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Résumé

Cette thèse vise à comprendre les fondements et les fonctions des calculs proba-
bilistes impliqués dans les processus visuels. Nous nous appuyons sur une double
stratégie, qui implique le développement de modèles dans le cadre du codage prédic-
tif selon le principe de l’énergie libre. Ces modèles servent à définir des hypothèses
claires sur la fonction neuronale, qui sont testées à l’aide d’enregistrements extracellu-
laires du cortex visuel primaire. Cette région du cerveau est principalement impliquée
dans les calculs sur les unités élémentaires des entrées visuelles naturelles, sous la
forme de distributions d’orientations.

Ces distributions probabilistes, par nature, reposent sur le traitement de la moyenne
et de la variance d’une entrée visuelle. Alors que les premières ont fait l’objet d’un
examen neurobiologique approfondi, les secondes ont été largement négligées. Cette
thèse vise à combler cette lacune.

Nous avançons l’idée que la connectivité récurrente intracorticale est parfaitement
adaptée au traitement d’une telle variance d’entrées, et nos contributions à cette
idée sont multiples. (1) Nous fournissons tout d’abord un examen informatique de la
structure d’orientation des images naturelles et des stratégies d’encodage neuronal
associées. Un modèle empirique clairsemé montre que le code neuronal optimal
pour représenter les images naturelles s’appuie sur la variance de l’orientation pour
améliorer l’efficacité, la performance et la résilience. (2) Cela ouvre la voie à une étude
expérimentale des réponses neurales dans le cortex visuel primaire du chat à des
stimuli multivariés. Nous découvrons de nouveaux types de neurones fonctionnels,
dépendants de la couche corticale, qui peuvent être liés à la connectivité récurrente.
(3) Nous démontrons que ce traitement de la variance peut être compris comme un
graphe dynamique pondéré conditionné par la variance sensorielle, en utilisant des
enregistrements du cortex visuel primaire du macaque. (4) Enfin, nous soutenons
l’existence de calculs de variance (prédictifs) en dehors du cortex visuel primaire,
par l’intermédiaire du noyau pulvinar du thalamus. Cela ouvre la voie à des études
sur les calculs de variance en tant que calculs neuronaux génériques soutenus par la
récurrence dans l’ensemble du cortex.

Mots-clés : vision, variance, cerveau Bayesien, encodage prédictif, neurobiologie,
neurocomputation, connectivité synaptique récurrente.
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Abstract

”Dear Sir or Madam, will you read my book ?
It took me years to write, will you take a look ?”

The Beatles, Paperback Writer, 1966

This thesis aims to understand the foundations and functions of the probabilistic
computations involved in visual processes. We leverage a two-fold strategy, which
involves the development of models within the framework of predictive coding under
the free energy principle. These models serve to define clear hypotheses of neuronal
function, which are tested using extracellular recordings of the primary visual cortex.
This brain region is predominantly involved in computations on the elementary units
of natural visual inputs, in the form of distributions of oriented edges.

These probabilistic distributions, by nature, rely on processing both the mean and
variance of a visual input. While the former have undergone extensive neurobiological
scrutiny, the latter have been largely overlooked. This thesis aims to bridge this
knowledge gap.

We put forward the notion that intracortical recurrent connectivity is optimally
suited for processing such variance of inputs, and our contributions to this idea are
multi-faceted. (1) We first provide a computational examination of the orientation
structure of natural images and associated neural encoding strategies. An empirical
sparse model shows that the optimal neural code for representing natural images
relies on orientation variance for increased efficiency, performance, and resilience.
(2) This paves the way for an experimental investigation of neural responses in the
cat’s primary visual cortex to multivariate stimuli. We uncover novel, cortical-layer-
dependent, functional neuronal types that can be linked to recurrent connectivity.
(3) We demonstrate that this variance processing can be understood as a dynamical
weighted graph conditioned on sensory variance, using macaque primary visual cortex
recordings. (4) Finally, we argue for the existence of (predictive) variance computations
outside the primary visual cortex, through the Pulvinar nucleus of the thalamus. This
paves the way for studies on variance computations as generic weighting of neural
computations, supported by recurrence throughout the entire cortex.

Keywords: vision, variance, Bayesian brain, Predictive Coding, neurobiology, neuro-
computation, recurrent cortical connectivity.
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1. Manuscript introduction

”The journey is the reward.”
Daoist proverb, attributed to Laozi

1.1. Overview
The objective of this thesis is to establish a robust framework for probabilistic

computations in vision, encompassing stochastic visual stimulation and advanced
data analysis, to enhance our understanding of the neurophysiological mechanisms
in V1 and beyond. We will center primarily on computations related to the variance of
visual inputs, which play a fundamental role in our daily life, as highlighted in Chapter
2.

1.2. Scientific context
This work is based on a "cotutelle" (joint) supervision between Laurent Perrinet

from the Institut de Neurosciences de la Timone laboratory (INT, Aix-Marseille Uni-
versity & CNRS), and Christian Casanova, initially based at the Laboratory of Visual
Neurosciences (School of Optometry, University of Montreal), now also affiliated
with the "École de Technologie Supérieure" (Montreal). This international and in-
terdisciplinary endeavor combines French computational models with Canadian
neurophysiological experiments. Over time, this project has also expanded to include
several collaborators, such as Nicholas Priebe from the University of Texas at Austin,
who conducted preliminary experiments in marmosets, as well as Pieter Roelfsema
and Paolo Papale from the Netherlands Institute of Neuroscience, who performed
similar recordings in awake behaving macaques.

The interplay between neurobiology and neurocomputations is the keystone of
modern neuroscientific research. In line with this, this thesis aims to demonstrate
the advantages of a model-driven approach to studying an intricate dynamical sys-
tem such as the brain, advocating in the process for improved stimuli and generic
models. While this manuscript should (hopefully) be accessible for readers with an
interdisciplinary background, I have made every effort to ensure that the content is
comprehensible regardless of whether the reader’s background is more aligned with
the silicon or carbon side of the field.
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1. Manuscript introduction – 1.3. Manuscript organization

1.3. Manuscript organization
By virtue of the interdisciplinary and international organization of my thesis, this

manuscript is longer than most manuscripts have a right to be. Despite this length,
a concerted effort has been made to ensure a smooth and engaging reading experi-
ence. Rather than beginning with a lengthy introduction aimed at providing a broad
overview of the nature of vision and its modern challenges, I instead elected to start
with a concise Marr-like approach [200] to the problem at hand. After this introduc-
tion, each chapter is organized as a self-contained read, beginning with a concise
introduction regarding the specific sub-problem studied, followed by a related article,
and concluded with research perspectives.

This manuscript is structured into eight sections, as outlined below:
— In the current chapter, Chapter 1, the general study is introduced, with the aim of

providing a high-level overview of the whole thesis in a comprehensive manner.
— Chapter 2 starts the scientific content of the thesis, by introducing the notions

on which further chapters are build. Given the multidisciplinary nature of said
chapters, this global introduction aims at being a guide for the reader, providing
introductory notions of the high-level content of this thesis. The specific details
- or the specific experimental methodologies - of each such concepts are then
explored in the introductory section of each of the following chapters.
By analogy with David Marr’s levels of analysis [200], this introduction begins
with the computational nature of perception and vision, then dives into the
algorithmic nature of such a perceptual problem, to finally conclude with its
implementation at a computational and neurobiological level.

— Chapter 3 marks the first of our scientific contributions. It introduces the idea
that the images that make up our daily visual experience, so-called "natural
images", can be accurately described as a mixture of Gaussian-like distributions
in orientation space. In the specific context of the thesis, this serves to support
the use of artificial stimuli in the following chapter, in order to deal away with
a number of complexity involved in the use of natural images as stimuli in vi-
sual experiments [263]. Building upon this concept, we also incorporate such
variance in a computational model to demonstrate enhanced performance in
orientation encoding and innovative deep learning applications. Specifically,
this chapter explores the role of aleatoric (input-bound) and epistemic (model-
bound) variance in the encoding of natural images, using a convolutional sparse
coding algorithm. The results reveal that the integration of oriented features
across multiple levels of epistemic variance significantly boosts the accuracy of
sparse coding for natural images. Finally, this chapter also proposes that hierar-
chical visual processing can benefit from variance encoding, by training a deep
convolutional neural network on sparse-coded natural images datasets, and
demonstrating that variance-encoded sparse code is not only as effective as con-
ventional images, but also provides a more robust representation of naturalistic
images.

— Chapter 4 extends on similar Gaussian priors, using a parametric generative
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model called Motion Clouds [189]. These stimuli allow probing for the neural
correlates of variance (in orientation space) using extracellular recordings in
the primary visual cortex of anesthetized cats. The chapter quantifies the dy-
namics of sensory variance modulations of these neurons and reports two novel
archetypal neuronal responses, one of which is resilient to changes in variance
and co-encodes the sensory feature and its variance, thereby improving the
population encoding of orientation. The existence of these variance-specific
responses is then accounted for by a computational model of intracortical re-
current connectivity. This chapter’s article proposes that local recurrent circuits
process variance as a generic computation, advancing our understanding of
how the brain handles naturalistic inputs. Arguably, this is the keystone of our
contributions during this thesis, and the results obtained here serve as the basis
of the remaining chapters.

— Chapter 5 builds upon the foundational concepts established previously to
develop a model of graphs with a topology that depends on input variance.
This is an extension of the type of neuronal recordings presented in Chapter
4, but with a significant shift in the data source, as the recordings here were
carried using high-density matrices implanted in awake, behaving macaques
from Pieter Roelfsema’s group. The fact that such results exists in two species of
two different taxonomic genera confirms the relevance of the findings of Chapter
4 : recurrent interactions between neighboring V1 neurons are sufficient to
explain the observed phenomena. Considering that the recordings presented
in this chapter are preliminary and sourced from a single macaque, the content
here is not developed into a full article and is notably shorter compared to other
chapters.

— Chapter 6 relates to the multiscale aspect of this thesis. By diving into models of
the subcortical pathways based on previous anatomical [1] and functional stud-
ies [292] of the laboratory, we first reveal the presence of alpha oscillation-gated
activity in pulvinar, a critical component of predictive variance computations.
This work sheds light on the intricate dynamics of the pulvinar, and its role in
regulating the flow of information between visual cortical areas. This is extended
in a second contribution, which reviews the current literature of pulvinar as an
information hub and describes the pulvinar as a regulator of (inverse) variance
computations throughout the entire visual hierarchy.

— Chapter 7 briefly summarizes all the findings of previous chapters, revisiting
key contributions of this thesis and highlighting their significance under the
framework of predictive coding. We then explore potential future direction
for further research, considering how these articles might be built upon and
extended. Reflections upon the modes of investigation, their limit and the
potential alternative approaches are also laid down. The broader impact of this
work is also discussed in this chapter. It considers how these findings might
influence the field of neuroscience at large, rather than being limited to visual
neuroscience. It also contemplates the potential implications for related fields,
such as clinical research and machine learning.
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— The Appendices section provides derivations of equations pivotal to the con-
ceptual framework discussed in this thesis. While the reading of this section
is indeed optional, the formulation of these derivatives offer valuable insights
into the foundational mathematics underlying the central concepts of the free
energy principle. Additionally, the appendices include supplementary scientific
material, such as press releases related to this research.
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2. General Scientific Introduction

”A major challenge of any scientific endeavor is not only to provide good answers to the
questions we ask about our world, but to find good questions to ask in the first place.”

Paul Cisek, Resynthesizing behavior through phylogenetic refinement, 2019

Summary
2.1. The problem under study . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1.1. The computational level: Vision in an uncertain world . . . . . . 24
2.1.1.1. The neurobiology of vision ante V1 . . . . . . . . . . . . 24
2.1.1.2. The neurobiology of vision intra V1 . . . . . . . . . . . . 28
2.1.1.3. The statistics of natural and naturalistic visual inputs . 31
2.1.1.4. Variance in vision . . . . . . . . . . . . . . . . . . . . . . 35

2.1.2. The algorithmic level: A probabilistic model of perception . . . . 38
2.1.2.1. A simple example of Bayesian Inference . . . . . . . . . 38
2.1.2.2. Free Energy principle for variational inference . . . . . 40
2.1.2.3. Prediction errors under the free energy principle . . . . 42
2.1.2.4. On the specific case of variance . . . . . . . . . . . . . . 44

2.2. The two-fold approach to the problem under study . . . . . . . . . . . . 46
2.2.1. The in-silico implementational level: Neurocomputations . . . 46

2.2.1.1. Predictive coding for vision . . . . . . . . . . . . . . . . . 46
2.2.1.2. Microcircuits as a bridge from the theory to the cortex . 50

2.2.2. The in-vivo implementational level: Neurobiology . . . . . . . . 52
2.2.2.1. Neural evidences of predictive coding . . . . . . . . . . 52
2.2.2.2. Neural representations of variance . . . . . . . . . . . . 54

2.1. The problem under study
An introduction to a complex problem is arguably simplified by the use of a well-

defined general theory. Alas, while neuroscience lacks something similar to physics’
standard model [63], it has a rich history of integrative frameworks designed for a
particular sub-fields of investigations. David Marr’s three levels of analysis, originally
developed to understand vision[200], is one such integrative framework, that has since
then been successfully applied to numerous other problems[204, 241]. To understand
the complex "problem of vision", Marr proposed three levels of approach: the compu-
tational level (examining the system’s purpose), the algorithmic level (exploring its
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procedural mechanism), and the implementational level (detailing practical aspects).
Our present introduction adheres to this logical structure.

The general aim of this manuscript is to understand the purpose of variance-related
computation in the brain (computational level), the logic behind such computations
(algorithmic level), and the methods to enable both brains and machines to perform
these computations (implementational level). As we shall see in the following sections,
our approach will naturally lean towards Bayesian inference as a framework to articu-
late the problem(s) of vision. Bayesian schemes, like related probabilistic methods [7],
are extremely valuable in making predictions about experimental outcomes, but are
not designed to provide mechanistic explanations for those outcomes. In that sense,
the descriptive models used in this thesis work synergistically well with Marr’s ap-
proach [59] for one key reason: the formal independence of the three levels. Practically,
this means that different algorithms can be used to solve the same computational
problem, and that different hardware (or biological substrates) can implement the
same algorithms. Therefore, computational level questions are formally independent
from other levels, allowing them to be addressed without constraints from other levels.
It then becomes that the relationship between the three levels is one of realization,
that is, of incremental assembly. In the specific case of variance computations, this
will allow us to start focusing on the "what" without being preoccupied with the "why",
and then similarly with the "how", thus building this introduction incrementally from
the descriptive to the explanatory.
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2.1.1. The computational level: Vision in an uncertain world
Marr’s first level of analysis, the computational level, seeks to describe the purpose

of the system under study. Rather than deriving a working theory from the data, this
allows us to approach the theory first, then work our way towards facts progressively.
This section of the introduction is thus concerned with the idea of framing vision as
an uncertain process.

However, as with all theses that relate to a particular sensory system, we cannot es-
cape the required description of the system under scrutiny, which is here the neurobi-
ology of visual processing. While this arguably pertains more to the implementational
aspect of Marr’s three levels, and thus should be discussed last, starting by introducing
the notion of "orientation selectivity" in V1 considerably simplifies the remainder of
the introduction. Overall, we aim to be rather synthetic here, quickly working our way
from the retina towards V1.

We then dive properly into the computational nature of the inputs to the visual
system, be they natural or synthetic, with a focus on the sources of uncertainty in
vision. Finally, we discuss probabilistic accounts of vision and their (numerous)
successes, which will serve as a justification of the algorithmic approach, described in
the Section 2.1.2.

2.1.1.1. The neurobiology of vision ante V1

With a few niche exceptions, vision is a sense present ubiquitously throughout in
the animal domain [180]. Vision is nothing short of a marvel of biology, a sense that
starts by capturing massless elements of electromagnetic radiations, the photons,
eventually converting them into a coherent representation of our environment. The
general computational goal of vision is conserved throughout various species, but
its implementation varies extraordinarily: sixty pair of eyes in scallops [238], polar-
ized facets optimized for tracking mating partners in horseflies [136], hyperspectral
cameras in mantis shrimps [312], several segregated nervous ganglia for visual pro-
cesses in octopuses [345]... In the case of primates, our specific tweaking of vision
is the dedication of almost a third of our cortex to processing visual inputs [154]. As
fascinating as shrimp vision might be, we will here focus on a human-centric account
of vision, namely describing of the primate visual system (Figure 2.1). However, given
that chapters 4 and 7 deal with neural data acquired from anesthetized cats, we will
finish this section with a brief comparison of the two species, as animal models used
commonly in visual neuroscience.

Vision relies on a sophisticated bilateral sensing organ, the eye, which can be likened
to an extraordinarily intricate adjustable-focus camera (Figure 2.2). Light enters the
eye via the cornea, continues through the transparent aqueous humor, and proceeds
through the pupil, which the opening of an aperture-regulating diaphragm, the iris.
The focusing of the light source is then performed by the biconvex lens of the crys-
talline, which is dynamically adjusted by tiny muscles that modify the focal length.
The nervous system thus possesses control over these components, enabling visual
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Light path
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(Chapter 7)
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Eye and retina
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Figure 2.1. – A schematic overview of the visual system. Electromagnetic waves (pho-
tons) are transduced in the retina into binary neural activity (spikes),
which are then transmitted through the optic nerve to the LGN, and then
to V1, before being processed by further cortical areas. The present chap-
ter introduces general notions to the visual system, with specific part
discussed further in the chapters indicated here in italics. Figure adapted
from [154].
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signals to act as feedback for adjusting the eye’s optical characteristics in a closed-loop
system [84].
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Figure 2.2. – Illustration of the eye and retina. Adapted from [133].

Only then does light reach the photosensitive surface situated at the rear of the
eye: the retina. Interestingly, the light must also traverse the full depth of the retina
before being actually captured, as the light-sensitive part of the retina lies in its depth
rather than on its surface. This propagation through the retina disperses the light,
resulting in a somewhat lower-quality image. However, this is compensated for by a
particular type of cell that channels light [225], but also contributes to a space-efficient
design [174]. A unique feature resulting from this architecture is that the axons from
the retina’s neurons must exit through the posterior section of the eye, and in doing
so, must traverse the retinal depth in its entirety in some place. This is done in a
single location, known as a "scotoma", which is thus devoid of photoreceptors and
lacks direct visual input. However, this visual gap is seamlessly filled in, rendering it
unnoticed in our conscious experience [259].

Aside to this particular design, the retina is a remarkably effective sensor. Specialized
cells, the photoreceptors, convert light into electrical signals via a photosensitive
molecule named retinal. These photoreceptors cells come in two varieties: cones,
which cover different portions of the visible spectrum, providing important color visual
information that we shall not be concerned with in this thesis [107]; and rods, which
are useful in situations with low light intensity. These photoreceptors are distributed in
a particular pattern throughout the retina, where the densest concentration of cones
is found near the center of the visual field, in the "fovea". This means that in order
to obtain the maximum density of light-sensing cells, and thus extract the maximum
amount of visual information, the eye must hover in to points of interests [96], which
occurs about every hundred of milliseconds in primates [141].

The signals from these two types of cells are conveyed in a two-stream parallel
process: either to the bipolar cells, carrying feedforward signal processing [112], or
to the horizontal cells, which carry out lateral integration in the retina, a process
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that contributes to enhancements in contrast [202] and the early recognition of mo-
tion [233, 192]. The output of this whole early sensory processing is carried out by
retinal ganglion cells, whose axons are bundled into the optic nerve and sent deeper
into the brain.

This nerve eventually reaches the brain’s central hub, the thalamus. In the particular
case of the optic nerve, the dedicated thalamus nucleus that receives inputs from the
optic nerve is the LGN, which is located in the posterior part of the thalamus. The
wiring from the retina to the LGN is not straightforward, in the literal sense, as part of
both eyes’ field of view will cross each other over before reaching the thalamus, likely
due to an evolutionary twist of the body plan that also resulted in similar decussation
(crossing of the middle plane) in the spine [166, 182]. To simply label the thalamus as
a relay would be a major oversimplification [279], as the inputs from the retina to the
thalamus represent less than one tenth of the synapses [111], which might translate
into even less than one tenth of actual functional impact [36].
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Medial nuclei

Latero-ventral
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Light

Figure 2.3. – (left) Anatomy of the LGN and nearby thalamic nuclei. Afferences from
the optic nerve arrive at the LGN. The superior colliculus, located near
the cerebellum, is not represented. (right) Illustration of the ON/OFF
activation of neurons in the LGN.

Effectively, the LGN acts as the preliminary stage for information consolidation,
characterized by cells that perform an ON/OFF transformation of visual input, inher-
ited from the mode of action of retinal ganglion cells (Figure 2.3). ON-center cells are
triggered by an increase in light intensity within the central portion of their responsive
visual field, known as the "receptive field". Conversely, they are deactivated by an
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increase in light intensity at the periphery of their receptive field. OFF-center cells
function in the opposite manner. This shift signifies the transition from encoding
unipolar light intensity in the early retina to bipolar light intensity in the thalamus,
a crucial transformation for encoding contrast, which paves the way for encoding
complex features in the cortex.

Throughout this thesis, this notion of "receptive fields" (mostly in V1) will be central
to the subject of study. It is thus worth to define it clearly here, and for that, we will
follow its textbook definition as the region in the sensory space in which a stimulus
modulates the activity of a neuron. For Sir Charles Sherrington, who coined this term,
a receptive field was exemplified by the skin area that, when stimulated, modulated
the activity of scratch reflex neurons in canines [281]. In our context, a receptive field
will always pertain to the spatial configuration of a visual stimulus that modulates the
activity of a given neuron in V1.

Before we progress to our ultimate stop, V1, it’s important to recognize the existence
of what are referred to as "non-canonical" pathways from the retina. The superior
colliculus, for example, constitutes about 10% of the visual output of the retina in
primates, though this proportion is increased to 50% for the cat [234]. Similarly, the
pulvinar nucleus of the thalamus, while only briefly mentioned here, warrants major
discussion in the introduction to chapter 7, as it plays an integrative role among
various cortical areas while also integrating inputs from the retina [46].

2.1.1.2. The neurobiology of vision intra V1

Following this five-page overview of precortical vision stages, we now shift our focus
to the primary subject of this thesis: the primary visual cortex, V1. Located in the most
posterior region of the brain, the occipital lobe, it is also known as the striate cortex,
due to the presence of the line of Gennari [114], a massive bundle of axons originating
from the LGN that forms a stripe that can be observed with the naked eye.

In terms of anatomy, like all non-motor cortices [284], V1 is composed of six layers.
Despite ongoing debates surrounding the concept [135], the "canonical" circuitry
of this layered cortex suggests that visual information enters from the LGN into the
IVth cortical layer, is transported to layers II and III, and subsequently reaches layers
V and VI [28, 73]. As we will see later in this introduction, this seemingly simplistic
anatomical description is highly beneficial, as this pattern of connectivity is replicated
across the whole cortex and can be thus mapped to general computations [74, 20].
Organized orthogonally with respect to the cortical surface, this pattern establishes
what is often referred to as a "cortical microcolumn.". Depending on the anatomist
and the definition, its diameter fluctuates between 200 and 800 µm [216]. Beyond
this local anatomy, one should also note that layers II and III extend sizeable "lateral"
axons, forming a "horizontal" circuitry [11, 51] that interconnects multiple similar
microcolumns.

One can then naturally inquire about the functionality of these aforementioned
circuit motifs. The main functional description of V1 can be traced back to a seminal
study by Hubel and Wiesel, who conducted recordings from individual neurons in this
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Figure 2.4. – Primary visual cortex anatomy. (left) Nissl staining showing the vertical
organization of macaque V1, adapted from [271]. (right) Cytochrome
oxydase staining, reflecting the horizontal organization of the thalamic
inputs [310], adapted from [218].

area and discovered neural responses elicited for light bar of specific orientation [137,
138]. Functionally, this feature expands upon the ON/OFF structure found in the
LGN, but incorporates a spatial layout that is lengthened, and thus appropriate for
detecting edges in the visual field. Two distinct classes of cells demonstrate this
"orientation selectivity": simple and complex cells. Simple cells, aptly named, react
to edges of various orientations, and can be thought of as the convergence of many
LGN cells. Complex cells, on the other hand, exhibit overlapping ON and OFF fields
and some degree of spatial invariance, and can be conceptually understood as a
hierarchical [138] (or lateral [48]) convergence of several simple cells [34]. Coherently,
the majority of simple cells are found in layer IV and VI, whilst complex cells tend to
be confined to layers II and III [240]. At the broader (mesoscale) level, the selectivity
to orientation is arranged into maps of preferred orientation [120], where adjacent
cells encode different orientations. This arrangement can be seen as essentially a
competition for the best representation of objects that are present at a specific point
within the visual field [159]. For a further detailed account of orientation selectivity,
we refer the reader to chapter 4’s introduction.

While orientation selectivity is the core concern of this thesis, there exists also other
visual properties encoded by V1. A non-exhaustive list would contain the spatial
frequency [318], referring to the scale of a specific feature and to its repeated size in
the visual field. Like orientation, spatial frequency is also represented in a spatial fre-
quency map that seems to be independent of orientation selective maps [143]. Possibly
the most critical visual property encoded by V1 asides orientation is visual eccentricity
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Figure 2.5. – Illustration of orientation selectivity in V1, as a hierarchical model [138]
from unoriented LGN neurons, to simple then complex V1 cells.

and elevation, i.e. the spatial localization of visual stimuli [335]. In primates, there
is a specific and highly ordered mapping of the visual field onto the topology of V1
that is well-captured by a mathematical "log-polar" transformation [319]. The closer a
particular region of V1 is to the midline border, the more centrally located within the
fovea that region’s corresponding visual field will be. This precise arrangement allows
for the efficient processing of visual information, enabling dense dedicated regions
in the retina to have similar dense dedicated processing region in V1. This density
spreads throughout the cortical area, thereby providing an "over-representation" of
the central portion of the visual field (encoded by the foveal region), with respect to its
peripheral portions [145].

V1 is not solely influenced by feedforward and local lateral interactions. It is, in fact,
an integral component of a meticulously organized hierarchical network [267]. V1
extends projections to various "extrastriate" cortical areas, such as V2, V4, and IT, as
well as to subcortical areas, such as the pulvinar. While the role of these pathways will
be occasionally referenced throughout the articles compiled in this thesis, they are
not a primary focus of ours, and will be thus reserved for their respective dedicated
chapters (4 and 7).

As these chapters also deal with neural recordings gathered from anesthetized cats,
one should note a few differences between theirs and the primates’ visual systems.
While both possess a primary visual cortex, or V1, primates have a greater number
of color-detecting cones leading to better color perception, whereas cats have more
rods [297, 171] aiding their low-light vision and 3D motion estimations, due to their
nocturnal niche.
The main difference that concerns us however lies in V1. At the macroscale, the cat’s
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V1 is composed of Broadmann areas 17 and 18, instead of a single area in primate.
Area 17, which was the targeted recording region in chapter 4, receives signals from
the cat’s equivalent of primate LGN’s P cells (X in cats, concerned with fine details) and
M cells (Y in cat, concerned with motion information) [301]. Area 18 on the other hand
mainly receives axons from the Y cells [240]. At the mesoscale, likely to their respective
cortical sizes and number of neurons [158], the cortical maps in V1 have different
shapes [269], but both species show columnar organization, unlike rodents [151]. At
the microscale, it seems that the general pattern of connectivity is similar, but with
difference in specificities of laminar connections, namely from layer IV to III [195]. The
reason for this seemingly mixed model usage in the literature is partly accounted by
the fact that cats have been the main historical model under study. As such, the wealth
of 60 years of data gathered in the cat visual system, combined with the complexity
involved in primate experiments, still makes them highly relevant to vision research.

2.1.1.3. The statistics of natural and naturalistic visual inputs

Having introduced the basic notions of orientation selectivity and the neurobiologi-
cal substrates of vision, we can now turn back to the goal we had set in the first place:
provide a computational account of vision.

Understanding what vision does, without understanding what type of input vision
must process, would be a daunting task. Vision is tasked with processing the com-
plexity and richness of the images that form our everyday perceptual experiences,
colloquially known as "natural images". These images, despite their immense diversity
and complexity, are all governed by the same physical laws [300], leading to observable
statistical regularities. This proves to be an essential feature, given that the neural
activity required to process these images is energetically costly [184]. Further, any
sensory processing is under the constraint of extreme time efficiency required for the
survival of our organisms [315, 167]. Horace Barlow [18] posited that up to V1, the
purpose of vision is to eliminate such statistically redundant data, thereby optimizing
energy usage and speeding up computations. This perspective, often referred to as
efficient coding [231] allows providing a quantitative description of sensory systems
with respect to their environments [286].

We will here overview such quantitative accounts to get a better sense of the struc-
ture of the visual world. Such structure will eventually lead us to a formulation of
vision as a variance-bound problem. Fundamentally, vision concerns itself with the
perception of light patterns and is, therefore, inherently constrained by the statistical
characteristics of light intensity. Most, but not all, (namely in terms of contrast) of
these light intensity statistics are primarily the problem of the retina [17]. Even though
they are not the focal point of this thesis, it is crucial to acknowledge them, as the
statistical regularities of vision are hierarchical, and thus the ones of light patterns
provide substantial insight into the higher-order statistics of vision. In terms of pure
lighting intensity, the distribution of natural images follows a Gaussian structure [183].
In line with Barlow’s efficient coding hypothesis [18], the cumulative probabilities of
such distribution actually mirrors the response to contrast in the retina’s [223, 183].
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Figure 2.6. – (top) An example of natural image, Marseille’s "calanques" [178], with
local distribution of orientations shown on the right for multiple patches.
(bottom) The statistics of this image, from left to right: distribution of
luminance, cumulative luminance frequency, 1/ f 2 Fourier power spec-
trum.
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This suggests an optimal tuning of the retina to respond to the intensity of light, un-
derlying the interplay between the statistical properties of the natural environment
and the sensory systems evolved to process them. This same kind of input/system
"echo" will be further described in chapter 3.

The spatial organization of light intensity presents further statistical regularities
that can help our posing of the vision problem. If one is to read this manuscript in a
laboratory, an intuitive observation that can be had from gazing just about anywhere
in a modern monochrome office space is the strong correlation in light intensity
between neighboring locations. The same is also true, to a lesser extent, in natural
images. Applying a Fourier transform to analyze such an image in the frequency
domain, the correlation in intensity between nearby pixels becomes apparent in the
form of a concentration of power in the lower frequencies of the spectrum. These low
frequencies correspond to larger, more global structures, while the less powerful higher
frequencies denote smaller, localized variations. This relationship is captured by a
1/ f x relationship characteristic observed in natural images, where often x ≈ 2 [317].

This leads us to the notion that natural images also contain useful statistical regular-
ities for higher-order features, like orientation. A noteworthy empirical demonstration
by Bruno Olshausen and David Field [232, 230] reveals that when trained on natural im-
ages, reconstructive models will naturally yield oriented filters that are strikingly (and
quantitatively) similar to those of V1. The statistics of such edges even enables pre-
diction of high-level features in an efficient and unsupervised manner [245], possibly
priming many downstream computations. In orientation space, this representation
is highly sparse, with only a selected few orientations required at each spatial local-
ization to reconstruct an image [87]. In feature space, however, the distribution of
oriented features in natural images remain underexplored in existing literature, with a
few exceptions. Mathematically, a single image embodies infinite uncertainty, with
an uncharacterized distribution featuring high activations around the horizontal and
vertical axes [124]. In chapter 3, we propose a more detailed exploration of the statisti-
cal structure of these oriented features, with the prevailing assumption being that the
distribution follows a Gaussian pattern in orientation space.

This final note gives us an opportunity to keep statistical regularities in mind when
talking about vision, whilst also getting essentially rid of natural images. While we
briefly detailed their useful statistical regularities here, they are mostly just poised with
intractable complexity [106, 263]. Because of this, and because of historical technical
complexities, vision has mainly experimented with artificial stimuli since its inception
60 years ago. This has given investigations a methodology that affords a degree of
parametric control over the multifaceted system of vision [249], but has had the unfor-
tunate drawback of not eliciting the same types of activation as natural images [90,
344, 23]. This enduring debate between the use of "natural" versus "artificial" stimuli
leads us to a using a satisfying compromise in this thesis: the "naturalistic" stimuli.
Such experimental approach aims to strike a balance between replicating the statis-
tical properties of natural scenes and maintaining the experimental control offered
by fully artificial stimuli, thereby providing an optimal platform for investigating the
intricacies of vision.
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Figure 2.7. – An example of Motion Clouds, with increasing orientation variance from
left to right, and associated orientation distributions.

Here, we will focus on the case of Motion Clouds, generative model-based stim-
uli [189] which allow for fine parameterized control over a naturalistic stimuli [322],
which is a desirable trait when probing sensory systems under realistic conditions [263].
They are mathematically defined as band-pass filtered white noise stimuli, whose
filters in Fourier space are defined as a parameterized distribution in a given percep-
tual axis (here, only orientation). Thus, the Motion Clouds presently used are fully
characterized by their mean orientation and their orientation variance, such that a
given stimulus S can be defined as:

S =F−1(O(θ,Bθ)) (2.1)

where F is the Fourier transform and O the orientation envelope, characterized
by its mean orientation θ and its orientation bandwidth Bθ. For Bθ < 45.0°, a good
approximation is Bθ = 1/

p
κ, where κ is the concentration parameter of a von Mises

distribution (see below), and hence approximates the standard deviation [308]. It thus
serves as a measure of the orientation variability in the pattern, and as such, we will
use the term "variance" to describe it throughout the thesis. The orientation envelope
is a von Mises distribution:

O(θ,Bθ) = exp

{
cos

(
2(θ f −θ)

)
4 ·B 2

θ

}
(2.2)

where θ f is the angle of the frequency components of the envelope in the Fourier
plane, which controls the spatial frequency parameters of the stimuli. For the range of
values of Bθ considered in the present thesis, the orientation envelope approximates
a Gaussian distribution and Bθ is thus a measure of the variance of the orientation
content of the stimuli that follows a naturalistic distribution, as highlighted in chapters
3, 4 and 5.

Such stimuli offer three advantages over both simple grating-like stimuli and com-
plex natural images. First, they enable fine control of mean orientation, controlled by
θ, and its variance, controlled by Bθ. This thus allows to reproduce natural images’
oriented content, solely in terms of orientation distributions. Second, as they are
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stationary in the spatial domain, they only probe orientation space, excluding any
second-order information exploitable by the visual cortex [147]. Third, by conforming
to natural images’ 1/ f 2 power spectrum distribution [87], they attain a desirable bal-
ance between controllability and naturalness [263]. The combination of these traits
allowed Motion Clouds to be successful in describing the perceptual integration of
the human visual system [287], the dynamical computations of retina [255], and the
dynamics of naturalistic perception in V1 [321]. Controlling a naturalistic stimulus
confers a significant benefit here, namely in allowing us to control the variance of
these distributions, whose role in vision we will now explore.

2.1.1.4. Variance in vision

Herman von Helmholtz, in his treatise of physiological optics [130], gave a pinpoint
accurate description of variance in sensory perception:

“Given that the world we live in is loaded with statistical noise, [≈ variance]
expectations must be represented as part of the brain’s models.”

Sources of variance are plentiful in vision (Figure 2.8). Well-known optical illusions
demonstrate how an object can seem brighter than it actually is, when light intensity
is juxtaposed against a dark background. Obstruction patterns lead us to inaccurately
fill in parts of the visual field. Motion can blur our perception. Here, our primary
interest lies in the orientation variance and its effect on vision, a sub-field that has
been extensively explored psychophysically, yet remains relatively uncharted in terms
of electrophysiological investigations.

a b

c d

Figure 2.8. – Example of visual uncertainties, on: (a) contrast, (b) obstruction, (c)
motion blur, (d) orientation (picture taken by Noor Hussain).
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In psychophysics, variance is often interchangeably used with the term ’uncer-
tainty’ [309]. In the context of orientation, the term ’bandwidth’ is also often used,
for historical reason [291], as studying a broadband signal in orientation domain is
straightforward, and creating such a signal by blending point sources of orientation to
generate a distribution is even simpler. In statistical term, one can also use inverse vari-
ance (1/σ) and its squared term, the precision (1/σ2). Under Gaussian approximation,
such as in chapter 3 and 4 (see also Equation 2.2), bandwidth approximates variance,
and both can be linked to inverse variance and precision through their straightforward
mathematical relationship. Uncertainty, when used in this manuscript, will also refer
to the notion of a "broader" distribution of features (often, of orientations). One could
nonetheless be "certain" of a given large "variance", for example, by asking a human
subject to judge the degree of variance of a given texture. That specific meaning will
not be used in this manuscript (see for example [19, 109, 266]), and we will refer to
inverse variance and variance when describing the computations at play here.

The general study of orientation variance can be traced back to parametric tex-
ture generation, starting with Bela Julesz work on "textons" [149]. These simple
oriented elements were shown to human subjects, and shown to take an increas-
ingly great amount of time to process as their complexity (i.e. variance in orientation
space) increases [150]. Under different texture synthesis algorithms and experimental
paradigms, this observation has been replicated a number of time, showing that the
impact of increasing variance on orientation detection is rather intuitive: as variance
rises, performance deteriorates [247, 128, 127]. This is a non-linear effect [127] that
works similarly to contrast response curve. Computationally, it is well accounted for
by models of recurrent cortical activity [161, 24], and more specifically the result from
the competition among multiple orientation detectors [257].

This is however not a mere passive influence, but an active mechanism, accounted
for by human observers [19]. This behavior aligns with Bayesian models of perception,
which, as we will discuss in the upcoming algorithmic section of the introduction, is
of central importance for our work. Briefly, a Bayesian account of perception implies
an active encoding of variance in the brain, granting access to this information for
decision-making [110]. For instance, let us imagine an observer walking through a
forest and hearing leaves rustling. If one’s vision is clear, and one spots a squirrel,
they’d likely carry on without concern. However, if their vision is obstructed by dense
bushes (creating an increased orientation variance), they’d likely rely more heavily on
their internal priors, which in most instances, would dictate a cautious retreat. Vision
does not work as passive acceptance of uncertain input, but rather, requires our brain
to cross-reference what it sees with a prior model of the world.

Despite the convergence psychophysical accounts and theoretical requirements,
there is a significant gap in the literature on the implementation of variance compu-
tations in the brain [169]. This discrepancy could be attributed to the complexities
involved in applying parametric texture synthesis to probe the visual system, making
electrophysiological investigations challenging. As this section of the introduction
primarily focuses on the computational level, we direct the reader to the concluding
part of the introduction for a detailed explanation of the implementational mecha-
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nisms of variance within the brain, and now turn our attention to describing the basic
requirements for variance-based in computations.
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2.1.2. The algorithmic level: A probabilistic model of
perception

Marr’s second level, the algorithmic level, is concerned with the operations that the
system performs, and how these are organized to realize the computations described
at the previous level. This section aims to describe probabilistic operations that can
account for visual tasks, adopting an iterative approach to the problem of perception.
We will follow the common formalism and mathematical development for this class of
problem [31], framed with additional justifications of equations and examples fitted
to the problem under study.

2.1.2.1. A simple example of Bayesian Inference

We start by considering a simplistic toy example in which an organism is tasked
with inferring a single variable, the size of a food item denoted by v , based on a
single observation, the light intensity denoted by u. The organism’s sensory input
is constrained, as ours, to be noisy [17], such that the true item size v is normally
distributed based on observations u. Given that light reflections are related to the
surface of the object, let’s consider a distribution with a mean true item size g (v),
where g (v) = v2, and a variance based on noise on observations Σu . This is expressed
as:

p(u|v) = f (u; g (v),Σu) = 1p
2πΣu

exp
(u − g (v))2

2Σu
(2.3)

Given this probabilistic description of the input and the arguments previously stated
in favor of vision as a probabilistic process, we shall also describe such organism as
performing probabilistic inference. We thus consider that this organism has had the
chance of encountering many food items in his life, and that it can implement prior
expectation p(v) about the size of the food item. This is also normally distributed,
with mean vp and variance Σp :

p(v) = f (v ; vp ,Σp ) = 1p
2πΣv

exp

{
(v − vp )2

2Σp

}
(2.4)

Given this framework, we can apply Bayes’ theorem to compute an exact solution to
the inference problem based on a single observation of light intensity, which is given
by:

p(v |u) = p(v)p(u|v)

p(u)
=

1p
2πΣp

exp
{

(v−vp )2

2Σp

}
1p

2πΣu
exp

{
(u−g (v))2

2Σu

}
∫

p(v)p(u|v)d v
(2.5)

The numerator term is simply the product of the prior and the likelihood described
above. The normalization term, however, is more complex. It is the integral of all
p(v)p(u|v), which ensures that the posterior probabilities of p(v |u) sum to 1, but is
too computationally intensive for a realistic system, as it would require sampling all
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possible configurations of the problem. This consideration is left to the implemen-
tational level of the introduction, and does not deter us presently from computing
an exact solution using Bayes’ theorem. This yields the graphical representation of
integrating likelihood p(u|v) and prior p(v) into a posterior distribution p(v |u).

0.0 2.5 5.0
Observed values (arb. u.)

0.0

0.5

1.0

P

Likelihood p(u|v)
Prior p(u)
Posterior p(v|u)

Figure 2.9. – A simple example of Bayesian integration. Integrating observed (likeli-
hood) and former (prior) distributions, with Σu = Σp = 0.5. The most
likely value of v lies between the two distributions.

Through the representation of Figure 2.9, one can notice how non-intuitive and
non-linear Bayesian inference can be, even in such a simple example framed here. For
the organism that must estimate p(v |u), once the (input) likelihood p(u|v) involved
becomes a non-standard distribution, it becomes necessary to represent infinitely
many p(v |u) values for many possibles v , rather than first order statistics like mean
and variance. As we’ve said, however, this would require infinitely too many com-
putations for a biological system. Instead of computing the whole distribution, this
organism could try to maximize the value of p(v |u), in order to infer the most likely
value of v . This procedure is called maximum likelihood estimation and involves
sampling a posterior distribution p(Φ|u) of the most likely sizeΦ:

p(φ|u) = p(φ)p(u|φ)

p(u)
(2.6)

As the denominator does not depend on Φ, we focus on the numerator. We will
denote its logarithm F , as it relates to the Free Energy described later:

F = ln
(
p(Φ)p(u|Φ)

)= ln p(Φ)+ ln p(u|Φ) (2.7)
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The natural logarithm having removed the exponential terms involved in Equa-
tion 2.5, we get:

F = ln p(Φ)+ ln p(u|Φ)

= ln

(
1√

2πΣp
exp

{
− (Φ− vp )2

2Σp

})
+ ln

(
1p

2πΣu
exp

{
− (u − g (Φ))2

2Σu

})

= ln

(
1√

2πΣp

)
+ ln

(
exp

{
− (Φ− vp )2

2Σp

})
+ ln

(
1p

2πΣu

)
+ ln

(
exp

{
− (u − g (Φ))2

2Σu

})
= ln

(
1p
2π

)
− 1

2
lnΣp − (Φ− vp )2

2Σp
+ ln

(
1p
2π

)
− 1

2
lnΣu − (u − g (Φ))2

2Σu

= 1

2

(
− lnΣp − (Φ− vp )2

Σp
− lnΣu − (u − g (Φ))2

Σu

)
+C

(2.8)
Now, it is simpler to find the derivative of F to look for a maximum value of our food

estimate posterior distribution, we can compute the derivative of F overΦ (as done in
Appendix A), we get:

δF

δΦ
= (u − g (Φ))

Σu
g ′(Φ)+ (vp −Φ)

Σp
(2.9)

which endows our example organism with the ability to find the most likely value
of the food item size v by varying Φ with respect to the sign of the derivative. The
first term of the equation drives the posterior distribution towards the likelihood, and
the second one towards the prior, both of which are weighted by the inverse of their
respective variance, Σ. This equation is central to the remainder of this algorithmic
part of the introduction, and really to this entire thesis, as it provides a mathematical
role for variance in (visual) perception. It can be easily tied, in this form, to the Free
Energy principle, introduced in the next section.

2.1.2.2. Free Energy principle for variational inference

The free energy principle allows both to understand how complex systems can
model the most likely values of variables, as above, but also their distribution, as is
the goal of this thesis. Briefly, this theory traces its roots to the work of Hermann
von Helmhotz’ unconscious inference [130], who was arguably the first physiologist
to propose the notion that the mind construct a perception of the world through
probabilistic inference. The idea of free energy in the brain gained popularity through
the seminal works of Karl Friston [99, 157, 5], who also proposed its realization in
the form of a neuroscience theory called predictive coding [92, 98]. In this section,
we shall dive into the details of variational free energy, a specific formulation of free
energy that will allow us to formulate general equations on which the rest of the thesis
will rely.

In the text preceding Equation 2.6, we mentioned that posterior distributions p(v |u)
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can have complex shapes that mandate prohibitively dense sampling for many values
of u. As an approximation to avoid this issue, we proposed the method of sampling
solely the maximum of these distributions. However, it is beneficial to know the shape
of the full distribution, namely for knowing the variance - and thus the reliability -
of estimates [197], as we wish to see in neurobiological systems in this thesis. An
improved solution of maximum likelihood estimate is an alternative approach that
involves the utilization of a "surrogate" distribution, in a process called variational
inference [219]. This distribution, which we will refer to as q(v), possesses a standard
form that can be succinctly described by its mean and variance, unlike the distribution
it surrogates in the first place. To approximate our complex posterior p(v |u) with
q(v), we need a metric of (dis)similarity between the two distributions. For probability
distribution and without particular assumptions, the choice is naturally the Kullback-
Leibler (KL) divergence, defined as:

K L(q(v), p(v |u)) =
∫

q(v) ln
q(v)

p(v |u)
d v (2.10)

This divergence, or distance, is not symmetric, meaning that the divergence from
p(v |u) to q(v) is not the same as the divergence from q(v) to p(v |u). This characteristic
makes it particularly suitable for our purpose, as it allows us to measure how much
information is lost when we use the surrogate function q(v) to approximate the
original distribution p(v |u). By minimizing the KL divergence, we can ensure that our
surrogate function is as close as possible to the original distribution, thereby providing
a more accurate and efficient representation of the complex posterior distribution.

As is, this approach doesn’t make things any easier, as we are still required to calcu-
late the same normalization term as in Equation 2.5, a barrier that led us to maximum
likelihood estimate in the first place. This is where the concept of Free Energy proves
to be immensely beneficial. By definition, we already know that:

p(v |u) = p(u, v)

p(u)
(2.11)

which we can use into the equation of the KL divergence as:

K L(q(v), p(v |u)) =
∫

q(v) ln
q(v)

p(v |u)
d v

=
∫

q(v) ln
q(v)p(u)

p(u, v)
d v

=
∫

q(v) ln
q(v)

p(u, v)
d v +

∫
q(v) ln p(u)d v

(2.12)

given that q(v) is a probability distribution and sums up to 1, we thus obtain:

K L(q(v), p(v |u)) =
∫

q(v) ln
q(v)

p(u, v)
d v + ln p(u) (2.13)

by defining the variational free energy as the negative of the term that is concerned
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with our surrogate distribution, we get:

F =
∫

q(v) ln
p(u, v)

q(v)
d v,

K L(q(v), p(v |u)) =−F + ln p(u)
(2.14)

since only F pertains to our surrogate distribution q(v), the parameters of this
function that minimize the divergence between q(v) and the actual posterior p(v |u)
are the same as those that maximize F . Note that this F denotes that variational
free energy, that is, the free energy involved in this approximation process, and not
the general free energy of the system. To obtain the best surrogate distribution to
approximate the posterior, we can now simply maximize −F , which does not involve
the complex computation of the normalization term. In the next section, this will also
serve to introduce learning of parameters of models. As we shall soon see, such learn-
ing involves, intuitively, being wrong as rarely as possible in our inference process. In
other term, we wish to minimize the surprise, as defined by Shannon [277], associated
with our predictions. Given Equation 2.14:

− ln p(u) = F +K L(q(v), p(v |u)) (2.15)

As the KL divergence is positive, F can only be a lower bound of ln p(u). Maximizing
the variational free energy F thus minimizes surprise ln p(u), meaning that we improve
the approximation of q(v) and thus optimize our internal model using this simple
framework.

2.1.2.3. Prediction errors under the free energy principle

As we are progressively moving from the algorithmic to the implementation level,
our formulation of Bayesian inference under the Free Energy principle could use a
reframing more related to neurobiology. In that sense, this section of introduction will
tell us now how to formulate Bayesian inference in simpler terms, and second how to
derive learning rules.

Going back to Equation 2.9, we showed that deriving the parameter Φ could be
written as:

δF

δΦ
= (u − g (Φ))

Σu
g ′(Φ)+ (vp −Φ)

Σp
(2.16)

we can now perform some helpful variable renaming, with the left-hand side of the
equation becoming:

ϵp = (vp −Φ)

Σp
(2.17)

and the rest being:

ϵu = (u − g (Φ))

Σu
(2.18)
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such that the derivative becomes:

δF

δΦ
= ϵu g ′(Φ)+ϵp (2.19)

and the update rule ofΦ to follow the gradient of F is then:

Φ̇= ϵu g ′(Φ)−ϵp (2.20)

Both ϵp and ϵu measure the difference between a real and inferred value, and are
thus both called prediction errors [92] (hence the term predictive coding). The term
ϵp is often referred to, in the literature [211], as the prediction error on the causes,
and measures the difference between the inferred observation and the model’s prior
expectations. The term ϵu , on the other hand, is called the prediction error on the
states, and measures the difference between the observed value and the inferred value.
In predictive coding, the goal of a model is to minimize both sources of prediction
errors, and as such it needs a learning rule based on prediction errors. When looking
for the point at which the system’s prediction error become null, we get the stable
point of ϵp :

ϵp = Φ− vp

Σp

Σpϵp =Φ− vp

Φ− vp −Σpϵp = 0

(2.21)

and the one of ϵu :

ϵu = u − g (Φ)

Σu

Σuϵu = u − g (Φ)

u − g (φ)−Σuεu = 0

(2.22)

And thus the dynamics of a system that seeks to minimize its prediction errors can
be described as:

ε̇p =φ− vp −Σpεp

ε̇u = u − g (φ)−Σuεu
(2.23)

This is however not an ideal description, because it assumes the rest of the parame-
ters of the system vp ,Σp ,Σu are constrained. It becomes even more inconvenient in a
thesis about the implementation of dynamical computations on Σ parameters. This is
where the free energy principle becomes extremely useful, as it ascribes a goal to the
model: modifying parameters such that visual input u becomes the least surprising.
As described in Equation 2.5, this is a term that involves the computation of a complex
integral, but its natural logarithm can be more easily computed as in Equation 2.15,
and even more so with F defined in Equation 2.8:
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ln p(u) = F +K L(q(v), p(v |u))

= 1

2

[
− lnΣp − (Φ− vp )2

Σp
− lnΣu − (u − g (Φ))2

Σu

]
+C +K L(q(v), p(v |u))

(2.24)

as the KL divergence is a strictly positive term that forms a lower bound on surprise,
we will include it in the constant C term for simplicity’s sake. Following the (lenghty)
derivations in Appendix A of F over vp ,Σp ,Σu , we get the following dynamics of our
inference model:

δF

δvp
= Φ− vp

Σp

δF

δΣp
= 1

2

[
(Φ− vp )2

Σ2
p

− 1

Σp

]
δF

δΣu
= 1

2

[
(u − g (Φ))2

Σ2
u

− 1

Σu

] (2.25)

by re-expressing these equations using the definition of prediction error as before,
we get:

δF

δvp
= Φ− vp

Σp
= ϵp

δF

δΣp
= 1

2

[
(Φ− vp )2

Σ2
p

− 1

Σp

]
= 1

2

(
ϵ2

p −Σ−1
p

)
δF

δΣu
= 1

2

[
(u − g (Φ))2

Σ2
u

− 1

Σu

]
= 1

2

(
ϵ2

u −Σ−1
u

)
(2.26)

where Σ−1 denotes the inverse variance of a prediction error. This way of expressing
predictive coding models shall be used in the reminder of the thesis, hence the need
for a logical progression of 26 equations to lay solid foundations to the rest of the
manuscript. As we will see in the implementation section of this introduction, this
expression possesses the desirable attribute of requiring only local variables, making
it compatible with Hebbian learning rules [126]. Now that we have established a set
of robust equations, we can commence our exploration into the crux of the issue:
variance terms.

