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RESUME

Cet article propose des procédures exactes pour tester la spécification SURE
(régressions empilées) dans le contexte des régressions linéaires multivariées, i.e. si les
perturbations des différentes équations sont corrélées ou non. Nous appliquons la
technique des tests de Monte Carlo (MC) [Dwass (1957), Barnard (1963)] pour obtenir des
tests d'indépendance exacts fondés sur les critéres du quotient de vraisemblance (LR) et
du multiplicateur de Lagrange (LM). Nous suggérons aussi un critere du type quasi-
quotient de vraisemblance (QLR) dérivé sur base des moindres carrés généralisés
réalisables (FGLS). Nous démontrons que ces statistiques sont libres de paramétres de
nuisance sous I'hypothése nulle, ce qui justifie I'application des tests de Monte Carlo. Par
ailleurs, nous généralisons le test exact proposé par Harvey et Phillips (1982) au contexte
des équations multiples. En particulier, nous proposons plusieurs tests induits basés sur
des tests de type Harvey-Phillips et nous suggérons une technique basée sur des
simulations afin de résoudre le probleme de combinaison de tests. Nous évaluons les
propriétés des tests que nous proposons dans le cadre d'une étude de Monte Carlo. Nos
résultats montrent que les tests asymptotiques usuels présentent de sérieuses distorsions
de niveau, alors que les tests de MC contrdlent parfaitement le niveau et ont une bonne
puissance. De plus, les tests QLR se comportent bien du point de vue de la puissance; ce
résultat est intéressant vu que les tests (multivariés) que nous proposons sont basés sur
des simulations. La puissance des tests de MC induits augmente sensiblement par rapport
aux tests fondés sur l'inégalité de Bonferroni et, dans certains cas, dépasse la puissance
des tests de MC fondés sur la vraisemblance. Nous appliquons les tests sur des données

utilisées par Fischer (1993) pour analyser des modéles de croissance.

Mots clés : régressions empilées, systeme SURE, test d'indépendance, régression
linéaire multivariée, corrélation contemporaine, test exact, test a distance
finie, test de Monte Carlo, bootstrap, test induit, test LM, quotient de

vraisemblance, test de spécification, macroéconomie, croissance



ABSTRACT

This paper proposes finite-sample procedures for testing the SURE specification in
multi-equation regression models, i.e. whether the disturbances in different equations are
contemporaneously uncorrelated or not. We apply the technique of Monte Carlo (MC)
tests [Dwass (1957), Barnard (1963)] to obtain exact tests based on standard LR and LM
zero correlation tests. We also suggest a MC quasi-LR (QLR) test based on feasible
generalized least squares (FGLS). We show that the latter statistics are pivotal under the
null, which provides the justification for applying MC tests. Furthermore, we extend the
exact independence test proposed by Harvey and Phillips (1982) to the multi-equation
framework. Specifically, we introduce several induced tests based on a set of
simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to the
associated combination problem. The properties of the proposed tests are studied in a
Monte Carlo experiment which shows that standard asymptotic tests exhibit important size
distortions, while MC tests achieve complete size control and display good power.
Moreover, MC-QLR tests performed best in terms of power, a result of interest from the
point of view of simulation-based tests. The power of the MC induced tests improves
appreciably in comparison to standard Bonferroni tests and, in certain cases, outperforms
the likelihood-based MC tests. The tests are applied to data used by Fischer (1993) to

analyze the macroeconomic determinants of growth.

Keywords : seemingly unrelated regressions, SURE system, multivariate linear
regression, contemporaneous correlation, exact test, finite-sample test,
Monte Carlo test, bootstrap, induced test, LM test, likelihood ratio test,

specification test, macroeconomics, growth



Contents

List of Definitions, Propositions and Theorems
List of Tables

1. Introduction

2. Framework

3. Test statistics for cross-equation disturbance correlation
3.1. Likelihood-basedtests . . . . ... ... ...,
3.2. Induced Harvey-Phillips tests

4. Finite-sample theory
5.  Simulation experiments
6. Application to growth equations

7. Conclusion

References

AN L i (S

15
18
24

25



List of Definitions, Propositions and Theorems

41 Proposition : Standardized representation of LA and Harvey-Phillips statistics . 10
4.2 Proposition : Standardized representation of the LR statistic . . . . . . . . . .. 10
4.3 Proposition : Standardized representation of QLR statistics. . . . . . .. .. .. 11
44 Proposition : Pivotal property of tests for cross-equation correlation . . . . . . . 14
List of Tables
1 Covariance matrices used in the Monte Carlo experiments . . . . . . . . .. .. 16
2 Empirical sizesof LM and quasi-LR independencetests . . . . .. .. ... .. 17
3 Empirical rejections of variousindependencetests . . . . . . . ... ... ... 17
4 GDP growth SURE systems: independencetests . . . . . . ... ... ... .. 20
5 Capital growth SURE systems: independencetests . . . . . . . ... ... ... 21
6 Productivity growth SURE systems: independencetests. . . . . . ... ... .. 22
7 Labor force growth SURE systems: independencetests . . . . . .. .. ... .. 23



1. Introduction

Multi-equation models which use both cross-section and time series data are common in econo-
metric studies. These include, in particular, the seemingly unrelated regressions (SURE) model
introduced by Zellner (1962). The SURE specification is expressed as a set of linear regressions
where the disturbances in the different equations are correlated. The non-diagonality of the error
covariance matrix usualy entails that individual equation estimates are sub-optimal; hence, gener-
alized |least squares (GL S) estimation which exploits the correl ations across equations may improve
inference. However, the implementation of GL S requires estimating the error covariance from the
data. Further the cross-equation dependence must be taken into account when testing cross-equation
parameter restrictions. Asit iswell known, the feasible generalized least squares (FGLS) estima-
tors need not be more efficient than ordinary least squares (OLS); see Srivastava and Giles (1987,
Chapter 2). Indeed, the closer the error covariance comes to being spherical, the more likely it is
that OLS estimates will be superior. This has extensively been discussed in the SURE literature;
see, for example, Zellner (1962, 1963), Mehta and Swamy (1976), Kmenta and Gilbert (1968), Re-
vankar (1974, 1976), Kunitomo (1977), Kariya (1981a), and Srivastava and Dwivedi (1979). Inthis
sense, choosing between GLS and OL S estimation in the SURE model corresponds to the problem
of testing for sphericity of the error covariance matrix.

