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Résumé

L’analogie, c’est-à-dire une correspondance entre deux entités, est considérée une capacité de
raisonnement importante. L’analogie proportionnelle, écrite a : b :: c : d et qui se lit “a est
à b ce que c est à d”, en est un cas particulier où la correspondance tient de par la relation
entre les éléments de deux paires d’objets. Le mémoire évalue certaines méthodes issues de
l’usage de représentations distributionnelles vectorielles dans la résolution d’analogies pro-
portionnelles verbales et les mène à leur prolongement naturel, la phrase. Nous ciblons la
compétence de modèles de langue et des représentations qui peuvent en être extraites à la
résolution d’analogies proportionnelles formées sur la base de relations syntaxiques, séman-
tiques, ou de connaissance encyclopédique. Peu d’ensembles de données existent pour les
analogies de phrase et sinon comprennent pour la plupart des analogies au niveau de la forme,
composées de phrases construites à partir de gabarits, ou bien variant peu dans les relations
sémantiques qui tiennent entre les phrases. Nous construisons donc un ensemble de données
contenant des phrases en paires relationnelles qui nous permet de construire des analogies en
appariant deux paires. Nous essayons différentes variations de méthodes qui comportent un
objectif de recouvrement par un modèle vectoriel. D’autres méthodes de résolution d’ana-
logies proportionnelles sont explorées par voie de génération de texte. Nous expérimentons
par le peaufinement du modèle de langue Flan-T5, pré-entraîné sur des paires instruction-
réponse, sur nos analogies par une tâche séquence à séquence, ainsi que par l’incitation avec
peu d’exemples en utilisant des versions de ce modèle en variant la capacité jusque dans
la gamme des milliards de paramètres. En somme, la performance observée est faible pour
toutes les tâches. Nous concluons, de l’utilisation de plongements de phrase, quelques mises
en garde similaires à celles que l’on trouve avec la résolution d’analogies verbales par plon-
gements lexicaux. Nos expérimentations génératives démontrent l’importance de données à
la fois de bonne qualité et de bonne quantité, ainsi que le potentiel de l’apprentissage en
contexte. Nous ajoutons à cela un aperçu qualitatif de la disparité entre l’habileté de modèles
probabilistes entraînés pour prédire, à partir d’une instruction, la séquence correcte, et celle
d’un modèle peaufiné par la méthode d’apprentissage par renforcement avec commentaires
humains, à savoir ChatGPT.
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Mots-clés : résolution d’analogie, analogie de phrase, traitement automatique des
langues naturelles, plongement de phrase, génération de texte

vi



Abstract

Analogy, the correspondence between two things, has been hailed as an important reasoning
capability. Proportional analogy, denoted a : b :: c : d, read “a is to b as c is to d” is a special
case of this where a correspondence is made in the relation that holds between the elements of
two pairs. This thesis evaluates methods originating in the recent use of distributional vector
representations for solving four-part word analogies, bringing them to their natural exten-
sion, sentences. Few datasets of proportional sentence analogies exist, typically comprising
purely formal analogies or sentences constructed by templates, and where semantic relations
are typically limited in the variety we would hope to capture. Thus, for the purposes of our
experiments, we curate a dataset of pairs of sentences for which a given relation holds and
from which analogies can be constructed by matching pairs within a relation together. We
target the analogy-solving ability of language models and representations derived therefrom,
specifically as regards proportional sentence analogies formed on the basis of syntax, seman-
tics, or encyclopedic knowledge. Different variations on previous methods are explored, all
based on retrieval of the solution in a vector space model. Other methods of solving propor-
tional sentence analogies by generation are attempted. We experiment with finetuning the
instruction-trained Flan-T5 language model on sentence analogies as a sequence-to-sequence
task, as well as prompting model checkpoints up into the billion-parameter range with few-
shot examples. Overall performance at the task is poor in both settings. We find that similar
caveats which apply to analogical reasoning with word vectors apply to sentence embeddings
as well. Our generative experiments show the importance of data of suitable quality and
quantity, as well the potential of in-context learning. Some qualitative insights are shown as
to the disparity in task ability of instruction-trained probabilistic language models and one
finetuned by reinforcement learning with human feedback, namely ChatGPT.

Keywords : analogy solving, sentence analogy, natural language processing, sentence
embedding, text generation
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Introduction

It is today a dictum found in the abstracts and conclusions of many publications in the
field of natural language processing, especially as concerns probabilistic models of language
and vector space models of word meaning, that, as Firth (1957) wrote, you shall know a
word by the company it keeps. One further adage is that analogy—vaguely, the comparative
inference of an unknown implied by the similarity of two things—forms the core mechanism
of human cognition (Hofstadter, 1995). In the intersection of these two maxims we find the
main body of literature that inspires this work.

In short, this thesis targets the analogy-solving ability of language models and repre-
sentations derived therefrom, specifically as regards proportional sentence analogies (those
said “A is to B as C is to D” and notated a : b :: c : d) formed on the basis of syntax,
semantics, pragmatics, and encyclopedic knowledge. That is, we are interested in complet-
ing quadruples—given the first three terms—of paired natural language sentences which are
analogous in ways that can be considered common sense to many humans. For example, in
the analogy I’m happy : I’m angry :: I sang : I yelled, there is a relation of opposition of
mood that holds, which is relatively intuitive, although ambiguous and lacking in rigour.

The general structure of this thesis is an overview of the literature relating to analogical
reasoning, especially computational models thereof, followed by a description of works con-
temporary and directly related to our experiments, which we then present. We close with a
discussion of our findings and general analysis in the context of the literature.

We will gloss over the ancient thoughts on reasoning and the medieval theological dis-
course which prove a storied use of the word “analogy” (Ashworth and D’Ettore, 2021) as
well as some notable early contemporary works in the study of analogical reasoning in the
fields of psychology and cognitive science (Spearman, 1927; Hadamard, 1945; Oppenheimer,
1956; Sternberg, 1977), where there was nascent interest in how humans apply their reasoning
fluidly to novel or ambiguous circumstances to creatively find meaning.

Instead, our jumping-off point will be the more recent research, continuing into the
present day, that has been done into computer models of analogical reasoning in various forms
(Gick and Holyoak, 1980; Gentner, 1983; Falkenhainer et al., 1989; Holyoak and Thagard,



1989; Halford et al., 1993; Hofstadter, 1995; Turney and Littman, 2003; Mikolov et al., 2013c),
though this thesis will remain focused on that which relates to natural language. We will
refine our interest to models of distributional semantics, where a steadfast interest in the
application of proportional analogy (also known as four-part analogies, those of the form “a is
to b as c is to d”) using offsets from vector space models has persisted since the popularizing
work of Mikolov et al. (2013c) on word embeddings, and has extended into related work on
sentence embeddings, especially those enabled by large and pretrained language models of
the recent Transformer architecture (Vaswani et al., 2017).

It’s in light of the latter more recent models that this work finds its space for contribution.
As their capability to represent and apply meaningful human knowledge and cognitive biases
becomes ever more possible (Wei et al., 2022), there is reason to believe that they may provide
a suitable avenue to model human analogical reasoning (Wijesiriwardene et al., 2023; Webb
et al., 2023), especially by leveraging their ability for creative generation (as opposed to
e.g. retrieval) of natural language descriptions of various concepts.

Operating solely in a setting of proportional analogies between sentences, this work aims
to gauge on the one hand the aptness of these more powerful language models for analogical
reasoning via sequence generation, and on the other hand the aptness of common methods
of analogical reasoning using vector spaces to recover useful features from these models. To
this end our contributions are as follows:

(1) A dataset of pairs of sentences in varied relations from which we can construct four-
part analogies.

(2) Evaluation of methods of analogy-solving with vector space representations, both
via retrieval and via generation conditioned on a vector, using embeddings extracted
from pretrained language models and other sentence embeddings.

(3) An exploration of finetuning pretrained language models for solving analogies in a
sequence-to-sequence framework.

(4) The few-shot prompting of pretrained language models up into the billion-parameter
regime for solving proportional analogies.
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Chapter 1

Related work

1.1. Background
The word “αναλογια”, analogy, originates in ancient Greece. With Euclid it came to de-

note an equality of two or more ratios, and later, with Plato, it was used in the comparison
of things both concrete and abstract. The concept was later extended in the writings of Aris-
totle to many branches of study, for example in the comparison of the anatomy of different
animals. In several of Aristotle’s works, analogies—varyingly referred to in corresponding
Greek as paradigm, proportion, example, metaphor, induction, or analogy, depending on the
exact usage—describe several kinds of comparison-like operations, including the familiar form
“A is to B as is C to D”, denoted “proportional analogy”. Brown (1989) distinguishes from
this a so-described “predictive analogy”, characterized by the inference of some properties
in a second object—the “analandum”—based on similarities of some other properties with a
first object—the “analans”. In the absence of an inference, i.e. when two objects are simply
found to correspond, he calls this “figurative analogy”.

John Stuart Mill (1843) commented that “no word is used more loosely, or in a greater
variety of senses, than ‘analogy’.” In addition to this quip, however, he concluded that
successful analogical reasoning should result from situations where “(i) the resemblance is
very great, (ii) the known difference very small, and (iii) our knowledge of the subject-matter
fairly extensive”.

Toward the end of the late modern period and with the advent of psychometrics follow-
ing the First World War, the use of four-part proportional analogies as a tool to measure
cognitive ability is noted by Spearman (1927) and other contemporaries. It’s equally salient
in its application in aptitude testing for college admissions.1 Forgetting misgivings regard-
ing the purposes and assumptions of such tests, much thought appears to have been given

1See for example the Miller Aptitude Test, which is coincidentally to be discontinued in November 2023,
at time of writing.



at this time to the application of verbal analogies for measuring intelligence. For example,
it is suggested as a matter of protocol in constructing verbal analogy tests that whatever
relationship holds between terms A and B should equally hold between C and D,2 though
this advice was apparently not heeded by some, at the cost of corrupting what is described
as a well-defined “relational thinking” exercise (Paterson, 1925; Levine, 1950). At this point
analogy more generally is also noted for its role in advances in science (Hadamard, 1945; Op-
penheimer, 1956) by providing structures of conceptual relations with which to think about
novel circumstances.

With the advent of general-purpose computing and computational theory, coupled with
greater understanding of neurophysiology and new hypotheses on learning and cognition
(e.g. Hebb, 1949), came further interest in modeling human thought. We can distinguish
this from the prior approach of general population statistics given in psychometrics, which
attempted to distinguish individuals by ability and, to that end, find properties that could
be measured in individuals in order to distinguish them. Enabled by computing machinery,
a new goal revealed itself which was instead to mimic human ability artificially (Turing,
1950), and through doing so perhaps elucidate mechanisms of thought that provide the basis
for human cognition. For example, the Argus model of thought (Reitman et al., 1964) is
explicitly inspired by the Hebbian model whereby thinking emerges from association between
individual units of processing, namely neurons. In Argus, semantic units similar to neurons
mutually activate or inhibit each other in a weighted graph structure that models both firing
and potentiating of connections. Notably, this model is applied to none other than the
familiar proportional verbal analogy task that has become a mainstay.

Either way, it is with inspiration from computing systems and the conceptualization of
human problem solving as an information processing system complete with control flow and
symbolic logic (Newell et al., 1972) that consideration was now being given purposefully to
defining analogical reasoning and frameworks of thought that allow it (Sternberg, 1977; Gick
and Holyoak, 1980). Yet even with this novel conceptual basis, the narrowing of interest
onto creating algorithms that fulfill individual human-like reasoning procedures led to the
relative abandonment of developmental theories of learning and the link between mental
representation and reasoning (Airenti, 2019).

In the characterization of analogy as a distinct procedure to enact on a given set of inputs
as its own strategy for problem solving, Sternberg (1977), in the context of proportional
analogies of the form a : b :: c : d, describes several control flow models which apply the
following steps in varying sequences: (i) retrieving attributes of the analogy terms, (ii)

2This is still the case in common word analogy test sets such as those of Mikolov et al. (2013c) or
Gladkova et al. (2016).
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inferring the relation between the pair (a,b) by aligning common and different attributes,
(iii) mapping, i.e. the alignment of common attributes and hence common “type” between
terms a and c, and (iv) the application of the inferred relation to obtain d from c. Here all
information is stored as attribute-value pairs.

Gick and Holyoak (1980) examine analogical reasoning in solutions to pairs of problems
stated in prose. Here it is assumed that a representation, called schema, that abstracts
relational structures of predicates that apply to terminal arguments (essentially a sort of
graph) can be obtained for each problem, though they note that they “thus inherit all
the problems associated with text comprehension”, which will hint at the present work’s
particular lens, namely of applying rich representations extracted from text which allow for
flexible analogical reasoning. They then study whether and how subjects apply the same
steps described by Sternberg in order to solve the analogical problem.

In the structure-mapping model set out by Gentner (1983), analogy is described as inde-
pendent of featural, i.e. surface similarity, giving the example of the comparison of an electric
battery to a reservoir: the essential similarity is the storage of potential energy; even though
both batteries and reservoirs may often be cylindrical in form, it is immaterial to the analogy.
The core mechanism in this model of analogy is to assert “that a relational structure that
normally applies in one domain can be applied in another domain.” The structure here, sim-
ilar to Sternberg (1977) and Gick and Holyoak (1980), is a set of conceptual terminal nodes,
as well as predicates and relations, such as in “FULL(CONTAINER, WATER)” (taken from
Gentner (1983), meaning that a container is full of water), that together form a graph or
equivalently a sort of related set of logical statements, which can be visualized as something
akin to Figure 1.1.

According to this theory it might not be considered an analogy to state that, much as
Rabbit A has a spotted pattern, long ears, and four legs, because Rabbit B has long ears and
four legs it must also have a spotted pattern—an inference which, while faulty, is nevertheless
based on similarity. This is due to the lack of a generic latent structure of relations, that is,
one independent of the incidental concrete aspects in the description of Rabbit A that we can
easily map to Rabbit B. In the structure-mapping model, mapping between analogical pairs
can only occur between n-ary predicates with more than one argument. Hence, something
like “SPOTTED(RABBIT A)” is ineligible for analogical mapping.

While the technical distinction is clear, we’ll venture that there remains ambiguity and
arbitrariness in such handcrafted predicates as the one above, as well as in the differentiation
of featural and structural similarity, which can be explained by the technical barriers to
automatically obtaining a rich representation bottom-up. Let us also suggest that there lies
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Figure 1.1. A simplistic graphical example of structure mapping between two concept
networks
Nodes correspond to concept terms of any order (constants, predicates, relations), such as

"atom", "revolves around", "temperature", "greater than", etc., for which thin arrows
indicate relational arguments. Bold arrows between blue nodes indicate alignment. White

nodes are non-alignable. The red node represents a term which can be inferred from
aligned structures.

beneath this prescription the goal of modeling analogies of the kind that have been reported
to enlighten scientific discoveries, those of which Oppenheimer (1956) said:

I do not mean metaphor; I do not mean allegory; I do not even mean
similarity; but I mean a special kind of similarity which is the similarity of
structure, the similarity of form, a similarity of constellation between two
sets of structures, two sets of particulars, that are manifestly very different
but have structural parallels. It has to do with relation and interconnection.

It’s very similarly that Gentner (1983) writes:
To state a general law requires another step beyond creating a temporary
correspondence between unlike domains: The person must create a new
relational structure whose objects are so lacking in specific attributes that
the structure can be applied across widely different domains.

At present, we believe the above prerequisite to modeling analogical reasoning is not
inevitable and might be sidestepped with the recent impressive technical breakthroughs in
representation learning and associated work. We should hope for a contextual representation
which, with goal in mind, does away with irrelevant attributes when needed, and likewise
keeps others when helpful, in order to elicit those more obscure and abstract properties which
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form a relational structure. Rather than asserting that analogical reasoning gives rise to
relational abstraction, these new capabilities might allow us to verify the converse hypothesis:
that a representation which discovers higher-order concepts (i.e. abstract relations) should
allow analogical reasoning, in other words apply those same higher-order concepts as features
in gauging how much and in what respects two things are similar.

Either way, symbolic models continued to be explored under various regimes (Holyoak
and Thagard, 1989; Halford et al., 1993; Hofstadter et al., 1995) in the midst of discussion
regarding the aptness of hand-coded high-level representations for constructing theories of
human cognition, given the lack of robustness to varying contexts and of low-level information
in building representations (Chalmers et al., 1992). While connectionist models were entering
their second debut (Rumelhart and Mcclelland, 1986; Hinton, 1989), including in models of
analogy running counter to symbolic techniques for the reasons stated above (Blank, 1997),
it was advanced that what they couldn’t offer in terms of reasoning with complex, abstract,
highly structured representations, symbolic approaches could (Gentner and Markman, 1992).
After all, it had yet to be demonstrated that there was a mechanism for connectionist models
to represent and reason with high-level concept structures.

However, French (2002) suggested, in a review of computational models of analogy, that
there were several developments still awaited to build upon the success of symbolic models.
Among these, that there was a need for such models to apply context to the representations
they act on, and that representations should be learned rather than built by experimenters.
Keane (2013) questioned the empirical justifications for symbolic strategies and their com-
putational time complexity. Separately, Thibodeau et al. (2013) defends that the question of
whether connectionist models are capable of representing high-level or abstract structures was
an unanswered empirical question. Counter to claims that this lack would prevent analogical
reasoning, they argue that this capability should emerge “from the overlapping, distributed
representations that are learned in the hidden layers” by learning conceptual representations
through exposure to low-level features, without an explicit mapping mechanism.

There have been attempts to model purely symbolic proportional word analogies using
information theoretic and formal language approaches. Lepage (2004) formalizes four-part
analogies, obtaining postulates of equivalence between eight permutations of the terms a :
b :: c : d. He characterizes a class of formal languages that can be constructed by recursive
application of analogical derivation rules. In this vein, Miclet et al. (2008) present a sequence
alignment-based analogical dissimilarity metric and algorithms to apply it to classification.
Langlais et al. (2009) sample shufflings (i.e. the splicing of spans of strings) of analogical
pairs (a,b) and select promising candidates using a Monte Carlo method to translate c to
d. Murena et al. (2020) define a domain-specific language to encode operations on strings,
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and use this to simplify the computation of a minimal complexity program that maps a to
b, which they then use to map from c to d. Naturally, in the interest of modeling cognition
via human language, we note that these approaches do not readily extend to analogies that
lack orthographic regularity such as cat : kitten :: adult : baby.

