M and ν ∈ N, there exists a sequence {fn} ⊂ F such that

(fn)#µ ⇀ ν.

For consistency, throughout the thesis, we denote by P the space of probability measures

over Rd, and A ⊂ P the space of probability measures that are absolutely continuous
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w.r.t. the Lebesgue measure (i.e. they have a density). We will show that the main

invertible maps appearing in this thesis are A−P distributionally universal, including

neural autoregressive flows (Theorem 10), convex potential flows (Theorem 13), and

continuous-time flows induced by neural ODEs (Theorem 18). This subsumes the case

of density estimation where we want to transform complicated data distributions in

M into a simple standard Gaussian prior N = {N (0, I)}, and the case of variational

inference where we want to transform a simple base distribution M = {N (0, I)} into

complex target posterior distributions in N.

2.2 APPROXIMATE COUPLING

As normalizing flows require special parameterization to ensure invertibility and effi-

cient training, they are either a sub-family of standard neural networks (such as MLP)

or an entirely different family of architectures. This means that (1) they have a limited

capacity in terms of the mappings they can represent, and (2) the standard result of

UFT such as Theorem 1 does not apply. In particular, unlike standard neural networks,

invertible maps cannot approximate arbitrary continuous functions. For example, even

if we consider the family of all bijective functions in R, we still won’t be able to ap-

proximate simple functions such as x 7→ |x| in the same sense as Theorem 1. However,

for applications such as density estimation or variational inference, it is more important

to characterize what distributions pY can approximate. The goal of this section is to

outline a design principle for distributionally universal normalizing flows.

In this section, we introduce the main principle to establish distributional universality,

which we summarize below in two steps:

S1 Identify a transport map g between measures µ and ν.

S2 Approximate g using normalizing flows.
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Figure 2.1: A deterministic coupling (transport map) from measure µ to measure ν is such that g#µ = ν.

Given probability measures µ and ν, a transport map or a (deterministic) coupling2

from µ to ν is a measurable function g that transforms µ into ν; i.e. g#µ = ν. This

means if x and y are distributed by µ and ν respectively, then g(x) and y have the same

distribution. See figure 2.1.

Note that we would also require g to be invertible so that they can be approximated by

parametric invertible maps. To see that a transport map may not be invertible in general,

take g to be an arbitrary non-invertible map. Then g is an non-invertible transport map

from µ to g#µ by construction.

Suppose for any µ and ν; we can find a universal way to construct a transport map

that transforms µ into ν. At this point, we already have a non-parametric universality

result, but this non-parametric form will not necessarily be realizable. We would like to

establish the universality of specific parametric families of invertible neural networks,

hence the need for approximation.

The following lemma shows that if we can find a sequence of invertible maps that

approximates a transport map arbitrarily well, then the distributions of the outputs of

the invertible maps also get arbitrarily close to the target distribution. In other words,

pointwise approximation of a transport map implies distributional approximation (see

Figure 2.2).

Lemma 5. Let µ be a probability measure on Rd and {fn} be a sequence of functions

acting on µ. Assume fn → g pointwise almost everywhere. Then (fn)#µ ⇀ g#µ.

2More generally, a coupling refers to a joint probability measure whose marginals correspond to µ
and ν [Lindvall, 1992]. We restrict ourselves to the case where one variable is deterministic given the
other, since flow maps are deterministic.
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Figure 2.2: Pointwise convergence of functions (left) implies convergence of the induced distributions
(right). Suppose g is the transport map between a Gaussian base distribution µ and a target measure ν;
i.e. ν = g#µ. fn converges to g as n increases, indicated by the darker lines. When fn converges to g
(dark gray), the induced distribution also gets closer to ν.

Proof. For any h ∈ Cb, E[h(Tn(x))] → E[h(T∞(x))] by the bounded convergence

theorem.



3
CDF transforms and
monotone flows

Is there a universal way to construct a transport map for arbitrary probability distribu-

tions? What does it look like, and what kind of structure does it possess? We answer

these questions for the 1D case in this chapter and propose parameterizations of 1D

invertible architectures to approximate the universal transport map. We then generalize

it to higher-dimensional cases in the subsequent two chapters.

Our goal is to find a universal way to identify a transport map in 1D and then utilize the

structure of the transport map to design invertible flows. In R1, a simple construction

of a transport map is the cumulative distribution functions (CDF) of the probability

measures.

CDF transform, inverse CDF transform, and monotone rearrangement

A universal way to construct a transport map is via the distribution function of the

random variable [Devroye, 1986]. Let x ∈ R ∼ µ, and let Φµ(a) = µ((−∞, a])

denote the distribution function of µ. As long as µ does not have atoms (i.e. Φµ

is continuous), then Φµ(x) is uniformly distributed in [0, 1]. On the other hand,

let Φ−1
µ (b) = inf{a : Φµ(a) > b}, which is a µ-a.s. left inverse of Φµ. If U is

a [0, 1]-uniform random variable, then Φ−1
µ (U) follows the same distribution as

X . We refer to these transport maps as the CDF transform and the inverse CDF

transform. This is visualized in Figure 3.1. Now let y ∼ ν be another random

variable. Then Φ−1
ν ◦ Φµ is a monotone (in fact, non-decreasing) rearrangement

of the input satisfying Φ−1
ν (Φµ(x))

d
= y.

41
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Figure 3.1: CDF transform. The CDF Φ and the inverse CDF Φ−1 can be used to translate between a
probability distribution pX and the uniform distribution pU .

Note that CDFs and inverse CDFs are always increasing monotone functions, and

that in R1, a continuous function is one-to-one if and only if it is strictly monotone.

This characterizes invertible functions in R1, and tells us that it suffices to focus on

(increasing) monotone flows. However, usual parametric ways of performing function

approximation such as neural networks do not guarantee the learned function to be

monotone and therefore invertible. For example, the commonly used ReLU activation

function x 7→ max{0, ax + b} is not invertible, since half of the real line will be

mapped to 0. This means additional constraints are needed. We discuss a few ways to

parameterize a scalar-valued function that will always be monotone by design.

3.1 DIRECT PARAMETERIZATION

One way of parametering a monotone function is to make sure the derivative of the

function does not switch sign. Without loss of generality, we will focus on strictly

increasing monotone functions with strictly positive derivatives.
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Monotone neural network For neural networks, we can constrain the values of the

weight parameters and the activation functions to ensure monotonicity. For example, Sill

[1997] proposed the following parameterization, which is a form of maxout network1

[Goodfellow et al., 2013]:

f(x) = min
j

max
i

aijx+ bij, (3.1)

with aij > 0. The positive weights aij ensure the slope is positive, and the minimum and

the maximum operations allow the network to implement locally concave and convex

curvatures. The result is a piece-wise linear increasing function that can approximate

arbitrary differentiable increasing functions [Sill, 1997]. This architecture, however, is

not smooth, and therefore will result in a discontinuous density function if we apply the

change of variable formula, which poses a problem for likelihood optimization. For this

reason, we can choose to directly constrain the parameters of a neural net that is smooth.

A simple construction (see Figure 3.2) of a monotone network rely on the following

sufficient conditions:

Theorem 6 (Monotone neural network). A multiple-layer perceptron (1.5) is strictly

increasing, and therefore injective, if

1. all the activation functions are strictly increasing, and

2. all the weight parameters are strictly positive.

Proof. This follows from the chain rule of the derivative wrt the input variable, which

is a product of positive matrices and vectors.

This only guarantees injectivity though. For a 1D flow to be bijective from R to R, we

need it to map to all of the points in R, i.e. we want the flow to be surjective. To obtain

surjectivity, one needs to make sure the image of R through the flow is unbounded.

Therefore we cannot use bounded activation function such as sigmoid or ELU. We can

use, for example, x 7→ x+ σ(x) or some soft version of leaky ReLU.

1The minimum operator can be implemented by minj{xj} = −maxj{−xj}.
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Figure 3.2: Monotone neural network with positive weights and increasing activations.

To be more concrete, lets look at a specific instantiation of monotone network called

the deep sigmoidal flow (DSF):

f(x) = σ−1

(
∑

j

wjσ(ajx+ bj)

)
, (3.2)

where 0 < wj < 1,
∑

j wj = 1 and aj > 0.

Since all of the sigmoid activations are bounded between 0 and 1, so is the final

preactivation (which is their convex combination). The complete DSF transformation

can starts from mapping the original random variable to a different space through an

activation function, where doing affine/linear operations is non-linear in the original

variable. We then map it back through the inverse activation, which guarantees the

overall transformation is surjective.

When stacking multiple sigmoidal transformation, we realize it resembles an MLP

with a bottleneck, as shown by Figure 3.3 (left). We can generalize it to the deep

dense sigmoidal flow (DDSF), which takes the form of an MLP without a bottleneck

(Figure 3.3, right).
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Figure 3.3: Deep sigmoidal flows (DSF) on the left and deep dense sigmoidal flows (DDSF) on the right.

In this 1D case, computing the log-determinant (logdet) can be easily achieved via

standard automatic differentiation library by taking the log derivative of the function.

However, to avoid numerical issues such as underflow, it is better to incorporate

numerical tricks such as log-sum-exp to the chain rule. More details can be found in

Appendix C of Huang et al. [2018a].

When sampling is required, one has to invert monotone neural networks numerically

since a closed-form expression for inversion does not generally exist. This can be done

by applying root-finding algorithms such as bisection search or iterative methods like

Newton’s method and its variants [Dahlquist and Björck, 2008, Chapter 6].

Lastly, it is essential to address the expressive power of DSF. This discussion serves to

remind the reader of the fundamental challenge we face in designing generative models

that strike a balance between representational richness and computational feasibility.

First, note that when using DSF with a Uniform prior, we do not need the logit transform

that maps from (0, 1) to R in (3.2), since the support over the Uniform distribution is

(0, 1). If we drop the logit, the monotone transform is in fact just the CDF of a Logistic

mixture distribution. This suggests a connection between mixture models and DSF-like
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monotone flows can be made, and that we can study the expressivity of DSF by studying

the expressivity of mixture densities.

More generally, let σ : R → (0, 1) be a continuous, increasing activation function,

which is not necessarily the logistic sigmoid function. We consider monotone functions

from R to (0, 1) of the form x 7→∑K
j=1 wjσ(ajx+ bj) with wj, aj > 0 and

∑
j wj = 1,

and call flows of this type finite-sum monotone flows. If the range of σ is (0, 1), the

finite-sum flow can be seen as the CDF of a mixture density. We can show that monotone

flows of this form are universal approximators of distributions in 1D. First, we look at

how mixture densities can be used to approximate arbitrary density functions.

Let q be a probability density function, and let σq be its distribution function σq(x) =
´ x

−∞ q(y)dy. We will show that with any activation function σq constructed this way,

finite-sum monotone flows can approximate arbitrary monotonic function with range

(0, 1). We letMq denote the mixture density of the form2

K∑

j=1

wjajq(ajx+ bj),

with wj’s being a partition of unity, and aj > 0. Let P denote the set of 1D probability

density functions. The following theorem shows that with suitable smoothness condition

on q,Mq is dense inP wrt the L1 metric (i.e. the total variation of probability measures).

Theorem 7 (Universality of mixture models). If q ∈ C2 ∩ P , then Cl(Mq) = P .

This means that we can choose a sequence of mixture densities that gets arbitrarily

close to any target probability density function. As finite-sum monotone flows are the

integrals of mixture densities, they can be shown to approximate any smooth monotone

functions (specifically, CDF functions) pointwise.

2The extra aj term is a result of chain rule when we differentiate the finite-sum monotone flow using
σq as the activation function, and without it, the resulting density would not integrate to one. It can be
seen as the change of volume caused by the linear map x 7→ ajx+ bj .
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Corollary 8 (Universality of finite-sum monotone flows). If q ∈ C2 ∩ P , then for

any cumulative distribution function g, there exists a sequence of finite-sum monotone

flows fn with activation function σq that converges to g pointwise almost everywhere as

n→∞.

In other words, finite-sum monotone flows (including DSF and DDSF) can universally

transform any distribution with a continuous CDF into a uniform distribution. Note that

even though the above corollary does not require the CDF to be continuous, we will not

be able to transform a discontinuous CDF into a uniform distribution over [0, 1] since it

contains atoms3.

Sum-of-squares polynomial Another parametric family of functions that are classi-

cally used for approximation are polynomials. It is well-known that polynomials are

universal function approximators, a result known as the Weierstrass approximation the-

orem [Folland, 1999, Section 4.7], but just like neural networks, constraints need to be

imposed to the coefficients to make polynomials strictly increasing. For example, Jaini

et al. [2019] proposed to parameterize an increasing polynomial function as follows:

f(x) = b+

ˆ x

0

k∑

j=1

(
r∑

i=0

ai,ju
i

)2

du, (3.3)

which is known as the sum-of-squares polynomial (SOS) flow. As the integrand is

nonnegative, SOS flow is necessarily increasing. In practice, this integral can also be

computed exactly since it is an integral of a univariate polynomial function, which

corresponds to a higher order polynomial with constraints on the coefficients.

3However, the density of the generative flow is still capable of approximate point masses, which
is implied by Theorem 7 and the fact that point masses are just the limit of Gaussians with vanishing
variance.
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Splines Polynomial functions can be extended to piecewise polynomials, also called

splines. This gives the function extra degrees of freedom and allows us to avoid

using higher order polynomials which might not have an analytic inverse. The use

of monotone piecewise polynomials for parameterizing 1D flows was first proposed

in Müller et al. [2019], where the authors explored the idea of piecewise quadratic

functions. This was then extended to cubic spline flows proposed by Durkan et al.

[2019a], and then to neural spline flows [Durkan et al., 2019b] based on rational

quadratic splines with a better numerical stability control.

3.2 PARAMETERIZATION BY INTEGRATION

Besides direct parameterization, one can also parameterize monotone functions indi-

rectly. One way to do so is to notice that the derivative of a strictly increasing function

is strictly positive. In light of this insight, Wehenkel and Louppe [2019] proposed to

parameterize f as

f(x) = b+

ˆ x

0

f ′(u) du, (3.4)

where f ′ is a strictly positive parametric function (e.g. a neural network with a softplus

activation at the final layer). The derivative needed for computing the likelihood is

simply f ′(x). This also means we gain one order of smoothness by the integration: if

f ′ is continuous, then the integral flow f will induce a continuous density.

Unlike the sum-of-squares polynomial flow (3.3), which is a special case of this, the

integral in general does not have an analytic form. In practice, both the forward evalua-

tion of the function f(x) and the backward evaluation of its gradient wrt parameters

would rely on numerical integration methods.
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3.3 PARAMETERIZATION BY DIFFERENTIATION

A second indirect parameterization of monotone function is through differentiation,

since a monotone function is characterized by a convex integral (antiderivative).

To parameterize a strictly increasing function f , we just need to differentiate a strictly

convex function F , which means

f(x) =
d

dx
F (x). (3.5)

Just like monotone neural networks, this only guarantees injectivity. To ensure surjec-

tivity, we would require the integral F to be strongly convex. Let us defer more detailed

discussion of this to 5.2, and focus on the parameterization of a convex function F for

the moment.

Input-convex neural networks Design of scalar-output neural network architectures

convex wrt to the input variable is still an under-explored topic. Networks of this type

are called input-convex neural networks4 [Amos et al., 2017, ICNN]. We will address the

more general case of convex functions of several variables (which means the input could

be a vector). Note that for monotone neural networks, we only need to differentiate a

R → R input-convex function. Multivariable input-convex functions can be used to

generalize 1D monotone functions, as we will see in 5.2.

The key building blocks of ICNN are operators that preserve convexity [Boyd et al.,

2004, Section 3.2]:

C1 Non-negative weighted sums: if F1, ..., Fk are all convex, then
∑K

k akFk is also

convex if the weights ak are all non-negative.

4The term “input-convex” is to contrast convexity wrt the parameters.
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Figure 3.4: Input-convex neural network with positive weights (beyond the first layer) and increasing,
convex activations.

C2 Composition: if F1 : Rd → R and F2 : R → R are both convex and F2 is

non-decreasing, then F2 ◦ F1 is convex.

Using these building blocks, we can construct an ICNN (see Figure 3.4) as follows:

Theorem 9 (Input-convex neural network). A multiple-layer perceptron (1.5) is

(strictly) convex wrt the input variable if

1. all the activation functions are (strictly) increasing and convex, and

2. all the weight parameters beyond the first layer are (strictly) positive.

Proof. This follows from C1, C2 and the fact that the first layer is an affine map, which

is convex.

There are a few possible relaxations of vanilla ICNN satisfying the conditions in

Theorem 9: (1) the activation function used for the first layer does not need to be

increasing, as long as it is convex, (2) skip connection from the input layer to any

preactivation is allowed without constraint on weights, (3) any intermediate layer can
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be augmented with skip-connected units from the input layer with regular convex

activation, etc. The original ICNN proposed by Amos et al. [2017] explored (2), and

(1,3) were explored by Huang et al. [2021a].

Soft-max operation Another well-known operator that preserves convexity is the

pointwise maximum operator.

C3 Pointwise maximum: if F1, ..., FK are all convex, then maxk Fk is also convex.

However, the maximum operator is not everywhere differentiable, so the derivative

(gradient) is not continuously defined. Furthermore, simply taking the maximum of

multiple affine functions will not give us a “strictly” convex function, which makes it

undesirable for flows. To fix this problem, we can soften the maximum operator.

An idea is to use a softmax operator5 called log-sum-exp defined as x ∈ RK 7→
log
∑

k exp(xk). The log-sum-exp operator is a soft version of the pointwise maximum,

as the function x ∈ RK 7→ 1
α
log
∑

k exp(αxk) converges to maxk xk, uniformly in x

as α→∞. This is true due to the following inequality:

max
k

xk ≤
1

α
log
∑

k

exp(αxk) ≤ max
k

xk +
1

α
logK. (3.6)

Finally, lets consider the log-sum-exp as an aggregator of convex functions.

C3’ log-sum-exp: if F1, ..., FK are all convex, then log
∑

k exp(Fk) is also convex.

5Note that this differs from the softmax activation. In face, the softmax activation function acts more
like a soft version of argmax, and is the gradient of the log-sum-exp.
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Proof. We prove it for the case of differentiable Fk. To show log-sum-exp preserves

convexity, we check the first order condition. Let F := (Fk)k denote the vector of

convex functions. For any x and y, since log-sum-exp itself is convex,

log
∑

k

exp(Fk(x))− log
∑

k

exp(Fk(y)) ≥ ∇F

(
log
∑

k

exp(Fk(y))

)⊤

(F (x)− F (y))

=
∑

k

(
eFk

∑
k′ e

F ′
k

· (Fk(x)− Fk(y))

)
.

Because Fk(x)− Fk(y) is weighted by a positive coefficient, applying the convexity of

Fk yields

≥
∑

k

(
eFk

∑
k′ e

F ′
k

· ∇yFk(y)
⊤(x− y)

)
.

Now note that the first few terms in the RHS is exactly the gradient of the composed

function

∇y

(
log
∑

k

exp(Fk(y))

)
=
∑

k

(
eFk

∑
k′ e

F ′
k

)
∇yFk(y).

Putting everything together, we have showed that the composed function satisfies the

first order condition of convexity:

log
∑

k

exp(Fk(x))− log
∑

k

exp(Fk(y)) ≥ ∇y

(
log
∑

k

exp(Fk(y))

)⊤

(x− y).

C3’ tells us that we can substitute log-sum-exp for the max operator in a maxout

network [Goodfellow et al., 2013], and restricting the weight parameters beyond the

first layer to be strictly positive will give us another ICNN architecture.
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3.4 DISCUSSION

Recall that from the beginning of the chapter, we learned that continuous invertible

functions in 1D inherently possess monotonicity. Building from this insight, we pro-

posed various ways to parameterize monotone functions. It is noteworthy that these

architectures are provably universal in their capacity to approximate arbitrary increasing

functions. As suggested by Lemma 5, they induce a universal class of probability

distributions in 1D, highlighting the evident expressivity of these architectural choices.

In the following two chapters, we will extend these principles to tackle the approxima-

tion of high-dimensional couplings, providing a framework to address the scalability

challenges posed by the higher dimensions.



4
Triangle maps and neural
autoregressive flows

The previous chapter looks at the 1D case and explores a simple coupling using the

increasing rearrangement coupling, which can be approximated by monotone neural

networks (as well as other parametric monotone functions such as splines). We might

ask, how do we extend it to high-dimensional cases?

4.1 KNOTHE ROSENBLATT REARRANGEMENT

A straightforward extension of the monotone rearrangement is to look at a conditional

rearrangement scheme known as the Knothe-Rosenblatt (KR) Rearrangement [Rosen-

blatt, 1952, Knothe, 1957]. The KR map is a composition of two invertible maps. The

first transforms the source measure into a uniform measure [Hyvärinen and Pajunen,

1999] using the conditional distribution function. The second transforms the uniform

measure into the target measure using the inverse of the conditional CDF. An example

of the conditional CDF transform can be found in Figure 4.1.

Importantly, the KR map is pointwise invertible if the measures µ and ν have strictly

positive densities everywhere, since this implies the conditional CDFs are differentiable

with positive derivatives, thus strictly increasing.

Furthermore, the KR map is a triangular map, which means the j’th output of the

mapping only depends on the first j − 1 input variables.

54
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Knothe Rosenblatt rearrangement

Let µ be a probability measure absolutely continuous wrt the Lebesgue measure

in Rd. Let ν be a target probability measure we want to transform µ into. Then

we can construct a coupling KRµ→ν : Rd → Rd as follows: Let µ1 and ν1 denote

the marginal measure of the first coordinate. And define the transformation of the

first coordinate as KRµ→ν(x)1 := Φ−1
ν1
(Φµ1

(x1)). For j > 1, let

KRµ→ν(x)j := Φ−1
νj(· |KRµ→ν(x)1:j−1)

(Φµj(· |x1:j−1)
(xj)), (4.1)

where µj(· | x1:j−1) and νj(· | y1:j−1) denote the conditional probability measures.

The formal treatment of conditional probability measures requires a concept

called the disintegration of measures; see Ambrosio et al. [2008, Section 5.3].

For simplicity, µj can be seen as
´

· p(xj|x1:j−1) dxj , where the integrand is the

conditional probability density. Furthermore, KRµ→ν is a coupling; that is

(KRµ→ν)#µ = ν. See Santambrogio [2015, Section 2.3] for a proof.

Note that (4.1) can be equivalently defined as KRµ→ν = KR−1
ν→λ ◦ KRµ→λ,

where KRµ→λ is a vector field formed by the conditional CDF transforms that

map µ into the uniform (Lebesgue) measure λ:

KRµ→λ(x)j := Φµ(· |x1:j−1)(xj). (4.2)

The inverse of KRν→λ might not exist, but we can still define it using the left

inverse of the conditional CDFs (see Chapter 3):

(KR−1
ν→λ)(u)j := Φ−1

νj(· | (KR−1
ν→λ

)(u)1:j−1)
(uj). (4.3)

It is not hard to show that composing KRµ→λ with KR−1
ν→λ yields the same

mapping as KRµ→ν defined in (4.1) using an induction argument.
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Figure 4.1: KR rearrangement. The distribution on the left is transformed into the middle one by
uniformizing its x-coordinate (via the CDF transform). It is then transformed into the distribution on the
right by uniformizing the y-coordinate given the x-coordinate (via the conditional CDF transform).

4.2 NEURAL AUTOREGRESSIVE FLOWS

Inspired by the KR map, we propose Neural Autoregressive Flows (NAF), an invertible

neural network with a triangular Jacobian. NAF generalizes the affine autoregressive

flows (1.8) by replacing the conditional affine transforms with more general monotone

transforms. Formally, we define an autoregressive flow as1

f(x)t = τ(xt; c(x1:t−1)), (4.4)

where τ is a 1D (conditional) monotone transformer network introduced in the pre-

vious section used to transform the t’th variable, and c is a conditioner network that

takes all the preceding x1:t−1 as inputs and outputs the parameters of the 1D transformer.

Autoregressive conditioning The conditioner network can be parameterized by any

autoregressive model that we have seen in 1.3, which will allow the model to apply

1We use the index t instead of j here to denote the index for the t’th feature (out of d features in
total) since we are reserving j for indexing the hidden units of the monotone transformer, e.g. DSF.
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Figure 4.2: Neural autoregressive flow is an invertible map y = f(x) defined by (4.4) consisting of an
autoregressive conditioner and a monotone transformer (see Chapter 3).

masks (or a recurrent structure) to induce the autoregressive dependency. As the

conditioner outputs the parameters of the transformer (Figure 4.2), NAF falls into the

hypernetwork framework [Ha et al., 2017].

A different approach is to integrate the monotone transformer into the autoregressive

network. This way, the overall mapping has a more compact representation. De Cao

et al. [2020], for instance, introduces block-autoregressive conditioning, where each

block of the autoregressive network represents the monotone transformation of one

feature. They call the resulting model Block Neural Autoregressive Flow (B-NAF).

Comparison to Affine Autoregressive Flows While affine transforms require infor-

mation about multi-modality in f(x)t to flow through the autoregressive conditioning

(since an affine transform itself cannot change density non-uniformly), NAFs are able

to induce multi-modality more easily, via inflection points in the nonlinear monotone

transform. This is shown in Figure 4.3. Intuitively, τ is analogous to a CDF, so that its

derivative corresponds to a PDF and its inflection points yield local maxima or minima.

More formally, inflection points are where the function changes concavity. This means
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Figure 4.3: Illustration of 1D affine transform (top) vs non-linear monotone transform (bottom). An affine
transformation does not have the cabability to split mode since its curvature (second order derivative) is
constant. A non-linear monotone transform on the other hand can split a mode by being steep at some
region (i.e. expanding the space) and increase the density by decreasing the slope (i.e. contracting the
space). Therefore, the latter can induce multi-modality.

the nearby input values on the two different sides of the inflection point will be mapped

in different directions, thereby causing a maximal local contraction or expansion of

volume. We conduct more experiments to demonstrate this point in 4.6.

4.3 INVERTIBILITY AND INVERSION

Like AAF, NAF can be inverted sequentially, but unlike AAF, the conditional monotone

transformation might not have an analytic inverse function. This is the case for DSF

or DDSF, in particular, where iterative methods are needed for numerical inverting the

function. We will also see in 5.3 that if the monotone flow can be parameterized as the

derivative of a convex potential, we can invert it via convex optimization.

Another approach is to invert the mapping entirely, by applying a fixed-point type
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of algorithm, which is potentially faster than autoregressive sampling. For example,

suppose we want to find some x∗ such that y = f(x∗). For any x and a learning rate

parameter α > 0, we have x∗ = x∗ − α(f(x∗) − y). This means the inversion point

x∗ is a fixed point of the mapping T (x) := x − α(f(x) − y). The idea is to apply

this operator iteratively and hope that the algorithm will converge. Under different

assumptions on the structure of f (such as triangular structure, residual structure, and

Lipschitzness), various variants of the iterative operator T have been designed with

different kinds of convergence guarantees [Behrmann et al., 2019, Song et al., 2019,

Wiggers and Hoogeboom, 2020, Song et al., 2021b].

4.4 LIKELIHOOD COMPUTATION

Due to the autoregressive structure of (4.4), we can significantly simplify the com-

putation of the determinant of the Jacobian matrix, which is a triangular matrix now.

