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Résumé 

La fibrillation auriculaire (FA) est l'arythmie cardiaque la plus répandue dans le monde et 

est associée à une hausse de morbidité et une mortalité importante. Des progrès substantiels dans 

notre compréhension de l'étiologie de la maladie ont été réalisés au cours des deux dernières 

décennies, conduisant à une amélioration du traitement et de la gestion de la maladie. Cependant, 

le fardeau de la FA continue d'augmenter. De plus, les mécanismes moléculaires et cellulaires sous-

jacents à l’initiation et à la progression de la FA restent incomplètement compris. 

Dans cette thèse, mon objectif était de caractériser de nouveaux déterminants moléculaires 

et cellulaires de la FA en utilisant une approche multiomique. J'ai d'abord utilisé le séquençage de 

l'ARN (RNAseq) pour l'ARN total et les micro-ARN (miRNA) afin de dévaluer l'effet de la FA 

sur l’expression génique dans deux modèles canins de FA. Ces résultats ont impliqué le locus 

orthologue humain 14q32 et son lien potentiel avec la signalisation du glutamate. Dans le chapitre 

trois, j'ai démontré les lacunes actuelles des modèles statistiques utilisés pour prédire l'effet 

régulateur des régions de chromatine ouvertes sur l'expression des gènes dans des essais 

multiomiques à noyau unique et suggéré des alternatives montrant un meilleur pouvoir prédictif. 

Dans le chapitre quatre, j'ai utilisé des analyses par locus quantitatifs d'expression (eQTL) pour 

caractériser les variants génétiques communs associés à la FA. Grâce à des analyses de 

colocalisation, une cartographie fine et un multiome à noyau unique, j'ai justifié mécaniquement 

l’effet de variants non-codants et fait la priorisation de gènes candidats, notamment GNB4, MAPT 

et LINC01629. Enfin, dans le chapitre cinq, j'ai fourni une caractérisation approfondie des gènes 

persistants de FA différentiellement exprimés au niveau cellulaire et identifié les facteurs de 

transcription potentiels impliqués dans leur régulation. 

En résumé, l’utilisation d’une approche multiomique a permis de découvrir de nombreuses 

nouvelles voies cellulaires et génétiques modifiées au cours de la FA ainsi que des gènes candidats 

impliqués dans le risque génétique de la FA. Ces résultats fournissent des informations et 

ressources importantes pour concevoir de nouvelles stratégies thérapeutiques, impliquant à la fois 

des cibles génétiques et nouvelles voies cellulaires pour lutter contre cette maladie cardiaque 

commune. 
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Abstract 

Atrial fibrillation (AF) is the most prevalent cardiac arrhythmia worldwide and is 

associated with important morbidity and mortality. Substantial advancement in our understanding 

of the disease etiology have been made in the past two decades leading to improved treatment and 

management of the disease, however, AF burden continues to increase. Moreover, the molecular 

and cellular mechanisms underlying AF initiation and progression remain incompletely 

understood.   

In this thesis I aimed to characterise novel molecular and cellular determinants of AF using 

a multiomic approache. In chapter two, I used RNA sequencing (RNAseq) for total RNA and 

micro-RNAs (miRNA) to decipher the effect of AF in two canine models, which implicated the 

orthologue human locus 14q32 and its potential role in glutamate signaling regulation. In chapter 

three, I demonstrated current shortcomings of statistical models used to predict the regulatory 

effect of open chromatin regions on gene expression in single nuclei multiomic assays and 

suggested alternatives showing better predictive power. In chapter four, I used expression 

quantitative loci (eQTL) to characterize AF associated common genetic variants. Through co-

localization analyses, fine-mapping and single nuclei multiome, I mechanistically substantiated 

non-coding variants and prioritized strong candidate genes including GNB4, MAPT and 

LINC01629. Finally, in chapter five, I provided a deep characterization of persistent AF 

differentially expressed genes (DEGs) at the cellular level and identified potential transcription 

factors involved in their regulation.  

In summary, using a multiomic approach unraveled numerous new cellular and gene 

pathways altered during AF and candidate genes implicated in AF genetic risk. These findings 

provide important insights and data resources to design novel therapeutic strategies, targeting both 

genetically derived candidate genes and cellular pathways to address this pervasive cardiac 

disease.  

Keywords: Atrial fibrillation, bioinformatics, multiomics, genomics, human genetics, 

RNAseq, ATACseq, single cell technology. 
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Chapter 1: Introduction 

Atrial fibrillation (AF) is the most common cardiac arrhythmia, affecting one in three to 

one in five individuals in their lifetime1. Its prevalence is expected to double by 20501. It increases 

the risk of death by about 2-fold, but its toll is perhaps more significantly felt by its impairment on 

quality of life, affecting more than 60% of AF patients1. Tremendous progress in treatment and 

management have been achieved in the last two decades, but halting the progression of AF remains 

a challenge. Furthermore, current options often are invasive, poorly tolerated or not indicated, 

which compresses the number of healthy years in late life.  

While the disease’s emergence in late life underlines the importance of its environmental 

component, AF also has an important genetic component. To date, hundreds of genetic loci have 

been associated with AF. For some, a gene can confidently be prioritized as the causal association, 

but for the majority, causality remains to be established. A comprehensive understanding of the 

genomic etiology of AF may provide the tools to find novel, more targeted, therapeutics. The 

expanding omic toolkit can provide orthogonal lines of evidence to narrow disease causing genes. 

Alternatively, these methods can also help understand non-genetically driven mechanisms. The 

combination of these methods applied to AF models and humans is the basis of the efforts outlined 

in this thesis. 

 

 

 

 

 

 



24 

 

1.1 Atrial Fibrillation: Advances and Ongoing Challenges 

1.1.1 AF comorbidities and epidemiology 

The European society of cardiology defines AF as “a supraventricular tachyarrhythmia 

with uncoordinated atrial electrical activation and consequently ineffective atrial contraction”. 

Ineffective atrial contractions sometimes reaching up to 600/minute can occur without symptoms 

or can produce debilitating consequences such as chest pain, light-headedness, fatigue, or shortness 

of breath. Stagnating blood in the atria facilitates blood clothing and increases the risk of stroke. 

AF patients have an increased risk of stroke of about five-fold2. Together, this leads to AF related 

healthcare costs estimated at $28 billion/year in the US in 20203. Despite important progress made 

in AF management, treatment and basic knowledge, AF burden is quickly increasing. Between 

1990 and 2010, the number of disability adjusted life-years from AF increased by ~19% and 

mortality by 2-fold4. A better understanding of the mechanisms of AF is imperative to develop 

new, more specific pharmacological therapies. 

1.1.1.1 Prevalence and risk 

In the United States (US), 1 in 3 Caucasians and 1 in 5 African Americans will suffer from 

AF during their lifetime5. Notably, African Americans, Hispanics and Asians appear to have 

similar AF risk, while Europeans’ risk is markedly higher6. AF is most correlated with age (Fig. 

1), with less than 0.5% of individuals affected before age 50, about 1% at age 60, and over 10% at 

age 807. Among obese individuals, the risk of developing AF is 50% higher8. In an era where 

populations are both aging and getting more obese (obesity rate increasing from 30.5% in 1999-

2000 to 37.7% in 2013-2014 in the US9), new strategies to reduce the burden of AF are necessary. 

Other important risk factors for AF are hypertension, smoking, having other cardiovascular 

diseases (CVD), being diabetic, male sex, and having a genetic predisposition. Many of these risk 

factors are modifiable. The risk of complications from CVD in general can be significantly altered 

based on the 7 behaviors and health factors (blood lipids, smoking, blood pressure, blood glucose 

levels, body mass index, exercise, and diet) of the American Heart Association (AHA)5.  
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Figure 1. Global AF prevalence. 

(A) World map of AF prevalence. (B) Symbolic representation of AF lifetime risk in Europeans. (C) Male/Female cumulative 

incidence curves by age group. (D) Projected increase in AF to year 2060 stratified by age groups. (E) Lifetime cumulative risk of 

AF by age, stratified by risk factor. AF = atrial fibrillation; AFL = atrial flutter; BP = blood pressure; CI = confidence interval; EU 

= European Union. aSmoking, alcohol consumption, body mass index, BP, diabetes mellitus (type 1 or 2), and history of myocardial 

infarction or heart failure. bRisk profile: optimal − all risk factors are negative or within the normal range; borderline − no elevated 

risk factors but >1 borderline risk factor; elevated − >1 elevated risk factor. Reproduced from the 2020 ESC guidelines1. 

 

1.1.2 The cardiac conduction system  

The conduction system of the heart is composed of specialized structures with distinct 

properties. A normal heartbeat begins with the depolarization of the pacemaker cells at the sinus 

node (SN) (Fig. 2), setting the sinus rhythm. The depolarization of adjacent cells is induced 

through the flow of ions in shared gap junctions. The conduction of the signal initiated at the SN 

to the cardiomyocytes (CM) of the atria happens from top to bottom through the Bachmann bundle 

in the left atrium (LA) and through the internodal pathway in the right atrium (RA), allowing the 

synchronous contraction of the atria and the expulsion of blood into the ventricles. The presence 

of a fibrous membrane between the atria and the ventricles normally limits the transmission of the 

impulse between the upper and lower chambers of the heart. To reach the ventricles, the impulse 

passes through the atrioventricular node (AVN) and then spreads through the His bundle, the 

bundle branches and finally the Purkinje fibers in the ventricles, producing a contraction that ejects 

the blood out of the ventricles.  
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Figure 2. The conduction system of the heart. 

Created with BioRender. 

1.1.2.1 Cellular properties 

Both the SN and AVN have spontaneous depolarization properties (automaticity). This is 

caused by the presence of leaky channels (hyperpolarization-activated cyclic nucleotide–gated; 

HCN channels), which facilitates the passive inflow of the positive ions Na+, called the “funny” 

current (If). The SN has a faster intrinsic rate, which normally dictates the rate of depolarization at 

the AVN, but in the event of a disconnect between the two, the AVN can initiate depolarization. 

To allow the atria to completely empty before the contraction of the ventricles, the AVN also slows 

down the conduction of action potentials10. This is achieved through the presence of fewer gap 

junctions between cells. The other structures act as action potential highways, with different 

conduction speeds generally proportional to the size of their cells and number of gap junctions 

connecting them. For instance, the Purkinji cells, the largest cells of this system, have the fastest 

conduction rate at ~4 m/sec compared to ~1m/sec in the Bachmann bundle and internodal pathway 

and 0.3 m/sec in the atrial muscle10. Lastly, while the cells of the conduction system are considered 

CM, they do not possess contractile properties, unlike myocardial cells.  

1.1.2.2 Cardiac action potentials 

Cardiac contractions are modulated by the ion flow of CM with distinct patterns in nodal 

cells, atrial and ventricular myocardial cells (Fig. 3A). The main ion actors are K+, Na+ and Ca2+. 

In the initial polarized state (resting phase or phase 4), CM are positively charged on their outer 

surface ([Ca2+] and [Na+] high) and negatively on their cytoplasmic face ([K+] high). This ion 

gradient is maintained by active transport of ion channels. To the exception of the pacemaker, 

change in voltage potential initiates the action potential. In the SN, this process is triggered by If.  

Elsewhere, the depolarization from a surrounding cell brings the membrane potential to a threshold 

allowing the opening of the fast gated Na+ channels, followed by slow L-type Ca2+ channels. The 

inward currents of Na+ (INa) and Ca2+ (ICaL) are responsible for the sharp depolarization (phase 0). 

Around peak depolarization, Na+ channels close and K+ channels open, releasing K+ outside the 

cell (transient outward currents; Ito). This results in a mild repolarization (early repolarization or 

phase 1). The plateau phase follows (phase 2), where the membrane potential remains relatively 

stable due to ICaL neutralizing the potassium ionic currents (IK). More Ca2+ is then released from 
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the sarcoplasmic reticulum into the cytoplasm by ryanodine receptors (RyR). A process known as 

calcium-induced calcium release. The high cytoplasmic [Ca2+] allows the contraction of 

myofilaments, which produce the heart’s contractions (Fig. 3B). Repolarization follows (phase 3), 

with the activation of the delayed rectifier K+ channels increasing further the outflow of K+ ions 

(IKr, IKs and IKur). Finally, the original ionic concentrations are reestablished by the Na+/K+ ATPase 

pump and Na+/Ca2+ exchanger11. Importantly, during repolarization, CM are insensitive to a new 

signal, corresponding to the refractory period. Differences in isoforms and concentrations of these 

channels in nodal cells, atrial CM and ventricular CM lead to their differences in 

electrophysiologic properties (Fig. 3A).  
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Figure 3. Cardiac action potentials.  

A) From JD Lane et al. 201712. Sinus node, atrial and ventricular cardiomyocytes action potentials. Colored lines indicate the phase 

of the action potential that the current participates in. Inward currents are in red, outward currents in blue. Currents - INa, inward 

Na+; ICaT, T-type Ca2+; ICaL, L- type Ca2+; Ito,f, fast transient outward; Ito,s, slow transient outward; IKur, ultra-rapid K+ delayed 

rectifier; IKs, slow K+ delayed rectifier; IKr, rapid K+ delayed rectifier; IK1, inward rectifier; IKATP, ADP-activated K+ channel; IKACh, 

muscarinic-gated K+ channel; If, “funny” current; INCX, Na+/Ca2+ exchange current. B) From DM Bers et al. 200213. Ion exchanges 
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leading to depolarization and contraction of cardiomyocytes. SR; sarcoplamic reticulum, AP; potential action, NCX; Na+/Ca2+ 

exchanger, PLB; phospholamban, ATP; ATPase. 

1.1.2.3 Autonomic system regulation 

Cardiac demand varies broadly with the activity of daily living, which requires the precise 

modulation of its contraction rate and force. Without extrinsic inputs, the adult human heart beats 

at approximately 100 time per minute (bpm)14, in contrasts to the normal heart rate of 

approximately 70 bpm. This regulation occurs in part through a constant battle between the 

antagonistic sympathetic (“fight or flight”) and parasympathetic (“rest and digest”) systems. Other 

determinants such as thyroid hormones and lifestyle factors will be discussed in the altered 

automaticity section. 

The heart is innervated by several sympathetic autonomic extrinsic nerves from the cervical 

and upper thoracic spine and a single parasympathetic nerve (vagus nerve) originating from the 

brainstem. Historically, parasympathetic innervations were thought to be mostly limited to the SN 

and AVN, as opposed to the sympathetic innervation which also reaches the atria and ventricles. 

A more recent consensus suggests that parasympathetic innervation also occurs in the atria and 

ventricles15,16. Extrinsic stimuli detected by the central nervous system can then trigger the release 

of acetylcholine (ACh) and norepinephrine (NE), acting directly on pacemaker cells and CM 

polarization and contractility. For instance, physical activity increases sympathetic activity and 

NE release through afferent signaling by the mechanoreceptors, chemoreceptors, baroreceptors, 

and thermoreceptors. The downstream molecular cascade of NE is mediated by the beta-adrenergic 

receptors, which results in the phosphorylation of L-type calcium channels, stimulating the inflow 

of calcium, increasing the depolarization rate and effectively decreasing the action potential 

duration (APD). Higher [Ca2+] also enables more actin-myosin cross-bridges in myofilaments, 

subsequently enhancing the force of contraction. Conversely, at rest, when cardiac demand is low, 

ACh released from parasympathetic nerves results in the inhibition of the pacemaker If through 

the activation of the muscarinic receptor 2 (M2), increasing the APD. In turn, this decreases the 

heart rate17-19.  

Dysfunctions of the systems overviewed above can lead to irregular cardiac contractions, 

called arrhythmias. The consequences of these heart rate and rhythm irregularities can range from 



31 

 

benign to life-threatening. In the next section, I'll briefly discuss the different mechanisms leading 

to arrhythmias, their causes and their impact on heart function. 

1.1.3 Mechanisms of arrhythmias 

Arrhythmias can be classified by rate, location, duration, and mechanism of action. 

Arrhythmias causing abnormally fast rates are called tachyarrhythmias (resting heart rate > 100 

bpm) and those with abnormally slow rates are called bradyarrhythmia (resting heart rate < 60 

bpm). Classification by localization generally partitions the heart in two, with the supraventricular 

arrythmias designating all arrhythmias above the ventricles (including the AVN), and ventricular 

arrhythmias. Classifications by duration are more useful for AF and will be detailed in its own 

section (see section 1.1.4). As for their mechanisms, three broad categories are generally described 

(Fig. 4-5); altered automaticity, triggered activity, and re-entry (altered automaticity and triggered 

activity are sometimes jointly referred as “ectopic activities”)20-23. The following sub-sections will 

detail these mechanisms and put them in context with the most important arrhythmias. 
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Figure 4. Mechanisms of arrhythmias.  

A) Action potential of a ventricular cell abnormal automaticity shows a comparable phase 4 slow diastolic depolarization to 

sinoatrial cells. B) Normal action potential patterns (black) and abnormal afterdepolarizations patterns (red). On the right panel, 

the dashed line shows a triggered activity. Adapted from Ono, K et al. 202222. ICa; Ca2+ current. 

1.1.3.1 Altered automaticity 

As mentioned above, automaticity can be physiologically altered. For instance, in 

endurance athletes, resting heart rates below 60 bpm are frequent. In these individuals, the activity 

of the vagus nerve is increased (referred to as vagal tone). The prevailing hypothesis with regards 

to this phenomenon has been an afferent signal from baroreceptors, but studies in animal models 

also suggest that SN cells adapt to this stimulus by repressing If through the expression of the SN 

dominant form of HCNs, HCN424. Various degrees of automaticity-driven rhythm patterns 

synchronized with normal breathing are also observed, called respiratory sinus arrhythmia. These 

are generally symptomless.  
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Non-physiologic factors can also induce abnormal impulses that may emerge from a latent 

pacemaker or from cells without automaticity properties under normal circumstances (Fig. 4A). 

Latent pacemakers at the AVN or His bundle, are called junctional rhythms. Some foci in the atria 

outside of the cardiac conduction system also possess automaticity, such as cells around the 

pulmonary veins, the mitral and tricuspid valves and the inferior vena cava25. Abnormal blood 

volume, electrolytes levels and metabolic activity can all trigger tachyarrhythmia or 

bradyarrhythmia at both ends of their spectrum. Perhaps most critically, potassium levels above 6 

mmol/L (hyperkalemia) or below 3 mmol/L (hypokalemia) directly affect the cellular resting 

membrane potential, which can potentially be lethal. Dyskalemia can also alter the function of 

potassium channels, causing a delay or accelerating repolarization26. This, in turn, may allow the 

emergence of triggered activities (see below). Similarly, hyperthyroidism and hypothyroidism can 

also cause tachycardia and bradycardia respectively. The thyroid effector hormone 

triiodothyronine (T3) can cause direct changes in ion homeostasis through the beta-adrenergic 

receptors and the Na+/K+ ATPase27 but also changes in gene expression encoding proteins involved 

in myofilaments, adrenergic receptors ion pumps and ion channels28.  

1.1.3.2 Triggered activity 

Positive fluctuations of the membrane potential occurring between beats are called 

afterdepolarizations (Fig. 4B). A triggered activity occurs when an afterdepolarization is strong 

enough to initiate a new action potential. Early afterdepolarizations (EAD) occur in phases 2 or 3 

of the action potential cycle, while delayed afterdepolarizations (DAD) occur in phase 4. Together, 

DADs and EADs triggered activities depend on the activation of INa. 

Because the membrane potential is relatively neutral during the plateau phase, it is more 

sensitive to small current alterations, making phase 2 EADs more frequent than phase 3 EADs. 

While less frequent, phase 3 EADs occur later and are more likely to propagate to non-refractory 

CM. Long QT syndrome is characterized by a longer APD in ventricular CM. EADs in these 

patients are thought to be the most common cause of torsades de pointes29. This can lead to an 

often-fatal arrhythmia, ventricular fibrillation, characterized by irregular heart rate preventing 

systemic circulation. Other factors such as hypokalemia, heart failure, bradycardia and medication 

can also increase APD and the likelihood of EADs20,22,26. The molecular basis for EADs is 
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generally associated with abnormally elevated inward currents, such as ICa and INCX, or decreased 

outward currents (IK) during the plateau phase or the repolarization phase20,29,30.  

DADs are generally associated with abnormally high [Ca2+] in the sarcoplasmic reticulum, 

referred to as calcium overload. Calcium overload has been associated with hypokalemia, 

hypertrophy and heart failure31-33. Sudden outflow of Ca2+ in the cytoplasm can activate the INCX, 

exporting one Ca2+ ion for three Na+ imported ions, thus increasing membrane potential. If 

threshold is reached, an action potential is triggered. Multiple lines of evidence implicate the 

cardiac RyR isoform RyR2 as likely cause for this release, either through genetic mutations or 

upstream beta-adrenergic signalling34. Subthreshold DADs may also predispose to re-entry35 

(discussed in the next section). DADs are thought to be a cause for ventricular arrhythmias and 

AF.  

1.1.3.3 Re-entry 

A re-entry occurs when non-refractory cells are depolarized by one or multiple self-

sustaining circulating currents that are independent of automaticity. These circuits can be 

anatomical (also called macro-re-entry) or functional (also called micro-re-entry). Because re-

entry cannot propagate to refractory cells, it is dependent on the presence of slower, suitably long 

conduction pathways or the presence of a shorter refractory period. Importantly, re-entry usually 

occurs in conjunction with other mechanisms, such as triggered activities.  

 Anatomical circuits 

Anatomical circuits (Fig. 5A) can be congenital, such as the Wolff-Parkinson-White 

syndrome. This condition is characterized by the presence of an accessory pathway linking an 

atrium to the ventricles. Under normal circumstances, this condition is asymptomatic because the 

action potential is synchronously descending (anterograde) in the septum and in the ventricular 

wall through the accessory pathway, dying off in the ventricles. Concurrently, if a block or path of 

resistance prevents the action potential to reach the accessory pathway before the impulse through 

the AVN reaches it, a retrograde conduction into the atrium can occur and cause a self-sustaining 

re-entrant circuit (Fig. 5A), resulting in atrioventricular re-entrant tachycardia. The AVN is also 

amenable to re-entry when a path of resistance is present (slow vs fast pathways), resulting in rapid 

impulses from the AVN and i.e., atrioventricular re-entrant nodal tachycardia36. Anatomical re-

entry can also occur within the atria, causing atrial flutter37.  
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Figure 5. Anatomical and functional re-entry mechanisms. 

A) Wolff-Parkinson-White syndrome example of anatomical retrograde re-entry around an anatomical obstacle. Created with 

BioRender.  B-C) Schematic representation of functional re-entry, from SV Pandit et al.38. B) Leading circle theory with centripetal 

forces pointing inwards toward a refractory center. C) Rotor model showing a refractory core from which a rotating depolarizing 

wave with increasing velocity emerges.  

 Functional circuits 

Functional re-entry does not depend on the presence of specific anatomical structures, but 

instead, relies on the heterogeneous electrophysiologic properties of the substrate. Furthermore, 

micro-circuits are not necessarily fixed and can trigger the emergence of multiple competing 

micro-circuits, which are more likely to cause fibrillation. Many models of micro-re-entry have 

been proposed over the years such as the leading circle, anisotropic re-entry, the rotor and 

others21,39.  

The first attempt to explain functional re-entry was posited by Allessie et al. in 197640. 

Studying re-entry in a rabbit model without anatomical block, they formulated the leading circle 

model (Fig. 5B). Their model allows the theoretical formation of smaller circuits by removing the 

necessity of an excitable gap between the wavefront and the tail of the circuit. Instead, they 

proposed that the tail would be partially refractory. A permanently refractory core was also 
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proposed, resulting from the constant centripetal impulses from the wavefront. Today, rotors are a 

preferred model (discussed below). 

The consideration of cardiac fiber orientation and its implications in conduction velocity is 

a more recent development. Cardiomyocytes are generally shaped as long cylinders with higher 

concentrations of gap junctions in the intercalated disks connecting the shorter faces of 

neighboring CMs. The cardiac muscle is anisotropic, given that an action potential is conducted 

with greater velocity longitudinally than transversally to cardiac fibers. If a longitudinal path is 

slowed or blocked long enough for transversal fibers to end their refractory period, a slower 

transversal current can cause re-entry. Alterations in cell shape and sizes can contribute to increase 

anisotropy41. Fibrosis, a frequent cardiac remodeling mechanism, may also further increase the 

transvers vs longitudinal conduction velocity difference and gap junction lateralization (re-

localization to the longitudinal face) or dysregulation42. Therefore, conditions altering those 

properties like ischemia and heart failure are though to contribute to anisotropic re-entry and may 

promote arrhythmias41,43.  

The different layers of the heart have different action potential patterns due to variations in 

ion channels concentrations (most notably affecting IK). Decreasing APD is observed in cardiac 

layers in the following order myocardium, endocardium, and epicardium. Moreover, the 

epicardium is prone to heterogeneous action potentials due to the presence of a strong Ito, which 

in some cases inhibits ICaL, drastically reducing the APD44. In Brugada syndrome and myocardial 

ischemia, the endo to epicardium APD difference is further exacerbated, increasing the likelihood 

of re-entry due to endo-epicardial asynchrony, potentially leading to AF and ventricular 

fibrillation45. 

While the leading circle model was useful to explain re-entry in the absence of anatomical 

obstacles, today the rotor model is favored due its closer agreement with cardiac mapping studies 

and mathematical models46. Rotors (or spiral waves) have hurricane like features (Fig. 5C). At 

their center, a core of hyperpolarized cells remains unexcited despite frequent subthreshold action 

potential flickering. From the wavefront inwards, a decreasing velocity gradient is formed because 

of a progressive “dilution” of the depolarizing source necessary to trigger an increasing number of 

excitable connected cells. At the core, it reaches a critical point called phase singularity, where the 

stimulus becomes insufficient to trigger an action potential. Rotors can form when a current wave 
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encounters a pocket of refractory cells (e.g., from a triggered activity) bending the wave and 

creating a curved wavefront. With enough curvature, the wave begins to rotate around a central 

core, forming a rotor. Rotors can be fixed or drifting. Encountering obstacles, they can break into 

multiple rotors and lead to fibrillation. Rotors are thought to be involved in many arrhythmias such 

as ventricular tachycardia, ventricular fibrillation, and AF20.  

1.1.4 Molecular basis of AF pathophysiology  

AF is a progressive disease where both frequency and duration of event tend to increase 

over time, a result of cardiac tissue remodeling. The European society of cardiology (ESC) 2020 

AF classification based on progression suggests 5 types of AF; 1-first diagnosis, 2-paroxysmal 

(where the normal rhythm is regained without medical intervention within 7 days), 3-persistent 

(sustained AF during >7 days), 4-long-standing persistent (>12 months with a control strategy) 

and 5-permanent (an accepted state when the risks of interventions are considered greater than the 

benefits of cardioversion)1. Previous nomenclature used chronic AF encompassing persistent and 

long-standing persistent AF. For the purpose of describing the disease progression, I will mostly 

use paroxysmal and persistent AF to distinguish remodeling mechanisms occurring under transient 

vs sustained AF respectively.  

The first theories of AF mechanisms were established in the beginning of the 20th century47. 

Remarkably, these theories still hold their ground today39. The mother wave, multiple wavelets 

and trigger focus theories all have shown to have some basis for AF (Fig. 6). Refinements of these 

concepts are now the subject of debates. The etiology of AF remains incomplete and may differ 

across individuals. Evidence for both ectopic activities and re-entry have been reported36. Located 

at the back of the LA, the pulmonary veins (PV) have been a recognized as important foci of AF 

since 199748. They are now prioritized in most ablation procedures, but have lower success rates 

as AF progresses49. The nature of re-entry can be caused by a single, fixed circuit or by an array 

of drifting circuits. Rotors have taken the center stage as the potential source of AF propagation in 

the past few decades but results of clinical trial investigating the effect of their ablation remains 

mixed50-52. Others argue for the epicardial to endocardial conduction asynchrony to be the major 

source of re-entry53. Regardless of these mechanistic uncertainties, an amenable substrate is 

required for their emergence, which is generated through different types of remodeling and 

accelerated by risk factors. Identifying the molecular drivers of remodeling may empower the 
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development of more targeted pharmacological therapies and tailored management. On this front, 

significant advancements have been made in the past two decades. Electrical remodeling has long 

been a suspected driver of AF, but more recent body of work also suggest a role for fibrosis, 

proteostasis, mitochondrial function and inflammation. The following subsections discuss the 

main molecular bases of these remodeling events. 

 

 

Figure 6. Classical and modern AF mechanisms. 

Cartoon representations of the atria and mechanisms of AF, with the action potential propagation depicted with black arrows and 

re-entrant circuits in yellow arrows. Adapted from S Nattel et al. 201739. 

1.1.4.1 Electrical remodeling 

The role of electrical remodeling in AF has been extensively studied, but most knowledge 

is based on observations made in persistent AF. The high success rates of PV ablations in 

paroxysmal AF clearly point to their important contribution at this stage, but recurrences suggest 

other factors are involved. For persistent AF, poorer outcomes suggest a greater importance of 

other contributing factors such as increased structural and electrical remodeling.  

Persistent AF leads to important CM adaptations caused by the substantial stress of 

sustained rapid atrial contractions. There is an extensive body of research centrally implicating 
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calcium in this process. First, under physiologic conditions, atrial CM have higher sarcoplasmic 

Ca2+ contents and a faster restoration of its [Ca2+] at diastole than ventricular CMs54. By itself, this 

may increase the likelihood of DADs in the atria. During sustained AF, DADs triggered activities 

can be facilitated by the calcium–calmodulin-dependent protein kinase II (CaMKII) increased 

phosphorylation of RyR2, leading to more frequent sarcoplasmic reticulum Ca2+ leakage55. 

Furthermore, constant triggering of CMs at supraphysiological rates increases calcium loading. 

This triggers the transcriptional repression of the voltage-dependent L type calcium channel alpha 

1C subunit, leading to a reduced ICaL, a shorter APD and facilitated re-entry56.  

Beyond calcium-related remodeling, the atrial specific G-protein-gated K+ channel current 

(IKACh)
57 also appears to be altered during sustained AF. These channels increase the repolarization 

rate when activated by the ACh/M2 axis, effectively reducing the APD. In dogs, IKACh
 is higher in 

the LA compared to the RA and even higher in appendages, likely because of increased expression 

of the M2 receptor58. In isolated human CMs, IKACh appeared constitutively activated only in 

persistent AF patients59. Further, a rotor modeling study showed that ACh promotes rotor stability 

and frequency60.  

While less is known of the electrical remodeling at the source of paroxysmal AF, there is 

strong evidence for the contribution of PV. Some studies have shown that CMs located at the PV 

sleeves have reduced APD and a higher resting membrane potential, properties that may promote 

re-entry61,62. PV fiber orientations may also contribute to re-entry through anisotropy. Another 

study in dogs suggest the presence of cells with pacemaker properties63, providing a basis for 

altered automaticity impacting PV. Afterdepolarization triggered activities have been reported in 

PVs under a broad range of AF related conditions such as autonomic nerve stimulation or ACh 

exposure, tachypacing, thyroid hormone exposure and hyperthermia61. While PV isolation has a 

good success rate, many paroxysmal AF patients have recurrences, suggesting that a different 

mechanism is involved. To date, there is little evidence of electrical or other types of remodeling 

that could explain these recurrences, underlying the need for more studies in this domain.  

It is to be noted that many studies are conducted in the RA, but there are considerable 

differences between the left and RA. Clinically, greater remodeling is generally observed in the 

LA. The LA is also more innervated by the autonomic system and shows higher sensitivity to ACh.  
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1.1.4.2 Structural remodeling 

Alteration of the extracellular matrix (ECM) plays a major role in facilitating AF64. 

Collagen deposition can occur between CMs (reactive fibrosis or interstitial) or after CM death 

(reparative fibrosis). Interstitial fibrosis can increase anisotropy as collagen is usually deposited 

between CMs longitudinally, while patches of fibrosis replacing dead CMs may disrupt 

longitudinal impulse conduction and promote rotor formation, both facilitating re-entry. The 

mediator of these processes is fibroblasts. Beyond ECM homeostasis, fibroblasts can also produce 

cytokines and growth factors with paracrine effects. Fibroblast proliferation or differentiation into 

the pro-fibrotic myofibroblast state can cause inflammation, cardiac injury, and pressure overload.  

In the context of AF, the role of the vasoconstrictor hormone Angiotensin II (AngII) is 

perhaps the most well documented for its effect on fibroblast due to the strong AF risk increase of 

hypertension (present in 60-80% of persistent AF patients)65. AngII is converted from Angiotensin 

by the enzyme angiotensin-converting enzyme (ACE). In fibroblasts, AngII triggers the 

transcription of transforming growth factor beta 1 (TGF-β1), a central pro-fibrotic modulator. In a 

meta-analysis, ACE inhibitors were successful as primary and secondary prevention of AF, 

reducing incidence  by 24% and 27% respectively66. Both inhibited AngII signaling in fibroblasts 

and a reduction of pressure overload leading to mechanical stretch of the atria may play a role in 

this outcome. Mechanical stretch can increase atrial size and remodeling, which facilitates re-entry. 

Increased atrial size is also associated with fibrosis. While many have hypothesized that 

mechanical stretch itself may trigger fibroblast extra cellular matrix remodeling through some 

mechanosensory pathway intrinsic to fibroblasts, a recent review questions the consistency of the 

results on the matter67.  

Perhaps less intuitively, fibroblasts can alter electrophysiological properties of CMs 

directly through gap-junction-mediated heterogeneous cell coupling68. Fibroblasts express a 

variety ion channel allowing for Na+, K+ and Ca2+ currents69. Moreover, the resting membrane 

potential of fibroblasts is much higher than CMs (−31 to −16 mV69), affecting ion flow through 

gap junctions directionally dependent on the action potential phase. Of particular significance, 

fibro-CM coupling might play an acute role in the SN, where high concentrations of fibroblasts 

have been reported68. While co-culture models showed increased abnormal automaticity70, how 

this translate in vivo requires further investigation.   
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1.1.4.3 Mitochondrial dysfunction 

AF is also associated with a strong metabolic shift with evidence implicating the 

mitochondria71,72. The adenosine triphosphate (ATP) content in strongly depleted in the atria of 

AF patients and more strongly so in the LA73. Concordantly, mitochondrial function and structure 

are also compromised. The poly(ADP-ribose) polymerase-1 (PARP1) is a DNA repair enzyme 

using NAD+ as substrate. Its (hyper)activity is associated with the depletion of nicotinamide 

adenine dinucleotide (NAD+) pools, an essential coenzyme in mitochondria for an array of 

processes74. A group investigating the effect of tachypacing on HL‐1 CMs and Drosophila found 

that it lead to PARP1 activation and NAD+ depletion75, which has expected consequences on 

mitochondrial function. Moreover, oxidative stress also appears to be a consequence of AF. 

Researchers found that RyR2 oxidation was increased in chronic AF compared to control patients 

and that a mouse model with induced RyR2 leakage lead to mitochondrial dysfunction and reactive 

oxygen species (ROS) production76.  

1.1.4.4 Inflammation 

Inflammation is correlated with AF progression and is a predictor of ablation outcomes77,78. 

Inflammatory cytokines such as tumor necrosis factor alpha (TNF-α), interleukin 1 beta (IL- 1β) 

and interleukin 6 (IL-6) promote fibrosis and electrical remodeling, but also may promote protein 

misfolding78. TNF-α is a key inflammatory cytokine implicated in immune regulation cell 

proliferation, inhibition and apoptosis79. It can also induce differentiation of cardiac fibroblast into 

collagen producing myofibroblasts, promoting fibrosis and AF substrate79. One major transcription 

factor responsible for the transcription of many of these cytokines is nuclear factor kappa-light-

chain-enhancer of activated B cells (NFκB). In left atrial appendages (LAA) of AF patients, it was 

shown that NFκB was over-expressed and more phosphorylated (activated) compared to the sinus 

rhythm group80. More recent evidence also implicates the NLR family pyrin domain containing 3 

(NLRP3) inflammasome in AF. Inflammasomes are oligomers, known to mediate the innate 

immune response by catalyzing the maturation of IL-1 family of cytokines81. A recent study 

showed that in CMs of both paroxysmal and persistent AF patients, NLRP3 had increased 

activity82. Further, the investigators showed that NLRP3 knock-in in mice promoted ectopic 

activity, reduced atrial refractory period, and increased sarcoplasmic reticulum Ca2+ leaks, all 

features of AF. Thus, there is strong evidence implicating inflammation in AF, but research on its 

role in AF is still in its infancy.  
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Protein homeostasis (proteostasis), through the regulation of misfolded or unfolded 

proteins can also bolster inflammatory processes78. Together, lysosomes and proteasomes are 

responsible for protein degradation. Overload of the endoplasmic reticulum (ER stress) can lead 

to increased misfolding and activation of the unfolded protein response. Both proteasomal 

degradation through ubiquitination and lysosomal degradation through autophagy can ensue. 

Recent research provided evidence of increased ER stress and activation autophagy in persistent 

AF patients83. These investigators further showed that blocking ER stress could rescue ICa in 

tachypaced HL‐1 CMs. Moreover, there is increasing evidence for the involvement of protein 

aggregates in CVD. For instance, while most studied for its role in Alzheimer’s disease, tau 

aggregates have also been found to promote diastolic dysfunction84.  

While the current pace of discoveries is encouraging, many of AF’s molecular determinants 

remain to be discovered. In addition, there is an urgent need to translate this knowledge to 

actionable treatments for patients. In the next section, I will cover the current treatment options 

AF patients.  

1.1.5 Treatment and management of AF 

The recent “AF Better Care (ABC) pathway” approach85, supported in the ESC 2020 

guidelines1, emphasize three axes for an integrated AF management; (A) avoid stroke; (B) better 

symptom management; (C) cardiovascular and comorbidity optimization. Multiple randomized 

control trials showed marked effectiveness of this approach compared to the conventional 

approach1. Special considerations should be taken for hemodynamically unstable patients but fall 

outside the scope of this work. Below I discuss current best practices for stable patients with an 

emphasis on pharmacologic options.  

1.1.5.1 Avoid stroke 

Because the most significant risk of AF is stroke, anticoagulants are generally the first line 

of treatment. Anticoagulation therapy must balance bleeding and stroke/embolism risks, assessed 

with the HAS-BLED and CHA2DS2-VASc scores respectively. Warfarin, the most widely used 

vitamin K antagonist, reduces cloth formation by impairing the production of coagulation factors86. 

However, dosage must be closely monitored because of its narrow therapeutic dose and because 

of the high inter-individual metabolism variability which depends on both environmental factors 
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and gene variants87. Several new anticoagulants have recently been indicated as superior to 

warfarin, such as apixaban and rivaroxaban, further reducing mortality rates, and strokes, which 

may be explained by the difficult-to-achieve therapeutic dosage of warfarin88. Generally, oral 

anticoagulants are well tolerated and safe, reinforcing their place as first line treatment. 

1.1.5.2 Pharmacologic rhythm and rate control 

The main options to achieve better symptom management are restoring the sinus rhythm 

(rhythm control) or settling for regulating the ventricular rate (rate control) at the AVN1. Beta-

blockers, calcium channel blockers (CCB) and digoxin are the prevailing rate control medication. 

Beta-blockers reduce sympathetic nervous system activity by inhibiting the activation of beta-

adrenergic receptors, thereby reducing heart rate and blood pressure. CCB reduce ICa which leads 

to slower AVN conduction rates. Non-dihydropyridine CCB are generally used for rate control as 

they have lower vascular effects and greater cardiac specificity. Digoxin acts through the inhibition 

of the Na+/K+ ATPase, increasing cardiac contractility and reducing heart rate89. Beta-blockers and 

CCB are suggested as first line drugs. While these drugs are generally better tolerated than anti-

arrhythmic drugs (AAD), similar side effects can occur such as dizziness, weakness, fatigue, 

nausea, or insomnia. Many AAD are available which are classified by their action (Vaughan-

Williams classification) on the various ion channels90. One of the most widely used among them 

is Amiodarone, which appears to act on multiple currents91. However, serious adverse effects can 

occur with prolonged use in up to 50% of patients such as pulmonary toxicity, liver damage and 

thyroid dysfunction92.  

The decision to rhythm control or rate control has historically been made based on 

symptoms and concomitant diseases. Given that prolonged atrial tachyarrhythmia is known to 

increase remodeling and promote AF progression, rhythm control appears as an appealing rational 

to stop AF progression. However, the 2002 AFFIRM trial showed no statistical difference between 

rate and rhythm control for mortality, while rhythm control drugs showed increased hospitalization 

rates and serious adverse effects such as torsade de pointes and bradycardia93. Until very recently, 

the results from this study have shaped the decision to limit the use rhythm control drugs around 

symptom management. In the 2020 EAST-AFNET 4 trial, early rhythm control was evaluated 

against rate control in patient diagnosed with AF within 1 year, which were predominantly first 

diagnoses or paroxysmal94. The primary endpoint was composite death from cardiovascular 
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outcomes including stroke, heart failure and acute coronary syndrome. Both ablation and AAD 

were used for rhythm control. The study showed a significant reduction in composite outcome for 

rhythm control, with more patients maintaining sinus rhythm after two years. Adverse events 

remained higher in the rhythm control group. A subsequent analysis showed no difference in 

outcomes between symptomatic and asymptomatic patients95. These new results support the use 

of rhythm control in early diagnosis.  

Overall, a significant number of issues associated with these interventions remain, mainly 

due to their non-specific action. The discovery of more specific treatments are required to reduce 

risks and side effects.  

1.1.5.3 Cardiac ablation  

The risk and efficacy of ablations to restore sinus rhythm have significantly improved and 

have been shown to be superior to AAD for quality of life96. The PV ablation followed the 

discoveries of Dr. Michel Haïssaguerre97. In this procedure, a series of radiofrequency induced 

lesions are performed around the PV.  Since then, the procedure has been refined, increasing the 

ablated area around the PV to include nerve bundles that may cause recurrences98. Today, ablations 

further benefit from 3D mapping, guiding ablation when needed and more recent catheters 

including force sensing99 and cryoballoon catheters100. Ablation is indicated for an increasing 

proportion of patients and is especially effective early in the progression of AF. Despite these 

advancements, success rates are 50-60% and 80% in paroxysmal AF and 40% and 60% in 

persistent AF after a single or multiple procedures respectively101. Moreover, complications rates 

are 5–7%, including serious complications such as cardiac tamponade and stroke101.  

For patients with debilitating symptoms in whom alternatives have failed, ablation of the 

AVN with pacemaker rate control may be indicated. This relatively safe procedure has shown 

improvements in quality of life and left ventricular ejection fraction1. There is currently no 

randomized control trial for this procedure and its effect on atrial remodeling remains elusive.  

1.1.5.4 Early detection and modifiable risk optimization 

Early detection is becoming a priority to reduce AF progression through cardiac 

remodeling. The emergence of affordable and accessible technologies monitoring cardiac 

electrical activity (via electrocardiogram; ECG) promises to have a significant impact on disease 
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control. In 2019, The WATCH AF Trial showed that AF detection using over-the-counter 

smartwatches allowed for a sensitivity of 93.7% and specificity of 98.2%102. This is of particular 

importance considering that some individuals remain asymptomatic for years. Lifestyle 

interventions such as increasing cardiovascular fitness or weight loss are extremely potent in 

reducing AF recurrence, often showing greater freedom from AF than rhythm or rate control103. 

Paired with advances in catheter-based ablation, early detection and aggressive comorbidity 

management promises to have a major impact on the burden of AF. 

Besides modifiable risk management, the current paradigm still falls short of a treatment 

that can significantly reduce or reverse atrial remodeling. In the following sections I will discuss 

how the combination of omic technologies can expand our current molecular understanding of AF, 

improve risk stratification and help personalize management.  
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1.2 Multiomic strategies for molecular target discovery 

Biology has been transitioning from a qualitative to quantitative science at an increasing 

rate. Sequencing technologies have outpaced Moore’s law since the development of next 

generation sequencing (NGS), bringing down the cost of sequencing a human genome from ~7M$ 

in 2008 to ~500$ in 2022 (Fig. 7)104. This enabled the emergence of unbiased whole transcriptome 

and epigenome sequencing. In parallel, microarray technology also blossomed, allowing for the 

genotyping of hundreds of thousands of variants at even lower costs. Using this technology, 

millions of individuals have now been genotyped. More recently, advances in microfluidic 

technology further expanded the applications of NGS to single cells or nuclei. The convergence of 

these technologies is turning biology into “Big Data”, on which evermore powerful models can be 

trained. 