Concurrently, proportional analogy was approached in an effort to progress modeling
natural language. Turney and Littman (2003) model word analogies using a vector space
model (VSM) (Salton, 1989) obtained from the frequency statistics of collocations such as
“X of Y” to embed the pair of words (X,Y ), using a cosine similarity metric to retrieve the
closest analogous pair among candidates. This kind of work is in keeping with the distribu-
tional hypothesis of word meaning (Firth, 1957). Mikolov et al. (2013c) fit a language model
from which they extract an embedding, i.e. a collection of vectors which represent the words
of a vocabulary. Using it as a VSM, they note that the vector space has significant linear
regularities which permit them to retrieve the answer to a proportional word analogy using
simple arithmetic. Stemming from this, a body of literature has since flourished regarding
the use of proportional word analogies to evaluate vector representations, the pursuit of
solving word analogies using VSMs in its own right, and the use of analogical proportions
in representation learning. The questions of when linear regularities emerge, what is repre-
sented, how best to represent proportions in the vector space, which models offer the best
representations, whether vectors provide a good avenue for analogical reasoning—all these
questions have since been studied in various respects. They have equally since shifted from
VSMs of word semantics to those of sentences and documents more generally, especially
since the development of large language models (LLMs) stemming from the Transformer
architecture (Vaswani et al., 2017).

In terms of analogy, there are three important opportunities offered by recent language
models. First, we can model natural language descriptions of complex concepts for analogical
reasoning, for example by extracting the vector representations they produce and operating
on them. Second, we can leverage the generative ability of autoregressive language models
to straightforwardly overcome a limitation of word embedding-based retrieval attempts at
modeling analogy, namely the lack of creative inference we would hope from analogical
problem solving. The third opportunity comes opposed to many approaches to date, which
operate on an extracted representation in a piecewise fashion, potentially losing valuable
information. Given that large language models have been shown to adapt to new tasks with
no finetuning when provided natural language prompts given alongside their input (Brown
et al., 2020), we can envision operating purely in the model’s input domain, which it has been
trained end-to-end to operate on and represent internally, and the representation of which
may implicitly admit much more complex and numerous properties, relations, and latent
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structures than could be identified manually. That is, we might input a natural language
description of an analogical problem which induces the language model to implicitly retrieve
the relevant properties and perform predictive analogy, or otherwise discover a figurative
analogy by latently discovered similarities.

We find this third line of research for analogy most promising, combining the desider-
ata of providing an empirically learned, contextually elicited representation (French, 2002) of
complex relational structure (Gentner, 1983) emerging from distributed representations built
from low-level features (Chalmers et al., 1992; Thibodeau et al., 2013). Indeed, work has
already begun in this direction recently (Wijesiriwardene et al., 2023; Hu et al., 2023; Webb
et al., 2023). However, our work only tangentially pursues this consideration of in-text rea-
soning, instead attempting to bridge its way there from the proportional analogy approaches
which have been inherited from the word embedding evaluation methods of Mikolov et al.
(2013c) and remain common at present even for sentences and text sequences more generally.

1.2. Probabilistic language models
Because later concepts may follow from this, we will begin by a rapid introduction of

probabilistic language models.
Formally, a language model is a probability distribution over sequences in a language

L ⊆ V ∗ for some vocabulary or alphabet V . Among other things, we can call members of
the vocabulary w ∈ V tokens or words, depending on the context. These are basic units that
can be composed into valid language, whether individual letters, whole words, or segments of
strings that have been observed in a corpus. Measuring the probability of a sequence s ∈ L
of length l means measuring the joint probability of the entirety of its ordered tokens wi,
each of whose position i in the sequence is indexed from 1 to l:

P (s) = P (w1, · · · , wl) (1.2.1)

By the chain rule P (x,y) = P (x | y)P (y), the joint probability is the product of the
conditional probability and the marginal probability of the conditioner. In principle, this
can be recursively applied in any order, but we will describe it in the autoregressive fashion:

P (w1, · · · , wl) =
l∏

i=1

P (wi | w1:l−1) (1.2.2)

A language model parameterized by θ is typically fit by maximizing the log-likelihood of
some N observed sequences:

Lθ =
N∑
i=1

l∑
j=1

log (Lθ(wi,j | wi,1:j−1)) (1.2.3)
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though this is typically done by minimizing the negative log-likelihood (NLL). We can note
that this objective is equivalent to maximizing the probability of the observations due to the
monotonicity of the logarithmic function and by the fact that likelihood is an unnormalized
probability score, which scales its values uniformly. Hence, the extrema are preserved. Other
optimization schemes exist, such as masked language modeling (MLM), where only the
conditional likelihoods of target tokens are used for the objective function.

Equivalently, if, when predicting a token, each option is given an output score l (called
logit), token probabilities are often computed as the Softmax over the vocabulary:

σ(li) = eli∑N
j=1 e

lj
(1.2.4)

Then, removing the normalizing constant and taking the logarithm leaves us with the logits
li as a token’s log likelihood, and we can minimize a cross-entropy loss.

Many classes of model exist which have been applied to language modeling despite limit-
ing architectural priors with respect to modeling sequences, such as n-gram models or hidden
Markov models, which use simplifying assumptions of conditional independence outside of
a context window to determine the probability of the next word in a sequence, or the con-
tinuous bag-of-words (CBOW) or Skip-gram architectures used by Mikolov et al. (2013a),
which model words and their context independently of order. Other neural network architec-
tures which integrate information over an arbitrary length sequence have been successfully
applied to language modeling and machine translation, famously the various flavours of re-
current neural network (Rumelhart et al., 1985) such as long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997). More recently, the easily parallelizable Transformer
architecture (Vaswani et al., 2017) has spawned so-called large language models using billions
of parameters which may have learned wide-ranging and robust representations of the world
by maximizing the likelihood of observed natural language (Manning, 2022). These have
been described as “foundation models” (Bommasani et al., 2022)—though the term applies
to more than language models—since they purport to be general-purpose either in usage or
in downstream application of their representations.

1.3. Analogy
As discussed in Section 1.1, there are two principal traditions of analogy. We will try to

describe analogies using terminology drawn from Brown (1989).
In one tradition, a figurative analogy is the drawing of parallels from one object, the

analans which we might call A, to another object B, the analandum. We will call it a
predictive analogy if, given the two objects A and B which share some number of properties
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in common, we infer an additional shared property:

(P1(A) ∧ P1(B)) ∧ · · · ∧ (Pn(A) ∧ Pn(B)) ∧ Pn+1(A) =⇒ Pn+1(B) .

The choice of which properties should form the premise of this analogical inference and
how they should be represented varies by model, as we have seen. In symbolic approaches
they may be found by performing some kind of alignment on sequences (Miclet et al., 2008)
or graphs (Gentner, 1983). In connectionist models, a local (Reitman et al., 1964) or dis-
tributed representation may activate similarly for two inputs, whether relevant features are
represented explicitly (Halford et al., 1993) or implicitly (Mikolov et al., 2013c; Thibodeau
et al., 2013). Either way, it is apparent that analogy in the general case requires inferring
common features on the basis of the alignment of something more than just surface features
(Gentner and Markman, 1992).

There is then a separate tradition of what we will call proportional analogies, with which
we are chiefly concerned in the present work. This framework is drawn from classical numeric
additive or geometric analogies, that is, the arithmetic ones like 5 − 3 = 12 − 10, or those
of ratios as in 2

1 = 4
2 , in addition to conceptual ones, for example when Aristotle (from

Barbot et al., 2019) writes “as old age is to life, so is evening to day”. These analogies are
a quaternary, typically homogeneous relation where for some (a,b,c,d) ∈ X4 we notate it
a : b :: c : d (read “a is to b as c is to d”) if and only if some relation R ⊆ X2 holds both for
(a,b) and (c,d):

a : b :: c : d ⇐⇒ ∃R ⊆ X2 s.t. aRb ∧ cRd .

We can appreciate with some reframing that this four-part analogy paradigm can be seen
as a special case of figurative analogy operating on pairs (a,b) and (c,d). Here, predictive
analogy consists of concluding d from the premise (a,b,c) by relying on properties that are
shared between the analans and analandum. That is, we expect our representation of ele-
ments in X coupled with an inference system to reflect relevant properties and discover a
relation that holds between two pairs when finding d.

In many proportional analogy settings, if such a quadruple satisfies these conditions, we
may expect the following statements to hold (Afantenos et al., 2022):

(1) a : b :: a : b (reflexivity)
(2) a : b :: c : d =⇒ c : d :: a : b (symmetry)
(3) a : b :: c : d =⇒ a : c :: b : d (central permutation)
We can further conclude from symmetry and central permutation the equivalence of eight

forms:
a : b :: c : d ≡ c : d :: a : b ≡ c : a :: d : b ≡ d : b :: c : a

≡ d : c :: b : a ≡ b : a : d : c ≡ b : d :: a : c ≡ a : c :: b : d .
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Reflexivity and symmetry are obtained straightforwardly from the definition we gave
above, by the identity of a pair and by the symmetry of the logical conjunction. Lepage
(2004) describes Aristotle taking central permutation as an axiom resulting from common
sense, and likewise constructs a theory of analogy in a formal language setting that fulfills
this postulate. Prade and Richard (2017) as well define analogy built on formal logic using
Boolean vectors so as to satisfy these postulates.

As argued by Afantenos et al. (2022), however, in proportional analogies seen in natural
language processing or computational linguistics, one often expects a relation R ∈ S from
some set family S ∈ P(X2) of relations considered admissible in some way. In such a case,
given a : b :: c : d, we may not have an admissible relation satisfying our definition of analogy
for a : c :: b : d. Instead of the central permutation postulate, they and Lim et al. (2021)
advance the use of an internal reversal postulate a : b :: c : d =⇒ b : a :: d : c for word and
sentence analogies. However, we note that if we do not admit R−1 for all relations R in our
set, this postulate does not hold for our definition.

Let us observe arithmetic analogy, where we consider analogies, formed by a class of re-
lations {Rx | aRxb ⇐⇒ b− a = x}, for which the central permutation and internal reversal
postulates both hold. In the instance 3 : 5 :: 6 : 8, it is the relation for “x = 2” which is
analogical between the pairs (3,5) and (6,8). Only incidentally does a new analogy of “x = 3”
hold when reordered as 3 : 6 :: 5 : 8, due to the algebraic properties we have on the integers
under addition such as closure, associativity, and the existence of an inverse. Yet, it is not
clear what relations we would consider valid so as to change old age : life :: evening : day
into its permutation old age : evening :: life : day.

For the reasons alluded to above, beyond the particularities of some domains, we might
accept that the permutation of terms in proportional analogies is a matter of convention (Lim
et al., 2021). We will keep our definition of proportional analogy as shown above, assuming
only reflexivity and symmetry, and without imposing any assumptions of invertibility on our
relations.

1.4. Word analogy in vector space models
A sizeable literature exists on methods for solving proportional word analogies. These

typically use distributed representations for words which are usually obtained from the pa-
rameters of language models or from some other distributional statistic such as co-occurrence.
We introduce these concepts for the reason that similar methods and limitations apply to
their extension to sentence analogies.
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1.4.1. Word embedding

As seen in Section 1.2, strings in a language consist of an ordered sequence of discrete
elements, tokens. The number of possible strings of a given length l grows on the order
of ‖V ‖l. This exponential growth means that, while we may observe a given token often,
we may almost never see sufficiently many combinations of tokens in order to generalize
from our observations to the true distribution of language. This issue, referred to as the
“curse of dimensionality”, can be circumvented if we instead take each token as a dense
vector in a much lower dimensional space than the size of the vocabulary. By leveraging
this distributed representation, tokens which do not co-occur in observations can inform
each other indirectly via shared context words, or by the similarity of their contexts, and we
can model the probability of a sentence with a combination of words never before observed
together (Bengio et al., 2003).

1.4.2. Vector offset method

This is also typically referred to as the 3CosAdd method (Levy and Goldberg, 2014).
We might additionally refer to it as the vector arithmetic method, while qualifying any
particularities.

It was advanced in the work of Mikolov et al. (2013a,c) that the linear regularities present
in the vector representations obtained by their methods encoded linguistic information al-
lowing to solve word analogies using simple vector arithmetic. With the relation between
a pair of words represented by the offset—that is, the subtraction of one word embedding
from another—they apply that relation to another word to solve proportional analogies of
the form a : b :: c : d simply by adding the offset b− a to a third word embedding c, taking
all vectors to be normalized. Additionally, taking the vocabulary embedding as a VSM,
they retrieve the closest vocabulary item in terms of cosine similarity as the solution to the
analogy. We present this in the following equation:

d̂ = argmax
w∈V

wᵀ(c+ b− a)
‖w‖ · ‖c+ b− a‖

(1.4.1)

More generally, we may use:

d̂ = argmax
w∈V

sim(w, x) (1.4.2)

with sim typically being the cosine similarity and x = c+ b− a, in which case we might call
sim(d,x) the analogy score:

sim(d, c+ b− a) = dᵀ(c+ b− a)
‖d‖ · ‖c+ b− a‖

(1.4.3)
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Equation 1.4.2 is simply a retrieval operation in a VSM, replacing V for any set of
document representations. Note that in many works, a, b, and c are removed from the
candidate set V (Mikolov et al., 2013a,c; Levy and Goldberg, 2014; Gladkova et al., 2016).
This is discussed further in Sections 1.4.4 to 1.4.6, and will recur in later chapters. The metric
typically used for this task is the accuracy, which is simply the percentage of analogies where
the predicted vector—above, c+ b− a—retrieves as a nearest neighbour the correct answer
word in a VSM defined by the vocabulary embedding being used, i.e. the set of vectors each
corresponding to a word.

1.4.3. Word analogy datasets

The proportional analogies originally tackled by the methods described in Section 1.4.2,
referred to as the Google analogy test set3 (Mikolov et al., 2013a) and the Microsoft Research
syntactic analogies dataset (shortened to MSR, Mikolov et al., 2013c), are drawn from syn-
tactic and semantic relations. MSR contains 8,000 analogies based on word morphology,
depending on the part of speech. These include comparative and superlative adjectives (as
in large : larger :: tall : taller or slim : slimmest :: rough : roughest), pluralization and
possessive forms of nouns (e.g. mouse : mice :: dot : dots or bird : bird′s :: they : theirs), and
verb conjugations (such as tap : tapped :: throw : threw). The Google dataset has 19,544
analogies from 9 morphological and 5 semantic relation types. Of the former category, there
are relations of inflection, namely comparative and superlative adjectives, noun pluralization,
and past tense, present participle, and present tense third person conjugation of verbs, as
well as morphological derivations4 of adjectives to adverbs (amazing : amazingly :: obvious :
obviously) and pairs of opposites (possible : impossible :: known : unknown), and finally
pairs of countries and demonyms (India : Indian :: Poland : Polish). Of the semantic
category, there are three relations akin to pairs of cities and geographic entities (cities and
their US state such as Chicago : Illinois :: Stockton : California, some common capital
cities such as Cairo : Egypt :: Athens : Greece, and capital cities from around the word,
such as Georgetown : Guyana :: Madrid : Spain), supplemented by one relation of country

3Available at http://download.tensorflow.org/data/questions-words.txt.
4Morphological derivation is opposed to inflection by the former’s change of the meaning of a word

(e.g. unappreciated or defender), versus the latter’s change of grammatical category, such as number or
person (e.g. I eat, the birds eat, it eats), though this dichotomy can be blurry (see for example Tuggy, 1985,
for such a discussion). Morphological derivation can result from a regular transformation by addition of a
morpheme, with the resulting meaning being clear from the composition of its parts (i.e. are productive), but
it is not always so. Some derivations are unproductive, not readily parsable, or dependent on phonological
constraints or a root word’s original language family. See e.g. warmth but not smallth, levity but not
lightity, typist but not writist.
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and currency (e.g. Algeria : dinar :: Mexico : peso), and one of gender opposition of nouns
(e.g. uncle : aunt :: prince : princess).

Gladkova et al. (2016) note the imbalance of this dataset across different types of re-
lations, and the high variation in accuracy across different relations found by Levy and
Goldberg (2014), going from 10.53% to 99.41%. They instead propose a dataset, which they
call the Bigger analogy test set (BATS), of 40 varied relations each holding 50 word pairs,
constructing analogies by matching pairs of words within a given relation. We should clarify,
as it will recur later in this work, that analogy datasets can be constructed from sets of
more than one pair, as long as each pair in such a set (ai,bi) obeys a shared relation R (see
Section 1.3). In such a case, we can shuffle pairs of a same relation set against each other to
obtain an analogical quadruple ai : bi :: aj :: bj, i.e. such that aiRbi ∧ ajRbj.

BATS is divided into four broad categories of 10 relations each (which are individually
displayed in Figure 1.2). These are inflectional (similar to those of MSR or Google), deriva-
tional (where a word’s meaning shifts by the addition of a morpheme, e.g. effort : effortless
:: law : lawless), lexicographic (relations of words, concepts, taxonomy, e.g. cake : dessert ::
dress : clothes), and encyclopedic (instances of individuals and facts about the world, e.g.
capital cities, people, e.g. Beethoven : composer :: Euler : mathematician, sensory features,
e.g. broccoli : green :: carrot : orange or bear : growl :: crow : caw, and associated concepts,
e.g. bee : hive :: duck : pond). In this reevaluation, they note that outside of inflectional
relations and some encyclopedic relations such as those of cities to territories, the accuracy of
the test using 3CosAdd falls sharply. They conclude that analogical reasoning with the offset
of word embeddings only handles certain relations due to others either being unrepresented
by the embedding or irretrievable via the offset. This is illustrated in Figure 1.2.

1.4.4. Offset method caveats

It is noted that when the inputs a, b, and c are kept in the candidate set, accuracy
on the analogy test often drops to nil (Drozd et al., 2016). Linzen (2016) finds that when
not excluding the inputs, the nearest neighbour to c + b − a in 93% of cases is c, and that
the nearest neighbour of c was a relatively effective baseline when compared with 3CosAdd
when excluding inputs. Schluter (2018) finds that when 3CosAdd wrongly predicts an input
vector, it is c 99% of the time. All the above are once again reasons to discard results which
exclude inputs from the candidate set.

While it is implied that the magnitude of the offset is too small to move away from c

(Rogers et al., 2017; Schluter, 2018), Fournier et al. (2020) instead find that the offsets of
both pairs are of similar magnitudes: if it is large enough to move a to b, it should be large
enough to move c to d. By studying a decomposition of the analogy score (see Equation 1.4.3)
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Figure 1.2. Bigger analogy test set retrieval accuracy per relation
Figure taken from Gladkova et al. (2016). GloVe refers to the word embeddings of
Pennington et al. (2014). SVD refers to embeddings given by the singular value

decomposition of a window cooccurrence count matrix.

subtracted by the similarity of the prediction to the input c, they find that the similarity
of both pairs’ offsets must be greater than the negative cosine distance of the terms of the
second pair (c,d) in order to recover d. Oftentimes the offset in fact moves c away from every
other candidate. They find that the offset method is inconclusive as a test for the presence
of linear regularities in vector space models.