Specifically, this is because the t’th output f(x)t depends only on the preceding vari-

ables xt′ for t′ ≤ t, which means ∂
∂xt′

f(x)t = 0 for t′ > t. Thus, the upper half of the

matrix is filled with zeros, and its determinant is simply the product of the diagonal en-

tries, which correspond to the elementwise derivatives ∂
∂xt

f(x)t =
∂

∂xt
τ(xt; c(x1:t−1)).

This reduces the O(d3) computation of the determinant to O(d).

4.5 UNIVERSALITY

In this section, we prove that NAFs, specifically with DSF as the transformer (which we

will call NAF-DSF for brevity), can be used to approximate any probability distribution

over real vectors arbitrarily well, given that τ has enough hidden units output by generic
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neural networks with autoregressive conditioning. The idea of proving the universal ap-

proximation theorem, as described in Chapter 2, is to approximate a universal coupling

(which is the KS map in this case) between the input and target probability measures.

Recall NAF-DSF is defined as

f(x)t = σ−1

(
h∑

j=1

wtj(x1:t−1)σ(atj(x1:t−1)xt + btj(x1:t−1))

)
, (4.5)

where h > 0 is the number of hidden units, and (wtj, atj, btj) are output of an autore-

gressive conditioner network, which we assume satisfies the universal approximation

property (i.e. Theorem 1). More generally, we consider sigmoid-like activation func-

tions; i.e. σ is a strictly monotone C1 function that goes from 0 to 1.

The following theorem generalizes Corollary 8 to high-dimensional cases.

Theorem 10 (Universality of NAF-DSF). NAF-DSF of the form (4.5) are A − P

distributionally universal.

4.6 EXPERIMENTS

We conduct experiments on variational inference and density estimation to compare

with affine autoregressive flows (AAF) such as IAF and MAF.

Density estimation In Figure 4.4, we demonstrate that affine transformations can fail

to fit multi-modal distributions due to the lack of expressivity, whereas NAF can easily

do so thanks to the use of a non-linear monotone transformer. We choose 2D mixture of

Gaussians as the target data distributions. We define the modes of the Gaussians to be

laid out on a 2D grid within the range [−5, 5], and consider 2, 5 and 10 modes on each
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Data AAF NAF

Figure 4.4: Fitting grid-of-Gaussian distributions using maximum likelihood. (left) true distribution.
(center) affine autoregressive flow (AAF). (right) neural autoregressive flow (NAF)



62 TRIANGLE MAPS AND NEURAL AUTOREGRESSIVE FLOWS

Figure 4.5: The DSF model effectively captures the true posterior distribution over the frequency of
a sine wave. Left: The three observations (marked with red x’s) are compatible with sine waves of
frequency f ∈ 0.0, 0.6, 1.2, 1.8. Right: a histogram of samples from the DSF approximate posterior
(“counts”) and a Kernel Density Estimate of the distribution it represents (KDE).

dimension. While the affine flow only produces a single mode, the neural flow matches

the target distribution quite well even up to a 10x10 grid with 100 modes in total.

To demonstrate NAF is capable of fitting real-world data distributions, we replicate

the density estimation tasks proposed in Papamakarios et al. [2017], which consist of

the BSDS300 dataset [Martin et al., 2001] as well as 4 UCI datasets [Lichman, 2013]

processed the same way as Uria et al. [2013]. We only replace the affine transformer

used in MAF with DDSF (recall Figure 3.3) in their best performing architecture for

each task. Table 4.1 shows that this results in substantial performance gains, setting a

new state-of-the-art for these tasks at the time of the publication of Huang et al. [2018a].

Variational inference Recall from Equation (1.18) that normalizing flows can be

used to improve variational inference. Here we demonstrate that DSF is capable of

capturing the multi-modal posterior distribution of a Bayesian regression model. To

do so, we create a toy experiment where the goal is to infer the posterior over the

frequency of a sine wave, given only 3 datapoints. This can be seen as a simpler case

of the posterior estimation of a star-exoplanet model given some noisy observation of

radial velocity, as done in Gabrié et al. [2021]. The observation function is y(t) =
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Table 4.2: Using DSF to improve variational inference. We report the likelihood and ELBO estimates of
affine IAF with our implementation. We note that the negative log likelihood reported by Kingma et al.
[2016] is 78.88. The average and standard deviation are carried out with 5 trials of experiments with
different random seeds.

Model -ELBO log p(x)

VAE 85.00± 0.03 81.66± 0.05
IAF-affine 82.25± 0.05 80.05± 0.04
IAF-DSF 81.92± 0.04 79.86± 0.01

sin(2πf · t) and we impose a Uniform prior over the frequency: p(f) = U([0, 2]).

The task is to infer the posterior distribution p(f | T, Y ) given an artificial dataset

(T, Y ) = ((0, 5/6, 10/6), (0, 0, 0)), as represented by the red crosses of Figure 4.5 (left).

The dataset is chosen so as to create a multi-modal posterior distribution: it is likely

generated by a sine wave function of frequency f ∈ 0.0, 0.6, 1.2, 1.8. We assume the

data likelihood given the frequency parameter to be p(yi | ti, f) = N (yi; yf (ti), 0.125),

where the variance σ2 = 0.125 represents the inherent uncertainty of the data. Figure

4.5 (right) shows that DSF learns a good posterior in this task.

We also consider a more challenging amortized inference task, by applying DSF

to improve the approximate posterior of a VAE. In Table 4.2, we see that the DSF

transformer outperforms both the affine transformer used in the standard IAF and the

traditional factorized Gaussian posterior by a statistically significant margin.

4.7 DISCUSSION

In this chapter, we expand upon the foundation of monotone neural networks introduced

in the preceding chapter to approximate high-dimensional triangular couplings. This

extension not only retains the distributional universality but also benefits from an

efficient likelihood computation due to the inherent triangular structure in the Jacobian

matrix. To illustrate the potential of this framework, we introduce a specific architecture
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called the neural autoregressive flow. Through empirical evidence, we showcase its

efficacy in addressing complex density estimation and variational inference tasks,

consistently achieving competitive state-of-the-art performance.

4.8 IMPACT, RELATED WORK AND RECENT DEVELOPMENTS

When NAF was originally proposed, it was meant to address the poor inductive bias

of IAF [Kingma et al., 2016] (and its related affine transform family, including Papa-

makarios et al. [2017], Dinh et al. [2014, 2017]) for modeling multimodal distributions.

The idea of generalizing the affine transform to arbitrary monotone functions was

based off the workshop papers Huang et al. [2017b,a]. It is worth mentioning that

Goodfellow [2016] also had a few conjectures about the universality of affine coupling

flows (see Footnote 2 of the tutorial). Theorem 10 (first presented in Huang et al.

[2018a]) is the first distributional universal result for discrete-time flow with an explicit,

constrained parameterization that ensures invertibility. Following the workshop paper

Huang et al. [2017b], the theorem was originally derived based on an existence result

of the non-linear ICA problem [Hyvärinen and Pajunen, 1999], and the connection to

the KR map was later made by [Jaini et al., 2019]. Beyond universality, the statistical

consistency of triangular flows has been recently studied by Irons et al. [2022]. The

tractability of triangle maps should also be attributed to Dinh et al. [2014], where the

author made a connection between NICE and autoregressive models, and later on to

Kingma et al. [2016] and Papamakarios et al. [2017], where the connection is made

clearer. Interestingly, besides autoregressive flows, a connection between latent variable

models such as hierarchical VAEs and autoregressive models can also be drawn [Child,

2020].

Being the first general-purpose, universal flow-based density model, NAF has been

applied to many different problems. For example, Brouillard et al. [2020] applied

NAF to discover the latent causal structured for intervened data. Learning causal

structure from static data directly usually requires strong assumptions on the shape
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of the distribution (such as unimodality, Gaussianity, etc.), but these assumptions can

be relaxed when intervention is permitted, which allows for the use of more flexible

families of density models. Within the context of causal estimation, NAF (specifically

DSF) has also been used as a black-box generative model for semi-synthetic data

simulation for causal estimator benchmarking [Neal et al., 2020].

The monotone neural network used in NAF falls into a greater class of parametric

monotone transforms summarized in Chapter 3, and is the first among them to be

used for flow-based density modeling, which may have inspired the subsequent works

including Müller et al. [2019], Ziegler and Rush [2019], Durkan et al. [2019a,b],

Jaini et al. [2019], Wehenkel and Louppe [2019]. Widely speaking, monotone flows

have found applications in energy forecasting in power systems [Dumas et al., 2022],

gravitational wave analysis [Wang et al., 2021], anomaly detection [Zhang et al., 2021],

motion prediction and trajectory planning [Agarwal et al., 2020, Schöller and Knoll,

2021], variational quantum Monte Carlo for Bosonic matrix models [Rinaldi et al.,

2021], improving speech vocoding [Gabryś et al., 2021], temporal point processes

[Shchur et al., 2019], improving exploration in off-policy reinforcement learning [Ward

et al., 2019, Mazoure et al., 2020], etc.



5
Optimal transport maps
and convex potential flows

As we have seen in the previous section, one way to extend the CDF transform to

high-dimensional problems is via the KR map. We might wonder if there are other

couplings—or even better, if there are better couplings—or how couplings are compared

in the first place. To answer these questions, we resort to optimal transport theory and

draw inspiration from a specific notion of optimal coupling to parameterize an invertible

map.

5.1 OPTIMAL TRANSPORT AND BRENIER’S MAP

To measure the “efficiency” of a coupling, we first define a cost function c(x, y), which

measures how far a random particle has been displaced by the transport map. The

Monge problem [Villani, 2008] pertains to finding the optimal transport map g that

realizes the minimal cost on average

Jc(pX , pY ) = inf
g̃:g̃(X)∼pY

EX∼pX [c(X, g̃(X))]. (5.1)

A special and important example of the cost function is the squared euclidean distance

c(x, y) = ||x − y||2. In this case, the optimal cost is known as the (squared) 2-

Wasserstein distance. The Monge problem of this particular cost function has an

interesting solution, a celebrated theorem due to Brenier [1987, 1991], which gives us a

nice and somewhat convenient characterization of the optimal transport map.

67
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Brenier’s theorem, optimal transport map

Let µ, ν be probability measures with a finite second moment, and assume µ has a

Lebesgue density pX . Then there exists a convex potential G such that the gradient

map g := ∇G (defined up to a null set) uniquely solves the Monge problem in

(5.1) with the quadratic cost function c(x, y) = ||x− y||2 [Santambrogio, 2015,

Theorem 1.22]. That is, g satisfies g#µ = ν and

Eµ[‖X − g(X)‖2] = inf
g̃:g̃#µ=ν

Eµ[‖X − g̃(X)‖2].

The theorem tells us that, to approximate any distribution, we just need to be able to

approximate any convex function, since if we can do that well, we can approximate

arbitrary optimal transport map by taking the gradient of the convex potential.

5.2 CONVEX POTENTIAL FLOWS

Inspired by Brenier’s theorem, we propose to parameterize a flow using the gradient

map of a convex potential. This is visualized in Figure 5.1. But how do we guarantee

the flow is invertible? Is there a procedure to invert the flow? How do we compute

the log-determinant of the Jacobian of the flow and its gradient for model evaluation

and optimization? In this section, we answer these questions by casting the problems

of model inversion and log-probability (gradient) estimation as convex optimization

problems. This allows us to design numerical procedures to compute these quantities of

interest. Finally, we provide a few more theoretical analyses, including the universality

and optimality of the flow.
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(a) (b) (c) (d)

Figure 5.1: Illustration of Convex Potential Flow. (a) Data x drawn from a mixture of Gaussians. (b)
Learned convex potential F . (c) Mesh grid distorted by the gradient map of the convex potential f = ∇F .
(d) Encoding of the data via the gradient map z = f(x). Notably, the encoding is the value of the gradient

of the convex potential. When the curvature of the potential function is locally flat, gradient values are
small and this results in a contraction towards the origin.

5.3 INVERTIBILITY AND INVERSION

The convex potential F can be parameterized via the ICNN discussed in Section 3.3,

which itself is strictly convex. We can make it α-strongly convex by adding a quadratic

term F (x) = α
2
||x||22 + F̃ (x), where F̃ is the ICNN, such that HF � αI ≻ 0. The

reason for this parameterization, as shown by the following theorem, is to obtain a

bijective gradient map.

Theorem 11 (Invertibility of convex potential flow). Let F : Rd → R be a C2 strictly

convex mapping. Then f(x) := ∇F (x) is injective. If F is furthermore strongly convex,

then x 7→ F (x)− y⊤x has a unique minimizer, which implies f(x) is surjective.

Since F is strongly convex, the gradient map is invertible from Rd to Rd. We refer

to this invertible mapping f as the convex potential flow, or the CP-Flow. Also, the

potential F (x) − y⊤x has a unique minimizer x∗ satisfying the first order condition

∇F (x∗) = y. This implies we can plug in a black-box convex solver to invert the

gradient map f , which we summarize in Algorithm 1. Inverting a batch of independent

inputs is as simple as summing the convex potential over all inputs: since all of the

entries of the scalar l in the minibatch are independent of each other, computing the

gradient all l’s wrt all x’s amounts to computing the gradient of the summation of l’s
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Algorithm 1 Inverting CP-Flow.

1: procedure INVERT(F, y,CvxSolver)
2: Initialize x← y
3: def closure():
4: Compute loss: l ← F (x)− y⊤x
5: return l
6: x← CvxSolver(closure, x)
7: return x

wrt all x’s. Due to the convex nature of the problem, a wide selection of algorithms can

be used with convergence guarantees [Nesterov, 1998]. In practice, we use the L-BFGS

algorithm [Byrd et al., 1995] as our CvxSolver.

5.4 LIKELIHOOD AND LIKELIHOOD GRADIENT ESTIMATIONS

Likelihood estimation Following equation (1.6), computing the log density for CP-

Flows requires taking the log determinant of a symmetric positive definite Jacobian

matrix (as it is the Hessian of the potential). There exists numerous works on estimating

spectral densities (e.g. Tal-Ezer and Kosloff, 1984, Silver and Röder, 1994, Han

et al., 2018a, Adams et al., 2018), of which this quantity is a special case. See Lin

et al. [2016] for an overview of methods that only require access to Hessian-vector

products. Hessian-vector products (hvp) are cheap to compute with reverse-mode

automatic differentiation [Baydin et al., 2017], which does not require constructing the

full Hessian matrix and has the same asymptotic cost as evaluating Fα.

In particular, the log determinant can be rewritten in the form of a generalized trace

Tr logH . Chen et al. [2019a] limit the spectral norm (i.e. eigenvalues) of H and directly

use the Taylor expansion of the matrix logarithm. Since our H has unbounded eigenval-

ues, we use a more complex algorithm designed for symmetric matrices, the stochastic

Lanczos quadrature (SLQ; [Ubaru et al., 2017]). At the core of SLQ is the Lanczos
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Figure 5.2: Memory for training CIFAR-10.

method, which computes m eigenvalues of H by first constructing a symmetric tridiag-

onal matrix T ∈ Rm×m and computing the eigenvalues of T . The Lanczos procedure

only requires Hessian-vector products, and it can be combined with a stochastic trace

estimator to provide a stochastic estimate of our log probability. We chose SLQ because

it has shown theoretically and empirically to have low variance [Ubaru et al., 2017].

Likelihood gradient estimation We would also like to have an estimator for the

gradient of the log determinant to enable variants of stochastic gradient descent for

optimization. Unfortunately, directly backpropagating through the log determinant

estimator is not ideal. Two major drawbacks of directly differentiating through SLQ

are that it requires (i) differentiating through an eigendecomposition routine and (ii)

storing all Hessian-vector products in memory (see Figure 5.2). Problem (i) is more

specific to SLQ, because the gradient of an eigendecomposition is not defined when the

eigenvalues are not unique [Seeger et al., 2017]. Consequently, we have empirically

observed that differentiating through SLQ can be unstable, frequently resulting in NaNs

due to the eigendecomposition. Problem (ii) will hold true for other algorithms that

also estimate log detH with Hessian-vector products, and generally the only difference

is that a different numerical routine would need to be differentiated through. Due to

these problems, we do not differentiate through SLQ, but we still use it as an efficient

method for monitoring training progress.
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Algorithm 2 Surrogate training objective.

1: procedure SURROGATEOBJ(F, x,CG)
2: Obtain the gradient f(x) , ∇xF (x)
3: Sample Rademacher random vector r
4: def hvp(v):
5: return v⊤ ∂

∂x
f(x)

6: z ← stop_gradient (CG(hvp, r))
7: return hvp(z)⊤r

Instead, it is possible to construct an alternative formulation of the gradient as the

solution of a convex optimization problem, foregoing the necessity of differentiating

through an estimation routine of the log determinant. We adapt the gradient formula

from Chen et al. [2019a, Appendix C] to the context of convex potentials. Using Jacobi’s

formula∗ and the adjugate representation of the matrix inverse†, for any invertible matrix

H with parameter θ, we have the following identity:

d

dt
log detH =

1

detH

d

dt
detH

∗
=

1

detH
Tr
(
adj(H)

∂H

∂θ

)
†
= Tr

(
H−1∂H

∂θ

)
= Ev

[
v⊤H−1∂H

∂θ
v

]
.

(5.2)

In the last equality, we used the Hutchinson trace estimator [Hutchinson, 1989] with

a Rademacher random vector v, leading to a O(1)-memory, unbiased Monte Carlo

gradient estimator.

Computing the quantity v⊤H−1 in (5.2) by constructing and inverting the full Hessian

requires d calls to an automatic differentiation routine and is too costly for our purposes.

However, we can recast this quantity as the solution of a quadratic optimization problem

argmin
z

{
1

2
z⊤Hz − v⊤z

}
, (5.3)

which has the unique minimizer z∗ = H−1v since H is symmetric positive definite.
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Figure 5.3: Analyzing different ICNN architectures and absolute error tolerance for conjugate
gradient. “Vanilla” refers to the original ICNN proposed by Amos et al. [2017] with skip
connection from the input layer. “Aug” refers to augmenting each intermediate layer with
skip-connected units and “Dense” refers to a densely connected version of ICNN, both explored
in Huang et al. [2021a]. The experiments are conducted on the MINIBOONE dataset introduced
in Papamakarios et al. [2017]. (left) the average number of CG iterates (hvp calls) per flow
layer (top row) and the corresponding average time (in seconds) per iteration (bottom row). (top

right) validation set negative log-likelihood (exact estimate). Notice that, for atol = 1e−7, CG
iterations cap at 43 per flow layer; this is the dimensionality of the input data in MINIBOONE.
(bottom right) per-iteration time (in seconds) averaged over all training steps.
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We use the conjugate gradient (CG) method, which is specifically designed for solving

the unconstrained optimization problems in (5.3) with symmetric positive definite H .

It uses only Hessian-vector products and is straightforward to parallelize. Conjugate

gradient is guaranteed to return the exact solution z∗ within d iterations, and the

error of the approximation is known to converge exponentially fast ||zm − z∗||H ≤
2γm||z0 − z∗||H , where zm is the estimate after m iterations. The rate of convergence

γ < 1 relates to the condition number of H . For more details, see Nocedal and Wright

[2006, Ch. 5]. In practice, we terminate CG when ||Hzm − v||∞ < τ is satisfied for

some user-controlled tolerance. Empirically, we find that stringent tolerance values are

unnecessary for stochastic optimization (see Figure 5.3).

Estimating the full quantity in (5.2) is then simply a matter of computing and differ-

entiating a scalar quantity (a surrogate objective) involving another Hessian-vector

product: d
dθ

(
(zm)⊤Hv

)
, where only H is differentiated through (since zm is only used

to approximate v⊤H−1 as a modifier of the gradient). We summarize this procedure in

Algorithm 2. Similar to inversion, the hvp can also be computed in batch by summing

over the data index, since all entries are independent.

5.5 UNIVERSALITY, OPTIMALITY, AND CONNECTION TO

TRIANGLE MAPS

Since the parameterization of CP-Flow is inspired by the Brenier potential, naturally

we would hope to show that (1) CP-Flows are distributionally universal, and that (2)

the learned invertible map is optimal in the sense of the average squared distance the

input travels E[||x− f(x)||2]. Proofs of statements made in this section can be found in

Section E.2.
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Universality To show (1), our first step is to show that ICNNs can approximate

arbitrary convex functions. However, convergence of potential functions does not

generally imply convergence of the gradient fields. A classic example is the sequence

Fn = sin(nx)/
√
n and the corresponding derivatives fn = cos(nx)

√
n: Fn → 0 as

n→∞ but fn does not. Fortunately, convexity allows us to control the variation of the

gradient map (since the derivative of a convex function is monotone), so our second

step of approximation holds.

Theorem 12. Let Fn : Rd → R be differentiable convex functions and G : Rd → R

be a proper convex function. Assume Fn → G. Then for almost every x ∈ Rd, G is

differentiable and fn(x) := ∇Fn(x)→ ∇G(x) =: g(x).

Combining these two steps and Brenier’s theorem, we show that CP-Flow with softplus-

type activation function is distributionally universal.

Theorem 13 (Universality of CP-Flow). Gradient maps of ICNN with softplus-type

activation are A−P distributionally universal.

Remark 14. In the theorem we do not require the second moment to be finite, as

for arbitrary random variables we can apply the standard truncation technique and

redistribute the probability mass so that the new random variables are almost surely

bounded. For probability measures with finite second moments, we indeed use the

gradient map of ICNN to approximate the optimal transport map corresponding to the

Brenier potential.

Optimality In the following theorem, we show that the optimal transport map is the

only such mapping that we can approximate if we match the distributions.

Theorem 15 (Optimality of CP-Flow). Let G be the Brenier potential of X ∼ µ and

Y ∼ ν, and let Fn be a convergent sequence of differentiable, convex potentials, such

that∇Fn ◦X → Y in distribution. Then∇Fn converges almost surely to∇G.
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data: x z = fiaf (x) z = fcp(x)

Figure 5.4: Approximating the optimal transport map via maximum likelihood (minimizing KL diver-
gence). The datapoints are colored according to their horizontal values (x1). The flows fiaf and fcp
are trained to transform the data into a standard Gaussian prior. IAF transforms the first coordinate x1

independently of x2, and transform x2 based on the value of the corresponding x1, which causes rotation.
CP-Flow on the other hand is rotation-free, being the gradient of a potential.

The theorem states that in practice, even if we optimize according to some loss that

traces the convergence in distribution, our model is still able to recover the optimal

transport map, as if we were optimizing according to the transport cost. This allows

us to estimate optimal transport maps without solving the constrained optimization in

(5.1). See Seguy et al. [2018] for some potential applications of the optimal transport

map, such as domain adaptation or domain translation.

Connection to triangle maps As predicted by Theorem 15, CP-Flow is guaranteed

to converge to the optimal coupling minimizing the expected quadratic cost. We

empirically verify it by learning the Gaussian density and comparing the expected

quadratic distance between the input and output of the flow against J||x−y||2 between the

Gaussian data and the standard Gaussian prior (as there is a closed-form expression). In

Figures 5.4 and 5.5, we see that the transport cost gets closer to the optimal value when

the learned density approaches the data distribution (measured by the KL divergence).

We compare against the linear inverse autoregressive flow [Kingma et al., 2016], which

has the capacity to represent the multivariate Gaussian density, yet it does not learn the

optimal coupling.
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d = 2 d = 4

d = 8 d = 16

Figure 5.5: Approximating the optimal transport map via maximum likelihood (minimizing KL di-
vergence). We plot the expected quadratic transportation cost versus the KL divergence for different
numbers of dimensionality. During training the KL is minimized, so the curves read from the right to
the left. The plots show that when KL is minimized, CP-Flow tends to find the transport map that has a
smaller transportation cost. The dashed red lines indicate the optimal transport cost.
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CP-Flow is to autoregressive flows (such as IAF and NAF) what ZCA whitening is to

Cholesky whitening. ZCA whitening applies eigendecomposition to take the square

root of the covariance matrix, which leads to a positive semidefinite linear transform

(which is the gradient of a quadratic potential), whereas Cholesky whitening takes the

Cholesky decomposition, which factorizes the covariance into a product of a lower

triangular matrix with itself (which can be seen as an autoregressive linear transform).

That is, performing MLE on CP-Flow amounts to performing ZCA whitening, just

as performing MLE on linear autoregressive flow amounts to performing Cholesky

whitening, up to a re-centering. The latter case has also been discussed in Kingma et al.

[2016].

5.6 DISCUSSION

In this chapter, akin to the previous one, we extend the one-dimensional monotone

network to higher dimensions. This time, we define the invertible map as the gradient of

a convex potential, drawing inspiration from optimal transport theory. This choice natu-

rally extends the notion of monotonicity and demonstrates the capability to approximate

the gradient of any convex function, establishing the distributional universality of this

class of architectures. Additionally, for efficient training, we introduce a novel constant-

memory gradient estimator for log-likelihood using conjugate gradient methods, further

enhancing the practicality of this framework.

5.7 IMPACT, RELATED WORK AND RECENT DEVELOPMENTS

Residual Flow For α = 1, the gradient map f resembles the residual flow [Behrmann

et al., 2019, Chen et al., 2019a]. Behrmann et al. [2019] require the residual block—

equivalent to our gradient map f—to be contractive (with Lipschitz constant strictly



5.7 IMPACT, RELATED WORK AND RECENT DEVELOPMENTS 79

smaller than 1) as a sufficient condition for invertibility. In contrast, we enforce

invertibility by using strongly convex potentials, which guarantees that the inverse of

our flow is globally unique. With this, we do not pay the extra compute cost for having to

satisfy Lipschitz constraints using methods such as spectral normalization [Miyato et al.,

2018]. Our gradient estimator is also derived similarly to that of Chen et al. [2019a],

though we have the benefit of using well-studied convex optimization algorithms for

computing the gradients.

Sylvester Flow By restricting the architecture of our ICNN to one hidden layer, we

can also recover a form similar to Sylvester Flows. For a 1-hidden layer ICNN (K = 1)

and α = 1, we have F = 1
2
||x||22 + L+

2 (s(L1x)) + L2(x). Setting the weights of L2 to

zero, we have

f(x) = ∇xF (x) = x+W⊤
1 diag(w+

2 )s
′(W1x+ b1). (5.4)

We notice the above form bears a close resemblance to the Sylvester normalizing flow

[Van Den Berg et al., 2018] (with Q, R and R̃ from Van Den Berg et al. [2018] being

equal to W⊤
1 , diag(w+

2 ) and I , respectively). For the Sylvester flow to be invertible, they

require that R and R̃ be triangular and Q be orthogonal, which is a computationally

costly procedure. This orthogonality constraint also implies that the number of hidden

units cannot exceed d. This restriction to orthogonal matrices and one hidden layer are

for applying Sylvester’s determinant identity. In contrast, we do not require our weight

matrices to be orthogonal, and we can use any hidden width and depth for the ICNN.
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Sigmoidal Flow Let s be the softplus activation function and σ = s′. Then for the

1-dimensional case (d = 1) and α = 0 (without the residual connection), we have

∂

∂x
F0(x) =

∑

j=1

w1,jw
+
2,jσ(w1,jx+ b1,j)

=
∑

j=1

|w1,j|w+
2,jσ(|w1,j|x+ sign(w1,j)b1,j) + const.

which is equivalent to the sigmoidal flow we have seen in 3.1, up to a rescaling (since

the weighted sum is no longer a convex sum) and a constant shift, and is monotone due

to the positive weights. This correspondence is not surprising since a differentiable

function is convex if and only if its derivative is monotonically non-decreasing.