2.1.2.4. On the specific case of variance

A central aspect of predictive coding, which is often overlooked in the literature [254,
72, 293, 337, 213] or reduced to identity matrices, is the variance term in Equation 2.26.
As we have seen in the previous pages, this term naturally comes into play in Bayesian
inference, and possesses a crucial role in driving the dynamics of a model, driving the
posterior distribution of a system closer or further from the likelihood.
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Figure 2.10. – The role of variance in Bayesian integration. (left) As in Figure 2.9,
Bayesian integration with Σu = Σp = 0.5. The most likely value of v is
indicated by a gray dashed line. (right) Same but with Σu = 6Σp , driving
the posterior away from the sensory likelihood.

This relates to a number of fascinating emergent properties in neural system which
will be discussed in later parts of the introduction, namely of neuromodulation [92],
attention [153] and even psychiatric disorders [3, 244]. This also speaks of a hierarchy
of prediction and prediction errors, whose multiple integration levels are driven by the
relative variance of external inputs and internal predictions. Whilst this is discussed
more in details in the implementation part of the introduction, we can already state
that low-level prediction errors, like the one encoded in V1, are tightly bound to the
variance of the sensory input, and computationally, learning such variance allows to
learn about the extrinsic variability of the external world (see chapter 3). This also
allows the visual system to factor in the intrinsic variability of its sensors [81, 80].

We shall see in the coming section that the abundance of generic ideas about
variance is counterbalanced by the lack of specific neurobiological and neurocompu-
tational literature at the implementational level. As this portion of the introduction
is exclusively focused on algorithmic-level concepts, we will not delve deeper into
variance at this point. Instead, we will now be focused on computations that can be
done on the variance of sensory input, i.e. the likelihood p(u|v).

45



2. General Scientific Introduction – 2.2. The two-fold approach to the problem under
study

2.2. The two-fold approach to the problem under
study

Having clarified the computational ’why’ and algorithmic ’what’ of our undertaking,
we now turn to the ’how’ of its implementation - Marr’s final level of analysis, the im-
plementational level, a final stage where our theoretical statements comes to fruition.
As previously done, this section aims to provide an overview of the relevant parts of
the literature whilst refraining from being a bullet-point detailed list. This is especially
the case in the neurobiological section of this introduction, which is concerned with
the actual realization of our theories, rather than their experimental aspects, which
will be reserved for the introduction of their respective chapters.

2.2.1. The in-silico implementational level:
Neurocomputations

The first part of this introduction to the implementational level involves transition-
ing from the theoretical underpinnings of predictive coding under the free energy
principle, towards a practical model that can effectively be employed in vision.

2.2.1.1. Predictive coding for vision

As stated in Equation 2.26, every single variable required by our formulation of
predictive coding can be expressed in terms of a graph with local variables. Such
network can be represented as in Figure 2.11.

Vp

εu

Φu

εp

Σu Σp

observation

prediction error
on causes 

variational
inference
parameter

prediction error
on states

variance of statesvariance of causes

mean prior

Figure 2.11. – A simple predictive coding graph, with helpful reminder of the variables
nomenclature in gray.
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This network constitutes what is known as an acyclic computational graph, a gener-
alized method of articulating problems to topology that will prove useful in chapter 5.
Empirical studies have also shown that predictive coding can perform on par (or
even better) than the main method of training deep neural networks along such a
graph [212], a method known as backpropagation [185]. This important property
helps us scale such a graph beyond the unidimensional form, as we have been doing
so far, to a form where "nodes" of the graphs (neurons) would for example represent
multiple different orientation in the visual field, as in Figure 2.12.
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εu,2

Φ2
u2

εp,2

Σu,2
Σp,2

Vp,1

εu,1

Φ1
u1

εp,1

Σu,1
Σp,1

Σu,1,2 Σp,1,2

Figure 2.12. – A matrix form (with two elements) of the previous predictive coding
graph, with additional inter-matrix elements connections colored in
green and dark blue.

Following the derivations of Appendix A, such network then becomes, in matrix
notation, where x is a scalar, x̄ a vector and x a matrix:

˙̄εp = φ̄− v̄p −Σpε̄p

˙̄εu = ū − g (φ̄)−Σuε̄u
(2.27)

with the dynamics of the matrices being:

δF

δv̄p
= ϵ̄p

δF

δΣp
= 1

2
(ϵ̄p ϵ̄

T
p −Σ−1

p )

δF

δΣu
= 1

2
(ϵ̄u ϵ̄

T
u −Σ−1

u )

(2.28)

This approach is extremely useful to us, as it allows us to incorporate multiple
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sensory inputs to the network, like multiple oriented edges to V1, which is a critical
aspect of the implementational challenge in this thesis. Sadly, it also introduces a
major complication, because the inverse variances represented by Σ−1 now require
matrix inversion. This necessitates a network-wide computation, implying that all
nodes must access the entirety of the data instantaneously, which is not biologically
plausible. Further, such matrix inversion is computationally demanding [67], which
is one reason why inverse variance weighting is mostly absent from existing predic-
tive coding implementations. This now presents us with the first implementational
issue related to the computations we have detailed so far: trying to incorporate the
algorithms we have designed into a formulation that is biologically plausible. While
numerous solutions exist [92, 31, 153], we shall continue one that is naturally suited to
matrix forms [31] and involves the addition of an extra inhibitory neuron, as in Figure
2.13.
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εu,2

Φ2
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Φ1
u1

εp,1

Σu,1 Σu,1,2
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Σp,2
Σp,1 Σp,1,2

ep,2ep,1

Figure 2.13. – A matrix form predictive coding graph with Hebbian variables.

Based on the notions developed in the final section of Appendix A, the equation of
the prediction errors of the network thus becomes:

˙̄εp = φ̄p − g (φ̄i+1)− ēp

˙̄ep =Σpε̄p − ēp
(2.29)

where ei represents the additional inhibitory neuron. This implementation answers
our needs for being able to handle the uncertain nature of vision through learned Σ
matrices, as detailed in the computational part of the introduction, while also being
able to transcribe all the equations of the computational part of the introduction into
a tangible and useful form.
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But where does the "predictive" aspect of this predictive coding stem from ? This
type of modelling can be traced back to V1 models developed by Rao and Ballard [254],
who transformed what was originally a signal processing algorithm developed for
unidimensional signals [196] into arguably one of the most robust theories in neu-
roscience [98]. By deriving the principle of efficient coding [16], they reasoned that
neural networks can all be described as predictive networks, like the one formulated
above, and can serve as excellent models for V1. This proved to be groundbreaking,
even predicting the existence of non-classical phenomena [254] that previously re-
quired dedicated models [288]. The remarkable simplicity and beauty of this approach,
carried by the free energy principle, is well captured by a quote from Karl Friston [94]:

”Every decade or so, one reads a paper that makes you think “well, that’s
quite remarkable”. [Rao and Ballard] showed that a simple architecture
was not only consistent with neuroanatomy and physiology but could also
account for a range of subtle response properties [...]
This was a significant achievement in its own right; however, the really re-
markable thing —at least for me— was the following: in simulating their
little piece of synthetic cortex, neuronal dynamics and connectivity opti-
mized the same energy or cost function.”

This breakthrough sets the stage for the tremendous success of predictive coding in
artificial neural networks. Such predictive network perform on par with deep neural
networks, can classify images datasets, predict complex natural images sequences,
among many other remarkable feats. Unfortunately, the inclusion of variance is often
overlooked in the implementation of such networks. This is not only due to the added
complexity it brings to an already intricate network, but also because most of these
networks employ point-based estimates rather than comprehensive Bayesian-like
distribution learning. Such gap is exactly the aim of this thesis.

One exceptional aspect of predictive coding, though not extensively addressed in
this thesis, is the fundamental idea that the brain must predict its inputs and possess
a generative model of the world to account for its interpretations. What amplifies the
significance of this is the fact that these generative models are self-invertible [211]:
practically speaking, one can train them, for instance, to classify objects, then simply
reverse the flow of information and have them transformed into generative models
of images [213]. An example of this reversal can be found at our GitHub repository,
detailing the work we conducted at Telluride workshop to use predictive (generative)
coding models in order to issue commands to in-vitro neurons.

In light of this series of generative/discriminative model, predictive coding also
suggests a hierarchical series of explanations, which aligns remarkably well with
the hierarchical nature of visual processes [33, 34]. At the scale of our focus on V1,
predictive coding is particularly impactful as there have been numerous attempts
to align the computations performed within the cortical "microcolumn" circuits, or
microcircuits, with those carried out by predictive coding [20]. This serves as the
starting point for our bridge towards the biological aspect of our networks [283], by
employing such theories as a lens to delve into the cortex.

49

https://github.com/neuromorphs/BrainDishSiMulator/blob/main/notebooks/Dishbrain_predictive_coding.ipynb


2. General Scientific Introduction – 2.2. The two-fold approach to the problem under
study

2.2.1.2. Microcircuits as a bridge from the theory to the cortex

Having now expressed the problem of probabilistic vision in a form that can be
mapped onto a graph, the next step is to transpose that graph into a neural network.
In the introductory section related to the neurobiology of vision, we discussed some
(controversial [135]) attempts to identify a recurring circuit in the cortex [74, 73]. As
a reminder, such "canonical microcircuit" tracks the flow of information through
multiple neurons, and was first established through intracellular recording in the
cat’s V1 [74] to measure pre- and post-synaptic connectivity and functional strength.
According to these studies and others [314], a feedforward flow of excitatory activity
in the cortical microcolumn arises from thalamic inputs to layer IV, then to layer
II/III, and finally back to layer V/VI. There is proof that other excitatory pathways that
would close the loop only form a minority of connections, namely the layer II/III to
layer IV or layer V to layer II/III [314]. Inhibitory pathways in cortical microcolumn
are historically harder to make out, namely because such neurons have much more
functional subtypes [116], but recent evidences are showing that they can participate
in the regulation of the circuit in a layer-specific fashion [41]. Extrinsically, this circuit
needs also to be integrated into an input/output scheme compatible with the idea of
hierarchical predictive coding [34]. Inhibitory connections play here an important
role, because they allow multiple such microcircuit to compete against one another at
the level of a cortical area [64, 50] (see also chapter 4). At the macroscale level, backed
by anatomical evidence [199], the final concept of a canonical microcircuit is that
layer II/III sends synapses to higher order cortical areas [83], as opposed to layer V/VI
that sends synapses to lower levels [198]. Based on these considerations, Bastos et
al. [20] proposed a mapping of our computational graph onto a neural network:
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Figure 2.14. – Canonical microcircuit for predictive coding, with (left) Figure 2.4 for
comparison and (right) graph adapted from Bastos [20].
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It now remains to review experimental proofs to back the existence of such predic-
tive circuitry. In that sense, proofs of a canonical microcircuit are somewhat sparse,
but there is growing consensus that a canonical microcircuit performing predictive
operations does indeed account for experimental results. In this context, the study
in chapter 4 provides further experimental support, by validating the idea of map-
ping input variance to supragranular layers, largely due to their extensive lateral
connectivity [12, 50, 4]. There is also vast account of the fact that specific types of
neurons in microcircuits - namely disinhibitory motifs [175, 222] - are performing
layer-specific computations [41] that can support learning on-par with predictive
coding algorithms [264]. Finally, there is also theoretical evidence that show that
combining simple elements of neural origin can actually yield neural networks that
compute prediction errors in an unsupervised manner [30, 132].

Further, this model implies that predictions and prediction errors, operating mostly
on two separate firing regimes, are reflected in the oscillatory domain (an experi-
mental concept further explored in chapter 7). Based on that observation, there is
a mounting evidence that suggest two bands of oscillations for superficial and deep
layers of the cortex [22]. Such oscillatory evidences are numerous [227, 270, 77, 76]
to show that deep layers oscillate at a low frequency [21] (which is gated through the
pulvinar [61], as contributed in chapter 7) to prepare predictions and make way for
the fast oscillations of sensory inputs in upper layers.

On a broader scale, numerous empirical evidences of predictive coding mechanisms
at work in the brain have been accumulated, even prior to Friston’s initial paper, which
we will now explore to further support our approach.
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2.2.2. The in-vivo implementational level: Neurobiology
The final part of this introduction to the implementational level involves transi-

tioning from the notion that predictive coding can be used as a framework for this
thesis, towards showing proof that there exists both predictive and variance-based
computations in the brain.

2.2.2.1. Neural evidences of predictive coding

Having gathered the (sparse) supporting biological evidence for a canonical micro-
circuit, and having mapped this predictive microcircuit to certain functional activity
at the circuit level, we now turn our attention towards assessing whether the brain
indeed utilizes predictive coding at a global scale. A bias naturally stems here [283],
as we will try to explain many disparate phenomena with a single theory - when one
perceives every problem as a nail, it becomes convenient to envision a normative
theory based on a hammer [203].

Essentially, as we expressed in Equation 2.26, predictive coding proposes that the
brain increases computational efficiency by transmitting only prediction errors [92].
As such, if a certain visual input does not generate a prediction error, it should not
be transmitted, and thus the neural response for predicted stimuli should be weaker
than for unpredicted stimuli. Therefore, the first argument that supports the existence
of predictive coding in the brain is the experimental observation that repetition of
stimuli elicit a diminution of the evoked neural activity. This is observable not just with
the visual responses [304, 305], but also in the auditory [104, 316] and somatosensory
cortices. Conversely, unexpected or surprising events should trigger an increase in
said neural activity. This assertion is also verified within the visual pathways [237]
where the violation of a repetitive pattern induces a significant surge in the firing
rate. This effect is also noticeable at the psychophysical level, a neural event known
mismatch negativity potential [10, 334], which is an entire sub-field on its own (see
chapter 7). Further evidences can be found when violating the distribution of natural
images [14, 90] (as described in the first section of the introduction), or under many
conditions of predictability violation [170, 207, 221].

It’s also worth noting that the large-scale hierarchical organization of the cortex,
particularly the visual cortex [83], aligns well with the principles of predictive coding
(Figure 2.15). In this representation, the hierarchical organization of the brain emerges
from the Bayesian inference process we developed earlier, which relies on a hierarchi-
cal conditional model [99]. This corresponds well with the layer-specific responses of
the microcircuit and their respective feedforward versus feedback connections [199].
On a larger scale, this constitutes a recurrent circuit that generalizes the formulation
we introduced in Equation 2.28: a stable functional model that seeks to minimize
prediction errors while continuously updating a prediction-based model of the world.

Still on the anatomical side of the argument, the lateral connectivity intra V1 merits
further mention [313, 51, 160], as it provides the support for local competition of
orientation-based predictions on the worldly states. This is usually characterized as
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Figure 2.15. – Hierarchical predictive coding in the brain, (left) implemented as a
globally and locally recurrent series of prediction errors and prediction
integrations. (right) As in Figure 2.10, the effect of the input variance on
the predictive model.

an attentional mechanism [93, 6], but we would contribute here that it takes effect
far too rapidly [178] for that to be the case. In this thesis, we interpret it as a local
mechanism, as formulated by Friston in its original implementation of predictive
coding [92]. Another implementation we will discuss in chapter 7 involves a globally
parallelized (through the pulvinar) implementation of variance [153], that allows
the brain to determine which visual areas best explain the current environment.
This is experimentally corroborated by the fact that pulvinar modulations essentially
constitute contextual modulations [258, 47, 292] dynamically applying context to the
content processed by the cortex [252].

In addition to these findings, predictive coding has been shown to effectively model
pathological conditions of the brain, an emerging field referred to as computational
psychiatry [3]. While it’s too premature to label this as evidence, the wide adop-
tion [117] of this framework is a compelling argument supporting the idea of the brain
functioning as a predictive system. In that framework, the idea that shifts in variance
can move one closer or further from the prior, as demonstrated in Figure 2.15 (and in
the Conclusion of this manuscript), provides a fitting description of disorders charac-
terized by hypo-variant priors (such as autism [323, 324]) or hyper-variant priors (like
schizophrenia [134]). This now paves the way for the end of this (lengthy) introduction,
with a final (and not lengthy) section dedicated to the representation of variance in
the predictive brain.
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2.2.2.2. Neural representations of variance

Having mapped predictive models onto some biological substrates, it is now time to
explore whether there is empirical biological evidence supporting the representation
of variance. Unfortunately, this field of investigation is not an expansive one, as
reflected by the length of this section. What sparse evidence exist is however very
promising, and in line with our respective contributions in chapters 3 to 8.

The seminal work in this field is a study by Orban et al. [235], which shows that local
computations performed between orientation detectors can effectively process orien-
tation variance, as that competition, through inhibition, increases the spike-to-spike
variance of the neural activity. Thus, elegantly, the variance of an internal represen-
tation can be "signaled" by the variance of the activity supporting it. This aligns
well with the psychophysical literature we introduced earlier [128], specifically the
notion that competition among orientation detectors accounts for the psychophysical
observations of human subjects.

On the biological front, if we refrain from considering the superposition of two
gratings as a distribution of orientation, as was historically done [108] (although some
approximation hold [102, 190]), the whole idea of encoding orientation variance in V1
was actually pioneered by Goris et al. [115]. They reported that heterogeneously tuned
V1 populations help encode the orientation distributions found in natural images,
and that this functional diversity could be accounted for by a linear-nonlinear (L-NL)
model. While this could explain the diversity of tuning in the data we report in chapter
4, we will find that in terms of modeling, competition among orientation detectors
within a predictive context remains the best descriptor [178].
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Figure 2.16. – Modulation of tuning curves by orientation variance. (Top) Goris et
al. [115]. (Bottom) This thesis [178].

Considering the sparse nature of the relevant literature, referencing our own work

54



2. General Scientific Introduction – 2.2. The two-fold approach to the problem under
study

from chapter 4 here feels necessary. Our study reaffirms the findings in the literature
on anesthetized macaques [115], as we identified single-neuron variance modulations
that underpin the decoding of orientation variance at the population level in V1. This
suggests that a shared neural mechanism may exist in both felines and primates,
which isn’t surprising given the crucial role of variance for the proper encoding of
natural images in V1 [230], a point we’ve emphasized repeatedly throughout this
introduction.

Our specific contribution here is connecting these findings to cortical layers, strength-
ening the idea that supragranular neurons with sharp tuning and slow dynamics [256,
257] facilitate the concurrent encoding of orientation and its variance. This links
nicely with the concept of cortical microcircuit introduced earlier, as ten years prior
to our article, it was proposed that supragranular activity should encode variance, a
hypothesis for which we have provided formal experimental evidence in this thesis.

As far as biological evidences are concerned, there is consensus across studies that
heterogeneity and local competition, i.e., intra-V1 activity, are sufficient to explain
all observations. In fact, both neurobiological and computational evidence suggest
that V1 doesn’t need to enlist other cortical areas to process orientation variance, but
that such process in other cortical areas might actually be part of synchronized global
computations (more in chapter 7).

For instance, the heterogeneous recurrent excitatory and inhibitory synaptic con-
nectivity in V1 [146, 54, 140, 273] sustains resilient orientation tuning [214] that can
account for the diversity of single neurons’ resilience under different connectivity
profiles, as explored in our computational model [178]. This is supported by the tem-
poral scale of local recurrent connectivity, namely the slowly-conducted horizontal
waves in an orientation map [51], which fits the view of variance processing as an
iterative and accumulative computation implemented by local recurrent interactions
between supragranular resilient neurons that are heavily connected through recurrent
interactions with neighboring cortical columns [74, 256, 257, 51].

Despite the limited quantity of available evidence, the existing findings notably
converge. Whether across species, research teams or functional encoding schemes,
the overarching theme remains constant: there is an active encoding of variance in
the primary visual cortex. Having established this, we can now proceed to explore the
main section, beginning with the exploration of the structure of variance in natural
images, which will then directly link to the findings in chapter 4.
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3.1. Introduction: Orientation, Statistics, and
Orientation Statistics

As introduced in the previous chapter, a central role of the brain is to build a model
of its environment in order to enact complex behaviors. One key component of
these models is their reliance on internal representations of the environment. While
this is true in predictive coding (where these representations are predictions), it also
forms the dominant narrative in neuroscience [163]. This understanding of the brain
stems from the discovery of the receptive field, by Sherrigton’s seminal studies [281],
which correlated a neural discharge pattern with an element of the environment
(here, stroking a certain skin spot). Iteration upon iteration of related research have
built modern neuroscience upon a similar narrative, starting with the "fly detectors"
neurons of Barlow [17], the orientation selective neurons of Hubel and Wiesel [137],
the place cells of O’Keefe and Dostrovsky [229], the grid cells of Hafting [122], the face
cells of Perret [243], and so on [201].

In vision, there is thus no denying that orientation forms the basis of these models
of the world internalized in the brain. One legitimate question that should be asked

56



3. Variance in Vision Models: a Convolutional Sparse Coding Approach – 3.1.
Introduction: Orientation, Statistics, and Orientation Statistics

before diving into 4 chapters of studies related to orientation selectivity could be: "why
orientations in the first place" ? As history would have it, Hubel and Wiesel discovery
was somewhat serendipitous [201], and orientation selectivity was discovered some-
what accidentally when the two scientists noticed strong neural responses as they were
inserting a glass slide (used to project the spots of light) into the projector of their cat
experiments. It thus become evident that neurons in V1 were in fact responding not
to spots of light, as in the retina and LGN, but to the edge of the glass slide, indicating
a selectivity for oriented edges.

Had computational neuroscience been 30 years more advanced at the time of these
experiments, Hubel and Wiesel might have had the chance of knowing what to look for
in the first place, rather than stumble upon it semi-accidentally. Indeed, we have said
that a key property of the brain is efficient coding [18], which saves costly neurobiologi-
cal message passing by encoding solely relevant information. Under predictive coding,
for example, this means solely transmitting prediction errors. This generic principle
imposes a constraint of sparseness on the message to be sent by neurons, meaning
using as little energy as possible while maintaining a highly accurate internal model.
Thus, one can envision early sensory cortices as models of the world build through
the transformation of dense redundant inputs into sparse efficient representations.
By creating a computer model that performs high-quality reconstruction with as little
activity as possible, one can thus see what types of features are ideal to deconstruct
any given type of sensory input. This trade-off has been explored by Olshausen and
Field [230], who showed that a model of natural images with a constraint of sparsity
yields receptive fields that are extremely similar to those found in V1 (Figure 3.1). Thus,
a low-level invariant representation of the (static) visual world can be created using
edges detector.

Natural images PCA Sparse Coding Dictionary, learned from natural images Macaque V1 receptive fields

Figure 3.1. – Natural images and sparse dictionaries. (left) Natural images compo-
nents, extracted using Principal Component Analysis (PCA). (middle) Dic-
tionaries yielded by learning a sparse code on natural images, from [230].
(right) Comparison with macaque V1 receptive fields, from [257].

The statistical distribution of these edges in any given image follows a characteristic
pattern [245], and given optimal modelling, these statistics are the main constraint
upon which further sensory processing relies [232]. Most of these oriented edges are
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represented at the cardinals points, that is, horizontally and vertically [60]. This is
echoed at the neuronal level by a cardinal bias in visual perception [124]. As we will
show in this chapter’s article, around either of these main orientations, the distribution
of oriented elements can be characterized by its first- and second-order moments: a
median orientation, and its corresponding (inverse) variance. A proper model of a
natural images thus depends on a proper model of both these moments (Figure 3.2),
which is reflected in the response properties of primary visual cortex neurons that
have diverse orientation and variance [138].
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Figure 3.2. – Distribution of orientations in natural images. (a) Distribution of oriented
contours, extracted by Sobel filters (see this chapter’s article), as done
in [60]. (b) Distribution of oriented contours, extracted by Sparse Coding
(as done in this chapter’s article), with mean von Mises distribution in
black. (c) Distribution of means of two peaks of the distributions, for
each image.

If orientations in natural images follow such a prototypical distribution, then what
is the optimal neural code to represent them ? This question is one of uncertainties.
Uncertainty on how the image’s orientation deviates from the typical distribution is a
problem of uncertainty bound to the input, called aleatoric uncertainty. Uncertainty
on how to best model these images is a problem of uncertainty bound to the model,
referred to as epistemic uncertainty. Aleatoric uncertainty is linked to the variance
of the distribution of orientation: the higher the variance, the more spread the input
is (in orientation space), and thus the less certain the information is. As stated in
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the introduction, linking this aleatoric uncertainty/variance to the uncertainty of the
model is crucial for Bayesian processing, which provides explicit rules to do so (see
Equation 2.3).

This chapter serves to characterize natural images as Gaussian (or here, von-Mises)
distributions of oriented features, which allows us to keep working within the mathe-
matical framework described in the introduction. This further serves as a justification
of Gaussian distribution of orientation as stimuli for animal recordings in chapter 4.
Second, it serves to understand how the variance of natural images can be processed
by a model with no explicit learning rules for variance. This, again, is useful to describe
variance interactions as an emergent property throughout this thesis. Third, as we’ll
delve into in this chapter’s conclusion, this perspective enables us to examine the
trade-off between two encoding strategies. One approach involves dense sampling
using numerous neurons, providing high quality reconstruction but at a higher energy
cost. The alternative employs sparse sampling, where fewer neurons co-encode fea-
tures and their variance. Under the right conditions, this latter strategy can be equally
performant, but much more energy-efficient.

3.2. Methods: Sparse Coding
The model used by Olshausen and Field [230] to show the emergence of orientation

selectivity in sparsely-constrained algorithm is referred to as Sparse Coding (SC), and
is a widely used model for learning the inverse representation of an input signal. Given
the assumption that a signal can be represented as a linear mixture of basis functions
(in neurobiological terms, receptive fields), the optimization problem solved by sparse
coding is one that tries to minimize the number of basis functions that are used to
represent the input signal (which would be spikes), yielding a compact and efficient
representation of the original signal. Here, we framed sparse coding as the problem
of reconstructing an image s from sparse representations x while minimizing a L1

norm of the representation. This problem can be approached with a Basis Pursuit
DeNoising (BPDN) algorithm:

argmin
x

1

2
||s −Dx||22 +λ||x||1 (3.1)

where D is a dictionary (i.e. a set of basis functions used to represent s) and λ a
regularization parameter that controls the trade-off between fidelity and sparsity. The
present article uses a variation of sparse coding, Convolutional Sparse Coding (CSC),
which, as the name implies, relies on the convolution operator:

argmin
{xk }

1

2
||s −

K∑
k=1

dk ∗xk ||22 +λ
K∑

k=1
||xk ||1 (3.2)

where xk is an N 2 dimensional coefficient map (given an N 2 sized image), dk is one
kernel (among K channels) and ∗ is the convolution operator (Figure 3.3). One addi-
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Figure 3.3. – (a) Convolutional Sparse Coding (bottom) relies on convolution opera-
tions to achieve global sparseness and remove local redundancies (top),
mimicking the operation of the visual system. (b) and (c), visualized as
vector-vector or vector-matrix products.
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tional advantage of convolutional sparse coding over other reconstruction techniques
is its ability to learn interpretable features from the data, which can be easily visualized
and understood by human experimenters [35].

3.3. Methods: Deep Learning
The final section of this article uses a Deep Neural Network, as a model to un-

derstand how the sparse code can be of use in further stage of visual hierarchical
processing. While they are not used elsewhere in this thesis, a brief introduction can
be useful. All modern artificial neural networks rely on the gradient descent algorithm,
as introduced by Rumelhart [262]. The essence of this optimizer is to iteratively ad-
just the parameters of a neural network to minimize a loss function, defined as the
difference between its predictions and the actual data.

Given this loss function L(θ), where θ represents the parameters of the network, the
gradient descent update rule is expressed as:

θt+1 = θt −α∇L(θt ) (3.3)

where θt+1 is the updated parameter at iteration t+1,α is the learning rate, and ∇L(θt )
is the gradient of the loss with respect to the parameters at iteration t .

Here, we use a Convolutional Neural Network, as introduced by LeCun et al. [186] to
demonstrate the capability of learning hierarchical features is a central model in Deep
Learning for processing grid-like topology data, such as images. This model is based
on the idea that an input signal can be represented through a hierarchical set of layers,
where each layer transforms the input data with the aim of gradually abstracting the
features of the data to enable effective classification or regression at the output layer.

Given an input image I , a Convolutional Neural Network seeks to learn a hierarchy of
convolutional features F by applying a series of convolutional and pooling operations,
typically defined as:

Fl = ReLU(Wl ∗Fl−1 +bl ) (3.4)

where Fl is the feature map at layer l , Wl is the convolutional kernel, bl is the bias
term, and ∗ is the convolution operator.

Deeper architectures, that is, with more layers, also contain a MaxPooling operation
which groups representations into an intermediate, dense form:

Fdeep = MaxPooling(ReLU(Wdeep ∗Fprev +bdeep)) (3.5)

where Fdeep represents the deeply learned features, and Fprev is the feature map from
the previous layer. These Deep Convolutional Neural Networks, with their deep
architectures, have an advantage over other models due to their capability to learn
more abstract and generalized representations of input data, which are critical for
solving complex problems in computer vision [173]. In this study, we leverage this
capability to understand how the representation power of deep layers influences the
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performance of the model. Each DCNNs has its particular architectural tweaks, for
which we would refer the reader to the article in the next section.

3.4. Article: "Sparse Representation of Natural
Images with Heterogeneous Orientation
Kernels"

The following article is the initial contribution of this thesis, framing natural images
as Gaussian-like distribution of oriented elements. This alleviates major non-linear
integration difficulties that would otherwise be present in the predictive coding frame-
work, and serves as a justification of the use of Motion Clouds [189] in the next chapter.
On its own, the article uses dictionaries of receptive fields that emphasize two coding
strategies to reconstruct natural images: focusing either on median features (orienta-
tions) or their variance (bandwidths). We show that focusing on the former improves
reconstruction, while the latter improves sparseness. Fine-tuning through learning on
a dataset of natural images alleviates this compromise, allowing optimal encoding of
natural images through a sparse co-encoding strategy, as will be also uncovered in V1
in chapter 4.

Full citation is as follows: Hugo J Ladret, Christian Casanova, and Laurent Udo Per-
rinet. “Kernel Heterogeneity Improves Sparseness of Natural Images Representations”.
In: arXiv preprint arXiv:2312.14685 (2023)
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Figure 1: Efficient coding of sensory inputs. (a) Orientation distributions with high
(red) and low (blue) variance, in two 2562 pixel patches from a sample natural image.
(b) Representation of these distributions and their efficiency depends on the structure of
the input. The high-variance patch can be accurately represented with multiple oriented
kernels, or approximated using one single kernel with high representational variance.
Similarly, the low-variance patch can be encoded as a two-peaked orientation for an
accurate representation, or using one kernel of low representation variance for a higher
sparseness.

Neuromorphic neural networks are fundamentally designed to process inputs based
on their statistical characteristics. This is particularly evident in vision-related tasks
related to natural images, which exhibit a set of common statistical properties at multi-
ple levels of complexity [1]. These statistical characteristics guide sensory processing,
and are implicitly learned through efficient coding models [2, 3]. For example, natural
images typically show a local redundancy in luminance patterns that biological neu-
ral network remove at early processing stages, enhancing computational efficiency [4].
In general, these images can be conceptualized as distributions of features (Figure 1),
which are, at a low descriptive level, oriented edges that form the foundation of hier-
archical representations of natural images [5]. The first moment of these distributions
informs on the mean orientation in a given image patch, while the second central mo-
ment represents the heterogeneity of these features.

Modeling of such heterogeneity is crucial for sensory processing, both through input
and representation bound variances [6]. Input variance, also referred to as aleatoric
variance, stems from the intrinsic stochasticity in the processes that generate natural
sensory inputs, such as sounds [7], textures [8] or images [9]. As its sources escape
modeller control, it is challenging to predict, especially in computer vision models [10]
or neuromorphic hardware [11], and mandates a robust approach to accurately represent
and process naturalistic inputs.

Evidences from neurobiological networks support the notion that neural systems ac-
count for this variance in decision-making processes [12], following Bayesian-derived
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rules [13]. In practice, this is supported through the variability of neuronal sparse ac-
tivations [14], which depends directly on the variance of the input [15, 16]. This re-
lationship ties input variance to representational variance : in feature space, the basis
function of a neuron is intrinsically linked to its capacity to encode particular levels
of aleatoric variance [17]. Neurons with broad kernels will more effectively encode
broadly represented elements in orientation space, such as textures (see Figure 1). This
neurobiological evidence can notably serve to ”explain away” irrelevant input to neural
networks, thereby optimizing neuromorphic designs at the hardware level.

Indeed, neuromorphic machine learning models which emulate the visual system,
such as sparse coding, exhibit a dictionary of kernels which possess a wide range of tun-
ing heterogeneity [3]. This heterogeneity is particularly notable in their convolutional
forms, where feature activations, being both position- and scale-invariant, effectively
mirror the aleatoric structure of natural images. This process is akin to maximum like-
lihood estimation, wherein modeling visual inputs involves capturing the variance of
visual features through parametrized surrogate distributions. Thus, sparse coding, with
its minimalistic yet effective neuromorphic approximation of the early visual system,
provides a valuable theoretical framework for understanding how input variance is tied
to representational variance.

Here, we aim to provide an empirical account of this relationship, namely by show-
casing the advantages of incorporating kernels with heterogeneous feature representa-
tions in sparse coding models of natural images. We use a convolutional sparse coding
model, trained to reconstruct a novel dataset of high-definition natural images, and ma-
nipulate the heterogeneity of its kernels to study its reconstruction performances. We
show that optimal learning relies on balancing the heterogeneity of features, which re-
flects the aleatoric variance in natural images. In a general context, we provide a full
PyTorch implementation of our convolutional sparse coding algorithms, and use these
codes as inputs of a deep convolutional network, boosting resilience to adversarial in-
put degradation. This underscores our finding that inherent heterogeneity of kernels in
machine learning, akin to that of receptive fields in biology, enhances computational
efficiency by effectively mirroring the statistical properties of inputs.

2 Methods

2.1 Convolutional Sparse Coding
Sparse coding (SC) is an unsupervised method for learning the inverse representation
of an input signal [18]. Given the assumption that a signal can be represented as a linear
mixture of kernels (or basis functions), SC aims to minimize the activation of kernels
used to represent the input signal, yielding an efficient representation [19] that can be
inverted for reconstruction. Here, SC was used to reconstruct an image s from sparse
representations x, while minimizing the ℓ1-norm of the representation:

argmin
x

1

2
||s−Dx||22 + λ||x||1 (1)

where D is the set of kernels used to represent s (called a dictionary) and λ a regulariza-
tion parameter that controls the trade-off between fidelity and sparsity. Conveniently,
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this problem can be efficiently approached with a Basis Pursuit DeNoising (BPDN) al-
gorithm [20]. As there is a priori no topology among elements of the dictionary, SC
does not preserve the spatial structure of the input signal, which can be problematic in
the context of the representation of natural images. Moreover, the overall decompo-
sition is applied globally and handles poorly the overlap between redundant statistical
properties of patches in the image [1], yielding a suboptimal representation of the input
signal [21].

These problems are leveraged by Convolutional sparse coding (CSC), an extension
of the SC method to a convolutional representation, which is closer to a rough neurally-
inspired design [22] as used in deep convolutional network (CNNs) [23]. These CNNs
use localized kernels similar to the receptive fields of biological neurons in the primary
visual cortical areas. A convolutional architecture uses convolutional kernels (dictio-
nary elements) that are spatially localized and replicated on the full input space (or
possibly with a stride which subsamples that space). The number of kernels in the
dictionary defines the number of features, or channels. In CSC, the total number of
kernels with respect to standard SC is multiplied by the number of positions. As a re-
sult, a convolution allows to explicitly represent the spatial structure of the signal to be
reconstructed. This further reduces the number of kernels required to achieve an effi-
cient representation of an image, while providing shift-invariant representations. CSC
extends equation (1) to:

argmin
{xk}

1

2
||s−

K∑

k=1

dk ∗ xk||22 + λ

K∑

k=1

||xk||1 (2)

where xk is a N2 dimensional coefficient map (given a N2 sized image), dk is one
kernel (among K channels) and ∗ is the convolution operator. As the convolution is a
linear operator, CSC problems can be solved with convolutional BPDN algorithms [24].
Here, we used the Python SPORCO package [25] to implement CSC methods, using
an Alternating Direction Method of Multipliers (ADMM) algorithm [26] which splits
Convolutional Sparse Coding problems into two alternating sub-problems, as described
in Appendix A. Additionally, CSC proves advantageous over other reconstruction tech-
niques in its ability to learn interpretable and visualizable kernels from input data.

2.2 Dictionaries
Optimal dictionaries to reconstruct natural images are known to be localized, oriented
elements [27, 2]. Here, we utilized log-Gabor filters, which have been shown to ac-
curately model the receptive fields of neurons in the visual cortex. These filters have
several advantages compared to Gabor filters, notably that they do not have a DC com-
ponent and that they optimally capture the log-frequency structure of natural images
to ensure its optimal reconstruction [28]. The log-Gabor filter [29] is defined in the
frequency domain by polar coordinates (f, θ) as:

G(f, θ) = exp

(
−1

2
· log(f/f0)

2

log(1 + σf/f0)2

)
· exp

(
cos(2 · (θ − θ0))

4 · σ2
θ

)
(3)

where f0 is the center frequency, σf the bandwidth parameter for the frequency, θ0 the
center orientation and σθ the standard deviation for the orientation. This provides with a
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parametrization of the dictionary, which is useful to compare the efficiency of different
sparse coding models [30]. We kept f0 = σf = 0.4 cpd, varying only the orientation-
related parameters to build the dictionaries. The angular bandwidth Bθ of the log-Gabor
filter, expressed in degrees, was defined as Bθ = σθ

√
2 log 2 [31].

To titrate the impact of including heterogeneity in the dictionary, we created two
log-Gabor dictionaries with the same number of channels, one with homogeneous (a
single σθ) the other with heterogeneous (multiple σθ) variance of representations. We
compared these dictionaries before and after fine-tuning on the dataset, using a dictio-
nary learned from scratch over the dataset as a fifth reference. Such learning was done
by performing convolutional sparse coding in a multi-image setting:

argmin
{xk,j}

1

2

J∑

j=1

||
K∑

k=1

dk ∗ xk,j − sj||22 + λ

K∑

k

J∑

j

||xk,j||1 s.t. ∀k, ||dk||2 = 1 (4)

where sj is the j-th image in the dataset and xk,j is the coefficient map for the k-th filter
and the j-th image. This was alternated with an optimization step of the dictionary:

min
D

N∑

i=1

1

2
∥xi −D ∗ zi∥22 (5)

subject to the constraint |dk|2 ≤ 1 for k = 1, . . . , K.
Performance of these dictionaries was measured with two metrics. The peak signal-

to-noise ratio (PSNR), a common metric to evaluate reconstruction quality of grayscale
images, is defined as:

PSNR(I1, I2) = 20 · log10(max(I1))− 10 · log10

(
1

m · n
m∑

i=1

n∑

j=1

(I1 − I2)
2

)
(6)

where max(I1) is the maximum pixel intensity of the source image. The right hand-
side term of the PSNR is the log10 of the mean squared error, where I1 and I2 represent
the pixel intensity in the source and reconstructed images, respectively. Given that
the natural images used here are encoded on 8 bits, common values of PSNR range
between 20 (worse) to 50 (best) dB. We also measured the sparseness of the algorithm,
which was defined as the fraction of basis coefficients used in a reconstruction which
are equal to zero. This value is between 0 (no nonzero coefficient) and 1 (all coefficients
are zero). Parametrization of the algorithm was chosen to balance sparseness and PSNR
(Appendix A), i.e. λ = 0.05, with 750 iterations of the learning phase, a residual ratio
of 1.05 with relaxation at 1.8, and dictionaries with K = 144 total elements of 122

pixels each.

2.3 Histogram of oriented gradients
The distributions of oriented features in Figure 1 were computed using a histogram
of gradient orientations. Using the ‘scikit-image‘ library [32], given an input image I
of dimension M × N , two gradients were computed at each pixel using Sobel filters
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Gh(x, y) and Gv(x, y), respectively, for vertical and horizontal gradients. The maps of
the magnitude Gm and direction θ were then given as:

Gm(x, y) =
√

Gh(x, y)2 +Gv(x, y)2

θ(x, y) = arctan 2(Gv(x, y), Gh(x, y))
(7)

The range of possible gradient directions over [0, π] was divided into 18 bins. The
orientation histogram H for each bin b was computed as:

H(b) =
∑

(x,y)

Ib(θ(x, y)) (8)

where Ib is an indicator function, ranging from 1 if θ(x, y) falls within the range of
the bin b and 0 otherwise. In that context, one can quantify the orientation content
in natural images, then estimate the distribution of oriented features within the input:
aleatoric variance can then be approximated as the inverse of the squared variance of
this distribution in orientation space and is computed as Varcirc = 1 −

√
X̄2 + Ȳ 2,

where X̄ and Ȳ are the average cosine and sine values respectively, yielding a scalar
value between 0 (lowest orientation variance) and 1 (highest).

2.4 Dataset
Images for the CSC sections were captured using either a Canon EOS 650D or Canon
EOS 6D camera, fitted with 28mm lenses. A total of 1145 images was collected at a
resolution of at least 5184 × 3456 pixels. For CSC, we extracted and used the central
256 × 256 pixel segment of each image. These images represent a variety of dynamic
scenarios, and were carefully shot to ensure that the subjects of interest were in fo-
cus and entirely within the frame. We have made this dataset publicly available on
Figshare [33].

2.5 Image classification using deep learning
To evaluate the role of sparse codes obtained, we decided to go further than only measur-
ing representation performance by applying these codes on a common machine learning
task: image classification. To perform such classification in a neuromorphic-inspired
setting, we utilized a modified version of the CIFAR-10 dataset. This dataset, which
is commonly used for image classification, originally contains 60, 000 color images of
32× 32 pixel resolution across 10 balanced classes. We processed these images by first
upscaling them to 128 × 128 resolution via bilinear interpolation. Subsequently, they
were converted to grayscale and sparse-coded, as described above.

The dataset was divided into a training set containing 50, 000 sparse codes and a
test set comprising 10, 000 sparse codes. The network was trained from scratch through
a standard PyTorch implementation, with backpropagation of the gradient using the
Adam optimizer [34]. The training objective was to minimize the categorical cross-
entropy loss, defined as:

J(θ) = − 1

N

N∑

i=1

C∑

j=1

yij log(ŷij) (9)
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where N is the number of samples, C is the number of classes, yij is the true label,
and ŷij is the predicted label. The Adam update rule for each parameter θ is based on
moment estimates given by:

θt+1 = θt − η · m̂t√
v̂t + ϵ

(10)

where η is the learning rate, m̂t and v̂t are estimates of the mean and variance of the
gradients, and ϵ is a small constant to prevent division by zero.

The sparse codes representing these images were then used as inputs for an adapted
ResNet-18 architecture [35] which is a classically used CNN architecture. This deep
residual neural network, typically composed of 18 layers and used for various vision
tasks, was adapted to process the 144 dimensions of the sparse-coded inputs instead of
the standard 3-channel (RGB) format. This dimensionality corresponds to the number
of channels in our sparse coding dictionary. No other modifications were implemented
in the network architecture design.

Hyperparameters were tuned via grid search to maximize accuracy on heteroge-
neous variance codes, with the resulting values: η = 2e − 4, m̂t = 0.9, v̂t = 0.99,
ϵ = 1e − 08. When training the network, CSC methods using ADMM algorithms
were ported from SPORCO to a custom PyTorch implementation (available at https:
/github.com/hugoladret/epistemic_CSC) to speed up computations.

3 Results

3.1 Heterogeneous kernels improve the sparseness of natural im-
ages representations

We explored how variance in sensory inputs and neuromorphic representations con-
trols the encoding strategies of natural images. We compared five distinct convolutional
sparse coding dictionaries of similar sizes. Two dictionaries using Log-Gabor filters
were constructed : one with a homogeneous level of orientation variance (Bθ = 12.0°)
and 72 orientations θ0 ranging from 0° to 180° (Figure 2a, green) compared to an-
other one with heterogeneous orientation variance, spanning 12 orientation values θ0
and six Bθ ranging from 3° to 30° (Figure 2b, blue). We then benchmarked these con-
structed dictionaries against their learned counterparts, which were fine-tuned on the
dataset (Figure 2a, orange; b, purple). A final comparison was made against a ran-
domly initialized dictionary learned de novo on the same dataset (Figure 2c, black).
Performance evaluation across the 1, 445 high-definition natural images revealed that
dictionaries initialized with Log-Gabor filters consistently displayed highly variant per-
formance from image to image (Figure 2d). Prior to learning, the dictionary integrating
heterogeneous orientation variance outperformed its homogeneous counterpart in spar-
sity (Mann-Whitney U-test, U = 1310760.0, p < 0.001), but had significantly lower
PSNR (U = 262261.0, p < 0.001). Post-learning, all dictionaries had similar perfor-
mances in terms of both sparsity (U = 634605, p = 0.18 for homogeneous vs random
initialized dictionaries ; U = 634605.0, p = 0.97 for heterogeneous vs random initial-
ized dictionaries) and PSNR (U = 694175, p = 0.46 ; U = 653943.0, p = 0.99). This
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Figure 2: Kernel heterogeneity and reconstruction trade-off. (a) Elements from dictio-
naries with homogeneous kernel variance before (green) and after dictionary learning
(orange). (b) Same, with heterogeneous kernel variance before (blue) and after learn-
ing (purple). (c) Elements from a dictionary learned from random initialization on the
dataset. (d) Distribution of the sparseness (top) and Peak Signal-to-Noise Ratio (PSNR,
right) of the five dictionaries. Median values are shown as dashed lines. All three post-
learning dictionaries have overlapping (but not identical) distributions.

suggests that emphasis on heterogeneous variance modelling improves the sparsity, at
the cost of reconstruction performance.

After learning from the dataset, whether from random initialization or from a pre-
constructed log-Gabor dictionary, all dictionaries converge to qualitatively quite differ-
ent filters, yet with a similar, superiorly sparse and performant form of encoding. The
learning method indeed enhanced all Log-Gabor dictionaries, resulting in increased
PSNR (U = 0.0, p < 0.001 ; U = 181535.0, p < 0.001, homogeneous and hetero-
geneous variance dictionaries, compared to their pre-learning version) and sparseness
(U = 23595.0, p < 0.001 ; U = 248667.0, p < 0.001). Given the converging recon-
struction and sparseness for all these dictionaries, we now focus on the heterogeneous
variance dictionary, both pre- and post-learning, as well as the pre-learned homoge-
neous variance dictionary. Additional performance details for the homogeneous dictio-
nary are provided in Appendix B.

What are then the kernel features changed through the learning process? While fine-
tuned dictionaries do incur a significantly higher computational cost during the learning
phase, they deliver substantial improvements in both PSNR and sparsity, compared to
merely introducing heterogeneous variance into a pre-existing dictionary. These en-
hancements can be attributed to modifications in the dictionary coefficients following
the learning phase, affecting both the feature orientations (θ0) and their associated lev-
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Figure 3: Learning balances coefficient distribution. (a) Kernel density estimation over
θ and Bθ of the kernels before (top) and after (bottom) learning. (b) Sparseness of the
dictionaries for kernel variance Bθ. Sparseness = 1 (i.e. no activation, as in the case
of the pre-learning encoding) is represented as a gray dashed line. (c) Example images
from the dataset. (d) Sparse code for high Bθ values (color coded by each coefficient’s
θ) and reconstructions for the pre-learned, heterogeneous variance dictionary. (e) Same
as (d), for post-learned, heterogeneous variance dictionary. Orientation color code of
the coefficients is shown on the rightmost coefficient map.

els of variance (Bθ) (Figure 2a). Specifically, learning from a dataset of natural images
introduced a bias toward cardinal orientations (Figure 3a), mirroring inherent biases
found in natural scenes [36], which is in contrast to the uniformly distributed initial
dictionary. Furthermore, the learning process resulted in a non-uniform distribution of
coefficients across multiple levels of orientation variance (Figure 3b). Notably, coef-
ficients that were previously inactive (i.e., sparseness = 1) became activated at higher
Bθ levels (Figure 3c-e). This led to consistent patterns in coefficient distribution across
heterogeneous variance levels (Figure 3d,e). This uniformity is likely influenced by
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the dataset’s inherent variability. Consequently, the performance gains attributed to the
learning process are contingent upon feature orientation biases (θ0) and a redistribution
of the levels of variance (Bθ), both of which should be reflective of the dataset’s intrinsic
structure.

3.2 Statistical properties of natural images reflect the variance of
learned sparse code
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Figure 4: Spike-and-slab sparse representation of the natural images. (a) Distribution
of the sparse coefficients values. Violin plots’ central lines represent mean values, with
top and bottom lines representing the extrema. For each image, this distribution was
fitted with an exponential decay (black line) y = a·exp(−b·x), with the distributions for
the parameters over the 1145 images shown in inset (b) Bayesian Information Criterion
(BIC) for the fitting of the distribution of spikes coefficients with different alternative
functions. (c) Proportion of zero coefficients per image, i.e., belonging to the ”spike” of
the distribution. (d) Same as (a), with coefficients split by different encoded orientation.

The criteria for the relevance of features encoded in neural networks is dictated by
the statistical properties of the environment itself [9, 1]. For instance, at a fundamental
representational level, the neural code for light patterns in the retina is the cumulative
sum of the Gaussian distribution of luminance found in natural images [4]. At higher
levels, scale distributions of visual features, in the Fourier domain, obey a 1/f 2 power
law, which once again echoes the power-law behavior of cortical responses [37, 38]. At
intermediate levels, the distribution of these oriented edges can be characterized along
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orientation coefficients. (c) Distribution of the concentration parameter κ for the first
(left) and second (right) peaks of the double von Mises distribution. (d) Same as (c),
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its first- and second-order moments: a median orientation, and its corresponding vari-
ance. A proper model of natural images thus depends on a proper model of both these
moments, which is reflected in the response properties of primary visual cortex neu-
rons [27]. Which of these two parameters warrants greater emphasis? Previous studies
suggested that heterogeneity on both orientation and variances arises from sparse learn-
ing processes, in silico [2] and in vivo [17].

Inherently, sparse coding enforces a prior on using a minimal number of coeffi-
cients to reconstruct an image, and is thus an encoding strategy that produces a ”spike
and slab” distribution of activations, characterized by a predominance of zero coeffi-
cients [37] (Figure 4a-c). This imposes a prior on the representation of images at the
feature-level, with a decaying exponential variation of coefficients that unfolds hetero-
geneously across different types of orientations (Figure 4d). Lower BIC indicate less
information lost in the fitting process, and thus a better fit. Such heterogeneity in fea-
ture space stems from the fact that orientations in natural images are biased to cardinal
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(i.e., vertical and horizontal) orientations [39], which is echoed at the neuronal level
by a cardinal bias in visual perception [40]. This biased distribution of orientation is
well-captured by a double von Mises distribution in orientation space (Figure 5a,b):

f(x) = A1 exp (k1 (cos (2π(x− ϕ1))− 1)) + A2 exp (k2 (cos (2π(x− ϕ2))− 1))
(11)

where A1, A2 are the amplitudes of the two von Mises distributions, k1, k2 are the con-
centration parameters for the two distributions, ϕ1, ϕ2 are the phase offsets for the two
distributions.

This distribution is known for higher heterogeneity, and thus aleatoric variance, in
natural images compared to synthetic ones [39]. At the cardinal orientations, this is
also captured by the variation of the concentration parameters (Figure 5c,d) of the von
Mises distributions, which underlies the notion that a proper description of natural im-
ages must be able to account for heterogeneous levels of aleatoric variance. This man-
dates a comparative evaluation of performance between dictionaries that emphasize a
representation based on homogeneous or heterogeneous strategies, that is, emphasizing
encoding mean features or their variances.