 

Figure 7. Sequencing costs over time.  

Adapted from104. 

1.2.1 Genetics 

Inheritance has fascinated humans for millennia. Theories attempting to explain the 

apparent transmission of one’s traits to one’s offspring date back at least to ancient Greece. 

Pythagoras’ “spermism” theory posited that male sperm contributed all information necessary for 

conception through a mystical imbuement of his traits over his lifetime, while the female provided 
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only nurture105. Two centuries later, Aristotle refuted major flaws of this theory, such as the 

obvious unaccounted sex-specific traits of female offspring. Instead, he proposed that females’ 

equivalent of males’ sperm was menstrual blood, providing the “messages” for conception. The 

essence of these theories echoed in history, finding its way millennia later in Darwin’s Pangenesis 

gemmule theory of inheritance in 1868106, three years after Gregor Mendel had published the laws 

of inheritance107. Deemed the father of modern genetics, Mendel’s work would revolutionize 

biological science, but remained undiscovered for more than 30 years.  

The power of genetics in understanding traits and diseases resides in the lifetime exposure 

to one’s inherited genetic variations (called “variants” hereafter). Contrary to environmental 

variables, which change over time and can be difficult to measure accurately, variants are constant 

throughout life (aside from somatic mutations). Causal associations for given diseases can thereby 

be inferred directly in humans, in some cases providing molecular targets to treat the associated 

disease. This strategy has been shown to increase the success rate of drugs in clinical trials by more 

than two-fold108.  

1.2.1.1 Mendelian genetics  

High impact mutations, such as those leading to the gain or loss of a gene’s function can 

be sufficient to be fully deterministic on a phenotype (monogenic or Mendelian disease). Since 

Thomas Morgan’s work on fruit flies and that of Botstein et al. on human polymorphisms109, causal 

genes of Mendelian diseases can be traced in families using linkage analyses (using chromosomal 

markers and recombination likelihood to narrow down the causal genetic locus). Today exome 

sequencing or whole genome sequencing have largely replaced this tedious process. Nevertheless, 

the identification of rare variants causing “familial” AF has provided numerous candidate genes.  

Rare mutations have been shown to cause AF, generally with early onset, in a highly 

deterministic way (high penetrance), referred as familial AF (recently exhaustively reviewed53). 

The largest category of genes affected appear to be ion channel genes, most notably potassium 

channels. Rare mutations have been reported in almost every IK, such as the ultrarapid delayed 

rectifier potassium current IKur encoded by KCNA5, an interesting target that has gathered a lot of 

attention given its atrial-specific expression110. Phase 0 INa sodium channels are also affected, 

including the cardiac specific SNCA5, also associated with ventricular arrhythmias111. However, 

most frequently, familial AF rare mutations appear to affect the sarcomeric protein Titin (TTN), 
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perhaps unsurprisingly given its central role in myocyte contraction and that it is the longest human 

protein112. Other categories of genes affected include cardiac transcription factor genes including 

NKX2-5, PITX2, and TBX5, gap junction genes such as connexin 40 and 43 (GJA5 and GJA1 

respectively) as well as proteins that form the cellular cytoskeleton and others53. While 

illuminating, familial AF is rare and may not reflect the complex etiology of its more prevalent 

form occurring later in life. This more colloquial form of AF also bears strong genetic 

determinants, albeit with less penetrance. 

1.2.1.2 Complex traits 

Contrary to the colors of Mendel’s peas, the expression of complex traits is multifactorial, 

involving the interaction of both genetic and environmental factors (phenotype = genotype + 

environment). These traits are considered polygenic, where multiple genes contribute a small 

fraction to the phenotype. The fraction of the trait’s variance in a population that is due to genetic 

factors is deemed its heritable component (broad-sense heritability), which may differ across 

populations. For instance, a population with heterogeneous access to food may have a greater 

environmental component for height than one where it is more homogeneous. Francis Galton first 

exposed the bell-shaped distribution of polygenic traits, such as height. His ancestral law of 

heredity postulated that a trait was the sum of diminishing contributions from one’s closest to most 

distant ancestors, such that the parents genetically contributed ½ of the phenotype, the 

grandparents ¼ and so on, summing to 1113. Height may be the quintessential example of a 

polygenic trait, with more than 12,000 variants now shown to contribute to the phenotype114. 

Deciphering such small effects on a phenotype can only be accomplished through large sample 

sizes, making the field of genetics of complex traits one of populations study. To identify the 

genomic loci contributing to these traits, a technology allowing to probe the entire genome in 

thousands of individuals would be required.  

1.2.1.3 Genome-wide association studies 

In the late 1990s, a method to obtain human genotype information at more than a thousand 

sites in parallel was published and then commercialized by Affymetrix115. Probes of around 25 

nucleotides were designed to match specific sites in the genome that were known to be 

heterogeneous. Fragmented DNA would then bind to its matching probe and emit fluorescence. 

Imaging of these arrays, where each probe’s locations on the chip is known, could then infer 
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thousands of genotypes in a single assay. Refinements of this technology improved accuracy and 

throughput, which now usually contains more than 600,000 curated markers. Today the cost to 

genotype an individual can be below 50$, enabling cohorts of millions of individuals.  

Because of this, genome-wide association studies (GWAS) have been growing in scope 

since the mid-2000s. The success of GWAS was built on our ability to leverage correlations 

between genomic regions (haplotype blocks) to find traits and diseases associations. The linkage 

disequilibrium (LD) of 2 variants is a measure of their correlation determined by the frequency of 

recombination events occurring between them and is therefore anti-correlated with the distance 

between single nucleotide polymorphisms (SNPs). Without these haplotypes, each known SNP 

(now more than 84 million116) of the human genome would have to be probed independently in 

each individual to then be tested against a trait. Instead, using a selection of SNPs curated to 

represent each haplotype (tag SNPs), most genetic variations can be imputed using microarray 

(genotyping). In individuals of European descent, the HapMap project estimated that 94% of 

common variants (minor allele frequency (MAF) > 5%) could be captured with 250,000 tag 

SNPs117 while the same number of tag SNPs captured only 70% common variants in individuals 

of African ancestry. This is due to LD blocks being of different sizes across populations. 

Bottlenecks, such as the out of Africa event, reduce the genetic diversity of populations that 

emerged from them, which has occurred multiple times in human history. Because of this, 

individuals of African ancestry have smaller LD blocs, which can help deconvolute loci with very 

high LD. Unfortunately, most GWAS studies to date have focused on individuals of European 

descent. This limitation of early human genetics is now the front and center issue to address in the 

field118.  

1.2.1.4 Fine-mapping 

Fine-mapping strategies are designed to dissect patterns of association in a locus down to 

the causal SNP(s). Today, Bayesian fine-mapping methods are preferred to early educated guess 

(arbitrary SNP correlation thresholds and visual locus inspection) and penalized regression (lasso 

and elastic net) as they allow for the integration of a growing number of genomic annotations as 

priors e.g., conservation across species, DNA methylation, chromatin states, gene expression, 

splicing ratios and transcription factor binding sites119. An additional advantage of Bayesian fine-

mapping is that it provides intuitive quantities on the probability of a set of variants to be causal at 
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a locus, the posterior inclusion probability (PIP) which sums to 1. A credible set of variants at a 

locus generally includes the top SNPs for which the PIPs sum to 95% at each locus. In 2020, 

Weissbrod et al. published PolyFun120, a method that built on previous popular annotation 

informed fine-mapping methods (CAVIAR and PAINTOR)121,122, drastically scaling the number 

of annotations included as priors (reaching 187). Other strategies include multi-trait fine-mapping 

(flashfm123) and leveraging multi-ancestry cohorts (MsCAVIAR124), which have shown a 

reduction of the credible set size. 

Despite these advances, fine-mapping remains challenging. To deconvolute the signal, 

greater sample size as well as higher SNPs density are usually required to reach similar power to 

GWAS. Moreover, each method brings its own set of assumptions and limitations. Namely, that a 

set of variants is causal for multiple traits or in multiple populations, which can be false. More 

general assumptions include that we have information on the causal variant, which can sometimes 

be filtered out due to low coverage or poor imputation quality. Furthermore, not all methods allow 

testing for multiple causal variants at a locus.  

1.2.1.5 AF GWAS 

For most individuals, AF is a complex disease, with a relatively strong genetic component. 

Based on common SNPs, the heritability of AF is estimated at 22% in the European population125. 

As of June 2023, there were 28 GWAS on AF in GWAS catalog (https://www.ebi.ac.uk/gwas/). 

Importantly, there is considerable sample overlap across these studies, since the UK biobank 

generally accounts for most samples of the larger datasets. Nevertheless, two large AF GWAS 

published in 2018 by Roselli et al.126 and Nielsen et al.127 drastically increased the number of AF 

associated loci, suggesting the association of 138 independent loci128. Since then, another 

publication by Miyazawa et al. in 2023 made an important contribution with an additional 160,098 

individuals of East Asian ancestry129. Consistently, the strongest association is found in an 

intergenic region about 150kb from the PITX2 gene, conferring between 1.5 and 2-fold increased 

risk of AF. PITX2 (paired like homeodomain 2) is a transcription factor essential for development 

and establishment of the left-right axis130. Downregulation of PITX2 has been associated with both 

pro and anti-arrhythmogenic phenotypes131. The causal mechanism for the association remains to 

be determined. As for all GWAS, most sentinel SNPs (SNP with the lowest p-value at each locus) 

are in non-coding regions. Only one and two were found in coding regions in Roselli et al. and 

https://www.ebi.ac.uk/gwas/
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Nielsen et al. respectively, with the most predominantly affected regions being introns (at 52% 

and 65% respectively) and intergenic regions (at 20% and 23% respectively).  

While the identification of causal genes from GWAS remains an important challenge, these 

datasets can be leveraged for other means, such as better risk stratification or for precision 

medicine. For risk stratification, combining the effect of a number of SNPs for a given phenotype 

allows the creation of polygenic risk score (PRS)132. This method can explain a larger proportion 

of the phenotype's heritability, as it sometimes allows for the inclusion of potentially suggestive 

SNPs that do not pass the GWAS threshold of P<5×10-8. The value of PRS combined with clinical 

risk factors has recently been underscored for AF risk stratification. In 4606 individuals from the 

Framingham Heart Study, tertile stratification of patients using both the PRS and clinical risk 

factors outperformed clinical risk factors alone (the incidence of AF was 22% vs 33% respectively 

in the low-risk group and 48% vs 43% respectively in the high-risk group)133. In the UK Biobank, 

a PRS showed that the top 6.1% of the population with the highest PRS is 3 times more at risk of 

developing AF134. PRSs may also be useful for evaluating the effectiveness of medical 

interventions. According to a Korean study, individuals with a high PRS had a 2.66 times higher 

risk of AF recurrence after catheter ablation than the low PRS group135. Overall, the 

personalization of treatments and the management of patients at risk of AF may be improved with 

genetic information134. 

Although labeling causal genes with the closest gene approach may yield relatively good 

predictions136,137, non-coding region do not necessarily regulate the closest gene or may regulate 

multiple genes. Moreover, a given locus may contain multiple causal SNPs, further complexifying 

this task. I will cover different strategies leveraging other modalities that aim to overcome this 

challenge in the sections below. 

1.2.2 Transcriptomics 

Our ability to read the code of life was enabled by Frederick Sanger in 1977138. His 

electrophoresis method allowed to “read” the sequence of short DNA fragments (~1000bp). This 

method, later called first generation sequencing, was used to sequence the first human genome 

during the human genome project. Such method limited the scope of studies to a small number of 

genes selected based on strong hypotheses (candidate gene approach). Later came gene expression 

microarrays, when most coding gene sequences were known, probes could be designed to 
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hybridize coding DNA (cDNA) reverse-transcribed from RNA and be imaged similarly to the 

genotyping technology. Transcriptomic microarrays allowed for high-throughput, unbiased and 

hypothesis free investigation of gene expression. This is still used today for its cost effectiveness 

but has some limitations compared to sequencing based transcriptomics (see next section).  

NGS, or second generation sequencing, was developed in the early 2000s. The 454 

pyrosequencing method refined and commercialized by Roche would eventually be displaced by 

Illumina’s sequencing-by-synthesis, now allowing parallel sequencing of billions of short 

sequences (reads) of around 150bp in a single run139,140. In this process, fragmented cDNA or 

genomic DNA (gDNA) is first sparsely ligated onto plate-bound adapters and then amplified 

locally, creating “spots” of dense identical sequences. Complementary strands of de-hybridized 

single strand templates are then re-synthesized using fluorescent nucleotides with images captured 

for every base addition. Each spot provides enough redundance for an accurate fluorescence 

readout. For whole transcriptomes RNA sequencing (RNAseq), the resulting list of reads can then 

be aligned to a reference genome for quantification of gene expression. As for whole genome 

sequencing, reads are assembled into novel genomes. This greatly accelerated discoveries such as 

new species genomes but also of novel transcripts, issue of a never-before seen combination of 

exons, or from non-coding regions previously thought to have no function.  

Third generation sequencing or long reads sequencing was Nature’s 2022 method of the 

year141. While the initial technology produced sequences of low quality, impairing the adoption 

rate, innovations such a Pacific Biosystem’s HiFi now rivals Illumina’s high fidelity142. Long reads 

recently allowed telomere to telomere sequencing of the human genome143, truly completing the 

journey of the human genome project. On the RNA front, long reads are appealing to improve 

allelic imbalance analyses, gene isoform detection and quantification.  

1.2.2.1 RNAseq 

For most genomics laboratories, RNAseq has now become a standard protocol to assess 

the effectiveness of a treatment. Counting samples from human origin only, there are now more 

than 1.5M RNAseq samples in the Sequence Read Archive database144. Variations of RNAseq can 

be tailored to answer specific questions such as differential gene expression (DGE) analysis, the 

identification of novel isoforms, the identification of transcription start site (CAGE and 

RAMPAGE), the identification of translated regions of mRNAs (Ribosome-sequencing; Ribo-seq) 



53 

 

and others145. Among these applications, DGE analysis is the most broadly used and meaningful 

in this research. I will discuss important considerations to be made from the experimental design 

through bioinformatic analyses. 

 Experimental design 

Important considerations should be made upfront for downstream statistical analyses. The 

probability to reject the null hypothesis in the presence of a true signal (power) is a function of 

sample size, effect size, variance, and false positive tolerance. For microarray-based assays, 

consideration should be made on the number of probes to test and correct for. This differs for 

RNAseq based on the number of genes or transcripts included in the annotation (transcript level 

analyses can sometimes increase the number of tests by three-fold). When positive controls are 

available, effect sizes and variance may be estimated with quantitative polymerase chain reaction 

(qPCR). Under low variance experimental settings such as cell cultures, a lower sample size may 

be necessary, while high variance settings such as in the human population should require greater 

sample size. Estimates under controlled environments and simulations suggest that between four 

and six samples are generally advised146-148.  

Ribosomal RNA (rRNA) can account for up to 90% of cell’s RNA content149. To avoid 

over-sequencing rRNA, enrichment of mRNA is done either using oligo(dT) primers to selectively 

amplify polyadenylated (polyA) RNAs or using rRNA depletion can be done through enzymatic 

digestion or magnetic beads. Importantly, the polyA amplification is known to increase 3’ 

bias150,151. This may limit downstream applications. For instance, different transcript isoforms may 

have the same 3’ end, splicing events will not be represented evenly in the transcripts or differential 

exon usage away from the 3’ end may be missed. Moreover, RNA species without polyA tails such 

as some non-coding RNAs will not be sequenced. Under these considerations, polyA amplification 

may be interesting to mostly limit sequencing to coding genes and reduce sequencing costs or 

reduce multiple test burden. Furthermore, choosing a protocol that retains strand information has 

been shown to yield superior results152. Strandedness is preserved by changing deoxythymidine 

triphosphate (dTTPs) for deoxyuridine triphosphate (dUTPs) during the reverse transcription step. 

This later allows the digestion of the complementary strand and the identification of genomic 

strand that produced the RNA. For antisense overlapping genes, this provides additional 

information increasing quantification accuracy.  
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For sequencing parameters, sequencing depth, read length and single vs paired end reads 

must be considered. Under the simplest DGE design, when only highly expressed genes with high 

inter-group differences are of interest, 50bp single end reads at low sequencing depth of around 

5M reads could be considered153. Conversely, if a more thorough characterization of all transcripts 

with lower expression levels and fold change differences between groups is required, 150bp paired 

end reads at high sequencing depth of around 50-100M reads should be considered. The latter also 

opens possibilities for isoform level analyses and splicing events detections. 

 RNAseq pipeline 

Sequencing data is generally provided as FASTQ files from the sequencing center. 

RNAseq pipelines generally consist of; i-read alignment and quantification, ii-differential 

expression, and iii-functional enrichment analysis. When a good reference genome is available, 

splice-aware alignment tools such as STAR154 and HISAT2155 or pseudoalignment tools such as 

Kallisto156 and Salmon157 can be used. Splice-aware alignment methods account for splicing events 

by allowing reads mapping at splicing junctions to be split across exons, improving mapping 

accuracy and sensitivity compared to predecessors such as BWA. HISAT2 was shown to be more 

memory efficient and more accurate than STAR, to the cost of a marked reduction in the number 

of aligned reads due to a higher mismatch stringency, favoring STAR for mapping sensitivity158,159.  

Next, gene or transcript quantification of the aligned reads can be done using a variety of 

tools such as StringTie2160, CuffLinks161, RSEM162 and FeatureCounts163. Some of these tools will 

provide counts and others a normalized value such as FPKM (fragments per kilobase of transcript 

per million mapped reads). Stringtie2 and Cufflinks are common choices to assemble and quantify 

novel isoforms, when necessary, while the others will solely rely on established annotations. 

Superseding the alignment step, pseudoalignment is a very fast (~100 fold faster than alignment + 

quantification156) and efficient graph-based method providing direct count estimates for genes or 

transcripts of a provided transcriptome. These algorithms use short sequences of a length k (k-

mers) to build a de Bruijn graph on which each read will attempt to traverse. Counts are attributed 

to the best matching branches, corresponding to specific transcripts. These methods compare 

favorably to alignment-based methods with possible advantages on specificity and 

sensitivity156,164,165.  
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After quantification, a feature (gene or transcript) by sample matrix is used for downstream 

analysis. DESeq2166, edgeR167 and limma-voom168 are the most widely adopted statistical models 

to compare expression levels between conditions or groups. Modeling gene expression using 

counts has been shown to yield better results than normalized values such as FPKMs153. Both 

DESeq2 and edgeR use the negative binomial distribution and generalized linear model to model 

counts, while limma-voom use an empirical Bayes model. Careful consideration of the covariates 

to include in the model should be made. Principal component analysis (PCA) is a mandatory first 

step that may provide insight for such a decision. Further considerations on the appropriate filters 

to apply for lowly expressed features may help reduce false positives or reduce the multiple test 

burden. In general, these methods provide similar results but dataset specificities may warrant the 

use of a tool over another153,169. 

Functional or pathway enrichment analyses are a common way to obtain an overview of 

the main cellular functions, pathways or components that may be altered between groups when 

there is many differentially expressed genes (DEG). The two most used strategies are over-

representation analysis (ORA) and gene-set enrichment analysis (GSEA). ORA is most often used 

for its speed and simplicity. ORA tools usually perform a Fisher’s exact test to determine if an 

input list of DEG is enriched in an annotated gene set representing specific cellular pathways 

compared to a background set of genes. As for GSEA, the input list of DEG is first ranked (based 

on log fold change, -log10 p-value or other metrics) and then tested against the annotation using 

Wilcoxon rank-sum statistic or other methods170. Facilitating DEG interpretations, a vast number 

of gene set libraries have been curated over the years, with platforms such as EnrichR hosting more 

than 200. Some of the most widely used include Kyoto Encyclopedia of Genes and Genomes 

(KEGG), Gene Onthology (GO) or Reactome. These libraries are regularly updated, and more 

recent versions should be prioritized. Lastly, choosing the appropriate tool and set of background 

gene can also significantly impact results and should be carefully considered171.  

1.2.2.2 AF differentially expressed genes in humans  

As of August 2020, there were at least 24 studies conducted on human samples comparing 

gene expression between AF and sinus rhythm patients172, the majority being microarrays with 

only three RNAseq studies. The microarray study by Deshmukh et al. stands out for its dataset 

size, with a total of 239 samples analysed173. Individuals were grouped according to the presence 
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of a previous AF diagnosis and their rhythm at the time of surgery i.e., AF patient in sinus rhythm 

(AF/SR), AF patient in AF rhythm (AF/AF) and no AF diagnosis in sinus rhythm (NoAF). Their 

DGE analysis on 11 806 transcript-specific probes, found ~5-fold more differentially expressed 

transcripts in AF/AF group than in AF/SR group when compared to NoAF (1011 vs 190 

respectively) which largely confirmed the absence of differential expression of ion channel genes 

in the AF/SR group, and their dysregulation in the AF/AF group. Functional enrichment analyses 

suggested increased cellular stress in the AF/SR group compared to NoAF, with enrichment for 

oxidoreductase activity and transcription factor target genes involved in cardiac remodeling such 

as CREB/ATF and SRF. The relatively few details provided in the methods limit the interpretation 

of these results. Very recently, Zeemering et al. published an RNAseq study of LAA or right atrial 

appendage of 195 patients using a similar design174. Because their initial quality control (QC) 

indicated a dominant effect of heart failure, they further stratified the DGE analyses using this 

variable. No difference between paroxysmal AF patients and controls were found. For persistent 

AF, 35 genes were DEG with and without heart failure. There was little concordance in pathways 

enriched for patients with and without heart failure. Most notably, the researchers found a 

coalescence of robust persistent AF DEG at the IFNG locus including IFNG, IL26, IL22 and 

MDM1. Another study looked at the difference between LAA and PV junction in persistent AF 

and sinus rhythm controls175. Interestingly, PITX2 had higher expression levels in the PV 

compared to the LAA (both at protein and RNA level) but did not change with AF. Higher 

remodeling in the LAA was suggested since oxidative stress and fibrosis pathways were higher.  

Taken together, AF transcriptomic studies commonly involved functional enrichment in 

ion channels and contractility dysfunction, inflammation, oxidative stress and fibrosis176. On the 

other hand, there is a markedly low congruence of DEGs among these studies.  An assessment of 

DEGs across studies by Victorino et al. showed that only 10 DEG in LA and only 2 DEG in the 

RA replicated in 3 studies, none of which were ion channels. Among these genes we find NPPA 

and NPPB, known to be induced upon cardiac stress177, and RGS6 and COLQ, both involved in 

regulating parasympathetic response178,179. The overall lack of reproducibility across these studies 

underlines the challenges of transcriptomic studies in humans, which have highly heterogeneous 

environmental exposures and genetics, and reinforces the need for greater sample sizes to ensure 

reproducibility.  
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1.2.2.3 Trash or treasure? The mystery of the non-coding genome 

The rather arbitrary definition of a coding gene was limited to open reading frames coding 

for at least 100 amino acids (aa), bringing the number of estimated coding genes to around 25,000 

in the human genome. The rationale for this threshold was that shorter sequences would be unlikely 

to produce functional protein structures due to the low complexity of the sequence, while 

conveniently reducing the genomic search space. The inexplicably high proportion of non-coding 

DNA in the human genome (98.5%), and other eukaryotes, was famously touted as “junk” DNA 

by Susumo Ohno in 1972180. Along with the discovery of novel gene isoforms, NGS provided 

irrefutable evidence of transcription in non-coding DNA regions. Djebali et al. showed that at least 

¾ of the genome was transcribed at some point in time181. Novel RNA species were discovered 

such as small nuclear RNA, circular RNA, PIWI-interacting RNA, microRNA (miRNA), long 

non-coding RNA (lncRNA) and several others182, the most numerous and the most studied for 

their effect on cardiovascular diseases being miRNAs and lncRNAs. 

The role of miRNA as a regulator of gene expression in AF has been a particular focus in 

recent years. These small RNAs of about 22 nucleotides sequester or induce the degradation of 

messenger RNA (mRNA) depending on their binding affinity, frequently at the 3' end of the 

mRNA. More than 17,000 miRNAs (around 50,000 today) from 140 species in 2010 have been 

identified and grouped in the miRBase database183,184. Furthermore, it is estimated that around half 

of mammalian mRNAs have conserved regions allowing their regulation by miRNA185. Prediction 

of miRNA mRNA targets can be obtained from multiple databases using tools such as 

miRNAtap186.  

In both humans and mice, studies have shown that the dysregulation miRNAs such as miR-

1, miR-328, and miR-21 could be sufficient to cause AF or to normalize rhythm by restoring their 

endogenous levels187,188. Their dysregulation has been associated with factors exacerbating AF, 

including the level of expression of ion channels impacting ICa and IK, the expression of gap 

junction proteins, and signaling via the ERK/MAPK pathway promoting the differentiation of 

myofibroblasts and atrial fibrosis188.  

lncRNAs form a rather heterogeneous category of RNAs with more than 200 nucleotides 

in length and no open reading frame longer than 100aa. LncRNAs can be intergenic, intronic or 

antisense to a coding gene (other genomic categorizations exist albeit with some inconsistencies). 
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Some of the main obstacles to the annotation of these RNAs are their generally low expression 

levels, their irregular splicing rate, their low stability, their low conservation rate, and irregular 

polyadenylation. The main functions of lncRNAs currently reported are as i-transcriptional 

modulators, ii-splicing modulators, iii-translational regulators, either by sequestering miRNAs or 

mRNAs, or by modulating mRNA stability, iv-precursors of microproteins (open reading frames 

<100aa) or as v-extracellular messengers189. Adding to the many challenges in annotating 

lncRNAs, most of these transcripts seem to have a functional effect in a specific cell-type. SJ Liu 

et al. 2017 reported that among 499 lncRNAs influencing cell growth, 89% had a specific effect 

in only one of 7 cell lines190.  

Studies assessing the impact of lncRNAs on AF have so far been limited in scope. Using a 

mouse model of AF, a group found that the lncRNA KCNQ1OT1 induced the translation of 

CACNA1C (calcium voltage-gated channel subunit alpha1 C, an ion channel subunit) by 

sequestering miR-384191. Other investigators found that overexpression of the lncRNA NRON, 

initially identified in the blood patients with heart failure, reduced fibrosis compared to controls 

by reducing fibroblast proliferation192. Interestingly, using 80 human hearts including some dilated 

cardiomyopathy patients, investigators found that 22% of the 783 expressed lncRNAs encoded a 

microprotein using Ribo-seq193, with most localizing to the mitochondria.  

While much has been learned with transcriptomic studies, they have several limitations. 

First, unlike genetically derived gene candidates, there is generally no evidence of causality for 

DEGs. Second, the dominant factor influencing RNAseq done in bulk tissues is generally its cell-

type composition194. Batch effects are therefore very difficult to avoid and may warrant further 

inclusion of covariates in the model which may increase requirements in the number of samples 

needed to detect an effect. Result interpretation is generally limited to the whole tissue, without 

information on the cell-type at the source of DEG differences. To overcome this, recent methods 

leveraging single cell RNAseq offer ways to re-analyze bulk RNAseq and infer the cell-type 

influence (see section 1.2.5). Lastly, transcriptional changes may not reflect protein level 

changes195,196. Therefore, combining transcriptomic evidence with other lines of evidence is often 

necessary.  
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1.2.3 Quantitative trait loci analyses 

Among the set of annotations used to infer causality, linking SNPs to gene expression is 

generally seen as one of the most attractive because it facilitates the interpretation of the SNP 

mechanism and provides an actionable target in the context of disease (even long non-coding 

RNAs can now be targeted using anti-sense oligonucleotides in humans197). While protein 

abundance is considered closer to the phenotype, proteomics still does not provide the same ease 

of use and throughput. Moreover, large differences in gene expression may only result in small 

phenotypic differences at the population level, increasing the power to link SNP and gene 

expression.  

Expression quantitative trait loci (eQTL) analyses aim to find associations between gene 

expression and polymorphic alleles (Fig. 8). This is generally achieved through linear regression 

with tools such as Matrix eQTL198 or FastQTL199, but other models have been proposed such as 

linear mixed models and non-linear models200. QTLs are generally classified as cis (proximal to 

the gene and expected to have a direct mechanism of action) or trans (distal to the gene and 

expected to have an indirect mechanism of action, but rare direct actions have been suggested201). 

Trans-eQTLs may occur within and across chromosomes. In addition to considerations discussed 

in the RNAseq section, restriction of the genomic window to create SNP-gene pairs is an important 

parameter to determine, testing all genes and SNPs otherwise resulting in billions of tests. While 

there is evidence of eQTLs occurring at distances greater than 1Mb, studies consistently show an 

exponential decay of SNPs regulatory potential against distance with >90% of lead eQTLs found 

within 100kb of the gene body201,202. Conveniently, the QTL framework is conceptually applicable 

to other modalities such as protein abundance (pQTL), chromatin accessibility (caQTL), DNA 

methylation (mQTL) and others200 but these modalities are more rarely used. 
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Figure 8. Schematic representation of a cis-eQTL.  

The arched arrow represents an activation of gene X transcription through the recruitment of a transcription factor at rs001. Created 

with BioRender.  

The genotype-tissue expression (GTEx), lunched in 2010, remains an invaluable resource, 

cumulating gene expression on 44 human tissues and paired genotype data in 449 individuals203. 

Other recent efforts have superseded this database in number of participants, namely eQTLgen201 

and eQTL Catalogue204. Strikingly, almost all (80% of protein coding genes and 67% of 

lncRNAs205) genes have eQTLs (eGenes). These figures could even be an underestimation as 

others have shown that bulk eQTLs have lower power to detect cell-type specific eQTLs206,207 and 

that single cell data finds a greater proportion of cell-type specific eQTLs208. Moreover, eQTLs 

may be condition specific. The ubiquity of eQTLs complexifies the attribution of causality for a 

given GWAS locus to an associated eGene. On the other hand, Gamazon et al. have shown sticking 

enrichments (median of 1.7 and a maximum of 6-fold enrichment for height) in GWAS of complex 

traits (n=18) for the strongest eQTL of each gene in GTEx data v6209. Moreover, the same study 

showed that up to 35% of the heritability of these traits were captured by eQTLs in a multi-tissue 

analysis. While attractive for its simplicity and interpretability, attributing a causal gene to a 

GWAS locus often requires further evidence due to LD and the sheer abundance of eQTLs. 

Colocalization is a statistical method (generally Bayesian) that evaluates the likelihood of two 

signals coming from different measurements to have the same causal SNP(s). Many tools are 

available to conduct colocalization analyses using summary statistics such as COLOC210, 

MCOLOC211 and others212,213, some allowing for the colocalization of more than two 

measurements or for more than 1 causal SNP at a locus. This can provide evidence that the GWAS 

and eQTL signals at a locus are shared and that the associated eGene is causal. Transcriptome wide 

association study (TWAS) provides an alternative to colocalization. Here, a reference panel of 

paired gene expression and genotype data is leveraged to impute gene expression from larger 

GWAS cohorts. TWAS has the advantage of integrating all genetic contributions, including sub-

genome-wide significant signals, to a gene’s expression instead of assessing each GWAS and 

eQTL signals independently. While TWAS or colocalization offer interpretable results (list of 

genes associated with the GWAS trait), the prioritized genes are not necessarily causal, in part due 

to single variants frequently being eQTLs for multiple genes214. Mendelian randomization can 

further complement these methods by providing inference of causality between the variants 
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(instrumental variable) and the trait (outcome) through an exposure (such as gene expression) with 

the condition that the instrumental variable’s effect on the outcome is exclusively mediated 

through the exposure. The other key assumptions are the independence of association of the 

instrumental variable and the absence of association with confounders.  

 

1.2.3.1 AF eQTLs 

Initial eQTL AF studies used smaller sample sizes or conducted replication of GWAS 

results using a subset of probes or candidate genes. To date, two studies from the Ellinor group 

provided the bulk of insights gained from AF eQTLs. In 2014, they performed a meta-analysis of 

16 AF GWAS with a replication in two cohorts of European and Japanese ancestry and reported 

eQTLs in LA for AF SNPs with GJA1 (connexin 43, the dominant gap junction connexin in the 

heart) and TBX5, while CAND2 was only an eGene in skeletal muscle215. In 2018, the same group 

conducted a transcriptome wide eQTL analysis (profiling SNPs located 250kb from the gene’s 

transcription starting site (TSS)) of LAA from 235 and 30 individuals of European and African 

ancestry respectively216. They found 15,906 eGenes (~66% of tested genes) and 12 eQTL from AF 

GWAS SNPs (with the eGenes PRRX1, SNRNP27, CEP68, FKBP7, KCNN2, FAM13B, CAV1, 

ASAH1, MYOZ1, C11ORF45, TBX5, and SYNE2). Interestingly, while most eQTLs were 

conserved across other tissues, their comparison of AF eQTLs in LAA and right atrial appendages 

(RAA) suggests that the effects of these eQTLs have greater impact in the LAA. Others have 

confirmed the association of MYOZ1 and CAV1 in RAA and post-operative AF217,218. A more 

recent study compared the effects of AF eQTLs and pQTLs195. Interestingly, only 32% of lead 

eQTLs were also pQTLs, while for all SNP-gene pairs, only 8% were common to both. The 

investigators further found that loci with both eQTL and pQTL enriched for SNPs disrupting TSS, 

while those that were eQTLs only tended to disrupt splicing sites or TF biding sites or enhancers 

and pQTL only were enriched for exonic regions. Their trans-QTL analysis further implicated 

NKX2-5 target genes, which has been shown to bind multiple AF loci by others219.  

Together, these studies suggest multiple AF candidate genes, but further validations are 

required such as colocalization of GWAS and eQTL signals, integration of other modalities and 

functional validation in the causal cell-type.  
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1.2.4 Epigenomics 

Defined as above the genome, (epi)genomics encompasses techniques aimed at studying 

the regulatory mechanisms of the genome. DNA is regulated, compacted, and protected by 

histones, together forming the major constituents of the chromatin. Looping around histones 

assembled in octamers (nucleosomes) takes around 150bp of DNA. The density of nucleosomes 

along a given string of DNA largely dictates its propensity for gene expression. Regions sparsely 

populated by nucleosomes (euchromatin), generally located in the center of the nucleus, favor gene 

expression through increased accessibility to transcription factors (TF) DNA binding motifs that 

recruit the necessary machinery to initiate transcription. Conversely, densely packed nucleosomes 

are observed in the heterochromatin, which tends to be associated with the nuclear lamina in 

periphery of nuclei and inhibit gene expression. Histone N-terminal tail modifications most 

frequently occur on lysine and arginine. Acetylation is generally considered an activation mark 

while methylation’s effect can go both ways depending on the site and number of methyl group 

added. Methylation can also directly occur on DNA, generally on cytosine in regions of high GC 

repeats (CpG islands), which is often associated with repression of gene expression.  

The advent of NGS has enabled a surge of high-throughput methods to probe the 

epigenome and decipher its mechanisms (Fig. 9). Most notably, the encyclopedia of DNA 

elements project (ENCODE) lunched in 2003220 and Roadmap Epigenomics Mapping Consortium 

lunched in 2008221 pioneered some of the efforts in epigenomics. As of 2019, there was 9,239 such 

assays from more than 500 tissues and cell-types made publicly available by ENCODE222. Some 

of the most popular methods used to probe the epigenome include chromatin immunoprecipitation 

(ChiP-seq), high-throughput chromosome conformation capture (Hi-C) and assay for transposase-

accessible chromatin with sequencing (ATACseq), which I will briefly detail. 
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Figure 9. The landscape of epigenomic research tools.  

WGBS; whole genome bisulfite sequencing, RRBS; reduced-representation bisulfite sequencing, ChiP-seq; chromatin 

immunoprecipitation sequencing, CUT&RUN; cleavage under targets & release using nuclease, ATACseq; assay for transposase-

accessible chromatin with sequencing, FAIREseq; formaldehyde-assisted isolation of regulatory elements sequencing, DNase-seq; 

DNase I hypersensitive sites sequencing, Hi-C; high-throughput chromosome conformation capture, ChiA-PET; chromatin 

interaction analysis with paired-end tag sequencing. Adapted from Ecker et al.223. 

ChiP-seq is generally used to probe DNA elements bound by histones with specific marks 

such as H3K27ac (active enhancer), H3K27me3 (repression), H3K4me3 (active promoter), or 

transcriptional regulators such as the repressor CTCF. In this process, proteins are first crosslinked 

to the DNA, followed by chromatin fragmentation, immunoprecipitation using antibody for the 

protein of interest, protein digestion and reverse-crosslinking. DNA fragments are then sent for 

NGS and mapped to the genome. More recent methods can facilitate and improve data quality such 

as CUT&RUN224. Used in conjunction with RNAseq, ChiP-seq marks can be correlated with gene 

expression to locate promoters and enhancers. DNA motifs of TF can be inferred from their bound 

DNA and, with RNAseq, used to study their effect on gene regulation.  
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Hi-C is the culmination of chromosome conformation methods (preceded by 3C, 4C and 

5C) aimed at capturing 3D chromosome-chromosome interactions. Genes can be regulated through 

elements hundreds of kilobases away225. This method breaks the linear conception of DNA. 

Linearly distant elements maintained in close 3D proximity by proteins can be sequenced together. 

This is achieved by crosslinking proteins to DNA, followed by restriction enzyme digestion of 

DNA, ligation to form circular chimeric DNA, fragmentation, and sequencing. Because distant 

elements are sequenced together, their split alignment onto the linear genome is depicted as arched 

links. These interactions can often occur within non-coding regions, which is less informative than 

promoter-enhancer interactions. To increase the resolution of this method, promoter capture Hi-C 

(PCHi-C) uses bait probes designed to target promoters which enriches promoter containing 

chimeric DNA fragments225. 

ATACseq captures regions of open chromatin deprived of nucleosomes, generally 

considered to activate gene expression. This method has gained tremendous popularity for its 

lower number of cells (nuclei are used) required and the simplicity of its protocol compared to its 

predecessor DNase-seq226-228. Open chromatin DNA fragments are retrieved using “tagmentation”, 

where adapters are inserted in those regions with a Tn5 transposase followed by amplification and 

sequencing (this method is discussed in greater depth in the single-cell section 1.2.5.3 

snATACseq).  

The combination of these modalities has proven to be a powerful tool, stemming more than 

2,000 publications in 2019 from researchers using ENCODE data222. Visualization of genomic loci 

of interest can easily be browsed online using this combined information with online tools such as 

the UCSC genome browser (http://genome.ucsc.edu). This is especially helpful to make 

predictions on the effect of non-coding SNPs or make selections of candidates for validation.  

1.2.4.1 Insights into AF molecular etiology from the epigenome 

In an epigenomic analysis profiling 7 histone marks in humans, researchers identified 

15,545 enhancers unique to the LA229. These enhancers enriched for motifs related to profibrotic 

SMAD/TGF-β signaling and cardiac TF homeobox genes such as the PITX and NKX2 families. 

Using ChromHMM (a tool modeling histone marks into distinct chromatin functional states), they 

found that most AF SNPs were in quiescent regions, but when situated within actively regulated 

zones, they predominantly intersect the enhancer state (enriched for the H3K27ac mark). Another 

http://genome.ucsc.edu/
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group formulated a scoring scheme to prioritize AF genes using PCHi-C, topologically associated 

domains, atrial RNAseq and eQTLs230. With this strategy they selected PITX2, DHX38, CAV1, 

SLK, TBX5, PRRX1, FAM13B and GJA1 as the strongest candidates at their respective loci. Others 

suggest the ERRg (estrogen related receptor gamma) motif as most enriched at AF loci, which was 

subsequently shown to be involved in calcium transient and contraction rate129. In a tour de force 

study, combining ATACseq, RNAseq and ChiP-seq of NKX2-5 from induced pluripotent stem 

cells derived CM (iPSC-CM) lines, Benaglio et al. provided robust evidence for 

electrophysiological traits modulation by NKX2-5219. Most notably, among the 14 SNPs 

associated to  ECG traits by GWAS that showed allele specific NKX2-5 ChiP-seq signals, two AF 

eQTL loci GNB4129 and CAV1 were further validated by electrophoretic mobility shift assay, 

which confirmed allele specific affinity of NKX2-5 at rs7612445 and rs3807989 respectively. 

Lastly, although not in the context of high throughput epigenomics, altered DNA methylation, 

histone acetylation and filaments acetylation have been reported in AF models with some histone 

deacetylase (HDAC) inhibitors currently in clinical trial showing promising results as therapeutics 

for AF and other CVD176,231-233.  

High-throughput bulk omic analyses remain a relatively young group of technologies 

which continues to evolve at a rapid pace. The next frontier of developments was to transition 

these technologies to single cell resolution. 

1.2.5 Single-cell/nucleus omics 

Building on the success of NGS, developments in microfluidics and combinatorial indexing 

now enable most technologies used in bulk to be used at single cell resolution. There are now 

single cell adaptations of RNAseq, ATACseq, CUT&TAG, Methyl-seq, Hi-C and other NGS 

methods234-238. Moreover, it is now possible to probe multiple modalities at once in the same cell 

or nucleus239-241. Initial publications reported sequencing on a few hundred cells, but since 2015, 

the growth rate of the number of cells analyzed per study has grown astronomically, now reaching 

10s of millions of cells jointly modeled242 (Fig. 10). This is the result of reciprocal advances in 

bioinformatics and combinatorial indexing. Single cell technologies are revealing the previously 

underappreciated cellular heterogeneity of complex tissues. To name a few, this has facilitated 

discoveries of novel cell-types, cell-type specific gene expression signatures and regulatory 
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elements accessibility and TF activity, and condition specific cellular interactions. Together, these 

developments continue to push the boundaries of genomics and biological knowledge.  

 

Figure 10. The growth of single cell datasets.  

Data from Svensson et al.242. 

1.2.5.1 Multiome sample preparation and study design 

Single cell RNAseq (scRNAseq, or single nuclei RNAseq; snRNAseq) is the most widely 

used single cell omic method and is currently most often done using the 10X microfluidic 

solution242. Alternatively, sequential addition of barcodes through a series of cell suspension 

splitting and pooling can be used to lower costs and increase throughput at the expense of increased 

methodological complexity and reduced gene detection sensitivity243. For the scope of this work, 

I will be reviewing aspects of the microfluidic technology focusing on the newly developed 

multiome assay, which entails the paired measurement of RNAseq and ATACseq modalities in 

the same nuclei. From study design to biological insights, the process involves multiple steps; i-

dissociation of tissue and preparation of a nuclei suspension, ii-single nucleus barcoding, iii-library 

preparation and sequencing, and iv-bioinformatic analyses (Fig. 11). I will detail this process 

focusing on some of the key steps and study design choices having the most important 

consequences on the resulting dataset. 
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Figure 11. Single nuclei multiome.  

(top) Schematic representation of sample preparation for the obtention of a nuclei suspension. (bottom) Schematic representation 

of lipid droplet formation in a microfluidic chromium controller and data structure obtained post sequencing. Created with 

BioRender. 

For RNAseq, the choice of using cells or nuclei often depends on the available study 

material. Cells have more mRNA, less intronic RNA and will produce libraries with slightly higher 

complexity than nuclei, but generally yields similar results compared to nuclei244. On the other 

hand, the use of nuclei has gained in adoption for a variety of methodological advantages. While 

cell cultures are generally easy to dissociate into cell suspensions, preservation of cell integrity 

and representation during enzymatic tissue digestion requires a lot of optimization. Nuclei are 

generally easier to isolate, only requiring mechanical dissociation executed at low temperature 

(~4°C), which may also help preserve more fragile cell-types in the data245,246. Single-cell isolation 

also requires fresh tissue, while nuclei can be isolated from snap frozen tissues, broadening its 

range of applications. Moreover, some cells can be too large to fit into lipid droplets such as CM. 

