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Résumé

Le concept de Ville Intelligent concerne l’interconnectivité totale de plusieurs industries vers l’amélioration
des modes de vie des résidents. Ceci est rendu possible par la croissance et l’utilisation généralisée
de l’Internet des objets (IoT), un vaste réseau de dispositifs de collecte de données répartis dans
de multiples applications. Cependant, la plupart des appareils IoT disposent de peu de ressources
et s’appuient sur des serveurs externes pour traiter et stocker les données collectées. En raison
de la congestion et de la distance élevées, les centres de données Nuage (Cloud) peuvent entrâıner
une latence élevée dans leur réponse IoT, ce qui peut être inacceptable dans certaines applications
IoT. Au lieu de cela, l’informatique Brouillard (fog-computing) a été proposé comme une couche
hétérogène hautement virtualisée de serveurs à la périphérie du réseau, ce qui permet un traitement
des données IoT à faible latence.

Les contributions actuelles au brouillard informatique supposent qu’une infrastructure de brouil-
lard est déjà en place. De plus, chaque contribution nécessite des caractéristiques différentes sur
l’infrastructure du brouillard. Cette thèse formule un schéma de conception et de dimensionnement
évolutif et modifiable pour une infrastructure de brouillard généralisée. Ceci est modélisé et résolu
sous la forme d’un programme linéaire à nombres entiers mixtes (MILP), et détendu à l’aide de
plusieurs techniques telles que la génération de colonnes et la décomposition de Benders. De nom-
breuses préoccupations concernant les performances du réseau brouillard sont prises en compte et
résolues, telles que le trafic IoT élevé, la congestion du réseau et les dysfonctionnements des nœuds
brouillard. Les nœuds de brouillard dynamiques, tels que les nœuds de brouillard à la demande et
les véhicules aériens sans pilote mobiles (UAV-brouillard) sont intégrés dans les modèles de con-
ception et de dimensionnement actuels pour ajouter de la flexibilité et de la robustesse au réseau.
Un système basé sur la blockchain et des preuves de connaissance nulle est introduit pour renforcer
l’intégrité des nœuds de brouillard. Le résultat est un schéma de conception et de dimensionnement
évolutif pour une infrastructure de brouillard robuste, flexible et fiable dans un environnement de
brouillard-IoT dynamique et malveillant.

Mots Clés— Fog-computing, Internet des objets, Conception et Dimensionnement, Décomposition
de Benders, Génération de Colonnes, Véhicules Aériens sans Pilote, Blockchain
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Summary

The concept of a Smart City relies on the full interconnectivity of several industries towards the
amelioration of resident lifestyles. This is made possible by the growth and wide-spread use of
the Internet of Things (IoT) – a large network of data collection devices throughout multiple
applications. However, most IoT devices have few resources, and rely on external servers to process
and store the collected data. Due to high congestion and distance, Cloud data centres may cause
high latency in their IoT response, which may be unacceptable in certain IoT applications. Instead,
fog-computing has been proposed as a highly-virtualized heterogeneous layer of servers on the
network edge, resulting in low-latency IoT data processing.

Current contributions in fog-computing assume a fog infrastructure is already in-place. Fur-
thermore, each contribution requires different characteristics on the fog infrastructure. This thesis
formulates a scalable and modifiable design & dimensioning scheme for a generalized fog infras-
tructure. This is modeled and solved as a mixed-integer linear program (MILP), and relaxed using
several techniques such as Column Generation and Benders Decomposition. Many concerns on the
fog network performance are considered and addressed, such as high IoT traffic, network conges-
tion, and fog node malfunctions. Dynamic fog nodes, such as on-demand fog nodes and mobile
fog-enabled unmanned aerial vehicles (fog-UAVs) are integrated into current design & dimension-
ing models to add flexibility and robustness to the network. A system based on blockchain and
zero-knowledge proofs is introduced to enforce integrity on the fog nodes. The result is a scalable
design & dimensioning scheme for a robust, flexible, and reliable fog infrastructure in a dynamic
and malicious IoT-fog environment.

Keywords— Fog-computing, Internet of Things, Design & Dimensioning, Benders Decompo-
sition, Column Generation, Unmanned Aerial Vehicles, Blockchain
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Chapter 1

Introduction

The term smart city is used to describe urban environments with a high degree of interconnectivity
between wide-spread collected sensor data and urban industries [1]. Through the collaborative
integration of information and communication technologies, smart cities aim to streamline city
services and hence to ameliorate the lives of residents. Examples of participating industries in
smart cities are smart agriculture, smart transportation, smart health and well-being, smart waste
management, smart water management, and smart power grids. An efficient smart city application
can choose the scale and portion of affected residents and structures through smart monitoring
and system modularization. This monitoring can cover structures such as homes, schools, offices,
factories, and vehicles [1].

1.1 Internet of Things

Smart cities are enabled by data collectors and processors linked by network communication tech-
nology. The data collection is carried out by things and smart objects – singular and compound
devices with intelligent interfaces that interact with the physical world [2]. We refer to the collab-
orative network of things and smart objects as the Internet of Things (IoT). We henceforth refer
to the collection of things and smart objects as IoT devices.

Key performance features of IoT devices are:

• Awareness – to sense, interpret or react to events in the physical world;

• Representation – the use of programming models to process environmental data;

• Interaction – the ability to process control (inputs) or feedback (outputs) from users.

Physically, IoT devices are resource constrained, having only a limited amount of computer pro-
cessing capabilities and internal storage. As a result, they rely on communication technology to
quickly forward collected data for processing and long-term storage by external servers [2, 3].

Up until recently, IoT devices have relied on centralized Cloud mega data centres for processing
and storage support. As IoT applications become more commonplace, the number of IoT requests
being sent out to the Cloud is increasing year-over-year [4]. The rate of growth of IoT traffic
towards Cloud causes internet congestion near the Cloud, and processing delays from the Cloud.
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Furthermore, Cloud data centres are few in number, located physically worldwide. Hence, the
distance alone may cause significant delays in IoT request transmission.

Certain IoT applications are latency-sensitive, i.e., require near-immediate data transmission,
processing, and response. A small delay in milliseconds from external processors can result in
noticeable decrease in application efficiency. Examples of latency-sensitive IoT applications are
heart monitors and vehicular traffic status sharing. In such cases, we look towards processing IoT
requests much closer to IoT devices, as to minimize computational latency.

1.2 Fog-computing

In response to high latency, the fog-computing paradigm has been proposed as highly virtualized
”micro data centres” or ”mini-Clouds” on the network edge [5, 6], i.e., in proximity to IoT devices
for quick responses. Fog nodes are geographically distributed computing devices that may act as an
intermediary between IoT and Cloud. That is, a fog node may process an IoT request in real-time,
and forward the IoT data to the Cloud for long-term storage. Key characteristics of fog are as
follows:

• Real-time – being geographically distributed on the network edge ensures real-time or low-
latency communication with IoT.

• Micro data centres – typically have more processing power and storage than IoT devices,
and less than Cloud.

• Heterogeneous and numerous – the fog layer is a large network of fog nodes with various
computing, storage, access, and mobility capabilities.

• Predominantly wireless accessibility – enables wide-spread communication of IoT-fog,
fog-Cloud or fog-fog communication.

• High virtualization – allows for constant and seamless service to mobile applications moving
between fog node service regions.

• Decentralized ownership – fog nodes need not be owned by any one authority.

• Interoperable – heterogeneous fog nodes can collaborate to provide services that require
information from different domains and providers.

In short, any device with communication, computing and storage capabilities can be a fog node [7].
Unlike Cloud data centres, fog devices are decentralized and geographically distributed, allow-

ing for IoT connectivity with minimal processing latency. Fog nodes are far more numerous and
predominantly wireless. However, they each have much fewer available computing and storage
resources than Cloud data centres. A comparison of fog and Cloud layers is shown in Table 1.1.

It is important to note that fog nodes are not a replacement for Cloud data centres, but rather
are meant to complement them. Indeed, IoT-fog-Cloud cooperation is essential in the realization
of smart city technologies.
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Feature Fog Cloud

Latency Low High
Distribution Geographically distributed Centralized
Distance from network edge Close Far
Number of nodes Millions Thousands
Resource quantity Small to medium Large
Access Predominantly wireless Wired or wireless
Heterogeneity High Low
Interaction with IoT Real-time Batch processing
Owned and managed Various service providers Few large organizations

Table 1.1: Comparison between the fog-computing and Cloud-computing layers

1.3 State of the Art - Fog-Computing

The development of our research is inspired by the strengths of previous contributions, and mo-
tivated by their limitations [8]. In our literature review, we focus on contributions related to fog
architecture, resource management, security and integrity.

1.3.1 Role of Fog in Smart Cities

The prevalence of IoT aims to connect multiple industries towards the actualization and future
of smart cities. The typical data collection strategy for resource-constrained IoT devices is to
immediately forward any collected data to external sources. Sending this data directly to the
Cloud may result in unnecessary network congestion and Cloud storage wastage from unfiltered
IoT data. Instead, intermediary fog nodes can pre-process IoT data, forward only the relevant
pieces to the Cloud, and return an associated response to IoT. Overall, this is a more efficient data
sharing and data processing system [1].

IoT devices are often depicted as having minimal resources, whereas Cloud is often assumed
to be able to handle any processing and storage task without restriction. That is, IoT devices
and Cloud mega data centres represent the two extremes of the resource quantity spectrum. Fog
resource capabilities can be ‘anything in-between’. Fog nodes could be small user-provided devices
such as smart phones, internet routers and home networks [9], or larger servers capable of supporting
neighourhood-, community-, or city-wide IoT application [10].

In large smart city applications, the fog layer can be interpreted as multi-layered, separating
fog virtualization into layers based on fog resource quantity [10] or by proximity to IoT [11, 12].
Similarly, the fog layer can also be represented as a group of fog clusters based on proximity to
each other [13]. The representation of fog is highly dependent on the requirements of the smart
city application.

The general fog architecture uses a single fog layer of heterogeneous nodes that stretches from
IoT to Cloud [7, 14, 15]. This is the most flexible interpretation of the fog layer, as it allows for
fog nodes of various resource capacities and distances from IoT to collaborate to service IoT. This
flexible architecture can be partitioned into any multi-tier or clustered architecture as needed. The
focus of our research on the fog-computing layer is meant to be as flexible and general as possible.
Indeed, a flexible geographically distributed single layer architecture makes full use of the strengths
of fog-computing.
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1.3.2 Resource management

Resource management in fog-computing refers monitoring available fog resources and assigning IoT
requests to fog nodes accordingly. Fog resource management can be divided into three categories:
1) resource provisioning and allocation, 2) fog frameworks, and 3) data migration.

Resource provisioning and allocation

Resource provisioning refers to reserving resources within a fog node for future IoT processing,
while resource allocation refers to the assignment of IoT requests to fog nodes. Clearly, these two
processes work hand-in-hand. Resource provisioning schemes either exhibit prior provisioning –
whereby resources are reserved based on projected IoT traffic [5], or on-demand provisioning –
whereby resources are reserved as the IoT requests come in [16, 17]. Resource allocation schemes
either exhibit prompt allocation – whereby IoT requests are allocated immediately to reserved fog
resources [5, 17], or small batch allocation – whereby IoT requests are collected into small batches
and processed together [16].

Fog orchestration

Fog orchestration refers to the automated configuration, management and coordination of fog re-
sources. A fog framework facilitates fog resource orchestration policy. Clearly, the particular
resource provisioning and allocation scheme of a fog application may be implemented by a fog
framework. Certain IoT applications subdivide each request into multiple tasks that require a dif-
ferent service [18]. In this case, a fog framework would manage the appropriate distribution or
IoT tasks among fog nodes. Fog frameworks may use a separate controller to monitor and control
resource management [19, 20], or allow fog nodes to communication with each other via APIs [21].
Using a separate controller requires additional hardware in the fog layer, and inherently forms a
clustered fog architecture, while an API-based framework requires additional software within fog
nodes and communication latency between fog nodes.

Data migration

Data migration in fog refers to the transfer of IoT data between fog nodes. If an IoT device is
connected to a specific fog node, then a migration may take place in either of two cases:

(a) Mobile IoT devices or mobile fog nodes move out of range of each other [22];

(b) A fog node malfunctions, becomes overloaded, or is corrupted, rendering it unusable [23].

There are numerous options for the implementation of resource management within the IoT-fog
environment, each with its own additional hardware and software requirements. It is important
to note that no particular resource management scheme is superior in every way. That is, every
implementation has its strengths and weaknesses. Hence, the resource management of fog nodes
should depend on the needs of fog nodes and IoT devices for a particular IoT-fog application.

1.3.3 Security and integrity

Security is of utmost importance in any communication system. The most important elements in
IoT-fog security are authorization and authentication [24].
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Authorization refers to the control and verification of data access, either others accessing your
data or you accessing others’ data. Authorization often takes the form of an access control policy
– a separate table that defines everyone’s access permissions. Authentication refers to verifying the
identity of an individual. Authorization and authentication often work in tandem – we simulta-
neously authenticate someone’s identity, and authorize the user for data access [25]. In a secure
IoT-fog environment, authentication should be verified in both directions. That is, IoT devices and
fog nodes should mutually authenticate each other prior to data sharing [26].

Once authorization and authentication have been established, IoT devices and fog nodes should
share data via encrypted communication. In most contributions, standard encryption schemes such
as RSA or elliptic curve cryptography (ECC) are used [26]. ECC is known to be more secure
than RSA for equivalent key sizes [27]. However, the associated parameters of ECC need to be
established by a trusted third-party.

Blockchain technology has been a focus of research in recent years in providing security in
computer systems, include IoT [28]. A blockchain is a decentralized ledgers that exhibits block
consensus, immutability, auditability and pseudo-anonimity across all blockchain nodes. Hence,
they are viewed as a strong candidate for providing security in trustless environments [29]. Several
contributions have proposed to use blockchain as the trusted third-party to facilitate and stream-
line mutual authentication and access control [30, 31]. Since fog and blockchain nodes are both
distributed and decentralized, it is reasonable to combine them as blockchain-enabled fog nodes to
further reduce communication latency [32].

Authentication and authorization work on the premise that a verified user will act fairly in all
IoT-fog communications, data processing and data sharing. In a trustless IoT-fog environment,
this cannot be guaranteed without additional integrity verification mechanisms. Data auditing
techniques have been proposed to verify that fog nodes store correct, uncorrupted data from IoT [33,
34]. However, these techniques rely on fully cooperative fog nodes to adjust faulty data [34]. If a
fog node is acting maliciously, then there is no guarantee of honest cooperation.

Up until now, no contributions have been made to verify the service integrity of fog nodes. That
is, to ensure that fog nodes are processing IoT requests correctly, and responding to IoT with the
correct data.

1.3.4 Fog design & dimensioning

Network design & dimensioning refers to the location (design) and resource quantities (dimension-
ing) of network nodes. Prior to our work, there existed only one contribution in the domain of
fog design & dimensioning [35]. This contribution focused on the scalable design & dimensioning
of fog nodes, road-side units (RSUs), and gateways to support autonomous vehicles. The optimal
design & dimensioning configuration was based on a discrete set of vehicular traffic, where resource
dimensioning was selected from a discrete pre-defined set of configurations. In reality, these sets
are not likely known. Furthermore, the application is specific to Internet of Vehicles (IoV), and
requires more overhead than a general fog infrastructure.

1.4 Motivation

Overall, current contributions in fog-computing study the interaction of IoT, Cloud and fog assum-
ing the existence of a set fog infrastructure. There previously exists only one study on design &
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dimensioning of a fog infrastructure, that is specific to IoV applications. There exists a need for a
fog design & dimensioning scheme for a generalized fog infrastructure.

We observed the following limitations of the reviewed literature:

• Different contributions use a different IoT-fog-Cloud architecture. Specifying a multi-tier
or clustered architecture neglects the inherent potential of using the entire distributed fog
hierarchy (IoT-fog-Cloud continuum).

• Different contributions have different requirements for the additional hardware and software
installed on fog nodes for optimal operations. That is, there is a lack of generality and
heterogeneity in proposed fog systems.

• Current contributions do not consider the effects of overloaded or malfunctioning fog nodes.
That is, resource management schemes are proposed under the assumption that fog nodes
will always operate efficiently under a consistent and manageable IoT traffic load.

• Most resource management schemes operate on a ‘one IoT request per fog node’ system.
That is, they do not consider that an IoT request may be partitioned into multiple tasks that
require service from multiple fog nodes, which is the case for a number of IoT services.

• Current contributions assume all fog nodes are trustworthy and failure-resistant, and do not
consider the possibility of malicious or unreliable fog nodes.

Every current application of fog requires a different type of fog infrastructure. We recognize the
need for a design & dimensioning scheme that gives a generalized, and heterogeneous fog infras-
tructure. The largest strength and use case of fog-computing comes from its flexibility to fit any
required IoT use case. Based on the summarized limitations, we consider a design & dimensioning
scheme that constructs a heterogeneous single-layer fog infrastructure that considers traffic changes
and node failures in a dynamic fog environment over multi-task IoT requests. The design & dimen-
sioning scheme should be flexible and modifiable based on the particular requirements of the smart
city application and resource management policy. It should also be scalable – to be tractable for
very large networks of heterogeneous fog nodes and high IoT traffic.

Regarding fog integrity, current contributions in fog-computing rely on the assumption that fog
nodes store and process IoT data correctly. Even if data is found to be corrupted, it is assumed
to be either accidental or due to outside tampering. However, it is reasonable to consider that
some fog nodes may act intentionally dishonestly [33]. There exists a need to enforce fog integrity
– the honest and correct processing of fog nodes. Since IoT devices rely on fog nodes for service
processing, it is imperative that fog nodes are kept accountable in providing fair and trusted service.

1.5 Research Objectives

The core research objective revolves around the scalable design & dimensioning of fog infrastructures
where none exists, or the extensibility of current infrastructures in light of increasing IoT traffic. In
addition, we develop a general blockchain-based system for enforcing security and integrity among
fog nodes.

The proposed fog infrastructure will therefore provide low-latency responses, data security, and
service integrity of IoT requests for a reliable, desirable, and widely available computing infrastruc-
ture.
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1.5.1 Scalable Fog Design & Dimensioning for Dynamic Fog Infrastruc-
ture

In real-life IoT-fog applications, the number of incoming IoT requests is variable and sometimes
volatile due to IoT mobility and infrequent periods of peak IoT traffic [36]. Potential failures in fog
node hardware or IoT transmission may further cause stress on the fog infrastructure, and affect
its reliability. Hence, we account for fluctuations in IoT traffic and and fog node failures in our
proposed scheme.

Our fog design & dimensioning scheme accounts for fluctuations in a dynamic IoT-fog envi-
ronment in three phases. (1) We define a fog design & dimensioning scheme for a general static
fog infrastructure in a ‘stable’ IoT-fog environment. (2) We extend the static fog infrastructure
to include on-demand fog nodes that activate in light of high IoT traffic and/or fog node failures.
This design & dimensioning scheme results in a robust fog infrastructure. (3) We further extend
the robust infrastucture to include mobile fog-enable unmanned aerial vehicles (UAVs) for flexible
IoT service.

An effective fog infrastructure is able to support all incoming IoT requests with low-latency,
regardless of the IoT traffic conditions. In certain situations, it is possible for IoT traffic to be
‘bursty’ ,i.e., to display infrequent periods of abnormally large number of IoT requests. Furthermore,
it is possible for an IoT request to be composed of multiple tasks that can be serviced by multiple
fog nodes [18]. Our research considers the worst-case scenario of IoT traffic. Therefore, we assume
bursty multi-task IoT traffic.

1.5.2 Blockchain-based Security & Integrity Enforcement

In order to ensure fair service in the IoT-fog environment, it is crucial to hold fog nodes accountable if
they do not process IoT requests as intended. That is, we enforce fog integrity through a blockchain-
based service auditing system. Our system provides penalties for malicious fog nodes, and incentives
for honest fog nodes. Furthermore, we streamline the mutual authentication and service payment
processes within the blockchain-based system for a secure and fair IoT-fog environment.

1.6 Contributions

We seek to formulate a scalable design & dimensioning scheme for a general fog infrastructure in
a volatile and trustless IoT-fog environment. Our first contribution focuses on the construction of
a scalable and static fog infrastructure. That is, fog nodes are set in a fixed location, and cannot
fail. The IoT environment is modeled as a set of IoT devices with requests of variable size, task
partitioning, and arrival rate. Furthermore, we model the network congestion latency caused by
high IoT traffic around each fog node, encouraging assignment of IoT requests to multiple fog nodes
as opposed to just one. These considerations ensure the resulting fog infrastructure responds well
to the worst-case IoT traffic and congestion patterns.

The static fog design & dimensioning scheme is developed based on a large percentile of prob-
abilistic IoT data, and assumes fog nodes cannot fail. In the case the IoT data do surpass the
given IoT threshold, or if any fog node fails while the network is near capacity, then the fog net-
work will overload and cause large delays in IoT service. We propos to use on-demand fog nodes
that will activate when the system is overloading. This robust design & dimensioning scheme
focuses on the placement and resource dimensioning of the on-demand fog nodes, and defines a

13



re-routing configuration for each static fog nodes towards an on-demand fog node. Both design &
dimensioning models for static and robust fog infrastructure are solved with a mixed-integer linear
program (MILP). They are further decomposed for scalability and solved with a column generation
technique.

Assuming a large percentile of possible IoT traffic can result in a large fog infrastructure of
static and dynamic fog nodes, many of which are unused a majority of the time. Indeed, depending
on the distribution of IoT traffic, the upper end of the traffic distribution may be unlikely, but
rather a worst-case scenario that should still be considered. Our third contribution considers the
use of fog-enabled UAVs (fog-UAVs) to service high traffic or remote areas. An infrastructure of
fog-UAVs would allow the service of the abnormally high IoT traffic that would normally overload
the static and dynamic fog infrastructure. The design & dimensioning of fog-UAVs is formulated
as a probabilistic location set-covering problem [37] and solved with anMILP under a relaxation
approach and a Benders decomposition approach [38].

Once a fog infrastructure has been established, we look towards fortifying the security and in-
tegrity of all IoT-fog communication. We propose a blockchain-based system that enforces integrity
of fog nodes through service auditing. The service audits are anonymously carried out by oracles,
who use a zero-knowledge ring signature to prove their identity to the blockchain without revealing
it to neither blockchain nor fog nodes. The system also enables secure mutual authentication and
streamlined service payment from IoT to fog.

1.7 Key Assumptions

Several assumptions are made to simplify the formulated models towards the objectives of this
thesis. The following key assumptions remain consistent throughout each chapter.

• Though IoT traffic can be volatile in the short-term, long-term traffic patterns are assumed
to follow a Poisson distribution when influenced by Human Dynamics [36]. That is, a right-
skewed distribution where IoT traffic may exhibit infrequent ‘bursty’ traffic spikes.

• Communication between IoT and fog does not consider latency produced by distance or the
environment. When fog nodes are within a few hops from IoT, latency from distance is
negligible. Hence, latency estimates focus on network congestion. However, in the case of
direct communication, factors of environmental interference are not considered.

We recognize these assumptions must be validated in future work to verify the viability of the
proposed fog implementation. Indeed, a future small-scale Proof of Concept (PoC) of a fog infras-
tructure will enable the study of IoT traffic and communication reliability in different environments.
However, the current fog design & dimensioning scheme proposed in this thesis is nonetheless valu-
able as the first study in constructing a scalable, reliable, and dynamic fog infrastructure. Such
work creates solid foundation for the development of future work in fog design & dimensioning,
including the proposed PoC.

1.8 Organization

This is an article-based doctoral thesis. Each of the next five chapters presents an article that
has been published, or submitted for publication. Chapter 2 present a survey on fog design, re-
source management and system evaluation tools [8]. Chapter 3 presents a scalable fog design &
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dimensioning for a static fog infrastructure [39]. Chapter 4 presents a robust extension to the fog
infrastructure [40]. Chapther 5 presents a fog-enabled UAV set-covering for ‘bursty’ IoT traffic [41].
Chapter 6 presents a blockchain-based system for enforcing fog integrity [42]. Finally, Chapter 7
concludes the thesis, and discusses previous and future work.

1.9 List of Publications

1. Martinez, I., Hafid, A. S., & Jarray, A. (2020). Design, resource management, and evaluation
of fog computing systems: a survey. IEEE Internet of Things Journal, 8(4), 2494-2516.

2. Martinez, I., Jarray, A., & Hafid, A. S. (2020). Scalable design and dimensioning of fog-
computing infrastructure to support latency-sensitive IoT applications. IEEE Internet of
Things Journal, 7(6), 5504-5520.

3. Martinez, I., Hafid, A. S., & Gendreau, M. (2022). Robust and Fault-Tolerant Fog Design and
Dimensioning for Reliable Operation. IEEE Internet of Things Journal, 9(19), 18280-18292.

4. Martinez, I., Hafid, A. S., & Gendreau, M. (2024). Design and Dimensioning of a UAV Set
Covering in High-Traffic IoT-Fog Environments. IEEE Internet of Things Journal, Submit-
ted.

5. Martinez, I., Hafid, A. S., & Gendreau, M. (2024). A Blockchain-Based Audit Mechanism for
Trust and Integrity in IoT-Fog Environments. IEEE Transactions on Industrial Informatics,
Submitted.

15



Chapter 2

Design, resource management, and
evaluation of fog computing
systems: a survey

Abstract A steady increase in Internet of Things (IoT) applications needing large-scale com-
putation and long-term storage has lead to an over-reliance on Cloud computing. The resulting
network congestion in Cloud, coupled with the distance of Cloud data centres from IoT, contribute
to unreliable end-to-end response delay. Fog computing has been introduced as an alternative to
cloud, providing low-latency service by bringing processing and storage resources to the network
edge. In this survey, we sequentially present the phases required in the implementation and real-
ization of practical fog computing systems: (1) design & dimensioning of a fog infrastructure, (2)
fog resource provisioning for IoT application use and IoT resource allocation to fog, (3) installation
of fog frameworks for fog resource management, and (4) evaluation of fog infrastructure through
simulation & emulation. Our focus is determining the implementation aspects required to build a
practical large scale fog computing infrastructure to support the general IoT landscape.

This chapter reviews the current state-of-the-art of fog-computing, which motivates the remain-
der of the thesis. This chapter has been published in IEEE Internet of Things [8].
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Design, Resource Management and Evaluation of
Fog Computing Systems: A Survey

Ismael Martinez, Abdelhakim Senhaji Hafid, and Abdallah Jarray

Abstract—A steady increase in Internet of Things (IoT) appli-
cations needing large-scale computation and long-term storage
has lead to an over-reliance on Cloud computing. The resulting
network congestion in Cloud, coupled with the distance of
Cloud data centres from IoT, contribute to unreliable end-
to-end response delay. Fog computing has been introduced
as an alternative to cloud, providing low-latency service by
bringing processing and storage resources to the network edge.
In this survey, we sequentially present the phases required in
the implementation and realization of practical fog computing
systems: (1) design & dimensioning of a fog infrastructure,
(2) fog resource provisioning for IoT application use and IoT
resource allocation to fog, (3) installation of fog frameworks for
fog resource management, and (4) evaluation of fog infrastructure
through simulation & emulation. Our focus is determining
the implementation aspects required to build a practical large
scale fog computing infrastructure to support the general IoT
landscape.

Index terms— Fog computing, fog design & dimension-
ing, fog resource management, fog infrastructure evaluation,
simulation, Internet of Things (IoT), survey

I. INTRODUCTION

The benefits and varied use cases of Internet of Things
(IoT) technology have led to an increase in IoT adoption,
number of devices and applications, and volume of data
uploaded to Cloud systems. International Data Corporation
(IDC) predicts the number of connected IoT devices will
exceed 41 billion by the year 2025, generating more than
79 zettabytes of data [1]. Current Cloud systems are not
large enough to process and store this increase in IoT data
traffic [2], an issue that affects all IoT systems. Congested
networks towards a distant Cloud can result in relatively large
delay for latency sensitive IoT applications such as health
care [3], multimedia [4], and vehicular/drone applications [5,
6]. Furthermore, Cloud centralization can result in reduced
privacy of uploaded IoT data [7].

Fog is a layer of geo-distributed servers with computing,
memory, and network capabilities that serve as an intermediary
between IoT and Cloud layers. Compared to Cloud, fog servers
sit closer to IoT devices, providing reduced response time
latency able to service most latency sensitive IoT applica-
tions [8]. Although fog servers are much smaller in terms
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Figure 1: High-level necessary features and components for a
complete fog system. Larger nodes have more resources.

of processing and storage capabilities than Cloud [9], the
larger number and geo-distribution of fog servers allow fog
to alleviate Cloud network congestion by servicing a large
load of IoT applications [8]. Indeed, an IoT application can
be fully serviced by local fog servers without propagation of
IoT data to fog or Cloud further into the network.

Despite a substantial amount of research proposals in fog
computing, there are very few documented implementations
of fog in large-scale environments [10]. A design and im-
plementation of a fog system requires several components
of the fog layer, as well as collaboration mechanisms with
IoT and Cloud. A detailed overview of these components and
collaboration mechanism are presented in [11, 12, 13], and are
summarized in Fig. 1.

We identify three broad stages in implementing and devel-
oping a fog system. First, in the absence of any fog system, a
fog infrastructure is built through consideration of IoT service
needs. Since large IoT traffic volume may cause increased
network congestion towards Cloud, building a localized fog
infrastructure close to high traffic areas is beneficial to internet
service providers and Cloud service providers alike.

Second, the approach the fog infrastructure interacts with
IoT and manages fog resources is defined. Fog resource
management aims to select fog nodes to best process IoT
data, and takes the form of algorithms or protocols imple-
mented within individual fog nodes or a fog layer controller.
In several cases, resource management relies on additional
hardware/software structures (e.g. fog orchestration controllers
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or APIs) implemented within the fog infrastructure for ap-
propriate fog node selection. Therefore, we consider the re-
source management algorithms/protocols, and the additional
hardware/software structures separately. A fog service provider
(FSP) is the organization that manages the implemented fog
infrastructure, including IoT-fog interactions. Several proposed
resource management approaches minimize service cost and
latency to IoT users, which incentivizes IoT use of fog. Other
approaches increase energy efficiency to reduce FSP operation
costs. Therefore, efficient resource management for improved
IoT service is an important concern to FSPs.

Third, evaluation of the constructed fog infrastructure with
defined resource management protocols are evaluated to assess
service impact on different IoT applications. Evaluation tools
can be useful for IoT application developers to decide whether
application computation is best done locally, by fog, or by
Cloud. Tools for evaluation fog infrastructure use discrete-
event simulation or emulation, and allow for configurable
network conditions and IoT traffic patterns. To implement a
fog computing system that can successfully support an IoT
landscape, these three broad stages are focused into four key
phases which will be explored in subsequent sections.

Phase 1: Estimate the volume of IoT traffic to be supported
by fog, then design & dimension a fog infrastructure either
from scratch, or by extending existing infrastructure.

Phase 2: Determine the method of fog resource provision-
ing for IoT use, and of IoT resource allocation to fog.

Phase 3: If necessary for resource provisioning, allocation
and data migration, install a fog framework — additional
hardware and/or software for fog resource management.

Phase 4: Use fog evaluation tools to measure the efficiency
of the designed fog infrastructure and selected resource man-
agement approach in servicing IoT.

In this survey, we present a critical evaluation of solutions
that contribute to the practical end-to-end implementation of
fog computing. Our main contributions are as follows:

• Present and discuss existing models for fog design &
dimensioning.

• Present a structured classification of resource manage-
ment schemes based on initialization time and effec-
tiveness for dynamic and static IoT applications. We
also summarize optimization objectives and modeling
techniques used.

• Review current framework solutions for fog resource
management, and data migration, including an analysis
of hardware and software overhead that is generated.

• Identify limitations of current simulation/emulation tools
for the evaluation of fog infrastructures.

• Present open issues and research opportunities in practical
fog implementation and evaluation.