3.3 Heterogeneity improves resilience of the neural code
In addition to the previously described trade-off between performance and sparsity (Fig-
ure 2), the robustness of the representations can be further evaluated by modifying el-
ements in the typical activation patterns. This then allows pruning less activated co-
efficients to further increase sparseness, testing the code’s resilience to the adversarial
degradation. We pruned coefficients with absolute values below a specific threshold, it-
erating from 0.001 to 0.5 in 6 steps. This pruning led to a construction-induced increase
in sparseness, that correlated non-linearly with a decrease in PSNR for all dictionaries,
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while maintaining interpretable representations (Figure 6), The pre-learning heteroge-
neous variance dictionary’s PSNR demonstrated significantly greater resilience to co-
efficient degradation than the pre-learning homogeneous variance dictionary (p < 0.05
for pruning cutoff c > 0.3). Post-learning, both the homogeneous and heterogeneous
variance dictionaries exhibited similar PSNR, reflective of their PSNR similarities be-
fore pruning (Figure 2). This emphasizes the advantage of heterogeneous variance in
a dictionary, whether by construction or through learning, in bolstering resilience and
efficiency for encoding natural images.

Overall, these findings show that sparse codes for natural images possess highly
desirable properties when incorporating heterogeneous basis functions into a sparse
model: enhanced sparseness (Figure 2d), more evenly distributed activation (Figure 3b),
and increased resilience to code degradation (Figure 6a). Yet, the differences in PSNR
may not necessarily translate to perceptible differences in image quality, depending on
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Table 1: Mean top-1 accuracy (in %) ± standard deviation across 4 random initialization
of ResNet-18 for varying sparse encoding schemes of CIFAR-10. c = 0.25 and c = 0.5
indicate the pruning level of the sparse coefficients, as done in Figure 6.

Encoding scheme No pruning c=0.25 c=0.5

Homogeneous, pre-learning 70.65± 0.30 69.70± 0.26 67.83± 0.47

Homogeneous, post-learning 67.31± 0.20 66.24± 0.01 67.40± 0.12

Heterogeneous, pre-learning 75.08± 0.10 71.81± 0.41 65.20± 0.40

Heterogeneous, post-learning 79.20± 0.11 78.98± 0.00 79.26± 0.02

the context and application [41]. As such, it is necessary to investigate the potential of
employing such codes in objective visual processing problems, for example, in image
classification.

As a coarse analogy to a neuromorphic hierarchical sparse construction of visual
processing [22, 42, 23], we trained a deep convolutional neural network to classify
the sparse codes of natural images. The CIFAR-10 dataset, which was converted to
grayscale in order to match the dimensionality of the dictionaries previously described,
was sparse-coded and then classified using the Resnet-18 network, reaching a maximum
top-1 accuracy of 79.20% in 100 epochs (Figure 7, Table 3.3). After sparse coding of
the dataset, but without pruning of the coefficients, a learned dictionary initialized with
a heterogeneous orientation variance basis achieved the highest classification accuracy
(79.20%). This was followed by the pre-learned version of the network (75.08%), and
was higher than homogeneous variance methods. Following degradation of the sparse
code (c = 0.5), the post-learned heterogeneous variance kept similarly high perfor-
mance, unlike all the other encoding scheme which showed loss of performance. The
discrepancy between the deep learning performance and the previously noted similar-
ities in PSNR and sparseness (Figure 2) underscores the significance of representing
variance of low-level features in complex visual models.

Discussion
Neural systems leverage heterogeneity for increased computational efficiency [43, 44].
Here, we have explored the effects of such heterogeneous encoding of orientation vari-
ance by integrating it into a convolutional sparse coding dictionary. Our findings show
that this outperforms conventional feature-representing dictionaries with fixed vari-
ance, both in sparsity and robustness, at the cost of reconstruction performance. How-
ever, these representations can be effectively employed in subsequent visual processing
stages, where they result in significantly improved performances of deep convolutional
neural networks. Overall, these results imply that incorporating variance in sparse cod-
ing dictionaries can substantially improve the encoding and processing of natural im-
ages.

The connection between sparse models and neural codes, which underlies the mo-
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tivation behind this approach, could be further showcased using biologically plausible
algorithms, such as the Locally Competitive Algorithm (LCA) [45]. Rather than enforc-
ing sparsity through convolution as done here, this model uses a mechanism of recipro-
cal inhibition between each of its elements, a process that mimics particular recurrent
inhibition connectivity patterns observed in the cortex [46]. This method potentially
mirrors a neural adaptation of winner-takes-all algorithms, reflecting innate competi-
tion and selective activation within neural networks, and highlights the potential role
of feedback loops to improve sparse coding [47]. Under this analogy, LCA could re-
inforce the presented framework of heterogeneity by extending it from features space
(i.e., receptive fields) to also include the connectivity matrix (i.e., synaptic weights).
In terms of hardware, the use of variance weighting by such a lateral inhibition mech-
anism could provide dynamic computational allocation for significant, unpredictable
fluctuations in the data, while reducing or bypassing routine, predictable data streams.
This arguably reflects the response characteristics and dynamics of cortical neurons [15,
16]. Emphasizing these pronounced shifts could streamline the data transmitted across
physical channels, addressing a primary source of thermal and computational efficiency
bottlenecks in neuromorphic hardware [48, 49].

In the context of image classification, our approach employing sparse coding achieved
a top-1 accuracy of 79.20% on the CIFAR-10 dataset. While this falls short of the state-
of-the-art performance exceeding 99.0% accuracy using color images and transformer
architectures [50], it is important to note that our primary objective centered on com-
paring model performance with heterogeneous degree of variance in the initial layer,
rather than solely pursuing state-of-the-art results. Here, the high dimensionality of the
sparse-coded CIFAR-10 dataset (144 input dimensions or sparse channels), in contrast
to the standard 3 dimensions in RGB images, likely contributes to this difference of
accuracy. Direct integration of sparse coding with deep neural networks is a promising
avenue of research that aligns with recent developments in the fields of unsupervised
learning, object recognition, and face recognition. Some approaches have emphasized
the ability of sparse coding to generate succinct, high-level representations of inputs,
especially when applied as a pre-processing step for unsupervised learning with un-
labeled data using L1-regularized optimization algorithms [51]. In several instances,
the mechanism of sparse coding has been seamlessly integrated into deep networks.
For instance, the Deep Sparse Coding framework [52] maintains spatial continuity be-
tween adjacent image patches, boosting performance in object recognition. Likewise,
a face recognition technique combining sparse coding neural networks with softmax
classifiers effectively addresses aleatoric uncertainties, including changes in lighting,
expression, posture, and low-resolution scenarios [53]. Classifiers relying on sparse
codes, produced by lateral inhibition in an LCA, exhibit strong resistance to adversar-
ial attacks [54]. This resilience, potentially enhanced by heterogeneous dictionaries as
explored here, offers a promising avenue for research in safety-critical applications.

The empirical evidence presented here can be interpreted as an implicit Bayesian
process, wherein initial beliefs about the coefficients are updated using input images to
learn the variance of visual features to represent optimally (sparse) orientations. Mod-
els with explicit integration of both model and input variance have distinct advantages
in that sense. Namely, this allows to maximize model performance and minimizing
decision uncertainty. In contrast, we here focused on an implicit understanding of this
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relationship, demonstrating through a simple approach that vision models can benefit
from factoring-in feature variance without explicit learning rules.
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Appendix A - Additional Convolutional Sparse Coding
details
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Appendix A Figure 1: Parametrization of the CSC learning algorithm. λ was varied in
8 steps in a [0.001 : 0.1] range, max iteration in 5 steps in a [10 : 1000] range, relaxation
parameter ρ in 8 steps in a [0.2 : 1.8] range, filter size in 8 steps in a [5 : 21] pixels range
and K in 8 steps in a [89 : 2351] range.

Convolutional Sparse Coding was implemented using an Alternating Direction Method
of Multipliers (ADMM) algorithm, which decomposes the problem into a standard
form:

argmin
x,y

f(x) + g(y) (12)

with the constraint x = y. This is then solved iteratively by alternating between the two
sub-problems:

xi+1 = argmin
x

f(x) +
ρ

2
||x+ yi + ui||22 (13)

yi+1 = argmin
y

g(y) +
ρ

2
||xi+1 + y + ui||22 (14)

where ρ is a penalty parameter that controls the convergence rate of the iterations, also
called the relaxation parameter. x and y are residuals whose equality is enforced by the
prediction error:

ui+1 = ui + xi+1 + yi+1 (15)
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ADMM can be readily applied to equation (2) by introducing an auxiliary variable
Y [55], such that the problem to solve becomes:

argmin
{xk},{yk}

1

2
||

K∑

k=1

dk ∗ xk − s||22 + λ

K∑

k=1

||yk||1 s.t. xk =yk (16)

which, following the ADMM alternation in equations (13)-(15), is solved by alternat-
ing:

{xk}i+1 = argmin
{xk}

1

2
||

K∑

k=1

dk ∗ xk − s||22 +
ρ

2
||xk − yk,i + uk,i||22 (17)

{yk}i+1 = argmin
{yk}

λ

K∑

k=1

||yk||1 +
ρ

2
||xk,i+1 − yk + uk,i||22 (18)

uk,i+1 = uk,i + xk,i+1 − yk,i+1 (19)
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Appendix B - Homogeneous variance dictionary
Results from the main text are shown here for the homogeneous variance dictionary,
post-learning.
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Appendix B Figure 1: Learning balances coefficient distribution. (a) Kernel density
estimation of coefficients over θ0 and Bθ after learning from the homogeneous variance
dictionary. (b) Sparseness of coefficients for each Bθ. Sparseness = 1 is represented as
a gray dashed line.
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22

3. Variance in Vision Models: a Convolutional Sparse Coding Approach – 3.4. Article:
"Sparse Representation of Natural Images with Heterogeneous Orientation Kernels"

84



3. Variance in Vision Models: a Convolutional Sparse Coding Approach – 3.5.
Conclusion

3.5. Conclusion
Designing an efficient strategy to represent our environment is challenging, espe-

cially in a world loaded with statistical variance. Modelling such modelling visual
inputs with unpredictable variance is the focal point of this thesis. In the current
article, we developed a computational model that learns an optimal representation of
natural images, and explored the sparseness/reconstruction trade-off of its receptive
fields. By using sparse coding as a way to extract the features necessary to build a
representation of natural images, we showed that a neural representation of variance
is advantageous, even at the level of Deep Learning research. This ties directly to
Bayesian processing, which explicitly derive mathematical rules that integrate both
epistemic and aleatoric variances are advantageous (see Equation 2.3). In contrast, our
study concentrates on an implicit emergent encoding of the epistemic and aleatoric
variances. This also relates to the idea that computation of variance can be seen as an
emergent property, which will be further emphasized in the next chapter.

A research offspring that will directly stem from this work is to train Deep Neural
Networks directly on sparse coefficients that encode an optimal representation of im-
ages, rather than images themselves. The preliminary practical work on that end has
already been made here, as our codebase in the article consisted of porting a sparse
coding library (SPORCO [339]) into a tensor format [239], allowing for milliseconds-
fast computations. Sparse representations, whether here or in the brain, are essentially
distributions of binary events weighted by synaptic connectivity. As these Deep Neural
Networks relying on spiking activity are set to eventually surpass regular methods [79,
119], there would be great advantage in integrating the work done here in a spiking
framework. One final advantageous effect of these sparse representations is their nat-
ural property to remove noise in the input. Thus, an encoder that transforms natural
images into sparse representations with variance could easily defend against noisy
inputs (whether malicious or not), which would prove useful in critical applications
such as medical imaging.

Aside from these machine learning considerations, the key conclusion of this arti-
cle is the obvious sparseness/reconstruction trade-off involved in encoding natural
images, as shown in the first figure of this article, and reproduced in Figure 3.4. This
emphasizes two possible strategies to encode the distributions of orientation that
makes up natural images:

— Either a neural system can use multiple orientation-tuned units to encode the
full input distribution, at heavy computational and energy costs. This would
be equivalent to dense sampling the likelihood p(u|v) (as introduced in Equa-
tion 2.5).

— Or a neural system can use an estimate of orientation and variance, through a
receptive field attuned to both of these moments of the distribution. This would
then be similar to using a maximum likelihood approach (as introduced in
Equation 2.6), which means finding the best surrogate function to approximate
the distribution in the real input.

The fact that heterogeneous orientation-tuned functions represent the optimal trade-
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off for representing natural images will serve as a natural transition towards our next
chapter, which will show that V1 likely implements the first strategy for a fast first
estimate, then stabilizes onto the second through recurrent connectivity.
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Figure 3.4. – Sparseness/reconstruction trade-off. (a) A patch of natural image, from
the database generated in this article [176]. (b) Distribution of orientation
from this image, extracted with Sobel filters. (c) Two possible strategies for
a neural encoding of this distribution, either through costly but accurate
code (Scheme 1) or sparse but less accurate code (Scheme 2).

This has been preliminarily explored by the Locally Competitive Algorithm, a neuro-
inspired algorithm [261] which uses recurrent interactions between neurons to drive
the sparse coding, as done in Equation 3.2, but with winner-takes-all competition:

τ
dui

d t
=−ui +φi −λ

∑
j ̸=i

ωi j ·S(u j ) (3.6)

Where ui is the internal state (or membrane potential) of neuron i , φi is the projection
of the input onto the i th basis function (or receptive field), τ is a time constant, λ
is a positive constant that scales the strength of the competition, ωi j represents the
degree of overlap or similarity between the receptive fields of neurons i and j , S(u j ) is
a function that represents the output of neuron j given its internal state u j , typically,
a threshold function. The design of this algorithm is that neurons compete with
each other to represent the input, with neurons that have a dissimilar receptive field
competing against one another. Using this Locally Competitive Algorithm as a model
of recurrent versus feedforward interactions would also allow seeking which of these
two types of connectivity creates the heterogeneous basis functions observed here.
It then naturally follows that the next chapter transition from the present functional
study, to pinpointing its origin in neurobiological networks.
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4. Encoding of Orientation Variance
through Recurrence in V1

”Representations, at a minimum,
must potentially be able to stand in for the things they represent.”

Chris Eliasmith, How to Build a Brain, 2013
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4.1. Introduction: Orientation Selectivity in V1

4.1.1. Orientation Selectivity and Representations in the
(Visual) Cortex

As we’ve largely emphasized so far, orientation selectivity is a hallmark feature
of the primary visual cortex. As the first functional element of the visual hierarchy,
oriented receptive field form the basis of our understanding of visual processing
in the cortex. This is a stereotypical role for a primary sensory cortex, which often
exhibit a well-defined invariant feature code (see chapter 3) based on the sensory
space they represent [45, 163], and acting as the foundation for the downstream
computations. For example, the elementary units of voices is neural encoding of
tonality and frequency-defined signals [25], that of bodily parts is spatially defined
segments [44], and that of vision is our edges of interest, in this manuscript. Examining
such foundational elements of image descriptors is a longstanding tradition in the field
of visual neuroscience, especially within the framework of hierarchical networks [325].
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a b

Figure 4.1. – Hierarchical model of the visual cortex (a), oftenmost reflected in the
current view of computer vision models (b). Adapted from [276].

In V1, the basis of the neural code is a visual one, and has thus the advantage of
being easily conceptualized and visualized. This ease-of-understanding of V1 recep-
tive field, supported by six decades of rich literature, makes orientation selectivity a
focal point in of numerous PhD theses, serving either as a principal subject of study
or, as is the case here, as an angle of attack to explore theoretical frameworks with
testable hypotheses. Most often, this serves to study visual processing as a feedfor-
ward model [172], positing a sequential series of computations wherein basic visual
components like edges are integrated to form progressively complex representations
such as angles, textures, and eventually high-level objects, as observed in different
visual cortical areas (V1, V2, V4, IT) [179]. The feedforward model proposes a struc-
tured pathway through which visual information is processed and refined at each
subsequent level, contributing to a global, coherent perception of the visual world,
as shown in Figure 4.1. For the sake of argumentation of this thesis, this view can
be advantageous. Hierarchical modelling requires that separate features will be pro-
cessed in separate areas, and as such, separate feature variances to be also localized
and confined within each cortical area.

A notable limitation of the feedforward model lies in its inability to effectively
distinguish between perceptions driven by bottom-up sensory input and the self-
generated sensory feedback resulting from an organism’s actions [333, 163]. In the case
of vision, the visual flow stemming from eye movements could trigger an optokinetic
reflex, akin to the reflexive response which stabilizes our view as we are reading this
manuscript. Should an organism fail to discern between external and self-generated
inputs, this reflex would inhibit any eye movement. As such, it follows logically that
visual processes must also contain some form of feedback. A simplistic strategy to
mitigate this issue could be simply cancelling the predictable consequences of self-
generated sensory feedback, by sending an efference copy of a motor command.
Conceptually, such transformative processes require an internal model, can be viewed
as equivalents to a simulation of the external world and its consequences for the

88



4. Encoding of Orientation Variance through Recurrence in V1 – 4.1. Introduction:
Orientation Selectivity in V1

organism. In a rather simple way (Figure 4.2), this extends the general feedforward
representation framework into a predictive one, as used in this thesis [97].

a b

c

Figure 4.2. – Representation and predictive frameworks in neuroscience. (a) Predic-
tive coding extends the classical representational framework with the
addition of prediction and related error neural elements. At the relevant
level of scale here, this extends the canonical microcircuit [74] (b) into a
predictive neural circuit (c). Adapted from [74] and [163].

Although this doesn’t challenge the notion that orientation selectivity is an optimal
feature for a model of vision, it does offer an alternative perspective for the present
chapter. Our aim here is to illustrate that, within a predictive modelling framework,
V1 neurons don’t just represent a singular feature, but also its variance, encoding a
probabilistic distribution that form parts of a generative model.

4.1.2. The Origin of Orientation Selectivity in the Cortex
Pinpointing the origin of an invariant representation of images implemented within

a biological neural network is a non-linear and non-trivial task. As such, there are
as many theories related to "how" orientation selectivity emerges as there are the-
ories as to "why" it exists. While it is impossible to make an exhaustive list of all
phenomenological accounts and their myriad of variations, they can be grouped in
three aspects:

— Orientation selectivity emerges through converging, feedforward interactions.
— Orientation selectivity is refined by local (i.e. within a cortical area) recurrent,

horizontal interactions.
— Orientation selectivity is modulated by extrastriate feedback interactions.

As is the case with many complex biological questions framed as multiple choice, the
answer is "all of the above, mixed non-linearly" (Figure 4.3).

The feedforward explanation for the emergence of orientation selectivity aligns
intuitively with the feedforward representational framework discussed earlier. This

89



4. Encoding of Orientation Variance through Recurrence in V1 – 4.1. Introduction:
Orientation Selectivity in V1

Figure 4.3. – Possible mechanisms accounting for the existence of orientation selectiv-
ity, reproduced from [330].

"canonical" model, as introduced by Hubel and Wiesel in their seminal work [138],
frames orientation selectivity as arising from the convergence of isotropic receptive
fields from the LGN to V1. While this has been validated experimentally several
times [85, 49], such studies fail to explain the presence of (minor) orientation tuning
before V1. Specifically, when cortical networks are silenced to exclusively observe
LGN input to V1, the resulting input is already sharply orientation-tuned [86]. This
could stem from the fact that some LGN cells are already slightly tuned to orientation,
perhaps through a certain degree of retino-LGN convergence [342, 311, 326]. Indeed,
even with a single thalamic oriented neuron, it is possible to obtain an excitatory
orientation-tuned response in a connected V1 neuron [156].

This feedforward account of orientation selectivity is typically contrasted to the
intracortical recurrent hypothesis. At the meso-scale of V1, orientation selectivity is ar-
ranged in a "map", where neighboring neurons have heterogeneous preference [120].
Long-range horizontal axons have been reported to preferentially bind to distant
columns of similar orientation preferences in the cat V1, with short-range recurrent
connectivity being more heterogeneous [51, 50]. This would allow having interactions
between neurons tuned to different orientation at short range, as we will put forward
in the present article, whilst maintaining the possibility to prime contours made of
similar orientation at long range. Cross-orientation inhibition within the cortex can
theoretically perform orientation sharpening [250]. This could either be responsible,
on its own, for generating orientation selectivity [123], or could serve to refine the fea-
ture emerging from the feedforward convergence. Additional mechanisms encompass
voltage-sensitive mechanisms with precise location within the dendritic tree, but also

90



4. Encoding of Orientation Variance through Recurrence in V1 – 4.1. Introduction:
Orientation Selectivity in V1

Figure 4.4. – Spatial extent and response induced by feedforward (FF), lateral and
feedback (FB) connections. Adapted from [11].

intracortical excitation emanating from cells that are tuned to analogous orientations
[329, 250, 330].

This also yields an interesting counter-observation, given that precisely organized
orientation maps are solely present in V1 of carnivora and primates [144]. Rodent, on
the other end, have a "salt-and-pepper" (random) topology of orientation detectors,
with no specific spatial mapping onto the cortex. However, through a delicate balance
of excitation and inhibition, it is also possible that these networks recurrently create
orientation selective neural activity [123]. This is corroborated by the notion that re-
current interactions among potentially isotropic cortical neurons can yield properties
akin to those arising from feedforward interactions. In other terms, this implies that
functional convergence, whether feedforward or recurrent, is an inherently viable
mechanism for the emergence of orientation selectivity. Extending this idea, one can
also think of the complex cells (see Introduction 2.1.1.2.) as either a convergence of
simple cells, but also as recurrently "amplified" simple cells [48].

Given that these rodents also exhibit orientation tuning within the LGN [311], this
raises additional questions. Do these phenomena reflect unique characteristics spe-
cific to certain species, or do they suggest a more comprehensive need to re-evaluate
established beliefs about orientation selectivity? This question becomes especially
pertinent when we consider the wide range of species exhibiting pronounced orien-
tation tuning within the cortex. This possible difference in strategy for orientation
selectivity might also speak of different strategies for processing associated variance,
between primates, cats and mice. As we shall see at the end of this chapter, primates
and cats seemingly exhibit similar behavior, but recordings on mice are currently
underway in our laboratory, and will be discussed in the Conclusion of this thesis.

Finally, V1 receives substantial and potent feedback from extrastriate cortical areas,
which plays a pivotal role in shaping orientation selectivity. A salient illustration of
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a

b

c

d

Figure 4.5. – Feedback from extrastriate areas modulates V1 orientation selectivity.
(a) In a task of segmenting various elements in a naturalistic context,
(b) both orientation selectivity and texture selectivity, from V1 and V4
respectively, are involved. (c) The receptive field of V1 neurons changes
with attention towards the figure, which is based on feedback from V4, as
summarized in (d). Figures reproduced from [248]
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this intricate relationship is observed in the task of figure-ground segmentation: the
feedback from extrastriate areas (here, V4), allows V1 to not only to delineate the edges
with precision, but also to a fully-fledged figure in meticulous details [248] (Figure 4.5).
This feedback exhibits a broader spatial extent compared to the feedforward receptive
field, adding a layer of complexity to our understanding [11].

In predictive coding terms, such feedback mechanisms are modeled as carrying
the predictions from higher-order regions to V1. It is often implied by predictive
coding these feedbacks should be modulatory only [20], in order to send prediction
from higher- to lower-order areas that can suppress prediction errors produced by
bottom-up input. This is however neither true [220, 341, 65] nor required, as mixed
excitatory/inhibitory influence can mediate the construction of prediction and pre-
diction errors locally. The modular nature of this activity will be discussed further in
the next chapter.

Overall, one can see how orientation selectivity in V1 is a well-defined invariant
representation of low-level features of the world. As such, it serves as the perfect
predictions of these features, and hence, is constrained to variance weighting, as
developed in Equation 2.28. While there is no clear consensus on the origin of ori-
entation selectivity in V1, there is no debate that the cortical circuitry is dedicated
to maintain it, through a complex mix of many neural activities, that must be first
recorded and then deciphered to the best of the experimenter’s ability.

4.2. Methods: Visual Electrophysiology and Neural
Decoding

4.2.1. Recordings Tools of the Brain
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Figure 4.6. – Schematic illustration of the action potential on the membrane potential
(left) and its respective ionic currents (right). The final active Na+/K+
exchanging is not illustrated.

Neurons, as the functional units of the nervous system, communicate through
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sophisticated electrochemical activity, which involve using the flow of ions to gener-
ate electrical gradients [154]. To simplify this process, neurons effectively maintain
an electrochemical gradient that puts them at an electric potential of −70mV with
respect to their local environment. Upon binding of a neurotransmitter, channels
specifically let Na+ ions flow through, depolarizing the neurons up to approximately
+40mV. The neuron then activates energy-consuming K+ channels, re-establishing
a polarized electrochemical gradient, with a slight overshooting. This change of ac-
tivity propagates from the neuron’s soma to its axon terminal, where it induces the
fusion of synaptic vesicles through the entry of Ca2+ ions, resulting in the release of
neurotransmitters into the synaptic cleft, which in turn can alter the conductance of
the post-synaptic neuron (Figure 4.6). The modulation of conductance in the post-
synaptic neuron is crucial as it may lead to the generation of a new action potential,
thus perpetuating the chain of neural communication.

Intracellular recordings (patch-clamp)

Extracellular recordings

Local field potentials

2-photon imaging 

Extracellular recordings via
multi-electrodes arrays (this thesis)

Voltage sensitive dye imaging

Funtional magnetic resonance 
imaging 

Electro/magneto-encephalography

Figure 4.7. – Spatial field of view, and spatio-temporal resolution of various methods
of recordings of the nervous system, from [52].

This mechanism, (over)simplified here for clarity’s sake, forms the basis of neural
communication. Thus, all methods employed for recording brain activity are inher-
ently also based on it. The lowest possible level (in terms of spatial and temporal
resolution) of such recording methods consists in approaching a glass pipette with an
electrode to the membrane of the neuron, then forming a seal to directly record that
patch of membrane [265]. This allows to record single ionic channels, which is highly
effective for mapping conductance of ion to single molecules. By breaking this seal, it
is possible to record the whole neuron, but also control its dynamics using current or
voltage injection. Whether at the single channel or membrane level, such methods are
known as "patch-clamp" [224], either in "current-clamp" or "voltage-clamp" mode.

Patch-clamp techniques, while allowing to measure single neuron activity in exquisite
details, cannot record from populations of neurons. Consequently, for questions re-
lated to the internal representations of certain features with an ensemble of neural
activity, it is often best to measure electrical potential variations outside the neuron,
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Figure 4.8. – Various types of extracellular electrodes, with cortical slice of mouse
visual cortex (acquired by Geneviève Cyr) for size reference.

which does not involve precisely putting an electrode on the neuronal membrane [43].
Rather, this method necessitates the insertion of electrodes into the brain, a procedure
historically done using tungsten electrodes [137, 105], but nowadays predominantly
achieved using multi-channel electrodes made from complex alloys [68]. This method
of recording is the one used throughout this thesis (Figure 4.8).

Multi-channel electrodes permit the recording of electrical activity from a mul-
titude of neurons simultaneously, allowing extensive data collection and nuanced
understanding of neural dynamics [296, 295]. As of 2023, the advanced state of this
technology allows for the recording of approximately one thousand neurons concur-
rently. Presently, we employed electrodes with lower channel counts, specifically 32
to record neural activity. The spatial configuration of these electrodes is varied, but
typically that of a linear probe, with contacts all along the vertical axis of the probe.
In chapter 5, we will use a grid-like variation of that probe, which does not allow to
probe for layer-specific computations, but for horizontally distributed ones instead.
Signals recorded by extracellular electrode are a mixture of activity from multiple
currents and neurons near each electrode site. To assign each extracellular event to
a given neuron, several algorithms exist, each performing a different (but related)
version of a "spike-sorting" process. Here, Kilosort3 [236, 260] is used, which performs
template-matching based on the extracellular events’ waveforms, and has been shown
to achieve state-of-the-art performance for multi-channel electrodes. Nonetheless, its
output requires a (lengthy) post-processing step by the experimenter, to merge and
dissociate entangled neuronal activity, which is here done with a graphical interface
called "Phy" [260].

Depending on the frequency at which the signal is filtered, one can also record the
local field potential from these electrodes. This constitutes a non-assigned, summed
signal of all neuronal activity from neighboring units [152, 131]. This technique is
quite useful, because by recording the polarities of the events, one can observe the
"sink" of neural activity arriving after a visual a stimulation in the layer IV of V1, and
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the corresponding "source" in deeper and upper layers [268]. These sink/source
terms refer to the influx of Na2+ ions (creating a "sink" outside the neurons) after a
depolarization, and inversely for the "source". This technique is used in the present
article to assign a cortical layer to the recorded neurons [178].

For the sake of a comprehensive overview, let us continue exploring the various
recording tools of the brain. As far as neuron counts is concerned, increases in scale
then require a change from electrodes to optical recording methods. A notable ex-
ample that drives many experiments at the time of writing is calcium imaging, a
technique driven by the principle that C a2+ influx related to an action potential [302,
91]. This method enables the simultaneous recording of the activities of tens of thou-
sands of neurons [303]. However, its application is hampered by depth limitations,
owing to the inherent constraints of optical tools in penetrating the depth of the cortex.
To overcome this limitation, the exploitation of advanced physical phenomena such
as two- or three-photon effects can be employed, allowing for increased depth of
imaging [56]. However, this entails a surge in the complexity of the acquisition system.
The implementation of this technique also necessitates unobstructed optical access
to the cortex, involving the removal of the skull for acute experiments and, in some
cases, its substitution with viewing glass for chronic studies. The temporal resolution
of the calcium imaging is on the scale of tens of milliseconds, which can hide single-
neuron dynamics. To that end, there exists the possibility of loading the cortex with
Voltage-Sensitive Dye (VSD), which loads the cortical areas with a molecule sensitive
to changes in voltage [52]. This technique grants superior temporal resolution [53],
allowing for detailed imaging across the entire cortical area, but most importantly,
sub-action potential recordings, because it does not rely on the Ca2+ influx of the
action potential.

At the culmination of the spectrum of recording methodologies are macroscale
recordings, which encompass a range of diverse techniques, each providing unique
and non-invasive insights into brain activity. Direct measurements of electrical activ-
ity can be obtained through the widely known Electroencephalography (EEG) [210],
which measures the sink/source currents of the large cortical pyramidal neurons, of-
fering insights into the global electrical activity of the brain [168]. This is, in a way, the
extra-cranial version of the recordings of Local Field Potentials described above. For
finer resolution, one can rely on Magnetoencephalography, a sophisticated method
that records the orthogonal magnetic field corresponding to the electrical signals
generated by neural activity [125]. The acquisition setup is however significantly
more complex, necessitating the integration of supra-conductive sensors to precisely
capture the delicate magnetic fields associated with neural currents. Lastly, the main-
stream method for large-brain analysis is functional Magnetic Resonance Imaging,
a technique that detects the magnetic signatures of oxygen-binding molecules [340,
193]. These molecules flow into specific regions of the brain in response to neural ac-
tivity to restore the local energy supply to neurons [246]. By mapping these blood flow
changes, this technique enables the indirect observation of neural activity, providing
(rough) insights into the functional organization of the brain

Each of these techniques, despite their complexities and inherent limitations, con-
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tributes uniquely to our expansive view of neural activity, providing distinct insights
into the dynamic interplay of neural circuits. These advanced methodologies, in con-
junction with continuous advancements in neuroscientific research, are instrumental
in unraveling the intricate tapestry of neuronal interactions and communications.

4.2.2. Making Sense of the Recordings
It may appear straightforward to correlate a single visual input with the quantity

of spikes discharged by a single neuron and call it a code. However, this seemingly
straightforward approach, formally called "rate coding", involves the prior that the
frequency of spike emissions by a neuron is presumed to signify its sensitivity to
a particular stimulus. Under this paradigm, a higher spike rate is interpreted as
indicative of greater neuronal responsiveness to the stimulus. As we have detailed in
the introduction, this assumption stands in contrast to substantial evidence suggesting
that neurons inherently strive to minimize their energy consumption as much as
possible. The rate-based model, although used by Hubel and Wiesel in the original
orientation-selectivity articles [137, 138], does not capture the full breadth of possible
information strategies contained in neural recordings.

Navigating through all the intricate mechanisms of neural coding could mandate an
extra dedicated manuscript. However, the main alternative hypothesis to rate coding is
temporal coding [78], which posits that neurons encode information through intricate
patterns in the timing of their spikes, implicating diverse aspects such as delays [118],
synchronicity, and first-spike times in the encoding process. These multifaceted
strategies all imply a different way to look at the data. This can be manageable
for recordings with a low neuron count, such as an implanted electrode in a given
area for an extended period of time [228]. With great sampling power comes little
understandability, and with experiments with hundreds of neurons, it becomes harder
to disentangle the meaning from the noise in the recordings. This is where machine
learning-based approaches come in, allowing the experimenter to study its recordings
with minimal prior assumptions.
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Figure 4.9. – Illustration of logistic regression applied to neuronal decoding. Addi-
tional details on the mathematical framework can be found in the chap-
ter’s article.

As the sensory organs can essentially be seen as "encoding" the features of the world,
using machine learning (or really, any non-computationally trivial) techniques to un-
derstand the neural activity is referred to as "neural decoding" [208, 113]. Numerous
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approaches exist for neural decoding, mostly aiming to categorize neural activity into
distinct types of stimuli through labelled, supervised training. The efficacy of a decod-
ing algorithm is contingent upon its ability to discriminate between different types of
neural activity; the more refined the discrimination, the more accurate the encoding
of the feature to be classified within the neuron. Intuitively, this is akin to having a
better separate of two conditional distributions in the neural substrate, which yields
better classifier performance as the boundary between these distributions becomes
better defined. For a given algorithm with optimal parametrization, improvement of
the classification based on two different recordings means that features sought-after
in the recordings have become more disentangled by the neurons in feature space [29].

This forms the basis of the present article. In this research, we employ logistic
regression as our neural decoder, a method praised for its simplicity, efficiency, and
biological plausibility. While the implementation details are elaborated within the
article, the foundational principle is depicted in the accompanying figure above.
Logistic regression serves as a robust tool to unravel the complex patterns within
neural datasets, allowing for the elucidation of the nuanced interactions and responses
of neurons to varied stimuli.

4.3. Article: "Cortical Recurrence supports
Resilience to Sensory Variance in the Primary
Visual Cortex"

The following article represents a key contribution of this thesis, notably by intro-
ducing two novel neuronal responses that contribute to sensory variance encoding.
Using a computational model, we validate these findings through a computational
model of intracortical connectivity, which serves as the cornerstone for our argument
as to how the brain processes distributions of naturalistic inputs in subsequent chap-
ters.

Full citation is as follows: Hugo J Ladret, Nelson Cortes, Lamyae Ikan, et al. “Cortical
recurrence supports resilience to sensory variance in the primary visual cortex”. In:
Communications Biology 6.1 (2023), p. 667
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ARTICLE

Cortical recurrence supports resilience to sensory
variance in the primary visual cortex
Hugo J. Ladret 1,2✉, Nelson Cortes2, Lamyae Ikan2, Frédéric Chavane 1, Christian Casanova 2 &

Laurent U. Perrinet 1

Our daily endeavors occur in a complex visual environment, whose intrinsic variability

challenges the way we integrate information to make decisions. By processing myriads of

parallel sensory inputs, our brain is theoretically able to compute the variance of its envir-

onment, a cue known to guide our behavior. Yet, the neurobiological and computational basis

of such variance computations are still poorly understood. Here, we quantify the dynamics of

sensory variance modulations of cat primary visual cortex neurons. We report two archetypal

neuronal responses, one of which is resilient to changes in variance and co-encodes the

sensory feature and its variance, improving the population encoding of orientation. The

existence of these variance-specific responses can be accounted for by a model of intra-

cortical recurrent connectivity. We thus propose that local recurrent circuits process

uncertainty as a generic computation, advancing our understanding of how the brain handles

naturalistic inputs.
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Selectivity to the orientation of visual stimuli is an archetypal
feature of the neurons in the mammalian primary visual
cortex (V1)1, which has been historically studied using low-

complexity stimuli such as oriented gratings2. While this
approach offers a clear hypothesis as to what neurons are
responding to, it only probes for neural selectivity to individual
input parameters, such as orientation or spatial frequency. Nat-
ural vision, however, involves rich cortical dynamics3 integrating
a mixture of multiple local parameters and global contextual
information4. Hence, a majority of our understanding of V1 relies
on neural responses to single inputs in orientation space, rather
than naturalistic responses to multiple orientations.

This knowledge gap is not trivial, as the variance of distribu-
tions of sensory inputs is a fundamental cue on which our brain
relies to produce coherent integration of sensory inputs and prior
knowledge of the world5,6 in order to drive behavior7. According
to Bayesian inference rules, low-variance inputs are processed
through fast feedforward pathways, whereas higher sensory var-
iance elicits a slower, recurrent integration8. How the brain per-
forms computations on variance is not yet fully understood. In
V1, it has been shown that single neurons undergo nonlinear
tuning modulations as a function of their input’s variance9 which
can serve as a functional encoding scheme10,11. These recent
results align with earlier models of recurrent cortical activity of
V112,13 and also match psychophysical measurements in
humans14–16. While it seems that local interactions within V1 are
sufficient to encode orientation variance17, the quantification of
single neuron responses, their dynamics and their link to a
functional population encoding of variance remains to be
established.

Here, we investigate the neural basis of variance processes in
V1 using stimuli matching the orientation content of natural
images18. We present a quantitative analysis of single neurons’
variance-tuning functions, as well as their dynamics, reporting
heterogeneous modulations. Two archetypal response types
emerge in V1, one of which relies on predominantly supra-
granular neurons that maintain robust orientation tuning despite
high sensory variance, allowing them to co-encode orientation
and variance, and enhancing V1’s orientation distribution
encoding. A well-established V1 intracortical recurrence model
accounts for these resilient neurons, aligning with canonical
Bayesian frameworks6 and suggesting uncertainty computations
as a new generic function for local recurrent cortical connectivity.

Results
Single-neuron response in V1 depends on input variance. We
recorded neural activity from 249 anesthetized cat V1 neurons
and measured orientation-selective responses to naturalistic
images called Motion Clouds18. These stimuli are band-pass fil-
tered white noise textures and offer three advantages over both
simple grating-like stimuli and complex natural images. First,
they enable fine control of mean θ and variance, controlled by Bθ,
of orientation distributions through a generative model, thereby
reproducing natural images’ oriented content (Fig. 1). Second, as
they are stationary in the spatial domain, they only probe
orientation space, excluding any second-order information
exploitable by the visual cortex19. Third, by conforming to natural
images’ 1/f2 power spectrum distribution20, they attain a desirable
balance between controllability and naturalness21. We generated
96 Motion Clouds by varying mean orientation θ between 0° and
180° in 12 even steps and variance Bθ between ≈0° and 35° in
eight evenly spaced steps.

All recorded neurons displayed orientation selectivity to
Motion Clouds. Nearly all (98.8%, p < 0.05, Wilcoxon signed-
rank test) units maintained their preferred orientation when

variance Bθ increased, while the peak amplitude of the tuning
curve diminished significantly (95.1% units, p < 0.05, Wilcoxon
signed-rank test, 73.1% mean amplitude decrease for Bθ= 35°).
Only 28.5% of the recorded units were still tuned for Bθ= 35.0°
stimuli (p < 0.05, Wilcoxon signed-rank test). Thus, increasing
input variance reduces single neuron tuning, which manifests
heterogeneously across neurons, as evidenced by two representa-
tive single units shown in Fig. 2a. Neuron A illustrates single units
which are no longer orientation-tuned when variance Bθ reaches
35° (W= 171.0, p= 0.24, Wilcoxon signed-rank test), unlike
neuron B (W= 22.5, p= 10−6) which exemplifies the aforemen-
tioned 28.5% variance-resilient units. These response types are
characterized by functions relating Bθ to the goodness of tuning
(circular variance, CV), named here variance-tuning functions
(VTF, Fig. 2b). Such VTFs represent the input/output transfor-
mation in variance space, and are well-fitted with Naka-Rushton
functions22 (Supplementary Fig. 2a). This allows to summarize
variance modulations using only three parameters: n, the VTF
non-linearity; Bθ50, the input variance level for the tuned-untuned
state transition; and f0, the orientation tuning goodness for
lowest-variance inputs. Overall, VTFs exposed diverse responses
to variance among V1 neurons, with median values outlining a
characteristic VTF that is slightly nonlinear, with a changepoint
at Bθ= 19.2° (Fig. 2c). In other words, most neurons tend to
change abruptly in tuning when input variance reaches 19.2°,
after which the response becomes less sensitive to orientation.
Alternative metrics were also calculated, including variance-half
width at half height (HWHH) and variance-maximum response
functions (Supplementary Fig. 2b–e). Although HWHH displayed
patterns resembling VTFs, we elected to not use it, as its reliance
on fits, its consequent susceptibility to fitting artifacts, and its
similarity with CV are not desirable properties. Since CV also
inherently accounts for the firing rate at the preferred orientation
(see “Methods”), we relied on this metric to describe both
maximum amplitude and goodness of tuning in a single metric.

Orientation variance impacts not only orientation tuning but
also the dynamics of the response of V1 neurons (Fig. 3).
Interestingly, both effects are linked, as demonstrated by the two
example VTFs: neuron B, which exhibited orientation-tuned
responses for Bθ= 35° inputs (Fig. 2a), also had a slower time-
dependent change of goodness of tuning (relative min. of
reduction of 42% of max. CV at 200 ms post-stimulation onset,
Bθ= 0°) compared to neuron A (relative min. of 26% of max. CV
at 90 ms post-stimulation onset, Fig. 3b). These dynamical
modulations were also heterogeneously distributed among the
population, significantly more spikes emitted 200ms after
stimulation onset for Bθ= 35° (Fig. 3d, U= 14936.0, p < 0.001,
Mann–Whitney U-test). In summary, orientation variance
induces changes in both tuning and dynamics of V1 neurons,
revealing two archetypal types of response: either fast in time and
nonlinear with respect to variance (neuron A) or slow in time and
linear with respect to variance (neuron B).

Multiple types of variance responses are found in V1. To
properly characterize the two aforementioned types of responses
to variance, we separated the recorded neurons into two groups
using K-means clustering the Principal Components (PC, Fig. 4)
of the neuronal responses. Clustering was performed on the VTFs
(Fig. 4b), tuning statistical measurements (Fig. 4c, d) and
response dynamics (Fig. 4e, f). We used the first 2 PC for clus-
tering the data, which accounted for 39.1% of the cumulative
variance (Supplementary Fig. 4a), and chose two clusters based
on the number of example responses and the empirical absence of
an elbow23 in the Within-Clusters-Sum-of-Squares (WCSS) curve
(Supplementary Fig. 4b). This splits the data into a cluster of 164
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neurons, including neuron A, and another cluster of 85 neurons
associated with neuron B’s response type. As neuron B displayed
resilience to increased input variance (Fig. 2a), its cluster was
labeled resilient neurons. Conversely, neurons clustered with
neuron A were labeled vulnerable neurons (blue and red colors,
respectively, Fig. 4a). Opting to categorize the data into two
distinct response types facilitates a comprehensive understanding
of the underlying continuum of behaviors. This approach has
proven successful in the characterization of novel visual respon-
ses, such as V1 simple/complex cells24 and MT pattern/compo-
nent cells25.

The K-means clustering resulted in a significant difference
between the two groups’ VTF parameters (Fig. 4b): resilient
neurons had significantly more linear modulations
(logðnÞ;U ¼ 4029:0:0; p < 0:001, Mann–Whitney U-test), higher
changepoints (Bθ50,U= 7854.0, p= 0.028) and better tuning to
low-variance inputs (f0,U= 4992.0, p < 0.001), which endows
them with the ability to respond to an orientation on a broader
range of input variances26,27. No significant differences in the
variance-HWHH and variance-firing rate functions were
observed, except for the non-linearity of the latter metric
(Supplementary Fig. 5). This is coherent with the clustering on
the statistical measurement of orientation tuning, which showed
that resilient neurons remained significantly tuned to higher
values of Bθ (Bθmax, Fig. 4c, U= 9155.0, p < 0.001). However, both
groups of neurons had a similar circular variance for Bθ= 35°
(Fig. 4d). This suggests that both types of neurons were similarly
poorly tuned for inputs of the highest variance, but underwent
different tuning changes between Bθ= 0° and Bθ= 35°. In terms
of dynamics, the two groups exhibited the same differences that
characterized neurons A and B. Resilient neurons discharged
significantly later than vulnerable neurons for Bθ= 0° (Fig. 4e,
U= 8455.5, p= 0.002), but both groups were on par for inputs of
Bθ= 35° (U= 7794.5, p= 0.063). Interestingly, resilient neurons
had significantly lower time to the maximum amplitude of the
tuning curve for Bθ= 0° (Fig. 4f, U= 5542.5, p= 0.014), which
opposes the early/late ratio of spikes. Neither group showed

variance-dependent modulation of the delay to maximum spike
count (U= 3058.0, p= 0.084 and U= 11545.5, p= 0.090 for
resilient and vulnerable, respectively), and both groups showed
similar delay for Bθ= 35° (U= 6094.5, p= 0.158).

The existence of these two groups of neurons could not be
attributed to the integration of the drifting motion of the stimuli
(direction selectivity index, unused in the clustering process,
Fig. 4g, U= 7031.5, p= 0.910). Instead, the location of the
recorded units (unused in the clustering process) predominantly
positioned the resilient neurons in supragranular layers, offering a
mechanistic basis for their existence (Fig. 4h). Moreover, resilient
neurons have sharper orientation tuning and slower dynamics,
which are distinctive features of supragranular neurons28,29. This,
however, does not establish a functional role for these two types
of responses in V1.

Population-level modulations of the orientation code. As the
neuronal population has been separated into well-characterized
groups, we wish to understand the functional role played by
resilient and vulnerable neurons. To that end, we used a neuronal
decoder that probes for population codes in V1, enabling us to
seek what parameters of the stimuli each neuron group was
encoding. We trained a multinomial logistic regression
classifier30, a probabilistic model that classifies data belonging to
multiple classes (see “Methods”). This classifier received the firing
rate of neurons in a sliding time window (100 ms) and learned,
for each neuron, a coefficient that best predicts the class (i.e., the
generative parameter θ, Bθ or θ × Bθ) of the stimulus.

This decoder was first used to probe for representation of the
stimuli’s orientations θ in the population activity. For this
purpose, the dataset of trials was separated for each variance, such
that eight independent, Bθ-specific, orientation decoders were
learned, with optimal parametrization (Supplementary Fig. 6).
These orientation decoders were able to retrieve the correct
stimulus’ θ well above the chance level (1 out of 12 orientations,
max. accuracy = 10.56 and 4.68 times chance level for Bθ= 0°
and Bθ= 35°, respectively) from the entire population recordings.
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The temporal evolution of these decoders’ accuracy (Fig. 5a)
showed that maximally accurate orientation encoding correlates
almost linearly with the stimuli’s variance, as does the time to
reach this accuracy (Fig. 5e, black). These dynamics depend on
the input’s variance, exhibiting a rapid initial rise followed by a
plateau for low-variance inputs, while steadily increasing linearly
over time for high-variance inputs. Interestingly, the decoding
accuracy remained stable for approximately 100 ms even after a
stimulus was no longer displayed. Since the decoders are trained
independently in each time window, this accumulative process
occurs in the recordings themselves, and not in the decoder.

The full output of these decoders (see “Methods”) is a
population tuning curve, which displays the likelihood of
decoding all possible input classes (here, all θ, Fig. 5b), rather
than the proportion of correct decoding reported by the accuracy
metric. The clear correlation between the sharpness of these
population tuning curves (Fig. 5f left) and the accuracy of the
decoder show that improvements in decoding accuracy rely
directly on a population-level separation of features within

orientation space30, particularly at higher Bθ (Fig. 5b, third panel).
Overall, Bθ influences the temporality of the orientation code in
V1, which echoes its influence on single-neuron dynamics (Fig. 3).
The short delay required to process precise inputs is congruent
with the feedforward processing latency of V131, while the
increased time required to reach maximum accuracy for low
precision oriented inputs suggests the involvement of a slower,
recurrent mechanism.

We then sought to assert the role of the vulnerable and the
resilient neural populations by decoding θ from either group. The
number of neurons in each group was imbalanced (79 more
vulnerable neurons), which influences the accuracy of the decoder
(Supplementary Fig. 6). Consequently, we randomly selected
(with replacement) groups of 100 neurons from either popula-
tion, repeating the selection 5 times. Using the same approach as
with the global population decoding, we then trained Bθ-specific
orientation decoders on the activity of either group of neurons.
Resilient neurons outperformed vulnerable ones in decoding
accuracy for 56% of the time steps, mainly in the 160–330 ms
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period (Fig. 5c). However, both groups exhibited similar
population tuning curves (Fig. 5d) and time courses (Fig. 5e).
Despite the better tuning of resilient neurons to inputs with
higher variance (Fig. 4), both groups have overall similar
orientation encoding performances for Bθ= 35°. Therefore,
orientation can be decoded somewhat more effectively from the
resilient neurons at the population level, but neither group
appears to have a clear or stable advantage over the other in this
regard, especially at higher Bθ.

A subset of V1 neurons co-encode orientation and its variance.
Given that orientation encoding did not reveal a fundamental
difference in the respective contributions of resilient and vul-
nerable neurons, we then investigated the encoding of the sti-
mulus’ variance Bθ. The same type of decoder previously used
failed to infer the variance Bθ (chance level = 1 out of 8 values of
Bθ, max. accuracy = 1.91 times chance level) from the population
activity (Supplementary Fig. 8a, b). This variance decoding also
failed to reach more than twice the chance level (max. accuracy =
1.72 and 1.71 times chance level for resilient and vulnerable

neurons, respectively) in both resilient and vulnerable neurons
(Supplementary Fig. 8c,d). At the single neuron level, tuning
curves flatten with increments of variance (Supplementary
Fig. 2a), which makes it difficult to distinguish activity generated
by stimuli with Bθ= 0. 0° and orthogonal orientation from the
activity generated by stimuli with Bθ= 35. 0° and preferred
orientation. This limitation could potentially stem from the
recording scale (249 neurons), which is more than an order of
magnitude smaller than the quantity of neurons a single V1
biological decoder can access32. Thus, neither the decoding of
variance Bθ nor the decoding of orientation θ accounts for a
different role between resilient and vulnerable neurons.

The decoding methods used so far have assumed that V1
encodes independently single input parameters. However, a more
realistic assumption is to consider the visual system’s natural
inputs as distributions of information (Fig. 1) that cortical
neurons must process from thalamic inputs33 based on a
probabilistic computational principle34. Here, this implies that
the naturalistic form of processing for a V1 neuron would be co-
encoding both the mean feature (θ) and its associated variance
(Bθ) to access the entire probability distribution.
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We thus proceeded to train a decoder that retrieves both
orientation and variance of the stimulus’ simultaneously, referred
to as a θ × Bθ decoder. This decoder correctly predicted
orientation and variance with a maximum accuracy reaching
16.36 times the chance level (1/96, Fig. 6a, gray). The likelihood
structure (Fig. 6b, upper row) showed that the correct θ was
decoded alongside multiple concurrent hypothesis over Bθ. The
progressive increase of accuracy stems from the emergence of a
dominant encoding of θ at the correct Bθ, consequently
diminishing the relative magnitude of representations over other
Bθ values over time. Interestingly, resilient neurons showed here a
different functional role from vulnerable neurons, with markedly
better co-encoding of Bθ and θ (max. accuracy = 11.0 and 9.0

times chance level for resilient and vulnerable neurons,
respectively, Fig. 6a, blue, red). Both groups displayed ambiguity
regarding Bθ (Fig. 6b, lower row), and correlated sharpening/
accuracy ratios on the correct Bθ population curve (Fig. 6c, left) or
on the off-median population curves (Fig. 6c, right).

To understand the utility of this co-encoding, we marginalized
the decoder over Bθ, creating an orientation-only encoder that
simultaneously learned both orientation and variance. Data from
resilient neurons then provided significantly better encoding of
orientation than vulnerable neurons (max. accuracy = 6.0 and 5.4
times the 1/12 chance level for resilient and vulnerable neurons
respectively, Fig. 6d, gray regions), demonstrating that the overall
V1 orientation code improves with a co-decoding of its variance.
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The distinction between resilient and vulnerable neurons is
further emphasized by the decoder coefficients, which represent
the contributions of each type of neuron toward the overall θ × Bθ
code (Fig. 6e, for single neuron examples see Supplementary
Fig. 9). Here, these coefficients are depicted as a polar plot, where
the orientation θ (centered around preferred orientation) is
shown as the angle of each bin from the upper vertical and the
variance Bθ is represented as the eccentricity of each bin from the
center. Visualizing the coefficients of the whole population
decoder (i.e., trained on the 249 neurons, Fig. 6a, gray) shows that
the output learned from resilient neurons concurrently informs
about both a wide range of orientations and variances, as
observed by the extent of the bins in the eccentricity (Bθ) axis
(Fig. 6e, bottom row). On the other hand, the decoding process
extracted orientation information on a very small range of Bθ
from the activity of vulnerable neurons (Fig. 6e, top row). Even
though the coefficients are learned independently at each time
step, the difference in information between the two groups of
neurons remains extremely stable through time.