Lastly, some protocols, such as single nuclei ATACseq (snATACseq), require nuclei as starting 

material. Because the multiome application include ATACseq and therefore requires nuclei, I will 

only refer to nuclei in the following steps, but generally they also apply to cells when allowed by 

the technology. Important steps such as reduction of extracellular debris, minimizing extra-nuclear 

RNA, preserving nuclei integrity and reducing nuclei clumps must be optimized during sample 

processing to obtain data of quality245,247.  
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Once a satisfactory nuclear preparation is obtained, DNA transposition is done in bulk and 

nuclei are loaded onto microfluidic channels that will encapsulate into a lipid droplet, a single 

nucleus, a gel bead and the necessary reagents for reverse transcription. Approximately 90% of 

droplets are expected to be empty to reduce the chances of encapsulating two nuclei or more within 

a droplet (doublet or multiplet). New protocols can make use of tagged lipids or antibodies to 

multiplex samples and load considerably higher concentrations of nuclei in a channel while 

allowing downstream deconvolution of doublets248. Multiplexing can help reduce costs or increase 

the number of samples per reaction while maintaining the same number of targeted nuclei. For 

comparison between conditions, more samples may be an attractive choice to increase statistical 

power, while for rare cell-type identification, loading more nuclei per sample could be prioritized. 

Once the droplets are formed, nuclei are lysed to release their RNA and DNA content which is 

captured by the millions of oligonucleotides (oligos) contained in gel beads. For RNAseq 

applications, oligos are composed of a bead-specific barcode to identify specific nuclei, unique 

molecular identifiers (UMI) to identify individual transcripts and a ploy(dT) sequence to capture 

mRNAs. Given the polyA capture strategy, the same limitations apply to those discussed in the 

RNAseq section 1.2.2.1. For the ATACseq application the UMI and poly(dT) sequences are 

exchanged for a sequence complementary to tagmentation adapters. Once the mRNA is converted 

to cDNA, a series of PCR amplifications, size selection and adaptor ligation are done in bulk 

separately for both modalities and sent for sequencing.  

The multiome assay is 3’ sequencing based, mostly suited for gene expression 

quantification, but other technologies allow for full-length or 5’ sequencing247. Detection of 

different isoforms is further enabled by the advent of long read sequencing in single cells249,250. 

Sequencing depth indications may vary depending on the application but a minimum of 20,000 

read pairs per nucleus is generally recommended for RNAseq libraries and 25,000 read pairs per 

nucleus for ATACseq. Up to 90% RNAs may not be captured for sequencing through the processes 

mentioned above (so called dropout events), making single cell datasets very sparse251. Depending 

on the research focus, quantification of rare transcripts may require greater sequencing depth. 

To process and analyze the resulting data, many tools developed for bulk RNAseq and 

ATACseq have been repurposed for single nucleus usage. Bioinformatic pipelines generally 

involve raw data processing (steps leading to the count matrices generation; read alignment, peak 
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calling, empty droplet calling, UMI deduplication and gene/peak quantification), preprocessing 

(filtering, normalization, batch correction and dimensionality reduction), clustering and cell-type 

annotation, and downstream analyses. The downstream analyses are diverse. I will briefly discuss 

the most broadly adopted ones but will emphasize the ones most relevant to this thesis i.e., DGE, 

deconvolution, TF activity and linking open chromatin to gene expression. Of note, up to the 

clustering stage, the multiome RNAseq and ATACseq modalities are generally processed 

independently. Thus, I will review these steps independently.  

1.2.5.2 Processing and analysis of snRNAseq data 

 Raw data processing 

Like bulk sequencing data, single nuclei raw data is generally obtained from the sequencing 

centers in the form of FASTQ files. RNAseq read alignment can be done using 10X Genomics 

software Cell Ranger252 or open source tools such as STARsolo253. Pseudoalignment using kallisto 

| bustools254 is another option, but an unspliced annotation including introns is necessary to 

adequately quantify nuclei data. These tools generally streamline all raw data processing steps. 

After alignment, unique barcodes must be labeled as having captured nuclear RNA or background 

RNA. An attempt to correct barcodes’ PCR and sequencing errors is made, but when this fails to 

make a confident attribution to whitelisted barcodes, it is rejected. To determine if a barcode is 

associated with a nucleus or an empty droplet, a threshold can be set based on the total UMI per 

barcode. Ambiguously classified barcodes can further be filtered by comparing their gene profiles 

to low rank barcodes (few UMI per barcode) profiles which confidently correspond to 

background252. Ranked distribution plots (knee plots) can further inform appropriate threshold 

selection255. Subsequently, further error correction and collapsing of UMIs is done to account for 

PCR duplicates and replication errors. Lastly, the deduplicated UMI reads can be quantified 

against the reference.  

 Preprocessing 

At this stage, operations are mostly performed on the gene by nuclei matrix. Further QC is 

necessary to remove doublets, low quality nuclei and/or to correct for background RNA. Nuclei 

containing a low number of detected genes may be empty droplets or be from dying cells, while 

high mitochondrial count percentage may indicate an incomplete cell lysis or clump. Inspection of 
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the distribution of these variables can often reveal appropriate outlier filtering thresholds. 

Alternatively, metrics such as the median absolute deviations256 or dedicated tools257 can also be 

used to select appropriate filtering approaches. Multiple tools can identify doublets258. A common 

strategy is to create archetypal doublets combing the gene expression profiles from two nuclei 

clusters and score nuclei based on their similarity to these archetypes. Currently scDblFinder 

appears to offer the best performance259. Correction for background RNA is a more difficult task 

which should be carefully evaluated. Every sample preparation contains extra-nuclear RNA 

(which can range from 3% to 35%260) enriched for highly expressed genes that will be contributing 

to each nucleus transcriptome. Various tools such as SoupX261, DecontX262 and CellBender263 

offer solutions to correct for the background RNA contribution in the count matrix, which can be 

estimated from barcodes flagged as background. In some cases, background correction may help 

identify rarer cell-types264, but it can also introduce systematic biases which can influence 

downstream analyses260. Therefore, it should be used with caution. Usually, it is advisable to use 

initial filters and corrections of low stringency to avoid losing information as outliers can often be 

later identified through clustering. Lastly, to account for variations in RNA content and sequencing 

depths in each nucleus and enable their comparison, a variety of normalization schemes have been 

proposed. Conveniently, a simple scaled log transformation has been shown to provide equal or 

better results than more sophisticated alternatives265. 

After count matrix QC and normalization, nuclei clustering and annotation are performed. 

These processes are streamlined using toolkits such as Seurat266 (R) or Scanpy267 (Python). While 

multiplexing samples and splitting them across microfluidic chip channels is an attractive new 

option to reduce batch effect, to date, samples and channels remain confounded variables in most 

studies. A balance must therefore be struck between the removal of batch effects and the 

preservation biological variance. This spurred the development of numerous batch effect 

correction methods such as scVI268 and Harmony269 with application specific performance270. 

Clustering of nuclei in distinct groups assumes the presence of distinct cell populations. If instead 

a continuum is expected, a trajectory analysis is likely more appropriate. Dimensionality reduction 

using PCA on most informative genes usually precludes these steps. The number of informative 

genes and PCs can impact downstream results and should be optimized234. Commonly, a k-nearest 

neighbor graph is built, where edges are drawn between nearby nuclei in the PC space. Clusters 

(or communities) of user-defined resolution are then built using modularity optimization methods 
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such as the Louvain algorithm where clusters of increasing size are iteratively built by aggregating 

nearby groups of nuclei. With labeled clusters, cell-type annotation can be accomplished through 

an increasingly accelerated process. This is due to the growing number of expert curated datasets, 

now allowing for accurate cell-type predictions using tools such as Azimuth266 or scArches271. 

Finally, visualization of the resulting clusters is facilitated by methods such as uniform manifold 

approximation and projection (UMAP)272 and t-distributed stochastic neighbor embedding (t-

SNE)273 which attempt to further reduce the PC space to a human readable 2 or 3 dimensions. 

While informative, these methods distort the multidimensional space to accommodate lower 

dimensions and should not be relied upon for results interpretation.  

 Downstream analyses 

Options for downstream analyses are expanding rapidly with the growing number of 

modalities and datasets that can be co-leveraged. Of special interest to the work outlined here are 

single nuclei DGE and deconvolution methods, but cell-cell communication, differential cell-type 

composition, gene regulatory network as well as other types of analyses234 are other options that 

can be contemplated by investigators.  

The appropriate model to use for DGE analyses in snRNAseq remains a hot topic274-277. 

While it is generally less problematic to compare gene expression between cell-types (because 

these differences are usually large), the smaller differences observed between conditions can be 

more difficult to capture. The widely used Wilcoxon rank-sum test is not appropriate as nuclei 

from the same sample are not independent. To account for this bias, nuclei-level models such as 

MAST attempt to model dropouts while allowing the inclusion of other covariates such as sex278. 

Alternatively, models used for bulk RNAseq can be used by aggregating counts by sample and 

cell-type (so called pseudobulk). Overall, pseudobulk appears to perform well in most cases with 

the added benefit of being fast and easy to implement279. Pathway analyses are a common 

subsequent analysis done on the DEG list, mostly using similar tools as for bulk RNAseq (see the 

RNAseq section 1.2.2.1).  

The growth of snRNAseq illuminated cell-type specific gene signatures. These signatures 

can be used to estimate cell-type proportions of millions of publicly available bulk RNAseq 

samples144. So called deconvolution tools such as CIBERSORTx280 and MuSiC281 show 

consistently good results across a broad range of conditions282. While these methods work well 
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when a few cell-types with distinct signatures are included, they have poor performance to predict 

the abundance of cell states that are more correlated. A few tools283,284 have attempted to resolve 

this issue, but this remains an area requiring more research.  

1.2.5.3 snATACseq 

While snRNAseq provides meaningful cell-type specific gene expression information, it 

fails to capture the intricacies of non-coding regulatory elements, where most GWAS SNPs are 

located. snATACseq has now enabled the discovery of millions of cell-type specific open 

chromatin regions (hereafter simply referred as peaks), across the human body (and other 

species285,286) and developmental stages287. Many steps within snATACseq bioinformatic pipelines 

are conceptually akin to snRNAseq such as the read alignment, batch correction, clustering and 

differential expression. However, there are key differences to understand such as the usage of 

fixed-width genomic bins vs peak calling, differences in QC metrics, different usage of 

dimensionality reduction methods and different downstream applications such as TF activity 

inferences.  

Cell Ranger, ArchR288 and Signac289 are commonly used tools streamlining the analysis of 

snATACseq. Contrarily to gene expression, what defines a feature is less apparent. Two main 

strategies are employed to define features, either establishing fixed-width genomic bins (~500bp) 

or selecting specific genomic regions of variable widths that show signal to noise enrichment 

(widths can range from a few thousand bp to ~200bp). Each strategy has its own set of advantages. 

Using fixed-width bins facilitates their comparison, integration across samples and can speed up 

processing288, while using variable-width peaks creates less features, less sparsity and can often be 

used similarly as the gene by nuclei matrix. Once the features are defined, fragments (DNA 

sequences corresponding to transpositions) are quantified against the newly created reference to 

create the peak by nuclei matrix. For nuclei QC, different metrics are used such as the ratio of 

mitochondrial fragment, fragment falling within peaks vs the rest of the genome, the enrichment 

of fragments around TSS (TSS enrichment score) and the presence of nucleosome periodicity.  

Once a first filter is performed, dimensionality reduction is executed. Given that there are 

only two copies of DNA that can produce transposed fragments as opposed to potentially 

thousands of RNA copies, snATACseq is even more sparse than snRNAseq. For this reason, 

alternative methods that came from text search research such as latent semantic indexing 
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(implemented in ArchR and Signac) can better summarize peak information by importance and 

outperforms PCA290. Then, clustering can be done similarly to snRNAseq. Post-clustering, a 

second peak calling step performed on a per-cluster or cell-type basis can help identify peaks 

specific to less abundant cell-types289. To annotate nuclei, a common strategy is to infer gene 

expression by summing all counts overlapping each gene291, but in the case of the multiome assay, 

the paired gene expression modality can conveniently be used.  

Lastly, snATACseq offers different downstream analysis possibilities such as the inference 

of TF activities through enrichment of their motifs. This can provide insight as to which TF may 

be a key regulator of cell-type identity or modulator of pathological remodeling. From databases 

such as JASPAR292 and CisBP293, curated motifs derived from ChiP-seq experiments can be 

queried and quantified across peaks. Many tools can then compute motif enrichments226, either 

through contrasting groups of cells by comparing motifs occurrences in peaks with different 

accessibilities across cell-types or conditions, or at the nuclei level by computing a motif activity 

score for each nucleus294.  

1.2.5.4 Linking open chromatin to gene expression  

Paired measurements of open chromatin and gene expression can serve as a bridge295 to 

match nuclei of unimodal snATACseq and snRNAseq datasets or it can serve to improve gene 

regulatory network construction296,297. Of particular significance here, a direct correlation of peak 

accessibility and gene expression can be obtained. This provides an unmatched resolution of 

potential peak effects, which can complement other lines of evidence such as eQTLs to strengthen 

the selection of GWAS candidate genes associated to non-coding SNPs.  

Given the recent development of the multiome assay, only a few methods to model such 

interactions have been proposed288,298,299. ArchR relies purely on peak-gene correlations to 

establish links. Signac attempts to correct for Tn5 insertion biases by creating a null distribution 

of trans-peaks matching with GC content and coverage. This method was proposed by Ma et al., 

which they justified by showing that correcting for these variables resulted in a tighter peak-gene 

distance distribution299. Another method called scREG derives a cis-regulatory scores within each 

cell-type by weighting counts of gene-peak pairs with distance298. These scores were better 

predictors of CD14 positive monocyte eQTLs than a simple correlation metric.  
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Inherent limitations in evaluating the performance of these methods include the paucity of 

ground truth and multiome datasets. For instance, eQTL signals do not guarantee their regulatory 

potential because of LD. Another limitation is the inherent sparsity of the matrices, which creates 

very weak correlation coefficients (very few significant links exceed 0.1)299. To circumvent this, 

some investigators have proposed to impute missing values300 or to create “metacells”301,302 

(conceptually analogous to pseudobulk but with smaller communities of ~50-200 cells). 

Furthermore, it remains an open question whether such links should be evaluated across or within 

cell-types. More work is needed to establish sound statistical frameworks for such analyses.  

1.2.5.5 AF clues from single-cell omics  

The field of single cell omics remains in its infancy with relatively few studies focused on 

AF303-305. Most of what has been discovered by single cell omic studies with significance for AF 

comes from research focused on describing the cardiac cellular landscape287,306-308, heart 

development309, heart failure310, myocardial infarction311,312 and cardiomyopathies313-315. 

 The cardiac cellular landscape  

Most studies identify the following cardiac cells; CM, fibroblasts, endothelial cells, 

endocardial cells, pericytes, smooth muscle cells, myeloid cells, lymphoid cells, adipocytes, 

neuronal cells and mesothelial cells (epicardium). In a landmark 2020 study, Litviňuková et al. 

provided the most comprehensive assessment of cardiac cells to date, profiling six regions of the 

human heart in 14 individuals306. Notably, the atria appear to have less CM, more fibroblasts and 

more neuronal cells than ventricles (30% vs 49% for CM, 24% vs 16% for fibroblasts, 17% vs 

21% for mural cells, 12% vs 7.8% for endothelial cells, 10% vs 5% for immune cells and 2.3% vs 

0.6% for neuronal cells in the atria vs ventricular regions respectively). Novel atrial marker genes 

were identified, including ALDH1A2, ROR2 and SYNPR. While only a few studies have profiled 

atrial cells, there appears to be less CM heterogeneity in the atria compared to ventricles as judged 

by the number of DEG and their fold changes across the reported CM states306. Conversely, a study 

in Pitx2 mutant mice showed important CM heterogeneity in the PV, within which a CM state 

showed pacemaker gene expression (Tbx3, Tbx18, and Shox2)304.  The heterogeneity of fibroblasts 

was shown to be more complex than previously expected, while remaining relatively constant 

across the different chambers306. Commonly reported fibroblasts states include resident (quiescent) 

fibroblasts marked by DCN, pro-fibrotic/activated fibroblasts marked by the expression of POSTN 
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and TNC, pro-inflammatory fibroblasts marked by the expression of CCL2 and THBS1, and other 

states (PCOLCE2+, SERPINE1+)306,310,314. Annotated neural cell may also contain some previously 

unappreciated cardiac glial cells316. These cells were shown to interact with pacemaker cells in the 

SN308 and may be implicated in post-ablation AF recurrences317.    

 Disease cell states 

Under multiple conditions (myocardial infarction and cardiomyopathies),  a similar profile 

of stressed ventricular CM have been reportedly more prevalent (also found in normal hearts306), 

which is marked by ANKRD1 (increased ankyrin repeat domain 1), XIRP2 (xin actin binding repeat 

containing 2), NPPA and NPPB (DEG in multiple bulk AF RNAseq176) in mice and 

humans310,312,314,318. AnkRD1 myocardial overexpression in mice was shown to induce sino-atrial 

developmental defects with progressive atrial dilation and loss of contractility319. XIRP2 rare 

variants were found in patients with Brugada Syndrome and showed impaired conduction in knock 

out (KO) mice320. Interestingly, in dilated cardiomyopathy patients, while the CM proportions 

were reduced, there was no changes for fibroblast proportions despite increased fibrosis, 

suggesting that fibrosis may be mediated by a transition to a pro-fibrotic state rather than 

proliferation of fibroblasts314. 

 Cell-type specific gene prioritization for AF GWAS loci 

Using snATACseq, it is now possible to infer each cell-type’s genetic contribution to a 

phenotype using cell-type specific peaks and overlapping GWAS SNPs. In 2021, Hocker et al. 

performed unimodal snRNAseq and snATACseq in the 4 cardiac chambers307. In comparing all 

atrial and ventricular nuclei, they noted that most peak accessibility differences occurred in CM, 

with enrichments for the TF motifs of TBX5 and GATA4 in atrial CMs. While there was a 

considerable overlap between atrial and ventricular peaks, more than 16,000 peaks were shown to 

differ in accessibility307. Furthermore, it was shown that AF GWAS loci are predominantly found 

in CM open chromatin regions305,307 and when compared against ventricular or fetal CM the 

strongest enrichment was found in adult atrial CM287. In line with rare mutations found in familial 

AF patients, this confirms that CM are likely to be the main driver of AF genetic risk. 

To prioritize AF SNPs, Hocker et al. fine mapped 111 AF GWAS loci and selected SNPs 

overlapping CM peaks. Among 38 fine-mapped SNPs found to overlap CM peaks, the 

investigators showed that a KCNH2 enhancer modulated the action potential duration in human 
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pluripotent stem cell derived CM307. Another group suggested a novel candidate gene selection 

method leveraging single nuclei annotations305. In this process, a gene posterior probability score 

is derived from the sum of its associated weighted fine mapped SNPs (weights attributed by SNP 

position within the gene structures, distance to TSS and evidence of peak regulation on the target 

gene). Using ventricular CM peaks to prioritize AF genes, they identified 46 genes with strong 

causal probability including known ones such as TBX5, PITX2, but also novel ones implicated in 

processes such as ephrin signaling and MAPK signaling.  

Together, these studies exemplify how, in a narrow time frame, single cell omics can fill 

important gaps in knowledge. Much can still be gained from increasing the relatively few numbers 

of atrial samples currently available and a comprehensive single cell omics study in AF patients 

has yet to be done. Furthermore, profiling atrial tissue using the multiome assay may improve 

candidate gene selection compared to unimodal ATACseq and RNAseq matching predictions.  
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1.3  Research questions and thesis outline 

The etiology of AF remains incompletely understood. Genetics provides causal 

associations directly in humans but suffers from the important difficulty to identify the effector 

genes as most GWAS SNPs are in non-coding regions. In addition, LD complexifies the 

identification of the causal SNP(s). Using a diversified omic approach can provide additional 

information that may allow the prioritization of SNPs through regulatory elements. Moreover, 

multiomic information resolved at the single cell level can deconvolute bulk signals and enhance 

our understanding of genomic regulatory processes involved in AF.  

Hypothesis: Integrative multiomic approaches with single cell resolution can expand knowledge 

on AF etiology and identify novel therapeutic targets. 

Principal goal: Identify novel molecular and cellular determinants of AF. 

Specific objectives: 

• Chapter 2: Identify DEG in early-stage AF canine models (Published321). My contribution 

to this work was to data generation:0%, data analysis:80%, redaction:50%. 

• Chapter 3: Optimize statistical models used to infer regulatory potential of open chromatin 

regions using the recently developed single nuclei multiome assay (Published322). My 

contribution to this work was to data generation:0% (only public data was used), data 

analysis:100%, redaction:60%.  

• Chapter 4: Identify AF GWAS candidate genes and the genomic regulatory mechanism 

linking them to AF SNP using eQTL and single nuclei multiome (In review at: iScience). 

My contribution to this work was to data generation:75%, data analysis:90%, 

redaction:60%. 

• Chapter 5: Define robust AF DEGs and identify their cellular origins and TF regulators 

using a comprehensive multiomic characterization the LAA cellular landscape (in 

preparation). My contribution to this work was to data generation:100%, data 

analysis:100%, redaction:95%. 

Expected impact: 
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• Identify novel genes, pathways and TFs implicated in AF. 

• Improve the methodology involved in multiome data analysis which may benefit other 

areas of research.  

• Delineate cell-type specific gene circuitry to inform future validation studies.  
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2.1 ABSTRACT 

Background: Atrial fibrillation (AF), the most common sustained arrhythmia, is associated with 

increased morbidity, mortality, and health-care costs. AF develops over many years and is often 

related to substantial atrial structural and electrophysiological remodeling. AF may lack symptoms 

at onset and atrial biopsy samples are generally obtained in subjects with advanced disease, so it 

is difficult to study earlier-stage pathophysiology in humans.  

Methods: Here, we characterized comprehensively the transcriptomic (miRNAseq and 

mRNAseq) changes in the left atria of two robust canine AF-models after one week of electrically-

maintained AF, without or with ventricular rate-control via atrioventricular node-

ablation/ventricular pacing.  

Results: Our RNA-sequencing experiments identified thousands of genes that are differentially 

expressed, including a majority that have never before been implicated in AF. Gene-set enrichment 

analyses highlighted known (e.g. extracellular matrix structure organization) but also many novel 

pathways (e.g. muscle structure development, striated muscle cell differentiation) that may play a 

role in tissue remodeling and/or cellular trans-differentiation. Of interest, we found dysregulation 

of a cluster of non-coding RNAs, including many microRNAs but also the MEG3 long non-coding 

RNA orthologue, located in the syntenic region of the imprinted human DLK1-DIO3 locus. 

Interestingly (in the light of other recent observations), our analysis identified gene-targets of 

differentially expressed microRNAs at the DLK1-DIO3 locus implicating glutamate signaling in 

AF pathophysiology. 

Conclusions: Our results capture molecular events that occur at an early stage of disease 

development using well-characterized animal models, and may therefore inform future studies that 

aim to further dissect the causes of AF in humans.  

Keywords: Atrial fibrillation, Atrial remodeling, Canine models, Transcriptomics, miRNA 

targets, Glutamate signaling, DLK1-DIO3 locus, MEG3. 
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2.2 INTRODUCTION 

Atrial fibrillation (AF) is the most common sustained arrhythmia, with an estimated 

lifetime risk of 22%-26% and association with increased morbidity and mortality323. Despite 

advances in antiarrhythmic therapies, their suboptimal efficacy and adverse effects have limited 

their use324. Therefore, there is a need to further characterize fundamental arrhythmia mechanisms 

in order to discover new therapeutic targets324. Although AF is known to be a final common 

endpoint of atrial remodeling resulting from a variety of heart diseases, it can also be, in turn, a 

cause of remodeling. This vicious cycle is called “AF begets AF”325 and explains the progressive 

nature of this arrhythmia and the complexity of its management.  

Atrial remodeling is characterized by ion channel dysfunction, Ca2+ handling 

abnormalities, and structural changes, which result in AF induction and maintenance326,327. Heart 

disease, and even rapid atrial activity itself, cause the development of atrial fibrosis, which is 

a hallmark of structural remodeling. The degree of fibrosis is positively correlated with the 

persistence of AF328. Atrial cardiomyocytes subjected to rapid activation release factors that induce 

fibroblast-to-myofibroblast differentiation that leads to increased collagen synthesis329.  

Any arrhythmia causing a rapid ventricular rate, including AF, is a well-recognized inducer 

of ventricular dysfunction, so-called “arrhythmia-induced cardiomyopathy”330.  Heart failure 

enhances atrial stretch and sympathetic tone, making AF more resistant to rate- or rhythm-control 

treatments331. AF promotion results from the rapid atrial rate, but rapid ventricular rates due to 

inadequate rate-control also promote AF-related atrial remodeling with a different profile from the 

remodeling produced by rapid atrial rate alone332. Radiofrequency atrioventricular node ablation 

(AVB) with right ventricular pacing is a nonpharmacological strategy for rate control that can 

improve symptoms and outcomes333.  

Our previous work in canine AF models showed that maintaining AF for one week by rapid 

atrial pacing activates fibroblasts, collagen gene expression and cardiomyocyte ion channel 

changes, without yet causing fibrosis334. Continued electrical maintenance of AF for 3 weeks 

produces fibrosis, but electrically-maintained AF with ventricular rate control through AVB 

produces less profibrillatory remodeling than 3 weeks of AF alone332. However, how AF with and 

without AVB impact atrial remodeling at the molecular level has not yet been assessed 

comprehensively. To answer this question, we took advantage of our well-characterized AF dog 
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models and performed RNA-sequencing (RNA-seq) of cardiomyocyte-enriched atrial samples 

after one week to capture the molecular actors of atrial remodeling. In comparison with control 

(CTL) dogs, we found thousands of mRNAs, long non-coding RNA (lncRNA) and microRNA 

(miRNA) that are differentially expressed (DE) in the atria of the canine AF models. Pathway 

analyses of the transcriptomic data highlighted known biological processes, but also potential 

novel modulators of arrhythmia initiation which may shed new light on our understanding of AF 

in humans. 

2.3 METHODS 

All results and R code are available at https://github.com/lebf3/DogAF. 

2.3.1 Canine atrial fibrillation model 

A total of 18 adult mongrel dogs of either sex, weighing 18- 32 kg, were obtained from 

LAKA Inc and randomly assigned to control (CTL) group (n=6) and two canine AF-models 

(n=6/group) (Supplemental Table I). We selected 6 animals per group based on previously 

published RNAseq studies and our previous experiments with these models. Further, the number 

of DE genes identified in our analyses (post hoc) indicates that this sample size is sufficient to 

capture the main transcriptional changes that occur in the atrium of these dog models. Animals 

were handled in accordance with the “Guide for the Care and Use of Laboratory Animals” 

established by the National Institutes of Health as approved by the Montreal Heart Institute Ethics 

Committee (2016-47-01, 2019-47-03 for control dogs, 2015,47-01, 2018.47.12 for AF dogs). 

To induce AF, animals were subjected to atrial tachypacing without (AF)335 and with 

(AF+AVB)336 atrioventricular-node ablation under 0.07 mg/kg acepromazine (IM), 5.3 mg/kg 

ketamine (IV), and 0.25 mg/kg diazepam (IV), and 1.5% isoflurane anesthesia. In the AF group, a 

bipolar pacing lead with fluoroscopic guidance was placed in the right atrial appendage (RAA). In 

the AF+AVB group, pacing leads were inserted into the RAA and right ventricular apex. Pacing 

leads were connected to a subcutaneous pacemaker implanted in the neck (right side). In the 

AF+AVB group, radiofrequency catheter ablation was used to create AF+AVB. For this purpose, 

a quadripolar catheter with fluoroscopic guidance was placed across the tricuspid valve via the 

right femoral vein. Radiofrequency energy was then used to perform ablation when action potential 

at the His bundle was detected. Twenty-four to seventy-two hours after surgery, dogs in the AF 

https://github.com/lebf3/DogAF
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group were subjected to AF-maintaining atrial tachypacing at 600 bpm for seven days. In the 

AF+AVB group, RA and right ventricle were paced at 600 and 80 bpm, respectively. In animals 

of the CTL group, no pacemaker was inserted. No adverse event was recorded and no dog was 

excluded. 

2.3.2 Enrichment of dog atrial cardiomyocytes 

Cardiomyocytes were enriched from the left atrium (LA) with enzymatic digestion through 

the coronary artery-perfused Langendorff system, as previously described337. Briefly, dogs were 

anesthetized with 2 mg/kg morphine (IV) and 120 mg/kg alpha-chloralose and mechanically 

ventilated. Hearts were aseptically and quickly removed after intra-atrial injection of 10,000 U 

heparin and placed in Tyrode’s solution containing 136 mM NaCl, 5.4 mM KCl, 2 mM CaCl2, 1 

mM MgCl2, 10 mM dextrose, 5 mM HEPES, 0.33 NaH2PO4 (pH was adjusted to 7.3 with NaOH). 

The left coronary artery of the isolated heart was cannulated, and the LA was dissected free and 

perfused with 100% oxygenated Tyrode’s solution (37°C, 1.8 mM Ca2+). The arterial branches 

were ligated to have a leak-free system, and LA tissues were perfused with Ca2+-free Tyrode’s 

solution for ~10 minutes, followed by ~1-hour perfusion with ~0.45 mg/mL collagenase (CLSII, 

Worthington, Lakewood, NJ) and 0.1% bovine serum albumin (Sigma–Aldrich, Oakville, ON) in 

Ca2+-free Tyrode’s solution for enzyme digestion. Digested tissue was removed from the cannula 

and cut into small pieces, and atrial cardiomyocytes were harvested. 

2.3.3 RNA-seq/miRNA-seq 

2.3.3.1 Library preparation and sequencing 

mRNA and miRNA libraries were prepared at Genome Québec. mRNA libraries were 

made with the NEBNext_dual kit (rRNA-depleted stranded) and sequenced on NovaSeq 6000 S2 

PE100 Illumina platform generating 32-123M Paired-end reads per sample. miRNA libraries were 

prepared with TruSeq smRNA and sequenced on the HiSeq 4000 SR50 Illumina platform 

generating 10-12M reads per sample.   

Bioinformatic processing and DE analysis 

The complete analysis can be found at https://github.com/lebf3/Dog_AF_transcriptomic. 

Briefly, mRNA reads were pseudomapped on reference transcriptome CanFam3.1.98 with 

https://github.com/lebf3/Dog_AF_transcriptomic
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Kallisto156 with the options quant -t 5 -b 100 and the rest as default.  We aggregated transcripts by 

genes with tximport338 and quantified with DESeq2339. Genes with 0 reads in more than 12 samples 

were removed. Shrunken log2 transformed expression corrected for library size, with and without 

fibroblast fraction as a covariate (within DEseq2’s model) were then analyzed for DE with Wald 

test for all pairwise comparisons of CTL, AF and AF+AVB and likelihood ratio test for total assay 

DE. We did not adjust our differential gene expression analyses for biological sex because no 

genes where DE between female and male dogs in our experiment. We plotted the PCA with 

fibroblast fraction as a covariate from log2 transformed expression values corrected with 

Limma’s removeBatchEffect() function340 for visualization of fibroblast effect on the top 1000 

most variable genes. We then compared sets of GENEIDs found to be up (L2FC > 0 & p < 0.01) 

or down (L2FC < 0 & p < 0.01) in all possible contrasts.  

For miRNAs, we trimmed reads using fastp341 with default settings and aligned them to 

CanFam3.1.98 genome with STAR v2.7.1a154 according to ENCODE protocol342. DEseq2 DE 

analysis was then conducted with the same parameters as described above for mRNAs. 

2.3.3.2 Deconvolution of RNA-seq data 

To account for potential tissue heterogeneity, we used a murine atrial gene signature matrix 

described in Donovan et al.343 and our matrix of gene expression in Fragments Per Kilobase of 

exon model per Million reads mapped (FPKM) in CIBERSORTx online tool344. We then 

performed nonparametric Wilcoxon test on all possible comparisons for fibroblast fraction with a 

statistical significance threshold of p < 0.05. 

2.3.3.3 Gene set enrichment analyses 

For each gene sets described above, we performed hypergeometric testing against the 

human Gene Ontology (GO) Biological Processes (BP) from Molecular Signatures Database v7.1 

with the HypeR package. 

2.3.3.4 miRNA target prediction 

For DE miRNA present in the 5 most cited miRNA databases (DIANA, Miranda, PicTar, 

TargetScan, and miRDB), we defined genes as targets if they were: i-annotated with a human 

homolog in the ensemble database, ii-predicted targets by at least 3 out of 5 databases queried with 

the MiRNAtap package, iii-DE (mRNA FDR < 0.01), iv-inversely correlated (Pearson's r<-0.5) 
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log2 expression, corrected for the fibroblast fraction (expression values corrected with Limma's 

removeBatchEffect() function). We then performed a GSEA with the remaining 82 predicted 

targets of the miRNA located on the syntenic region of the Dlk1-Dio3 locus (CanFam3.1 

Chr8:68961744-69696779) as described above. 

2.3.3.5 RNA-seq and miRNA-seq DE genes comparison between human AF patients 

and canine AF models 

DE genes in our canine AF models with annotated human orthologues in the ENSEMBL 

database were compared to a meta-analysis of miRNA DE in human AF and a large RNAseq study 

on left atrial appendages obtained from 261 patients undergoing valve surgery216,345. Precursors of 

the human miRNAs listed in Shen et al. Table S8 (n= 53, 21 upregulated and 32 downregulated)25 

were retrieved with the R package miRBaseConverter and then compared across species. Because 

only 5 miRNA were found to overlap with human DE miRNA, only mRNA genes found to be DE 

in human and our canine AF models are represented as an Upset plot. The counts for human mRNA 

data were downloaded from GEO database (GSE69890). DE testing was conducted as described 

above for the 3 groups; no AF (CTL, n=50), AF in AF rhythm (AF, n=130), and AF in sinus 

rhythm (AF.SR, n=81), with inclusion of sex as a covariate. 

2.3.3.6 Mitochondrial genes DE in canine AF models 

The human MitoCarta3.0346 database was queried for genes with mitochondrial localization 

in the heart (n=539). We represented DE genes with likelihood ratio test FDR<0.01 from that list 

as volcano plots. 

2.3.4 Proteomics 

Dog cardiomyocytes were lysed by sonication, reduced and alkylated. Protein was 

precipitated, resuspended, quantified and subjected to tryptic digest. Peptides (500 ng) were 

analyzed by reverse phase nano-HPLC coupled to a Bruker maXis II mass spectrometer (positive 

mode, mass range 150 - 2200 m/z, collision induced dissociation of top 20 precursors). LC-MS/MS 

data were analyzed for protein identification and label-free quantification using MaxQuant347 

(1.6.1.0) against the public database UniProt with taxonomy Canis lupus familiaris and common 

contaminants (downloaded on 01.08.2019, 29809 sequences) with carbamidomethylation on Cys 

as fixed and oxidation on Met as variable modification with decoy database search included (mass 
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tolerance 0.006 Da for precursor, 80 ppm for product ions; 1 % PSM and protein FDR,  match 

between runs enabled, minimum of 2 ratio counts of quantified razor and unique peptides).  

2.3.4.1 DE analysis and correlation 

Proteins with > 3 missing values per treatment were removed. The remaining missing 

intensities were replaced with random values taken from the Gaussian distribution centered around 

a minimal value from the 10th quantile with the DEP package’s Minprob function, to simulate a 

relative label-free quantification (LFQ) value for those low abundant proteins. Two-sample t-tests 

with subsequent multiple testing correction by FDR were used to identify DE proteins (p<0.01) 

with the fibroblast fraction as covariate using the Limma package.  

Because proteomic processing does not always converge to a single protein, only 755 genes 

out of the 1029 in the proteomic matrix were correlated to their corresponding RNA-seq data. We 

compared overlapping genes’ mean log2 transformed expression in proteomic and RNA-seq. The 

distribution of mean RNA-seq expression of the 755 overlapping genes was then compared to the 

full mean RNA-seq gene expression values. 

2.4 RESULTS 

2.4.1 RNA-sequencing of cardiomyocyte-enriched atrial samples from canine 

AF models 

We analyzed data from three groups of six dogs. The first group (CTL) was the 

control group without atrioventricular ablation (AVB) nor pacemaker, in the second group (AF), 

right atrial-tachypacing at 600 beats per minute (b.p.m.) was used to maintain AF electrically for 

one week, and the third group (AF+AVB) included dogs with electrically-maintained AF for one 

week in the presence of AVB and ventricular pacing at 80 b.p.m. to control the ventricular rate. 

We reasoned that transcriptomic profiling of atria from these animals should allow us to 

discover the molecular changes that occur over the first week after the onset of AF, and play a role 

in the development of the tissue remodeling accompanying the transition from paroxysmal to 

persistent AF.   

Initial analysis of bulk RNA-seq data hinted at some heterogeneity of cellular composition 

across samples. Therefore, we estimated the fraction of the major cell-types in each sample using 
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an in-silico deconvolution technique implemented in CIBERSORTx (Fig. 1A)344. Because of the 

induced tissue remodeling due to the AF treatments, we found that both AF and AF+AVB dogs 

had more fibroblasts in their atria than CTL animals (Fig. 1B). To emphasize the transcriptional 

differences between conditions that are not a result of variable cellular composition, we included 

the fibroblast fraction as a covariate in all subsequent DE analyses. Correction for this confounding 

variable reduced inter-group variability (Fig. 1C-D).    

2.4.2 Proteomic analysis largely confirms the transcriptomic results 

To validate our RNA-seq results, we took advantage of mass spectrometry (MS)-based 

protein quantification results from the same 18 dog atrial cardiomyocyte-enriched cell extractions 

that were generated in a parallel study (detailed proteomic results will be presented elsewhere). 

After stringent quality control, we obtained relative quantification for 755 proteins. For these 

genes, the relative RNA and protein levels were strongly correlated (Pearson’s r=0.49, P=1.57x10-

46) (Fig. 2A). Many of the genes that are well-correlated encode abundant cardiomyocyte proteins, 

such as titin (TTN), myosin light chain-4 (MYL4), desmin (DES), and tropomyosin-1 (TPM1). We 

found that RNA-seq could profile transcripts with a wider range of expression profiles, whereas 

MS-based proteomics preferentially captured proteins whose genes are expressed at high levels. 

(Fig.  2B).  

2.4.3 Transcriptomic changes in cardiomyocyte-enriched atrial samples 

Pairwise comparisons of gene expression levels between the three groups of dogs identified 

434, 5971, and 7867 genes that are DE (false discovery rate (FDR) <0.01) in atrial cardiomyocyte-

rich fractions in AFvsCTL, AF+AVBvsCTL, and AFvsAF+AVB, respectively (Fig.  3A-B). All 

differential gene expression level results are available in Supplemental Table II 

and https://github.com/lebf3/DogAF). Many genes previously implicated in AF are dysregulated 

in both AF and AF+AVB dogs when compared to controls, thus validating the experimental 

design. This includes FHL1 involved in myofilament regulation348, SORBS2 involved in 

intercalated disc gap junction regulation349, and KCNA5, which regulates atrial action potential 

repolarization350. Previous studies have established an important role for mitochondrial 

dysfunction in the etiology of AF346. Accordingly, we identified 54 genes that encode 

mitochondrial proteins that are DE in our AF canine models (Supplemental Figure I). In particular 

in the AF+AVB group, we noted the up-regulation of two key beta-oxidation genes (CPT1A and 
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ACADL) and the down-regulation of the electron transport chain genes COX17 and NDUFA8. 

However, our data also implicates genes not previously recognized to be involved in AF, such as 

leukocyte receptor cluster member-8 (LENG8), transcription elongation regulator-1 (TCERG1), 

ligand dependent nuclear receptor corepressor (LCOR), formin-binding protein-4 (FNBP4), and 

ENSCAFG00000049959 (orthologue of the lncRNA MEG3)(Fig.  3A, Supplemental Table III, 

and https://github.com/lebf3/DogAF).  

To understand what pathways are modulated in the atria of these canine AF models, we 

performed gene set enrichment analyses (GSEAs) on the DE genes (Fig. 3C and Supplemental 

Table IV). In AFvsCTL, we noted an up-regulation of genes associated with profibrotic pathways 

(e.g. extracellular structure organization, biological adhesion, response to wounding) and a down-

regulation of genes implicated in angiogenesis, such as blood vessel morphogenesis. Genes 

implicated in muscle biology were up-regulated in the AF+AVBvsCTL analysis (e.g. muscle 

structure development, striated muscle cell differentiation) whereas the same comparison 

implicated down-regulated genes involved in ion transport and signaling pathways (e.g. sensory 

perception). We confirmed that this enrichment was not due to a smaller fraction of cardiac neurons 

found in the atria of AF+AVB dogs (Kruskal-Wallis’ P=0.32). Because of the large overlap in 

genes that are down-regulated in AF+AVBvsCTL and up-regulated in AFvsAF+AVB (Fig. 3B), 

we identified similar pathways in the GSEA for these two comparisons (in Fig. 3C, compare 

AF+AVBvsCTL and AFvsAF+AVB). Finally, genes that were down-regulated in the 

AFvsAF+AVB analysis implicated genes with more generic functions in gene expression and 

chromatin modifications, such as the histone-lysine N-methyltransferase SETD5 and the DNA 

methyltransferase TET2. Dysregulation of the expression of these chromatin-related genes and 

pathways is consistent with the extensive transcriptomic changes observed in the atria of AF+AVB 

dogs, in sheep models of AF (Supplemental Figure II) as well as in AF patients229,351.  

2.4.4 Dysregulation of miRNA expression 

Because miRNA play important roles in AF biology352 but are not detected in standard 

RNA-seq protocols, we performed in parallel miRNA-seq on the same dog samples. We found 31, 

19 and 21 miRNA that are DE (FDR <0.01) in AFvsCTL, AF+AVBvsCTL and AFvsAF+AVB, 

respectively (Fig. 4A, Supplemental Table II). When comparing miRNA expression in the two AF 

models, MIR185 on the dog chromosome 26 was the most DE miRNA with strong up-regulation 
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in the atria of AF animals. We also noted that 11 of the most strongly DE miRNA in the 

AF+AVBvsCTL and AFvsCTL analyses (MIR136, MIR411, MIR370, MIR127, MIR493, MIR494, 

MIR485, ENSCAFG00000025655 (96.20% identity to hsa-mir-379), MIR758, MIR543, MIR889) 

mapped to the chr8:68,900,000-69,700,000 region in the dog reference genome CanFam3.1 

(Fig. 4B). This region, highly conserved in mammals, is syntenic to the imprinted 14q32 region  in 

humans (also known as the DLK1-DIO3 locus)353.  The lncRNA MEG3, which we described 

above as being over-expressed in the AF canine models is also located in the same DLK1-DIO3 

syntenic dog locus. 

The dysregulation of the expression of lncRNA and miRNA at the same locus suggested 

that they might co-regulate the expression of genes implicated in the same biological pathway(s). 

To address this possibility, we used in silico predictions to infer the DE mRNA that are possible 

direct targets of these DE miRNA located at the syntenic DLK1-DIO3 locus. For this analysis, we 

focused on DE miRNAs and DE mRNAs that are predicted to physically interact by at least three 

out of five databases and that have expression levels that are negatively correlated in the RNA-

seq/miRNA-seq experiments (Pearson’s r < -0.5). Using these filters, we identified 82 potential 

target genes for the DE miRNAs at this locus, with most genes targeted by a single miRNA 

(Fig.  4C). GSEA with these 82 genes indicated a common role in synaptic signaling involving 

glutamate signaling (Fig.  4D and Supplemental Table V). Some of the key genes within these 

pathways are metabotropic glutamate receptor-1 and -8 (GRM1, GRM8), glutamate ionotropic 

receptor delta type subunit-1 (GRID1), glutamate ionotropic receptor AMPA type subunit-1 

(GRIA1), and corticotropin-releasing factor-binding protein (CRHBP).  