This paper studies and proposes finite-sampl e tests for independence against contemporaneous
correlation of disturbancesin a SURE model. Independence tests in multivariate models have been
discussed in both the econometric and statistical literatures. In particular, Breusch and Pagan (1980)
derived a Lagrange multiplier (LM) test for the diagonality of the error covariance matrix. Kariya
(1981c) derived locally best invariant testsin atwo-equation framework. Shibaand Tsurumi (1988)
proposed Wald, likelihood ratio (LR), LM and Bayesian tests for the hypothesis that the error co-
variance is block-diagonal. Related results are also available in Kariya (1981b), Kariya, Fujikoshi,
and Krishnaiah (1984) and Cameron and Trivedi (1993). Except for one special case, these test
procedures are only justified by asymptotic arguments. The exception is Harvey and Phillips (1982,
Section 3) who proposed exact independence tests between the errors of an equation and those of
the other equations of the system. These tests (which we will denote EFT) involve conventional F
statistics for testing whether the (estimated) residuals added to each equation have zero coefficients.
EFT tests may be applied in the context of general diagonality tests; for example, one may assessin
turn whether the disturbances in each equation are independent of the disturbancesin all other equa-
tions. Such a sequence of tests however raises the problem of taking into account the dependence
between multiple tests, a problem not solved by Harvey and Phillips (1982).

A maor problem in the SURE context comes from the fact that relevant null distributions are
either difficult to derive or too complicated for practical use. Thisistrue even in the case of identi-
cal regressor matrices. Hence the applicable procedures rely heavily on asymptotic approximations
whose accuracy can be quite poor. This is evident from the Monte Carlo results reported in Har-
vey and Phillips (1982) and Shiba and Tsurumi (1988), among others. In any case, it is widely
acknowledged by now that standard multivariate L R-based asymptotic tests are unreliable in finite
samples, in the sense that test sizes deviate from the nominal significance levels; see Dufour and
Khalaf (1998) for related simulation evidence.



In this paper, we reemphasize this fact and propose to use the technique of Monte Carlo (MC)
tests [Dwass (1957), Barnard (1963)] in order to obtain provably exact procedures. We apply the
MC test technique to: (i) the standard likelihood ratio (LR) and Lagrange multiplier (LM) criteria,
and (ii) OLS and FGL S-based quasi-LR (QLR) statistics. We also introduce several induced tests
based on a set of simultaneous Harvey/Phillips-type tests and suggest a simulation-based solution to
the associated combination problem. The critical regions of conventional induced tests are usually
computed using probability inequalities (e.g., the well know Boole-Bonferroni inequality) which
yields conservative p-values whenever non independent tests are combined [see, for example, Savin
(1984), Folks (1984), Dufour (1990) and Dufour and Torres (1998)]. Here, we propose to construct
the induced tests such that size-correct p-values can be readily obtained by simulation.

The first step towards an exact test procedure involves deriving nuisance-parameter-free null
distributions. In the context of standard independence tests, invariance results are known given two
univariate or multivariate regression equations [Kariya (1981c), Kariya (1981b), Kariya, Fujikoshi,
and Krishnaiah (1984)]. The problem of nuisance parametersis yet unresolved in models involving
more than two regression equations. Here, we show that the LR, LM and QLR independence test
statistics are pivotal under the null, for multi-equation SURE systems. Though the proof of this
result isnot complex, it does not appear to be known in theliterature. Of course, existing work in this
area has typically focused on deriving p-values analytically. By contrast, the approach taken in this
article does not require extracting exact distributions; the technique of MC tests allows oneto obtain
provably exact randomized tests in finite samples using very small numbers of MC replications of
the original test statistic under the null hypothesis. In the present context, this technique can easily
be applied whenever the distribution of the errors is continuous and specified up to an unknown
covariance matrix (or linear transformation). Note this distribution does not have to be Gaussian.
For further references regarding MC tests, see Dufour (1995), Dufour and Kiviet (1996, 1998),
Kiviet and Dufour (1997), Dufour, Farhat, Gardiol, and Khaaf (1998), and Dufour and Khalaf
(2000). We investigate the size and power of suggested tests in a Monte Carlo study. The results
show that, while the asymptotic LR and LM tests seriously overreject, the MC versions of thesetests
achieve perfect size control and have good power. The power of the MC induced tests improves
appreciably in comparison to the standard Bonferroni tests and in several cases outperform the
corresponding MC-LR and LM tests.

The outline of this study is as follows. In Section 2, we present the model and the estimators
used, while the test statistics are described in Section 3. In Section 4, we show that the proposed
test statistics have nuisance-parameter free distributions under the null hypothesis and describe how
exact MC tests can be implemented. In Section 5, we report the simulation results. In Section 6,
we apply the tests to data used by Fischer (1993) to analyze the macroeconomic determinants of
growth. We conclude in Section 7.

2. Framework
Consider the seemingly unrelated regression model



where Y; is a vector of n observations on a dependent variable, X; a full-column rank n x k;

matrix of regressors, (3; avector of k; unknown coefficients, and u; = (u;1, wso, ... , uin) an x 1
vector of random disturbances. When X; = X, i, j =1, ... , p, we have amultivariate linear

regression (MLR) model; see Anderson (1984, chapters 8 and 13), Berndt and Savin (1977), and
Kariya (1985). The system (2.1) may be rewritten in the stacked form

y=XB+u (2.2
where
Y1 Xy 0 -+ 0 U1 B4
o el P 0 e PR ek BT Rl Y
Y, 0 0 - X, 4 8,

sothat X isa(np) x k matrix, y and u each have dimension (np) x 1 and 8 hasdimension k x 1,
withk = S°7_ k;. Set

Ul
Ul

U:[ul Uy - up]: : (2.4
o

where Uy. = (ug, w2, - .. , up) isthe disturbance vector for the ¢-th observation. In the sequel,

we shall also use, when requested, some or all of the following assumptions and notations:
Ut.:JWt, t:1,...,7’L, (25)

where J isafixed lower triangular p x p matrix such that

L=JJ = [aij]ijzl . p isnonsingular, (2.6)
wherewe set o; = 0;/2, i=1,...,p;
Wy, ..., W, arep x 1 random vectors 2.7)

whose joint distribution is completely specified;

u isindependent of X . (2.8)

Assumption (2.8) isastrict exogeneity assumption, which clearly holdswhen X isfixed. Theas-
sumptions (2.5) - (2.7) mean that the disturbance distribution is compl etely specified up an unknown
linear transformation that can modify the scaling and dependence properties of the disturbancesin
different equations. Note (2.5) - (2.7) do not necessarily entail that X is the covariance matrix of



U;. . However, if we make the additional assumption that

Wh, ..., W, areuncorrelated with

EW) =0, EWW)=I,, t=1.....n, (2:9)
or, more restrictively,
Wi, ..., Wn "% N0, 1] (2.10)
we have:
E(U.)=0, E(U.U.)=%, t=1,...,n, (2.11)
E(u) =0, E(uu)) =ol,, i,j=1,...,p, (2.12)
and
Eud)=¥®1I,. (2.13)