Our discovery and selection of presented publications is
meant to give a broad understanding of various proposed
implementations of fog. We did select publications that cover
the different facets of fog implementation. Indeed, publications
are selected if they cover the following topics: (1) fog design;
(2) fog resource management/orchestration; (3) fog evaluation,
simulation or emulation; (4) fog applications; and (5) fog
architecture. They are then categorized in the context of four

phases. In this manner, we present a wide range of perspectives
and approaches to fog implementation.

The remainder of this paper is organized as follows. Section
II provides an overview of fog including motivation, architec-
tures, and large-scale applications. Section III summarizes the
limitations of current surveys in fog computing. Section IV
reviews and compares current research in design & dimen-
sioning of fog infrastructures. Section V categorizes resource
provisioning & allocation schemes based on initialization
time and effectiveness for dynamic or static IoT applications.
Section VI surveys current proposals of fog frameworks for
resource management and data migration across all fog nodes,
and associated overhead. Section VII presents different simu-
lation/emulation tools for the evaluation of fog infrastructures.
In Section VIII, we discuss our findings, delineate the lessons
learned and feature research challenges and opportunities for
fog systems. Finally, Section IX concludes this paper.

II. OVERVIEW OF FOG COMPUTING

We present an overview of the differences and benefits of
fog to IoT when compared to Cloud and other edge technolo-
gies. Within the fog computing paradigm, we present several
fog architectures that have been proposed to provide different
ranges of IoT serviceability and inter-fog communication.
Benefits and advantages unique to fog are particularly impor-
tant to certain industries; hence, several industry applications
of fog have been proposed for both local and large-scale
implementations. Localization and geo-distribution of fog can
provide increased privacy, but pose other security issues.

A. Definition of fog

Fog is a highly virtualized network comprised of nodes
that provide processing and storage services to end devices
(IoT) [8]. Fog nodes at the network edge, i.e. close to IoT
devices, can provide computational support to IoT applica-
tions with minimal latency. Though typically at the network
edge, fog nodes may appear hierarchically anywhere between
the IoT layer and the distant Cloud [14]. This architectural
setup allows many IoT requests to be satisfied by fog, and
reduces the data volume reaching Cloud servers [15]. Since
Cloud is still required by IoT applications that require high
computation and long-term storage [16], the focus of fog is to
support low resource and latency-sensitive IoT applications.
According to [8], the main characteristics that define fog
as a non-trivial extension of Cloud are: a) low latency and
location awareness, b) wide-spread geographical distribution,
c) support for mobility, d) very large number of nodes, e)
predominant role of wireless access, f) heterogeneity, g) real-
time interactions, h) interoperability and federation, and i)
support for online analytic and interplay with Cloud. As a
result, fog nodes can provide location awareness, activity
awareness, time awareness, and energy awareness of IoT data
processing [17].

Each fog node can be described as a small server or “micro
data centre” [14] with available resources to support local
computation. Although a typical fog node has reduced resource
power compared to Cloud [9], the number of nodes in fog is
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Figure 2: Examples and quantities of network devices per net-
work service layer. IoT sensors may send data to a primary IoT
device before data is transmitted and processed by fog/Cloud.

much larger [8]. The types and quantities of devices per system
layer are described in Fig. 2. We summarize the difference
between fog and Cloud in Table I. For the remainder of
this paper, the terms “fog node” and “fog server” are used
interchangeably.

Routing of data through fog often follows a path computing
process [18] in which data is propagated to nodes of increasing
size towards Cloud. Therefore, IoT, fog and Cloud layers
can be expressed in a hierarchical architecture as in Fig. 3.
Physically, fog servers are geo-distributed to be closer to IoT,
providing the network structure in Fig. 4. Since each fog server
has network connectivity, an IoT application may access any
fog node either directly, or through a network access point.

A single physical IoT device may run multiple IoT appli-
cations. An IoT application that requires external computation
or storage submits an IoT request to fog or Cloud. Each
IoT request can be processed by one or more fog servers by
partitioning into multiple tasks. Allowing for a request to be
partitioned over several fog servers can result in parallelized
execution of tasks, and decreased end-to-end response latency.
We define a static IoT application as running on a fixed-
location IoT device with frequent requests; otherwise, it is
a dynamic IoT application.

B. Comparison of fog with other edge technology

Edge computing was introduced to bring storage and pro-
cessing capabilities closer to IoT users for localized and low-
latency computation [19, 20, 21]. Though the greatest benefits
of edge computing occur when edge servers are in close
proximity of data sources, edge computing is defined as being
any computing and network resource between IoT users and
cloud [19, 20]. Therefore, fog is seen as one implementation
of edge computing [19, 20, 21]. Two other well-known imple-
mentations are cloudlet computing and mobile edge computing
(MEC) [21].

A cloudlet is a small cluster of computers, forming a “data
centre in a box” [22], and may be referred to as a micro-
cloud [23] in some literature. Cloudlet computing refers to
any implementation of cloudlets in the vicinity of end users.
Cloudlets provide one-hop, high-bandwidth and low-latency
wireless access to IoT users.

(a) Single fog layer hierarchy (b) Multi-tier fog layer hierarchy

Figure 3: IoT data is often transmitted to fog prior to being
transferred to Cloud, therefore the IoT-fog-Cloud system is
often viewed as a hierarchy. Within the fog layer, many routing
protocols restrict data propagation to larger fog nodes (i.e.
more resources), creating a multi-tier fog hierarchy.

Figure 4: IoT-fog-Cloud physical network architecture. Larger
nodes have more resources. Network links may be wired or
wireless, and may involve intermediate routers/switches.

MEC, also known as mobile cloud computing [24], is a
form of edge computing implemented within the Radio Access
Network, and is therefore specific to mobile devices. MEC
nodes are co-hosted at Radio Network Controllers or base
stations, such as cell towers [25]. As a result, MEC nodes are
always one-hop communication distance from active mobile
users, and provide real-time processing of mobile requests.
However, MEC does not provide edge services beyond direct
network connectivity [25].

Fog nodes may be dedicated devices, but may also be
legacy devices augmented with storage and computation re-
sources [21]. This allows the fog infrastructure to be flexible
since any device may become a fog node. However, fog nodes
may be several hops from IoT users, and may require coopera-
tion between multiple fog nodes for IoT processing. Although
cloudlets and MEC nodes have no intercommunication, they
are dedicated devices with high resource capabilities and direct
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access to edge users. Hence, a cloudlet or MEC node is meant
to process all IoT requests in full without further propagation.
Cloudlets are depicted as being located within hotspot areas,
such as hospitals or educational institutions [26], and MEC
nodes are co-hosted with base stations [25]. Compared to fog
nodes, MEC nodes and cloudlets may provide lower latency
due to higher resource capabilities and one-hop proximity, but
have lower implementation flexibility [21].

Across fog computing, cloudlet computing, and MEC, var-
ious service providers may own and manage a small subset
of available devices. Without standardization of connectivity
software, local IoT users may be limited to using a subset of
nearby edge devices. When considering a large scale imple-
mentation towards Smart City technology, these restrictions
can become a road-block for a fully connected digital ecosys-
tem [27]. It is therefore encouraged for all edge computing
to implement network protocols and software interfaces that
provide unified IoT connectivity.

Our focus for the remainder of the paper will be largely
on fog – i.e. systems where there exists intercommunication
among nodes. We will use cloudlet and MEC when appropri-
ate.

C. Fog Architecture

Many fog architectures in literature use a single layer
stretching from IoT to Cloud layer, allowing any two fog
devices to share data [3, 28, 29, 30]. This is the most general
and flexible representation of the fog layer, with each fog node
varying in distance from the edge and quantity of resources.

Intharawijitr et al. [31] propose a layer of horizontally
placed fog nodes that cannot communicate with sibling nodes;
instead, each fog node is restricted to communicate with only
IoT and Cloud layers. In practice, processing latency can be
reduced by having IoT upload data to the nearest fog node,
and permitting fog nodes to migrate data amongst themselves
if more resources are needed [28, 29].

Some fog architectures are represented as multi-tier hierar-
chies, with data sharing available across different fog layers
but not within the same layer. Fog nodes are divided by
computation power, memory, storage capacity, and proximity
to IoT devices. IoT devices upload data to the first fog layer,
which then uploads to higher layers until a fog node is
found with sufficient resources. This architecture has been
represented with two layers [32, 33] and three layers [34, 35].
iFogSim [36] defines a structure of multiple fog layers based
on distance from Cloud, while [37] represents fog as a tree
of fog nodes rooted by Cloud. Instead of tiers/layers of fog
nodes, [29] and [38] define clusters of fog devices, with intra-
fog and inter-fog communications. Similarly, [39] partitions
fog nodes into clusters and has a hierarchy within partitions
of the nodes.

Tang et al. [33] proposed a hierarchical architecture with
Smart Cities in mind; the first layer sits at the network edge,
the second layer is composed of larger fog nodes covering
neighbourhoods, and the third layer uses largest fog nodes
connected to Cloud to support city services. Arkian et al. [17]
develop crowd-sensing applications supported by IoT and fog

for small scale city services such as parks. Sun and Ansari [40]
propose a hierarchical extension to MEC that connects to fog.
Each cellular base station is connected to the fog infrastructure
to alleviate edge traffic and handle large mobile data streams.

D. Motivation

The large incentive of using fog computing is its ability to
process IoT data with real-time or latency-sensitive require-
ments. Use cases that benefit from fog cover health care,
autonomous vehicles, and multimedia.

1) Health Care: Gill et al. [41] propose to use body
sensors with fog to help diagnose heart disease. It has also
been proposed to use fog with wearables and sensors [3,
28] to provide real-time assisted living services to patients
in hospitals or health care centres.

2) Autonomous Vehicles: Loke et al. [6] proposed an asset
management concept for autonomous drone technology. A
fog server can provide control signals for drone navigation,
given a line-of-sight between a drone and the fog server.
Fog servers can also relay traffic condition information from
smart vehicles [5, 29], creating area-wide, real-time traffic
sharing; this ultimately reduces road accidents. Coupled with
smart traffic lights [42], fog increases the efficiency of route
navigation.

3) Multimedia: Due to the per-instance and real-time pro-
cessing fog can provide, fog has been proposed to deliver
processing to multimedia, such as gaming, video streaming,
and augmented reality [4]. Video surveillance applications can
use fog for facial recognition, diminishing the response time
of appropriate authorities in the event of an incident [37, 43].
Surveillance cameras at the scene of an incident can create
bursty data; a decentralized fog infrastructure can process
different data in different fog nodes, resulting in an overall
quicker emergency response [43].

For IoT applications in health care, smart vehicles and
multimedia, a difference of milliseconds in response time
can lead to a significant impact on event outcome. In these
cases, fog computing can provide overwhelming benefits in
supporting IoT applications at the network edge.

E. Industry Applications

Applications of fog computing systems have been proposed
in several industries to take advantage of the unique traits of
fog. Applications range from local to large-scale implementa-
tions.

1) Internet of Vehicles: Fog and road-side units (RSUs) can
collect traffic information from smart vehicles. Integrating fog
with an Internet of Vehicles (IoV) infrastructure can allow cars
to participate in sharing real-time traffic conditions throughout
the city [5, 29]. Other fog applications of IoV infrastructure
use clusters of slow moving or parked cars as the fog itself [44,
45]. Sookhak et al. [45] propose incentives for participating
such as free parking, free Wi-Fi or free shopping vouchers,
while Hou et al. [44] show how non-smart cars may be
upgraded with hardware and/or software in order to take part.
For fairness and participation motivation, it is proposed that
incentives for participating vehicles correspond to the quantity
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and type of contributed resources [46, 47], and provide privacy
& security to vehicles and users [46].

2) Health Care: Santos et al. [3] argue the use of fog for
e-health monitoring systems by providing a stochastic analysis
of fog server reliability when backed by Cloud. They conclude
that fog-Cloud system failures are small enough (under 0.3%)
that they do not nullify the benefits of fog. Ahmad et al. [48]
consider the use of fog to provide better control of data privacy
& security of smart phone health applications.

Gateways act as intermediaries between sensor networks
and Cloud systems; Rahmani et al. [49] envision the use
of fog-enabled smart e-Health Gateways to support local
computation and storage for body-worn or implanted sensors
in a smart hospital or home. Medical cyber-physical systems
(MCPS) provide seamless connection between healthcare de-
vices and computational resources. Gu et al. [28] introduce a
fog infrastructure to support MCPS.

3) User Provided Fog: More generally, Consumer as a
Provider platforms allow for user devices such as phones
and modems to act as fog devices and are made available
to the public [50, 51]. With a large enough user base, this fog
infrastructure can become very large in scale covering a wide
area such as a city.

4) Smart Cities: The concept of a Smart City is to improve
the life of citizens through integrated monitoring and adaption
of city services [52]. Examples include Smart Grid, Smart
Transportation, and crowd-sensing applications.

Smart Grids are electricity networks updated with smart
meters and shared customer usage information to service
providers. This incoming information determines how much
electricity should be generated and where it should be sent.
Okay and Ozdemir [53] propose the use of fog computing for
scalable real-time electrical usage monitoring and improved
privacy of information sharing.

Smart Transportation applications attach IoT sensors to
public transportation such as buses and subway trains to share
real-time information on transport location and delays [54].
Road-side and fog computing infrastructures can facilitate
optimal route calculations and collision avoidance for smart
cars, including self-driving cars, via real time traffic conditions
over connected vehicles [5, 29]. Smart traffic lights optimize
traffic by flow using vehicular sensors and traffic cameras [55].

Bittencourt et al. [56] propose a fog architecture that pro-
vides real-time IoT application allocation and processing, es-
pecially suited for mobile IoT such as smart phones and smart
cars within a city. Non-invasive and low-cost static sensors can
be set up in densely populated public areas to provide real-
time crowd-sensing services when used alongside fog [17].
Installed in an outdoor park setting, crowd-sensing devices
can passively determine in which areas the most activity is
taking place, resulting in awareness of possible maintenance
or updated amenities. This concept can be extended to other
Smart City use cases such as monitoring air pollution or noise
pollution from mounted sensors on outdoor and indoor public
transportation respectively.

Unmanned Aerial Vehicles (UAVs) can be quite useful
in providing additional computation services to IoT in a
Smart City environment. One approach is to dispatch UAVs

over environments of large IoT traffic to provide direct IoT
support [57, 58]. Since these UAVs exhibit cloudlet and MEC
functionality, they are designed to process the full amount of
IoT resource requirements without propagation, which may
create large resource and energy demands on UAVs. A more
robust fog-enabled approach is to dispatch a UAV over low
service areas and connect to the surrounding IoT and fog
infrastructure [59]. Low service areas may be a result of
abnormally high IoT traffic, a failed fog node, or areas that
are challenging for human or manned vehicle access.

More city focused use cases include Smart Agriculture,
Smart Health & Well-being, Smart Waste Management, Smart
Water Management, Smart Greenhouse Gas Control, Smart
Retail Automation [60], Smart Pipeline Monitoring [33],
Noise Pollution Mapping, Urban Drainage Networks [10],
augmented reality [15], City Structure Health Monitoring,
Environmental Monitoring, and Public Safety & Security [55].
Together, they become components of a sustainable Smart City
supported by fog for real-time information queries [55, 60].

F. Privacy & Security

Fog provides computation and storage resources over
servers that are geographically distributed, providing a means
to isolate IoT data computation and/or storage to localized fog
servers. This layout allows sensitive IoT data, such as health
care, to never leave the vicinity, keeping the data from being
collected and used by unwanted parties such as tech giants [7].

The distribution of fog nodes and servicing of heteroge-
neous IoT can lead to security issues between nodes. Dzousa
et al. [61] propose a policy-based management framework to
support secure communication, collaboration, and interoper-
ability of requested resources in fog. Liu et al. [62] use hash
puzzles distributed to nearby vehicles to eliminate possible
denial-of-service attacks to smart traffic light systems with fog
capabilities.

Network security and congestion can pose a problem to
fog in providing low-latency services. The CloudWatcher
framework [63] uses OpenFlow [64] to monitor the network
for intrusion detection and other security risks.

The majority of research into privacy-preserving com-
munication and data security uses homomorphic encryption
from IoT, or attribute-based encryption between an IoT-fog
pair [65]. Since the focus of this survey is in the implemen-
tation of fog regardless of IoT behaviour, we do not further
discuss privacy & security issues in fog beyond an awareness
of their existence.

III. EXISTING SURVEYS ON FOG COMPUTING

Hu et al. [66] explore the characteristics and benefits of fog
when used with IoT and Cloud. They present a comparison
between Cloud computing and fog computing paradigms.
They also present an in-depth description of computation,
storage, and communication technologies used in fog. Dolui et
al. [21] discuss the concepts, benefits and technologies of edge
computing. They provide a detailed comparison of the three
main paradigms of edge computing: fog computing, cloudlet
computing, and mobile edge computing (MEC).
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Table I: Differences between fog and Cloud layers.

Feature Fog Cloud

Latency Low High

Distribution Geographically
distributed

Centralized

Distance to
network edge

Close Far

Number of
nodes

Millions Thousands

Resource size Small Large

Access Predominantly
wireless

Wired and
wireless

Heterogeneity High Low

Interaction
with IoT

Real-time Batch processing

Owned &
Managed

Various service
providers

Few large
organizations

Mukherjee et al. [67] study advancements and benefits
derived from integrating fog into current technologies, such
as virtualized fog data centres, fog radio access networks,
and software-defined network (SDN) enabled fog architec-
tures. Resource allocation models and techniques are discussed
alongside mathematical models of fog components such as
latency, energy consumption, and resource sharing.

Mouradian et al. [68] present a comprehensive review of
major contributions in fog covering six criteria of heterogene-
ity, QoS management, scalability, mobility, federation, and
interoperability. Ghobaei-Arani et al. [69] provide a systematic
and comprehensive literature review of resource management
issues and solutions in fog computing. They classify mech-
anisms and techniques into application placement, resource
scheduling, task offloading, load balancing, resource alloca-
tion, and resource provisioning. Brogi et al. [70] present an
exhaustive overview of resource allocation solutions within
fog. Surveyed contributions are further classified based on an
algorithmic perspective which looks at solution methodology,
and a modeling perspective which looks at constraints and
optimization metrics. Neither [68, 69, 70] consider the time
overhead of resource provisioning & allocation prior to IoT
processing. Indeed, though the assigned fog servers to an
IoT application may provide optimal latency, the assignment
process may be too slow for time-sensitive IoT applications.

Naha et al. [71] review the publication trends of fog com-
puting and Cloud computing alike, and present a taxonomy
of fog research publications by requirements of infrastructure,
platform and application. They provide an overview of other
technological architectures analogous to fog such as edge
computing and dew computing. Mahmud et al. [11] identify
key challenges and properties of fog computing, and use
them to provide a taxonomy of aspects in fog computing
such as fog node configuration, nodal collaboration, service
level objectives, applicable networking system and security
concerns. Ahmed et al. [12] select and review 30 actual or
proposed fog applications. The selected contributions have
little overlap, and cover a broad range of industries, uses
and communication methodologies. Selected reference appli-

cations are used to study reasons for using fog, required
fog hardware platforms, assumed data distribution methods
among fog, leveraged fog service models, privacy & security
requirements, and application workload characteristics on fog.
Yi et al. [72] describe the issues potentially faced when
designing and implementing a fog system, such as in IoT
communication interface, computation offloading, accounting,
and resource management. Yi et al. [65] describe the privacy &
security issues that arise from IoT-fog communication. Geo-
distributed and edge location features of fog can expose an
IoT device’s location to a small radius around the connected
fog node, in addition to possible exposure of application data
and usage frequency to fog. From the IoT perspective, the
owner of a fog node is not always evident, resulting in trust
and security issues when connecting to an arbitrary and close
fog server.

Markus and Kertesz [73] provide a taxonomy of simulation
tools and environments for fog and edge computing. They pro-
pose a taxonomy of available simulators modelling fog, edge,
Cloud and IoT networks to aid researchers in distinguishing
the right tool for different research needs.

Across these surveys, open issues and research challenges
in fog computing are discussed [11, 12, 66, 67, 71, 72], appli-
cations of fog computing to IoT use cases are summarized [12,
66, 67, 68, 71], and gaps in current research towards future
work are identified [66, 71, 72]. Some survey review individual
components of the fog computing system such as resource
provisioning & allocation and fog frameworks [68, 69, 70],
security & privacy [11], and fog simulation software [73]. All
discussed open issues address algorithmic enhancements to re-
source management techniques of existing fog infrastructures.
Additional hardware may also mitigate these issues at the
cost of generated overhead. However, changes and additions
to fog design are not covered. Our survey, on the other
hand, provides a holistic view of the applicability, challenges,
overhead, and limitations of proposed fog systems, irrespective
of fog technology used.

To conclude, we summarize the limitations of existing
surveys as follows: (1) none covers the four phases to realize
fog systems; (2) none covers design & dimensioning of fog
systems; (3) none analyzes the generated overhead of frame-
work implementations; (4) none covers the multiple migration
scenarios between fog servers; (5) none considers resource
provisioning allocation time overhead prior to IoT request
processing [68, 69, 70]; and (6) none considers changes to
fog design to mitigate open issues.

In this paper, we intend to detail the full fog implementation
process, beginning with an IoT environment without any avail-
able fog system. We review and compare the current contribu-
tions for designing & dimensioning a fog infrastructure. We
identify efficiency, assumptions, shortcoming, and generated
overhead of resource provisioning & allocation schemes, and
fog frameworks. We review the features and efficiency of
simulation/emulation tools for the evaluation of a designed fog
infrastructure, implemented resource provisioning & allocation
mechanism, and conceptualized fog framework. Finally, we
identify the limitations and open issues of all components of
fog implementation.
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IV. FOG DESIGN & DIMENSIONING

For users and organizations wishing to implement their own
fog infrastructure to support local edge devices, Mahmud et
al. [11] outline the ground work for what components and
mechanisms are necessary in fog (see Fig. 1). This does not
however give insight into the location and quantity of installed
resources of each fog node, known as design and dimensioning
respectively.

Design of edge networks to provide low-latency access and
processing to IoT has been studied with cloudlet computing,
which involves no intercommunication between cloudlets [74,
75, 76, 77]. In most cases, cloudlets are designed to be one-hop
away from IoT devices; however Ceselli et al. [76] propose an
augmentation to MEC where data is routed from base stations
to a nearby cloudlet. Though other contributions are only inter-
ested in network placement of cloudlets, Fan and Ansari [77]
dimension the number of cloudlet servers installed in each
designed cloudlet location. Building a dedicated computing in-
frastructure with high resources may be costly, and underused
in most cases. A fog system provides more network flexibility
and geo-distribution of smaller devices, potentially covering
and servicing a much wider IoT ecosystem. To our knowledge,
there are currently only two contributions that develop an
optimal fog design scheme. Both schemes optimize fog node
locations and installed computing & memory resources while
satisfying IoT QoS requirements.

Yu et al. [5] consider fog to provide real time processing
for autonomous vehicles. They propose a fog design & dimen-
sioning scheme of RSUs, fog nodes, and Internet Gateways
which work together to provide real-time traffic information
to enhance and facilitate automated navigation and collision-
avoidance. Given a set of candidate locations, candidate re-
source configurations, and a known number of connecting
vehicles for a certain location and time period, the location and
resource amounts of RSUs, fog nodes and Internet Gateways
are optimally found via a Mixed Integer Linear Program
(MILP) in an arrangement that minimizes infrastructure costs.
RSUs may be fog nodes themselves (coupled variant) or are
separate from fog nodes (decoupled variant); both variants are
tested and compared. They conclude that a decoupled model
allows design flexibilities that result in a more economical
and cost-effective scheme. For scalability, a heuristic algorithm
based on the decoupled model is used.

Regarding vehicular traffic, the model assumes a known
static set of vehicle resources accessing the network across
different regions, which may not be true in practice. Although
having a set of candidate locations for fog nodes is practical,
the model also assumes a finite candidate set of dimensioning
configurations. The solution to this model is thus dependent on
the completeness of such a set. Finding the optimal placement
of RSUs and Gateways increase the complexity of the model,
while the inclusion of RSUs also restricts the application of
this model to IoV.

Martinez et al. [78] propose a fog design & dimensioning
scheme to support the general IoT landscape. For a given
area, the future IoT data volume and the resulting stochastic
network congestion distributions are estimated, which affect

the approximated IoT-fog end-to-end communication delay.
An IoT request with k tasks is represented by a Task De-
pendency Graph of k nodes, and the set of physical candidate
fog node locations are represented by a bidirectional graph.
Tasks and task dependency links are mapped to physical
fog locations and fog infrastructure paths respectively. A fog
design & dimensioning scheme is defined to find a mapping
that satisfies fog node resource capacities, fog infrastructure
bandwidth capacities, and IoT QoS requirements.

An MILP model (fog-DC-MILP) is used to find an exact
optimal fog infrastructure by minimizing infrastructure de-
ployment costs. Due to the intractability of the fog-DC-MILP
model, a Column Generation model (fog-DC-CG) is proposed.

Simulation and scalability testing between fog-DC-MILP
and fog-DC-CG show a significant reduction in solution com-
putation time of fog-DC-CG with near-optimal cost. Further-
more, fog design & dimensioning solutions of both models
are similar. This indicates fog-DC-CG is a practical alternative
model to fog-DC-MILP.

For each candidate fog node, they define a maximum
amount of each resource that can be installed, allowing for
resource configurations selected from a continuous set. This
aims to remove the concern of discrete resource configuration
set completeness observed [5]. The designed & dimensioned
infrastructure [78] is extensible, allowing for current fog nodes
to be upgraded or extra fog nodes to be added to the current
infrastructure if IoT data volume increases.

They use a discrete set of IoT devices, each uploading
data at a rate following a Poisson Process. They compute a
percentile estimation of expected IoT traffic and resulting con-
gestion to produce a deterministic upper bound. This allows
for simple modifications to beginning percentile parameters to
increase or decrease traffic estimation, resulting in a change
in the fog design & dimensioning solution.

Due to the models extensibility, it is reasonable to make an
underestimate of expected IoT traffic and extend the designed
& dimensioned infrastructure based on future performance.
These two contributions [5, 78] are summarized and compared
in Table II.

V. FOG RESOURCE PROVISIONING & IOT RESOURCE
ALLOCATION

Fog resource provisioning refers to the reservation of com-
putational and memory resources within fog nodes for use
by IoT applications. IoT resource allocation refers to the
assignment of resource requirements for an IoT request to
the fog. It is clear that resource provisioning and resource
allocation are two sides of the same coin, since a fog node
needs to provision its resources for the allocation of IoT
requests. For all resource provisioning & allocation schemes,
several consistent infrastructural assumptions include: 1) exis-
tence of a pre-defined fog infrastructure, 2) all fog nodes are
reachable and available from any IoT device, 3) any pair of
IoT device and fog node experiences static network congestion
and/or latency, and 4) uploaded data format and response is
homogeneous.
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Table II: Description of contributions in fog design & dimensioning.

Scope Yu et al. [5] Martinez et al. [78]

Main Contribution Scalable design & dimensioning for fog nodes,
RSUs and Gateways to support autonomous
vehicles.

Scalable fog design & dimensioning to support
general IoT systems with near-optimal imple-
mentation cost.

Supported IoT devices Smart Vehicles. General IoT devices.

Pre-defined device candidates Fog nodes, RSUs, Gateways. Fog nodes.

Predicted IoT traffic Discrete vehicular traffic set. Percentile of stochastic IoT traffic predictions.

Resource dimensions Selected from discrete pre-defined set. Continuous up to a maximum capacity.

Extensible — Fog nodes can be added to current fog infras-
tructure to account for increased IoT traffic.

Congestion — Accounts for possible network congestion by
designing fog under worst-case network scenar-
ios.

For IoT applications that intend extended use by the same
fog servers, the server partitions a module of reserved re-
sources. Once a module is set for an IoT application, all
requests from that application are immediately processed
by the module for reduced long-term latency. However, the
reservation of fog resources itself may take time, and may
not be useful for IoT applications which require immediate
and infrequent processing. Module migration is the process
of freeing module resources in the current fog node, and re-
provisioning the module in a different fog node or Cloud. Any
IoT processing data or storage present in the current fog node
is transferred to the new module.

The allocation schemes [9, 31] assume each IoT is com-
prised of a single task, while Agarwal et al. [30] propose to
process each request by a single fog node, split into multiple
tasks if there are insufficient resources. In both cases, the
entirety of the IoT data need only be processed by a single
fog node. Instead of mapping each IoT request separately,
Yousefpour et al. [43] go further by clustering IoT devices
together that run the same service, and map those services to
fog node modules. Since all computation of an IoT application
is done on a single fog server, many requests can result in a
large processing queue and high latency.

Taneja et al. [79] report that each IoT request is in fact
comprised of multiple tasks — stemming from multiple sen-
sors and actuators — that are too taxing to be processed on a
single fog node. Therefore, an IoT application’s multiple tasks
are split among one or more fog nodes. The multiple tasks of
a single IoT request are often depicted as a directed acyclic
graph, with each directed link representing a dependency
between tasks [79, 80]. Hence, fog processing of tasks may
require the same task workflow order. Similar approaches are
to allocate application tasks to different fog nodes either via
algorithms [37, 79, 80], policies [16, 36, 56] or optimization
models [32].

In our review of current literature in this space, we did
observe that all proposed models fell into one of three classifi-
cations based on prompt or optimal service to IoT applications.
The fog layer may reserve resources for future IoT use
based on accurate IoT traffic predictions. When IoT requests
arrive, it is assumed the resources are available and immediate
processing takes place. Schemes that follow this approach are

known as prior provisioning and prompt allocation schemes.
Since IoT traffic predictions require additional computation

effort and may be faulty, most schemes will provision re-
sources only once IoT requests have arrived. There are two
general approaches to resource allocation using on-demand
provisioning: prompt allocation and small batch allocation.
When an IoT allocation is promptly serviced, it is sent to the
nearest fog node for processing, regardless of cost. Models that
follow this approach are known as on-demand provisioning
and prompt allocation schemes, and are ideal for dynamic
IoT support. Another approach is for a fog resource manager
to accumulate a small batch of IoT requests, and find the
optimal allocation of IoT tasks that optimize some metric
(e.g. latency, resource cost). Once a module is provisioned
for an IoT request, all future requests from the same IoT
application are provided immediate service by the module.
Hence, small batch allocation provides efficient IoT processing
for the life-span of the provisioned module. Models that
follow this approach are known as on-demand provisioning
and small batch allocation schemes. Though these schemes
provide more efficient long-term IoT support, execution of
these schemes are significantly slower than prompt allocation
methods. Therefore, small batch allocation schemes are better
suited for static IoT applications. A summary of these three
classifications of resource provisioning & allocation schemes
is provided in Table III and Fig. 5.

A. Prior provisioning and prompt allocation

Aazam and Huh [14, 81] propose the analysis of fog
resource usage data of IoT devices to determine the relinquish
probability a new service request will be abandoned within a
time frame. IoT devices with low relinquish probability, i.e.
will continue fog usage for long periods, are offered slightly
lower usage prices as well as higher allocated resources by fog.
Behavioural analysis of previously connected IoT ensures that
enough resources are reserved by fog for future predicted IoT
traffic, and allows for an immediate connection and processing
of IoT data upon a new request. For IoT devices that have
never connected prior, a default low relinquish probability
is assumed, and resource pricing and quantity are calculated
accordingly in real-time. This concept is extended in [82, 83]
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Table III: Process of resource provisioning & allocation schemes by prompt or optimal service.

Resource Allocation

Prompt Small Batch
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rReserves resources in fog based on historic predictions
of future IoT traffic.r IoT requests are allocated immediately to reserved
resources.

NA

[14], [81], [82], [83]

O
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de
m

an
d

rAn IoT request arrives to a fog node; the fog node
verifies if it has sufficient resources.

rGroups several IoT requests for batch resource provi-
sioning & allocation.r If yes, it processes the IoT request. Otherwise, it

propagates request to a further node.
r IoT requests are distributed in fog to optimize effi-

ciency.

[29], [43], [30], [47], [56], [84], [85] [4], [9], [17], [28], [31], [32], [79], [80],

[86], [87], [88], [89], [90], [91], [92]

to also consider historical quality of experience (QoE) of IoT
based on end-to-end delay, jitter, packet loss, latency, and
blocking probability. This approach more efficiently predicts
future resource consumption for real-time allocation for mul-
timedia [82] or haptic sensors [83].