2.4.5 Partial differential transcriptomic overlap between human and dog AF 

atrial samples 

To assess the ability of our canine AF models to capture early transcriptomic changes 

which might be missed by profiling the atria of human AF patients who have developed the disease 

over years, we compared the DE genes identified in AF dogs with results from human left atrial 

transcriptomic profiling experiments216,345. Hsu et al. performed bulk RNA-seq experiments on 

left atrial appendages from 261 patients who underwent cardiac surgery to treat AF, valve disease, 

or other cardiac disorders. For differential gene expression analyses, these patients were 

divided between no AF (n=50), AF in AF rhythm (n=130), and AF in sinus rhythm (n=81). 
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When we intersected this list of human DE genes with the list of DE genes in our AF dog models 

(with clear human orthologs), we identified 668 genes (Fig. 5 and Supplemental Table VI). We 

found the strongest overlap between dog AF+AVB and human AF in AF rhythm. Of note, 

most of the strongest signals in our dog study are also present in this human study (LENG8, 

SORBS2, BMP10, FNBP4 and glutamate receptor-related genes (GRM1, GRM8, GRIA1, GRIK2, 

GRID1)).  For miRNA, we compared our results with data from a large meta-analysis involving 

40 articles and 283 DE miRNA in AF (in different tissues and species)345. Of the 53 AF-associated 

miRNAs that were previously identified in human cardiac tissues and showed consistent results in 

the meta-analysis, we found five miRNAs in our analyses of the dog transcriptomic datasets 

(MIR144, MIR142, MIR146B, MIR223 and MIR451). These miRNAs have not been characterized 

functionally yet for a role in AF. Generally, the canine AF group matched better the directionality 

of change reported in the human AF DE miRNA meta-analysis. 

 

2.5 DISCUSSION 

In this study, we used a transcriptomic approach to comprehensively assess the molecular 

architecture of AF-induced remodeling with and without AVB from atria cardiomyocyte-enriched 

samples. We validated the robustness of our RNAseq data by correlating it with a proteomic 

analysis, which showed a strong correlation in gene expression, with well-defined cardiomyocyte 

genes being most highly expressed in both datasets (e.g. TTN, MYL4). We confirmed the 

involvement of known AF factors like the reactivation of developmental pathways, but also found 

a strong and novel association with microRNAs and lncRNA from the DLK1-DIO3 locus, 

including the MEG3 canine orthologue. This finding is concordant with the many chromatin 

remodeling genes dysregulated in our models, which is an emerging phenotype of AF both in 

human and sheep models354. 

2.5.1 Molecular remodeling in AF with versus without AVB 

We did not expect to find a smaller number of DE genes in the AFvsCTL analysis, given 

our previous observation that AF treatment alone without AVB results in more important tissue 

remodeling332. One possible explanation is that our prior histological studies were done in AF 

animals treated for three weeks,10 whereas the results presented here reflect RNA changes after 
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one week of AF. The transcriptomic changes in the AF+AVB group show that cells are under 

active chromatin modification, indicating ongoing adaptation to the stimulus. This is not observed 

in the AF group (lacking AVB), which may indicate that this adaptation has already occurred. This 

idea would be consistent with the down-regulation of chromatin-related genes recently noted in 

the atria of sheep AF models354, and may be a result of earlier establishment of profibrotic 

transdifferentiation in AF compared to AF+AVB canine models.  

Our analyses highlighted many genes not previously implicated in AF. While the functions 

of some of these genes remain uncharacterized (e.g. LENG8 in AF+AVB), we can speculate on 

the activities of others. For instance, TCERG1 and FNBP4, which are up-regulated in the atria of 

AF+AVB dogs,  encode co-regulated proteins that are involved, respectively, in RNA splicing and 

translation355. The up-regulation of these genes, with general actions on gene transcripts, may 

(partly) explain why more genes are dysregulated in AF+AVB animals when compared to the CTL 

or AF groups (Fig. 3B). Another interesting candidate is LCOR, which is up-regulated in the 

AF+AVB model and encodes a transcriptional cofactor that interacts with PPARγ and RXRα to 

control gene expression356. While further experiments are needed to determine the extent by which 

LCOR modifies gene expression in AF+AVB and contributes to the pathology, our RNA-seq 

experiments detected the dysregulation of two of its likely targets based on the literature: CPT1A 

(see above) and the cell cycle regulator CDKN1A357 . 

2.5.2 Potential role of non-coding genes at the DLK1-DIO3 locus in early AF  

The highly-conserved DLK1-DIO3 locus hosts two differentially DNA-methylated regions 

modulating the expression of its non-coding RNA clusters, where in humans the maternal allele is 

hypomethylated with concomitant expression on the hypermethylated paternal allele of non-

coding RNA and other protein-coding genes (DLK1, RLT1, and DIO3)353. In both 

AF+AVBvsCTL and AFvsCTL, we found a large proportion (58% and 23%, respectively) of DE 

miRNA at this locus, underlying its importance in AF-related adaptation. We also found 

dysregulation of the MEG3 lncRNA canine orthologue at this locus. MEG3 is a highly expressed 

lncRNA that has been studied in various pathologies, including cancer358 and more recently 

cardiovascular diseases359. Non-coding RNAs at this locus have been shown to mediate various 

cardiac developmental programs353. More specifically, MEG3 can contribute to the recruitment 

of the Polycomb repressive complex-2 (PRC2)360, a key chromatin modulating factor. Of particular 
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interest, Mondal et al. showed that through interaction with the H3-Lys-27 methyltransferase 

EZH2, MEG3 can repress TGF-beta target genes, which are known to promote a profibrotic 

response361. Data have been presented that suggest an important role of EZH2 and/or EZH2-

regulated genes in AF362. 

2.5.3 Glutamate receptor regulation by miRNAs from the DLK1-DIO3 locus 

Our GSEA analysis-predicted gene targets of DE miRNA at the DLK1-DIO3 locus suggest 

a role for glutamate signaling in AF. Immunostaining has confirmed the presence of glutamate 

receptors on cardiomyocytes363. Glutamate was also found to be significantly increased in AF 

patient left atrial appendages364. Glutamate signaling is important in vagal afferent neurons365, and 

remodeling of the glutamate system in AF may relate to the extensive previous evidence 

of autonomic dysfunction in AF patients366. Moreover, a recent study has shown fundamental roles 

for glutamatergic receptors in rat atrial cardiomyocytes and induced pluripotent stem cell-derived 

atrial cardiomyocytes, including a reduction in cardiomyocyte excitability after GRIA3 

knockdown367. Therefore, the DLK1-DIO3 miRNA cluster may be an adaptative regulator of 

cardiomyocyte excitability or of neural cells in the presence of AF.  

2.5.4 Limitations 

We used cardiomyocyte-enriched samples in an attempt to obtain clearer results from the 

transcriptomic analysis by excluding extrinsic variability due to changes in cell composition. 

However, while our samples are enriched in cardiomyocytes, they do not constitute a pure 

cardiomyocyte preparation. A disadvantage is that variability due to changes in cell composition 

is not eliminated. On the other hand, our cardiomyocyte-enriched (but not pure) samples allow us 

to detect potential features of AF related to non-cardiomyocyte cells, such as autonomic 

dysregulation mediated by neural cells; however, we cannot unambiguously attribute DE genes to 

transcriptomic changes in a specific cell-type. In part, we were able to control for fibroblast 

composition by adjustment through analysis for expression of fibroblast-related RNA-expression 

patterns. Nevertheless, features underlined here should be confirmed in pure cell cultures or single 

cell transcriptomic assays. A second limitation is the difficulty in extrapolating our findings to 

gene expression changes in humans. We found only modest overlap of DE genes in our model 

compared to reported DE gene patterns in human; several factors could explain this (e.g. 

differences in biospecimen preparation, tissue heterogeneity, fundamental differences between 
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dog and human AF pathology). It is also possible that different transcriptomic programs may be 

involved at the initiation of arrhythmia and tissue remodeling (AF and AF+AVB dog models) 

when compared with those dysregulated in the atria once the pathology has been present for years. 

We compared our transcriptomic results with proteomic data on the same samples and 

found a very high level of correlation (Fig. 2). These results are consistent with a large measure of 

transcriptomic control over protein expression and validate the relevance of transcriptomic 

analysis of these data. A further in-depth look at the proteomic signature in these models would be 

of interest but is beyond the scope of the present manuscript.  

2.6 CONCLUSIONS 

Understanding the pathophysiology of chronic human diseases such as AF is challenging 

because they develop over many years and initially present with only unremarkable pre-clinical 

symptoms. In this study, we took advantage of two well-characterized canine AF models to chart 

the transcriptomic changes that occur at the earlier phases of arrhythmia. Despite the inherent 

limitations in relating dog models to human AF, our results offer interesting new hypotheses for 

future testing, including in man. In particular, the up-regulation of miRNAs at the DLK1-DIO3 

locus after 1 week of AF suggests that they may be early biomarkers of tissue remodeling and/or 

adaptation in the atria. 
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Figure 1. Deconvolution of canine atria cell composition using bulk RNA-sequencing.  

(A) We inferred cell fractions with CIBERSORTx and an atrial-specific gene signature matrix obtained using orthologous murine 

genes343. We present cell fractions for each dog sample that we analyzed in this study. CTL, control; AF, Atrial-tachypacing; 

AF+AVB, AF with Atrio-Ventricular Block. (B) When we group animals per treatment arm, we observed a significantly higher 

fraction of fibroblasts in the atrial fibrillation dog models (AF and AF+AVB) than in the control animals (AFvsCTL Wilcoxon’s 

test P=0.0087 and AF+AVBvsCTL P=0.015). Principal component analysis of the top 1000 most variable genes expressed in 

canine atria before (C) and after (D) correction for fibroblast fraction show treatment-dependent clustering after correction for cell 

composition.   
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Figure 2. Validation of highly expressed RNA by proteomics.  

(A) In 18 atrial samples, 755 genes (N.S.= 619, RNA.sign=122, Both.sign=14) found in both datasets are highly correlated at the 

protein (x-axis) and RNA (y-axis) levels (Pearson’s r=0.49, P=1.57x10-46). For reference, we annotated 15 genes that are 

differentially expressed in the RNA-seq experiment and have high protein expression levels. N.S., not differentially expressed in 

the RNA-seq or proteomic experiment; RNA.sign, genes that are differentially expressed in the RNA-seq assay only; Both.sign, 

differentially expressed genes in both the RNA-seq and proteomic experiments. DE genes in the RNAseq dataset have an FDR < 

0.01 (likelihood ratio test) and proteomics dataset an FDR < 0.05 (F-test). The grey area around the line corresponds to the 95% 

confidence interval. (B) Relative expression level of all transcripts measured in the RNA-seq experiment. The histogram shows 

that genes that are present in both the RNA-seq and proteomic experiment are highly expressed (Common, dark grey) in comparison 

to the expression levels of all transcripts measured (all_RNA, light grey).  

 



96 

 

 

Figure 3. Analyses of differentially expressed atrial genes identify many biological pathways 

that are dysregulated in atrial fibrillation dog models.  

(A) Volcano plots of all transcripts that we analyzed in this study. Transcripts in red have a false discovery rate (FDR)<0.01. We 

found 434, 5971 and 7867 genes that were DE in the AFvsCTL, AF+AVBvsCTL, and AFvsAF+AVB analyses, respectively. The 

full DE results are available in Supplemental Table II. (B) Upset plot showing the intersection of up -and down-regulated DE 
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genes (FDR<0.01) in each analysis. (C) The five most significant biological pathways identified using gene-set enrichment 

analyses (GSEA) for each set of DE genes (FDR <0.01). Full results are available in Supplemental Table IV. 

 

 

Figure 4. Eleven differentially expressed microRNAs (miRNAs) map to a canine chromosome 8 

region that is syntenic to human DLK1-DIO3. 

 (A)  Volcano plots of all miRNA that we measured in our experiments. We identified 31, 19 and 20 miRNA that are differentially 

expressed (false discovery rate (FDR) <0.01) in the AFvsCTL, AF+AVBvsCTL and AFvsAF+AVB analyses, respectively. (B) 

Miami plots of miRNA and their corresponding statistical significance (y-axis) for the AF+AVBvsCTL (top) and ATvsCTL 

(bottom) analyses. An arrow indicates the miRNA cluster located on the canine chromosome 8 region that is syntenic to human 

DLK1-DIO3. The odd and even chromosomes FDR values are in blue and red respectively. (C) Upset plot showing the DE miRNA 

targets located in the syntenic DLK1-DIO3locus and their corresponding number of potential target RNA. We identified potential 

targets with the MiRNAtap package (predicted by ≥ 3 databases) from DE miRNA (FDR <0.01) and DE mRNA (FDR<0.01). (D) 

Gene-set enrichment analyses (GSEA) with the potential gene targets (x-axis) of the DE miRNA located at the syntenic DLK1-

DIO3 locus. We only present the top five pathways enriched in this analysis. A red square in the heatmap indicates membership of 

a given target gene to the biological pathways located on the left (empty columns were removed for clarity). GSEA FDR and 

AF+AVBvsCTL DE FDR are on the right and top of the heatmap, respectively.   
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Figure 5. Overlaps in genes differentially expressed in canine AF models and human AF 

patients.  

We compared differentially expressed genes in our canine AF models with annotated human orthologues that are DE in human AF 

left atrial appendages216. Homo Sapiens; hsa, hsa_AF; AF in AF rhythm, hsa_AF.SR; AF in sinus rhythm, hsa_CTL; no AF. 

2.8 Supplementary material 

Supplementary Tables S2 to S6 are provided in the attached zipped folder. 
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Table S1. Supplemental Table I. Dogs estimated age, weight and sex by treatment. 

 

 

Figure S1. Differentially expressed mitochondrial genes.  

Genes with non-zero peak intensity in the heart from the Human MitoCarta3.0346 were used as reference of mitochondrial genes. 

Within that list of 539 genes, we find 54 DEG in our AF models represented as volcano plots. 
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Figure S2. Overlaps in genes differentially expressed in canine and sheep AF models.  

Log2 fold changes (L2FC) with controls of chromatin related genes DE in one of our canine models and one of a transition or 

chronic sheep AF models. The L2FC of canine groups reflect the mRNA changes against CTL group and while the L2FC of the 

transition and chronic sheep AF models reflect the mRNA changes against the left atrial appendage cardiomyocyte enriched sheep 

controls354. 
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3.1 ABSTRACT 

Epigenomic profiling, including ATACseq, is one of the main tools used to define 

enhancers. Because enhancers are overwhelmingly cell-type specific, inference of their activity is 

greatly limited in complex tissues. Multiomic assays that probe in the same nucleus both the open 

chromatin landscape and gene expression levels enable the study of correlations (links) between 

these two modalities. Current best practices to infer the regulatory effect of candidate cis-

regulatory elements (cCREs) in multiomic data involve removing biases associated with GC 

content by generating null distributions of matched ATACseq peaks drawn from different 

chromosomes. This strategy has been broadly adopted by popular single-nucleus multiomic 

workflows such as Signac. Here, we uncovered limitations and confounders of this approach. We 

found a strong loss of power to detect a regulatory effect for cCREs with high read counts in the 

dominant cell-type. We showed that this is largely due to cell-type-specific trans-ATACseq peak 

correlations creating bimodal null distributions. We tested alternative models and concluded that 

physical distance and/or the raw Pearson correlation coefficients are the best predictors for peak-

gene links when compared to predictions from Epimap (e.g. CD14 area under the curve [AUC] = 

mailto:guillaume.lettre@umontreal.ca
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0.51 with the method implemented in Signac vs 0.71 with the Pearson correlation coefficients) or 

validation by CRISPR perturbations (AUC = 0.63 vs 0.73). 

 

3.2 INTROCUCTION 

Understanding how the non-coding genome regulates gene expression is paramount to 

attribute functions to noncoding variants identified by genome-wide association studies (GWAS). 

We can gain insights into the regulatory potential of non-coding regions through epigenetic mark 

assessments (CHIPseq), chromatin conformation capture methods (3C, Hi-C, ChIA-PET), 

expression quantitative loci analysis (eQTL), and open chromatin sequencing (ATACseq and 

DNase-seq). Extensive databases that collate and summarize these methods’ results in a broad 

range of cell lines and tissues are now available (i.e. ENCODE368, GENECARD369).  

Leveraging on this data, statistical models such as those derived by the activity by 

contact137 (ABC) method and the Epimap370 project, EMERGE371 and others372-374 have generated 

strong predictions about the regulatory potential of many non-coding regions. Some of these 

predictions have been experimentally validated by CRISPR screens, often carried out in cancer 

cell lines137,375. 

Direct measurement of both open chromatin regions and gene expression can be done 

concomitantly within a single nucleus using multiomic methods. At the single-nucleus resolution, 

the correlation of ATACseq peaks and RNAseq genes read counts (henceforth defined as links) 

provides highly specific hypotheses about the regulatory potential of non-coding candidate cis-

regulatory elements (cCRE). Current best practices to analyze multiomic datasets and infer the 

regulatory effect of cCRE involve removing biases associated with ATACseq peak coverage and 

GC content. As proposed by Ma et al. 2020299, that method builds a null distribution of gene-peak 

correlations using ATACseq peaks of matching coverage and GC content drawn from 

chromosomes excluding the one hosting the tested gene (trans-links). The resulting distribution of 

Pearson correlation coefficients is then scaled, providing Z-scores for the cis- and each matched 

trans-links (Fig. 1A). This is done under the assumption that these trans-ATACseq peaks should 

not have a regulatory effect on the tested gene. This strategy has been broadly adopted by popular 

single-nucleus multiomic workflows such as Signac289.  
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Here, by analyzing a publicly available multiomic peripheral blood mononuclear cells 

(PBMC) dataset (Methods), we uncovered limitations and confounders associated with this 

approach (termed the Z-scores method below). We found that the Z-scores method results in a 

strong loss of power to detect the regulatory effect of cCREs with high read counts in the most 

abundant cell-type(s). We tested various alternative models and concluded that the simplest 

approach, that is the raw Pearson correlation coefficients (this method is termed Pearson R below) 

and/or physical distance is computationally advantageous and provides the best predictions of 

“ATACseq peak-target gene” links when compared to results from Epimap or CRISPR 

perturbation screens. 

 

3.3 RESULTS 

3.3.1 The number of cells in each cell-type biases the null distributions and 

statistics of the Z-scores method 

In this study, we refer to Z-score as the scaled Pearson R value of a cis-link between an 

ATACseq peak and a nearby gene against its matched trans-link null distribution (the Z-scores 

method, Fig. 1A). After processing the PBMC multiomic data with Signac (Fig. S1 and Methods), 

we noticed striking differences in terms of statistical significance for many peak-gene links when 

comparing the Pearson R coefficients and the Z-scores. For instance, the ATACseq peak chr16-

50684843-50685984, upstream of NOD2, contains a NOD2 eQTL (rs9302752) in whole blood, 

liver, tibial nerve, spleen and brain based on data from GTEx376 that is also associated with leprosy 

and Crohn’s disease by GWAS (Fig. 1B)377. In the PBMC dataset, this ATACseq peak and NOD2 

expression are relatively specific to monocytes and are correlated (R=0.12), although no 

significant links are identified using the Z-scores method (nominal P-value=0.07) (Fig. 1B). 

However, a significant link is identified between this peak and SNX20 (nominal P-value=0.02), a 

gene with an expression density that poorly overlaps the ATACseq signal at chr16-50684843-

50685984 (Fig. 1B, right column). Importantly, we also noted that the null distributions for the 

trans-peaks matched with three ATACseq peaks at the NOD2 locus are bimodal, making their 

corresponding peak-gene link Z-score statistics inaccurate (Fig. 1C). When we exclude from the 

dataset ATACseq peaks that are specific to the cell-type in which the ATACseq peak is mostly 
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accessible and then create a null distribution with the remaining trans-peaks, the distribution is 

unimodal (Fig. 1D). This suggests that the choice of which ATACseq peaks are included in the 

null distribution has a huge impact on the Z-scores method results (see below). 

Next, we performed several analyses to better understand how cell-type composition affect 

the identification of ATACseq peak-gene links from single-nucleus multiomic experiments. In the 

PBMC dataset, CD14 monocytes is the dominant cell-type (n=3075 cells [27%])(Fig. 2A) and 

clusters with CD16 monocytes and classical dendritic cells 2 (cDC2) both on ATACseq and 

RNAseq UMAP (Fig. S1). We refer to this cell archetype as mononuclear phagocytes (MP). We 

found that ATACseq peaks with specific accessibility in MP had lower median peak-gene link 

statistics as calculated with the Z-scores method (Fig. 2A), and that rarer cell-types had more 

extreme Z-score statistics (Fig. S2 and S3A-B). Thus, the links between ATACseq peaks and genes 

have less significant statistics when identified in the major cell-types of this PBMC dataset.  

To evaluate if the number of MP influenced the calculated link statistics with the Z-scores 

method, we down-sampled cells from the MP clusters from 3,788 to 500 cells, and repeated the 

analyses. The down-sampling increased the Z-scores of cells from the MP clusters (t-test P-

valueCD14=1.7x10-81, P-valueCD16=4.5x10-7, P-valuecDC2=3.2x10-14), and reduced the peak-gene 

link Z-scores for all other cell-types except for the ones which had few cell-type-specific ATACseq 

peaks (Fig. 2B). These results suggest that the cell-type composition of the dataset has a strong 

influence on the statistics calculated using the Z-scores method. 

3.3.2 More abundant cell-types have more power to identify correlated 

ATACseq peaks in trans 

As highlighted for the NOD2 locus, we found that the Z-scores method often generates 

bimodal null distributions (Fig. 1C-D and Fig. S4), and that these bimodal distributions are more 

frequent in more abundant cell-types (Fig. S3C). We hypothesized that the co-accessibility of cell-

type-specific trans-open chromatin regions – for instance due to the activity of a common 

transcription factors giving rise to a co-regulatory network – could cause the emergence of a 

second mode in the null distributions. In support of this hypothesis, removing cell-type-specific 

trans-peaks from the null distributions generally eliminated the bimodality and increased the Z-

score statistics (Fig. 1C-D and Fig. S4). To better understand the effect of the bimodality on the 
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Z-scores method, we tested each null distributions for multiple modes (P-value<0.05 for >1 modes 

[Methods]378) and compared the Z-scores and Pearson R coefficients of peak-gene links obtained 

for multimodal and unimodal null distributions. Whereas statistics from the Z-scores method were 

significantly lower for peak-gene links with multimodal null distributions (Wilcoxon P-value 

<1x10-300), we found that the simple Pearson R statistics were higher (Wilcoxon P-value=1.93x10-

7)(Fig. 2C). Consistently, we found that peak-gene links with multimodal null distributions were 

more likely to have non-significant Z-score statistics (near 0), even when the corresponding 

Pearson R coefficients were relatively high (Fig. 2D). Additionally, links between ATACseq peaks 

and target genes in MP were more likely to have multimodal null distributions when compared to 

other rarer cell-types (Fig. 2E). Together, these results suggest that the popular Z-scores method 

used to infer a regulatory effect between ATACseq peaks and target genes in multiomic data is 

biased, counter-intuitively, towards lower abundant cell-types. Our analyses show that this bias 

arises, at least in part, from the production of bimodal null distributions when matching the tested 

peak-gene links with links found in trans for abundant cell-types, presumably because of increased 

power to detect co-regulated trans ATACseq peaks.  

3.3.3 Read coverage, but not GC content, impacts peak-gene link statistics 

Beside the Pearson R and Z-score methods, we considered two additional approaches. First, 

because of the inherent sparsity of single-nucleus ATACseq data, we tested a zero-inflated 

negative binomial (ZINB) model, allowing to independently account for the zero component of a 

peak-gene link. Second, we also tested a new method –  scREG – that is reported to outperform 

the simple Pearson R model on CD14 monocytes peak-gene link predictions based on eQTL 

data298,379. Of note, scREG output link scores for peak-gene within each cell-type. We compared 

the peak-gene links identified by each of these four models to the Epimap predictions of cCREs 

and target genes for CD14 monocytes, B cells and NK cells (Methods).  

In the Z-scores method, the rationale for generating null distributions is to account for 

possible confounders such as the number of mapped reads (i.e. coverage) and GC bias. We decided 

to explore the impact of these two factors on the Z-scores, Pearson R, scREGCD14, and ZINB 

statistics. In the Signac workflow, initial filtering is done separately at the gene expression and 

ATACseq peak level, removing genes or peaks with <10 cells with non-zero counts. Thus, it is 

possible to have peak-gene links defined by a single cell that has counts for both RNAseq and 
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ATACseq modalities. We found that the Z-scores method was particularly sensitive to the number 

of cells with non-zero counts, with extreme Z-scores associated with links identified in a small 

number of cells (Fig. S5). Although the same effect was less striking for the Pearson R, scREGCD14, 

and ZINB methods (with high statistics being positively correlated with high number of cells with 

non-zero counts), we still observed some extreme statistics for links identified in a small number 

of cells (Fig. S5). 

 

We further characterized the impact of GC content on the Z-scores method, as this is the 

only method that consider this variable. Trans-peak matching for an ATACseq peak is done 

through the attribution of weights dependent on the input variables (here GC and counts). We 

compared peak-gene link Z-scores from two analyses with identical parameters (i.e. null 

distributions generated independently twice for the same peak-gene links), and also for analyses 

with and without GC as a matching criteria. We found that the correlation value of Z-scores for 

two analyses with identical matching parameters is 0.97 (Fig. S6A), while that of a model matching 

for counts only vs one that matches for both GC content and counts is 0.95 (Fig. S6B), suggesting 

that the GC content does not strongly influence the identification of peak-gene links (even for the 

stronger links, see the right-hand tail of the distributions in Fig. S6).   

3.3.4 The raw Pearson R coefficients and/or physical distance provide better 

statistics to capture predicted or functionally validated links between 

ATACseq peaks and target genes 

We next turned to independent datasets that have predicted or experimentally ascertained 

links between cCREs and target genes to address the limitations of the Z-score method and propose 

new strategies. ZINB is a computationally expensive method compared to other methods tested 

(Fig. S7). Further, scREG currently limits its output to 100,000 links. For these reasons, we started 

by comparing with Epimap predictions the accuracy of the Pearson R and the Z-scores methods 

when considering a very large number of peak-gene links (|Pearson R| >0.01, n=590,842 links). 

Our Receiver Operating Characteristics (ROC) curve analysis showed that the Pearson R method 

outperformed the Z-scores method in these three cell-types (Fig. 3A, S8A and S9A). For instance, 

the area under the curve (AUC) were 0.71 and 0.51 in CD14 monocytes when applying the Pearson 
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R and Z-scores methods, respectively (Fig. 3A). We further compared the predictive value of the 

Pearson R and Z-scores against links found in promoter capture Hi-C (PCHi-C) consisting of 17 

human primary blood cell-types380 (Fig. S10). The results were consistent with the Epimap 

validation, where the Pearson R (AUC = 0.57) outperforms the Z-scores method (AUC = 0.49). 

Using a smaller set of peak-gene links with a more stringent threshold for inclusion (|Pearson R| > 

0.1, n=15,113 links), we then applied the four methods and compared results with predictions from 

Epimap. scREG outperformed other models in all cell-types, and the Z-scores method performed 

worse (Fig. 3B, S8B and S9B).  

The physical distance between regulatory sequences and gene transcription start sites has 

been found to be a strong predictor of cCRE’s effects on nearby genes137,381. Because the scREG 

model weights the peak-gene link scores with physical distance (e(-distance/200kb)), we reasoned that 

weighting the Pearson R coefficients by the distance between the ATACseq peaks and the target 

genes could improve its accuracy. Physical distance-weighted Pearson R coefficients resulted in 

AUC that were similar to those obtained when using distance alone, and remarkedly better than 

with scREG on all three Epimap cell-type predictions (Fig. 3B, S8B and S9B).  

As described above, scREG calculates peak-gene link scores per cell-type298.  We repeated 

the analyses of the Epimap predictions with the Z-scores, Pearson R and ZINB methods but 

focusing on single cell-type. For instance, for the Epimap CD14 predictions, we only analyzed 

peak-gene links identified in the CD14 subset of the PBMC multiomic dataset. This approach had 

a minimal impact on the AUC statistics for all three cell-types analyzed (compare panels B and C 

in Fig. 3 (CD14 cells), Fig. S8 (B cells) and Fig. S9 (NK cells)), but severely reduced the number 

of detected peak-gene links (Fig. 3D, Fig. S8D and Fig. S9D). One major drawback of this single 

cell-type approach is that by reducing the number of cells in the analyses, we significantly reduced 

power to detect peak-gene links. For instance, our analysis of the whole PBMC dataset (i.e., using 

all PBMC to compute statistics) yielded 15,113 peak-gene links with |Pearson R| > 0.1, including 

1611 links (10.7%) that overlap with Epimap predictions for CD14 cells. In contrast, when we 

restricted our analysis to CD14 cells from the PBMC multiomic dataset, we found 2,499 links, 

including 143 (5.7%) also predicted by Epimap in CD14 cells (Fig. 3D).  From these observations, 

we conclude that using all available cells from multiomic experiments to detect links between 
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ATACseq peaks and target genes is a more powerful strategy than limiting the analyses to single 

cell-type. 

 Finally, we compared the peak-gene links identified in the PBMC multiomic 

datasets with 644 cCRE-gene pairs that were functionally validated using CRISPR perturbations 

in different cell models382. We found that distance alone (or in combination with the Pearson R 

coefficient) was the best predictor of links between ATACseq peaks and genes that were 

consistently validated by CRISPR perturbations (Fig. 4). We also noted that the simple Pearson R 

statistic, even without being weighted by physical distance (AUC=0.73), outperformed all other 

metrics, including the distance-weighted scREG scores (AUC=0.65-0.67)(Fig. 4).  

 

3.4 DISCUSSION 

Motivated by the absence of several strong candidate links between regulatory sequences 

and target genes in our analysis of multiomic PBMC data using a common bioinformatic pipeline, 

we investigated several factors that could impact these results. We found that cell-type 

composition in single-nucleus data can have a dramatic effect on the ability to detect peak-gene 

links. Indeed, we showed that null distributions matched on ATACseq peak coverage and GC 

content are often bimodal, especially when the peaks are specific to (or enriched in) the major cell-

types. Our analyses suggest that this second mode arise because of the following reasons: First, 

the number of ATACseq peaks detected in a given cell-type increases with the number of cells, 

thus increasing the chances to draw trans-ATACseq peaks that are opened in that cell-type when 

building the null distributions. Second, as cells within a given cell-type share transcription factors, 

their open chromatin regions tend to also be more correlated. Together, this creates two modes: 

one coming from the trans-ATACseq peaks of the dominant cell-type and a second from other 

cell-types (generally less correlated). We illustrate this conclusion by showing that if a peak-gene 

link is cell-type-specific, removing ATACseq peaks detected in this cell-type from the null 

distribution generally removes the mode most associated with the tested link (Fig. 1C-D) and 

drastically increases its Z-score (Fig. 2B).  This approach also has the consequence to inflate the 

Z-scores of links mostly found in less abundant cell-types, because the null distributions will 

contain fewer ATACseq peaks from the same, rare cell-types (Fig. 2B). One apparent solution to 
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this problem is to detect peak-gene links within specific cell-types, although we showed that this 

method is sub-optimal because of the loss in power to detect peaks and genes when fewer cells are 

analyzed.  

The rationale behind the null distributions implemented in the Z-scores model comes from 

reports that the Tn5 transposase used in the ATACseq protocol has a GC bias372. However, a recent 

comprehensive study specifically addressing this issue did not detect such bias383. Furthermore, 

our own analyses found minimal (if any) effect of GC content the detection of links between 

ATACseq peaks and target genes, while the number of cells with non-zero counts in both the 

ATACseq peak and the gene is a major determinant. We recommend not analyzing links if at least 

15 cells do not have both non-zero counts in the ATACseq and RNAseq modalities.  

 

There are no perfect datasets to validate links between ATACseq peaks and the promoter 

of target genes that are inferred from single-nucleus multiomic experiments. In our study, we used 

predictions from Epimap, PCHi-C and published perturbations using CRISPR tools. Surprisingly, 

we found that simply considering physical distance and/or the Pearson correlation coefficients 

provide optimal concordance with these datasets. These methods also have the advantage to be 

computationally scalable, something that can become problematic for the ZINB method (and to 

some extent the scREG and Z-scores methods as well). It is obvious that larger multiomic 

experiments as well as true “gold-standard” datasets of bona fide peak-gene links will enable the 

development of more sophisticated statistical methods. In the meantime, we recommend to 

carefully consider “ATACseq peaks-target genes” links inferred from single-nucleus multiomic 

analyses, and to validate them using orthogonal approaches such as 3D chromatin conformation 

analyses, expression quantitative trait loci (eQTL) results, and in silico predictions.  

 

3.5 METHODS 

3.5.1 Multiomic PBMC data 

We analyzed the PBMC multiomic dataset from 10X Genomics 

(https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-

https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
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removed-through-cell-sorting-10-k-1-standard-1-0-0). The data was processed according to the 

Signac tutorial (https://satijalab.org/signac/articles/pbmc_multiomic.html), which uses the same 

dataset. For the 11,331 cells identified, the workflow annotated 30 cell-types, of which 17 have 

more than 50 cells (cell-types represented in the dendrogram in Fig. S1A). We restricted our 

analyses to those 17 cell-types for power purposes. For all cis-links, we only analyzed ATACseq 

peaks located within 500kb of a gene transcription start site. 

3.5.2 Links cell-type marker ATACseq peaks 

The accessibility specificity of ATACseq peaks was tested using the Presto package 

(wilcoxauc.Seurat() function). A marker ATACseq peak was attributed to a cell-type using the 

highest area under the curve (AUC). ATACseq peaks with AUCs < 0.55 and an FDR > 10-5 in all 

cell-types with more than 50 cells were attributed to the non-specific peak group. We used these 

labels to attribute links to each cell-type.  

3.5.3 Down-sampling mononuclear phagocytes 

Cell-types clustering together, both in RNAseq and ATACseq UMAPs, were categorised 

as part of mononuclear phagocytes (MP; CD14 Mono, CD16 Mono, cDC2). 500 out of 3,782 MP 

were randomly drawn and reprocessed with the rest of the PBMC cells. We compared Z-scores of 

peak-gene links with overlapping peaks and identical genes between the full dataset (n=11,331 

cells) and the down-sampled MP dataset (n =8,049 cells). Overlapping links with |Pearson R| > 0.1 

in the full dataset are shown by cell-type in Fig. 2. 

3.5.4 Removing co-regulated peaks from null distributions 

To assess the co-accessibility effect of cell-type-specific trans-open chromatin regions on 

Z-scores we used the output of Signac’s CallPeaks() function to retrieve from which cell-type a 

peak was called by MACS2384 (implemented in Signac). The cell-types were categorised in 4 

broader classes representative of the UMAP and dendrogram: 

1. Lymphoid; CD8 Naive, CD4 Naive, CD4 TCM, CD8 TEM, CD8 TCM, CD4 TEM, 

MAIT, Treg 

2. NK cells; gdT, NK, CD8 TEM, MAIT 

3. Monocytes; CD14 Mono, CD16 Mono, cDC2, pDC 

https://www.10xgenomics.com/resources/datasets/pbmc-from-a-healthy-donor-granulocytes-removed-through-cell-sorting-10-k-1-standard-1-0-0
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4. B cells; B intermediate, B memory, B naive 

For ATACseq peaks that were called in all 4 broad cell-type classes, no filtering was done. 

For ATACseq peaks with some specificity (i.e., not called in all 4 broad cell-type), we removed 

all trans-peaks from the trans-peak pool to match the cis-peak that were also called in the same 

broad cell-type class. Therefore, a tested ATACseq peaks called only in B cells and Monocytes by 

MACS2 would have a null distribution composed of trans-peaks called in lymphoid and/or NK 

cells. 

3.5.5 Multimodal test 

To better assess the bimodality of the null distributions, for each link we drew 1000 GC 

and log(ATACseq peak sum of counts +1) matched trans-peaks using Signac’s function 

MatchRegionStats() (instead of the default 200), computed their Pearson R and scaled them. To 

establish if the resulting null distributions were multimodal, we used the mixtools package 

expectation–maximization function normalmixEM() with  k=2 and epsilon = 1e-03 as described in 

Ameijeiras-Alonso et al., 2019385. Null distributions with nominal p-values < 0.05 were 

categorised as multimodal.  

3.5.6 Pearson R and Z-score models 

 Links using all PBMC 

We used the R package Signac function’s LinkPeaks() with a 500kb window for a gene’s 

transcription starting site and a null distribution of 200 trans-ATACseq peaks to obtain Z-scores 

and Pearson R as described in the package tutorial 

(https://satijalab.org/signac/articles/pbmc_multiomic.html) on all PBMC passing the quality-

control steps. We used the log(ATACseq peak sum of counts +1) instead of the counts to match 

peaks. Peak-gene links were filtered for |Pearson R| > 0.01 to remove cells with zero count in both 

the ATACseq peak and the gene tested or > 0.1 to limit the number of tests as mentioned in the 

text and the figure legends. The PBMC RNAseq annotation has 36,601 genes, of which 29,613 

were detected in at least 1 cell and 21,878 were detected in at least 10 cells (Signac’s default 

threshold for genes to test). Using |Pearson R| > 0.01 as threshold, we obtained 590,842 links for 

15,011 genes, while a threshold of 0.1 resulted in 15,113 links for 2,088 genes. 

https://satijalab.org/signac/articles/pbmc_multiomic.html
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 Cell-type subsetted 

The same strategy mentioned in Links using all PBMC, was applied independently after 

subsetting the Epimap matching cell-types; CD14 mono cells, B cells (B intermediate, B memory, 

B naive) and NK cells (NK, NK Proliferating, NK_CD56bright). This resulted in 2501 links with 

|Pearson R| > 0.1 using 3,096 CD14 Mono cells, 11095 links using 934 B cells and 11959 links 

using 522 NK cells. 

3.5.7 ZINB model 

We tested the ZINB model below using the R package pscl function zeroinfl()386. 

ZINB model: 𝐺𝑒𝑛𝑒 ~ 𝐴𝑇𝐴𝐶𝑠𝑒𝑞 +  𝑐𝑑𝑟. 𝐴𝑇𝐴𝐶 +  𝑐𝑑𝑟. 𝑅𝑁𝐴 | 𝑐𝑑𝑟. 𝐴𝑇𝐴𝐶 +  𝑐𝑑𝑟. 𝑅𝑁𝐴 

The zero-inflated component was modeled with cellular detection rates (cdr) for both ATACseq 

peaks and genes (proportion of features with 0 counts). For genes with no 0 counts across all cells, 

we used the negative binomial generalized linear model (GLMNB) implemented with the R 

package MASS function glm.nb() given that no zero component could be modeled.  

GLMNB model: 𝐺𝑒𝑛𝑒 ~ 𝑐𝐶𝑅𝐸 +  𝑐𝑑𝑟. 𝐴𝑇𝐴𝐶 +  𝑐𝑑𝑟. 𝑅𝑁𝐴 

The |Z-value| were used as predictive value for each tested peak-gene links. 

3.5.8 scREG implementation 

We initially tested an exact implementation of the package tutorial 

(https://github.com/Durenlab/RegNMF). The current software returns a prioritized list of links 

(10,000 per identified clusters) with very low overlap with our validation data, which made the 

comparison with Epimap and CRISPRi validation uninformative. We found 2 likely explanations. 

First, the output from SplitGroup() are the 10,000 peak-gene pairs with lowest scores values for 

that cell-type, as opposed to the 10,000 highest scores. Second, the ATACseq data is log10 

transformed while the RNAseq data is log2 transformed. This creates stronger weights for the gene 

expression component of the links matrix and skews results towards highly expressed genes (i.e. 

ATACseq peaks linked to MALAT1 were the top 20 links for all clusters). To have comparable 

results to the other tested models, we used as inputs the genes and peaks from the 15,113 peak-

gene links with |Pearson R| > 0.1 as well as the 644 peak-gene links kept from CRISPR validations. 

https://github.com/Durenlab/RegNMF
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3.5.9 Peak-gene link models comparison with Epimap 

We retrieved the Epimap peak-gene link predictions for the PBMC matching cell-types 

(CD14 MONOCYTE, B CELL, NK CELL) from 

https://personal.broadinstitute.org/cboix/epimap/links/links_corr_only/. We chose these cell-types 

because their cluster showed greater homogeneity and boundaries in the PBMC multiome dataset 

(in contrast to the lymphoid cells, see Fig. S1). For each Epimap cell-type, we kept peak-gene 

links found in all replicates to insure reproducibility. We recovered the hg38 positions using the 

AnnotationHub package (Annotationhub chain: hg19ToHg38.over.chain.gz). For these analyses, 

peak-gene links from the PBMC multiomic dataset were considered positive when the ATACseq 

peak overlapped at least partly the Epimap enhancer position and the linked gene was the same. 

ROC curves were calculated with the ROCR package by increasing the thresholds of the model’s 

statistic. For the 15,113 peak-gene links with |Pearson R| > 0.1, 1630, 984 and 1538 were 

considered positive (found in Epimap) for CD14 MONOCYTE, B CELL, NK CELL respectively. 

For the 590,842 peak-gene links with |Pearson R| > 0.01, 12848, 7562 and 13084 were considered 

positive (found in Epimap) for CD14 MONOCYTE, B CELL, NK CELL respectively. 

3.5.10 Peak-gene link models comparison with PCHi-C 

We used the PCHi-C data from BM Javierre et al., Cell, 2016, (Data S1) consisting of 17 

human primary blood cell-types. We used all links with a CHICAGO score >5 in at least one cell-

type (n = 728,838 links). We first filtered out genes that were not found in the PBMC RNA matrix, 

then we filtered links to keep only bait regions that overlaps 1 gene promotor, restricted the link 

to 500kb distance and removed bait-bait links. This resulted in a list of 273,208 PCHi-C links. 

Liftover to hg38, overlap with links passing |Pearson R| > 0.01 and ROC curve analysis were done 

as in the Epimap comparison described in the section above. Lastly, we filtered out links for which 

the gene promotor was not found in PCHi-C, resulting in ROC curves for 330,224 links with 

51,602 positives (link found in PCHi-C) and 278,622 negatives (link not found in PCHi-C). 

3.5.11 Peak-gene links validation with CRISPR perturbation results 

Given the modest number of CRISPR-based validated links, we expanded the number of 

tested links to include all links with non-zero read counts for both the gene and the ATACseq peak 

tested (|Pearson R| > 0.01 (n=590,842)). ROC curves were calculated using the ROCR package in 

https://personal.broadinstitute.org/cboix/epimap/links/links_corr_only/
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a set of 664 CRISPR validations from J. Nasser et al. 2021 (Table S5) overlapping PBMC links 

of which 51 were tagged as significant (used as positive peak-gene links). The original CRISPR 

validation data (n=5755) was filtered to include CRISPR targets overlapping an ATACseq peak 

with a corresponding gene expression readout. We also excluded duplicates (same link tested in 

multiple cell lines), links that showed divergent results across cell lines and those that were 

excluded by the author of the study for various reasons, denoted by the IncludeInModel column 

(power insufficient, overlapping promotor and others).  
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Figure 1. The Z-scores method misses candidate regulatory sequences linked to NOD2 

expression in peripheral blood mononuclear cells (PBMC). 

 (A) The Z-scores model matches an ATACseq peak for GC content and coverage with ATACseq peaks in trans to create a scaled 

null distribution, producing Z-scores for each trans-links and the tested peak. (B) ATACseq tracks at the NOD2 locus identified in 

PBMC. The grey areas (labeled 1-2-3) highlight the top three ATACseq peaks correlations with NOD2 expression using the simple 

Pearson R method. Peak #1 (chr16-50684843-50685984) includes an eQTL for NOD2 that is also associated with leprosy and 

Crohn’s disease by GWAS. The loops highlighted in the “Links” row are identified using the Z-score method (P-value <0.05); we 

note that there is no significant link between peak chr16-50684843-50685984 (peak #1) and NOD2. Loops are drawn from the 

middle of the ATACseq peaks to the transcription start site of the correlated gene(s). In the right column, we showed (top to bottom) 

RNAseq UMAP of cell-type annotations, SNX20 expression density, NOD2 expression density, and chr16-50684843-50685984 

ATACseq accessibility density. The violin plots represent NOD2 expression levels in each cell-type. (C) Three GC- and coverage-

matched null distributions for ATACseq peaks (peaks #1-2-3) at the NOD2 locus generated using the Z-scores method. Labeled 

boxes represent the corresponding Z-score statistics for the peaks tested against NOD2 expression. Only peak #2 is significant 

using this approach (nominal P-value = 0.04). (D) As in C, but we generated the null distributions after excluding ATACseq peaks 

specific to the same cell-type as the tested ATACseq peak (see Methods for details). With this strategy, the three peaks (#1-2-3) 

are significantly linked with NOD2 expression (P-value <1x10-15). 
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Figure 2. The cell-type composition of the PBMC single-nucleus multiomic dataset impacts the 

identification of gene-peak links using the Z-scores method. 

 (A) Our analyses included 15,113 gene-peak links with |Pearson R| >0.1 (Signac’s default parameter) identified in 30 cell-types. 

