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ABSTRACT 1	

 2	

Protein sequencing by tandem mass spectroscopy (LC-MS/MS) identifies thousands of protein 3	

sequences even in complex mixtures, and provides valuable insight into the biological functions 4	

of different cells. For non-model organisms, transcriptomes are generally used to allow peptide 5	

identification, an important addition to their use as a gene catalog allowing the potential 6	

metabolic activities of cells to be determined. Here, we used LC-MS/MS data to identify which 7	

of the six possible reading frames in the transcriptome was actually used by the cell to make 8	

protein, and asked whether this would have an impact on downstream analyses using the 9	

transcriptome. We first compiled a list of 6628 translated nucleic acid sequences that contained 10	

the peptide matches to a 74,655-sequence transcriptome from the dinoflagellate Lingulodinium 11	

polyedra. When compared with BLASTx analyses of the DNA sequences, the MS-validated 12	

protein sequences analysed BLASTp showed differences in gene ontology, had more identified 13	

BLAST hits and contained more KEGG pathway enzymes. The MS-validated protein sequences 14	

also differ from datasets containing longest ORF protein sequences.  We also note a poor 15	

correlation between the levels of protein and mRNA abundance, a comparison not previously 16	

performed for dinoflagellates. We suggest use of MS-validated protein sequences instead of the 17	

DNA sequence directly may provide a more accurate representation of cellular capacity. 18	

 19	

  20	
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INTRODUCTION 1	

 2	

Recent advances in high throughput Mass Spectroscopy-based protein sequencing have allowed 3	

an unprecedented examination of the biochemical potential of numerous organisms and are 4	

particularly useful for non-model organisms (1). The template sequences used to identify the 5	

peptides can be derived from the genome, in which case information on gene order, pseudogenes 6	

and regulatory elements is found in addition to the gene complement. Template sequences can 7	

also be derived from the transcriptome, which provides information on the types of genes that are 8	

present as well as their expression levels under defined conditions. As with other eukaryotes, 9	

only a small fraction of the genome is transcribed in dinoflagellates (2), typically on the order of 10	

several percent. Transcriptome sequences are thus easier to analyse and provide a rapid as well 11	

as a cost-effective means to explore the metabolic potential of cells. A transcriptome can also 12	

provide insight into what reactions a cell is able to catalyse by determining the best BLAST hit 13	

(the most similar sequence) for each translated sequence in the transcriptome. These types of 14	

results are conveniently summarized by categorizing the sequences identified by gene ontology 15	

(GO) (3). 16	

 17	

Identification of proteins in a transcriptome by BLAST searches, developed in the 1990s (4), is 18	

still the accepted standard for sequence characterisation. However, some potential confounding 19	

aspects can be readily imagined for transcriptome assemblies. First, since transcriptome 20	

assemblies often have difficulty in completely assembling a given transcript, a given gene may 21	

be spread across several entries in the transcriptome. Clearly, when a transcriptome sequence is 22	

incomplete, identification of a particular functional domain in the sequence will not provide a 23	

complete portrait of its true functional role. Second, when transcriptomes are prepared without 24	

regard for strand specificity, there is no means of distinguishing which of the one six possible 25	

reading frames constitutes that actually used. Lastly, assembly errors can create chimeric 26	

sequences whose deduced functions may be erroneously assigned because of the presence of 27	

inappropriate protein domains. 28	

 29	

Gene catalogs, derived from either genomic DNA or transcripts, are essential for bioinformatic 30	

interpretation of the mass spectrums obtained during protein sequencing. Top-end tandem mass 31	
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spectrometers (MS/MS) coupled with a liquid chromatographic column can now identify several 1	

thousands of peptide sequences in a single sample (5, 6). The bottom-up sequencing method 2	

involves digestion of a protein sample with an endopeptidase (usually trypsin), separation of the 3	

digested peptides by liquid chromatography (LC), a determination in the first MS of the mass of 4	

the each of the peptides that is separated, and finally a fragmentation of the peptide in the second 5	