Although an IoT application’s QoS is satisfied, QoE may
be low and thus requires different fog node connections or
more fog resources on future requests. Instead of requiring
the allocated fog node to satisfy the required latency of the
IoT application, [14, 81, 82] focus on providing high fog
utilization assuming any fog node could satisfy the IoT latency
requirements. On the other hand, [83] ranks potential fog
nodes for IoT allocation by latency, and verifies the latency
suitability of the fog node before assigning resources.

B. On-demand provisioning and prompt allocation

Agarwal et al. [30] propose a resource provisioning scheme
that does not rely on any current or historical information
from IoT or fog. The proposed algorithm begins with an IoT
application sending its request to an arbitrary fog node within
communication range, usually the nearest node. If the fog node
has enough resources to process the request, it will do so;
otherwise, the request is partitioned into several tasks, and
are sequentially processed by the limited fog resources. If no
resources are available in that particular fog node, the IoT
request is propagated to Cloud. In this worst case scenario, the
propagation to Cloud may result in high latency and unsatisfied
IoT QoS. Intermittent fog resource sharing among the fog
could allow the initial fog node to know which other fog
nodes have enough resources [93], and forward accordingly
thus keeping latency low.

Bittencourt et al. [56] extend this idea by introducing three
possible fog processing policies. In all cases, an IoT applica-
tion is assigned to the first fog node with which it connects,
but the processing order of IoT applications differs. If no
resources are available at the fog node, Cloud propagation is
applied. The concurrent strategy performs fog processing on
IoT data regardless of current available resources; applications
within a fog node are processed in parallel, and the allocation
indifference to current resources could lead to high processing
latency. The First-Come-First-Serve (FCFS) strategy processes

IoT requests in the order of their arrival to a fog node. The
delay-priority strategy processes the IoT application with the
lowest QoS latency requirement first, and re-orders the next
IoT application to process as new requests arrive. Simulations
show that the FCFS and delay-priority strategies yield the
lowest latency, whereas the concurrent strategy yields the
lowest amount of data transferred to Cloud.

For vehicular fog settings where mobile vehicles require
computation from static or slow-moving vehicles, Peng et
al. [84] propose a multi-attribute double auction mechanism
for base stations to match and pair vehicular fog nodes with ve-
hicular IoT users. The mechanism allows vehicular fog nodes
to announce their resource attributes, reputation and asking
price, which is met with IoT announcements of resource and
latency requirement, and bidding price. The formulated one-
to-one assignment algorithm for resource matching executes in
under 8 milliseconds for up to 100 vehicular fog nodes and up
to 100 vehicular IoT devices. This scalable matching algorithm
adds very little to the overall near instant computation provided
by the allocated vehicular fog node. Similarly, Zhou et al. [47]
introduce a contract-based mechanism for IoT request off-
loading to nearby smart vehicles. A contract is designed and
offered to a vehicle based on the amount of resources and time
in return for a reward; IoT users requiring fog computation are
paired to a vehicular fog via a pricing-based stable matching
algorithm.

Zhang et al. [29] introduce a cooperative fog computing
architecture to deal with big IoV data. It allows for data migra-
tion between fog nodes for mobile smart cars. As a result, two
separate resource allocation strategies are considered based on
available resources at the nearest fog server. Each fog node
in this system has a finite set of Virtual Machines (VMs)
which partition fog resources for IoT use. If the number of
VMs in a fog server is sufficient to process an incoming IoT
application, intra-fog resource management will allocate the
application to VMs that minimize fog energy-consumption via
convex optimization. If data migration is required, a min-max
optimization model is used to determine to which fog node
data should be transferred to minimize the transfer rejection
probability. The delay of data transfer between fog nodes is
measured at 30 – 70 ms, providing low additional delay to the
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allocation process.
Yousefpour et al. [43] address the problem of dynamically

deploying or releasing IoT services on fog nodes by means
of two possible greedy algorithms that comply with QoS
requirements. Both algorithms determine periodically from
which fog node modules should be released and transferred
to Cloud, in order to free resources for future IoT requests.
The min-cost algorithm aims to allocate IoT services to the
fog node that would provide the lowest resource allocation
cost; it similarly releases IoT services that incur large resource
costs. The min-viol algorithm allocates IoT services with high
demand and releases services with low demand from fog
nodes. The response latency inherently increase for modules
released to Cloud, and thus results in a QoS violation.

Xia et al. [85] propose two ordering-based heuristics to
search and select fog nodes to which an IoT application is
allocated. With anchor-based fog node ordering (AFNO), fog
nodes are ordered by its latency to an anchor IoT application.
Dynamic component ordering (DCO) attempts to allocate
IoT tasks until a constraint failure in the search occurs; the
components are reordered with the failed tasks being allocated
first, and may require several reorders for a successful appli-
cation allocation. Ordering fog nodes by latency adds sorting
overhead to AFNO, resulting in lower execution times with
DCO allocation. For up to 20,000 fog nodes, DCO executes
in under 100 ms for a single IoT application, allowing for
real-time resource allocation and execution.

Reinforcement learning (RL) is a machine learning tech-
nique that aims to make improved decisions over time based
on the reward or penalty incurred by previous actions [86].
In many RL approaches to resource allocation [87, 88, 94],
this training process is divided into two parts: 1) receive
IoT request, feed through RL model and take action, and
2) update RL model based on action reward/penalty. This
process prioritizes the resource allocation decision, providing
real-time support to IoT. Since RL techniques improve with
time, the RL models are initialized with random values to
start, meaning the initial resource allocation decisions may
not be optimal. If the RL model is trained with batches of
IoT requests, then the request data is saved in memory until
enough requests are accumulated for training [94]. Since RL
can be computationally taxing, it is often proposed to use a
separate fog server to conduct all RL modeling [87, 88].

Sun et al. [94] use power consumption of fog nodes as a
reward/penalty to model an energy-efficient resource allocation
scheme. The action taken defines which fog processors to turn
on or off, and to which layer to send an IoT request (fog or
Cloud). Wei et al. [87] use a single fog server to compute all
RL model updates, which receives and distributes IoT requests
to the remaining fog servers. The formulated model aims to
optimize response latency of resource allocation and content
cashing.

Wang et al. [88] propose a RL model for fog allocation
in IoV environments for minimizing response latency. All
IoT requests are sent to an independent and centralized fog
sever, where all RL model updates are computed. The fog
server returns a decision to the mobile device of which layer
to access: cellular network, device-to-device network, or fog

network. Then, the mobile device sends another request to the
appropritate network for processing. This procedure requires
communication with two separate nodes which may increase
latency. Furthermore, although QoS requirements of IoT, en-
ergy consumption of fog and total latency are considered, the
resource capacities of each fog node are not. It is assumed that
each layer can always process incoming IoT requests, and the
main consideration is the best distribution to do so.

C. On-demand provisioning and small batch allocation

Zeng et al. [89] research fog supported Software Defined
Embedded Systems with client-side computation support. In
this scenario, client-side computation incurs a certain cost
with client-side computation latency, whereas fog incurs a
different resource cost, and both transmission and computation
latency. For each IoT device, computation placement (client-
side or fog) is formulated as a Mixed Integer Non-linear
Program (MINLP) to minimize overall processing latency.
This MINLP is linearized, and re-formulated as a three-stage
heuristic. Although it may be convenient to assume an IoT
device has client-side processing capabilities, this assumption
is not practical for a general IoT ecosystem.

Souza et al. propose a resource provisioning scheme where
fog node resources are partitioned into slots of fixed size, with
IoT requests requiring a set number of slots. In particular, it
is assumed that an IoT request either requires a small number
of slots and can thus be processed anywhere in the fog, or
requires a large number of slots and can thus only be processed
by second-tier fog nodes. Formulated as an MILP, this resource
provisioning simulation setup is wildly simplistic and requires
more dynamic parameters to approximate a practical fog
system scenario.

Zhang et al. [90] introduce massive data centre opera-
tors (MDCOs) as a middle-man between fog and IoT. A
Stackelberg game is played between fog and MDCOs, and
MDCOs and IoT devices to determine an optimal resource
price and amount provided by fog and MDCO to maximize
fog utilization.

Ali et al. [92] propose a many-to-one matching game
between a set of fog nodes and IoT devices. Each device will
rank a potential pair based on perceived latency and utilization,
and are subsequently matched with their highest feasible
choice. Although the matching algorithm itself is quick, node
discovery followed by utilization and latency calculations for
ranking cannot be done in real-time. Therefore, this method
is ideal for small batch allocation.

When an IoT request is assigned to a fog node with
insufficient available resources and is immediately propagated
to Cloud, it is said that the request is rejected by the fog
node. Assuming that fog may not have enough resources to
service all IoT devices in the region, Intharawijitr et al. [31]
formulate a model that minimizes the blocking probability
of resource allocation, which is the average number of IoT
workloads rejected by fog. For an IoT workload, three fog
selection policies are explored: a random fog node, the fog
node with lowest-latency to the application, or the fog node
with maximum available capacity. Simulation results conclude
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the lowest-latency policy minimizes the blocking probability
of IoT applications.

Skarlat et al. [9] formulate resource provisioning over the
fog-Cloud system as an MILP to maximize fog utilization. The
simulated evaluation concludes a decrease in response latency
by 39% over default provisioning policies in CloudSim [95].
The same problem is formulated as a genetic algorithm with
an evaluated increase of 150% cost of the MILP solution, and
around 64% of applications assigned to fog.

Taneja and Davy [79] model each IoT application request as
a set of dependent IoT tasks that may be processed by different
fog nodes. The resource requirements of all current batch IoT
tasks are sorted in ascending order, and a fog node satisfying
the task resource requirements is selected for each task. By
efficiently placing IoT applications on fog, increased fog
utilization implicitly decreases the total response time, network
usage and energy consumption compared to Cloud placement
strategies. Karamoozian et al. [80] solve the resource allo-
cation problem using a gravitational search algorithm. This
meta-heuristic algorithm denotes each possible solution with
a mass, and iteratively updates the particle masses based on
their interactions with each other. At termination, the heaviest
mass (solution) is selected.

Whereas [79, 80] represents each IoT application as a
directed acyclic graph of IoT application tasks, Ni et al. [96]
represent IoT tasks as a priced-timed Petri net which includes
task transition time and price costs, in addition to task depen-
dencies. The presented heuristic algorithm [96] allocates IoT
applications to fog by prioritizing the minimization of response
latency, followed by the maximization of fog credibility based
on time cost, price cost, and resource capacity. The fog cred-
ibility is based on historical data of response rate, execution
efficiency, reboot rate and reliability.

The focus of resource provisioning by Salaht et al. [97] is to
first and foremost satisfy QoS requirements of IoT applications
without further consideration of fog utility, resource cost or la-
tency. Formulated as a Constraint Programming problem [97],
it aims to create a scalable, generic and easily upgradeable
placement service. Using the Smart Bell application [85] for
comparison, the MILP model [85] executes in 343 seconds,
whereas the Constrained Programming model [97] executes
on the same application with the same parameters in 0.559
seconds without loss of solution QoS. We observe that con-
siderations of cost optimality are ignored for a faster solution
which may still prove too slow for real-time allocation of
latency-sensitive IoT applications.

Donassolo et al. [98] introduce Optimized Fog Service
Provisioning (O-FSP) resource allocation scheme to minimize
IoT service cost and increase fog utilization. Based on avail-
able fog node resources and IoT QoS requirements, O-FSP
follows a greedy approach to allocate IoT applications by
resource cost. Although O-FSP succeeds in providing high fog
infrastructure utilization and low resource costs, the execution
time of O-FSP is not evaluated.

Gu et al. [28] support medical systems by reserving fog
resources in the form of a VM assigned to the medical
device. The resource provisioning problem is formulated as an
MINLP, linearized, and reworked into a two-phase heuristic to

minimize resource costs. Video streaming services can benefit
from low latency of fog, but creates a carbon footprint as a
result [4]. In response, Do et al. [4] formulate the resource
allocation of these services as a convex optimization to mini-
mize carbon footprint. They then develop an iterative heuristic
inspired by proximal algorithms and Alternating Direction
Method of Multipliers to serve video streaming services with
guaranteed bandwidth and low carbon footprint. The Mist [17]
crowd-sensing infrastructure also reserves VMs in fog for
IoT use; the placement of VMs in fog are formulated as a
linearized MINLP, and solved to allocate IoT with minimal
VM deployment cost.

VI. FOG COMPUTING FRAMEWORKS

Fog orchestration is defined by using a control layer to
periodically monitor the available resources and request allo-
cations to each fog node [99, 100]. Instead of an IoT request
being uploaded directly to the fog layer, it is uploaded to
the control layer which then distributes the application to fog
nodes or Cloud accordingly. Fog frameworks can be seen as
specific applications of fog orchestration to facilitate resource
provisioning & allocation via a fog orchestration controller
(FOC) or an API; the basic functionality of fog frameworks is
shown in Fig. 6. If a module migration is required between fog
nodes under the same FOC, the sending fog node will either
consult the FOC to determine where to send the module, or
send the module to the FOC for re-distribution. The fog layer
may be partitioned into groups of fog nodes, each group with
a separate FOC. In this case, a module migrated outside a
cluster is sent to the FOC, which communicates with other
FOCs to determine the module destination. If an API model
is used for migration, a fog node will query other fog nodes
to determine where to migrate data.

The frameworks covered in this section provide resource
management of fog nodes via hardware and/or software ex-
tensions. By monitoring fog resource availability, a framework
can distribute IoT requests to the fog without fog rejection,
thus minimizing latency. In addition, certain frameworks allow
data migration between fog nodes when an initial fog node has
insufficient resources.

A. Non-fixed fog topologies

Chen et al. [38] define fog-as-a-service-technology (FA2ST)
as a fog framework that can support any IoT application, i.e.
regardless of use case, with the objective of providing value-
added fog services compared to Cloud. Importantly, FA2ST
provides on-demand fog service discovery [101], allowing it to
probe all connected fog nodes for current resource availability
at the moment an IoT request arrives. Furthermore, if an
IoT application is assigned to a fog node that is no longer
available, FA2ST re-deploys the application to a new node.
This allows FA2ST to service a fog infrastructure with faulty,
mobile, or dynamically available fog nodes. Madan et al. [102]
envisions an IoV-fog infrastructure that provides UAVs to
support overloaded RSUs. From a base station where all UAVs
are kept and charged, an overloaded RSU triggers a UAV
deployment to travel and hover over the RSU; data is migrated
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(a) Prior provisioning and prompt allocation.

(b) On-demand provisioning and prompt allocation.

(c) On-demand provisioning and small batch allocation.

Figure 5: Resource management methods using a) prior pro-
visioning and prompt allocation schemes, where fog resources
are reserved for predicted IoT use, b) on-demand provisioning
and prompt allocation schemes, where IoT task searches for
suitable node, and c) on-demand provisioning and small batch
allocation schemes, where optimal placement is found prior to
processing. In b) and c), secondary node f2 may be either a
fog node or Cloud.

(a) FOC method.

(b) API method.

Figure 6: A fog framework provides current resource avail-
ability information of all fog nodes to streamline the resource
allocation process. Two standard approaches are to use an FOC
(hardware overhead) or to use an API (software overhead) to
query fog and distribute IoT tasks.

to the UAV to accelerate the IoV computation and decrease
response latency.

A framework can have a single FOC with a ubiquitous
view of all fog resources [16, 98], or multiple FOCs, each
monitoring a cluster of fog nodes [9, 29, 35]. A single FOC
requires only one additional node; however it must have a
connection to every fog node which may not be scalable for
larger fog layers. Multiple FOCs provide improved scalability
at a cost of increased hardware overhead. Furthermore, a
module migration between FOCs may result in increased
latency.
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B. Fixed topologies

For a fixed fog topology, frameworks optimize the commu-
nication between end devices, fog, and Cloud. This approach
to having an ubiquitous view of all fog information is through
the use of an FOC which is connected to every fog either
directly [9, 16, 43] or through APIs [17, 37, 39, 43, 56, 103,
104]. In addition to resource management for efficient IoT-
fog service provisioning, most fog frameworks claim to be
scalable to increased IoT traffic volume or fog infrastructure
size [29, 35, 39, 43, 98].

Cardellini et al. [93] provide a distributed extension to the
open source data stream processing application Storm to allow
the execution of a distributed QoS-aware IoT resource sched-
uler. This extension allows fog nodes within the infrastructure
to have knowledge of other fog node resource availability,
and for IoT service scheduling to respect latency and resource
requirements.

Donassolo et al. [98] propose Fog-IoT ORchestator (FI-
TOR), a fog framework that monitors the fog infrastructure to
survey and extract resource metrics from all fog nodes. This
allows FITOR to have a ubiquitous view of all fog resources at
any time, facilitating the service deployment of IoT data to fog
nodes. As a result, FITOR is used in conjunction with the O-
FSP resource provisioning scheme [98]. In order to allow fog
nodes to accept any IoT request, FITOR must receive service
descriptors from IoT applications along with the request. These
descriptors define the IoT application, its building components
and QoS requirements. Yigitoglu et al. [16] introduce the
Foggy framework which accepts similar information from IoT,
and deploys each task of an IoT request to a fog node with
available resources and satisfying latency, privacy and priority
requirements. The Foggy FOC monitors all fog resources via
the MQTT protocol [105], and stores historical IoT require-
ments and workloads for faster future deployment planning.
Although these frameworks aim to satisfy QoS of IoT requests
by querying the requests, expecting requirement information
from IoT may not be feasible.

Tuli et al. [35] propose FogBus, a scalable fog framework
that partitions fog nodes into separate roles to increase security
and reliability. FogBus is composed of fog gateway nodes,
fog broker nodes (FOC), general computing nodes, and fog
repository nodes. IoT applications upload data directly to fog
gateway nodes, which are then forwarded to interconnected
fog broker nodes, and distributed to fog general computing
nodes for IoT request processing. Each fog broker node is
also connected to a fog repository node which facilitates data
sharing, replication, recovery and secured storage. Replication
of stored data across multiple fog nodes provides storage ro-
bustness and reliability for possible fog node failures. Indeed,
data stored on faulty fog brokers can be recovered by fog
repository nodes, and replaced by existing fog broker nodes.
FogBus also supports blockchain integration to verify that IoT
data is coming from a pre-defined credible source.

Skarlat et al. [9] propose a fog architecture with groups
of fog nodes clustered into colonies with all fog resource
information available to an FOC. Upon receiving an IoT
request, the FOC allocates IoT tasks among the fog nodes

in the colony. If a fog colony does not have enough resources
to process the IoT request, the FOC can query other colonies
for available resources and transfer the request accordingly
via REST APIs. It is recognized that not all IoT requests
are suited for fog [9], e.g., non-delay sensitive requests or
resource intensive big data. As a result, [9] provides Cloud-fog
middleware to propagate these applications for Cloud resource
allocation.

Zhang et al. [29] consider data migration between RSUs and
fog nodes of their proposed IoV-fog application. Several fog
nodes are clustered to provide seamless data sharing between
nodes in a select region. Between clusters exists a coordinator
(FOC) that manages fog resources over the system. If a
fog cluster requires extra resources, or observes a vehicle
moving towards a new region, it may handover an IoT module
to a neighbouring fog cluster to continue uninterrupted IoT
processing.

C. SDN-based frameworks

An SDN decouples the control plane and data planes
of a traditional network, allowing an SDN controller to
forward data through the network based on an arbitrary
rule set [106]. Combining SDN with a standardized switch
like OpenFlow [64] provides a simpler interface for SDN
controllers to interact with the network. Furthermore, SDN
can track mobile IoT devices to predict future destinations
and support seamless data handover between fog nodes for
uninterrupted IoT support [39].

Tomovic et al. [39] propose to achieve resource manage-
ment, traffic control, and data migration of the fog plane
via an SDN with OpenFlow controllers [64] which supports
API functionality for IoT deployment. The Mist architectural
framework [17] similarly uses SDN to monitor fog infrastruc-
ture resources, and APIs to monitor both IoT and fog device
health, and facilitate IoT service allocation to fog.

Yousefpour et al. [43] propose FogPlan, a lightweight QoS-
aware framework that uses an SDN controller to monitor
incoming IoT traffic and fog node resources, and deploy IoT
processing accordingly via an API. Notably, FogPlan aims
to satisfy IoT QoS requirements with no or minimal IoT
requirement information, increasing the workload of FogPlan
while decreasing that of IoT devices. They use FogPlan to en-
able the min-cost and min-viol real-time resource provisioning
scheme [43].

D. Data Migration

The Foglet [37] and Mobile Fog [103] programming models
focus on module migration between IoT devices and fog nodes
in a hierarchical architecture. They both implement an API that
allows modules to either migrate one hierarchical level above
or below, or to move to a specific fog node.

The data migration implementation with foglets [37] sup-
ports IoT requests that can simultaneously use different parts
of the fog-Cloud infrastructure for different IoT tasks. Mobile
Fog [103] creates a dynamic scaling mechanism whereby new
on-demand fog nodes are created in response to overloaded
workloads, and data is appropriately distributed to new fog
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nodes. Dynamic scaling with API data migration support
creates a programming model well suited for mobile IoT
devices such as smart cars, smart phones, and smart cameras.

Zhou et al. [47] propose a vehicular fog computing (VFC)
framework with associated base stations to provide intra-
fog resource management. Since a data user uploads their
data to the nearest fog node, it is possible for a node to
become overloaded during peak usage periods. In these cases,
VFC allows for task offloading to nearby underutilized smart
vehicles.

VII. FOG INFRASTRUCTURE DESIGN EVALUATION

The efficiency or desirability of a fog computing infrastruc-
ture can be evaluated using simulation and emulation. Further-
more, simulating/emulating an existing fog infrastructure can
be useful to fog application developers in deciding whether
application processing should be done locally, by fog, or by
Cloud [107]. There exists a variety of tools that deploy custom
resource management policies, each focusing on different eval-
uation metrics and use case support. In the implementation of
fog evaluation tools, the allocation and migration of modules
are considered in terms of VMs. For more complex dynamic
fog infrastructures, emulation frameworks can evaluate service
of IoT applications in a way that more closely mimics the real
fog infrastructure.

A. Simulation

In all simulation cases, a fog infrastructure is first defined
manually by the user. Based on simulated IoT traffic parame-
ters, the effects of network flow through fog can be evaluated.
In most cases, the routing and interactions with fog nodes
are defined by fog processing and forwarding policies. In the
case of FogExplorer [108, 109], each IoT request is mapped
to a selected machine for processing, and the effects of the
deployment mapping on cost and QoS are evaluated. Each IoT
request can be mapped to self, a specific fog node, or to Cloud.
While designing an IoT application, testing different mapping
options enables developers to identify the best location for IoT
application processing [107].

iFogSim [36], an extension of CloudSim [95], is a simula-
tion toolkit for IoT and fog that allows users to measure the
resource cost, network use, energy consumption and latency
of a specific network and resource management policy. Many
resource management schemes use iFogSim to measure the
impact of their proposed contributions [41, 34, 56, 110, 111].
EdgeNetworkCloudSim [112, 113] is also an extension of
CloudSim that allows the simulation and evaluation of user-
defined algorithms for placement, orchestration and consol-
idation of service chains. The system frequently monitors
fog resources and energy consumption, and logs IoT task
rejections due to insufficient fog resources. It does not however
take into consideration the latency of IoT allocations.

Multiple tools extend iFogSim to address scenarios that
cannot be simulated with iFogSim alone. iFogSimWithDat-
aPlacement [110, 114] allows the implementation of resource
management strategies that optimize data placement for a
selected metric; this is achieved through MILP, and divide &

conquer algorithm support. FogWorkflowSim [115] combines
elements from WorkflowSim [116] and iFogSim to model
and simulate workflows in fog. Identifying tasks that can be
processed in parallel within a workflow decreases the overall
latency and energy consumption [115]. Both MyiFogSim [117,
118] and MobFogSim [119] allow users to define the migration
of VMs allocated to a mobile IoT device. The migration policy
determines when a VM should be migrated by defining a
migration zone around a Fog node, and a migration point an
IoT device must cross to signal that it is moving away from the
Fog node. The migration strategy defines where and how to
migrate the VM. To where a VM should be migrated is dictated
by the speed and direction of mobility, while the migration
itself uses one of many strategies with different possible VM
down time and memory usage during transfer. This scenario
is shown in Fig. 7a.

FogNetSim++ [120, 121] extends fog support to the OM-
Net++ [122] discrete event simulator. The system uses a
fog broker node to monitor fog resources, and to allocate
IoT requests using a greedy approach by distance. Uniquely,
FogNetSim++ allows for mobile fog node modelling. If a fog
node moves away from an allocated IoT device, the resource
module is migrated to the nearest fog node within the IoT
device’s range. This scenario is shown in Fig. 7b.

YAFS [123] is a discrete-event simulator that provides
highly customizable placement, scheduling and routing strate-
gies for IoT requests in fog. YAFS considers fog server
failures, modeled using an exponential distribution. PureEd-
geSim [124, 125] defines a total energy attribute for each
fog server, along with energy consumption per processed IoT
task. A fog server fails when its total energy is depleted.
FogDirSim [126, 127] is a tool to simulate CISCO FogDi-
rector, an IoT/fog manager. The simulator probabilistically
predicts fog utilization, energy consumption, and robustness
to fog node failures of a user-defined resource management
policy. For these three simulators [123, 124, 126], a fog server
failure triggers the re-allocation of modules present in the
failed node are re-allocated. This scenario is shown in Fig. 7c.

PFogSim [91] defines a multi-tier fog architecture with
Cloud in the final layer. The custom resource management
policies define which layers can participate in IoT processing,
and how IoT processes are distributed among the valid layers
to optimize latency or operational cost. By restricting the scope
of IoT assignment, a user can test various infrastructures to
determine a minimal viable infrastructure. Therefore, PFogSim
may serve as an empirical method for fog design using a multi-
tier architecture.

Most evaluation tools use discrete-event simulation to sim-
ulate and evaluate the life-cycle of a fog infrastructure. In
contrast, FogTorchΠ [128] uses Monte Carlo simulations to
generate several possible IoT assignments that satisfy IoT
QoS, hardware and software requirements. This approach al-
lows a user to test resource allocation feasibility under several
circumstances and requirements. The latency and bandwidth
requirements from each simulation is analyzed to determine
the set of resource deployments that yield the best estimated
QoS.
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B. Emulation

Simulation is a cost effective and computation efficient
method of evaluating IoT interactions with a fog infrastructure;
however, it usually assumes a number of simplifications that
may not mimic a dynamic fog infrastructure well. In complex
systems, emulation duplicates the fog topology and IoT work-
load, providing repeatable and controllable experiments of real
IoT applications [129].

Héctor [130], MockFog [131, 132], and EmuFog [129,
133] are three fog emulation toolkits that aim to provide
more realistic testing of fog infrastructures and IoT applica-
tions. In addition to emulating the fog infrastructure, Héctor
also represents each IoT device as a VM with configurable
properties, creating one emulated IoT environment. A testbed
is a set of configured IoT request patterns, IoT resource
requirements, and fog network conditions such as packet loss
and random additional delay. Automated execution of various
testbeds can therefore mimic the most realistic flow of IoT-
fog interactions. MockFog allows users to inject failures into
the fog system by toggling select fog nodes as unavailable.
This will reduce fog resource availability in order to further
test fog infrastructure resiliency and fault-tolerance. These
three emulators allow users to fully define and design a fog
infrastructure from scratch, though EmuFog also allows users
to place fog nodes along the topology using a default greedy
approach, or a custom placement policy. By changing the fog
design, placement policies, or network conditions, users can
evaluate the effects of the different fog infrastructures on IoT
service. In this manner, emulation toolkits may serve as an
empirical method for fog design.

VIII. OPEN ISSUES & RESEARCH OPPORTUNITIES

A. Fog Design & Dimensioning

Both [5] and [78] are based on data traffic from static
IoT devices; they assume a reliable fog infrastructure. In
practice, many IoT devices are dynamic in location and request
frequency, leading to possible spikes in incoming IoT traffic.
Likewise, fog node failures will lead to spikes in incoming IoT
traffic to active fog nodes. Updated simulations of fluctuating
network congestion on the edge and stochastic fog node
failures can serve useful to understanding the latency impact
from fog. A fog design & dimensioning solution can be
sensitive to network traffic, fog reliability, and fog modeling
parameters such as candidate resource location and quantity.
Therefore, a fog design & dimensioning solution should
provide satisfactory QoS conditions to IoT under volatile IoT
traffic and fog node failures, up to a degree of confidence.

In the event of a node failure, all IoT requests on the
failed fog node should be re-allocated. One approach to
ensure successful re-allocation is to implement the addition of
repository nodes in the design of a fog infrastructure to backup
fog node data. Adding mechanisms for IoT re-allocation will
increase the fault-tolerance of the designed fog infrastructure.

The extensibility of [78] assumes more fog nodes are
added for a static increase in IoT requests; however, if the
added fog nodes increase the geographic range of the fog
infrastructure, then previously out-of-range IoT devices may

now be in range. The resulting total IoT traffic to the extended
fog infrastructure may increase to more than estimated. IoT
traffic patterns may evolve over time, and IoT traffic may
reduce in certain areas and increase in others. An extension
of current fog infrastructure should identify fog resources that
can be repurposed to other fog nodes to optimize extension
costs. Simulation of increased IoT traffic from geographic
extensions to the fog infrastructure can be useful to understand
fog extensibility beyond what is currently proposed.

These open issues provide an opportunity for future re-
search, including the use of dynamically located and available
fog servers, and fault-tolerance.

B. Fog Resource Provisioning & IoT Resource Allocation

In many cases, it is assumed that fog resources are pre-
viously known to IoT devices [4, 29, 43, 79, 85, 97] and
often provided by an FOC with connections to every fog
node [9, 98]. Some schemes assume a fog server in range of
IoT satisfies latency [82, 98], or that current fog infrastructure
follows certain architectural characteristics [14, 29, 89].

The standard approach with prompt allocation schemes is
to upload IoT data to the nearest fog server, regardless of
available fog resources or fog resource pricing. Indeed, it
is assumed that this information is not known prior to IoT-
fog connection. This can result in sub-optimal processing
costs in a multi-price fog environment. If the nearest fog
server is heavily congested with requests, the response latency
can increase depending on whether the IoT request waits in
a queue for processing [56], is propagated to different fog
nodes [29], or is propagated to Cloud [30, 56]. This is shown in
Fig. 5b. Although prior provisioning approaches [14, 81] help
mitigate IoT requests being re-distributed elsewhere, resource
cost concerns persist. As shown in Fig. 5a, a set of resources
are reserved per fog node based on IoT traffic predictions.
The fog node immediately allocates an incoming IoT request
to the reserved resources, reducing latency; however, this
assumes that reserved resources are always sufficient for IoT
use. Another approach to mitigate re-distribution is to have
a system-wide knowledge of fog resources [29, 43], however
this generates additional hardware and/or software overhead.

The machine learning approach with prompt allocation
schemes is to use RL to improve the efficiency of fog
resource management over time [87, 88, 94]. However, QoS
requirements of IoT requests are assumed to be met through
the use of fog, and not verified. Currently, all current RL
applications for fog resource management use a centralized
RL agent. For large systems, the use of distributed multi-
agent RL, each overseeing a fraction of total fog nodes,
may improve system resource management as a whole. To
reduce computation overhead, each RL agent should learn to
independently behave optimally without requiring cooperation
between them. Most resource management schemes assign a
single IoT request to multiple modules in separate fog nodes
without consideration of fog routing costs. Multiple multi-
agent RL applications have been successful in decreasing
network latency [134, 135], energy consumption [136] or
cost [137] of general network routing between a source and
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target node. There has yet to be a distributed RL application
for fog. Therefore, research opportunities exist for fog resource
management using distributed RL for module assignment and
inter-module routing.