Overall, orientation and its variance can be co-decoded
simultaneously from resilient neurons, while only orientation
can be decoded from vulnerable neurons. This is confirmed by a
continuous score-based decoding metric based on the K-means
parameters (Fig. 6f) that correlates, for the entire population (i.e.,
without splitting into two groups), their maximum decoding
accuracy to a degree of vulnerability/resilience. After providing
this functional rationale for resilient and vulnerable neurons, we
finally address the question of how both types of neurons can
exist in V1.

Recurrent activity can explain the existence of neurons co-
encoding orientation and variance. A notable difference
between vulnerable and resilient neurons is their different loca-
tion within the cortical layers (Fig. 4h). This typically implies
differences in local circuitry, particularly in the intra-V1 recurrent
interactions between cortical columns, which are mostly confined
to supragranular layers35. Given that resilient neurons are pre-
dominantly found in these supragranular layers, we aimed to find
a mechanistic rationale for the existence of the two groups of
neurons based on local interactions in V1. We developed a neural
network from a well-established computational model of recur-
rent connectivity in V1, originally used to account for the
intracortical activity in cat V136 and later simplified as a center-
surround filter in the orientation domain29. This model has
already accounted for an extensive range of emerging properties
in cortical circuits37,38. Briefly, it is built of orientation-selective
neurons tiling the orientation space and connected among
themselves via recurrent synapses which follow an excitatory/
inhibitory difference of von Mises distributions (Fig. 7a). Here, we
model inputs with higher variance as more spread in orientation
space (Fig. 1) and thus in model space, which hence drives the
recurrent dynamics of the model based on Bθ (for a full
description, see “Methods”).

Considering that feedforward connectivity with heterogeneous
tuning can encode mixtures of orientations and natural images9,
we first ran our model without recurrent synapses. We
reproduced the heterogeneous selectivity by convolving the input
with tuning curves of varying bandwidths (Fig. 7b, inset). This
feedforward mode of the network was only able to produce a
limited number of responses (Fig. 7b), in which increasing the
bandwidth of the tuning curves increased the parameter f0 of the
VTF, but kept n and Bθ50 constant.

Barring that explanation, we focused on the role of recurrent
synapses and disabled the convolution of inputs. We varied the
concentration parameters of the synaptic distributions κinh and

κexc (Fig. 7c, e) in 200 even steps ranging from 0.35 to 7, yielding
40,000 possible configurations of the model. This allowed to
manipulate the VTF and to accurately reproduce those of single
neurons recorded in V1 (neuron A, B in Fig. 2b and C in
Supplementary Fig. 1, modeled in Fig. 7c). Altering the type of
recurrence between neurons with different orientation preference
allowed to reproduce all VTF found in V1. The parameter spaces
(Fig. 7e) showed a trend for resilient VTFs (low n, high Bθ50, low
f0) to be found mostly around the Kexc; Kinh identity line, thus
produced by balanced recurrent connectivity. Vulnerable VTFs
(high n, low Bθ50, high f0) were, on the contrary, mostly found
above the identity line, where the configuration of the network is
dominated by excitation over inhibition. This is consistent with
the range of parameters that yielded higher response latency
(Fig. 7d), which also occupied more parameter space when input
variance increased. In summary, recurrence between V1 neurons
seems to be sufficient to explain the existence of vulnerable and
resilient neurons and, consequently, to account for the co-
encoding of orientation and variance.

Discussion
The variance of oriented inputs to V1 impacts orientation
selectivity9 and we have sought to understand how V1 could
process this input parameter. We found that variance causes
modulations in tuning (Fig. 2) and dynamics (Fig. 3) of single V1
neurons, which we have classified as either vulnerable or resilient
(Fig. 4). Decoding analysis revealed variance-dependent accu-
mulative dynamics in the two groups of neurons (Fig. 5) that are
directly tied to a population-level separation of features within
orientation space30. Both groups can encode orientation but not
variance (Supplementary Fig. 8), and only resilient neurons are
able to accurately co-encode orientation and variance of the input
to V1 (Fig. 6). Based on cortical layer position (Fig. 4h) and on a
computational approach (Fig. 7), we propose that the processing
input variance in V1 is supported by recurrent connectivity
between local cortical populations (Fig. 8). This not only
improves the encoding of orientation in V1 but also links directly
to canonical Bayesian frameworks, suggesting uncertainty com-
putation as a new mechanism supported by local recurrent cor-
tical connectivity.

Here, we restricted our approach to orientation space, rather
than investigating the full extent of spatial relationships which
are present in natural images. Thus, full-field stimuli without
second-order correlation were used, which compared to a purely
ecological environment, have likely excluded end-stopped
cells39. While this approach limited the responses to V1 and
excluded higher-order cortical areas, there exists both neuro-
biological and computational evidence that V1 does not need to
recruit other cortical areas to process orientation variance. For
instance, the heterogeneous recurrent excitatory and inhibitory
synaptic connectivity in V140–43 sustains resilient orientation
tuning44 that can account for the diversity of single neurons’
resilience under different connectivity profiles, as explored in
our computational model (Fig. 7). This is supported by the
temporal scale of local recurrent connectivity, namely the
slowly-conducted horizontal waves in an orientation map45,
which fit the view of variance processing as an iterative and
accumulative computation implemented by local recurrent
interactions between supragranular resilient neurons that are
heavily connected through recurrent interactions with neigh-
boring cortical columns28,29,35,45. In this regard, our reported
time scales may have been slightly affected by the use of anes-
thesia (halothane), which has a limited visible effect on V146,47

and is less likely to cause modulations in this area compared to
higher-order areas48–51.
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Computationally, most existing models support the idea that
processing orientation variance can be achieved solely with local
V1 computations10. For instance, Goris et al.9 reported that
heterogeneously tuned V1 populations help encode the orienta-
tion distributions found in natural images and that this functional
diversity could be accounted for by a linear-nonlinear (L-NL)
model. While this could explain the diversity of tuning in our
data (Fig. 2), we found that such a model failed to account for
some types of modulations of the VTFs (Fig. 7b). Therefore, we
employed a model designed to replicate intracortical cat V1
data38 and demonstrated that it reproduces various VTFs and
dynamics observed in our recordings. The model used here pools
activity from multiple orientation-tuned units into a single neu-
ron, which we interpreted as a local recurrent model. While our
results do not require contributions from extrastriate regions to
explain the observed results, the possibility of recurrence invol-
ving neurons outside V1 cannot be entirely ruled out at this
time52.

Our study confirms the findings in the anesthetized macaque
literature9 by identifying single-neuron variance modulations that
serve as the basis for decoding orientation variance at the
population level in V1. This suggests that a common mechanism
may underlie this neural mechanism in both felines and primates,
which is a fundamental computational requirement for the
proper encoding of natural images in V153. Although gain/var-
iance V1 functions have been previously reported17, we demon-
strate a similar input-output relationship in the form of VTFs,
that has the added benefit of characterizing and extrapolating

variance modulations across the full dynamical range of V1
populations. Further, we finely analyzed the temporal component
of the response that is absent from the literature. We propose that
all these response properties can be linked to cortical layers,
binding the idea that supragranular neurons with sharp tuning
and slow dynamics28,29 support the co-encoding orientation and
its variance.

This leads to an interesting tie to Bayesian inference, namely
under the specific case of predictive coding34, that canonically
assigns (inverse) variance weighting of cortical activity to supra-
granular recurrent connectivity6,8, without the need for extra-
striate computations. This is an interesting perspective that opens
up a general interpretation of our results into the broader context
of processing variance/precision/uncertainty at different scales of
investigations. Extending the present results to other cortical
areas or other sensory modalities would be a simple process, given
the generative stimulus framework used here18, which could yield
pivotal new insights into our understanding of predictive pro-
cesses in the brain.

Methods
Visual stimulation. Motion Clouds are generative model-based stimuli18 that
allow for fine parameterized control over naturalistic stimuli54, which is a desirable
trait when probing sensory systems under realistic conditions21. They are mathe-
matically defined as band-pass filtered white noise stimuli, whose filters in Fourier
space are defined as a parameterized distribution in a given perceptual axis (here,
only orientation, but can be extended to speed55 and scale56). Thus, the Motion
Clouds presently used are fully characterized by their mean orientation and their
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orientation variance, such that a given stimulus S can be defined as:

S ¼ F�1ðOðθ;BθÞÞ ð1Þ

where F is the Fourier transform and O the orientation envelope, characterized by
its mean orientation θ and its orientation bandwidth Bθ. For Bθ<45:0

�;Bθ ¼ 1=
ffiffiffi
κ

p
,

where κ is the concentration parameter of a von Mises distribution, and hence
approximates the standard deviation57. It thus serves as a measure of the orien-
tation variability in the pattern, and as such, we used the term variance to describe
it throughout the text. A total of 96 different stimuli were generated, with 12 mean
orientations θ ranging from 0 to π in even steps, and eight orientation variance Bθ
ranging from ≈0 to π/5 in even steps. The orientation envelope is a von Mises
distribution:

Oðθ;BθÞ ¼ exp
cosð2ðθf � θÞÞ

4 � B2
θ

� �
ð2Þ

where θf is the angle of the frequency components of the envelope in the Fourier
plane, which controls the spatial frequency parameters of the stimuli, set here at 0.9
cycle per degree. The stimuli were drifting orthogonally in either direction with
respect to the mean orientation θ at a speed of 10°/s, which is optimal to drive V1
neurons58. For the range of values of Bθ considered here, the orientation envelope
approximates a Gaussian distribution and Bθ is thus a measure of the variance of
the orientation content of the stimuli.

All stimuli were generated using open-source Python code (see Additional
information) and displayed using Psychopy59. Monocular stimuli were projected
with a ProPixx projector (VPixx Technologies Inc.) onto an isoluminant screen
(Da-Liteⓒ) covering 104° × 79° of visual angle. All stimuli were displayed for
300 ms, interleaved with a mean luminance screen (25 cd/m2) shown for 150 ms
between each trial. Trials were fully randomized, and each stimulus (a unique
combination of θ × Bθ × drift direction) was presented 15 times. Stimuli were
shown at 100% contrast, meaning that as Bθ increased, the amount of orientation
energy at median orientation θ decreased, and conversely for off-median
orientations (as illustrated in Fig. 1b). This differs from manipulating the contrast,
which would reduce the orientation energy at all orientations.

Surgery. Experiments were conducted on three adult cats (3.6–6.0 kg, 2 males). All
surgical and experimental procedures were carried out in compliance with the
guidelines of the Canadian Council on Animal Care and were approved by the
Ethics Committee of the University of Montreal (CDEA #20-006). Animals were
initially sedated using acepromazine (Atravet®, 1 mg/kg) supplemented by atropine
(0.1 mg/kg). Anesthesia was induced with 3.5% isoflurane in a 50:50 mixture of
O2:N2O (v/v). Following tracheotomy, animals underwent artificial ventilation as
muscle relaxation was achieved and maintained with an intravenous injection of
2% gallamine triethiodide (10 mg/kg/h) diluted in a 1:1 (v/v) solution of 5%
dextrose lactated Ringer solution. Through the experiment, the expired level of
CO2 was maintained between 35 and 40 mmHg by adjusting the tidal volume and
respiratory rate. Heart rate was monitored and body temperature was maintained
at 37 °C by means of a feedback-controlled heated blanket. Lidocaine hydro-
chlorine (2%) was applied locally at all incisions and pressure points and a cra-
niotomy was performed over area 17 (V1, Horsley-Clarke coordinates 4-8P;
0.5–2 L). Dexamethasone (4 mg) was administered intramuscularly every 12 h to
reduce cortical swelling. Eye lubricant was regularly applied to avoid corneal
dehydration.

Electrophysiological recordings. During each recording session, pupils were
dilated using atropine (Mydriacyl) while nictitating membranes were retracted
using phenylephrine (Mydfrin). Rigid contact lenses of appropriate power were
used to correct the eyes’ refraction. Anesthesia was changed to 0.5–1% halothane to
avoid anesthesia-induced modulation of visual responses47. Finally, small dur-
ectomies were performed before each electrode insertion and a 2% agar solution in
saline was applied over the exposed cortical surface to stabilize recordings. Linear
probes (≈1MΩ, 1x32-6mm-100-177, Neuronexus) were lowered in the cortical
tissue perpendicularly to the pia, and extracellular activity was acquired at 30KHz
using an Open Ephys acquisition board60. Single units were isolated using Kilosort
261 and manually curated using Phy62. Clusters with low amplitude templates or
ill-defined margins were excluded from further analysis. The additional exclusion
was performed if a cluster was unstable (firing rate below 5 spikes.s−1 for more
than 30 s), or if the neuron was not deemed sufficiently orientation selective
(R2 < 0.75 when fitted with a von Mises distribution). Passing that exclusion step,
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connectivity
(Strong activity)
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Strong recurrent
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Fig. 8 Summary of the findings. The top row is a representation of a set of orientation-selective units (here, columns) processing low-variance inputs,
while the bottom row schematizes the processing of high-variance inputs. In the case of low-variance inputs to V1, the underlying sensory distribution is
sharp in the orientation space, driving mostly a single orientation-selective unit that processes orientation in a fast feedforward manner. The feature
encoded by this activity then stays stable through time (from left to right). For inputs of higher orientation variance, the sensory input is broadly distributed
in the orientation space, which drives many dissimilarly tuned units, thus recruiting slow recurrent interactions. The quality of feature encoding
progressively increases through time, as recurrent interactions perform computations to represent the most salient oriented feature in the input.

ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-023-05042-3

10 COMMUNICATIONS BIOLOGY |           (2023) 6:667 | https://doi.org/10.1038/s42003-023-05042-3 | www.nature.com/commsbio

4. Encoding of Orientation Variance through Recurrence in V1 – 4.3. Article: "Cortical
Recurrence supports Resilience to Sensory Variance in the Primary Visual Cortex"

108



all remaining neurons responded to Motion Clouds. Laminar positions were
determined by the depth of the recording site with respect to the pia, which was
then cross-validated by the evoked Local Field Potential (LFP) using sink/source
analysis63,64.

Single neuron analysis. Orientation tuning curves were computed by selecting a
300 ms window maximizing spike-count variance65. The firing rate was averaged
across drift directions and a von Mises distribution57 was fitted to the data:

f ðθkÞ ¼ R0 þ ðRmax � R0Þ � exp κ � ðcosð2ðθk � θpref ÞÞ � 1Þ
n o

ð3Þ

where θk is the orientation of the stimuli, Rmax is the response (baseline subtracted)
at the preferred orientation θpref, R0 the response at the orientation orthogonal to
θpref and κ a measure of concentration. To control for direction selectivity when
averaging tuning curves across drift direction, we computed a direction selectivity
index:

Ds ¼
Rpref � Rnull

Rpref
ð4Þ

where Rpref is the firing rate at the preferred direction (baseline subtracted) and
Rnull is the firing rate at the preferred direction plus π. The quality of each tuning
curve was assessed by computing a global metric, the circular variance (CV) of the
unfitted data, which varies from 0 for perfectly orientation-selective neurons to 1
for orientation-untuned neurons29. It is defined as:

CV ¼ 1� ∑kRðθkÞ � exp 2iθk
� �

∑kRðθkÞ

����
���� ð5Þ

where R(θk) is the response of a neuron (baseline subtracted) to a stimulus of angle
θk. The changes of CV as a function of Bθ were fitted with a Naka-Rushton
function22:

f ðBθÞ ¼ f 0 þ fmax

Bn
θ

Bn
θ þ Bn

θ50
ð6Þ

where f0 is the base value of the function, f 0 þ fmax its maximal value, Bθ50 the
stimulus’ variance at half fmax and n a strictly positive exponent of the function.

The significance of the tuning to orientation was measured by comparing the
unfitted firing rate at the preferred and orthogonal orientations across trials, using
a Wilcoxon signed-rank test correct for continuity, and the maximum value of Bθ
which yielded a significant result was designed as Bθmax (i.e., the maximum
variance at which a neuron is still tuned). Shifts of the preferred orientation were
evaluated as the difference of θpref between trials where Bθ= 0° and Bθ ¼ Bθmax.
The significance of the variation of the peak amplitude of the tuning curve was
measured by comparing the unfitted firing rate at the preferred orientation between
trials where Bθ= 0° and Bθ ¼ Bθmax.

Population decoding. The parameters used to generate Motion Clouds were
decoded from the neural recordings using a multinomial logistic regression
classifier30. For a given stimulus, the activity of all the recorded neurons was a
vector XðtÞ ¼ X1ðtÞ X2ðtÞ � � � X249ðtÞ

� 	
, where Xi(t) is the spike count of

neuron i in a time window [t; t+ ΔT]. The onset of this window t was slid from
−200 to 400 ms (relative to the stimulation time) in steps of 10 ms while ΔT was
kept constant at 100 ms. It should be noted that merging neural activity across
electrodes or experiments is a common procedure66,67, which we validated in our
data by verifying that the electrode or experiment which yielded the data could not
be decoded from the neural activity (Supplementary Fig. 7). Mathematically, the
multinomial logistic regression is an extension of the binary logistic regression30

trained here to classify the spike vector X(t) between K classes. The probability of
any such vector belonging to a given class is:

Pðy ¼ kjXðtÞÞ ¼ exp hβk;XðtÞi
� �

∑K
k0¼1 exp hβk0 ;XðtÞi

� � ð7Þ

where 〈⋅,⋅〉 is the scalar product over the different neurons, k= 1,…, K is the class
out of K possible values and βk are the coefficients learned during the training
procedure of the classifier. Several decoders were trained with classification tasks:
decoding orientation θ (K= 12, Fig. 5), decoding orientation variance Bθ (K= 8,
Supplementary Fig. 8) or both (K= 12 × 8= 96, Fig. 6). All meta-parameters were
controlled, showing that the decoding performances stem mainly from experi-
mental data rather than fine-tuning of the decoder parameterization (Supple-
mentary Fig. 6). For all decoding experiments reported, we used integration
window size ΔT= 100 ms, penalty type= ℓ2, regularization strength C= 1. and
train/test split size= 0.15.

The performance of all decoders was reported as the average accuracy across all
classes K, known as the balanced accuracy score68. The accuracy for each specific
class k can also be reported in the form of a population tuning curve, in which the
likelihood of decoding each possible class K is given by equation (7). The
significance of differences between two neuron groups was reported only when two
consecutive time steps, i.e., 20 ms or more, exhibited significant differences. To
estimate the time course of the decoders, they were fitted in the [0; 300] ms range

with a sigmoid function:

σ ¼ maxacc
1

1þ e�kτ


 �
þminacc ð8Þ

where maxacc and minacc are respectively the maximum and minimum accuracies
of the decoder, k the steepness and τ the time constant of the function. To perform
decoding on the same number of vulnerable or resilient neurons, we randomly
picked replacement groups of 100 neurons and bootstrapped this process
five times.

As the neurons were clustered into two populations for comparison purposes
(Fig. 4), we also reported the decoding accuracy based on a continuous
vulnerability score (Fig. 6f). This score was computed as a sum of neuronal
responses variables significantly different after the clustering, weighted by their
mean Principal Component (PC-1 and PC-2) parameters:

score ¼1�W1ðBθ50Þ þW2ð1� logðnÞÞ þW3ð1� f 0Þ þW4ðBθmaxÞ
þW5ð1� CVÞ þW6ðearly/late ratioÞ þW7ðdelay Þ

ð9Þ

where Wi is a parameter yielded by the Principal Component Analysis
corresponding to its associated neuronal response variable. Each variable is
normalized, yielding a scalar score that varies between 0 (most resilient) to 1 (most
vulnerable neuron). This score-based decoding was performed on groups of 100
neurons sorted by descending score and repeated a total of seven times on
increasingly more vulnerable neurons (thus with an overlap of 20 neurons).

Computational model. We used a recurrent network of orientation-tuned neurons
to model responses to increasing orientation variance Bθ. The model presently used
was first used to account for the intracortical activity in the cat primary visual
cortex36, although it was presently simplified as a center-surround filter in the
orientation domain29. Notably, this network has been able to account for numerous
experimental findings, including learning and adaptation of cortical neurons37,38,
whose implementations are similar to ours.

The model consisted of N orientation-tuned neurons, evenly tiling the
orientation space between −π and π. Each neuron is modeled as a single passive
unit whose membrane potential obeys the equation:

τδV=δT þ V ¼ V ff þ Vexc � V inh ð10Þ
where τ is the membrane time constant and Vff,Vexc,Vinh are the synaptic
potentials coming from the feedforward input, recurrent excitatory and recurrent
inhibitory connectivity, respectively. The firing rate R at time t of each neuron is
computed as an instantaneous quantity modulated by a gain α:

RðtÞ ¼ α �maxðVðtÞ; 0Þ ð11Þ
For computational simplicity, the neurons had no spontaneous firing rate and V
was measured relative to the firing threshold. Each neuron could send mixed
excitatory and inhibitory synaptic potentials to its neighbor, although this specific
model has been reported to achieve similar behavior with separate units38. For each
stimulus of main orientation θ, the input to a cell with preferred orientation θpref is:

V ff ðθpref Þ ¼ J ff
eκff �cosð2ðθ�θpref ÞÞ

2πI0ðκff Þ
ð12Þ

where Jff is the strength of the input and I0 is the modified Bessel function of order
0. The right-hand side of the equation describes a von Mises with mean θpref and
concentration κff. This latter parameter is related to the orientation variance Bθ,
which was varied to yield a model’s TVF Bθ/CV curves:

Bθ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5 arccosððlogð0:5Þ þ κff Þ=κff Þ

2 logð2Þ

s
ð13Þ

a total of 20 Bθ spanning the same range used in the experiments were used, each
with 32 different θ tiling a [−75°;75°] orientation space. The recurrent connectivity
profile for excitatory (Cexc) and inhibitory (Cinh) synapses was controlled by
separate von Mises distributions over the orientation space Θ:

Cexcðθpref Þ ¼
eκexc �cosð2ðΘ�θpref ÞÞ

2πI0ðκexcÞ
ð14Þ

Cinhðθpref Þ ¼
eκinh �cosð2ðθ�Θpref ÞÞ

2πI0ðκinhÞ
ð15Þ

which are both used to describe an overall connectivity kernel:

Ctotðθpref Þ ¼ JexcCexc � J inhCinh ð16Þ
which followed a typical Ricker wavelet (or Mexican hat) shape (Fig. 7d). The
overall activity of the network is then a weighted sum of the firing rates of all the
neurons:

Vexc � V inhðtÞ ¼ ∑
Θ
Ctotðθpref Þ � RðtÞ ð17Þ

Parameterization of the model was done to match single V1 neuron recordings
of anesthetized cats, in an experimental setup similar to the one used here69.
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The computational procedure to match experimental data was entirely done in a
previous publication38. Briefly, it consisted in scanning a range of possible values
for each parameter, then finding all possible combinations using a metric of
likeliness to single grating response, time-to-peak, peak response and tuning width.
The parameters yielded by this procedure were τ= 10.8 ms; α= 10.6 Hz/mV;
Jff= 9.57 mv/Hz; Jexc= 1.71 Hz/mV; Jinh= 2.0178 Hz/mV. For the feedforward
mode of the model (Fig. 7b), Jexc and Jinh were set to 0 Hz/mV and the input was
convolved with a receptive field:

RF ¼ eκRF �cosð2ðθ�Θpref ÞÞ

2πI0ðκRFÞ
Þ ð18Þ

of which we reported the Half-Width at Half-Height, given by70:

HWHH ¼ 0:5 arccosðlogð0:5Þ þ κ

κ
Þ ð19Þ

For the recurrent mode (Fig. 7c–e), the concentration measures of the recurrent
connectivity profiles κexc and κinh were both varied from 0.35 to 7, in 200 even
steps, and the input was not convolved with a receptive field.

Statistics and reproducibility. All data were analyzed using custom Python code.
Statistical analysis was performed using non-parametric tests. Wilcoxon signed-
rank test with discarding of zero-differences was used for paired samples and
Mann–Whitney U-test with exact computation of the U distribution was used for
independent samples. Due to the impracticality of using error bars when plotting
time series, colored contours are used to represent standard deviation values
(unless specified otherwise), with a solid line representing mean values. For box-
plots, the box extends from the lower to upper quartile values, with a solid white
line at the median value. The upper and lower whiskers extend to respectively
Q1− 1.5*IQR and Q3+ 1.5*IQR, where Q1 and Q3 are the lower and upper
quartiles and IQR is the interquartile range.

Reporting summary. Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data used in the present study is publicly available in a Figshare repository71.
Unprocessed electrophysiological recording files are available upon reasonable request to
the corresponding author.

Code availability
Custom Python code written for the present study is publicly available in a GitHub
repository72.
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4.4. Conclusion
In this article, we have studied how the (inverse) variance of oriented inputs affects

V1. We have replicated some neural responses known in macaquesV1 [115], extending
them to complex modulations of the dynamics of single neurons and populations.
Using a prior-free machine-learning approach, we have probed for neural code in
the population activity, uncovering two functional types of neurons that can encode
either solely the sensory feature, or jointly the sensory feature and its variance. Based
on cortical layer position and on a computational approach, we propose that the
processing input variance in V1 is supported by recurrent connectivity between local
cortical populations.

This directly ties the present article into the predictive processing framework intro-
duced earlier in the manuscript (Equation 2.3), as the experiments here essentially
mean consists in manipulating the variance Σu of a light pattern, in combination
with its mean g (v), respectively Bθ and θ in the article. While this means total access
over the distribution of the input, two limitations on the predictive aspect of these
recordings are missing. First, the distribution of internal priors were not controlled,
for tractability’s sake. This could have been done with an adaptation protocol, for
example, by biasing the input over a given set of variables [69]. Second, we did not
control whether the recorded neurons were encoding prediction errors or predictions.
The former is rather simple to do, by inducing a mismatch between an unexpected
sequence of patterns [162] (for example, an abrupt change of repeated orientations).
The latter is more complex, as a major challenge in identifying them stems from their
propensity to response like bottom-up activated neurons in various conditions [163].

Nonetheless, the present results provide an experimental validation of probabilistic
processing in the brain, if not directly predictive (due to the anesthetized setup). This
proves that there exists a mechanism by which the variance can weigh the activity
of the V1, essentially linking back to Equation 2.26, in which the neurobiological
implementation of Σp and Σu would be through recurrent connectivity in the brain,
as predicted by the matrix form of predictive processing problems [31] (Figure 2.12).
Further, the heterogeneity of recurrent connectivity, and the cross-orientation process
between neurons as advanced in the final section of the article matches very well the
notion that these specific interactions are competitive, inhibitory ones (Figure 2.13).

These discoveries also have very interesting ties to canonical models of orientation
selectivity, namely to complex cells. As we have mentioned in the introduction of this
chapter, these cells exhibit properties that stem from a pooling of simple cells [138],
but that can also stem from recurrent heavy-computations [48]. Could it be that
complex-cells are resilient cells ? A theoretical answer can be easily produced, as one
could measure the phase invariance of the modelled resilient neurons in the article.
An experimental answer would have required stimulating the neurons with a periodic
pattern, and measuring their modulation rate [289, 257], which was alas not done
here.

On the decoding side, our approach was based on a simplistic model of neural
code, in the form of logistic regression. This was chosen for the biological plausibility
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a

b

c

Figure 4.10. – Temporal generalization of the decoding. (a) Temporal generalization
matrices for decoding θ at multiple Bθ. Filled white line represent onset
of stimulation, and white dashed line elements where time of training
and testing are identical. (b) Asymmetry of upper and lower matrices
(around the diagonal). (c) Possible results from the temporal generaliza-
tion process, adapted from [165].
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of this read-out, as logistic regression essentially acting as a non-linear (sigmoidal)
neuron, receiving information from the recorded spikes [27]. Although not shown
here, we also probed for a number of additional algorithms, including support vector
machines, deep feedforward networks, K-nearest neighbors and random decision
trees, with no accuracy benefit for these increased interpretability and complexity
cost [113]. Neural decoding strategies indeed span a wide spectrum of complexity,
often incorporating highly intricate methodologies that leverage non-interpretable,
multifaceted aspects of neural activity. A notable advanced example is the decoding
of neural activity manifolds and their correlation to behavior [57], a subject garnering
considerable attention in modern neuroscience research. A manifold, in the realm of
neural decoding, refers to a high-dimensional space (but of lower dimension than raw
data) constituted by the collective activity of a group of neurons. It represents a geo-
metric framework where each point within this space corresponds to a unique state of
neural activity. Decoding the manifold implies analyzing and interpreting the intricate
structures and patterns within this high-dimensional space and correlating them to
specific behaviors or cognitive states. This approach to deciphering neural activity
seeks to uncover the underlying structures and relationships within the neural data,
potentially revealing unprecedented insights into the dynamics of neural networks
and their correlations to behavioral outcomes [272]. Manifold-based approach are
enveloped in complexities and abstraction, but hold significant promise in advancing
our understanding of the intricate interplay between neural activity and behavior.

In an earlier version of this manuscript, we placed more emphasis on the temporality
of the neural code. For this, we turned to the method of temporal generalization, which
consists in training the classifier on activity at a given time period, then testing it onto
another one. For example, if a neural code is stable, one can train a classifier on
early (post-stimulation) data, and observe good classification performance on late
(post-stimulation) data. This allows to investigate whether the information carried by
neuronal activity is consistent across different temporal phases following a stimulus.
Further, specific shapes of the temporal generalization matrix can be (theoretically)
tied to specific patterns of propagation of activity between neurons (Figure 4.10). In
the present case, this was used to find a series of non-reversible neural codes, i.e.
computations that do not generalize in both time directions which is a hallmark of a
sequential, iterative computation [165]. More specifically, low variance stimulation
contained maximally informative neural code early in the onset of the post-stimulation
activity, which disappeared afterward. For high variance stimulation, the information
was contained in later timestamps, which ultimately informs us on a time-dependent
neural code (unsurprising, given single neurons dynamics shown in the article).

After having shown in this article a laminar (i.e., vertical) organization of variance
computations, we turned to a new type of extracellular electrodes to extend those
results. As interactions between neurons with different preferred orientation requires
sampling of the orientation map, a horizontal probe is better suited to this task. As
such, our results we replicated in awake macaque in Pieter Roelfsema’s laboratory,
using Utah arrays (Figure 4.11), which are matrices of electrodes, consisting of 128
recording sites in a 8x8 grid. Using the exact same type of stimulations (MotionClouds,
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Figure 4.11. – Orientation variance modulations in macaque V1 and V4. Stimulation
protocol is similar to the one presented in this chapter’s article. These
results will be further elaborated upon in chapter 5.

rigit drift orthogonal to median orientation), we replicated similar neuronal behavior
from anesthetized cats to awake primates, but also to extend our results into extras-
triate areas, namely in V4. Interestingly, this not only holds for the single isolated
neurons as shown in Figure 4.11, but also for the response of neurons that are anatom-
ically grouped. The specific advantages of this method of sampling are showcased in
chapter 5, in which we infer functional connectivity directly into this data.
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5. Mapping Neural Interactions in
V1: A Graph-Based Perspective

”I won’t be round this old town,
anymore for a long, long time,

gonna hit the road and start looking for the end of that long white line”
Sturgill Simpson, Long White Line, 2014
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5.1. Introduction: Towards Mesoscale Recordings
in V1

Unlike the previous chapters in this manuscript, chapter 5 does not feature an
already published or submitted article. This difference is due to the chapter focusing
on a new set of experimental data, collected in Dr. Pieter Roelfsema’s lab by Dr. Paolo
Papale. These unique results stem from recordings in a single awake vigil macaque,
which was initially implanted with Utah arrays for a different study. We were fortunate
to have Drs. Roelfsema and Papale’s support, allowing us to perform recordings linked
to Motion Clouds in this primate model, building upon the discoveries highlighted
in chapter 4. However, it’s important to note that standard practices for publishing
require data from at least two primates. The decision to further collaborate and
include a second primate in this study was contingent on the preliminary results
obtained from the first primate. While this process is underway, it is expected that the
resulting data will be available after the completion of this manuscript.

Therefore, chapter 5 will be structured similarly to an article, but will not include
one. It will also be (very) short, compared to other chapters, as it mainly aims to
reinforce significant concepts introduced earlier, although the current stage of the
data is still too preliminary for a more extensive discussion.
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Indeed, we will here build on an implicit concept of the manuscript’s introduction:
the notion that processing variance in low-level sensory cortices (i.e., V1) relates to
learning the structure of the variance in the environment. This proves advantageous
for adaptive coding properties, and for redundancy elimination [18]. On a method-
ological point of view, extension from anesthetized cats to awake primates is not trivial
(see also the conclusion of this manuscript). It eliminates the possible confound-
ing factor of anesthesia, and enables comprehensive neurobiological sampling of
recurrent activity with Utah arrays (Figure 4.8).

This is a significant step forward from the approach in chapter 4, where we relied on
interpolating through data from different sources and computational approximations
to understand neural dynamics. In that sense, Utah arrays are advantageous by allow-
ing for the sampling of multiple, distinct sites across the orientation map. However,
Utah arrays present another challenge due to their higher impedance (inverse of the
resistance), meaning they effectively record from a larger area around their implanta-
tion site. This larger recording area makes it impractical to perform the precise spike
sorting and manual curation, as done in chapter 4.

Instead, our approach will focus on Multi-Unit Activity (MUA). Recording MUA is
akin to recording the aggregated activity of nearby neurons, and has been shown to be
a good proxy for single unit recordings in structured topological maps [32, 226, 181]
like V1. Certain limitations apply: the temporal nature of the signal is less accurate,
and if a given recording site happens to fall in the "pinwheel" of an orientation map
(Figure 2.5), it is likely that competing interactions are going to be part of the signal
recorded. Despite the different methodological constraints imposed by the use of
Utah arrays, this chapter will extend on the notion that that computations of variance
in neural signals are influenced by interactions among neurons, which are distributed,
rather than concentrated, when variance increases.

5.2. Methods: Graphs of Neural Activity
As described above, recordings were carried in a single awake, vigil macaque, with

Utah arrays implanted in V1 and V4. Extrastriate data will not be part of the present
manuscript, but do show similar modulation of orientation selectivity by orientation
variance as V1 (as shown in Figure 4.5). This consistency across areas does suggest
potential avenues for future research, discussed in the conclusion of the manuscript.

To briefly detail the experimental setup, the framework was similar to that of chapter
4, modified with adaptation for primate recordings. Here, the macaque was engaged
in a passive fixation task, which involved the presentation of Motion Clouds, shown for
300 ms and interleaved with mean luminance screen for 150ms. Median orientation
θ was varied between 0;π in 12 even steps, and orientation variance Bθ in 10 steps
between π/30;π/3. Other parameters were adapted from chapter 4 to match macaque
V1 preference, namely a spatial frequency of 1.2 cycles per degree, and a drifting speed
of 3 cycles per second [251]. Stimuli were drifting in either direction, orthogonally to
median orientation, and were averaged across direction. The macaque was headfixed,
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and observed a 1024 by 768 pixels screen from a distance of 47.5cm. All stimuli were
shown at least 40 times.
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Figure 5.1. – Typical setup of Utah array recording in macaque visual cortex, similar
but not identical to the one used in the present chapter. (a) Example of
a macaque implant, consisting of 1024 channels encased in a titanium
cranial pedestal. (b) Typical layout of the arrays. Here, "only" 8 arrays,
i.e. 512 channels, are implanted in V1. (c) Typical eccentricity of the
receptive field, as recorded here. Reproduced from [55].

MUA was recorded in 8 Utah arrays, consisting of 8x8 electrodes, hence totaling
a number of 512 electrode sites (Figure 5.1). Given that the implantation of the
chamber was done for another set of experiments, it was necessary to remove certain
recording sites that were no longer yielding good signal [306]. A signal-to-noise ratio
was measured, based on evoked activity over resting (300 ms before evoked) baseline.
This ratio was measured as the peak activity subtracted by mean resting activity,
and normalized by the standard deviation of that resting activity [55]. Channels
with a signal-to-noise ratio below 1 were removed from further analysis, leaving 384
electrodes. As in chapter 4, the circular variance served as a criterion for exclusion
of untuned neurons. A threshold was set at 0.85, removing untuned electrodes and
leaving a final 188 electrodes for analysis.

We thus aimed to analyze how information transfer between each of the remaining
188 electrodes is affected by input variance. There are numerous ways (237, to be
exact [58]) to measure pairwise interactions between sets of time-based data, and each
method comes with its unique benefits and limitations. Here, we decided to measure
covariance, which is one of the simplest and most intuitive methods available, and
represents how much two electrodes evolve together. This covariance matrix is similar
to the matrix form of variance, but extended to multiple variables, as used in the
matrix formulation of predictive processing (Equation 2.28). Given a pair of electrodes
X and Y , the covariance at a single timepoint is:

Cov(X ,Y ) =
∑n

i=1(Xi − X̄ )(Yi − Ȳ )

n −1
(5.1)

where Xi and Yi are the individual values of the signal in electrodes X and Y for a
given trial i , X̄ and Ȳ are the mean values accross trials, and n is the number of trials
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(here, 40).
Not only is covariance straightforward to compute and interpret, but its matrix

inverse is also useful, as it is the inverse variance matrix, which is the central focus of
this thesis. When dealing with large datasets, like ours with 188 variables (electrodes)
but only 40 observations (trials), directly inverting the covariance matrix can lead to
instability due to the disproportionate ratio of variables to observations. To address
this, we employ a technique known as a "shrinkage estimator". This method provides
a more reliable estimation of the inverse covariance matrix, making it feasible for
inversion. Here, we used the common Ledoit-Wolf estimator, which given a matrix M :

Σ̂LW =α ·F+ (1−α) ·M (5.2)

where Σ̂LW is the Ledoit-Wolf shrinked matrix,α controls a shrinkage intensity, F is the
target matrix (the identity matrix scaled by the average variance) and M is our sample
covariance matrix. Here, α is automatically chosen to minimize the mean squared
error of the reconstruction [188] 1. The inverse variance matrix (or precision matrix),
is thus Σ̂−1

LW .
A property of covariance matrices, and thus of inverse variance matrices, is their

symmetry: the interaction between the electrode X and Y is the same as the inter-
action between electrode Y and X . As a result, the interactions we observe between
electrodes in this context are not directional; they only have varying degrees of in-
tensity, or weight. While directional metrics might be useful for uncovering how
information is transferred between neurons, potentially exposing interactions that are
unique to specific orientations, this is being the scope of the current research.

We visualized these matrices as graphs, which are composed of nodes (representing
electrodes) and edges (indicating covariance or inverse variance). This graphical repre-
sentation makes it easier to comprehend the data, as the matrices in their raw form are
not readily interpretable. Additionally, this approach offers a range of mathematical
tools to analyze network variations. Here, the graphs are non-directional (because of
the covariance or precision symmetry), cyclic (because they form closed interactions
loop) and weighted (by the co-variance/inverse variance). To manage complexity
and minimize noise, we binarized these graphs. This means we disregarded edges
below a certain threshold, as a 1882 = 35344 edges-wide graph would be too unstable
for analysis. We retained only those edges that ranked above the 75th percentile in
weight distribution, a common practice in graph theory analyses [82], This narrowed
the focus on the most significant interactions within the network, at the cost of full
network representation.

The specific nature of the graphs we’ve created here limits the range of questions
we can explore regarding their topology. To navigate this, we’ve selected six key

1. A year before the publication of this article, these authors released a related article entitled "Honey,
I Shrunk the Sample Covariance Matrix" [187]. For some reason, the author of the present manuscript
found this amusing enough to be note-worthy, and even considered at one point that it would make an
excellent title for this chapter. This was eventually decided against, and regarded as a sign that it might
be time to stop working on inverse variance-weighting and graduate.
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metrics to analyze: clustering, centrality, assortativity, neighboring connectivity, small-
worldness, and the Wiener Index [206, 42]. Mathematical details are provided hereafter,
but are not necessary for the comprehension of the results. Rather, an intuitive
description is provided with each equation, and a graphical representation is shown
in Figure 5.2.

a Clustering Coe�cient

Degree Centrality

Closeness Centrality

Degree Assortativity Coe�cient

Average Neighbour Degree / Average Degree Connectivity

Small-worldness

Wiener Index

CC(a) = 0 CC(a) = 0.5 CC(a) = 1.0

a a a

b

a
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a
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Betweenness Centrality

b
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High Average Degree ConnectivityLow Average Degree Connectivity
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Regular Small World Random

f
wi = 4 10 27 30 76 204

Figure 5.2. – Graph metrics, presented in identical order as in the text below. (a)
Clustering Coefficient, (b) Centrality metrics, (c) Degree Assortativity
Coefficient, (d) Average Connectivity Metrics, (e) Small-worldness index,
(f) wiener Index, represented onto common chemical compounds (delo-
calized electron cycles not shown).

The first metric used is the clustering coefficient, a measure of the degree to which
nodes in a graph tend to cluster together. For example, in the context of a social
graph, it helps understand the extent to which friends of a given person are also
friends between each other. Here, it can be seen as a direct measure of the global
interconnectedness of the neural network being recorded. The equation for the
clustering coefficient Ci of a node (electrode) i in a graph is:

Ci = 2T (i )

ki (ki −1)
(5.3)
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where T (i ) is the number of triangles through the node i (i.e., the number of connec-
tions that exist among the immediate neighbors of the node i ) and ki is the degree
of node i (i.e., the number of edges connected to node i ). Ci ranges from 0 to 1, with
higher values meaning a greater degree of clustering. Here, all node-wise metrics were
reported as a distribution of values across multiple input θ, for each Bθ.

A second metric, or rather, class of metric, is the measure of centrality. Multiple
sub-metrics are available here, each with their own importance. We measured three,
which are:

— Degree Centrality: The simplest form of centrality. For a node in a graph, degree
centrality is simply the count of how many connections (edges) it has. Nodes
with higher degree of centrality are typically more influential or important in
a network because they have more connections. Thus, the higher the overall
Degree Centrality of a graph is, the more connected the graph is. Following the
equation above, it is thus simply measured as ki .

— Closeness Centrality: This centrality metric focuses on how close a node is to
all other nodes in the network. It is defined as the reciprocal of the sum of the
shortest path distances from a node to all other nodes in the network. A higher
closeness centrality indicates that a node can spread information to all other
nodes in the network through less synapses. It is often correlated with the metric
above, but not necessarily (see Figure 5.2 for example). For a given node v , the
closeness centrality CC (v) is:

CC (v) = 1∑
u ̸=v d(v,u)

(5.4)

where d(v,u) is the shortest-path distance between nodes v and u, and the sum
is taken over all nodes u in the graph except v itself.

— Betweenness Centrality: This centrality metric quantifies the number of times
a node acts as a bridge along the shortest path between two other nodes. It
captures the degree to which a node lies on paths between others, indicating its
potential for control over information flow in the network. Nodes with higher
betweenness centrality can have significant influence within a network, by virtue
of their ability to gate message passing between other nodes. For a given node v ,
the betweenness centrality CB (v) is calculated as:

CB (v) = ∑
s ̸=v ̸=t

σst (v)

σst
(5.5)

where σst is the total number of shortest paths from node s to node t , σst (v) is
the number of those paths that pass through v . The sum is computed over all
pairs of nodes s and t in the graph, where s ̸= t ̸= v .

A third metric is the Degree Assortativity Coefficient. It measures the tendency of
nodes to connect to other nodes which have similar degrees. In other terms, it reflects
whether high-degree nodes (nodes with many connections) tend to be connected to
other high-degree nodes, and similarly for low-degree nodes. The Degree Assortativity
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Coefficient r can be calculated using the Pearson correlation coefficient for degree-
degree pairs across all edges in the network. The formula is as follows:

r =
∑

j k j k(e j k −q j qk )

σ2
q

(5.6)

where e j k is the proportion of edges in the network that connect a node of degree j to
a node of degree k, q j is the proportion of ends of edges that are attached to nodes of
degree j (also known as the "normalized degree distribution") and σ2

q is the variance
of the distribution q . The assortativity coefficient r ranges from -1 to 1. A value of 1
indicates perfect assortative mixing patterns, 0 indicates non-assortative mixing, and
-1 indicates perfect disassortative mixing. Understanding the degree assortativity of a
network is essential in analyzing the robustness and the dynamics of information or
disease spread within the network. Thus, if high-degree nodes tend to connect with
low-degree nodes, the network exhibits negative degree assortativity, as shown here.

Fourth are degree metrics, namely, the Average Neighbor Degree and the Average
Degree Connectivity. The Average Neighbor Degree is a measure for each node in a
network, that is the average degree of its neighboring nodes. This measure is useful
for understanding the tendency of nodes to connect to others that are similarly well-
connected or not; much like the Degree Assortativity Coefficient. For instance, in
a network with high degree correlation (assortativity), high-degree nodes tend to
be connected to other high-degree nodes. For a node v with degree k, the Average
Neighbor Degree AND(v) is given by:

AND(v) = 1

k

∑
u∈N (v)

deg(u) (5.7)

where N (v) denotes the set of neighbors of v , and deg(u) is the degree of a neighbor u.
The Average Degree Connectivity, on the other hand, is a network wide metric that
measures the average degree of the neighbors of nodes with a given degree. As such, it
is often correlated with the AND. The Average Degree Connectivity for nodes of degree
k in a network, denoted as ADC(k), is defined as:

ADC(k) = 1

Nk

∑
v :deg(v)=k

AND(v) (5.8)

where Nk is the number of nodes with degree k in the network. Their interpreta-
tion, similar to the Assortativity Coefficient, gives insight into whether the network is
assortative or disassortative (Figure 5.2).

A fifth metric is the degree of small-worldness, which quantifies a network in which
clustering coefficient is high, while maintaining short average path length. In neural
networks, this results from the balance between minimizing the resource cost and
maximizing the flow of information among the network components. In brain-wide
networks, the metabolic cost between neighboring neurons is much lower than that of
distant neurons, and thus the brain behaves a small-world network [191] to increase
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efficiency, as described in the introduction of this manuscript [18]. A direct measure
of small-worldness compares the current graph with a random network [336]. This
measure of small-worldness quantifies the balance between local clustering and
global reach in a network. Specifically, small-world networks have significantly higher
clustering than random graphs but similar average path lengths. Thus, the small-
worldness S of a network can be quantified as follows:

S = C /Cr andom

L/Lr andom
(5.9)

where C is the average clustering coefficient of the network, L is the average shortest
path length of the network, Cr andom and Lr andom are the average clustering coeffi-
cient and average shortest path length, respectively, of an equivalent random graph.
Typically, a network is considered to exhibit small-world properties if S > 1, indicating
that it has higher clustering than a random graph while maintaining a comparable
average shortest path length.

Finally, a sixth metric is the Wiener Index, one of the oldest topological indices [70]
that is used primarily in chemical graph theory (see Figure 5.2). It is a measure of the
compactness of a network and is closely related to the small-worldness and efficiency
of the network. The Wiener Index W of a network is defined as:

W = ∑
{i , j }⊆G

d(i , j ) (5.10)

which is the sum of the shortest path lengths between all pairs of nodes in the graph.
In this context, G is the set of nodes in the network, and d(i , j ) represents the shortest
path between nodes i and j .

5.3. Results: Modulations of Connectivity Patterns
by Orientation Variance

Before diving into graph metrics, let us first assess direct V1-based metrics. Namely,
we will first observe whether the variance-tuning curves shown in chapter 4 are also
present in primate V1. In this part of our study, the reliance on MUA, rather than
single-neuron activity, means we lose the granularity of precise spike timing. There
are however notable parallels in how both MUA and single neuron activities in terms
of orientation tuning [181].

This holds true here, as the variance-tuning functions reveal similar patterns of
activity modulation across neurons as shown in chapter 4. Despite the shift in scale
from single neurons to V1, we observe a comparable distribution of heterogeneous
modulations in neuronal activity, as shown in Figure 5.3. This validates the consistency
of our findings across different levels of neural activity and species. This, in turns,
allows us to extrapolate (with caution) some similarities between the precise single-
neuron mechanism of chapter 4 and the graph metrics of this chapter.
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Figure 5.3. – Variance tuning functions in primate V1. (a) Modulation of tuning curve
for two example MUA, reminiscent of resilient/vulnerable neurons de-
scribed in chapter 4. (b) Variance-tuning functions of these two exam-
ples MUA, fitted with a Naka-Rushton function (black line). (c) Popu-
lation map of variance-tuning functions, with dots representing Bθ50,
the changepoint of the function (see chapter 4). (d) Population map of
variance-tuning functions, as with (c).
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While timing modulations are present (data not shown), in practice, these were on
the order of tens of milliseconds in single neurons (i.e., about one τ), and thus, it would
be hard to extrapolate these in MUA due to smoothing across multiple neurons. Given
these constraints, our analysis at the single-electrode level is largely limited to tuning
metrics. Hence, we turn our focus to mesoscale measurements, which offer a broader
view of neural activity while still providing valuable insights. An example of such a
mesoscale measurement is neural decoding, as we explored in chapter 4. Decoding
would have been a particularly interesting approach in this context, especially since
the activity is recorded in physical simultaneity, as opposed to virtually concatenated
in chapter 4. Given similiarities in tuning, we might hypothesize that the decoding
results in primate V1 would mirror those found in cat. This assumption is based on the
consistent tuning characteristics observed across different animal models, suggesting
a fundamental similarity in how V1 processes visual information.

However, here, we tried to branch away from simply reproducing chapter 4 results,
and opted to investigate the interactions between neurons, as opposed to decoding
an emergent neural code. As detailed in the methods section, to explore this, we
utilized covariance matrices and their inverses, the inverse variance matrices, as our
primary analytical tools. For the 188 electrodes, such matrices are shown in Figure 5.4.
These represent the interactions between neurons, and characterize the variation of
recurrent message passing between neurons. Here, there are measured for a single
input θ, which was chosen as the one with most MUA tuned onto. We reasoned that
this would be the orientation for which the representation would be the most accurate,
but we will then average metrics across orientations in later sections.

Interpreting connectivity differences solely from the matrices can be challenging,
and one often sees what they wish to be true. Even employing ratios or advanced
metrics like the Laplacian or matrix-norm doesn’t significantly enhance our under-
standing of these interactions. To mitigate this, we later broaden our approach to
average across different orientations, aiming to capture a more comprehensive view of
neuronal interactions across the visual spectrum. This expanded analysis is part of our
ongoing effort to better understand the intricate web of connections and influences
within neural networks.

Thus, it is better to embed these matrices into graphs, which offers better represen-
tations and better metrics. These graphs can be plotted onto a tuning ring, where each
node’s preferred orientation corresponds to a specific position on the circle. This is a
neurobiological realization of the computational "ring" model we presented in chap-
ter 4. By positioning neurons according to their orientation preferences, we create a
visual map that reflects the inherent structure of neural preferences and interactions
in the visual cortex. This is shown in Figure 5.5, which shows a clear variation on the
condition of interactions.

This translates into an immediate, non-scientific conclusion: increasing the variabil-
ity of input tends to complexify the graph’s appearance. There is little to interpret with
these representations, as the graph used here are fully connected (due to being based
on covariance matrices). How does this translate into pratical interactions? A more
effective method for visualizing these graphs is through a force-directed algorithm,
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specifically the Fruchterman-Reingold force-directed algorithm, often referred to as a
spring layout [101]. This attempts to maintain a certain distance between each node,
essentially pushing them apart, but holding them together through their interactions.
For instance, positive inverse variance-weighting draws the nodes closer, whereas
negative weighting drives them even further apart. This represents the graph in a
manner where all the connections (edges) are relatively equal in length and overlap as
little as possible, creating a graph that is more straightforward to comprehend. This is
shown in Figure 5.6.