The assumptions of reasoning linearly in a vector space this way have also been criticized
for lack of plausibility as a model of human reasoning by Rogers et al. (2017). It is considered
insufficient to model semantics due to the binary oppositions of semantic attributes that
it assumes along dimensions of regularity, and for the properties of addition. The offset
model equivalently represents permutations of an analogy and permits offsets which imply
the existence of relations of a dubious quality. We’ll paraphrase their example (remarry −
marry) + write = rewrite, which is intuitive, contrasted with the equivalent left-hand side
(write−marry)+remarry, which is evidently nonsensical. They further note that, whereas
distance in a VSM has symmetry, human similarity judgements do not. They conclude
that such equations should “only be interpreted distributionally”, rather than offering some
regularity regarding semantics..

1.4.5. Linear regularities

With a pairing consistency score (PCS), Fournier et al. (2020) measure the linear sep-
arability of the distributions of true offsets (from BATS) and shuffled offsets (false pairs
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from within a relation set). They find with multiple word embeddings that even when for
some relations the analogy test has a low score under both “honest” (where inputs remain
candidates) and “dishonest” conditions, PCS remains above chance level, i.e. true offsets are
more parallel than false ones between pairs of vectors from a given BATS relation. Hence,
the vector spaces studied do in fact have globally linear regularities which are strong in the
inflectional and derivational morphology categories, but very weak for the encyclopedic and
lexicographic ones. They argue that the analogy score decomposes into terms which are
affected by spurious properties of the embedding geometry, terms respectively proportional
to the similarity of the offsets, the similarity of (c,d), and the similarity of c and b− a.

Some mathematical justifications have been advanced for when and how such linear
regularities can emerge (Gittens et al., 2017; Allen and Hospedales, 2019; Ethayarajh et al.,
2019; Ri et al., 2023). Gittens et al. (2017) reframe proportional word analogy in terms of
compositionality and paraphrase. For additive composition, paraphrase is achieved ideally if
a set of context words’ embeddings C = c1 · · · cn defines a conditional probability distribution
P (x|C) = P (x|c) where c =

∑
i ci the sum of those context words’ vectors. That is, they

define paraphrase as a set of context words together having the same conditional distribution
over the vocabulary as some other word (or, in practice, that the best candidate for such a
composition minimizes the Kullback-Leibler (KL) divergence of its conditional distribution
with that of the composed context words).

We will quickly clarify that the KL divergence is akin to a distance between probability
distributions (though it is not a metric, like Euclidean distance, as it is asymmetric and
does not satisfy the triangle inequality). Assume there was a target distribution p over
a domain X which we were modeling with a distribution q. While we can compute the
entropy (Shannon, 1948), i.e. the expected self-information Ep[− log p(x)], the number of
bits5 needed to encode a value sampled from p itself (thus the optimal such number of bits),
we may be more interested in knowing how bad of a job our model q is doing (in other
words a loss value). In this case we can subtract the self-information from the cross-entropy
Ep[− log q(x)], the expected number of bits we would use to encode a sample drawn from
p if we instead assume it is drawn from q. Doing so computes the KL divergence, whose
equation we will write as follows:

DKL(p‖q) = Ep[log p(x)− log q(x)] (1.4.4)

Importantly, Gittens et al. (2017) prove that when word frequency is uniform, such com-
position is additive (and otherwise in general must be the solution to non-linear systems

5Bits if we take the logarithm in base 2, “nats” if we take the natural logarithm, though any base can
be used.
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of equations). However, language empirically follows a Zipfian distribution (see Pianta-
dosi, 2014, for a discussion on Zipfian distributions), which devalues this assumption. They
demonstrate that Skip-gram can approximate an information-theoretically optimal repre-
sentation of co-occurrence features, which may explain that window co-occurrence statistic-
based models such as those of Skip-gram embeddings (Mikolov et al., 2013b) best represent
analogies of certain relations more than others, presumably when the terms of an analogy
are capable of occurring in similar context windows, which are relatively small. More re-
cently, Ri et al. (2023) similarly establish a relation between co-occurrence statistics and
linear regularities in terms of parallel offsets which emerge from the push-pull dynamics of
a contrastive loss function, which we’ll note are used not only in word embedding mod-
els like Skip-gram, but also in sentence embedding models (Giorgi et al., 2020; Kim et al.,
2021; Gao et al., 2022) where document paraphrases or augmented data play the role of a
word’s context and positive or negative examples. We might hypothesize that, as concerns
solving sentence analogies using sentence embeddings—discussed in Section 1.5—the arith-
metic analogy test may be more successful when the sentences “co-occur” as captured by
the positive and negative training examples of a given embedding model.

1.4.6. Other solving methods

Other vector solving methods have previously been explored, some of which we’ll quickly
present.

Pitis (2016) explores using rotations (more generally orthogonal matrices) rather than
offsets. That is, one can find such a matrix such that b = Ma to recover d by setting
x = Mc in Equation 1.4.2. By evaluating an orthogonal matrix rotating a to b, as well
as one between the midpoint of (a,b) and approximation to that of (c,d),6 this method is
found to perform comparably to 3CosAdd. Ethayarajh (2019) does not aim to provide a
method for solving analogies, but finds that closed form solutions for matrices, whether
linear (by least-squares) or orthogonal (by a closed form solution given by Schönemann,
1966) can capture the relations given in the Google analogy test set of (Mikolov et al.,
2013a), achieving accuracies over 75% averaged across relations. However, it appears that
the pairs used to solve for such matrices are sampled across the whole dataset without use
of a split; we cannot conclude that this method generalizes.

To obtain a higher accuracy, Drozd et al. (2016) propose using a held-out set of n pairs
for evaluation, using the rest to obtain average offsets from a same relation (the offset is
then used in typical vector arithmetic), as well as a method they call LRCos (as in logistic
regression and cosine similarity). In this latter method VSM retrieval candidates for d̂ are

6The second midpoint is approximated since d is unknown.
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scored by the probability they belong to the target class (that of b) multiplied by the cosine
similarity with a. They augment this by learning to scale relevant features and down-weight
irrelevant ones for similarity within a given relation. With this they argue that even though
parallel offsets don’t recover relations, they are still encoded by the embeddings. For every
analogy, they reportedly hold out n = 2 pairs per relation—presumably (a,b) and (c,d)—for
testing, using the rest to find the “rule”.

It has been proposed that invertible neural networks (INN) allow an Abelian group
network (AGN) to model an operation which can be substituted for the usual additive group.
Abe et al. (2021) provide a proof that such a model is a universal approximator of Abelian
Lie group operations, i.e. those with a commutative group operation and inverse function
which are both differentiable. We find this a hopeful avenue to explore insofar as proportional
analogy can be captured by an Abelian Lie operation, and such an operation learned from
data exemplifying analogies we aim to solve. However, we do not see it alleviating criticisms
in Section 1.4.4 regarding the additive operation.

Instead of setting x = c+ b− a in 1.4.2, they use

x = φ−1 (φ(c) + φ(b)− φ(a)) (1.4.5)

where the function φ is parameterized as an INN. While the Abelian group network is more
generally a binary operation, repeated applications simplify to Equation (1.4.5).

They fit the parameters of this model on a training split balanced across BATS relation
categories, where they sample according to a split ratio for each category. That is, there
are held-out pairs rather than held-out relations. They find that the AGN has a marked,
usually double-digit improvement in most categories over 3CosAdd in the “honest” analogy
test where the inputs are not excluded. When excluding inputs, it is still competitive, but
sometimes outperformed by 3CosAdd. We will comment that we expect this behaviour in
that the offset method typically leads further from any other word than the input c (Fournier
et al., 2020), as discussed in Section 1.4.4. Given the sparsity of candidates in the retrieval
regime and the lack of distractors among them, it is to be expected that the answer, which is
typically a close neighbour of c, should be chosen when the premises are excluded. Further,
the Abelian network needs to learn to model the space, which is difficult given the sparsity
of training data they use from BATS.7

7Being built from 40 sets of 50 word pairs, BATS may only have on the order of 4,000 unique words.
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1.5. Sequence analogy
As we have said, the present work seeks to take popular methods developed for propor-

tional word analogies and apply them to their natural extension, sentences. Of course, there
have already been attempts in this direction, so we shall summarize them here.

1.5.1. Sentence embedding

We introduced word embeddings in Section 1.4.1, where words are represented in a vector
space that is of much lower dimension than the discrete space of observations which grows
exponentially in sequence length. We can extend this line of reasoning from individual tokens
to the whole observed sequence. This can be achieved for example by modeling the sequence
as entirely conditional on a latent vector, by optimizing some other objective which results
in the aggregation of sentence-wide information into a vector, or even simply by averaging
the individual embeddings of all tokens in a sequence.

For example, Logeswaran and Lee (2018) use a contrastive objective to distinguish true
neighbouring sentences from false ones, where the representations are vectors drawn from
the hidden state of an RNN. They evaluate their sentence embeddings on a proportional
analogy task drawn from the Google and Microsoft word analogy sets Mikolov et al. (2013a,c)
formed of pairs of sentences from the Yelp review dataset which differ from each other by
(approximately) the target word pair (Guu et al., 2018).

The bidirectional encoder representation transformer (BERT) model (Devlin et al., 2019)
is pretrained using a masked language modeling objective, where only a portion of tokens are
hidden as a special mask token ([MASK]) and are predicted from the rest of the sequence.
This is coupled with a next sentence prediction objective, in which two subsequences are con-
catenated by a special separation token ([SEP]), and the model must classify whether the
second subsequence follows the first in the data. This classification uses the final representa-
tion of a special classification token ([CLS]) which is prepended to all input. Sentence-BERT
(Reimers and Gurevych, 2019) is a finetuning method where the parameters are fit using a
classification or contrastive objective relying directly on sentence embeddings pooled from
the final encodings of the tokens (e.g. by taking the maximum, the mean, or the [CLS] to-
ken). Instead of explicitly fitting a model for semantic similarity tasks to execute a forward
pass which computes a similarity in [0,1] on a concatenated pair of sequences, one can use
a VSM of these embeddings and take the cosine similarity of pairs of embeddings. This
reduces the computational hurdle, as any given sequence need only be encoded once, rather
than a forward pass done for every desired pair. Further work has since gone on to examine
learning sentence embeddings using contrastive objectives (Giorgi et al., 2020; Kim et al.,
2021; Gao et al., 2022).
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Much as there was for word embeddings, there is for sentence embeddings a search to
uncover what is encoded in their vectors, what linguistic regularities can be found in the
learned embedding geometry, and how to learn richer features in these embeddings so that
they can be fruitfully applied to downstream tasks (Conneau et al., 2018; Li et al., 2020; Su
et al., 2021; Huang et al., 2021; Muennighoff et al., 2023). Similarly again, it has led to the
use of proportional analogies for learning as well as evaluation.

1.5.2. Retrieval using vector offset

Zhu and de Melo (2020) use proportional analogies of sentences to evaluate what linguistic
patterns are represented in various sentence embeddings. They create a dataset of sentence
analogies by constructing many pairs of sentences in any of 12 fixed relations, leveraging
templates, structural parses of sentences, and sentences from natural language inference
(NLI) datasets. We show the number of sentence pairs for each relation and a representative
example pair in Table 1.1. They create 5 “syntactic” relation sets, each corresponding
to one of a subset of the lexical analogies of the Google analogy dataset (Mikolov et al.,
2013a), by parsing sentences for the presence of substitutable words and substrings in order
to replace adjectives with their opposite, pluralize noun phrases with numerals, modify
verb conjugation, shorten sentences with comparative adjectives, and replace demonymic
adjectives with preposition phrases of country names. They additionally create 5 “semantic”
relation sets corresponding to the 5 semantic relations in the Google dataset using template
sentences. These templates allow to replace target words in the template with corresponding
words from the Google dataset pair. From NLI datasets, they extract pairs of sentences
where entailment or negation holds. Ultimately, this data is not publicly accessible, though
we present the examples shown by the authors.

For evaluation, they use the familiar 3CosAdd method to solve these analogies, as well
as one called 3CosMul (Levy and Goldberg, 2014) where terms’ similarities are multiplied
rather than an offset used. Crucially, they evaluate with and without the easing constraint
of excluding the premise vectors (a,b,c) from the candidate set, a practice we discussed in
Section 1.4.4. They note that sentence embeddings composed from fixed word embeddings
via averaging or discrete cosine transform (Almarwani and Diab, 2021) outperform those
taken from BERT, RoBERTa (Liu et al., 2019), and Sentence-BERT, though the gap nar-
rows in the constrained case. Their results also show that 3CosMul performs identically
when premises are included in the candidates, and substantially worse when they are not,
depending on the embedding.

It is to note that many of their pairs of sentences differ in limited ways and likely have con-
siderable word overlap, being based on lexical analogies from the Google and Microsoft sets
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Category # Pairs Example

Common capital cities 138 I’m not sure if they can travel to Havana. :
I’m not sure if they can travel to Cuba.

All capital cities 928 I’ve never been to Amman. : I’ve never been
to Jordan.

City in state 402 They are going down to Chandler when they
get cold. : They are going down to Arizona
when they get cold.

Currency 150 The economy in Japan was and always will
be great. : The Japanese yen appreciated
due to the strong economic performance of the
country.

Male-female 126 The man makes wooden crafts and arts. :
The woman makes wooden crafts and arts.

Comparative adj. 466 The second article was long. : The second
article was longer than the first article.

Nationality adj. 513 The man from Egypt tapped his cheek. : The
Egyptian man tapped his cheek.

Opposite 205 It’s possible to measure it. : It’s impossible
to measure it.

Plural 512 The Harvard data examined one city on the
East coast. : The Harvard data examined 6
cities on the East coast.

Verb conjugation 451 Duke will play better this year. : Duke plays
better this year.

Entailment 673 The turtle is tracking the fish. : The turtle is
following the fish.

Negation 511 There is no skilled person riding a bicycle on
one wheel. : A skilled person is riding a bicycle
on one wheel.

Table 1.1. Sentence pair count and examples per relation for the analogy dataset of Zhu
and de Melo (2020)

Edited from the original authors’ table. Words corresponding to lexical analogies from the
Google dataset are bolded.
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whose imbalance we know favorably represents word embeddings (Gladkova et al., 2016).
Further, their data contains overall about 10,000 unique sentences which might be easily
differentiated between, and they use no distractors except in the NLI analogies, where dis-
tractors are generated for each true answer and form the only alternative candidates, and
for which they do not report the unconstrained accuracy. These concerns parallel those we
have discussed in Section 1.4 about word analogy tests: retrieval from a vector offset may
mostly measure clustering ability.

1.5.3. Decoding from an embedding

Instead of retrieving the answer to an analogy, Wang and Lepage (2020) fit an LSTM
language model which decodes a sentence either from the sum of its word vectors or from
Sentence-BERT. We may refer to this as vector-to-sequence, or “Vec2Seq”. They find
that their model successfully decodes summed fixed word vectors, though fails at decoding
Sentence-BERT representations. They experiment with solving for vectors with d = f(a,b,c),
substituting for f the vector offset operation c + b − a and a regression model parameter-
ized as a feedforward neural network (FFNN) which takes as input a combination of the
premise vectors among concatenation, summation, and the vector offset prediction. The
solver network is trained piecewise on an 80% split of a sentence analogy dataset.

They use a set of 5,607 semantico-formal analogies8 obtained by Lepage (2019) from the
Tatoeba corpus by use of an alignment algorithm and pretrained FastText embeddings (Grave
et al., 2018) to provide a distance between sequences’ tokens. These are analogies of unspec-
ified relation, though they usually involve word substitutions, inflection, negation, or an un-
usual change in meaning as in this example drawn from the set: I do not need a wheelchair. :
I do not need a girlfriend. :: I do not have a cat. : I do not have a boyfriend.

Ultimately, they find that decoding from the vector offset solution performs worst, with
half the exact-match accuracy of the solver trained on the offset prediction, which performs
best in all metrics they test for, including edit distance, Jaccard similarity, BLEU (Papineni
et al., 2002), and METEOR (Banerjee and Lavie, 2005). The concatenation representation is
a close second, though noticeably worse. We venture the idea that there may be substantial
overlap in examples seen in training and at test time, which an 80-10-10 split may not
overcome, so it is unclear whether the solver is learning the operation of analogy or has
simply learned to represent valid embeddings well. That being said, the reasons for better
performance remain unclear.

8Available at http://lepage-lab.ips.waseda.ac.jp/projects/kakenhi-kiban-c-18k11447/ under
Experimental Results.
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Mao and Lepage (2023) take on a similar decoding framework to solve the analogies of
Lepage (2019), though they fit an “offset network” composed of two neural networks: one
extracts a vector representation r = f(a,b) of the ratio a : b, and a second d̂ = g(c,r)
maps from c and the ratio r to the solution d. The decoder and solver are still trained
piecewise. Comparing representations from summed word embeddings and one from an
LSTM autoencoder they pretrain, they evaluate the vector solver of Wang and Lepage (2020)
and their offset network, which they find notably underperforms the former model for both
representations on the semantico-formal set.

1.5.4. Classification

A binary classification can be done on a quadruple (a,b,c,d) where the positive class
represents that a : b :: c : d is true, and the negative class means it is not. Taking advantage
of surface regularity, Alsaidi et al. (2021) fit a classifier on word embeddings obtained from
a convolution over a sequence of vector representations of individual characters. They tackle
a total of millions of analogies constructed from pairs of words and their inflections, such
as do : doing, across 10 different languages. For analogies obtained from morphological
changes of words, the formal nature of the analogy can be leveraged to apply various axioms,
postulates, and deduced properties of such analogies (Lepage, 2004), allowing to augment
a dataset with valid and invalid permutations. However, for analogies of natural language
sentences, if we permit them to stand in more than formal relation to each other, most valid
permutations of a proportional analogy fall away (Afantenos et al., 2022), as discussed in
Section 1.3.

Barbero and Afantenos (2023) have attempted to classify, using embeddings as features,
sentence analogies constructed from sentence pairs between which NLI, paraphrase, and
Penn Discourse Treebank (PDTB) relations (Prasad, Rashmi et al., 2019) hold. We have
seen examples of NLI sentences (entailment and negation) used for analogies in Section 1.5.2.
Paraphrase can be seen as a many-to-many relation between sentences, which could in prin-
ciple be refined to more granular kinds of paraphrase based on syntactic or stylistic changes.
As it is, however, one should not expect to unambiguously solve an analogy such as Several
cats are climbing up that tree : A bunch of animals are clambering up this oak :: Are you
the one who broke my cup? : Could you be the one guilty of shattering my glass? without
knowledge that the relation in question is loosely that of paraphrase.