Flows with Potential Parameterization Inspired by connections between optimal

transport and continuous normalizing flows, some works [Zhang et al., 2018, Finlay

et al., 2020a, Onken et al., 2020] have proposed to parameterize continuous-time

transformations by taking the gradient of a scalar potential. They do not strictly require

the potential to be convex since it is guaranteed to be invertible in the infinitesimal

setting of continuous normalizing flows [Chen et al., 2018]. There exist works [Yang

and Karniadakis, 2019, Finlay et al., 2020b, Onken et al., 2020] that have applied the

theory of optimal transport to regularize continuous-time flows to have low transport

cost. In contrast, we connect optimal transport with discrete-time normalizing flows, and

CP-Flow is guaranteed by construction to converge pointwise to the optimal mapping

between distributions without explicit regularization.

Parameterization by integration Analogous to the parameterization by integration

of monotone functions (recall Section 3.2), convex gradients can also be modeled by

integrating Hessian matrices (Jacobian of the flow) with a positive-definite structure

[Lorraine and Hossain, 2019, Richter-Powell et al., 2021].
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Equivariant flows This chapter motivates the parameterization of invertible flows

via the optimal transport theory, which allows us to parameterize the flow as the gradient

map of a scalar convex potential. This is convenient, not only because the architecture

can be more compactly represented, but also because additional symmetry structures

can be easily incorporated to design density models that are invariant to various kinds

of transformation. Specifically, if the potential F is invariant to a group of unitary

transformations U , then for any U ∈ U ,

∇xF (Ux) = U⊤∇F (Ux) = ∇F (x),

where the first equality is implied by the chain rule, and the second equality is by the

invariance assumption. This implies

f(Ux) = ∇F (Ux) = UU⊤∇F (x) = Uf(x),

which means the flow map is U-equivariant [Papamakarios et al., 2021, Lemma 2]. If

furthermore, the prior density p is also invariant under U , then the resulting density

induced by the flow is also invariant [Köhler et al., 2020]. Designing invariant/equiv-

ariant neural architectures is an active research direction [Cohen and Welling, 2016,

Zaheer et al., 2017, Satorras et al., 2021], which has direct impacts on incorporating

symmetry structure into flow-based density models [Rezende et al., 2019, Köhler et al.,

2020, Bose and Kobyzev, 2021, Garcia Satorras et al., 2021].

Extension to Riemannian manifolds Due to McCann [McCann, 2001] , Brenier’s

theorem can be generalized to optimal transport problems on Riemannian manifolds.

This has motivated the generalization of CP-Flow to model probability distributions on

manifolds [Cohen et al., 2021b, Rezende and Racanière, 2021].
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Interlude: Improving expressivity via augmentation

The previous part of this thesis focuses on designing special structures in neural net-

works that satisfy the requirements & desiderata RD1-4; to wit, we want the network to

be invertible, admit a cheap-to-compute Jacobian determinant, be easy to invert, and be

sufficiently expressive for density approximation. In this part, we exposit a different

approach to improve expressivity.

Aside from the unfortunate trade-off between the computational costs of the desired

quantities and the expressivity of the invertible mappings, normalizing flows suffer from

the limitation of local dependency. Unlike latent variable models such as VAEs and

GANs which model the high-dimensional data as coordinates in a latent space, most

generative flows model the dependency among features only locally. Dependencies

of features far away from each other can only be propagated through composition of

mappings, which progressively enlarge the receptive field. Special architectural designs

like the attention mechanism are usually needed to address this issue [Ho et al., 2019a].

This is in part due to the requirement that the representation learned by an invertible map

needs to preserve the dimensionality of the data. In this part of the thesis, we introduce

an augmentation technique that allows us to construct invertible maps on an augmented

state space, thereby relaxing this requirement, and to partition the augmented state

space in creative manners. Specifically, we propose an instantiation of augmented flow

that generalizes VAE, which allows us to manipulate and edit the generated samples

and the data. We stress that this general augmentation framework is orthogonal to the

specialized structure designs discussed in the previous part of the thesis, and they can

be used conjunctively to improve the expressivity of the model.



6 State-space augmentation

Recall that normalizing flows are differentiable, bijective maps f : Rd → Rd, where

d is the dimensionality of the data. We also assume that the data distribution ad-

mits a Lebesgue density in Rd (otherwise the likelihood function can be potentially

unbounded1). The technical requirement of normalizing flows, specifically the require-

ment that allows us to use the change-of-variable formula to compute the density of

the data is that the input and output spaces of the mapping need to be of the same

dimensionality so that volumes can be meaningfully compared. In this chapter, we

construct an invertible model on an augmented input space, which when combined

with the RealNVP (1.7) satisfies all criteria RD1-4 from Part I. The motivation is that

while regular normalizing flows are restricted to operate on the domain of the data, by

making the augmented data more dependent on x, our model effectively represents x

in a higher dimensional “lifted” space (see Figure 6.1). This has the additional benefit

of sidestepping the topology-preserving property of a diffeomorphism [Dupont et al.,

2019]. Moreover, our proposed method is inspired by and generalizes multiple variants

of VAEs, and possesses the advantage of transforming the data in a more globally

coherent manner via first embedding the data in the augmented state space.

1This could happen when the data lies in a lower dimensional manifold. There have been some
recent development of designing flows on manifolds; see, for example, Brehmer and Cranmer [2020].
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Figure 6.1: Transforming data x (left) via augmented normalizing flows: Black dots and blue
dots are marginal and joint data points, respectively. First step: augment the data x with an
independent noise e. Second step: transform the augmented data e conditioned on x into z.
Third step: transform the original data x conditioned on z into y, resulting in a Gaussianized
joint distribution of (y, z)

6.1 AUGMENTED MAXIMUM LIKELIHOOD

In this section, we generalize the maximum likelihood principle (recall Section 1.1)

to augmented maximum likelihood. Estimating the likelihood of the augmented data

allows us to sidestep the aforementioned topological constraints of invertible maps

and to explore a larger family of models for better expressivity and more meaningful

representation. For augmented maximum likelihood, we couple each data point with an

independent auxiliary random variable e ∈ E drawn from q(e) (which is usually taken to

be N (0, I)), and consider a family of joint density models {pπ(x, e) : π ∈ P(X × E)}.
Instead of maximizing the marginal likelihood of xi’s, we maximize the expected joint

likelihood:

π̂A := argmax
π∈P(X×E)

Ex,e[log pπ(x, e)], (6.1)

where the expectation is over (x, e) ∼ q̂(x)q(e). We refer to this extremum estimator

as the Augmented Maximum Likelihood Estimator (AMLE). The benefit of maximizing

the joint likelihood is that it allows us to make use of the augmented state space to

induce structure on the marginal distribution of x in the original input space.
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Lower bounding the log marginal likelihood Since the entropy of e is constant wrt

the model parameter π, π̂A is equal to the maximizer of

LA(π; x) := Ee[log pπ(x, e)] +H(e), (6.2)

averaged over xi ∼ q̂(x). For any x ∈ X , the quantity log pπ(x) − LA(π; x) can be

written as the KL divergence:

log pπ(x)− LA(π; x) = DKL(q(e)||pπ(e|x)).

Since KL is non-negative, maximizing the exact joint likelihood according to Equa-

tion (6.1) is equivalent to maximizing a lower bound on the log marginal likelihood of

x. This means (6.2) is an ELBO, being a lower bound on the marginal likelihood (the

evidence). We refer to the KL as the Augmentation Gap, as it reflects the incapability

of the joint density to model e and x independently. As we will show in Section 6.2,

LA and the augmentation gap are related to the ELBO and the variational gap of VAE,

and that e and the latent representation z of a VAE are simply reparameterization of

one another. In fact, the expected joint likelihood objective (6.1) can be derived from

the variational principle (1.14) by treating e as a latent variable and using q as a fixed

approximate posterior [Chen et al., 2020].

Estimating the log marginal likelihood The log marginal likelihood log pπ(x) of

the data can be estimated in a way similar to Burda et al. [2015], by drawing K i.i.d.

samples of ej ∼ q(e) per x to estimate the following stochastic lower bound:

L̂A,K(π) := log
1

K

K∑

j=1

pπ(x, ej)

q(ej)
,

which can be shown to be a consistent estimator for log pπ(x) and is monotonically

tighter in expectation as we increase K.
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6.2 AUGMENTED NORMALIZING FLOWS

We now demonstrate how to leverage the augmented input space to model the complex

marginal distribution of the data using augmented normalizing flows (ANF). We

consider maximizing the joint likelihood of x coupled with an independent random noise

e ∼ q(e). For simplicity, we can choose q(e) to be a standard Gaussian distribution.

Second, we define a joint prior p(y, z), which we also assume to be a standard Gaussian.

Assume the data x, e is deterministically generated via an invertible mapping x, e =

Fπ(y, z), with inverse Gπ = F−1
π . Then by the change of variable formula, x, e has a

joint density

pπ(x, e) = N (Gπ(x, e); 0, I)

∣∣∣∣det
∂Gπ(x, e)

∂(x, e)

∣∣∣∣ .

In general, ANF generalizes normalizing flows in that if ∂y
∂e

= 0, ∂z
∂x

= 0 and ∂z
∂e

= I , LA

is exactly the marginal likelihood log p(x) (since p(z) = q(z)) and Gπ(x, e) reduces to

regular normalizing flow since the transformation x 7→ y is independent of e. This also

means that to improve expressivity via augmentation, we need to harness the augmented

state space E to induce a more complex marginal in X .

6.3 AUGMENTED REALNVP

Inspired by the affine coupling (1.7) proposed by Dinh et al. [2017] and how a VAE

[Kingma and Welling, 2014] correlates the latent code and the data, we conditionally

transform x and e, hoping the structure in the marginal of x can “leak” into E and make

the joint more easily Gaussianized. Concretely, we define two types of affine coupling:

genc
π (x, e) = concat(x, senc

π (x)⊙ e+menc
π (x)),

gdec
π (x, e) = concat(sdec

π (e)⊙ x+mdec
π (e), e). (6.3)
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Figure 6.2: (a) Augmented normalizing flow with autoencoding transform, i.e. augmented RealNVP,
and (b) the reverse path for generation. (c) Hierarchical augmented normalizing flow. The horizontal
connections indicate deterministic features that will be concatenated with the stochastic features in the
next transform block.

We refer to the pair of encoding transform and decoding transform as the autoencoding

transform. In practice, using the composability of invertible maps, we stack them up

in alternating order, i.e. Gπ = gdec
πN
◦ genc

πN
◦ ... ◦ gdec

π1
◦ genc

π1
for N ≥ 1 steps, where

π = {π1, ..., πN} is the set of all parameters. See Figure 6.2-(a,b) for an illustration of

a single autoencoding transform. Like regular normalizing flows, we can also stack

them up to compose the invertible functions to form a more complex, flexible invertible

map (such as the case of Figure 6.3). This particular choice of Gπ inherits properties

RD1-3 mentioned in Section I from RealNVP, and the augmentation trick allows us to

improve the expressivity of the model, as required by RD4. In contrast, the specialized

architectures, CP-Flow and NAF, from the previous chapters might not admit a closed

form inversion formula and require numerical treatments.

VAE as one-step augmented RealNVP Variational Autoencoders are a special case

of augmented normalizing flows with only “one step” of encoding and decoding trans-

form [Dinh et al., 2014]. To see this, assume the decoding distribution pθ(x|z) is

a factorized Gaussian with mean µθ(z) and standard deviation σθ(z). By letting

z = µφ(x) + σφ(x) · e and y = (x− µθ(z))/σθ(z) and applying the change of variable
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Figure 6.3: Stacked augmented NealNVP with 5 autoencoding transforms. Similarly to Figure 6.2, (a)
and (b) correspond to the forward and reverse paths, respectively.
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formula to both qφ(z|x) and pθ(x|z), we get from Equation (1.15)

L = Ee∼q(e)

[
logN (y; 0, I)−∑i log σθ,i(z) + logN (z; 0, I) +

∑
j log σφ,j(x)

]
+H(e).

Averaging over the data distribution q̂(x), we obtain the expected joint likelihood (up to

the constant H(e))

Ex,e∼q̂(x)q(e)

[
logN ((y, z); 0, I)

∣∣∣∣det
∂(y, z)

∂(x, e)

∣∣∣∣
]
.

The variational gap between the log marginal likelihood and the evidence lower bound

is equal to the augmentation gap since the KL divergence is invariant under the transfor-

mation between e←→ z:

KL(q(z|x)||p(z|x)) = DKL(q(e)||p(e|x)).

This gives us an alternative interpretation of inference suboptimality [Cremer et al.,

2018]: the inaccuracy of inferring the true posterior p(z|x) can be attributed to the

incapability of the joint density to model the augmented data q(e).

As an illustration, we model the density of a one dimensional mixture of Gaussian (1D

MoG). In Figure 6.4 (left), we plot the density histograms of the MoG distribution (blue)

and a one-step ANF, which is a VAE with Gaussian encoder and decoder (orange),

trained on the MoG samples. Not surprisingly, the latter fails to represent two well

separated modes of probability mass. In Figure 6.4 (right), we visualize the joint

density of the augmented data x, e ∼ q(x)q(e) throughout the transformation. We

see that the transformed data y, z = gdecπ1
(gencπ1

(x, e)) is not perfectly Gaussianized. In

fact, if we project it horizontally we can see that the “aggregated posterior” (marginal

of z) does not match the prior distribution p(z). As a result, the pushforward x, e =

genc,−1
π1

(gdec,−1
π1

(y, z)) of y, z ∼ p(y, z) does not follow the augmented data distribution

q(x)q(e) well. When we fix different values of x, we have different slices of density
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Figure 6.4: Density modeling of 1D MoG with VAE (aka 1-step ANF). (left) marginal distribu-
tion in the X -space. (right) joint distribution in the X × E-space. The first row is the inference
path, where the joint data density q(x)q(e) is mapped by an encoding transform (transforming e
into z conditioned on x) followed by a decoding transform (transforming x into y conditioned on
z). The second row is the generation path, where the joint prior density p(y)p(z) is transformed
by the inverse decoding (transforming y into x) followed by the inverse encoding (transforming
z into e).

functions for e, indicating that e and x are dependent and that pπ(e|x) deviates from

q(e).

We carry out the same experiment on 1D MoG with multiple flow layers, which gener-

alizes the VAE with Gaussian encoder and decoder. We set the number of flow layers

(i.e. steps) to be 5. Figure 6.3 provides a visualization of the computational graph of the

forward and the reverse paths. To furthermore demonstrate the benefit of transformation

composition, we also tie the parameters of each encoder and decoder step, separately.

That is, the same set of parameters are used at different steps of encoding and decoding

to make sure capacity stays constant. The conditional independence assumption in VAE

is relaxed, and the augmented data is more successfully Gaussianized, as can be seen in

Figure 6.5. The generated samples also follow the target joint density more closely.



92 STATE-SPACE AUGMENTATION

Figure 6.5: 5-step ANF on 1D MoG. In the inference path (top), we start with an encoding transform
that maps e to z1 conditioned on x, followed by a decoding transform that maps x into y1 conditioned on
z1. We reuse the same encoder and decoder to refine the joint variable repeatedly to obtain y5 and z5. In
the generative path (bottom), we reverse the process, starting with the inverse transform of the decoding,
followed by the inverse transform of the encoding, etc.

6.4 REPRESENTATION LEARNING WITH HIERARCHICAL

AUGMENTED FLOWS

The information flow of the encoding-decoding transform just described is limited to

the size of the random vector e, which makes it hard to optimize for more complex

settings such as natural images. We thus propose a second architecture by emulating the

hierarchical variational autoencoder, which is defined by two pairs of joint distributions

p(x, z1, ..., zL) = p(x|z1, ..., zL)
L∏

l=1

p(zl|zl+1, ..., zL)

q(z1, ..., zL|x) =
L∏

l=1

q(zl|z1, ..., zl−1, x).

This particular factorization of the variational distribution is known as bottom-up in-

ference, as opposed to top-down inference [Kingma et al., 2016] and bidirectional

inference [Maaløe et al., 2019]. When all the conditionals are Gaussian distributions,

the corresponding ELBO can be similarly rearranged to be the loss function of an

ANF (see Figure 6.2-(c)). The encoding transform for each el is conditioned on the

“transformed” preceding variables seπ,l(x, z<l)⊙ el +me
π,l(x, z<l) due to the condition-

ing in q(zl|z<l, x). This is a form of autoregressive flow, as the Jacobian matrix is

block-triangular. The decoding transform on the other hand is conditioned on the
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Figure 6.6: Lossy reconstruction. (left) original data. (right) reconstruction from the topmost repre-
sentation. Similar to training, the auxiliary variables are all randomly generated. After encoding, the
lower level representations are all resampled with independent noise drawn from the prior, which is then
combined with the topmost representation for joint decoding.

“original” preceding variables sdπ,l(e>l)⊙ el +md
π,l(e>l), which is block-wise inverse

autoregressive [Kingma et al., 2016].

As a hierarchical model, ANF with this particular invertible architecture can be used

to perform inference for the higher level representation, and sample the lower level

details for reconstruction. This is because when the conditional mappings are con-

volutional, the lower level transformation preserves information of the input locally,

which is then combined with the deterministic path of the decoding that “sees” more

of the input, thus containing information of more high-level semantics of the data.

We can then perform lossy reconstruction by sampling e1, ..., eL, obtaining the cor-

responding y, z1, ..., zL ← Gπ(x, e1, ..., eL), randomizing all but the last representa-

tions y′, z′1, ..., z
′
L−1 ∼ N (0, I), and reconstructing from the new joint representation

x′, e′1, ..., e
′
L ← G−1

π (y′, z′1, ..., z
′
L−1, zL). Similar to other hierarchical models [Gulra-

jani et al., 2017, Belghazi et al., 2018], hierarchical ANF is also capable of retaining

global, semantic information of the raw data stored in its higher level code; this is

shown in Figure 6.6. The model is trained on the CelebA dataset [Liu et al., 2015].



94 STATE-SPACE AUGMENTATION

(a)

x

x

y

e

z

z

enc

dec

(b)

x

x

y

e

z

z

enc

dec

(c)

x

x

y

e

z

z

enc

dec

(d)

x

x

y

e

z

z

enc

dec

Figure 6.7: VAEs with flow components as augmented flows with non-affine transforms (wavy curves).
(a) VAE with an amortized flow as the encoder. (b) VAE with a flow prior. (c, d) VAE with a flow-based
decoder using a conditional invertible map and a conditional base distribution.

More details can be found in Huang et al. [2020b].

6.5 FLOWIFICATION

The augmented view also allows us to look at different variants of VAE as augmented

flows with non-affine conditional or unconditional transforms. For example, as ex-

plained in Section 1.3, normalizing flows can be used to improve variational inference

to bridge the variational gap (1.16), as done in Rezende and Mohamed [2015], Kingma

et al. [2016], Van Den Berg et al. [2018] for instance. Generative flows can also be

used as a trainable prior to fill the pockets in the aggregated posterior [Chen et al.,

2016b, Huang et al., 2017b]. Other works have explored replacing the Gaussian decoder

with a generative flow [Agrawal and Dukkipati, 2016, Ma et al., 2021], or using the

decoder likelihood as the base distribution for the generative flow [Morrow and Chiu,

2020]. These models are schematically illustrated in Figure 6.7, which makes it easier

to compare them.
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6.6 AUGMENTED GLOW/FLOW++

While augmented RealNVP and its hierarchical extension make use of the partition of

the data and the auxiliary variables (x, e1, · · · ), we can in fact leverage other architec-

tures that disregard this structure. One benefit of this is that it makes it easier to see the

benefit of improved expressivity via augmentation. For example, we can replace the

autoencoding transform with a Glow-like architecture [Kingma and Dhariwal, 2018],

which extends the permutation of RealNVP to a general linear transformation (in the

case of image data, this is implemented with a 1× 1 convolution).

Concretely, suppose x is a 3D tensor representing an image data of size 3×h×w, where

each slice of the first axis corresponds to one color channel. A Glow block typically

contains a 1× 1 convolution followed by a RealNVP-type of block-wise affine coupling

(1.7), which performs an affine transform on the second half of the channels conditioned

on the first half. Usually, Glow blocks are intertwined with a split-and-squeeze operator

that reduces the resolution in half and doubles the remaining channels that will undergo

further transformations, which is known as the multiscale architecture [Dinh et al.,

2017]. For the sake of simplicity, lets assume we are not performing this operation.

For augmented Glow, we pad the image data with daug channels of white noise, i.e.

E = Rdaug×h×w.

Augmentation allows us to build invertible maps on a higher dimensional lifted space,

but the model can only be optimized by maximizing the lower bound (6.2). It still re-

mains unclear whether an augmented model trained with the lower bound can surpass an

unaugmented one. We argue that any series of Glow blocks can be equivalently imple-

mented by an augmented Glow model. This will imply the augmented family possesses

greater expressivity. We focus on the case of fully connected networks, and assume the

distribution of the augmented data q(e), the priors p(x) and p(e) are all standard Gaus-

sian. Suppose the first invertible linear layer of the Glow is characterized by the matrix

V :=
[
V1; V2

]
. We can let the first invertible linear transformation of the augmented

Glow implement the mapping (x1, x2, e1, e2) 7→ (V1

[
x1 x2

]
, e1, V2

[
x1 x2

]
, e2).

And the subsequent affine coupling just needs to neglect the e1 in the first half of the parti-
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tioning for conditioning, and only transform x2 in the second half (by outputting an iden-

tity map for e2). Similarly, for the second flow block and beyond, if the invertible linear

layer of the Glow block is characterized by a matrix W , we can let the linear map of the

augmented model implement (x1, e1, x2, e2) 7→ (W1

[
x1 x2

]
, e1,W2

[
x1 x2

]
, e2),

and likewise, let the coupling ignore e1 and e2. Since after all of the transforms, e1 and

e2 remain the same, q(e) and p(e) will cancel out in the lower bound, which means the

lower bound of the augmented Glow is tight and is actually equal to the likelihood of

the Glow model. More formally,

Proposition 16. Let g be a Glow model, i.e. each flow layer consists of an invertible

linear map and a block-wise affine coupling (1.7) on Rd. Denote its likelihood function

by log pg. For any augmented dimension daug > 0, we can find a Glow model G

on Rd+daug such that its marginal likelihood and ELBO (6.2) satisfy log pG(x) =

LA(G; x) = log pg(x).

The result can be easily extended to convolutional models by replacing the linear maps

with a 1 × 1 convolution. Furthermore, the same can be said about RealNVP with

alternating directions of conditioning, which has been shown to be able to represent any

invertible linear map with a constant number of flow layers [Koehler et al., 2021].

6.7 IMPACT, RELATED WORK AND RECENT DEVELOPMENTS

Augmented flows Much of the work presented in this chapter is inspired by Dinh

et al. [2014], who first interpreted VAE as NICE, and by Dupont et al. [2019], who

discussed the representational limitation of neural ODE and proposed to augment it.

Independently and concurrently to ours, Chen et al. [2020] also explored the idea of

variational augmentation. Nielsen et al. [2020] generalized augmentation and interpreted

it as a surjective map via the projection operation involved in marginalization. Grcić et al.

[2021] applies the augmentation technique incrementally and couple the features via
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densely connected layers. In Chapter 8, we explore continuous-time diffusion models,

which can be interpreted a kind of augmented neural ODE [Chen et al., 2018], which

injects noise to every time step, unlike Dupont et al. [2019]. Dockhorn et al. [2022]

further augment the state space with a velocity variable to accelerate the convergence

of the diffusion dynamics.

Theoretical result The improved expressivity result is from a concurrent work by

Chen et al. [2020], which better fits the narrative of the thesis. In the original preprint

Huang et al. [2020b], we also proved the distributional universality of augmented

RealNVP, but the construction results in degeneracy; the approximate flows have a

singular Jacobian, which means they are not invertible. The transport map used therein

is an accelerated version of the probability flows induced by the overdamped Langevin

diffusion from Taghvaei and Mehta [2019], Wang and Li [2019]. It was later improved

by Lee et al. [2021], who approximated the probability flow of the underdamped

Langevin dynamics [Ma et al., 2019]. They focus more on the conditioning of the

Jacobian and therefore require restriction to log-concave data distributions. Aside from

augmented RealNVP, universality of RealNVP-type of coupling has also been studied

in the work of Teshima et al. [2020a], Koehler et al. [2021].

Applications The augmentation framework is also compatible with certain structures

that are desirable for different applications. For example, Dibak et al. [2021] explored

augmented flows to sample from equilibrium states of many-body systems with different

temperature parameters, which they termed temperature steerable flows. Rezende

et al. [2019] proposed to learn an augmented Hamiltonian neural ODE to incorporate

symmetries as inductive bias for learning invariant densities. Rasul et al. [2019]

uses augmentation within the context of learning permutation invariant densities of

exchangeable sets. Similar to the hierarchical augmented flows in Section 6.4, Ma

et al. [2021] introduced latent variables to decouple global and local representations of
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image data. Ho et al. [2021] improved the compression efficiency of VAE using ANF.

More recently, ANF has also been applied to model coarse-grained potential function

for molecular simulation [Köhler et al., 2022], emulate long time-scale molecular

dynamics [Klein et al., 2023], and incorporate SE(3) symmetry in modeling small

peptides [Midgley et al., 2023].
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Continuous-time flows

Recall that in part I, we have looked at a few ways to construct probability flows that

are provably flexible, by designing the invertible map to approximate certain types of

coupling. This means a single layer of flow is guaranteed to be universal given enough

capacity in the invertible architecture, e.g. the autoregressive monotone transformation

and the input convex neural network. Another way to improve expressivity is by

stacking the flows. We can do this since the composition of invertible maps is still

invertible, and the overall Jacobian determinant can be decomposed into a product of

Jacobian determinants of all of the flow layers. A natural parameterization of a flow of

this type is to consider the dynamic of an ordinary differential equation (ODE), which

we will see in Chapter 7. These continuous-time flows are very flexible, as they can be

parameterized by neural networks with free-form Jacobian matrices directly, and they

can be seen as an infinitely deep invertible model.

The cost of having greater expressivity by parameterizing the flow this way is that

evaluating likelihood requires resorting to numerical solvers which are not compatible

with parallel computing. In Chapter 8, we instead look at the probability flow induced

by a stochastic differential equation, i.e. a diffusion process, which generalizes an ODE

to include a stochastic integral. There are many benefits of this stochastic generaliza-

tion. Predominantly, it allows us to design a likelihood estimation scheme that can

be computed in O(1) time, which makes training much more scalable. An interesting

reparameterization of the model also reveals a non-trivial connection to score match-

ing. As a diffusion model is essentially an infinitely deep VAE, this unifies gradient

parameterization of EBM with generative flows and VAE (recall the likelihood-based

generative model taxonomy in Table 1.1).



7
Deterministic
continuous-time flows

In this chapter, we review deterministic continuous-time flows, which is an important

family of flows defined as the solution of an ordinary differential equation. We also

provide theoretical analysis of the distributional universality of continuous-time flows.