Schemes that make an effort to provide QoS satisfying
allocations generate small amounts of latency overhead [85]
which may prove too large for certain IoT applications, or
are currently only effective for IoV applications [84]. Future
research is required into prompt allocation that does not
jeopardize latency in the worst-case, and provides near-optimal
resource allocation costs with little overhead. The objectives
and modeling techniques of reviewed prompt resource alloca-
tion schemes are summarized in Table IV.

Small batch allocation schemes have longer resource provi-
sioning & allocation solution times for better cost or latency,
making them ideal for static IoT devices needing long-term
and frequent fog support; however, mobile single-request IoT
devices may also request resources from fog. Further research
is required to provide resource provisioning & allocation for
both static and dynamic IoT devices.

All small batch allocation schemes are determined to as-
sume: 1) a static set of IoT requests for the duration of
allocation optimization, 2) guaranteed bandwidth availability,
and 3) all current fog resources are known. Each model is for-
mulated to service IoT requests in batches, which may require
additional latency for a sufficiently large batch to accumulate.
The objectives and modeling techniques of reviewed small
batch allocation schemes are summarized in Table V.

C. Fog Computing Frameworks

An ideal fog framework can monitor resources from the
fog layer, and provide possible data migration between fog
servers with minimal additional latency and overhead. Ad-
ditional hardware must be able to communicate efficiently
with existing fog infrastructure, which may be problematic
if the framework and infrastructure are owned by different
entities. Similarly, additional software such as API support
must be installed on the individual fog nodes, implying the
framework owner has access to the fog node software. An ideal
FOC requires no additional information from IoT regarding
the latency, privacy or security QoS, and can support any
heterogeneous IoT request.

A single fog node provides privacy when data is stored
locally; however, using an FOC that distributes an IoT request
among a cluster of fog nodes can broaden the scope of
data exposure to multiple fog nodes. This creates a trade-off
between larger clusters of fog nodes under one FOC which
provides allocation efficiency, and increased data privacy when
using smaller clusters.

To the best of our knowledge, all mentioned fog frame-
works assume ownership of the fog infrastructure, simplifying
all interactions between the fog framework and the fog in-
frastructure. In a scenario with multiple public fog servers
with different owners, a framework for each owner could
create redundant overhead. Further research is needed to pro-
pose a fog framework that systematically addresses issues of
generated overhead, fog infrastructure/framework ownership,

(a) Mobile IoT device

(b) Mobile Fog server

(c) Failed Fog server

Figure 7: Module migration due to: a) mobile IoT device
moving between fog server ranges, b) mobile fog server
moving out of IoT device range, and c) fog server failure.
In all scenarios, the IoT task is initially connected to f1, and
is migrated to f2. In a) and b), the IoT task begins migration
once the IoT device crosses the migration point.
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Table IV: Summary of resource provisioning schemes with prompt allocation.

Year Author Optimization objective Modeling techniques

2015 Aazam and
Huh [14, 81]

Fair resource pricing and prior provisioning based on
historical IoT relinquish behaviour.

Formula to determine quantity of resources to
allocate to IoT.

2016 Aazam et al. [82] Extends prior provisioning of [14, 81] to factor QoE. Formula to determine quantity of resource to
allocate to IoT.

2016 Agarwal et
al. [30]

Maximize fog utilization. Efficient resource allocation algorithm.

2017 Zhang et al. [29] Minimize energy-consumption of intra-fog resource
management, minimize IoT service rejection of inter-
fog resource management.

Convex optimization, and min-max optimiza-
tion.

2017 Bittencourt et
al. [56]

Minimize latency. Evaluation of three IoT processing policies –
concurrent, FIFO, delay-priority.

2018 Yousefpour et
al. [43]

Minimize cost or delay violations. Greedy algorithms with periodic execution.

2018 Xia et al. [85] Minimize latency. Anchor-based fog node ordering and dynamic
component ordering heuristics.

2018 Wei et al. [87] Minimize latency. Reinforcement learning.

2018 Sun et al. [94] Minimize power consumption of fog. Reinforcement learning.

2018 Wang et al. [88] Minimize latency. Reinforcement learning.

2019 Aazam et al. [83] Predicts and prior provisions resource consumption
based on QoS and QoE.

Formula to determine quantity of resource to
allocate to IoT.

2019 Zhou et al. [47] Maximize vehicular fog utility. Base station conducted pricing-based stable
matching algorithm.

2020 Peng et al. [84] Match vehicular fog nodes with IoT device based on
resource, latency, reputation and pricing requirements
of both parties.

One-to-one assignment algorithm to match
vehicular fog nodes with clients.

Table V: Summary of resource provisioning schemes with small batch allocation.

Year Author Optimization objective Modeling techniques

2015 Gu et al. [28] Minimize cost. MILP-based two-phase heuristic.

2015 Do et al. [4] Minimize carbon
footprint.

Distributed algorithm based on proximal
algorithm and alternating direction method
of multipliers.

2016 Zeng et al. [89] Minimze latency. MILP-based three-stage heuristics.

2016 Souza et al. [32] Minimize cost. MILP.

2016 Zhang et al. [90] Minimize cost. Stackelberg game between Fog nodes,
MDCOs and IoT.

2016 Intharawijitr et
al. [31]

Minimize blocking
probability.

Evaluation of three IoT assignment policies ––
random, lowest latency fog node, maximum
resource capacity Fog.

2016,
2017

Skarlat et al. [9,
138]

Maximize fog
utilization.

MILP and genetic algorithm.

2017 Arkian et al. [17] Minimize cost. Linearized MINLP.

2017 Taneja and
Davy [79]

Optimize latency, fog
utilization and energy
consumption.

ModuleMapping algorithm.

2017 Ni et al. [96] 1) Minimize latency, 2)
maximize fog utility.

Heuristic algorithm.

2018 Ali et al. [92] Minimize latency. Many-to-one matching algorithm.

2019 Donassolo et
al [98]

Minimize cost. MILP model for exact solution, heuristic
algorithm for real-time allocation.

2019 Salaht et al. [97] Satisfy QoS. Constraint Programming.

2019 Karamoozian et
al. [80]

Minimize latency. Gravitational Search Algorithm.



18

Table VI: Summary of contributions with fog frameworks and data migration.

Overhead

Year Author Main Contribution FOC API

2013 Hong et al. [103] Mobile fog programming model for data
migration between IoT and fog nodes.

No Yes

2015 Gu et al. [28] Fog infrastructure for medical cyber-
physical systems with possible data
migration among fog nodes.

Multiple No

2015 Cardellini et al. [93] Frequent resource availability sharing
between fog nodes.

Single No

2016 Saurez et al. [37] Foglet programming model for data
migration between IoT and fog nodes.

No Yes

2016 Skarlat et al. [9, 138] Groups fog nodes into colonies, each with
a data migration controller to transfer
IoT data between colonies if current fog
colony resources are insufficient.

Multiple Yes

2017 Yigitoglu et al. [16] Foggy fog framework allows ubiquitous
view of all fog resources, deploys IoT to
fog nodes satisfying latency, privacy and
priority requirements.

Single No

2017 Zhang et al. [29] Data migration between RSUs and fog
nodes.

Multiple No

2017 Tomovic et al. [39] Resource management, traffic control and
data migration via SDN.

No Yes

2018 Yousefpour et al. [43] FogPlan lightweight QoS-aware frame-
work using SDN to control and monitor
incoming IoT traffic and fog resources.

No Yes

2018 Chen et al. [38] FA2ST, infrastructure of cross-domain
supporting fog nodes.

Single No

2019 Zhou et al. [47] Vehicular fog framework with intra-fog
resource management. If a fog becomes
overloaded, allows task offloading to
nearby smart vehicles.

Multiple No

2019 Tuli et al. [35] FogBus fog framework partitions fog
nodes into separate roles and IoT
exposure to increase fog security and
reliability.

Multiple No

2019 Donassolo et al. [98] FITOR, IoT-fog orchestration framework
that allows ubiquitous view of all fog
resources.

Single No

2020 Madan et al. [102] Allows overloaded RSUs to call and
offload data to UAVs.

Multiple No

2020 Peng et al. [84] Multi-attribute double auction vehicular
framework to match and pair vehicular
fog nodes with IoT devices based on
resources, latency, reputation and pricing
requirements of both parties.

Multiple No
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Table VII: Summary of discrete-event simulation and emulation toolkits for Fog computing infrastructure — Functionality

Migration of IoT process due to

Year Name Method Mobile IoT Fog node
failure

Mobile
Fog node

Topology
input

2017 EmuFog [129, 133] Emulation No No No BRITE [139]

2017 iFogSim [36, 140] Simulation No No No GUI, JSON

2017 MyiFogSim [117, 118] Simulation Yes No No GUI, JSON

2017 EdgeNetworkCloudSim [112, 113] Simulation No No No BRITE [139]

2018 FogExplorer [108, 109] Simulation No No No GUI

2018 iFogSimWithDataPlacement [110, 114] Simulation No No No GUI, JSON

2018 FogNetSim++ [120, 121] Simulation No No Yes .INI file

2019 PFogSim [91] Simulation No No No XML

2019 YAFS [123] Simulation No Yes No JSON

2019 PureEdgeSim [124] Simulation No Yes No Java

2019 FogWorkflowSim [115] Simulation No No No Java

2019 Héctor [130] Emulation No No No API

2019 MockFog [131, 132] Emulation No No No API, GUI

2020 FogDirSim [126, 127] Simulation No Yes No Database

2020 MobFogSim [119] Simulation Yes No No GUI, JSON

Table VIII: Summary of discrete-event simulation and emulation toolkits for Fog computing infrastructure – Evaluation Criteria

Evaluated Metrics

Year Name Method Latency Operational
Costs

Energy
consumption

Fog
utilization/
congestion

Task
Rejection

2017 EmuFog [129, 133] Emulation Yes No Yes Yes No

2017 iFogSim [36, 140] Simulation Yes Yes Yes Yes No

2017 MyiFogSim [117, 118] Simulation Yes Yes Yes Yes No

2017 EdgeNetworkCloudSim [112, 113] Simulation No No Yes Yes Yes

2018 FogExplorer [108, 109] Simulation Yes Yes No No No

2018 iFogSimWithDataPlacement [110, 114] Simulation Yes Yes Yes Yes No

2018 FogNetSim++ [120, 121] Simulation Yes No Yes No Yes

2019 PFogSim [91] Simulation Yes Yes No No Yes

2019 YAFS [123] Simulation Yes No No Yes Yes

2019 PureEdgeSim [124] Simulation Yes No Yes Yes No

2019 FogWorkflowSim [115] Simulation Yes Yes Yes No No

2019 Héctor [130] Emulation Yes No No Yes No

2019 MockFog [131, 132] Emulation Yes No No Yes Yes

2020 FogDirSim [126, 127] Simulation No No Yes No Yes

2020 MobFogSim [119] Simulation Yes Yes Yes Yes No

privacy, and communication with IoT applications. There is
also a research opportunity to develop a proof-of-concept
of a framework that can interact with existing public fog
infrastructure regardless of owner. The main contributions and
hardware/software overhead generated for each fog framework
is summarized in Table VI.

D. Fog Infrastructure Design Evaluation

After an IoT request is assigned to a fog node, there are
several scenarios in which the provisioned module needs to be
migrated to a new fog node. Specifically, we consider module
migration due to a mobile IoT device moving between fog
nodes, a mobile fog node moving away from an IoT device,
and a fog node failure. When a mobile IoT moves between
fog nodes, module migration is efficient for slow moving
devices; however, significant decreases in successful module

migrations is seen with fast vehicles [119]. The proposed
fog implementations with mobile fog nodes use slow moving
UAVs [141] and buses [46], ensuring migration efficiency.
Though module handover is supported in FogNetSim++ [120],
specifics regarding migration policies and strategies are not
fully explored beyond what is available in OMNet++ [122].
When fog node failures are present, it is necessary for replicas
of the module data to be stored elsewhere in order to restore
and migrate data to live fog nodes [35].

For all current simulators, at most one of these scenarios
are explicitly addressed. Though fog computing has many
use cases that require module migration, there is yet to be
a tool that simulates all possible scenarios. For each described
evaluation tool, the approach to simulation/emulation is only
appropriate if the designed fog infrastructure and framework
can perform similar actions.



20

From an implementation standpoint, file input support is
ideal in situations where the entities designing the fog in-
frastructure and evaluating its efficiency are different. Using
formats like JSON, XML or BRITE [139] can facilitate the
fog development process across multiple entities in an orga-
nization. A GUI or topology input directly into the evaluation
tool can be useful when trial-and-error is required to find an
optimal design. We wish to mitigate this using a fog design
& dimensioning process [5, 78]. The supported migration
scenarios and topological input format of each simulator is
summarized in Table VII.

Each tool records logs during evaluation, outlining metrics
of each task allocation such as latency, energy consumption,
cost of allocation, resulting network congestion, and task
rejection due to unsatisfied QoS requirements. Though most
tools allow custom output metrics, only what is recorded in
logs can be evaluated; indeed, no evaluation tool records all
evaluation metrics shown in Table VIII.

There remain opportunities to build an evaluation tool with
the flexibility to model any scenario in a fog infrastructure.
This becomes particularly important in a dynamic fog system
with fog node failures, dynamically available fog nodes,
mobile fog nodes, and mobile IoT. Since the evaluated output
can only aggregate what is logged, there is also an opportunity
to expand the available metrics that are recorded from the IoT
request, the provisioned fog node, and the network path.

IX. CONCLUSION

Fog computing provides an alternative to Cloud processing
with increased privacy and low latency to IoT applications.
As the number of IoT applications increases, fog infrastruc-
ture implementations become crucial. We have identified four
phases to implement a fog infrastructure, and discussed their
limitations and open issues. We compared current design &
dimensioning models which produce a blueprint of a fog
infrastructure for the support of IoT applications. We clas-
sified resource provisioning & allocation schemes by their
effectiveness to support dynamic and static IoT applications,
and identified optimal objectives and modelling techniques
used by each scheme. We analyzed the main contributions and
generated overhead of fog frameworks. Finally, we reviewed
and identify limitations of simulation/emulation tools for the
evaluation of the designed fog infrastructure.

With this survey of current fog solutions, we intend to give
a detailed understanding of the necessary considerations of
building a practical fog infrastructure for local IoT support,
up to large-scale Smart City systems. Based on our results,
we believe we have provided a detailed overview of steps
necessary for a practical and functional fog implementation.
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Chapter 3

Scalable design & dimensioning of
fog-computing infrastructure to
support latency-sensitive IoT
applications

Abstract The Fog computing paradigm has appeared as a geo-distributed response to a growing
focus on latency-sensitive Internet of Things (IoT) applications and the long-delay that may be
provided by Cloud Data Centres. Although many researchers have investigated how IoT can interact
with a Fog, very few have tackled the question of how to construct a Fog infrastructure for expected
IoT traffic. This paper addresses the design and dimensioning of a Fog infrastructure via a Mixed-
Integer Linear Program (MILP) to construct a physical Fog network design by mapping IoT virtual
networks to dimensioned Fog nodes. Due to the exponential nature of this MILP formulation, we
also propose a Column Generation model with near-optimal results at a significantly reduced design
and dimensioning cost. Numerical results show the viability of the Column Generation method in
its proximity to the optimal solution and in its reasonable solution time.

This chapter introduces fog design & dimensioning for stationary fog nodes to support IoT
traffic over congested networks. This chapter has been published in IEEE Internet of Things [39].
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Scalable Design and Dimensioning of
Fog-Computing Infrastructure to Support Latency

Sensitive IoT Applications
Ismael Martinez, Abdallah Jarray, and Abdelhakim Senhaji Hafid

Abstract—The Fog computing paradigm has appeared as a
geo-distributed response to a growing focus on latency-sensitive
Internet of Things (IoT) applications and the long-delay that may
be provided by Cloud Data Centres. Although many researchers
have investigated how IoT can interact with a Fog, very few have
tackled the question of how to construct a Fog infrastructure
for expected IoT traffic. This paper addresses the design and
dimensioning of a Fog infrastructure via a Mixed-Integer Linear
Program (MILP) to construct a physical Fog network design
by mapping IoT virtual networks to dimensioned Fog nodes.
Due to the exponential nature of this MILP formulation, we also
propose a Column Generation model with near-optimal results at
a significantly reduced design and dimensioning cost. Numerical
results show the viability of the Column Generation method in its
proximity to the optimal solution and in its reasonable solution
time.

Index terms— Fog computing, Mixed-Integer Linear Pro-
gramming, Column Generation, Design and Dimensioning,
Internet of Things (IoT)

I. INTRODUCTION

AS Internet-of-Things (IoT) devices become more promi-
nent in all facets of industry, the number of IoT applica-

tions requiring real-time processing is also increasing. Heart
monitors and vehicular traffic status sharing are examples
of IoT applications that are increasing in number and use,
and require near-immediate data transmission, processing and
response by the Cloud. Processing through Cloud Data Centres
result in unacceptably high latency for IoT application re-
sponses due to the centralized and distant nature of these Data
Centres. A report by Cisco emphasizes that existing Cloud
Data Centres are not designed to meet the current volume and
variety of IoT data and requests. Meanwhile, the number of
IoT devices are only expected to grow up to 50 billion by the
year 2020 [1]; this means that processing of IoT applications
outside of the Cloud is crucial.

To combat high round-trip latency and increasing data vol-
ume to Cloud Data Centres, Fog computing has been proposed
as highly virtualized Micro Data Centres on the network
edge [2], allowing the Fog network to analyze and process
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Fig. 1: Fog-DC infrastructure to process IoT requests.

the most time-sensitive data. Although typically having fewer
resources than the Cloud [3], Fog nodes are decentralized
and geographically distributed enabling IoT connectivity with
minimal round-trip latency. Furthermore, the Fog network
can process many IoT applications that would otherwise be
processed in the Cloud, reducing the volume of data reaching
the Cloud. A wide-reaching Fog network could therefore
satisfy any IoT process regardless of location.

The increase in IoT devices is a direct result of an ac-
knowledgement of value, proposal, and deployment of IoT
applications across many domains including health care [4]
and Smart Cities [4]–[6]. The low latency, scalability and geo-
distributed nature of Fog have made it integral to the success
of these IoT applications [7]. The future growth and adoption
of 5G radio access networks further facilitate the viability
and implementation of Fog networks, and widen the scope of
devices that can partake and aid in IoT-Fog communication [8].

IoT applications proposed to take advantage of Fog include
energy management in residential domains [9], fire detection
& fire-fighting [10], video streaming [11], and video surveil-
lance [12]. There have been proposals for health care appli-
cations using Fog with existing wearable technologies [13],
as well as medical-specific wearables to provide real-time
assisted living services in hospitals [14] or to help diagnose
heart disease [15].

Most existing contributions [13], [16]–[22] are concerned
with Fog resource allocation to support the requirements of
IoT applications; however, all these contributions assume an
existing Fog computing infrastructure. Other State of the Art
research in Fog computing focus on conceptual Fog infras-
tructure, and Fog interaction with IoT and Cloud. There has
been only one study [23] that investigated the design of a Fog
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infrastructure; however, the proposed design was specific to
Internet of Vehicle (IoV) applications. Indeed, there are no
studies on the design and dimensioning of the Fog network
for the support of the general IoT paradigm. We intend to
provide a scalable and efficient approach to Fog design and
dimensioning that can be feasibly implemented and deployed.

We consider a geographical region where no Fog infrastruc-
ture currently exists, and where there is an expected increase in
IoT traffic. We define the design of the Fog infrastructure as
the selection of Fog node locations from a set of candidate
locations, and define the dimensioning of each Fog node
as determining the amount of CPU, Memory and Storage
resources to be installed. Designing and Dimensioning will
therefore yield a full blueprint necessary for construction of a
Fog infrastructure.

To the best of our knowledge, this paper is the first work
to propose a design and dimensioning scheme of the general
Fog infrastructure for IoT applications. Our approach is based
on existing or predicted IoT traffic, with the goal to design a
Fog infrastructure to support the processing of upcoming IoT
requests. Furthermore, our approach is extensible, allowing for
new Fog nodes to be optimally added to a current infrastructure
in the event of an increase of IoT traffic.

We consider an infrastructure of the combined Fog and
Cloud paradigms known as Fog-DC (Fig. 1), and optimize
the design, dimensioning and IoT-resource allocation to the
Fog-DC infrastructure. To optimize the cost of the Fog-DC
design and dimensioning, two approaches are presented: an
exact approach using a Mixed Integer Linear Programming
(MILP) method called Fog-DC-MILP, and a heurisitc solution
using Column Generation called Fog-DC-CG.

This paper outlines the first study of the design and di-
mensioning of Fog computing for IoT applications. Our main
contributions are as follows:

1) We perform an analysis of model considerations such as
transmission delay from IoT applications and network
congestion towards Fog-DC that impact the design and
dimensioning of the Fog-infrastructure.

2) We propose an exact optimization approach for Fog-
DC design and dimensioning via one-shot MILP model
(Fog-DC-MILP) that minimizes the resource and network
mapping cost between a fixed IoT set and the constructed
Fog-infrastructure.

3) We propose a scalable heuristic Column Generation
approach (Fog-DC-CG) to overcome computation com-
plexity of Fog-DC-MILP. Numerical results compare the
efficiency of these two models with standard heuristics
such as a Greedy Algorithm and a matching-based model.

Devising a scalable method to constructing an optimal Fog-
infrastructure paves the way for implementation of IoT-Fog-
Cloud communication. Given the numerous studies into the
interaction between IoT, Fog and Cloud reviewed in the next
section, physical Fog networks will allow for extended and
practical research into the efficiency of Fog-computing.

The rest of this paper is organized as follows. Section II
presents related work. Section III defines Fog-DC. Section IV
presents the impact of IoT traffic, network congestion and
routing delays on the Fog-DC model. Section V defines the

MILP model. Section VI presents the Column Generation
model. Section VII defines two benchmark heuristic models to
compare against our proposed model. Section VIII evaluates
and compares the proposed solutions. Section IX concludes
the paper and presents future work.

II. RELATED WORK

Conceptual research in Fog infrastructure has studied how
Fog could be set-up to interact with IoT devices, and many
proposals supporting IoT applications using an existing Fog
infrastructure have been brought forth. Across different stud-
ies, we use IoT requests and applications interchangeably, and
use tasks and modules interchangeably as components of an
IoT application.

Three IoV applications use clusters of slow moving or
parked cars as the Fog itself; Sookhak et al. [24] propose
incentives for participating such as free parking, free Wi-Fi
or free shopping vouchers, Hou et al. [25] show how non-
smart cars may be upgraded with hardware and/or software in
order to take part, and Zhou et al. [26] allocates Vehicular Fog
resources to users in an information incomplete environment
using preference matching algorithms. More generally, Chang
et al. introduced the concept of Consumer as a Provider
(CaaP), a platform to allow user devices such as phones and
modems to act as Fog nodes available for public use [27]. With
a large enough user base, the CaaP Fog network can cover
vast continuous areas. Given an existing Fog infrastructure,
Souza et al. [17] propose to virtually cluster Fog nodes
for seamless data-sharing within clusters, and data-transfers
between clusters. Zhang et al. [28] propose CFC-IoV as an
IoV application whereby road side Fog nodes handover data
between each other for moving vehicles.

Taneja et al. [29] note that each IoT request is in fact
comprised of multiple modules, each comprised of a single
sensor or actuator. Using heuristic search methods, Xia et
al. [30] assigns IoT application modules to Fog devices. The
module assignments reserve resources for the IoT application
for all future requests until relinquished. Aazam et al. [31]
developed a pricing model for module assignments based on
the probability that an IoT application will relinquish its hold
of Fog resources. By clustering IoT devices together that run
the same service, and mapping those services to Fog nodes,
Yousefpour et al. [32] are able to extend the scope of the IoT
devices which can use each assigned modules.

Frameworks over a combination of IoT, Fog, and Cloud lay-
ers can facilitate resource allocation deployment. FogBus [33]
is a framework where IoT requests first arrive to Broker nodes
to be assessed and forwarded to Fog or Cloud Data Cen-
tres. FogBus also separates Fog nodes into computation and
storage devices; these extra layers may decrease provisioning
efficiency and functionality. The Foggy [34] framework is
built using only a single Fog layer. Both frameworks require
extra software installed in each Fog node to achieve inter-
communication of available resources and job lists.

Resource provisioning schemes aim to find an acceptable
mapping between IoT resources and Fog nodes. The ob-
jective of these schemes vary from minimizing round-trip
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latency [16], [30], maximizing Fog utility which inherently
minimizes Cloud utility [3], [19], or minimizing the resource
provisioning cost [13], [35]. Uniquely, Ni et al. [36] focus on
minimizing Fog credibility score, and Do et al. [11] propose
a model that jointly maximizes Fog utility and minimizes
the generated carbon footprint. Three separate models are
proposed by Zhang et al. with independent objectives: to
minimize energy and delay costs of edge network resource
allocation [37], to minimize IoT request rejection from Fog
nodes [28], and to minimize the stochastic delay cost associ-
ated with edge computing [38].

Naas et al. [16] propose an Integer Programming formu-
lation, and a resource provisioning heuristic based on ge-
ographical zoning that was evaluated using the simulation
toolkit iFogSim [39]. Donasollo et al. [35] solve an Integer
Program using a Divide & Conquer approach while minimiz-
ing resource allocation cost. Intharawijitr et al. [21] propose
the use of 5G mobile networks with Fog to minimize the
number of rejected IoT requests; an MILP was formulated and
solved via a greedy allocation policy. Souza et al. [17] also
formulates an MILP model over a Fog-Cloud infrastructure
that was solved directly via Gurobi Optimizer for a limited
instance size. Salaht et al. [40] use a Constraint Programming
approach to satisfy all QoS requirements of IoT requests for
a quicker solution; however, this can result in a large variety
of provisioning costs to a user. Skarlat et al. [20] proposes a
Mixed Non-Linear Programming model that is solved using a
genetic algorithm.

Most resource provisioning approaches use the Fog along-
side the Cloud to process IoT applications the Fog cannot [16],
[17], [20], while [21] establishes that IoT requests not pro-
cessed by the Fog are not processed at all. The rejection of
IoT requests occurs when all Fog nodes that could satisfy the
IoT latency threshold do not have enough available resources.
To avoid this rejection, either a larger Fog infrastructure should
be implemented, or a network sink such as the Cloud should
be used to receive and process all IoT applications unable to
be processed by the Fog infrastructure.

The core limitation of the reviewed research is the as-
sumption that a Fog infrastructure exists. To the best of
our knowledge, there is only one work that designs a Fog
infrastructure to support IoV applications [23].

Yu et al. [23] propose a Fog deployment and dimensioning
scheme for IoV applications, whereby vehicles connect to
Road-Side Units (RSUs), which connect to Fog nodes in
order to receive and provide real-time traffic conditions on all
covered areas. Additionally, the optimal location of Gateways
to access the Cloud are also found. The locations and di-
mensioning of RSUs, Fog and Gateway devices are optimally
found from a set of candidate locations and dimensioning
configurations in an arrangement that minimizes infrastructure
cost. Regarding vehicular traffic, the model assumes a known
static set of vehicle resources accessing the network across
different regions, which may not be true in practice. Although
having a set of candidate locations for Fog nodes is practical,
the model also assumes a finite candidate set of dimensioning
configurations; the solution to this model is thus dependent on
the completeness of such a set. Finding the optimal placement

Fig. 2: Mapping of an IoT request virtual network In = (Tn, En)
to Fog-DC infrastructure G = (F ∪ C,L).

of RSUs and Gateways increase the complexity of the model,
while the inclusion of RSUs also restricts the application of
this model to IoV.

In this paper, we propose a Fog design and dimensioning
scheme to support a general heterogeneous IoT population for
a predicted set of IoT traffic. In place of using an exhaustive
finite set of resource dimensions from which we allocate
to each Fog node, we define the dimensions of each Fog
node as continuous below its maximum resource capacity.
Furthermore, by assuming any Fog has network access we
acknowledge that any Fog node could access the Cloud, thus
removing the need to place Gateways.

III. FOG-DC

A. IoT Traffic

We consider the total amount of expected IoT device tasks1

for a given area made up of sensors and actuators, where each
IoT request is comprised of one or more of these devices.
We use the these expected number of tasks as well as the
frequency of requests to formulate our predicted IoT traffic.

We define a set K of unique request classes2, and use this
set to build our expected IoT request set N . Each request
class k ∈ K defines a set of IoT applications with identical

1These estimates may come from estimations of the planned manufacturing
and business expansion of the given area.

2Multiple requests executed from the same set of devices, with the same
transmitted data format and expected response format at different times are
considered to follow the same unique request class.
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data transmission and response format, and number of request
tasks qk; furthermore, we assume data uploads from requests
with class k follow a Poisson process with arrival rate λk [22].

Suppose we want our Fog-DC design to be built to handle
the incoming traffic the majority of the time; we define
ρ ∈ [0.5, 1) to be the percentile of IoT traffic we wish to cover.
For each IoT request class k ∈ K with arrival rate λk, we
define the ρ-percentile as

xρk = min{xk ∈ Z+ : P(xk;λk) ≥ ρ}, k ∈ K, (1)

where P(x;λ) is the cumulative distribution function of the
Poisson distribution with parameter λ. Let km represent the
mth request of class k within a larger set. We define the
ρ-percentile set of IoT requests as

Nρ =
⋃

k∈K

xρk⋃

m=1

km, (2)

where
⋃

defines the union of sets. By construction of Nρ in
(2), we observe a mapping between Nρ and K such that for
each request n ∈ Nρ, there exists a class k ∈ K associated
with n. We define this mapping as MK : Nρ 7→ K. If
MK(n) = k, then the number of tasks in request n is qk.
Moving forwards, for ρ-percentile of expected IoT traffic, we
define N = Nρ to be the set of IoT requests. Since P(x;λ) is
monotonically increasing for fixed λ, larger values of ρ yield
a larger set N .

B. IoT Virtual Network

Each of the IoT requests is divisible into a set of interde-
pendent atomic tasks modeled as a weighted directed virtual
network graph, represented by a Task Dependency Graph
(TDG) In = (Tn, En) (Fig. 2), for request n ∈ N ; Tn denotes
the set of tasks in request n, and En denotes the set of directed
virtual networking links between tasks.

For a request n ∈ N , each task t ∈ Tn has a set
of VM Cloud computing requirements: (a) CPU capacity
pCPUt , (b) memory processing requirement pMEMt , (c) storage
requirement pSTRt , and (d) processing order ot with respect
to any other t′ ∈ Tn. For simplicitly, we define the set
R = {CPU,MEM,STR} to be the set of VM resource require-
ments. This processing order ot is used for the construction
of the IoT TDG In.

C. Fog-DC Physical Infrastructure

The Fog-DC physical infrastructure is represented by a
directed graph G = (W,L) (Fig. 2) where W = F ∪ C
is the set of potential Fog node locations F and available
Cloud Data Centre sites C in the vicinity of the designed
infrastructure, and L is the set of wired/wireless bidirectional
links connecting Fog-DC nodes.

Each Fog-DC node w ∈ W has a maximum available
resource limit of Srw, r ∈ R. Between any two Fog-DC nodes
w,w′ ∈ W , the link l(w,w′) ∈ L has a maximum bandwidth
capacity of B(w,w′) > 0.

The set of Fog-DC nodes W = F ∪ C contains both Fog
node candidates and fixed Cloud nodes. This leverages the

low-latency benefits of Fog nodes on the network edge, and the
large memory and storage capabilities of the Cloud. The result
is a designed and dimensioned architecture that can satisfy
low-latency responses from IoT with Fog, and pass long-term
storage and latency insensitive application processing to the
Cloud.

Altogether, we have |N | virtual networks – one for each IoT
request – and one physical network of Fog nodes. For each
IoT virtual network In, n ∈ N , we want to establish a network
mapping to the Fog-DC infrastructure G. A feasible mapping
of all IoT tasks to Fog-DC nodes must adhere to the resource
and bandwidth capacities of the Fog-DC infrastructure.

The mapping of each IoT request In (Fig. 2) can be divided
into hosting and network mapping. Each IoT hosting node
t ∈ Tn belonging to an IoT request n ∈ N is mapped to a dis-
tinguished Fog-DC node w ∈W by mapping MW : Tn 7→W .