The left column shows the number of cells in each cell-type. In the right column, we show the boxplots of the statistics calculated 

using the Z-scores method. For this analysis, we assigned gene-peak links to specific cell-type using sensitivity and specificity 

metrics (Methods). Links that could not be unambiguously assigned are grouped in the “not.specific” category. We repeated the 

analyses by down-sampling the number of mononuclear phagocytes (MP) to n=500. (B) Effect of down-sampling mononuclear 

phagocytes (MP) from 3,788 to 500 cells on peak-gene link statistics calculated with the Z-scores method. Positive values indicate 

higher Z-scores (i.e. more significant) after down-sampling. ns; not significant, *; P-value<0.05, **; P-value<0.01, ***; P-

value<0.001, ****; P-value<0.0001. (C) The Z-score statistics and Pearson R coefficients for links between ATACseq peaks and 

target genes that generated uni- or multimodal null distributions (with the Z-scores method). (D) Scatterplot of the Pearson R 

coefficients (x-axis) and statistics calculated with the Z-scores method (y-axis) for all links between ATACseq peaks and target 

genes. Each point is color-coded based on the P-value of the multimode test. Peak-gene links that generated multimode null 

distributions (in yellow) tend to have Z-score statistics ~ 0 despite many having high Pearson R coefficients. (E) Proportion of 
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multimodal null distributions by cell-type generated by the Z-scores method for the tested links between ATACseq peaks and target 

genes. Mono; Monocytes, cDC; classical Dendritic cells, NK; Natural killer cells, pDC; progenitor Dendritic cells, TEM; T effector 

memory cells, TCM; T central memory cells, gdT; Gamma delta (γδ) T cells, MAIT; mucosal-associated invariant T cells, Treg; 

regulatory T cells. 

 

Figure 3. The Pearson R method more accurately validates Epimap-predicted links between 

cCRE and target genes in CD14 cells.  

(A) We used the Pearson R and Z-scores methods to detect links between ATACseq peaks and target genes (590,842 links with 

|Pearson R| >0.01) in the complete (i.e., using all PBMC to compute statistics) PBMC multiomic dataset. Then, we performed 

Receiving Operating Curves (ROC) analyses to compare the identified peak-gene links from the multiomic data with regulatory 

links in CD14 cells predicted by the Epimap Project. (B) As in A, but using a smaller set of links defined using a more stringent 

statistical threshold (15,113 links with |Pearson R| >0.1). All cell-types are used to identify links, except for scREG which by design 

output link scores by cell-type (in this case, CD14 cells). (C) As in B, but limiting these ROC analyses to links between ATACseq 
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peaks and target genes with |Pearson R| >0.1 that were found in the CD14 cells subset of the PBMC multiomic dataset. (D) Upset 

plot that shows the intersections of links identified between ATACseq peaks and target genes using either the full PBMC multiomic 

dataset or only the CD14 cells subset with cCRE-gene regulatory links in CD14 cells as predicted by the Epimap Project. ZINB; 

zero-inflated negative binomial, wDist; weighted distance (e(-distance/200kb)), TPR, true positive rate; FPR, false positive rate. 

 

Figure 4. Physical distance and the Pearson R coefficient best capture cCRE-gene pairs 

identified by CRISPR perturbations.  

We identified 644 CRISPR-validated cCRE-gene pairs that had corresponding links (defined using |Pearson R| > 0.01) in the PBMC 

multiomic dataset. Distance-alone or distance-weighted Pearson R coefficients are the best predictors, with the Z-score method 

(implemented in Signac) performing worst. ZINB; zero-inflated negative binomial, wDist; weighted distance (e(-distance/200kb)), TPR, 

true positive rate; FPR, false positive rate. 
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3.7 Supplementary material 

 

Figure S1. Clustering of 11,331 PBMC. 

(A) ATACseq and (B) RNAseq data. The data is embedded using uniform manifold approximation and projection (UMAP). The 

Euclidean distance of mean expression by cell-type represented as dendrogram shows mononuclear phagocytes as a distinct cell 

archetype (CD14, CD16 and cDC2). 
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Figure S2. Distributions of ATACseq peaks-gene link statistics calculated using the Z-scores 

method as implemented in Signac.  

The peak-gene links with |Pearson R > 0.01| were attributed to specific cell-type (cell-types with n>50 cells) using the peak’s 

specificity of accessibility (Methods). Mono; Monocytes, cDC; classical Dendritic cells, NK; Natural killer cells, pDC; progenitor 

Dendritic cells, TEM; T effector memory cells, TCM; T central memory cells, gdT; Gamma delta (γδ) T cells, MAIT; mucosal-

associated invariant T cells, Treg; regulatory T cells, Max; maximal -log10(P-value) calculated for a given cell-type. 
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Figure S3. The impact of cell-type counts on properties of the Z-scores method implemented in 

Signac. 

 For cell-type-specific ATACseq peaks, we identified peak-gene links and compared (A) the most extreme P-value from the Z-

score method, (B) the median P-value from the Z-score method, or (C) the percentage of bimodal null distributions with the number 

of cells in that cell-type. P-values are from the Spearman correlation test. Mono; Monocytes, cDC; classical Dendritic cells, NK; 

Natural killer cells, pDC; progenitor Dendritic cells, TEM; T effector memory cells, TCM; T central memory cells, gdT; Gamma 

delta (γδ) T cells, MAIT; mucosal-associated invariant T cells, Treg; regulatory T cells. 

 

Figure S4. Other examples of bimodal null distributions generated by the Z-scores method.  

Four GC- and count-matched null distributions with high Pearson R coefficients and low Z-scores. Labeled boxes represent the Z-

scores for the tested cCRE and its linked gene (y-axis names: gene_peak) against the null distributions (A) before and (B) after 

removing from the dataset trans ATACseq peaks that are specific to the cell-type in which the cCRE is mostly accessible. 
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Figure S5. The Z-scores method tends to output extreme statistics for peak-gene links that are 

identified in a few cells.  

In contrast, the statistics for the Pearson R, ZINB and scREGCD14 methods are higher when there are more cells with non-zero 

counts (as expected given higher power to detect links). Zscores, ZINB Z-values and Pearson R from links with |Preason R| > 0.1 

were compared against the number of cells for which both the gene and the peak from that link had a non-zero read count. We 

found one outlier using ZINB which was removed for visualisation. On each plot, we added the Pearson R coefficient and 

corresponding P-value. 
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Figure S6. Accounting for GC content has minimal impact on the peak-gene link statistics.  

(A) Distribution of Z-scores for 2 analyses of all peak-gene links with |Pearson R| > 0.1 using the same model. The variability is 

due to the stochastic sampling of peaks to create null distributions. (B) Distribution of statistics comparing the Z-scores model 

matching peaks for both GC percent and counts (y-axis) or counts only (x-axis). On each plot, we added the Pearson R coefficient 

and corresponding P-value. 



127 

 

 

Figure S7. The Pearson R provides an important scalability advantage.  

We benchmarked times to run each of the 4 models tested using 1 core with an AMD Ryzen 7 5800X 3,8GHz processor. For each 

model we tested 10, 100, 1000, 5000 and 15000 links except for ZINB which shows poor scalability. scREG returned errors for 

inputs with < 2000 links. 
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Figure S8. The Pearson R method more accurately validates Epimap-predicted links between 

cCRE and target genes in B cells.  

(A) We used the Pearson R and Z-scores methods to detect links between ATACseq peaks and target genes (590,842 links with 

|Pearson R| >0.01) in the complete (i.e., using all PBMC to compute statistics) PBMC multiomic dataset. Then, we performed 

Receiving Operating Curves (ROC) analyses to compare the identified peak-gene links from the multiomic data with regulatory 

links in B cells predicted by the Epimap Project. (B) As in A, but using a smaller set of links defined using a more stringent 

statistical threshold (15,113 links with |Pearson R| >0.1). All cell-types are used to identify links, except for scREG which by design 

output link scores by cell-type (in this case, B cells). (C) As in B, but limiting these ROC analyses to links between ATACseq 

peaks and target genes with |Pearson R| >0.1 that were found in the B cells subset of the PBMC multiomic dataset. (D) Upset plot 

that shows the intersections of links identified between ATACseq peaks and target genes using either the full PBMC multiomic 

dataset or only the B cells subset with cCRE-gene regulatory links in B cells as predicted by the Epimap Project. ZINB; zero-

inflated negative binomial, wDist; weighted distance (e(-distance/200kb)), TPR, true positive rate; FPR, false positive rate. 
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Figure S9. The Pearson R method more accurately validates Epimap-predicted links between 

cCRE and target genes in NK cells.  

(A) We used the Pearson R and Z-scores methods to detect links between ATACseq peaks and target genes (590,842 links with 

|Pearson R| >0.01) in the complete (i.e., using all PBMC to compute statistics) PBMC multiomic dataset. Then, we performed 

Receiving Operating Curves (ROC) analyses to compare the identified peak-gene links from the multiomic data with regulatory 

links in NK cells predicted by the Epimap Project. (B) As in A, but using a smaller set of links defined using a more stringent 

statistical threshold (15,113 links with |Pearson R| >0.1). All cell-types are used to identify links, except for scREG which by design 

output link scores by cell-type (in this case, NK cells). (C) As in B, but limiting these ROC analyses to links between ATACseq 

peaks and target genes with |Pearson R| >0.1 that were found in the NK cells subset of the PBMC multiomic dataset. (D) Upset 

plot that shows the intersections of links identified between ATACseq peaks and target genes using either the full PBMC multiomic 

dataset or only the NK cells subset with cCRE-gene regulatory links in NK cells as predicted by the Epimap Project. ZINB; zero-

inflated negative binomial, wDist; weighted distance (e(-distance/200kb)), TPR, true positive rate; FPR, false positive rate. 
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Figure S10. The Pearson R method more accurately validates PCHi-C-predicted links.  

We used the Pearson R and Z-scores methods to detect links between ATACseq peaks and target genes (590,842 links with |Pearson 

R| >0.01) in the PBMC multiomic dataset. Then, we performed Receiving Operating Curves (ROC) analyses to compare the 

identified peak-gene links from the multiomic data with links found in PCHi-C (see Methods). wDist; weighted distance (e(-

distance/200kb)), TPR, true positive rate; FPR, false positive rate. 
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4.1 ABSTRACT  

Atrial fibrillation (AF) is the most common arrhythmia in the world, and is linked to 

significant morbidity and mortality. Despite advances in the treatment and management of AF, 

important challenges remain for patients. Human genetics can provide strong therapeutic 

candidates, but the identification of the causal genes and their functions is difficult. Here, we 

applied an AF fine-mapping strategy that leverages results from a cross-ancestry genome-wide 

association study (GWAS), expression quantitative trait loci (eQTLs) from left atrial appendages 

(LAAs) obtained from two cohorts with distinct ancestry (European and East Asian), and a paired 

RNAseq and ATACseq LAA single-nucleus assay (sn-multiome). We found that AF-associated 

LAA eQTLs are largely consistent across ancestries. At 20 AF loci, our co-localization and fine-

mapping analyses implicated 25 genes. Furthermore, by integrating our LAA sn-multiome data 

and other epigenomic datasets with our fine-mapping results, we identified several primary 

candidate causal AF variants, including rs7612445 at GNB4 and rs242557 at MAPT, for which we 

propose molecular mechanisms of AF-association at the cellular level. Finally, we showed that the 

repression of the strongest AF-associated eQTL gene, LINC01629, in human embryonic stem cell-

derived cardiomyocytes using CRISPR inhibition results in the dysregulation of pathways linked 

to genes involved in the development of atrial tissue and the cardiac conduction system (e.g. 

HCN4, PITX2 and TBX5). 

Keywords: atrial fibrillation, genome-wide association study (GWAS), expression quantitative 

trait loci (eQTLs), cross-ancestry, single-nucleus multiome, LINC01629. 
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4.2 INTRODUCTION 

Atrial fibrillation (AF) is the most common cardiac arrhythmia, significantly impacting 

health outcomes. It increases the risk of death by 1.5 to 3.5 times and the risk of stroke by ~5 

times1. In the United States, AF affects a sizable portion of the population: 1 in 3 European 

Americans and 1 in 5 African Americans are projected to develop AF during their lifetime387. AF 

onset is strongly associated with age, increasing rapidly after age 50: below the age of 50, 

prevalence is less than 0.5%, whereas by age 80, it exceeds 10%7. Given the current aging global 

population trend, the prevalence of AF is projected to more than double from 2010 to 2030388. 

Substantial advances have been made in our understanding of AF in the last two decades, 

leading to innovations such as catheter ablation, and improvements in prevention and stroke 

management. However, current therapies have important limitations. Invasive treatments such as 

catheter ablation have significant risks, with a complication rate of 4 − 14%1. Post-ablation AF 

recurrence is also common, with a 2-year recurrence rate of 44% in paroxysmal patients389 and a 

1-year recurrence rate of 70% for persistent patients1. As a result, repeated procedures are often 

required. Additionally, pharmacological treatments for this disease remain largely ineffective, 

failing to reduce onset or progression in up to 85% of patients53. A better understanding of the 

mechanisms of AF is imperative to improve prediction, prevention and the development of new, 

more specific pharmacological therapies. 

Rare mutations in 50 genes have been reported in familial AF53. These mutations 

predominantly occur in ion channels such as HCN4 and the potassium channels (KCN) group, but 

also in cardiac transcription factors such as NKX2-5, PITX2 and TBX5, and cytoskeletal proteins. 

AF is also a complex disease with an important genetic component (heritability ~22%)125. Recent 

large-scale genome-wide association studies (GWAS) have identified 150 single nucleotide 

polymorphisms (SNPs) associated with AF126,127,390. However, most of these genetic associations 

have not yet been functionally characterized. Expression quantitative trait locus (eQTL) analysis 

can provide a mechanistic interpretation for AF-associated SNPs beyond the closest gene 

approach. With the advent of single-nucleus transposase-accessible chromatin with sequencing 

(snATACseq), investigators have shown enrichment of AF-associated SNPs in cardiomyocyte-

specific open chromatin regions287,305,307. Thus, it is expected that most AF-associated SNPs 

mediate their risk through cardiomyocyte-specific non-coding regulatory sequences. Yet, linkage 
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disequilibrium (LD) remains a barrier in the identification of causal variants. This is exacerbated 

by the strong European-ancestry bias observed in large GWAS and eQTL cohorts127,391. 

Furthermore, studies have revealed that most genes (95% protein-coding and 67% long non-coding 

RNA [lncRNA]) have one or more eQTL391. Therefore, more information is generally required to 

accurately fine-map GWAS associations. 

To fine-map AF GWAS signals and identify causal genes and variants, we performed a 

cross-ancestry eQTL study using left atrial appendages (LAAs) from AF patients and controls in 

normal sinus rhythm (SR). We combined GWAS-eQTL co-localization and Bayesian fine-

mapping analyses to prioritize candidate causal variants, and leveraged a new LAA single-nucleus 

multiome dataset (snATACseq + snRNA-sequencig [snRNAseq]) to link regulatory sequences and 

AF genes. Finally, we performed a CRISPR inactivation (CRISPRi) experiment in human 

embryonic stem cells-derived cardiomyocytes (hESC-CM) to explore how the most strongly 

associated lncRNA gene implicated by our eQTL study can modulate AF risk.  

4.3 RESULTS 

4.3.1 AF-associated cis-eQTLs are concordant across European and East 

Asian ancestries 

To prioritize causal AF variants and genes using a cross-ancestry approach, we profiled 

two cohorts of participants with or without persistent AF that were recruited on two different 

continents. We genotyped participants from the Cardiothoracic Surgical Trials Network (CTSN, 

N=84), a cohort of patients recruited in North America, and a cohort recruited at the University of 

Harbin in China (Harbin, N=67). We imputed genotypes using TOPMed reference haplotypes and 

obtained 17,649,215 and 10,537,217 variants in the CTSN and Harbin cohorts, respectively. We 

projected the genotype data from the CTSN and Harbin cohorts against populations from the 1000 

Genomes Project (1000G). As expected, most participants from the CTSN cohort are of European 

ancestry, although we identified a few participants of admixed African ancestry and one individual 

of East Asian ancestry (Fig. S1A-B). All participants from the Harbin cohort clustered with the 

Han Chinese in Beijing population from the 1000G dataset (Fig. S1A-C). For bulk RNAseq 

analyses, we obtained left atrial appendages (LAAs) from the same CTSN and Harbin participants. 

LAA is an ideal tissue to study AF as it is easily accessible during open heart surgery, and a 
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previous study showed that open chromatin sites found in atrial cardiomyocytes capture most of 

the AF heritability.287 After quality-control, we obtained paired genotype and RNAseq data for 31 

AF and 31 sinus rhythm (SR, controls) individuals in the CTSN, and 28 AF and 37 SR individuals 

in the Harbin cohort (Table S1).  

We focused our cis-eQTL analyses on the 150 sentinel variants recently identified in a 

cross-ancestry meta-analysis of AF GWAS data (which included 77,690 European and 9,826 

Japanese AF cases, and 1,167,040 European and 140,446 Japanese controls)390. We restricted our 

analyses to genes located within one megabase (Mb) from the sentinel AF variants. We found 25 

and 17 significant cis-eQTLs (false discovery rate [FDR] <5%) in the CTSN and Harbin cohorts, 

respectively, of which 11 were significant in both (Fig. 1A-C, and Table S2). We found evidence 

of co-localization between the AF GWAS and eQTL signals (posterior probability [PP] that both 

AF and gene expression share a single causal variant; H4 ≥0.4) at 20 loci (Table 1). 

While our downstream analyses focus on our LAA eQTL findings, we further confirmed 

our results against cis-eQTLs from right atrial appendages (RAAs) from the Genotype-Tissue 

Expression (GTEx) dataset (Table S3)391. Overall, eQTL results were very concordant when 

comparing these datasets: this strong replication validates our experiment, but also alleviates 

concerns of false positive genetic associations due to the multi-ancestry component of the CTSN 

cohort (Fig. 1C-E). We found seven novel AF SNP-eGene pairs that were not identified in GTEx 

(Table 1).  When we compared allele frequencies and effect sizes for both gene expression and 

AF in datasets of European- or East Asian-ancestry, we saw little evidence of heterogeneity (Table 

1). Lastly, in the CTSN and Harbin cohorts, most of the genes implicated by the eQTL studies 

were not differentially expressed between AF cases and SR controls (Table S4), and we did not 

find significant AFxSNP interactions for the tested cis-eQTLs, although we acknowledge limited 

power given our small sample size (Fig. S2).  
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Figure 1. Cross-ancestry LAA eQTLs at AF loci. 

(A-B) Quantile-quantile (QQ) plots of cis-eQTL –log10(p-values) for 150 sentinel atrial fibrillation (AF) SNPs and nearby genes 

(<1 Mb) in the (A) CTSN and (B) Harbin datasets. Dotted lines represent the 95% confidence interval of randomly generated 

normally distributed p-values. (C-E) Scatter plots comparing the eQTLs betas and their standard deviations from left atrial 

appendages (CTSN and Harbin) and right atrial appendages (Genotype-Tissue Expression; GTEx). (C) CTSN vs Harbin, (D) CTSN 

vs GTEx, (E) Harbin vs GTEx. We attributed the value 0 to the eQTL if it was not tested in that cohort. (C-E)  Colors indicate in 

which dataset(s) the eQTL is significant.eQTLs that were not significant in either of the paired cohorts are not shown for clarity. 

We added gene labels for the 20 most significant eQTLs in each cohort. Dotted lines represent x=y coordinates.   
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Table 1.  Expression quantitative trait loci (eQTLs) for atrial fibrillation (AF)-associated variants in the CTSN and Harbin cohorts.  

We report eQTL results for AF variants that are associated (false discovery rate [FDR] <0.05) with the expression of nearby genes in left atrial appendages from 62 and 65 participants recruited in the 

CTSN (mostly European-ancestry) and Harbin (East Asian-ancestry) cohorts, respectively, that also show evidence of co-localization with the AF GWAS signals (coloc H4 posterior probability >0.4). 

To compare allele frequencies and effect sizes (beta) between our eQTL study and genome-wide association (GWAS) results for AF, we also report AF summary statistics from the study by Nielsen et 

al. (N= 1,030,836, European-ancestry) and Biobank Japan (BBJ, N= 150,272, East Asian-ancestry). Genomic coordinates are on build hg38. Allele frequencies and effect sizes are for the alternate allele. 

We shaded significant results (FDR <0.05 for the eQTL studies and P <5E-8 for the AF GWAS). eGenes in bold are novel cis-eQTL when compared to GTEx results from right atrial appendages. 

    eQTL AF GWAS 

    CTSN Harbin Nielsen et al. BBJ 

rsID Chr:Pos 
REF/ 

ALT 
eGene Alt.AF BETA FDR Alt.AF BETA FDR Alt.AF BETA P Alt.AF BETA P 

rs4970418 1:983237 G/A PERM1 0.15 0.40 0.0086 0.07 0.41 0.82 0.17 0.044 7.5E-6 0.076 0.062 0.029 

rs2885697 1:41078607 G/T 
AC093151.3 

0.64 
-0.60 0.050 

0.74 
-0.78 2.5E-9 

0.65 -0.044 2.9E-10 0.69 -0.005 0.75 
AC093151.8 -0.19 0.012 -0.37 1.5E-5 

rs4951258 1:205722188 G/A RAB29 0.33 -0.14 0.047 0.27 -0.12 0.40 0.42 0.038 2.1E-8 0.36 0.02 0.20 

rs2540949 2:65057097 A/T CEP68 0.45 -0.20 9.1E-8 0.32 -0.22 4.5E-8 0.39 -0.066 3.0E-22 0.33 -0.089 3.1E-8 

rs3820888 2:200315300 T/C SPATS2L 0.46 -0.18 0.0081 0.74 -0.22 2.8E-5 0.39 0.068 5.8E-24 0.69 0.093 1.4E-8 

rs34080181 3:66403767 G/A SLC25A26 0.38 0.09 0.44 0.19 0.17 0.027 0.38 -0.045 1.3E-10 0.22 -0.062 9.1E-4 

rs1278493 3:136095167 G/A AC072039.1 0.57 -0.33 6.9E-7 0.14 -0.14 1.00 0.57 -0.039 8.8E-9 0.20 -0.04 0.048 

rs7612445 3:179455191 G/T GNB4 0.28 0.62 6.7E-13 0.12 0.48 3.0E-7 0.19 0.049 4.8E-9 0.18 0.068 9.2E-4 

rs223449 4:102791180 A/T BDH2 0.44 0.15 0.023 0.41 0.03 1.00 0.49 0.036 7.1E-8 0.46 0.039 9.9E-3 

rs2012809 5:128854670 A/G SLC27A6 0.82 -0.58 3.1E-8 0.93 -0.46 0.70 0.79 0.058 4.9E-10 0.92 0.039 0.16 

rs3756687 5:137866004 A/G FAM13B 0.17 0.21 9.0E-5 0.060 -0.05 1.00 0.19 0.099 1.1E-31 0.017 0.036 0.52 
rs34969716 6:18209878 G/A KDM1B 0.27 0.15 0.0044 0.31 0.09 0.052 0.31 0.07 1.6E-19 0.35 0.071 2.6E-5 

rs60212594 10:73654586 G/C MYOZ1 0.15 1.75 1.6E-7 0.19 1.03 6.2E-5 0.14 -0.118 9.2E-35 0.16 -0.065 0.0014 

rs2316443 13:113210523 G/A F10 0.22 -0.25 0.073 0.36 -0.29 8.3E-4 0.23 -0.045 2.4E-8 0.44 -0.021 0.16 

rs11156751 14:32521231 T/C AKAP6 0.28 0.08 0.81 0.41 0.15 0.0055 0.29 0.072 6.9E-21 0.35 0.099 7.6E-10 

rs10873298 14:76960182 C/T 
AC007686.1 

0.53 
-1.77 5.0E-15 

0.69 
-0.90 1.7E-6 

0.63 -0.04 7.1E-9 0.66 -0.05 0.0014 
LINC01629 -1.92 2.5E-17 -1.57 1.9E-8 

rs12908004 15:80384583 A/G 

AC016705.2 

0.17 

0.53 7.4E-5 

0.05 

0.77 9.2E-4 

0.16 0.073 4.1E-16 0.063 0.142 1.5E-6 ARNT2 0.53 1.5E-4 0.61 0.0093 

CTXND1 0.82 0.0015 1.03 0.074 

rs242557 17:45942346 G/A 

MAPT 

0.38 

0.75 1.4E-9 

0.61 

0.50 7.1E-8 

0.38 -0.031 1.4E-5 0.46 -0.078 2.0E-7 MAPT-IT1 0.37 7.8E-6 0.08 1.00 

STH 0.30 3.8E-5 0.10 1.00 

rs6089752 20:62557186 C/T MIR1-1HG-AS1 0.60 -0.23 0.0089 0.51 -0.19 0.50 0.52 0.033 2.2E-6 0.49 0.071 4.0E-6 

rs5754508 22:21644940 C/G UBE2L3 0.17 0.07 0.0071 0.31 0.02 1.00 0.19 0.036 1.0E-4 0.36 0.069 1.4E-4 
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4.3.2 Multi-ancestry fine-mapping of AF-associated loci 

Statistical fine-mapping should help prioritize candidate causal variants at the AF-

associated loci with evidence of co-localization (Table 1). We derived 95% credible sets using 

association summary statistics from the AF GWAS and the CTSN/Harbin eQTL studies. We 

further filtered this list and focused on nine AF loci with GWAS-eQTL co-localization and at least 

one strong candidate causal variant (posterior inclusion probability [PIP] >0.1 [Table 2 and Table 

S5]). These nine loci implicate 14 different genes; we discuss their biology and potential link to 

AF pathophysiology in Table S6. 

Because the eQTL studies are small in comparison to the sample size of the AF GWAS, 

the 95% credible sets for the eQTL signals were often larger than the 95% credible sets for the AF 

signals (Table S5). However, because there is evidence of co-localization and since the two eQTL 

studies have different ancestries (and thus likely different linkage disequilibrium patterns), we 

reasoned that intersecting the 95% credible sets would enrich for candidate causal AF variants. 

Using this approach, we were able to limit to a maximum of six the number of potential causal 

variants at the 9 AF loci mentioned above (Table 2 and Table S5), including three loci with only 

one candidate variant (KDM1B, ARNT2/CTXND1/AC016705.2, MAPT/STH/MAPT-ITI).  

4.3.3 Variant-to-gene (V2G) prioritization using single-nucleus multiomic data 

To gain insights into the regulatory mechanisms by which AF-associated variants modulate 

disease risk, we integrated fine-mapped AF variants described above with our single-nucleus (sn) 

multiome dataset (paired ATAC and RNAseq in the same nuclei) generated from LAAs obtained 

from three AF and four SR human donors (Methods). For completeness, we also queried publicly 

available data from the cis-element Atlas (CATlas; 1,323,041 nuclei ATACseq data from 30 adults 

and 15 fetal human tissue types)287, EpiMap (harmonized and imputed missing epigenomic [18 

marks/assays from ENCODE, Roadmap and GGR] in 859 biological samples [n=3030 observed 

and n=14952 imputed datasets])370, and ENCODE392. For this annotation, we focused on variants 

with fine-mapping posterior inclusion probability (PIP) >0.1 in the AF GWAS and at least one of 

the two eQTL studies; this represented 15 variants at nine loci (Table 2 and Table S7). For all 

these loci, the graphical representation of the association results and functional annotations is in 

Figures S3-S12. Below, we emphasize two compelling examples of V2G prioritization for AF.  
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Table 2.  Functional annotation of AF-associated and eQTL variants prioritized by Bayesian fine-mapping.  

For variants with posterior inclusion probability (PIP) >0.1 in the AF GWAS and at least one of the eQTL study, we retrieved functional annotations from our multiome single-cell RNA-sequencing 

and ATAC-sequencing experiment, the cis-element ATLAS (CATlas), Epimap and ENCODE. ND; not determined because the association was not significant in this dataset, NC; not in the 95% credible 

set, enhD; distal enhancer, enhP; proximal enhancer.  

Sentinel 

GWAS 

variant 

eGene 
Prioritized 

variant 

CHR:POS 

(hg38) 

PIP AF 

GWAS 
PIP CTSN 

PIP 

Harbin 

Left atrial appendage  

multiome 

Cis-element 

ATLAS 

(CATlas) 

Epimap 

ENCODE 
Prioritized 

variant in 

cardiomyocyte 

or any cell-type 

ATAC peak 

Link between 

ATAC peak and 

eGene promoter 

(in 

cardiomyocyte 

or any cell-

types) 

Prioritized 

variant in 

cardiomyocyte 

ATAC peak 

Prioritized 

variant in 

element 

linked to 

eGene in 

heart 

rs4970418 PERM1 
rs74045046 1:976536 0.141 0.282 ND     enhD 

rs56028034 1:981282 0.1 0.202 ND      

rs7612445 GNB4 
rs7612445 3:179455191 0.422 0.5 0.333 Yes Yes Yes Yes  

rs7634416 3:179455436 0.348 0.5 0.333      

rs3756687 FAM13B 
rs3756687 5:137866004 0.791 0.333 ND      

rs7722600 5:137859073 0.105 0.333 ND   Yes  enhD 

rs34969716 KDM1B rs34969716 6:18209878 0.999 0.137 ND Yes Yes Yes  enhD 

rs11156751 AKAP6 rs7140396 14:32514611 0.283 ND 0.307      

rs10873298 

AC007686.1 rs12889775 14:76959734 0.134 0.25 NC      

LINC01629 rs12889775 14:76959734 0.134 0.25 NC      

AC007686.1 rs10873298 14:76960182 0.264 0.25 NC     enhP 

LINC01629 rs10873298 14:76960182 0.264 0.25 NC     enhP 

AC007686.1 rs10873299 14:76960368 0.21 0.25 NC     enhP 

LINC01629 rs10873299 14:76960368 0.21 0.25 NC     enhP 

AC007686.1 rs8181996 14:77427469 0.264 0.25 NC      

LINC01629 rs8181996 14:77427469 0.264 0.25 NC      

rs12908004 

AC016705.2 rs12908004 15:80384583 1 0.989 0.792     

DNase and 

H3K4me3 

mark 

ARNT2 rs12908004 15:80384583 1 0.984 0.887     

DNase and 

H3K4me3 

mark 

CTXND1 rs12908004 15:80384583 1 0.222 ND     

DNase and 

H3K4me3 

mark 

rs242557 

MAPT rs242557 17:45942346 0.988 1 1 Yes Yes Yes Yes enhD 

MAPT-IT1 rs242557 17:45942346 0.988 0.997 ND Yes  Yes Yes enhD  

STH rs242557 17:45942346 0.988 0.991 ND Yes  Yes Yes enhD 

rs6089752 
MIR1-1HG-

AS1 
rs6089753 20:62556900 0.139 0.393 ND      
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GNB4, which encodes G Protein Subunit Beta 4, is one of the strongest cis-eQTL that we 

detected and it co-localizes with the AF GWAS signal in both the CTSN and Harbin cohorts. In 

particular, intersection of the GWAS and eQTL fine-mapped results at this locus prioritized two 

variants, rs7612445 and rs7634416, with PIP >0.1 (Fig. 2A). In our LAA snRNAseq data, GNB4 

is expressed in most cell-types, with high expression in pericytes and endothelial, endocardial and 

myeloid cells, but relatively low levels in cardiomyocytes (Fig. 2B). However, one of the fine-

mapped variants, rs7612445, overlaps with a cardiomyocyte-specific ATACseq peak (Fig. 2C), 

and the ATACseq signal at this peak is correlated with GNB4 expression in cardiomyocytes 

(Pearson’s R=0.28), but not when we considered all cell-types (Fig. 2D)322. The same variant is 

also prioritized in the CATlas and EpiMap databases (Table 2 and Table S7).  

When we genotyped rs7612445 in six out of seven donors who provided LAAs for the sn-

multiome experiment, all but one individual were homozygous for the G-allele. Interestingly, the 

one individual with the GT genotype had increased chromatin accessibility and higher GNB4 

expression in cardiomyocytes (Fig. 2D-E), consistent with the cis-eQTL effect detected by bulk 

RNAseq in the CTSN and Harbin cohorts (Fig. 2F). While rs7612445 and rs7634416 are in strong 

LD (r2~1 in European and East Asian populations), our results suggest that rs7612445 is the more 

likely AF causal variant. Our finding is also consistent with a previous report that used 

electrophoretic mobility shift assay in cardiomyocytes derived from induced pluripotent stem cells 

to show that the rs7612445-T allele increases binding with the NKX2-5 transcription factor219. 

Thus, we posit that rs7612445 is the causal variant at this AF locus and mediates its effect on 

disease through the regulation of GNB4 in cardiomyocytes.  
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Figure 2. Fine-mapping and annotation of the GNB4 locus. 

 (A) The top panels show –log10(p-values) from the cross-ancestry atrial fibrillation (AF) GWAS (y-axis) against genomic 

coordinates (x-axis, hg38) for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome 

Project linkage disequilibrium (LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the 

bottom panels, we report the eQTL –log10(p-values) in the CTSN and Harbin cohorts for GNB4 expression in left atrial appendages 

(LAAs). LD is based on the European super-population for CTSN (left) and the East Asian super-population for Harbin (right). (B) 

Uniform manifold approximation and projection (UMAP) of left atrial appendage (LAA) single-nucleus multiome cell-types (left) 

and GNB4 expression density (right). (C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. 

From top to bottom: The first track shows ATACseq read coverage at the GNB4 locus (left) paired with violin plots of GNB4 

expression aggregated by cell-type (right). The second track shows ATACseq peaks. The third track shows the gene annotation 

(exon, intron) for the genes found at the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene 

promoters identified in either all cell-types (Links) or specifically in cardiomyocytes (Links CM). We use Pearson correlation tests 

between ATACseq peak accessibility and gene expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 
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are shown. Link heights are proportional to their |Pearson R| in the range indicated in the legend. In the final track, we report AF 

GWAS and eQTL fine-mapping posterior inclusion probabilities (PIP). (D) Scatter plots of the chr3:179454910-179455284 peak 

accessibility against GNB4 expression colored by the genotype of the prioritized variant (rs7612445) in the six genotyped 

individuals of our single nucleus multiome LAA data (one GT and five GG. (E) ATACseq read coverage of the chr3:179454910-

179455284 peak (across all cell-types) aggregated by genotype showing greater accessibility for the individual with the T-allele. 

(F) rs7612445-GNB4 eQTL boxplots in the CTSN and Harbin bulk RNAseq cohorts. Adipo; Adipocytes, CM; Cardiomyocytes, 

EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

At the MAPT locus on chromosome 17 (encoding the microtubule-associated protein tau), 

we detected a strong co-localization between the AF GWAS signal and the expression of three 

genes – MAPT, MAPT-IT1, and STH – in the CTSN and Harbin datasets (H4 PP >0.9, Table S5). 

We focused our downstream analyses on MAPT given that MAPT-IT1 and STH are expressed at 

very low levels in our sn-multiome data (Figures S9-10) and have not been implicated in cardiac 

phenotypes in the past (Table S6). Statistical fine-mapping of the AF GWAS and eQTL datasets 

prioritized a single variant in the 95% credible sets (rs242557) with high confidence (PIP >0.95, 

Fig. 3A and Table 2).  In the LAA sn-multiome data, MAPT is highly expressed in cardiomyocytes 

(Fig. 3B). rs242557 intersects with an ATACseq peak correlated with the expression of MAPT 

when we considered all cell-types (Fig. 3C), as well as with an ATACseq peak opened in a broad 

range of cell-types in CATlas (including cardiomyocytes) and a distal enhancer element in 

ENCODE (Table 2 and Table S7). Among the six donors who provided LAA for the sn-multiome 

experiment and that we could genotype, four were heterozygous and two were homozygous for the 

reference G-allele. GA heterozygous donors showed higher MAPT expression (in all cell-types or 

considering only cardiomyocytes, Fig. 3D), consistent with the bulk eQTL results in the CTSN and 

Harbin cohorts. However, we found no difference in chromatin accessibility for this ATACseq 

peak based on genotypes at rs242557 (Fig. 3D-F), maybe because our sample size is too small or 

because the variant affects gene expression without modulating chromatin accessibility.   
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Figure 3. Fine-mapping and annotation of the MAPT locus. 

 (A) The top panels show –log10(p-values) from the cross-ancestry atrial fibrillation (AF) GWAS (y-axis) against genomic 

coordinates (x-axis, hg38) for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome 

Project linkage disequilibrium (LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the 

bottom panels, we report the eQTL –log10(p-values) in the CTSN and Harbin cohorts for MAPT expression in left atrial appendages 

(LAAs). LD is based on the European super-population for CTSN (left) and the East Asian super-population for Harbin (right). (B) 

Uniform manifold approximation and projection (UMAP) of left atrial appendage (LAA) single-nucleus multiome cell-types (left) 

and MAPT expression density (right). (C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. 

From top to bottom: The first track shows ATACseq read coverage at the MAPT locus (left) paired with violin plots of MAPT 

expression aggregated by cell-type (right). The second track shows ATACseq peaks. The third track shows the gene annotation 

(exon, intron) for the genes found at the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene 

promoters identified in either all cell-types (Links) or specifically in cardiomyocytes (Links CM). We used Pearson correlation tests 

between ATACseq peak accessibility and gene expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 
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are shown. Link heights are proportional to their |Pearson R| in the range indicated in the legend. In the final track, we report AF 

GWAS and eQTL fine-mapping posterior inclusion probabilities (PIP). (D) Scatter plots of the chr17:45942197-45942667 

ATACseq peak accessibility against MAPT expression colored by the genotype of the prioritized variant (rs242557) in the six 

genotyped individuals of our single-nucleus multiome LAA data (two GT and four GG). (E) ATACseq read coverage of the 

chr17:45942197-45942667 ATACseq peak aggregated by genotype (across all cell-types). (F) rs242557-MAPT eQTL boxplots in 

the CTSN and Harbin bulk RNAseq datasets. Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; 

Pericytes, SMC; Smooth muscle cells. 

4.3.4 LINC01629 repression alters key AF genes expression in hESC-CMs 

Intriguingly, the strongest eQTL in both the CTSN and Harbin datasets implicated 

genotypes at the sentinel SNP rs10873298 and the expression of an uncharacterized lncRNA 

(LINC01629) and a pseudo-gene (AC007686.1) in LAAs (Fig. 1 and Table 1). Expression of both 

genes are co-localized with the AF GWAS signal at the locus (H4 >0.9, Table S5) and we could 

resolve the 95% credible set to four variants in CTSN (each with PIP >0.1, Table 2). We could not 

functionally annotate any of these four variants using the sn-multiome LAA, CATlas, or EpiMap 

data, although two of them (rs10873298 and rs10873299) overlap with a generic proximal enhancer 

catalogued by ENCODE (Table 2). A third prioritized variant, rs12889775, is also of interest for 

two reasons: First, it is located just next to a CM-specific ATACseq peak and could therefore 

directly affects the expression of LINC01629 (Fig. S5B). And second, it also maps to a LINC01629 

exon so that it might influence the stability of this lncRNA. 

We were able to detect the expression of LINC01629 in cardiomyocytes in the LAA sn-

multiome data (Fig. S5B). To gain molecular insights into the role that LINC01629 can play in AF 

etiology, we knocked down its expression in hESC-CMs using CRISPRi and performed bulk 

RNAseq on three biological replicates (Methods and Fig. S13). For these CRISPRi experiments, 

we used a guide RNA (gRNA) that maps to the LINC01629 promoter. We confirmed that CRISPRi 

repressed LINC01629 expression when compared to a non-targeting gRNA (Fig. 4A). Differential 

gene expression analysis identified 217 up- and 299 down-regulated genes (FDR <0.1) upon 

CRISPRi on the LINC01629 promoter (Fig. 4B and Table S8). Many of these genes play key roles 

in CM functions and/or have already been implicated in AF by GWAS (e.g. TBX5, PITX2, HCN4, 

SCN5A)393-395. Notably, the most down-regulated gene in this LINC01629 CRISPRi experiment is 

FOXP2, a transcription factor that was recently implicated in the control of regulatory networks 

found in pacemaker cells396. Our pathway analyses confirmed these observations, for instance 

highlighting genes implicated in cardiac conduction among the CRISPRi down-regulated genes 
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(Fig. 4C). The expression of AC007686.1 was not significantly modulated in the CRISPRi 

experiment (log2 fold-change = -0.036, nominal P=0.16), although we cannot formerly exclude that 

this pseudogene also contributes to the AF GWAS signal.   

 

 

Figure 4. In vitro validation of LINC01629. 

(A) Boxplot of raw read counts for LINC01629 in human embryonic stem cells-derived cardiomyocytes (hESC-CMs) with CRISPRi 

targeting the promoter of LINC01629 (LINC01629KRAB) vs a non-targeting control (NTC) guide RNA (gRNA). (B) Volcano plot 

of the differential gene expression analysis carried out by comparing the transcriptome of hESC-CMs treated with a gRNA against 

the promoter of LINC01629 vs a negative control (NTC gRNA). We labeled the top 10 genes (black dot and label), the AF prioritized 

genes by Open Targets (red dot and label) as well as LINC01629 (green dot and black label). (C) Pathway analyses with genes 

down-regulated (top panel) or up-regulated (down panel)(false discovery rate <0.1) in the CRISPRi experiment.  
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4.4 DISCUSSION 

One strength of our study is that we focused on AF-associated variants identified in a large 

cross-ancestry GWAS study and that we included LAA samples from different ancestries. Our 

initial conclusion is that there is little evidence of heterogeneity when comparing the effect of AF-

associated variants between European- and East Asian-ancestry populations (Table 1). This 

observation is largely consistent with recent studies that suggest that the genetic architecture of 

common human diseases, including AF, is concordant between populations (at least when 

considering common variants)397. However, it is important to nuance these conclusions with two 

important considerations. First, most cross-ancestry GWAS published to date are still very much 

European-ancestry-centric, and are therefore less likely to yield genetic associations specific to 

non-European samples (which would increase heterogeneity). Second, the limited sample size of 

our eQTL datasets (CTSN, N=62; Harbin, N=65) would not allow us to detect small differences in 

effect sizes on gene expression for the AF-associated variants.  Thus, there is still great value in 

continuing to increase the sample size of non-European-ancestry GWAS and eQTL studies for 

complex human diseases, including AF, to discover population-specific biology and also to enable 

more powerful fine-mapping experiments.  

Many GWAS variants are eQTLs, yet this overlap does not necessarily imply that the 

corresponding eGenes are involved in the diseases. To increase the specificity of our strategy, we 

only considered: (1) loci with strong evidence of co-localization between the AF GWAS signals 

and gene expression in LAAs and (2) variants with high PIP (Table 2). We acknowledge that these 

stringent criteria could make us miss interesting loci with more complex genetic architecture. 

Nonetheless, we prioritized many interesting genes for a role in AF (Table S6).  Some of these 

genes have previously been linked to AF (e.g. GNB4, MAPT, FAM13B, ARNT2) because of roles 

in heart rhythm, cardiac conduction, or other aspects of cardiomyocyte biology. But many of these 

genes are implicated in AF for the first time, highlighting once again the power of human genetics 

to gain novel insights into clinically-relevant human phenotypic variation.  

One interesting finding of our study is the discovery that down-regulating the expression of 

LINC01629 in hESC-CMs using CRISPRi modifies the expression of many key AF genes, 

including candidate causal genes implicated in AF GWAS (like PITX2, Fig. 4B). Pathway analyses 

confirms this observation by revealing that many of the down-regulated genes impact cardiac 
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conduction. The T-allele at rs10873298, which is associated with lower LINC01629 expression in 

LAAs, is protective against AF (Table 1). This observation, combined with results from our 

CRISPRi experiment suggests that the down-regulation of key genes like PITX2, GJA5 and TBX5 

in CMs might prevent AF. While it is known that the up-regulation of these genes can promote 

arrhythmia and AF394,398-401, loss-of-function and haploinsufficiency of these genes has also been 

associated with AF401-404. This observation underscores the intricate balance necessary for normal 

conduction in the heart, and that too little or too much of a given gene can lead to heart diseases. It 

is also important to emphasize that while our acute treatment of CMs with CRISPRi links 

LINC01629 to pathways of genes involved in atrial development and cardiac conduction, it does 

not recapitulate the chronic impact of LINC01629 over (or under)-expression during a lifetime. 