MS and a determination of all the masses in the ladder-like pattern of fragments. Two successive 6	

mass peaks in each ladder differ by one amino acid, so in principal the sequence of amino acids 7	

which initially defined the peptide could be simply read off. In practise, incomplete and non-8	

random fragmentation of the original peptide means certain fragment peaks are of low 9	

abundance, so the sequence of a peptide is identified by comparing the experimental pattern of 10	

peaks in the ladder with a virtual peak ladder produced by computer from every sequence in a 11	

genome or a transcriptome. Computational methods also exist to assess the intensity of peaks in 12	

the MS1 mass spectrum whose calculated carbon isotope ratio and MS2 spectrum peaks agree 13	

with that predicted for a given peptide in the database. These intensity values can then be used to 14	

estimate amounts of a protein (7, 8). 15	

 16	

Despite the importance of transcriptomes in estimating the functional characteristics of cells, few 17	

studies have examined the consequences of using experimentally determined peptide sequences 18	

to refine the transcriptome sequences. We have sequenced protein extracts from the marine 19	

dinoflagellate Lingulodinium polyedra, a non-model organism for which a transcriptome (9) but 20	

no genome sequence is available, and extracted a dataset containing all the nucleic acid 21	

sequences that contained one or more peptide sequences. These nucleic acids sequences were 22	

translated and the reading frames encoding the MS-derived peptides were used to obtain what we 23	

term an MS-validated protein dataset. We find these proteins sequences differ markedly from 24	

those obtained by simply translating the longest ORF. We also find significantly differences in 25	

some Gene Ontology categories when nucleic acid and protein sequence lists were compared. 26	

We suggest that the interpretation of transcriptomes in non-model organisms could be enhanced 27	

by MS-validated sequences. The protein sequences also provide considerable time saving when 28	

used to identify peptide mass spectra. 29	

 30	
 31	
METHODS 32	
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 1	

Cell Culture and proteomic analyses 2	

Culture growth conditions and protein extraction methods for MS analysis from the 3	

dinoflagellate Lingulodinium polyedra (strain 1936 from the National Center for Marine Algae, 4	

East Boothbay, Maine) have been reported previously (10). Briefly, cells were harvested by 5	

filtration on Whatman 541 paper, and the filtered cells resuspended in extraction buffer (25 mM 6	

MES pH 6, 1M NaCl, 0.25% CHAPS with added protease and phosphatase inhibitors, Qiagen 7	

phosphoprotein preparation kit). After breaking the cells with two minutes vigorous shaking in a 8	

beadbeater (BioSpec Products), the extract was clarified by centrifugation at 13,000xg for 10 9	

minutes at 4°C, and the protein precipitated in 80% acetone at -20°C overnight. Protein was 10	

recovered by centrifugation at 13,000xg for 30 minutes in the cold, and the pellets washed twice 11	

with 80% cold acetone and left to air dry for 15 min. The cell pellets were resuspended in lysis 12	

buffer (6M Urea, 50 mM DTT, 10 mM Tris) to a final concentration of roughly 10 mg/ml, and 13	

the protein concentration measured using the Bradford reagent. For each sample to be analyzed, 14	

100 µg protein in a final volume of 10 µL was reduced by incubation at 60°C for 45 minutes 15	

after addition of 20 µL 1.5 mg/ml fresh DTT, then alkylated by incubation in the dark at room 16	

temperature for 30 min after addition of 20 µL 10 mg/ml fresh IAA. The proteins were again 17	

precipitated overnight at -20°C by addition of 250 µl cold acetone. Protein was recovered by 18	

centrifugation as above, and the air-dried pellet resuspended in 10 µL lysis buffer. The sample 19	

was then diluted with 200 µL 25 mM NH4HCO3 and digested overnight with 5 µg trypsin. 20	

Peptides were purified from the mixture after acidification to pH < 4 by addition of 5% TCA 21	

using a C18 ZipTip (Millipore) and by following the manufacturer’s instructions. Samples were 22	

dried in a Speedvac, resuspended in 20 µL 0.1% FA, and transferred to an HPLC vial for 23	

injection into the MS. 24	

 25	

For ion exchange fractionation of peptides, 100 µg protein was digested with trypsin as above. 26	