The sentence pairs they obtain from discourse relations are described as binned into the
top level of the PDTB annotation hierarchy. Without delving too far into the details of this
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corpus, these relations would correspond to the Level-1 senses (Prasad et al., 2018) labeled
as follows:9

(1) Temporal (e.g. Small businesses say a recent trend is like a dream come true: more-
affordable rates for employee-health insurance, initially at least. But then they wake
up to a nightmare.)

(2) Contingency (e.g. I cannot recall any disorder in currency markets since the 1974
guidelines were adopted.)

(3) Comparison (e.g. The Soviets insisted that aircraft be brought into the talks, (but)
then argued for exempting some 4,000 Russian planes because they are solely defen-
sive.)

(4) Expansion (e.g. Not only do the actors stand outside their characters and make it
clear they are at odds with them, but they often literally stand on their heads.)

One can easily imagine dividing each example by the bolded text to obtain a pair, though
it is not clear that they would make felicitous analogies.

They do not use any assumptions of parallel offsets or linear regularity, instead fitting
both a FFNN on pooled token embeddings and a CNN which convolves over the dimensions
of the four pooled vectors (a,b,c,d). Using both fixed word embeddings and BERT and
RoBERTa representations, their results show similar, modest success in the 55-65% accuracy
range at the classification task for most methods, more so for mean-pooled transformer
encodings than for the [CLS] token, with the best performance coming from the FFNN
using RoBERTa embeddings, which obtains 68% accuracy.

At time of writing, it has only recently been proposed by Zhang and Lepage (2023) to
improve the sentence embeddings obtained from BERT, RoBERTa, and Sentence-BERT,
by finetuning them on a contrastive objective similar to InfoNCE (Hoffmann et al., 2022)
where positive examples are pairs from the same relation set. Ultimately, they find two-digit
improvements on the Semantic Textual Similarity task, even for Sentence-BERT, and single-
digit improvements on the task of classifying true vs false quadruples using analogies from
an analogy test set. They automatically construct a dataset of definition sentences paired
with words from BATS which they call DSBATS, consisting of semantic sentence analogies
using sentences pulled from the semantic network BabelNet (Navigli and Ponzetto, 2010),
corresponding to the encyclopedic and lexicographic category of relations taken from BATS
(Gladkova et al., 2016). Doing so, they sidestep the surface similarity inherent in the template
construction methods of Zhu and de Melo (2020) seen in Section 1.5.2. To take an example
from the authors, using the BATS animal:sound relation, for the pair pigeon : coo they

9Examples drawn from https://catalog.ldc.upenn.edu/desc/addenda/LDC2019T05_examples.

html.
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recover from BabelNet multiple sentences, defining both “pigeon” (“Wild and domesticated
birds having a heavy body and short legs”) and different senses of the word “coo” (“To
make a soft murmuring sound, as a pigeon”, “Bird vocalization includes both bird calls and
bird songs”, “Murmuring sound made by a dove or pigeon”). We could expect a resulting
quadruple to be Wild and domesticated birds ... : Murmuring sound made by a dove ...
:: Alert carnivorous mammal with pointed muzzle and ears and a bushy tail : The long
plaintive cry of a hound or a wolf for the lexical equivalent pigeon : coo :: fox : howl. In
this manner they collect hundreds and thousands of sentence pairs per relation, respective
to the encyclopedic and lexicographic BATS categories, without resorting to the use of only
very few templates. Instead, each DSBATS sentence is unlikely to have unwarranted surface
similarity with any other.

1.5.5. Figurative and predictive analogy

Outside of proportional analogies, the great strides that have been made in natural lan-
guage processing and language modeling have inspired some to return to analogical reasoning
in general. These works target more abstract or structural relations, or deliver analogy prob-
lems directly to language models without constraining or modifying the representations they
derive from their input, letting them extract relevant features themselves. These projects
ressemble the figurative and predictive analogies we described in Section 1.3 in following with
Brown (1989). While this thesis does not target this type of analogy, instead focusing on
those called proportional, we will take this opportunity to present briefly some of the most
recent and exciting strides in the computational modeling of analogical reasoning.

Sultan and Shahaf (2022) take on the structural analogy framework of Gentner (1983) on
procedural texts, without relying on hand-constructed representations. They use a neural
model to label semantic roles and align the extracted roles between pairs of texts, providing
interpretable structural mappings. We show an example drawn from the authors’ publication
in Figure 1.3. They also attempt to discover analogies from question-answering corpora,
where the answers provide the analogous stories. They find that using Sentence-BERT to
rank analogical candidates in the corpus by the similarity of their questions results in zero
false positives, but that virtually all analogies found are self-analogies, i.e. describe the same
circumstances, rather than two different situations both sharing an underlying relational
structure. In comparison, a score based on their mapping method finds 3-4 times more true
analogies than Sentence-BERT, although over half of the analogies it finds are either self- or
non-analogies.

Wijesiriwardene et al. (2023) leave the proportional analogy framework to develop a
dataset of analogies between two sequences of text which they use to evaluate embeddings
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Figure 1.3. Example analogical “attack-dispersion” procedural texts, originally from Gick
and Holyoak (1980), and extracted analogical alignments from (Sultan and Shahaf, 2022)
Nodes represent clusters of text spans linked to a single entity. Line thickness represents

the similarity of analogical entities in terms of the role they fill in the story.

from transformer language models by computing distance metrics on the vectors correspond-
ing to two texts. That is, a pair of sequences which are analogical in some way should be
highly related. Their dataset is structured taxonomically, rising in levels of abstraction from
word pairs, pairs of word pairs, pairs of a word and a sentence, of sentences and their cor-
ruptions, NLI pairs, and, at the highest level, pairs of proverbs and stories that express them
as well as quotes and their elaborated explanations. For words, they use the familiar word
analogy datasets shown in Section 1.4.3. Proportional analogies of words and sentences are
made from a crossword dataset (e.g. amen : famous last words) and from word-definition
pairs. They create some pairs of sentences by surface edits (random deletion, masking, re-
ordering, replacement by a synonym). Evaluating eight language models, their results show
that at higher levels of abstraction, T5 (Raffel et al., 2020), BERT, SpanBERT (Joshi et al.,
2020), and ELECTRA (Clark et al., 2020) show the lowest distance (normalized for each
model) between the two terms of analogical pairs, depending on the exact distance metric
used.

Hu et al. (2023) translate Raven’s visual “progressive matrix” tests generated by Zhang
et al. (2019) into a text-based abstraction, upon which they find that pretrained OPT (Zhang
et al., 2022) and GPT-3 (Brown et al., 2020) language models in the hundred-million to
hundred-billion parameter size range approach or surpass human performance as they scale.
These progressive matrices consist in finding a correct visual solution given example rows of
varying geometric images. Specifically, given a 3x3 grid of images, the ninth image in the
bottom right must be chosen among a set of candidates in order such that the progression of
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images in the final row matches that of the first two rows. Webb et al. (2023) find that GPT-3
performs at or above human level in solving progressive matrices, the letter string analogies
introduced by (Hofstadter, 1995), proportional verbal analogies, and approach human scores
on analogical story problems, all of these described in text directly in the model’s input space.
We show an example of the text abstraction for these progressive matrices in Figure 1.4.

Figure 1.4. Example of text-based abstraction of a progressive matrix problem
Figure taken from Hu et al. (2023).
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Chapter 2

Sentence analogy test set

In this chapter we present a dataset of relational pairs of sentences which we shall use in this
work as a benchmark for solving proportional analogies. There are several considerations to
make in determining what sorts of analogies we’d like to solve. We have seen, in Chapter 1,
proportional analogies constructed from relational pairs of formal (syntactic or morphologi-
cal), semantic (e.g. NLI, paraphrase), or encyclopedic (definitions) nature. We would like to
include in our analogies these kinds of relation, as well as some common sense relations such
as opposition of meaning or sentiment, cause and effect, a change in temporal context, or
“abstract” ones closer to the structure-mapping kind, where the same underlying roles are
played by different entities in different contexts.

While we have shown several analogy datasets of natural language sequences in Sec-
tion 1.5, many of those works had not been published at the time of our experimentation,
and others are either not available publicly, may not provide desirable analogies by virtue of
expressing unclear or inconsistent relations—such as the semantico-formal analogies of Lep-
age (2019) or the paraphrases and discourse pairs of Barbero and Afantenos (2023)—or are
of undesirable construction such as the template-based analogies of Zhu and de Melo (2020).
For this reason, we curate and indeed construct our own sentence pairs to ensure an (1)
adequate diversity of relations and (2) that they constitute relatively “valid” analogies, by
the author’s manual vetting process (which, of course, introduces its own predispositions).
Our sentence analogy test set (which we will shorten to SATS) is a collection of pairs of
sentences obeying such relations.

We construct 32 relation sets (listed in Table 2.1) of 50 pairs of sentences each (for reason
of having an equal number of pairs per relation, as well as limiting the amount of labor
required), with pairs formed by meaning-preserving formal changes, meaning-altering formal
changes, semantic structure-preserving changes, and changes requiring world knowledge.
This is described in more depth in Section 2.1. Example pairs for each relation can be



Training

Encyclopedic hypernym-animal

Test

Encyclopedic capital-country
Encyclopedic misc-hypernym Encyclopedic country-language
Encyclopedic person-occupation Encyclopedic invention-creator

Lexical present-past Encyclopedic member-band
Semantic informal-formal Lexical idiom-literal
Semantic sentence-opposite Lexical numeral-spelled
Semantic sentiment-good-bad Lexical numeric-approximation
Syntactic because-so Lexical past-future
Syntactic canonical-extraposition Semantic cause-effect
Syntactic qa2d-declarative-howmany Semantic description-state
Syntactic qa2d-declarative-when Semantic home-outdoors
Syntactic qa2d-declarative-who Semantic simple-implicative-entailment

Validation

Encyclopedic meronym-substance Syntactic active-passive
Lexical present-future Syntactic canonical-verb-particle-movement
Semantic phrasal-implicative-entailment Syntactic qa2d-declarative-howmuch
Syntactic qa2d-declarative-what Syntactic qa2d-declarative-where

Table 2.1. SATS relations by category and split

seen in Tables 2.5 to 2.8. This results in 3,200 sentences, of which 3,024 unique sentences.
As we’ve shown in Chapter 1, analogies can then be constructed by shuffling each pair of
sentences of a same relation set against each other. In total, from 50 pairs we obtain 2,500
analogies making 80,000 analogies out of our 32 relations, or 2,450 and 78,400 respectively
when we exclude a : b :: a : b. For the purposes of evaluating methods where parameters are
fit on this data, we form training, validation, and test splits along relation set lines. We do
this in order to gauge analogy-solving ability which generalizes beyond relations that have
been observed. This is in opposition to, for example, fitting on analogies from the first 25
pairs of each relation and evaluating generalization to unseen pairs, which we consider would
allow only for much weaker conclusions to be drawn. In an attempt to provide a dataset
analogous to BATS (Gladkova et al., 2016), we somewhat similarly bin our relation sets into
coarse types we call Encyclopedic, Lexical, Semantic, and Syntactic for later aggregation
of results, and obtain sentence pairs matching BATS word pairs where possible for the
hypernym-animal, misc-hypernym, person-occupation, meronym-substance, capital-country,
and country-language relations.

2.1. Dataset construction
For most relations, we proceed by manually constructing sentence pairs, whereas others

are manually retrieved or selected from an existing dataset. Specifically, we collect 6 relation
sets from the Question to declarative sentence (QA2D) (Demszky et al., 2018) dataset, and
8 from Wikipedia. We show statistics on our data in Table 2.3 and example sentences in
Tables 2.5 to 2.8.
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QA2D was created from question answering (QA) datasets for the purpose of inducing
NLI pairs between declarative statements (the hypothesis) and the passages which serve as
the basis for questions (the premise). They use the preexisting passages and questions with
rule-based and neural models to obtain declarative sentences. While we are not interested in
NLI, we can make good use of pairs of declarative sentences and questions, since they obey a
relatively fixed syntactic relation. For example, for a passage “I saw Gonzague yesterday. He
was at the cafe.”, a declarative-question pair could be Gonzague was at the cafe yesterday. :
When was Gonzague at the cafe? An analogy could then be made with another declarative-
“when” question pair, such as Napoleon was defeated at Waterloo in 1815. : When was
Napoleon defeated at Waterloo?

Syntactic relations are curated in the following way. For the QA2D-derived relation
sets, we make one relation set for several types of question (what, when, where, who, how
many, how much), with sentence A being the answer and sentence B the question. This is
done in order to reduce ambiguity, since one question can be answered by many premises,
whereas a question can only be formed from a declaration in limited ways. Other relations
are formed by taking a “canonical” sentence and applying a meaning-preserving change in its
form as follows. For one relation, we take pairs of active and passive sentences (e.g. The car
destroyed a lamppost : A lamppost was destroyed by the car). A second relation involves the
extraposition of a phrase, where the sense of the sentence remains the same, but a syntactic
constituent is shifted to the end of a clause, as in the analogy To suggest that is treason :
It is treason to suggest that :: When they decided can’t be known : It can’t be known when
they decided. A third set involves the movement of a particle associated to a phrasal verb to
the end of the sentence (e.g. I threw out all those old boxes : I threw all those old boxes
out). Finally, we have a set of pairs of causal sentences using “because”, where we invert the
clauses and use “so” instead (e.g. I ate all the cookies because I was hungry : I was hungry,
so I ate all the cookies). It should be noted that such relation sets involve very little if no
change in a sentence’s vocabulary, which makes solving analogies by retrieval extremely easy
if there is a small or otherwise unchallenging candidate pool.

For the encyclopedic relation sets, we sourced sentences from Wikipedia, taking each
sentence in a pair as the first sentence found from the most relevant article on the English
language Wikipedia, sourced manually. For example, a pair from the person-occupation set
may be (Strauss, composer). In such a case we would take the first sentence from the article
for Richard Georg Strauss, and the first sentence from the article for “composer”. This is
similar to the DSBATS dataset of Zhang and Lepage (2023) described in Section 1.5.4. We do
not require each sentence to be unique, since the encyclopedic relations are generally many-
to-one, e.g. multiple individuals have the same occupation, many different animals share the
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same clade, and so on. See, for example, the following analogy from the meronym-substance
relation: A lens is a transmissive optical device which focuses or disperses ... : Glass is a
non-crystalline, often transparent amorphous solid ... :: A mirror or looking glass is an object
that reflects an image. : Glass is a ... We show the number of unique sentences (both a and
b together, thus out of 100 sentences) for such relations in Table 2.2. As mentioned earlier,
we inspire ourselves from several of the encyclopedic and lexicographic relation sets in BATS
(Gladkova et al., 2016), taking pairs of sentences that correspond to their word pairs where
possible for the hypernym-animal, misc-hypernym, person-occupation, meronym-substance,
capital-country, and country-language BATS relations.

Relation Number of unique sentences

country-language 73
hypernym-animal 63
member-band 99
meronym-substance 82
misc-hypernym 73
person-occupation 70
simple_implicative-entailment 95

Table 2.2. Number of unique sentences for many-to-one relations

In our so-called lexical category, we pair sentences by changing the tense and other
temporal markers, i.e. from present to past or future, or from past to future, from present
to past (e.g. We’re eating here today : We were eating here yesterday). We also create some
relational pair sets by taking sentences with numerals and their approximations (I have 62
files : I have about 60 files), or instead by spelling the numbers out in words (I have 62 files
: I have sixty-two files). We also take pairs of sentences with common English idioms and
their replacement with literal descriptors. For example, He hit the hay : He went to sleep ::
Stop rubbing it in : Stop making me feel worse.

The semantic category involves relations which are less obvious or more abstract, such as
pairs of sentences in relations of cause and effect (A rock is thrown at a window : The window
shatters :: Your foot gets caught on a vine while running : You fall forwards violently),
descriptions and the state of being they describe (He makes a phone call and a yellow car
shows up a few minutes later. : He calls a cab. :: A cloud of steam rises off a cup of water.
: The water is hot.), sentences opposite in sentiment—such as in the pair I care so much :
I worry so much—in meaning (e.g. the pair Sometimes people lie : People always tell the
truth), or in formality (Got a sec? : Do you have a moment? :: This beater’s a hunk of
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junk. : This car is old and broken.). Another set consists of sentences describing a scene
or action at home paired with equivalent sentences occurring outdoors, for example I could
probably find it in my drawer at home : I could probably find it on my desk at work. Finally,
we construct entailment pairs using implicative verbs or phrasal verbs which imply a truth
value about an associated verbal phrase, whether positive or negative, depending on the
verb (Karttunen, 2012). For example, “She admitted to eating the cookie” implies she ate it,
whereas “They neglected to inform students” implies they did not inform students, despite
both verbs being left unnegated. Similarly, for some verbs, negation does not necessarily
imply the opposite truth value. We construct pairs of sentences which both imply and
negate one another, providing some built-in distractors. For example, see the following
analogy made from phrasal verb-based NLI pairs: They lacked the sense to speak their minds
: They didn’t speak their minds :: They didn’t lack the sense to speak their minds : They
spoke their minds.