The coefficients of the regression equations can be estimated by several methods among which
the most well known are: (i) ordinary least squares (OL S) applied to each equation, (ii) two-step fea
sible generalized least squares (FGLYS), (iii) iterative FGLS (IFGLS), and (iv) maximum likelihood
(ML) assuming « follows amultinormal distribution. The OLS estimator of 5 is

~ ~/ Al A _ .
Bors = B+ s By Bi=(XiX)7'XjY;, i=1,...,p. (2.14)
An associated estimate 3 for - can be obtained from the OL S residuals;
The two-step FGL S estimate based on any consistent estimate S of X, is given by
V: 1ra—1 -1 vr/0—1
Brars = [X'(ST' @ L)X]  X'(S™' @ L)y. (2.16)

If the disturbances are normally distributed, we have the log-likelihood function

Ly xpY(5 e L)y — X5) . (2.17)

£=-"Li2r) - %1n(|2|) =

2

The corresponding maximum likelihood (ML) estimators 3 and 3 of 5 and X satisfy the following
normal equations:

XEleL)Xg=X'C"'eL)y, %= (2.18)



1/2

U=, ... ), @ =Y;—Xif;, 7oy =i/ [(ihy1;) (it ity )] (2.19)

Of course, the estimators in (2.18) are well defined provided the matrix & has full column rank, an
assumption we shall make in the sequel. 3
|terative procedures are typically applied to obtain the ML estimates. Suppose ~(?) is an initial
estimate of 3. Using (2.18), we can solve for afirst GLS estimate of 3,
B9 = [x'(E0 0 1) X] X (EO 0 1)y, (220)
from which a new estimate of « may be obtained:

W —y— x3? (2.21)

This residual leads to further estimators £(V and 3" of ¥ and 3. Pursuing this iterative process,
we see that the estimators at the h-th iteration take the form:

3" = [XEW e L) X X(EW @ 1)y, (222)
- 1~ ys
R) R)' f7(h) _ [=(h)
() EU( V() — [Tij ]i,j:l,...,p’ (2.23)
h=1,2,...,where
o® =@ a), a® =y - x a0 = e (2.24)

Under standard assumptions, iterating this procedure to convergence yields the ML estimates [see
Oberhofer and Kmenta (1974)]. For a more genera discussion of the properties of such partialy
iterated estimators, the reader may consult Robinson (1988).

3. Test statisticsfor cross-equation distur bance correlation

3.1. Likelihood-based tests
Given the setup described above, we consider the problem of testing the hypothesis Hy that X is

diagonal. For any vector (d; , ..., dy)’, let usdenote Dy (d;) the diagonal matrix whose diagonal
dementsared; , ..., dy:

DN(dz) = diag(ch g eee g dN) . (31)
Dy (d;) represents a diagonal matrix of dimension N, withd = (d; , ..., dy)’ aong the diagonal.

Then Hy may be expressed as

Hy: % = Dy(o?) . (3.2)



Since J is lower triangular, it is easy to seethat: X = D,(0?) if and only J = D,(0;). Thus,
under Hy,uyy = oWy, i =1, ..., p, where W, = (Wlta Waoe, ..., Wpt)/. If (29) holds, Hy
is equivalent to the absence of contemporaneous correlation between the components of Uy. . If the
components of W, are independent, Hy is equivalent to the independence between the components
of uz; when Wy, ... , W, areindependent, the latter condition entails that the disturbance vectors
ui, ..., up areindependent.
In the sequel, we will frequently refer to the standardized disturbances
w=(w),...,w) , wherew; = (1/o))u;, i=1,...,p. (3.3)
Under the assumptions (2.5) - (2.7), the vector w has acompletely specified distribution if H holds.
Let us now consider the case where, in addition to (2.5) - (2.7), we make the normality assump-
tion (2.10). Then the disturbance vectorsU;. = JW,; , t =1, ..., n,aei.i.d. N[0, X] where
¥ = JJ' and we have the log-likelihood function (2.17). In this case, the LR and LM statistics for

testing H, takerelatively simpleforms. The LR statisticis&; = nln(A) where
A = |Dp(&7)1/13] (34)

whilethe LM criterionis

p i—1
Eovr=nY D> 1 (3.5)

i=2 j=1

where r;; = ;a;/[(ayi;) (i) Under standard regularity conditions, both & and &, fol-
low ax?(p(p — 1)/2) distribution asymptotically under H, [see Breusch and Pagan (1980)].

In the sequel, we shall also consider quasi-LR statistics ¢/ = nIn(A®)) where £ is used
instead of the unrestricted ML estimator X :

AM =D, (67)|/1£7] . (36)

Since unrestricted ML estimators of the SURE model parameters are usually obtained through it-
erative numerical methods, such QLR statistics are easier to compute than the fully-iterated LR
statitic.

3.2. Induced Harvey-Phillipstests
A finite-sample exact independence test was developed by Harvey and Phillips (1980). Their pro-
cedure is applicable under the assumptions (2.5) - (2.10) to test anull hypothesis of the form

2
vw_]o1 0
Hp : ¥ = { 0 T, } (3.7)



where ¥1; isa(p — 1) x (p — 1) matrix. Specifically, they propose the following statistic:

uﬂﬂ%ﬂﬁ%) "4 —1)

EFT = s :
ﬁll [I—Vl(lelvl) {]ﬂl/(n—]ﬁ P+ 1)

(3.9)

which follows an F' distribution with (p — 1, n — k3 — p + 1) degrees of freedom under Hy;. The
EFT datistic can be obtained as the usual F-statistic for testing whether the coefficients on V, are
zero in the regression of Y; on X; and V.

More generally, we can consider any particular disturbance vector «; (or equation) from the p
regressions in (2.1) and test in this way whether u; is independent of Vi, = [uj}j Ky where
K ;) is some non-empty subset of {j : 1 < j < p, j # 4}. This can be done by estimating an
extended regression of the form

Y= XiB+ D vy + (39)
VSO

and testing the hypothesis Ho[K ;)] : v; = 0 for j € K(;. Under the null hypothesis Hy of
independence [see (3.2)], the corresponding F-statistic

(ﬁ’ﬁz SS(K ))/pZ
SS(K i)/ (n k )

follows an F'(p;, n — k; — p;), where p; is the number of elementsin K ;) and SS(K(;) isthe
unrestricted residual sum of sguares from regression (3.9).