Input variance Bθ = 6° Input variance Bθ = 60°

18013590450

preferred orientation (°) 

force-directed graphRandom organization,
resting state network

Figure 5.6. – Force-directed graphs of inverse variance-weighting in primate V1, ini-
tialized from random positions (left), for lowest (middle) and highest
variance (right).

This is now steering us towards a clearer interpretation of the graph’s dynamics.
Through these representations, it becomes evident that with maximum input variance,
the network’s structure transitions from a dense, small-world configuration (concept
introduced in Figure 5.2) to a more dispersed, globally distributed network. This
observation aligns with the concepts introduced in chapter 4, namely the idea that
computations within the network become more iterative and distributed when dealing
with high variance, in contrast to being more concentrated and feedforward-based for
inputs with low variance.

To properly quantify this phenomenon, we will now turn to the metrics that have
been described in the methods section above (Figure 5.7). In the order in which they
have shown in Figure 5.2, these metrics paint a converging picture:

— Clustering Coefficient increases as a function of input variance (Mann-Whitney
U test between Bθ = 0° and 60° : U = 0.0, p < 0.0001. Linear regression : y =
0.004x + 0.68, p = 0.01). Intuitively, this means that the neural activity in V1
is becoming more interconnected, as opposed to separated into uncorrelated
sub-networks. This implies a shift from isolated processing to more integrated,
recurrent neural activity, where neurons are not just operating independently,
but are increasingly interlinked.

— Degree Centrality (U = 1968.5, p < 0.0001. lin. reg. : y = 0.006x +0.65, p = 0.005)
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and Closeness Centrality (U = 1994.0, p < 0.0001. lin. reg. : y = 0.003x+0.74, p =
0.006) increase as a function of input variance. This gives a similar interpretation
as with the Clustering Coefficient, that of a network whose units are processing
information in a more distributed fashion. Betweenness Centrality, however,
is decreasing with input variance, (U = 19555.0, p < 0.0001. lin. reg. : y =
−0.00003x +0.001, p = 0.005), suggesting that fewer nodes are acting as critical
bridges within the network. This could mean that the network is becoming less
reliant on given neural pathways, and distributes its processing load more evenly
across the network.

— Degree Assortativity Coefficient is negative for all input variance, but still in-
creases with input variance (lin. reg. : y = −0.005x −0.05, p = 0.0002). This
means that a dissasortative neural network is progressively reorganizing into a
less-tightly organized assortative neural network. However, as this coefficient
absolute value’s does increase with variance, it indicates a shift towards a net-
work where nodes are more likely to connect with similar nodes. This transition
suggests a move from a more hierarchical or specialized network to a more
homogenized one.

— Average Neighbour Degree is increasing with input variance (U = 0.0, p < 0.0001.
lin. reg. : y = 1.05x +124, p = 0.006). This implies that that neurons are not
only increasing their connections but are also tending to connect with other
neurons that are similarly highly connected, hinting at a more uniformly inter-
connected network, where all neurons are part of equally significant ensembles
of interactions.

— Small-worldness is decreasing with variance (lin. reg. : y =−0.004x +1.06, p =
0.001). This marks a departure from the dominant default-mode of connectivity
in neural networks [206], and as with Average Neighbour and Average Degree
Connectivity, V1 is becoming less tightly organized and distributed.

— Wiener Index is decreasing with variance (lin. reg. : y = −119x +23820.5, p =
0.004). A decrease in this index is intriguing, as it suggests that the overall path
lengths within the network are reducing. This could mean that despite the
increase in distributed processing, the network is somehow becoming more
efficient in terms of signal transmission distances, which could be due to the
reorganization of connections in the network. One implication of this is that the
seeming disorganization of the network is not so much a disorganization as it
is a planned reorganization, into an equally efficient but topologically different
neural network.

Overall, these findings are very exciting, as they all converge towards a similar obser-
vation: with increased input variance, V1 is actively being reorganized from a tightly
segregated topology into a delocalized, recurrent processing neural network. How
these metrics evolve through time could also align with the idea of dynamical process-
ing of orientation variance, as exposed in chapter 4, and form a promising avenue of
research.
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5.4. Conclusion: A Predictive Coding Perspective
Graph-based approaches to neuroscience often describes the brain as a small-world

network [191], which is a general principle of any system that balances efficiency and
minimization of operating cost [298]. In the context of our manuscript, this means a
series of networks that function in tandem, and are coordinated by broader neural
interactions. Although the leap is theoretical, these can also be likened to a ’canonical
microcircuit’ model, where the brain processes sensory information (like orientation)
and puts collaboration between adjacent circuits into play to form a comprehensive
and integrated model of the environment.

Our research, particularly in Chapter 4, delved into the functional organization
within a single cortical area, highlighting how single neurons and populations adapts
to different variance in sensory input. We theorized an increase in recurrent neural
activity in response to higher input variances. Here, in awake vigil macaques, we
show that is experimentally the case, using a graph theory approach that shows
decentralization of the neural network as a function of the sensory input’s variance.
This aligns with our initial theory that the brain’s segregated and linear processes
evolve into more interconnected, decentralized operations involving multiple neurons,
when faced with complex stimulus. This also implies that experiments based on
stimulating V1 with drifting gratings are missing a crucial key component of the brain,
that is, its network capacity to re-organize in face of sensory variance to adjust to an
uncertain environment.

The implications of these findings for predictive coding are significant. Let us now
focus on the notion of variance, rather than inverse variance, as this will make more
intuitive sense based on a Motion Clouds definition. If input variance increases in the
visual input, patterns of activity across multiple orientation-tuned units in V1 also
increase in variance (as also shown in chapter 4). This decentralization of the message
passing between neuron implies that the distribution of neural activity, in orientation
space, is a function of the distribution of input orientation. As posited by predictive
coding, lower-level (inverse) variance distributions in sensory areas are essential for
learning the statistical variance in the environment. Essentially, the brain uses these
lower-level distributions to fine-tune its predictions about the inherent variance in
both the environment, but also in the sensors used to sample said environment.

To validate this notion, one could imagine showing repeated high variance input
to a macaque, and see how these response changes from a V1 that is used to process
heterogeneous variance. One could then expect systematically broader patterns
of activity in V1. Another way to explore these limits is to implement them into a
predictive coding model, and see how this model behaves in the face of changing
input variance. With the theoretical and mathematical framework already in place
in the thesis’ introduction, it would be rather straightforward to develop a neural
network that implements predictive processing. This network could then be tasked
with a simple machine learning classification task, for instance, solving the Modified
National Institute of Standards and Technology database, a list of handwritten digits
between 0 and 9. This task is trivial, and often the first one to be done on a newly
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developed neural network. Following this tradition, one could embed these digits into
Motion Clouds, thereby manipulating the orientation distributions of these inputs and
see whether similarities in the learned inverse variance matrix follow those observed
in macaque V1.
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6. Beyond V1: Variance and
Thalamo-Cortical Loops

”Welcome back my friends
to the show that never ends.

We’re so glad you could attend,
Come inside! Come inside!”

Emerson, Lake and Palmer, Karn Evil 9, 1973
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6.1. Introduction: The Functional Anatomy of the
Pulvinar

After having had the pleasure of immersing ourselves in more than a hundred of
pages of V1-centric research, it now seems only natural to take a break away from
the striate cortex. As alluded to in the thesis’s introduction, V1 takes part in parallel
computations distributed both in extrastriate regions and in subcortical nuclei. These
interactions are crucial for inverse variance processing, and now call for our attention
for a proper description of a "multiscale" computational system. One particularly
intriguing facet of these interactions is the role that the pulvinar nucleus plays. This
thalamic nucleus operates as a sophisticated "routing" system, modulating the in-
formation flow between V1 and extrastriate regions [46]. Given the interest we took
in the modulation of integration between multiple cortical regions by the inverse
variance, the presence of a thalamic nucleus interconnected with this entire network
is undeniably a brain region worthy of deeper exploration.

Before detailing more the involvement of pulvinar in predictive coding, we shall
briefly introduce its anatomy and functions. The first article of this chapter consists of
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a review of the role of pulvinar in this domain, aiming to introduce similar notions,
and hence it would be redundant to go into too many details here. It should be noted
that, in the context of this thesis, some theories suggest that the pulvinar might be the
primary locus of inverse variance weighting in the brain [153], while others suggest it
only plays a part in this role [211].

Anatomically, the pulvinar lies over the dorsolateral posterior thalamus, running
alongside the edge of the LGN. In primates and in cats, the pulvinar is the largest
thalamic nucleus, having increased in size throughout mammalian evolution with
the visual cortex [139]. Given its size, the pulvinar can be further subdivided in six
sub-regions in primates (human included) or three main regions in the cat [13], which,
out of scope, will be here simplified as a single conceptual entity in this introduc-
tion (but see the first article for further details). The pulvinar establishes extensive
reciprocal connections with all visual cortical areas [148], often being conceptualized
as the "seventh cortical layer" [282]. In a striking difference with the LGN, which
receives its main visual inputs from the retina, the pulvinar receives its visual inputs
principally from the layers 5 and 6 of the visual cortex. This is reflected in the response
characteristics of its neurons, which remarkably resemble those found in the visual
cortex in terms of feature selectivity [205], but also in their implementation of selective
attention [338, 332]. This allows pulvinar neurons to effectively suppress responses to
visual distractors [258] by integrating the visual signals from multiple cortical areas
and outputting modulatory signals to layers IV and I of the visual cortex. Overall,
the pulvinar’s connectivity gives it an integrate-and-modulate role within the visual
hierarchy. This description is especially relevant when considering the visual system
as a hierarchical generative Bayesian model within the predictive coding framework
(Equation 2.28).

As put forward by Kanai et al. [153], the pulvinar’s engagement in attentional reg-
ulation and its output connectivity to superficial cortical layers is an ideal match
for a role in inverse variance modulation of the visual hierarchy, which also fits the
long timescales of multi-areas integrations. Experimental results have shown that
inactivation of the pulvinar drastically suppresses responses of superficial V1 neurons
to sensory inputs, while excitation increases the responsiveness of neighbouring su-
perficial units with overlapping receptive fields [252], which is similar to a gain-control
mechanism that implements inverse variance-weighted modulation of the cortex by
the pulvinar. Whilst it is the biggest thalamic nucleus in primates, the pulvinar is
nonetheless an order of magnitude smaller than the entire visual cortex. As estimating
inverse variance requires computting the co-variance between the all N prediction
or prediction errors units, this is an N 2 computation [211]. Given the cost of such
computation, it seems more likely that the pulvinar computes an approximation of
the inverse variance matrix, and then modulates parts of the superficial layers inde-
pendently. In parallel, these units will then use their local horizontal connectivity
to further integrate and refine the computation of the local variance [153, 20], as
proposed in chapter 4 [178]. Evolutionarily, this hypothesis is very interesting, as some
species, such as birds, have much lower homologous "cortical" (i.e. pallium) neuron
count, and seem to lack a functional equivalent of the pulvinar. In a thesis committee
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discussion with Dr. Paul Cisek, we hypothesized that as the number of neurons grow
exponentially throughout evolution, computing variance through recurrence alone
(as proposed in chapter 4), becomes either prohibitively slow or computationally ex-
pensive. This thus requires a dedicated central part of the neural network to perform
a dynamical approximation of the inverse variance matrix, which would hence be the
role assigned to the pulvinar.

Figure 6.1. – Anatomical substrates of pulvinar gain control, from [61]. Note that the
ratio of Type 1 over Type 2 synapses changes as a function of the visual
hierarchy.

Overall, this depicts a dynamical gain control role for the pulvinar, much like the
gain control role we proposed in chapter 4. How is such dynamical gain control in
the visual cortical areas implemented ? Guillery and Sherman [121] characterized
synapses associated to thalamic first-order relays, which transfer information about
the world to primary cortical areas (in vision, the LGN). Two types of inputs, modula-
tors and drivers (type 1 and type 2 projections, respectively), have been identified on
the basis of their axon terminals’ morphology and their electrophysiological charac-
teristics [280]. Drivers and modulators can also be defined by other attributes, such
as the input-output transfer of the neuronal response profile. Modulators effects are
distinguished as either multiplicative or divisive effects (nonlinear gain control), while
drivers act by either additive or subtractive changes (linear gain control) [2, 285]. In
V1, it is generally accepted that pulvinar receives type II projections (confirmed driver
signals) from layer 5 neurons and sends back anatomically defined type I projections
(modulatory) to layer 1. In the case of higher-order cortical areas, the assumption is
that pulvinar receives type I projections from layer 6 neurons (suspected modulators)
and projects to layer 4 (suspected drivers) (Figure 6.1. In the context of predictive cod-
ing, this functional distinction between drivers and modulators is crucial, as drivers are
associated with predictions and modulators with precision. Precision may coordinate
and broadcast more globally visual information and its regulation may be equivalent
to selective attention [66], which can be implemented by modulator connectivity from
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the pulvinar. This notion of driver and modulators will be discussed further in the first
article of this chapter, which reviews additional functional evidences, but also in the
second article, which models the heterogeneity of these two types cortico-thalamic
pulvinar connections and their role on the propagation of prediction-related alpha
oscillations.

6.2. Review: "The Pulvinar as a Hub of Visual
Processing and Cortical Integration"

This review for Trends in Neuroscience aims to provide an overview of the hypothe-
sized roles of the pulvinar. Given the extensive connectivity, one can find what they
would like to find in this nucleus, and thus we aim to review the recent evidences
for pulvinar in terms of attention, feature binding, predictive coding, and global
workspace theory.

Full citation is as follows: Nelson Cortes, Hugo J Ladret, Reza Abbas-Farishta, et al.
“The pulvinar as a hub of visual processing and cortical integration”. In: Trends in
Neurosciences (2023)

As this is a review rather than a research article, we direct the reader to Appendix
B. There, they will find a comprehensive overview of the response properties of the
pulvinar and their interpretation under predictive processing.

6.3. Methods: Oscillations and Predictions
As we discussed in the introduction and in the review, the pulvinar is involved in

performing a gain control modulation onto V1 [252]. This can be conceptualized as a
(predictive) gating mechanism, that can control the propagation of message passing
from V1. In the case of an overly high variance input, the pulvinar can thus "explain
away" the activity of V1, preventing an erroneous update of the internal brain models.
But, in the opposite case, what is the influence of V1 on the pulvinar ? If, according to
our article in chapter 4, V1 can compute the inverse variance of visual inputs, then it
should be able to send that information in some form to the global regulator of the
message passing to other cortical areas. Furthermore, if there is such a thing as this
global regulator of inverse variance-weighting implemented the pulvinar [153], then it
is crucial to look at how V1 it interacts with the pulvinar, in that directed fashion.

To understand the nature of this communication, we must first understand the
nature of the message being sent. Disentangling sensory predictions from prediction
errors is already arduous enough in V1 and we must turn our attention to another
method to study inter-area communications. For that, it is better to study the prop-
agation of activity from the cortex to the pulvinar in terms of frequency. This relies
on the idea that, in predictive coding, one posits the existence of a single prediction
error unit (not necessarily a neuron) for every prediction unit. As these units must
be connected only to one another, and in the form of a negative feedback loop (see
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Equation 2.28, predictive coding essentially implies a neural network that works as
coupled oscillatory pairs of prediction errors and prediction units [100]. The lowest
characteristic frequency of this response, as determined empirically, lies in the alpha
range (8−12Hz), which is the dominant brain rhythm at rest, when prior models re-
quire no novel error updating. This also translates into many psychophysical-relevant
peaks in response to a stimulus, as recorded in EEG (N1, P2, for example [40]).
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Figure 6.2. – Neurobiological oscillations and predictive coding. (a) Frequencies of
oscillations found in neurobiological recordings. (b) Types of oscillations
posited by a predictive coding neural network, from [20]. (c) Illustration
of the multiplication of two alpha-band predictive signals into a gamma-
band prediction error.

The picture becomes more complex when one needs to understand that resolution
of erroneous predictions through propagation of errors are not instantaneous. Pre-
dictions, fundamentally, should be based on the multimodal interactions of cortical
areas, but also of multi-features interactions within a single modality. Practically, a
prediction about a high-variance Motion Clouds is the interaction between multiple
prediction error units, each signaling a single edge.

This means that the message passing in predictive coding occurs through a series
of nonlinear transformation, implying that many alpha range signals will be trans-
formed into higher frequency through this exchange. This summed interaction is
often assigned to the second most prominent range of communication in the brain,
gamma-band (40H z). Prediction errors, as they are based on this non-linear mixtures
of expectations, must be present in those higher frequencies. Predictions, as they
are more stable and need not be updated constantly (which forms the defining prin-
ciple of predictive coding), should be only found in lower frequency. This "spectral
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asymmetry" of cortical communication [20, 22] explains many attentional mecha-
nisms [170]. This is also replicated with minimal assumption in silico, by showing that
coupled neuronal oscillators with biological time constants, i.e. conduction delays of
12 ms and synaptic time constant of 20 ms naturally create an emergent alpha/gamma
prediction/error oscillation.

It follows that spectral asymmetry also implies (functional) anatomical asymmetry,
namely in the canonical model that predictions can be found in deep layers [20]. Thus,
given the anatomy of the corticothalamic projections, it would seem that predictions
only are sent to the pulvinar. This effectively allows it to regulate which prediction of
a given level of the visual hierarchy is best suited to provide the best explanation for
an external sensory cause, based on its precision. This is specifically the theoretical
principle we discuss in this article, by showing how alpha (predictive) rhythms in the
pulvinar are gated by cortical activity.

6.4. Article: "Corticothalamic Projections Gate
Alpha Rhythms in the Pulvinar"

This theoretical article discusses the role of synaptic asymmetry from the cortex to
the pulvinar, so called corticothalamic terminals, and their role in communication
between cortical areas. Two types of these terminals, originating from different hierar-
chical levels of the visual hierarchy, exhibit unique anatomical and functional patterns,
causing distinct oscillatory rhythms in the pulvinar. Through a modeled cortical feed-
forward network including areas 17 (V1) and 21a (V4), we found that these terminal
types play antagonistic roles in regulating oscillatory activities in the pulvinar. We sug-
gested that the varying activation of these terminals can gate the pulvinar responses,
influencing the oscillatory transfer between lower and higher-order areas, ultimately
impacting the neuronal communication throughout the cortical hierarchy. While
not emphasized in the article to keep a coherent narrative, this can be interpreted as
having a centralized nucleus of the visual network, the pulvinar, ascribing inverse vari-
ance weighting to cortical activity in order to modulate the message-passing between
alpha (predictions) and gamma (predictions errors) activities.

Full citation is as follows: Nelson Cortes, Reza Abbas Farishta, Hugo J Ladret, et al.
“Corticothalamic Projections Gate Alpha Rhythms in the Pulvinar”. In: Frontiers in
Cellular Neuroscience 15 (2021), p. 787170
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Corticothalamic Projections Gate
Alpha Rhythms in the Pulvinar
Nelson Cortes1* , Reza Abbas Farishta1, Hugo J. Ladret1,2 and Christian Casanova1

1 Laboratoire des Neurosciences de la Vision, École d’optométrie, Université de Montréal, Montreal, QC, Canada, 2 Institut
de Neurosciences de la Timone, UMR 7289, CNRS and Aix-Marseille Université, Marseille, France

Two types of corticothalamic (CT) terminals reach the pulvinar nucleus of the thalamus,
and their distribution varies according to the hierarchical level of the cortical area they
originate from. While type 2 terminals are more abundant at lower hierarchical levels,
terminals from higher cortical areas mostly exhibit type 1 axons. Such terminals also
evoke different excitatory postsynaptic potential dynamic profiles, presenting facilitation
for type 1 and depression for type 2. As the pulvinar is involved in the oscillatory
regulation between intercortical areas, fundamental questions about the role of these
different terminal types in the neuronal communication throughout the cortical hierarchy
are yielded. Our theoretical results support that the co-action of the two types of
terminals produces different oscillatory rhythms in pulvinar neurons. More precisely,
terminal types 1 and 2 produce alpha-band oscillations at a specific range of connectivity
weights. Such oscillatory activity is generated by an unstable transition of the balanced
state network’s properties that it is found between the quiescent state and the stable
asynchronous spike response state. While CT projections from areas 17 and 21a are
arranged in the model as the empirical proportion of terminal types 1 and 2, the actions
of these two cortical connections are antagonistic. As area 17 generates low-band
oscillatory activity, cortical area 21a shifts pulvinar responses to stable asynchronous
spiking activity and vice versa when area 17 produces an asynchronous state. To
further investigate such oscillatory effects through corticothalamo-cortical projections,
the transthalamic pathway, we created a cortical feedforward network of two cortical
areas, 17 and 21a, with CT connections to a pulvinar-like network with two cortico-
recipient compartments. With this model, the transthalamic pathway propagates alpha
waves from the pulvinar to area 21a. This oscillatory transfer ceases when reciprocal
connections from area 21a reach the pulvinar, closing the CT loop. Taken together,
results of our model suggest that the pulvinar shows a bi-stable spiking activity,
oscillatory or regular asynchronous spiking, whose responses are gated by the different
activation of cortico-pulvinar projections from lower to higher-order areas such as areas
17 and 21a.

Keywords: pulvinar, corticothalamic projections, alpha rhythm, cortical oscillations, cortical and subcortical
loops, mathematical modeling
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INTRODUCTION

Integrating different visual attributes of an image into a single
neuronal representation is a difficult task. Throughout evolution,
the mammalian visual cortex has solved this computational
problem by separating these different features into distinct
and parallel processing modules (Bullier, 2001). Interactions
between these modules are hierarchical; as more complex levels
of organization are created from lower ones (Felleman and Van
Essen, 1991; Bullier, 2003; Hegde and Felleman, 2007). This
feedforward pathway is accompanied by feedback projections
that shape responses to those upcoming signals. Thus, visual
processing consists of cortical signals traveling from lower to
higher order (HO) areas and vice versa throughout cortico-
cortical connections, whose organization follows a hierarchical
pattern. This anatomical and functional arrangement of cortical
visual areas connected through specific laminar projections
is the core of the cortico-centric view of visual integration
(Nassi and Callaway, 2009).

Besides direct communication of cortico-cortical areas via
feedforward and feedback connections, indirect communication
through cortico-thalamo-cortical connections also occurs. These
transthalamic pathways enable communication between all
cortical areas through a limited number of synapses (putatively,
only one) in higher order (HO) thalamic nuclei (Sherman and
Guillery, 2002; Casanova, 2003). In the visual system of large
mammals, the pulvinar is the most prominent HO nuclei and it
establishes reciprocal connections with virtually all visual cortical
areas of the neocortex (Shipp, 2003; Sherman and Guillery,
2011). This connectivity is reflected in the response properties of
pulvinar neurons, which resembles those found in visual cortical
cells at different hierarchical levels (Bender, 1983; Casanova,
2003, 2021; Le et al., 2019). It has been recently suggested that
the unique network created between the pulvinar and the cortex
is used to mediate the temporality of cortical communication
(Saalmann et al., 2012; Fiebelkorn et al., 2019; Cortes et al.,
2020). For instance, the pulvinar may regulate cortical responses
in feedforward and feedback directions by synchronizing distant
oscillatory cortical regions, given its strategic position within
the visual hierarchy. Such temporal control may be crucial
for shaping whole-brain dynamics on a moment-to-moment
basis when, for example, attention demand or visual contrast
modulation is required (Shipp, 2004; Snow et al., 2009; Cortes and
van Vreeswijk, 2012; Cortes et al., 2020; de Souza et al., 2020).

Although the transthalamic pathway is now considered as
an essential part of the visual system, how visual processing
along this indirect cortical route differs from that along the
cortico-cortical pathways has remained elusive (Casanova, 2003).
Efforts have been made to determine the anatomo-functional
characteristics of the projections between the cortex and the
pulvinar. Two types of corticothalamic (CT) projections have
been recognized in thalamic nuclei, including the pulvinar.
Type 1 axons are thin and have long, thin branches with small
terminal endings and are considered to be equivalent to round
small (RS) presynaptic terminals observed at ultrastructural level
(Rockland, 2019); type 2 axons have thicker axon diameters
with clustered endings considered to be equivalent to round

FIGURE 1 | Hierarchical organization and attributes of CT projections. (A) Two
types of CT projections from lower- mid- and higher-ranked cortical areas
target the pulvinar. Note the variation of proportions of type 1 (from layer VI)
and 2 (from layer V) axons along the visual cortical hierarchy (Table 1).
(B) Anatomical (left panel) and functional (right panel) classification criteria for
projection types 1 and 2. Type 1 terminals have thinner axons, bear small
boutons, and elicit EPSP with short-term facilitation; type II projections have
thicker axons, larger boutons that can form rosette-like structures and
produce EPSP with short-term depression.

large (RL) presynaptic terminals. These terminals originate in
different layers: while type 1 projections arise from layer 6,
type 2 projections from layer 5 (Vidnyánszky et al., 1994;
Ojima et al., 1996; Feig and Harting, 1998; Huppe-Gourgues
et al., 2006, 2019). In addition, based on the characterization
of their excitatory postsynaptic potentials (EPSPs), type 1 and
2 CT projections display frequency-dependent facilitation and
depression, respectively (Li et al., 2003). While type 1 terminals
are associated with CT projections from area 17 to LGN, type
2 terminals are more abundant in CT projections from area 17
to the pulvinar (Abbas-Farishta et al., 2020). Altogether, these
findings suggest that the types 1 and 2 associated pathways
appear to complement synergistically each other to fine-tune
visual processing passing by the pulvinar (Figure 1).

Although the pulvinar receives more type 2 than type 1
axon terminals from area 17, this ratio is not fixed within the
visual cortex. Type 1 endings seem to be more represented in
CT connections from higher hierarchical levels (Abbas-Farishta
et al., 2020). For instance, in cats, CT terminals emerging from
HO cortical areas, as areas 21a [considered to be a homolog of
primate area V4 (Payne, 1993)] and the posteromedial lateral
cortex (PMLS, the homolog of area MT in primates (Payne, 1993;
Huppe-Gourgues et al., 2019), display more type 1 terminals.
Furthermore, in the anterior ectosylvian visual area (AEV),
one of the highest areas in the hierarchical organization of
the visual system, the proportion of type 1 endings highly
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TABLE 1 | Percentage of CT terminal types as a function of cortical source for
areas 17, PMLS, 21a and AEV in cats.

Area Type 1 (%) Type 2 (%)

17 25 75

21a 81 19

PMLS 71 29

AEV* 91 9

Terminals located in the pulvinar subdivision Lateral Posterior lateral (LPl), except for
* which comes from Lateral Posterior medial (LPm) (Abbas-Farishta et al., 2020).

dominates the CT pathway toward the pulvinar (Table 1). These
findings indicate that the ratio of type 1/type 2 cortico-pulvinar
projections increases as a function of the hierarchical position of
the source cortical area.

This organizational scheme of CT terminals raises questions
about their function and, consequently, the role that pulvinar
might play in transthalamic cortical communication. On the
one hand, theoretical works have shown that a population of
neurons receiving type 1 and 2 terminals exhibit rhythmic
or regular firing rate responses given the short-term plasticity
dynamics that those terminals have (Tsodyks et al., 1998).
On the other, as experimental data shows, irregular spiking
activity (Chalupa, 1991; Yu et al., 2018; Wilke et al., 2009)
and low-oscillatory rhythms (Saalmann et al., 2012; Fiebelkorn
et al., 2019; Halgren et al., 2019) have been detected in the
pulvinar. Within the slow rhythms, the alpha-band oscillations
(7.5–12.5 Hz) associated with thalamic activity are particularly
interesting, as animals performing visual attentional tasks show
that the pulvinar drives cortical alpha rhythms (Saalmann et al.,
2012), and that cortical alpha waves amplitude decreases when
the pulvinar is inhibited (Zhou et al., 2016). One might ask
whether the hierarchical gradient of CT terminal types 1 and 2
toward the pulvinar is responsible for generating rhythmic or
irregular spiking responses (asynchronous state) in the thalamus.
Therefore, to investigate whether CT projection types along the
visual hierarchy influence pulvinar neuronal temporal responses
differently, we simulated a pulvinar-like network of excitatory
and inhibitory neurons receiving terminal types 1 and 2 from two
cortical structures simulating a low and a higher-ranked cortical
area. The distribution of these corticopulvinar terminals was
established using projection patterns of area 17 and extra-striate
area 21a of cats, whose anatomy and functional connectivity
with the pulvinar have been well documented (Abbas-Farishta
et al., 2020, 2021; Cortes et al., 2020; de Souza et al., 2020,
2021). Corticopulvinar projections were implemented with short-
term plasticity dynamics, in which terminal types 1 and 2
had facilitation and depression of their EPSP, respectively (Li
et al., 2003). Thus, connections were established to reproduce
alpha-band oscillations in pulvinar neurons’ populations. We
found that alpha rhythms in the pulvinar are generated by each
cortical area separately or by the simultaneous combination of
the two areas in a specific range of connectivity weights. In
the first case, when each cortical area independently evokes
pulvinar alpha waves, the oscillatory low-frequency activity
generated by one area was changed by asynchronous spiking

activity when the other targets the pulvinar. This property
suggests that the pulvinar has a bi-stable state of oscillatory
or asynchronous responses depending on the origin of the
activation coming from CT afferent projections along the visual
cortical hierarchy.

MATERIALS AND METHODS

Network Models
Three models were used in this work to simulate the neuronal
pulvinar dynamics evoked by cortico-pulvinar projections
(Figure 2A). Each model is an upgrade of the previous one
to provide an integrative framework in which the role of
CT projections was investigated. The first model consists of
a network in the balanced excitatory-inhibitory (E-I) state,
in which inputs are modeled as Poisson spike trains. Such
inputs have types 1 and 2 dynamics, inducing Short-Term
Facilitation (STF) and Short-Term Depression (STD) responses,
respectively (Figures 2B,C) (Li et al., 2013). With this model,
the proportion of input synapses and their strength were varied
to investigate how this network, our “protopulvinar,” evoked
either oscillatory or asynchronous responses. The second model
is similar to the previous. However, here, the “pulvinar” network
was targeted by two simulated cortical areas, each of them
with a combination of type 1 and 2 synapses. As in the
previous model, cells were simulated as Poisson spike trains
(Figure 2A2). The proportion of type 1 and 2 projections,
as well as the synaptic contact of those projections to E-
I pulvinar neurons, were determined by available empirical
data from the anatomy of cortical-pulvinar cat projections
(Tables 1, 2). This model was useful to identify activation
dynamic ranges of thalamic neuron populations as cortical
projections reach them.

Finally, the pulvinar network was targeted by other two
independent networks that imitate cortical areas 17 and 21a
(Figure 2A3). Each cortical area was organized to reach the
E-I balanced state. A feedforward connection, from areas 17
to 21a, was established. Also, feedforward CT projections
from the two cortical areas to the pulvinar-like structure were
implemented. These cortical axon terminals were simulated
with short-term plasticity dynamics, but synapses from the
LGN to the area 17 (modeled as Poisson spike trains) and
between areas 17 and 21a had linear integration of their
synaptic inputs. Cortico-pulvinar projections with types 1 and
2 terminals were chosen randomly from neurons in areas 17
and 21a, and their proportion and contact to E-I pulvinar
neurons were organized as in the previous model. This model
does not consider direct feedforward connections from LGN to
area 21a (Wimborne and Henry, 1992). Each area, including
the pulvinar network, was simulated with N = 10,000 neurons
(Vogels and Abbott, 2009; Cortes and van Vreeswijk, 2015;
de Souza et al., 2020). From this number of neurons, 20%
were inhibitory cells (Rodney et al., 2004). The effect of
separated cortico-recipient zones in the pulvinar and their
consequences in the response of 21a neurons were studied
with this model.
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FIGURE 2 | Models and short-term plasticity for synapses used in this work. (A) Three models were used during simulations. All models contain a pulvinar structure
with 80% of excitatory (red dots) and 20 % of inhibitory (blue dots) neurons as represented in the proportion of dots inside boxes. (A1) Pulvinar receives only terminal
types 1 and 2. (A2) Two areas with proportion and number of contacts of terminal types 1 and 2 in areas 17 and 21a as described in Tables 1, 2. (A3)
Cortico-pulvinar-cortical model consisting of three networks connected feedforwardly by cortico-cortical pathways and with a transthalamic pathway. A similar
proportion of connections as in panel (A2) was used. (B) Short-term plasticity for a pulvinar neuron receiving terminal types 1 (B1) and 2 (B2). Four input frequencies
are tested (2, 5, 10, 20 Hz) for each terminal type. (C) EPSP amplitude (mV) as a function of repetitions for five frequency-dependent stimulation regimes and the two
types of cortical terminals shown in (C1,C2). Note that the result of the stimulation at 0.5 Hz (blue line) is shown here but not plotted in panel (B).

Neuron and Synaptic Dynamics
Thalamic and cortical neurons were modeled with adaptive
exponential integrate-and-fire dynamics (Brette and Gerstner,
2005). This model consists of two coupled differential equations
describing the leak current (linear component) and the spike
generation component (exponential function). Also, an adaptive
current, w, was added to simulate action potential adaptation.
The membrane potential of a neuron (i, A, β) is given by:

Cm
dVA,β

i
dt
= −gA,βL

(
VA,β
i − VL

)
+ gA,βL 4Texp

(
VA,β
i − VT

4T

)

−wA,β
i + IA,βinput,i, (1)

dwA,β
i
dt
=

a
(
VA,β
i − VL

)
+ wA,β

i

τadapt
,

where Cm is the capacitance of the neuron, VL is the leak reversal
potential, VT is the threshold and 1T is the slope factor, τadapt
is the time constant and a describes the level of subthreshold

TABLE 2 | Percentage of contacts from layers 5 and 6 of areas 17 and PMLS to
excitatory and inhibitory cells in the pulvinar (Vidnyánszky et al., 1994).

Layer Inhibitory (%) Excitatory (%) Area

5 44.5 48.0 17

5 45 55 PMLS

6 14 85 PMLS

adaptation. Every time that the neuron i fires, w is increased
by a current b (spike-triggered adaptation), and the membrane
potential is reset to a fixed voltage, Vr of the neuron, i, which has,
A, excitatory or inhibitory actions, and determined as cortical of
thalamic component, β . Only excitatory neurons have adaptation
current dynamics.

The input current that a neuron (i, A, β) receives is:

IA,βinput,i = IA,βrec,i + IA,βext,i (2)

where IA,βrec,i characterizes the synaptic current from recurrent
connections of each area β , of a neuron i,withA, E or I, attributes.
When cortical cells are integrated in a network, the external
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current, IA,βext,i comprises one term if the unit comes from area
17 and two terms, if it comes from area 21a or pulvinar.

Synapses for cortical and pulvinar recurrent connections
and from area 17 to 21a (feedforward pathway) are simulated
as an instantaneous rise of synaptic current followed by an
exponential decay.

Short-term synaptic plasticity (STP) is implemented with a
phenomenological model (Stimberg et al., 2019b). This model
considers synaptic release as the product of two variables, xs and
us, where xs represents the fraction of the total neurotransmitter
that remains available for release, and us reflects the fraction of
available resources ready for use, that is, the resources of the
neurotransmitter “docked” for release by exocytosis by calcium
sensors. After an action potential and the beginning of another,
us decays to 0 at rate ωf , and xs recovers to 1 at rate ωd, as:

dus
dt
= −ωf us, (3)

dxs
dt
= ωd (1− xs) .

The influx of calcium in the terminal triggered by the arriving
of action potentials modifies a fraction U0 of neurotransmitter
resources not expected for release (1 – us) to the “docked” state
ready to be released (uS). Eventually, a release rs from the fraction
of us of the available neurotransmitter resources are generated,
while xs decreased by the same quantity, so:

us ← us + U0 (1− us) ,

rs ← usxs, (4)

xs ← xs − rs.

When a presynaptic action potential arrives, A synapses increase
the A conductance, gA

STP in the postsynaptic neuron as
gA

STP ← gA
STP + GA0rs, where A = E, I and GA0 is the

synaptic conductance. Only excitatory connections as short-term
plasticity dynamics, given that only excitatory long-range cortico-
cortical and cortico-pulvinar terminals have been described.

Feedforward and Recurrent Connections
Recurrent and external connectivity for each structure were
random with connection probability, p, specific to E and I
populations (pAI = 0.1, pAE = 0.5). Input current is defined as
IAβ←γ (t) = ḡβ←γ (t)

(
VA
i − Vβ←γA

)
, where the term on the right

side of the equation is the sum of all conductance from all
presynaptic inputs on the neuron (i, A, γ), where γ is the source
and β the targeting structure. In general, it is described as:

gAβ←γ,i (t)
ḡAβ←γ

τAsyn

Nγ∑

j 1

C
βA←γA,l
ij

∑

k

e−
(
t−tγj,k

)
/τAsyn , (5)

where tγj,k is the time of the kth action potential of the neuron
(j, γ). For feedforward external inputs, γ can be the LGN,
area 17 or the pulvinar, and β can be the pulvinar, area

17 or area 21a, and A = E. For the recurrent connectivity
in the pulvinar and the cortex, β = γ, and i 6= j. The

connection matrices C
βA←γA,l
ij , for A = E, I, are random

with probability cβ←γK/Nβ←γ and C
βA←γE,l
ij =0 otherwise. On

average, neurons type β receive Kβ←γ = cβ←γK presynaptic
connections from γ neurons. Here, the conductance ḡβ←γ

describes the strength of the presynaptic input, which
is scaled by K as ḡAβ←γ= GA

β←γ/
√
K, where GA

β←γ is
independent of K.

For background synaptic activity, a population of simulated
neurons (Nbckgrnd = 8,000, pANoise = 0.5) where A = E,I as a
Poisson-type spike train is applied to the pulvinar following
the same synaptic dynamics of equation 5. The spike train is
excitatory and activates excitatory and inhibitory neurons with
a discharge rate of 0.1 sp/s.

When invoking STP for the CT pathway (γ = areas 17 or 21a,
β = pulvinar), since conductance changes over time, the voltage
integration assumes an effective synaptic weight, gA,STP β←γ

rather than the static synaptic weights ḡAβ←γ.

Parameters
The parameters for the cell dynamics were Cm = 1 µ F/cm2,
with conductance of leak currents of gL, E = 0.1 mS/cm2 and
gL, I = 0.05 mS/cm2 for excitatory and inhibitory neurons,
respectively. The other parameters that characterized the
dynamic of neurons with a regular spiking are: VL = −70.6 mV,
VT = −50.4 mV and 1T = 2 mV. The parameters for
the adaptation current were a = 24 nS, b = 0.01 nA, and
τadapt = 60 ms. For bursting VL = VT + 5 mV, and τadapt = 20 ms,
a = 4 nS, and b = 0.5 nA. For each area, the synapses’ parameters
were GE0 = 1.425 ms nS/cm2. GI0 = 1.89 ms nS/cm2, GEI = 9.0 ms
nS/cm2, GII = 13.5 ms nS/cm2, GEE = 22.5 ms pS/cm2,
GIE = 67.5 ms pS/cm2, with τsyn = 3 ms and VE = 0 mV and
VI = −80 mV (de Souza et al., 2020). For STP, parameters were
settled to obtain similar synaptic performance from experimental
data of terminal types 1 and 2 (Li et al., 2013). Therefore, synaptic
release probability at rest U0

type1 = 0.006 and U0
type2 = 0.8;

synaptic depression rates ωtype1
f = 0.48 s−1 and ωtype2

f = 2.0 s−1;
synaptic facilitation rate ωtype1

d = 1.5 s−1 and ωtype2
d = 3.33 s−1;

and, the synaptic conductance GA0, for A = E, I. Recurrent
connectivity for each area (pulvinar, areas 17 and 21a when
are modeled) is K, and the probability of connection was
pA = KA/NA, for A = E, I.

Variation of Pathway Connections
We used the factors WFF = 5 and WCP = 1.5 to change the weights
of feedforward and cortico-pulvinar projections. These factors
multiply the ratio GE0/GI0 for those entry inputs.

Simulations of network architecture and neuron equations
were performed with Python version 3.2 using Brian2 simulator
(Stimberg et al., 2019a). Euler’s integration was implemented
using a time step of 0.05 ms. The accuracy of the results
was verified by repeating simulations with smaller time
steps (0.025 ms).
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RESULTS

As stated above, three models were used to investigate the
oscillatory gating generated by CT terminals in the pulvinar.
The first model analyzed the effect of the combination between
types 1 and 2 terminals that target excitatory and inhibitory (E-I)
neurons, whose responses are in the balanced state (Figure 2A1).
This model provided a basic approximation of the weight ranges
of cortico-pulvinar connections that produced oscillatory and
asynchronous neuronal responses in this network, our simulated
pulvinar. The second model also consisted of external projections
to a pulvinar-like structure. However, this model considered
two external areas, cortical areas 17 and 21a, whose cortico-
pulvinar projections contain a combination of types 1 and 2
synapses (Figure 2A2). The fraction of types 1 and 2 terminals
and the percentage of synaptic contact reaching E-I pulvinar
neurons were arranged with available empirical data (Tables 1, 2).
This model allowed investigating the dynamics of pulvinar
responses when the activation between cortical projections from
areas 17 and 21a was temporarily deferred. While the first two
networks used cortical inputs as Poisson spike trains, the third
model simulated explicitly cortical neurons. Here, two similar
networks of E-I neurons were implemented and connected
feedforwardly to reproduce the interaction between areas 17 and
21a (Figure 2A3). Each cortical area targets pulvinar neurons,
with the proportion and axon terminal contacts settled in the
second model. Furthermore, for this model, cortico-pulvinar
projections were divided in striate- and extrastriate-recipient
zones to investigate the effect of different signaling pattering of
the transthalamic pathway across cortical areas (Figure 2A3).

Pulvinar EPSPs Evoked by Single CT
Activation
Before analyzing the complete pulvinar network, synaptic
plasticity of excitatory postsynaptic potentials (EPSPs)
was simulated to obtain similar qualitatively experimental
magnitudes of those found in neurons of the lateral posterior
nucleus (Li et al., 2003), the homologous nucleus to the pulvinar
in rats. To that end, a single CT fiber contacting a single neuron
with exponential integrate-and-fire dynamics was simulated
(Mat and Met, Equation 1). CT fibers were implemented with
synaptic plasticity that simulates short-term facilitation (STF,
Figure 2B1) and short-term depression (STD, Figure 2B2).
Then, EPSPs from the pulvinar neurons were recorded as the
cortical afferent fiber was stimulated with four sets of frequency
impulses (0.5, 2, 5, 10, 20 Hz) (Figures 2B,C). With this set-up,
the strength of the CT fiber was investigated, and experimental
amplitude of pulvinar EPSPs were recovered.

Two types of CT fiber responses were generated (Figure 2B).
These simulations revealed that changes of EPSP amplitudes
elicited by the stimulus train at various frequencies follow
experimental results of thalamic responses at a given set of
synaptic parameters. For simulated type 1 CT fibers, the
amplitude of EPSPs enhanced as the stimulation increased in
frequency, depicting a saturation in the response after seven
consecutive impulses (Figure 2C1). A contrary response was

seen in type 2 CT fibers. Here, EPSP amplitudes decreases at
higher frequencies, showing a constant response of amplitude
after five consecutive impulses (Figure 2C2). The amplitude
of pulvinar EPSPs showed a similar profile for frequency
stimulation higher than 5 Hz. The phenomenon described
here is known as short-term plasticity band-pass filtering, in
which depression acts as a low-pass filter and facilitation as
a high-pass filter (Izhikevich et al., 2003). The combination
of the two synaptic components, STD and STF, generates
a frequency-specific resonant output. Thus, the combination
of type 1 and 2 terminals will produce a resonance with
a different band frequency than that observed when each
axon terminal activates pulvinar neurons independently. Taken
together these results, our simulations evoked type 1 EPSPs
with frequency-dependent facilitation (Figures 2B1,C1), and
frequency-dependent depression for type 2 EPSPs in pulvinar
neurons (Figures 2B2,C2).

Pulvinar Network Responses Evoked by
Type 1 and 2 Terminals
The next step was to study the effect of CT terminals in a
population of E-I in the balanced state (Figure 2A1). The
pulvinar was modeled with sparsely connected neurons but
strong connections between E-I populations (van Vreeswijk
and Sompolinsky, 1996). In this network, excitatory frequency-
dependent types 1 and 2 terminals identified in the previous
section were feedforwardly connected to excitatory and
inhibitory pulvinar neurons. The weights of these external
“cortical” synapses, GE0 and GI0, were invariant in time. The
different responses of the pulvinar network were then analyzed
when a factor η amplified the excitatory cortical pathway to
E-I neurons. The logic of the η factor was to conserve the
feedforward ratio (GE0/GI0) and only modulate the amplification
of the external pathway to pulvinar neurons (Cortes and van
Vreeswijk, 2015; de Souza et al., 2020). η1 and η2 were defined
to amplify types 1 and 2 synaptic terminals, respectively. So,
conductances for type 1 terminals, gA

STF ← gA
STF + η1∗ GA0rs,

and for type 2, gA
STD ← gA

STD + η2∗ GA0rs, where A are for E
or I processes.

Asynchronous and Synchronous Responses
Two clear states the pulvinar network showed when η was
changed: a strong irregular (asynchronous state) or a regular
(synchronous state) pattern of spiking activity (Figure 3). These
two activation states were evoked with a Poisson input spike train
of 10 sp/s, in a network that had equal synaptic strengths to E-
I populations of neurons. To characterize further both regimes,
peristimulus-time histograms (PSTHs) and the statistics of spike
discharges were analyzed. As Figure 3A shows, PSTHs for
excitatory and inhibitory neurons reflect the global asynchronous
(Figures 3A1,B1) and synchronous (Figures 3A2,B2) states
of the pulvinar network. For the asynchronous state, spike
statistics showed an exponential average firing rate and a normal
distribution of the coefficient of variation (CV) for the inter-
spike interval (ISI), signatures of an irregular activation regime
(Figures 3C1,D1). Such asynchronous activity in recurrent E-
I populations of neurons was obtained when the number of
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FIGURE 3 | Two responses of the pulvinar network: (1) asynchronous and (2) synchronous states. (A) PSTH (sp/bin) of excitatory (red line) and inhibitory (blue line)
neurons when a spike train with Poisson’s statistics of 10 sp/s is applied to the network, (B) Raster plot for excitatory (red) and inhibitory (blue) neurons. Only 1,000
cells are shown. (C) Distribution of average firing rate (sp/s). Arrows indicate the mean of the distribution. (D) Interspike intervals (ISI) of the coefficient of variation
(CV). Arrows indicate the mean of the distribution. (E) Power spectrum of PSTHs. Arrows show the maximum frequency amplitude. Yellow zones characterize
alpha-band oscillation range.

excitatory inputs needed to induce firing was only proportional
to
√
K (van Vreeswijk and Sompolinsky, 1996; Renart et al., 2010;

Cortes and van Vreeswijk, 2015). This was not the case for the
synchronous state (Figures 3C2,D2), in which a predominant
oscillatory regime in the PSTH was revealed (Figure 3B2). Here,

both the average firing rate and the ISI CV had a narrow
distribution profile. These differences between the two pulvinar
response states were also observed when the PSTH spectrum
of frequencies was measured. In the asynchronous state, a peak
of oscillatory activity was observed at low frequencies (<5 Hz),
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whereas, in the synchronous regime, the oscillatory activity
showed a clear peak at 12 Hz, which was within the range of
alpha-band oscillatory frequency. The amplitude for this peak
was higher for the synchronous than the asynchronous state. In
summary, the two states can be visually identified by statistical
components of the firing rate and the corresponding PSTH. Thus,
an asynchronous state was characterized by a high CV (close to
1) with a low amplitude frequency peak of the PSTH, while the
synchronous regime had low average firing rate and CV values,
and a high oscillatory frequency amplitude of its PSTH.

To identify in which set of values such neural states occurred,
inputs and synaptic feedforward strengths to the pulvinar
network were gradually increased. The variations were tested
in two networks that had similar strengths of E-I connectivity.
Figure 4 shows the result of such simulations. For type
1 terminals, the gradual increase of the input produced a
gradual increase of the discharge of the neurons, with a clear
asynchronous state of the network (Figures 4A1,B1). This
gradual increase also occurred when η1 increased, in which the
average firing rate and CV increased further (Figures 4C1,D1).
Another scenario was observed for type 2 connections. Here, the
pulvinar network showed a synchronous transition between the
inactive and asynchronous states (η1 ∼3). During this transition,
the firing rate as well as the oscillation amplitude increased
to high value inputs, while their CV was low. Note that this
oscillatory transition also occurred for type 1 synapses, but this
was less pronounced. Since type 2 terminals have a first EPSP
with a larger synaptic response (Figures 2B,C), these terminals
evoked the oscillatory transition at lower connection intensities
than those simulated for type 1 connections.

Oscillatory Responses Evoked in the
Pulvinar by Lower and Higher Cortical
Areas
While the distribution of cortico-pulvinar terminal types 1
and 2 seems to be hierarchical-level-dependent, the proportion
of contacts to excitatory and inhibitory neurons seem to
be terminal-type-dependent. For area 17, the distribution of
terminal types 1 and 2 are 25–75% respectively. In higher cortical
levels, such as area 21a, this distribution is almost reversed in
which types 1 and 2 are 81 and 19% of the cortico-pulvinar
connections, respectively (Table 1; Abbas-Farishta et al., 2020).
On the other hand, cortico-pulvinar type 1 terminals contact 85%
and 14% of excitatory and inhibitory cells, respectively, type 2
synapses 48 and 44.5%, respectively (Table 2; Vidnyánszky et al.,
1994). In fact, round large (RL) terminals from area 17 to the
pulvinar are predominantly located in the striate recipient zone.
For extrastriate cortical areas, terminal zones are characterized
as small boutons (RS) (Huppe-Gourgues et al., 2006). Thus, CT
projections seem to exert different synaptic actions depending on
their origin along the cortical visual hierarchy and the type of
terminals contacting pulvinar neurons.

Such anatomical attributes were implemented in the following
simulations of the pulvinar network. For area 17, contributions
from a Poisson spike train were divided in terminal types 1
and 2, with the number of implicit excitatory cells considered

in the feedforward CT pathway being 25% and 75% of K,
respectively, where K is the average number of total projections.
For area 21a, the percentage for types 1 and 2 terminals were
81% and 29% of K, respectively. Regardless of their cortical
area of origin, type 1 terminals had a connection probability
with excitatory and inhibitory pulvinar neurons of p = 0.85 and
p = 0.14, respectively, and type 2 terminals probability contacts
were p = 0.48 and p = 0.445, respectively. To that network,
η1 and η2 were increased gradually and input of 10 sp/s was
applied to analyze the performance of the pulvinar network.
The representative frequency, amplitude of this frequency, firing
rate and CV were collected after 1 s of simulation, as shown in
Figure 5.

Effect of Single Cortical Activation
Regardless of whether the input came from area 17 or 21a, at a
given strength of the feedforward cortical pathway, the pulvinar
network evoked oscillations in the frequency range of 7.5–12.5 Hz
(alpha waves). These oscillations were generated at the transition
between the quiescent and the asynchronous steady state of the
network. In the transition, the network showed a maximum
frequency of ∼25 Hz (beta- waves). Alpha frequency bands were
found besides such maximum frequency oscillation (Figure 5, red
lines). Alpha waves were symmetrical at the border of the beta
bands, but for η2 high and η1 low, only one side of the transition
showed alpha band responses. For areas 17 and 21a, alpha waves
were around η1 = 13 and η2 = 3, and η1 = 7 and η2 = 5,
respectively. Between these strengths, decreasing and increasing
magnitudes of η1 and η2, respectively, allowed a continuous
transition where alpha waves were always presented. Note that in
order to reach such transition threshold, η1 was higher in area 17
than in area 21a. The inverse happened for η2, whose magnitude
was lower in area 17 than in area 21a. Such transition threshold
indicates that the proportion and the distribution of synaptic
contacts of terminal types 1 and 2 settled for areas 17 and 21a
promote lower values of the cortico-pulvinar connection to reach
oscillatory alpha-band activity.