However, instead of using a ZipTip to isolate peptides from the digest, the sample was diluted to 27	

less than 0.5 M urea with 25 mM NH4HCO3 and loaded onto an strong cation exchanger (SCX, 28	

Millipore). The flow-though was collected as a 25 mM NH4HCO3 fraction, and five additional 29	

fractions (50 mM, 100 mM, 150 mM, 200 mM and 400 mM NH4HCO3) were also collected. All 30	
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fractions were dried in a Speedvac and resuspended in 5% TFA ensuring a pH < 4 before 1	

purifying the peptides using ZipTips as above. 2	

 3	

 For SDS-PAGE fractionation, 100 µg of protein was loaded and run on a 12% SDS PAGE (11). 4	

The gel was lightly stained with Coomassie blue, and the gel cut into 12 slices each containing 5	

roughly similar amount of stain. The gel slices were chopped with a razor blade and washed with 6	

400 µl 25mM and 1:1 solution 50mM ammonium bicarbonate:ACN for at least 4 times until the 7	

gel cubes became colorless. The gel cubes were dehydrated (by addition of 200 µl of ACN for 10 8	

minutes), rehydrated using 200 µL of 1:1 solution and dehydrated again with 200 µl of ACN and 9	

left to air dry. Proteins were reduced, alkylated and digested with trypsin as above. To extract 10	

peptides from the gel pieces, 40 µl of 0.1% TFA was added and the gel cubes sonicated for 10 11	

minutes in a water bath sonicator. The liquid was removed and the extraction repeated three 12	

times before combining the supernatants and drying them in a Speedvac. Samples were re-13	

dissolved in 10 µL 0.1% FA and transferred to an HPLC tube for MS acquisition.  14	

 15	

Mass spectroscopy was performed using two different instruments, an LTQ-Fusion Lumos 16	

(Thermo Scientific, USA) and a 6600 Triple-TOF (AB Sciex, USA). For the 6600 triple-TOF, 2 17	

µL peptides were resolved by a 15 cm nanoflow C18 column (ABSciex, USA) with the gradient 18	

set from 6% to 30% of ACN in 0.1% of FA for 90 minutes.  The eluents were introduced into the 19	

6600 triple-TOF with settings described previously {Tse and Lo, 2017, in press). For the LTQ-20	

Fusion Lumos, peptides were first resolved by a 15 cm nanoflow C18 column (LC packings, 21	

Netherland) using an Ultimate 3000 nanoflow liquid chromatography (Thermo Scientific, USA) 22	

with the same gradient described above. Eluents were introduced into an electrospray (ESI) 23	

where peptides were ionized by a nozzle potential of 2300V in positive mode. The temperature 24	

of the ESI was kept in 150°C. The mass spectrometer was operated in data-dependant acquisition 25	

(DDA) mode. Precursor ions were first introduced to an Orbitrap mass analyzer for precursor 26	

mass acquisition (MS1) with the mass-per-charge range of 350-1500 and a resolution of 60,000. 27	

Fragment mass acquisitions (MS2) were then performed in a linear iontrap mass analyzer.  28	

 29	

Data analysis 30	
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Sequences were identified using Mascot Distiller 2.5 (Matrix Science) with an Mascot Server 2.5 1	

using a previously described Lingulodinium transcriptome with 74,655 entries assembled using 2	

Velvet (9) (available in Genbank under the accession numbers JO692619-JO767447). 3	

Carbamidomethylation on the cysteine residue was set as the fixed modification, whereas 4	

oxidation on the methionine residue was set as the variable modification. One missed cleavage 5	

was permitted. For the search of data acquired from the 6600 triple-TOF, precursor ion tolerance 6	

and fragment ion tolerance were set at 10 ppm and 0.1 Da respectively, whereas 10 ppm and 0.5 7	