As things stand, the latter procedures only test the independence of one disturbance vector u;
with respect to the other disturbance vectors. It is straightforward to see that the test of H, based
on F;[K ;] can only detect correlations between u; and the other disturbances. In order to test
Hy against all possible covariance matrices X, we need a different procedure. A simple way to do
this, which still exploits the Harvey-Phillips procedure, consistsin using induced tests that combine
several tests of the form F;[K(;)]. Here we shall consider two methods for combining tests.

Denote Gr[z|v1,v2] the survival function of the Fisher distribution with (v, v2) degrees
of freedom; i.e, if F' is a random variable that follows an F(vq,v5) distribution, we have
Grlx|v1,v2] = P[F > z]|. We consider the test statistics

Fi[K@)] = (3.10)

EFT, = F[K;] ,whereK; ={j:1<j<n,j#i},i=1,...,p, (3.11)

each of which tests whether w; is independent of all the other disturbance vectors. The p-value
associated with EF'T; is.

p’ui[Ki]:GF[EFﬂ]p—l,n—ki—p—Fl] (312)

which follows a uniform distribution on the interval [0,1]. The level-o F-test based on EF'T; is
equivalent (with probability 1) to rejecting the null hypothesis when puv; [ K;] < «, or equivalently



when1 —py;[K;] > 1 — «.
A difficulty we meet here consistsin controlling the overall level of a procedure based on severa
Separate tests. A simple way to do this consists in running each one of the p tests F;[K;] at level

oy, SO that Zal = «, and rejecting Hy when at least one of the p separate tests rejects the null

hypothesis; for example, wemay takeo; = a/p, i =1, ..., p. By the Boole-Bonferroni inequality,
this ensures that the probability of rejecting Hy is not greater than o (although it could be smaller).
When a; = a/p, this procedure is equivalent to rejecting Hy when pvnin < a/p, where

PUmin = min{py;[K;]:i=1, ..., p} (3.13)

is the minimum of the p-values.

Note that using the minimum of several p-values as a test statistic was originally proposed by
Tippett (1931) and Wilkinson (1951), in the case of independent test statistics. The independence
condition does not however hold here for the EF'T; statistics, hence the necessity of taking into
account the dependence. Because it is conservative, the Boole-Bonferroni bound may lead to a
power loss with respect to a procedure that avoids the use of a bound. In the next section, we will
see that the conservative property of the Bonferroni-based pv.,i, procedure can be corrected by
using the technique of Monte Carlo tests. In other words, we consider the procedure that rejects
Hy when punin, as defined by (3.12) and (3.13), is small, and we shall show that its size can be
controlled by using the Monte Carlo test technique.

A second fairly natural way of “aggregating” separate tests consists in rejecting Hy when the
product

p
pux = H pui[ K] (3.14)

issmall. Such aprocedure was originally suggested by Fisher (1932) and Pearson (1933), again for
independent test statistics. Asfor the pv,;, procedure, we will see that the size of such atest based
on pu can be controlled by Monte Carlo techniques, even if theindividual p-values pv; | K;| are not
independent.

For convenience reasons, we shall implement both these tests by taking the test criteria:

Fmin =1~ PUmin , (315)

Fy=1— pvy, (3.16)

each one of which rejects Hy wheniitislarge.
We also considered a“sequential” approach in which we test the sequence of hypotheses

Hy; : u; isindependent of w; 11, ... ,u, (3.17)



fori =1, ..., p — 1,using Harvey-Phillips tests based on regressions of the form

p
Yi=XiB+ > i+ i (3.18)
j=i+1
i=1,...,p—1.Clealy Hy isequivalent to the conjunction of the p — 1 hypotheses Hy; ,i =
1, ..., p— 1, so that we should reject Hy when at least one of these tests is significant. This
yieldsthe p — 1 test statistics Fj[{i + 1, ..., p}],i =1, ..., p — 1 for which it is easy to see that
F{i+1,...,p}] ~ F(p—1i,n—k; —p+ i) under Hy. The problem then consists again in

controlling the overall level of this combined procedure. Since it is not clear the test statistics are
independent, one way to achievethis control consistsin using again the Boole-Bonferroni inequality.

p
For this, wetest Hy, at level «;, where >~ «; = o, and reject H, when one of the testsis significant.
i=1
In asequential context, a standard way of doing this consistsin considering geometrically declining
levels, such as

a1 =af2, as=a/(2%), .., apa=a/(2P"%), a1 = a/(2P7?); (3.19)

see Anderson (1971, Chapter 4) and Lehmann (1957). Here we shall consider the bound proce-
dure based on (3.19), as well as tests on the minimum and the product of the p separate p-values

associated with the test statistics F;[{i + 1, ..., p}] :
FSpin=1—min{pv;[{i+1,...,p}:i=1,...,p—1}, (3.20)
p—1
FSx =1 [[pul{i+1,....p}]. (3.21)

i=1

Again the levels of the two latter procedures will be controlled through the Monte Carlo test tech-
nique.

For further discussion of multiple test procedures, the reader may consult Miller (1981), Folks
(1984), Savin (1984), Dufour (1989, 1990), Westfall and Young (1993), Gouriéroux and Monfort
(1995, Chapter 19), and Dufour and Torres (1998, 1999).

4. Finite-sampletheory

We proceed next to examine the finite-sampl e distributions of the above defined LM, LR and QLR
test criteria. In particular, we show that the associated null distributions are free of nuisance param-
eters. To do this, we will first demonstrate in the three following propositions that all the statistics
considered are functions of the standardized disturbances w; , i = 1, ..., p. Interestingly, these
properties hold under very weak distributional assumptionson v and X.



Proposition 4.1 STANDARDIZED REPRESENTATION OF LM AND HARVEY-PHILLIPS STATIS-
TICS. Under the assumptions and notations (2.1) to (2.6), the LM statistic defined in (3.5) can be
written in the form

p i—1

S =n) Y T (4.

i=2 j=1

where7y; = @;w;/[(@@;)(@;@;)]"”, @; = /o = M(X;)w; and w; = (1/0;)u; , while each
statistic F3[K ;)] definedin (3.10) isidentical to the F-statistic F';[ K ;)] for testing H; : v;; = Ofor

J € K(;) intheregression

Y= XiB 4 Y @5+ wi (4.2)
]'GK(”

whereY;* = (1/0;)y;.

PROOF. Theresult for the LM statistic follows on observing that

For F;[K 3], we note that

gty = M (Xi)u; = otwiM(X;)w; = ot , SS[K(;)] = 07SS;

]

where @;@; and SS; are the restricted and unrestricted residual sum of squares from the linear
regression

Y= X8 + Z Wiy + wi -

j€K<i)
We then see that
FlKn] = (@t; — SSIKw)) /P (o7 wjii — 075SY) /Ps
ROL T SSIK )/ (n—ki—p) 02857 /(n— ki —p,)
wiwi — SS7)/pi =
(* ~ Z, = FilK)
SSf/(n — ki —p;)
N

Proposition 4.2 STANDARDIZED REPRESENTATION OF THE LR STATISTIC. Under the assump-
tions and notations of Proposition 4.1, suppose the matrix X defined in (2.18) has full column rank.