Effect on Alpha Waves of Sequential Activation of
Two Cortical Areas
Here, alpha-band oscillations generated by the driven area were
measured when the other area was activated afterward. To
elicit alpha rhythms that were representative of cortical areas
17 and 21a, we selected strengths of their connections such
that η2 ≥ η1, and η1 > η2, respectively. In this setting, the
thalamic network was simulated for 5 s. After the network
reached a stable alpha-band oscillation induced by the driven
area (2 s), the other cortical was “attached” (1 s). Subsequently,
the attached area was disconnected, and a recovery period
was allowed (2 s). The results of such simulations are shown
in Figure 6. When driven inputs were from area 17, alpha
waves rose quickly (∼150 ms) inside the network, having a
stable oscillatory profile before the end of the first second. The
amplitudes of such oscillations were low (∼15 sp/bin), even if
pulvinar neurons were synchronized. In the attached period,
inputs from area 21a abolished the synchronization, including
alpha rhythms. Once 21a was disconnected, the pulvinar network
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FIGURE 4 | Quantitative outputs for a pulvinar network whose neurons receive terminal types 1 (1) and 2 (2) as input, and connection weights increase gradually.
Factors η1 and η2 amplify corticothalamic projections of terminal types 1 and 2. (A) Frequency (Hz), (B) Amplitude (V2/Hz), (C) Firing rate (sp/s), (D) CV.

FIGURE 5 | Quantitative outputs for a pulvinar network whose neurons receive projections from areas 17 (1) and 21a (2). Factors η1 and η2 amplify corticothalamic
projections of terminal types 1 and 2, respectively. (A) Distribution and number of contacts to excitatory and inhibitory pulvinar neurons of terminal types 1 and 2 for
cortical areas. Red and blue letter colors indicate excitatory and inhibitory percentages, respectively. Terminal types 1 and 2 are represented by colors green and
purple, respectively. (B) Frequency (Hz), (C) Amplitude (V2/Hz), (D) Firing rate (sp/s), (E) CV. Red lines in panels (B–E) indicate zones where alpha rhythms are
evoked.
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FIGURE 6 | Two solutions to generate alpha waves in the pulvinar. These solutions are found when η1 = 0.5 and η2 = 2.5 for area 17, and η1 = 6.0 and η2 = 1.0 for
area 21a. Note that the thalamic alpha rhythms are ceased when the other area functionally targets the pulvinar (2–3 s). Solution for areas (A) 17 and (B) 21a.
Terminal types 1 and 2 are represented by colors green and purple, respectively.

came back rapidly to alpha-band oscillations again. When the
driven input was from area 21a, the rise of alpha waves was
much slower (∼1,000 ms), but amplitudes of the oscillation were
much larger (∼100 sp/bin). Since type 1 synapses have low-
amplitude EPSPs in their first pulses, the network takes longer
to balance their inputs than when the inputs have EPSPs of
high amplitude (Cortes and van Vreeswijk, 2015), as is the case
with type 2 connections. Such neuronal states may be similar
to those conditions found in the loss of consciousness due to
analgesics (Bastos et al., 2021). Adding projections from area
17 induced an asynchronous stable activity on the thalamic
population, which returned quickly to alpha waves when this
attached area was disconnected. In summary, the pulvinar
network developed alpha rhythms by driving cortical inputs and,
at these parameter values, the arrival of other cortical sources

generated a global asynchronous state and a loss of oscillatory
alpha-band activity.

Figure 6 showed that terminal types 1 and 2 seem to
produce different activation dynamics in the thalamic network,
particularly at the beginning of the stimulation. As previous
pulvinar responses were only analyzed after 1 s of “recording,” the
aim of the following section was to quantify pulvinar dynamics
just before the onset of cortical stimulation. For this purpose, η1
and η2 were gradually increased for the strength of projections
from areas 17 and 21a. The result of such iterations revealed
that pulvinar alpha waves were located in similar activation
zones shown above (Figure 7). In this regime, pulvinar alpha
rhythms appeared and stabilized rapidly when type 2 terminals
dominated cortical projections of area 17 (Figures 7A1,A2).
Conversely, adding type 1 terminals and decreasing the strength
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FIGURE 7 | Terminal types 1 and 2 produce different activation dynamics in the thalamic network at the beginning of the stimulation. (A) PSTH and raster plots for
area 17 solutions. (B) Outcomes of such solutions for (1) coefficient of variation of alpha waves peaks, (2) number of peaks per second, and (3) first peak onset.
(C) PSTH and raster plots for area 21a solutions. (D) Outcomes of such solutions for (1) coefficient of variation of alpha waves peaks, (2) number of peaks per
second, and (3) first peak onset.

of type 2 axons restricted such oscillations to a short time
window (Figure 7A3). In fact, increasing the pathway strength
of only type 1 axons into the pulvinar network, generated an
asynchronous transition of spike activity which was subsequently
transformed into a synchronous oscillation when η1 was large
(Figures 7C1,C3). These qualitative details were further analyzed
by measuring average dispersion (CV), number and the first-
time onset of the PSTH peaks of the oscillatory pulvinar
synchrony (Figures 7B–D). For area 17, alpha- waves were highly
regular (low CV) when η2 > η1 (Figure 7B1), with a constant
number of peaks and rapid triggering of activity in similar
regimes where alpha rhythms were stable over longer simulation
times (Figures 7B2,B3). Alpha rhythms for area 21a were also
expressed in the same regime (i.e., η2 > η1). Here, however, when
η2 < η1, alpha waves were less evident and stable oscillations
with regular periodicity in the first second of simulation were
undetected. Thus, in the first period of cortical stimulation, type
2 terminals were more likely to establish effectively a stable
and fast alpha-band periodicity than type 1 axons regardless of
their source area.

Simultaneous Cortical Activations
The generation of alpha waves in the pulvinar was studied when
the two CT projections were combined. The objective here was
to evoke alpha waves in the pulvinar with the two cortical areas
activated simultaneously. This joint activation may be possible
because, for instances, the superposition of oscillatory outputs
from areas 17 and 21a (matrices from Figures 3B1,B2) generates
spots of alpha-wave responses. To that end, the connectivity
weights were iterated to find representative examples of cortico-
pulvinar projections that achieved alpha rhythms in the thalamus.
Such results are shown in Figure 8, in which the driver activity

to pulvinar neurons was originated from the simultaneous
convergence of the two cortical sources. In Figure 8A, the two
cortical areas had weights of type 2 connections weaker than
those from type 1, whereas, in the Figure 8B, terminal types
1 and 2 from area17 were stronger than those from area 21a.
The convergence of the two cortical inputs yielded a stable
oscillatory alpha-band response after 1 s, which ended when such
projections were disconnected (after 2.5 s). To demonstrate that
the oscillatory activity was evoked by the synergy of the two
cortical areas, the thalamic network was initially connected by
only one cortical area. After a period (1.5 s), the input from
the other cortical area was restored (Figures 8A2,A3,B2,B3).
Terminal weights used here were the same as before. In the two
above cases, the input from one area was insufficient to gate
oscillatory responses in the pulvinar (Figures 8A2,A3,B2,B3).
When the weight of connections from area 17 to the pulvinar
was more robust than those weights from area 21a (Figure 8B3),
thalamic neurons showed oscillatory responses, but only during
a short period (<1.0 s). In this regime of connections, alpha
waves in the pulvinar recovered when connections from the
disconnected cortical were added from area 17 or area 21a,
showing a stable periodicity during the whole period of dual
cortical stimulation.

Oscillatory Responses of the
Transthalamic Network
In this section, each cortical area was modeled explicitly as
a network of E-I neurons whose responses were settled in
the balanced state (Figure 2C3). Randomly chosen excitatory
neurons formed the two CT pathways from areas 17 and
21a (p = 0.2, homogeneous distribution). The proportion of
terminal types 1 and 2 were 25% and 75% and 81% and 29% of
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FIGURE 8 | Generation of alpha waves by the combination of the two CT projections. (A) Solution when type 2 terminals (purple axons) are weaker than type 1
(green axons). (B) Solution when terminal types 1 and 2 from area 17 are stronger than connections from area 21a. For panel (A), ηa17

1 = ηa21a
1 = 0.3 and

ηa17
2 = ηa21a

2 = 1.8. For panel (B), ηa17
1 = ηa17

2 = 2.0 and ηa21a
1 = ηa21a

2 = 0.5.

Np = K synapses, for areas 17 and 21a, respectively (Table 1).
While the proportion of excitatory type 1 terminals contacting
excitatory and inhibitory pulvinar neurons was p = 0.85 and
p = 0.14, respectively, for type 2 terminals it was p = 0.48
and p = 0.445, respectively (Table 2). The two cortical areas
were also connected feedforwardly through randomly chosen
excitatory connections from area 17 to excitatory and inhibitory
neurons of area 21a (p = 0.05). Inputs to area 17, from an
implicit lateral geniculate thalamic nucleus (LGN), were also
drawn from a uniform distribution (p = 0.05), and were modeled
as spike trains with Poisson’s statistics. Axon terminals from
LGN to area 17, and from area 17 to area 21 did not have any
synaptic plasticity. The three interconnected structures mimic
the cortico-thalamo-cortical network formed by areas 17 and 21a
and the pulvinar.

Effect of Cortical and Pulvinar Dynamics in
Oscillatory Responses of the Transthalamic Network
Burst discharges and low background levels of synaptic noise
in the pulvinar were first settled to study the cortico-pulvinar
pathway of the model. It has been postulated that intrinsic burst
neurons in layer 5 (5IB) of the lower cortical areas (i.e., areas 17
and 18) participate in the conduction of pulvinar alpha rhythms
(O’Reilly et al., 2021). Furthermore, thalamic bursting has
been characterized as an intrinsic property of pulvinar neurons
(Ramcharan et al., 2005). Besides, background noise can alter
the synaptic efficiency of connections by increasing subthreshold
fluctuations (Silver, 2010) and enhancing the salience of neuronal
oscillations to avoid long asynchronous/synchronous state
transitions as in Figures 7C1–C3. For that end, intrinsic bursting
was induced in cortical and pulvinar neurons by changing
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mainly high reset values (Vr > VT), among other parameters
of the current regular spike train (Brette and Gerstner, 2005).
Furthermore, stochastic balanced synaptic inputs without short-
term plasticity were added equally to E-I pulvinar neurons to
elicit background noise. Here, a simplified version of the neural
network described in Figure 2C3 was used, where only CT
projections from area 17 to the pulvinar were incorporated. Thus,
the effect of cortical burst spikes and background noise into
pulvinar neurons on thalamic alpha waves were compared to
cases where no such functional biological processes were present.

Figure 9 shows all cases of combinations where area 17
and pulvinar neurons have regular or burst spiking discharges
and pulvinar is with or without background synaptic noise.
Raster plots for cortical and pulvinar neurons (top and bottom
panels, respectively) and PSTH envelopes for excitatory and
inhibitory pulvinar neurons (middle panel) are shown here.
To obtain such results, cortical area 17 was targeted by an
LGN input of 50 sp/s, and cortical and pulvinar excitatory and
inhibitory neurons were recorded for 1 s. Parameters of the
brain structures were fixed between simulations, but cortico-
pulvinar weights were fitted to obtain pulvinar alpha rhythms.
Cases with background noise in the pulvinar were analyzed
first, then when neurons from area 17 had bursting discharges,
and finally, when thalamic neurons incorporated such burst-like
dynamics. Adding background noise to pulvinar excitatory and
inhibitory populations of neurons improved the profile of alpha-
band oscillations (Figures 9A,B). The average dispersion of the
excitatory bumps in the PSTH formed around the synchronous
discharge of neurons were 30.05 ± 0.14 ms (mean ± std)
and 32.54 ± 0.42 ms (t-test, p-value = 0.001) for simulations
with or without background noise in the pulvinar, respectively.
When cortical neurons had bursting dynamics (Figures 9C,D),
bumps of alpha waves in the pulvinar with and without
background, became larger with higher peaks (∼10 sp/bin) and
smaller dispersion (∼29.05 ms), compared to previous cases with
only regular spiking discharges (Case A vs. Case C, t-test p-
value = 0.06, Case B vs. Case D, t-test p-value = 0.004). Changing
pulvinar regular spiking cells with bursting neurons favored
the irregular periodicity of alpha rhythms, but background
noise added into excitatory and inhibitory populations stabilized
partially such oscillatory lost (Figures 9E,F). Taken together,
synchronous alpha rhythm responses of pulvinar neurons were
affected by cortical and pulvinar neuronal dynamics as well as the
background noise added to thalamic neurons.

Pulvinar responses to different cortical and pulvinar dynamics
were further investigated by measuring oscillatory frequency and
amplitude, as well as firing rates and CV when η1 and η2 were
iterated (Figure 10). Alpha waves were highlighted by depicting
contours that had high and low amplitude spectral density in the
Fourier transform (Figure 10, red and white lines, respectively).
In general, alpha waves were between the transition of quiescent
states and stable asynchronous activity. While strong alpha-band
oscillations were limited to be in such transition (red lines),
low energy frequencies were revealed to be more ubiquitous
(white lines). Noise decreases the weights used to evoke such
strong alpha-frequency oscillatory responses, when comparing
iterations with and without background noise (Figure 10A vs.

Figure 10B and Figure 10C vs. Figure 10D). Background noise
also restricted the feasible region for finding the alpha waves.
On the contrary, incorporating cortical bursting dynamics in
the network expanded such regions, particularly for weak alpha-
band oscillations (Figures 10B–E). Strong alpha rhythms were
eliminated when burst responses were included into pulvinar
neuron dynamics. As Figures 9D–E show, weak alpha waves were
located at the transition from silent to activated states, when
background synaptic noise was present and cortical and pulvinar
neurons had bursting dynamics. Taken together, incorporating
bursting cortical and pulvinar dynamics and adding background
synaptic noise into pulvinar neurons enhanced oscillatory alpha-
band states of the cortico-pulvinar network, but the localization
of such low-frequency transition regimes was almost unchanged.

Effect of Transthalamic Pathway in Higher-Order
Cortical Responses
Pulvinar effective connectivity to the visual cortex was tested
by forming the transthalamic pathway. In this scenario, cortical
area 21a received two feedforward projections: one coming
from area 17 and another from the pulvinar (Figure 2C3). In
turn, area 17 received an input from the LGN that consisted
of spike trains with Poisson’s statistics. Connections from the
LGN to area 21a were not implemented. The pulvinar was
divided in two functional areas based on the arrangement of
CT projections: striate- and extrastriate-recipient zones. Each
recipient zone received percentage of connections and excitatory
and inhibitory proportion of contacts from terminal types 1 and
2 of cortical areas 17 and 21a as previous simulations. However,
connections between E-I pulvinar cells were strong, similar to
the organization of the two cortical areas. For simplicity, only
one pulvino-cortical projection was considered, which was for
the connection from the pulvinar to area 21a. For this area,
each excitatory and inhibitory populations received in average
K random contacts from excitatory pulvinar neurons. Weights
of this pulvino-cortical projection, G21a←pul

E0 and G21a←pul
I0,

were multiplied by the same factor, WCP
21a, which was fixed

for all simulations. Dynamics of the pulvinar neurons used here
were those established in case A (Figure 10A), when the neurons
had regular spiking and low background synaptic noise. Thus,
the neural network used for the next iterations consisted of a
cortico-cortical feedforward pathway from area 17 to area 21a,
and a transthalamic pathway from area 17 to the pulvinar, and
from pulvinar to area 21a, also defined by CT projections from
areas 17 and 21a to striate- and extrastriate-recipient zones in the
pulvinar, respectively.

Propagation of Alpha Rhythms From Pulvinar to Area 21a
To achieve alpha waves in the pulvinar, CT projections from
area 17 to the pulvinar were fixed to a constant value, and CT
weights from area 21a to the pulvinar were gradually varied.
Figure 11 shows an overview of the network performance. For
these simulations only, η21a

1 = η21a
2. During the first second,

the cortico-cortical pathway was attached, whereas the cortico-
thalamo-cortical pathway was unconnected. By consequence,
predominant low-frequency oscillations were absent in area 21a.
Then, CT from area 17 and pulvino-cortical projections to area
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FIGURE 9 | Combinations of cases when area 17 and pulvinar neurons have regular or burst discharges, and pulvinar is with or without background synaptic noise.
For each case, raster plots for area 17 and pulvinar and PSTH for pulvinar are shown. Case (A) Regular spiking for area 17 and pulvinar neurons, background
synaptic noise added to pulvinar neurons. Case (B) Similar to case (A), but without background synaptic noise in pulvinar. Case (C) Bursting dynamics for area 17,
regular spiking for pulvinar neurons, background synaptic noise added to pulvinar neurons. (D) Similar to case (C), but pulvinar neurons without background
synaptic noise. (E) Bursting dynamics for area 17 and pulvinar neurons, background synaptic noise added to pulvinar neurons. (F) Similar to case (E), but pulvinar
neurons without background synaptic noise. Supplementary Table 2 shows values of ηa17

1 and ηa17
2.

21a were added. In this configuration, alpha-band oscillations
were generated in cortical area 21a by the transthalamic pathway
(1–2 s). Note that during this period, alpha waves were only
evoked in the pulvinar striate-recipient zone. In the next temporal

sequence (2–6 s), CT connections from area 21a were added into
the pulvinar extrastriate-recipient zone, and these projections
were amplified gradually throughout this period. Alpha waves
in area 21a and the pulvinar persisted when cortical projections
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FIGURE 10 | Quantitative outputs for cases in Figure 9. Frequency (Hz), amplitude (V2/Hz), firing rate (sp/s) and CV for different cases as η1 and η2 increase
gradually. Red line, alpha waves with higher amplitude; white line, alpha waves with lower amplitude. Refer to the text for more details.

had a low magnitude (2–3 s). In the contrary, alpha-band
oscillations were lost when η21a

1 and η21a
2 enhanced (3–6 s). The

pulvinar and area 21a showed an asynchronous profile of spike
activity when cortical top-down connections to the pulvinar were
sufficiently high. Note that pulvinar responses were produced
only in the extrastriate-recipient zone, while responses in the
striate- recipient zone were silenced. Finally, alpha waves in
the pulvinar and area 21a were re-established when cortico-
pulvinar connections from area 21a were disconnected (6–7 s).
Taken together, the transthalamic pathway enabled functional
connectivity in alpha frequency band when cortico-pulvinar
connections from lower cortical areas were allowed and an
asynchronous response in higher cortical areas when the cortico-
pulvinar loop between area 21a and pulvinar was closed.

Closing the Cortico-Pulvinar Cortical Loop
The effect of closing the loop between cortical area 21a and the
pulvinar on the formation of alpha waves was further analyzed
by varying the weights of terminal types 1 and 2 of these
CT projections. For that end, a network incorporating cortico-
cortical and transthalamic pathways (area 17 to pulvinar, pulvinar
to area 21a) was created as above described. In addition, the
network had a top-down projection from area 21a to the pulvinar,
which was organized in three different time periods. In the
first condition, the projection from area 21a and the pulvinar
was disconnected (open loop) for 1 s (Figure 12A). The next
second, the projection from area 21a to the pulvinar was formed
(close loop), and connections from area 17 to the pulvinar
were still activated. In the last second, only the close loop was
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FIGURE 11 | Example of oscillatory alpha-band activity transmission by transthalamic network for a network as Figure 2A3. (A) Weights of connections, ηa17,21a
1

and ηa17,21a
2 for areas 17 and 21a. PSTH for areas 17 (B), 21a (C) and pulvinar (D). (E) Raster plots for neurons in the pulvinar. Note that half of the pulvinar

neurons are targeted by CT projections from area 17 and the other from area 21a.

functional, in which cortical top-down activity to the pulvinar
was evoked indirectly by cortico-cortical arriving inputs to area
21a (Figure 12B).

With this network, the efficacy of alpha waves expressed in
area 21a by pulvinar projections was quantified. For the first
second, alpha waves in the pulvinar and area 21a were evoked
99% and 64.44% of the time, respectively. The remaining ∼35%
of oscillations evoked in area 21a were lower than 7.5 Hz.
In the next condition, η21a

1 and η21a
2 were iterated and the

frequencies, amplitudes, firing rates and CV of area 21a and
pulvinar outputs were characterized. Figure 12C shows that, in
the second period (2–3 s), closing the loop between area 21a
and the pulvinar decreased alpha-band oscillations in the two
networks. In fact, the pulvinar achieved only 36% of alpha waves,
causing a loss of alpha-wave transmission in area 21a (∼26%).

Alpha-band oscillations in the pulvinar were only expressed at
low magnitudes of η21a

1 and η21a
2, since the striate-recipient

zone continued to yield such rhythms. When the strength of
the cortico-thalamo projections, from area 21a to the pulvinar
extrastriate-recipient zone was increased slightly more, the
striate-recipient zone was perturbed, and so was the production
of alpha waves, decreasing the propagation of such frequency
into area 21a during this second period. Note that a variety
of higher frequency oscillations in area 21a and the pulvinar
arose at such intermediate neuronal states (Figure 12B1). As the
strengths of the CT connections were higher, only extrastriate-
recipient neuronal responses in the pulvinar were engaged,
causing an asynchronous spiking state in both the pulvinar and
area 21a (Figure 12B2). Similar responses were observed in
the last period of stimulation (3–4 s). Here, the closed loop
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FIGURE 12 | Effects on alpha waves when the loop between area 21a and the pulvinar is closed in the cortico-thalamo-cortical model. (A) Scheme showing the
temporal configuration of the three periods for the connections of the model. Panels (B,C) are two solutions when top-down loop to the pulvinar generate
asynchronous (1) or oscillatory (2) responses. (B) PSTH for area 21a and pulvinar. (C) Raster plots for pulvinar neurons with striate- and extrastriate-recipient zones.
Second and third periods’ quantitative outputs (frequencies, amplitudes, firing rates and CVs) for area 21a (D) and (E) pulvinar networks when η21a

1 and η21a
2 are

increased gradually. Note the position of solutions 1 and 2 in the panel (D).

FIGURE 13 | Schematic representation of the oscillatory responses predicted by our models. (A) The pulvinar evokes an alpha-band oscillatory response by the
feedforward activity of area 17. The response of the infragranular layers of area 17 is evoked by the inter-laminar connectivity that initially reaches layer 4.
(B) Oscillatory alpha-band responses in the pulvinar are evoked by feedback activity from higher order (HO) cortical areas to the infragranular layers of area 21a.
(C) Indirect oscillatory alpha-band activation of the pulvinar by the feedback from area 21a to the infragranular layers of area 17.

was still coupled, but connections from area 17 to the pulvinar
were disconnected. Under this configuration, only 1.7% of alpha
waves were generated in area 21a. In average, the pulvinar did

not show any alpha waves during this period. The remaining
spiking responses of area 21a and the pulvinar had almost all
asynchronous features or higher-frequency oscillations. More
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details of the activity throughout these periods are shown in
Supplementary Table 1. Altogether, similar to previous analysis,
the transthalamic pathway allowed a propagation of alpha waves
from the pulvinar to area 21a, which was occluded by the arriving
of the top-down projection from area 21a to the pulvinar. Thus,
the pulvinar showed a bi-stable spiking response, oscillatory or
irregular spiking, whose responses were gated by the different
activation of projections from areas 17 and 21a to the pulvinar.

DISCUSSION

Previous experimental studies have shown that neuronal
populations of the pulvinar nucleus possess multiple dynamic
activity profiles (Wrobel et al., 2007; Saalmann and Kastner,
2011; Yu et al., 2018; Le et al., 2019). In this work, using a
theoretical approach, we propose that such population dynamics
in the pulvinar may arise from CT connections originating
from different hierarchical cortical areas, whose axonal terminals
have distinct anatomical and physiological profiles. Two types of
neuronal discharges were evoked in the pulvinar, synchronous
and asynchronous responses, when projections from areas 17
and 21a to the pulvinar were organized according to the
connection empirically described in cats (Huppe-Gourgues et al.,
2006, 2019; Abbas-Farishta et al., 2020). We found that, at a
specific connection weight regime, CT connections reproduce
the oscillatory alpha-band activity of the pulvinar. This solution
from the model was found when each cortical area independently
contacted the pulvinar and when they were combined. When a
single area evoked oscillatory alpha-band activity in the pulvinar,
the activation of the distant area ceased such oscillations. The
combinations of the two projections types 1 and 2 changed the
oscillatory dynamics to asynchronous spiking states. Similar bi-
stable state has been reported experimentally in the primate
pulvinar during object detection and passive viewing (Wilke et al.,
2009). The results found in our models are a direct consequence
of the restrictions we put on the parameters, suggesting that the
pulvinar may have several dynamic response states to interact
with the visual cortex.

The most important prediction of this work is that the
pulvinar has at least two functional response states, regular
oscillatory or stable asynchronous. Other models explaining such
oscillatory variations have included alpha waves in the pulvinar
implicitly (Quax et al., 2017) or only as part of the cortico-cortical
circuitry (Jaramillo et al., 2019). Our model suggests that part of
such oscillatory activity comes from types 1 and 2 CT projections
distributed as a gradient along the hierarchy of the visual system.
While alpha rhythms in the pulvinar may reflect the functional
cortical feedback connectivity (Halgren et al., 2019), our work is
in agreement with the experimental evidence that the pulvinar
drives cortical alpha waves (Saalmann et al., 2012). In addition,
our model predicts that such oscillations may be abolished by CT
projections from lower cortical areas (areas 17 and 18). As shown
here, given that such connections have a high proportion of type
2 connections, their role would be to desynchronize the pulvinar
when activated in a synchronous manner. Although, additional
anatomical and physiological data are needed to confirm our

hypothesis, the implications of such predictions are explained in
more detail below.

Mechanism of Generating Oscillations
To obtain oscillatory alpha-band activity, in our model, we
settled connections to be unbalanced, so CT weights were
just lower than

√
K synapses providing low-frequency waves.

Since oscillatory solutions were in the frontier of a balanced
state (Figure 6), the addition of an extra input generated an
asynchronous irregular spiking activity. Such a neural property
of networks in the balanced state explains the sharp transition
between the two states, which could have implications for fast
temporal neural encodings in the pulvinar, as recently proposed
(O’Reilly et al., 2021).

Mechanisms that generate alpha rhythms have been attributed
to collateral branches of CT axons to the thalamic reticular
nucleus (TRN), which in turn provide inhibitory inputs back to
the thalamus. Such glutamatergic excitatory input from cortical
layer VI targets excitatory and inhibitory TRN cells, while the
latter component, GABAergic neurons, hyperpolarized thalamic
excitatory relay cells that discharge action potentials in burst
firing rate. The burst stimulates collateral TRN cells and serves
to re-inhibit excitatory relay cells. This loop continues in a low-
frequency oscillation at 7–14 Hz (Jones, 2002; Crabtree, 2018).
Our model postulates a different mechanism for generating alpha
rhythms from the balanced E-I networks’ intrinsic properties
(see above) and the oscillatory property evoked by the interplay
of short-term plasticity components. The combination of
facilitatory and depression synapses can generate time-dependent
connectivity effects, which engage pulvinar neurons to oscillate
in specific low-band frequencies. Such resonant activation acts
as a band-pass filter, eliciting a specific amount of neuronal
information and communication between the cortex and the
thalamus (Markram et al., 1998; O’Brien et al., 2014). The model,
parameterized with the experimental proportion of CT terminal
types 1 and 2 of two cortical areas, suggests a possible non-
GABA mediated mechanism as suggested by recent pulvinar
causal manipulation results in monkey (Saalmann et al., 2012;
Zhou et al., 2016).

In a more natural scenario, the addition of noise and other
membrane dynamics favored the appearance of more realistic
scenarios similar to previous experimental works. The addition
of a synaptic noise background (Figure 9A) allowed decreasing
the delay to reach this oscillatory stability (Silver, 2010). The
addition of burst-like dynamics favored irregular oscillations and
lower power in the amplitude of the signal (Ramcharan et al.,
2005; O’Reilly et al., 2021). However, when the cortico-pulvino-
cortical model was implemented, we selected pulvinar neurons
with regular spiking responses with a low background synaptic
noise (case A, Figures 10, 11). Such properties were chosen to
reinforce the regular oscillatory activity of the pulvinar on the
neural responses of the visual cortex. Although the burst-like
responses may refine the neuronal responses of the pulvinar to
a more realistic scenario, our model predicts that such stable
oscillatory responses are due to the physiological properties of
terminal types 1 and 2 and how these are combined to obtain a
nearly balanced state.
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Implications in the Transmission of
Oscillatory Cortical Responses
Throughout the Transthalamic Pathway
Visual processing in cortical areas follows mostly a hierarchical
stream of communication, in which the visual information
travels from low to high levels (feedforward pathway), as well as
from high to low levels (feedback pathway) (Felleman and Van
Essen, 1991; Bullier, 2003). Oscillatory-band activity has been
associated with these anatomical pathways, in which gamma-
band oscillations are found in the feedforward route, whereas
slow oscillations, alpha/beta waves, are observed in the feedback
direction (van Kerkoerle et al., 2014; Bastos et al., 2015).
In our simulations, nonetheless, we show that the alpha-type
oscillatory activity evoked in area 21a, we are able to reverse that
transmission in feedback action if η21a

1 > η21a
2, so reversing

the ratio of types 1 and 2 terminals, and introducing a pulvino-
cortical projection such as WCP

a17 < 0. In this new scenario,
CT projections from area 21a would drive alpha-band oscillatory
responses in the pulvinar, whereas CT connections from area 17
to the pulvinar would shift such responses into asynchronous-
type activity (Figure 13).

Reversing the direction of transmission along the cortical
hierarchy, and changing the activity from a synchronized to
an unsynchronized state, depends on two properties of the
simulated network. As described above, terminal types 1 and 2
can evoke alpha-band oscillations independently. Interestingly,
as the terminals are set with the ratios of areas 17 and 21a,
solutions are found when the predominant terminal had a higher
weight of connection than the other type. That is, to engage alpha
waves in the pulvinar by CT projections from area 17, the type 2
terminal had to be stronger than the type 1, and vice versa for area
21a, which follows the ratios found in the empirical anatomical
data. The second property is derived from the two compartments
organized in the pulvinar as striate- and extrastriate-recipient
zones. Our model predicts that activity between these zones
would compete with each other for activation in the pulvinar,
similar to a “Winner-Take all” (WTA) process. Since these
zones are activated independently by different cortical areas
along the visual hierarchy, asynchronous or synchronous activity
within the pulvinar will also be triggered independently. Such
hypothetical compartmentalization of responses predicted by
the model allows the pulvinar to revert its oscillatory alpha-
band activity to an asynchronous irregular spiking or vice versa
as shown by recent experimental data (see below). Thus, the
pulvinar filters one type of neural response over the other,
depending on which cortical area projects more strongly to it.

The pulvinar, across different species, is a heterogeneous
structure that is composed of multiple subdivisions and,
unlike the LGN, such separations have little organizational
arrangements like neuronal lamellae (Baldwin and Bourne,
2017). These anatomical features mean that defining the function
of the pulvinar throughout mammalian evolution remains a
challenge (Casanova, 2003). Our model, with at least two-
separated cortical-recipient zones, may clarify functional aspects
that the pulvinar has. As our model predicts, different low-
band frequencies are built in the pulvinar as the strength of CT

connections increases gradually, mainly when type 1 connections
are used (Figures 4, 11). If several cortical areas are represented
independently as separate connections domains in the pulvinar
(Shipp, 2003), these pulvinar domains could generate different
oscillations regulating visual cortical activity and coordinating
transthalamic messages in an oscillatory ascending manner to the
visual cortex. Thus, like a WTA computation, the pulvinar would
serve as a channel selector of different band frequencies that
would adjust cortical dynamics to be able to transmit oscillatory
low-frequency activity from one group of neurons to another,
possibly in a feedforward or feedback manner throughout the
visual hierarchy (Quax et al., 2017; Jaramillo et al., 2019; Cortes
et al., 2020). In other words, the pulvinar could select and separate
signals from and to the visual cortex by the above-described
WTA mechanism. According to this view, the pulvinar would
use two anatomical properties to allow visual processing in the
cortex: a gradient of terminal types 1 and 2 throughout the
cortical hierarchy (Abbas-Farishta et al., 2020), and the spatial
processing by the compartmentalization of cortical-recipient
zones suggested by our model. Therefore, the pulvinar would
need a differential increase in type 1 terminal weights along
higher order visual cortical areas and cortico-recipient zones
that are partially isolated to carry out this selection mechanism
(Huppe-Gourgues et al., 2006, 2019; Abbas-Farishta et al., 2020).

The addition of more inputs into the pulvinar would explain
the appearance of other low-frequency oscillations observed in
in vivo experiments. As our simulations predict, the increase of
strengths of the CT projection from area 21a (Figures 3, 11)
causes a shift to other oscillatory frequencies by the competition
between rival cortical-recipient zones in the pulvinar. One
interpretation of these results may be the recruitment of other
higher cortical areas increasing the number of CT type 1 endings
along the visual cortex that reach and activate synergistically
the pulvinar. According to this view, η1 in our simulations is
not static; it changes dynamically throughout the visual cortical
hierarchy to meet behavioral demands matching cognitive states
(i.e., attentional demands). As more and more areas project to
the pulvinar, this top-down activation could generate different
band frequencies, which is seen for theta-, beta- and gamma-band
oscillations in awake animals (Wrobel et al., 2007; Saalmann and
Kastner, 2011; Yu et al., 2018). On the one hand, the pulvinar may
maintain specific resonant frequencies with specific cortical areas
that allow cortico-cortical feedforward and feedback processing
to propagate in one direction or the other (Saalmann et al.,
2012; Zhou et al., 2016; Cortes et al., 2020). Another simple
interpretation of alpha rhythms in the pulvinar are not optimized
for coupling between cortical areas, as areas 17 and 21a, since
one cortical area would dominate its representation inside the
pulvinar over the others. Future experiments will reveal what
mechanism the pulvinar uses to maintain its functional coherence
with the visual cortex.

On the other hand, the oscillatory response provoked by the
joint action of the two areas (Figure 8) could also be interpreted
as a convergent action of connections coming from the visual
cortex and other brain structures. As our model shows, we found
a solution to evoke alpha rhythms when areas 17 and 21a had
similar weights of connections. Since the connectivity weights of
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the cortical areas across the visual hierarchy are unlikely to be
similar (because of their different physiological characteristics),
one prediction of the model is that one of those connections is
not from the visual cortex. Instead, it would arise from subcortical
projections, for example, from the superior colliculus. This joint
cortical and subcortical action could engage pulvinar responses
in different oscillatory modes (Le et al., 2019), when, for example,
eye movements are required (Berman and Wurtz, 2011). Thus,
the recruitment of other cortical areas and the combination with
other subcortical structures could explain the different oscillatory
ranges found in the pulvinar.

Another prediction of our model and the WTA proposed
mechanism is that the inhibition of one compartment in
the pulvinar can increase the activity in another cortico-
recipient zone. For example, in Figure 12, stopping the
extrastriate-recipient zone’s activity produces excitation of the
striate-recipient zone, which causes an increase of alpha-band
oscillations in area 21a by the transthalamic pathway. This
excitatory oscillatory effect on cortical populations of neurons
when local inhibitions are made in restricted areas of the pulvinar
has been already quantified experimentally (Cortes et al., 2020).
Alternatively, this antagonistic effect could also explain the effect
of GABA inactivation in the pulvinar, in which the firing rate
of cortical neurons achieves a reduction and an enhancement
in areas 17 and 21a of cats, respectively (de Souza et al., 2020).
Likewise, pulvinar inactivation potentiates both stimulus-driven
responses in monkey V2 cells (Soares et al., 2004) and low-
frequency LFP power during monkey visual attentional tasks
(Zhou et al., 2016). Results that point in the same direction that
the suppressive effects of the surrounding regions of V1 receptive
fields when pulvinar is excited (Purushothaman et al., 2012). The
suggested compartmentalization of the pulvinar would explain
why disruption of the activity of isolated domains could create
excitation of other nearby domains within the pulvinar.

Implications of Pulvinar Bistable States
Perception of low contrast stimuli reveals that the brain shows
two temporal states of visual awareness processing (van Vugt
et al., 2018). The brain processes external stimuli in a modular
and parallel bottom-up hierarchical fashion if the stimulus is
strong enough and exceeds an internal threshold of visual
perception. This first state is essentially feedforward. Such signals
are retrieved and selected in a second state through attentional
requirements located in hierarchically elevated cortical areas.
Here, the flow pathway is in a feedback manner, favoring
convergence to activate necessarily and sufficiently all the
network nodes (Dehaene et al., 2011).

Although both cortical states have been explained based
on the long-range excitatory cortical connection, we postulate
that the pulvinar is involved in changing from one state to
another. Such control would be possible because of the bi-
state generated by the hierarchical gradient of CT terminal
types 1 and 2 reaching the pulvinar. Theoretically, it has
been shown that the pulvinar and its transthalamic pathway
are necessary to pass neural responses in a graded manner
through a chain of sequentially connected areas (Cortes and van
Vreeswijk, 2012, 2015; de Souza et al., 2020). Such a prediction

of the functionality of the transthalamic pathway has been
partially corroborated by experiments in the visual system of
cats (de Souza et al., 2020). On the other hand, the differential
oscillatory response of the neuronal signals between the cortices
in certain phases of pulvinar oscillatory activity (Saalmann and
Kastner, 2011; Saalmann et al., 2012; Fiebelkorn et al., 2019),
as well as when the pulvinar is inactivated (Zhou et al., 2016;
Cortes et al., 2020), suggest it plays a role in the effective
cortical connectivity. Our results showing bi-stable pulvinar
states, suggest that cortical feedback transmission is associated
with pulvinar oscillatory activity and the feedforward pathway,
with the asynchronous irregular spike response of the pulvinar.
Thus, this parallel feedback pathway through the pulvinar would
reinforce the top-down attentional activity associated with low-
frequency oscillations (i.e., areas 17 and 18). This prediction of
feedforward oscillatory activation should be verified in future
works, since pulvinar could be indirectly activated by cortico-
cortical feedback. That is, from layers 2/3 of a higher cortical
area to layer 5 of a lower cortical area, and from here to the
pulvinar (e.g., from area 21a to area 17). Such a feedback pathway
would induce the type of antagonistic dynamics predicted
here (Figure 13).
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6.5. Conclusion
In this section, we explored the complex functional relationship between the pul-

vinar and V1, with an emphasis on the regulatory processes associated with inverse
variance computations.

The anatomy of the pulvinar seems to be uniquely well-posed for inverse variance
modulations in the visual hierarchy. Indeed, the functional connectivity is strictly mod-
ulatory from pulvinar to V1, meaning that transthalamic connections could regulate
prediction errors based on inverse variance right at the lowest level of the hierarchy.
This modulatory activity likely has the role of preventing imprecise sensory inputs
from propagating in the hierarchy, thus preventing them from updating (wrongly) an
internal predictive model due to unreliable sensory input, which is very fitting with the
gating role commonly assigned to the pulvinar [252]. Further, the asymmetrical nature
of this connectivity between facilitating (type 1) and depressing (type 2) synapses,
established as a function of the cortical hierarchy, fits very nicely with hierarchical
Bayesian inference. In practice, this means that the pulvinar can compute a global
associative signal linked to multiple level of inverse variance through the visual areas,
and explain away irrelevant visual features. Deficit in this role, intuitively, can be
conceptualized as propagation of irrelevant prior predictions, which is often reported
in pulvinar lesion studies [258].

The propagation of precision-weighted prediction and errors is also likely supported
by neuromodulatory mechanisms that control synaptic gain, namely cholinergic sig-
nals [215]. As with the pulvinar, this mechanism provides a way to encode information
related to environment through the excitability of circuits signalling prediction er-
rors [162]. In line with our results, this further aligns very well with the idea that
superficial pyramidal cells are equipped with numerous synaptic gain control systems
neuromodulatory receptors. Further, the clear effect of neuromodulatory mecha-
nisms on synchronous activity in the cortex, and on alpha oscillations, hints at an
interconnected mechanism throughout multiple neuronal levels [39].

Including such transthalamic and neuromodulatory connectivity in our view of the
cortex is an important consideration, and this section offered a brief divergence to
add some much needed mesoscale context to our results. We will now revisit, in the
concluding section of this manuscript, cortical-centric computations enriched by an
understanding of the hierarchical interplay afforded by the pulvinar. We posit that the
pulvinar’s interaction with cortical regions represents a second-order mechanism for
implementing inverse variance computations in the brain, a theme we will expand
upon when synthesizing the multiscale findings in the next chapter.
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7. Conclusion

”Well, I’m all for leaving
and that being done,

I’ve put in a request to take up my turn.”
Jethro Tull, A Passion Play, 1973

7.1. Concluding Overview

7.1.1. Final Summary
As the author of this manuscript easily recognized during proofreading, sifting

through more than two hundred pages of early-career neuroscience is not exactly a
straightforward ordeal. Although an attempt has been made to lower the attentional
overhead involved in this reading by humoring the reader and by limiting the number
of abbreviations, it is likely that days have elapsed between the beginning and the end
of one’s reading. As such, we would like to summarize, once last time, this manuscript

We first introduced the problem of inverse variance computations in vision by adopt-
ing a Marr-like approach in chapter 2. This introduced a study of the nature of natural
images in chapter 3, exploring the trade-off between fidelity and sparsity, and their
respective advantage when computing variance-bound probability distributions. This
concept was pursued in chapter 4 in an electrophysiological study, leading to major
contributions in terms of the functional role of cortical recurrence in computations
of variance. We then built further on these concepts in chapter 5, introducing cyclic
computational graphs and reinforcing the idea of a multiscale model of orientation
selectivity. This was then extended in chapter 6, focusing beyond V1 and delves into
the subcortical pathways, particularly highlighting the role of the pulvinar in manag-
ing variance in visual processing. Preliminary results from extrastriate cortical areas
also hint at their potential involvement in variance computations. Now, in chapter 7,
we propose a (short) reflective summary, pondering the broad implications of these
results for neuroscience and related fields. If the reader has any courage left, they are
also provided with optional appendices that provide a deeper dive into the mathemat-
ical underpinnings of the free energy principle, as introduced at the beginning of this
manuscript. The last appendix also includes supplementary material related to public
communications surrounding this thesis.
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7.1.2. Towards a Coherent Model of inverse
variance-weighting

By nature, this manuscript encompasses a broad number of topics, including sparse
coding, extracellular electrophysiology, artificial deep neural networks, graph theory,
and thalamocortical communication. Rather than subject of studies in themselves,
these were more designed as means towards an end - or rather, as hammers for
one single nail (maybe spike, in our context). By giving coherent and convergent
observation of the computations of inverse variance as based on recurrence, these
contributions must now be framed in a single coherent framework.

Based on our results, we propose the following. The computation of inverse variance
starts with the notion that the goal of primary sensory areas is to extract invariant
representations of the world [163, 18]. This might seem semantically contradictory,
but if representations are to be invariant, then they must be encoded alongside an
associated variance in the brain’s internal models. Both under predictive coding or
sparse coding, the goal of these internal models system is to build a representation
of the world whilst enforcing the cost/efficiency tradeoff. In chapter 3, we show that
the low-level invariant representations of natural images are oriented edges with fac-
torized variance. A model of the visual world can rely on two strategies: encoding a
distribution of edges using multiple single units (accurate, but not sparse) or encoding
a distribution of edges using one unit, that encodes both median and variance (not
necessarily accurate, but sparse). This latter scheme seems to be used, and can be
likened to a Maximum Likelihood Estimation in the context of the Bayesian Brain
(see Equation 2.6). In chapter 4, we show that both strategies are likely implemented
in the neural substrate: many neurons that encode single edges, through a fast first
pass in vulnerable neurons, a representation which then becomes a sparse but ap-
proximate estimate of variance in resilient neurons. In chapter 5, we also view this
as a dynamically modulated (by variance) message passing through many neurons
carrying different orientation information, creating a local, recurrence-based, strategy
for encoding orientation variance.

Given that this computation can be created solely by local intra-area recurrence,
it’s likely running locally in parallel in every single cortical area. Quite probably, it
is also running in every cortical area, visual or not. Thus, there must be a system
of communication between these local processes that allows to regulate the flow
of information based on these multiple inverse variance computations. Having a
central modulator of these computations, in the form of the pulvinar, which controls
propagation of (alpha-oscillating) predictions as shown in chapter 6, proves to be
computationally advantageous and conceptually elegant. The longer time constants
of this large-scale thalamocortical networks can also implement the computation
of inverse variance through time, as discussed in chapter 6, which is also supported
by empirical evidences of attention-deficit due to pulvinar lesions. It is likely that
neuromodulator mechanisms are also involved [215], which could be the brain-wide
equivalent of the role the pulvinar is fulfilling for the visual cortex. This constitutes
our main scientific contribution, which, to quote the title of this thesis, is "A multiscale
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model to account for orientation selectivity in natural images".
This conceptual model also speaks to a number of testable hypotheses that can pave

the way for exciting future research perspectives. But first, let us review the possible
interpretations of this work, under both at the neurobiological and the computational
front.

7.2. Interpretation
Although neuroscience has been historically based on studies related to how neu-

rons encode only scalar approximate representations of their environment [281, 137,
229], theoretical [18] and experimental [189] convergences have made it possible to
start considering the full statistical nature of the environment we live in. The current
research on inverse variance-weighting in the brain has exciting fundamental and
clinical perspectives, which relates to two major avenues of interpretations.

7.2.1. Neurobiological Relevance
At its core, inverse variance-weighting addresses the essential balance between

internal priors and external perceptions. In the context of predictive processing,
this mechanism guides the brain in discerning which of its predictions are reliable,
and which it should discard in favor of prediction errors which warrant new atten-
tion. Interestingly, this dynamic can be seen as a foundational descriptor for several
psychiatric disorders [95], including autism and schizophrenia.

First, on a clinical level, recall that in the introduction (Figure 2.10), we discussed
the notion that the variance of either prediction or prediction errors could drive
the posterior likelihood towards one or the other. Under that generic description,
hypersensitivity to external inputs, as is present in autistic spectrum disorders, can be
conceptualized as a condition that drives overly precise prediction errors, overriding
any possible internal models of the world. Typically, overlooking prediction error
with no consequence for our inner model is something that we all do on a daily basis.
In complex but non-threatening scenarios like social interactions, some errors are
acceptable for broader understanding, and are part of the human social basis for
learning. Inflexible processing of prediction errors in autism, due to impossibility of
lowering their inverse variance-weighting in the decision process, leads to inability in
ensuring "predictive success in an unpredictable world" [324].

On the other end of the possible symptoms captured by inverse variance models
lies schizophrenia. Hallucinatory experiences and feeling of disconnection with the
external world [142] are the hallmark of high weighting given to internal models over
external likelihoods [299]. This is further supported by evidences that many of these
symptoms align closely with the lesions of the neural substrate we described here,
notably, visual perception and visual cognition being affected by pulvinar lesions [71].
Functional connectivity in schizophrenic patients have revealed reduced connectivity
between the medial pulvinar and the frontal cortex [242, 343]. In the general model
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Figure 7.1. – Computational psychiatry under predictive processing. (a) Message pass-
ing in the hierarchical Bayesian visual cortex. Under abnormally high
inverse variance of the prior (second row), posterior is driven towards the
internal models. Oppositely, high inverse variance of prediction errors
(third row), drives posterior towards the sensory input. These respec-
tively account for positive symptoms in schizophrenia and autism. (b)
Same as (a), but in terms of bottom-up and top-down message passing,
reproduced from [8].

proposed earlier in this thesis, this would mean a compromised ability to regulate
the flow of neuronal information between cortical areas by means of inverse variance
weighting. Conversely, it could provide an evolutionary basis for the need for a central
structure involved in the regulation of this mechanism, with a size proportional to
that of the cortical areas being regulated [46].

Second, on a cognitive level, another contribution of this thesis is to also offer a shift
of our understanding of attention mechanisms, envisioning them as inverse variance
mechanisms. Instead of conceptualizing recurrence and lateral inhibition as neural
basis for sensory sharpening, one could consider that these are instead sampling
mechanisms to drive (local) emphasis on the optimal percepts. Under this view, an
interesting link is also to be made with the neuromodulatory activity, classically related
to attention. Dopamine, for instance, is suggested to be crucial for the precision-
adjustment of prediction errors, which in turn signals the significance of sensory
inputs [89, 274]. Other neuromodulatory mechanism, such as cholinergic systems,
can increase the gain of cortical neurons in response to sensory inputs [327, 38], and
are thus tied to attentional mechanisms [155]. In that sense, these systems could be
thought of as a third-order implementation of modulation by inverse variance, right
after the first-order local recurrent interactions, second-order vision-centric pulvinar
pathways, and serving to implement diffuse cortex-wise computations of inverse
variance.

Third, on a fundamental level, the dynamics of the activities that have been exam-
ined so far, as well as their propagation methods, their intracortical nature, all point
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towards an exciting research perspective for travelling waves. As introduced in chapter
4, traveling waves represent the dominant way of propagation of activity within the
cortex. These waves facilitate processes like priming and suppression, but their exact
role remains somewhat ambiguous and polymodal [217]. Similarly to the idea of
a cholinergic mechanism, travelling waves also modulate the excitation/inhibition
balance of the cortical activity rhythmically, which gates perceptual inference [75]. At
the cortical area level, one contribution of this thesis is to consider that these waves
might also implement a local inverse variance-weighting phenomenon, which offers
a fresh perspective on their function in the cortex. At the macroscale, waves travel-
ling between cortical areas, could also reveal mechanisms of propagation of inverse
variance-weighted message, controlled by a series of locally weighted predictive oscil-
lators [9]. Specific changes in inverse variance could lower the excitability of prediction
error units in the lower end of the hierarchy (i.e., in V1), which would increase the
preponderance of backward traveling waves, and correlates nicely with attentional
experiments [9]. One limitation here is that we have chosen to limit ourselves to an
alpha/gamma duo, which is an oversimplification, and does not consider the fact
that attentional visual search tasks correlates with even lower frequency rhythms, like
theta [275, 209]. Given the tight relationship between unpredictable environment and
the need for attentive search in feature space, this offers an interesting experimental
perspective on manipulating visual variance, and correlating neural activity at the
scale of the brain with the need to drive away - or close to - the input likelihood
from posterior distributions. This will be discussed further in the final section of this
manuscript.

7.2.2. Machine Learning Relevance
Inverse variance-weighting plays a significant role in both statistical and machine

learning research [219]. Under this interpretation, inverse variance provides distinct
advantages to a model, without implementational drawbacks (as studied in the neu-
roscientific context here). Indeed, given the mathematical triviality to compute a
correlational matrix and inverse it, modelers obtain all the theoretical advantages
described so far, with none of the complications related to recurrent neural message
passing. One key advantage of implementing a degree of variance to a model’s de-
cision is to allow the readout of the model’s confidence in its output. This can be as
straightforward, in a deep neural network, as computing the sum of the variances
in all layers, such that a network that has learned a precise representation of the
environment returns a globally low variance of its activity.

Recently, the importance of associating confidence levels with algorithmic decisions
has grown, placing inverse variance-weighting at the forefront of machine learning
algorithm development. While there might be lighthearted examples, such as deep
learning models mistakenly classifying an image of a panda with a single modified
pixel as a dog, the stakes are much higher in practical industrial applications. As the
research shifts towards implementing safety-critical neural networks, the emphasis on
variance-weighted decisions becomes paramount. To quote Kendall and Yarin [164]:
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”Mappings are often taken blindly and assumed to be accurate, which is not always the
case. In (. . . ) recent examples, this has had disastrous consequences. In May 2016 there
was the first fatality from an assisted driving system, caused by the perception system
confusing the white side of a trailer for bright sky. If (. . . ) these algorithms were able to
assign a high level of uncertainty to their erroneous predictions, then the system may
have been able to make better decisions and likely avoid disaster.”
from Alex Kendall and Yarin Gal. “What uncertainties do we need in bayesian deep
learning for computer vision?” In: Advances in neural information processing systems
30 (2017)

Incorporating explicit learning rules based on variance into data modeling unde-
niably introduces additional complexity. As we have shown in the introduction of
this manuscript and in the conclusion of chapter 5, these merely require simple addi-
tional considerations, and are compatible with current neural network frameworks.
In that note, leading Deep Learning frameworks have already integrated support for
Bayesian learning [239], which are soon bound to overtake regular Deep Learning in
popularity [15].