Da was set respectively for spectra acquired from the Fusion Lumos. Global identity false 8	

discovery rate (FDR) was kept under 1% by searching the data against a decoy database made by 9	

reversing the sequence of the Lingulodinium transcriptome library. 10	

 11	

Blast2Go (3) was used to determine sequence identities and establish GO categories, and either 12	

tBLASTn (for DNA sequences) or BLASTp (for the MS-validated protein sequences) were used 13	

at their default settings. The number of sequences assigned to the different KEGG pathways was 14	

counted manually for each pathway. The number of sequences for the different categories in the 15	

Biological Process, Cell Component or Molecular Function lists were tested using the BLAST 16	

results determined with the DNA sequences and the MS-validated protein sequences separately. 17	

Statistical significance was determined by first calculating a z-score (as (X – Y) / (X + Y)1/2), 18	

where X and Y are the number of sequences in the category determined using DNA sequence or 19	

protein sequence, respectively, then calculating a p value from the z-score using the Norm.S.Dist 20	

function in Microsoft Excel. Enrichment profiles for the MS-validated test set were determined 21	

using Fisher’s exact test with the entire Velvet transcriptome as a reference.  22	

 23	

The deduced protein sequences in the Velvet transcriptome assembly that corresponded to 24	

experimentally determined peptide sequences was determined using Geneious (12). The 6628 25	

sequence DNA dataset was first translated in all 6 potential reading frames, and each of the 6 26	

translated reading frames queried separately for matches (100% sequence identity and 100% 27	

coverage) with the list of 21,040 MS determined peptides. Comparisons between the MS-28	

validated protein sequences and the longest ORFs for each sequence in the nucleic acid dataset 29	

were also made using Geneious. The longest ORF for each DNA sequence in the dataset was 30	

determined using Galaxy (13). 31	
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 1	

To assess relative protein levels, raw MS data files were used for protein quantitation using 2	

Progenesis QI for proteomics (Waters). Three technical replicates were averaged to obtain a 3	

relative value for each peptide. Correlations to RNA levels determined previously using RNA 4	

Seq data (14) were evaluated using the ggpubr package in R. 5	

 6	

RESULTS 7	
 8	

Peptide sequences from a total of four different experiments were used to recover a final list of 9	

6,628 sequences from a Velvet assembled transcriptome (Table 1). In terms of the efficiency of 10	

protein sequencing, we found that the Fusion Lumos delivered more peptide sequences than the 11	

6600 Triple-TOF. We also found that fractionation increased the number of peptides obtained, 12	

with SCX fractionation of tryptic peptides performing markedly better than fractionation of the 13	

proteins prior to digestion using SDS-PAGE. Almost 6,000 proteins can be identified when both 14	

a non-fractionated sample and an SCX fractionated sample are analyzed by the Fusion Lumos, 15	

indicating that this combination of protocols should produce the greatest number of peptides for 16	

the least investment of time and money. A hybrid strategy was used in the Fusion Lumos, where 17	

an orbitrap was used for precursor acquisition and an iontrap was used for fragment ion 18	

acquisition. This approach enabled the fragment acquisition of the current cycle and the 19	

precursor acquisition of the next cycle happened simultaneously. The sequences identified by 20	

MS appear highly dependent on the abundance of the peptides in the sample. For example, the 21	

Biological Process group of GO categories shows significant enrichment in basic sugar and 22	

amino acid metabolism (Figure 1), and enzymes involved in basic metabolism might be expected 23	

to be more abundant and thus more likely to be detected. Only one GO category, protein 24	

phosphorylation, was found to be under represented.  25	

 26	

In order to determine which deduced protein sequences in our Velvet transcriptome assembly 27	

corresponded to experimentally determined peptide sequences, peptide sequences were used to 28	

select protein sequences from the 6628 sequences translated in all 6 potential reading frames. All 29	

translated sequences with a match to any peptide were then combined to form a single MS-30	

validated sequence dataset. Interestingly, 94 sequences showed a match to peptides in more than 31	
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one reading frame. These were examined manually by comparing the Velvet assembly sequence 1	

to almost identical sequences in two other datasets, a Trinity assembly of our data (15) and a L. 2	

polyedra (strain CCMP1738) dataset from the Community for Advanced Microbial Ecology 3	