10



Then the LR-based statistic A defined in (3.4) can bewritten in the form

A=5L (4.3)
|2

where 3, isthe ML estimator of ¥ obtained by maximizng the Gaussian log-likelihood

1
L. == In(2m) = SIn(Z) - S(w— XB) (£ @ L) (w - X5) (4.4)
wherew = (w}, wy, ... , w,)".
PROOF. From (3.4) we can write
[162/0?
— A - 0;/0;
A — |Dp(0; 1)‘ ’DP(F?)‘ | Dyp(0; 1)| _ i=1 _ (4.5)
|Dp(0i_1)| 1Z| |Dp(07;_1)‘ ‘DP(UZI)ZDP(U;IM
where 62 /0? = @,w; = w;M(X;)w;. Further, it is easy to see that the Gaussian log-likelihood
(2.17) isinvariant under data transformations of theform y,, = vec|[ Y1, Ya, --- Y, | with
Yie =ci(Yi+Xi6:),i=1,...,p, (4.6)
where ¢; isan arbitrary non-zero constant and §; an arbitrary k; x 1 vector (i = 1, ..., p). In other

words, if the log-likelihood function of y isgiven by (2.17), the likelihood of y.. has the same form
with j; replaced by 3;, = ¢;(3; + 0;) and X replaced by ¥, = D,(c;)¥Dp(c;). In particular, if
wetake §; = —p;, and¢; = 1/0;, weget Yy, = (1/0;)u; = w; with L, as the corresponding
log-likelihood function. Consequently, by the equivariance of maximum likelihood estimators [see
Dagenais and Dufour (1991)], we have ¥, = D, (o; )£ D, (o, ), from which (4.3) follows. &

Proposition 4.3 STANDARDIZED REPRESENTATION OF QLR STATISTICS. Under the assump-
tions and notations of Proposition 4.1, let £(%) be an initial positive definite estimator of 3, and
suppose the matrices ("), h = 1, ..., H, defined in (2.23) have full column rank. Then, the
approximate LR statistics A() defined by (3.6) can be written in the form

ﬁ w; M (X;)w;
AUD = =1‘2(H)| (4.7)
where iﬁH ) isthe estimate of X obtained through the formulas:
30 = W e 1) X)X S @ L) e, (48)
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s = Dp( HEOD (oY) for h =0,

)

U()U(h) cforh>1,
h=0,1,..., H whereU™, h > 1, obeystherecursion
o™ =@, .., a®), 4 =w - x:807Vi=1,...,p.

PROOF. From the definition (3.6), we can write, for A > 0,

P
- ~ — ~ ’LU;M Xz-)wi
s DT IDYEDID )| Doty 1

1Dy (07 )| |S®)] | Dy(o; )] SO T g
where
S = Dy(o7HEM D, (07).

For h = 0, theresult holdstrivialy. For h > 1, we have:

= (h) Loy gy _ g
E* = EU* U* [ Ui /n]z] 1,....,p°
~(h s — h ~ — h ~(h
oM = U“”Dp( b = [a % s WD (oY) = [ ],
i = /oa® = /o) — X3V, i=1, .., p.
Putting (4.15) in vector form, we see that
il = vec@” , ., i = (D& L)a® =D, (y — x3" ")

where D = Dy(o; )and D, = D ® I,,.
Now, for h > 0, the feasible GL S estimator B(h) minimizes the quadratic form

S(B) =(y—Xp)(EW o 1,) (y - X8)

with respect to 3. Since

SB) = (W—XB(DeL)YD ' '@L)EWaL) (D' e L)(DaL)(y-

= [(D®L)(y—XB)'[(DEWD) @ L,]) (D @ L)(y — XB)],
this entails that

-1

5" = [(D.x) (EW © 1,) 7 (DuX)] T (DaX) (P © 1) ' Duy.

12
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Further, on noting that

w = (w), wh, ,wy) = (D& I)u= Dyu
and
o' X1 0 0
DX = [Dylo;H @ I,]X = ! 7 X ’ = XDylo;'Iy,) = XA
0 0 o1 X,
where A = D, (o; ' Ii,,) isanon-singular matrix, we see that
A" = [(xa)EW e n) " (xa)] T (xA) EW @ 1) Doy
= g+A ' x(EMern) ' x] xS e 1,) D
= p+apl
where
AW = x' W e 1) X] X' EW & L) w.
For h > 1, wethen see that:
D,a™ = Doy — x3" ) =Du(x8+u—x5-xa"13"7Y)
_ _ Xﬁih 1)
hence
i = (1/o)a® =w; - x807" i=1,...p.

This completes the proof of the proposition. &

Propositions 4.1 and 4.2 show that the distributions of the LM, Harvey-Phillipsand LR statistics
only depend on the distributions of X and w, irrespective whether the null hypothesis H, holds or
not. This property also carries to procedures based on combining several of these test statistics,
such as the induced Harvey-Phillips tests proposed in Section 3.2. In particular, under the strict
exogeneity assumption (2.8), this means that the conditional distributions (given X) of these test
statistics only depend on the distribution of w (and the known value of X). If we further assume
that thejoint distribution of 7, ... , W, iscompletely specified [assumption (2.7)], then under Hy
the distribution of w does not involve any unknown parameter, and similarly for the LM, Harvey-
Phillipsand LR statistics. For the QLR statistics, the same properties will hold provided we assume

13



that =% = Dy(o; )LD, (07 ") can berewritten asafunction of X and w. In particular, thiswill
be the case if the initial value ©(©) is obtained from the least squares residuals from the p separate
regressionsin (2.1), i.e. if

SO = 20U, U=T[a, ..., 0, 6=MX)Y,i=1,...,p. (4.17)

We can thus state the following proposition.

Proposition 4.4 PIVOTAL PROPERTY OF TESTS FOR CROSS-EQUATION CORRELATION. Under
the assumptions and notations (2.1) to (2.8), the LM statistic, the LR-based statistic A and all the
statistics of the form F;[K;)], where K ;) is some (non-empty) subset of {j : 1 < j < p, j # i},
follow a joint distribution (conditional on X') that does not depend on any unknown parameter
under the null hypothesis Hy : ¥ = D, (c?) . If furthermore

Dp(o; SO Dy (0 1) = H(X, w) (4.18)

where H (X, w) is a known function of X and w, the same property holds for the QLR statistics
AM h>0.