7.1 NEURAL ORDINARY DIFFERENTIAL EQUATIONS AND FLOW

MAPS

An ordinary differential equation (ODE) has the following form

dXt = v(Xt, t) dt, (7.1)

where v can be interpreted as the velocity at which a particle travels at a particular

location and time, starting from some initial position X0 = x0. We assume v is t-

uniformly Lipschitz in x, which implies this initial value problem is guaranteed to have

a unique solution [Coddington and Levinson, 1955]. The solution of the ODE is then

the curve Xt of positions the particle travels through, starting from x0 at t = 0.

Neural ODEs are parametric ODEs (where v is parameterized by an Rd × [0, T ]→ Rd

neural network) that can be trained via gradient-based optimization. This is typically

done by using a continuous analog of back-propagation known as the adjoint method

[Chen et al., 2018], which amounts to solving another reverse-time ODE. The ODE

can be solved by using any black-box numerical solver. Suppose the numerical solver

101
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requires m steps (O(m) time) to converge or terminate; m either is a hyperparameter,

or implicitly depends on the step size of the solver or a pre-specified error tolerance for

adaptive methods. A crucial property of the adjoint method for computing gradients is

that we do not need to store all the intermediate (hidden) values of Xt, which means

the space complexity is O(1). See Chen et al. [2018] for more details.

The constant-memory cost for the adjoint method used in Chen et al. [2018] is owing

to the fact that all Xt can be recovered by solving (7.1) reversed in time. Let f(x, t)

be the value of Xt with initial condition X0 = x. It can be shown that f is a bijective

map from Rd to Rd, which makes it suitable for modeling the transformation between

densities. Furthermore, f and its inverse f−1 are both Lipschitz continuous, which

means f is a bi-Lipschitz homeomorphism [Santambrogio, 2015, Box 4.1].

As f(x, t) is a continuum of invertible maps, it induces a probability flow starting

from the initial law of X0. That is, if x0 ∼ p(x, 0), then f(·, t) induces a family of

probability densities p(x, t) indexed by t. In the rest of the section, we will spend a bit

of time on this change of density from two perspectives. First, we adopt the Eulerian

formalism, drawing a parallel to the mass flow rate in fluid dynamics by looking at the

fluid motion at a specific location and time [Deen, 1998]. The result of the derivation is

a partial differential equation (PDE) summarizing the temporal change in p(x, t). We

then convert it to the Lagrangian framework, which allows us to trace the change of

density of a “moving particle”. This gives us a computational advantage, as the change

of density can be readily computed by solving an augmented ODE. We emphasize that

the derivation is not rigorous, and that we will refer to standard references for the formal

treatment. The point of the discussion made in this section is to provide a physical

intuition of continuous-time flow and its change of density.

Lastly, the probability flow induced by an ODE is immensely flexible. We will study

the distributional universality of continuous-time flows in Section 7.5.
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Figure 7.1: The mass flow rate pv · n∆S through an infinitesimal patch on a sphere.

7.2 CONSERVATION OF MASS AND CONTINUITY EQUATION

For illustration, we consider a three dimensional space filled with a fluid. Fix some

location x ∈ R3 and time t ∈ (0, T ). We look at the density of the fluid passing through

x at time t. Let p(x, t) be the mass density and assume the total mass is 1 (so that we

can interpret it as a probability later on). Let B be a fixed subregion in R3 (e.g. an open

ball), and mt(B) be the total amount of mass in B at time t, defined as

mt(B) :=

ˆ

B

p(x, t) dx. (7.2)

By definition, the rate of change of mass in B is equal to

∂mt(B)

∂t
=

ˆ

B

∂p

∂t
dx. (7.3)

We make the assumption that mass cannot be created or destroyed. This implies the

change of mass in B must be due to the particles leaving or entering B through its

boundary ∂B, since Xt moves continuously. Let n be an outward normal of ∂B. The

volumetric flow rate of the fluid through ∂B per unit of area is v · n. Let ∆S be the

area of an infinitesimal patch on ∂B. See figure 7.1. Then the mass flow rate through

the patch is pv · n∆S, and the total change of mass per unit of time in B can be
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approximated by

−
∑

pv · n∆S, (7.4)

where the minus sign is because n points outward, and the quantity pv is known as the

mass flux, i.e. the change in mass per unit of area and time. By refining the partitioning

of B (taking ∆S → 0), this converges to the surface integral. That is,

ˆ

B

∂p

∂t
dx = −

‹

∂B

(pv) · dS. (7.5)

Formally, this means that the rate of increase of mass in B is equal to the rate at which

mass enters B through ∂B. Applying the divergence theorem to the RHS, we have

ˆ

B

∂p

∂t
dx = −

ˆ

B

∇ · (pv)dx. (7.6)

Since this identity holds for any B with sufficiently smooth boundary, we have

∂p

∂t
= −∇ · (pv) (7.7)

which is known as the differential form of the law of conservation of mass, or the

continuity equation.

We note that this derivation is more of a heuristic. A more general version of the

continuity equation also exists, where we do not even require the initial law of X0 to

have a density (e.g. it can be discrete- or mixed-valued). For a formal treatment, see

Santambrogio [2015, Propositions 4.2 and 4.3]. The continuity equation is a special

case of the Fokker-Planck equation associated with a stochastic differential equation

with zero diffusion, also known as the Liouville equation. We will see more of this in

the next chapter.
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7.3 INSTANTANEOUS CHANGE OF VARIABLE

The continuity equation is a first-order PDE that governs the temporal change in the

density by relating it to the spatial derivative of the flux. We can relate it to the

instantaneous change of the density around a moving particle Xt, as opposed to a fixed

position x. To that end, we apply the product rule of the divergence operator and obtain

−∇ · (pv) = −v · ∇p− p∇ · v,

which means

∂p

∂t
+ v · ∇p = −p∇ · v. (7.8)

The first term of the LHS is due to the temporal change of the density and the second

term is driven by the particle’s motion, i.e. convection. Overall the LHS is called

the material derivative of p, which accounts for the fact that the particle is moving.

Mathematically, this is simply the total derivative of p evaluated at Xt and time t;

therefore

d

dt
p(Xt, t) = −p∇ · v. (7.9)

This leads to the instantaneous change of variable formula

d

dt
log p(Xt, t) = −∇ · v (7.10)

or in the integral form

p(Xt, t) = p(X0, 0)e
−
´ t

0 ∇·v(Xr,r) dr (7.11)

Compared to the continuity equation, the instantaneous change of variable provides

a Lagrangian view of the density function—it traces the change of density along the
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trajectory of Xt. This also makes it useful for computing the change in density induced

by the flow. To evaluate the log-likelihood log p(x, T ) for some data point x, one just

needs to (1) take x as the terminal condition, solve the ODE reversed in time, (2) at the

same time accumulate the infinitesimal log-change of volume −∇ · v by augmenting

the ODE with a new state that represents the delta in log p, and (3) evaluate the resulting

“initial” state under the prior p(·, 0).

7.4 DIVERGENCE ESTIMATOR

Naive computation of the divergence of the vector field can be costly, as it scales O(d2)
in time. As a practical remedy proposed by Grathwohl et al. [2019], it can be unbiasedly

estimated using the Hutchinson trace estimator [Hutchinson, 1989] along with the

reverse mode automatic differentiation for the computation of vector-Jacobian products.

This estimation scheme costs O(d) time.

Concretely, since the divergence operator is simply the trace of the Jacobian, we have

∇ · v = Tr(∇v) = E[z⊤∇vz] ≈ 1

m

m∑

i=1

z⊤i ∇vzi,

for i.i.d. random vectors zi satisfying E[zi] = 0 and E[ziz
⊤
i ] = I . To compute this

quantity, we can first differentiate the inner product z⊤i v (or equivalently differentiate

the vector-valued function v while letting the “reverse accumulation” of the gradient be

zi) to obtain z⊤i ∇v and then inner product with zi again.

If z is a Rademacher random vector (i.e. the symmetric Bernoulli zi = ±1 with equal

probability), for a general matrix A, the variance of the estimator z⊤Az is [Hutchinson,
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1989, Proposition 1]

Var(z⊤Az) =
1

2
‖A+ A⊤‖2F −

1

2
Tr(A+ A⊤)2 ≤ 2‖A‖2F − 2Tr(A)2 = O(‖A‖2F ).

(7.12)

This suggests this estimator has smaller variance when the off-diagonal entries have

smaller values. The variance vanishes if the off-diagonal terms are all zeros.

7.5 UNIVERSALITY

Continuous time flows are extremely expressive, in that the constraints on the flow

maps are very mild, which is manifested by the fact that there is no strong restriction on

the Jacobian.1 This also makes it easier to analyze its expressive power.

Let p and q be two probability densities. From part I, we have seen a few ways to

construct a coupling g : Rd → Rd such that g#p = q. Our goal here is to construct an

ODE whose terminal flow map is a coupling; this is known as a dynamical coupling.

Suppose we can find a smooth interpolation between g and the identity map g(x, t)

which satisfies

g(x, 0) = x and g(x, 1) = g(x). (7.13)

Lets also assume x 7→ g(x, t) is diffeomorphic for all t ∈ [0, 1]. Then we can extract a

vector field by viewing g(x, t) as the flow map generated by the vector field, i.e.

v(g(x, t), t) =
∂g(x, t)

∂t
, (7.14)

1In the literature, this is known as free-form Jacobian [Grathwohl et al., 2019]
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which means2

v(x, t) =
∂g(g−1(x, t), t)

∂t
, (7.15)

where g−1(x, t) is the inverse of g(x, t).

Take the Brenier map (the optimal transport map from Section 5.1) as an example,

which can be written as g = ∇G for some convex potential G. Now set g(x, t) to be

the linear interpolation between the identity map and g(x), i.e.

g(x, t) = tg(x) + (1− t)x, (7.16)

which by Theorem 11 is injective since g(x, t) can be seen as the gradient map of
1−t
2
‖x‖2 + tG(x), which is strongly convex. This is also known as the dynamical

optimal coupling [Villani, 2003, Theorem 5.5] between p and q. In this case, the particle

will be traveling at a constant speed, since

v(x, t) = g(g−1(x, t))− g−1(x, t), (7.17)

which can be identified by g(x0)− x0 where x0 = g−1(x, t) is the initial value of the

particle that ends up at x at time t.

As another example, consider the KR map KRp→q (4.1). The linear interpolation

between the identity map and the KR map is still invertible since

g(x, t)j = (1− t)xj + tKRp→q(x)j (7.18)

is invertible in xj given x1:j−1 and does not depend on x>j .

These give us dynamical couplings and their associated velocity fields. What we need to

do next is to show that we can approximate the dynamical couplings by approximating

the velocity fields, which is the trainable degree of freedom.

2Note that the partial derivative is wrt the second t.
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Given a uniformly Lipschitz velocity field v(x, t) of an ODE dx = v(x, t) dt, we

let φv(x, t) denote the associated flow map, i.e. φv(x, 0) = x and ∂
∂t
φv(x, t) =

v(φv(x, t), t). The following theorem says that parametric ODE with a universal

velocity field (such as neural ODE) is a universal approximator of flow maps.

Theorem 17 (Universality of parametric flow map). Let V be a family of (parametric)

Lipschitz functions that is is dense (wrt the uniform metric) in C(K× [0, T ];Rd) for any

compact domain K ⊂ Rd. Let v(x, t) : Rd × [0, T ]→ Rd be a velocity field uniformly

Lipschitz in x for all t, and continuous in t. Then for any compact set K ∈ Rd, we can

find a (parametric) velocity v′ ∈ V such that supx∈K,t∈[0,T ] ||φv′(x, t)− φv(x, t)|| ≤ ǫ.

We note that a similar result has been proved by Teshima et al. [2020b] (see their

Lemma 2), as our time-dependent ODE can be converted into an autonomous ODE.

However, we stress that the enclosing domain K ′ that we choose in the proof is tighter

than theirs and shrinks to K as ǫ→ 0, and that our proof is more constructive, whereas

theirs is a proof by contradiction.

Combining this theorem and the dynamical couplings, we deduce that neural ODEs are

distributionally universal.

Theorem 18 (Universality of Neural ODE). Flow maps of neural ODE are A −P

distributionally universal.

7.6 DISCUSSION

In this chapter, we look at a different family of invertible maps induced by ODEs.

We start by deriving the likelihood function from the bystander’s view (the Eulerian

formalism), which shows the change of density in time at any location is related to the

net mass flux out of the point. To allow for tractable likelihood computation, we then

adopt the Lagrangian formalism which provides a perspective following the system’s
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particles evolving through time and space, leading to the instantaneous change-of-

variable formula [Chen et al., 2018].

To highlight the expressive power of continuous-time flows, we show that the flow maps

induced by neural ODEs can approximate the dynamical optimal coupling. However,

we can in fact use other dynamical couplings, such as the linearized KR map, the

probability flow of the Langevin dynamics (see the next chapter where we discuss

the notion of marginal equivalency, and how to extract an equivalent ODE out of an

SDE), the Dacorogna-Moser map [Dacorogna and Moser, 1990, Rozen et al., 2021], etc.

This shows the desirable flexibility of Neural ODEs. However, training a neural ODE

still requires numerical integration. In practice, this is equivalent to having hundreds

or thousands of layers, depending on the complexity of the dynamics, which makes

training expensive. One remedy for this is to regularize the dynamics to encourage

the ODE to have simpler trajectories [Finlay et al., 2020b]. In the next chapter, we

explore a different approach, by injecting noise to the deterministic dynamics, which

results in a diffusion process. We will derive a variational framework for likelihood

estimation of diffusion models, which has profound connections to generative flows

like neural ODE, VAEs, and score matching. The extra degree of freedom introduced

by the stochastic perturbation allows us to design inference machines that can query

the representation at any time step without recourse to numerical integration, thereby

enabling simulation-free training at scale.



8
Stochastic continuous-time
flows

In this section, we generalize the deterministic dynamics described in the previous

section to the setting where an infinitesimal amount of white noise is added at every

time step, to create a diffusion process. This additional degree of freedom will allow

us to design the model and training procedure to further simplify the computation of

likelihood for training so that we will not have to rely on numerical integration as in the

case of a neural ODE (see Section 8.6). This will be the key to obtaining a scalable

density model that is not just tractable.

The main development of the variational framework is split into Sections 8.3 and

8.4. We also derive theoretical connections to VAE in 8.5 and score matching for

energy-based models in Section 8.7.

8.1 NEURAL STOCHASTIC DIFFERENTIAL EQUATIONS AND

DIFFUSION PROCESSES

Let Xt be a diffusion process induced by the following Itô SDE [Øksendal, 2003]:

dX = µ(X, t) dt+ σ(X, t) dBt, (8.1)

where Bt is a standard Brownian motion. We assume the dynamics has a stochastic

initial condition X0 ∼ p0, namely the prior, which induces a family of densities

111
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Xt ∼ p(·, t). We refer to this SDE as the generative SDE, and we are interested in

computing log p(x, T ) for maximum likelihood.

The rigorous treatment of the Itô SDE can be found in Øksendal [2003], Karatzas

and Shreve [2014], Protter [2005]. Intuitively, it can be thought of as the limit of the

following discrete-time dynamics (by taking the step size parameter ∆t to 0, Milshtein

1975):

Xi+1 = Xi +∆tµ(Xi, i∆t) +
√
∆tσ(Xi, i∆t)ǫi, (8.2)

where ǫi’s are i.i.d. standard Gaussian noise. This is known as the Euler-Maruyama

(EM) method for numerically integrating an Itô SDE.

In the discrete-time case, we already know that diffusion models do not come with a

convenient change-of-variable formula since noise is injected. Consequently, maxi-

mizing likelihood becomes a challenging task. To address this issue, we approach it

directly from a continuous-time perspective in the following sections. In Section 8.3,

we expand upon the previous discussion on deterministic dynamics in Section 7.3 and

extend the instantaneous change-of-variable formula to encompass stochastic dynamics

Similar to a latent variable model, the resulting change-of-variable formula involves an

intractable integral due to the stochasticity of the model. Considering this complexity,

we proceed to derive an ELBO for continuous-time diffusion models in Section 8.4,

which bears resemblance to the ELBO used in VAEs.
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8.2 KOLMOGOROV FORWARD (FOKKER-PLANCK) EQUATION

The density p(x, t) can be shown to follow the Kolmogorov forward (or the Fokker-

Planck) equation [Gardiner, 2009, Pavliotis, 2014]1:

∂tp(x, t) = −
∑

j

∂xj
[µj(x, t) p(x, t)] +

∑

i,j

∂2
xi,xj

[Dij(x, t) p(x, t)], (8.3)

with the initial value p(·, 0) = p0(·), where D = 1
2
σσT is the diffusion matrix.

Fokker-Planck equation is an extension of the continuity equation we have seen in

Section 7.2. It describes the temporal change of the density function via the spatial

variations, as the change in density is caused by the deterministic flux and the stochastic

perturbation. Heuristically, if we assume the diffusion matrix is constant and x ∈ R,

then the probability will dissipate locally where the density is concave, and the mass

will flow into regions where the density is convex. When σ = 0, this boils down to the

continuity equation (7.7).

Solving the Fokker-Planck PDE in general is non-trivial since µ and D can be very

complex, non-linear functions of x and t. One possibility is to resort to numerical

solutions, but numerical methods often fail in the face of the curse of dimensionality

[Han et al., 2018b]. Thus, we approach the Fokker-Planck PDE in a different manner.

8.3 STOCHASTIC INSTANTANEOUS CHANGE OF VARIABLE

Inspired by the derivation of the instantaneous change of variable formula for an ODE,

we would like to simplify the PDE-solving problem by adopting a Lagrangian view.

However, the additional stochastic term makes it impossible to revert the dynamics

directly, since the Brownian motion is not an observed quantity. In other words, we

1See G.1 for a summary of notation used in this chapter for clarification.
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cannot extract the velocity out of the Fokker-Planck PDE to account for the change in

density contributed by convection (the particle’s motion)2 like (7.8). This suggests we

need to consider an ensemble of trajectories leading to a particular observation x.

We start by inspecting the Fokker-Planck PDE by expanding it using the product rule

and rearranging the terms so that all the coefficients of the same order of differentiation

are grouped together:

∂tp(x, t) =

[
−∇ · µ(x, t) +

∑

i,j

∂2
xi,xj

Dij(x, t)

]
p(x, t) +

∑

i

[
−µi(x, t) + 2

∑

j

∂xj
Dij(x, t)

]
∂xi

p(x, t) +
∑

i,j

Dij(x, t)∂
2
xi,xj

p(x, t),

(8.4)

For simplicity, we assume the diffusion term σ is independent of x throughout this

chapter (except in the appendix, we provide a general formula that extends the following

derivation). With this simplification, (8.4) reduces to

∂tp(x, t) = − (∇ · µ(x, t)) p(x, t)− µ(x, t)⊤∇p(x, t) +D(t) : Hp(x, t), (8.5)

where : denotes the Frobenius inner product between matrices.

Even with this simplification, solving (8.5) is still not trivial. Fortunately, we notice that

(8.4) and (8.5) are a specific kind of second-order linear PDE called parabolic PDE.

The solution to this type of PDE has a convenient probabilistic representation, known

as the Feynman-Kac formula.

Theorem 19 (Feynman-Kac representation, Chapter 5.7 of Karatzas and Shreve

[2014]). Let T > 0. Let y and ς be the spatial and temporal arguments to the function

2We will see in 8.7 that we can in fact still find an ODE by merging the second-order term into the
first order term, but the velocity of this ODE will involve an intractable score function of the probability
flow.



8.3 STOCHASTIC INSTANTANEOUS CHANGE OF VARIABLE 115

F-K F-P

v(y, ς) p(y, T − ς)

c(y, ς) −∇ · µ(y, T − ς)
b(y, ς) −µ(y, T − ς)
η(y, ς) σ(T − ς)
g(y) p0(y)

Table 8.1: Feynman-Kac (F-K) coefficients for solving the Fokker-Planck (F-P) equation.

v ∈ C2,1(Rd × [0, T ]) solving

∂ςv + cv + b⊤∇v + A : Hv = 0, (8.6)

with the terminal condition v(y, T ) = h(y), where A = 1
2
ηη⊤ for some matrix-valued

function η(y, ς). Assume there exist some constants Bh, Bv > 0 and ph, pv ≥ 1 such

that h ∈ C0(Rd) and v ∈ C2,1(Rd × [0, T ]) satisfy

|h(y)| ≤ Bh

(
1 + ‖y‖2ph

)
or h(y) ≥ 0 (8.7)

max
0≤ς≤T

|v(y, ς)| ≤ Bv

(
1 + ‖y‖2pv

)
. (8.8)

Then v can be written as

v(y, ς) = E

[
h(YT ) exp

(
ˆ T

ς

c(Ys, s) ds

) ∣∣∣∣∣Yς = y

]
, (8.9)

where

dY = b(Y, s) ds+ η(Y, s) dB′
s, (8.10)

with the initial datum Yς = y, and B′
s is a Brownian motion.

To apply the representation formula (8.9) to the density p(·, T ) solving the PDE (8.5),

we can apply the change of variable p(x, t) := v(x, T − t) to turn it into a terminal
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value problem, and let the Feynman-Kac (F-K) coefficients correspond to their Fokker-

Planck (F-P) counterparts according to Table 8.1. This way, solving (8.6) backward is

equivalent to solving (8.5) forward, and we have the following representation of the

marginal density at T :

p(x, T ) = E

[
p0(YT ) exp

(
ˆ T

0

−∇ · µ(Ys, T − s) ds

) ∣∣∣∣∣Y0 = x

]
(8.11)

where Ys is a diffusion process solving

dY = −µ(Y, T − s) ds+ σ(T − s) dB′
s. (8.12)

Remark 20 (Marginalization & mixture density). Equation (8.11) allows us to in-

terpret diffusion models as mixtures of continuous-time flows induced by a neural

ODE. Essentially we can treat the Brownian motion B as a latent variable. Let B be

given, and we are interested in how the density evolves following the dynamics (8.1).

We can discretize time into multiple infinitesimal intervals and view the continuous-

time dynamics as the limit of applying infinitely many invertible maps of the form

x 7→ x + µ(x, t)∆t + σ(t)∆Bi, where ∆Bi := B(i+1)∆t − Bi∆t is the Brownian in-

crement. When the step size decreases to 0, this should converge to the Itô integral.

Furthermore, when ∆t is small enough, under the assumption that µ is uniformly

Lipschitz, the finite approximation will be invertible for all steps.

Now, to see how this relates to continuous-time flows of ODEs, since the diffusion term is

independent of the spatial variable, it can be seen as a constant additive transformation,

which is volume-preserving, so it will not be taken into account when computing the

change of density. The only contribution to the change of density will be from id + µ∆t.

Concretely, the determinant of the Jacobian of the overall transformation is just the



8.3 STOCHASTIC INSTANTANEOUS CHANGE OF VARIABLE 117

product of determinant of each step:

∏

i

det
(
∇ (x+ µ(x, t)∆t+ σ(t)∆Bi)

)
=
∏

i

det
(
I+∆t∇µ

)

=
∏

i

(
1 + ∆tTr(∇µ) +O(∆t2)

)

= exp

(
∑

i

log
(
1 + ∆t∇ · µ+O(∆t2)

)
)

= exp

(
∑

i

∆t∇ · µ+O(∆t2)

)

→ exp

(
ˆ

∇ · µ
)

as ∆t→ 0.

This leads to the same derivation for the instantaneous change of variable formula for

continuous-time flow [Chen et al., 2018], but the argument of µ will be the solution to

the reverse-time SDE involving an Itô integral, which is not a deterministic dynamics.

This will be the conditional density given the entire sample path {Bt : t ≥ 0}, and

marginalizing it out results in the expectation in (8.11).

This framework also works with the general case where σ depends on x, but the

formulae need to be adapted to account for the spatial partial derivatives. Following a

similar conversion as in Table 8.1, we have the following general representation formula

for the Fokker-Planck equation (8.4).

Theorem 21 (Probabilistic representation of the Fokker-Planck equation). Let p

be a time-indexed density function solving the Fokker Planch equation (8.4), and let

p(·, 0) = p0(·) be the initial value. Then p has the following representation:

p(x, T ) =

E

[
p0(YT ) exp

(
ˆ T

0

−∇ · µ(Ys, T − s) +
∑

i,j

∂2
xi,xj

Dij(Ys, T − s) ds

) ∣∣∣∣Y0 = x

]

(8.13)
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where Ys solves

dY = −µ̃(Y, T − s) ds+ σ(Y, T − s) dB′
s, (8.14)

where µ̃(y, s)i := µi(y, s)− 2
∑

j ∂xj
Dij(y, s).

Lastly, note that this section and the previous one mirror the discussion made in

Sections 7.2 and 7.3—the Fokker-Planck equation describes the change in density at

a fixed position (a Eulerian view), whereas the stochastic instantaneous change-of-

variable formula tells us how the density evolves along an ensemble of trajectories (a

Lagrangian view), which results in the marginalization. This is also more convenient

computationally, since we just need to solve an SDE instead of a PDE. See Remark 24

below for more details on numerical integration.

8.4 CONTINUOUS TIME ELBO

As our goal is to estimate likelihood, we would like to compute the log density value

using (8.11), or (8.13) more generally. However, this involves integrating out all

possible Brownian paths, which is intractable. To resolve this, we view the Brownian

motion as a latent variable and perform inference by assigning a higher probability to

sample paths that are more likely to generate the observation. In this section, we follow

the recipe of deriving the ELBO for a VAE (1.11-1.14), except we have an infinite

dimensional latent vector since the Brownian motion is a continuously indexed family

of random variables.

Formally, let (Ω,F ,P) be the underlying probability space for which B′
s is a Brownian

motion. Suppose Q is another probability measure on (Ω,F) equivalent to P; that is, P

and Q are similar in the sense that they have the same measure zero sets. This allows us

to apply the change-of-measure trick and lower bound the log-likelihood with a finite
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quantity using Jensen’s inequality:

log p(x, T ) ≥ EQ

[
log

dP

dQ
+ log p0(YT )−

ˆ T

0

∇ · µ ds

∣∣∣∣Y0 = x

]
. (8.15)

Note that dP
dQ

is the Radon-Nikodym derivative of P wrt Q. When both measures

are absolutely continuous wrt a third measure, say Lebesgue, then the derivative can

be expressed as the ratio of the two densities, like (1.12). However, since we are

dealing with an infinite dimensional space, we are immediately faced with the following

problems:

1. Is there a measure Q (equiv. to P) for which dP
dQ

can be easily computed, or at

least numerically approximated?

2. Can we find a reparameterization (similar to the Gaussian reparameterization

(1.15)) of B′
s under the new law Q to estimate the gradient needed for training?

We resort to the Girsanov theorem, which describes a general framework for dealing

with the change of measure of Gaussian random variables under additive perturbation.

It allows us to consider the law of a diffusion process as Q. See Appendix G.2 for an

explanation using the more familiar notion of probability densities.