Research and Analysis (CAMERA) (http://imicrobe.us/) assembled using BPA (16). The 4	

majority of the sequences where peptide matches were seen in more than one reading frame were 5	

found to be assembly artifacts, with 39 containing a tail-to-tail duplication, 12 containing a head-6	

to-tail duplication and 23 appearing to be chimeras formed from two separate sequences. An 7	

additional 11 nucleotide sequences had a single frame shift mutation, while the remaining 9 8	

sequences appeared to have resulted from a false positive match, as the peptides matches were in 9	

reading frames surrounded by stop codons and thus unlikely to represent a bone fide peptide. 10	

 11	

To test if analyses using MS-validated proteins sequences differed from those using the DNA 12	

sequences in the transcriptome, we first compared the results of BLAST searches using either 13	

BLASTp with the MS-validated protein sequences and tBLASTn with the DNA sequences in the 14	

transcriptome. Interestingly, the number of sequences with a BLAST hit was greater when the 15	

protein sequences were used (Figure 2). After the BLAST searches were completed, the proteins 16	

identified were classified by Gene Ontogeny, and the number of proteins in the different 17	

categories determined for each of the two searches (Supplementary Table 1). We found that the 18	

molecular process classification did not change markedly between the two methods, and 19	

biological process categories were also very similar. However, cellular component categories 20	

differed markedly between the two BLAST search results. We also tested for the degree to which 21	

proteins identified by the two searches could be assigned functions in the KEGG pathway maps 22	

(Table 2). In a total of 19 pathways, 97 enzymes were assigned after tBLASTn searches, while 23	

139 enzymes were assigned after BLASTp searches.  This represents an increase of over 40% in 24	

the number of pathway enzymes represented using MS-validated protein sequences. 25	

 26	

We next compared the translated MS-validated transcriptome with the proteins constituting the 27	

longest ORF for all the DNA sequence (Figure 3). Roughly two-thirds of these latter (4190 28	

sequences) were 100% identical to the MS-validated sequences, but the sequence similarity in 29	

the remaining third decreased rapidly. Thus, simply using longest ORFs does not produce a good 30	

yield of authentic protein sequences. 31	
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 1	

We were also curious in the degree to which RNA and protein levels were correlated in the 2	

dinoflagellate Lingulodinium, as this species has daily changes in protein synthesis rates (17) but 3	

does not alter RNA levels to accomplish this (14). We thus predicted that that the correlation 4	

between the two might be on the low side compared to what has been observed in other systems. 5	

Using the total number of proteins identified from all runs (6628) to interpret the raw data for the 6	

unfractionated sample run on an Orbitrap (Table 1), 3199 proteins were quantified using 7	

Progenesis. Relative protein levels were then compared to transcript levels as determined 8	

previously by RNA Seq (14) (Figure 4). The correlation between the levels of protein and RNA 9	

(Pearson r =  0.46, p<0.0001; Spearman rho = 0.33; Kendall tau = 0.23) does indeed appear to be 10	

lower than what has been observed in a range of other species (Spearman rho between 0.5 – 11	

0.73) (18).  12	

 13	

DISCUSSION 14	

 15	

Transcriptomes are an invaluable aid to understanding the biological processes that can be 16	

carried out by organisms, and are especially important for non-model organisms where genome 17	

sequencing projects are not likely to be undertaken in the foreseeable future. However, 18	

transcriptomes have some disadvantages, especially when sequencing efforts are not strand 19	

specific, as each DNA sequence has six different reading frames that potentially encode the 20	

protein sequence. One often used method to infer the correct reading frame is to simply choose 21	

the longest open reading frame (ORF) under the assumption that reading frames will be subject 22	

to random mutations that introduce stop codons unless selective pressure acts to conserve the 23	

sequence important for the cell. We have tested this using a subset of 6628 sequences from the 24	