A promising pathway to bridge explicit variance learning rules and neurobiology lies
in predictive coding models. These models empirically approximate gradient back-
propagation, a cornerstone technique for training deep neural networks (see chapter
3), across arbitrary computational graphs [212]. This suggests that practically any
deep neural network could be trained using units dedicated to predictions and their
errors. Practical applications of this theory are already evident in simpler datasets like
MNIST [213]. Notably, as we detailed in the conclusion of chapter 5, the implementa-
tion of inverse variance-weighting in this context is a novel proposition, as identity
matrices are often use for simplicity’s sake. The programming of these networks is
elegantly simple - less than 100 Python code lines for an implementation as math-
ematically framed here [213]. On modern hardware, they also achieve comparable
accuracy and convergence speeds to traditional backpropagation techniques.

Moreover, predictive coding’s use in causal inference (as a generative model) could
shed new light on how neural networks simulate and analyze dynamics within their
nodes. In the recent context of Large Language Models, the inherent flexibility of
predictive coding models allows any unit in the network to be set as a latent variable,
endowing these models with the ability for flexible internal conditioning. This would
enhance steerability over the network, for desirable safety purposes. The generative
nature of these models also equips them to deal with incomplete inputs or outputs, a
situation which typically requires expensive data curation by humans in the context
of Deep Neural Networks. This attribute could be advantageous in creating models
that infer missing information seamlessly. Finally, predictive coding also extends in
a rather straightforward manner to arbitrary time-space variables, which allows for
dynamical modelling, something which backpropagations techniques have always
struggled with [212].

In the realm of hardware, the benefits of employing variance weighting through
lateral inhibition might mirror those observed in neurobiology. Specifically, this
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method can offer computational allocation for significant, unpredictable fluctuations
in data, while concurrently diminishing or sidestepping routine, predictable data
streams. Highlighting these pronounced shifts could streamline the data transmitted
across physical conduits, addressing a primary source of heat and computational
inefficiency in neuromorphic chips [79, 253]. This could lead to faster, more energy-
efficient neuromorphic networks that are particularly useful for edge computing,
which, arguably, might also be why they are also implemented in the first place in the
brain. Such asymmetrical message-passing structure is also reflected in the activity of
V1, notably, in the rasterplots presented in chapter 4.

7.3. Limitations of the Studies
The elaboration of a doctoral manuscript requires the doctoral candidate to per-

form scientific work, but also to learn how to even do such scientific work in the first
place. As such, the erudite reader might have already spotted a number of suboptimal
procedures in the experiments which are intrinsically bound to the learning curve the
author went through. On a positive note, none of these limitations are unsurmount-
able roadblocks, and most of them can serve to formulate useful hypothesis for future
research directions.

First and foremost, there is an intrinsic limit in the interpretations one can give from
the experiments carried in chapter 4. Such extracellular recordings were performed
under anesthesia, which yields heavy modulations of the activity of neurons [331]. We
have addressed this limitation in the conclusion of chapter 4’s article, citing examples
of experiments that were successfully translated from anesthetized to awake animals.
One key neurophysiological element is however missing. Convincing experimental
proofs have been published during the thesis, showing that the main effect of anesthe-
sia is to decouple basal and apical dendrites of layer V cortical neurons [307]. Further,
since pharmacological agents modulating the internal representations of the brain
(i.e., predictions) have been shown to target specifically these same neurons [129], it
seems evident that one part of the prediction/prediction error network was heavily
modulated in our experiments. Carrying experiments in awake, vigil animals is one
way to address this limit, and the experiments in chapter 5 are a fair proof that chapter
4’s study can yield interesting insights into a more ecologically relevant setting.

However, these experiments were carried with Utah Arrays (see chapter 4 and 5),
which means a complete loss of information of the laminar position of neurons
recorded. As such, we currently have no proof of a laminar-dependent inverse vari-
ance computations in awake cortex of primates. Change of coupling in deep layers
might make for a very compelling case, which could be that inverse variance is also
computed for predictions in layer V. Anatomically, there is actually as much, if not
more (proportionally) recurrent connectivity between neurons of layer 5 of different
neighboring cortical columns [36, 20]. Functionally, layer V recurrent interactions also
support very complex types of computations[328], which are unique to these layers
(some similarities exist [103]). This fully-lateral model of the cortex will be the cen-
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tral point of future research direction, and will be discussed in the next Perspectives
section.

Second, the choice of recording local, laminar, extracellular potentials is clearly
not ideal for studying recurrent interactions. Using a better suited method would
have required to know beforehand that recurrent interactions can carry out inverse
variance weighting in the cortex, which was only hinted at by speculative models [20,
92]. As such, a vast portion of neuronal "dark matter" was not observed, but only
inferred. In a sense, this serves the interdisciplinar argument of this manuscript,
which uses computational models to overcome experimental limitations. Now that
these recurrent principles have been fairly well established, optical methods would be
much better suited to study the inverse variance weighting mechanism in the cortex.
One could expect some very interesting parallels between the results presented here,
and the travelling waves (see chapter 4) observed both at the cortical area scale [51]
and at the brain scale [217, 9]. In terms of dynamics, travelling waves propagate locally
with speeds that are coherent with the idea of a series of iterative recurrence-based
computations [51, 50]. This possesses interesting ties with predictive processing,
because local recurrence can allow a visual map to predict future position of a moving
object through local interactions [37], which is actually embedded within a travelling
wave [26]. This experimental limitation, and its possibles interpretations in terms
of travelling waves, will form part of the research perspectives discussed in the next
section.

7.4. Perspectives for Future Research
To conclude this thesis, we will develop here two major research perspectives that

have stemmed from the present findings, and that are actively under study at the time
of this writing. The first perspective stems from chapter 4 and 5 experiments, and
concern extension of this thesis’ work to rodent models. The second perspective is
more ambitious, and better suited for exploration during a post-doctoral tenure. Both
trajectories engage with the notion that existing models of recurrent connections in
the cortex may be either limited by primate-centric considerations, or could simply
be fundamentally unable to account for the meso-scale implementation of message
passing in the cortex.

7.4.1. Precision-Weighting without an Orientation Map
The take-home message of this manuscript is that recurrence between specifically

clustered groups of cells in orientation space mediates the computation of the inverse
variance of orientation in V1. But, how can these computations take place when there
is no such thing as a specifically clustered groups of cells ? This is a non-trivial question,
as this seemingly random architecture constitutes the organization of rodents’ salt-
and-pepper V1. While primates and felines have clustered orientation processors
organized in a map, which emerges through their heavy reliance on vision, rodents

168



7. Conclusion – 7.4. Perspectives for Future Research

instead rely on whisker sensing, and thus lack a topologically structured orientation
selective activity. Their somatosensory cortex, which processes information from
the whiskers, do follow a topological structure. The extension of inverse variance-
weighting in rodent cortex could be achieved by designing a class of stimulus similar
to Motion Clouds, in the texture domain, and observe whether the variance-weighting
in V1 holds in the somatosensory domain.

Back to the visual cortex, preliminary results from the co-authors Lamyae Ikan and
Nelson Cortes suggest that mice do not exhibit any type of resilience to increased
sensory variance, contrary to felines (chapter 4) and primates (chapter 5). If we put this
under the notion that structured cortical recurrence is needed for such computations,
this is one more argument in favor of this thesis’ hypothesis. If we put this in the
general predictive coding notion that high variance input are "explained away" and do
not update the model, then it would be interesting to see what happens behaviorally.
Even without processing of variance, does Bayesian inference still occur, and does the
animal discard entirely its sense of vision to rely on its whiskers ?

This also speak to an interesting property of resilience to general sources of uncer-
tainty, as opposed to solely variance. Rodents do not possess orientation maps, but do
possess individual neurons strongly tuned to specific orientations, with functional
properties such as contrast invariance like primates [88]. This shows that an orienta-
tion map is not crucial for feature sensitivity, nor for maintaining contrast invariance.
Changes in contrast, much like changes in orientation variance, are a source of visual
uncertainty. Both type of uncertainty seem to affect V1 in the same way, at least in the
pionnering study of Goris et al. [115] (see also Figure 7.2. There is then a discrepancy
between the notion that activity in primate V1 is similarly influenced by uncertainty of
orientation (variance) and luminance (contrast), and the fact that mice are resilient to
the latter but not the former. Contrast invariance mechanisms are a very popular topic
in visual neuroscience, and there exists many theories on the emergence of contrast-
invariant activity in V1 [330]. While some authors suppose that cortical interactions
could create contrast invariance [320], others have supposed that non-linearity in the
thalamo-cortical connections from the LGN is responsible for contrast invariance [88].
It would seem that, given this uncoupling between variance and luminance, the latter
hypothesis would be better supported by our results.

7.4.2. The Microcircuit is Dead, Long Live the Microcircuit
The theoretical framework upon which we have built our hypotheses, predictive

processing [254, 92], offers a solid mathematical basis to understand cortical functions.
The accurate mapping of theory to biology, however, remains speculative [20, 283],
aside from accurate understanding of the prediction error circuits [162, 163]. Recall
that earlier in the text, we mentioned recent findings by Heindorf and Keller [129],
who, utilizing antipsychotics and widefield calcium imaging in behaving mice, have
demonstrated that antipsychotic drugs selectively impact Layer 5 neurons. As antipsy-
chotics should target the neural elements responsible for internal representations [94]
(i.e., predictions), this argues in favor of Layer 5 as the seat of predictions in the cortex.
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Figure 7.2. – Contrast and orientation invariance in mouse V1. (a) Salt-and-pepper or-
ganisation of V1, from [144]. (b) Similar effect of contrast and orientation
invariance on two primate V1 neurons, from [115]. (c) An example of non-
linear gain model that accounts for contrast resilience in V1, from [88].
(d) Example of mice V1 neurons, showing a massive decrease in firing rate
(arrows) with increased orientation variance (courtesy of Nelson Cortes).
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This is in line with the speculative layout of predictive coding in the cortical microcir-
cuit [20] (Figure 2.14). Yet, the effect of antipsychotics is selective to Layer 5, and leaves
superficial layers unaffected. This poses a significant challenge to the established
model of a series of hierarchically organized vertical microcircuits, derived from the
columnar model of the cortex (Figure 7.3).

Namely, the canonical microcircuit [201] posits an input in Layer 4, followed by a
processing in Layer 2/3, which is then sent to a higher order cortical area’s Layer 4.
This challenge is not recent, as the vertical microcircuit as always had scientific oppo-
sition [135], mostly on functional basis. Support for a new "horizontal microcircuit"
perspective is now further bolstered by anatomical studies, which revealed a bidirec-
tional flow of pathways segregated into two supra- and infragranular streams [199].
This makes intuitive evolutionary sense, given that the appearance of six cortical
layers is thought to result from a duplication of a three-layered structure [278]. It thus
becomes increasingly plausible that neural activity is focused on integrating disparate
features to construct probabilistic representations of the environment, rather than
integrating information within a vertical microcircuit. This is evidenced not only by
the fact that horizontal communication is the dominant mode of the cortex [217],
but also by the fact that inverse variance weighting requires a horizontal (recurrent)
communication system [178].

In light of these evidences, it is essential to address the implications they hold for
the cortical model of the canonical microcircuit, particularly as they propose both
an extension and a challenge to the results of this thesis. If Layer 5 neurons have
been affected due to anesthetic decoupling, as proposed above [307], the impact
of this experimental limitation is more significant than previously thought. These
neurons might not have just been part of a vertical microcircuit, but could have been
an integral component of an independent horizontal deep circuit altogether, with
an independent recurrent dynamic. Additionally, the manipulation of the variance
of Motion Clouds and sensory inputs might have focused the present work on the
inverse variance-weighting of prediction errors, rather than a combined investigation
that includes both prediction errors and sensory inputs. This focus could have led to
the inability to read out input variance from deep cortical layers in chapter 4. If we
wish to amend this, there is an intrinsic technological challenge for current research
methods of investigation (Figure 4.7).

Sampling the recurrent activity of inverse variance-weighting throughout the cortex,
not at the scale of a single area, but at the dominant scale of cortex-wide activity,
requires an experimental paradigm shift. This involves sampling widefield activity
at the Nyquist frequency of the fastest signals required, i.e., ≈ 50Hz gamma-band
prediction errors (Figure 6.2). The advent of advanced optical methods now permits
kHz-level recording of brain activity using Genetically Encoded Voltage Indicators.
Wide-field microscopy techniques enable the observation of awake, behaving mice,
granting comprehensive access to the visual cortex’s surface. By employing genetically
specific constructs, it is possible to isolate recordings to deep or superficial cortical
layers [194]. Through such recordings of traveling waves, we can apply the vast body
of literature on brain oscillations to living neural activity.
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Figure 7.3. – Towards a horizontal microcircuit. (a) Canonical microcircuit of V1 [201]
(top) and assumed but wrong serial communication between area (bot-
tom). (b) The cortex instead projects in two counterstreams that densely
connect every area to one another. Adapted from [199]. (c) Record-
ing from a Genetically Encoded Voltage Indicators correlate with silicon
probes, as used in this thesis, allowing for KHz-fast widefield imaging of
the communication throughout the cortex, from [194].
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This approach aligns with the theoretical models illustrated in Figure 6.2, facilitating
manipulation of the sensorium of behaving brains to pinpoint the anatomical seat of
internal neuronal representations. Correlated with the known existence of prediction
error circuits, this is the next scientific step for predictive coding, which has already
achieved Marr’s algorithmic [92] and computational [294] levels, and is now poised to
achieve implementational level, through a wholistic mapping of the neural elements
of predictive coding.
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A. Appendix A: Additional Equations
”I’m not a gentleman,

I’m the (Material and) Method man.”
approximate quote from Wu-Tang Clan’s Method Man, The What, 1994

A.1. Equation 2.9
The full differentiation of F overΦ serves no introductory purpose, and is thus left

out of Chapter 2 - equation 2.9. It is written here, as:

δF

δΦ
= 1

2

(
δ

δΦ

(
− (u − g (Φ))2

Σu

)
+ δ

δΦ

(
− (Φ− vp )2

Σp

)
+ δ

δΦ
(− lnΣu)+ δ

δΦ

(− lnΣp
)+ δ

δΦ
C

)

= 1

2

((
− 1

Σu

δ

δΦ
(u − g (Φ))2)

)
+

(
− 1

Σp

δ

δΦ
(Φ− vp )2

))
Applying the power rule ( f (x)n)′ = n f (x)n−1 f ′(x):

= 1

2

((
− 1

Σu
2(u − g (Φ))

δ

δΦ
(u − g (Φ))

)
+

(
− 1

Σp
2(Φ− vp )

δ

δΦ
(Φ− vp )

))
And then splitting the linear differentiation:

= 1

2

((
− 1

Σu
2(u − g (Φ))

(
δ

δΦ
u − δ

δΦ
g (Φ)

))
+

(
− 1

Σp
2(Φ− vp )

(
δ

δΦ
Φ− δ

δΦ
vp

)))

= 1

2

((
− 1

Σu
2(u − g (Φ))

(
0− g ′(Φ)

))+(
− 1

Σp
2(Φ− vp )(1+0)

))

= 1

2

((
− 1

Σu
2(u − g (Φ))(−g ′(Φ))

)
+

(
− 1

Σp
2(Φ− vp )

))

=
(

1

Σu
(u − g (Φ))(g ′(Φ))

)
+

(
− 1

Σp
(Φ− vp )

)
Simplifying and changing the order of the right-hand side term, we get:

F = (u − g (Φ))

Σu
g ′(Φ)+ (vp −Φ)

Σp

yielding equation 2.9.
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A.2. Equation 2.25
For differentiating the terms vp ,ΣuΣp over F for Equation 2.25, we start from the

definition of F as:

F = 1

2

(
− lnΣp − (Φ− vp )2

Σp
− lnΣu − (u − g (Φ))2

Σu

)
+C

We will derive first for vp :

δF

δvp
= 1

2

(
δ

δvp

(
− (Φ− vp )2

Σp

)
+ δ

δvp

(
− (u − g (Φ))2

Σu

)
+ δ

δvp
(− lnΣu)+ δ

δvp

(− lnΣp
)+)

δ

δvp
C

= 1

2

(
δ

δvp

(
− (Φ− vp )2

Σp

))

= 1

2

(
1

−Σp

δ

δvp
(Φ− vp )2

)
Using the power rule to eliminate both halved and squared terms:

= 1

−Σp
(Φ− vp )

δ

δvp
(Φ− vp )

= 1

−Σp
(Φ− vp )

(
δ

δvp
Φ− δ

δvp
vp

)
= 1

−Σp
(Φ− vp )(0−1)

= Φ− vp

Σp

Now once again, for Σp

F = 1

2

(
− lnΣp − (Φ− vp )2

Σp
− lnΣu − (u − g (Φ))2

Σu

)
+C

δF

δΣp
= 1

2

(
δ

δΣp

(
− (Φ− vp )2

Σp

)
+ δ

δΣp

(
− (u − g (Φ))2

Σu

)
+ δ

δΣp
(− lnΣu)+ δ

δΣp

(− lnΣp
))+ δ

δΣp
C

= 1

2

(
− δ

δΣp
lnΣp +

(
−(Φ− vp )2 δ

δΣp

1

Σp

))
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Applying
(

1
f (x)

)′ =− f ′(x)
f (x)2 , this becomes

= 1

2

− 1

Σp
+

(Φ− vp )2

δ
δΣp

Σp

Σ2
p



= 1

2

(Φ− vp )2

δ
δΣp

Σp

Σ2
p

− 1

Σp


= 1

2

(
1(Φ− vp )2

Σ2
p

− 1

Σp

)

= 1

2

(
(Φ− vp )2

Σ2
p

− 1

Σp

)
The same is done for Σu :

F = 1

2

(
− lnΣp − (Φ− vp )2

Σp
− lnΣu − (u − g (Φ))2

Σu

)
+C

δF

δΣu
= 1

2

(
δ

δΣu

(
− (Φ− vp )2

Σp

)
+ δ

δΣu

(
− (u − g (Φ))2

Σu

)
+ δ

δΣu
(− lnΣu)+ δ

δΣu

(− lnΣp
))+ δ

δΣu
C

= 1

2

(
δ

δΣu

(
− (u − g (Φ))2

Σu

)
− δ

δΣu
lnΣu

)
= 1

2

(
−(u − g (Φ))2 δ

δΣu

1

Σu
− δ

δΣu
lnΣu

)
= 1

2

(
−(u − g (Φ))2 δ

δΣu

1

Σu
− 1

Σu

)
Once more, using

(
1

f (x)

)′ =− f ′(x)
f (x)2 , we get

= 1

2

(
(u − g (Φ))2

δ
δΣu

Σu

Σ2
u

− 1

Σu

)

= 1

2

(
(u − g (Φ))2

Σ2
u

− 1

Σu

)

= 1

2

(
(u − g (Φ))2

Σ2
u

− 1

Σu

)
yielding all three equations 2.25.
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A.3. Equation 2.28
For moving from the scalar to the matrix form of a predictive network, as done

in Equation 2.28, we increase the dimensionality of our toy model organism, which
now has observed sensory input ū and tries to estimate the most likely values Φ̄ of
the variables v̄ . As before, this model has prior expectations that v̄ comes from the
multivariate normal distribution with mean v̄p and covariance matrix Σp. Thus:

f (x̄, µ̄,Σ) = 1√
(2π)N |Σ|

exp

[
−1

2
(x̄ − µ̄)TΣ−1(x̄ − µ̄)

]
where N is the length of the vector x̄ and |Σ| is the determinant of the matrix Σ. Hence
we have:

p(ū|v̄) = f (ū; g (v̄ ,Θ),Σu)

whereΘ are the parameters of the function g.
Now we can write down the free energy F as:

F = ln p(φ̄)+ ln p(ū|φ̄)

= ln

 1√
(2π)N |Σp |

exp

[
−1

2
(φ̄− v̄p )TΣp

−1(φ̄− v̄p )

]
+ ln

[
1√

(2π)N |Σu |
exp

[
−1

2
(ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))

]]
1p

(2π)N
is a constant, which we group under a constant C term:

F = 1

2

[
ln

(
1

|Σp |
exp

(−(φ̄− v̄p )TΣp
−1(φ̄− v̄p )

))]
+ 1

2

[
ln

(
1

|Σu |
exp

(−ū − g (φ̄,Θ))TΣu
−1(ū − g (φ̄,Θ)

))]+C

= 1

2

[
ln

(
1

|Σp |
)
+ ln

(
exp

(−(φ̄− v̄p )TΣp
−1(φ̄− v̄p )

))]
+ 1

2

[
ln

(
1

|Σu |
)
+ ln

(
exp

(−ū − g (φ̄,Θ))TΣu
−1(ū − g (φ̄,Θ)

))]+C

= 1

2

[− ln
(|Σp |

)− (φ̄− v̄p )TΣp
−1(φ̄− v̄p )− ln(−|Σu |)− (ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))
]

+C

As we will now express everything in matrix term, it is useful to remember some
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properties, such as the gradient on vectors:

x̄ =
[

x1

x1

]
if y = x̄T x̄ = x2

1 +x2
2 by construction, so the gradient becomes

δy

δx̄
=

[
δy
δx1
δy
δx2

]
=

[
2x1

2x2

]
= 2x̄

Knowing that Σmatrices are symmetric (because they are covariance matrices), we
can now compute the gradient of:

F = 1

2

[− ln
(|Σp |

)− (φ̄− v̄p )TΣp
−1(φ̄− v̄p )− ln(−|Σu |)− (ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))
]+C

which is:

δF

δφ̄
= 1

2

[
−δF

δφ̄
ln

(|Σp |
)− δF

δφ̄
(φ̄− v̄p )TΣp

−1(φ̄− v̄p )

]
− 1

2

[
δF

δφ̄
ln(−|Σu |)− δF

δφ̄
(ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))

]
+ δF

δΦ̄
C

= 1

2

[
−δF

δφ̄
(φ̄− v̄p )TΣp

−1(φ̄− v̄p )+ δF

δφ̄
(ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))

]
We can use the rule that δax2/δx = 2ax to change this form into:

δF

δφ̄
= 1

2

[
−2Σp

−1(φ̄− v̄p )+ δF

δφ̄
(ū − g (φ̄,Θ))TΣu

−1(ū − g (φ̄,Θ))

]
and same for the right term for second rule where z = F, x̄ = φ̄, ȳ = ḡ :

δF

δφ̄
= 1

2

[
−2Σp

−1(φ̄− v̄p )+2
δg (φ̄,Θ)T

δφ̄
Σu

−1(ū − g (φ̄,Θ))

]

δF

δφ̄
=−Σp

−1(φ̄− v̄p )+ δg (φ̄,Θ)T

δφ̄
Σu

−1(ū − g (φ̄,Θ))

As previously, we can change terms so the prediction errors simplify the expression:

ϵ̄p =Σp
−1(φ̄− v̄p )

ϵ̄u =Σu
−1(ū − g (φ̄,Θ)
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Then the gradient becomes

φ̇=−ϵ̄p + δg (φ̄,Θ)T

δφ̄
ϵ̄u

Note that δg (φ̄,Θ)T

δφ̄
is a matrix that contains the partial derivative of the element i of

g (φ̄,Θ) over φ j , i.e. each element is the derivative with a specific parameter theta. For
a 2D stimulation, we can then write this as:

δg (φ̄,Θ)

δφ̄
=

[
θ1,1h′(φ1) θ1,2h′(φ2)
θ2,1h′(φ1) θ2,2h′(φ2)

]
so

φ̇=−ϵ̄p + δg (φ̄,Θ)T

δφ̄
ϵ̄u =−ϵ̄p +h′(φ̄)×ΘT ϵ̄u

where × is a element-wise multiplication. The gradient on the nodes become

ϵ̇p = φ̄− v̄p −Σp ϵ̄p

ϵ̇u = ū −Θh(φ̄)−Σu ϵ̄u

once more, as done in the previous section of this Appendix, one can derive for
parameters v̄p ,Σp ,Σu to find the expressions:

δF

δv̄p
= ϵ̄p

δF

δΣp
= 1

2
(ϵ̄p ϵ̄p

T −Σ−1
p )

δF

δΣu
= 1

2
(ϵ̄u ϵ̄u

T −Σ−1
u )

which are the expression given in Equation 2.28.
The logic behind the addition of an inhibitory neuron to make computation Hebbian

again is the following. A single prediction error must converge to:

ϵp = Φ− vp

Σp

Where the mean expected level of a featureΦ varies with Σp :

Σp = 〈(Φ− vp )2)〉
Adding an inhibitory node or neuron yields:

ϵ̇p = ū − g (φ̄)−ep

ėp =Σpϵp −ep
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By setting the desired value to 0, we get a fixed point at the desired value:

εp = Φ− vp

Σp

ep =Φ− vp

For matrix form, the idea is the same as in the previous section of the appendix,
where we work with a variance matrix instead of a scalar value:

˙̄εp = φ̄p − g (φ̄i+1)− ēp

˙̄ep =Σpε̄p − ēp

As before, we can find the fixed point by setting these variables to 0:

ε̄p =Σp
−1φ̄p − gp (φ̄i+1)

ēp = φ̄p − gp (φ̄i+1)

Thus we can see that nodes ε have fixed points at the values equal to the predic-
tion errors. We can now consider a learning rule analogous to that in the previous
subsection:

∆Σp =α(ε̄p ēT
p −1).

To find the values to vicinity of which the above rule may converge, we can find the
value of Σp for which the expected value of the right-hand side of the above equation
is equal to 0:

〈ε̄p ēT
p −1〉 = 0.
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B. Appendix B: Pulvinar and Predictive Coding
Review

”Daddy sang bass
Mama sang tenor,

CMe and little brother would join right in there.”
Johnny Cash, Daddy Sang Bass, 1969

Full citation is as follows: Nelson Cortes, Hugo J Ladret, Reza Abbas-Farishta, et al.
“The pulvinar as a hub of visual processing and cortical integration”. In: Trends in
Neurosciences (2023)
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Review

The pulvinar as a hub of visual processing and
cortical integration

Nelson Cortes,1 Hugo J. Ladret,1,2 Reza Abbas-Farishta,1 and Christian Casanova 1,*

The pulvinar nucleus of the thalamus is a crucial component of the visual system
and plays significant roles in sensory processing and cognitive integration. The
pulvinar’s extensive connectivity with cortical regions allows for bidirectional
communication, contributing to the integration of sensory information across
the visual hierarchy. Recent findings underscore the pulvinar’s involvement in
attentional modulation, feature binding, and predictive coding. In this review,
we highlight recent advances in clarifying the pulvinar’s circuitry and function.
We discuss the contributions of the pulvinar to signal modulation across the
global cortical network and place these findings within theoretical frameworks
of cortical processing, particularly the global neuronal workspace (GNW) theory
and predictive coding.

The transthalamic visual cortico-cortical pathways
When viewing an image, signals originating from the retina are transmitted through the lateral
geniculate nucleus (LGN) of the thalamus to the primary visual cortex (V1) for local feature pro-
cessing. Subsequently, information regarding the image characteristics is conveyed to hierarchi-
cally organized cortical areas, where progressively greater integration of biologically relevant
patterns leads to appropriate behavioral responses [1]. Historically, visual perception was attrib-
uted solely to hierarchical cortico-cortical connections [2]. This corticocentric viewpoint has often
overlooked the fact that the operations of the cortex are deeply intertwined with those of subcor-
tical structures, including the basal ganglia, cerebellum, and thalamus. This complex interplay
forms the basis of our cognitive abilities and behaviors. As depicted in Figure 1, it is important to
recognize that sensory information from lower cortical areas can be conveyed directly to higher-
order cortical areas not only through cortico-cortical connections but also indirectly via cortico-
thalamo-cortical projections, through higher-order thalamic nuclei (see Glossary). While the im-
portance of these transthalamic cortical pathways involving higher-order thalamic nuclei has been
acknowledged by several researchers, and notable advancements have been made in recent
years, numerous questions regarding the involvement of these nuclei in cortical computations re-
main unanswered [3,4] and, regrettably, theories of sensory and cognitive integration often neglect
the role of the transthalamic pathways. Evidence suggests that the pulvinar, a central higher-order
thalamic nucleus, which is reciprocally linked to visual cortical areas and also to auditory, somato-
sensory, associative, and executive cortical regions, assumes a central role in regulating neuronal
signal processing within and between cortices [5,6]. Further supporting this proposition, dysfunc-
tions in transthalamic cortical communication via the pulvinar are linked to sensory deficits ob-
served in conditions like autism, attention-deficit/hyperactivity disorder, and schizophrenia [7–9].

Reframing the pulvinar’s role within theories that elucidate the integration and computation of
diverse cortical signals is essential for a more comprehensive understanding of transthalamic
pathways. This review begins with an overview of the visual pulvinar and its associated cortical
network. We then delve into the pulvinar’s key role in governing visual cortical processing,
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specifically its integration of visual and cognitive information across cortical areas. We pay special
attention to cortical theories that aim to clarify perception and cognitive integration, such as the
GNW theory and predictive coding frameworks.

Subdivisions and functional connectivity of the pulvinar
The pulvinar is situated above the dorsolateral posterior thalamus and extends along the medial
border of the LGN. Throughout mammalian evolution, the pulvinar has grown and differentiated,
mirroring changes in the neocortex (Box 1) [10]. Consequently, the pulvinar stands as the most
prominent visual nucleus within the thalamus in higher-order mammals, including humans
[11,12]. The subsequent section delineates the anatomical subdivisions of the pulvinar in primates,
cats, and rodents, emphasizing its multifaceted roles from sensory processing to motor control.
Next, we introduce the concept of a dorso-ventral pulvinar gradient as a framework to better un-
derstand the functional diversity of the pulvinar.

Anatomical subdivisions in primates
Historically, in view of the pulvinar’s intricate architecture in primates, this brain region was divided
into three major subdivisions: the inferior pulvinar (PI), the lateral pulvinar (PL), and the medial
pulvinar (PM) [13]. A contemporary naming system has refined pulvinar subdivisions based on
its connection with early visual areas (Box 1) [14]. Thus, the PI and PL have been segmented
further. The PI is subdivided into the posterior, middle, central medial, and central lateral subnuclei
(PIp, PIm, PIcm, and PIcl, respectively). While PIp, PIm, and PIcm primarily interface with the
dorsal visual stream, PIcl exhibits connections with the ventral visual stream [15]. The PL
has been further categorized into two regions: the dorso-medial (PLdm) and the ventro-lateral
(PLvl). While PLvl is primarily linked to the superior colliculus (SC), V1, V2, and areas associated

HO Area HO Area V1
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Hierarchical level

To and from other cortical areas
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Figure 1. The transthalamic cortical visual pathways. Sensory signals from the retina are sent to the lateral geniculate
nucleus (LGN) and then to the primary visual cortex (V1). V1 signals can be transmitted to higher-order visual cortical areas
(HO) not only through cortico-cortical connections (white and gray arrows, representing feedforward and feedback
projections, respectively) but also through the pulvinar, which mediates the transthalamic cortical communication between
all areas of the visual cortex in the feedforward and feedback directions.
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Glossary
Alpha rhythm: rhythmic neural activity
typically defined in humans within the
7.5–12.5 Hz range.
Asynchronous or synchronous
neuronal activity: asynchronous
activity in neural networks describes a
regime with weak temporal correlations
among neurons, whereas synchronous
activity refers to a regime where
temporal correlations are strong.
Beta rhythm: rhythmic neural activity
typically defined in humans within the
12.5–30 Hz range.
Dorsal visual stream: the dorsal
stream, or ‘where/how’ pathway,
originates in the striate cortex, extending
to the parietal lobe for spatial andmotion
awareness.
Feedforward and feedback
processing: feedforward processing
refers to flow of neural information
through hierarchical levels of processing,
from low level to higher levels, whereas
feedback processing is the reverse flow
from higher to lower levels, enabling top-
down modulation of activity.
Firing rate coding: in firing rate coding,
the intensity of a stimulus is encoded by
the frequency or rate of neuronal action
potentials. Excitatory neurons typically
increase firing rates for stronger stimuli;
inhibitory neurons decrease firing rates,
modulating neural network activity.
Fleeting memory: also known as
sensory memory, it is the initial stage of
memory processing that briefly stores
incoming sensory information in its
original form before it is further
processed.
Gamma rhythm: rhythmic neural
activity typically defined in humans within
the 25–70 Hz range.
Higher-order thalamic nucleus:
unlike first-order nuclei, which primarily
receive their driving input from the
sensory organs, higher-order thalamic
nuclei receive their primary driving
signals from cortical areas.
Subliminal visual stimulus: typically
refers to a brief and low-energy visual
stimulation that the observer does not
consciously perceive.
Temporal coding: a mode of neuronal
communication that relies on the precise
timing of action potentials or inter-spike
intervals for encoding information.
Theta rhythm: rhythmic neural activity
typically defined in humans within the
4–7.5 Hz range.
V4: a cortical visual area of the ventral
pathway that integrates feature
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Box 1. Evolutionary expansion of the pulvinar in primates: functional nuances and the role of vGLUTs

The primate pulvinar exhibits two prime distinctions from other species: the expansion of PM, and the proliferation of the
ventral subunits, PI and PLvl (Figure I). PM, as highlighted by recent research, functions as a multisensory hub, crucial for
sensory–motor integration, eye–hand coordination, and potentially conveying complex emotional cues to the amygdala
[8,16]. In contrast, PI and PL, which have evolved into at least five subdivisions, enhance the relay from sources such
as V1 and V2, retina, and SC to both dorsal and ventral visual streams in the cortex [13–15]. For instance, PIcm and
PIp primarily interact with regions around the medial temporal area (MT) and receive direct projections from SC, and
PIm, receiving extra projections from the retina, has a direct link with MT [12,15,39,116,118]. A potential driving factor
behind the evolution of ventral subdivisions might be the migration of neurons from the SC to the retinofugal pathway.
For context, 85–90% of rodent retinal cells project to the SC [119], but only about 50% in cats (26% from temporal retina)
[120] and 10% in primates do so [121]. Such migrations illustrate the balance between retinal and SC projections into the
caudal pulvinar, influencing the evolution of the PI and the emergence of the MT complex [118,122]. Collectively, these
changes in the pulvinar allow for intricate interactions with the cortex, accommodating high-level neural integration, as seen
with PM, and specialized visual perception tasks, as seen with PI and PL.

The newly discovered subdivisions of PL and PI exhibit distinctive protein staining patterns and varied connections,
revealing diverse interactions with visual cortical areas and a range of functions [14]. A significant example of this complexity
is the divergent roles of vesicular glutamate transporters, vGLUT1 and vGLUT2, essential markers for delineating functionally
distinct territories within the visual pulvinar and for understanding the dynamics of thalamocortical neurons and their inputs.
Extensive studies have investigated the unique roles of vGLUT1 and vGLUT2 across diverse species, uncovering their subtle
functionalities within the visual pulvinar [123]. Initially, vGLUT1 was associated with modulatory projections and vGLUT2 with
driving projections [124]. However, this initial dichotomy has proven to be more nuanced. For instance, in macaques, driver
corticopulvinar projections from layer 5 pyramidal cells are enriched with vGLUT1, while vGLUT2 defines subcortical terminal
areas [12]. These areas may be crucial for relaying information from the retina and SC to the neocortex. These interspecies
variations stress transporters’ adaptive roles in visual processing, showing the balance in neural and synaptic functions
across diverse contexts.

0.3mm 1mm 1mm

Extrastriate projections

Striate projections

SC projections

Predominant VGLUT2

Mouse Cat Macaque monkey

Retinal projections

TrendsTrends inin NeurosciencesNeurosciences

Figure I. This figure illustrates the distinctive pulvinar subdivisions present in mice, cats, andmacaques, their
VGLUT2 expression, and a general view of their cortical and subcortical inputs. In mice, the subdivisions of the
lateral posterior nucleus (LP, homolog of pulvinar) are as follows: LPcm, caudal medial LP; Pl, lateral LP; LPrm, rostral
medial LP. In cats, the main subdivisions of the LP-pulvinar complex are designated as: LPl, lateral LP; LPm, medial LP;
Pul, the pulvinar nuclei proper. In macaques, a more complex structure is observed, including: PIcm, central medial
inferior pulvinar; PIcl, central lateral inferior pulvinar; PIp, posterior inferior pulvinar; PIpl, posterior lateral inferior pulvinar;
PLvl, ventrolateral lateral pulvinar; Pldm, dorsomedial lateral pulvinar; PM, medial pulvinar. Please note the prominent
increase in the most dorsal subunit, PM, and the proliferation of subunits devoted specifically to visual processing in
macaques, illustrating the advanced and specialized nature of the primate pulvinar relative to other species. Mice, cat,
and macaque schematics are based on [12,23,125], [19,20,22,98,107,124,126,127], and [12–15], respectively.
Abbreviations: LGN, lateral geniculate nucleus; SC, superior colliculus.
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processing and visual attention, situated
at intermediate levels of the visual
cortical hierarchy.
Ventral visual stream: the ventral
stream, the ‘what’ pathway, also starts
in the striate cortex but leads to the
temporal lobe, focusing on object and
face recognition.
Winner-take-all: in the context of
neural networks, winner-take-all is a
competitive neural mechanism where
only a specific subset of neurons fire in
response to a particular input.
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with the ventral visual stream, PLdm is more associated with regions that are part of the dorsal
visual stream [16]. Finally, the PM has two specialized subdivisions [5,17]. Its lateral division
involves extensive visual processing, connecting with areas such as the LGN, V1, V2, dorsal and
ventral stream cortical areas, and the SC. In contrast, PM’s medial division is linked to auditory
and motor-related regions, signifying a broader range of functions (see later and Box 1) [8].

Comparative perspectives: cats and rodents
In cats, the pulvinar manifests as the lateral-posterior (LP)/pulvinar complex, with the lateral and
medial portions of the LP nucleus (LPl and LPm, respectively), and the pulvinar proper [18].
While the LPl has a unique feature of direct projections from the striate cortex or V1 [18,19], both
LPl and LPm receive dense recipient extrastriate projections. However, LPm is the main recipient
of SC projections, with LPl having a small tectorecipient zone [20,21]. Additionally, the pulvinar
proper receives primarily retinal inputs [22]. The relationship between subnuclei and dorsal/ventral
cortical streams in cats remains largely unknown. In rodents, the pulvinar is notably smaller and
more homogeneous than in higher mammals [23]. Nevertheless, recent research found distinct
subdivisions with unique cortical inputs in rodents, implying specialized subregions [24].

Dorso-ventral pulvinar gradient
One of the main challenges in the study of pulvinar physiology is that its functions in sensory pro-
cessing are sometimes inconsistent with its anatomical subdivisions [25,26]. Despite the complex-
ities that arise from the pulvinar’s anatomical subdivisions, the pulvinar exhibits a dorso-ventral
functional gradient, which emulates a hierarchical continuum of brain functions from basic percep-
tion to advanced cognitive processing [5]. In primates, the ventral pulvinar, often referred to as the
‘visual pulvinar’, includes the anatomically defined PI and PLvl, both of which are intricately con-
nected to occipital and temporal cortices [16]. Specialized connectivity shapes pulvinar’s receptive
fields, which bear a striking resemblance to those of visual cortical neurons. Research in both cats
and monkeys has shown that many pulvinar receptive fields are binocularly selective and sensitive
to retinal disparity [27]. Additionally, they respond to essential image features like orientation and
motion direction [20,28]. Further studies revealed that pulvinar neurons in cats and humans also
encode higher-order visual processes, such as discerning the direction of complex visual stimuli
like moving plaids and random dot kinematograms [29–31]. Moreover, a coarse retinotopic orga-
nization has been identified in the lateral and inferior primate pulvinar subdivisions [32,33], aswell as
in the main subdivisions of the LP-pulvinar in cats [20,34]. Conversely, the dorsal pulvinar of pri-
mates, consisting of the PLdm and PM, aligns more with higher-order cognitive processes [16].
It is functionally connected to frontal, parietal, and cingulate cortices and is essential for attentional
control (e.g., goal-directed eye movements) and other advanced cognitive functions [14,16,35].
For example, dorsal pulvinar, like PM, processes fear-eliciting stimuli like images of snakes through
its connectivity with the amygdala [36,37]. This conserved behavior may underlie phenomena like
‘affective blindsight’, which relies less on corticothalamic or thalamocortical connectivity and more
of a PM-driven event [26,38,39]. In sum, the pulvinar’s dorso-ventral functional gradient serves as a
unifying framework that encompasses its diverse functions, ranging from basic visual processing to
advanced cognitive functions [20,27–32,36,37,40,41].

Unveiling the complexity of cortex–thalamus interactions: an integrated
examination of a driver/modulator framework
Anatomical characteristics of axon terminals
It is noteworthy that a neuron in the primary visual cortex is only one thalamic synapse away from
neurons in higher-order areas, thanks to the pulvinar. According to the ‘driver/modulator’ frame-
work [42], cortical inputs are conceptualized to belong to one of two categories: modulators and
drivers (type 1 and type 2 terminals) [43,44]. Type 1 terminals, with small round terminals, thin
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axons, and long, thin branches, may adjust or modify the ongoing firing of recipient neurons,
through metabotropic receptors [45]. Conversely, type 2 terminals are characterized by large
round terminals, large caliber axons with clustered endings [18]. They define the target cell’s re-
ceptive field using fast ionotropic receptors [45,46]. Cortico-thalamic projections to pulvinar neu-
rons exhibit a mix of these two terminal types, but their relative proportion varies across the visual
cortical hierarchy [47]. Neurons in early visual cortical areas have a higher proportion of type 2 ter-
minals, while those in higher processing levels send more type 1 terminals [18]. This organiza-
tional scheme suggests that early visual areas like V1 send driver signals to form basic visual
maps in the pulvinar, whereas higher-order visual cortical areas primarily modulate pulvinar neu-
ron activity. The driver/modulator framework is not immutable. Atypical axon terminals with driver-
like properties (type 3) have been discovered in collicular neurons that project to the pulvinar [45].
These may play a vital role in transmitting information about eye fixation and saccades to the cor-
tex [48]. Little is known about the morphology of the reverse connections, the thalamocortical
projections from the pulvinar, and their variations across cortical hierarchy. Addressing this
knowledge gap would be essential for a comprehensive understanding of the pulvinar-cortical
network and its functional implications.

The distinction between drivers and modulators has also been made based on the laminar orga-
nization of thalamocortical and corticothalamic projections. For bottom-up projections, the pre-
vailing view suggests that thalamic terminals ending in layer 4 act as drivers, while those ending
in layer 1 serve as modulators [49]. In top-down projections, layer 5 cortical cells provide driver
signals, whereas layer 6 cells transmit modulatory signals. This holds true for the LGN, which tar-
gets layer 4 in V1 and receives feedback modulatory signals from layer 6 [50]. While it is generally
accepted that pulvinar neurons in primates and cats receive driver inputs from V1 [51,52], and in
turn send modulatory signals to layer 1 [53,54], it is still unknown if corticothalamic pathways in-
volving higher-order areas and the pulvinar conformwith the driver/modulator framework, despite
recent findings of hierarchical anatomical organization of cortico-pulvinar projections in cats [18].
Addressing this issue is especially challenging since pulvinar axon terminals or cortical cell bodies
are generally not restricted to a single cortical layer [55,56].

Functional characteristics of axons terminals
Drivers and modulators can be classified based on the input–output transfer of the neuronal
responses. Modulator effects are categorized as either multiplicative or divisive (nonlinear gain
control), while drivers act through additive or subtractive changes (linear gain control) [57,58].
Studies in rats have demonstrated that type 1 and type 2 corticothalamic terminals from V1
exhibit short-term facilitation and depression in excitatory postsynaptic potentials, respectively
[59]. Expanding on this, the driver/modulator framework can indirectly correspond to the anatom-
ical organization of the cortical visual hierarchy. Such a connection supports a unique type of
communication throughout the hierarchy, deeply rooted in the inherent rhythmicity delineated in
the local field potential (LFP) of neurons. In primates, feedforward connections are associated
with high-frequency rhythms (gamma oscillations, >30 Hz), while feedback connections are
linked to low-frequency oscillations (alpha and beta oscillations, 7–30 Hz) [60–62].

In cats and monkeys, findings from neuronal inactivation studies align with corticothalamic ana-
tomical features. Silencing V1, for instance, abolishes visual responses in most pulvinar neurons
in cats and monkeys [51,52], underscoring the notion of V1 as a driver of pulvinar activity.
Conversely, considering our previous anatomical discussion, higher-order cortical areas are
believed to primarily modulate pulvinar activity. However, further investigation is required since, in
cats, higher-order areas are necessary to drive pattern-motion neurons in the pulvinar [30]. Similarly,
limited information is available about the pulvinar’s impact on cortical neurons in the visual hierarchy.
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In primates, deactivating the PL notably reduces activity in V1’s supragranular layers [54]. In cats,
the primary effect of LPl inactivation on V1 neurons is a slight decrease in response gain [53],
corroborating previous findings obtained through optical brain imaging in the same species [63].
In contrast, LPl inactivation leads to a substantial increase in response gain in most neurons in
area 21a (putative homolog of areaV4 in primates), with a few cells exhibiting contrast gain changes
[53]. Similarly, in Cebus monkeys, PL inactivation intensifies response amplitude in area V2 [64].
Collectively, these studies, while relatively limited, confirm that the pulvinar can influence processing
across the visual cortexmainly bymodulating neuronal activity, thus suggesting its role in controlling
the flow of information throughout the visual cortex.

The pulvinar’s dual role in visual attention and neural communication
Understanding the precise role of the pulvinar is a challenging task due to its unique anatomical-
functional architecture. This thalamic region has been implicated in various processes and
readers are encouraged to refer to previous reviews that describe the potential functions associ-
ated with the pulvinar [3,65–67]. In the next paragraphs, we will examine two prominent roles
debated in the literature, relevant to the subsequent discussion on theoretical models.

Modulating visual attention
For decades, the pulvinar has been recognized as a modulator of visual attention. Early studies in
monkeys suggested that neurons involved in attention tasks were primarily found in the dorsal
pulvinar (i.e., in PLdm) [68,69]. Deactivating PLdm shifted visual attention and affected the moti-
vation to reach and grasp objects, mirroring perceptual neglect symptoms. Subsequent investi-
gations utilizing brain imaging and psychophysical techniques in both healthy and brain-damaged
individuals reinforced the pulvinar’s role in sustained visual attention, stimulus awareness, and the
filtering of irrelevant or distracting information [23,70–77]. Likewise, a recent study in humans
showed that activity in the pulvinar and fronto-parietal cortices was modulated when a cue and
a salient distractor were presented together [78]. However, this modulation did not occur when
either of these stimuli was presented alone. Relatedly, an fMRI study in humans revealed
increased activity in the dorsal pulvinar during directed spatial attention, mirroring fronto-parietal
activation patterns [25]. Single-cell recordings in the lateral and inferior regions of the ventral
pulvinar in primates [79,80] and in the LP-pulvinar complex of ferrets [81] align with the findings
from humans. These animal studies revealed that pulvinar neurons are involved in sustained and
directed spatial attention, although the specific neuronal activity (e.g., LFP rhythms such as
alpha, theta, or gamma oscillations) associated with attention varies across these investigations.

Orchestrating cortical communication in neural networks
Another important function of the pulvinar, besides its role in visual attention, is its capacity to
modulate information transmission within large-scale cortical networks. Two types of cortical pro-
cessing, feedforward and feedback processing, underlie whole-brain activation. Extensive
theoretical research proposes pulvinar-mediated feedforward cortical amplifications, backed by
empirical evidence. Computational models, for instance, indicate that the pulvinar enhances
external input responses throughout the cortical hierarchy, acting as a firing rate codingmech-
anism in visual processing [82–84]. Studies conducted in cats provide further support for this
feedforward amplification, as, counterintuitively, inactivation of the lateral and medial subdivisions
of the LP/pulvinar complex leads to increased spike counts tied to contrast changes in cortical
areas at various hierarchical positions [53]. Similarly, mouse brain slice research indicates
that the pulvinar’s activity may exhibit driver-like characteristics, amplifying signals through
transthalamic feedforward pathways. Notably, in these experiments, most of the pulvinar projec-
tions, originating from zones that receive inputs from the striate cortex and the SC, target layer 4
of extrastriate cortices [85]. These findings underscore the critical role of the pulvinar in visual
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processing by highlighting its involvement in the contextual integration of cortical information,
ultimately influencing higher cortical areas.

Expanding on these insights, the pulvinar’s role in coordinating information transmission in corti-
cal networks becomes clearer when considering temporal coding. In the context of feedforward
propagation, transthalamic pathways are organized in such a way that they facilitate the
emergence of nested oscillatory patterns within different cortical subnetworks [80,86]. Recent
research supports this organization by revealing synchronized LFP coherence between cortical
regions and the PLdm during both ongoing activity and attention-dependent tasks [80,87,88].
Notably, recent data suggest a direct link between pulvinar modulation and the amplification of
gamma rhythms [86]. Conversely, neuronal populations in the prefrontal cortex generate
oscillatory states characterized by low-frequency oscillations that align with pulvinar rhythms,
including theta rhythms, alpha rhythms, and beta rhythms, primarily within the PM and
PLdm [73,88]. Therefore, the pulvinar can be seen as a dynamic trigger facilitating communication
between distinct cortical areas through the synchronization of oscillatory patterns, phase relation-
ships, and rhythmic activity.

While the role of the pulvinar in feedback transmission is not yet fully understood, theoretical stud-
ies suggest that transthalamic pathways transmit alpha and beta rhythms back to the cortex [84].
Experimental data indicate that similar feedback-related low-frequency signatures observed in
cortical areas of monkeys [60,62] also manifest in the human pulvinar [89]. These rhythms are
predominantly generated within the cortex, particularly the prefrontal cortex [79,88,90]. However,
eliciting thalamic responses requires significant effective connectivity, which can only occur if mul-
tiple cortical areas that project to the pulvinar are synchronously activated (given the modulatory
nature of type 1 terminals). The precise number of top-down inputs (i.e., corticothalamic inputs)
needed to trigger pulvinar responses remains unclear. An alternative hypothesis suggests that
cortical inputs associated with the thalamic reticular nucleus generate a global inhibitory response
within the pulvinar, leading to low-frequency oscillations [91]. Another mechanism suggests that
slow oscillations may arise from asynchronous corticothalamic projections into discrete pulvinar
clusters, leading towinner-take-all states of neuronal competition [47]. This hypothetical neuro-
nal mechanism could facilitate the resetting of cortical feedback transmission by generating a
bistable state (either asynchronous or synchronous neuronal activity) within the pulvinar,
which is influenced by the distinct distribution of corticothalamic type 1 and 2 axons in the visual
cortex. A similar bistable state has been experimentally observed in the primate dorsal and ventral
pulvinar during object detection and passive viewing [92].

The preceding paragraphs have highlighted the pivotal position of the pulvinar within the global
neural network of the brain. Moving forward, we will examine prevailing brain theories and explore
how the pulvinar integrates into these concepts, bridging the gap between current understanding
and future research directions.

The global workspace theory (GWT) and GNW
The GWT is a prominent cognitive science theory that explains how distributed modules commu-
nicate to achieve higher-order cognitive states, including consciousness [93]. In this theory, a
fleetingmemory enables the system to access shared brain functions, and long-range connec-
tions between modules facilitate large-scale network operations [94] The GWT posits that
sensory brain structures provide network inputs, with modules filtering out irrelevant information
to share relevant activity. Consequently, each module collaborates as a functional part of the
system, unifying global meaning at each moment. An extension of the GWT, the GNW model,
offers further insights into the neural architecture and workings of the brain in generating
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conscious experiences [95,96]. An example of the GNW in action is the neuronal processing
during the conscious detection of a subliminal visual stimulus [97]. This detection process
unfolds in several steps within the cortex: crossing a cortical threshold, feedforward broadcasting,
reverberating cortical activity, and feedback neuronal communication. The dynamics of this
process, called ‘ignition’ in the GNW, can be summarized as follows [98]. When a signal from a
visual stimulus reaches V1, it crosses a neural threshold, triggering activity propagation throughout
the cortex. This activity cascades from lower to higher hierarchical levels, broadcasting feedforward
information up to the prefrontal cortex. However, if the signal is not sufficiently strong, it decays
exponentially throughout the hierarchy (Figure 2A1). If the threshold is reached and the activity
spreads across the entire cortex, the neuronal activity continues to reverberate through recurrent
interactions within and between cortical areas [97]. The global neuronal response is then relayed
back through the cortex toward lower-level regions. This process involves bidirectional communi-
cation, with feedforward and feedback connections both being essential to conscious experience.
Cortico-cortical projections, especially long-range connections, contribute to nervous system
integration and greatly impact a subject’s conscious states from the GNW perspective.