Theorem 22 (Girsanov theorem, Theorem 8.6.3 of Øksendal [2003]). Let B̂s be an

Itô process solving

dB̂s = −a(ω, s) ds+ dB′
s, (8.16)

for ω ∈ Ω, 0 ≤ s ≤ T and B̂0 = 0, where a(ω, s) satisfies the Novikov’s condition

E

[
exp

(
1

2

ˆ T

0

‖a‖22 ds

)]
<∞.
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Then B̂s is a Brownian motion wrt Q where

dQ

dP
(ω) := exp

(
ˆ T

0

a(ω, s) · dB′
s −

1

2

ˆ T

0

‖a(ω, s)‖22 ds

)
. (8.17)

Equation (8.16) provides a standarization formula of B′
s under Q, which means we can

“invert” it to reparameterize B′
s. This leads to the following lower bound.

Theorem 23 (Continuous-time ELBO). Let Q be defined via the density (8.17). Then

the RHS of (8.15) can be rewritten as

E

[
−1

2

ˆ T

0

‖a(ω, s)‖22 ds+ log p0(YT )−
ˆ T

0

∇ · µ ds

∣∣∣∣∣Y0 = x

]
=: E∞, (8.18)

where the expectation is taken wrt the Brownian motion B̂s, and Ys solves3

dY = (−µ+ σa) ds+ σdB̂s. (8.19)

We call Ys solving (8.19) the inference SDE, and E∞ the continuous-time ELBO

(CT-ELBO).

Remark 24 (Computation). This lower bound can be numerically estimated by using

any black box SDE solver, by augmenting the dynamic of y with the accumulation of

‖a‖2 and ∇ · µ. Computing the divergence term ∇ · µ directly can be expensive, but it

can be efficiently estimated using the Hutchinson trace estimator [Hutchinson, 1989]

along with reverse-mode automatic differentiation, similar to Grathwohl et al. [2019].

As the parameters of both the generative and inference models are decoupled from the

random variable B̂s, their gradients can be estimated via the reparameterization trick

[Kingma and Welling, 2014, Rezende et al., 2014]. Furthermore, backpropagation can

be computed using an adjoint method with a constant memory cost [Li et al., 2020].

Remark 25 (Drift a). (i) In general, the drift term of the approximate posterior to the

latent Brownian motion can be made conditional, so that it will encode the information

3Note that µ and σ run backward in time from T , whereas a runs forward.
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of an individual datum x. (ii) The regularization ‖a‖2 ensures that a is kept close to 0,

since it represents the deviation of the measure it induces (i.e. Q) from the classical

Wiener measure (which is a centered Gaussian measure). (iii) When the diffusion

coefficient σ is 0, the inference SDE reduces to the reverse dynamic of the generative

ODE, and if a ≡ 0 in this case, the lower bound is tight. (iv) There is generally no

constraint on the form of a(ω, s), so one can potentially augment it with additional

dimensions to have a non-Markovian inference SDE. For simplicity, we let the inference

SDE be a Markovian model, i.e. a = a(y, s). This is justified by the following theorem.

Theorem 26 (Variational gap and optimal inference SDE). The variational gap can

be written as

log p(x, T )− E∞ =

ˆ T

0

E

[∥∥a(ω, s)− σ⊤∇ log p(Ys, T − s)
∥∥2
]
ds. (8.20)

In particular, E∞ = log p(x, T ) if and only if a(ω, s) can be written as a(ω, s) =

a(Ys(ω), s) for almost every s ∈ [0, T ] and ω ∈ Ω, and a(y, s) = σ⊤∇ log p(y, T − s)

almost everywhere.

Remark 27 (Variational gap). Even though the inference SDE seemingly takes a

simple form, it is sufficiently flexible in that this type of variational problem can be

generally solved by taking the supremem over all progressively measurable processes

a(ω, s) [Boué et al., 1998]. In fact, the above theorem shows that E∞ = log p(x, T ) if

and only if a(y, s) = σ⊤∇ log p(y, T − s), which does not depend on x. This means an

unconditional Markovian inference process is powerful enough, and one can use the

same a(y, s) for all data points x.

For the above reasoning, for the rest of the chapter, we assume a takes the form a(y, s),

which will be parameterized by a deep neural net.
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8.5 DISCRETE-TIME APPROXIMATION: AN INFINITELY DEEP

VAE

The ELBO derived in the previous section is for a continuous-time model. In this

section, we show that we can derive the same bound by extending the ELBO of a

discrete-time model, which allows us to we formally address the common belief that

“diffusion models can be viewed as the continuous limit of hierarchical VAEs” [Tzen

and Raginsky, 2019]. We do so by inspecting the ELBO of a hierarchical VAE defined

as discretized generative and inference SDEs. Following the Euler-Maruyama (EM)

scheme, we assume the generative model (i.e. the decoder) follows the transition

probabilities

p(xi+1 | xi) = N (xi+1; µ̃i(xi), σ̃
2
i ) (8.21)

σ̃2
i = ∆tσ2(i∆t), (8.22)

where ∆t = T/L is the step size and L is the number of layers. For the inference model

(i.e. the encoder), we assume

q(xi | xi+1) = N (xi; µ̂i+1(xi+1), σ̂
2
i+1) (8.23)

µ̂i(x) = x+∆t(−µ(x, i∆t) + σ(i∆t)a(x, T − i∆t)) σ̂2
i = ∆tσ2(i∆t). (8.24)

These transition kernels constitute a hierarchical variational autoencoder of L stochastic

layers, whose marginal likelihood can be lower bounded by

log p(xL) ≥ Eq

[
log p(x0) +

L−1∑

i=0

log
p(xi+1 | xi)

q(xi | xi+1)

]
=: EL, (8.25)

which we refer to as the discrete-time ELBO (DT-ELBO). The reconstruction error

of the stochastic layer can be seen as some form of finite difference approximation to

differentiation, which gives rise to ∇ · µ in the CT-ELBO in the infinitesimal limit (as

∆t approaches 0). The regularization of ‖a‖2 pops up when we compare the difference
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between µ̃i and µ̂i using the Gaussian reparameterization to compute the reconstruction

error. We formalize this idea in the following theorem.

Theorem 28 (Consistency). Assume µ, σ, σ−2, a, ‖a‖2 and their derivatives up to

the fourth order are all bounded and continuous, and that σ is non-singular. Then

EL → E∞ as L→∞.

This theorem tells us that the CT-ELBO we derive for continuous-time diffusion models

is not that different from the traditional ELBO, and that maximizing the CT-ELBO

can be seen as training an infinitely deep hierarchical VAE. We present the proof in

Appendix G.3, which formalizes the above intuition, using Taylor’s theorem to control

the polynomial approximation error, which will go to 0 as the step size ∆t vanishes

when the number of layers L increases to infinity.

8.6 SCALABLE TRAINING BY RANDOMIZING TIME INTEGRAL

Estimating the lower bound (8.18) still involves numerically solving the variational

inference SDE, which can be time consuming and has the same complexity as evaluating

the instantaneous change of variable of a neural ODE. In this section, we simplify the

computation to make it more scalable. Our strategy is to derive a Monte Carlo estimator

of this lower bound that does not require numerical integration, by making additional

assumptions on the model.

First, by Tonelli’s theorem (for ‖a‖2) and Fubini’s theorem (for ∇ · µ, which is usu-

ally bounded for neural nets are Lipschitz), we can swap the time integral with the

expectation:

E∞ = EYT
[log p0(YT ) |Y0 = x]−

´ T

0
EYs

[
1
2
‖a(Ys, s)‖22 +∇ · µ(Ys, T − s)

∣∣∣∣∣Y0 = x

]
ds.

(8.26)
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This way, we can treat the time index s inside of the integral as a random variable4, and

draw it uniformly at random between 0 and T . As for the expectation, we only have

Ys left, since we can marginalize out all Ys′ for s′ 6= s. This means we only need to

sample Ys conditioned on Y0, whose distribution, denoted by q(y, s | y0), is induced

by the inference dynamics (8.19). Generally, q(y, s | y0) may not take a simple form,

due to the potential nonlinearity of µ, σ and a, and we have to numerically solve the

SDE to obtain a sample following q(y, s | y0). For the sake of computational simplicity,

we assume the coefficients f := −µ+ σa and g := σ of the inference SDE allow us to

sample from q(y, s | y0) directly, so that we can avoid numerical integration. This can

be done, for example, by letting the inference SDE take the following linear form:

dYs = (A(s)Ys + a(s))︸ ︷︷ ︸
f

ds+ g(s) dB̂s. (8.27)

Using the product rule, it can be shown that

Ys = Φ(s)

[
Y0 +

ˆ s

0

Φ(r)−1a(r) dr +

ˆ s

0

Φ(r)−1g(r)dB̂r

]
(8.28)

solves (8.27) [Karatzas and Shreve, 2014, Section 5.6], where Φ(s) is a matrix function

satisfying

d

dt
Φ(s) = A(s)Φ(s), Φ(0) = I. (8.29)

For simplicity, lets assume A and g are both diagonal matrices so that any matrix

multiplication is commutative. Then from (8.28) and Itô’s isometry, we know that

Ys | Y0 ∼ N
(
Φ(s)

[
Y0 +

ˆ s

0

Φ(r)−1a(r) dr

]
,Φ(s)2

ˆ s

0

Φ(r)−2g2(r) dr

)
. (8.30)

An example is the temporally nonlinear, zero-reverting (i.e. a = 0) Ornstein-Uhlenbeck

4More generally, we can apply importance sampling to estimate the time integral to reduce variance.
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(OU) process:

dYs = −θ(s)Ys ds+ g(s) dB̂s, (8.31)

where θ(s) and g(s) are both strictly positive, scalar-matrix functions5. The solution to

(8.29) in this case is Φ(s) = exp(−
´ s

0
θ(r) dr), which means the mean value of Ys | Y0

is

E[Ys | Y0] = exp

(
−
ˆ s

0

θ(r) dr

)
Y0. (8.32)

And the variance is

Var(Ys | Y0) = exp

(
−
ˆ s

0

2θ(r) dr

)
ˆ s

0

exp

(
ˆ r

0

2θ(r′) dr′
)
g2(r) dr. (8.33)

Since the prior distribution p0 is typically standard Gaussian, we can set g(s) =
√

2θ(s)

so that the stationary distribution of the inference SDE is standard Gaussian. We refer

to this process as the standard (generalized) OU process. This way we have

Var(Ys | Y0) = exp

(
−
ˆ s

0

2θ(r) dr

)
ˆ s

0

exp

(
ˆ r

0

2θ(r′) dr′
)
· 2θ(r) dr (8.34)

= exp

(
−
ˆ s

0

2θ(r) dr

)
ˆ s

0

d

dr
exp

(
ˆ r

0

2θ(r′) dr′
)

dr (8.35)

= exp

(
−
ˆ s

0

2θ(r) dr

)
· exp

(
ˆ r

0

2θ(r′) dr′
)∣∣∣∣

s

0

(8.36)

= 1− exp

(
−
ˆ s

0

2θ(r) dr

)
. (8.37)

From (8.32) and (8.37), we know that q(y, s | y0) will get closer to N(0, I) as s

increases, no matter what the initial value y0 is. In fact the “aggregated posterior”

q(y, T ) =
´

q(y, T | y′)q(y′, 0) dy′ gets arbitrarily close to N(0, I) by taking T →∞.

Theorem 29 (Convergence of the OU process). If limT→∞
´ T

0
θ(r) dr = ∞, then

q(y, T ) following the standard OU process converges to N (0, I) in total variation as

5In what follows we also use the scalar notation for simplicity.
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T →∞.

As a result, as long as
´ T

0
θ(r) dr is sufficiently large, the aggregated posterior will

be close to the prior distribution. Furthermore, we can sample Ys conditioned on Y0

according to (8.30, 8.32, 8.37) without needing to numerically integrate the inference

SDE.

Computation-estimation trade-off We compare the training time of the continuous-

time flows induced by a neural ODE and a diffusion model, fitting the distribution of a

swissroll dataset. Neural ODE corresponds to zero diffusion σ = 0, and only the drift

(or velocity) coefficient is parameterized by a neural network. We use the Hutchinson

trace estimator to estimate the likelihood following [Grathwohl et al., 2019]. For the

diffusion model, we use the variance-preserving SDE [Ho et al., 2020, Song et al.,

2021c] as the inference SDE, which is an instantiation of the standard OU process and

allows us to sample Ys using a closed-form formula. We parameterize a using a neural

net. We experiment with two different estimators for the divergence term ∇ · µ in the

loss functional (8.26), where µ = ga− f : (1) the Hutchinson estimator (referred to as

slice), and (2) the denoising score matching estimator (referred to as denoising). See

the next section for more details.

The trained models are visualized in Figure 8.1 (ODE on the left, diffusion model with

a fixed OU inference process on the right), the learning curves presented in Figure 8.2.

From the learning curve figures, we see that neg-likelihood decreases rapidly for the

continuous-time flow in the number of parameter updates. However, once the x-axis is

normalized by runtime, the convergence speed becomes almost indistinguishable. This

is because for continuous-time flows, numerical integration takes time, whereas for the

diffusion models, we train on a random time step s; that is, within a fixed amount of

time the latter can make more parameter updates at the cost of noisier gradients. Note

that both models have constant memory cost (wrt T or L, the number of integration

steps), so a large batch size can be used to reduce variance for training. The benefit for
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Figure 8.1: Three special cases of generative SDEs. The stars indicate the initial values, followed by
some random sample paths. (left) trained with no diffusion σ = 0 (i.e. neural ODE). (center) trained
with some fixed diffusion σ > 0. (right) trained with a fixed OU process as the inference SDE.

Figure 8.2: Neural ODE vs diffusion model with a fixed OU inference process (using denoising or slice
score matching estimator). The learning curves are presented as a function of iterations (left) and runtime
(right) to emphasize the computational distinction between the two families of models.

estimating the time index would be more drastic for higher dimensional, larger scale

experiments, where numerical solvers would require more function evaluations. This

makes diffusion models the more scalable choice between the two, and we can also use

higher capacity networks to parameterize the model through the variational degree of

freedom a.

8.7 SCORE-BASED GENERATIVE MODELLING

Maximum likelihood training of diffusion models is also deeply connected to score

matching for energy-based models (see Sections 1.1 and 1.3). To see that, we redefine
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the variational a function as a = g⊤sθ, where sθ is the trainable variable (which we

will see soon is an approximate score function). Following the reparameterization

f := −µ+ σa and g := σ, the generative SDE and inference SDE can be written as

dX = (gg⊤sθ − f) dt+ g dBt and dY = f ds+ g dB̂s. (8.38)

The generative SDE can be seen as an approximate, parametric version of the reverse

SDE [Anderson, 1982]6:

dX = (gg⊤∇ log q(y, T − t)− f) dt+ g dBt, (8.39)

which induces the same probability law over the sample paths as the inference SDE if

the prior matches the aggregated posterior p(·, 0) = q(·, T ). Therefore, we know that if

sθ approximates the score∇ log q well, then we can simulate realistic data samples by

substituting the approximate score function into (8.39), which becomes the generative

SDE in (8.38), and numerically integrating the dynamics. For this reason, we refer to

this reparameterized generative SDE as the plug-in reverse SDE.

The CT-ELBO (8.26) associated with the generative and inference SDEs (8.38) can be

written as

E∞ = EYT
[log p0(YT ) |Y0 = x]−

´ T

0
EYs

[
1
2
‖sθ‖2gg⊤ +∇ · (gg⊤sθ − f)

∣∣∣∣Y0 = x

]
ds.

(8.40)

Comparing the integrand to the ISM loss in Table 1.1, we immediately see that the

network sθ approximates∇ log q(y, s), the score function of the marginal density of Ys.

That is, matching the score of q(y, t) amounts to maximizing the lower bound on the

marginal likelihood of the plug-in reverse SDE.

6We note that the description of the original reverse SDE in Anderson [1982] is more stringent as
they require the independence property of the “reverse” Brownian motion, and the reversal is “pointwise”.
As we only concern about the statistical property of the process, we stick to our notation of Brownian
motions where X and Y do not even need to lie in the same probability space.
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Equivalently, from (A.4), we can rewrite the second term of (8.40) using the DSM loss

−
ˆ T

0

EYs

[
1

2
‖sθ‖2gg⊤ − s

⊤
θ gg

⊤∇ log q(Ys, s | Y0)−∇ · f
∣∣∣∣Y0 = x

]
ds (8.41)

=−
ˆ T

0

EYs

[
1

2
‖sθ −∇ log q(Ys, s | Y0)‖2gg⊤ −

1

2
‖∇ log q‖2gg⊤ −∇ · f

∣∣∣∣Y0 = x

]
ds.

This means we can avoid calculating the divergence term by replacing it with the mean-

squared-error between the approximate score and the conditional score of the data. In

the case of the OU process, the mean-squared-error can be seen as the reconstruction

error of a denoising autoencoder [Vincent, 2011] since the conditional distribution of

the data is just Gaussian.

More generally, since we only care about the probability flow induced by the stochas-

tic dynamics, we can generalize the reverse SDE (8.39) by looking at the marginal

probability induced by the inference SDE. First of all, lets define a notion of marginal

equivalent SDE:

Definition 30 (Marginally equivalent processes / SDEs). Let Ys, Ỹs and Xt be

stochastic processes for 0 ≤ s, t ≤ T . If Ys and Ỹs have the same distribution

for all s, then they are said to be marginally equivalent. If Xt and YT−t have the

same distribution for all t, then we say Xt is a marginally equivalent reverse process.

Two SDEs are equivalent if the processes they induce are equivalent. Two SDEs are

equivalent reverse of each other if the processes they induce are equivalent reverse of

one another.

Note that when talking about the equivalency between SDEs, the dependency on an

initial condition is implied. As in the following context, it is clear that we are always

interested in equivalent processes or SDEs that have the same marginal distributions,

we will also omit saying “marginally” repeatedly. Now, we show how to construct a

family of equivalent (reverse) SDEs generalizing (8.39). Let Ys solve

dY = f ds+ g dB̂s.
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Figure 8.3: Samples from plug-in reverse SDEs with different λ values (rows). We use the same score
function sθ trained on the Swiss roll dataset, and use it to define the λ-plug-in reverse SDE (8.46). For
generation, we use the Euler Maruyama method with a step size of ∆t = 1/1000. We visualize the
samples for the i-th iterates (columns). As the figure shows, different rows correspond to different values
of λ, but they all induce the same marginal density per column.
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We assume g is position-independent and diagonal for simplicity. Let λ ≤ 1, We can

rearrange the Fokker-Planck equation to get

∂sq = −∇ · (fq) +
1

2
g2 : Hq = −∇ ·

((
f − λ

2
g2∇ log q

)
q

)
+

1− λ

2
g2 : Hq.

(8.42)

Now let fλ := f− λ
2
g2∇ log q, and gλ :=

√
1− λg. Then the SDE dY = fλ ds+gλ dB̂s

has the same Fokker-Planck equation as (8.42), which means the SDEs defined this way

form a family of equivalent SDEs7.

To construct an equivalent reverse SDE, we rearrange the Fokker-Planck of this new

SDE,

∂sq = −∇ · (fλq) +
1

2
g2λ : Hq = −∇ ·

((
fλ − g2λ∇ log q

)
q
)
− 1

2
g2λ : Hq. (8.43)

Now let µλ(x, t) := g2λ(x, T − t)∇ log q(x, T − t)−fλ(x, T − t) and σλ = gλ(x, T − t).

Then the SDE dX = µλ dt + σλ dBt with the initial condition X0 ∼ q(·, T ) is an

equivalent reverse SDE, since its marginal density p solving the Fokker-Planck equation

∂tp = −∇ · (µλp) +
1

2
σ2
λ : Hp = ∇ ·

((
fλ − g2λ∇ log q

)
p
)
+

1

2
g2λ : Hp (8.44)

is the time-reversal of the marginal density q solving (8.43). This also means there is a

family of λ-plug-in reverse SDEs parameterized by λ and sθ:

dX = (g2λsθ − fλ) dt+ σλ dBt (8.45)

=

((
1− λ

2

)
g2sθ − f

)
dt+

√
1− λg dBt. (8.46)

The plug-in reverse SDE (8.38) corresponds to λ = 0, and setting λ = 1 gives us an

equivalent (plug-in) reverse ODE. We illustrate different marginally equivalent SDEs

and ODE in Figure 8.3 using a learned score function.

To summarize, using fλ, gλ, µλ and σλ, we can define the following generative and

7Note that more generally the same would also hold if we let λ be a time-dependent function.
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inference pair

dX =
((
1− λ

2

)
g2sθ − f

)
dt+

√
1− λg dBt and dY =

(
f − λ

2
g2∇ log q

)
ds+

√
1− λg dB̂s.

(8.47)

We show that maximizing the ELBO of this family of plug-in reverse SDEs is also

equivalent to performing score matching.

Theorem 31 (Plug-in reverse SDE ELBO). Assume the generative and inference

SDEs follow (8.47). For λ < 1, then the CT-ELBO (denoted by E∞λ ) can be written as

E∞λ = EYT
[log p0(YT ) |Y0 = x]−

ˆ T

0

(
1− λ

2

)
EYs

[
1

2
‖sθ‖2g2 +∇ ·

(
g2sθ −

(
2

2− λ

)
f

) ∣∣∣∣Y0 = x

]

+
λ

2
EYs

[
1

2
‖sθ‖2g2 − g2s⊤

θ ∇ log q(Ys, s)

∣∣∣∣Y0 = x

]

+
λ2

4(1− λ)
EYs

[
1

2
‖sθ −∇ log q(Ys, s)‖2g2

∣∣∣∣Y0 = x

]
ds.

Furthermore, averaging the ELBO over the data distribution yields

EY0 [E∞λ ] = EYT
[log p0(YT )]−

ˆ T

0

(
1 +

λ2

4(1− λ)

)
EYs

[
1

2
‖sθ‖2g2 +∇ · (g2sθ)

]
ds

+ Const. (8.48)

= EY0 [E∞0 ]−
(

λ2

4(1− λ)

)
ˆ T

0

EYs

[
1

2
‖sθ(Ys, s)−∇ log q(Ys, s)‖2g2

]
ds.

(8.49)

Before concluding this section with some experiments and algorithmic innovation, we

first make a few remarks:

1. Setting λ = 0, this ELBO will reduce to the special case of (8.40).

2. Equation (8.48) tells us that by minimizing the score matching loss weighted by

g2, we implicitly maximize the likelihood of a continuum of plug-in reverse SDEs,

which is visualized in Figure 8.4.
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Figure 8.4: Lower bound on the marginal likelihood of a continuum of plug-in reverse SDEs. The lower
bound is optimized when the score matching loss is minimized, which will push up the entire dark blue
curve, the expected log-likelihood.

3. Equation (8.49) tells us that the average CT-ELBO is maximized when λ = 0

(also see Figure 8.4).

4. The theorem excludes the case where λ = 1, i.e. the equivalent ODE, since

otherwise there will be a division-by-zero problem. But an ODE can be seen as

having λ very close to 1, which will make the SDE effectively deterministic in

practice. This suggests the likelihood of the equivalent ODE can be improved

by minimizing the score matching loss, as the ODE’s likelihood will be close to

plug-in reverse SDEs with λ ≈ 1. In practice, we can only estimate the ELBO

of the case λ = 0 since otherwise there will be some constants we do not have

access to, but their gradients wrt θ can all be estimated via score matching. The

exact likelihood of λ = 1 can be estimated using the instantaneous change of

variable and Hutchinson’s trace estimator, as discussed in section 7.3.

Bias and variance trade-off The integral in equation (8.40) can be estimated by

sampling (Ys, s), and using the Hutchinson trace estimator to estimate the divergence,

which corresponds to implicit score matching. However, in practice the variance of this

estimator is very high when the norm of the Jacobian ∇sθ is large (recall Section 7.4).
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Another popular approach is to use the denoising estimator (8.41), which is equal to

EYs

[
1

2
‖sθ(Ys, s)−∇ log q(Ys, s | Y0)‖2gg⊤

∣∣∣∣Y0 = x

]
, (8.50)

up to some normalizing constant. The conditional density q(y, s | y0) is simply Gaussian

by (8.30) if the inference SDE is linear, which also allows us to sample Ys | Y0 easily.

Denote by µs, σ
2
s the mean and variance of the Gaussian, where µs and σs are functions

of Y0 and s. In this case, if we reparameterize Ys = µs + σsǫ where ǫ ∼ N (0, I), then

the score becomes ∇ log q = − ǫ
σs

. Since σs → 0 as s→ 0, this estimator normally has

unbounded variance. Song and Ermon [2019], Song et al. [2021c] propose to remedy

this by multiplying the DSM loss by σ2
s/g

2 (assuming g is a scalar for simplicity), so

that the target has constant magnitude on average E[1
2
‖σssθ + ǫ‖2], which would result

in a biased gradient estimate with much smaller variance. We can debias this estimator

by performing importance sampling, i.e. sampling the random time index according

to a density q(s) that is proportional to g2/σ2
s (recall that the non-uniform sampling is

to cancel out the non-uniform weighting of the losses, so that the resulting estimator

becomes unbiased; see [Owen, 2013] for some background on importance sampling).

This ratio, however, is usually not normalizable in practice (as it integrates to∞). As

an alternative, we consider the following unnormalized density q̃ǫ(s) = g2(sǫ)/σ
2
sǫ for

s ∈ [0, sǫ], and q̃ǫ(s) = g2(s)/σ2
s for s ∈ [sǫ, T ]. We experiment with this debiased

procedure by sampling s ∼ qǫ ∝ q̃ǫ, for f and g chosen to be the variance-preserving

SDE. sǫ is small so that the bias is negligible.

We train the model on MNIST [LeCun et al., 1998] and CIFAR10 [Krizhevsky et al.,

2009]. We present the learning curves and the standard error of the estimate of the

ELBO in Figure 8.5. The lower bound is estimated using the Hutchinson trace estimator

with s sampled uniformly from [0, T ], with the same batch size, so the only thing

that will affect the dispersion is the magnitude of ∇sθ. Since smaller values of s are

more likely to be sampled under qǫ, the debiased model will see samples with less

perturbation more often. On the contrary, sampling s uniformly will bias the model to

learn from noisier data, causing the learned score to be smoother. We also experiment

with parameterizing sθ vs parameterizing a. We find the latter parameterization to work
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Figure 8.5: Likelihood estimation on MNIST (top) and CIFAR10 (bottom). sθ and a denote which
model we parameterize. Y-axes are bits-per-dim (BPD) and the standard error of BPD of the test set.
The debiased curves improve upon the original biased gradient estimator [Song et al., 2021c] since it
maximizes a proper ELBO. Shaded area reflects the uncertainty estimated by 3 random seeds.

slightly better since the relationship sθ = g−1a has the effect of negating the multiplier

σs in the reweighted loss, i.e. E[1
2

∥∥∥σs

g
a+ ǫ

∥∥∥
2

]. This is similar to the noise conditioning

technique introduced in Song and Ermon [2020].