We define the set of all possible paths between any two
nodes in W as Π, and the set of all possible paths between
two specific nodes w,w′ ∈ W as Π(w,w′). Each virtual
IoT link e = (t, t′), e ∈ En belonging to an IoT request
n ∈ N is mapped to an Fog-DC path π ∈ Π(w,w′) ⊆ Π via
ME : En 7→ Π(w,w′), where MW(t) = w and MW(t′) = w′.
Note, if w = w′, then Π(w,w′) = ∅ since no path is needed.

IV. MODEL CONSIDERATIONS

A. Reachable Servers

The large selling point of a Fog infrastructure closer to
an IoT device is reduced latency which benefits applications
needing real-time or near real-time responses. Consider the
IoT device from which a task t ∈ Tn, n ∈ N is executed; for
simplicity, we refer to this device as IoT device t. Suppose
IoT device t has a range3 γt, and a distance dt,w between an
IoT device t and a Fog node f ∈ F . If dt,f ≤ γt, we consider
this Fog node reachable from t, and if dt,f > γt,then f can
be accessed by t by one of many available access points a
within the task’s radius of communication. Similarly, either
a Fog node f or an access point a can act as a gateway to
reach any Cloud Data Centres. This communication is visually
represented in Fig. 3.

B. Network Congestion

In order to correctly model the latency given to IoT-Fog
mapping, we must consider the effect IoT traffic has on
physical link congestion. For a request n ∈ N such that
MK(n) = k, let {Xn(τ), τ ≥ 0} be the volume of transmitted
IoT data by time τ following a Poisson Process with rate λk
per unit time, i.e. E[Xn] = λk, ∀n ∈ N,MK(n) = k. The total
rate of data entering Fog-DC is the sum of these individual
request amounts; therefore, the overall arrival rate is

∑

n∈N
λMK(n) = λρ. (3)

By construction of N in (2), an increase in ρ to ρ′ will yield
an increased arrival rate λ′MK(n),∀n ∈ N , hence an increased
overall arrival rate λρ′ .

3A survey on IoT found the range of most devices were from 10 to 100
meters, depending on the communication standard and technology used [41].
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Fig. 3: Each task can directly communicate with any Fog
node within its range of communication γ. Fogs can also be
accessed via an internet access point at a greater latency cost.
Every Fog node and access point can act as a gateway to Cloud
devices.

Within the Fog, we define the outermost nodes to be the
nodes that fall within the radius of communication γt of at
least one IoT device t; these are also called the edge nodes.
We define the innermost nodes to be the Fog nodes that link
directly to a Cloud Data Centre. All nodes in between are
referred to as core Fog nodes.

Regardless of where data from task t is processed, we
assume all data reaches the Cloud at some point either for
processing or long-term storage. In Fig. 4 we have divided
our system into 3 layers – IoT, Fog and Cloud. The amount
of data that enters the Fog follows a Poisson Distribution
with rate λρ and expects a response for each datapoint; we
assume the amount of data that eventually enters the Cloud is
equivalent. In other words, for every data point transmitted by
IoT device t, the data’s lifecycle includes being processed by
a node either in the Cloud or the Fog network with a response
being returned, and long-term storage being propagated to the
Cloud.

Since we assume all data must pass through the Cloud,
we recognize substantial link congestion entering the Cloud;
however, having some data processing occur in the Fog results
in reduced link congestion returning from the Cloud. Similarly,
there may be higher link congestion as we move towards
the innermost nodes, but the amount of link congestion from
processing responses are reduced as we process more tasks in
the outermost nodes.

Congestion on a single link can be modelled as an M/M/1
queue, where requests are processed and released at an ex-
ponentially distributed rate µw by w ∈ W . We define pw to
be the probability that a Fog-DC node w ∈ W receives the
executed IoT request such that

∑
w∈W pw = 1; this probability

is based on available resources of w and distance from the IoT
devices. We also define the expected number of IoT requests
received by w as pwλρ. Using the IoT data arrival and service

rates, as well as Little’s Law [42], we determine the average
wait time to be processed by w ∈W , denoted η̄w to be

η̄w;ρ =
pwλρ

µw(µw − pwλρ)
. (4)

For a fixed uw and pw, η̄w is monotonically increasing with
λρ > 0. By (2) and (3), λρ is monotonically increasing with
the percentile ρ; therefore, an increased percentile ρ leads to
a larger average wait time.

Let Lw = {l ∈ L | l = (w0, w) ∈ L} ∪ {(t, w) | MW(t) =
w} be the set of links feeding into w, and let Hw;ρ denote
the random variable of waiting time before being processed
by node w ∈ W for a network accepting the ρ-percentile of
IoT traffic. We know E[Hw;ρ] = η̄w;ρ by definition. By [42],
the cumulative distribution Gw;ρ(x) of Hw;ρ is

Gw;ρ(t) = P[Hw;ρ ≤ t] = 1− pwλρ
µw

e−(µw−pwλρ)t. (5)

We denote this wait time Hw;ρ to represent our congestion
factor for a link (w0, w), w ∈ Lw, and ρ-percentile IoT traffic.
For any response from w to t, we define the service rate
µt = 0; therefore, we define Ht;ρ = 0, t ∈ Tn, n ∈ N .

Let πW be the set of all nodes w ∈ W ∪ Tn, n ∈ N in a
path π\{w0} π ∈ Π(w0,w). To estimate congestion over a path
from w0 to w′, we simulate the maximum waiting time over
all paths π ∈ Π(w0,w) which gives a worst-case congestion per
simulation, and calculate the mean and variance. By Central
Limit Theorem, [43], we can approximate the congestion
factor over the any path by a normal distribution for a large
number of m simulations.

Algorithm 1 Simulate congestion over a path w0 to w
Result: Estimated congestion distribution H(w0,w);ρ for

ρ-percentile IoT traffic.
Initialize ρ ∈ [0.5, 1);
for i = 1 to m do

for w ∈W ∪ Tn, n ∈ N do
ηw ← Hw;ρ // Sample

end
η̃(w0,w),i ← max{ ∑

w∈πW
ηw;ρ : π ∈ Π(w0,w)}

end
η̄(w0,w) ← 1

m

∑m
i=1 η̃(w0,w),i

σ̂2
w0,w ← 1

m−1

∑m
i=1(η̃(w0,w),i − η̄(w0,w))

2

H(w0,w);ρ ∼ N (η̄(w0,w), σ̂
2
w0,w) .

Note, a path Π(w0,w) has at most two elements in Tn, n ∈ N
at the beginning and/or end of the sequence. Let G(w0,w);ρ(t)
represent the cumulative distribution function of H(w0,w);ρ.

Once an IoT request is processed by a Fog node and a
response is returned to the IoT device, the request data is also
sent to the Cloud for long-term storage; however, since no
further processing of the request is needed, the link congestion
associated with this data instance is negligible. From this, we
infer that congestion towards the Cloud is alleviated as the
probability that a request is processed within the Fog network
instead of the Cloud increases.
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Fig. 4: The Fog-DC infrastructure divided into IoT, Fog, and
Cloud to illustrate how congestion may occur. Shown is the
lifecycle of a single request with tasks t1 and t2; a response
to t1 is required from Fog f5, and a response to t2 is required
from t3. Once processed, data is also propagated to the Cloud
for long-term storage.

We make the simplistic assumption that a Fog-DC node
w can only process one IoT request at a time, which is
not true in practice. Furthermore, our current analysis of
network congestion is based on placing a Fog node f in
every candidate location in F ; in reality, only a handful of
these locations will be used, raising the congestion within
the Fog network. To determine a more accurate estimate of
how much congestion is present surrounding different nodes
in the network, a simulation is necessary provided a network
architecture and expected IoT traffic; a simulation framework
such as iFogSim [39] could be used, which we propose to do
in a future work.

C. Transmission Delay

Each task t has a transmission file size s+
t and a bandwidth

requirement4 bt that remain consistent throughout transmission
from t to t′ where ot = ot′ − 1, t, t′ ∈ Tn, n ∈ N . Wang
et al. [45] found a positive correlation between the number of
hops and the latency of internet communication between two
nodes under 1000 kilometres in distance; therefore, we model
transmission delay using hops.

For Fog node f ∈ F , let G−1
f ;ρ(·) denote the inverse

cumulative distribution function of Hf ;ρ, and G−1
(t,w);ρ(·) de-

note the inverse cumulative distribution function of H(t,w);ρ.
For U ∼ Uniform(0, 1), we can represent a random sam-
ple of congestion over a path as Hf ;ρ = G−1

f ;ρ(U) and
H(t,w);ρ = G−1

(t,w);ρ(U). This congestion can also be inter-
preted as queuing delay or wait time of a package over the
specified link. Let ω ∈ (0, 1) represents the percentile of
estimated congestion for a random path; higher values of ω
yield a worst-case estimate of transmission delay.

For a Fog-DC node w ∈ W , the transmission delay
is dependent on the transmission bandwidth, the data file

4The most common IoT transmission standard is IEEE 802.15.4 [41], which
for a common frequency of 2.4 GHz transmits at 250kbps, with this rate
decreasing with lower transmit frequencies [44], giving us an idea of the
range of transmission bandwidth bt.

size, an upper bound on the number of hops from t to w
denoted ht,w, and any network congestion found along the
way. Based on these factors, we devise an approximation to
the communication delay between a task t and a Fog-DC node
w denote νρ,ωt,w .

For a Fog node f ∈ F such that MW(t) = f and dt,f ≤ γt,
and ρ-percentile IoT traffic, we get the transmission latency
as

νρ,ωt,f =
s+
t

bt
+G−1

f ;ρ(ω). (6)

If a Fog-DC node w ∈ W is not within the communication
range γt of a task t, the expected transmission delay becomes

νρ,ωt,w = ht,w ·
s+
t

bt
+G−1

(t,w);ρ(ω), (7)

where we only consider one hop of congestion entering the
Fog-DC infrastructure.

We assume the bandwidth of a task remains constant
throughout its transmission and response, a response file size
s−t after processing, and a ω-percentile of congestion on any
path. Then, for a task mapping MW(t) = w, we have

νρ,ωt,w = ht,w ·
s+
t

bt
+G−1

(t,w);ρ(ω)

νρ,ωw,t = hw,t ·
s−t
bt

+G−1
(w,t);ρ(ω)

(8)

for ht,w = hw,t.

D. Physical Network Delay

Data transmitted by t to w is a package of size s+
t with

response package size s−t . For a pair of ordered and successive
tasks t, t′ and task mappings MW(t) = w and MW(t′) = w′

the network delay is dependent on the task bandwidth bt, the
response file size s−t , the ρ-percentile of IoT traffic, and the
ω-percentile of resulting congestion. We define the network
delay from a task t as

φρ,ωt (w,w′) = hw,w′ ·
(
s−t
bt

+G−1
(w,w′);ρ(ω)

)
, (9)

where hw,w′ is an upper bound on the number of hops between
w and w′, and ω ∈ (0, 1) is the percentile of congestion
expected on a random path π ∈ Π(w,w′).

For a single request {n ∈ N | MK(n) = k}, we order
the request tasks t1, ..., tqk , each with differing file sizes and
bandwidth requirements to the next task. For MW(ti) = wi,
the total physical network delay for request n ∈ N is

φρ,ωn (w1, wqk) =

qk−1∑

i=1

φρ,ωti (wi, wi+1). (10)

When modelling a large network, these approximate cal-
culations of physical network delay between each task may
become too large. We invoke a worst-case estimate of physical
network delay to our model to provide model scalability.

Consider a pair of Fog-DC nodes w,w′ ∈ W , and let
π ∈ Π(w,w′) be the set of all possible paths between these
two nodes. If we assume data can take any path between these
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Fig. 5: The end-to-end delay for a sequence of tasks is the
sum of transmission times, processing times and routing time.

nodes, we define π∗ to be the critical path (longest path), and
hπ∗ to be the total number of hops taken to traverse this path.
When we are considering the routing time from the first task
to the last task, we assume the worst case scenario regardless
of whether there exists shorter routing through the other tasks.
We also define

rn = max
i=1,...,qk

{s−ti
bti

}
(11)

as the worst-case transmission rate. We then define

φ̃ρ,ωn (w1, wqk) = hπ∗
(
rn +G−1

(w1,wqk );ρ(ω)
)

(12)

as the worst-case transmission rate with congestion percentile
ω ∈ (0, 1).

E. Total Delay

For a task t and mapping MW(t) = w we incur the
transmission delays νρ,ωt,w to transmit and νρ,ωw,t to receive a
response (8).

Once a task is transmitted to a Fog node, it must be
processed before moving on. Each task t has a set computing
time ζt which is specific to the set of resources needed for
that task {prt | r ∈ R}; as a result, it does not depend on the
Fog node on which it is executed.

For a mapping MK(n) = k, let the tasks of the request n be
ordered t1, t2, . . . , tqk such that t < t′ if ot < ot′ . For a task
mapping MW(ti) = wi for each ti ∈ Tn, the end-to-end delay
with ρ-percentile IoT traffic and ω-percentile congestion can
be defined as

νρ,ωt1,w1
+ φ̃ρ,ωn (w1, wqk) + νρ,ωwqk ,tqk

+

qk∑

i=1

ζti . (13)

Fig. 5 shows that each task is uploading data to their paired
Fog-DC node, and may receive a response. In order for a
Fog-DC node w to process its paired task t, it must both
receive the task data from t as well as the processed data
from the preceding Fog node. We assume all tasks t ∈ Tn for
a request n ∈ N are transmitted synchronously, so there exists
no delay between the start of each task. To this end, we make
the assumption that for a task mapping pair MW(ti) = wi

and MW(tj) = wj , oti < otj with ρ-percentile IoT traffic and
ω-percentile congestion, we have

νρ,ωti,wi + ζti + φ̃ρ,ωn (wi, wj) ≥ νρ,ωtj ,wj . (14)

This ensures wj receives the task information from tj prior
to any data required from wi, allowing wj to begin on any
processing required from the previous tasks immediately upon
arrival.

Though here we assume a normal distribution of congestion
and a worst-case routing delay, in practice we would use
historical data on incoming IoT data to properly model a
probability distribution describing routing delay patterns. In
the event of no current IoT devices set up in the Fog designed
area, we elect to use historical data of similar IoT devices
from surrounding districts. This is left for future work.

V. MILP MODEL

DESIGN AND DIMENSIONING APPROACH

Design and dimensioning are ones of the most important as-
pects of Fog-DC management, since they are directly related to
the cost and the QoS requirements of IoT computing services.
Efficient design and dimensioning will have a positive impact
on Fog-DC service provider’s profitability. Resource allocation
to the incoming IoT requests could be performed in a batch
wise fashion. The size of batch can be modified depending
on the considered topology and IoT traffic so as to ensure
real time response to the requests. The Fog-DC design and
dimensioning problem is in: (1) selecting the optimal location
and dimensioning of Fog-DC sites, and (2) minimizing the
cost of resources (e.g., computing and communication) while
satisfying QoS requirements of IoT requests. These require-
ments include (1) bandwidth: transmission capacity between
tasks of the IoT request , (2) latency: the time it takes to
process the request and receive the response, (3) computing:
computing capacity to process the tasks of the IoT request, (4)
storage and memory capacity requirements of each IoT task,
and, and (5) processing order of the tasks that composes the
IoT request.

To evaluate the merits of the proposed Fog-DC design,
dimensioning and resource allocation approach, we propose
the following MILP based mathematical formulation we call
Fog-DC-MILP. A virtual link e ∈ En is defined by the pair
e = (t, t′) such that t, t′ ∈ Tn, n ∈ N , with ot = ot′ − 1
meaning t′ immediately follows t in the order of tasks. Each
link e ∈ En has a data transfer capacity requirement bt
between a pair of tasks t and t′. Furthermore, we invoke a
partial latency requirement τt that the completion of all tasks
up to and including t must satisfy.

Recall, for a request In = (Tn, En), we define the task
mapping as MW : Tn 7→ W and the network mapping as
ME : En 7→ Π. When an IoT request arrives, Fog-DC provider
has to determine whether it is to accepted or rejected. This
decision is largely based on the QoS requirements of the
IoT request, the availability of Fog-DC resources, and the
economic cost of accepting the request. The total cost of a
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TABLE I: Fog Infrastructure Network G = (F,L)

Parameters Description

F Set of possible Fog locations.
C Set of existing Cloud Data Centres.
W Set of Fog-DC nodes; W = F ∪ C.
L Set of Fog-DC bidirectional links.
R Type of resource that can be CPU,

Memory or Storage.
R = {CPU,MEM, STR}.

Srw Maximum capacity of resource r ∈ R
in node w ∈W .

Bl Bandwidth capacity of physical link
l ∈ L.

Y rMAX Maximum number of Fog-DC loca-
tions that can receive
resource r ∈ R.

cl Bandwidth unit cost of using substrate
link l ∈ L.

crw Unit cost of using resource r ∈ R in
node w ∈W .

urf Unit cost of setting up resource r ∈ R
in node f ∈ F .

Dr
f Capital cost of setting up resource

r ∈ R in node f ∈ F .
Π Set of paths in Fog-DC network.
Π(w,w′) Set of paths between Fog-DC nodes w

and w′.

request In is then represented as the combined cost of the
task mapping, and the virtual link mapping as follows:

COST[In] = COST [MW(Tn),ME(En)] . (15)

A. Decision Variables

1) Design and Dimensioning Variables: We recall that r
is the type of Fog computing resource that takes values in
the set R = {CPU,MEM, STR}. We define the float decision
variable zrf to measure the amount of computing resources of
type r required to be setup in Fog-DC node f ∈ F . An upper
bound Srf will be setup to limit the available Fog computing
resources of type r that can be setup in Fog-DC node f .

We define a binary decision variable that denotes whether
Fog node f ∈ F requires resources r ∈ R to be setup; this is
precisely whether zrf is greater than zero.

yrf =

{
1, if zrf > 0

0, otherwise.
(16)

The variables zrc and yrc , c ∈ C respectively represent the
amount of resource r available in c, and whether this amount
is strictly positive; these values are fixed as we cannot alter
the resources provided in the Cloud.

TABLE II: IoT virtual Network In = (Tn, En)

Parameters Description

N Set of IoT requests.
In Virtual network representing IoT re-

quest n ∈ N .
Tn Set of tasks in an IoT request In.
En Set of virtual directional links between

tasks in an IoT request In.
R Type of resource that can be CPU,

Memory or Storage.
R = {CPU,MEM, STR}.

prt Required capacity of resource of type
r ∈ R for task t.

ot Order number of task t in request Tn.
bt Transfer bandwidth between a task t

up to the next ordered task.

s+
t File size of package uploaded by task

t.

s−t File size of package after processed by
w ∈W , either as a response to t or
outgoing to the next task t′.

τt The end-to-end delay threshold for the
completion of the first task up to and
including t.

2) IoT request mapping variables: To decide on the accep-
tance of an IoT request In, we need to define the following
decision variables.

an =





1, if an IoT request n ∈ N is accepted to
be processed by Fog-DC

0, otherwise
(17)

xtw =





1, if virtual node t ∈ Tn, n ∈ N is assigned
to Fog-DC node w; MW(t) = w

0, otherwise
(18)

xeπ =





1, if virtual link e ∈ En, n ∈ N is assigned
to physical path π ∈ Π; ME(e) = π

0, otherwise.
(19)

The description and domain of fog-DC-MILP decision vari-
ables are summarized in Table IV.

B. Objective function

The objective of fog-DC-MILP is to minimize the total cost
of fog design and dimensioning as defined by IoT request
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TABLE III: Model Considerations

Variable Description

K Set of unique request classes.
P(x;λ) Poisson cumulative function with IoT traf-

fic arrival rate λ.
ρ Percentile of estimated IoT traffic volume

entering network.
ω Percentile of estimated congestion over

any network path.
λk Arrival rate of all requests with class

k ∈ K.
λρ Sum of arrival rates over all classes using

ρ-percentile IoT traffic.
pw Probability of a task t accessing Fog-DC

node w ∈W .
µw Service rate of Fog-DC node w ∈W .
η̄w;ρ Mean waiting time/congestion of any link

entering w ∈ W with ρ-percentile IoT
traffic.

Hw;ρ Random variable representing congestion
entering node w ∈W .

Gw;ρ(t) Cumulative Distribution Function of
Hw;ρ.

H(w,w′);ρ Random variable representing conges-
tion over any path π ∈ Π(w,w′) with
ρ-percentile IoT traffic.

G(w,w′);ρ(t) Cumulative Distribution Function of
H(w,w′);ρ.

νρ,ωt,w Upload transmission delay with
ρ-percentile IoT traffic and ω-percentile
congestion.

νρ,ωw,t Download transmission delay with
ρ-percentile IoT traffic and ω-percentile
congestion.

φρ,ωn (w1, wqk) Routing delay through intermediate nodes
w1, ..., wqk ∈ W with ρ-percentile IoT
traffic and ω-percentile congestion.

φ̃ρ,ωn (w1, wqk) Worst-case routing delay with ρ-percentile
IoT traffic and ω-percentile congestion.

ζt Fixed processing time for task t.

mappings (15) as follows:

ZMILP = min
∑

f∈F

∑

r∈R

(
Dr
f · yrf + urf · zrf

)

+
∑

n∈N

∑

t∈Tn

∑

w∈W

∑

r∈R
crw p

r
t x

t
w

+
∑

n∈N

∑

e∈En

∑

(w,w′)∈W 2

∑

π∈Π(w,w′)

∑

l∈π
xeπ cl bt

(20)

where Dr
f and urf are the capital cost (Capex) and the unit

cost respectively to setup computing resource of type r ∈ R
in Fog-DC node f ∈ F , and W 2 is the set of pairs W ×W .

We have divided the objective function (20) into three terms
to express the optimization of different factors in Fog-DC-
MILP: (a) The fixed and unit cost of resources placed in each
Fog node f ∈ F which represents the design and dimensioning
cost, (b) the cost of allocating resource r ∈ R for task t ∈ Tn
to Fog-DC nodes w ∈ W , and (c) the networking cost of
assigning path π ∈ Π(w,w′) to a virtual link e = (t, t′) ∈ En,
n ∈ N .

1) IoT resource allocation constraints: For the following
constraints, we define Qt as the set of possible Fog-DC sites
w ∈ W that can serve a task of an IoT request t ∈ Tn, and
Qe as the set of possible paths π ∈ Π that can be assigned to
e ∈ En. For a link l ∈ L, we define Πl to be the set of paths
that contain the link l, and Πl

(w,w′) to be the set of paths from
w to w′ that contain link l.

∑

n∈N
an ≥ |N | ·A (21)

∑

w∈W
xtw = an ; t ∈ Tn, n ∈ N (22)

xtw = 0 ; ∀w ∈W \Qt, ∀ t ∈ Tn, n ∈ N (23)

xeπ = 0 ; ∀π ∈ Π \Qe, ∀ e ∈ En, n ∈ N (24)

xtw · xt
′
w′ =

∑

π∈Π(w,w′)

xeπ ; (w,w′) ∈W 2, (25)

e = (t, t′) ∈ En, n ∈ N
∆ti,ρ,ω

(w1,wi)
≤ τti ; i ∈ {1, ..., |Tn|}, ti ∈ Tn, (26)

n ∈ N, ω ∈ (0, 1), (w1, wi) ∈W 2

∑

n∈N

∑

e∈En
e=(t,t′)

∑

(w,w′)∈W 2

∑

π∈Πl
(w,w′)

bt · xeπ ≤ Bl ; l ∈ L (27)

∑

n∈N

∑

t∈Tn
xtw · prt ≤ zrw ; r ∈ R, w ∈W. (28)

Equation (21) expresses the acceptance ratio of the proposed
Fog-DC design where parameter A ∈ [0, 1]. Equations (22)
and (23) express the selection of Fog-DC nodes to process
IoT request tasks. Equations (24) and (25) ensure that only
one valid embedding path is assigned for each virtual link.
In (26), we define the partial delay ∆ between the first task
t1 and the ith task ti with transmission delay and congestion
percentile ω ∈ (0, 1) to be

∆ti,ρ,ω
(w1,wi)

= νρ,ωt1,w1
· xt1w1

+ φ̃ρ,ω(w1,wi)
· xt1w1

· xtiwi + νρ,ωwi,ti · xtiwi

+
i∑

m=1

ζtm , t ∈ Tn, n ∈ N, ω ∈ (0, 1) (29)

which expresses the QoS requirements for the mapping of
virtual links to meet the latency threshold of tasks. Recall,
ρ is the percentile of IoT traffic that both defines the set
N and the congestion distribution, therefore it is set prior to
modelization. We note that the term φρ,ω(w1,wi)

·xt1w1
·xtiwi in (29)
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TABLE IV: Fog-DC-MILP Decision Variables

Decision
Variables

Domain Description

zrf R,≥ 0 Dimension of resources r ∈ R
allocated to Fog node f ∈ F .

zrc R,≥ 0 Dimension of resources r ∈ R
allocated to Cloud node c ∈ C;
FIXED.

yrf {0,1} Whether a resource r ∈ R is
present in Fog node f ∈ F .

yrc {0,1} Whether a resource r ∈ R is
present in Cloud node c ∈ C;
FIXED.

an {0,1} Whether a request In is ac-
cepted by Fog-DC.

xtw {0,1} Whether task t ∈ Tn is mapped
to Fog-DC node w ∈W .

xeπ {0,1} Whether virtual link
e = (t, t′) ∈ En is mapped to
physical path π ∈ Π.

is quadratic, and we use the same linearization technique as in
Section VI-C4. Equations (27) and (28) express respectively
the bandwidth and resource (CPU, Memory and Storage)
capacity of links and nodes.

2) Fog-DC Design and Dimensioning Constraints:

zrf ≤ Srf · yrf ; f ∈ F, r ∈ R (30)
∑

f∈F
yrf ≤ Y rMAX ; r ∈ R. (31)

Equation (30) expresses that no resources r can be setup in a
given Fog node f if it is not selected as an optimal location to
setup a Fog node, and must not exceed the maximum resource
amount for that Fog location denoted by Srf . Equation (31)
expresses the maximum number of Fog-DC locations Y rMAX

that can receive a resource r.

C. Extensibility of Fog-DC forumaltion

Suppose a Fog infrastructure already exists and we wish to
extend it to support higher IoT traffic. We define the current set
of dimensioned Fog nodes as F ′. Into the current formulation,
we integrate yrf = 1 fixed and zrf ∈ [z̄rf , S

r
f ] for f ∈ F ′ where

z̄rf is the current dimensioning and Srf is the maximum re-
source capacity of zrf . Proceeding normally beyond integration
will yield the appropriate extended formulation.

D. Drawbacks of Fog-DC-MILP formulation

This formulation allows for both node and link mappings to
be performed in one shot; however, since the Fog-DC-MILP
formulation is based on an integer linear programming model,
it suffers from scalability issues. With a large number of IoT
requests, the mathematical model takes on a large number

of variables and constraints. This is potentially a significant
drawback to solving the MILP model optimally in a reasonable
computation time.

i. For a given IoT request In = (Tn, En), a virtual link
e ∈ En can be assigned to up to

|W | × |W | × |Π| (32)

possible embedding path solutions.
ii. Thus, for |E| = max

n∈N
|En| being the maximal size of

virtual links, |E| virtual links over N IoT requests can
be assigned to up to

(|E| × |W | × |W | × |Π|)|N | (33)

possible mapping solutions, which can be approximated
by the exponential number O(g|N |).

Node and link embedding is known to be an NP-hard
problem, equivalent to a multi-way separator problem [46]. To
address this complexity, we propose a decomposition approach
based on the Column Generation technique [47]. This implies
a pricing of non-basic variables to generate new columns or to
prove LP optimality at a node of the branch-and-bound tree.

VI. COLUMN GENERATION FORMULATION FOR AN IOT
SERVICE RESOURCE ALLOCATION (FOG-DC-CG)

To avoid the scalability issue identified in the MILP formu-
lation, we propose to use the Column Generation formulation
(Fog-DC-CG) to allocate Fog-DC resources to service IoT
requests. We reformulate the resource allocation problem in
terms of Independent Fog-DC Configurations (IFCs). Each
IFC solves the resource allocation problem of a single IoT
request. We denote by Θ the set of all possible IFCs. Accord-
ingly, the resource allocation problem can then be formulated
with respect to the decision variables λθ such that

λθ =





1, if IFC θ ∈ Θ is used in the
Fog mapping solution

0, otherwise.
(34)

In this new formulation, the mapping problem is to choose
a maximum of |N | IFCs, as each IFC is serving one IoT
request. The resulting configuration corresponds to what is
known as the master problem in a column generation approach,
while each configuration IFC corresponds to what is known
as the pricing problem. Here we are making the assumption
that parameter A = 1, i.e., the Fog-DC design should accept
all IoT requests n ∈ N .

The IFC configuration θ ∈ Θ is defined by the vector
(aθn)n∈N such that

anθ =

{
1, if IFC θ services the IoT request In
0, otherwise

(35)

∑

n∈N
anθ = 1, θ ∈ Θ. (36)

We denote by COSTθ the cost of configuration θ, which
corresponds to the sum of costs of the resources used (hosting
and networking) for the IoT request granted by IFC θ.



11

The use of Column Generation formulation divides the
original problem into a master problem and a pricing problem
with two separate objectives:

1) Master Problem: the problem of finding the best subset
among the already generated IFCs that minimize the
dimensioning costs.

2) Pricing Problem: the problem of generating an additional
column (IFC) to the constraint matrix of the Master
Problem.

A. Master Problem

The master problem, denoted by Fog-CG-M, is defined as
follows:

1) Objective function:

min
∑

θ∈Θ

COSTθ λθ +
∑

f∈F

∑

r∈R
Dr
f · yrf + urf · zrf (37)

where

COSTθ =
∑

l∈L
BB
θ (l) · cl +

∑

w∈W

∑

r∈R
P rθ (w) · crw. (38)

Here, crw and cl are the same unit resource costs as in
Section V-B. BB

θ (l) is the bandwidth used on a networking
link l by IFC θ and Bl is the maximum available bandwidth
on networking link l. We also denote P rθ (w) to be the amount
of resource r in Fog-DC location w used by IFC θ.

2) IoT resource allocation constraints:
∑

θ∈Θ

λθ · P rθ (w) ≤ zrw; w ∈W, r ∈ R (αrw) (39)

∑

θ∈Θ

λθ ·BB
θ (l) ≤ Bl; l ∈ L (βl) (40)

∑

θ∈Θ

λθ∆
L,ρ,ω
θ (t) ≤ τt; t ∈ Tn, n ∈ N (γt) (41)

∑

θ∈Θ

λθ ≤ |N | (µ0) (42)

∑

θ∈Θ

λθ · anθ ≥ 1; n ∈ N. (ψn) (43)

Equation (39) expresses the available capacity of resource
r in Fog-DC node w. Equation (40) expresses the bandwidth
capacity of networking link l. Equation (41) expresses
the latency threshold that must be satisfied for each task
t for some transmission delay, ρ-percentile of IoT traffic
and ω-percentile of congestion. Equation (42) guarantees
the convexity of the ILP model. Equation (43) grants the
satisfaction of the maximum number of IoT requests.

3) Fog-DC Design and Dimensioning Constraints:

zrf ≤ Srf · yrf ; f ∈ F, r ∈ R (44)

∑

f∈F
yrf ≤ Y rMAX ; r ∈ R. (45)

Equations (44) and (45) are the same constraints as in the
Fog-DC-MILP formulation.