Number of characters

Mean ± Std Min 10% 25% 50% 75% 90% Max

Encyclopedic 164 ± 80 20 74 103 152 209 267 541

Lexical 32 ± 12 11 18 24 31 39 48 106

Semantic 35 ± 15 7 18 23 32 44 55 91

Syntactic 56 ± 25 15 30 39 52 68 84 203

Total 69 ± 66 7 22 30 45 76 161 541

Table 2.3. SATS sentence length statistics

2.2. Limitations and bias
While the crude binning of our relation sets is useful for overall analysis, it remains

somewhat arbitrary, as whether some relations ought to be considered semantic or lexical is
not always clear. Indeed, different words hold different meanings, though whether time, for
example, is much more about a choice of words or verb conjugation rather than a change
in context is dependent on our framing and construction of the relation. Idioms might be
considered lexical items, since they are set phrases with semantics that cannot usually be
obtained by composing that of their individual parts (e.g. to spill the beans means to tell
a secret, as long as one is already aware of this sense). Either way, the categorization of
our relation sets does not generally impact the rest of our methodology or experimentation
outside of providing a denser view of some results or statistics.
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Encyclopedic Lexical Semantic Syntactic

0.16 0.57 0.39 0.55

Table 2.4. Jaccard similarity of SATS pairs by category

It is worth noting some particularities of our data. As can be seen in Table 2.3, our
encyclopedic sentences are much longer than the other categories, due to their direct extrac-
tion from Wikipedia, often containing footnote indicators, citations, or pronunciation hints,
which can be seen in the examples of Table 2.5. While these may be considered noise, we
opt not to preprocess them in any way. Sentences from other categories are generally quite
short, and in pairs have a high proportion of shared vocabulary. The QA2D sentences, by
nature of the question-answering task they are drawn from, chiefly concern historical fact,
statistics, and so on, though the relation represented is not encyclopedic. These sentences are
somewhat longer than those we construct, though they similarly have high surface overlap.
We show the average Jaccard similarity of sentence pairs in Table 2.4, with a per-relation
breakdown shown in Table A.1, calculated as follows for two whitespace-tokenized sentences
whose sets of unique words are A and B:

J(A,B) = |A ∩B|
|A ∪B|

(2.2.1)

Manually constructing sentences introduces the bias of the writer, whether by writing
style or lack thereof, a preference toward certain words or describing certain contexts, or an
overall lack of diversity thereof. It is evident from these points that constructed sentences do
not represent a natural usage of language. These sentences are not generally conceived with
a communicative goal in mind, quite unlike most uses of language. Despite this, we believe
SATS can serve to test reasoning on proportional sentence analogies, though some confusion
may result during evaluation from the non-uniqueness of many of the relations we study,
as some relations may be fulfilled by any number of different sentences of mildly or greatly
differing wording or construction. In the time since we’ve begun, recent work has presented
analogy datasets or methods for creating them, as shown in Sections 1.5.4 and 1.5.5, which
likely do not suffer from the above limitations.
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Relation A B

capital-country Abuja (...)[4] is the capital and eighth most
populous city of Nigeria.

Nigeria (... Listen), officially the Federal Re-
public of Nigeria, is a country in West Africa.

country-language Syria (Arabic: ..., romanized: Sūriyā), of-
ficially the Syrian Arab Republic (Arabic:
..., romanized: al-Jumhūr̄ıyah al-‘Arab̄ıyah
as-Sūr̄ıyah), is a Western Asian country
located in the Eastern Mediterranean and the
Levant.

Arabic (... (listen) or ... (listen) or ...) is a
Semitic language that first emerged in the 1st
to 4th centuries CE.

hypernym-animal The chimpanzee (Pan troglodytes), also known
simply as chimp, is a species of great ape native
to the forest and savannah of tropical Africa.

The Hominidae (...), whose members are
known as the great apes[note 1] or hominids
(...), are a taxonomic family of primates
that includes eight extant species in four
genera: Pongo (the Bornean, Sumatran and
Tapanuli orangutan); Gorilla (the eastern and
western gorilla); Pan (the chimpanzee and the
bonobo); and Homo, of which only modern
humans remain.

invention-creator In plumbing, a trap is a U-shaped portion of
pipe designed to trap liquid or gas to prevent
unwanted flow; most notably sewer gases from
entering buildings while allowing waste mate-
rials to pass through.

Thomas Crapper (baptised 28 September
1836; died 27 January 1910) was an English
plumber and businessman.

member-band Bradford Phillip Delson (born December 1,
1977) is an American musician, best known
as the lead guitarist and one of the founding
members of the rock band Linkin Park.

Linkin Park is an American rock band from
Agoura Hills, California.

meronym-substance A penny is a coin (pl. pennies) or a unit of
currency (pl. pence) in various countries.

A metal (from Greek ... métallon, "mine,
quarry, metal") is a material that, when freshly
prepared, polished, or fractured, shows a lus-
trous appearance, and conducts electricity and
heat relatively well.

misc-hypernym Cake is a flour confection made from flour,
sugar, and other ingredients, and is usually
baked.

Dessert is a course that concludes a meal.

person-occupation Richard Georg Strauss (German: [...]; 11 June
1864 – 8 September 1949) was a German com-
poser, conductor, pianist, and violinist.

A composer is a person who writes music.

Table 2.5. Examples of encyclopedic SATS sentence pairs per relation, with phonetic tran-
scriptions replaced with ellipses due to typesetting errors

35



Relation A B

idiom-literal They have a bone to pick with him. They have a complaint with him.

numeral-spelled Back in the 90s I was in a very famous TV
show.

Back in the nineties I was in a very famous TV
show.

numeric-approximation I have 265 friends. I have about 250 friends.

past-future The past was hopeful. The future will be hopeful.

present-future She knows we were there. She will know we were there.

present-past She isn’t on her way to the gala. She wasn’t on her way to the gala.

Table 2.6. Examples of lexical SATS sentence pairs per relation

Relation A B

active-passive Several people trespassed on the property. The property was trespassed on by several peo-
ple.

because-so The forest was razed because they needed the
lumber for ships.

They needed the lumber for ships so the forest
was razed.

canonical-extraposition To do so is immoral. It’s immoral to do so.

canonical-verb-
particle-movement

She threw up last night’s dinner. She threw last night’s dinner up.

qa2d-declarative-
howmany

The Prelude field was estimated to contain 3
trillion cubic feet of natural gas reserves .

The Prelude field was estimated to contain
how many cubic feet of natural gas reserves
?

qa2d-declarative-
howmuch

80 % of the population of Salvado , Bahia is
black or mixed race .

How much of the population of Salvador ,
Bahia is black or mixed race ?

qa2d-declarative-what The famous French leader Napolean had es-
tablished the Polish state at this time .

What famous French leader had established
the Polish state at this time ?

qa2d-declarative-when In September 1829 , Chopin returned to War-
saw .

When did Chopin return to Warsaw ?

qa2d-declarative-where The tracheae is located in the body cavity . Where is tracheae located ?

qa2d-declarative-who The South primarily initiated the clashes along
the 38th parallel .

Who primarily initiated the clashes along the
38th parallel ?

Table 2.7. Examples of syntactic SATS sentence pairs per relation

36



Relation A B

cause-effect A woman has not eaten in many hours. The woman is hungry.

description-state A man salivates at the thought of food. A man is hungry.

home-outdoors He gave himself a haircut in the bathroom. He went for a haircut at the barbershop.

informal-formal We gotta get going. We need to start moving.

phrasal-implicative-
entailment

She didn’t miss the occasion to dress him up. She dressed him up.

sentence-opposite These beautiful flowers grow so fast. These shriveled husks can’t grow.

sentiment-good-bad An exciting tale that makes its three hours go
by in a flash.

A mind-numbing ordeal that makes its three
hours drag out forever.

simple-implicative-
entailment

He didn’t predict that they wouldn’t go. They didn’t go.

Table 2.8. Examples of semantic SATS sentence pairs per relation
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Chapter 3

Experiments

We introduced in Sections 1.4 and 1.5 common methods for solving proportional analogies
notated a : b :: c : d the terms of which are units of natural language, whether words or
sequences. These methods typically obtain for each term a vector representation in keeping
with the distributional hypothesis of meaning in language (Firth, 1957). The vector repre-
sentations of the premise (a,b,c) are operated on to obtain one which is hoped to be nearest
to that of the conclusion d, at which point a solution can be retrieved from a corpus or list
of candidates, or decoded as a sequence. In a different framework, the entire problem can
be posed in natural language and provided as a prompt to a language model in the hopes
of generating the solution d by conditioning on input containing (a,b,c). We thus conduct
two kinds of experiments, introduced below and described in depth in this chapter: we solve
proportional sentence analogies by (1) retrieval in a VSM by operating on sentence embed-
dings, and (2) by generating the desired solution, conditional on the premise sentences. We
analyze the results obtained from these experiments in Chapter 4.

We conduct experiments to assess the suitability of vector representations of natural
language for solving sentence analogies by retrieval in line with the techniques shown in
Chapter 1. As vector representation baselines, we examine fixed and contextual embeddings
presented in Section 3.1. We examine a variety of previously introduced vector space solving
methods—described in Section 3.3—which are both unparameterized and having parameters
which must be fit. We introduce in Section 3.2 a vector autoencoder which we finetune from
a pretrained language model, whose bottleneck vector we use as a sentence representation.
We additionally finetune this autoencoder on our analogies with a vector solver in an end-
to-end fashion (see Section 3.3.4). We evaluate the combination of embeddings and vector
solving methods on the retrieval-based analogy task (Section 3.4).

In addition to retrieval, we experiment with solving analogies by generating the desired
sequence. Although we use the end-to-end autoencoder and vector solver mentioned above,



departing from solvers defined by vector operations, we also finetune an encoder-decoder lan-
guage model to conditionally generate the solution to an analogy in a sequence-to-sequence
framework (described in Section 3.5.2). In addition to this, we attempt to generate so-
lutions to our proportional analogies in a few-shot setting, i.e. by providing a prompt with
instructions and examples for the task, requiring no further parameter tuning (Section 3.5.3).
Relying on the scaling of language model abilities with parameter size, we evaluate models
of different scales from the million to billion-plus parameter regime.

All analogy solvers and language model inference and training routines are implemented
using the PyTorch (Paszke et al., 2019) and Huggingface Transformers (Wolf et al., 2020)
libraries, with models fit by gradient descent using reverse mode automatic differentiation.

3.1. Pretrained models
3.1.1. FastText

Grave et al. (2018) provide 300-dimensional word embeddings fit using CBOW on data
from Wikipedia and Common Crawl.1 These embeddings incorporate sub-word information,
allowing to represent out-of-vocabulary words. We sum word embeddings over a whole
sentence split by whitespace to obtain its embedding, using their FastText Python module2

for the purpose.
We initially considered comparing these word embeddings to a bag-of-words (BoW) rep-

resentation, though informal initial experimentation showed it to perform similarly enough.
For this reason, we found it was not worth the increased computation time resulting from
the massive dimensionality—equal to the vocabulary size—of BoW vectors.

3.1.2. BERT

We introduced in Section 1.5.1 the BERT model (Devlin et al., 2019), whose pretraining
scheme intends to learn general-purpose parameters for later finetuning by masked language
modeling and next sentence prediction. We take the average of all token encodings as a
sequence’s embedding, both here and in subsequent transformer encoders. We use the Base
non-case-sensitive model,3 which has 110M parameters. Its hidden layers and hence final
encoding vectors are 768-dimensional, which will be the same for subsequently described
models of “Base” size.

1https://commoncrawl.org
2https://fasttext.cc/docs/en/python-module.html
3https://huggingface.co/bert-base-uncased
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3.1.3. RoBERTa

Liu et al. (2019) present RoBERTa, a transformer pretraining method wherein they
modify the BERT training procedure to remove the next sentence prediction task, use larger
batches of longer sequences, and dynamically generate [MASK] tokens for each training
example. Our experiments use the RoBERTa Base checkpoint,4 which has 125M parameters.

3.1.4. DeBERTa

DeBERTa is another development on BERT and RoBERTa which set state-of-the-art
records for natural language understanding benchmarks (He et al., 2020). Instead of typical
additive positional embeddings—vectors added to vocabulary embeddings in order to incor-
porate temporal information into the transformer’s otherwise order-invariant computation—
DeBERTa computes attention scores with separate matrices for content and position. This
model has a Base size of 100M parameters.5

The third version of DeBERTa further improved upon the state of the art by replacing
the masked language modeling objective with a replaced token discrimination task. This task
originates in the ELECTRA model (Clark et al., 2020), which is trained in two parts. A
generator model is trained on the MLM task, and provides a probability distribution on the
masked tokens of each training batch. From this they sample a replacement token which a
discriminator model must detect in a binary classification task. Both models have their own
parameters with the exception of the embeddings, which they prevent the discriminator’s
gradient from updating. The final model uses the discriminator’s parameters, and has 86M
parameters for its Base size6.

3.1.5. Sentence-BERT

Here, Sentence-BERT refers to any of a collection of encoder transformers which are
finetuned to cluster semantically related input sequences by pooling their final encodings
and provided by the Sentence-Transformers team (Reimers and Gurevych, 2019). With their
Sentence-Transformers Python library,7 we use the all-mpnet-base-v2 checkpoint8 (133M
parameters) based on the MPNet model, a transformer encoder with a pretraining objective
based on masked and permuted language modeling which we may associate with BERT and

4https://huggingface.co/roberta-base
5https://huggingface.co/microsoft/deberta-base
6https://huggingface.co/microsoft/deberta-v3-base
7https://www.sbert.net/
8https://huggingface.co/sentence-transformers/all-mpnet-base-v2
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XLNet (Yang et al., 2020) respectively. This is finetuned with a contrastive objective on 1
billion semantically related pairs of text sequences.

3.1.6. Instructor

The Instructor model (Su et al., 2023) aims to provide general-purpose embeddings by
directing it using instructions, being trained on a contrastive objective on the mean-pooled
encodings of instruction-input sequences over 330 datasets from various domains. For exam-
ple, we might use this example (taken from the original authors): “Represent the Review
sentence for classifying emotion as positive or negative:” for sentiment classifi-
cation.

We use the Instructor Large checkpoint9 (1.5B parameters, 1024-dimensional hidden
state) with the prompt “Represent the sentence for solving analogies of surface
form and meaning:”. While we would prefer to provide the type of relation in the prompt,
we obtained degenerate results in our initial attempts to do so, which we will leave as a
limitation of this work.

3.1.7. Flan-T5

The Text-To-Text-Transfer-Transformer (T5) model (Raffel et al., 2020) is an encoder-
decoder transformer which is first pretrained on an unsupervised denoising task, followed
by finetuning on a multitude of supervised tasks. All downstream tasks are reframed in a
text-to-text setting, where an instruction prompt coupled with input is given and a language
modeling objective optimized against the output. For example, a translation task would be
framed as “Translate from English to German: I am thirsty”. The decoder applies cross-
attention to the encoded inputs and should autoregressively generate “Ich habe Durst”. The
model uses a SentencePiece tokenizer (Kudo and Richardson, 2018) with a vocabulary of
32,000 tokens.

Flan-T5 (Chung et al., 2022) improves upon this by further finetuning on an additional
1,836 instruction-based tasks. We use the Flan-T5 Base model as a baseline as well as for
our finetuned vector autoencoder. For our finetuned sequence-to-sequence model, we use
both the Base and Large sizes. In our few-shot experiment, we use the Flan-T5 model at all
its parameter sizes of 250M (Base),10 780M (Large), 3B (XL), and 11B (XXL).

9https://huggingface.co/hkunlp/instructor-large
10https://huggingface.co/google/flan-t5-base
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3.2. Finetuned Flan-T5 autoencoder
We would additionally like to move beyond retrieval by instead generating sequences

when solving proportional analogies using functions of real vectors. To achieve this, we
finetune the pretrained Flan-T5 Base model parameters using a slightly modified transformer
architecture where we mean-pool the encodings at the final layer of the encoder portion of
the transformer. From this we obtain a bottleneck vector from which the decoder should
autoregressively generate the desired sequence, as depicted simplistically in Figure 3.1. That
is, the transformer’s cross-attention is only performed against this pooled vector, which we
use as our sentence embedding. Such a model would permit us to operate on the bottleneck
vector and, rather than retrieving the solution, generate it. However, the model described in
this section is trained simply as an autoencoder; it is not in its own right meant for solving
proportional analogies. In the generative experiments described in Section 3.5, we do not
use this autoencoder, but its end-to-end finetuned solver variant (see Section 3.3.4).

Figure 3.1. A visualization of the mean-pooled Flan-T5 autoencoder architecture
x refers to the bottleneck vector which serves as an embedding. The arrows depict the

input and output of a single autoregressive decoding step. <s> and </s> stand in for the
beginning of sequence and end of sequence tokens.

The model is fit to autoencode sentences—from a dataset described below—with a NLL
loss on batches of 72 sentences padded up to a length limit of 500 tokens, i.e. each sequence
in the batch is one sentence. We use a learning rate of 3× 10−5 and the Adafactor optimizer
(Shazeer and Stern, 2018) which the original Flan-T5 model is pretrained with. A training
artifact is the initial use of a linear warmup from zero of the learning rate with a peak at the
10,000th batch out of 100,000. Seeing that this underfit, we left the learning rate constant
until 281,600 batches. Ultimately we reached a validation loss (lower is better) of 0.372 on
1024 held out sentences compared to the pretrained Flan-T5’s 0.30. This training was done
in a single epoch, with no intentional repetition of data, on a dataset described below. Due

43



to this training procedure, the model did not overfit (and indeed did not finish converging
due to the abundance of data).

We source sentences from the Online Language Modelling (Thrush et al., 2022) dataset
of Wikipedia articles dated 20-12-2022,11 which we interleave with sentences drawn from
the Reddit comments dataset12 provided by the Sentence-Transformers team (Reimers and
Gurevych, 2019) using the Huggingface Datasets library (Lhoest et al., 2021). We take the
first million training examples from both sources in a round-robin fashion and use a Python
wrapper package for Microsoft’s Blingfire library13 to split them into sentences. Reddit com-
ments are chosen as a data source for their range of styles, which we can characterize as
colloquial, formal, argumentative, or conversational, and which often concern varied topics
and everyday concerns. Wikipedia is useful for its formal style and encyclopedic informa-
tion. However, we expect the model not to learn (and indeed forget from its pretraining)
discourse patterns and the overall relatedness of such facts as a result of splitting examples
into individual sentences.

3.3. Vector solvers
We discussed in Sections 1.4 and 1.5 a number of methods for solving proportional analo-

gies whose terms have a distributed vector representation. We will apply some of these to
the representations extracted from the models listed in Sections 3.1 and 3.2.

Two unsupervised solving methods are used: 3CosAdd, and, as a crude baseline, the
mean of the premise vectors d̂ = a+b+c

3 . The former method has significant representation in
the literature, and appears to work best insofar as vector representations of distributional
semantics might actually permit analogies as parallelograms in the vector space. However,
that point is debated, as discussed previously.

Alongside these we use two parametric solvers which are fit on analogies from SATS (see
Chapter 2). The first is a dense feedforward neural network composed of residual blocks.
The second is the Abelian group network of Abe et al. (2021) described in Section 1.4.6. We
report their architecture and hyperparameters used, which were settled on by an informal
manual search.

3.3.1. Feedforward solver

Inspired by the feedforward neural network solver of Wang and Lepage (2020), we sim-
ilarly use one to parameterize a vector solver d̂ = g(a,b,c)—where (a,b,c) represent their

11https://huggingface.co/datasets/olm/olm-wikipedia-20221220
12https://huggingface.co/datasets/sentence-transformers/reddit-title-body
13https://github.com/microsoft/BlingFire
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respective sentences’ embeddings—whose architecture is a five layer stack of residual blocks
f using the Gaussian error linear unit (GELU) activation function (Hendrycks and Gimpel,
2016) and layer normalization (Ba et al., 2016):

x1 = LN (GELU (W1x+ b1) + x) (3.3.1)

f(x) = LN (GELU (W2x1 + b2) + x1 + x) (3.3.2)

All hidden states retain the input dimensionality. To admit as input the concatenation
of the premise vectors, the first block has the dimension of a ◦ b ◦ c, followed by an affine
transformation which reduces it to the original embedding dimension.