74,655 sequences in the transcriptome of the dinoflagellate Lingulodinium, the subset being 25	

defined by the experimental MS-based identification of at least one peptide in each of the 26	

different sequences. However, the longest ORF agrees with the MS-validated sequences only 27	

two thirds of the time, suggesting longest ORFs do not always appear to be faithful 28	

representations of the encoded proteins. Determining the correct reading frame is important for 29	

the dinoflagellates where many of the genes cannot be identified by BLAST searches. As an 30	

example, almost a third of the sequences in the Lingulodinium transcriptome have no match to 31	
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sequences in GenBank (9), so homology cannot be used to infer the proteins that are actually 1	

expressed. 2	

 3	

This MS-validated protein dataset represents the largest number of dinoflagellate protein 4	

sequences reported to date, and validates the use of untargeted bottom-up proteomics with the 5	

dinoflagellates. High throughput proteomics appears to have almost completely supplanted the 6	

use of 2D electrophoresis in protein analysis. Recently, a similar high throughput approach was 7	

used to compare protein levels in toxic and non-toxic Alexandrium catanella using iTRAQ 8	

(isobaric tags for relative and absolute quantification) mass tags. This study identified 3488 9	

proteins (19) of which 185 had different levels in the two strains. While none of the known toxin 10	

biosynthesis enzymes were among them, this important proof of principal clearly shows the 11	

importance of untargeted proteomics in assessing how toxins are made in dinoflagellates. This 12	

study described here used a label-free approach, which has the advantage that little sample 13	

manipulation is required. However, greater care must be taken during analysis of unlabeled 14	

samples to ensure correct normalization compared to the iTRAQ technique.  15	

 16	

Determining the correct translation products from a transcriptome by incorporating data from 17	

experimentally sequenced peptides also influences the results of GO analysis and assignment to 18	

KEGG pathways, and this is one aspect that has not previously been observed. In fact, we have 19	

found few reports in the literature that have used protein sequence to validate virtual translation 20	

products. In one, expressed protein sequences were used to compare protein content as 21	

determined by translation of the transcriptome with that obtained by genome annotation (20). 22	

Another proposed a software package that could be used to validate genome sequence protein 23	

predictions (21), and the package was subsequently used to validate isoforms generated by 24	

splicing (22). 25	

 26	

The construction of a validated protein database from peptide sequences as described here is for 27	

the most part an automated procedure, with only 1.5 % of the sequences requiring manual 28	

curation. This seems a worthwhile investment to allow a more efficient interpretation of future 29	

MS data from non-model organisms. The elimination of five of the six possible reading frames is 30	

likely to reduce the number of false positives when performing database searches, since false 31	



	 12	

discovery rates are measured as percentage values (typically FDR <1%). A six-fold reduction of 1	

the number of sequences would thus reduce the number of false positives by a similar ratio. In 2	

addition, search times should also be reduced, thus reducing analysis times for large datasets.  3	

  4	
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Table 1 Peptides and proteins determined by MS analysis 1	
 2	
 3	
Experiment   # unique # unique # proteins # proteins 4	
    Peptides proteins ≥ 2 peptides 1 peptide 5	
1 - SCX fractionation  14,208  5,115  2,978  2,137 6	
2 - SDS fractionation    7,836  3,509  1,870  1,639 7	
3 - non fractionated (OB)   6,107  3,046  1,432  1,614 8	
4 - non fractionated (SciEx)   1,731  1,220     449     771 9	
TOTAL (1+2+3+4)  21,040  6,628  3525  2,889 10	
TOTAL (1+3)   18,037  5,958  3,286  2,672 11	
 12	
  13	
 14	
Table 2 Number of entries in KEGG pathways 15	
 16	