8.8 DISCUSSION

In this chapter, we generalize deterministic dynamical systems by injecting Brownian

noise. Mirroring the deterministic case in the preceding chapter, we examine changes

in density from both Eulerian and Lagrangian perspectives. While the Eulerian view

involves the Fokker-Planck equation, the Lagrangian perspective yields a stochastic

extension of the instantaneous change-of-variable formula using the Feynman-Kac

theorem. Unlike the deterministic case, this representation is not immediately tractable

as it involves the challenge of marginalizing Brownian noise. To address this, we

employ Girsanov’s theorem to provide a variational approximation to the Brownian

process, leading to an ELBO reminiscent of VAE. For improved training scalability,
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we establish a fixed inference process and redefine the generative process through

reparameterization [Sohl-Dickstein et al., 2015, Ho et al., 2020]. Lastly, we establish a

formal connection to score matching [Hyvärinen and Dayan, 2005, Song et al., 2021c]

through another reparameterization of the variational degree of freedom.

8.9 IMPACT, RELATED WORK AND RECENT DEVELOPMENTS

Diffusion models Generative modeling inspired by diffusion processes was first

explored by Sohl-Dickstein et al. [2015] in the discrete-time setting, which was then

refined and scaled up by Ho et al. [2020]. Different from Ho et al. [2020], which shows

the ELBO of discrete-time diffusion process can be likened to DSM (Section 3.2 of

the paper), we show that ISM loss naturally arises from the Fokker-Planck equation of

the marginal density, via the Feynman-Kac representation and the Girsanov change of

measure. Similarly to ours, Kingma et al. [2021] proposed to maximize the continuous

limit of DT-ELBO, which they show to be invariant to noise scheduling for a particular

choice of inference family.

Diffusion models have been successfully applied to modeling high-dimensional natural

images [Dhariwal and Nichol, 2021, Saharia et al., 2021], audio [Kong et al., 2021,

Chen et al., 2021], 3D point cloud [Cai et al., 2020, Zhou et al., 2021], and discrete data

[Hoogeboom et al., 2021, Austin et al., 2021].

One benefit of the continuous-time formulation is that stochastic calculus can be natu-

rally married with differential geometry to model non-Euclidean data. The variational

framework presented in this chapter has been extended to various Riemannian manifolds

[Huang et al., 2022]. Taking one step further, Benton et al. [2022] greatly generalized

the theory to account for general state space using continuous-time Markov models

(termed denoising Markov models by the authors), which subsumes the Riemannian

diffusion models [Huang et al., 2022] and continuous-time Markov chains for discrete

data [Campbell et al., 2022].
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Score matching and generative modeling Score matching was originally proposed

in the context of learning an unnormalized density, i.e. an EBM [Hyvärinen and Dayan,

2005]. Sampling from an EBM is typically very costly, as it relies on iterative methods

such as MCMC (recall the discussion on EBM in Section 1.1). This further complicates

the process of model development and debugging, as it is hard to tell if the unsuccessful

generation of samples should be attributed to the model itself or the sampling procedure.

Song and Ermon [2019] first proposed to directly parameterize the score as the trainable

degree of freedom, instead of the unnormalized density or the energy. Second, they also

proposed to learn a sequence of score functions corresponding to different amounts of

noise being injected to perturb the data distribution. The Langevin dynamic used for

generating samples was also adapted to account for the noise scheduling, resulting in an

annealed Langevin dynamics. This framework was subsequently extended to continuous

time [Song et al., 2021c], where data generation was framed as an approximate reversal

of the diffusion process used to perturb the data.

After the connection between SDE and score-based generative models were drawn,

Durkan and Song [2021] attempted to establish an equivalency between maximum

likelihood and score matching, by showing that KL divergence can be represented as an

integral of weighted Fisher divergence:

DKL(q(y, 0)||r(y, 0)) =
1

2

ˆ T

0

Eq(·,s)
[
‖∇ log r(Ys, s)−∇ log q(Ys, s)‖2gg⊤

]
ds,

(8.51)

where r(y, s) is the density of Ys solving the same inference SDE with the initial

condition y0 ∼ r(·, 0), assuming q(y, T ) = r(y, T ). However, it is inaccurate to

claim that score matching is equivalent to maximum likelihood. This is because if

we simply let r(y, 0) = p(y, T ), i.e. the density of the generative SDE evaluated

at y, r(y, s) will not necessarily be the same as either p(y, T − s) or sθ(y, s). This

means the KL divergence is not equal to the integral of the weighted score matching

loss E[1
2
‖sθ −∇ log q‖2gg⊤ ]. In fact, the latter corresponds to a lower bound on the

likelihood (the cross-entropy term of the KL) up to some constant, as equation (8.40)
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suggests. Concurrently to our work, [Song et al., 2021a] later on rectified this by

proving the same bound as we derived, i.e. (8.40).

Equation (8.51) is a generalization of Lyu [2009], where the inference perturbation is a

simple Brownian motion. This type of formulas fall into the category of de Bruijn’s

identity [Cover, 1999] for relative entropy. A similar differential form result can be

found in Wibisono et al. [2017].

More recently, Dockhorn et al. [2022] proposed to augment the dynamic with a velocity

(momentum) variable, inspired by statistical mechanics. This has the benefit of an

accelerated dynamics and a smoother score function.

Learning SDEs Tzen and Raginsky [2019], Li et al. [2020] also propose to learn a

neural SDE by applying Girsanov’s theorem. The key difference is that they treat the

SDE entirely as a latent variable, with an additional emission probability, whereas we

use the Feynman-Kac formula to directly express the marginal density as an expectation,

side-stepping the need to smooth out the density using the emission probability (which

will be a Dirac point mass in our case). In their case, the inference direction is the same

as the generative direction, since they infer the latent SDE directly, whereas we apply

Girsanov to the Feynman-Kac diffusion (opposite the generative direction). Xu et al.

[2022] further apply neural SDE as an infinitely deep Bayesian neural network.

Optimal transport Diffusion models are related to optimal transport (recall Chap-

ter 5) through the Schrödinger bridge (SB) problem – which is about finding the process

that connects two prescribed marginal measures and at the same time minimizes the

KL divergence from a reference measure over the sample paths. When the reference

measure is taken to be the classical Wiener process for Brownian motion, the static

version of the SB problem can be shown to be equivalent to entropy regularized optimal

transport. Like optimal transport, Solving the SB problem in general is very non-trivial.
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De Bortoli et al. [2021] proposed to solve this problem by iteratively matching the

score functions of the diffusion processes corresponding to the generative and inference

SDEs. Chen et al. [2022] presented a different computational framework based on the

forward-backward SDE theory in stochastic control [Ma et al., 1999], which allows

them to derive likelihood objectives for SB that generalize (8.40).



9 Conclusion

In this thesis, we embarked on a quest to design versatile likelihood-based generative

models, aiming for a delicate balance. Our primary goal was to introduce the right

level of structure, ensuring tractability and scalability while maintaining distributional

universality.

We began with flow-based methods, starting from the foundational 1D case. Here, we

characterized 1D flows as monotone functions and proposed various flexible monotone

architectures. Subsequently, we extended these architectures to the high-dimensional

spaces, leveraging triangle maps and convex potential maps. This led us to establish

connections with autoregressive models and the optimal transport theory.

Along the way, we introduced an augmentation technique. This innovation expanded

the design space of flow-based methods, enhancing their expressivity. Notably, the

augmentation lifted the representation to a higher-dimensional state space, allowing

us to encode data in an augmented latent vector akin to the latent space of a VAE. It

is worth noting that recent works have further explored the potential of this technique,

underscoring its significance in the field.

In the latter part of our journey, we explored using neural differential equations as

generative models, unveiling an even more flexible class of probability flows. In both

the deterministic and the stochastic case, we tackled the change in likelihood from

two viewpoints: that of a bystander and the perspective of particles navigating through

space and time. This dual approach not only enhanced our understanding of the models’

behavior but also made likelihood computation tractable.
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Furthermore, our theoretical analysis showcased the universality of continuous-time

flows. Unlike the limitations of triangular maps and convex potential maps, continuous-

time flows demonstrated the ability to approximate any target coupling, underlining

their flexibility and potential.

In the stochastic case, we improved the scalability of the model by adopting a linear

Gaussian inference process. At the end, we established a formal connection to the

concept of score matching, further enhancing our model’s versatility and utility.

With these contributions, we conclude our journey towards the design of likelihood-

based generative models, unified by a commitment to distributional universality, tractabil-

ity, and scalability, by analyzing the probability flows associated with the generative

process.
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A Appendix of Chapter 1

A.1 SCORE MATCHING LOSS IDENTITY

In this section, we prove the score matching loss identity (1.4) for completeness. These

proofs are adapted from Hyvärinen and Dayan [2005], Song et al. [2020], Vincent

[2011] with slight modifications since we project the score onto the eigen-basis of Λ.

Expanding the ESM loss, we have

LESM = Ex

[
1

2
||sθ(x)||2Λ − sθ(x)

⊤Λ∇ log q(x) +
1

2
||∇ log q(x)||2Λ

]
. (A.1)

Moving I(q(x)) from the RHS to the LHS gives us

LESM −
1

2
I(q(x)) = Ex

[
1

2
||sθ(x)||2Λ − sθ(x)

⊤Λ∇ log q(x)

]
. (A.2)

Implicit score matching: Now to derive the ISM loss, we apply integration by parts

and the general Stokes’ theorem (with mild regularity condition on sθ) to the inner

product term to obtain

ˆ

q(x)sθ(x)
⊤Λ∇ log q(x) dx =

ˆ

sθ(x)
⊤Λ∇q(x) dx

=
✘
✘
✘
✘
✘
✘
✘

✘
✘
✘✿0ˆ

∇ ·
(
qΛ⊤

sθ

)
dx−

ˆ

∇ ·
(
Λ⊤

sθ

)
q dx

= −Ex

[
∇ ·
(
Λ⊤

sθ

)]
.
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Sliced score matching: For the SSM loss, use the Hutchinson trace estimator [Hutchin-

son, 1989] to replace the divergence operator, which is simply the trace of the Jacobian

matrix. See Section 7.4 for more discussion on computation time and estimation error.

Denoising score matching: For DSM, similarly we first look at the inner product term

ˆ

q(x)sθ(x)
⊤Λ∇ log q(x) dx =

ˆ

sθ(x)
⊤Λ∇q(x) dx

=

ˆ

sθ(x)
⊤Λ∇

ˆ

q(x | x0)q(x0) dx0 dx

=

ˆ ˆ

q(x0)s
⊤
θ Λ∇q(x | x0) dx dx0

=

ˆ ˆ

q(x0)q(x | x0)s
⊤
θ Λ∇ log q(x | x0) dx dx0

= Ex0,x

[
s
⊤
θ Λ∇ log q(x | x0)

]
,

where q(x | x0) denotes the conditional density of x given x0. Combining this with

Ex[||sθ||2Λ], we have

Ex0,x

[
1

2
||sθ||2Λ − s

⊤
θ Λ∇ log q(x | x0)

]
=

Ex0,x

[
1

2
||sθ −∇ log q(x | x0)||2Λ

]
− 1

2
Ex0 [I(q(x | x0))].

In fact, the identity between the DSM loss and the other score matching losses is more

fine-grained. Take ISM for example. From the above derivation, the equality

ˆ

q(x0)Eq(x|x0)

[
∇ · (Λ⊤

sθ) + s
⊤
θ Λ∇ log q(x | x0)

]
dx0 = 0 (A.3)

holds for any marginal distribution q(x0). This implies

Eq(x|x0)

[
∇ · (Λ⊤

sθ) + s
⊤
θ Λ∇ log q(x | x0)

]
= 0. (A.4)

This will come in handy in Chapter 8.
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B.1 USEFUL LEMMAS

Asymptotic indistinguishability The following lemma is a slight generalization of

the previous one, as it allows us to look at random variables that may not exhibit any

pointwise convergence behavior, as long as they are asymptotically indistinguishable

from another sequence of random variables that converges in distribution. An example

of random variables that do not converge pointwise but in distribution is xn = (−1)nx
for x ∈ N (0, 1). xn does not converge pointwise, but xn

d
= x. This lemma will come

in handy when we want to strengthen the universality result.

Lemma 32. Let x∞, (xn : n ≥ 0) and (yn : n ≥ 0) be random variables. If xn → x∞

in distribution and if ||xn − yn|| → 0 almost surely as n → ∞, then yn → x∞ in

distribution.

Proof. Let Λ : Rd → R be an arbitrary bounded and Lipschitz continuous function.

Then

|E [Λ (x∞)− Λ (yn)]| ≤ |E [Λ (x∞)− Λ(xn) + Λ(xn)− Λ (yn)]|
≤ |E [Λ (x∞)− Λ(xn)]|+ E [|Λ (xn)− Λ (yn)|] .

First, since xn → x∞ in distribution and since Λ is bounded and continuous, by the

Portmanteau Lemma the first term of the RHS converges to 0 as n→∞. Second, since

yn is almost surely asymptotically indistinguishable from xn (let Ω be the almost sure

set), and since the Lipschitzness of Λ implies uniform continuity, the following are true

167



168 APPENDIX OF CHAPTER 2

• For all ǫ > 0, there exists a δ > 0 such that ||x−y|| ≤ δ implies |Λ(x)−Λ(y)| ≤
ǫ.

• For any δ > 0, there exists a integer N > 0 such that for all n ≥ N , ||xn−yn|| ≤
δ for all ω ∈ Ω.

These imply ||Λ(xn)− Λ(yn)|| → 0 on Ω. Then

E [|Λ (xn)− Λ (yn)|] = EΩ [|Λ (xn)− Λ (yn)|]︸ ︷︷ ︸
E1

+EΩc [|Λ (xn)− Λ (yn)|]︸ ︷︷ ︸
E2

converges to 0, since (1) boundedness of Λ and the Bounded Convergence Theorem

imply E1 → 0 and (2) supx Λ(x) < ∞ implies E2 ≤ 2 supx Λ(x)P(Ω
c) = 0. Finally,

since Λ is arbitrary, by the Portmanteau Lemma again, yn converges in distribution to

x∞ as n→∞.

Total variation distance We review the total variation of signed measures, which

induces a natural distance metric on the space of probability measures. It will also make

it easier to establish weak convergence of measures.

Definition 33 (Total variation distance). Let µ and ν be probability measures defined

on a measurable space (Ω,F). The total variation distance (metric) between µ and ν

is defined as

dTV (µ, ν) = sup
A∈F
|µ(A)− ν(A)|. (B.1)

Total variation distance is a metric on the space of probability measures. This is easy

to check: First, it is obviously symmetric. Second, if µ = ν then dTV (µ, ν) = 0 and

if dTV (µ, ν) = 0, |µ(A)− ν(A)| = 0 for all A ∈ F , which means µ = ν. Finally, for
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any measures µ, ν and ρ,

dTV (µ, ν) = sup
A∈F
|µ(A)− ν(A)|

≤ sup
A∈F
|µ(A)− ρ(A)|+ |ρ(A)− ν(A)|

≤ sup
A∈F
|µ(A)− ρ(A)|+ sup

B∈F
|ρ(B)− ν(B)|

= dTV (µ, ρ) + dTV (ρ, ν).

In addition, dTV is bounded by 1.

Definition 34 (Equivalent definitions). Let C(Ω) be the collection of all partitions of Ω

into countable disjoint subsets; i.e. if C ∈ C, then ∪A∈CA = Ω, and A,B ∈ C implies

A ∩ B = ∅. Let mF([0, 1]) denote the collection of all F-measurable f : Ω→ [0, 1].

And let Γ(µ, ν) be the set of measures on Ω× Ω with marginal µ and ν. Then we have

the following equivalent definitions of the total variation distance:

(a) dTV (µ, ν) =
1

2
sup

C∈C(Ω)

∑

A∈C
|µ(A)− ν(A)| (b)

= sup
f∈mF([0,1])

|Eµ[f ]− Eν [f ]| (c)

= inf
π∈Γ(µ,ν)

EX,Y∼π[1X 6=Y ]. (d)

N.B.: the variational form (c) can be replaced with any bounded function by normalizing

it to be f/(sup f − inf f ).

The proof of (d) is inspired by Levin and Peres [2017], where they have a countable

state space which forms a natural partition that maximizes the summation of (b). This

also allows us to write the total variation as a sum if Ω is countable

dTV (µ, ν) =
1

2

∑

ω∈Ω
|µ(ω)− ν(ω)|. (B.2)

Similarly, we can write the total variation as an explicit integral if µ and ν are absolutely
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continuous wrt some reference λ

dTV (µ, ν) =
1

2

ˆ

Ω

∣∣∣∣
dµ

dλ
− dν

dλ

∣∣∣∣ dλ. (B.3)

This should be reminiscent of the f -divergence (1.2) formulation of the total variation

distance. To see that, let q and p be the Lebesgue densities of µ and ν over Rd. Suppose

p, q > 0. Then

dTV (µ, ν) =
1

2

ˆ

Rd

|q(x)− p(x)| dx =
1

2

ˆ

Rd

∣∣∣∣
q(x)

p(x)
− 1

∣∣∣∣ p(x) dx = Df (q||p). (B.4)

Proof. (a = b): Let P and N be the Hahn decomposition [Folland, 1999, Theorem 3.3]

of the signed measure µ − ν satisfying P ∪ N = Ω, P ∩ N = ∅, µ(A) − ν(A) ≥ 0

for any measurable subset A ⊆ P , and µ(A) − ν(A) ≤ 0 for any measurable subset

A ⊆ N .

Let C be a partition of Ω, and let C∩P = {A∩P : A ∈ C}. Then by triangle inequality

and countable additivity of measure, we have

∑

A∈C
|µ(A)− ν(A)| ≤

∑

A∈C∩P

|µ(A)− ν(A)|+
∑

A∈C∩N

|µ(A)− ν(A)|

= µ(P )− ν(P ) + ν(N)− µ(N).

This shows P and N are the partition maximizing the summation in (b).

Now for any B ∈ F ,

µ(B)− ν(B) = µ(B ∩ P )− ν(B ∩ P ) + µ(B ∩N)− ν(B ∩N)

≤ µ(B ∩ P )− ν(B ∩ P )

= µ(P )− ν(P )− (µ(Bc ∩ P )− ν(Bc ∩ P ))

≤ µ(P )− ν(P ).
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Likewise, ν(B)− µ(B) ≤ ν(N)− µ(N). Since

µ(P )− ν(P )− (ν(N)− µ(N)) = µ(P ) + µ(N)− (ν(P ) + ν(N)) = 1− 1 = 0,

we can write |µ(B)− ν(B)| ≤ µ(P )− ν(P ), which implies a ≤ b. And since P ∈ F ,

the equality is attained.

(a ≤ c): Since the characteristic functions of the type 1A for A ∈ mF are measurable

and bounded in [0, 1],

dTV (µ, ν) = sup
A∈F
|µ(A)− ν(A)| = sup

A∈F
|Eµ[1A]− Eν [1A]| ≤ sup

f :Ω→[0,1]

|Eµ[f ]− Eν [f ]|.

(c ≤ d): Now, since if f takes value in [0, 1], then f(x) − f(y) ≤ 1 generally, and

f(x)− f(y) = 0 if x = y, which implies

Eµ[f ]− Eν [f ] = EX,Y∼π[f(X)− f(Y )] ≤ EX,Y∼π[1X 6=Y ],

for any π ∈ Γ(µ, ν).

Now taking the infimum over π ∈ Γ(µ, ν) on the RHS and then taking the supremum

over f ∈ mF([0, 1]) on the LHS yield

sup
f :Ω→[0,1]

|Eµ[f ]− Eν [f ]| ≤ inf
π∈Γ(µ,ν)

Eπ[1X 6=Y ].

(d = a): We let ρ0 := ν(P ) + µ(N). The goal is to construct a coupling (X, Y ) with

X = Y as often as possible so as to minimize the cost 1X 6=Y . We will let ρ0 be the

chance that X = Y (note that 1− ρ0 = dTV (µ, ν)).

Concretely, with probability ρ0, we let X = Y follow the probability measure

ρXY (A) =
ν(P ∩ A) + µ(N ∩ A)

ρ0
.
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Otherwise, X and Y will be independent, following the product measure of

ρX(A) =
µ(P ∩ A)− ν(P ∩ A)

dTV (µ, ν)
and ρY (A) =

ν(N ∩ A)− µ(N ∩ A)

dTV (µ, ν)
.

Then we have

ρ0ρXY (A) + (1− ρ0)ρX(A) = µ(A) and ρ0ρXY (A) + (1− ρ0)ρY (A) = ν(A),

which means the marginals of X and Y are µ and ν, respectively. Let π be this mixture

measure. With probability 1 − ρ0, X and Y take value on disjoint subsets of Ω (as

P ∩N = ∅) and with probability ρ, X = Y , which means

Eπ[1X 6=Y ] = π(X 6= Y ) = 1− ρ0 = dTV (µ, ν).

Thus, there exists a coupling which attains the lower bound.

Furthermore, convergence in total variation implies weak convergence. This makes it a

useful tool for analysis.

Proposition 35. Let µn and µ be such that dTV (µn, µ)→ 0. Then µn ⇀ µ.

Proof. We use the variational form of the total variation (c). For any bounded, continu-

ous f ,

|Eµn
[f(xt)]− Eµ[f(x∞)]| ≤ dTV(µn, µ) · ‖f‖∞

which converges to 0 as n→∞, since ‖f‖∞ is finite.

Finally, like the other f -divergences, total variation distance is invariant to reparameter-

ization. We provide the general statement for all f -divergence below.

Proposition 36. Let Df be an f -divergence, p and q be two density functions, and h be

a diffeomorphism. Suppose p > 0 whenever q > 0. Then Df (h#q||h#p) = Df (q||p).
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Proof. Using the change-of-variable formula for y = h(x), we have

2Df (h#q||h#p) =

ˆ

supph#p

∣∣∣∣
h#q

h#p

∣∣∣∣h#p dy (B.5)

=

ˆ

supp p

∣∣∣∣
q dh/dx

p dh/dx

∣∣∣∣ p dx (B.6)

=

ˆ

supp p

∣∣∣∣
q

p

∣∣∣∣ p dx = 2Df (q||p). (B.7)

Note that, in general, the absolute continuity requirement for total variation can be

relaxed, since we can partition the space into the region where p and q are overlapping,

and regions where one of the two has non-zero density, and we only need to apply the

above proof technique to the first case.



C Appendix of Chapter 3

C.1 PROOFS

In this section, we provide a proof of Theorem 7 and Corollary 8.

Let p be a density we want to approximate. Fix x, and let ǫ be a random variable,

and define yn = x + ǫ/n, so that yn → x a.s. as n → ∞. If p is continuous, then

p(yn)→ p(x). Denote by q(yn; x, 1/n
2) the density1 of yn. If we assume p is bounded,

then by the dominated convergence theorem,

p(x) = p(lim yn) = E[p(lim yn)] = limE[p(yn)]

= lim
n→∞

ˆ

q(yn; x, 1/n
2)p(yn) dyn =: lim gn(x)

≈ lim
n→∞

Mn∑

j

1

Bn

q(zj; x, 1/n
2)p(zj) =: lim fn(x),

where Bn =
∑

j p(zj). Note that this renormalization guarantees fn is a proper

probability density function (of x), since we can rewrite it as

fn(x) =
Mn∑

j

p(zj)

Bn

q(−x;−zj, 1/n2)

⇒
ˆ

fn(x) dx =
Mn∑

j

p(zj)

Bn

ˆ

q(−x;−zj, 1/n2) dx = 1.

1If ǫ has a finite second moment and is standardized, x and 1/n2 would correspond to the mean and
variance of yn, respectively.
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By the above heuristic, we know that with a large enough number of mixture components

Mn, fn can be used to approximate gn, which will then converge to p by taking the

bandwidth 1/n2 to 0. Note that Mn needs to grow sufficiently fast (depending on the

shape of p and q(·; 0, 1), and n). Otherwise the numerical integration will fail as q will

become too peaky.

We formalize this observation in Theorem 7, which is restated below. Note that fn is an

equivalent way to write a mixture density that we defined in Section 4.5.

Theorem 7 (Universality of mixture models). If q ∈ C2 ∩ P , then Cl(Mq) = P .

Proof. We assume p is a C∞ density function with a compact support, e.g. {x : p(x >

0)} ⊆ [a, b]. We will relax this condition later using the standard mollification technique.

First, we decompose the error into two parts

|fn(x)− p(x)| ≤ |fn(x) + gn(x)|︸ ︷︷ ︸
A

+ |gn(x) + p(x)|︸ ︷︷ ︸
B

. (C.1)

The first term describes the error due to numerical integration and renormalization, and

the second term describes the error of the convolved density. Define

f̃n(x) :=
Mn∑

j

1

Cn

h(zn, x;n),

where h(z, x;n) = q(z; x, 1/n2)p(z) and Cn = Mn/(b− a). This allows us to further

decompose A as

A ≤ |fn(x)− f̃n(x)|︸ ︷︷ ︸
A1

+ |f̃n(x)− gn(x)|︸ ︷︷ ︸
A2

.

A1 is the renormalization error, which vanishes asymptotically as Bn/Cn is just the
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Riemann sum of p(x), if zj’s are placed uniformly on the interval [a, b]. Precisely

A1 ≤
Mn∑

j

∣∣∣∣
1

Bn

− 1

Cn

∣∣∣∣h(zj, x;n) (C.2)

=
Mn∑

j

|1− Bn/Cn|
Bn

· h(zj, x;n) ≤
Mn

Bn

·
∣∣∣∣1−

Bn

Cn

∣∣∣∣ ·Hn, (C.3)

where Hn := supz,x h(z, x;n). Since p is smooth, |p′′(x)| is bounded by some constant

K > 0 in [a, b], and by the midpoint rule (see 5.4 of Epperson [2013]), we have

∣∣∣∣1−
Bn

Cn

∣∣∣∣ =
∣∣∣∣
ˆ

p(x)dx− Bn

Cn

∣∣∣∣ ≤
K(b− a)

24C2
n

=
K(b− a)3

24M2
n

.

Thus for any 0 < η < 1, we can choose a big enough Mn such that
∣∣∣1− Bn

Cn

∣∣∣ ≤ η,

which then implies Cn

Bn
≤ 1

1−η
, and thus

A1 ≤
η

1− η
·Hn · (b− a).

Choosing2 η = min{1
2
, 1
2nHn
}, we have A1 ≤ b−a

n
.

Now applying midpoint rule again to A2, we have

A2 = |f̃n(x)− gn(x)| ≤
Gn(b− a)3

24M2
n

,

where Gn := supx∈[a,b] |g′′n(x)|. We can then set Mn to be big enough such that both A1

and A2 are O(1/n).

Now we turn to the error of convolution. By compactness of [a, b] and smoothness, p is

uniformly continuous. Thus, for any e′ > 0, we can find a small enough δ > 0 such

2Setting η implicitly determines a lower bound on Mn, since Mn needs to be big enough such that
this inequality holds.



REFERENCES 177

that |p(x)− p(y)| ≤ e′ whenever |x− y| ≤ δ. By Jensen’s inequality,

B = |E[p(yn)]− p(x)| (C.4)

≤ E[|p(yn)− p(x)|] (C.5)

= E[|p(yn)− p(x)|; |x− yn| ≤ δ] + E[|p(yn)− p(x)|; |x− yn| > δ] (C.6)

≤ e′ + 2 sup
y

p(y) · P(|x− yn| > δ) (C.7)

≤ e′ + 2 sup
y

p(y) · P(|ǫ| > nδ). (C.8)

This shows fn → p uniformly as n→∞.