3.3.2. Abelian solver

Let us recall Equation 1.4.5. The Abelian solver uses an invertible neural network to
transform embeddings into a space of the same dimensionality before applying the vector
offset in that space. The solution can be found from the resulting vector by passing it through
the inverse of the neural network.

We use the FrEIA Python module (Ardizzone et al., 2018) which implements invertible
blocks compatible with PyTorch, each combining the operations of affine coupling (Dinh
et al., 2015), a permutation matrix sampled from the special orthogonal group, activation
norm (Kingma and Dhariwal, 2018), and taking an inner function parameterized as a feed-
forward neural network. We compose each such inner network of two affine layers with a
GELU activation function:

f(x) = W2GELU (W1x+ b1) + b2 (3.3.3)

3.3.3. Training

We train one solver of each type for each embedding model listed in Section 3.1 by fitting
it on analogies using the training splits described in Chapter 2, including identity analogies
a : b :: a : b. We use the Adafactor optimizer with a learning rate of 3 × 10−5 and a batch
size of 8. We additionally add Gaussian noise on the order of 10−2 to the input vectors. We
use as loss function the negative cosine similarity:

loss(d,d̂) = − dᵀd̂

‖d‖ · ‖d̂‖
(3.3.4)

The solvers are trained for two epochs over the 30,000 training analogies created from our
data, over which time we observe overfitting. For that reason the best checkpoint is selected
on the validation split using the harmonic mean of the top-1 and top-5 accuracy for retrieval
by cosine similarity, to encourage choosing a model that at least predicts the neighbourhood
of the solution. Retrieval metrics are discussed in Section 3.4.
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3.3.4. End-to-end decoder solver

In addition to solvers trained on the embeddings of each of the baseline models in Sec-
tion 3.1, we further finetune the Flan-T5 mean-pooled autoencoder presented in Section 3.2
to decode the solution to our analogies found with the solvers in Section 3.3 by training them
jointly in an end-to-end fashion.

For each sentence analogy a : b :: c : d, we individually encode each of the premises
(a,b,c) using the mean-pooled embedding from the encoder portion E of our autoencoder.
From these three embeddings, we predict a vector x = f(E(a),E(b),E(c)) using the solver
f , which may be, as stated, any of vector arithmetic, the average premise embedding, or
the parameterized feedforward or Abelian solver architectures presented in Sections 3.3.1
and 3.3.2. We then autoregressively decode a sentence from this “solved” vector x, just as
in Section 3.2, by performing cross-attention on the vector. This architecture is depicted in
Figure 3.2.

Figure 3.2. A visualization of the end-to-end solver and decoder architecture
f is the vector solving method used, e.g. the offset method. Note that although not

depicted, the output is still decoded autoregressively.

For each choice of f , we finetune this end-to-end solver for a single epoch on the same
training split for SATS shown in Chapter 2 with a batch size of 64, using an NLL loss between
predicted and true solution sentences, updating parameters with the Adafactor optimizer by
a learning rate of 10−4. Indeed, as all the solvers mentioned previously are differentiable, they
can easily be inserted into the computational graph and loss gradients propagated through
them. Observing overfitting, which is expected given the relative data duplication resulting
from analogies composed of pairs of sentences, we select the best checkpoint on the validation
split by METEOR score (Banerjee and Lavie, 2005).

3.4. Retrieval task
The models and vector solvers described above will now allow us to solve analogy tests

by retrieval in a VSM. Let us restate Equation 1.4.2, assuming we have predicted a vector x
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for our sentence analogy a : b :: c : d, represented by each term’s embeddings:

d̂ = argmax
y∈C

xᵀy

‖x‖ · ‖y‖
(3.4.1)

Considering all candidates in our candidate set C, we want d̂, the one that maximizes
its cosine similarity with x. Letting S be the set of embeddings of all unique sentences in
SATS, the candidate set is usually C = S \ {a,b,c}, i.e. the premises (a,b,c) are excluded.
This has the side effects of first occasionally excluding valid candidates, if the relation to
which (a,b) and (c,d) belong is many-to-one, and secondly of artificially increasing accuracy.
Indeed, in an analogy a : b :: c : d constructed from pairs of terms in a certain relation, paired
terms tend have the most similar embeddings anyhow. Thus excluding the premises makes
uncertain whether we are evaluating the ability to use the embeddings to solve analogies
or to simply cluster and retrieve related pairs in the absence of sufficient confounding data,
as discussed in Section 1.4. We will see in our analysis in Section 4.1 that d is the nearest
neighbor to c in a majority of cases unless distractors are added to the candidate set (see
Table 4.3).

For this reason, we report the retrieval accuracy under four different conditions. First we
use the traditional, “easy” analogy test, where premises are excluded. Second, we introduce
a set of distractors constructed automatically as shall be described below from the unique
sentences in SATS. Third, we remove the easing constraint excluding premises. Fourth, we
both keep the premises and add the distractors in our candidate set.

For each of the 3,024 unique sentences in SATS, we split it into words by whitespace
and construct a number of distractors by either randomly swapping pairs of words (e.g. from
the phrasal implicative entailment relation, “it. didn’t cross He”), randomly removing
words (e.g. from the idiom-literal relation, “Stop ∅ (being) a wet blanket.”), or by replacing
them by a randomly chosen nearest neighbour (e.g. from the phrasal implicative entailment
relation, “her (She) didn’t confirm the deal.”) from a VSM of word embeddings. Denoting
length of the whitespace-tokenized sequence as L, we swap words a number of times equal
to min{

(
L
2

)
, 5}. Words are uniformly chosen for deletion min{L, 5} times, as well as for

replacement. When replacing, we use the Python module for FastText (Grave et al., 2018)
to use their English Common Crawl CBOW subword embeddings (see Section 3.1.1). We
take the 20 nearest neighbours in the vocabulary of fewer than 25 characters, from which
we uniformly sample. In this manner we generate 41,356 distractor sentences after removing
any duplicates.
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3.5. Generative task
As we have stated, in addition to solving analogies by retrieval, we would also like to

generate solutions. First, we can use the end-to-end vector solver and autoencoder shown in
Section 3.3.4 in order to jointly encode the terms of the analogy into vectors, apply a solving
method to the premise vectors, and decode the solved vector into a sentence. However,
we additionally experiment with framing the analogy test as sequence-to-sequence task, for
which we finetune a model (described below in Section 3.5.2), and with few-shot inference
without any finetuning (described in Section 3.5.3).

Different methods are used when decoding, depending on the model. For the end-to-end
vector solver and the sequence-to-sequence models, we use both greedy decoding, which is
prone to repetition of subsequences, and η-sampling, a truncation method with superior
human plausibility judgements and which escapes repetitive patterns more often (Hewitt
et al., 2022). In the few-shot setting we only used η-sampling. We set η = 6× 10−4 based on
the best hyperparameters found by Hewitt et al. for the GPT-2 Medium (355M) and Large
(774M) models.

3.5.1. Metrics

By generating solutions, we hope to remove the difficulties in evaluating this ability by
retrieval, which is limited by the number and properties of alternative candidates. However,
we introduce the difficulty of an adequate sequence evaluation metric. For all model outputs,
we report the word error rate (WER), METEOR score (Banerjee and Lavie, 2005), BLEU
score (Papineni et al., 2002), exact match accuracy, and the copy-a, copy-b, and copy-c exact
match rates. We use the Huggingface Evaluate library (Von Werra et al., 2022) for all but
the copy rates. There are limitations to the metrics we use, of course. N-gram or other
surface metrics, exact match included, discount what may be valid predictions if they have a
different form, by use of synonyms, paraphrase, or otherwise. To alleviate this, methods like
BERTScore (Zhang et al., 2020) attempt to apply the distributional representations learned
by language models. However, it has been found that even such methods are biased to the
presence of important content words, though more minute (yet invalidating) differences may
be masked by surface features (Hanna and Bojar, 2021).

WER14 is a sequence alignment-based metric, equal to the normalized edit distance,
where, for S substitutions, D deletions, I insertions, and L the length of the reference
sequence tokenized by whitespace, we compute

WER = S +D + I

L
, (3.5.1)

14https://huggingface.co/spaces/evaluate-metric/wer
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which can be greater than 1 if the number of errors is greater than the length of the reference.
BLEU score measures the geometric mean rate of token subsequence overlap for n-grams

appearing in the prediction versus the reference, adjusted for length. We use n = 4 for the
maximum order of n-grams and the provided whitespace and regex tokenizer.15

METEOR16 matches word unigrams, additionally by related morphological forms and
synonymy, calculating a final score based on a weighted harmonic mean of precision and
recall, with a penalty to upweight well-ordered predictions.

3.5.2. Finetuning Flan-T5 for sequence-to-sequence analogies

We leverage the Flan-T5 Base (250M parameters) and Large (780M parameters) models
for finetuning on SATS analogies as a sequence-to-sequence task. For an analogy a : b :: c : d,
the input to the encoder portion of the transformer is the tokenized sentence a and the
tokenized sentence b spliced with a separator token. For the separator token we use one
of the special tokens used by the T5 tokenizer, so that a tokenized pair is formatted as
a<extra_id_0>b. When inferring d, the decoder is prompted with the sentence c, performing
cross-attention on the encoded input pair.

Given a pretrained checkpoint, we train two models, which we call “generator” and
“solver”, using two differents finetuning schemes. Given a quadruple a : b :: c : d, the
solver-type model is trained to encode the concatenated sequence (a,b) and, performing
cross attention, autoregressively decode d while being prompted with c, which is exactly the
same as the task we wish to solve at test time (i.e. solve the analogy by finding the correct
fourth sequence).

The generator-type model is trained to decode all of (c,d) concatenated together, with the
intuition that a better training signal might be obtained by fitting a model which generates
a pair (c,d) analogous to the input (a,b). Indeed, we could hope to then sample analogous
pairs from a model trained in this manner, since for each pair (a,b) in a given SATS relation
set, there are 49 other pairs of the same relation which serve as a target output (c,d) (see
Chapter 2). However, the small amount of data repeated in this way may result in somewhat
degenerate training dynamics.

These models are trained using the same SATS splits as elsewhere. We do not include
trivial analogies a : b :: a : b in order to reduce the likelihood of copying one of the input
sentences, resulting in 29,400 training quadruples. Models are trained for 3 epochs with a
batch size of 64 using the Adafactor optimizer with a constant learning rate of 3× 10−5 for
the Base models, 10−5 for the Large models, and a weight decay rate of 10−2. We use an

15https://huggingface.co/spaces/evaluate-metric/bleu
16https://huggingface.co/spaces/evaluate-metric/meteor
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Figure 3.3. Depiction of the sequence-to-sequence analogy task
The bolded blue text refers to the prompt, i.e. sentence c, given as input, but which is not

generated during inference. As described, during training the “generator”-type model
autoregressively generates (c,d), unlike the “solver”-type model, which is trained to

generate d while prompted with c. The encoder-decoder architecture depicted refers to the
standard transformer architecture used by the Flan-T5 model.

NLL loss, which we also use to pick the best checkpoint on the validation set, which we
observe always occurs within the first epoch of training.

3.5.3. Few-shot Flan-T5 solver

We noted in Section 1.5.5 that it has been observed that large language models can
perform well by prompting them in a few-shot fashion, and that recent work attempts to
solve analogies in this setting. Given that the Flan-T5 model is trained on text-to-text
instruction-prompted tasks, we attempt to induce it to solve SATS analogies this way.

Informally, we experimented with different prompts and input formats. Our concerns for
this are to reliably extract a solution from generated output, which may contain unrelated
artifacts or reasoning preceding an answer, and, chiefly, to induce the language model to
fulfill the task. Without wishing to truly turn to prompt engineering, we settled on what
appeared to be an effective prompt template, shown in Figure 3.4. Searching for prompts
informally, we found that we were able to elicit an appropriate response separated by the
(FINAL ANSWER) substring using this prompt with ad-hoc analogies not found in SATS,
which we found sufficient for further experimentation.

As noted earlier, we use the Flan-T5 Base, Large, XL, and XXL size models for this
experiment. While the affordability of graphics processing units with sufficient memory for
usage of large language models is relatively prohibitive, we use the Huggingface Transformers
library’s integration of 4-bit quantization methods (Dettmers et al., 2022) combined with
the offloading of embeddings, parts of the encoder, and the language model head to CPU
memory. These optimizations allow us to perform these experiments on a single NVIDIA
RTX 3060.
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Question: If "The car made it." becomes "Any car could make

it." then "I want that apple." becomes what? It seems something

definite has the article any used instead. (FINAL ANSWER) I want

any apple.

Question: If "Tables are great!" becomes "Chairs are great!"

then "Tables suck." becomes what? It appears the topic must

change from tables to chairs. (FINAL ANSWER) Chairs suck.

Question: If "He absolutely wouldn’t" becomes "I don’t think

he would." then "Drink it right away." becomes what? The

sentence changes from being very certain to being hesitant or

uncertain. (FINAL ANSWER) Drink it soon if you feel like it.

Question: If "[A]" becomes "[B]" then "[C]" becomes what? First

identify the change between the first two sentences, then apply it

to the third.

Figure 3.4. Prompt used for few-shot solving of proportional analogies
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Chapter 4

Analysis

In this chapter we discuss the results obtained from the analogies solved as described in
Sections 3.4 and 3.5. Results are shown in following with the data splits shown in Chapter 2.
Trivial analogies of the form a : b :: a : b are not included in any results shown.

4.1. Retrieval
We presented a number of embedding models in Chapter 3. These include the pretrained

models, the autoencoder (AE-)Flan-T5, and the finetuned end-to-end (E2E-)AE-Flan-T5
models. We also presented the vector solvers we use in Section 3.3. These are:

(1) the arithmetic solver, also known as the vector offset method, or 3CosAdd when used
to retrieve solutions by cosine similarity in a VSM;

(2) the Abelian solver, a trained model using an invertible neural network which trans-
forms the premise vectors individually into a space where the vector offset method
can be meaningfully applied;

(3) the feedforward solver, a conventional neural network which takes all three premises
and regresses to a vector similar to the conclusion;

(4) the mean of the three premise vectors, a simple baseline.
For each model-solver combination, we evaluate the solving and retrieval accuracy demon-

strated under different candidate set conditions: either with premises removed, premises in-
cluded, premises removed and distractors added, or premises and distractors both included.

We will note straightaway a few details. First is that the feedforward end-to-end solver
underfits the task when selecting its best checkpoint on the validation set and attains zero
accuracy even on the training set. Second is that the end-to-end Abelian and arithmetic
solvers perform virtually identically, which we will discuss further later. Third is, as expected,
that the mean solver baseline is surpassed by virtually every other option.



4.1.1. Pairing consistency score

Before viewing the accuracies obtained, let us review the pairing consistency score (PCS)
introduced by (Fournier et al., 2020), which we mentioned in Section 1.4.5. This score
measures the linear regularity of a relation for a particular embedding space. For each of
our relation sets of n = 50 paired sentences (a,b), calling the original offsets between them
O, we sample N = 50 shuffled pairs whose offsets we call Ok for 1 < k < N . For one set
of offsets, we can call its set of offset similarities sim(O), equivalent to the upper triangular
matrix where sim(O)ij = oᵀi oj

‖oi‖·‖oj‖ (for 0 < i < j < n). Considering each offset similarity
therein as a binary class probability, we can take as a task to classify whether a pair of offsets
belongs to the true set O or a false one Ok. PCS is computed from this as the average area
under the receiver operating characteristic (AUROC) curve, which plots the proportion of
false positives by true positives over an increasing positive class threshold:

PCS = 1
N

N∑
k=1

AUROC (sim(O), sim(Ok)) (4.1.1)

We compute PCS for all embedding models and report it in Table 4.1, averaged over relations
of a category.

Encyclopedic Lexical Semantic Syntactic

e2e-ae-flan-t5-base (abelian) 0.52 0.85 0.64 0.94
e2e-ae-flan-t5-base (arithmetic) 0.52 0.85 0.64 0.94
e2e-ae-flan-t5-base (ff) 0.51 0.57 0.51 0.57
e2e-ae-flan-t5-base (mean) 0.52 0.79 0.62 0.72
ae-flan-t5-base 0.52 0.81 0.58 0.80
flan-t5-base 0.55 0.83 0.62 0.86
deberta-v3-base 0.51 0.68 0.58 0.65
deberta-base 0.58 0.83 0.67 0.89
roberta-base 0.54 0.83 0.66 0.87
bert-base-uncased 0.62 0.84 0.63 0.81
instructor 0.74 0.83 0.62 0.80
all-mpnet-base-v2 0.82 0.80 0.61 0.74
fasttext 0.57 0.86 0.62 0.87

Table 4.1. Pairing consistency scores by model and category

Higher is better and 0.5 is chance level. Given for the test split as the end-to-end models
are trained.

It can be seen that most models have a much higher than chance PCS for the lexical and
syntactic categories of relations, with the exception of the feedforward end-to-end model and
DeBERTa-V3. Indeed, the former severely underfit during training (and otherwise overfit
if not for model selection on the validation set), and could not solve even a single training
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analogy. However, DeBERTa-V3 is a state-of-the-art model differing only notably by its
replaced token detection task rather than MLM or contrastive learning. This may be a
hint that linear regularity is not to be expected, and is perhaps only a side effect of fitting
parameters to a particular objective. Otherwise, it appears no embedding space captures
the semantic relations in a linear fashion, and the only ones that capture the encyclopedic
ones are Sentence-BERT (all-mpnet-base-v2), and, to a lesser extent, the Instructor model.
Notably, both are trained on a contrastive loss objective including pairs from Wikipedia and
question-answer tasks, whereas it has been advanced by Ri et al. (2023) that contrastive loss
elicits parallel offset dimensions for analogical quadruples.

4.1.2. Candidate sets

Encyclopedic Lexical Semantic Syntactic
+(a,b,c) Both +(a,b,c) Both +(a,b,c) Both +(a,b,c) Both

e2e-ae-flan-t5-base 0.03 0.02 0.28 0.27 0.02 0.02 0.30 0.28
ae-flan-t5-base 0.01 0.01 0.20 0.19 0.02 0.02 0.28 0.22
flan-t5-base 0.03 0.01 0.20 0.19 0.02 0.01 0.37 0.24
deberta-v3-base 0.01 0.01 0.11 0.08 0.02 0.02 0.08 0.06
deberta-base 0.04 0.02 0.16 0.15 0.02 0.01 0.12 0.09
roberta-base 0.03 0.01 0.28 0.26 0.08 0.04 0.23 0.19
bert-base-uncased 0.05 0.03 0.13 0.12 0.01 0.01 0.12 0.07
instructor 0.07 0.01 0.25 0.17 0.02 0.01 0.04 0.02
all-mpnet-base-v2 0.12 0.01 0.13 0.10 0.01 0.01 0.03 0.02
fasttext 0.03 0.00 0.40 0.00 0.03 0.00 0.46 0.00

Table 4.2. SATS test accuracy by category using the Abelian solver

Shown for candidate sets +(a,b,c): with premises included, and Both: with distractors and
premises.