KEGG map 
DNA 
sequences 

Protein 
Sequences 

Glycolysis 7 7 
TCA cycle 9 10 
Carbon fixation 9 10 
Ox. Phosphorylation 4 5 
Purine biosynthesis 14 20 
Pyrimidine biosynthesis 3 5 
Fatty acid metabolism 3 4 
F,Y,W biosynthesis 1 1 
S,G,T biosynthesis 4 9 
R, P biosynthesis 4 6 
A,D,N,E,Q biosynthesis 4 7 
C,M biosynthesis 7 11 
V,L,I metabolism 7 11 
K biosynthesis 1 2 
H biosynthesis 3 3 
Pyruvate metabolism 6 9 
Nitrogen metabolism 2 6 
Sulfur metabolism 5 7 
Methane metabolism 4 6 
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 1	
 2	
Figure 1 Biological Process GO categories with significantly enriched sequences among the 3	

MS identified proteins. MS-validated protein sequences were used as the test set and the entire 4	

Velvet transcriptome was used as a reference set to determine significantly enriched categories 5	

with Fisher’s exact test. The only category found to be underrepresented in the test set is protein 6	

phosphorylation. All categories shown are significant with p < 0.00001. 7	

 8	

 9	
 10	
Figure 2 Use of an MS-validated transcriptome catalog increases the number of BLAST 11	

hits. The statistics of BLAST searches is shown for the DNA sequences used directly (upper 12	

panel) and for the MS-validated protein sequences (lower panel).  13	

 14	
 15	
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 1	

 2	
 3	
Figure 3 Longest ORF predictions show poor agreement to the MS-validated protein 4	

sequence. The protein sequences determined from our MS-validated dataset were compared to 5	

protein sequences derived from the longest ORF for each of the DNA sequences (e-value cut-off 6	

set to 1). The % sequence coverage is shown as a function of the % identical sites for all 7	

sequence pairs (inset). 8	

 9	

 10	
 11	

Figure 4 Correlation between Protein and RNA levels is poor. Average log protein intensities 12	

(relative values) were plotted as a function of log RNA levels (in reads per kilobase per million, 13	

RPKM).   14	



	 18	

Supplementary Table 1 Number of sequences in different GO categories using BLAST2GO 1	

with DNA sequences or with MS-validated protein sequences. Significant difference between 2	

the two (p < 0.05) are shown in red.  3	

 4	
 5	

DNA	sequences Protein	Sequences p	value
Molecular	Function 1152 1267 0.02593

Catalytic	Activity 626 688 0.09240

Transferase 133 153 0.19825

Hydrolase 190 179 0.33861

Oxidoreductase 190 197 0.37447

Lyase 58 69 0.24775

transferase 133 153 0.19825

kinase 74 74 0.39894

ligase 64 60 0.37402

Binding 585 624 0.21268

Nucleic	acid 59 71 0.22929

RNA 51 63 0.21214

Protein 27 35 0.23810

Ion	binding 371 377 0.38946

Structural 97 98 0.39792

Ribosomal 82 83 0.39774

Cellular	Component 480 660 0.00000

Cell 407 555 0.00000

Cytoplasm 275 395 0.00001

Intracellular	organelle 241 352 0.00001

Membrane	bound 140 234 0.00000

Plastid 80 101 0.11799

Nucleus 25 75 0.00000

Mitochondrial 26 49 0.01173

Non	membrane	bound 109 122 0.27672

Ribosome 89 87 0.39443

Macromolecular	complex 163 188 0.16378

Protein 74 101 0.04970

Ribonucleioprotein 89 87 0.39443

Membrane 7 20 0.01745

Biological	Process 809 875 0.10945

Metabolic	process 550 613 0.07242

Cellular	Process 736 603 0.00054

Response	to	stimuli 73 79 0.35439

Signaling 43 35 0.26469

Localization 37 60 0.02610

Biological	regulation 69 45 0.03190

Celllar	component	organisation 16 49 0.00009

Small	Molecules 257 266 0.36921

Biosynthesis 242 261 0.27865

Catabolism 85 106 0.12576

N	metabolism 323 368 0.09216

Photosyntehsis 71 67 0.37647

Gene	exp@ression 110 128 0.20198

Translation 107 110 0.39075

Protein	modification 81 98 0.17796