Now for p ∈ L1 with bounded support, let pǫ be the mollified function pǫ(x) =
´

p(x− y)φǫ(y) dy, where φǫ is a mollifier. Since pǫ ∈ C∞
c , the above approximation

scheme applies and Scheffe’s lemma then implies ||fn(ǫ) − pǫ||1 ≤ ǫ for a sufficiently

large integer n(ǫ). Taking ǫ→ 0, we have

||fn(ǫ) − p||1 ≤ ||fn(ǫ) − pǫ||1 + ||pǫ − p||1 → 0,

since p ∈ L1 [Showalter, 2010, Lemma 1.2 of Chapter 2]).

If p has an unbounded support, let Yn := X1|X|≤n + Un1|X|>n with Un uniformly

distributed between ±n. Yn has a density pn(y) = p(y) + P(|X|>n)
2n

for y ∈ [−n, n]
and 0 elsewhere, and ||pn − p||1 = 2P(|X| > n). Since pn has a bounded support, we

can then take some fn close enough to pn such that ||fn − pn||1 ≤ 1/n. As a result,

||fn − p||1 → 0 as n→∞ by triangle inequality.

Corollary 8 (Universality of finite-sum monotone flows). If q ∈ C2 ∩ P , then for

any cumulative distribution function g, there exists a sequence of finite-sum monotone

flows fn with activation function σq that converges to g pointwise almost everywhere as

n→∞.
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Proof. Assume g is an absolutely continuous CDF. Let f ′
n be a sequence of mixture

density functions converging in L1 to g′. Then for any x, setting fn(x) :=
´ x

−∞ f ′
n(y)dy

(which is a finite-sum monotone flow), we have

|fn(x)− g(x)| ≤
ˆ x

−∞
|f ′

n(y)− g′(y)|dy ≤
ˆ

R

|f ′
n(y)− g′(y)|dy = ||f ′

n − g′||1 → 0.

Note that as ||f ′
n − g′|| is independent of x, the convergence is uniform.

For any CDF g, let X be a random variable distributed by g. Let Xm = X + ǫ/m

which has an absolutely continuous distribution function gm if the law of ǫ is absolutely

continuous [Billingsley, 2008, p.266]. Since Xm → X almost surely, Xm → X in

distribution and gm(x) → g(x) for all the continuity points x ∈ R of g. Since g

is continuous on a dense set (by Darboux-Froda’s theorem), the above convergence

holds almost everywhere. Now fix a continuity point x of g, and some δ > 0. For

each m, we can choose a sequence fmn that converges uniformly to gm as n → ∞.

For each m, choose nm such that |fmnm
− gm| ≤ 1/m. Then |fmnm

(x) − g(x)| ≤
1/m+ |gm(x)− g(x)| ≤ δ for a sufficiently large m (depending on x).
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D.1 PROOFS

Theorem 10 (Universality of NAF-DSF). NAF-DSF of the form (4.5) are A − P

distributionally universal.

Proof. This proof has two steps. We first prove that univariate DSFs itself can approx-

imate arbitrary monotone functions. Unlike Corollary 8, we prove this by explicitly

constructing an approximating function whose parameters would change continuously

in a conditional setting, so that we can approximate these parameters using a universal

hyper-conditioner network, which is the second part of the proof.

For simplicity, we assume µ and ν are both compactly supported with a strictly positive,

continuous and bounded density function, and we want to transform µ into ν. This can

be guaranteed since we can perturb them with a small Gaussian noise and then truncate

the distributions and uniformly redistribute the mass outside of a compact support inside

of the support. We deal with these extensions at the end of the proof.

Universality of univariate DSF To prove that DSF can approximate arbitrary mono-

tone functions, we notice that the sigmoid activation function can approximate a step

function via x 7→ σ(ax) by taking a→∞. This means we can first approximate the

monotone function using a staircase function, and then approximate the staircase func-

tion using DSF. Concretely, fix an arbitrary total uniform error ǫ > 0, and let ǫ1 = 1
3
ǫ
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and ǫ2 =
2
3
ǫ. We will set the parameters of a staircase function and a pre-sigmoid DSF

such that their approximation errors are bounded by ǫ1 and ǫ2, respectively, so that the

DSF approximates the target pre-sigmoid monotone function with at most an ǫ uniform

error.

Let g : [0, 1] → R be a target continuous, non-decreasing function that we want to

approximate (i.e. the unconditional univariate case of the KR map). We first show that

we can approximate σ ◦ g uniformly using a staircase function S(x), defined by

S(x) =
n∑

j=1

wj · h (x+ bj) , (D.1)

where h is the heaviside step function.

We choose n = max{⌈ 1
ǫ1
⌉, 1}, and divide the range into n+ 1 evenly spaced intervals:

(0, y1), (y1, y2), · · · , (yn, 1).

Let −bj be the inverse point of yj; that is bj = − inf{x : σ(g(x)) ≥ yj}. This means

h(x + bj) = 1 whenever x ≥ −bj = inf{x : σ(g(x)) ≥ yj}, which gives S a jump at

the first n n+ 1-quantiles of σ ◦ g.

We can determine the jump size wj coefficients so that S(x) = yj at x = inf{x :

σ(g(x)) ≥ yj} for 1 ≤ j ≤ n− 1, and for the last step we set S(x) = 1 at x = inf{x :

σ(g(x)) ≥ yn}, which would double the jump size. The last jump size is to ensure wj

sums to one. This amounts to solving a system of linear equations (by evaluating S at

the first n n+ 1-quantiles):




1 0 · · · 0 0

1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0

1 1 · · · 1 1







w1

w2

...

wn−1

wn




=




y1

y2
...

yn−1

1




, (D.2)



REFERENCES 181

where the n × n lower-triangular matrix of ones comes from the n evaluations of n

hidden units with the heaviside activation. Inverting it gives




w1

w2

...

wn−1

wn




=




1 0 · · · 0 0

1 1 · · · 0 0
...

...
. . .

...
...

1 1 · · · 1 0

1 1 · · · 1 1




−1 


y1

y2
...

yn−1

1




=




1 0 · · · 0 0

−1 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

0 0 · · · −1 1







1
n+1
2

n+1
...

n−1
n+1

1




, (D.3)

which means



w1

w2

...

wn−1

wn




=




1
n+1
1

n+1
...
1

n+1
2

n+1




. (D.4)

Since S intersects with σ ◦ g at the first n n + 1-quantiles and S is monotone, the

approximation error is uniformly bounded by 1
n+1
≤ ǫ1.

Now we set the parameters of a pre-logit DSF defined as

f(x) =
n∑

j=1

wj · σ (ax+ abj) , (D.5)

which will approximate the staircase function with large a. Specifically, we can choose

a sufficiently large so that f intersects with S at all of the jumps. Since f is also

non-decreasing, this will imply f is 2ǫ1-close to S, since 2ǫ1 is the biggest jump size

(the last jump). This means |f − g| ≤ |f − S|+ |S − g| ≤ 3ǫ1 = ǫ uniformly.

To choose this a, we first let κ = minj 6=j′ |bj − bj′ | be the smallest distance between

the quantiles. Let λ = max{σ−1(ǫ0), σ
−1(1− ǫ0)} where ǫ0 =

1
2
· 1
n+1

is the smallest

half-step size. Then we let a = λ
κ

. Then the following calculation shows f intercepts
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with S at all jump points −bj , since f is ǫ0-close to the half steps at all the jumps:

∣∣∣∣∣f(−bj)−
j−1∑

j′=1

wj′ − 0.5 · wj

∣∣∣∣∣ =
∣∣∣∣∣

n∑

j′=1

wj′ · σ (a(bj′ − bj))−
j−1∑

j′=1

wj′ − 0.5 · wj

∣∣∣∣∣

≤
∑

j′<j−1

wj′ |σ (a(bj′ − bj))− 1|+ 0.5 · wj − 0.5 · wj+

∑

j′>j+1

wj′ |σ (a(bj′ − bj))|

≤
∑

j′

wj′ǫ0 =
1

2
· 1

n+ 1
.

Universality of conditional DSF Now, we want to show that there is a neural condi-

tioner outputting wtj(x1:t−1), atj(x1:t−1), btj(x1:t−1) that can approximate the t’s con-

ditional transform of the KR map. Note that by assumption, µ has a compact support.

This means for fixed t and x1:t−1, the above approximation holds, and the approximation

error can be made small by controlling the number of hidden units n alone. Fixing

ǫ > 0, we choose n big enough such that the above approximation scheme holds with a

uniform error of ǫ
2

(uniform over xt), and denote by

c̃(x1:t−1) := (w̃tj(x1:t−1), ãt(x1:t−1), b̃tj(x1:t−1))

the parameters of (D.5), now depending on t and x1:t−1. That is,

|f(xt; c̃(x1:t−1))− σ(KRµ→ν(x1:t)t)| ≤
ǫ

2
, (D.6)

for any x1:t being the first t elements of x1:d in the support of µ, where

f(xt; c̃(x1:t−1)) :=
n∑

j=1

w̃tj(x1:t−1) · σ
(
ãt(x1:t−1)x+ ãt(x1:t−1)b̃tj(x1:t−1)

)
. (D.7)

We have abused the notation a bit when writing KRµ→ν(x1:t)t, since the KR map is a
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function of a d-dimensional vector. This can be understood as padding x1:t with d− t

zeros, since the t’th output does not depend on those entries anyways.

Now we want to invoke the UFA theorem (Theorem 1) to show that we can approximate

c̃ using a neural conditioner c, with a pre-specified error. First of all, note that the

support of c̃ is compact. We just need to make sure c̃ is continuous. Note that w̃tj and

ãt are just constants, so we can approximate them (exactly) by setting the weights to be

zero and returning the output biases only. This means we just need to approximate ãtb̃tj
using btj . Note that ãt is just a constant, which means the only thing changing value as

x1:t−1 varies is b̃tj . To check its continuity, recall that by definition

b̃tj(x1:t−1) = − inf
{
x : σ

(
Φ−1

νt(· |KRµ→ν(x1:t−1)1:t−1)

(
Φµt(· |x1:t−1)

(x)
))
≥ yj

}

= −
(
σ ◦ Φ−1

νt(· |KRµ→ν(x1:t−1)1:t−1)
◦ Φµt(· |x1:t−1)

)−1

(yj)

= −Φ−1
µt(· |x1:t−1)

(
Φνt(· |KRµ→ν(x1:t−1)1:t−1)

(
σ−1(yj)

))
.

The inverse function is well defined since both µ and ν have strictly positive density.

Now we prove continuity. First, note that

Φνt(· |KRµ→ν(x1:t−1)1:t−1)(x) =

ˆ x

−∞

q(x1, · · · , xt−1, x
′)

q(x1, · · · , xt−1)
dx′,

where q is the joint density associated with ν. Since the integrand is continous wrt

x1:t−1 and bounded by assumption, the CDF transform for a fixed input is continuous

wrt x1:t−1.
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Second, for u ∈ [0, 1],

∣∣∣Φ−1
µt(· |x1:t−1)

(u)− Φ−1
µt(· |x′

1:t−1)
(u)
∣∣∣

=
∣∣∣Φ−1

µt(· |x′
1:t−1)

(
Φµt(· |x′

1:t−1)

(
Φ−1

µt(· |x1:t−1)
(u)
))
− Φ−1

µt(· |x′
1:t−1)

(u)
∣∣∣

=:
∣∣∣Φ−1

µt(· |x′
1:t−1)

(u′)− Φ−1
µt(· |x′

1:t−1)
(u)
∣∣∣

≤ sup
u∈[0,1]

∣∣∣∣
(
Φ−1

µt(· |x′
1:t−1)

)′
(ũ)

∣∣∣∣ · |u′ − u|.

Similarly to the previous step, u′ → u as x′
1:t−1 → x1:t−1. The Lipschitz constant (the

first term) is also bounded, since

(
Φ−1

µt(· |x′
1:t−1)

)′
(ũ) =

1(
Φµt(· |x′

1:t−1)

)′
(x̃)

=
p(x′

1, · · · , x′
t−1)

p(x′
1, · · · , x′

t−1, x̃)
,

which is bounded, by the compactness, continuity and strict positivity of the density p,

where x̃ = Φ−1
µt(· |x′

1:t−1)
(ũ). Therefore, Φ−1

µt(· |x1:t−1)
(u) is continuous in x1:t−1.

Furthermore, we can actually show that it is continuous wrt x1:t−1 and u jointly. This

means b̃tj is continuous wrt x1:t−1, and that we can find a neural conditioner network c

such that

|c(x1:t−1)− c̃(x1:t−1)| ≤ δ

for an arbitrary pre-specified δ > 0. Now since f(xt; ·) is uniformly continuous

on some compact neighorhood of c̃, there exists some δ > 0 such that if |c − c̃| ≤ δ,

|f(xt; c)−f(xt; c̃)| ≤ ǫ
2
. We let this δ be the pre-specified error of the neural conditioner.

Combining (D.7), we have

|f(xt; c(x1:t−1))− σ(KRµ→ν(x1:t)t)| ≤ ǫ.

That is, pre-logit NAF-DSF can approximate σ ◦ KRµ→ν uniformly, which means

NAF-DSF can approximate the KR map pointwise. Lemma 5 then implies convergence

in distribution.
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Relaxing assumptions The above approximation holds for µ and ν having a strictly

positive density on a compact support.

More generally, we assume µ ∈ A and ν ∈ P. That is, µ has a Lebesgue density p,

and ν is an arbitrary probability measure. Let X ∼ µ and Y ∼ ν. We now construct

an approximation to µ with a compactly supported probability measure that has a

strictly positive, continuous and bounded probability density function. Denote by Bk

a ball of radius k > 0 centered at the origin, i.e. Bk := {x : ||x|| ≤ k}. Let ǫ

denote an independent, standard normal random vector, and Uk denote an independent,

random vector uniformly distributed on Bk. For x, u ∈ Rd and B ⊆ Rd, denote

by T (x, u,B) = x1x∈B + u1x6∈B. Now let Xk = T (X + σkǫ, U,Bk) where σk > 0

decreases to 0. The addition X + σkǫ ensures a strictly positive, continuous and

bounded density [Billingsley, 2008]. The truncation T redistributes the mass outside of

Bk uniformly in Bk, making the density compactly supported. Let µk denote the law of

Xk, and let Yk and νk be similarly defined.

From above, since Xk and Yk both have a continuous, strictly positive and bounded

density function, we know fixing k, we can find a sequence of fk,n such that fk,n(Xk)→
Yk in distribution as n→∞. Now since weak convergence is metrizable, choose nk

to be large enough such that the distance between the distribution of fk,nk
(Xk) and νk

is at most 1/k. An application of the triangle inequality of the weak metric implies

fk,nk
(Xk) → Y in distribution as k → ∞. Finally, note that since {||fk,nk

(Xk) −
fk,nk

(X + σkǫ)|| > ǫ} ⊆ {||X + σkǫ|| > k}, by monotonicity, we have

P

(
lim sup

k
||fk,nk

(Xk)− fk,nk
(X + σkǫ)|| > ǫ

)
≤ P

(
lim sup

k
||X + σkǫ|| > k

)
= 0

(D.8)

since σk is decreasing. Thus ||fk,nk
(Xk)−fk,nk

(X+σkǫ)|| → 0 almost surely (where P

is the underlying probability measure of the measure space). By Lemma 32, fk,nk
(X +

σkǫ) converges in distribution to Y . Now, to get rid of the additive regularization σkǫ,

we note that the the convolved density N (0, σ2
kI) ⋆ p satisfies [Brezis and Brézis, 2011,
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Theorem 4.22]

∥∥N (0, σ2
kI) ⋆ p− p

∥∥
1
→ 0. (D.9)

That is, X+σkǫ converges in total variation to X . Furthermore, since fk,nk
is a bijection,

and the total variation distance is invariant to reparameterization (Proposition 36), the

total variation distance between the distribution of fk,nk
(X + σkǫ) and the distribution

of fk,nk
(X) converges to 0. By Proposition 35, since the former converges to the

distribution of Y , so does the latter.



E Appendix of Chapter 5

E.1 SOFTPLUS-TYPE ACTIVATION

In this section, we let r(x) = max(0, x) be the ReLU activation function.

Definition 37 (Softplus-type activation). We say a function s is of the softplus type if

the following holds

(a) s ≥ r.

(b) s is convex.

(c) |s(x)− r(x)| → 0 as |x| → ∞.

Note that a softplus-type activation function is necessarily continuous, non-decreasing,

and uniformly approximating ReLU in the following sense:

|s(xa)/a− r(x)| → 0

uniformly for all x ∈ R as a→∞.

The following proposition characterizes a big family of softplus-type functions, and es-

tablishes a close connection between softplus type functions and probability distribution

functions.

Proposition 38 (CDFs and softplus-type activations). Let p be a probability density

function of a random variable with mean zero. Then the convolution s := p ∗ r is a

187
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softplus-type function. Moreover, s(x) =
´ x

−∞ Fp(y) dy, where Fp is the distribution

function of p, and s is at least twice differentiable.

Proof. We first prove a claim (i): xFp(x)→ 0 as x→ −∞. First, for x ≤ 0,

0 ≥ xFp(x) =

ˆ x

−∞
xp(y) dy ≥

ˆ x

−∞
yp(y) dy.

Since 1y≤xyp(y) → 0 as x → −∞ and |1y≤xyp(y)| ≤ |yp(y)|, which is integrable

by assumption, the integral on the RHS of the above goes to 0 by the dominated

convergence theorem.

We now show the identity. By definition, since
´

yp(y)dy = 0

s(x) =

ˆ

max(x− y, 0)p(y) dy =

ˆ

max(x, y)p(y) dy

=

ˆ x

−∞
xp(y) dy +

ˆ ∞

x

yp(y) dy = xFp(x) +

ˆ ∞

x

yp(y) dy, (E.1)

where we’ve used claim (i) to evaluate xFp(x) as x → −∞. On the other hand,

integration by part implies

ˆ x

−∞
Fp(y) dy = yFp(y)

∣∣x
−∞ −

ˆ x

−∞
yp(y) dy = xFp(x) +

ˆ ∞

x

yp(y) dy. (E.2)

Twice differentiability follows from the differentiability of Fp.

(a) Now since r(x) is convex, Jensen’s inequality gives

s(x) =

ˆ

r(y)p(x− y) dy = E[r(y)] ≥ r(E[y]) = r(x).

(b) s is convex because s′ = Fp is non-decreasing.

(c) To show that s ane r are asymptotically the same, we notice the integral on the
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RHS of (E.1) goes to 0 as |x| → ∞ (by the dominated or monotone convergence

theorem). It suffices to show xFp(x) goes to 0 as x → −∞, which is just claim

(i), and x − xFp(x) > 0 goes to 0 as x → ∞. To show the latter, we can rewrite

x−xFp(x) = x(1−Fp(x)) =
´∞
x

xp(y) dy, and the same argument as the claim holds

with a vanishing upper bound.

When p is taken to be the standard logistic density, the corresponding s = p∗r is simply

the regular softplus activation function. We list a few other softplus-type functions in

E.1 and visualize them in E.1.

p(y) s := p ∗ r

Logistic exp(−x)
(1+exp(−x))2

log (1 + exp(x))

Laplace e−|x|

2
r(x) + e−|x|

2

Gaussian e−
x2

2√
2π

√
π
2
x erf

(
x√
2

)
+e−

x2

2 +
√

π
2
x

√
2π

Table E.1: Formula of some softplus-type functions.
Figure E.1: Softplus-type functions.
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E.2 PROOFS

Theorem 11 (Invertibility of convex potential flow). Let F : Rd → R be a C2 strictly

convex mapping. Then f(x) := ∇F (x) is injective. If F is furthermore strongly convex,

then x 7→ F (x)− y⊤x has a unique minimizer, which implies f(x) is surjective.

Proof. We provide a formal proof of the invertibility of CP-Flow, and then establish the

connection to convex conjugacy (the Legendre-Fenchel transform). We first check that

f := ∇F is injective if F is strictly convex. This is because if F is twice differentiable

and strictly convex, the Hessian matrix H := ∇2F is symmetric positive definite, and

thus z⊤Hz > 0 for any non-zero vector z. We then have, for any x 6= y,

f(x)− f(y) =

ˆ

γ

H(γ) dγ =

ˆ 1

0

H(y + t(x− y))(x− y) dt,

where we used the gradient theorem for the line integral on a path γ connecting x and

y, and substituted t 7→ y+ t(x− y) for t going from 0 to 1. Positive-definiteness (along

with monotonicity of the integral) implies (x− y)⊤(f(x)− f(y)) > 0, and since x 6= y,

f(x) 6= f(y).

Now we further assume F is strongly convex. Then for any y, Fy(x) := F (x)− x⊤y is

also strongly convex, which, by Taylor’s theorem, implies that we can place a quadratic

lower bound on Fy and thus Fy(x) → ∞ whenever ||x|| → ∞. This means for a

sufficiently large constant R, the sub-level set SR := {x : Fy(x) ≤ R} is non-empty

and compact. By the Weierstrass extreme value theorem, Fy (restricted on SR) has a

minimizer x∗, and it is also the global minimizer over Rd. Now lets differentiate Fy

at x∗, which gives ∇F (x∗) − y. The gradient must be equal to 0 by the first order

condition, meaning x∗ is the inverse point of y under f . Since this holds for any y ∈ Rd,

f is surjective.

Now recall the definition of the convex conjugate:

F ∗(y) := sup
x

x⊤y − F (x) = x∗⊤y − F (x∗),
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where x∗ found by the above procedure depends on y. Note that x∗ is differentiable by

the inverse function theorem. Thus, differentiating F ∗ yields

∇yF
∗(y) = (∇yx

∗)⊤y + x∗ − (∇yx
∗)⊤∇F (x∗) = x∗,

since ∇F (x∗) = y. This means if y = f(x) = ∇xF (x), then x = ∇yF
∗(y); i.e.

∇F ∗ = (∇F )−1.

We first prepare a few functional universality results for proving Theorem 13.

Notation: Given a convex set Ω ⊆ Rd, we let C(Ω) denote the set of continuous

functions on Ω, and C×(Ω) := {f ∈ C(Ω) : f is convex} denote the set of convex,

continuous functions.

We first show that ICNNs with a suitable activation function are dense in C×. A similar

result can be found in Chen et al. [2019b], where they use a different constructive proof:

first show that piecewise maximum of affine functions, i.e. the maxout unit [Goodfellow

et al., 2013], can approximate any convex function, and then represent maxout using

ICNN. We emphasize our construction is simpler (see proof of Proposition 40).

The following proposition proves that functions that are pointwise maximum of affine

functions, are a dense subset of C×.

Proposition 39 (Universality of maxout). Pointwise maximum of affine functions is

dense in C×([0, 1]d).

Proof. Fix some ǫ > 0. Since f ∈ C×([0, 1]d) is uniformly continuous on [0, 1]d, there

exists some δ > 0 such that |f(x) − f(y)| < ǫ provided that ||x − y|| < δ. Let n be

big enough such that 2−n < δ, and let X be the set of points whose coordinates sit

on i2−n for some 1 ≤ i ≤ 2n − 1 (i.e. there are |X | = (2n − 1)d points in X ). For

each y ∈ X , let Ly(x) := ∇f(y)⊤(x − y) + f(y) be a supporting hyperplane of the

graph of f , where ∇f(y) is a subgradient of f evaluated at y. Then we have a convex

approximation fǫ(x) := maxy∈X Ly(x) which bounds f from below. Moreover, letting

y|x := argminy∈X ||x− y||, we have (for x 6∈ X ),
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f(x)− fǫ(x) = f(x)−max
y∈X

Ly(x)

≤ f(x)− Ly|x(x)

= f(x)− f(y|x)−
d∑

i=1

∇f(y|x)i(xi − y|x,i)

≤ f(x)− f(y|x) +
d∑

i=1

|∇f(y|x)i| · |xi − y|x,i|

≤ f(x)− f(y|x) +
d∑

i=1

ǫ

|xi − y|x,i|
· |xi − y|x,i|

≤ (d+ 1)ǫ.

Since ǫ is arbitrary, this construction forms a sequence of approximations converging

uniformly to f from below.

The following proposition shows that maxout units can be equivalently represented by

ICNN with the ReLU activation, and thus entails the density of the latter (as well as

ICNN with softplus activation).

Proposition 40 (Universality of ICNN). ICNN with ReLU or softplus-type activation

is dense in C×([0, 1]d).

Proof. Let r(x) = max(0, x) be the ReLU activation funciton. Any convex piecewise

linear function f(x) can be represented by f(x) = max(L1, ..., Lk) where Lj =

a⊤j x+ bj , which can then be reduced to

f(x) = r(max(L1 − Lk, ..., Lk−1 − Lk)) + Lk

= r(r(max(L1 − Lk−1, ..., Lk−2 − Lk−1)) + Lk−1 − Lk) + Lk

= zk,
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where zj := r(zj−1) + L′
j for 2 ≤ j ≤ k, z1 = L1 − L2, L′

j := Lj − Lj+1 for

2 ≤ j ≤ k − 1, and L′
k := Lk.

Since by Proposition 39, pointwise maximum of affine functions is dense in C×, so is

ICNN with the ReLU activation function. The same holds for softplus since softplus

can be used to uniformly approximate ReLU.

Theorem 12. Let Fn : Rd → R be differentiable convex functions and G : Rd → R

be a proper convex function. Assume Fn → G. Then for almost every x ∈ Rd, G is

differentiable and fn(x) := ∇Fn(x)→ ∇G(x) =: g(x).

Proof. We let x be a differentiable point of G. Since convergence of derivatives wrt

each coordinate can be dealt with independently, we assume d = 1 without loss of

generality. We can write fn as

fn(x) = lim
m

fnm(x) where fnm(x) =
Fn(x− 1/m)− Fn(x)

−1/m .

The problem can be rephrased as proving 1

lim
n

lim
m

fnm = lim
m

lim
n

fnm. (E.3)

Note that fnm is non-decreasing in m since Fn is convex, and thus fnm ≤ fn. Since

fnm converges to fn, for any ǫ > 0, we can find an integer µ(ǫ, n) such that for all

m ≥ µ(ǫ, n), |fnm − fn| ≤ ǫ. Let mk be a subsequence of {m ≥ 1} defined as

mk = µ(2−k, n).

Then |fnmk+1
− fnmk

| ≤ 2−k, which is integrable wrt the counting measure on positive

1Note that there is an implicit dependency on x since the result is pointwise.
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integers k, since
ˆ

2−k = lim
K→∞

K∑

k=1

2−k = 1.

Thus, letting fnm0 = 0, by the Dominated Convergence Theorem, we have

lim
n

lim
K

fnmK
= lim

n

ˆ

fnmk
− fnmk−1

=

ˆ

lim
n

fnmk
− fnmk−1

= lim
K

lim
n

fnmK
.

Although we are only looking at the limit of the subsequence mk, this is sufficient for

(E.3), since the LHS is equal to limn fn (since each Fn is differentiable), and by linearity

of the limit, the RHS is equal to limK
G(x−1/mK)−G(x)

−1/mK
= g(x) (since G is differentiable

at x by assumption).

Since the set of points over which G is not differentiable is a set of measure zero

[Rockafellar, 1970, Thm. 25.5], the convergence holds almost everywhere.

Theorem 13 (Universality of CP-Flow). Gradient maps of ICNN with softplus-type

activation are A−P distributionally universal.