We show a subset of accuracies in Table 4.2. Accuracies broken down by solver type,
model, and choice of candidate set are shown in Table 4.8. A full breakdown of accuracies
are shown in Figures A.1 to A.4. It appears at once that the Abelian and arithmetic solvers
perform better than the feedforward one. Indeed, when premises are excluded, they appear
to achieve remarkable accuracy (see Table 4.8). However, as is expected, the inclusion
of distractors drastically lowers this accuracy, which is generally lowerbounded by simply
including the premises. The inclusion of both, naturally, shows that very few models if any
at all can be said to solve our analogies. In Chapter 2 we pointed out that our encyclopedic
sentences are much longer than those of other relations (see Table 2.3). The inclusion of
distractors then appears to make retrieval impossible for encyclopedic relations. However, a
quick examination of Sentence-BERT’s top retrieval candidates shows that c ranks highest,
and when including distractors, it is c’s distractors that rank highest, rather than d’s. We
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show one such example in Table 4.4 when retrieving the solution to an encyclopedic analogy
using Sentence-BERT. We observe similar behaviour in all models except DeBERTa-V3, for
which the predicted vector retrieves nonsensical alternatives (see Table 4.6).

4.1.3. Pair and offset similarity

The obtained accuracies can be compared to those from the simple baseline where, for
each base SATS pair (a,b), we try to retrieve b from a among all unique sentences in SATS,
excluding a from candidates since it will always be nearest itself. We report this baseline in
Table 4.3, finding similar issues as brought up by Linzen (2016) for word analogies. Indeed
the nearest neighbour to a is b in 76% of the cases for Sentence-BERT across all categories,
56% for the Abelian E2E-AE-Flan-T5, and 48% for RoBERTa, none too far from the best
accuracies they show when solving analogies. Even when including distractors, these nearest
neighbour rates are on the order of retrieval accuracies, and often surpass them if we compare
the baseline with the accuracies for the Abelian solver in Table 4.2.

Encyclopedic Lexical Semantic Syntactic
– +distr. – +distr. – +distr. – +distr.

e2e-ae-flan-t5-base (Abelian) 0.00 0.00 0.84 0.08 0.44 0.00 0.97 0.14
e2e-ae-flan-t5-base (arithmetic) 0.00 0.00 0.84 0.10 0.46 0.00 0.96 0.16
e2e-ae-flan-t5-base (feedforward) 0.00 0.00 0.02 0.00 0.02 0.00 0.11 0.04
e2e-ae-flan-t5-base (mean) 0.02 0.00 0.80 0.09 0.40 0.00 0.48 0.12
ae-flan-t5-base 0.00 0.00 0.82 0.08 0.39 0.01 0.84 0.05
flan-t5-base 0.02 0.00 0.82 0.11 0.42 0.01 0.84 0.16
deberta-v3-base 0.01 0.00 0.57 0.27 0.20 0.08 0.57 0.26
deberta-base 0.00 0.00 0.82 0.21 0.40 0.01 0.86 0.15
roberta-base 0.01 0.00 0.76 0.14 0.30 0.02 0.88 0.20
bert-base-uncased 0.02 0.00 0.80 0.12 0.36 0.01 0.81 0.18
instructor 0.22 0.00 0.92 0.09 0.78 0.00 0.99 0.18
all-mpnet-base-v2 0.46 0.00 0.88 0.12 0.76 0.00 0.96 0.14
fasttext 0.02 0.00 0.75 0.00 0.32 0.00 0.76 0.04

Table 4.3. Nearest neighbour retrieval baseline on SATS test split (a,b) pairs

Shown additionally for added distractor candidates.

Evidently, the cosine similarity of a SATS pair (a,b) has a disproportionate effect on
whether we can retrieve the solutions to our analogies by this method, and it appears to
grow in tandem with word overlap, which we visualize in Figure 4.1. As shown by Fournier
et al. (2020), the analogy score sim(d, c+ b− a) can be decomposed into terms proportional
to the within-pair similarity sim(a,b), the offset similarity sim(b−a, d−c), and the similarity
of c to the offset, which are subject to spurious properties of the geometry of the embedding
used. They introduce an offset concentration score (OCS), i.e. the average similarity of
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offsets of a same relation. We show in Figure 4.2 that as accuracy for a relation increases,
the product of the average within-pair similarity and OCS increases, a behaviour we observe
equally for the arithmetic solver as for the Abelian one.

Figure 4.1. Within-pair similarity versus Jaccard similarity, averaged per SATS test rela-
tion

The arithmetic solver variant of E2E-Flan-T5-Base is used.

Figure 4.2. Arithmetic solver retrieval accuracy with premises included versus the product
of average within-pair similarity and OCS per SATS test relation
We report accuracy when candidates include premises but not distractors so as not to zero

out all encyclopedic relations.
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4.1.4. Takeaways

We can conclude in agreement with Fournier et al. (2020) that the offset method fails to
solve analogies, and that insofar as it succeeds, it is only due to particularities in the vector
space. Indeed, in most cases the predicted vector is closest to c or surface edits thereof (see
Tables 4.4 and 4.7). While accuracy increases along with pair similarity and offset similarity,
we can discount the former as a meaningful factor if we’re interested in solving analogies
using parallel lines, and we can throw out the latter wholesale: OCS can be trivially high if
one “side” of the relation is embedded in a smaller neighbourhood than the other, or if we
increase the distance between equally sized neighbourhoods.

It is less obvious why we should not notice any meaningful difference in accuracy between
the vector offset method and the Abelian solver. We report accuracies on all data splits in
Table 4.5, wherein it can be seen that for most models, the Abelian solver severely underfits
the training set, obtaining low accuracies when including premises and distractors, whereas
the feedforward solver simply does not generalize despite generally fitting the training set. It

a : b :: c : d
Gene Simmons (born Chaim Witz; Hebrew: (...); born August 25, 1949) is an Israeli-American musician, singer and
songwriter. : Kiss (stylized as ...) is an American rock band formed in New York City in 1973 by Paul Stanley, Gene

Simmons, Ace Frehley, and Peter Criss. :: Bradford Phillip Delson (born December 1, 1977) is an American musician, best
known as the lead guitarist and one of the founding members of the rock band Linkin Park. : Linkin Park is an American

rock band from Agoura Hills, California.

Neither +(a,b,c) +(a,b,c) +distractors

Linkin Park is an American rock band
from Agoura Hills, California.

Bradford Phillip Delson (born December
1, 1977) is an American musician, best
known as the lead guitarist and one of the
founding members of the rock band Linkin
Park.

Bradford Phillip Delson 1, 1977) is an mu-
sician, best known as the lead guitarist
and one of the founding of the rock band
Linkin Park.

Def Leppard are an English rock band
formed in 1977 in Sheffield.

Kiss (stylized as ...) is an American rock
band formed in New York City in 1973 by
Paul Stanley, Gene Simmons, Ace Frehley,
and Peter Criss.

Bradford Phillip Delson (born December
1, 1977) is an American musician, best
known of the lead guitarist and one as the
founding members of the rock band Linkin
Park.

Table 4.4. Example analogy and top retrieved solutions under different candidate sets for
Sentence-BERT using the arithmetic solver

The example analogy is drawn from the member-band relation, which is part of the test
split. When including the premises as candidates, c followed by b are more similar to the

offset prediction than the true solution. When including distractors, the top predictions are
all similar to c. Special characters are replaced with an ellipsis due to typesetting issues.
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is unclear what better kind of hyperparameter selection could alleviate this. Including dis-
tractors when evaluating on the validation set, however, ought to be fruitful. Nevertheless,
for the two models where the Abelian solver mostly fit the training set (Flan-T5 and Instruc-
tor), their validation and test accuracies are no more impressive than the others. While it is
possible that it ails mainly from a lack of data—a conclusion supported by the feedforward
solver’s lack of generalization—it may be due to a property of Abelian groups themselves for
the purpose of solving proportional analogies of this nature.

Training Validation Test
Abelian Arithmetic FF Abelian Arithmetic FF Abelian Arithmetic FF

e2e-ae-flan-t5-base 0.24 0.25 0.00 0.17 0.17 0.00 0.15 0.14 0.00
ae-flan-t5-base 0.71 0.05 1.00 0.12 0.10 0.04 0.11 0.08 0.04
flan-t5-base 0.97 0.12 0.90 0.12 0.07 0.06 0.11 0.08 0.07
deberta-v3-base 0.04 0.07 0.39 0.02 0.05 0.00 0.04 0.06 0.00
deberta-base 0.08 0.08 0.61 0.04 0.04 0.02 0.07 0.07 0.03
roberta-base 0.12 0.11 0.87 0.13 0.12 0.07 0.13 0.12 0.08
bert-base-uncased 0.08 0.06 0.90 0.03 0.03 0.05 0.06 0.05 0.08
instructor 0.82 0.07 1.00 0.12 0.12 0.01 0.05 0.05 0.01
all-mpnet-base-v2 0.24 0.03 0.64 0.05 0.06 0.02 0.03 0.03 0.02
fasttext 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 4.5. Retrieval accuracy per model on all SATS splits

Accuracy given for candidate set with premises and distractors.

Otherwise, it appears that the end-to-end solver not only performs best among all models,
but equally whether using the Abelian or arithmetic solver. This is most likely due to both
architectures ultimately performing the vector offset method on the mean-pooled encodings,
while the parameters of the encoder are allowed to change. The addition of an extra trans-
formation in the form of an invertible neural network appears to change little about this fact.
A limitation of this model is that the autoencoder it is based on may have forgotten most
long-range dependencies and representations that can be obtained from them, including of
encyclopedic knowledge and discourse relations. Indeed, being a simple autoencoder, we ex-
pect that its bottleneck vector represents little other than surface features. An improvement
might be to use an architecture such as the transformer sequential denoising autoencoder
(TSDAE) of Wang et al. (2021), which, by using a denoising and masked language modeling
objective, likely learns a representation based in distributional semantics.

Finally, performance at this task appears to us to have little correlation with the ca-
pability of a model, since the embeddings obtained from state-of-the-art models (though
mean-pooling may lose information for many of them) are outperformed by the end-to-end
model. This, while it performs best, is best only marginally, for a handful of relations where
pairs have sizeable word overlap, and subject to all the issues we have discussed above.
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a : b :: c : d
Four people stand on a flimsy wooden plank. : The wooden plank breaks. :: There are very loud noises outside while you try

to sleep. : You sleep poorly.

Neither +(a,b,c) +(a,b,c) +distractors

If recommit fails , then what choice needs
to be made by minority representatives ?

If recommit fails , then what choice needs
to be made by minority representatives ?

There are very loud noises while outside
you try to sleep.

Advertisement is effective so this flavor is
popular.

Advertisement is effective so this flavor is
popular.

The person who won that prize last year.It
is speaking.

Your piping is being repaired by the
plumbers.

Your piping is being repaired by the
plumbers.

When were the deported allowed to return
?

How many people arrived without an in-
vitation ?

How many people arrived without an in-
vitation ?

If recommit fails , then what choice needs
to be made by minority representatives ?

They all ordered food for delivery. They all ordered food for delivery. .They all ordered food for delivery.

Table 4.6. Top 5 retrieved solutions under different candidate sets for Deberta-V3-Base
using the arithmetic solver

The example analogy is drawn from the cause-effect relation, which is part of the test
split. Candidates are noticeably irrelevant in all cases, hinting at DeBERTa-V3’s particular

embedding geometry, although when distractors are additionally included one
corresponding to c ranks first.

a : b :: c : d
There’s a loud noise and you flinch. : You are startled by a noise. :: A family huddles on a couch with popcorn and turn on

the TV. : A family is watching a movie together.

Neither +(a,b,c) +(a,b,c) +distractors

A family is watching a movie together. A family huddles on a couch with popcorn
and turn on the TV.

A family huddles on a couch with popcorn
and turn on the TV.

An air conditioner is turned on in a hot
room.

You are startled by a noise. a family huddles on A couch with popcorn
and turn on the TV.

A cloud of steam rises off a cup of water. A family is watching a movie together. 6.A family huddles on a couch with pop-
corn and turn On the TV.

They gather on the couch to watch a movie
every weekend.

An air conditioner is turned on in a hot
room.

A family huddles on a couch with popcorn
on the TV.

The fire was started by a cigarette. A cloud of steam rises off a cup of water. A family huddles on a couch turn popcorn
and with on the TV.

Table 4.7. Top 5 retrieved solutions under different candidate sets for the end-to-end arith-
metic solver Flan-T5 model

The example analogy is drawn from the description-state relation, which is part of the
test split. When including the premises as candidates, c followed by b are more similar to
the offset vector than the solution. After including distractors, though, the next top-4

candidates are distractors for c.
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Solver type Model Neither +distractors +(a,b,c) Both

Abelian

e2e-ae-flan-t5-base 0.60 0.25 0.16 0.15
ae-flan-t5-base 0.51 0.20 0.13 0.11
flan-t5-base 0.59 0.23 0.16 0.11
deberta-v3-base 0.20 0.12 0.06 0.04
deberta-base 0.59 0.21 0.08 0.07
roberta-base 0.57 0.27 0.15 0.13
bert-base-uncased 0.61 0.17 0.08 0.06
instructor 0.74 0.13 0.09 0.05
all-mpnet-base-v2 0.82 0.11 0.07 0.03
fasttext 0.44 0.00 0.23 0.00

Arithmetic

e2e-ae-flan-t5-base 0.60 0.25 0.15 0.14
ae-flan-t5-base 0.54 0.17 0.09 0.08
flan-t5-base 0.61 0.21 0.10 0.08
deberta-v3-base 0.34 0.20 0.08 0.06
deberta-base 0.59 0.20 0.08 0.07
roberta-base 0.57 0.27 0.15 0.12
bert-base-uncased 0.61 0.16 0.07 0.05
instructor 0.80 0.13 0.08 0.05
all-mpnet-base-v2 0.82 0.10 0.07 0.03
fasttext 0.57 0.00 0.21 0.00

FF

e2e-ae-flan-t5-base 0.00 0.00 0.00 0.00
ae-flan-t5-base 0.27 0.06 0.07 0.04
flan-t5-base 0.36 0.10 0.15 0.07
deberta-v3-base 0.01 0.00 0.01 0.00
deberta-base 0.22 0.03 0.15 0.03
roberta-base 0.23 0.12 0.12 0.08
bert-base-uncased 0.32 0.12 0.13 0.08
instructor 0.38 0.01 0.09 0.01
all-mpnet-base-v2 0.50 0.04 0.15 0.02
fasttext 0.01 0.00 0.01 0.00

Mean

e2e-ae-flan-t5-base 0.18 0.00 0.00 0.00
ae-flan-t5-base 0.23 0.00 0.00 0.00
flan-t5-base 0.19 0.00 0.00 0.00
deberta-v3-base 0.05 0.01 0.00 0.00
deberta-base 0.17 0.00 0.00 0.00
roberta-base 0.15 0.00 0.00 0.00
bert-base-uncased 0.21 0.00 0.00 0.00
instructor 0.20 0.00 0.00 0.00
all-mpnet-base-v2 0.28 0.00 0.00 0.00
fasttext 0.13 0.00 0.00 0.00

Table 4.8. SATS test retrieval accuracies under different candidate sets, by solver type and
model
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4.2. Generation
We generate predictions for our proportional sentence analogies using the methods de-

scribed in Section 3.5, for our end-to-end solver decoder (E2E-AE-Flan-T5), the sequence-
to-sequence finetuned (so-called Solver and Generator) Flan-T5 models, and the pretrained
Flan-T5 from sizes Base to XXL, which is prompted with few-shot examples to solve pro-
portional analogies.

4.2.1. Results

Exact Match WER METEOR BLEU
Sampled False True False True False True False True

(a,b) Baseline — 0.86 0.54 0.23

Generator
Base 0.00 0.00 1.39 1.49 0.36 0.26 0.10 0.07
Large 0.01 0.00 1.08 1.06 0.47 0.41 0.17 0.14

Solver
Base 0.01 0.00 1.14 1.10 0.36 0.31 0.12 0.10
Large 0.02 0.01 0.88 0.92 0.48 0.42 0.20 0.16

Prompted

Base — 0.00 — 1.84 — 0.27 — 0.05
Large — 0.00 — 0.94 — 0.40 — 0.14
XL — 0.01 — 0.98 — 0.37 — 0.13
XXL — 0.02 — 0.94 — 0.41 — 0.16

Arithmetic Base 0.04 0.03 1.00 0.92 0.40 0.38 0.15 0.14

Table 4.9. SATS test split generation metrics

Scores are shown in table Table 4.9. As shown in Section 4.1, the end-to-end solver
behaves identically with either the arithmetic or Abelian solver, and outright fails with the
feedforward one. Since this holds equally in the generative setting, we only report results for
the arithmetic solver for brevity. In addition to the solutions generated by models by greedy
decoding and η-sampling, we report metrics for the baseline where, for each base SATS pair
(a,b), a as the prediction for b. We do so because, as noted in Chapter 2 and elsewhere, our
relational pairs tend to be extremely similar in form. Thus, it can be difficult to distinguish
predictions that are noisy but otherwise valid solutions to the analogy from predictions
which are similar to one of the premises, though those which are otherwise unrelated to the
solution should score poorly regardless. Success might be indicated by better metrics than
this baseline.

From the metrics shown in Table 4.9, it is evident that our methods perform poorly at
the task, with some variation, which we can note. The end-to-end vector solver performs
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best by exact match rate, though doesn’t have the overall best metrics. This is not all too
surprising, as the architectural bias of the vector offset solver should behave favorably for
relations where, as discussed previously, embeddings show higher offset similarity and within-
pair similarity, though the vector predicted by offset may not necessarily be understood by
the decoder, even if it results in good retrieval accuracy. The few-shot results for Flan-T5-
XXL, even with its 11 billion parameters, show that it achieves somewhat less than this
level.