Additional work is needed to clarify whether this long non-coding RNA promotes or protects 

against AF, and how molecularly it modulates the expression of key AF genes. 

As for most other complex human diseases tackled by GWAS, progress towards a better 

understanding of AF pathophysiology has been hampered by challenges to move from genetic 

associations to genes and variants. In this study, we combined statistical methodologies (co-

localization, Bayesian fine-mapping), eQTL analyses in a disease-relevant tissue obtained from 

donors of different ancestries, and CRISPRi in hESC-CMs to prioritize new variants, regulatory 

sequences and genes that modulate the risk of developing AF. While we uncovered strong variant 

and gene candidates for further downstream analyses, we recognize that larger eQTL studies, 

potentially including other tissues, are required to functionally dissect the ~150 GWAS loci 

associated with AF. Because we made these discoveries by studying human genetic and phenotypic 

variation, they promise to yield insights into the causes of AF in humans. Given the unmet need to 

develop and characterize new molecules to treat (or prevent) AF, this is particularly exciting since 

candidate drug targets that are supported by genetic evidence are twice as likely to yield effective 

therapies108,405. 
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4.5 METHODS  

4.5.1 Participants 

All participants provided written informed consent and the project was approved by the 

Montreal Heart Institute ethical committee (project number: #2011-209). Studies involving human 

participants recruited at the Oxford site were approved by the local Research Ethics Committee 

(South Central - Berkshire B Research Ethics Committee, UK; ref: 18/SC/0404). All participants 

provided written informed consent. 

4.5.2 RNA extraction and sequencing 

Harbin 

RNA isolation 

We extracted total RNA with the Qiagen kit. We then processed the total RNA as follows: 

(1) We tested the RNA samples for possible contamination and degradation using 1% agarose gel 

electrophoresis; (2) We examined RNA purity and concentration using the NanoPhotometer® 

spectrophotometer; and (3) We measured RNA integrity and quantity using the RNA Nano 6000 

Assay Kit on the Bioanalyzer 2100 system. 

Library preparation and sequencing.  

We used the Nugen kit with the ribosomal RNA (rRNA) depletion and stranded method to 

construct the RNA libraries for RNA-seq. Briefly, we depleted rRNA from total RNA using the 

rRNA Removal Kit as per the manufacturer's instructions. Next, we fragmented the RNA into 

~250-~300 bp fragments and reverse transcribed the first strand cDNA using fragmented RNA and 

dNTPs (dATP, dTTP, dCTP and dGTP). We degraded the RNA using RNase H and synthesized 

the second strand cDNA using DNA polymerase I and dNTPs (dATP, dUTP, dCTP and dGTP). 

We then converted the remaining overhangs of double-stranded cDNA into blunt ends using 

exonuclease/polymerase activities. After adenylation of the 3' ends of DNA fragments, we ligated 

sequencing adaptors to the cDNA. To select cDNA fragments of preferentially ~250-~300 bp in 

length, we purified the library fragments using the AMPure XP system. We performed uridine 

digestion using Uracil-N-Glycosylase, followed by cDNA amplification using PCR. After library 

construction, we measured the concentration of the library using the Qubit fluorometer and adjusted 
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it to 1 ng/µL. We used the Agilent 2100 Bioanalyzer to measure the insert size of the acquired 

library. Finally, we examined the accurate concentration of the cDNA library using qPCR. Finally, 

we subjected the samples to sequencing on the Illumina NovaSeq 6000 S4 using a paired-ends 150 

bp protocol. 

CTSN 

RNA isolation 

We blended samples with the Bullet Blender Storm method using Green RINO Lysis tubes 

and added 200uL of Quiazol per tube for ~50 mg of tissue, following the manufacturer's protocol 

for heart tissue. We then extracted RNA using the miRNeasy Qiagen kit (Cat No./ID: 217004), 

following the manufacturer's protocol. 

Library preparation and sequencing 

We quantified total RNA using a NanoDrop Spectrophotometer ND-1000 (NanoDrop 

Technologies, Inc.) and assessed its integrity on a 2100 Bioanalyzer (Agilent Technologies). We 

depleted rRNA from 250 ng of total RNA using the QIAseq FastSelect - rRNA HMR Kit. We 

performed cDNA synthesis using the NEBNext RNA First Strand Synthesis and NEBNext Ultra 

Directional RNA Second Strand Synthesis Modules (New England BioLabs). We carried out the 

remaining steps of library preparation using the NEBNext Ultra II DNA Library Prep Kit for 

Illumina (New England BioLabs), and we purchased adapters and PCR primers from New England 

BioLabs. We quantified libraries using the Kapa Illumina GA with Revised Primers-SYBR Fast 

Universal kit (Kapa Biosystems) and determined the average size fragment using a LabChip GX 

(PerkinElmer) instrument. We conducted sequencing on an Illumina NovaSeq 6000 S4 paired-ends 

100-bp with a minimum aimed 100M reads per sample. 

4.5.3 DNA extraction and genotyping 

Harbin 

We isolated DNA using a Qiagen kit. We measured the DNA concentration (≥60 ng/µl) and 

volume (≥30µl) using the Qubit® DNA Assay Kit on a Qubit® 3.0 Fluorometer (Invitrogen, USA). 

We performed genotyping using the Illumina GSA v3 or ASA genotyping arrays. 

CTSN 
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We isolated DNA from blood, when available, using the Qiagen DNaeasy kit (Cat No./ID: 

69504), following the manufacturer's protocol. We quantified the genomic DNA using a 2100 

Bioanalyzer (Agilent Technologies) and performed genotyping using the Illumina GSA-24v3 

genotyping array. 

4.5.4 Genotype quality-control and imputation 

We used PLINK 1.9 to handle the genotype files. In the Harbin cohort, we removed one 

individual with >5% missingness. In the Harbin cohort, we also removed monomorphic SNPs and 

those with a Hardy-Weinberg equilibrium exact test P-value <1E-6, resulting in 417,862 genotyped 

SNPs. In the CTSN cohort, we removed monomorphic SNPs, resulting in 531,541 genotyped SNPs 

(we did not filter based on Hardy-Weinberg equilibrium in CTSN due to the multi-ancestry nature 

of the cohort). Next, we flipped alleles to match hg19 using Snpflip (https://github.com/biocore-

ntnu/snpflip). We performed genotype imputation on the TOPMed Imputation Server using the 

TOPMed-r2 reference. We retained variants with an imputation R2 >0.3 for downstream analyses. 

In total, we obtained 10,537,217 and 17,649,215 imputed variants in the Harbin and CTSN cohorts, 

respectively. 

4.5.5 Genetically-defined continental ancestry 

We used 2,722 common ancestry informative markers 

(https://genome.sph.umich.edu/wiki/Exome_Chip_Design) to perform principal component 

analyses (PCA) on a combined dataset that included samples from the Harbin and CTSN cohorts, 

as well as populations from the 1000 Genomes Project. We visualize participants using axes of 

variation obtained by PCA and Uniform Manifold Approximation and Projection (UMAP) 

calculated with the first 10 principal components (PC). 

4.5.6 RNAseq processing and differential expression analysis 

We performed the following steps independently for the CTSN and Harbin datasets. We 

pseudoaligned RNAseq reads to Gencode v32 using Kallisto with the options quant -b 100 --rf-

stranded. We aggregated transcripts by genes and quantified them with DESeq2166. We removed 

genes with less than 10 reads. We used DESeq2's Wald test with sex as a covariate, followed by a 

log2 shrunken transformation (ashr shrinkage estimator406) to compare AF differentially expressed 

https://genome.sph.umich.edu/wiki/Exome_Chip_Design
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genes between Harbin and CTSN. Lastly, we determined the number of PCs to use as hidden 

variables (covariates) with the runElbow() function from the PCAForQTL package407. 

4.5.7 eQTL calling  

For the eQTL datasets, we obtained 65 and 62 samples in Harbin and CTSN, respectively, 

for which we had genotypic and transcriptomic data. We first tested eQTLs for 150 sentinel variants 

recently associated with AF in a cross-ancestry meta-analysis390. Later, for co-localization 

analyses, we retrieved all genetic variants in a 500 kilobases (kb) window centered on the sentinel 

variants that were significant eQTLs (FDR <0.05). At the FAM13B locus, we discovered that 

rs529526 was miss-annotated as sentinel variant (the GWAS meta-analysis P-value was inferior to 

rs3756687 and rs7722600) and changed it to rs3756687 for all downstream analyses. To compute 

eQTLs, we used transformed gene expression matrices derived from the vst() function of DESeq2. 

We accounted for hidden variables in the RNAseq datasets using PCs (shown to outperform PEER 

factors407) with the PCAForQTL package function runElbow(). For both CTSN and Harbin the 

elbow for proportion of variance explained occurred at 7 PCs. We then used the MatrixEQTL 

package198 with sex and 7 PCs as covariates to find eQTLs with less than one megabase (Mb) 

between the gene and the SNP. To test for statistical interaction between genotype and disease 

status, we used the following linear model for sentinel variants only: gene expression levels ~ sex 

+ disease_status + SNP + PC1 + PC2 + PC3 + PC4 + PC5 + PC6 + PC7 + SNP:disease_status. 

4.5.8 Co-localization 

We retrieved the hg38 positions using the AnnotationHub package (Annotationhub chain: 

hg19ToHg38.over.chain.gz). For CTSN and Harbin, we merged eQTL summary statistics 

overlapping with the GWAS summary statistics and ran coloc 

(https://github.com/chr1swallace/coloc) on each locus with a significant eQTL. We used 87,516 as 

the number of cases and 1,395,002 as the sample size for the GWAS390.  

4.5.9 Single-nucleus multiome 

Sample collection from LAA.  

A total of eight patients were initially included in the study; all patients underwent cardiac 

surgery (coronary artery bypass grafting) in the John Radcliffe hospital at Oxford. Left atrial 
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appendage biopsies were collected before cardiopulmonary bypass and immediately, rinsed of 

blood, towel-dried and snap-frozen in liquid nitrogen until use for subsequent experiments. 

Single nuclei sample preparation and sequencing.  

To isolate nuclei from LAA samples we used a modified version of the 10X multiome 

nuclei isolation protocol. Unless specifically mentioned in our description bellow, we re-suspended 

nuclei by pipette mixing slowly 10 times and we used the buffer described by 10X here: 

https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gene-

expression/documentation/steps/sample-prep/nuclei-isolation-from-complex-tissues-for-single-

cell-multiome-atac-plus-gene-expression-sequencing. All steps were performed on ice or 

maintained at 4°C. We extracted nuclei from tissues using a Singulator™100 with the nuclei 

manufacturer protocol (fast extraction setting). For each sample, we loaded approximately 25mg 

of tissue with 1.5ml of nuclei lysis buffer (Tris-HCL pH 7.4 10mM, NaCl 10mM, MgCl2 3mM, 

Tween-20 0.1%, Nonidet P40 Substitute 0.1%, Digitonin 0.01%, BSA 2%, DTT 1mM, 0.5U/uL 

Protector RNase inhibitor [Sigma catalog no. 3335402001], in nuclease free water) in the 

Singulator™100. Once the run completed, we rinsed the cartridge with an additional 1ml of lysis 

buffer, passed the solution in two 20um filter (Miltenyi catalogue no. 130-101-812) sequentially, 

and performed a first round of centrifugation at 500g and 4°C for 5 min in a swing bucket 

centrifuge. We then removed the supernatant, added 1ml of suspension buffer (PBS, 2% BSA, 

0.5U/uL Protector RNase inhibitor), waited 5 min for buffer exchange, re-suspended the nuclei, 

passed the solution through a 20um filter, rinsed with an additional 1mL of suspension buffer and 

performed a second centrifugation at 500g and 4°C for 5 min. We then removed the supernatant 

and re-suspended the nuclei in 100uL of 0.1X lysis buffer (1U/uL Protector RNase inhibitor) by 

pipette mixing 5 times, waited 2min, added 1mL of wash buffer, pipette mixed 5 times and 

centrifuged at 500g and 4°C for 5 min. Finally, we re-suspended the nuclei in diluted nuclei buffer, 

quantified them on a Countess® II FL, and proceeded to loading the chip on the Chromium 

controller and downstream steps from the manufacturer protocol. We sequenced libraries on a 

Novaseq 6000 S4 PE100 with a targeted 30,000 paired-reads per cells for the RNA libraries and 

60,000 paired-reads per cells for the ATAC libraries. 

Alignment and pre-processing.  

https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gene-expression/documentation/steps/sample-prep/nuclei-isolation-from-complex-tissues-for-single-cell-multiome-atac-plus-gene-expression-sequencing
https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gene-expression/documentation/steps/sample-prep/nuclei-isolation-from-complex-tissues-for-single-cell-multiome-atac-plus-gene-expression-sequencing
https://www.10xgenomics.com/support/single-cell-multiome-atac-plus-gene-expression/documentation/steps/sample-prep/nuclei-isolation-from-complex-tissues-for-single-cell-multiome-atac-plus-gene-expression-sequencing
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We aligned FASTQ to Cellranger’s GRCh38-2020-A reference 

(https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/downloads/latest) 

using the count function of cellranger-arc-2.0.0 for each sample. We then aggregated all samples 

using cellranger-arc aggr function. We removed one sample having a low number of detected 

genes, linked genes and number of cells. For downstream analyses, we used Seurat v4 and 

Signac289. We kept ATAC peaks present in at least 10 cells. We removed low quality cells using 

the following thresholds: > 200 detected genes, > 400 detected peaks, <10% mitochondrial reads, 

> 2 transcription start site enrichment score and > 10% ATAC reads in peaks. We then annotated 

cells by co-embedding our data with the heart atlas left atrial nuclei306. We used SCTransform for 

normalization and regressing out mitochondrial reads percentages. We integrated the data using 

Harmony on 30 PCs. We used the heart cell atlas labels to assign cell-types to the resulting clusters. 

We removed doublets using both scDblFinder408 scores and manual sub-clustering curation. We 

first calculated a doublet score using scDblFinder on both the RNA and ATAC data. We removed 

cells for which the product of the 2 scores was greater than 0.5 (scDblFinder RNA score * 

scDblFinder ATAC score, labeled high confidence doublets). We then sub-clustered each cell-type 

and removed sub-clusters that showed an enrichment of the scDblFinder scores and the top marker 

gene of another cell-type (labeled sub-cell-type doublets). We then re-clustered cells using seurat’s 

function FindMultiModalNeighbors() with the first 20 PCs of the RNAseq data and PCs 2-20 of 

the ATACseq data. Finally, we refined ATACseq peaks with cell-type labels using Signac’s 

CallPeaks function.  

4.5.10 Visualization of fine-mapped AF-associated variants in single-nucleus 

multiome data 

We calculated approximate Bayes factors (aBF) for each dataset using a previously 

described fine-mapping algorithm409. Briefly, aBF was calculated with summary statistics of the 

GWAS meta-analysis and both eQTL datasets using the following equation;  

𝑎𝐵𝐹 =  √
2𝑆𝐸2

2𝑆𝐸2 + 𝜔
  exp (

𝜔𝛽2

2𝑆𝐸2(2𝑆𝐸2 + 𝜔)
) 

where 𝛽 and SE are the variant’s effect size and standard error, respectively, and 𝜔 is the 

prior variance in allelic effects, taken here to be 0.04. We calculated PIP for variants in the 95% 

https://support.10xgenomics.com/single-cell-multiome-atac-gex/software/downloads/latest
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credible sets for each dataset. We report credible set sizes and their overlap using the eQTL datasets 

in which the eQTL was significant and where the GWAS and eQTL signals co-localized (defined 

as H4 PP >0.4). When both Harbin and CTSN credible sets were included, we overlapped their 

union with the GWAS credible sets. In LocusZoom panels, we plotted P-values for each locus with 

1000 Genomes European (EUR) and East Asian (EAS) populations linkage disequilibrium patterns 

using the locuscomparer package for CTSN and Harbin. 

 

To evaluate the genomic context of each each locus, we retrieved the overlapping ATACseq 

peaks and coverage, peak-gene links and the eQTL gene expression from our sn-multiome dataset. 

To calculate peak-gene links, we first created MetaCells within each sample using the hdWGCNA 

package410. We calculated MetaCells genes and peaks counts by averaging the genes/cells and 

peaks/cells matrices using 30 neighbor cells in the gene expression harmony space and limited the 

number of overlapping cells to 15. We then calculated 2 Pearson’s correlation scores between the 

eQTL genes and peaks within 1Mb of the gene. The first correlation score was calculated using all 

cells. The second was calculated using cardiomyocytes only. In both cases, we kept peak-gene 

links with a |Pearson R| > 0.2. For clarity, we only display links for eQTL genes found in Table 1.  

4.5.11 Prioritized variants overlap with other genomic datasets 

For each annotation, when necessary, we recovered hg38 positions as mentioned above. We 

obtained ENCODE regulatory elements from the genome.ucsc.edu table browser, table 

encodeCcreCombined (https://genome.ucsc.edu/cgi-

bin/hgTables?hgta_doMainPage=1&hgta_group=regulation&hgta_track=encodeCcreCombined&

hgta_table=encodeCcreCombined&hgsid=1439910105_RsimqAdh3sPECjdmse1QPtYFPY3c). 

We obtained CATlas ATAC peaks from 

http://catlas.org/catlas_downloads/humantissues/cCRE_by_cell_type. We obtained EpiMap links 

in the heart from 

https://personal.broadinstitute.org/cboix/epimap/links/pergroup/links_by_group.heart.tsv.gz. 

4.5.12 LINC01629 CRISPRi  

Cloning of gRNA plasmid and lentivirus production  
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Non-Targeting Control (NTC) gRNA sequence: Forward  (5’-

CACCGAAAACAGGACGATGTGCGGC-3’) and Reverse (5’- 

AAACGCCGCACATCGTCCTGTTTTC-3’); LINC01629 gRNA sequence: Forward (5’-

CACCGTAGAAAAAGACACTTCCAA-3’) and Reverse (5’-

AAACTTGGAAGTGTCTTTTTCTAC-3’). The above gRNA oligonucleotides were annealed at 

a final concentration of 0.4uM and were cloned into 500ng of Esp3I-digested LentiGuide-Puro 

plasmid using T4 DNA Ligase (Catalog #M0202, NEB). Ligated plasmids were transformed into 

OneShot Stbl3 E. coli competent cells (Catalog #C737303, Invitrogen) as per the manufacturer’s 

protocol. Successful plasmid clones were screened using Sanger sequencing and plasmids were 

extracted using FavorPrep plasmid miniprep kit (Catalog #FAPDE 300). For lentivirus production, 

lentiviral particles were produced in a 10cm plate format using HEK293T cells cultured in DMEM 

with 10% FBS. Briefly, 10 ug of Lentiguide-puro gRNA plasmid for LINC01629 or NTC (Addgene 

#52963), 7.5 ug of pMDLg/pRRE, 2.5 ug of pRSV-REV, and 2.5 ug pMD2.G (Addgene #12251, 

#12253 & #12259) were co-transfected using 50 ul of PEI (1mg/ml) and 3ml of Opti-MEM I 

Reduced Serum Medium (Catalog #31985070, ThermoFisher Scientific). Following overnight 

incubation, the media was changed to DMEM with 5% FBS. Viral supernatant for the next 48 hrs 

was collected, pooled, and filtered through 0.22um PES filter. Viral particles were concentrated 

using Lenti-Pac Lentivirus Concentration Solution (Catalog #LPR-LCS-01, GeneCopoeia™), 

according to the manufacturer’s instructions. Final concentrated viral particles were then 

resuspended in 100 uL of PBS solution.  

Cell culture and CRISPRi knockdown of LINC01629 

The H1-dCas9-KRAB hESC line was engineered by lentiviral infection of the Lenti-dCas9-

KRAB-blast plasmid (Addgene #89567), and monoclones with stable constitutive dCas9-KRAB 

expression were isolated and expanded for targeting. All stem cell cultures were maintained in 

mTesR1 (Catalog #85857, STEMCELL Technologies), seeded in Geltrex (Catalog #A1413202, 

ThermoFisher Scientific) coated plates at 37 °C with 5% CO2 in the incubator. Cells were routinely 

tested for mycoplasma prior to culture. For the lentiviral knockdown of LINC01629, the H1-dCas9-

KRAB hESC were cultured in 12-well plates and treated with 30ul of lentiviral particles in 8ug/ml 

polybrene, per well. 24 hours later, infected cells were positively selected with both 1ug/ml 

puromycin (to select for the gRNA) and 10ug/ml blasticidin (to ensure only the H1-dCas9-KRAB 
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cells). The knockdown of LINC01629 was validated by qPCR, and three independent experiments 

per group were performed. 

Cardiomyocyte differentiation 

We performed cardiomyocyte differentiation using the GiWi protocol as previously 

described411. Briefly, both H1-dCas9-KRAB hESC lines infected with NTC and LINC01629 

gRNAs were dissociated with Accutase (Catalog: #07920, STEMCELL Technology), and seeded 

in 12-well plates containing mTesR1 with Y27632 (Catalog #72307, STEMCELL Technology) 

until 80% confluency. Following 48 hours, cells were induced with CHIR99021 for 24 hours 

(Catalog #72054, STEMCELL Technology) and media was subsequently changed to RPMI+B27 

without insulin (Catalog A1895601, ThermoFisher). Three days after CHIR99021 induction, media 

was changed to RPMI without insulin (Catalog #A1895601, ThermoFisher) and 5uM IWP2 

(Catalog #72122, STEMCELL Technology) for another 48 hours. On Day 5 post-induction, media 

was refreshed in RPMI+B27 without insulin. RPMI+B27 supplement with insulin (Catalog 

17504044, ThermoFisher) was added only from day 7 thereafter when there were beating 

cardiomyocyte clusters. Cardiomyocytes were cultured and matured for 60 days before harvesting 

for downstream experiments. 

RNA Extraction and RNAseq 

Cardiomyocytes targeted with both NTC and LINC01629 gRNA were isolated and 

harvested in 400ul Trizol reagent (ThermoFisher, 15596026). Briefly, RNA from three 

independent biological replicates were isolated using the Direct-Zol RNA Miniprep kit (Zymo 

Research, R2050). RNA quality and yield were assessed using Agilent RNA 6000 Pico kit (Agilent, 

50167-1513) for quality control. Total RNA library preparations were prepared using TruSeq 

Stranded Total RNA Library Prep HMR kit (Illumina, 20020596) and respective cDNA libraries 

were prepared by Macrogen Asia Pacific Pte. Ltd. RNA libraries were sequenced on HiSeq 4000 

Illumina sequencing platform to achieve a sequencing depth of at least 50 million paired-end reads 

per biological sample.  

RNAseq processing and differential expression analysis 

We pseudoaligned RNAseq reads to Gencode v32 using Kallisto with the options quant -b 

100 --rf-stranded. We aggregated transcripts by genes and quantified them with DESeq2. We 
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calculated principle components using the 500 most variable genes. We used DESeq2's Wald test 

for condition (CRISPRi targeting the promoter of LINC01629 vs NTC), followed by a log2 

shrunken transformation (ashr shrinkage estimator). We performed an over-representation analysis 

on Gene Ontology Biological Processes using the rbioapi package412 rba_panther_enrich() 

function. We used all genes with a baseMean value above 1 as background and corrected for 

multiple testing using the Bonferroni method. We report gene set enrichments for up-regulated and 

down-regulated genes (FDR <0.1 and log2-fold change > 0 and < 0, respectively).   
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Figure S1. Cohort ancestry against 1000 Genomes Project. 
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(A) Principal component analysis of genotype data from the 1000 Genomes Project, CTSN and Harbin cohorts using the 

European/African ancestry informative markers list variants present in all cohorts. (B) Uniform Manifold Approximation and 

Projection (UMAP) generated using the first 10 principal components of the data presented in (A). (C) Zoom-in of the UMAP 

region selected in (B). The CTSN and Harbin participants are labeled with red and black “+” sign, respectively. The 1000 Genomes 

Project participants are labeled with dots, color-coded based on their population of origin. AFR, African-ancestry; EUR, European-

ancestry; EAS, East Asian-ancestry; AMR, Admixed Americans; SAS, South Asian-ancestry; CDX, Chinese Dai in Xishuangbanna, 

China; CHB, Han Chinese in Beijing, China; CHS, Han Chinese South; JPT, Japanese in Tokyo, Japan; KHV, Kinh in Ho Chi Minh 

City, Vietnam. 

 

 

Figure S2. eQTL AF interactions. 
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Quantile-quantile-plots of the eQTL interaction term (Genotype:Rhythm) -log10(p-values) for the 150 atrial fibrillation SNPs 

associated in the multi-ancestry GWAS in (A) CTSN and (B) Harbin. While the interaction term is significant for rs12209223 and 

AL356057.2 in Harbin, it does not replicate in CTSN (false discovery rate = 0.99). 

 

Figure S3. Fine-mapping and annotation of the PERM1 locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for PERM1 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and PERM1 

expression density (right). PERM1 expression is enriched in cardiomyocytes (CMs).  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the PERM1 locus (left) paired with violin plots of PERM1 expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 

expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 

|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). Two variants (rs56028034, rs74045046) have a PIP >0.1 in both the cross-ancestry AF GWAS and the CTSN 
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eQTL study (PERM1 was not an eQTL in the Harbin cohort). These SNPs do not overlap with an ATACseq peak in our LAA 

multiome data. However, rs74045046 overlaps a distal enhancer identified by ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S4. Fine-mapping and annotation of the AKAP6 locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for AKAP6 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and AKAP6 

expression density (right). AKAP6 expression is enriched in cardiomyocytes (CMs).  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the AKAP6 locus (left) paired with violin plots of AKAP6 expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 

expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 

|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). One variant (rs7140396) has a PIP >0.1 in both the cross-ancestry AF GWAS and Harbin eQTLs (AKAP6 was 
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not an eQTL in the CTSN cohort). This SNP does not overlap with an ATACseq peak in our LAA multiome data, but does overlap 

with an ATACpeak identified in adrenal cells in CATlas. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

 

Figure S5. Fine-mapping and annotation of the LINC01629 locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for LINC01629 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and LINC01629 

expression density (right). LINC01629 expression is enriched in cardiomyocytes (CMs).  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the LINC01629 locus (left) paired with violin plots of LINC01629 expression aggregated by cell-

type (right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found 

at the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-

types (Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and 

gene expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to 

their |Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior 
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inclusion probabilities (PIP). Four variants (rs10873298, rs10873299, rs12889775, rs8181996) have a PIP > 0.1 in both the cross-

ancestry AF GWAS and the two eQTL studies. These SNPs do not overlap with an ATACseq peak in our LAA multiome data. 

However, rs10873298 and rs10873299 overlap a proximal enhancers defined by ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

 

Figure S6. Fine-mapping and annotation of the ARNT2 locus. 

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for ARNT2 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and ARNT2 

expression density (right). ARNT2 expression is enriched in mesothelial cells.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the ARNT2 locus (left) paired with violin plots of ARNT2 expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 

expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 
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|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). One variant (rs12908004) has a PIP >0.1 in the AF GWAS, CTSN and Harbin datasets. This SNP does not 

overlap with an ATACseq peak in our LAA multiome data, but does overlap with an ATACseq peak identified in multiple cell-

types (accessible in pericytes, liver fibroblasts, exocrine endothelial cells, and type II skeletal myocyte) in CATlas, as well as in a 

DNase hypersensitive site and a H3K4me3-marked element annotated in ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S7. Fine-mapping and annotation of the AC016705.2 locus. 

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for AC016705.2 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and AC016705.2 

expression density (right). AC016705.2 expression is enriched in mesothelial cells.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the AC016705.2 locus (left) paired with violin plots of AC016705.2 expression aggregated by 

cell-type (right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes 

found at the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all 

cell-types (Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility 

and gene expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional 
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to their |Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior 

inclusion probabilities (PIP). One variant (rs12908004) has a PIP >0.1 in the AF GWAS, CTSN and Harbin datasets. This SNP 

does not overlap with an ATACseq peak in our LAA multiome data, but does overlap with an ATACseq peak identified in multiple 

cell-types (accessible in pericytes, liver fibroblasts, exocrine endothelial cells, and type II skeletal myocyte) in CATlas, as well as 

in a DNase hypersensitive site and a H3K4me3-marked element annotated in ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S8. Fine-mapping and annotation of the CTXND1 locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for CTXND1 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and CTXND1 

expression density (right). CTXND1 expression is enriched in neurons and cardiomyocytes.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the CTXND1 locus (left) paired with violin plots of CTXND1 expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 

expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 
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|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). One variant (rs12908004) has a PIP >0.1 in the AF GWAS, CTSN and Harbin datasets. This SNP does not 

overlap with an ATACseq peak in our LAA multiome data, but does overlap with an ATACseq peak identified in multiple cell-

types (accessible in pericytes, liver fibroblasts, exocrine endothelial cells, and type II skeletal myocyte) in CATlas, as well as in a 

DNase hypersensitive site and a H3K4me3-marked element annotated in ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S9. Fine-mapping and annotation of the STH locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for STH expression in left atrial appendages (LAAs). LD is based on the European 

super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and STH expression 

density (right). STH expression is very low in all cell-types.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the STH locus (left) paired with violin plots of STH expression aggregated by cell-type (right). 

The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at the locus. 

The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types (Links) or 

specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene expression 

(in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their |Pearson 
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R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). One variant (rs242557) has a PIP >0.1 in the AF GWAS and CTSN dataset (STH was not an eQTL in the Harbin 

cohort). This SNP overlaps with the ATACseq peak chr17-45942197-45942667 in our LAA multiome data, overlaps with an 

ATACseq peak identified in multiple cell-types in CATlas and is in a distal enhancer element annotated in ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

 

Figure S10. Fine-mapping and annotation of the MAPT-IT1 locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for MAPT-IT1 expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and MAPT-IT1 

expression density (right). MAPT-IT1 expression is very low in all cell-types.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the MAPT-IT1 locus (left) paired with violin plots of MAPT-IT1 expression aggregated by cell-

type (right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found 

at the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-

types (Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and 
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gene expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to 

their |Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior 

inclusion probabilities (PIP). One variant (rs242557) has a PIP >0.1 in the AF GWAS and CTSN dataset (MAPT-IT1 was not an 

eQTL in the Harbin cohort). This SNP overlaps with the ATACseq peak chr17-45942197-45942667 in our LAA multiome data, 

overlaps with an ATACseq peak identified in multiple cell-types in CATlas and is in a distal enhancer element annotated in 

ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S11. Fine-mapping and annotation of the FAM13B locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 

–log10(p-values) in the CTSN and Harbin cohorts for FAM13B expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and FAM13B 

expression density (right). FAM13B is expressed in all cell-types.  

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the FAM13B locus (left) paired with violin plots of FAM13B expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 
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expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 

|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). Two variants (rs3756687 and rs7722600) have PIP >0.1 in the AF GWAS and CTSN datasets (FAM13B was 

not an eQTL in the Harbin cohort). These SNPs do not overlap with an ATACseq peak in our LAA multiome data. However, 

rs7722600 overlap with an ATACseq peak identified in multiple cell-types (including cardiomyocytes) in CATlas, as well as a 

distal enhancer annotated in ENCODE. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 

Figure S12. Fine-mapping and annotation of the KDM1B locus.  

(A) The top panels show –log10(p-values) from the cross-ancestry AF GWAS (y-axis) against genomic coordinates (x-axis, hg38) 

for a 500kb window centered on the sentinel AF SNP. SNPs are colored based on the 1000 Genome Project linkage disequilibrium 

(LD) r2 with the lead SNP in the European (left) and East Asian (right) super-populations. In the bottom panels, we report the eQTL 
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–log10(p-values) in the CTSN and Harbin cohorts for FAM13B expression in left atrial appendages (LAAs). LD is based on the 

European super-population for CTSN (left) and the East Asian super-population for Harbin (right). 

(B) Uniform manifold approximation and projection (UMAP) of LAA single-nucleus multiome cell-types (left) and KDM1B 

expression density (right). KDM1B is expressed in all cells. 

(C) LAA single-nucleus multiome genomic context of the prioritized AF-associated variants. From top to bottom: The first track 

shows ATACseq read coverage at the KDM1B locus (left) paired with violin plots of KDM1B expression aggregated by cell-type 

(right). The second track shows ATACseq peaks. The third track shows the gene annotation (exon, intron) for the genes found at 

the locus. The fourth and fifth tracks highlight links between ATACseq peaks and gene promoters identified in either all cell-types 

(Links) or specifically in cardiomyocytes (CM). We use Pearson correlation tests between ATACseq peak accessibility and gene 

expression (in the same nucleus) to derive links. Only links with |Pearson R| > 0.2 are shown. Link heights are proportional to their 

|Pearson R| in the range indicated in the legend. In the final track, we report AF GWAS and eQTL fine-mapping posterior inclusion 

probabilities (PIP). One variant (rs34969716) has a PIP >0.1 in the AF GWAS and CTSN datasets (KDM1B was not an eQTL in 

the Harbin cohort). This variant overlaps an ATACseq peak in our LAA multiome data, and accessibility to this peak is anti-

correlated with the expression of KDM1B (when considering all cell-types). rs34969716 also overlaps with an ATACseq peak 

identified in multiple cell-types (including cardiomyocytes) in CATlas, as well as a distal enhancer annotated in ENCODE. 

(D) Scatter plots of the chr6:18209585-18210058 peak accessibility against KDM1B expression colored by the genotype of the 

prioritized variant (rs34969716) in the six genotyped individuals of our single-nucleus multiome data. Each point represents a 

metacell (Methods). We found one individual with the AA genotype, three with the GA genotype and two with the GG genotype. 

The relatively weak effect of the A-allele on KDM1B expression and open chromatin of chr6:18209585-18210058 is consistent 

with the weak eQTL effect observed in (F) (Harbin eQTL FDR = 0.052 and CTSN eQTL FDR = 0.0044).  

(E) ATACseq read coverage of the chr6:18209585-18210058 ATACseq peak aggregated by genotype showing greater accessibility 

for the AA genotype (across all cell-types).  

(F) rs34969716-KDM1B eQTL boxplots in the CTSN and Harbin bulk RNAseq datasets.  

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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Figure S13. PCA of in vitro validation of LINC01629 RNAseq. 

Principal component analysis of the 500 genes with most variance in human induced pluripotent stem cells derived cardiomyocytes 

CRISPR interference with a guide RNA targeting the promoter of LINC01629 vs a non-targeting control (NTC) guide RNA. 
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Table S1. Demographics and clinical information of the CTSN and Harbin cohorts.  

To assess the difference between atrial fibrillation (AF) cases and sinus rhythm (SR) controls, we used a t-test for age and Fisher’s 

exact test for all other characteristics. CABG; coronary artery bypass graft surgery. 

 
CTSN Harbin 

Patient Characteristics AF n=31 SR n=31 P-value AF n=28 SR n=37 P-value 

Mean age, y  69.3 65.6 0.075 59.25 58.19 0.62 

Sex, female 10 14 0.43 15 9 0.02 

Diabetes mellitus 3 16 0.0007 2 11 0.03 

History of MI 4 23 0.000002 0 11 0.002 

Hypertension 23 25 0.76 4 11 0.23 
       

Surgical indication 
      

    Isolated CABG 0 1 
 

1 17 
 

    CABG + Valve repair 2 21 
 

0 0 
 

    CABG + Valve replacement 5 4 
 

0 1 
 

    Valve repair alone 17 1 
 

0 4 
 

    Valve replacement alone 7 4 
 

23 11 
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Table S3. GTEx V8 right atrial appendage (RAA) eQTL results for the atrial fibrillation-

associated variants and eGenes presented in Table 1. 

 Effects (slope) are reported for the alternate allele (ALT). ND; not detected in GTEx V8, NS; not significant in GTEx V8 RAA, 

MAF; minor allele frequency, slope_se; slope standard error, pval_nominal; nominal p-value, eGene; eQTL gene. 

rsID eGene ALT MAF pval_nominal slope slope_se 

rs4951258 RAB29 A 0.38 1.32E-18 -0.34 0.036 

rs2885697 AC093151.3  ND ND ND ND 

rs2885697 AC093151.8  ND ND ND ND 

rs4970418 PERM1 A 0.16 4.30E-14 0.31 0.038 

rs60212594 MYOZ1 C 0.13 1.39E-45 1.07 0.063 

rs2316443 F10 A 0.23 5.69E-06 -0.18 0.039 

rs11156751 AKAP6 C 0.27 4.25E-08 0.17 0.030 

rs10873298 AC007686.1 T 0.44 1.16E-78 -1.10 0.043 

rs10873298 LINC01629 T 0.44 5.34E-89 -1.18 0.041 

rs12908004 ARNT2 G 0.16 1.77E-54 0.86 0.045 

rs12908004 CTXND1 G 0.16 6.43E-29 0.93 0.074 

rs12908004 AC016705.2 G 0.16 4.79E-43 0.87 0.053 

rs242557 MAPT A 0.35 1.79E-34 0.66 0.047 

rs242557 STH  NS NS NS NS 

rs242557 MAPT-IT1  NS NS NS NS 

rs3820888 SPATS2L C 0.40 4.34E-18 -0.30 0.033 

rs2540949 CEP68 T 0.40 1.63E-54 -0.58 0.030 

rs6089752 MIR1-1HG-AS1 T 0.46 1.74E-05 -0.15 0.034 

rs5754508 UBE2L3  NS NS NS NS 

rs1278493 AC072039.1  ND ND ND ND 

rs7612445 GNB4 T 0.19 2.01E-70 1.09 0.046 

rs34080181 SLC25A26 A 0.35 2.43E-09 0.22 0.036 

rs223449 BDH2 T 0.49 4.65E-08 0.26 0.047 

rs2012809 SLC27A6 G 0.18 6.59E-33 -0.52 0.038 

rs3756687 FAM13B G 0.17 2.10e-09 0.24 0.039 

rs34969716 KDM1B A 0.30 5.07E-23 0.43 0.040 
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Table S4. Differential expression of genes implicated by eQTL studies in left atrial appendages 

of normal (sinus rhythm) participants and atrial fibrillation patients.  

L2FC, log2 fold-change; FDR_DEG, false discovery rate for differential expression of genes in the first column. We shaded 

significant results (FDR <0.05).  

eGene L2FC_CTSN FDR_DEG_CTSN L2FC_Harbin FDR_DEG_Harbin 
AC007686.1 -0.056 0.400 -0.0003 0.996 

AC016705.2 0.120 0.171 -0.070 0.373 

AC072039.1 -0.016 0.857 -0.002 0.986 

AC093151.3 0.005 0.954 -0.013 0.879 

AC093151.8 0.011 0.905 0.023 0.831 

AKAP6 -0.026 0.773 0.100 0.201 

ARNT2 0.063 0.427 -0.067 0.420 

BDH2 0.052 0.485 0.006 0.962 

CEP68 -0.060 0.355 0.013 0.904 

CTXND1 0.286 0.043 -0.046 0.550 

F10 -0.019 0.841 -0.060 0.486 

GNB4 0.020 0.829 0.123 0.109 

KDM1B -0.096 0.099 -0.047 0.549 

LINC01629 -0.073 0.300 0.005 0.925 

MAPT -0.645 0.0003 -0.144 0.084 

MAPT-IT1 -0.316 0.023 0.023 0.765 

MIR1-1HG-

AS1 

-0.052 0.519 -0.115 0.148 

MYOZ1 -0.062 0.406 0.025 0.767 

PERM1 -0.029 0.737 0.031 0.719 

RAB29 0.020 0.822 0.038 0.667 

SLC25A26 0.013 0.878 -0.129 0.082 

SLC27A6 -0.718 0.00002 -0.235 0.031 

SPATS2L -0.143 0.049 0.027 0.793 

STH -0.067 0.396 -0.022 NA 

UBE2L3 -0.082 0.083 -0.062 0.420 
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Table S5. Co-localization and Bayesian fine-mapping of the atrial fibrillation (AF) genome-wide association study (GWAS) and 

expression quantitative trait loci (eQTL) results.  

eQTL significance: we report if the eQTL signal is significant (FDR <0.05) in the CTSN or Harbin cohorts, or both. We used coloc to test if the AF GWAS and eQTL signals are co-

localized and report the posterior probability (PP) of hypothesis 4 (H4), that is that the GWAS and eQTL signals are co-localized (defined as H4 >0.4, shaded). We used approximate 

Bayesian fine-mapping to determine the size of the 95% credible sets (cs) for the AF GWAS, CTSN eQTL and Harbin eQTL signals. The “Overlap 95%.cs.size” and “Variants in 

the overlapping sets” include variants found in the AF GWAS cs and in at least one of the eQTL study cs. ND, not determined because the eQTL signal is not significant for this SNP 

and gene in this cohort. 

   Co-localization Fine-mapping 95% credible sets (cs) 

rsID CHR:POS:REF:ALT:eGene 
eQTL 

significance 

CTSN 

PP.H4 

Harbin 

PP.H4 

GWAS 

95%.cs.size 

CTSN 

95%.cs.size 

Harbin 

95%.cs.size 

Overlap 

95%.cs.size 

Variants in 

the 

overlapping 

sets 

rs4970418 chr1:983237:G:A_PERM1 CTSN 0.43 ND 5 7 ND 4 

rs4970418, 

rs6659460 

,rs74045046 

,rs56028034 

rs7612445 chr3:179455191:G:T_GNB4 Both >0.99 0.93 5 2 3 3 

rs7612445, 

rs7634416, 

rs2339798 

rs3756687 chr5:137866004:A:G_FAM13B CTSN 0.78 ND 3 3 ND 2 
rs3756687 

,rs7722600 

rs34969716 chr6:18209878:G:A_KDM1B CTSN 0.66 ND 1 17 ND 1 rs34969716 

rs11156751 chr14:32521231:T:C_AKAP6 Harbin ND 0.88 4 ND 4 2 
rs7140396 

,rs2145587 

rs10873298 chr14:76960182:C:T_AC007686.1 Both >0.99 0.98 5 4 1 4 

rs10873298 

,rs8181996  

,rs10873299 

,rs12889775 

rs10873298 chr14:76960182:C:T_LINC01629 Both >0.99 0.98 5 4 1 4 

rs10873298 

,rs8181996  

,rs10873299 

,rs12889775 

rs12908004 chr15:80384583:A:G_ARNT2 Both 0.75 0.24 1 1 274 1 rs12908004 

rs12908004 chr15:80384583:A:G_CTXND1 CTSN 0.59 ND 1 717 ND 1 rs12908004 

rs12908004 chr15:80384583:A:G_AC016705.2 Both 0.79 0.31 1 1 6 1 rs12908004 

rs242557 chr17:45942346:G:A_MAPT Both >0.99 >0.99 1 1 1 1 rs242557 

rs242557 chr17:45942346:G:A_STH CTSN 0.96 ND 1 1 ND 1 rs242557 

rs242557 chr17:45942346:G:A_MAPT-IT1 CTSN 0.98 ND 1 1 ND 1 rs242557 
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rs6089752 
chr20:62557186:C:T_MIR1-1HG-

AS1 
CTSN 0.68 ND 7 17 ND 6 

rs6089752  

,rs6089741  

,rs6089753  

,rs6089750  

,rs12624794 

,rs4637207 
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Table S6. Description of the expression genes (eGenes) prioritized in our expression quantitative trait loci (eQTL) experiment to 

identify modulators of atrial fibrillation (AF) risk. 

Gene Full name Genecards Literature 

PERM1 

PPARGC1 And ESRR 

Induced Regulator, Muscle 

1 

Involved in response to muscle activity. 

• In skeletal muscle, PERM1 is an exercise-induced gene (DOI: 

10.1016/j.molmet.2019.02.009) and regulates oxidative 

capacity (DOI: 10.1074/jbc.M113.489674).  

• Perm1 KO mice ejection fraction is reduced. PERM1 binds to 

ERRα in cardiomyocytes, bind and activate ERR promotor 

(DOI: 10.3389/fcvm.2022.1033457).  

• Lower cardiac PERM1 expression has been observed during 

pressure overload and hypertrophic stress (DOI: 

10.1371/journal.pone.0234913).  

GNB4 G Protein Subunit Beta 4 

This gene encodes a beta subunit. Beta 

subunits are important regulators of alpha 

subunits, as well as of certain signal 

transduction receptors and effectors.  

• GNB4 is associated to heart rate by GWAS (DOI: 

10.1038/ng.2610). GNB4 mutations is a cause of dominant 

intermediate Charcot-Marie-tooth disease (DOI: 

10.1016/j.ajhg.2013.01.014).  