Proof. Assume µ and ν have finite second moments. Since µ is absolutely continuous,

by Brenier’s theorem, there exists a convex function G : Rd → R such that∇G(X)
d
=

ν (where the gradient is unique up to changes on a null set). By Proposition 40, there

exists a sequence of ICNN Fn converging to G pointwise everywhere. Such a sequence

can be found since we can let Fn approximate G with a uniform error of 1/n on a

compact domain [−n, n]d. Theorem 12 then implies the gradient map fn := ∇Fn

converges to ∇G pointwise almost everywhere. This implies the weak convergence of

the pushforward measure of fn ◦X .
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Relaxing assumptions Now remove the finite second moment assumption and let X

and Y be random variables distributed according to µ (with Lebesgue density p) and ν,

respectively. We will now use an argument similar to (but simpler than) the relaxation

argument used in the proof of Theorem 10. Denote by Bk a ball of radius k > 0 centered

at the origin, i.e. Bk := {x : ||x|| ≤ k}. Let Xk = X1X∈Bk
+ Uk1X 6∈Bk

, where Uk is

an independent random variable distributed uniformly on Bk, and let µk be the law of

Xk. Then Xk → X almost surely as k →∞, and µk is still absolutely continuous wrt

the Lebesgue measure, with its density being p(x) + 1
vol(Bk)

µ(||X|| > k) if ||x|| ≤ k

or 0 otherwise. Let Yk and νk be defined similarly (while νk may not be absolutely

continuous wrt Lebesgue). From above, since Xk and Yk are bounded and admit a

finite second moment, we know fixing k, we can find a sequence of fk,n = ∇Fk,n

such that fk,n(Xk) → Yk in distribution as n → ∞. Now since weak convergence is

metrizable, choose nk to be large enough such that the distance between the distribution

of fk,nk
(Xk) and νk is at most 1/k. An application of the triangle inequality of the

weak metric implies fk,nk
(Xk)→ Y in distribution as k →∞. Finally, note that since

{||fk,nk
(Xk)− fk,nk

(X)|| > ǫ} ⊆ {||X|| > k}, by monotonicity, we have

P

(
lim sup

k
||fk,nk

(Xk)− fk,nk
(X)|| > ǫ

)
≤ P

(
lim sup

k
||X|| > k

)
= 0, (E.4)

and thus ||fk,nk
(Xk) − fk,nk

(X)|| → 0 almost surely (where P is the underlying

probability measure of the measure space). By Lemma 32, fk,nk
(X) converges in

distribution to Y .

Theorem 15 (Optimality of CP-Flow). Let G be the Brenier potential of X ∼ µ and

Y ∼ ν, and let Fn be a convergent sequence of differentiable, convex potentials, such

that∇Fn ◦X → Y in distribution. Then∇Fn converges almost surely to∇G.

The result can be deduced from the fact that optimality is “stable” under weak limit;

see for example, Santambrogio [2015, Theorem 1.50]. We prove the special case of

quadratic cost function.
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Proof. We claim that if F is a convex potential such that Z = ∇F (X) has ν as its law,

then ∇F ≡ ∇G almost surely. The proof of the claim is originally due to ?, but we

present it here for completeness. Let Z ′ be another random variable distributed by ν.

Then by the Fenchel-Young inequality (applied to the convex potential F ),

E[X⊤Z ′] ≤ E[F (X) + F ∗(Z ′)] = E[F (X) + F ∗(Z)]

= E[F (X) + F ∗(∇F (X))] = E[X⊤∇F (X)].

This concludes the proof since∇G uniquely solves the transportation problem, which

is equivalent to finding a transport map g̃ that maximizes the covariance:

E[||X − g̃(X)||2] = E[||X||2 + ||g̃(X)||2]− 2E[X⊤g̃(X)].

Let F∞ to be the pointwise limit of Fn. Then for any x1, x2 and t ∈ [0, 1],

F∞(tx1 + (1− t)x2) = lim
n→∞

Fn(tx1 + (1− t)x2)

≤ lim
n→∞

tFn(x1) + (1− t)Fn(x2)

= lim
n→∞

tFn(x1) + lim
n→∞

(1− t)Fn(x2)

= tF∞(x1) + (1− t)F∞(x2).

That is, F∞ is convex. Now since Fn is a convergent sequence of convex functions, its

gradient ∇Fn also converges pointwise almost everywhere to ∇F∞ by Theorem 12.

Let ρ denote the Prokhorov metric, which metrizes the weak convergence, and by abuse

of notation, we write ρ(X, Y ) to denote the distance between the law of X and Y . Then

ρ(∇F∞(X), Y ) ≤ ρ(∇F∞(X),∇Fn(X)) + ρ(∇Fn(X), Y ),

which means∇F∞(X) and Y have the same law, ν. Then by the claim,∇F∞ ≡ ∇G,

and thus ∇Fn → ∇G a.s. as n→∞.
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F.1 PROOFS

Theorem 17 (Universality of parametric flow map). Let V be a family of (parametric)

Lipschitz functions that is is dense (wrt the uniform metric) in C(K× [0, T ];Rd) for any

compact domain K ⊂ Rd. Let v(x, t) : Rd × [0, T ]→ Rd be a velocity field uniformly

Lipschitz in x for all t, and continuous in t. Then for any compact set K ∈ Rd, we can

find a (parametric) velocity v′ ∈ V such that supx∈K,t∈[0,T ] ||φv′(x, t)− φv(x, t)|| ≤ ǫ.

Proof. Let us start by studying the flow maps induced by some velocity that is globally

ǫ-close to v. Denote by E(C, T, ǫ) the set of functions Lipschitz functions that are

uniformly ǫ-small over C × [0, T ] for any C ⊆ Rd and T > 0, i.e.

E(C, T, ǫ) :=
{
u : ‖u‖L <∞, sup

x,t∈C×[0,T ]

‖u(x, t)‖ ≤ ǫ

}
.

Let L > 0 be the uniform Lipschitz constant of v. We first bound the approximation
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error of the flow map of v′ := v+u for any u ∈ E(Rd, T, ǫ). For any (x, t) ∈ K× [0, T ],

d

dt
‖φv′(x, t)− φv(x, t)‖

=
1

2
· 1

‖φv′(x, t)− φv(x, t)‖
· 2 · (φv′(x, t)− φv(x, t))

⊤(v′(φv′(x, t), t)− v(φv(x, t), t))

(1)

≤ ‖v′(φv′(x, t), t)− v(φv(x, t), t)‖
(2)

≤ ‖v′(φv′(x, t), t)− v(φv′(x, t), t)‖+ ‖v(φv′(x, t), t)− v(φv(x, t), t)‖
(3)

≤ ǫ+ L ‖φv′(x, t)− φv(x, t)‖ ,

where (1) is by Cauchy-Schwarz, (2) is by triangle inequality, and (3) is by definition of

v′ and Lipschitzness of v.

Gronwall’s inequality then implies ‖φv′(x, t)− φv(x, t)‖ ≤ ǫ · teLt ≤ ǫ · TeLT (which

does not depend on x or t).

This also allows us to shrink the approximating domain of v′. Let

K ′ = Cl




⋃

x,t∈K×[0,T ]

B(φv(x, t), ǫ · teLt)


 .

where Cl denotes the closure of a set. Since φv(K, [0, T ]) is compact and ǫ · telT is

bounded, k′ is also compact. The error bound tells us that φ′
v will be contained in the set

K ′ for any x, t ∈ K × [0, T ]. The same error bound still holds for any u ∈ E(K ′, T, ǫ),

since the above derivation only makes use of the uniform approximation error within

the set K ′ × [0, T ]. Finally, let v′ ∈ V be ǫ-close to v uniformly on K ′ × [0, T ]. Since

v′ − v ∈ E(K ′, T, ǫ), we have that ‖φv′(x, t)− φv(x, t)‖ ≤ ǫ · TeLT uniformly on

K × [0, T ].

Theorem 18 (Universality of Neural ODE). Flow maps of neural ODE are A −P

distributionally universal.
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Proof. Following the same regularization treatment as Theorem 13, we assume the input

and output measures both have densities that are smooth and positively supported in the

unit ball without loss of generality. Then the Brenier map g is a smooth diffeomorphism

[Urbas, 1997]. We claim that the velocity field (7.17) is uniformly Lipschitz in x for all

t. First, we bound the Jacobian norm of the inverse map g−1(x, t). Let x′ = g−1(x, t).

Then by the inverse function theorem,

∥∥∇g−1(x, t)
∥∥ =

∥∥∇g(x′, t)−1
∥∥

=
∥∥(t∇g(x′) + (1− t)I)−1

∥∥

=
1

tλmin(x′) + 1− t
,

where λmin(x
′) is the smallest eigenvalue of∇g(x′). Since g−1(x) is smooth,

∞ > sup
‖x‖=1

∥∥∇g−1(x)
∥∥ = sup

‖x‖=1

∥∥∇g(g−1(x))−1
∥∥ =

1

inf‖x‖=1 λmin(g−1(x))
.

Therefore,

∥∥∇g−1(x, t)
∥∥ ≤ 1

inft≤[0,1] t inf‖x‖=1 λmin(x′) + 1− t
≤ max

{
1,

1

inf‖x‖=1 λmin(x′)

}
.

This implies v(x, t) is uniformly Lipschitz. By Theorem 17 and Lemma 5, we conclude

the proof.



G Appendix of Chapter 8

G.1 NOTATION

We use (Ys, s) to denote the inference process (where Y0 is the data), and (Xt, t) to

denote the generative process (where X0 is a random variable following an unstructured

prior). We use s and t to distinguish the two directions, and always integrate the differ-

ential equations from 0 to T > 0 (different from the literature, where sometimes one

might see integration from T to 0). B̂s and Bt denote the Brownian motions associated

with the inference and generative SDEs, respectively. B′
s is a reparameterization of B̂s

(see Section 8.4). q(y, s) and p(x, t) denote the probability density functions of Ys and

Xt, respectively. We let sθ denote a time-indexed parameterized function that will be

used to approximate the score∇ log q(y, s). ∇ is the gradient wrt the spatial variable

(x or y, which we sometimes call position), ∂t, ∂s and ∂xi
are partial derivatives, and

H∗ denotes Hessian.
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G.2 1-D GIRSANOV AND VARIATIONAL INFERENCE

The Girsanov theorem (aka the Cameron–Martin-Girsanov theorem) describes how

translation affects Wiener (Gaussian) measures. In Section 8.4, we deal with the infinite

dimensional case, therefore demanding a formal measure-theoretic treatment. In this

section, we use a one-dimensional case to illustrate how to interpret the Girsanov

theorem and how we use it to derive the CT-ELBO, using the more familiar notion of

probability density functions. Now imagine we do not have an infinite-dimensional la-

tent variable (i.e. the Brownian motion B′). Instead, imagine we have a one-dimensional

latent variable ǫ′ following a standard normal distribution. One can think about it as a

VAE. This way, instead of having a classical Wiener measure (i.e. the distribution of

Brownian motion) we would only need to deal with the standard Gaussian distribution,

then P in (8.15) has density p = N (0, 1). Suppose Q also has density q Then we can

rewrite (8.15) using the more familiar density ratio

Eq

[
log

p

q
+ · · ·

∣∣∣∣ · · ·
]
.

Recall p(ǫ′) = N (ǫ′; 0, 1) = 1√
2π
e−

1
2
ǫ′2 . If we translate this density by a and let it be q,

we have

q(ǫ′) =
1

2π
e−

1
2
(ǫ′−a)2 .

This definition of q gives us the density ratio

q(ǫ′)

p(ǫ′)
= eaǫ

′− 1
2
a2 .

Also, under the density q,

ǫ̂ := ǫ′ − a.

is again a standard normal random variable (which means ǫ′ is a Gaussian random

variable with mean a). Note the striking resemblance between the last two formulas

and (8.16, 8.17).
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Now if we want to use this q to perform inference as well as reparameterization, we

simply just invert the standardization formula, by first sampling ǫ̂ from the standard

normal distribution, and letting ǫ′ = ǫ̂ + a. Under this reparameterization, the log-

likelihood ratio log p/q in the ELBO becomes

−aǫ′ + 1

2
a2 = −a(ǫ̂+ a) +

1

2
a2 = −aǫ̂− 1

2
a2.

Note that since ǫ̂ is the standard normal (under q), the first term is equal to 0 in

expectation. This derivation leads to the CT-ELBO in (8.18). See Section G.3 for the

formal proof.
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G.3 PROOFS

Theorem 23 (Continuous-time ELBO). Let Q be defined via the density (8.17). Then

the RHS of (8.15) can be rewritten as

E

[
−1

2

ˆ T

0

‖a(ω, s)‖22 ds+ log p0(YT )−
ˆ T

0

∇ · µ ds

∣∣∣∣∣Y0 = x

]
=: E∞, (8.18)

where the expectation is taken wrt the Brownian motion B̂s, and Ys solves1

dY = (−µ+ σa) ds+ σdB̂s. (8.19)

Proof. By inverting the relationship (8.16), we have

dB′
s = dB̂s + a(ω, s) ds.

This allows us to reparameterize Ys as

dY = −µ ds+ σ dB′
s = −µ ds+ σ(dB̂s + a ds) = (−µ+ σa) ds+ σdB̂s.

The log density can be written as

log
dP

dQ
= −
ˆ T

0

a · dB′
s +

1

2

ˆ T

0

‖a‖2 ds

= −
ˆ T

0

a · (dB̂s + a ds) +
1

2

ˆ T

0

‖a‖2 ds

= −
ˆ T

0

a · dB̂s −
1

2

ˆ T

0

‖a‖2 ds.

Finally, since the first term is in expectation equal to zero [Øksendal, 2003, Theorem

3.2.1], we conclude the proof.
1Note that µ and σ run backward in time from T , whereas a runs forward.
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Theorem 26 (Variational gap and optimal inference SDE). The variational gap can

be written as

log p(x, T )− E∞ =

ˆ T

0

E

[∥∥a(ω, s)− σ⊤∇ log p(Ys, T − s)
∥∥2
]
ds. (8.20)

In particular, E∞ = log p(x, T ) if and only if a(ω, s) can be written as a(ω, s) =

a(Ys(ω), s) for almost every s ∈ [0, T ] and ω ∈ Ω, and a(y, s) = σ⊤∇ log p(y, T − s)

almost everywhere.

Proof. To characterize the variational gap, we directly subtract the lower bound from

the marginal likelihood:

log p(x, T )− E∞ = E

[
log p(Y0, T )− log p(YT , 0) +

1

2

ˆ T

0

‖a(ω, s)‖22 ds+

ˆ T

0

∇ · µ ds

∣∣∣∣∣Y0 = x

]
.

The first two terms can be written as an integral

log p(Y0, T )− log p(YT , 0) = −
ˆ T

0

d log p(Ys, T − s). (G.1)

Using Itô’s formula, we can rewrite the differential as

d log p(Ys, T − s) = −∂sp(Ys, T − s)

p(Ys, T − s)
ds+∇ log p · dYs +

1

2
Hlog p : dYsdY

⊤
s ,

where dYsdY
⊤
s = σσ⊤ ds.

After rearrangement, we have

ˆ T

0

[
∂sp

p
−∇ log p⊤(−µ+ σa)− 1

2
Hlog p : σσ

⊤ +
1

2
‖a‖2 +∇ · µ

]
ds−

ˆ T

0

∇ log p⊤σ dB̂s,

(G.2)

where the second term is equal to 0 in expectation.
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Now using the Fokker-Planck equation to expand ∂sp, with further rearrangement and

cancellation and by a final application of the conditional Fubini’s theorem, we end us

with the desired characterization of the gap.

Theorem 28 (Consistency). Assume µ, σ, σ−2, a, ‖a‖2 and their derivatives up to

the fourth order are all bounded and continuous, and that σ is non-singular. Then

EL → E∞ as L→∞.

Proof. By definition of the log transitional distributions

log p(xi+1|xi) = −
d

2
log 2π − log det(σ̃i)−

1

2
‖xi+1 − µ̃i(xi)‖2σ̃−2

i
. (G.3)

Using the definition of µ̃i, the quadratic term becomes

‖xi+1 − xi −∆tµ(xi, i∆t)‖2σ̃−2
i

.

Due the the Gaussian reparameterization (under q), we can write

xi = µ̂i+1(xi+1) + σ̂i+1ǫ (G.4)

= xi+1 +∆t
(
− µ(xi+1, (i+ 1)∆t)

+ σ((i+ 1)∆t)a(xi+1, T − (i+ 1)∆t)
)
+
√
∆tσ((i+ 1)∆t)ǫ.

Plugging this into the quadratic term yields

‖· · ·‖2 = ‖∆t(µ(xi+1, (i+ 1)∆t)− µ(xi, i∆t)) (G.5)

−∆tσ((i+ 1)∆t)a(xi+1, T − (i+ 1)∆t)−
√
∆tσ((i+ 1)∆t)ǫ‖2.
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We take care of the deviation in µ first, by taking the Taylor expansion around (xi, i∆t):

µ(xi+1,(i+ 1)∆t) = µ(xi, i∆t) +∇µ(xi, i∆t)⊤(xi+1 − xi) +O(∆t). (G.6)

Note that the first order term wrt the time variable is also O(∆t), so it’s absorbed into

the remainder. Combining the last three identities, we have

1

2
‖xi+1 − µ̃i(xi)‖2σ̃−2

i

(G.7)

=
1

2
ǫ⊤σ⊤(σσ⊤)−1σǫ+∆tǫ⊤σ⊤∇µ⊤(σσ⊤)−1σǫ+

1

2
∆ta⊤σ⊤(σσ⊤)−1σa

+ o(∆t) + (∆t)1/2ǫ⊤σ⊤(σσ⊤)−1σa.

Note that we’ve dropped the arguments of the functions for notational convenience. All

the σs in the denominator are σ(i∆t). The o(∆t) term can be neglected since it decays

fast enough even though there are L = 1/∆t of them. The last term is 0 in expectation

since ǫ is Gaussian distributed. To take care of the first term (*), we turn to the log

density of the inference model.

log q(xi|xi+1) = −
d

2
log 2π − log det(σ̂i+1)−

1

2
‖xi − µ̂i+1(xi+1)‖2σ̂−2

i+1
(G.8)

= −d

2
log 2π − log det(σ̂i+1)−

1

2
‖σ̂i+1ǫ‖2σ̂−2

i+1
. (G.9)

Comparing the third term with (*), we have

1

2
ǫ⊤σ⊤

i+1

(
(σi+1σ

⊤
i+1)

−1 − (σiσ
⊤
i )

−1
)
σi+1ǫ, (G.10)

where σi := σ(i∆). Using the differential notation, in expectation, the above can be

rewritten as

E

[
1

2
ǫ⊤σ⊤ (∂t(σσ⊤)−1

)
σǫ

]
dt = −Tr(σ−1∂tσ) dt = −∂t log det(σ) dt, (G.11)
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where we used Hutchinson’s trace identity and Jacobi’s formula. Therefore, the summa-

tion of the differences will converge to log det(σ(0))− log det(σ(T )). This quantity

will be negated by summing up the differences between the normalizing constants for all

L terms, which gives us log det(σ(T ))− log det(σ(0)), by the telescoping cancellation.

Now we only have two terms from the quadratic function, which will converge to

ǫ⊤σ⊤∇µ⊤σ−⊤ǫ dt+
1

2
‖a‖2 dt.

Using the trace identity again, and the fact that trace is similarity-invariant, we see that

the above quantity is equal to

(
∇ · µ+

1

2
‖a‖2

)
dt,

in expectation. Now summing up all the layers, we can decompose the approximate

error as
∣∣∣∣E
[∑

log
p

q

]
− E

[
−
ˆ

(
∇ · µ+

1

2
‖a‖2

)]∣∣∣∣ ≤
∣∣∣∣E
[∑

log
p

q
+
∑(

∇ · µ+
1

2
‖a‖2

)
∆t

]∣∣∣∣

+E

[∣∣∣∣
∑(

∇ · µ+
1

2
‖a‖2

)
∆t−

ˆ

(
∇ · µ+

1

2
‖a‖2

)∣∣∣∣
]
.

As all the approximation errors are bounded and converge to 0 as L→∞, the first term

goes to 0 by the Dominated Convergence Theorem. The assumption on the coefficients

also guarantees the convergence in mean square error [Milshtein, 1975] of the Euler

Maruyama scheme, which implies the second term goes to 0. The same applies to the

last step for the prior term: x0 → y(T ) in L2.

Theorem 29 (Convergence of the OU process). If limT→∞
´ T

0
θ(r) dr = ∞, then

q(y, T ) following the standard OU process converges to N (0, I) in total variation as
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T →∞.

Proof. We use a technique commonly used in the Markov chain theory known as the

coupling method. Recall that Ys solves the following SDE

dYs = −θ(s)Ys ds+
√

2θ(s) dB̂s, (G.12)

which means

Ys = exp

(
−
ˆ s

0

θ(r) dr

)[
Y0 +

ˆ s

0

exp

(
ˆ r

0

θ(r′) dr′
)√

2θ(r)dB̂r

]
(G.13)

= exp

(
−
ˆ s

0

θ(r) dr

)[
Y0 +

ˆ s

0

√
d

dr
exp

(
ˆ r

0

2θ(r′) dr′
)
dB̂r

]
. (G.14)

Let Z̃s be another process defined similarly to Ys as

Z̃s := exp

(
−
ˆ s

0

θ(r) dr

)[
Z̃0 +

ˆ s

0

√
d

dr
exp

(
ˆ r

0

2θ(r′) dr′
)
dB̃r

]
, (G.15)

where Z̃0 is an independent standard Gaussian random vector and B̃s is another indepen-

dent Brownian motion. From (8.32) and (8.37), we know E[Z̃s] = 0 and Var(Z̃s) = I ,

which means Z̃s has a standard Gaussian distribution for all s. We define another

process Zs as follows. For each i ∈ [d],

Zi,s = Z̃i,s1s<τi + Yi,s1s≥τi , (G.16)

where τi is the first crossing time between Z̃i,s and Yi,s, i.e.

τi := inf{s ≥ 0 : Z̃i,s = Yi,s}. (G.17)

That is, Zi,s is set to be equal to Z̃i,s before the crossing, and to Yi,s after. Finally, let

τ = maxi τi, which means Zs = Ys for s ≥ τ . Note that Zs
d
= Z̃s for each s ≥ 0. For
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any Borel subset B of Rd,

P(YT ∈ B) = P(YT ∈ B, τ ≤ T ) + P(YT ∈ B, τ > T ) (G.18)

= P(ZT ∈ B, τ ≤ T ) + P(YT ∈ B, τ > T ) (G.19)

≤ P(ZT ∈ B) + P(τ > T ). (G.20)

Likewise, P(ZT ∈ B) ≤ P(YT ∈ B) + P(τ > T ), which means

|P(ZT ∈ B)− P(YT ∈ B)| ≤ P(τ > T ), (G.21)

for any Borel B ⊆ Rd. To show the total variation converges to 0, recall (B.1), it

suffices to show the RHS converges to 0 as T →∞. By monotonicity of the probability

measure, we have limT→∞ P(τ > T ) = P(τ =∞). Let D(T ) :=
´ T

0
θ(r) dr. Now, by

definition of τ ,

{τ =∞} = {∃ i ∈ [d] : τi =∞} (G.22)

=
⋃

i∈[d]
{τi =∞} (G.23)

=
⋃

i∈[d]
{Z̃i,s 6= Yi,s ∀ s ≥ 0} (G.24)

=
⋃

i∈[d]

{
e−D(s)

[
Z̃i,0 − Yi,0 +

ˆ s

0

√
d

dr
e2D(r)d

(
B̃i,r − B̂i,r

)]
6= 0 ∀ s ≥ 0

}

(G.25)

=
⋃

i∈[d]

{
ˆ s

0

√
d

dr
e2D(r)d

(
B̃i,r − B̂i,r

)
6= Yi,0 − Z̃i,0 ∀ s ≥ 0

}
. (G.26)

Since 1√
2
(B̃i,r − B̂i,r) is also a Brownian motion, the stochastic integral in the last line

is a Martingale with unbounded quadratic variation [Protter, 2005, Theorem 29]

lim
s→∞

2

ˆ s

0

d

dr
e2D(r) = lim

s→∞
2e2D(s) − 2 =∞
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by assumption. As continuous Martingales with unbounded quadratic variation can

be represented as a time-changed process of some Brownian motion B̄ [Karatzas and

Shreve, 2014, Theorem 4.6, Chapter 3], we can write

{τ =∞} =
⋃

i∈[d]

{
B̄i,2e2D(s)−2 6= Yi,0 − Z̃i,0 ∀ s ≥ 0

}
, (G.27)

which by continuity of Brownian motion and the law of the iterated logarithm [Durrett,

2019, Theorem 8.5.1] has measure zero.

Theorem 31 (Plug-in reverse SDE ELBO). Assume the generative and inference

SDEs follow (8.47). For λ < 1, then the CT-ELBO (denoted by E∞λ ) can be written as

E∞λ = EYT
[log p0(YT ) |Y0 = x]−

ˆ T

0

(
1− λ

2

)
EYs

[
1

2
‖sθ‖2g2 +∇ ·

(
g2sθ −

(
2

2− λ

)
f

) ∣∣∣∣Y0 = x

]

+
λ

2
EYs

[
1

2
‖sθ‖2g2 − g2s⊤

θ ∇ log q(Ys, s)

∣∣∣∣Y0 = x

]

+
λ2

4(1− λ)
EYs

[
1

2
‖sθ −∇ log q(Ys, s)‖2g2

∣∣∣∣Y0 = x

]
ds.

Furthermore, averaging the ELBO over the data distribution yields

EY0 [E∞λ ] = EYT
[log p0(YT )]−

ˆ T

0

(
1 +

λ2

4(1− λ)

)
EYs

[
1

2
‖sθ‖2g2 +∇ · (g2sθ)

]
ds

+ Const. (8.48)

= EY0 [E∞0 ]−
(

λ2

4(1− λ)

)
ˆ T

0

EYs

[
1

2
‖sθ(Ys, s)−∇ log q(Ys, s)‖2g2

]
ds.

(8.49)
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Proof. Plugging (8.47) in (8.1) and (8.19), we get

µ =

(
1− λ

2

)
g2sθ − f

σ =
√
1− λg

a =
1√
1− λ

[
(1− λ) gsθ +

λ

2
g (sθ −∇ log q)

]
.

Then we have

1

2
‖a‖22 =

1

2(1− λ)

[
(1− λ)2 ‖sθ‖2g2 + (1− λ)λg2s⊤

θ (sθ −∇ log q) +
λ2

4
‖sθ −∇ log q‖2g2

]

=

(
1− λ

2

)
1

2
‖sθ‖2g2 +

λ

2

(
1

2
‖sθ‖2g2 − g2s⊤

θ ∇ log q

)
+

λ2

4(1− λ)

1

2
‖sθ −∇ log q‖2g2

∇ · µ =

(
1− λ

2

)
∇ ·
(
g2sθ −

(
2

2− λ

)
f

)
.

Summing up these two parts gives us E∞λ . Under the expectation, we can rewrite

Eys
[g2s⊤

θ ∇ log q] = −Eys
[∇ · (g2sθ)] using the score matching loss identity (see

Section A.1), to obtain the second part of the statement.
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