4) Linear Relaxation of Fog-CG-M: In order to obtain the
dual variables associated with Equations (39) - (43), we for-
mulate a linear relaxation of Fog-CG-M. This Linear Program
formulation, denoted Fog-CG-M-LP only differs from Fog-
CG-M in the removal of variables z and y. For c ∈ C, let Src
be the total amount of resource r in c.

min Fog-CG-M-LP =
∑

θ∈Θ

COSTθλθ

Subject to
∑

θ∈Θ

λθ · P rθ (w) ≤ Srw; w ∈W, r ∈ R

(40)− (43)

λθ ∈ [0, 1]

(46)

B. Pricing problem

As mentioned previously, the pricing problem corresponds
to the generation of an additional configuration (IFC), i.e.,
an additional column for the constraint matrix of the current
master problem. Let αrw, βl, γt, µ0, and ψn be the dual
variables associated with constraints (39), (40), (41), (42) and
(43) respectively and obtained from solving the dual of Fog-
CG-M-LP. Then, the reduced cost of variable λθ for an IFC
θ can be written:

COSTθ = COSTθ −
∑

n∈N
ψn · anθ +

∑

r∈R

∑

w∈W
αrw · P rθ (w)

+
∑

l∈L
βl ·BB

θ (l) +
∑

t∈Tn

∑

n∈N
γt ·∆L,ρ,ω

θ (t) + µ0 (47)

where COSTθ is defined by (38).
We now express (47) in terms of the decision variables of

the pricing problem; in order to alleviate notation, we omit θ
from the index of the decision variables below. Those variables
are implicitly defined within the context of θ as follows.

an =

{
1, if an IoT request In n ∈ N is serviced
0, otherwise

(48)

xtw =





1, if virtual node t ∈ Tn, n ∈ N is assigned
to Fog-DC node w; MW(t) = w

0, otherwise
(49)

xeπ =





1, if virtual link e ∈ En, n ∈ N is assigned
to physical path π; ME(e) = π

0, otherwise.
(50)

Next, we derive the relations between the pricing variables
and the coefficients of the master problem for each configu-
ration θ ∈ Θ. For each n ∈ N , anθ = an. For each Fog-DC
node w ∈W and resource r ∈ R, we have:

P rθ (w) =
∑

n∈N

∑

t∈Tn
prt · xtw. (51)
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For each link l ∈ L, we have:

BB
θ (l) =

∑

e=(t,t′)∈En

∑

n∈N

∑

(w,w′)∈W 2

∑

π∈Πl
(w,w′)

bt · xπe . (52)

For each task t ∈ Tn, n ∈ N , we have:

∆L,ρ,ω
θ (t) =

∑

t∈Tn

∑

n∈N

∑

(w1,w)∈W 2

(
νρ,ωt1,w1

· xt1w1
+ νρ,ωt,w · xtw

)

+
∑

t∈Tn

∑

n∈N

∑

(w1,w)∈W 2

xt1w1
xtw · φ̃ρ,ω(w1,w)

+
∑

t∈Tn

∑

n∈N

t∑

i=t1

ζi

(53)

where νρ,ω, φ̃ρ,ω and ζ are respectively the transmission,
routing and processing costs from (13), and t1 represents the
first task of a request.

The substitution of the Pricing decision variables into the
reduced cost in (47) gives us the Pricing problem denoted as
Fog-CG-P:

min
∑

e=(t,t′)∈En

∑

n∈N

∑

(w,w′)∈W 2

∑

π∈Πl
(w,w′)

bt · xπe · (cl + βl)

+
∑

n∈N

∑

t∈Tn

∑

w∈W
prt · xtw · (crw + αrw)

+
∑

n∈N

∑

t∈Tn

∑

(w1,w)∈W 2

∆L,ρ,ω
θ (t) · γt

+
∑

t∈Tn

∑

n∈N

t∑

i=t0

ζi + µ0 −
∑

n∈N
ψn · an

(54)

where ∆L,ρ,ω
θ (t) is defined by (53).

The optimal solution of Fog-CG-P defines the additional
configuration to be added via (48), (49) and (50).

C. Pricing Constraints

1) Mapping of IoT service tasks:

i. Mapping is done for all tasks of an accepted IoT request
In.

an ≤
∑

(w,w′)∈W 2

xtw x
t′
w′ ; e = (t, t′) ∈ En, n ∈ N. (55)

ii. A task t of an accepted request In is assigned to only
one Fog-DC location node w.

∑

w∈W
xtw ≤ an ; t ∈ Tn, n ∈ N. (56)

2) Mapping of IoT request Link:
∑

(w,w′)∈W 2

∑

π∈Πe
(w,w′)

xeπ ≤ an ; e ∈ En, n ∈ N. (57)

xtwx
t′
w′ ≤

∑

π∈Π(w,w′)

xeπ ; (w,w′) ∈W 2, (58)

e = (t, t′) ∈ En, n ∈ N.
Equations (57) expresses that if request In is accepted then

at least one networking path π is assigned to grant data transfer
over virtual link e, and likewise (58) for a path assignment to
Fog-DC site locations w and w′.

3) Latency relaxation: To push the Column Generation
formulation towards generating viable columns, we add a
relaxed latency constraint. We define a variable ∆̃L,ρ,ω

w (t) such
that

∆̃L,ρ,ω
w (t) = νρ,ωt,w x

t
w +

t∑

i=t1

ζi. (59)

From (53), we infer that ∆̃L,ρ,ω
w (t) ≤ ∆L,ρ,ω

w (t); therefore, we
add the constraint

∑

w∈W
∆̃L,ρ,ω
w (t) ≤ τt; t ∈ Tn, n ∈ N. (60)

4) Linearization of Quadratic terms: We note that objec-
tive term (53) and constraints (29), (55) and (58) include
the quadratic terms xtwx

t′
w′ . Since this quadratic term is the

product of two binary variables, it can be linearized easily by
replacing quadratic term by a new binary variable yt,t

′

w,w′ where
yt,t

′

w,w′ = xtwx
t′
w′ and by adding the constraints

yt,t
′

w,w′ ≥ xtw
yt,t

′

w,w′ ≥ xt
′
w′

(61)

which ensure that yt,t
′

w,w′ will be zero if either xtw or xt
′
w′ are

zero. Adding the inequality

yt,t
′

w,w′ ≥ xt
′
w′ + xtw − 1 (62)

makes sure that yt,t
′

w,w′ will take value 1 if both binary variables
xtw or xt

′
w′ are set to 1. We note that such a linearization

technique is done implicitly in our simulation by the used
linear solver CPLEX.

D. Solving the Fog-DC-CG Model:

The steps involved in solving the Fog-DC-CG model for-
mulated in Section V are as follows:

1) Initialize Fog-CG-M-LP by a subset of dummy configu-
ration that is, a set of artificial IFCs with a large cost.

2) Solve the dual of Fog-CG-M-LP formulation to opti-
mality using CPLEX solver to obtain dual variables
αrw, βl, γt, ψn and µ0, the variables associated with the
Fog-CG-M-LP constraints.

3) Solve the Pricing problem Fog-CG-P to optimality us-
ing CPLEX solver. This may generate several possible
columns (IFCs).

4) For each column generated, calculate the Reduced Cost.
If a column with a negative reduced cost has been found,
add this column to the current master problem and repeat
Steps 2 and 3. Otherwise, Fog-CG-M-LP is optimally
solved.
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The optimal solution of Fog-CG-M-LP only provides a
lower bound on the optimal integer solution of Fog-CG-M.
We solve the Fog-CG-M integer programming formulation to
optimality using Branch and Bound CPLEX solver.

VII. BENCHMARKS

To make an appropriate comparison between our two pro-
posed models, we define two benchmarks inspired by litera-
ture: a matching-based model [26] and a greedy model [48]
known as Fog-DC-Match and Fog-DC-Greedy respectively.

A. Fog-DC-Match

For a request t ∈ Tn, n ∈ N , let rtW : Z+ 7→W be a
function such that rtW(i) returns the Fog-DC node with ith
lowest latency to t. We formulate a relaxed MILP to find the
Fog-DC nodes that minimize the ranking as the first phase of
our heuristic.

Z̃P1 = min
∑

n∈N

∑

t∈Tn

|W |∑

i=1

i · xtwi ; wi = rtW(i) (63)

Subject to
∑

n∈N

∑

t∈Tn
xtwi · prt ≤ Srwi ; (64)

r ∈ R, wi = rtW(i) ∈W
xtf · prt ≤ Srf · yrf ; (65)

f = rtW(i) ∈ F, i ∈ {1, ..., |W |}, r ∈ R
(21)− (23).

For a virtual link e ∈ En, n ∈ N , let reE : Z+ 7→ Π be
a function such that reE(i) returns the Fog-DC path with ith
lowest cost, given the set optimal Fog-DC node mappings from
the first phase denoted MW,P1 : Tn 7→ W , we rank the paths
to formulate our second phase of our heuristic.

Z̃P2 = min
∑

n∈N

∑

e∈En

|Π|∑

i=1

i · xeπi ; πi = reE(i) (66)

Subject to

(24), (27)

xtw · xt
′
w′ =

∑

π∈Π(w,w′)

xeπ ; (67)

e = (t, t′) ∈ En, n ∈ N,
MW,P1(t) = w, MW,P1(t′) = w′.

For design and dimensioning solutions from Z̃P1 and Z̃P2,
we know zrf =

∑
t∈Tn

∑
n∈N x

t
f ·prt , f ∈ F so we can obtain

the objective function ZMILP (20) for comparison with other
models.

B. Fog-DC-Greedy

For a set of ordered tasks {t1, ..., tqk} from a request
n ∈ N , we wish to allocate task resources to Fog-DC nodes

by greedily choosing the node wj with available resources and
with minimal latency to tj . Once a servicing Fog-DC node is
chosen, we find a path with the minimal routing cost between
wj−1 and wj that satisfies the bandwidth constraints per link.
Aside from reducing design and dimensioning cost, our main
objective is to satisfy latency requirements of tasks for a high
Fog acceptance rate. For this reason, our greedy metric is first
and foremost on latency.

Algorithm 2 Fog-DC-Greedy; Greedy algorithm by Fog-DC
node latency.
Result: Greedy Fog-DC Design and Dimensioning.
Enumerate requests such that N = {1, 2, ..., |N |}.
For request n, enumerate tasks t1, ..., tqk where oti < otj ,
1 ≤ i < j ≤ qk, MK(n) = k.
Initialize ω ∈ (0, 1), Srw,USED = 0, Bl,USED = 0.
for n = 1 to |N | do
k ←MK(n)

for j = 1 to qk do
W ′ ←W ;

// For task tj , select a node wj with minimal latency.
while True do

if j = 1 then
∆t1 ← min{νρ,ωt1,w | w ∈W ′};
w1 ← arg min{νρ,ωt1,w | w ∈W ′};

end
else

∆tj ← min{∆tj ,ρ,ω

(w1,w) | w ∈W ′};
wj ← arg min{∆tj ,ρ,ω

(w1,w) | w ∈W ′};

end
if prtj ≤ Srwj − Srwj ,USED ∀r ∈ R then

Srwj ,USED ← prt + Srwj ,USED;

// Greedily route backwards to wj−1.
while j > 1 do
cπ ← minπ∈Π(wj−1,wj)

∑
l∈π clbl;

π ← arg minπ∈Π(wj−1,wj)

∑
l∈π clbl;

if bl ≤ (Bl −Bl,USED)), ∀l ∈ π then
Bl,USED ← bl +Bl,USED,∀l ∈ π;

break;
end
else

Π(wj−1,wj) ← Π(wj−1,wj) \ π;
end

end
end
else

W ′ ←W ′ \ wj ;

end
end

end
end
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VIII. RESULTS

A. Simulation Setup

In this section we conduct a time and cost comparison
between the Fog-DC-MILP model, and the heuristic Fog-DC-
CG model. Both models are solved using IBM CPLEX Solver
on a machine with an i7 Dual Core 2.5GHz CPU and 12GB
of RAM. In addition, we compare the results with the two
heuristics Fog-DC-Match and Fog-DC-Greedy using the same
configurations.

Given the intractability of Fog-DC-MILP, we selected the
following configuration settings to produce results in a rea-
sonable amount of time. We chose to use 5 IoT requests with
varying number of tasks from 1 to 4, totaling 10 tasks in all.
For simplicity, we set the acceptance ratio (21) threshold to
be 1. For scalability, we added an arrival rate λ ∈ [1, 50] to
inflate the number of requests, and consequently the number
of tasks. As noted in (3), an increase in the IoT traffic volume
percentile ρ leads to an increase in the arrival rate λ by similar
factors; therefore, we simplify the simulation by only including
a varying arrival rate λ. The service rate µw for a Fog-DC node
w ∈W was selected in the range µw ∈ [10, 50] milliseconds.
We set the congestion percentile ω to 0.5.

Over the set of tasks, resource requirements were mostly
selected from a uniform distribution in [arT, b

r
T] with low and

high values of aCPU
T = 0 GHz and bCPU

T = 2.5 GHz for
CPU, aMEM

T = 0 GB and bMEM
T = 2.5 GB for MEM, and

aSTR
T = 0 GB and bSTR

T = 15 GB for STR; for each resource,
a high resource requirement was assigned to a task above
10 GHz, 10 GB and 100 GB for CPU, MEM, and STR
respectively. We set the latency requirement for each task
at 500 to 1100 milliseconds to simulate IoT time-sensitivity.
We set s+

t ∈ (0, 10] and s−t ∈ (0, 10] in megabytes, bandwidth
requirement bt ∈ (0, 10] megabytes, and the processing time
ξt ∈ [10, 100] milliseconds.

We chose to design a Fog infrastructure with 29 candidate
Fog locations. Similar to the IoT settings, the resource capac-
ities for Fog nodes were chosen from a uniform distribution
range [arF, b

r
F] with low and high values of aCPU

F = 0 and
bCPU

F = 25 for CPU, aMEM
F = 0 and bMEM

F = 125 for MEM,
and aSTR

F = 0 and bSTR
F = 1000 for STR. For each resource,

at least one Fog location has a resource capacity of zero; we
acknowledge that a Fog node may not have the capability
for every resource. The network architecture of candidate Fog
nodes are shown in Fig. 6.

We designed the infrastructure to include two fixed Cloud
Data Centres, with capacity in [arC, b

r
C] with brF � brC to allow

Cloud nodes to accept any task not accepted by Fog nodes.
The low and high values selected were aCPU

C = 100000 and
bCPU

C = 200000 for CPU, aMEM
C = 51200 and bMEM

C = 102800
for MEM, and aSTR

C = 500000 and bSTR
C = 1000000 for STR.

As noted in Fig. 3, a Fog-DC node may be accessed directly
by a task t if the distance is no more than γt, or via an access
point that routes through other internet channels. Equation (7)
uses an upper bound ht,w on the number of hops between task
t and Fog-DC node w, however these may be through access
points and not the Fog-DC infrastructure.

Fig. 6: Network architecture of candidate Fog nodes used for
comparison.

For two IP addresses, the number of hops between them
for a single ping can be determined using the traceroute
command. We tested several IPs at different distances from
ourselves to estimate ht,w based on distance dt,w. We
found for dt,w ∈ (0, 10], ht,w ≤ 5 and for dt,w ∈ [100, 1000],
ht,w ≤ 14; our findings are supported by [45]. Since all the
Fog node candidates are within 10km of the tasks, we set
ht,f = 5 for f ∈ F . For Cloud nodes c ∈ C we let
ht,c = max{5, dt,c/10}. The maximum number of hops
between two Fog-DC nodes hw,w′ is defined as the maximum
number of links for a path π ∈ Π(w,w′) in the Fog-DC
architecture of Fig. 6.

B. Dimensioning/Partitioning Scheme Comparison
Fig. 7 shows the optimal design and dimensioning solutions

obtained for Fog-DC-MILP vs. Fog-DC-CG. For each model
in Fig. 7, the dimensioned nodes are identified, the resource
utility is detailed, and the used paths are shown. Given that the
portrayed network architecture in Fig. 7 is based on assumed
latitude and longitude of Fog nodes, we can infer that Fog
nodes in similar areas are dimensioned, allowing services to
be provided to IoT devices in the same regions with real-time
responses.

Considering the Fog nodes with differing dimensioning
solutions in Table V, we observe the similarities in both
solutions with the smallest difference being in MEM allocation
and the largest difference in STR allocation. Based on our
map scale in Fig. 6 and 7, f5 and f9 are approximately 25
meters apart, whereas f1 is approximately 500 meters from
both; this larger distance is still close enough to allow for the
benefits of minimal latency between an IoT device that sits 500
meters from any Fog node, making the Fog-DC-CG solution of
allocating more STR resources in f9 instead of f1 a reasonable
change that does not change the latency viability of our current
configuration and IoT traffic predictions; however, this change
may affect IoT traffic that is higher than the ρ-percentile of
data for which we have accounted, or new IoT devices on the
edge of our designed area.

C. Dimensioning Cost
By increasing the arrival rate of each IoT request class,

we can increase the total number of tasks arriving to the
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TABLE V: Dimensioning solutions of Fog-DC-MILP vs Fog-
DC-CG (Fig. 7) for Fog nodes in similar areas.

Fog CPU MEM STR
f1 (MILP) 5.851 GHz 13.883 GB 13.774 GB
f1 (CG) 4.082 GHz 13.054 GB 9.270 GB
f5 (MILP) 1.756 GHz 0.356 GB 3.632 GB
f9 (CG) 3.525 GHz 0.735 GB 8.102 GB

(a) Fog-DC-MILP

(b) Fog-DC-CG

Fig. 7: The mapping solution for the MILP and CG formula-
tion over 5 Requests and 10 tasks.

Fog-DC system to compare the four models given greater
IoT traffic. We are most interested in whether Fog-DC-CG
can approximate the optimal MILP model in cost with a
substantial decrease in time. Table VI shows that Fog-DC-
CG attains a near-optimal design and dimensioning cost of
the Fog Infrastructure, with the cost difference below 3%
for up to 80 tasks. The absolute difference varies between
5.889 and 10.480, but does not increase monotonically with
increasing IoT traffic, leading us to hypothesize that the per-
centage difference gradually decreases with increasing number
of tasks. A more expansive study into the cost differences of
MILP and CG approaches is left for future work. Fig. 8 shows
the significantly reduced cost of Fog-DC-CG compared to the
other two heuristics Fog-DC-Match and Fog-DC-Greedy.

D. Computation Time

Our performance comparison of Fog-DC-MILP and Fog-
DC-CG in Fig. 9 shows that Fog-DC-CG calculates a di-
mensioning solution in significantly reduced time. While Fog-
DC-Match performs performs moderately better than Fog-DC-
MILP, the computation time is not scalable for higher number
of tasks. In Fig. 9, we executed Fog-DC-MILP for at most
80 tasks as a higher number of tasks proved computationally
infeasible, whereas Fog-DC-Match became computationally
infeasible after around 300 tasks. We were able to execute
Fog-DC-CG for up to 500 tasks within a practical and scalable
amount of time with a near-linear time growth. Though Fog-
DC-Greedy is extremely fast, Fig. 8 shows that it is also the
worst performing by cost.

Fig. 9b is identical to Fig. 9a with the x-axis restricted to
[0, 100]. This allows us to see the similar time performances
between Fog-DC-CG, Fog-DC-Match and Fog-DC-Greedy for
low number of tasks. We also see the point at which the three
models begin to deviate from each other in performance. In
both cases, Fog-DC-MILP is growing at an alarming rate from
the beginning.

To better observe the performance of Fog-DC-CG, we
simulated 600 independent Fog-DC system configurations.
Each configuration had 10 to 100 Fog candidates in different
topological organizations, 10 to 50 IoT requests, and 1 to 5
tasks per request. The latitude and longitude of the Fog and
IoT devices were selected uniformly in a selected region of
radius of 5 kilometers, affecting the reachability of Fog nodes
from IoT for each simulated instance.

The solution time per Fog-DC configuration setup are shown
in Fig. 10a and 10b with either number of IoT requests
or Fog candidates on the x-axis, and the other metric as a
colourmap. Fig. 10a shows that for at most 50 IoT requests,
the number of requests does not have a strong influence on
the solution time; no evident correlation is observed, with
only the Fog colourmap having a clear pattern of increasing
with solution time. On the other hand, Fig. 10b shows that
it is the number of Fog candidates that largely dictates the
solution time. These observations are further solidified by the
correlations calculated in Table VII that shows the number of
Requests and of Fog candidates respectively have a correlation
of 0.478 and 0.829 with solution time. Based on the results
of Fig. 10c with both the number of Fog candidates and IoT
requests, we observe some scalability with increasing Fog and
IoT devices, though further simulation are needed. Referring
to Fig. 10, no clear linearity is observed in any of the metrics;
we leave further simulation and statistical analysis for future
work.
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Fig. 8: Objective cost comparison of Fog-DC-MILP, Fog-DC-
CG, Fog-DC-Match, and Fog-DC-Greedy.

(a) Full scale

(b) Small scale

Fig. 9: Solution time comparison of Fog-DC-MILP and Fog-
DC-CG.

TABLE VI: Cost comparison in percentage between Fog-DC-
MILP and Fog-DC-CG.

No.
of
Tasks

Fog-DC-
MILP
Solution

Fog-
DC-CG
Solution

% Gap Gap

10 214.977 220.866 2.739% 5.889
20 402.828 411.208 2.080% 8.380
30 590.348 596.716 1.078% 6.368
40 773.547 783.713 1.314% 10.166
50 958.205 968.259 1.049% 10.051
60 1144.030 1153.480 0.826% 9.150
70 1331.56 1342.040 0.787% 10.480
80 1518.440 1529.040 0.698% 10.600

(a) Requests with Fog colourmap

(b) Fogs with Request colourmap
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TABLE VII: Spearman’s Correlation of simulated solutions by
number of Requests and Fog Candidates used.

Correlation against Time Spearman’s Correlation
No. of Requests vs. Time 0.496

No. of Fog Candidates vs. Time 0.805

(c) Fogs and Requests

Fig. 10: Solution time of Fog-DC-CG by No. of IoT Requests
and Fog Candidates.

IX. CONCLUSION & FUTURE WORK

In this paper, we have proposed an optimal design and
dimensioning formulation of Fog infrastructure using MILP
to minimize infrastructure cost. To overcome scalability issues
while keeping cost effectiveness, we proposed a near-optimal
Column Generation formulation. Simulation results show that
design and dimensioning solution are with under 3% difference
from the optimal solution with significantly reduced computa-
tion time. Results also show Column Generation cost is much
lower than matching-based and greedy heuristics. Simulation
and analysis of Fog-DC configurations conclude computation
time is highly correlated with number of Fog candidates, and
moderately correlated with IoT requirements.

In future work, we propose to determine more accurate es-
timation of network congestion resulting from fluctuating IoT
traffic by means of a simulation toolkit such as iFogSim [39],
which also leads to a more accurate estimation of transmission
time for all tasks in a request. Due to intractability of MILP, we
could not perform large simulations; we plan to use geographic
zoning techniques to further reduce the time complexity of
our MILP and CG models. We can then perform a larger
scale simulation and comparison of MILP and CG models
over a wider variety of current IoT and Fog technologies. Our
current proposition allows for extensibility of a Fog design and
dimensioning scheme assuming all else remains constant; we
propose to look further at extensibility of existing/ modified
Fog infrastructures to add greater coverage and/or resource
availability for an increase in IoT traffic. Given our simulation
results of computation time per Fog-DC configurations (see
Fig. 10), our relationships are not linear; we intend to do

further statistical studies with the goal of predicting the
expected solution time given a set of Fog-DC configurations.
This would solidify our approach as a means for real and
practical design, dimensioning, and future deployment.
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Chapter 4

Robust and Fault-Tolerant Fog
Design & Dimensioning for
Reliable Operation

Abstract Internet of Things (IoT) applications depend on reliable external storage and process-
ing such as Cloud data centres. In response to high latency from Cloud, fog-computing has been
introduced as a network of microdata centres closer to IoT devices that provides a geo-distributed
low-latency response. Current contributions regarding design & dimensioning of fog infrastructures
are developed to service a static set of IoT traffic and a reliable fog network. However, these designs
are not fault-tolerant. This article explores the implementation of reliable and fault-tolerant fog
infrastructures via dynamically available fog nodes – standby nodes which activate when a nearby
fog node fails. We formulate the design & dimensioning of dynamically available nodes as a set
partitioning problem, which is solved via a mixed-integer linear program (MILP). This MILP for-
mulation proves to be intractable; we therefore introduce a column generation approach to increase
scalability with little loss to optimal design & dimensioning cost. Compared to other benchmark
heuristic methods, our column generation approach yields reduced cost, with proportional solution
time.

This chapter extends the previous chapter by considering fog node failures to design & dimension
a fault-tolerant, reliable fog infrastructure. This chapter has been published in IEEE Internet of
Things [40].

61
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Robust and Fault-tolerant Fog Design &
Dimensioning for Reliable Operation

Ismael Martinez, Abdelhakim Senhaji Hafid, Michel Gendreau

Abstract—Internet of Things (IoT) applications depend on
reliable external storage and processing such as Cloud data
centres. In response to high latency from Cloud, fog-computing
has been introduced as a network of microdata centres closer to
IoT devices that provides a geo-distributed low-latency response.
Current contributions regarding design & dimensioning of fog
infrastructures are developed to service a static set of IoT
traffic and a reliable fog network. However, these designs are
not fault-tolerant. This article explores the implementation of
reliable and fault-tolerant fog infrastructures via dynamically
available fog nodes – standby nodes which activate when a
nearby fog node fails. We formulate the design & dimensioning of
dynamically available nodes as a set partitioning problem, which
is solved via a mixed-integer linear program (MILP). This MILP
formulation proves to be intractable; we therefore introduce a
column generation approach to increase scalability with little
loss to optimal design & dimensioning cost. Compared to other
benchmark heuristic methods, our column generation approach
yields reduced cost, with proportional solution time.

Index terms— Fault-tolerance, fog-computing, column gen-
eration, design & dimensioning, Internet of Things (IoT),
mixed-integer linear programming (MILP).

I. INTRODUCTION

THE number of Internet of Things (IoT) applications has
been increasing drastically each year, with current esti-

mates by International Data Corporation (IDC) to exceed 41
billion IoT devices, and generate over 79 zettabytes of data
by the year 2025 [1]. Though Cloud-computing has provided
means for reliable and large-scale IoT processing and data
storage, Cisco emphasizes that Cloud data centres are not
equipped for this large increase in IoT traffic [2].

The fog-computing paradigm is a collection of highly virtu-
alized and geo-distributed resources on the network edge [3].
In contrast to Cloud data centres which may provide high
latency to IoT applications [2], fog provides prompt service for
latency-sensitive IoT requests. These include applications in
health care [4], autonomous vehicles [5], and multimedia [6].

Different aspects of end-to-end fog implementation have
been studied; however, there is a lack of cohesion among
fog design, resource management and infrastructure evaluation
studies [7]. Fog nodes may fail, which would require addi-
tional fog nodes to host/execute all IoT processes previously
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allocated to the failed nodes. We extend our previous work
on fog design & dimensioning [8] to create a design that is
robust against multiple fog node failures. We use dynamically
available fog nodes, or simply dynamic fog nodes, as on-
demand nodes that activate when a failure is detected.

The reliability of a fog system considers the reliability of
(a) fog hardware/software, (b) IoT devices, applications and
requests, (c) controllers for fog monitoring and resource man-
agement, and (d) the network supporting IoT-fog communica-
tion [9]. Other contributions focus on the fault detection [10],
[11] and data restoration [12], [13] of IoT by fog. This paper
proposes the design of a dynamic fog infrastructure that is
populated by restored IoT data after a fog node failure is
detected.

To the best of our knowledge, this article is the first to ad-
dress the reliable and fault-tolerant design of fog infrastructure
amidst uncertain network operations. Our previous approach
makes a percentile estimate of IoT traffic from which a static
fog design is constructed [8]. This static fog design is extended
under the assumption of possible fog node failures to optimize
the cost of design & dimensioning of dynamic fog nodes in
the static fog infrastructure. This optimization is formulated
as a set partitioning problem [14] via two approaches.

1) We propose an exact optimization approach (fog-RO-
MILP) to the reliable design & dimensioning of a dy-
namic extension to our static fog infrastructure. This
approach minimizes the implementation cost of dynamic
fog nodes, while maintaining a low probability of expe-
riencing more than one fog node failure among nodes
associated with each dynamic fog node.

2) We propose a scalable heuristic column generation [15]
approach (fog-RO-CG) to approximate the optimal im-
plementation cost of the intractable fog-RO-MILP for-
mulation. We simulate and compare results of our two
methods, as well as a benchmark greedy solution, to show
the long-term computational efficiency, and solution cost
tradeoff of fog-RO-CG.

Current contributions of fog design make use of ideal
network and IoT conditions [5], [8] that may only hold true for
small fog implementations. The addition of dynamic fog nodes
enhances current fog infrastructure to be robust, reliable and
fault-tolerant. The scalable formulation of reliable fog design
will further promote the adoption and implementation of fog
networks for the benefit of latency-sensitive IoT.

The remainder of this article is organized as follows. Section
II reviews related literature. Section III models the IoT-fog
network components and interactions upon which we derive
our optimization models. Section IV models the network la-
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tency using stochastic and queuing theory techniques. Section
V introduces fog-RO-MILP for the optimization of the cost-
efficient and fault-tolerant design & dimensioning of a fog
infratructure. Section VI linearizes the non-linear decision
variables and constraints. Section VII introduces fog-RO-
CG for the scalable approximation to our exact formulation.
Section VIII validates the robust infrastructure over varying
network conditions, and compares design simulation results of
both methods alongside a benchmark greedy solution. Section
IX concludes the paper.

II. RELATED WORK

In developing our reliable and fault-tolerant fog design
approach, we consider current literature in a) fog design &
dimensioning, b) dynamic network design, and c) resource
offloading in dynamic fog environments. First, we identify the
consequences and limitations of current fog design & dimen-
sioning models that assume fault-tolerant fog and static IoT
traffic. Second, we review robust and stochastic optimization
techniques for general dynamic network design. Third, we
study fog mechanisms for offloading resources to nearby on-
demand fog nodes. Finally, we propose a dynamic fog design
& dimensioning approach that addresses the limitations and
capitalizes on the strengths of current contributions.

A. Fog Design & Dimensioning

A fog infrastructure is planned and implemented by con-
sidering a) design — the location of fog nodes, and b)
dimensioning — the quantity of resources per fog node. Yu
et al. [5] propose a design & dimensioning model for Internet
of Vehicles (IoV) environments by constructing a network of
Road-Side Units (RSUs), fog nodes, and network gateway
nodes that minimizes implementation cost. The design and
dimensioning of fog nodes uses a discrete set of candidate
locations and resource quantities. This fog infrastructure aims
to support autonomous vehicles for real-time sharing of road-
traffic conditions, leading to improved traffic flow and crash
avoidance. Martinez et al. [8] propose a design & dimension-
ing model for the general IoT landscape. The future IoT traffic
and resulting network congestion is estimated stochastically,
and a deterministic set of IoT requests is taken as a large per-
centile of the traffic distribution. An exact MILP formulation,
and a heuristic column generation formulation result in similar
solution costs, demonstrating the efficiency of the column
generation formulation. Fog node location candidates remain
discrete, whereas the resource quantities are continuous.

In [5], the estimated vehicular traffic is assumed to be static,
which is not true in practice. In [8], the IoT traffic set is also
static though it is a percentile of a stochastic traffic distribu-
tion, allowing for easy modification of percentile parameters to
increase IoT traffic. In both cases, the design & dimensioning
solution provides the smallest possible infrastructure to service
the estimated IoT traffic. Overestimation of IoT traffic may
lead to wasted cost from deployed but unused fog resources,
while underestimation may result in a fog infrastructure inca-
pable of servicing all IoT requests. Furthermore, the designed
infrastructure is assumed to be reliable and fault-tolerant,

which may not be true in practice. In neither [5] and [8] is the
sensitivity of fog design & dimensioning for fluctuating IoT
traffic and network congestion explored.

B. Dynamic Network Design

When formulating network design problems with stochastic
elements, it is convenient to convert the stochasticity into de-
terministic elements. For dynamic demand of the network with
known or approximated probability distribution, chance con-
straints enforce that demand is supported above a prescribed
level of probability [16]. Supporting worst-case demand via a
robust optimization approach produces a solution that is viable
for all levels of demand, however may induce high costs for
a largely unused network [17], [18]. Introducing dynamically
available nodes to complement a fixed network can increase
network supply during periods of high demand, and conserve
energy and network cost during periods of low demand [19].