• Gnb4 KO mice have enlarged hearts. The encoded Gβ4 

subunit regulates heart rhythm through the GIRK channel/M2 

receptors. (DOI: 10.3390/cells8121567). 

FAM13B 
 Family With Sequence 

Similarity 13 Member B 
Predicted to enable GTPase activator activity 

• The AF risk allele of rs17171731 reduce its host enhancer 

activity. Knockdown of FAM13B modified the sodium current 

of a human cardiomyocyte model. FAM13B may localize to 

the plasma membrane and at the Z-disk. (DOI:  

10.1101/719914) 

KDM1B Lysine Demethylase 1B 
Flavin-dependent histone demethylases, 

regulate histone lysine methylation 
• KDM1B is a regulator of cellular reprogramming (DOI: 

10.1016/j.yexcr.2022.113339).  

AKAP6 
A-Kinase Anchoring 

Protein 6 

Involved in anchoring PKA to the nuclear 

membrane or sarcoplasmic reticulum 

• Rare variants in AKAP6 alter cAMP/PKA signaling (DOI: 

10.1152/ajpheart.00034.2018).  

• May regulates RYR2, the sodium calcium exchanger and 

calcineurin/MEF2 regulatory complex. Cardiomyocyte-

specific AKAP6 KO are resistant to pressure overload. (DOI: 

10.1016/j.yjmcc.2016.12.006) 

AC007686.1 
Ribosomal Protein, Large, 

P1 (RPLP1) Pseudogene 
- - 

LINC01629 
Long Intergenic Non-

Protein Coding RNA 1629 
- 

• LINC01629 is also a methylation QTL in human cardiac tissue 

(DOI: 10.1186/s12863-021-00975-2) 

AC016705.2/ARNT2-

DT 

ARNT2 Divergent 

Transcript 
- - 

ARNT2 

Aryl Hydrocarbon 

Receptor Nuclear 

Translocator 2 

Under hypoxic conditions, the encoded 

protein complexes with hypoxia-inducible 

factor 1alpha in the nucleus and this complex 

• Arnt2 KO zebrafish have enlarged ventricles, decreased wall 

thickness, bradycardia and cardiac arrhythmia characterized 
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binds to hypoxia-responsive elements in 

enhancers and promoters of oxygen-

responsive genes 

by missing heartbeats and over inflation of the atrium (DOI: 

10.1089/zeb.2008.0536). 

CTXND1/LINC01314 
Cortexin Domain 

Containing 1 

Predicted to be integral component of 

membrane 

• Is differentially expressed in hypertrophic cardiomyopathy 

(DOI: 10.3390/ijms232315280). 

• Is involved in multiple cancers (DOI: 10.1186/s12935-019-

0799-9) 

MAPT 
Microtubule Associated 

Protein Tau 

MAPT transcripts are differentially expressed 

in the nervous system, depending on stage of 

neuronal maturation and neuron type. 

Promotes microtubule assembly and stability 

and might be involved in the establishment 

and maintenance of neuronal polarity. 

• Mapt KO mice have systolic and diastolic dysfunction, 

decreased heart rate and increased heart rate variability (DOI:  

10.1096/fasebj.2020.34.s1.02885).  

• Tau aggregates in the myocardium is associated with diastolic 

dysfunction (DOI: 10.1093/eurheartj/ehad205). 

• rs242557 appears to alter MAPT and other genes in microglial 

cell line (DOI: 10.1002/alz.052360).   

 

MAPT-IT1 
MAPT Intronic Transcript 

1 
- - 

STH Saitohin 
Involved in positive regulation of mRNA 

splicing, via spliceosome 

• May interact with Tau. Is genetically associated with 

Alzheimer disease, Parkinson disease and schizophrenia. 

(DOI: 10.1002/jcb.23279).  

MIR1-1HG-

AS1/CRMA 

Cardiomyocyte Maturation 

Associated LncRNA 
- 

• Its expression and the expression miRNAs are negatively 

correlated. Its knockdown increases MIR1-1 and MIR-133a2 

expression (DOI: 10.1093/cvr/cvab281).  
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Table S7. Functional annotation of likely causal variants (posterior inclusion probability >0.1 for atrial fibrillation and eQTL).  

All coordinated are on build hg38 of the human genome. cCRE, candidate cis-regulatory elements; enhD, distal enhancer; dELS, distal enhancer-like signature; enhP, proximal 

enhancer; dELS, distal enhancer-like signature.   

    
Left atrial appendage 

multiome 
Cis-element atlas (CATlas) 

Epimap 
ENCODE 

Sentinel 

GWAS 

variant 

eGene 
Prioritize

d variant 

CHR:POS 

(hg38) 
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peak 
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5:13785898

3-

137859382 

Cardiac Pericyte 1,Pericyte 

Muscularis,Parietal,Glomerulosa,

V Cardiomyocyte,Endothelial 

Myocardial,Type I Skeletal 

Myocyte,Cardiac Fibroblast,Fetal 

Adrenal Cortical,Fetal Adrenal 

Neuron 

 

enhD dELS 

rs3496971

6 
KDM1B 
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1,Sm Ms GE junction,Sm Ms 

GI,Fetal Macrophage Hepatic 

3,Fetal Megakaryocyte,Fetal 

Gastri Goblet,Fetal 

Hepatoblast,Fetal Fibro GI,Fetal 

Cilliated 

rs1115675

1 
AKAP6 rs7140396 

14:325146

11 
  

14:3251426

4-32514663 

Transitional 

Cortical,Glomerulosa,Enterocyte,

Fetal Adrenal Cortical,Fetal 

Adrenal Neuron 
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8 
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1/ 
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5.1 ABSTRACT 

The etiology of persistent atrial fibrillation (AF), the most common supraventricular 

arrhythmia, remains incompletely understood. Gene dysregulation during AF has been 

exhaustively studied, yet few genes have been consistently replicated. Moreover, the cellular origin 

of this dysregulation remains undetermined. Here we comprehensively characterize the cellular 

landscape of the left atrial appendages (LAA) of AF and sinus rhythm patients using the 10X 

multiome assay (paired single nucleus RNAseq (snRNAseq) and open chromatin (snATACseq)). 

Our differential expression analysis reveals 755 robust differentially expressed genes (DEGs) 

validated in two independent large-sample-size bulk RNAseq datasets. By integrating bulk 

RNAseq and snRNAseq data, we identify multiple non-coding genes at the IFNG locus 

(LINC01479 and IFNG-AS1) that stand out as cardiomyocytes-specific and as the strongest 

transcriptional signals in AF. We further identify cell-type-specific gene modules suggesting an 

increase in T-cell and decrease in adipocyte and neuronal cells gene expression in AF. Additionally, 

we detect gene modules enriched in distinct fibroblast states and suggest transcription factors that 

regulate these modules. Lastly, we identify the androgen receptor as repressor of AF DEG signature 

in cardiomyocytes and highlight novel gene targets that show high cardiomyocytes and AF 

specificity including SYNPR, COLQ, CHRNE, PDE8B, LINC01479 and IFNG-AS1. 
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5.2 INTRODUCTION 

Atrial fibrillation (AF), already the most common arrhythmia, is expected to see its 

prevalence more than double in the US population by 20501. This is likely attributable to the 

world’s aging populations, given that age is the strongest risk factor for AF. To date, the genetics 

of AF have almost exclusively implicated cardiomyocytes (CM) as causal driver of the disease. 

Rare mutations in familial AF patients are largely found in ion channels, cardiac transcription 

factors or cytoskeleton-associated proteins53. AF genome wide association studies (GWAS) were 

shown to specifically enrich for CM open chromatin regions287,307. On the other hand, an important 

body of research has implicated other processes such as fibrosis and inflammation, pointing 

towards the contributions of other cell-types in AF42,53,64. Furthermore, AF heritability is estimated 

to be 22% in Europeans125, underlying the importance of environmental factors which may alter 

disease risks through different mechanisms. 

To identify novel therapeutic targets, many groups conducted differential gene expression 

studies of the atria from AF and sinus rhythm (SR) patients. Most of these studies, however, were 

either small, limited to some coding genes by microarray probes or focused on differences across 

atrial chambers172. Together, this likely explains the relatively low replication rate of differentially 

expressed genes (DEG) reported across these studies176. Surprisingly, in a census of AF DEG by 

Victorino et al., none of the most frequently replicated DEGs were ion channels176. This underlines 

the need to establish reproducible AF DEGs in human atria. Moreover, the cell-types and 

transcription factors (TFs) causing the observed DEGs in bulk RNAseq from atria remains elusive. 

Here we sought to establish and characterize robust DEG in AF at the cellular level and 

uncover their potential TFs causing their dysregulation. Using the 10X multiome assay, we profiled 

paired single nucleus RNAseq (snRNAseq) and open chromatin (snATACseq) in the same nuclei 

from left atrial appendages (LAA) of AF and SR patients. By integrating cell-type specific insights 

with a robust list of LAA AF DEGs replicating in two large-scale bulk RNAseq datasets, we 

leveraged the statistical power of large-sample-size bulk RNAseq and the resolution of our 

multiome dataset to refine AF DEGs by cell-type. We identify cell-type specific DEG modules in 

rare cardiac cell-types and fibroblasts. Focusing on CM, we find that our robust CM specific AF 

DEG signature is associated with the androgen receptor motif activity and its expression. Lastly, 



187 

 

we confirm the specificity of this signature against other cardiomyopathies and suggest multiple 

potential AF specific gene targets. 

5.3 RESULTS 

5.3.1 The cellular landscape of LAA 

To dissect persistent AF dysregulated genes and their TF regulators at the cellular level we 

used the 10X multiome assay, profiling both RNA and ATACseq in the same nuclei of 4 AF and 

SR LAA. After stringent quality control and doublet removal, we obtained a dataset composed of 

7 samples (3 AF [CF93, CF97, CF102] and 4 SR [CF69, CF77, CF89, CF91]) and 11986 nuclei 

(Fig S1-S4). Hereafter we refer to this dataset as “scAF”. We annotated cell-types by co-embedding 

our LAA nuclei with the human heart atlas left atrial (LA) nuclei306, identifying 12 major cell-types 

(Fig. S3C-D). Using dimensionality reduction with either RNA or ATAC modalities independently 

(Fig. S4C-D) or both combined (Fig. 1A), we show that clustering the scAF dataset without 

integration with the heart atlas recapitulates the same cell-type specific clusters. To the exception 

of mesothelial cells, the cell-types generally were well distributed across all samples (Fig. 1B). 

Similarly to what was reported in other human cardiac datasets306,314, CM and fibroblasts (FB) were 

the two most abundant cell-types, accounting for 25% and 23% of nuclei respectively (Fig. 1B). 

We further validated cell-type identities showing the enrichment of known cell-type specific gene 

expression (Fig. 1C, S3 and Table S1), such as FGF12, TTN and RYR2 in CM, DCN in FB and 

PTPRM and PECAM1 in endothelial cells (EC). 
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Figure 1. Cellular landscape of LAA.  

A) Single nuclei uniform manifold approximation and projection (UMAP) colored by cell-type. B) Bar plot showing (left) the 

proportion of each sample by cell-type and (right) nuclei count per cell-type. Atrial fibrillation and sinus rhythm samples are colored 

in red and blue respectively. C) Dot plot, showing the strongest marker genes for each cell-type. D) (top) Histogram of peaks count 

by number cell-types in which the peak is detected and (bottom) bar plot showing the proportion peak overlapping each ENCODE 

cis-regulatory element (cCRE) types by number cell-types in which the peak is detected. E) Dot plot comparing the percentage of 

overlap of cell-type specific peaks between the left atrial appendage scAF dataset and the human enhancer atlas cell-types. We 

added labels for the human enhancer atlas cell-types with the strongest overlap for each of the scAF cell-types. F) (left) Dot plots 

showing the most enriched motif activity scores and (right) their transcription factor (TF) expression by cell-type. G) Single nuclei 

UMAP colored by motif activity (green) and TF expression (red) for (left) ESRRG and (right) TCF21. Prom; promoter, enhP; 

proximal enhancer, K4m3; lysine 4 tri-methyl mark, enhD; distal enhancer, CTCF; CCCTC-binding factor mark, not.Encode; peak 

found in the scAF dataset without any overlapping ENCODE cCRE, Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial 

cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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5.3.2 The chromatin landscape of LAA 

To validate our ATACseq data, we then compared the ATACseq peaks called in our LAA 

dataset (n=212,084, hereafter referred simply as “peaks”) to the cross-tissue/cell-type ENDODE413 

candidate cis-regulatory elements (cCREs). Most peaks overlapped ENCODE cCREs (154,801, 

73%) and were found in only one cell-type (124,843, 59%). We found the number of cell-types in 

which a peak was detected to be strongly associated with the ENCODE cCRE types (Fig. 1D). For 

instance, promoters were generally accessible in multiple cell-types, while distal enhancers had 

greater cell-type specificity, an observation previously reported by others414. Furthermore, peaks 

that did not overlap with any ENCODE cCRE, most likely because of their specificity to adult 

atrial tissue, were more often cell-type specific and displayed characteristics analog to distal 

elements i.e., higher cell-type specificity, lower read counts, GC content and length (Fig. S5). To 

rule out that these peaks were false positives, we compared them to the human enhancer atlas287, 

which is composed of 222 cell-types from 30 adult and 15 fetal tissues. We found that the largest 

overlap systematically corresponded to an analogous cell-type. For example, our CM specific peaks 

had the highest overlap with adult atrial cardiomyocytes of the human enhancer atlas, our FB 

specific peaks with adult cardiac fibroblasts and our EC specific peaks with endothelial myocardial 

cells (Fig. 1E).  

Lastly, we assessed TF motifs activity by cell-type using ChromVar scores derived with the 

JASPAR 2020 database. Motifs of the same family often produce similar scores given the similarity 

of their motifs. This makes the identification of the causal TF difficult. To overcome this limitation, 

we leveraged the bimodality of our scAF dataset and filtered the TFs expression in conjuncture 

with their corresponding motif activities to refine their selection (Table S2). Using this strategy, 

we selected candidate TFs with known cell-type specific functions and novel ones. For instance 

we selected both ESRRG and TBX5 in CM, which are involved in CM maturation415-417, while 

TCF21418 showed similar enrichment in FB (Fig. 1F-G and Table S2).Our analysis also suggests 

potentially novel specific TF actions such as FOXC1 in endocardial cells. 

5.3.3 Upregulation of the IFNG locus in CM is the strongest transcriptomic 

feature of persistent AF  

While some large-scale studies have investigated the changes in gene expression that occur 

during AF at the tissue level173,174, these changes have yet to be dissected at the cellular level. Our 
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scAF dataset has a relatively low number of samples, which provides limited power to detect 

DEGs. To address this, we chose to rely on large-sample-size LAA bulk RNAseq datasets. Thus, 

we first selected genes of interest based on our previously published bulk RNAseq dataset (labeled 

CTSN hereafter) and that of J.Hsu et al. (labeled J. Hsu hereafter)216. Afterwards, we investigate 

their pattern of expression in single nuclei from the same tissue type to decipher cell-type specific 

DEGs and their TF regulators.  

The two bulk RNAseq datasets (methods) were composed of 31 AF and 31 SR samples 

(CTSN dataset), and 130 AF and 50 SR samples (J. Hsu dataset216). First, using principal 

component analysis (PCA), we found a dominant effect of sex in both datasets (Fig. S6A). We also 

found that mesothelial cell marker genes constituted features with the strongest contribution for the 

first principal component (PC1) (Fig. S6B-D). While this may be due to an epicardial sampling 

bias, there is evidence of a strong inter-individual variability in epicardium thickness and 

composition as well as growing evidence for its involvement in AF419,420. Furthermore, this inter-

individual variability is consistent with the overrepresentation of mesothelial cells in two of our 

samples in our scAF dataset (Fig. 1B). 

We then conducted differential expression analyses in both bulk RNAseq datasets and our 

scAF dataset with sex as covariate. Bulk differential expression analyses resulted in 3531 and 3619 

DEGs (false discovery rate [FDR] <0.05) in our CTSN dataset and the J. Hsu dataset respectively 

(Table S3). We found a strong overlap and concordance of effect direction between the 2 datasets 

(Fisher exact test p-value = 1.7x10-163, Fig. S7A). Eight hundred DEGs were common to both 

CTSN and J. Hsu of which 755 (hereafter referred to as robust DEGs) and 45 had concordant and 

discordant direction of effect respectively (Fig. S7A-B). In our scAF dataset, we found 118, 77, 

48, 38, 10, 10, 1 and 1 DEGs in FB, CM, pericytes (PC), myeloid cells, EC, endocardial cells, 

adipocytes and smooth muscle cells respectively (Fig. 2A and Table S4).  
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Figure 2. Cell-type specific contributions to bulk AF dysregulated genes. 

A) Scatter plot showing the signed log10(p-value) for pseudo-bulk differential gene expression analysis of each cell-type between 

atrial fibrillation (AF) patients and sinus rhythm (SR) patients. The sign value was attributed based on the sign of the log2 fold 

change. Gene colored in red are differentially expressed (false discovery rate [FDR] < 0.05).  We labeled genes that were also 

differentially expressed in bulk RNAseq. The inset histograms show the number of (top) upregulated differentially expressed genes 

(DEGs) and (bottom) downregulated DEGs in each cell-type. B) Volcano plot showing the results of differential expression analysis 

in the CTSN cohort. Genes colored in red have an FDR < 0.05 and an |log2 fold change| > 0.25. C) Single nuclei uniform manifold 

approximation and projection (UMAP) colored based on the level of normalized expression of (top) LINC01479 and (bottom) 

IFNG-AS1 in (left) AF and (right) SR patients. This shows increased expression of both genes (blue) in cardiomyocytes of AF 

patients. D) Violin plots showing the cardiomyocytes normalized expression of (top) LINC01479 and (bottom) IFNG-AS1 in each 

sample. Violin distributions of samples colored in red and blue are AF and SR respectively. E) Boxplot showing the normalized 

counts of (left) LINC01479 and (right) IFNG-AS1 in the two bulk RNAseq cohort used in this study. Adipo; Adipocytes, CM; 

Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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Across both bulk datasets and our scAF dataset we found consistently that genes at the 

IFNG locus produced the strongest signals (Fig. 2A-B and Fig. S8). We show that the contiguous 

genes LINC01479 and IFNG-AS1 were both CM specific (Fig. 2C). Furthermore, they were highly 

discriminant of AF CM for all scAF samples (Fig. 2D), with LINC01479 showing higher 

consistency across bulk datasets (Fig. 2E). While investigating this locus, we found that 

transcription sharply increased and diverged between AF and SR patients at the LINC01479 

promotor and gradually decreased towards MDM1 (Fig. S8B). We also found divergent DEGs 

results at this locus for genes on the negative strand between bulk RNAseq datasets. Our stranded 

RNAseq suggests a signal specific to the positive strand (LINC01479, IFNG-AS1, HNRNPA1P70 

and AC007458.1) as opposed to both strands in J. Hsu unstranded data (Table S3). To assess the 

impact of the assay strandedness, we realigned our data without strand specification and compared 

p-values using the same dataset. The alignment without strand specification produced signals on 

both strands (Fig. S8B), suggesting that DEGs on the negative strand at this locus may be due to 

the unstranded nature of the assay. For instance, the FDR of IL26 (located on the negative strand) 

goes from 10-47 to 1 when strand information is provided for read mapping in our CTSN dataset. 

We further annotated 66 DEG in the J. Hsu dataset that were dependent on strand information in 

CTSN (Fig. S8A, Table S3 and methods). Namely, GRM8, the third strongest hit in J. Hsu, was 

not significant upon inclusion of strand information in the CTSN cohort. Instead, our data suggests 

the 2 anti-sense long non-coding RNAs (lncRNA) AC002057.1 and AC002057.2 to be the source 

of signal at this locus.  

5.3.4 CMs produce more reproducible DEGs 

Across the 755 robust DEGs identified by bulk RNAseq, we find 22 and 6 DEGs in our 

scAF with concordant and discordant direction of effect respectively (Fig. S9A). All 13 

overlapping robust DEGs in CM had concordant effects, while FB DEGs diverged in 3 out 8 DEGs. 

Given the relatively similar abundance of CM and FB (25% and 23% respectively, Fig. 1B), we 

sought to explain the greater DEGs concordance in CM. Comparing the proportion of unique 

molecular identifier (UMI) and proportion of cells in each cell-type, we found that CM appeared 

transcriptionally more active (Fig. S9B, D). For instance, CM UMIs accounted for 48% of all UMIs 

while representing only 25% of cells. This relationship was inverted in FBs, with their UMIs 

accounting for 13% of all UMIs and while only accounting for 23% of cells. The ratios describing 

transcriptional activity were correlated (correlation of ratios: Spearman R = 0.69, p-value = 0.017) 
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and largely concordant in the heart atlas (Fig. S9C, E). While AF heritability has been shown to 

be mostly explained by CM cCREs287, their seemingly higher transcriptional activity may also 

contribute to the greater number and reproducibility of CM DEGs that we found.  

5.3.5 Gene module analysis identifies shared, and cell-type specific programs 

dysregulated in AF 

Considering these results, we reasoned that partitioning genes into modules could identify 

AF gene programs that would be otherwise masked by the prevailing CM transcriptomes. To this 

end, we used WCGNA on both bulk RNAseq combined. This analysis partitioned 7970 genes into 

16 modules of variable sizes ranging from 74 to 2077 genes (Fig. 3A, S10A, Table S5 and 

methods). We found that all modules, except for the uncorrelated gene module (labeled grey), 

strongly enriched for either upregulated or downregulated AF genes (Fig. 3A-B, S10B and Table 

S5).  
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Figure 3. AF gene modules and their regulators. 
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 A) Bar plot showing the number of genes per bulk RNAseq module (methods). The bars are colored in red, blue and grey for atrial 

fibrillation (AF) vs sinus rhythm (SR) bulk RNAseq upregulated (up) differentially expressed genes (DEG), downregulated (down) 

DEG and non-significant (NS) genes respectively. B) (left) Dot plots sowing the top 3 gene sets from an overrepresentation analysis 

of the DEGs in each module (methods). For this analysis we used the two gene set libraries PanglaoDB and gene ontology biological 

process (GO BP). (center) Volcano plots showing the log2 fold change and log10(false discovery rate [FDR]) statistics from the 

DEG analysis, stratified by modules. Red and blue integers indicate the number of AF upregulated and downregulated genes 

respectively in each module. (right) Violin plot showing the module scores (methods) in each cell-type of the scAF dataset. C) 

Uniform manifold approximation and projection (UMAP) of fibroblasts colored by module scores. From left to right, the scores are 

shown for the magenta, salmon pink and black modules. The same order is kept in D and E. D) Boxplot showing the distribution of 

module scores between AF and SR fibroblasts. E) Scatter plot showing the -log10(FDR) of the Pearson correlation of motif activity 

(x-axis) and its corresponding transcription factor (TF, y-axis) against the module score. Red dots indicate an FDR < 0.01 for both 

the correlation of the TF and its motif with the module score. Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; 

Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

Using gene set analysis and single cell gene set score calculated with Seurat (hereafter 

referred as single cell enrichment scores, methods), we found shared and cell-type specific 

modules. For instance, we show that single cell enrichment scores for the greenyellow and cyan 

modules (mostly downregulated genes in AF) were highly specific to neurons and adipocytes 

respectively, while the scores for the blue and green modules (mostly upregulated genes in AF) 

were highly lymphoid and mesothelial specific (Fig. 3B, S10B-C and S11). Moreover, for these 

cell-type specific modules, we found concordant gene set enrichments, namely lipid metabolism, 

nervous system development, T-cell and epithelial cell pathways in the greenyellow, cyan, blue, 

and green modules respectively (Fig. 3B, S10B and Table S6). Despite the strong gene set 

enrichment results for the tan and midnighblue modules, we found no enrichment for their single 

cell scores in any specific cell-type in our scAF dataset (Fig. S10B-C). Their gene set enrichments 

suggest that cell division and plasma cells are more prevalent in AF. Three modules with some of 

the highest number of DEG had the highest single cell enrichment scores in CM, while the magenta, 

salmon, black and pink modules had low cell-type specificity. 

Fibrosis is known to increase incidence and progression of AF. Interestingly, we observed 

that the non-specific modules (magenta, salmon, black and pink) appeared higher in a subset of the 

nuclei in the FB cluster (Fig. S11), which prompted us to investigate their effect specifically in FB. 

Our sub-cluster analysis of FBs resulted in 3 FB states with similar gene profiles to FB states 

previously reported in ventricles of dilated and arrhythmogenic cardiomyopathy patients314, which 

we labeled myofibroblast (MFB), resident fibroblasts (RFB) and pro-inflammatory (pIFB) (Fig. 

S12A-C). RFB were enriched for canonical FB markers DCN, GSN and TCF21, MFB for pro-
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fibrotic markers and smooth muscle contraction markers such as TNC, COL1A1 and ACTA2, and 

pIFB for NR4A1, THBS1 and CCL2 (Table S7). We found the distribution of the magenta, salmon 

and pink modules scores to be higher in the pIFB, both RFB and pIFB, and MFB respectively (Fig. 

3C and S12D). We asked whether the trend in bulk DEG direction for these modules could also be 

observed in our scAF FBs. Concordantly, the module scores were higher in AF FB for the pink and 

black modules and lower in AF for the salmon module (Fig. 3D), but we found no difference for 

the magenta module scores, which may reflect a lack of power given the low sample size of our 

scAF dataset.  

Given the likely relevance of these modules in AF, we sought to identify TFs that may 

govern their expression. To this end, we correlated TFs expression and motif activities with the 

modules single cell scores in FB metacells (methods). We found strong candidate TFs regulators 

for the two modules with downregulated DEG in AF (magenta and salmon), while the modules 

with upregulated DEG in AF (pink and black) showed weaker associations (Fig. 3E, S12E and 

Table S8). TFs expression and motif activity for FOSL2 and JUNB (or their joint motif 

FOSL2::JUNB) showed the strongest correlation with the magenta module. In the salmon module, 

we find CEBPD, KLF3 and JUND as strongest signals which have jointly been implicated in 

adipocyte differentiation and fibroblast quiescence421,422. 

5.3.6 The androgen receptor as regulator of AF upregulated genes 

Next, we sought to identify CM states and possible TFs associated with AF. We first sub-

clustered CM, yielding 2 clusters which showed a strong composition bias for one SR individual 

(Fig. S12A, C-D). To our knowledge, this individual was the only one who suffered from an MI 

(less than a year before tissue collection), possibly explaining the strong difference of its CM 

transcriptome. We found that genes enriched in cluster 1 were associated with familial isolated 

hypertrophic cardiomyopathy (Fig. S12B, E and Table S9). To our dismay, we could not identify 

CM states specific to AF using sub-clustering analysis (Fig. S12F). Instead, we leveraged our 

robust AF DEG signature and scored CM either with robustly AF upregulated genes (AF signature 

UP) or downregulated genes (AF signature DOWN, Fig. 4A). With both signatures, we show a 

clear CM segregation between AF and SR individuals (Fig. 4B). Hereinafter we evaluate gene 

expression and motifs activities that change along this continuum.  
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Figure 4. The androgen receptor regulates AF’s cardiomyocyte specific gene signature. 

A) (top) Venn diagram showing the number of genes intersecting between; 1-the differentially expressed genes in the CTSN cohort, 

2-the differentially expressed genes in the J.Hsu cohort and 3-the genes with higher expression in cardiomyocytes (CM). (bottom) 

Number of upregulated and downregulated genes found in the 183 intersecting genes that constitute the atrial fibrillation (AF) 

signatures UP (in red) and DOWN (in blue). B) Violin plots of AF signatures in cardiomyocytes for each sample. Red and blue 

samples indicate AF and sinus rhythm (SR) samples respectively. C) (top) Rank plot showing the Pearson R for the motif activities 

correlation with the AF signature UP scores in CM metacells (methods). (bottom) Scatter plot of the transcription factors (TF) and 

their motif activities correlation with the AF signature UP scores in CM metacells. Red dot represent TFs for which the expression 

and their motif activity is significantly correlated (false discovery rate < 0.01) with the AF signature UP scores. D) From top to 

bottom respectively; scatter plots showing 1-the androgen receptor (AR) motif activity against the AF signature UP, 2-AR expression 
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against the AF signature UP and 3- AR expression against its motif activity, in CM metacells. For each scatter plot, we show the 

Pearson R and its nominal p-value. E) Motifs logos of NR3C1, NR3C2 and AR from the JASPAR 2020 database. F) Footprinting 

enrichments of the AR motif in AF vs SR (top) and in the most prevalent cell-types. We represent all cell-types individually in fig. 

S13 for clarity because the lowly abundant cell-types produced noisy footprints. G) Boxplot showing the normalized counts of AR 

in (left) males and (right) females with their nominal Wilcoxon p-values in both bulk RNAseq cohorts combined. H) Scatter and 

density plot showing AF signatures scores in CM metacells from four adult cardiac single nuclei RNAseq dataset (methods). Red, 

blue and gray dots represent CM metacells from the scAF AF samples, scAF SR samples and other datasets samples respectively. 

I) Rank plot showing the scores for gene’s cell-type and diseases/chamber specificity of the AF signature UP genes (methods). J) 

Violin plot of the 6 genes with the highest scores in I split by disease or atrial chamber. Colors indicate the dataset of origin. CM; 

Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes. LAA_AF; this study scAF dataset, MI; myocardial infarction 

dataset, Atrial_H.Atlas; atrial heart atlas nuclei dataset, ACM_DCM; arrhythmogenic and dilated cardiomyopathy dataset, LA; left 

atria, RA; right atria, AF; atrial fibrillation, SR; sinus rhythm, CTRL_MI; control samples from the MI dataset, FZ; fibrotic zone, 

BZ; boarder zone, IZ; ischemic zone, RZ; remote zone, DCM; dilated cardiomyopathy, ACM; arrhythmogenic cardiomyopathy, 

CTRL_A/D; control samples from the ACM_DCM dataset, NCM; non-compaction cardiomyopathy. 

As mentioned above, one of the SR samples behaved as an outlier and confounded some of 

our downstream analyses (Fig. 4B, S12D and G), therefore, we chose to remove this sample for 

subsequent TF analyses. To identify AF-related TFs in CM, we correlated motif activities and their 

TF expression with both AF signatures in CM metacells (methods). We find that both the AF 

signature UP and DOWN capture similar features i.e., correlated motifs with the UP signature were 

generally anti-correlated with the DOWN signature (Fig. 4C, S14 and Table S10). We chose to 

focus on the AF signature UP, which contained genes at the IFNG locus discussed above. We 

identified 3 closely related motifs as the strongest signal; from the androgen receptor (AR) and 

nuclear receptor subfamily 3 group C members 1 & 2 (NR3C1 and NR3C2) (Fig. 4C, E and Table 

S10). Among these three, we find that only AR expression was correlated with the signature 

(negative correlation, Pearson R = -0.33, p = 5x10-5), as well as with its motif (positive correlation, 

Pearson R = 0.73, p = 5 x10-27) (Fig. 4D and Table S10). We corroborated these results using TF 

footprinting analysis, showing higher Tn5 insertions around AR motifs in AF samples compared 

to SR as well as in CM compared to other cell-types (Fig. 4F and S13). The decreased AR motif 

accessibility and increased expression of AR in SR samples suggests a repressor activity of AR. 

Furthermore, among NR3C1, NR3C2 and AR, AR was the only robust differentially expressed gene 

(Table S3) which remained true in both males and females (Fig. 4G). We also find other strong 

candidates (for which we find a correlation of both TF expression and motif accessibility with the 

AF signature UP) including NFIC, RORB and MXI1, all anti-correlated with the AF signature UP 
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and NRF1 which had a similar profile to AR (Fig. 4B and S14). Among these additional TFs, only 

RORB, and NFIC were DEG in both bulk RNAseq datasets (both downregulated in AF, Table S3).  

5.3.7 AF CM signature is specific across AF co-morbidities 

We then examined AF DEG signature’s specificity in other publicly available snRNAseq 

datasets of cardiac diseases with an associated increased risk of AF, namely dilated 

cardiomyopathies, myocardial infarction and arrhythmogenic right ventricular cardiomyopathy. 

We also included atrial CMs nuclei from the heart atlas to identify differences in left vs right atrium. 

Altogether, we scored 32417 CM metacells from 4 datasets 306,312,314 and 117 samples with our two 

AF signatures (Fig. S15A). Scores for the AF signature UP, as opposed to the AF signature DOWN, 

showed a strong specificity for AF (Fig. 4H and S15B).  

To identify novel potential therapeutic targets, we sought the most cell-type and disease 

specific genes in the AF signature UP. We ranked each gene based on their cell-type specificity 

and their AF specificity (methods). Beyond the lncRNAs of the IFNG locus, we found that SYNPR 

(Synaptoporin), COLQ (Collagen Like Tail Subunit Of Asymmetric Acetylcholinesterase), 

CHRNE (Cholinergic Receptor Nicotinic Epsilon Subunit) and PDE8B (Phosphodiesterase 8B) 

stood out as specifically expressed in LAA CM and in AF (Fig. 4I-J and Table S11).  

5.4 DISCUSSION 

Contrary to the low number of previously reported replicating AF DEGs, our analysis of 

large-sample-size bulk RNAseq datasets identified an extensive list of replicating DEGs. Among 

the top DEGs in this list we found multiple genes with known effects in AF associated with CM 

functions i.e., HCN4423, RCAN1424, CALM3425 and RGS6426 (Table S3). We also identified other 

strong and replicating AF DEG that likely have important CM functions, such as ANGPTL2, 

REC114, RNF216 and C4orf54. Most noticeably, we identified multiple genes at the IFNG locus 

(LINC01479, IFNG-AS1, HNRNPA1P70 and AC007458.1) which were consistently found as the 

strongest signal, including in single nuclei (Fig. 2, S8A and S9A). Furthermore, both LINC01479 

and IFNG-AS1 were highly CM-specific. Notably, other researchers have identified a similar 

transcriptional genomic hot spot at the IFNG locus in AF patients174. While our results confirm its 

importance, they are in contradiction to their conclusion that MDM1 (located on the negative 

strand) is the target gene at this locus. We argue that our analysis contrasting the inclusion and 
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exclusion of strand information during the read mapping process provides a sensible explanation 

for this discordance. Little is known about the function of the positive strand genes at this locus in 

the heart. LINC01479 is highly enriched in the right atrial appendage, skeletal muscle and tibial 

artery of GTEx tissues. IFNG-AS1 is generally associated with immune cell IFNG regulation427 but 

its function in CM is unknown. More work is needed to decipher the function of this locus 

specifically in human CM.  

For the first time, we characterized the cellular and open chromatin landscape in the human 

LAA, a tissue that has been broadly used to assess AF gene expression in bulk RNAseq. Multiple 

deconvolution methods exist to infer cell-type proportions in bulk RNAseq but these methods 

perform poorly on lowly abundant cell-types and on correlated cell-states282. Instead, we opted to 

partition gene expression into modules based on their LAA bulk RNAseq co-expression and 

interpret these modules using both our single cell data and gene set libraries. In line with the 

literature, our results confirm the increased immune cells proportions or activity in AF428. 

Specifically, T-cells appeared to best explain one of the immune gene modules enriched for 

upregulated AF DEG (blue module). A small module showed strong enrichment in B-cell specific 

genes, but we did not detect B cells in our scAF dataset. Both T- and B-cells have been reported to 

be more prevalent in LAA of AF patients compared to SR429 (albeit B-cell being rarely observed 

in the heart306). Cardiac mesothelial cells are epithelial cells from the epicardium with progenitor 

properties. These cells can undergo mesothelial-to-mesenchymal transition and become 

multipotent. This can lead to increased fibroblast proliferation around the epicardium (potentially 

leading to the formation of re-entrant circuits420), a process that may be exacerbated by immune 

infiltration419. Among all datasets analyzed here, the mesothelial cells component explained a large 

proportion of the variance across samples and appeared increased in AF. We also found two 

modules composed almost exclusively of downregulated AF DEG that strongly enriched for 

neuronal cells and adipocytes in our scAF dataset, suggesting that these cell-types may be depleted 

in AF patients. Notably, AF progression has been associated with an increasing loss of sub-

epicardial adipocytes which anti-correlated with sub-epicardial fibrosis419. Moreover, in the same 

study, cytotoxic T-cells appeared as the predominant infiltrating inflammatory cells precluding this 

remodeling, also in line with our results. An alternative interpretation for these cell-type specific 

gene modules could also be a shift in cell-state instead of cell abundance. For instance, brown, 

beige and white adipocytes have all been observed in the heart, exerting different effects on cardiac 
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function, but current cardiac single cell data has not yet differentiated them, likely due to their low 

abundance430.  

We found four non-cell-type-specific modules which showed FB state specificity. Among 

the three FB states that we identified, the iPFB state showed striking similarity to a state described 

by Reichart et al. in ventricular FB (labeled vFB3)314. In agreement with our interpretation that this 

cell-state is depleted in AF, (as evidenced the downregulation of DEG found in the salmon and 

magenta modules) these investigators also found a depletion of this FB state in dilated and 

arrhythmogenic cardiomyopathy patients. They further associated this cell state with genes 

suppressing fibrosis and facilitating myeloid recruitment. Additionally, multiple genes enriched in 

our iPFB were also found to be downregulated in scRNAseq of isolated FB from AF patients303.  

One of the key strengths of our study rests in the paired modality of our multiome assay, 

which enabled us to decipher convoluted TF motifs activity signals by further filtering by their 

expression levels. Using motif activity and gene expression we identified FOSL2 and JUNB as 

likely regulators of the iPFB enriched magenta module and CEBPD, KLF3 and JUND for the 

salmon module. While Fosl2 overexpression in mice has been associated with increased cardiac 

fibrosis431, JUNB is associated with suppressed proliferation432. Our results suggest an enrichment 

for their dimer motif (JUNB::FOSL2). Enrichment for this motif has also been reported upon 

glucocorticoid treatment433, which is known to reduce FB proliferation434. JUND is known to 

induce FB quiescence, in agreement with the higher salmon module score in in RFB. FB cultured 

with the adipocyte media was found to increase CEBPD expression435. Furthermore, it was shown 

that KLF3 KO fibroblasts more readily differentiate into adipocytes436. Therefore, FB with the 

salmon gene signature could be depleted in AF because of a reduction in adipocyte-FB signaling. 

More research is needed to decipher the role of these gene programs in cardiac FBs. 

We identified AR as likely regulator of our AF signature UP in CM as opposed to NR3C2 

(same motif), which have been found to mediate a stressed CM state in myocardial infartion312. 

There is convincing evidence linking the androgen signaling to AF. Low dihydrotestosterone has 

been reported to increase AF risk in older men437. During hormone cancer therapies, androgen 

deprivation therapy was associated with increased QT interval duration438. Also, Ar knock out 

(KO) mice were shown to have impaired Ca2+ homeostasis439. Moreover, AR has been shown to 

act as repressor under multiple conditions, in agreement with our results. However, the effect of 



202 

 

testosterone replacement therapy in clinical trials has shown mixed outcomes for AF440,441. 

Together, this supports our results suggesting that AR acts as repressor on upregulated AF DEG 

but the role of androgen therapy for AF treatment needs further investigation.  

Lastly, we propose interesting AF gene targets that show high disease and cell-type 

specificity. Phosphodiesterases hydrolyze the cyclic secondary messenger cAMP and cGMP, 

directly impacting a host of CM functions such as contractility, stress response or gene 

transcription442. Interestingly, PDE8B has recently been shown to alter L-type calcium current of 

AF patients443, supporting our candidate gene selection approach. Interestingly, CM have been 

shown to have age-dependent intrinsic acetylcholine (ACh) synthesis, storage and transport 

properties444, which, when altered, impact CM size445. COLQ is one of the most replicated DEG in 

AF176. It is known to anchor acetylcholinesterase (AChE, which hydrolyzes ACh) at neuromuscular 

junctions446. Mutations in this gene have been associated with AChE deficiency. CHRNE encodes 

an ACh receptor (AChR) subunit also found at neuromuscular junctions446. CHRNE was found to 

be enriched in the atria in 3 studies447-449. Mutations in this gene have been associated with 

congenital myasthenic syndrome, causing post-synaptic Ca2+ overload450. Together, both COLQ 

and CHRNE increased expression would lead to increased ACh signaling, the former through 

increased extracellular AChE anchoring, the latter through increased AChR formation. Finally, 

SYNPR encodes a synaptic vesicular membrane component and has been suggestively associated 

to left-sided cardiac malformation through a GWAS SYNPR intronic variant451. It was also one of 

the most atrial CM specific genes in the heart atlas306. Its role in the heart remains to be determined.  

5.4.1 Limitations 

While most modules could be confidently attributed to a cell-type based on concordant 

pathway and single cell enrichment scores, the pathways of modules that we assessed in FB were 

not specific to this cell-type. Therefore, other cell-types or cell-states which we did not detect in 

our scAF dataset, may also explain the co-regulation of genes observed in bulk for these modules. 

For instance, gene sets enriched in the salmon module suggests an enrichment for neutrophils 

which are rarely detected in cardiac snRNAseq306. Another limitation of our study is that our scAF 

dataset had a relatively low number of samples and did not allow for robust differential expression 

analysis in less abundant cell-types. In the futures, larger single cell datasets on AF patients could 

be especially informative to identify DEGs and cell-state transitions from rare cell-types such as 
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neuronal cells and adipocytes. Additionally, our selection of TFs is partly based on their 

transcriptional level, which does not account for post-translational regulation mechanisms. 

Therefore, motifs enrichments due to translocation event can be missed. Lastly, a possible 

epicardial sampling bias cannot be ruled out as the cause of the observed increased mesothelial 

gene expression in AF despite the mechanistic plausibility.  

 

5.5 CONCLUSION 

In this study we profile for the first-time single nuclei of the LAA using paired ATAC and 

RNA modalities. We identify strong TFs candidates for cell-type identity based on their combined 

specific activity and expression. Moreover, we establish a robust list of AF DEGs found in the two 

largest human LAA bulk RNAseq datasets to date. We report that non-coding genes at the IFNG 

locus consistently show the strongest signals in bulk and CM nuclei RNAseq of LAA from AF 

patients. Additionally, we identify cell-type specific DEG modules suggesting a loss of rare cardiac 

cell-types, such as neurons and adipocytes, and a gain of inflammatory cells, such as T- and B-

cells. We further identify likely TF regulators of FB gene modules downregulated in AF. Finally, 

in a CM centric analysis, we identify a highly AF specific gene signature for which AR is the most 

likely regulator and suggest novel CM and AF-specific target DEG. Our results provide a valuable 

resource to orient future research aiming at deciphering the effect of AF DEG in specific in vitro 

models and cell-type specific KO mice. 

 

5.6 METHODS 

Data analyses were done in R version 4.2.2. 

5.6.1 Multiome sample preparation, raw data processing and pre-processing 

steps 

These steps are detailed in the methods section of chapter 4. 
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5.6.2 ATACseq peak comparison with ENCODE and human enhancer atlas 

We compared the scAF peaks against other annotations using the findOverlaps() function 

from the  GenomicRanges package. We labeled peaks based on any overlap with other ranges. To 

attribute cell-type identity to our peaks, we used the output of Signac’s CallPeaks() function from 

the cell-type specific peak calling step. We retrieved ENCODE hg38 cCREs (track named 

encodeCcreCombined) from the UCSC genome browser (https://genome.ucsc.edu).  

To validate our cell-type specific peaks we filtered peaks that were uniquely called in one 

cell-type. We retrieved cCREs from the human enhancer atlas285 and then created Granges from 

files at downloaded from http://catlas.org/catlas_downloads/humantissues/cCRE_by_cell_type/. 

We then calculated the percentage of scAF cell-type specific peaks overlapping cCREs from each 

human enhancer atlas cell-type. We truncated the matrix for overlaps below 25% for clarity. 

5.6.3 TF activity scores and selection of cell-type specific TF 

To select cell-type specific TFs, we ranked them based on both motif activity and gene 

expression. First, we calculated TF motif scores in each nucleus using chromVAR294 (implemented 

in Signac289 with the function RunChromVAR()) and the JASPAR2020 database452. Then, for each 

cell-type we calculated the area under the receiver operating characteristic curve (AUC) using the 

presto package function wilcoxauc.Seurat() for both gene expression and motif activity. Finally, 

we ranked each TF based on the product of its gene AUC and motif AUC.  