Figure 4.3. Exact match accuracy comparison of best models

Between the finetuned sequence-to-sequence models, the Solver model, which predicts d
prompted with c, outperforms the one trained to generate the whole (c,d) pair, though this
difference narrows for the Large models. We would hope that a model capable of generating
a pair of sentences analogical to an input pair should complete d well, but this expectation is
dashed by the overall poor results seen even on the training split, demonstrated in Figure 4.3.
Indeed, no trained model appears to have captured the training data very well. It is a
significant limitation of this work that the inherent data duplication resulting from analogies
constructed by shuffling pairs results in overfitting. Thus, our models in fact underfit the
task when we select the best checkpoint. The prompted Flan-T5’s performance increases
with parameter size. At its largest range, the Flan-T5-XXL checkpoint (11B parameters)
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and reaches an overall performance on the level of the end-to-end solver. Encouragingly, it
reaches albeit low accuracy across most relations, rather than it being concentrated as much.
Figure 4.4 shows the scale of exact match compared to copy rates on the test split.

Copy a Rate Copy b Rate Copy c Rate
Sampled False True False True False True

Generator
Base 0.00 0.00 0.00 0.00 0.20 0.06
Large 0.00 0.00 0.00 0.00 0.30 0.15

Solver
Base 0.04 0.01 0.03 0.01 0.13 0.06
Large 0.00 0.00 0.01 0.00 0.27 0.14

Prompted

Base — 0.01 — 0.02 — 0.07
Large — 0.01 — 0.01 — 0.24
XL — 0.05 — 0.06 — 0.09
XXL — 0.02 — 0.05 — 0.06

Arithmetic Base 0.00 0.00 0.06 0.05 0.03 0.02

Table 4.10. SATS test split copy rates

Copying c appears to peak in the double digits for all “full-attention” Flan-T5 models at
around 20% for all Large models (see Table 4.10), though increasing parameter size reduces
this once more in the few-shot setting. Interestingly, the the XL checkpoint sees a peak in
the copy rate for encyclopedic relations, in a way that mimics the Large checkpoint for other
categories (see the breakdown per category in Table 4.11). Perhaps there are parameter
thresholds at which the model has enough capacity to capture the long-range structure of
the prompt, depending on the length of the input sequence—since the longest encyclopedic
analogies may have hundreds of words—though lacks the ability to solve them.

Encyclopedic Lexical Semantic Syntactic
Exact Match Copy Exact Match Copy Exact Match Copy Exact Match Copy

Base 0.001 0.108 0.001 0.146 0.001 0.130 0.000 0.071
Large 0.002 0.200 0.007 0.395 0.005 0.308 0.001 0.176
XL 0.007 0.356 0.017 0.211 0.008 0.170 0.001 0.149
XXL 0.006 0.210 0.049 0.101 0.019 0.070 0.003 0.100

Table 4.11. Few-shot exact match and summed copy rates for different Flan-T5 model
sizes, per relation category
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Figure 4.4. Test exact match accuracy per model by parameter size, copy rates overlaid

4.2.2. Limitations

We can identify some shortcomings of our experimental and data processing methodology.
As can be seen in Figures 4.3 and 4.4, we get zero exact match and copy rates for the
QA2D relations. It is an unfortunate consequence of not preprocessing the formatting of
those sentences, that they have artifacts, and that all tokens, punctuation included, are
whitespaced. We can say the same for the encyclopedic sentences found from Wikipedia,
which have substantial formatting artifacts. We would expect successful models to treat
these somewhat like noise, or, if they attempt to emulate the artifacts, fail to perfectly
copy them. For similar reasons, we should expect the exact match rate to reach zeros for
encyclopedic relations as well. However, as noted in Chapter 2, all but two of those relations,
person-occupation and capital-country, are many-to-one (see Table 2.2). Subsequently,
a high b copy rate should artificially inflate this metric. For Flan-T5-XL and XXL on the
encyclopedic set, the copy b rate is 12.3% and 13.6% respectively, whereas for the Base and
Large models it is 2.6% and 0.5% respectively.
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Figure 4.5. Test METEOR (higher is better) per model by parameter size with METEOR
of (a,b) pair baseline overlaid as a dash

We plot METEOR in Figure 4.5 in comparison to the (a,b) baseline. In virtually all cases,
we can see that our predictions are substantially worse than the pair baseline. Combined with
copy rates shown elsewhere, it appears our models are generally not solving our analogies.
Without fully evaluating by human judgement, examining some examples can provide some
clarity, even if not representative of all cases. We can see from a few selected examples in
Table 4.14 that our arithmetic end-to-end solver often decodes almost perfectly memorized
training examples, or else nonsense which is somewhat reduced by sampling. In one analogy
from the qa2d-declarative-howmuch relation, it appears to approach a reasonable solution,
though both sentence pairs are regarding electricity production in Estonia. Even in this
hopeful case, it does not maintain those parts of sentence c which should not be modified,
an important element of the relation.

In Table 4.12 we can see that the full output from Flan-T5-XXL in response to the
prompt, before splitting the solution, includes an explanation acknowledging the relation
in question. Ultimately, the output repeats the separator and repeats a sequence similar
to c, and hence fails the analogy test. For comparison, we used the OpenAI Platform to
access the davinci-0021 and ChatGPT-3.5 models, using the same prompt in Figure 3.4

1Part of the updated legacy models in 2023, at https://platform.openai.com/.
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(see Table 4.13). ChatGPT, which benefits from instruction training with human feedback
(Ouyang et al., 2022), answers appropriately, though without using the desired separator,
whereas davinci-002 copies b approximately in one case and exactly in the other. This
highlights two things: that prompting alone may not be a successful method, and that our
metrics may fail to identify cases where it is.

capital-country
Lisbon [...] is the capital
and the largest [...]

: Portugal, officially the
Portuguese Republic [...]

:: Manila [...] is the capital
of the Philippines

: The Philippines [...] is
an archipelagic country in
Southeast Asia.

(FINAL ANSWER) The change between sentences one and two is the country that Lisbon is the capital and largest
city of. [...] (FINAL ANSWER) The city of Manila

qa2d-declarative-what
Greenpeace claimed that
Shell requested Google to
ban a video footage [...]

: Greenpeace claimed that
Shell requested Google to
ban what ?

:: “Mauri” is Moors in Eng-
lish

: What is Mauri in English
?

(FINAL ANSWER) The subject has been removed from the sentence and replaced with what. (FINAL ANSWER)
Mauri.

Table 4.12. Flan-T5-XXL analogy examples before splitting by the answer separator
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person-occupation
John Christopher Depp
[...] is an American actor
[...]

: An actor or actress
is a person who por-
trays a character in a
performance.

:: Christopher Columbus
[...] was an Italian[b]
explorer [...]

: An explorer is a person
involved in exploration

(ChatGPT-3.5) An explorer or navigator is a person who completes voyages across the Atlantic Ocean, sponsored by
monarchs, opening the way for widespread exploration and colonization of the Americas.

(davinci-002) (FINAL ANSWER) An actor or actress is a person who portrays a character in a performance. They
may have used stage makeup to enhance their natural appearance or wear a mask to hide all traces of their identity.

(Changed from Christopher Columbus to actor and female actresses.) Join the mailing list: The Good Riddles Mission

qa2d-declarative-what
The website ,
thetime.co.uk , is aimed
at daily readers .

: The website ,
thetimes.co.uk , is
aimed at what kind of
reader ?

:: Metaphysics , epistemol-
ogy , axiology and the
philosophical approaches
make up field educa-
tion and a field applied
philosophy .

: What fields make up field
education and a field ap-
plied philosophy ?

(ChatGPT-3.5) What makes up the field of education and applied philosophy?
(davinci-002) (FINAL ANSWER) The website , thetimes.co.uk , is aimed at what kind of readers ?

Table 4.13. davinci-002 and ChatGPT-3.5 analogy examples

We manually extracted the generated solutions from OpenAI Playground, using default
hyperparameters, and the ChatGPT UI. We use the same prompt as shown in Figure 3.4.
The ChatGPT solution was explicitly presented as such, surrounded by reasoning steps and

descriptions related to the task.
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qa2d-declarative-howmuch
1.562 billion kilowatt
hours of electricity is
exported by Estonia
annually .

: How much electricity is
exported by Estonia an-
nually ?

:: 75 % of consumed elec-
tricity is produced by Es-
tonia itself .

: How much of consumed
electricity does Estonia
produce by itself ?

(Greedy decoding) How much electricity is generated by Estonia?
(Sampled) How much electricity does Estonia produce annually by?

member-band
Kurt Donald Cobain
(1967–1994) was an
American singer, song-
writer and artist.

: Nirvana was an Ameri-
can rock band formed in
Aberdeen, Washington,
in 1987.

:: Paul David Hewson
[...] is an Irish singer-
songwriter, activist, and
philanthropist.

: U2 are an Irish rock band
from Dublin, formed in
1976.

(Greedy decoding) In Aberdeen, Aberdeen formed a rock group formed in the Aberdeen rock group Aberdeen,
Aberdeen, Aberdeen, Aberdeen, Aberdeen, [...]

(Sampled) Aberdeen formed a rock group formed in Aberdeen, Aberdeen’s Aberdeen in mid-nineteenth century AD,
which formed the Rockies.

capital-country
Taipei [...] is the capi-
tal[a] and a special mu-
nicipality of Taiwan.

: Taiwan [...] is a coun-
try[22] in East Asia, at
the junction [...]

:: Berlin [...] is the capital
and largest city of Ger-
many [...]

: Germany [...] is a country
in Central Europe.

(Greedy decoding) A physicist is a scientist who specializes in the field of physics, which encompasses the
interactions of matter and energy at all length and time scales in the universe.

(Sampled) An author is someone who writes music., which incorporates many elements of their work, typically from
the heart, each of its constituent parts, from the heart, and the heartâsest part, from the heart to the back.

Table 4.14. Arithmetic E2E-Flan-T5-Base analogy examples
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Chapter 5

Conclusion

In this work, we studied a number of methods for solving proportional analogies between
sentences. Leveraging pairs of sentences between which a certain relation holds, we introduce
a manually curated sentence analogy test set. This dataset is composed of relations of syntax,
semantics, style, and world knowledge. We experiment with some conventional methods
for solving proportional analogies by retrieval in a vector space model using embeddings,
distributed vector representations of text which we derive largely from pretrained language
models, inspired by their previous usage in word analogies, and their continued use in recent
times for sentence analogies. We further study the adequacy of conventional methods by
decoding the solutions to proportional analogies from those vector representations rather
than retrieving them in a VSM. We do so juxtaposed against the relatively novel frameworks
of solving analogies as a sequence-to-sequence task and of few-shot prompting with examples.

Several limitations of our methodology can be traced to the nature of our data, affecting
the adequacy of our models and the strength of our analysis. In light of this, the first
improvement should be of the quality of data by the expansion of the relations it contains
and increased diversity of its content. Many datasets of pairs of text sequences exist which
can be combined together, and several novel analogical datasets have recently been proposed.
While further work could incorporate hyperparameter search, coupled with more data, to
ensure current methods are not in fact sufficient, we find it may be more fruitful to explore
different model architectures and features to include. Some architectural biases could be
favorable to the task, such as the Offset Network of Mao and Lepage (2023).

We find, in agreement with previous studies of word analogies using vector representations
(Linzen, 2016; Rogers et al., 2017), that the vector offset method does not recover the
solutions to sentence analogies, instead often recovering the premises themselves, unless
both the pairs’ vectors and the offsets between pairs are respectively similar, which it has
been shown can happen for spurious reasons (Fournier et al., 2020). It does not either appear



desirable to us to enforce a vector representation which obeys these properties, likely at the
cost of the goodness of its representation. We note this most saliently by the utter failure of
the embeddings obtained from DeBERTa-v3, which is otherwise an impressive state-of-the-
art model. Retrieval when solving analogies in vector space remains at low accuracy even
when relations for a given embedding have a high pairing consistency score, which measures
the linear distinguishability of pairs’ offsets. This latter score also being low for DeBERTa-
v3, it appears that whether or not a representation encodes any regularities linearly is a
matter of its particular architecture and training objective.

Ultimately, it appears to us that this task often reduces to measuring the clustering of
related pairs. We find similar results comparing the vector offset method with an operation
parameterized as an Abelian group network (Abe et al., 2021), which has been shown to be a
universal approximator of Abelian Lie groups, indicating the relevance of an operation’s alge-
braic properties to the task as argued by Rogers et al. (2017) and discussed in Section 1.4.4.
On the other hand, training a feedforward network to the task, we find it overfits and also
suffers from retrieving premises, which may be a consequence of our dataset, which is both
limited and number and contains an adverse amount of duplicate data.

Separately, we might wish to write off the notion solving analogies in vector space. Out-
side of our usage of summed word embeddings and our bottleneck vector-based models, no
important representations of language learned by recent models manifest in a single vector.
Indeed, the most promising attempts at human-like in-text reasoning are those involving
extremely large transformer language models, which represent inputs as a sequence of vec-
tors. In our case, taking as a sentence embedding the average of these token representations
likely leaves information on the table. We expect that a successful attempt at analogical
reasoning in vector space in this fashion would require an immense amount of appropriate
proportional analogy data and substantial computation, all for the purpose of learning the
embedding geometry defined by a specific model’s distribution of mean-pooled embeddings
(or as defined by other pooling methods). This seems to us counterproductive. If we are in-
terested in solving analogies, whether proportional or not, which can be based on semantics,
style, or other “fuzzy” characteristics, then we should exploit models which have learned
general patterns which may represent them.

Despite the promise of generation as a means of solving analogies, this vein of experimen-
tation suffered from its own failures. We find in all cases that models copying the premise
sentences is an issue. Our analysis of generated solutions also suffers from the difficulty
of choosing an appropriate automatic evaluation metric for sequences which could be valid
in their meaning despite differing in form. Nevertheless, we manage to find some insights
by quantitative analysis. Ultimately, qualitative analysis may reveal deeper insights than
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previous automatic evaluation metrics, as the tasks being evaluated outpace them. Indeed,
human evaluation has been used recently in many applications of LLMs due to the difficulties
of automating their evaluation, a quandary whose solution may lie in none other than LLMs
themselves (Chang et al., 2023).

Unfortunately, we find finetuning a pretrained language model to solve analogies as a
sequence-to-sequence task to be unsuccessful, likely due to our small and degenerate training
data used. This likely results in forgetting the distribution learned by pretraining. Prompting
pretrained language models with up to 11 billion parameters to solve analogies in a few-
shot setting in our experiments was overall unsuccessful and in aggregate less successful
than the end-to-end solver. However, at the largest range of parameter sizes, we find a
marked improvement where Flan-T5-XXL performs arguably on par with trained models,
and qualitatively presents superior behavior. Thus, prompt engineering, prompt tuning, or
other in-context approaches such as those of Patel et al. (2023) for bidirectional encoders
could be most constructive, given the relatively promising results obtained for Flan-T5-XXL.

Finally, although it is intended only as a qualitative, exploratory, and especially informal
experiment, the single analogy test given to the davinci-002 and ChatGPT-3.5 models offers
some important insights for future research into solving proportional analogies. Despite its
175B parameters, davinci-002 falls into the same premise-copying trap as the smaller models
we evaluated. In contrast, ChatGPT-3.5 provided essentially a perfect response. While the
choice of prompt (and lack of engineering or learning thereof) is a confounding factor, it may
point toward the preferential usage of similarly trained instruction-following models (Ouyang
et al., 2022) to elicit responses that leverage learned abstract patterns. We would recommend
evaluating the analogical reasoning capabilities of such models, especially publicly accessible
ones which may appear in light of the release of human feedback data by Köpf et al. (2023).
We expect this vein of research to demonstrate the most human-like analogical reasoning
ability.
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Appendix A

Tables and figures



Category Relation Jaccard similarity

Encyclopedic capital-country 0.25
country-language 0.19
hypernym-animal 0.15
invention-creator 0.10
member-band 0.22
meronym-substance 0.13
misc-hypernym 0.14
person-occupation 0.08

Lexical idiom-literal 0.35
numeral-spelled 0.69
numeric-approximation 0.65
past-future 0.53
present-future 0.57
present-past 0.61

Semantic cause-effect 0.18
description-state 0.24
home-outdoors 0.57
informal-formal 0.35
phrasal-implicative-entailment 0.43
sentence-opposite 0.44
sentiment-good-bad 0.53
simple-implicative-entailment 0.40

Syntactic active-passive 0.37
because-so 0.63
canonical-extraposition 0.69
canonical-verb-particle-movement 0.99
qa2d-declarative-howmany 0.49
qa2d-declarative-howmuch 0.45
qa2d-declarative-what 0.47
qa2d-declarative-when 0.45
qa2d-declarative-where 0.40
qa2d-declarative-who 0.56

Table A.1. Average Jaccard similarity between SATS pairs per relation
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Figure A.1. Retrieval accuracy on SATS test split using the Abelian solver
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Figure A.2. Retrieval accuracy on SATS test split using the arithmetic solver
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Figure A.3. Retrieval accuracy on SATS test split using the feedforward solver
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Figure A.4. Retrieval accuracy on SATS test split using the mean premise solver

94


	Couverture
	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of acronyms and abbreviations
	Acknowledgements
	Introduction
	Chapter 1. Related work
	1.1. Background
	1.2. Probabilistic language models
	1.3. Analogy
	1.4. Word analogy in vector space models
	1.4.1. Word embedding
	1.4.2. Vector offset method
	1.4.3. Word analogy datasets
	1.4.4. Offset method caveats
	1.4.5. Linear regularities
	1.4.6. Other solving methods

	1.5. Sequence analogy
	1.5.1. Sentence embedding
	1.5.2. Retrieval using vector offset
	1.5.3. Decoding from an embedding
	1.5.4. Classification
	1.5.5. Figurative and predictive analogy


	Chapter 2. Sentence analogy test set
	2.1. Dataset construction
	2.2. Limitations and bias

	Chapter 3. Experiments
	3.1. Pretrained models
	3.1.1. FastText
	3.1.2. BERT
	3.1.3. RoBERTa
	3.1.4. DeBERTa
	3.1.5. Sentence-BERT
	3.1.6. Instructor
	3.1.7. Flan-T5

	3.2. Finetuned Flan-T5 autoencoder
	3.3. Vector solvers
	3.3.1. Feedforward solver
	3.3.2. Abelian solver
	3.3.3. Training
	3.3.4. End-to-end decoder solver

	3.4. Retrieval task
	3.5. Generative task
	3.5.1. Metrics
	3.5.2. Finetuning Flan-T5 for sequence-to-sequence analogies
	3.5.3. Few-shot Flan-T5 solver


	Chapter 4. Analysis
	4.1. Retrieval
	4.1.1. Pairing consistency score
	4.1.2. Candidate sets
	4.1.3. Pair and offset similarity
	4.1.4. Takeaways

	4.2. Generation
	4.2.1. Results
	4.2.2. Limitations


	Chapter 5. Conclusion
	References
	Appendix A. Tables and figures