C. Resource offloading in dynamic fog environments

The concept of using dynamically available fog nodes to
support an overloaded network has already been proposed
and validated [20], [21]. An efficient on-demand fog node
activation/creation strategy allows for the dynamic scaling of
the fog network to address different levels of IoT traffic [21].
Fog infrastructures may have dedicated dormant fog nodes for
on-demand support, or leverage active and nearby fog-capable
devices, such as smart cars [20].

A dynamic fog node is activated when the fog is overloaded,
such as when a static fog node fails. Fog systems are composed
of fog nodes managed by different service providers [3].
Therefore, it is not possible to detect a failure from one central
entity. Statistical methods can be used to monitor changes in
system operation, and detect possible component failures [22].
Currently, fog-based method for fault detection and diagnosis
are used to identify failure points in IoT [10], [11]. However,
similar methods may be developed to detect and diagnose
faults in fog nodes.

Without any data backup, IoT data submitted to the fog
may be lost when any component of the fog system fails.
However, using uncoordinated checkpoints to periodically save
the state of fog nodes can improve data recovery and fog
reliability [12]. Checkpoints are saved in stable storage, i.e., a
repository server that is unaffected by failures. Stable storage
is often hosted in dedicated storage infrastructure separate
from processing fog nodes [12], [13]. When a failure is
detected, repository servers use the most recent checkpoint
to restore the state of the lost fog nodes.

A failure within the fog system can create a network
overload since the same level of IoT traffic is reaching a
hindered fog infrastructure. This may result in the activation
of on-demand fog nodes, and data recovery from repository
servers. However, current literature does not 1) address the
resource allocation of IoT data from repository servers to
on-demand fog nodes, nor 2) consider the optimal number,
location, or resource quantity of on-demand fog nodes to
support a given fog infrastructure.
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(a) IoT Hierarchy (b) Task Workflow

Figure 1: Each physical IoT device has one or more running appli-
cations. Each application may execute multiple requests over time.
Each request has one or more tasks, arranged in a workflow which
defines the dependency relationships between tasks.

D. Summary of Limitations and Strengths

We identify and address two limitations of current contri-
butions: (1) design & dimensioning techniques are sensitive
to proper IoT traffic estimations, and assume a reliable fog
network; and (2) resource offloading techniques assume the
necessary dynamic fog resources are available to support an
overloaded fog system. We adopt dynamic network design
techniques to design & dimension a fog infrastructure that
supports fluctuating IoT traffic and fog node failures. This
fog infrastructure is therefore reliable, and robust to dynamic
network conditions.

III. IOT-FOG NETWORK

We consider an infrastructure of fog microdata centres
to support and service nearby IoT applications. We math-
ematically define the components of the IoT-Fog network,
as well as the interactions between the two layers. When
allocating IoT requests to fog resources, we consider resources
to include processing (CPU), memory (RAM), and long-term
storage (STR). We define R to be the set of resources such
that R = {CPU,RAM,STR}.

A. IoT Virtual Network

The IoT layer is composed of heterogeneous IoT devices,
each with a different computing capability, location, and
communication range. Each IoT device may run one or several
IoT applications. Each IoT application may launch several IoT
requests on an independent request schedule. Each IoT request
is composed of one or more IoT tasks. Each IoT task has
individual resource, bandwidth, and latency requirements for
task processing. The IoT hierarchy is shown in Fig. 1. Any
property held by a parent element is inherited by the child,
e.g., a task’s location.

Let N be the set of all IoT requests, T be the set of all IoT
tasks, and E be the set of all directed virtual task dependency
links (VTDLs). Each VTDL links two immediately successive
tasks (t, t′) ∈ T . We define Tn ⊆ T to be the set of all
IoT tasks that belong to IoT request n ∈ N . Likewise, we
define En to be the set of all VTDL that belong to n. We
represent each IoT request n as a Task Dependency Graph
(TDG) Jn = (Tn, En), and define the set of all directed paths
of Jn as Ωn.

The workflow of tasks Tn defines the dependencies between
tasks of request n as shown in Fig. 1b. If t ∈ Tn is dependent

on t′ ∈ Tn, then t′ must be processed in its entirety before
t may begin to be processed. If t′ and t are executed in
immediate succession, then we define next(t′) = t and
pred(t) = t′ meaning t is immediately dependent on t′. If
t ∈ Tn is the source of a workflow path, then t is not
dependent on any task, hence pred(t) = Ø. Similarly, if
t ∈ Tn is the target of a workflow path, then there does not
exist a task that is dependent on t, hence next(t) = Ø.

For t, t′ ∈ Tn such that t′ is dependent on t, we define
the set of directed paths from t to t′ as Ωnt)t′ ⊆ Ωn. For the
latency sensitivity of requests, we are interested in the longest
possible path. We define the set of end-to-end paths in Ωn

n ∈ N as

Ω̄n = {Ωnt)t′ | pred(t) = Ø, next(t′) = Ø, t, t′ ∈ Tn}. (1)

For some path ω ∈ Ω̄n, we define ωT and ωE to respectively
be the sequence of tasks and of VTDLs in ω. That is,

ωE = {ei,j = (ti, tj) : next(ti) = tj | ti, tj ∈ ωT}. (2)

B. Fog Physical Infrastructure

Each fog node may be static or dynamic in terms of its
availability. Dynamic fog nodes can be viewed as being on
stand-by, or being available on-demand. When IoT traffic
increases considerably, or when there is a node failure in the
fog infrastructure, a dynamic fog node will activate to support
the overloaded system. Let F̂ be the set of fixed static fog
nodes, and F̃ be the set of candidate dynamic fog nodes such
that |F̃ | < |F̂ |. The set of all fog nodes is therefore F = F̂∪F̃ .

Cloud servers can be useful in processing non-latency sen-
sitive IoT requests, or providing long-term storage for requests
processed by fog. We define a simple router as a network node
with routing capabilities, but no fog resource capabilities. An
IoT request may access fog and cloud resources through an
access point such as a simple router or another fog node. A
path between two fog nodes is often not direct, but composed
of several simple routers. However, the routing delay incurred
by the simple routers within an edge network is minimal, and
dominated by the processing delay of fog nodes. Therefore,
we simplify the delay formulation by omitting simple routers
when discussing network paths.

Within the fog infrastructure, we define a link as a bidirec-
tional connection between two adjacent fog nodes f, f ′ ∈ F .
If at least one incident node is a candidate dynamic fog node
f ∈ F̃ , then the link is a dynamic link; otherwise, it is fixed.
Let L̂ be the set of fixed fog links, and L̃ be the set of dynamic
fog links, and L = L̂ ∪ L̃ be the set of all fog links.

Between two fog nodes, if no direct link exists between
them, then we assume there exists some path consisting of
direct links that connect both nodes. Let Π be the set of all
paths between fog nodes in F . For a path π ∈ Π, let πL =
{`1, `2, . . . } be the sequence of fog links in path π. We define
Πf )f ′ ⊆ Π to be the set of all possible paths in Π from f ∈ F
to f ′ ∈ F and Π` ⊆ Π to be the set of all paths in Π that
include the link ` ∈ L.



4

We denote the set of all paths with a fog node f ∈ F as
the source or target respectively as

ΠOUT
f =

⋃

f ′∈F
Πf )f ′ (3)

ΠIN
f =

⋃

f ′∈F
Πf ′)f (4)

Πf = ΠIN
f ∪ΠOUT

f . (5)

For simplicity, we define D = {IN,OUT} as the set of path
directions to/from a fog node.

We define the set of paths between static fog nodes as

Π̂ =
⋃

f∈F̂

⋃

f ′∈F̂

Πf )f ′ . (6)

Likewise, we define the set of paths with exactly one dynamic
fog node at its source, target or both as

Π̃ =
⋃

f̃∈F̃


Πf̃ )f̃

⋃

f∈F̂

(
Πf )f̃ ∪Πf̃ )f

)

 . (7)

Various path notations can be overlapped to define further path
subsets; e.g. Π̂`

f )f ′ = Π̂ ∩ Πf )f ′ ∩ Π`. The set parameters of
static and dynamic fog nodes and paths are summarized in
Table I.

C. Fog Design & Dimensioning
Our previous work [8] designs & dimensions a static fog

infrastructure based on estimated IoT traffic. The method used
to design & dimension a fog infrastructure is to create a
surjective mapping of each IoT task to a fog node, and each
VTDL to a fog path. If F̂ and L̂ are the sets of designed
& dimensioned fog nodes and links, then this paper aims to
enhance the static fog infrastructure with a dynamic extension.
The solution to this problem will yield a valid node mapping
f : T 7→ F̂ for each IoT task, and a valid path mapping
$ : E 7→ Π̂ for each VTDL. These mappings ensure that
each task and each VTDL is mapped to exactly one fog node
and fog path respectively. These functions are described in
Table II. From these mappings, we define binary variables x̂tf
and x̂eπ such that

x̂tf = 1 [f(t) = f ] (8)

x̂eπ = 1 [$(e) = π] . (9)

It is assumed the fog infrastructure has no unused fog nodes
and no redundant requests. That is,

∑
t∈T x̂

t
f = 1 for each

f ∈ F̂ and
∑
e∈E x̂

e
π = 1 for each π ∈ Π̂.

Each static fog node f ∈ F̂ has a fixed set of associated
tasks Tf , and each path π ∈ Π̂f has a fixed set of associated
VTDLs Eπ . Each IoT task t ∈ Tf has resource requirement
prt of r ∈ R, and bandwidth requirement bt. The bandwidth
requirement of a VTDL e ∈ Eπ such that e = (t, t′) is be = bt.

Let ẑrf and q̂π represent the quantity of reallocated resource
and bandwidth when a fog node f fails, such that

ẑrf =
∑

t∈Tf
prt ; r ∈ R (10)

q̂π =
∑

e∈Eπ
be. (11)

Table I: Parameters for the fog physical infrastructure.

Parameter Description

F̂ , F̃ Set of static and dynamic fog nodes respectively.

Π̂, Π̃ Set of static and dynamic fog paths respectively.

Πd
f Set of paths in direction d ∈ D to/from f ∈ F̂ ∪ F̃ .

P̄ rf Maximum resource capacity r ∈ R in f ∈ F̂ ∪ F̃ .

B̄` Maximum bandwidth capacity in ` ∈ L̂ ∪ L̃.

ξf Failure rate of f ∈ F̂ .

Table II: Mapping functions of the IoT-fog network.

Function Mapping Description

f(t) T 7→ F̂ Maps IoT task to a static fog node.

$(e) E 7→ Π Maps a virtual task dependency link to a
physical fog path.

f̃(f) F̂ 7→ F̃ Maps a fog node with a backup dynamic
fog node.

$̃d(π) Π̂ 7→ Π̃ Maps a virtual task dependency link to
an alternate dynamic fog path in direction
d ∈ D.

IV. NETWORK LATENCY

The IoT landscape is composed of several types of devices
with different processing request patterns. Certain devices
transmit data to cloud on a periodic schedule, some transmit
data frequently with stochastic inter-transmission times, and
others transmit on an ad hoc basis. In complex systems where
data presents burst behaviour, e.g. Smart Cities, IoT traffic
can be modelled by a Poisson distribution under reasonable
aggregation assumptions [23], [24]. Therefore, we model IoT
request arrival and inter-arrival to the fog network by a Poisson
and Exponential distribution respectively.

A. IoT Traffic

The set N is obtained from historic or estimated data of IoT
requests. Though IoT devices may have varied distributions of
request transmission, we assume the entire IoT environment
exhibits IoT request transmissions that follow a Poisson Pro-
cess [23]. The total IoT task arrival rate to each fog node is

λ̂f =
∑

n∈N

∑

t∈Tn
x̂tf · λ̂n; f ∈ F̂ (12)

where λ̂n is the estimated request transmission rate of n ∈ N
per unit time.

B. Transmission

Each IoT task t ∈ T has bandwidth requirement bt
bytes/second, request (upload) byte size s+

t , and response
(download) request byte size s−t . We define the upload and
download transmission times, respectively, as

ν+
t =

bt

s+
t

(13)

ν−t =
bt

s−t
. (14)
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C. Processing Time

The quantity and frequency of computing resources ẑCPUf

determine how quickly a fog node can process an IoT request.
Indeed, a faster processing will yield quicker service. We
define the local processing resources of task t ∈ T as zT

t

and the local processing time as ζT
t . If zT

t is represented in
gigahertz, then the number of cycles required to process task
t ∈ T is

ht = zT
t · ζT

t . (15)

The processing time of IoT task t ∈ T on fog node f ∈ F̂ is

ζF
t,f =

ht
ẑCPUf

. (16)

The expected processing time by a fog node of any IoT task
is

1

µ̂f
= Ef [ζ] =

∑
t∈T x̂

t
f · ζF

t,f∑
t∈T x̂

t
f

; f ∈ F̂ (17)

1

ς̂2f
= Ef [ζ2] =

∑
t∈T x̂

t
f · (ζF

t,f )2

∑
t∈T x̂

t
f

; f ∈ F̂ . (18)

D. Congestion

At fog node f ∈ F̂ , the IoT task arrival rate λ̂f (12) follows
a Poisson Process [23], with expected processing time 1/µ̂f
(17). Therefore, congestion on a single link towards f can
be modelled as an M/G/1 queue. We determine the average
waiting time [25] by the function η : R2 7→ R to be

η(λ, µ, ς2) =
λ

2ς2(1− λ
µ )
. (19)

For processes arriving to static fog node f ∈ F̂ , we define
η̂f = η(λ̂f , µ̂f , ς̂

2
f ).

E. End-to-end latency

Consider a path ω ∈ Ω̄n. We enumerate the tasks such
that ωT = {t1, t2, . . . }, and express the fog node mapping
as fi = f(ti). We then define the end-to-end latency of IoT
request execution n ∈ N over task workflow ω ∈ Ω̄n as

∆̂n
ω = ν+

t1 + ν−t|πT|
+

|ωT|∑

i=1

(
ζF
ti,fi + η̂fi

)
. (20)

If τn is the latency threshold of request n, then ∆̂n
ω ≤ τn, and

∆̄n
ω = τn − ∆̂n

ω is the remaining latency threshold over n.

V. DESIGN & DIMENSIONING OF RELIABLE FOG
NETWORK

The dimensioned design of the fog infrastructure is op-
timized to support the estimated IoT traffic. Therefore, a
larger estimate of IoT traffic may be selected to create a
reliable network. However, in the event a single fog node
fails, surrounding fog nodes may not be able to host the
failed fog node’s IoT processes due to resource constraints.
This issue can be alleviated using dynamic fog nodes of equal
or larger resource capacity. These on-demand nodes become

Table III: Decision variables for MILP and CG formulation.

Decision
Variables

Domain Description

yf̃ {0, 1} Design of fog node f̃ ∈ F̃ .

w˜̀ {0, 1} Design of link ˜̀∈ L̃.

zr
f̃

[
0, P̄ r

f̃

]
Dimension of resources r ∈ R allo-
cated to Fog node f̃ ∈ F̃ .

q˜̀
[
0, B̄˜̀

]
Dimension of bandwidth allocated to
Fog link ˜̀∈ L̃.

xf,f̃ {0, 1} Dynamic association of f ∈ F̂ to
f̃ ∈ F̃ .

xdπ,π̃ {0, 1} Dynamic association of π ∈ Π̂ to
π̃ ∈ Π̃ in direction d ∈ D.

λψ {0, 1} Selection of DFAC ψ ∈ Ψ.

active when a fog node fails. Since a dynamic fog node is
not executing any processes upon waking, it can host all
of the failed fog node’s computations. When all fog nodes
are operating properly and IoT traffic is manageable, the
dynamic fog node may: (1) power down, thus saving energy
and operation cost, or (2) assist in servicing IoT requests of
certain priority, thus decreasing overall latency.

We propose the reliable design & dimensioning of dynamic
fog nodes to support fog node failures in a static fog infras-
tructure. If a fog node fails and a nearby fog node has ample
resources, a migration of resources may occur to the active
fog node. In the following formulation, we are interested in
the worst-case scenario where IoT traffic uses the full capacity
of fog, and subsequent fog node failures are experienced.

Subsection V-A defines the assumptions of the model. Sub-
section V-B describes the decision variables and constraints
related to the association of static and dynamic fog nodes
and paths. Subsection V-C describes the decision variables and
constraints related to the design & dimensioning of dynamic
fog nodes and links. Subsection V-D details the objective
function for reliable design & dimensioning. Subsection V-E
and V-F define the remaining constraints related to reliability,
resource requirements, and latency requirements.

A. Assumptions

When a static fog node fails and the dynamic fog node
activates, a repository node migrates the most recent data
checkpoint to the dynamic fog node. We assume this process
is automatically triggered upon failure, and does not produce
significant interruption of fog services to IoT. For model
simplicity, we assume dynamic fog nodes are dedicated servers
that cannot fail. The dynamic fog nodes incur energy costs
while they are active. We assume there are no energy costs
associated with an inactive dynamic fog node.

Our model focuses on the location and resource placement
of dynamic fog nodes towards the implementation of a reliable
fog extension. The proposed reliable fog model does not
consider any time dependent aspects of operation such as
energy costs or data migration since these are outside the
scope of design & dimensioning. Furthermore, the placement
of stable storage [12], either in a dedicated server or distributed
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among nearby fog nodes, warrants dedicated investigation &
experimentation, and is therefore excluded from this model.

B. Fog Association

We define the mapping f̃(f) : F̂ 7→ F̃ to associate a static
fog node with exactly one backup dynamic fog node. When
a fog node f ∈ F̂ fails such that f̃(f) = f̃ , then all tasks
currently assigned to f , i.e., t ∈ Tf , must be reallocated to f̃ .
We introduce a binary decision variable xf,f̃ such that

xf,f̃ = 1

[
f̃(f) = f̃

]
; f ∈ F̂ (21)

=⇒
∑

f̃∈F̃

xff̃ = 1; f ∈ F̂ . (22)

In the event of a fog node failure, all static paths connected
to the failed fog node are replaced with alternate paths
connected to the dynamic fog node. The target of an in-path
is a re-associated fog node, and the source of an out-path is a
re-associated fog node. We define the mappings $̃IN : Π 7→ Π̃
and $̃OUT : Π 7→ Π̃ to respectively associate a path π ∈ Π to
alternate dynamic paths π̃IN, π̃OUT ∈ Π̃. We introduce binary
decision variables xIN

π,π̃ and xOUT
π,π̃ such that

xd
π,π̃ = 1

[
$̃d(π) = π̃

]
; π ∈ Π̂d, d ∈ D (23)

=⇒
∑

π̃∈Π̃d

xd
π,π̃ = 1; π ∈ Π̂d, d ∈ D. (24)

Equations (22) and (24) are, respectively, the node associ-
ation and path association constraints of the set partitioning
problem [14]. Finally, the path association of a static path is
bounded below by the appropriate fog node association. In
other words,

xf,f̃ ≤
∑

π̃∈Π̃d
f̃

xd
π,π̃; π ∈ Π̂d

f , f ∈ F̂ , f̃ ∈ F̃ , d ∈ D. (25)

We restrict the possible fog associations to permissible map-
pings only. A fog node or path mapping may not be possible
due to distance, organizational ownership, or mismatching path
endpoints. Let Q̃f be the set of all possible dynamic fog nodes
f̃ ∈ F̃ that can be associated with f ∈ F̂ , and let Q̃π is the
set of all possible alternate paths π̃ ∈ Π̃ that can be associated
with π ∈ Π.

xf,f̃ = 0; ∀(f, f̃) ∈ F̂ × (F̃ \ Q̃f ) (26)

xπ,π̃ = 0; ∀(π, π̃) ∈ Π̂× (Π̃ \ Q̃π) (27)

Constraints (26) and (27), respectively, invalidate any imper-
missible fog node or path mapping.

C. Design & Dimensioning

We define four decision variables for the design and dimen-
sioning of the fog infrastructure. The continuous dimensioning
of resource r ∈ R of dynamic fog node f̃ ∈ F̃ is denoted
zr
f̃
∈
[
0, P̄ r

f̃

]
. The continuous dimensioning of bandwidth in

fog link ˜̀∈ L̃ is denoted q˜̀ ∈
[
0, B̄˜̀

]
. The associated binary

design variables are denoted yf̃ and w˜̀ such that

yf̃ =

[∑

r∈R
zr
f̃
> 0

]
; f̃ ∈ F̃ (28)

w˜̀ =
[
q˜̀> 0

]
; ˜̀∈ L̃. (29)

If a design variable is positive, we say that node/link is
selected. The domain and descriptions of design and dimen-
sioning variables are summarized in Table III.

We define the relationship between design & dimensioning
decision variables through capacity constraints. Let Wf̃ be the
set of links incident to f̃ ∈ F̃ , and let W MAX

f̃
be the maximum

number of selected links incident to f̃ .

zr
f̃
≤ P̄ r

f̃
· yf̃ ; f̃ ∈ F̃ , r ∈ R (30)

q˜̀≤ B̄˜̀ · w˜̀ ; ˜̀∈ L̃ (31)
∑

˜̀∈Wf̃

w˜̀≤W MAX
f̃
· yf̃ ; f̃ ∈ F̃ (32)

∑

f̃∈F̃

yf̃ ≤ YMAX, (33)

Constraint (30) enforces the selection of a fog node that is
dimensioned a positive resource amount. Constraint (31) en-
forces the selection of a fog link that is dimensioned a positive
bandwidth amount. Constraint (32) defines the relationship
between an selected fog node and incident links. Finally, (33)
defines the maximum number of selected fog nodes.

D. Objective function

We formulate the problem as an MILP. For each dynamic
fog node and path mapping, we calculate the difference in cost
of the alternate mapping from the original, i.e., the additional
mapping cost. Furthermore, we calculate the implementation
cost of each dynamic fog node and fog link. Together, these
represent the design and dimensioning costs of the set parti-
tioning problem. Therefore, this problem is formally defined as
follows. We seek the most efficient mappings {f̃(f) | ∀f ∈ F̂},
and {$̃d(π) | ∀π ∈ Π̂, d ∈ D} that minimize the design costs
of dynamic fog association.

min
∑

f̃∈F̃

Vf̃ · yf̃ +
∑

˜̀∈L̃

U˜̀ · w˜̀

+
∑

f̃∈F̃

∑

r∈R
vr
f̃
· zr
f̃

+
∑

˜̀∈L̃

u˜̀ · q˜̀

+
∑

f∈F

∑

f̃∈F̃

∑

r∈R
ẑrf ·

(
cr
f̃
− crf(t)

)
· xf,f̃

+
∑

π∈Π̂

∑

π̃∈Π̃

∑

d∈D

q̂π ·
(∑

`∈π̃L

c` −
∑

`∈πL

c`

)
· xd

π,π̃

(34)

The objective function is divided into four sections for the
joint optimization of various facets of dynamic fog design &
dimensioning. The first line expresses the capital expenditure
costs of implementing resources and bandwidth into dynamic
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Figure 2: When a fog node f ∈ F̂ fails, such that f(f) = f̃ , then f̃
becomes active and all data allocated to f is reallocated to f̃ along
several possible paths.

fog nodes and links respectively. The second line expresses
the unit costs of implementing resources and bandwidth into
dynamic fog nodes and links respectively. The third line
expresses the cost of associating resources from a failed node
to an associated dynamic node. The fourth line expresses the
unit costs of associating a static fog path to an associated
dynamic path. Since the resources are no longer executed in
the failed node, the original resource amounts are subtracted
from the failed node and added to the dynamic node with a
new unit price. Similarly, the last term expresses the bandwidth
costs associated with rerouting IoT request data from the failed
node to the dynamic node.

E. Reliability constraint
Suppose f ∈ F̂ has a failure rate ξf ∈ (0, 1), meaning fog

node f has a probability ξf of being in a failed state at any
given time1. Consider a cluster of static fog nodes associated
with dynamic fog node f̃ ∈ F̃ , and denote the worst-case
failure rate among the fog nodes as ξ = max

f∈F̂
ξf . Therefore,

the probability of experiencing at most one failure for nodes
associated with f̃ is

Pr(at most one failure; f̃ ∈ F̃ )

=
∏

f∈F̂

(1− ξf )xf,f̃ +
∑

f∈F̂

xf,f̃ ξf

[ ∏

f ′∈F̂\f

(1− ξf ′)xf′,f̃
]

≥(1− ξ)nf̃ + nf̃ · ξ(1− ξ)(nf̃−1) (35)

=Ξ(nf̃ ; ξ),

where nf̃ =
∑
f∈F̂ xf,f̃ .

To guarantee network reliability, we require the probability
of at most one failure in any cluster of fog nodes associated
with a dynamic fog node to be at least α ∈ (0, 1), assuming
a worst-case failure rate. In other words,

Ξ(nf̃ ; ξ) ≥ αyf̃ ; f̃ ∈ F̃ . (36)

For high network robustness, we choose α to be close to 1.
In order to linearize failure constraint (35), we consider only

the probability that there exists no failure in a cluster. We
define α0 as the probability threshold that there does not exist
any fog node failure associated with f̃ , such that

α0 = min
n∈Z≥2

{
(1− ξ)n | Ξ(n; ξ) ≥ α

}
. (37)

1In practice, we discourage the use of fog nodes with high failure rate.

The linearized failure constraint becomes
∏

f∈F̂

(1− ξf )xf,f̃ ≥ αyf̃0

⇐⇒
∑

f∈F̂

xf,f̃ · log(1− ξf ) ≥ yf̃ · logα0; f̃ ∈ F̃ .
(38)

F. Service reallocation constraints

When all processes from a failed fog node are redirected to
a dynamic fog node, we ensure the resource and bandwidth
capacities of the fog network, and the latency requirements
of the IoT requests are respected. We define the following
constraints.

xf,f̃ · ẑrf ≤ zr
f̃
; (f, f̃) ∈ F̂ × F̃ , r ∈ R (39)

xd
π,π̃ · q̂π ≤ q`′ ; (π, π̃) ∈ Π̂× Π̃, `′ ∈ π̃L, d ∈ D (40)

∆n
ω;f̃
≤ ∆̄n

ω · yf̃ ; n ∈ N, ω ∈ Ω̄n, f̃ ∈ F̃ . (41)

where

∆n
ω;f̃

=

|ωT|∑

i=1

(
1

µ̃f,f̃
− 1

µ̂f(ti)

)
· xf(ti),f̃

+

|ωT|∑

i=1

(
η̃f(ti),f̃

− η̂f(ti)

)
· xf(ti),f̃

.

(42)

η̃f,f̃ = η(λ̂f , µ̃f,f̃ , ς̃
2
f,f̃

) (43)

µ̃f,f̃ =
µ̂f · zCPUf̃

ẑCPUf

(44)

ς̃2
f,f̃

=
ς̂2f · zCPUf̃

ẑCPUf

. (45)

Constraint (39) expresses the minimum resource dimensioning
a dynamic fog node may have. Constraint (40) expresses the
bandwidth constraints of rerouting a task to a new physical
path. For link ` ∈ L, the constraint defines the maximum
bandwidth as a) the remaining bandwidth on a static link, or
b) the bandwidth dimensioning of a dynamic link. In other
words,

q` =

{
B̄` if ` ∈ L̂
q˜̀ if ` ∈ L̃. (46)

Similarly, (41) requires the additional latency generated from
rerouting to a dynamic fog node to be constrained by the
remaining latency threshold. The latency calculation (42)
has two terms describing the latency incurred from using a
dynamic path. These represent the additional latency incurred
by processing time and congestion respectively.

VI. LINEARIZATION OF RELIABLE MODEL

A. Computing resource constraint

Dimensioning the computing resources of a fog node will
also affect processing time, and therefore the congestion of
that fog node. Indeed, higher computing resources will allow
a fog node to process requests faster. We introduce an array of
decision variables z̆f̃ = [z̆0

f̃
, . . . , z̆Z

f̃
], z̆i

f̃
∈ {0, 1}, for a large
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integer Z. Let sf̃ = P̄ CPU
f̃

/Z, where P̄ CPU
f̃

is the maximum

computing resource capacity of dynamic fog node f̃ . The
congestion calculation (43) is a non-linear term in zCPU

f̃
(44).

Hence, we reformulate η̃f,f̃ as a continuous piecewise decision
variable.

Z∑

i=0

i · sf̃ · z̆if̃ = zCPU
f̃

(47)

Z∑

i=0

z̆i
f̃

= 1. (48)

η̃i
f,f̃

= η(λ̂f ,
i · sf̃
ẑCPU
f

· µ̂f ,
i · sf̃
ẑCPU
f

· ς̂2f ) · z̆i
f̃
.

=⇒ η̃f,f̃ =
Z∑

i=0

η̃i
f,f̃

(49)

Constraints (47) and (48) equate the value zCPU
f̃

to a single
partition variable zi

f̃
where the coefficient is a fraction of

the maximum computing resource capacity. Constraint (49)
assigns ηf̃ to the same partition variable with congestion
coefficients.

For static fog node f ∈ F̂ and dynamic fog node f̃ ∈
F̃ , components of (42) and (44) include terms xf,f̃/z

CPU
f̃

and

η̃f,f̃ ·xf,f̃ . For a function g(z̆f ) =
∑Z
i=0 z̆

i
f ·Ci with constants

C1, . . . , CZ , consider the product g(z̆f̃ ) ·xf,f̃ and reformulate
the non-linear terms.

g(z̆f̃ ) · xf,f̃ =

Z∑

i=0

xf,f̃ · z̆if · Ci (50)

xf,f̃
zCPU
f̃

=
Z∑

i=1

xf,f̃ · z̆if ·
1

i · sf̃︸ ︷︷ ︸
Ci

(51)

η̃f,f̃ · xf,f̃ =

Z∑

i=0

xf,f̃ · z̆if̃ · η̃
i
f,f̃︸︷︷︸
Ci

. (52)

We observe that it is only necessary to linearize the terms
xf,f̃ · z̆if for i = 0, . . . , Z which are products of binary vari-
ables. Hence, we introduce a new binary variable x̆i

f,f̃
∈ {0, 1}

such that
x̆i
f,f̃
≤xf,f̃

x̆i
f,f̃
≤z̆if

i = 1, . . . , Z. (53)

Therefore, the processing and congestion terms of (42), re-
spectively, become

xf,f̃
zCPU
f̃

=
Z∑

i=1

x̆i
f,f̃

i · sf̃
(54)

η̃f,f̃ · xf,f̃ =
Z∑

i=0

x̆i
f,f̃
· η̃i
f,f̃
. (55)

VII. COLUMN GENERATION HEURISTIC FOR DESIGN &
DIMENSIONING OF A RELIABLE FOG NETWORK

The MILP formulation is intractable for large numbers
of static and dynamic fog nodes. Mapping each static fog

Figure 3: A DFAC ψ maps a static fog node and all connecting paths
to a dynamic node and associated paths.

node to exactly one dynamic fog node yields |F̃ ||F̂ | possible
combinations of node mappings. Mapping each static fog path
to one dynamic fog path per direction yields 2|Π̃||Π̂| possible
combinations of path mappings. Since every dynamic fog link
is incident to a dynamic fog node, of which there are |F̃ |,
then |L̃| ∝ |F̃ |. Therefore, the fog association components
of fog-RO-MILP are the most restrictive in terms of solution
time.

We propose the use of column generation [15] to increase
the scalability of the MILP formulation of the set partitioning
problem. We reformulate the fog association variables of fog-
RO-MILP in terms of Dynamic Fog Association Configu-
rations (DFACs). DFACs associate each static fog node to
exactly one designed dynamic fog node, and each associated
static path to at most two directed dynamic paths. In case of a
node failure, all IoT traffic from the failed fog node is rerouted
to the dynamic node and paths per the appropriate DFAC.

Let Ψ be the set of DFACs. A DFAC is composed of
mappings from static fog nodes and paths to dynamic fog
nodes and paths respectively. Each DFAC ψ ∈ Ψ 1) associates
a static fog node f ∈ F̂ with a dynamic fog node f̃ ∈ F̃ , 2a)
associates every static path π ∈ ΠIN

f from a node f ′ ∈ F̂ to f
with a dynamic path π̃ ∈ Π̃IN

f̃
from f ′ to f̃ , and 2b) associates

a path π ∈ ΠOUT
f from f to f ′ with a dynamic path π̃ ∈ Π̃OUT

f̃

from f̃ to f ′. A DFAC ψf that associates f is defined as

$̃
d
f = {$̃d(π) | π ∈ Π̂d

f}; f ∈ F̂ (56)

ψf =
(
f̃(f), $̃

IN
f , $̃

OUT
f

)
; f ∈ F̂ . (57)

A visual representation of a DFAC is shown in Figure 3.
Since each DFAC associates a single fog node f , we wish
to select |F̂ | DFACs that respect the service constraints of
the problem. This corresponds to the Master Problem in our
column generation approach. Determining the dynamic fog
association of each DFAC corresponds to the Pricing Problem.