5.6.4 CTSN bulk RNAseq sample preparation, sequencing and raw data 

processing 

Please refer to the methods section of chapter 4.  

5.6.5 Comparison of bulk RNAseq DEG 

We downloaded the GSE69890 (J. Hsu216) raw count data from GEO and analyzed it using 

the same DESeq2166 steps used for our CTSN dataset. We first compared studies using PCAs for 

the 500 most variable genes and the contribution of sex. We used variance stabilizing 

transformation (vst; DESeq2 function vst()) values. We further assessed which cell-type was likely 

most contributing to the top PC1 genes by using the package factoextra to retrieve genes with the 

https://genome.ucsc.edu/
http://catlas.org/catlas_downloads/humantissues/cCRE_by_cell_type/


205 

 

highest contribution to PC1 and then looked for their expression levels in each cell-types of our 

scAF dataset.  

Differential expression analysis was done using the DESeq() function with sex as covariate 

followed by log fold change shrinkage using lfcShrink(). For the J. Hsu dataset, we used AF patients 

in AF rhythm against no-AF patients173. We used an FDR of 0.05 as significance threshold in both 

datasets and compared the overlapping upregulated and downregulated DEG in both sets as well 

as their signed log10(FDR).  

To assess the effect of the strand, we did a second pseudocount alignment using kallisto156 

omitting the --rf-stranded flag. We labeled genes that lost their significance when strand 

information was provided as probable false positives in the J. Hsu unstranded data.  

5.6.6 Single nuclei differential expression analysis 

We conducted differential expression analysis in the scAF dataset using pseudobulk. We 

aggregated counts for each cell-type and sample using Seurat’s266 AggregateExpression() function, 

keeping only genes found in more than 5% of nuclei. The same DESeq model used in bulk was 

used here to the exception of the shrinkage model used which was ashr453 instead of the default. 

We then compared robust bulk DEGs to each cell-type DEGs.  

5.6.7 Cell-type transcriptional activity comparison 

To infer transcriptional activity, we created a ratio of UMI fraction per cell-type (the sum 

of all counts for that cell-type divided by all counts of the gene by nuclei matrix) divided by its 

cell-type contribution to all nuclei in the dataset (cell-type nuclei count / total nuclei count).  

5.6.8 WCGNA gene modules analysis 

We created gene modules using the combination of both bulk RNAseq dataset (CTSN and 

J. Hsu) and the package WGCNA454. We ran a joint differential expression analysis using both 

datasets with the same parameters described in the Comparison of bulk RNAseq DEG section with 

further addition of the dataset as covariate. We then filtered out genes with low expression and 

small variability across conditions with the following filters: base mean expression >1, |log2 fold 

change| > 0.05 and p-value < 0.05. In total, we used 7,970 genes and 323 samples for module 

analysis. We used the vst expression values corrected for sex and dataset using the limma function 
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removeBatchEffect() to avoid creating modules that capture the effect of these variables. We 

created modules using the WGCNA blockwiseModules() function with the following parameters: 

power = 9, minModuleSize = 50, reassignThreshold = 0, mergeCutHeight = 0.25, networkType = 

"signed" and the rest as default. For each module, we ran pathway analyses in the 

GO_Biological_Process_2021 and PanglaoDB_Augmented_2021 libraries using the enrichR455 

package on genes with an FDR < 0.05. We used the same sets of genes within each modules to 

score each nucleus with Seurat’s function AddModuleScore().  

5.6.9 Sub-clustering analyses 

For both FB and CM sub-clustering we used 10 PCs from the RNA modality. Otherwise, 

we used the same standard Seurat process that was used for the whole dataset i.e., SCTransform, 

Harmony, FindNeighbors and FindClusters.  

5.6.10 TF motif and expression correlations 

To select likely regulatory TFs for specific gene signatures we addressed data sparsity by 

creating metacells within cell-types of interest (FB and CM). This was accomplished similarly as 

described previously (see methods of chapter 4). Briefly, we used the hdWGCNA456 package 

MetacellsByGroups() function. We called metacells within cell-types and samples using the RNA 

harmony reduction to aggregate 30 neighbor nuclei with a maximum of 10 overlapping nuclei per 

metacell. Both RNA and ATAC counts were aggregated using the same neighbors. We then 

correlated each TF expression and motif activities (calculated using ChromVAR on metacells as 

mentioned in the TF activity scores and selection of cell-type specific TF method section) with the 

gene signature scores (calculated with Seurat’s function AddModuleScore()) in metacells using the 

psych corr.test() function with FDR adjustment. To validate TF motifs, we used Signac’s 

Footprint() function on the scAF dataset.  

5.6.11 AF CM signature specificity across AF co-morbidities 

To create a strong gene signature specific to AF and CM, we selected genes based on bulk 

differential expression and CM specificity. We calculated gene specificity using the presto package 

function wilcoxauc.Seurat() and filtered genes with an AUC > 0.5 and FDR < 0.05. For bulk 

RNAseq, we used an FDR < 0.05 and |log2 fold change| > 0.25 in both CTSN and J. Hsu 
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independent DEG. The overlap of these 3 sets was used to create the upregulated and 

downregulated AF signatures.  

We compared gene signature scores in CM from 4 datasets. We downloaded two ventricular 

cardiomyocytes datasets312,314 from the cellxgene portal (https://cellxgene.cziscience.com) and 

atrial CM from the heart atlas306 at (https://www.heartcellatlas.org). We used the same parameters 

to create metacells described in the previous method section and scored cells for the AF CM 

signatures using AddModuleScore(). 

5.6.12 Robust AF CM target genes selection 

We used gene expression from AF co-morbidities CM metacells and the scAF cell-types to 

try to identify therapeutic gene targets with the highest specificity. Thus, we used the presto 

package to calculate AUCs across all scAF cell-types and metacell groups included in the 4 single 

nuclei datasets: 

• scAF; LAA AF, LAA SR 

• heart atlas; left atrium, right atrium 

• Kuppe et al. (CM from various myocardial infarction ventricular zones); control, fibrotic, 

ischemic, boarder, remote 

• and Reichart et al. (dilated and arrhythmogenic cardiomyopathy ventricular CM); control, 

pathogenic variant negative, pathogenic variant positive 

We then used the product of these AUCs to rank genes from the AF signature UP  

 

5.7 DECLARATIONS 

5.7.1 Acknowledgments 

We thank all participants who contributed bio samples to this study.  

https://cellxgene.cziscience.com/
https://www.heartcellatlas.org/


208 

 

5.7.2 Data availability 

The data availability is disclosed in chapter 4. All code to analyze the data and reproduce 

the results of this manuscript will be made available on GitHub upon publication 

(https://github.com/lebf3/scAF). 

5.7.3 Funding 

This work was funded by the Fonds de Recherche en Santé du Québec (FRQS), the Canada 

Research Chair Program and the Montreal Heart Institute Foundation (to S.N. and G.L.).  S.R was 

funded by the British Heart Foundation Intermediate and Senior Fellowships, the British Research 

Council (BRC4) NIHR (Oxford) grant, the Wellcome Trust Institutional Strategic Individual 

Career Support grant and the John Fell Foundation Fund (Oxford). This research was enabled in 

part by support provided by Calcul Quebec (https://www.calculquebec.ca/en/) and Compute 

Canada (www.computecanada.ca). We thank Génome Québec for performing next-generation 

DNA sequencing for this project.  

5.7.4 Competing interests 

The authors declare that they have no competing interests.  

5.7.5 Author contributions 

Conceived and designed the analyses: F.J.A.L. and G.L.; Collected the data: F.J.A.L. and 

N.M.; Contributed data: F.J.A.L., N.M., S.R. and S.N.; Performed analyses: F.J.A.L.; Secured 

funding and supervised the work: S.R., S.N. and G.L.; Wrote the manuscript: F.J.A.L.  

 

5.8 Supplementary materials 

All supplementary tables are included in the attached zipper folder. 

https://github.com/lebf3/scAF
https://www.calculquebec.ca/en/
http://www.computecanada.ca/


209 

 

 

Figure S1. Sample quality control. 

A) Sample metric output from CellRanger. 

B) Scatter plot showing the percentage of mitochondrial read count and number of fragments in peak. Red and blue dots are from 

atrial fibrillation and sinus rhythm samples respectively. We highlight in black the sample that was removed based on the poor-

quality control metrics shown in A and B.  
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Figure S2. Nuclei quality control. 

Histograms showing the thresholds used (dashed vertical lines) for initial filtering of low-quality nuclei. Nuclei in black are the 

aggregate of cells from all samples that do not pass one of the filters. sample_rem; nuclei grouped by sample or binned in the low-

quality group, TSS; transcription starting site. 
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Figure S3. Doublet calling and cell-type annotation 

A-D) Single nuclei uniform manifold approximation and projection (UMAP) of the integrated nuclei from the heart atlas left atria 

and our scAF dataset colored by; A) Seurat clusters, B) dataset, C) cell-type labels from the heart atlas and D) attributed cell-type 

labels to the combined datasets. 

E) Violin plot showing the percentage of mitochondrial counts in each cell-type of the scAF dataset.  

F) Dot plot showing the top 2 marker genes for each cell-type in the scAF dataset. 
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Figure S4. Final clustering and manual doublet curation 

A-B) Single nuclei multiome dataset uniform manifold approximation and projection (UMAP) colored by; A) doublet labels 

attributed by scDblFinder and B) additional doublets manually attributed based on cell-type markers and scDblFinder scores during 

sub-clustering analyses. 

C) Violin plot showing the total RNA read counts per nucleus in each cell-type for doublets and singlets labeled in B.  

D-E) Single nuclei UMAP colored by cell-type using the D) RNA matrix and E) ATAC matrix. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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Figure S5. scAF Peak characteristics  

Density plots of peak types based on their overlap with ENCODE candidate cis-regulatory elements (cCREs). From left to right, 

we show the distribution for each type of; 1-number of fragments per peak, 2-the percentage of GC per peak and 3-the length per 

peak. 

Prom; promoter, enhP; proximal enhancer, K4m3; lysine 4 tri-methyl mark, enhD; distal enhancer, CTCF; CCCTC-binding factor 

mark, not.Encode; peak found in the scAF dataset without any overlapping ENCODE peak. 
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Figure S6. Bulk RNAseq QC 

Left and right panels show results from left atrial appendages bulk RNAseq datasets from the CTSN cohort (this study) and J. Hsu 

respectively.  

A) Principal component analysis (PCA) of the 500 most variable genes. 

B) Scatter plot showing the log2 transformed expression of the epicardium marker ITLN1 against the first principal component’s 

(PC1) coordinates. A-B) Colors show the sex for each sample. 

C) Top 10 loadings for PC1 in A and B with their D) levels of normalized expression by cell-type in single nuclei RNAseq from 

left atrial appendages. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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Figure S7. DEG overlap across bulk studies 

A) Scatter plot comparing the bulk RNAseq differential expression results between atrial fibrillation and sinus rhythm samples, 

using signed log10(false discovery rates [FDR]), in the CTSN and J. Hsu dataset. The sign was attributed based on the log2 fold 

change, with a positive indicating upregulation in atrial fibrillation. Red dots show genes qualified as differentially expressed genes 

(DEGs), with an FDR < 0.05, in both datasets. 

B) Upset plot showing the number genes in each set of intersecting and non-intersecting DEGs in each dataset and direction of 

effect. Up and down indicate upregulated and downregulated genes in atrial fibrillation. 
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Figure S8. Effect of strand specific alignment 

A) Miami plot comparing the bulk RNAseq differential expression between atrial fibrillation and sinus rhythm samples -log10(false 

discovery rates [FDR]) in the CTSN and J. Hsu dataset. Colors and numbers on the x-axis show the chromosomal position of each 

gene. Red crossed genes denote genes that were only differentially expressed when omitting strand information in the CTSN dataset 

(method). The dashed red box highlights the IFNG locus genes shown in B. 

B) Gene expression profiles at the IFNG locus in the CTSN cohort. (top) Coverage plot of all atrial fibrillation and sinus rhythm 

samples combined. (center) -log10(false discovery rates [FDR]) with (orange) and without (blue) provision of the strand information 

during read alignment (method). Sings in parentheses show the strand for each gene. (bottom) Transcript annotation at this locus 

colored by strand. 
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Figure S9. Enhanced reproducibility of CM DEG  

A) Scatter plot comparing differential expression between atrial fibrillation and sinus rhythm samples in the CTSN and scAF 

datasets. Only genes that are differentially expressed in both bulk RNAseq dataset and in the scAF datasets are shown. The sign of 

the log10(false discovery rates [FDR]) is attributed based on the log2 fold change, with a positive value indicating upregulation in 

atrial fibrillation. Colors show the cell-type in which the gene was found to be differentially expressed in the scAF datasets. The 

inset Venn diagram shows the number of differentially expressed genes found in both the CTSN and J. Hsu dataset and in the scAF 

dataset (scAF) with the number of intersecting genes (25). The bar plot below shows the number of differentially expressed genes 

found in this intersection by cell-types. 

B-C) Bar plot showing the ratio of fraction of total RNA unique molecular identifiers (UMIs) divided by the fraction of total number 

of nuclei by cell-type in B) the scAF dataset and C) the heart atlas left atrial nuclei. The ratios above 1 indicate that the proportion 

of all RNA counts explained by this cell-type is higher than its contributing proportion of nuclei in the whole dataset. 

D-E) Scatter plot showing the fraction of total RNA UMIs and the fraction of total number of nuclei by cell-types. 

CM; Cardiomyocytes, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 

 



222 

 

 

Figure S10. WGCNA gene modules 

A) Dendrogram of gene x gene similarity based on their expression in left atrial appendage bulk RNAseq datasets (methods). Each 

gene’s module attribution by WGCNA is labeled by colors at the bottom. 

B) Remaining modules not included in figure 3 for which at least one gene set was significant (adjusted p-value < 0.1, none were 

found for the red and purple modules). (left) Dot plots showing the top 3 gene sets from a gene set overrepresentation analysis of 

the DEGs in each module (methods). For this analysis we used the two gene set libraries PanglaoDB and gene ontology biological 

process (GO BP). (center) Volcano plots showing the log2 fold change and log10(false discovery rate [FDR]) statistics from the 

DEG analysis, stratified by modules. Red and blue integers indicate the number of AF upregulated and downregulated genes 

respectively in each module. (right) Violin plot showing the module scores (methods) in each cell-type of the scAF dataset.  
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C) Heatmap showing the mean module score by cell-type shown in B, scaled by module. The margin dendrograms show the 

similarity of each module and cell-type. 

Adipo; Adipocytes, CM; Cardiomyocytes, EC; Endothelial cells, FB; Fibroblasts, PC; Pericytes, SMC; Smooth muscle cells. 
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Figure S11. Single cell enrichment scores of WGCNA gene modules 

Single nuclei uniform manifold approximation and projection (UMAP) colored by module scores (methods). 
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Figure S12. Fibroblast sub-clustering  

A-B) Fibroblasts (FB) uniform manifold approximation and projection (UMAP) colored by A) state and B) rhythm. 

C) Bar plot showing the FB state proportion by rhythm. 

D) Violin plot showing module scores by FB states. 

E) Scatter plot of the transcription factors (TF) and their motif activities correlation with each module in FB metacells. Red dots 

represent TFs for which the expression and motif activity is significantly correlated (false discovery rate < 0.01) with the module 

scores. 

RFB; resident fibroblasts, MFB; myofibroblasts, pIFB; pro-inflammatory FB.  
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Figure S13. Cardiomyocyte sub-clustering 

A, D, F) Cardiomyocyte (CM) uniform manifold approximation and projection (UMAP) colored by A) Seurat clusters, D) sample 

and F) the AF signature UP scores (methods). Red and blue samples represent atrial fibrillation and sinus rhythm patients 

respectively. 

B) Dot plot showing the top 6 marker genes for each CM sub-cluster. 

C) Bar plot showing the sample portions in each CM sub-cluster. Red and blue samples represent atrial fibrillation and sinus rhythm 

patients respectively. 
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E) Violin plot showing scores for the familial isolated hypertrophic cardiomyopathy gene set in (left) each sample and (right) each 

CM sub-cluster. Red and blue samples represent atrial fibrillation and sinus rhythm patients respectively. 

G) Scatter plot of (left) NR3C2 motif activity and (right) expression correlations with the AF signature UP scores in CM metacells. 

Red and blue samples represent atrial fibrillation and sinus rhythm patients respectively. 
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Figure S14. AF gene signature DOWN TF selection 

(top) Rank plot showing the Pearson R for the motif activities correlation with the AF signature DOWN scores in CM metacells 

(methods). (bottom) Scatter plot of the transcription factors (TF) and their motif activities correlation with the AF signature DOWN 

scores in CM metacells. Red dots represent TFs for which the expression and their motif activity is significantly correlated (false 

discovery rate < 0.01) with the AF signature DOWN scores.  
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Figure S15. AR footprinting  

Footprinting enrichments of the AR motif in each cell-type.  
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Figure S16. AF CM signature specificity across co-morbidities 

A) Bar plot showing the number of samples found in each dataset used to compare the specificity of the AF signatures in B.  

B) Violin plot showing the AF signature scores (methods) of cardiomyocytes metacells in each disease and/or cardiac chamber 

found in the combined datasets.  

LAA_AF; this study scAF dataset, MI; myocardial infarction dataset, Atrial_H.Atlas; atrial heart atlas nuclei dataset, ACM_DCM; 

arrhythmogenic and dilated cardiomyopathy dataset, LA; left atria, RA; right atria, AF; atrial fibrillation, SR; sinus rhythm, 

CTRL_MI; control samples from the MI dataset, FZ; fibrotic zone, BZ; boarder zone, IZ; ischemic zone, RZ; remote zone, DCM; 

dilated cardiomyopathy, ACM; arrhythmogenic cardiomyopathy, CTRL_A/D; control samples from the ACM_DCM dataset, 

NCM; non-compaction cardiomyopathy. 
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Chapter 6: Discussion 

6.1 Implications 

6.1.1 Unappreciated neuron-like characteristics of CMs 

Both Chapter 2 and Chapter 5 implicated CM dysregulated genes with functions generally 

associated with neuron functions. Glutamate, the predominant neurotransmitter, has been 

exhaustively studied in the central and peripheral nervous system. Released in the synapses through 

exocytosis, it can activate ion channels opening (ionotropic glutamate receptors; iGluR) and 

cellular excitability through G-protein receptors (metabotropic GluR; mGluR)457. These receptors 

have been detected in multiple tissues including the heart363. Furthermore, they have been detected 

on CM membranes, with higher prevalence in the atria458,459. Importantly, Xi et al. have 

demonstrated that CM are sensitive to glutamate, N-methyl-D-aspartate (NMDA) receptors and α-

amino-3-hydroxy-5 methylisoxazole-4-propionate (AMPA), and that iGluR inhibition reduced 

conduction velocity, excitability and AF inducibility367. Our results in tachypaced canine models 

showing the upregulation of miRNAs from the DLK1-DIO3 locus predicted to target glutamate 

signaling, substantiate the evidence of an intrinsic CM gene program dedicated to control glutamate 

signaling. The regulation of this pathway in our AF models would suggest an adaptative response 

to AF, reducing CM excitability to restore SR. It should be noted, however, that while our CM 

preparations strongly enrich for CM, we cannot rule out the presence of other cell-types in these 

samples. It is therefore a possibility that some of the DEGs in this study come from neuronal cells. 

Still, the very low proportion of neuronal cells in cardiac tissue without prior CM enrichment 

(~2.3% in adult human atria306) makes the likelihood of a significant neuronal contribution to our 

18 CM enriched bulk RNAseq samples unlikely.  

The relevance of autonomic imbalance in AF patients has been recognized for decades460. 

Low level vagal stimulation therapy was shown to improve autonomic balance, reduce 

inflammation and remodeling461. On the other hand, high doses of ACh reproducibility has potent 

arrhythmogenic effects461, reducing APD and promoting the formation of rotors60. The recent 

discovery of a non-neuronal cholinergic system in CM462 adds further complexity to our current 

understanding of this system. CM were shown to possess the machinery responsible for ACh 

synthesis (choline acetyltransferase; ChAT), storage and transport (transport proteins choline 
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transporter-1; CHT-1 and the vesicular ACh transporter; VAChT)444. Disruption of this system in 

CM, as evidenced by impaired heart rate recovery post-exercise in VAChT KO mice463 underscores 

its physiological significance. Putting our results into perspective, I provided multiple candidate 

CM target genes implicated in ACh signaling (CHNRE), ACh regulation (COLQ) and presynaptic 

vesicle formation (SYNPR). Compared to snRNAseq of normal atrial CM, dilated and 

arrhythmogenic cardiomyopathy ventricular CM, myocardial infarction ventricular CM, normal 

ventricular CM, and all other cell-types of the LAA of AF patients, these genes were amongst the 

most specific to CM of AF patients. Contrarily to VAChT which appears to have important 

ventricular hemodynamic repercussions when targeted in CM specific KO463, these genes may 

provide a way to specifically target the CM intrinsic ACh system, without affecting neuronal cells 

or ventricular CM. Together, our results support the emerging significance of both the glutamate 

and ACh CM intrinsic systems and their relevance in AF. 

With the advent of single cell technologies, the cardiac cellular landscape continues to grow 

in complexity. Furthermore, cell-states and cellular abundance can readily be associated to 

diseases. As yet another example of newly discovered cardiac property akin to the nervous system, 

glial cells have recently been discovered in the heart. In the central nervous system, glial cells 

support neuron function and homeostasis. Multiomic and spatial omic analyses of the SN have 

shown the interaction of glial cells with pacemaker cells308. These glial cells exhibited astrocyte-

like glutamate to glutamine recycling machinery and pacemaker cells were shown to express the 

necessary genes for its transport, storage and signaling. Astrocytes are also known to be sensitive464 

and have regulating functions on ACh465. Importantly, these cells were also found near atrial CM-

nerve connections317, indicating that they are also likely involved in regulating CMs neural 

connections in the atria. Another group showed that AF recurrence after catheter ablation was 

correlated with concentrations of S100B, a marker of neuronal damage secreted by glial cells317. 

Given that we found evidence of both the glutamate and ACh systems being disrupted in atrial CM 

of AF patients and canine models compared to SR, it is reasonable to speculate that such glial cells 

may be implicated in AF through the regulation of neuro-cardia junctions. It also suggests that CM 

may be an active participant in regulating neural connections and glial phenotype. The effect of 

those connections and their nature (sympathetic vs parasympathetic) for AF patients is a matter 

that would benefit from additional study given the mixed results obtained from targeted 

ganglionated plexi ablation317,466-468.  
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6.1.2 Rare cell-types and cell-states involved in AF 

In Chapter 5, I showed enrichments of AF DEG modules in specific cell-types, including 

modules suggesting an increased proportion of T-cells and mesothelial cells, and modules 

suggesting a depletion of neurons and adipocytes in AF patients. While this does not provide direct 

evidence of a change in cell-type abundance, it is the most likely cause for these gene expression 

shifts since cell-type composition is usually the dominant factor explaining bulk RNAseq 

variance469. These results are also in line with changes that have been described in the epicardium 

of AF patients. Specifically, fibrosis appeared to antagonise the sub-epicardial adipose tissue (so 

called fibro-fatty infiltration) and to correlate with increased T-cell infiltration in the epicardium419. 

Expert consensus has posited that sub-epicardial adipogenesis contributes to AF substrate 

formation470. It was argued that this process may occur because of a metabolic shift of AF CM. 

Conversely, it was also shown that the adult epicardium can lead to fibroblast or adipocyte 

differentiation through distinct signals471 and that mesothelial cells of AF patients were more 

reactive to pro-fibrotic signaling (TGF-β1)472. Furthermore, when corrected for body mass index, 

the PRS for epicardial adipose tissue was not predictive of AF, suggesting that the systemic 

metabolic dysfunction associated with obesity may be the driver of this association rather than a 

local effect on conduction heterogeneity473. Together, this suggests that sub-epicardial 

adipogenesis likely precludes fibro-fatty infiltration. Whether the fibro-fatty infiltration correlation 

with AF progression constitute a more arrhythmogenic substrate than adipose tissue or is merely a 

consequence remains to be determined. There is, however, little evidence that pertains to a 

reduction of neural cells in the atria of AF patients. Nonetheless, it is reasonable to assume that the 

same fibro-fatty infiltration process disrupts myocardial innervations leading to neuronal, 

adipocyte and CM death. Interestingly, I also identified a module dominated by downregulated 

genes found to be enriched in a subset of fibroblasts with adipogenic features. CEBPD and KLF3 

were both the strongest TF regulatory candidates for this module in fibroblasts which have been 

associated with responses to adipocyte signaling435,436. Further characterization of this fibroblast 

state could help clarify its possible interaction with adipocytes and its role in regulating fibrosis. 

Given the low abundance of these cell-type and the large variability of AF presentations in humans, 

to validate these changes in cell-type proportions, large-sample-size studies will likely be required.  
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6.1.3 Mechanistically substantiating eQTLs using single nuclei multiome  

In chapter 3, I put an emphasis on the identification of peak-gene links. It is important, 

however, to note that while identifying such links supports a mechanistic interpretation of these 

peaks on gene expression i.e., repression or activation through chromatin remodeling, it does not 

exclude the possibility that genes in cis may also be regulated by a peak if no links are found. 

Discordance of these readouts may in fact be the norm. In prefrontal cortex of 272 individuals, only 

23% of caQTLs overlapped eQTLs, 63.6% of which had a concordant direction of effect474.  

There are multiple steps required to modify the repressed heterochromatin towards high 

transcriptional activity. Pioneer factors are a subclass of TFs that can bind nucleosomal motifs and 

initiate chromatin remodeling from heterochromatin. These include TBX5, NKX2-5 and GATA4 for 

CM commitment475. Their initial binding promotes the recruitment of chromatin modifiers and a 

primed chromatin state, characterized by a weak H3K4me1 ChiPseq mark and a weak ATACseq 

peak476. This state enables the recruitment of other co-activators such as p300–CREB-binding 

protein (CBP) which adds the active enhancer H3K27ac mark and contributes to nucleosomal 

remodeling, creating a strong ATACseq peak. Conversely, repressors can reverse this process and 

reduce chromatin accessibility. In a very dynamic system, such as dedifferentiation of B-cell into 

pluripotent stem cells, this process is very deterministic on gene expression, where peaks 

accessibility precedes gene expression in cis477. However, the changes occurring in an adult heart 

are generally relatively minor compared to cell reprogramming. Hence, multiple mechanisms 

leading to adjustments in gene expression may be independent of changes in chromatin 

accessibility. For instance, disruption of TF motifs involved in the last steps of polymerase 

recruitment, after the establishment of the active enhancer state, may not necessarily change peak 

accessibility but would change gene expression. Conversely, it can change topologically associated 

domains through motif disruption of insulators such as CTCF478. It can also directly affect post-

transcriptional regulation such as RNA stability479. Lastly, some variants can influence splicing, 

which itself can influence RNA stability and total gene abundance480. Therefore, establishing the 

presence of links is most useful to reinforce the connection of an eQTL through plausible 

mechanisms and help prioritize causal SNP(s) through their peak proximity, but to completely rule 

out the regulatory potential of an eQTL containing peak, more in depth analyses of the eGene 

transcripts and ChiP are necessary.   
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These matters are especially relevant to the results presented in chapter 4. There I showed 

that multiple fine mapped AF eQTL SNPs overlapped with ATACseq peaks of our LAA multiome 

data. Specifically, these involved peaks around the eGenes MAPT, GNB4 and KDM1B. Despite 

identifying some correlations between the peak and the gene (links) for all these loci, the peaks 

accessibilities did not systematically mirror the eQTLs. For instance, the MAPT eQTL SNP 

rs242557 replicated in our two cohorts of different ancestries, in GTEx LAA and showed 

concordant increased expression with the A allele in our multiome CMs but we did not observe 

concordant modifications in peak accessibility in the same CMs. This contrasts with GNB4 which 

showed concordant peak and gene increase with the rs7612445 T allele. The latter fits the canonical 

active enhancer model while the former suggests that the change in MAPT expression is not 

mediated by modulating peak accessibility. This exemplifies the current difficulty regarding the 

interpretation of multiome data discussed above. Additionally, the MAPT eQTL hosting peak was 

also present in LAA neurons. Given their rare abundance (~ 10 nuclei per sample) and the high 

sparsity of snATACseq data, we could not assess the QTL effect on neuron peak accessibility. 

Instead, we fall back on the assumption that CMs explain most of AF heritability, as demonstrated 

by GWAS enrichments in CM peaks287,305,307. Yet, rs242557 was shown to regulate gene 

expression at the MAPT locus in microglia481. Also, the A allele is protective for AF129 but appears 

to be deleterious for Alzheimer disease by increasing tau aggregates482. If these phenotypes from 

the central nervous system replicate in atrial neurons or glial cells and that this mechanism is causal 

for AF, it would entail that their dysfunction be protective for AF. This appears less plausible than 

a mediation through a CM phenotype. Further mystifying the MAPT association, tau aggregates 

clearance in a heart failure mice model improved diastolic function84. Hence, functional studies are 

needed to reconcile this discordant information. Specifically, confirming the eQTL effect of 

rs242557, evaluating the effect of MAPT expression on CM electrophysiology and if rs242557 

impacts specific MAPT isoforms.  

 

6.2 Limitations 

There are several limitations that apply to this research. In addition to what was previously 

discussed in chapter 2 (potential cell contamination in our CM preparation), the identification of 

miRNA gene targets is based on predictions and will need to be validated. In chapter 3, an important 
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limitation of our links validation was that we used data from a single individual. Some of these 

conclusions may differ for inter-individual analyses sur as eQTLs. Specifically, within cell-type 

links may turn out to provide better sensitivity if a link is only active within a cell-type which 

would otherwise be diluted (e.g., the GNB4 locus in chapter 4), similarly to cell-type specific 

eQTLs. This aspect is further discussed in the outlook section 6.3. In addition, this underlines the 

need for larger multiome datasets to improve these models.  

Concurrently, our multiome dataset used in chapter 4 and 5 had a relatively low number of 

nuclei which limited some of our analyses to the more abundant cell-types. One example of this is 

our identification of gene modules that did not perfectly recapitulate fibroblast states (i.e., the 

salmon module). More nuclei/cells may provide finer resolution of cell-states with more specific 

enrichment of such modules. The low number of nuclei in our multiome dataset is in part due to 

the nature of the tissue and the disease. Because AF is rare in young individuals our LAA samples 

were from individuals with a mean age of 67 years. LAA from older individuals are more fibrotic, 

producing more extracellular debris in the nuclei preparation and increasing the number of 

filtrations required. Moreover, recruitment of patients is a limiting factor, and even more so for 

female patients. Hence, our multiome data only contained seven individuals, of which two were 

female. We did not evaluate the effect of sex on eQTLs or DGE. Given that sex is an important 

risk factor for AF, it will be key component to evaluate in future studies. Another sample-size 

limiting factor was in relation to our bulk eQTL analyses which we limited to common variants 

(minor allele frequencies > 5%). Therefore, we may miss the causal variants in our fine-mapping 

analysis.  

A more general limitation of snRNAseq from cardiac tissue is that cardiomyocytes are often 

binucleated (estimated between 25% and 63% in adults483), which may increase the chance of CM 

doublet formation, especially given the important ECM component of this tissue. The formation of 

CM homotypic doublets could be favored under incomplete cell membranes lysis during tissue 

dissociation protocols. The detection of homotypic doublets is difficult due to the high gene 

expression homology of the nuclei. Together, this may explain why we observed a CM increased 

transcriptional activity in cardiac scRNAseq datasets.  
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6.3 Outlook 

6.3.1 Single cell QTLs 

Currently, single cell eQTL studies are rare because large sample sizes are required and 

expensive. Unsurprisingly, most scRNAseq eQTL studies to date are from peripheral blood 

mononuclear cells (PBMCs) given their accessibility and user-friendliness. Nevertheless, they 

provide a glimpse of the information that ought to be gained. The replication rate of snRNAseq 

eQTLs in the same bulk tissue has been reported to be between 41–79%, suggesting that a 

significant number is missed in bulk484. Most interestingly, given the resolution that single cell 

analyses provides, eQTLs can be assessed along a continuum in a dynamic system and uncover 

SNP effects that only occur in narrow widow of differentiation stages. For instance, 66% of eQTLs 

identified in naïve-to-memory B-cells transition states could only be identified through this 

transition as opposed to using fixed cell-type analyses208. This suggests that many potentially 

impactful transitional eQTLs have yet to be discovered. This is important because the strongest 

eQTLs may not necessarily be the ones causing the phenotypes of interest. First, the strongest 

eQTLs are easier to detect and are therefore the first ones detected in small cohorts, but this is often 

caused by higher allele frequencies, which implies lower selective pressure on the SNP and a likely 

weak consequence on the trait. Case in point, some bottleneck genes appear to have evolved a more 

robust regulatory landscape through increasing the redundancy of their enhancers, effectively 

buffering the impact of genetic variations485. Moreover, many cases of functional redundancy 

within cellular pathways486 can mitigate variants’ consequences, which may need to occur in 

conjunction to impact the trait, oncogenesis being the most obvious example487. Then again, weak 

bulk eQTLs may in fact cause strong gene expression changes in specific cell-types when they are 

rare in the tissue. Large cohort snRNAseq eQTL studies will help decipher rare cell-type-specific 

QTLs and condition specific QTLs missed by bulk studies. This may answer if eQTLs common to 

multiple cell-types are more or less likely to impact traits than specific ones. It will also provide 

new insights that may lead to resolve some GWAS associations and explain the low proportion of 

GWAS SNPs captured by current eQTLs488. 

Despite the vast knowledge that has yet to be gained, snRNAseq has important limitations. 

It has an important 3’ bias which limits the detection of splicing events and isoform quantification. 

In a more distant future, long read sequencing in single cells are expected to eventually provide a 
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solution249,250. The snRNAseq method is also sparse compared to bulk RNAseq complicating eQTL 

modeling. Importantly, it does not account for post-translational modifications and regulation. 

Other single cell molecular QTLs such as pQTLs238 and mQTLs237 will likely improve in scalability 

but the coming years will surely be dominated by single cell eQTLs given its accessibility.  

Still, even in a completely resolved map of eQTLs and other molecular QTLs, multiple 

challenges will remain to link gene variant to phenotypes. Chiefly, identification of causal SNP(s) 

will require more diverse cohorts, especially from African ancestry, to reduce LD bloc sizes and 

improve fine-mapping. Moreover, the multiple eGenes for a given SNP conundrum may require 

functional validation of each gene and possibly the combination of multiple KO to truly elucidate 

the SNP’s effect.  

Profiling QTLs with the multiome assay may provide profound insight into genomic 

regulatory processes. Some groups have touted having sequenced hundreds of thousands of nuclei 

from hundreds of individuals using the multiome platform, but those studies have yet to be 

published. Such large scale paired single nuclei caQTL and eQTL studies will allow to 

unambiguously partition cCREs into different categories; correlated, anti-correlated, eQTL only 

and caQTL only. Each of these categories likely have distinct rules that can be learned and applied 

in future models to improve genomic regulation predictions. In the process, this will also provide 

invaluable datasets to design better computational methodologies to identify significant links. 

Much remains to be done in this domain. The chief challenge remains the data sparsity. Some 

solutions have been proposed to mitigate this effect, such as the creation of metacells or imputation 

of missing values. Metacells are aggregates of neighboring cells (or nuclei) in the reduced 

dimensionality feature space. This reduces the impact of “drop outs” and was shown to improve 

the detection of TF activities of known importance in erythroid differentiation301. For imputation, 

multiple methods have been developed300,489,490, which are often used to “denoise” snATACseq 

data. One of them (scBasset) was shown to improve TF activity compared to ChromVAR and 

outperform other imputation methods on predicting gene expression from snATACseq data300. The 

effect of these methods on calling links will be important to evaluate in future studies. However, 

the paucity of ground truth to calibrate these models is another important challenge. Given that 

gene expression changes can plausibly occur without chromatin accessibility changes, RNA 

abundance is an imperfect tool to calibrate on. Further refinement of peaks that show ChiPseq mark 
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modifications associated with chromatin modifications or do not modify TADs in exhaustively 

characterised model such as hematopoietic differentiation may help refine those ground truths by 

identifying elements expected to have combined caQTL and eQTL effects.  

6.3.2 High throughput CM screens 

Functional validation of the candidate genes identified in this research is an important future 

aim. In chapter 5, I showed that the lncRNAs LINC01479 and IFNG-AS1 at the IFNG locus are 

reproducibly the strongest DEGs in persistent AF and are specific to CMs. In chapter 4, the 

strongest eQTL in LAA was with the eGene LINC01629. Lower LINC01629 is associated with 

lower AF risk129. Its repression in human embryonic stem-cell-derived CMs reduced FOXP2, TBX5 

and PITX2. FOXP2 was recently identified as a key regulator of gene expression in pacemaker 

cells308. Hence, it is reasonable to hypothesise that the allele(s) reducing LINC01629 expression 

may prevent the activation of pacemaker gene programs in myocardial cells and reduce the 

occurrence of ectopic activities.  

Further functional validation of LINC01629 and the lncRNAs at the IFNG locus in CM will 

be necessary to confirm these results, as well as the four SNPs from this locus to identify the causal 

SNP(s). Importantly, lncRNA genes are generally more cell-type specific205, an significant 

advantage for their use as a therapeutic targets491. However, lncRNAs are poorly conserved across 

species, which limits the usability of non-human cells for their investigation. Important progress 

has recently been made on the differentiation of CM from human induced pluripotent stem cells 

(hiPSCs-CM). Both ventricular and atrial CM specific markers have now been identified under 

different growth factor exposition (atrial lineage being induced by retinoic acid)492,493. While these 

cells display lineage specificity, they generally have fetal phenotypes, i.e., absence of striations 

indicating incomplete myofibril formation, altered Ca2+ handling and higher resting membrane 

potential494. Longer culture times, electrical stimulation, low glucose and high lipid cultures have 

shown promising results to further mature these cells and obtain phenotypes reflecting adult 

electrophysiology494,495. 

Recently, variations of the clustered regularly interspaced short palindromic repeats 

(CRISPR)-Cas9 system have been developed to promote or repress gene expression. An inactive 

Cas9 (dead Cas9; dCas9) has been coupled to the transcriptional activator VP64 (CRIPSRa) or the 

repressor KRAB (CRISPRi). Using appropriate single guide RNAs (sgRNA) infected cells, 
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specific regions of the genome can be activated with CRISPRa or repressed with CRISPRi. This is 

a method of choice to probe non-coding regions of interest for their effect on gene expression and 

cellular phenotypes without introducing cuts to the DNA (less toxic to cells). Gain and loss of 

function CRISPR screens are dependent on the stable expression of CRISPRi and/or CIRSPRa for 

sustained gene activation or silencing496. This limitation enforces the use of stable cell lines, further 

highlighting the importance of hiPSCs-CMs in cardiovascular research.  

Parallel phenotypic assessment can now be done using multi-well instruments such as the 

Nanion CardioExcyte 96497. This allows combined impedance and field potential to be recorded 

simultaneously on a 96 well plate for contractility and electrorheological readouts respectively at 

various time points. Furthermore, CMs can be paced at different frequencies to improve maturation. 

Combined with improvements in atrial CM differentiation, maturation and stable hiPSCs CRISPRi 

cell lines can be used to screen for a set of candidate genes in parallel by targeting their promotor 

regions with sgRNAs or for the effect of SNPs on whole transcriptomes and CM phenotypes with 

increasing feasibility. Alternatively, pooled screens assessing atrial differentiation efficiency or 

other traceable phenotypes through trans-gene fluorescence is another appealing method to 

evaluate an even higher number of targets498,499. Together, this promises to tremendously accelerate 

throughput of candidate gene validation as well as drug discovery500-502.  

6.3.3 Improving early detection and tailoring AF treatments 

As I’ve discussed in the introduction and discussion, AF is not a homogeneous condition. 

The etiology can differ importantly between patients warranting different therapeutic approaches. 

Yet, the sub-categorisation of AF beyond its progression spectrum remains a challenge and tailored 

treatments are rarely envisioned503. Among current efforts to personalize treatments, targeted 

catheter ablation aided with an artificial intelligence algorithm is currently the object of a clinical 

trial (TAILOR-AF; NCT05169320). Other considerations include bleeding risk, history of heart 

failure and symptoms which may warrant specific therapies such as LAA occlusion1. Improvement 

in AF mechanism characterization may provide insight to further stratify patients with adequate 

indications for targeted therapy. Its myriad of contributing factors i.e., inflammation, metabolic 

syndrome, blood pressure, autonomic function, age, sex and genetic risk all contribute in varying 

proportions across individuals and likely warrant different therapeutic approaches. For example, in 

some patients, AF appears to be triggered by heightened sympathetic activity, occurring 
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predominantly during exercise or periods of stress, while for others, vagal tone may trigger 

nocturnal events504. Differentiating these patients may show that vagus nerve stimulation is only 

adequate for individuals with sympathetic tone driven AF. Similarly, testosterone replacement 

therapy may preferentially benefit patients in whom CM have atrophied, such as those also 

presenting with dilated cardiomyopathies505.  

To better stratify patients and devise appropriate interventions for each stratum, we must 

first improve discrimination methods. Blood biomarkers, wearable ECG and genetic risk factors 

provide new ways to discriminate AF patients into groups that may have different indications, 

which is the mission of the MAESTRIA consortium. For instance, metabolomic analyses of LAA 

of AF patients showed that both glutamate and choline were increased364. These biomarkers may 

help segment AF patients which suffer from autonomic imbalance. Likewise, the robust LAA AF 

gene signature described in Chapter 5 may serve as blood biomarker if it is detectable in the blood 

of patients. Paired with detailed cardiac mapping and other metrics, specific etiologies could then 

be associated to proxies of increasing accessibility and be scaled to larger cohorts. Ultimately, 

combining these measurements with low-cost wearable ECG in a large cohort may also provide 

enough training data for a machine learning model to identify distinct ECG patterns that would, in 

the future, reduce the necessity of more cumbersome blood tests or cardiac imaging. The number 

of cardiovascular and non-cardiovascular phenotypes that are predictable from twelve lead ECG 

and very often also from wearables is astounding and growing quickly. This includes AF, 

ventricular arrhythmias, left ventricular systolic dysfunction, heart failure, dilated cardiomyopathy, 

dyskalemia, hyperthyroidism, anemia and others506. Twelve-lead ECG can also be used to predict 

new onset AF507, allowing for earlier intervention and possibly avoiding progression from 

undetected AF. Together, these technologies promise to improve personalization of AF 

interventions for diverse patient subsets. 
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6.4 Conclusion 

Here, I demonstrate the strengths of integrative multiomic technologies, most importantly, 

in revealing novel AF molecular and cellular associations through innovative single-cell 

approaches. First, I implicated a predicted glutamate regulatory region at the DLK1-DIO3 locus 

showing increased activity in early-stage AF canine models. I then focused on improving the 

predictive power of statistical models used to link gene expression to open chromatin regions for 

the emerging multimodal single nuclei multiome assay. Building upon this, I combined single 

nuclei multiome and eQTL data from multiple ancestries to refine fine-mapping results and 

mechanistically substantiate eQTL associations with cell-type specificity. Finally, I 

comprehensively characterised AF dysregulated genes, identifying robust and cell-type specific 

DEG signatures and their regulatory TFs.  

These results involved underappreciated neuro-like functions of CMs in the context of AF 

including intrinsic glutamate and ACh systems. This suggests that CMs are not mere receivers of 

neuronal inputs but might actively participate in neuromodulation. Taken with recent evidence of 

glial cells located at atrial CM and nerve fiber junctions, this proposes new biology with potential 

high impact in AF. Thus, we identified multiple candidate target genes that may specifically target 

these systems in atrial CM, which may further the development of novel AF therapeutic 

opportunities.  

With up-and-coming multiplexing single-cell technologies, greater sample sizes will be 

facilitated providing a more complete understanding of cell-type specific and transitional eQTLs. 

This in turn will lead to novel causal associations and potential therapeutic targets. Expanding the 

current applications of CRISPR technologies to novel hiPSC-CM models will be instrumental in 

validating these novel associations. Together, this progress will broaden our understanding of 

genomic regulation, enable personalized medicine and management of AF and other pathologies.  
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