It is of interest to note here that the pivotal property for the LR statistics A could also be ob-
tained by using the invariance results for generalized regressions models given by Breusch (1980).
However thiswould not simplify our proof and would not yield the explicit representation provided
by Proposition 4.2. Aswe will see below, the latter can be useful for implementing MC tests.

The fact that the LM, Harvey-Phillips, LR and QLR statistics have nuisance-parameter-free
null distributions entails that MC tests can be applied here to obtain a finite-sample version of the
corresponding tests. Such tests can be implemented as follows. Consider atest statistic T' for Hy
with a continuous nuisance-parameter-free null distribution, suppose H isrejected when 1" islarge
li.e,when T > c(w), where P[T > c(a)] = o under Hy|, and denote by G(z) = P[T > z] its
survival function under the null hypothesis. Let Tj be the test statistic computed from the observed
data. Then the associated critical region of size « may be expressed as G(1y) < «. By Monte
Carlo methods, generate NV independent realizations Ty , ... , T of T under Hy. Now compute
the randomized “ p-value” py (1) , where

(4.19)

R 1 & 1, ifzeAd
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Then we can show that

I[a(N +1)]

Plpn(To) < a] = NT1

(4.20)
see Dufour and Kiviet (1998). In particular, if we choose N so that ao(N + 1) isan integer (e.g., for
a = 0.05, wecantake N = 19, 39, 99, etc.), we have:

Ppn(Tp) <ol =a. (4.21)

In other words, the randomized critical region px (7p) < « hasthe same level asthe critical region
G(Ty) < «. This procedure is of course valid when the error vectors U;. arei.i.d. normal [As-
sumption (2.10)], but also under parametric distributional assumptionswhen J isthe only unknown
parameter in the distributionof Uy, t =1, ..., n.

MC tests can be interpreted as parametric bootstrap methods applied to statistics whose null dis-
tribution does not depend on nuisance parameters, with however the central additional observation
that the randomization allows one to exactly control the size of the test for a given (possibly small)
number of MC simulations. For further discussion of Monte Carlo tests (including its relation with
the bootstrap), see Dufour (1995), Dufour and Kiviet (1996), Kiviet and Dufour (1997), Dufour,
Farhat, Gardiol, and Khalaf (1998), and Dufour and Khalaf (2000). On the bootstrap, the reader
may consult Hall (1992), Efron and Tibshirani (1993), Jeong and Maddala (1993), Vinod (1993),
Shao and Tu (1995), and Horowitz (1997).

5. Simulation experiments

In order to assess the performance of the various procedures discussed above, we conducted a set of
Monte Carlo experimentsfor afive-equation model (p = 5) withn = 25 observations. To assesstest
size, we also considered n. = 50, 100. In each experiment, the design matrices X; , i =1, ... , p,
include a constant term and equal numbers of regressors (k; = k, i = 1, ... , p). The values
of k considered are k = 5, 6, ... , 15. The variables in each matrix X; were generated using
a multivariate normal distribution and kept constant over all replications. The disturbances were
generated from multivariate normal distributions. Several choices for the error covariance were
considered and are listed in Table 1. The ¥; matrix aswell as the regression coefficients used were
taken from the empirical example discussed in Section 6.1 The other matrices were obtained by
dividing certain elements of the Cholesky decomposition of ¥; by appropriate constantsto decrease
the covariance terms. Of course, the parameters under the null were obtained by setting the non-
diagonal elements of X1 to zero. The numbers of trials for the MC tests were set to 19 and 99
(N =19,99). The number of overall replications was 1000. All experiments were performed with
Gauss 386iVM (version 3.2.13). Theresults are presented in Tables 2 and 3.
Our main findings can be summarized as follows.

1. The asymptotic tests (Asy.) consistently overreject. Indeed, we can see that the empirical

1The statistics studied are all invariant to the values of the regression coefficients.
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Table 1. Covariance matrices used in the Monte Carlo experiments

.0007773 6.616e-06 -1.082e-05 .0003573  -.0001443
.0024550 .0001923 -.0010390 -.0006195

Y1 | .0002950 1.747e-05 .0002829

.0007560 .0004105

.0006790

.0007773 1.654e-06 -1.353e-06 3.969e-05 -1.804e-05
.0024550 2.405e-05 -.0001737 -7.732e-05

Y9 | .0002800 2.427e-05 5.417e-05

.0001276  2.495e-05

4.863e-05

.0007773 3.308e-06 -3.607e-06 8.931e-05 -3.608e-05
.0024550 9.618e-05 -.0003471 -.0001238

Y3 | .0002836 3.804e-05 .0001051

.0001800  7.966e-05

.0001029

.0007773 8.271e-07 -1.803e-06 .0001786  -2.062e-05
.0024550 2.138e-05 -.0002083 -.0002061

>, | .0002800 1.513e-05 3.485e-05

.0001707 2.421e-05

5.630e-05

sizes can be substantialy larger than the nominal 5%. Thisis in accordance with well doc-
umented results on LR-based multivariate tests. On the other hand, our conclusions with
respect to the LM test are not in agreement with the available Monte Carlo evidence, in which
LM independence test was found to work well. This was due to the fact small numbers of
equations were studied in the earlier literature. Here we find that it does not always work well
in larger systems. In contrast, the MC versions of the tests achieve perfect size contral.

. The size corrected tests perform quite well. The power of all four MC tests are comparable
to each other, although the LR-type tests exhibit better power. The EFT test shows relatively
lower power, as would be expected.

. Iterating SURE estimators to convergenceis clearly not worthwhile, in the sense of improving
the power of the associated LR test. In fact, in some cases, iterations resulted in slight power
losses. Furthermore, our results give very favorable support to the OL S-based QLR test. This
issueis particularly pertinent in the context of simulation-based tests.

. The MC induced tests based on the Harvey-Phillips statistics perform very well overall the
parameter values considered. As expected, the Tippet/Wilkinson-type M C induced tests per-
form better than their Bonferroni counterparts. The power of the Fisher/Pearson-typeinduced
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Table 2. Empirical sizes of LM and quasi-L R independence tests