Integrating the pulvinar in the GNW
Based on findings discussed in earlier sections, the pulvinar may assume a critical role within the
GNW by contributing to one or multiple stages of cortical ignition. These stages encompass the
activation threshold, feedforward propagation, recurrent activation, and feedback integration
processes (as depicted in Figure 2A2).

As highlighted earlier, the pulvinar likely enhances cortico-cortical communication by amplifying
signals through the feedforward pathway. This amplification is achieved through the pulvinar’s
extensive projections to extrastriate cortical areas, particularly targeting layer 4. We propose
that this transthalamic pathway serves to enhance the feedforward transfer of information
between cortical modules by increasing the response gain along the cortical hierarchy, minimizing
the dampening of signal propagation over distance [82,83,99]. Additionally, the pulvinar might
be involved in cortical feedback processes, potentially facilitated by its hypothetical bistable
activation or global inhibition associated with the thalamic reticular nucleus [91]. The cortico-
pulvino-cortical feedback action may serve the purpose of resetting cortical feedback transmis-
sion, thereby promoting the initiation of subsequent cortical ignitions. In essence, the thalamus
can be viewed as a ‘controller’ of information flow in the brain, regulating the exchange of infor-
mation among cortical regions to facilitate the establishment of a global workspace.

Is the pulvinar a key player in triggering cortical ignition? There is physiological evidence supporting
this notion, particularly in terms of threshold initiation, as electrical microstimulation of the thalamus
has shown that the pulvinar can evoke synchronized activity acrossmultiple cortical areas [63,100].
Furthermore, anatomical investigations have revealed the pulvinar’s extensive projections to
various visual regions as well as multisensory, associative, and executive cortices, indicating its
potential to synchronize and initiate cortical activity simultaneously [101,102]. Notably, the burst-
like discharges observed in the pulvinar further suggest that such activity enhances the likelihood
of activating cortical neurons, allowing them to detect changes in the environment [103].

While the exact ‘message’ conveyed by the pulvinar to the cortex remains debated, studies in
cats and monkeys suggest the pulvinar acts as an information router, transmitting topographical
signals to ensure coordinated processing of similar information across distant areas [65].
However, recent findings in mice propose that the information transmitted through the cortico-
cortical and transthalamic pathways may exhibit differences [104], indicating that the pulvinar
might also play a role in information processing. Nevertheless, it is likely that the transthalamic
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pathway via the pulvinar contributes to the activation of cortico-cortical connections in the visual
cortex, potentially encompassing attentional signals necessary for cortical ignition.

In this theoretical framework, the GNW of the brain is responsible for integrating and disseminat-
ing sensory information throughout the cortex. Here, the attentional system acts as a crucial filter
that amplifies the most relevant information for conscious experience. Notably, signals from the
prefrontal cortex, relayed by nuclei like the pulvinar, play a key role in this attentional filtering
[88]. Recent findings underscore that pulvinar’s ventral and dorsal regions in humans functionally
complement the cortex, activating cortical zones responsible for object visual perception (processed
in visual areas) and attention-guided vision (processed in frontal, parietal, and cingulate cortices),
respectively [5,25,105]. Thus, given its direct communication with the prefrontal cortex and the
SC, both pivotal in attention processes, the pulvinar significantly influenceswhere subjects’ attention
is directed [11,16,79]. By selectively enhancing and amplifying sensory information, the thalamus
may assume an essential role in shaping conscious perception and contributing to the overall
global workspace. This role becomes particularly crucial when attention-directing signals from the
pulvino-cortical coupling are weak or absent. In such cases, a subliminal stimulus quickly diminished
across cortical stages [83], essentially ‘turning off’ the ignition [97]. In a nutshell, the pulvinar acts as
a gatekeeper for thalamocortical coupling, allowing only the most relevant information to enter
conscious experience.

The GWT suggests that conscious perception employs fleeting memory to handle limited capac-
ity data, like working memory mechanisms. This involves sustained neural firing rates, even with-
out external stimuli. This activity is observed in primates during figure-ground segregation tasks
[106]. While pulvinar neurons' persistent activity remains unknown, two experimental studies
found evoked sustained responses in the cat’s pulvinar neurons by a visual flash, lasting up to
1 min post-stimulus presentation [107,108]. Recent theories predict sustained pulvinar re-
sponses [84], but it is unclear if their activity originates from reciprocal interactions with the cortex
or recurrent pulvinar neuron processes. Regardless of the sources, persistent pulvinar responses
may drive sustained activity in visual cortical neurons.

Expanding on prior research, we propose an enhanced ignition mechanism involving the pulvinar
(Figure 2B). Initially, V1 forwards activity to the pulvinar and adjacent visual areas (Figure 2B1,2B2).
Once the pulvinar exceeds its threshold (Figure 2B3), it activates other cortices through
transthalamic pathways. If pulvinar activation coincides with cortical feedforward input, cortical
activity rapidly expands, enhancing neuronal activity (Figure 2B4). When multiple higher-order
areas target the pulvinar, its activity patterns undergo alterations, leading the pulvinar to disen-
gage from contributing to the ignition (Figure 2B5). This shift reduces the triggered ignition,
allowing for the initiation of a new cycle of GNW (Figure 2B6). This cyclic ignition and dampening
process dynamically regulates higher-order processes.

GNW, predictive coding, and the pulvinar
Another potential explanation for the involvement of the pulvinar in cortical processing is provided
by the predictive coding framework, as detailed in Box 2. In many of the initial formulations of pre-
dictive coding, similar to the GNW, only cortico-cortical connections were considered in the con-
text of transmitting predictions and prediction errors through feedforward and feedback cortical
pathways [109]. Interestingly, early on, a similar theory was suggested where the pulvinar, with
its unique thalamic nucleus characteristics, adjusts cortical processes based on a global context
of the external world [110]. These frameworks have since evolved to incorporate subcortical
structures into their conceptualization of brain function, acknowledging the importance of
neuromodulatory mechanisms and transthalamic pathways in neural processing (Figure 3).
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This historical perspective aligns with newer theories that incorporate the pulvinar in predictive
coding, emphasizing the pulvinar’s distinctive role [111]. Beyond processing predictions and pre-
diction errors, the pulvinar may compute the inverse variance (i.e., the precision of signals),
thereby adjusting the balance between reliance on prior predictions and integration of new pre-
diction errors [112]. This ‘precision-weighting’ mechanism may play a pivotal role in perception
and cognition, offering a differentiated contribution to cortical processing distinct from prediction
handling [113]. According to some conceptualizations, disrupting this mechanismmay contribute
to psychosis, such as seen in schizophrenia [112,114] (see also Box 3 for further details).
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Figure 2. Processing in the global neuronal workspace. (A1) Upon reaching the primary visual cortex (V1), a visual
signal may surpass a neural threshold, enabling activity to propagate across the cortex in a feedforward manner. Without
strong stimulation, this signal decays exponentially (left). As cortical areas reach the threshold, activity spreads across the
cortex (right), reverberating through intra- and inter-area interactions and returning to lower-level regions. (A2) Hypothetical
contribution of the pulvinar in ignition evolution. As the signal arrives at the pulvinar via V1, activity rapidly expands through
cortical areas, amplifying cortical activity if it coincides with feedforward input. (B) Hypothetical global neuronal workspace
(GNW) cycle with the pulvinar: (B1) V1 sends activity to the pulvinar and nearby visual areas. (B2) The pulvinar activates
other cortices via transthalamic cortical pathways, boosting activity (B3). If targeted by multiple higher areas, pulvinar
activity patterns change (B4), causing the pulvinar to stop contributing to ignition (B5), dampening the evoked ignition and
allowing a new cycle to start (B6).
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Predictive coding relies on recurrent mechanisms, suggesting the brain’s capacity for self-
regulating activity within its neural network, as incorporated, for instance, in the GNW. In this con-
text, higher-order thalamic nuclei can be seen as integral components of cortico-cortical loops,
rapidly integrating information across different hierarchical levels to amplify bottom-up signals in
the presence of low-variance input and vice versa. Notably, this process is not limited to the visual
hierarchy alone. Both functional and anatomical evidence suggest that inputs from the prefrontal
cortex can directly target V1 neurons through pulvinar axons, forming a macroscale recurrent cir-
cuit capable of accessing any cortical area [115]. The anterior cingulate cortex, for example, in
mice: a prefrontal region linked to behavioral error and visual orientation actions [116,117].
Whether viewed from the perspective of the GNW or predictive coding framework, incorporating
the pulvinar into cortico-cortical theories addresses crucial computational challenges, including
hierarchical processing, recurrent propagation, and efficient communication within a distributed
network of cortical areas.

Concluding remarks and future perspectives
This review synthesizes the pivotal role of the pulvinar in transthalamic cortico-cortical pathways,
emphasizing its influence on visual and cognitive brain functions. It challenges traditional cortico-
centric perspectives by highlighting the pulvinar’s integration with cortical processes, such as
inter-areal neural communication and attentional processing. The anatomical and functional find-
ings of the pulvinar described here align with two key theories in neuroscience: the GNW theory
and predictive coding. These findings suggest the pulvinar’s vital role in cortical activation stages
and fine-tuning neural networks.

The review also underscores unresolved questions. Firstly, the anatomical organization of
pathways involving the pulvinar requires further characterization for a comprehensive under-
standing of physiological roles. Advances in optogenetics and connectomes offer promising
avenues for exploring transthalamic connectivity. Future exploration involves understanding
how the pulvinar nucleus aids in integrating and segregating cortical networks during complex
cognitive functions. This avenue of research is not solely about mapping connections but also
about decoding the orchestration of pulvinar and cortical networks in real time as subjects par-
ticipate in ongoing cognitive tasks. Additionally, a critical area of research involves determining
the contribution of the pulvinar to the overall efficiency of brain information processing. Exam-
ining the pulvinar’s structural similarities with artificial neural networks presents a fascinating

Box 2. Predictive coding and the pulvinar

Predictive coding is a theory conceptualizing the brain as an organ of inference. According to this framework, the brain
builds a model of its environment to craft plausible explanations of the sensory input impinging on it and makes constant
predictions about possible future states of the world [128]. The internal model is continuously updated based on prediction
errors, that is, mismatches between predictions and actual observed events. Neuroanatomically, this computational prin-
ciple relies on feedback connectivity carrying (top-down) predictions about the environment, which are matched to
feedforward sensory inputs to convey (bottom-up) prediction errors. To regulate the transfer of information between the
feedback and feedforward pathways, the brain needs to select which of its representations (predictions), or its new sen-
sory inputs (prediction errors) are best suited to steer behavior accurately. According to Bayesian inference, one of the
many computations predictive coding can support [129], the brain weighs this information based on its precision. While
prediction errors comfortably match the canonical connectivity of the cortex [128–130], the implementation of precision
weighting is still up for debate. Functionally, precision weighting can be described as a gain control mechanism regulating
the confidence in either prediction or prediction errors [111,131]. Gain control (modulator) connectivity is a prominent fea-
ture of higher-order cortico-thalamic synapses that have been thought to allow cortical areas to encode new salient and
relevant features of the environment [132]. The pulvinar’s engagement in attentional regulation and its output connectivity
to superficial cortical layers is an ideal match for a role in precisionmodulation of the visual hierarchy, which also fits the long
timescales of mesoscale integration associated with precisionweighting (see Figure 3 inmain text) [111,131]. As described
in the main text, the properties of the pulvinar support its role as a modulator of prediction errors throughout the visual hi-
erarchy, thereby ascribing precision to the cortical message passing.
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Outstanding questions
What role does the pulvinar nucleus
play in the integration and segregation
of cortical networks observed during
the performance of increasingly
complex cognitive perceptual tasks?
How does the pulvinar’s involvement
contribute to the overall efficiency of
information processing in the brain?

Are the well-described organizational
principles of cortico-cortical neural ar-
chitecture preserved and maintained
in transthalamic pathways, specifically
concerning the role of the pulvinar nu-
cleus in integrating and segregating in-
formation between cortical regions
during the execution of complex cogni-
tive perceptual tasks?

Do individuals with schizophrenia exhibit
fewer ‘ignition events’ (i.e., widespread
brain activity triggers) than those without
schizophrenia? Do ignition events in pa-
tients with pulvinar lesions differ from
those of healthy individuals? If so, do pa-
tients with pulvinar lesions consistently
display ignition events, or do these
events show changes in frequency or
characteristics?

What mechanisms does the pulvinar
employ to adjust cortico-cortical
connections when there is a mismatch
between the predicted visual stimuli
and the actual visual experiences of an
individual? How does this adjustment
process influence perception, and
what are the implications when these
mechanisms malfunction, particularly
in relation to visual disturbances ob-
served in disorders like schizophrenia?

Do transthalamic connections in
biological neural networks share
similarities with ‘skip connections’
observed in deep artificial neural
networks? Skip connections feed the
output of a certain layer to other non-
adjacent layers within a network,
bypassing intermediate layers. Skip
connections are used to reduce signal
dampening in deep neural networks
and improve efficiency when the com-
plexity of a hierarchical network in-
creases. By using skip connections to
model the pulvinar, could researchers
gain insights into how this region func-
tions and how it interacts with other re-
gions of the brain? Moreover, given the
pulvinar’s complex role, is it feasible for
it to act both as a central hub with
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research avenue. Such studies may inform the design of more advanced, sophisticated, and
efficient artificial intelligence algorithms inspired by transthalamic anatomical and functional
mechanisms. Finally, specific involvement in disorders like schizophrenia, especially concern-
ing ‘ignition events’ (those critical episodes of neural activation or synchronization), promises
to yield valuable insights about the role of the pulvinar in such disorders and possibly target
therapeutic interventions (see Outstanding questions). Addressing these questions will help
decipher the role of the pulvinar in the complexity of brain functions and may offer promising
insights that will deepen current understanding of cognitive processes, neural networks’ func-
tioning, and brain information processing.

Box 3. Does pulvinar malfunction contribute to mental disorders like schizophrenia?

Among the various neuropsychiatric disorders suspected to involve pulvinar malfunction, schizophrenia stands out as one
of the most extensively studied and well-documented conditions [8,133,134]. Schizophrenia is characterized by
disturbances in perceptual processing (e.g., visual hallucinations) and cognitive functions (e.g., impaired working memory,
reduced processing speed), some of which align closely with the key processes in which the pulvinar normally participates.
In a study analyzing postmortem thalamus samples from schizophrenia patients using unbiased stereological methods,
structural changes such as reduced volume and cell numbers were consistently reported, particularly in the pulvinar’s
medial subdivision [135]. Additionally, functional connectivity studies using neuroimaging techniques in people with schizo-
phrenia have revealed reduced connectivity between the PM and the frontal cortex [114,134]. Similar findings have been
observed in early psychosis subjects and persist in individuals with chronic schizophrenia. These structural changes have
been associated with impaired emotional processing [136] deficits in selective attention [137,138], abnormal motion pro-
cessing [139], and impaired face recognition [140], functions known to involve the pulvinar. While these observations
strongly suggest a link between pulvinar dysfunction and schizophrenia, it is important to note that schizophrenia is a com-
plex disorder with multifactorial origins. The precise mechanisms by which pulvinar dysfunction contributes to the devel-
opment and progression of schizophrenia remain a subject of ongoing research. Further investigations are needed to
unravel the intricate interplay between pulvinar abnormalities and the complex pathophysiology of schizophrenia.
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Figure 3. Predictive coding along the visual hierarchy. (A) Schematic illustration of the visual hierarchy under the
predictive coding principle, in which locally distributed feedback predictions (depicted in blue) are matched against visual
input to produce prediction errors (depicted in red), updating the internal model of the brain. This model is a generative one,
allowing the brain to perform inference on the causes of the sensory inputs, by mapping external causes in the environment
to generate internal resultant sensory experiences. Putatively, predictions are sent from the cortex to the pulvinar, where the
inverse squared variance (i.e., the precision) of cortical signals can serve to modulate the propagation of messages based on
their reliability, allowing information irrelevant to the brain’s models to be disregarded. (B) Integration of prediction error and pre-
diction into a posterior distribution, for high and low precision input (top and bottom row, respectively), under the approximation
of Gaussian distribution of signals. This integration rule, postulated by Bayes’ theorem (Box 2), drives the integrated posterior
distribution towards (or away) the lower levels of the visual hierarchy, depending on the inverse variance of sensory inputs.

Trends in Neurosciences

Trends in Neurosciences, February 2024, Vol. 47, No. 2 131

multiple redundant cortico-thalamic-
cortical loops and as a skip connection
system?
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C. Appendix C: Public Disseminations
”T’as pas de doutes ? Moi j’en ai,

(...)
Je sais pas ce que c’est,

C’est l’Inconnu.”
Cadillac & KingJu, Egoslave, 2018

C.1. Rationale and open-access
There are several reasons why public research should be made publicly available.

On the professional side, having any scientist able to access in-depth research, and
not just the research manuscript, vastly improves the quality of any scientific field as
a whole. On the ethical side, having an open policy on research effectively deprives
predatory publishing companies of their revenues, vastly improving the quality of life
of all scientists [290]. For these two reasons, when possible (i.e. not under embargo
for a publication in production), the code that has been written during this thesis and
its associated data is available online for open access:

— Related to this entire manuscript:
Code: https://github.com/hugoladret/PhD_manuscript

— Related to Chapter’s 3 article on Convolutional Sparse Coding:
Data: https://doi.org/10.6084/m9.figshare.24167265
Code: https://github.com/hugoladret/epistemic_CSC

— Related to Chapter’s 4 article on Cortical Recurrence in V1:
Data: https://doi.org/10.6084/m9.figshare.23366588.v2
Code: https://github.com/hugoladret/variance-processing-V1

Finally, on the logical side, since this research is paid by taxpayer’s money, it should
be made available to the taxpayer. Taxes are not just paid by researchers (thankfully for
us), but by people with a heterogeneous scientific formation, and as such, it is crucial
that scientific productions end up being formatted in such a way that anyone might
benefit from them. In that regard, this thesis also includes two public dissemination
articles in French, with English translation provided here after each article.

C.2. Article 1 (Sciences et Avenir)
The first public dissemination article is based on an interview by Alice Carliez,

derived from our article Hugo J Ladret, Nelson Cortes, Lamyae Ikan, et al. “Cortical
recurrence supports resilience to sensory variance in the primary visual cortex”. In:
Communications Biology 6.1 (2023), p. 667, for the French journal "Sciences et Avenir".
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Comment notre cerveau fait-il face à l’incertitude ? 

Par Alice Carliez le 28.07.2023 à 12h29  
Lecture 8 min. 
 
Une équipe du CNRS et d'Aix-Marseille Université a élucidé les mécanismes neuronaux 
permettant la perception de stimuli visuels plus ou moins précis. Voici les explications 
de Laurent Perrinet, chercheur en neurosciences computationnelles. 
 

 
Comment le cerveau fait face à l’incertitude ? 

©J F CREAT I VE S /  CUL T URA  CREAT I V E  /  CUL T URA CREAT I V E  V I A  A F P  
 
"L’incertitude n’est pas dans les choses mais dans notre tête". Une récente étude pourrait 
concrètement confirmer cette assertion du mathématicien suisse Jacques Bernoulli. 
 
Des images de synthèse pour représenter le degré de flou 
Nous sommes au quotidien confronté à des environnement visuels complexes et à un 
ensemble de stimuli sensoriels à intégrer avant de prendre une décision. Le traitement 
de multiples informations en parallèle permet à notre cerveau d’adapter notre 
comportement à des situations très diverses. Cependant, le fonctionnement 
neurobiologique sous-jacent est encore mal compris. Dans une étude publiée le 23 juin 
2023 dans Nature Communications Biology, des scientifiques ont utilisé des 
technologies novatrices pour comprendre l'activité des neurones du cortex visuel 
primaire en réponse à la présentation d’images reproduisant des situations 
d’incertitude. Sciences et Avenir s'est entretenu avec Laurent Perrinet, chercheur en 
neurosciences computationnelles dans l’équipe de l’Institut de Neurosciences de la 
Timone (CNRS / Aix-Marseille Université) et encadrant de thèse de Hugo Ladret, 
premier auteur de l’étude. 
Reproduire dans une expérience de neurosciences la complexité du monde dans lequel 
on vit, tout en pouvant analyser les résultats de manière fiable, est un véritable défi. 
Laurent Perrinet a proposé d’utiliser des images de synthèse conçues pour reproduire 
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un contexte visuel incertain. A l’instar des textures utilisées dans les jeux vidéo en 
deux dimensions, ces images représentent des motifs allongés, orientés plus ou moins 
dans la même direction. Quand tous les motifs présentent la même orientation, il est 
très facile de la deviner. En revanche, lorsque de nombreuses orientations sont 
mélangées, l’information visuelle est beaucoup moins claire. 
Ces textures permettent de reproduire les images naturelles auxquelles nous sommes 
confrontés. Tandis que nous arrivons parfois à très bien identifier un objet, d’autres 
éléments perçus nous paraissent plus flous, plus incertains. Dans l’utilisation des 
textures, le problème est le même : il y a tantôt des lignes dont l’orientation est 
facilement identifiable, et parfois il y a des points dispersés dont on peine à voir une 
organisation précise. 
L’utilisation de ces textures est novatrice. En effet, classiquement, les chercheurs en 
neurosciences utilisaient plutôt des formes assez isolées dans la stimulation des aires 
visuelles : un rectangle, un point, une ligne qui se déplace. "Le fait d’avoir des images 
aussi simples, c’est pratique pour faire des analyses. Mais ces formes isolées ne sont pas 
'écologiques'. Il faut alors trouver une autre façon de procéder pour reproduire notre 
monde plus complexe. D’autant plus que le cerveau est adapté à percevoir des images 
naturelles très riches", explique à Sciences et Avenir Laurent Perrinet. 
  

Le cerveau est fait pour percevoir à la fois des objets précis : leur forme, direction, 
orientation, contours, couleurs… Mais aussi pour comprendre des situations plus 
incertaines, afin d’interpréter le désordre et le chaos qui troublent nos anticipations. 
Les textures obtenues par images de synthèse sont une manière de reproduire les 
images naturelles auxquelles nous sommes confrontés. En partant d’une intuition 
théorique mathématique, l’équipe de Laurent Perrinet s’est tout d’abord demandé 
comment le cerveau peut laisser une place à l’incertitude. 

 

 

A. Exemple de textures présentées lors des expériences. Le caractère incertain des images 
est associé au nombre d’orientations mélangées dans une images exprimée en degré, que 
l’on peut représenter sur un diagramme. Plus la courbe du diagramme est resserrée, plus 
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les orientations sont similaires. Plus le diagramme est étalé horizontalement, plus il y a 
de motifs différents mélangés sur l’image. A gauche, les textures dont l’orientation est la 
plus facilement distinguable. A droite, les images les plus incertaines. 
 
B. Les textures peuvent représenter les images naturelles auxquelles nous sommes 
confrontés au quotidien. Par exemple, si on réalise un diagramme représentant les 
distributions de l'orientation de quatre régions sur une image naturelle (photo prise par 
Hugo Ladret), on observe qu’il y a des régions dont l’orientation des motifs est claire, et 
des régions plus floues.   
 
Crédit illustration : Hugo J. Ladret / Nature Communications Biology (2023) / l’Institut 
de Neurosciences de la Timone (CNRS et Aix-Marseille Université) 
 
Des neurones spécialisés dans l’interprétation de l’imprécision 
Les scientifiques ont enregistré l’activité de 249 neurones de chats anesthésiés. Ils ont 
observé la réponse des neurones dans l’aire visuelle primaire à la présentation 
d’images plus ou moins troubles. Ils ont observé qu’il y avait deux types de réponses 
neuronales à l’incertitude. 
Les neurones "vulnérables" qui ne répondent que pour une certaine orientation. Ils 
sont très sensibles et vulnérables aux grands degrés de flou. Et les neurones 
"résistants" qui répondent aux stimuli visuels malgré le manque de précisions de 
l’information visuelle. Même lorsqu'on présente aux animaux des textures qui ne sont 
pas bien définies, c’est-à-dire dont l’orientation n’est pas distinguable, ces neurones 
continuent de répondre. 
"Si on montre à une personne des textures qui figurent parmi les plus imprécises au sein 
de la gamme de texture, à partir de 30° d’imprécision, les personnes se trompent et ne 
trouvent pas l’orientation des lignes de la texture. Mais il y a tout de même des neurones 
qui répondent précisément !", détaille Laurent Perrinet. 
 
"Je te parie que dans le cerveau, il y a une représentation du flou" 
Les chercheurs ont donc voulu aller plus loin que l’observation de l'activité des 
neurones. Ils ont regardé si, à partir de cette activité, il était possible de reconstruire le 
type de texture présenté en premier lieu. Ils ont réalisé ce décryptage grâce à des 
processus d’apprentissage machine similaires à ceux utilisés dans le Deep 
Learning. "Tout est parti de discussions entre nous et d’un pari entre les scientifiques ‘'je 
te parie que dans le cerveau, il y a une représentation du flou'", raconte le chercheur. 
L'expérience est menée de sorte à comprendre l’encodage de l’information visuelle, à 
partir de l’activité des neurones, grâce à une étape de "décodage". Ainsi, on peut 
définir trois étapes :   

 L’encodage : l’information lumineuse causée par l’image est captée par les 
yeux. 

 Le codage : l'enregistrement de l’activité des neurones qui perçoivent cette 
information. 

 Le décodage : la traduction de l’activité neuronale via un programme 
de Machine Learning pour retrouver l’orientation des lignes sur l’image 
présentée à la première étape. 

A la bonne surprise des scientifiques, cette étape de décodage fonctionne 
particulièrement bien : le logiciel décodeur peut retrouver l’orientation des lignes de la 
texture présentée en premier lieu de manière robuste et très proche de la réalité. Par 
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ailleurs, lorsque l’image présentée était très brouillée, ils ont observé que le décodage 
est un peu moins exact et apparaît avec un court délai. Mais, malgré le flou, le décodage 
fonctionne tout de même étonnement bien. 
Les résultats confirment que la population de neurones de l’aire visuelle primaire peut 
non seulement retrouver l’orientation d’un objet, mais également interpréter si 
l’information est précise ou non. Le cerveau est capable de se représenter les stimuli 
visuels imprécis et de distinguer à quel point une information visuelle est certaine ou 
pas. "Pour un réseau de neurones, il est important de pouvoir décrypter à la fois la nature 
d’une information mais également sa précision, cela pour participer à la prise de 
décision. Le cerveau fonctionne sans relâche, avec des neurones qui travaillent en 
groupe pour échanger et intégrer un ensemble d’informations, ce qui peut prendre du 
temps avant de prendre une décision de manière consensuelle. D’où l’importance de 
l’incertitude pour donner plus ou moins de poids à certaines informations, pour faciliter 
la prise de décision", explique Laurent Perrinet. 
 
Le cerveau, une machine à prédire 
"Le cerveau ne devrait pas être considéré comme un ordinateur mais comme une 
machine à prédire. Un ensemble de cellules qui veulent notre bien et notre survie, en 
prenant des décisions avec un modèle probabiliste", illustre Laurent Perrinet. Selon lui, il 
serait erroné de faire l’analogie entre le fonctionnement cérébral et celui d’un 
ordinateur qui fonctionne de manière séquentielle. La théorie du "cerveau prédictif" 
propose que les cellules neuronales fonctionnent en continu et en groupes, et ce, pour 
intégrer la multiplicité des informations sensorielles perçues, afin de prendre une 
décision. Pour que cette décision soit prise de la manière la plus fluide possible, malgré 
l’imprécision liée à nos sens, il serait nécessaire que les neurones fassent de la 
prédiction. 
 
"On voit actuellement une révolution technologique dans le Machine Learning sur 
l’utilisation des réseaux profonds, ChatGPT etc... Ces technologies sont basées sur des 
réseaux de neurones qui permettent d’obtenir des performances extraordinaires, mais qui 
n’égaleront jamais celles du cerveau. Ce dernier consomme 5 à 20 Watts. Un 
GPU (Graphical Processing Unit, architecture alternative aux processeurs 
communément utilisés dans le Deep Learning, ndlr) actuel c’est 600 Watts, et celui qui 
a battu le champion du monde de Go c’est 20 Mégawatts !, poursuit le chercheur. C’est 
merveilleux qu’on puisse aujourd’hui utiliser ces intelligences de deep learning en 
santé ou pour plein d’autres activités. Mais, je pense qu’il faut garder en tête que ces 
technologies restent aujourd’hui très sensibles à des attaques. Cela ne semble pas être un 
problème si une technologie a pour simple tâche de distinguer un chat d’un chien. En 
revanche, cela peut être dangereux si on utilise des IA en imagerie médicale et qu’une 
variabilité dans les données reçues puisse influer sur la véracité du diagnostic. Si on 
voulait que les IA aient l’efficacité du cerveau, il faudrait inclure dans chaque nœud de ce 
réseau, en plus des valeurs, leurs précisions. Au lieu d’utiliser les réseaux actuels qui vont 
fonctionner de manière analogique, on pourrait mettre en place un fonctionnement 
probabiliste". Le chercheur souhaite donner une place à l'incertitude. Exactement 
comme le fait notre cerveau. 
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English translation:
How does our brain deal with uncertainty?
A team from CNRS and Aix-Marseille University has elucidated the neural mecha-

nisms that enable the perception of more or less precise visual stimuli. Here are the
explanations by Laurent Perrinet, a researcher in computational neuroscience.

Every day, we are confronted with complex visual environments and a range of
sensory stimuli to integrate before making a decision. Processing multiple pieces
of information in parallel enables our brain to adapt to a wide variety of situations.
However, the underlying process is still poorly understood. In a study published in
June 23 2023 in Nature Communications Biology, scientists have used innovative tech-
nologies to understand the activity of neurons in the primary visual cortex cortex in
response to the presentation of images reproducing situations of uncertainty. Sciences
et Avenir spoke to Laurent Perrinet, a computational neuroscientist computational
neuroscience researcher in the team at the Institut de Neurosciences de la Timone
(CNRS / Aix-Marseille University) and Hugo Ladret’s thesis supervisor, first author of
the study.

Reproducing the complexity of the world in which we live in a neuroscience experi-
ment, while still being able to analyze the results reliably, is a real challenge. Laurent
Perrinet has proposed the use of computer-generated images designed to reproduce
an uncertain visual context. Like the textures used in two-dimensional video games,
these images represent elongated patterns, oriented more or less in the same direc-
tion. When all the patterns have the same orientation, it’s easy to guess which is
their orientation. On the other hand, when many different orientations are present,
visual information is much less clear. These textures allow us to reproduce the natural
images we are confronted with. While we can sometimes identify an object very well,
other perceived elements appear more blurred and uncertain. When it comes to
using textures, the problem is the same: sometimes there are lines whose orientation
is easily identifiable, and sometimes there are scattered dots whose organization is
imprecise.

The use of these textures is innovative. Traditionally, neuroscience researchers have
used rather isolated shapes to stimulate visual areas: a rectangle, a dot, a moving line.
"The fact of having such simple images is useful for analysis. But these isolated shapes
are not ’ecological’. So we have to find another way of reproducing our more complex
world. Especially as the brain is adapted to perceiving very rich images," explains
Laurent Perrinet to Sciences et Avenir.

The brain is designed to perceive both precise objects: their shape, direction, ori-
entation, contours, colors... But also to understand more uncertain situations, in
order to interpret the disorder and chaos that confuse our anticipations. Computer-
generated textures are a way of reproducing the natural images we are confronted
with. Starting from a mathematical theoretical intuition, Laurent Perrinet’s team first
asked themselves how the brain can leave room for uncertainty.

Some neurons are specialized in uncertainty Scientists recorded the activity of 249
neurons in anesthetized cats. They observed the response of neurons in the primary
visual area to the presentation of more or less blurred images. They found that there
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were two types of neuronal response to uncertainty. Vulnerable" neurons respond
only to a certain orientation. They are highly sensitive and vulnerable to large degrees
of vagueness. And "resistant" neurons, which respond to visual stimuli despite the
lack of precision of the visual information. Even when animals are presented with
textures that are not well-defined, i.e. whose orientation is indistinguishable, these
neurons continue to respond. "If a person is shown textures that are among the most
imprecise within the texture range, from 30° of imprecision, people get confused and
can’t find the orientation of the texture lines. But there are still neurons that respond
precisely", explains Laurent Perrinet.

"I bet you that in the brain, there is a representation of the blur" The researchers
therefore wanted to go further than simply observing neuron activity. They looked to
see if, from this activity, it was possible to reconstruct the type of texture presented in
the first place. They achieved this deciphering through machine learning processes
similar to those used in Deep Learning. "It all started from discussions between us
and a bet between the scientists ”I bet you that in the brain, there is a representation
of the blur’", says the researcher.The experiment is conducted in such a way as to
understand the encoding of visual information, based on the activity of neurons,
thanks to a "decoding" stage.Three stages can be defined:

— Encoding: the luminous information caused by the image is captured by the
eyes.

— Coding: the recording by the neuronal activity that perceive this encoding.
— Decoding: the translation of the neuronal activity via a Machine Learning al-

gorithm, to retrieve the orientation of the lines on the images presented to the
eyes.

To the surprise of the scientists, this decoding step works extremely well: the decoding
software developed here can retrieve the orientation of the lines of the texture with
great performance. Furthermore, when the image was blurry, they observed that the
decoding was also more blurry, and appeared with a delay. The results confirm that
the population of the neurons in the primary visual cortex can not only retrieve the
orientation of an object, but also interpret whether that information is precise or not.
The brain is capable of representing imprecise visual stimuli, and distinguish whether
one information is precise or not. "For a neural network, it is important to decipher
both the nature and the precision of visual information, to be able to make a decision.
The brain works tirelessly, with neurons working together to exchange and integrate
packets of information, which can take time before reaching a consensus. Hence, the
importance of uncertainty to weigh more or less some information, to save time and
facilitate decision-making", explains Laurent Perrinet.

The brain, a predictive machine. "The brain should not be considered as a com-
puter, but as a prediction machine. A set of cells that want what’s best for us and
work for our survival, making decisions that can be understood using a probabilistic
model," illustrates Laurent Perrinet. In his view, it would be a mistake to draw an
analogy between brain function and that of a sequentially operating computer. The
theory of the "predictive brain" proposes that neuronal cells function continuously
and in groups, to integrate the multiplicity of sensory information perceived, in order

230



Bibliography – C. Appendix C: Public Disseminations

to make a decision. In order for this decision to be taken as smoothly as possible,
despite the imprecision associated with our senses, it would be necessary for neurons
to make predictions.

"We’re currently seeing a technological revolution in Machine Learning on the use
of deep networks, ChatGPT etc.... These technologies are based on neural networks
which enable extraordinary performance, but which are not yet equal to that of the
brain. The latter consumes 5 to 20 Watts. A current GPU (Graphical Processing Unit, an
alternative architecture to the processors commonly used in Deep Learning, editor’s
note) is 600 Watts, and the one that beat the Go world champion is 20 Megawatts!
continues the researcher. It’s marvellous that we can now use these deep learning
intelligences in healthcare or for so many other activities. But I think we have to bear
in mind that these technologies are still very sensitive to errors. This doesn’t seem to
be a problem if a technology’s task is simply to distinguish a cat from a dog. On the
other hand, it could be dangerous if AIs are used in medical imaging, where variability
in the data received could influence the veracity of the diagnosis. If we want AIs to
have the efficiency of the brain, we would have to include in each node of this network,
in addition to the values, their uncertainty. Instead of using current networks that
operate in an analogical way, we could implement a probabilistic operation". The
researcher wants to give uncertainty a place. Just as our brains do.
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C.3. Article 2 (Cerveau et Psycho)
The second public dissemination article was written by Laurent Perrinet and myself,

based on our article Hugo J Ladret, Nelson Cortes, Lamyae Ikan, et al. “Cortical recur-
rence supports resilience to sensory variance in the primary visual cortex”. In: Com-
munications Biology 6.1 (2023), p. 667, to be published in the French journal "Cerveau
et Psycho". Compared to the first dissemination article, this one dives (slightly) more
into the philosophical implications of processing uncertainty, as well as providing
more common sense into the notion of uncertainty in natural images.
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Cerveau qui devine, cerveau qui doute

À gauche : Antonello da Messina, Portrait of a Young Man, 1470. À droite : Leonardo Da
Vinci, Monna Lisa, 1503 - 1517

INTRO
Si l'on vous demande lequel de ces deux portraits donne le rendu le plus fidèle de
l'expression d'un visage, vous répondrez très probablement qu’il s’agit de l'iconique Monna
Lisa. Toutefois, si on vous demande maintenant lequel de ces deux visages dévoile de
manière la plus claire et précise son émotion, vous trouverez sans doute plus aisé de lire
les pensées rieuses rendues dans le portrait d’Antonello da Messina. Il semble donc que
même si vous percevez Monna Lisa plus “vivante”, elle ne vous en paraît pas plus
compréhensible pour autant. Intrigant, n'est-ce pas ? Bien qu’il émane de ces deux
personnages un même air de mystère, quelque chose confère à la Joconde une
singularité envoutante.
À la lumière d’une analyse scientifique moderne, nous comprenons désormais mieux
pourquoi le portrait de Monna Lisa paraît si authentique et si mystérieux. L’ambivalence
légendaire de l'œuvre permet au regard de la fameuse Joconde de suivre le spectateur
ainsi qu’à son sourire de paraître changer selon l'angle de vue. Da Vinci, fin observateur
du monde qui l’entourait, a magistralement utilisé des techniques réalistes pour donner vie
à une image qui, tout en étant statique, évoque une présence dynamique comparable à
celles que nous rencontrons dans nos vies quotidiennes. L'ambiguïté visuelle induite par
l’observation de la Joconde, un aspect central de son mystère, rappelle la manière dont la
lumière du soleil se fraye un chemin à travers un feuillage dans une forêt, jouant
subtilement avec les ombres pour créer une atmosphère à la fois vivante et énigmatique.
Cet énigmatique réalisme du portrait de Monna Lisa repose sur le talent de son créateur.
Da Vinci était un maître incontesté du sfumato, une technique artistique ardue qui permet
d’adoucir les contours dans une peinture, pour un effet plus naturel et réaliste. Il s’agit là
d’un bel exemple de son génie pluridisciplinaire, car da Vinci, avec seulement les
connaissances de son époque, semblait anticiper certaines avancées de la science
moderne sur les images naturelles. En effet, nous savons désormais que notre cerveau
est particulièrement efficace pour analyser sous toutes leurs coutures le monde visuel qui
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nous entoure. Un système d’aires cérébrales traite notamment les informations en
provenance de la rétine, en commençant par décomposer le monde qui nous entoure en
petits éléments de contours, orientés et subtils, minutieusement reproduits dans le
sfumato de la Joconde. Ces contours échafaudent en quelque sorte la charpente de notre
perception visuelle, à partir de laquelle notre cerveau esquisse une image du monde
lumineux qui nous entoure.

ANALYSE DES IMAGES NATURELLES

À gauche : décomposition de l’œil et du sourire de Monna Lisa en une série de contours
orientés. À droite : même opération, pour une photographie des Calanques de Marseille.

Tout comme le sourire énigmatique de Monna Lisa, les images naturelles sont
elles-mêmes imprégnées d'incertitude et de complexité. Prenons, par exemple, la
différence flagrante entre les décompositions des orientations qui forment les contours
d’un arbre et ceux qui dessinent un bateau telle qu’elle est représentée dans la figure
ci-dessus. Les incertitudes différentes de ces contours mesurent des degrés d'ambiguïté
fondamentalement distincts au sein d’une même image et illustrent parfaitement la variété
inhérente à notre environnement visuel.

Dans un contexte moderne, ce constat prend toute son importance. Imaginez-vous
être un piéton, en pleine ville, et vous apprêtant à traverser la rue à un passage sans feu.
Vous fixez du regard le conducteur de la voiture la plus proche, et essayez de lire sur son
visage ses intentions. Faut-il faire confiance à ses yeux qui vous ont fixés ? Ou bien
prendre en compte l'incertitude de sa voiture qui a ralenti sans tout à fait freiner ? Faut-il
attendre de la résolution de cette incertitude par un geste de sa main ? Autant de variables
visuelles à considérer pour réduire l'incertitude quant au fait que le conducteur va s'arrêter,
tout en espérant que l’air de ce dernier soit moins mystérieux que la Joconde.
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CERVEAU QUI DEVINE
Il ne fait donc aucun doute que l’incertitude est une question fondamentale en “psycho”.
Mais qu'en est-il du “cerveau” lui-même ? Une étude récente que nous avons menée à
l’Institut des Neurosciences de la Timone (Aix-Marseille Université; CNRS) en
collaboration avec l'Université de Montréal, apporte des éclaircissements sur ce sujet.

Dans notre recherche, nous avons utilisé une technique de génération d'images qui nous
permet de créer des textures contrôlant différents degrés d’incertitude, allant d'une
certitude absolue (les lignes parallèles à gauche) à l'ambiguïté du sfumato (la texture à
droite).

En observant des neurones impliqués dans la vision, et en particulier dans la
représentation de contours orientés, nous avons identifié que différents neurones n’ont
pas tous la même sensibilité à l’incertitude. Par conséquent, il est possible de “lire”
l’incertitude contenue dans une image, à partir de l’activité de populations neuronales.
Cette “lecture”, que nous avons faite grâce à l’Intelligence Artificielle, pourrait également
être faite par le cerveau en utilisant ses réseaux neuronaux spécialisés. Ceci expliquerait
pourquoi notre perception est si sensible à l’incertitude, et comment celle-ci pourrait nous
aider à adapter nos comportements. Malgré le fait que ces neurones sensibles à
l’incertitude ne représentent qu’un tiers de la population totale, ils jouent néanmoins un
rôle crucial en fournissant à l'ensemble du système neuronal des données qui améliorent
le traitement du signal, en y ajoutant une évaluation de sa probabilité et de son degré de
confiance.
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L’activité des neurones est sélective pour certaines orientations de contours, mais peut se
révéler soit vulnérable, soit résiliente face à l’augmentation de l’incertitude. En utilisant
l’intelligence artificielle, il est possible de déchiffrer le message neuronal, notamment celui
qui encode l’incertitude des orientations dans les neurones résilients. La représentation en
colonne montre comment l'IA décode l'orientation et l'incertitude d'une image, en
représentant des coordonnées polaires (angle et rayon) pour représenter les différentes
informations possibles.

Bien que cette découverte soit captivante, elle n'est guère surprenante. Le cerveau est en
effet maître dans l'art de naviguer à travers un océan d'informations fragmentées et
ambiguës pour forger, grâce à notre perception, une vision cohérente de la réalité. Nous
réussissons avec aisance à reconstituer des images même lorsqu'elles sont partiellement
voilées par des ombres ou des distorsions. Dans de rares cas, à l'instar du chef-d'œuvre
de da Vinci, nous nous trouvons confrontés à un véritable labyrinthe d'ambiguïtés où
plusieurs interprétations d'un stimulus sont possibles. Que privilégier alors ? Le sourire
énigmatique de la Joconde ou son regard pénétrant qui semble nous suivre ? L’incertitude
de ces indices est cruciale pour assembler les fragments de notre perception. Le cerveau,
en ce sens, agit comme un sculpteur, modelant notre réalité à partir d'hypothèses fondées
sur des probabilités, conformément à l'étymologie du terme "fiction" qui implique le
modelage ou le façonnage. D'autant plus que ce processus est dynamique et incorpore
diverses sources d'information (vision, proprioception, son, …) pour parvenir à une
perception unifiée. Cela s'applique même dans des situations complexes, comme le fait de
distinguer plusieurs voix dans le brouhaha d'un dîner.

Vers les représentations statistiques jusqu’à une représentation neuronale : les neurones
résilients (ici symbolisés en bleu), principalement connectés entre eux, s’opposent dans
leurs modes d’interactions par rapport aux neurones vulnérables (en rouge), qui eux se
connectent peu.
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Ce paradigme a des répercussions importantes pour comprendre divers substrats
neuropsychologiques. Des théories récentes confirmées par nos résultats suggèrent que
les neurones communiquent entre eux pour échanger des informations sur l'incertitude
d'une situation. Par exemple, des déséquilibres dans ce mécanisme d'intégration
pourraient expliquer certaines conditions comme dans la schizophrénie, où la perception
de la réalité peut être modifiée par une confiance réduite envers le monde externe, jugé
trop incertain. Inversement, le traitement privilégié de l'information sensorielle observé
dans le spectre des troubles autistiques pourrait être interprété par une balance différente
entre un esprit certain de ses perceptions dans un monde toujours empli d'incertitudes.

CERVEAU QUI DOUTE
Nos connaissances et nos incertitudes — qu'elles soient scientifiques, culturelles ou
autres — façonnent notre vie et nos sociétés à bien des égards : elles influencent nos
comportements d'achat, guident nos choix de vacances, et ont même un impact sur notre
appréhension d’enjeux aussi globaux que le changement climatique. Dans ce dernier
domaine, chacun de nous joue un rôle, souvent sans en prendre pleinement conscience.
Reconnaître les limites de notre savoir et admettre que nous ne détenons pas toutes les
réponses permet de mieux maîtriser les éléments du puzzle décisionnel dans lequel nous
nous engageons quotidiennement. Ainsi, prendre conscience des mécanismes de notre
cognition, qui s'appuie sur des approximations et des incertitudes plutôt que sur une
logique rigide, peut nous aider à faire des choix de société plus éclairés et plus humains.
Notre monde est de plus en plus influencé par des algorithmes d’intelligence artificielle qui
renforcent nos biais cognitifs et cloisonnent nos opinions en des bulles imperméables à
l'incertitude. Le passage de l'Homo Sapiens, convaincu de ses certitudes, à un Homo
Dubitans, doué d'un doute rationnel qui reflète son intelligence naturelle, apparaît non
seulement souhaitable, mais nécessaire pour faire face aux défis futurs de l'humanité
réconciliée avec le vivant.
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English translation:
A brain that guesses is a brain that doubts
Introduction
If you were asked which of these two portraits gives the most faithful rendering of a

facial expression, you would probably reply that it is the iconic Mona Lisa. However,
if you were now asked which of these two faces reveals emotion more clearly and
precisely, you would probably find it easier to read the laughing thoughts rendered
in Antonello da Messina’s portrait. It seems, then, that even if you perceive the Mona
Lisa as more "alive", it doesn’t make her any more comprehensible to you. Intriguing,
isn’t it? Although both figures emanate the same air of mystery, there is something
about the Mona Lisa that gives it a bewitching singularity.

In the light of modern scientific analysis, we now have a better understanding of
why the portrait of Mona Lisa appears so authentic and so mysterious. The work’s
legendary ambivalence allows the Mona Lisa’s gaze to follow the viewer, and her smile
to appear to change depending on the angle from which she is viewed. Da Vinci, a
keen observer of the world around him, masterfully used realistic techniques to bring
to life an image that, while static, evokes a dynamic presence comparable to those
we encounter in our everyday lives. The visual ambiguity induced by the observation
of the Mona Lisa, a central aspect of its mystery, is reminiscent of the way sunlight
finds its way through foliage in a forest, playing subtly with shadows to create an
atmosphere that is both lively and enigmatic.

The enigmatic realism of the portrait of the Mona Lisa is down to the talent of its
creator. Da Vinci was an undisputed master of sfumato, an arduous artistic technique
used to soften the contours of a painting for a more natural, realistic effect. This is a
fine example of his multidisciplinary genius, for da Vinci, with only the knowledge
of his time, seemed to anticipate certain advances in modern science on natural
images. Indeed, we now know that our brains are finely tuned to analyse the visual
world around us from every angle. In particular, a system of brain areas processes
the information coming from the retina, starting by breaking down the world around
us into small, oriented and subtle outline elements, meticulously reproduced in
the sfumato of the Mona Lisa. These contours form the framework of our visual
perception, from which our brain sketches an image of the luminous world around us.

Analysis of Natural Images
Like the enigmatic smile of the Mona Lisa, natural images are themselves imbued

with uncertainty and complexity. Take, for example, the glaring difference between
the decompositions of orientations that form the contours of a tree and those that
draw a boat, as depicted in the figure above. The different uncertainties of these
contours measure fundamentally distinct degrees of ambiguity and perfectly illustrate
the variety inherent in our visual environment.

In a modern context, this is all the more important. Imagine yourself as a pedestrian,
in the middle of a city, about to cross the road at a crossing without traffic lights. You
stare at the driver of the nearest car, trying to read his intentions on his face. Should
you trust his staring eyes? Or take into account the uncertainty of his car, which has
slowed down but not quite braked? Should you expect a hand gesture to resolve this
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uncertainty? So many visual variables to consider in order to reduce the uncertainty
as to whether the driver is going to stop, while hoping that his face is less mysterious
than the Mona Lisa.

Brain that guesses
So there’s no doubt that uncertainty is a fundamental issue in psychology. But what

about the ’brain’ itself? A recent study we conducted at the Institut des Neurosciences
de la Timone (Aix-Marseille University; CNRS) in collaboration with the University of
Montreal sheds some light on this subject.

By observing neurons involved in vision, and in particular in the representation
of oriented contours, we have identified that different neurons do not all have the
same sensitivity to uncertainty. As a result, it is possible to ’read’ the uncertainty
contained in an image from the activity of neuronal populations. This ’reading’, which
we have done with Artificial Intelligence, could also be done by the brain using its
specialized neural networks. This would explain why our perception is so sensitive to
uncertainty, and how uncertainty could control our behaviour. Despite the fact that
these neurons sensitive to uncertainty only represent a third of the total population,
they nevertheless play a crucial role in providing the entire neural system with data
that improves signal processing, by adding an assessment of its probability and degree
of confidence.

Although this discovery is captivating, it is hardly surprising. The brain has mastered
the art of navigating through an ocean of fragmented and ambiguous information to
forge, through our perception, a coherent vision of reality. We can easily reconstruct
images even when they are partially obscured by shadows or distortions. In rare cases,
such as da Vinci’s masterpiece, we find ourselves faced with a veritable labyrinth of
ambiguities where several interpretations of a stimulus are possible. So which should
we choose? The Mona Lisa’s enigmatic smile or her penetrating gaze that seems to
follow us? The uncertainty of these clues is crucial in piecing together the fragments
of our perception. The brain, in this sense, acts like a sculptor, modelling our reality
from hypotheses based on probabilities, in accordance with the etymology of the term
"fiction", which implies modelling or shaping. All the more so because this process
is dynamic and incorporates various sources of information (vision, proprioception,
sound, etc.) to achieve a unified perception. This applies even in complex situations,
such as distinguishing several voices in the din of a dinner party.

This paradigm has important implications for understanding various neuropsy-
chological substrates. Recent theories confirmed by our results suggest that neurons
communicate with each other to exchange information about the uncertainty of a
situation. For example, different balances in this integration mechanism could explain
certain conditions such as schizophrenia, where the perception of reality can be mod-
ified by reduced beliefs about the external world, which is considered too uncertain.
Conversely, the privileged processing of sensory information observed in the autistic
spectrum could be interpreted by a different balance between a mind that is certain of
its perceptions in a world that is still full of uncertainties.

Brain that doubts
Our knowledge and uncertainties - be they scientific, cultural or other - shape our
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lives and our societies in many ways: they influence our purchasing behaviour, guide
our holiday choices, and even have an impact on issues as global as climate change.
In this last area, each of us plays a role, often without fully realizing it. Acknowledging
the limits of our knowledge and admitting that we don’t have all the answers means we
can better weigh up the pieces of the decision-making jigsaw in which we engage on a
daily basis. In this way, becoming aware of the mechanisms of our cognition, which
is based on approximations and uncertainties rather than on rigid, infallible logic,
can help us to make more enlightened and more humane choices for society. Our
world is gradually being governed more and more by artificial intelligence algorithms
that reinforce our cognitive biases and compartmentalize our opinions into bubbles
impervious to uncertainty. The transition from Homo Sapiens, convinced of his
certainties, to Homo Dubitans, gifted with the rational doubt that reflects his natural
intelligence, seems not only desirable but necessary if we are to meet the future
challenges facing humanity.
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