p=> n =25 n = 50 n = 100
k QLRors LM QLRorLs LM QLRors LM
Asyy. MC Asy. MC | Asyy MC Asy. MC | Asyy. MC Asy. MC
5 193 .040 105 .045| .115 .057 .081 .057 | .070 .040 .062 .037
6 198 046 122 052 | .115 .055 .082 .050 | .071 .046 .054 .036
7 307 .050 .172 .057 | .137 .061 .108 .057 | .069 .050 .054 .037
8 322 .048 200 .054 | .150 .057 .106 .050 | .080 .048 .069 .045
9 413 049 263 .052 | .158 .048 .107 .046 | .087 .049 .073 .038
10 | 478 .055 .336 .058 | .184 .050 .139 .052|.091 .055 .071 .040
11 | 536 .038 .353 .049 | .190 .054 .146 .056 | .092 .038 .076 .036
12 | .601 .040 .432 .045|.210 .048 .150 .049 | .096 .040 .079 .041
13 | .650 .057 .505 .043|.230 .047 .179 .040 | .109 .057 .088 .037
14 | 725 059 577 .051| .236 .042 .185 .048 | .115 .059 .095 .036
15 | .816 .052 .684 .064 | .271 .045 .213 .055|.120 .052 .109 .047
Table 3. Empirical rgjections of various independence tests
n =25 20 (H()) 21 ZQ 23 24
Asy. MC MC MC MC MC
MC replications | - 19 19 99| 19 99 19 99 19 99
LM 105 045 | .998 1.0 .911 .954 | .704 .794 | .444 500
QLRorLs 193 040 | 1.0 10| .947 971 | .744 820 | 438 .49
QLRaLs 260 .040| 1.0 10| .959 979 |.750 .825* | .429 504
LR 267 047 | 1.0 10| .961 .980 |.746 .824 | 428 494
Fiin - 043 | 10 10|.925 .965 | .632 .693 | .360 .409
Fy - 052 | 10 10|.944 980 |.714 .784 | .382 .438
FShin - 049 | 10 10| .846 912 | 562 .653 | .368 .399
FSy 052 | 10 10|.963 .984* | .721 .799 | .490 .562*
Bonferroni Harvey-Phillips type tests
Fioin 034 1.0 .963 .665 .356
FSiin .049 10 .896 .687 316
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tests is generaly higher than the power of the Tippet/Wilkinson-type ones. Further, the se-
guentia variants of the induced tests perform better than the non-sequential ones. Indeed, in
two cases over three, the sequential Fisher/Pearson-type induced test (£'S ) exhibits the best
power among all the tests considered.

6. Application to growth equations

For illustrative purposes, we studied data previously analyzed by Fischer (1993) which contains
several series of macroeconomic aggregates observed yearly for a large panel of countries. The
dependent variables of interest are four growth indicators. GDP growth, capital accumulation, pro-
ductivity growth (measured by Solow residuals), and labor force growth. The following determi-
nants of growth are considered: the inflation rate, the ratio of budget surplus to GDP, the terms of
trade, and the black market premium on the exchange rate. Fischer focuses on explaining the de-
terminants of growth. The econometric specification consists of an unbalanced panel model, which
assumes contemporaneously uncorrelated disturbances. Here, we shall test the latter specification.
Attention is restricted to the multiple regressions (17), (23), (29) and (35) in Fischer (1993), which
include all four explanatory variables. The choice of countries was motivated by the availability of
observations on all included variables. We consider:

A) the South-American region (1973-1987): 1) Mexico, 2) Argentina, 3) Chile, 4) Colombia, 5)
Ecuador, and 6) Paraguay;

B) the African region (1977-88): 1) Ghana, 2) Cote d’Ivoire, 3) Kenya, 4) Maawi, 5) Morocco,
and 6) Zambig;

C) the Asianregion (1978-87): 1) Korea, 2) Pakistan, 3) Thailand, 4) India, and 5) Indonesia.

Then, for each region, we considered four SURE different systems corresponding to each one
of the four growth indicators considered (wheret =1, ... ., n,i=1, ..., p):

AGDP;; = 3§ + 85 INFLATy + 85 TRMTRDy; + 35 SRPLSy; + 85 EXC My + u ;

ACPTL;; = 5 + pE INFLAT;, + 86X TRMTRD;, + 35 SRPLSy; + 5 EXCM;; + uk

APRDCTy = 85 + 8L INFLAT,, + 85 TRMTRD;, + 8% SRPLSy, + 85 EXCM; + ul ;

ALABOR;; = 85 + gL INFLAT}, + 8% TRMTRD;; + 5% SRPLS;; + % EXCM; + ul; .
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Here, for each country ¢ and each year t, AGDP;;, ACPTL;;, APRDCT;;, ALABOR;;, and
EXC M;; represent respectively GDP growth, capital accumulation, productivity growth, and labor
force growth. Theexplanatory variablesare: inflation (INFLAT;), termsof trade (T RMTRD;;),
the ratio of budget surplus to GDP (SRPLS;;), and the black market premium on the exchange
rate (EXCM;,). Overall, we consider 12 different SURE systems with either 6 equations (South
America, Africa) or 5 equations (Asia), each system corresponding to aregion and one of the four
growth indicators. Countries are numbered inside each region as indicated in the list presented at
beginning of this section (this ordering correspond to the World Bank database that we used).

We will now test whether the disturbances inside each one of these SURE systems are con-
temporaneously correlated, using a Gaussian distributional assumption. The assumption that the
disturbances are not correlated across countries is important to justify pooling the data as done by
Fischer (1993). In each case, we applied LM, LR and QLR tests, as well as Harvey/Phillips-type
induced tests. The MC tests are based on N = 999 replications of the statistics considered. The
QLR tests are based on two-step feasible GL S estimators, using OL S residuals to estimate the dis-
turbance covariance matrix. For completeness, we also report the individual Harvey-Phillips tests
(based on the statistics F;(K;) and F;[{i + 1, ..., p}] defined in Section 3.2) which are combined
by the MC induced tests. Note that in the case of the sequential tests, the ordering of the countries
may affect the outcome of the test; here, we present results based on the ordering given above. The
results are presented (as p-values) in Tables 4 to 7. The MC test results which are significant at the
10% level are highlighted with one star (*), while those which are significant at the 5% level are
highlighted with two stars (**). In view of the simulation evidence of Section 5, we shall stress
the conclusions provided by the MC LR-based and F'S tests. Asymptotic p-values (Asy.) are only
reported for comparison sake.

For GDP growth (Table 4), no test is significant (at the 10% level) in the case of the South-
American countries. For Africa, the MC LR-type tests are significant at the 10% level (but not 5%),
but the F'Si, induced test is significant at the 5% level. On looking at the individual sequential
Harvey-Phillips tests, it appears this may be due to correlations between the disturbances in the
Malawi equation and those for Morocco and/or Zambia. Turning to the Asian region, while the LR-
based tests are not significant again, we nevertheless observe that the Fiin, F'Smin and F'Sy are
significant at the 10% level. In this case, the Harvey-Phillips sequential tests suggest that there may
be dependence between Korea and the other countries. For all regions, it is of interest to observe
that the asymptotic approximations and the MC procedure yield very different p-values for the LR-
based statistics, which may lead to quite different conclusions. This observation also applies to the
results for the other growth indicators discussed below.

For capital growth (Table 5), the MC LR and F'Sy,, tests are strongly significant for Asia
and close to being significant at the 5% level for South America. The same tests do not come
out significant at usual levels for Africa, although the LM, F.;, and F\ aso provide indications
of dependence in this case too. The Harvey-Phillips individual tests suggest there is dependence
between the disturbances in the equation for Chile and those for Colombia, Ecuador and Paraguay;
in Africa, the dependence appears to be between Thailand, Indiaand Indonesia.

Inthe case of productivity growth (Table 6), we see ho evidence of cross-equation correlation for
both South Americaand Asia, but somefor Africa. Inthelatter case, the MC-LR statistic is strongly
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Table 4. GDP growth SURE systems:. independence tests

South America Africa Asia
p=06 p=06 pP=95
F1(K) 7927 1613 0215
Fy(K>) 7906 2882 .6068
F3(K3) 2669 1308 7127
Fy(Ky) .9901 .0516* 5453
F5(Ks) .8503 9571 3771
Fe(Ks) 8253 2652 -
(2, ..., p}H) 7927 1613 0215
({3, ....p}) 7470 4964 3113
F5({4,....p}) 8810 9137 4277
Fy({5,...,p}) .8647 .0055** 3873
Fs({p}) 9290 .6005 -
Asyy. MC [ Asy. MC | Asy. MC
LM 9425 977 | .0466 .081" | 4384 611
QLRors 9242 981 |.0100 .062* | .0872 .470
LR 4374 978 | .0000 .082* | .0000 .412
Finin - 742 - 224 - 094
Fy - 917 - 130 - 258
FSuin - 1.0 - .05 | - 085
FSy - 1.0 - 072 - .096*
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Table 5. Capital growth SURE systems: independence tests

South America Africa Asia
p==6 p==6 pP=5
F(K)) 1592 2503 3399
Fy(K>) 3514 2035 2200
F3(K3) .0561* 7065 1373
Fy(Ky) .0333* .0589* 2255
F5(K5) 2288 0143+ .0357
Fy(Ks) 3509 8389 -
{2, ..., p}) 1592 2503 3399
{3, ..., p}) 2249 0854 6323
F3({4, ..., p}) .0111* 3004 .0069*
Fy({5, ..., p}) 7156 1422 6355
F5({p}) 7679 7581 -
Asy. MC [ Asy. MC [ Asy. MC
LM 0350 .061° | .1023 .026™ | .2449 367
QLRoLs 0058 .096* | .0049 .132 | .0000 .002**
LR 0000 .053* | .0000 .249 |.0000 .001**
Flin - 167 - 063 | - 137
Fy - 075 - 080 | - 056
F Smin - .055* - 359 - 027
FSy - .086* - 141 - 001
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Table 6. Productivity growth SURE systems:. independence tests

South America Africa Asia
p==6 p==6 pP=5
F(Ky) 9765 1312 5003
Fy(Ky) 9162 1909 8182
F3(K3) 5362 2965 4958
Fy(Ky) 9976 0242+ 1246
F5(Ks) 9430 8209 .0918
Fy(K¢) 7528 2454 -
Fi({2, ..., p}) 9765 1312 5003
B3, ..., p}) 8294 3912 5421
F5({4, ..., p}) 6037 3738 8683
Fy({5, ..., p}) 9442 .0519* 2284
F5({p}) 6962 .8069 -
Asyy. MC [ Asy. MC [ Asy. MC
LM 9913 998 | .0356 .061* | .5070 .698
QLRors 9891 .997 | .0012 .074* | .0658 .415
LR 7929 .998 | .0000 .016** | .0000 .266
Fnin - 943 - 111 - 337
Fy - 979 - 093 | - 282
FSimin - 988 - 212 - 636
FS, - 990 - 152 - 664
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Table 7. Labor force growth SURE systems. independence tests

South America Africa Asia
p==6 p=©6 p=>5
Fi(K) 4051 .0734* .0153*
Fy(K3) 4051 2266 .684
F3(K3) 1976 .0397+* .0957*
Fy(Ky) .0189** .0153** .8999
Fy5(K5) .0288** 3571 4434
Fs(K¢) 1011 1761 -
({2, ...,p}) 4051 .0734* 0153
B({3,....p} 2594 1201 5698
F({4, ..., p}) 5535 .0085** 2187
Fy({5, ..., p}) .0580* .0897* 2661
Fs({p}) .0799* 4900 -
Asy. MC | Asy. MC | Asy. MC
LM .0686 .103 | .0007 .004** | .3040 .457
QLRoLs 0108 .126 | .0000 .006** | .0063 .140
LR .0000 .020* | .0000 .004** | .0000 .194
Fin - 102 - .065* - .062*
Fy - .045+* - .021** - 128
FSmin - 272 - .033** - .062*
FSy - .092* - .008** - .050**
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significant, and to alesser extent the quasi-LR and F'« tests. On looking at the individual sequential
Harvey-Phillips tests, it seems this may be due to correlation between Morocco and Zambia

For labor force growth (Table 7), we see strong evidence of cross-eguation correlation in the
cases of South America and Africa. For Asia, the LR-based tests are not significant at the 10%
level, but induced Harvey-Phillips tests are significant at the 5% level (or closeto it).

Overall, these results provide several examples where asymptotic p-values grossly overstate test
significance. Despite this fact, using more reliable finite-sample methods, we also found quite sig-
nificant evidence of contemporaneous correlation between the disturbances in several of the equa-
tions considered, afeature that should be taken into account when analyzing these data. Of course,
it is beyond the scope of the present paper to perform a complete reanalysis of the Fischer (1993)
data

7. Conclusion

In this paper, we have proposed simulation-based procedures to derive exact p-values for standard
LR and LM independence tests in the context of SURE models. We have also proposed alternative
OLS and IFGLS-based QLR criteria. In multi-equation models, conventional independence tests
only have an asymptotic justification. The reason for the lack of popularity of finite sample proce-
duresisclearly theintractable nature of available distributional results. Here, we have considered an
aternative and considerably more straightforward approach to independence tests. We have shown
that LR and LM statistics are pivotal under the null, which implies that exact critical values can be
obtained easily by MC techniques.

The feasibility of the approach suggested was illustrated through both a simulation experiment
and an empirical application. The results show that asymptotic tests are indeed highly unreliable;
in contrast, MC tests achieve size control and have good power. We emphasi ze that OL S-based MC
QLR tests performed extremely well. This aspect isimportant particularly in larger systems, since
test procedures based on iterative estimators are typically more expensive from the point of view
of MC tests. The MC induced tests turned out to have surprisingly good power. Since the MC test
procedure yields size-correct significance points, this approach seems very promising in the context
of non-independent simultaneous tests.
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