A. Master Problem

Let Ψ∗ ⊆ Ψ be the subsets of optimal configurations for the
fog partitioning solution. Then, the set partitioning problem
can be reformulated with respect to λψ such that

λψ = 1 [ψ ∈ Ψ∗] ; ψ ∈ Ψ. (58)

The fog partitioning portion of fog-RO-MILP can be accord-
ingly reformulated with respect to decision variables λψ . We
introduce functions over ψ ∈ Ψ to represent services given by
ψ over aspects of the dynamic fog infrastructure, and define
them in Table IV. We present the objective function of the
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Table IV: Functions over DFAC ψ for fog-RO-CG-M.

Function Domain Range Description

aψ(f) Ψ× F̂ {0,1} Whether DFAC ψ reroutes data from
f ∈ F̂ .

Θψ(f̃) Ψ×F̃ R+ The probability of at most one fail-
ure associated with f̃ ∈ F̃ .

P rψ(f, f̃) Ψ×F̂×F̃×R R+ The quantity of resources r ∈ R
mapped from f ∈ F̂ to f̃ ∈ F̃ .

Bd
ψ(π, `) Ψ×D×Π×L R+ The bandwidth used over link ` ∈ L

in π ∈ Π in direction d ∈ D.

∆ω;f̃
ψ (n) Ψ×N×Ω̄n×F̃ R+ The additional latency of workflow

path ω ∈ Ω̄n, n ∈ N when the
dynamic node f̃ ∈ F̃ is used.

Master Problem of the column generation process, known as
fog-RO-CG-M.

min
∑

f̃∈F̃

(
Vf̃ +

∑

r∈R
p̄r · vr

f̃

)
· yf̃

+
∑

˜̀∈L̃

(
U˜̀ + b̄ · u˜̀

)
· w˜̀

+
∑

ψ∈Ψ

COSTψ λψ

(59)

yf̃ , w˜̀, λψ ∈ [0, 1] (60)

where

p̄r =
1

|F̂ |
∑

f∈F̂

ẑrf (61)

b̄ =
1

|L̂|
∑

`∈L̂

q̂` (62)

COSTψ =
∑

f∈F̂

∑

f̃∈F̃

∑

r∈R
P rψ(f, f̃) ·

(
cr
f̃
− crf

)

+
∑

d∈D

∑

π∈Π

∑

`∈L
Bd
ψ(π, `) ·

(∑

π̃`

c` −
∑

π`

c`

)
.

(63)

The expected resource and bandwidth dimensioning quantities,
(61) and (62) respectively, are estimated from the current
dimensioning of static fog nodes and links. The DFAC cost
(63) is the combined costs of fog node and path association.

Fog-RO-CG-M is divided into fog association and design
& dimensioning components. The dynamic fog association
problem has far more variables and constraints to consider.
Therefore, we apply column generation to these components.
Feasible and cost effective fog associations are heavily im-
pacted by dynamic fog design. Therefore, we preserve the
design decision variables yf̃ (28) and w˜̀ (29). We preserve
the dimensioning costs by replacing the variables zr

f̃
and

q˜̀ with the expected resource and bandwidth dimensioning
quantities. The binary variables yf̃ , w˜̀ and λψ are relaxed to
be continuous within [0,1].

1) Pricing constraints: The constraints of fog-RO-CG-M
are defined as follows.

∑

ψ∈Ψ

λψ · aψ(f) = 1; f ∈ F̂ . (ϕf ) (64)

∑

ψ∈Ψ

λψ ·Θψ(f̃) ≥ logα0 · yf̃ ; f̃ ∈ F̃ (θf̃ ) (65)

∑

ψ∈Ψ

λψ · P rψ(f, f̃) ≤ P̄ r
f̃
· yf̃ ; (ρr

f,f̃
) (66)

f ∈ F̂ , f̃ ∈ F, r ∈ R
∑

ψ∈Ψ

λψ ·Bd
ψ(π, `) ≤ B̄` · w`; (βd

π,`) (67)

` ∈ L, π ∈ Π̂,d ∈ D

∑

ψ∈Ψ

λψ ·∆ω;f̃
ψ (n) ≤ ∆̄n

ω · yf̃ ; (δωf̃n) (68)

n ∈ N,ω ∈ Ω̄n, f̃ ∈ F̃

The fog-RO-MILP constraints are reformulated in terms of
DFACs. Constraint (64) represents the reformulated fog asso-
ciation constraints (22) and (24). Constraint (65) represents
the reliability constraint (38). Constraints (66) and (67) re-
spectively represent the resource (39) and bandwidth (40)
restrictions of fog-RO-CG-M. Constraint (68) represents the
latency constraint (41), where ∆ω,f̃

ψ implicitly uses the ex-
pected dimensioning p̄CPU

f̃
. The associated link in (67) may

be static or dynamic. For static link ` ∈ L̂, B̄` denotes the
remaining bandwidth and w` = 1.

The scalars ϕf , θf̃ , ρ
r
f,f̃
, βd
π,` and δω,f̃n are the dual variables

associated with the corresponding constraint (64) – (68) which
are used in solving the Pricing Problem.

2) Capacity constraints: The constraints (30) – (33) from
the MILP model are used in fog-RO-CG-M. These constraints
express relationship between the design & dimensioning vari-
ables per dynamic fog node and link, and the maximum
number of designed nodes and links.

B. Pricing Problem Ψ

The Pricing Problem considers the reduced cost of new
DFACs to the Master Problem. The Pricing Problem, denoted
fog-RO-CG-P, is constructed from the dual variables associ-
ated with (64) – (68). We are interested in finding a new DFAC
ψ to add to the model that will yield a negative reduced cost,
which is expressed as follows.

COSTψ = COSTψ −
∑

f∈F̂

ϕf · aψ(f)−
∑

f̃∈F̃

θf̃ ·Θψ(f̃)

+
∑

r∈R

∑

f∈F̂

∑

f̃∈F̃

ρr
f,f̃
· P rψ(f, f̃)

+
∑

d∈D

∑

π∈Π̂

∑

`∈L̃
βd
π,` ·Bd

ψ(π, `)

+
∑

n∈N

∑

ω∈Ω̄n

∑

f̃∈F̃

δω;f̃
n ·∆ω;f̃

ψ (n).

(69)

where COSTψ is defined by (63).
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We express (69) in terms of decision variables (21) and (23),
and omit the implied notation of DFAC ψ ∈ Ψ. For f ∈ F̂ ,

aψ(f) =
∑

f̃∈F̃

xf,f̃ +
∑

d∈D

∑

π∈Π̂d
f

∑

π̃∈Π̃

xd
π,π̃. (70)

For each dynamic fog node f̃ ∈ F̃ ,

Θψ(f̃) =
∑

f∈F̂

xf,f̃ · log(1− ξf ). (71)

For each static fog node f ∈ F̂ , dynamic fog node f̃ ∈ F̃ ,
and resource f ∈ R,

P rψ(f, f̃) = ẑrf · xf,f̃ (72)

For each path π ∈ Π̂ and fog link ` ∈ L \ πL,

Bd
ψ(π, `) =

∑

π̃∈Π̃`

∑

d∈D

q̂π · xd
π,π̃. (73)

For each IoT request n ∈ N , task workflow ω ∈ Ω̄n, and
dynamic fog node f̃ ∈ F̃ ,

∆ω;f̃
ψ (n) = ∆n

ω;f̃
(74)

where ∆n
ω;f̃

is defined by (42).

Substituting (70)–(74) into the reduced cost formulation
(69) results in the objective function of fog-RO-CG-P. We in-
clude the set partitioning constraints (22) and (24). Therefore,
fog-RO-CG-P becomes

min =−
∑

f∈F̂

ϕf



∑

f̃∈F̃

xf,f̃ +
∑

d∈D

∑

π∈Π̂d
f

∑

π̃∈Π̃

xd
π,π̃




−
∑

f̃∈F̃

∑

f∈F̂

θf̃ log(1− ξf ) · xf,f̃

+
∑

f∈F̂

∑

f̃∈F̃

∑

r∈R

(
cr
f̃
− crf + ρr

f,f̃

)
· ẑrf · xf,f̃

+
∑

π∈Π̂

∑

`∈L\πL

∑

π̃∈Π̃`

∑

d∈D

β̄π · q̂π · xd
π,π̃

+
∑

n∈N

∑

ω∈Ω̄n

∑

f̃∈F̃

δω;f̃ ·∆n
ω;f̃
.

Subject to
∑

f̃∈F̃

∑

π̃∈Π̃d
f̃

xd
π,π̃ = 1; π ∈ Π̂d

f , f ∈ F̂ , d ∈ D

∑

f̃∈F̃

xff̃ = 1; f ∈ F̂

(75)

where

β̄π =
∑

π̃

c` + βd
π,` −

∑

π

c`. (76)

A column refers to the new decision variable added to the
objective function, and each appropriate constraint of fog-RO-
CG-M-LP. New DFACs are constructed from the resulting
solution of the Pricing Problem. Each new DFAC ψ generates
a new variable λψ , and an associated column.

Figure 4: Maximum fog cluster size per dynamic fog node.

C. Fog-RO-CG Steps

A DFAC ψ ∈ Ψ is composed of one fog node association,
and one or more fog path associations. Therefore, the same fog
associations may be present across multiple DFACs, leading
to redundancies during solving. By (21), (23) and (57), we
revert a DFAC ψ into fog association variables.

ψ =
(
f̃(f), $̃

IN
f , $̃

OUT
f

)

=⇒


xf,f̃ ,

⋃

π∈Π̂IN
f

xIN
π,π̃,

⋃

π∈Π̂OUT
f

xOUT
π,π̃


 = 1.

(77)

From Ψ′, we obtain a set of candidate fog association decision
variables. Finally, fog-RO-MILP is solved with candidate fog
association decision variables only. Therefore, the solution of
fog-RO-CG is fog-RO-MILP restricted with variables obtained
from column generation. The fog-RO-CG process is summa-
rized.

1) Initialize fog-RO-CG-M with a feasible set Ψ′ = Ψ0.
2) Solve fog-RO-CG-M with Ψ′.
3) Construct and solve fog-RO-CG-P from the dual variables

in 2). Assemble possible DFACs from the solution, and
evaluate their reduced cost (69).

4) If the reduced cost is negative, construct a new DFAC ψ, a
variable λψ and an associated column. Add Ψ′ = Ψ′∪ψ.

5) If at least one new DFAC is constructed, return to 2).
Else, continue.

6) Convert Ψ′ into candidate fog association variables, and
solve the restricted fog-RO-MILP.

VIII. SIMULATION & ANALYSIS

We are most interested in investigating the tradeoff between
time efficiency and design & dimensioning cost of our selected
algorithms. As a benchmark, we introduce a greedy algorithm
approach to design & dimensioning, called fog-RO-Greedy. In
order to avoid a large fixed CAPEX cost, we aim to minimize
the number of dynamic fog nodes to include in the design.
Our approach is to select a dynamic fog node, and associate
as many static fog nodes to it while satisfying the failure
probability threshold.
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Figure 5: Small-world network topology for simulation.

Table V: Expected cost and maximum serviceable traffic load of each
modeled infrastructure.

Infrastructure Expected
Cost

Max Load
Probability

Static (ρ = 95) 437.64 0.486

Robust (ρ = 80) 443.25 0.999

Robust (ρ = 60) 439.77 0.999

A. Simulation Setup

Fig. 4 shows the maximal number of static fog nodes each
dynamic fog node can service for varying failure rates and re-
liability thresholds. For simulated failure/reliability parameters
ξ = 0.05 and α = 0.95, a single dynamic fog node can support
up to 7 static fog nodes. Therefore, we generate d|F̂ |/3.5e
dynamic fog nodes, each with at least two dynamic fog links
to ensure more than sufficient candidate dynamic fog nodes.

We construct a test infrastructure of static fog nodes and
candidate dynamic fog nodes to evaluate the efficiency of
our algorithms. The static fog nodes are first arranged in a
small-world topology [26], [27]. The generated dynamic fog
nodes are placed throughout the network, and connected to
nearby static fog nodes via a candidate fog link. The resulting
structure is shown in Fig. 5.

The simulation parameters were selected to approximate
the optimal design parameters from our previous static fog
network design [8]. We assume on-demand nodes consume
energy at a significantly reduced rate while dormant [28],
and assign an active and dormant operation cost to each node
proportional to this energy consumption. The simulated results
were evaluated on a computer with 24GB of RAM, and a i5-
7500 CPU at 3.4 GHz.

B. Validation of Robust Infrastructure

We validate our reliability approach by comparing the
efficiency of static and robust infrastructures during operation.
Each infrastructure has static nodes designed to support ρ-
percentile of estimated IoT traffic. The static infrastructure is
designed with ρ = 95, and has no dynamic fog nodes. We
consider two robust infrastructures with ρ ∈ {60, 80}, and
and minimal dynamic nodes to support node failures by (38).

Fog node failures are independent of each other with
maximum failure rate ξ. Therefore, the total number of failures

(a)

(b)

Figure 6: For failure rate ξ = 0.05, we compare the robustness of a
static infrastructure and two dynamic infrastructures with reliability
threshold α = 0.95. We consider a) the maximum serviceable IoT
traffic by failure probability, and b) the operation cost by network
load probability.

over a fog infrastructure can be approximated by a binomial
distribution B(|F̂ |, ξ).

Fig. 6a shows the maximum amount of estimated IoT traffic
each infrastructure can support for a cumulative probability
of failures. The relationship between serviceable IoT traffic
percentile and cumulative probability of failures for the static
infrastructure is approximately linear. Therefore, a static in-
frastructure is not well-equipped to operate under an expected
number of fog node failures. However, by (38) with α = 0.95,
the implemented number of dynamic nodes for the static
infrastructure ensures high serviceability of IoT traffic under
the most probable failure situations.

The network load L is the ratio between IoT resource
requirements and static node capacity, and is defined by

L = max
r∈R

{ ∑
t∈T p

r
t∑

f∈F̂A z
r
f

}
(78)

where F̂A is the set of static nodes f ∈ F̂ that remain active,
i.e., have not failed. If the network load surpasses 100%, then
one or more dynamic fog nodes are required to support the
overloaded system. The probability distribution of network
loads considers different combinations of IoT traffic and fog
node failures that result in the same network load.
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(a) Solution cost

(b) Solution time

Figure 7: Comparison of the solution cost and time (log-scale) of
each algorithm over increasing network size. Fog-RO-MILP exhibits
the lowest design cost, but has exponential growth in design time.
Fog-RO-CG has near optimal design cost and tractable design time.

Fig. 6b shows the operation cost of each infrastructure over
the cumulative probability of network load. The operation cost
of the static infrastructure remains constant since all nodes
remain active. However, many node failures and high IoT
traffic cause the network load to increase beyond what the
static infrastructure can support with under 0.5 probability.
The robust infrastructures can support the full network load
with 0.999 probability. We present the expected cost, and the
maximum probability of serviceable network load in Table V.

C. Comparison of solution efficiency

The efficiency of fog-RO-MILP and fog-RO-CG are evalu-
ated over the solution cost and solution time. Fog-RO-Greedy
is used as a benchmark in our comparisons.

1) Solution Cost: Fig. 7a shows the evaluated results of
the solution cost of our algorithms. Fog-RO-Greedy provides
an upper bound for the solution cost. Comparatively, fog-RO-
CG closely approximates the exact cost of fog-RO-MILP. On
average, the cost of fog-RO-CG is within 2.66% of fog-RO-

MILP, with a minimum difference of 0.0% and a maximum
difference of 4.21%. Therefore, fog-RO-CG is quite sensitive
to the original problem configuration.

By Fig. 4, a higher reliability threshold α requires more
dynamic fog nodes, hence higher robustness and higher design
& dimensioning costs. Therefore, there is a clear tradeoff
between network reliability and design & dimensioning cost.

2) Solution Time: Fig. 7b shows the evaluated results of the
solution time of our algorithms. For small fog network sizes,
fog-RO-MILP terminates in comparative time to fog-RO-CG.
However, as the size of the network increases, the solution
time of fog-RO-MILP increases drastically to a point where
it cannot be feasibly computed. In contrast to this exponential
growth of fog-RO-MILP, the solution time of fog-RO-CG
remains polynomial as a function of network size.

Similar to the solution cost, the solution time of fog-RO-CG
is heavily impacted by the original problem configuration. For
large networks, fog-RO-CG is undeniably quicker than fog-
RO-MILP, though the extent of the time decrease varies.

3) Remarks: Current contributions that use on-demand fog
nodes do not have rerouting schedules planned for fog data
distribution [20], [21]. Hong et al. [21] activate dynamic fog
nodes in the vicinity of an overloaded or failed fog node.
Though the latency is minimized, the dynamic allocation
cost is analogous to that of fog-RO-Greedy. Zhou et al. [20]
incentivize nearby vehicles to act as on-demand fog nodes
through a contract negotiation process. Though this approach
may results in higher profit from vehicles, it may also result
in higher costs for IoT users. Furthermore, the availability of
on-demand fog nodes is dependent of a supply of vehicles
willing to participate. On the other hand, fog-RO-CG provides
a scalable, low-cost and low-latency configuration for fog
node and path association to reliable and guaranteed dynamic
support.

Applying column generation to the set partitioning prob-
lem succeeds in drastically reducing the solution time while
maintaining a reasonably tight approximation to the exact
solution cost. However, as seen in Fig. 7, both the solution
cost and time can vary based on the ratio of static to dynamic
fog nodes and paths. Furthermore, generating columns with
DFACs that combine node and path configurations may restrict
the discovery of node and path configurations if generated
separately. One alternative is to formulate a column generation
model with several subproblems for fog node associations, fog
path associations, and design & dimensioning configurations.
Another alternative is to formulate the problem with Benders
decomposition which is validated as an efficient approach
to other combinatorial optimization problems [29]. Exploring
these methods for this set partitioning problem is left for future
work.

IX. CONCLUSION

In this article, we modeled the effects of IoT traffic and
static fog configurations on the network congestion and la-
tency. We used this model to propose the fog-RO-MILP model
for the cost-efficient design & dimensioning of a reliable and
fault-tolerant fog infrastructure. To overcome the intractability
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of fog-RO-MILP, we proposed fog-RO-CG, a scalable column
generation method to approximate the minimal implementa-
tion cost of fog-RO-MILP.

We validated the operation efficiency of the proposed in-
frastructure with our previous static fog infrastructure [8].
The operation cost and IoT traffic serviceability of the pro-
posed infrastructure remains stable over a high cumulative
probability of network load and node failures. We compared
simulated results of our methods, alongside a benchmark
greedy approach (fog-RO-Greedy), and observed fog-RO-CG
closely approximates the optimal cost of fog-RO-MILP, while
executing in polynomial time. Compared to other contributions
that use on-demand fog nodes, our solution provides optimal
allocation costs with guaranteed reliability.

In future work, we will continue our expansion of the scope
of fog design & dimensioning to include fog node mobility.
For a fixed fog infrastructure comprised of both static and
dynamic fog nodes, we will model the addition of mobile fog
nodes to existing infrastructure. We will study the cost sensitiv-
ity of a fog design to additional fog nodes that geographically
extend the IoT reach of the fog infrastructure. Our current
methodologies are based on theoretical estimates of IoT traffic
patterns; we intend to further simulate our method on a
concrete set of historic IoT traffic data to gain more accurate
insight, and better simulations of network conditions. Finally,
we intend to build a small-scale practical implementation of
a reliable fog infrastructure. These additional features on our
fault-tolerant fog design & dimensioning methodology will
further encourage the adoption and implementation of wide-
scale fog systems.
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Chapter 5

Design & Dimensioning of a UAV
Set Covering in High-Traffic
IoT-Fog Environments

Abstract The fog-computing paradigm provides low-latency processing and storage between In-
ternet of Things (IoT) applications and Cloud data centres. Normal IoT activity may produce
infrequent yet substantial spikes in user traffic, which would require a large static fog infrastructure
to service. Instead, we consider the viability of having a smaller static fog infrastructure, and supple-
menting additional traffic spikes with fog-enabled unmanned aerial vehicles (fog-UAVs). This article
formulates the optimal design & dimensioning of fog-UAVs and fog-UAV charging/deployment sta-
tions as a probabilistic location set covering problem (PLSCP). We model the fog-UAV PLSCP
as a mixed-integer linear program (MILP), from which we derive several relaxed models including
one based on the Benders decomposition technique. Finally, we simulate our models over a set of
city-wide IoT hotspots with various traffic percentile thresholds, and evaluate our results.

This chapter extends previous chapters by considering ‘bursty’ IoT traffic, and using fog-UAVs
to support an existing fog infrastructure. This chapter has been submitted to IEEE Internet of
Things [41].
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Design & Dimensioning of a UAV Set Covering in
High-Traffic IoT-Fog Environments

Ismael Martinez, Abdelhakim Senhaji Hafid, Michel Gendreau

Abstract—The fog-computing paradigm provides low-latency
processing and storage between Internet of Things (IoT) applica-
tions and Cloud data centres. Normal IoT activity may produce
infrequent yet substantial spikes in user traffic, which would
require a large static fog infrastructure to service. Instead, we
consider the viability of having a smaller static fog infrastructure,
and supplementing additional traffic spikes with fog-enabled
unmanned aerial vehicles (fog-UAVs). This article formulates the
optimal design & dimensioning of fog-UAVs and fog-UAV charg-
ing/deployment stations as a probabilistic location set covering
problem (PLSCP). We model the fog-UAV PLSCP as a mixed-
integer linear program (MILP), from which we derive several
relaxed models including one based on the Benders decomposition
technique. Finally, we simulate our models over a set of city-
wide IoT hotspots with various traffic percentile thresholds, and
evaluate our results.

Index terms— Fog computing, fog design & dimensioning,
Internet of Things (IoT), mixed-integer linear programming
(MILP), Benders decomposition, probabilistic set covering,
unmanned aerial vehicles.

I. INTRODUCTION

NETWORKS of collaborative Internet of Things (IoT) de-
vices are expected to be at the forefront of next-

generation Smart technology [1]. The data from these net-
works, composed of several sensors and actuators, are often
processed by Cloud data centres. However, network congestion
and large distance between IoT and Cloud may result in high
response time, which is not ideal for latency sensitive IoT
applications such as in health care [2], autonomous vehi-
cles [3], and multimedia [4]. As a result, the implementation
of fog infrastructures around latency sensitive IoT has become
a recent focus of research [5].

Individual fog nodes are characterized as micro-data centres
with predominantly wireless access that provide compute,
storage and networking services to the IoT environment. The
fog network is a highly virtualized platform of heterogeneous
and geographically distributed fog nodes. Wide-spread geo-
distribution creates a network of fog nodes on the network
edge that can communicate and interact with IoT in real-time.
Therefore, expanding the fog network is an effective way to
efficiently support IoT requests with minimal latency [6].

I. Martinez is with the Department of Computer Science and Operations
Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail: is-
mael.martinez@umontreal.ca).

A. S. Hafid is with the Department of Computer Science and Opera-
tions Research, University of Montreal, Quebec, Canada H3C 3J7 (e-mail:
ahafid@iro.umontreal.ca).

M. Gendreau is with the Department of Mathematics and Indus-
trial Engineering, Polytechnique Montreal, Quebec, H3C 3A7, Canada
(email:michel.gendreau@polymtl.ca)

The planned construction of a new fog infrastructure in-
volves a) design — the location of fog nodes, and b) dimen-
sioning — the quantity of resources per fog node. Our previous
work has focused on the design & dimensioning of a static fog
network to service nearby IoT requests [7]. With the possibility
that fog nodes may shut down due to failure or maintenance,
further on-demand nodes were included in the fog design to
create a robust fog network [8].

When IoT traffic is dictated by fixed request schedules by
IoT devices, then IoT traffic is predictable and consistent
throughout the day. However, if IoT requests are governed
by human behavior, it can result in periods of volatile and
abnormally high IoT traffic [9]. In this case, an infrastructure
composed of only geographically static fog nodes is unfit to
support the high variability of IoT traffic [8], [9].

We extend our previous work on fog design & dimen-
sioning [7], [8] to consider dynamic environments, which
include 1) mobile fog devices, and 2) large fluctuations in
IoT traffic, i.e., ‘bursty’ traffic. Specifically, we consider fog-
enabled unmanned aerial vehicles, known as fog-UAVs, to
move to areas of unexpectedly high service demand.

In this paper, fog-UAVs are deployed to areas of high
IoT traffic to support the overloaded static fog infrastructure.
The design & dimensioning of fog-UAVs is modeled as a
probabilistic location set covering problem (PLSCP) [10], [11]
where we find a minimal set of fog-UAVs to support any
overloaded traffic area with high probability. This problem
is first modeled as a mixed-integer linear program (MILP)
from which multiple relaxed models are derived, including one
based on Benders decomposition. These models are compared
alongside a benchmark for scalability and cost.

Our contributions include
• A geographic estimation of ‘bursty’ IoT traffic.
• An exact, a relaxed, and a Benders decomposition-based

MILP of design & dimensioning for the fog-UAV PLSCP.
• A simulated analysis of IoT traffic serviceability and

solution performance of our models over varying overload
probability thresholds.

The remainder of this article is organized as follows. Section
II reviews related literature. Section III describes the problem
statement, and estimates the IoT traffic and busy fractions
required for the fog-UAV PLSCP. Section IV describes the fog-
UAV MILP exact and relaxed models. Section V formulates a
Benders decomposition of the relaxed model, and a heuristic
model as a simulation benchmark. Section VI executes all
models over increasing number of hotspots and stations, and
evaluates the solution time and cost results. Finally, section VII
discusses future work, limitations and concludes the paper.
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II. RELATED WORK

A. Design & Dimensioning

Martinez et al. [7] propose a design & dimensioning model
for the general IoT landscape. The resulting fog infrastructure
is equipped to support all resource requirements of IoT traffic
within a latency-threshold. However, a) a static estimation
of IoT traffic is used, and b) all fog nodes are assumed to
be reliable. These limitations are addressed in [8] where on-
demand fog nodes are used to either replace and restore data
from failed fog nodes, or provide additional support to an
overloaded system. A sensitivity analysis over the number of
failures and IoT load of the network shows that the addition
of on-demand fog nodes can guarantee reliable service to IoT
even in the worst cases.

In both [7], [8], an exact yet intractable MILP formulation
is compared to a heuristic column generation (CG) model. The
CG models approximate the MILP well, though the tightness
of this approximation can vary wildly based on the initial
parameter configuration. Therefore, we formulate the PLSCP
using Benders decomposition for its constraint generating
properties [12]. Furthermore, the on-demand fog nodes are
statically located [8], which restricts their overload support by
location. Therefore, in this paper, we consider the use of fog-
UAVs to increase flexibility of overload support to a larger
physical region.

B. Probabilistic Location Set Covering Problem

Chapman and White [13] introduced the PLSCP for reliable
service coverage. This problem is now considered one of
the fundamental model of integer programming [14]. Often
applied to emergency facilities such as police, fire, and am-
bulance stations [15], [16], [17], this problem seeks to place
minimal facilities around a city such that every user has at
least one nearby facility that can provide emergency services.
This problem represents service reliability through chance
constraints derived from busy fractions, i.e., the probability
that an emergency vehicle is unavailable. Though Chapman
and White assume a uniform demand distribution, and thus
uniform busy fractions, Revelle and Hogan [11] partition the
city into sectors with different busy fractions. By doing so,
they achieve a more flexible and accurate estimation of the
provided reliability of a set covering design.

In this paper, we model the design & dimensioning of fog-
UAVs as a PLSCP, where fog-UAVs are positioned to support
infrequent and geographically sparse bursts of IoT traffic. We
use the mobility and service radiuses of fog-UAVs to define
reachable sectors around charging stations, and likewise use
expected IoT demand around each charging stations to define
the fog-UAV busy fractions.

C. Unmanned Aerial Vehicles

The mobility of unmanned aerial vehicles (UAVs) has been
shown to be useful in IoT environments. Recent use cases
use UAVs i) to support overloaded road-side units (RSUs)
in Internet of Vehicle (IoV) environments [18], ii) as a Wi-
Fi chain to provide internet to users in disaster areas [19],

and iii) to support energy harvesting and computation of-
floading of mobile users in a mobile edge-computing (MEC)
environment [20]. These applications take advantage of the
swift, flexible and on-demand deployment of UAVs as aerial
communication servers. However, UAVs do not have a reliable
power supply and need to recharge often [21]. Therefore, the
placement of UAV charging stations must be considered when
using UAVs as computational support.

The optimal hovering locations of UAVs for nearby user
support has previously been formulated as a set covering
problem [22], [23], [24]. Chiaraviglio et al. [22] deploy a 5G
network over a rural area using UAVs and ground charging
stations. To provide continuous service to each area, UAVs
alternate between hovering and recharging, and must be in
communication range of ground stations for additional connec-
tivity. This ensures all areas are provided 5G network access
at all times. However, using UAVs in continuous rotation over
a locked region does not make the best use of the flexibility
of UAV technology, and may be costly.

Park et al. [23] focus only on the hovering locations of
UAVs over an emergency network of users, and do not
consider the charging/deployment stations of UAVs. UAVs are
not tethered to any station, and can hover in any 2-dimensional
coordinate relative to demand points. However, not considering
from where UAVs are deployed or for how long a UAV
can hover on a single charge limits the applicability of this
approach.

Mao et al. [24] designs a UAV-based emergency medical
service network that optimizes the mean waiting time of
demands due to UAV response and deployment. Waiting times
are simulated from demands with Poisson arrival and serviced
through a queue of available UAVs deployed from charging
stations. The medical services are physically provided on site
by a UAV, limiting this application to one incident per UAV at
a time. Similar to [23], all services are assumed to be feasibly
provided under a single battery charge.

We compare these three UAV set covering applications [22],
[23], [24] with our fog-UAV contribution in terms of a)
deployment flexiblity, b) available UAV battery charging, and
c) untethered UAV mobility. In all three cases, all demand
spots are covered with a minimal set of UAVs [22], [23], [24].
For our purposes, we assume that IoT traffic may be bursty,
and unpredictable in duration and location.

1) Deployment flexibility: Unlike [22], [23] who cover all
demand points at once for an extended period, we minimize
the design cost of a fog-UAV infrastructure by allowing scarce
and flexible deployment of fog-UAVs to multiple regions.

2) UAV battery charging: Similar to [22], we account
for the battery consumption of UAVs and provide charging
stations to ensure no hovering UAV fails due to a depleted
battery. Multiple fog-UAVs are available at each station so
that any hovering fog-UAV with low battery may be replaced.

3) Untethered UAV mobility: Unlike [23] who requires
UAVs to remain a communication distance from ground sta-
tions, we allow UAVs to move freely and untethered from
charging stations, constrained only by their own battery ca-
pacity [23], [24]. The summary of these comparisons is shown
in Table I.
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Table I: Comparison of fog-UAVs with other UAV set covering
solutions.

Consideration/Feature [22] [23] [24] Fog-UAV

Deployment flexibility 7 7 3 3

UAV battery recharging 3 7 7 3

Untethered UAV mobility 7 3 3 3

III. MOBILE FOG DESIGN

In this section, we provide a detailed description of our
problem, including a city-wide estimation of the IoT traffic,
and a compact expression to describe when a static fog
infrastructure is overloaded.

A. Problem Statement

Based on previous work [7], [8], we suppose that a physical
region is supported by a fog infrastructure composed of
statically placed nodes. This fog infrastructure is equipped to
service mid to high levels of IoT requests by IoT users. It is
possible for IoT traffic in any given area to momentarily peak
beyond the serviceable limits of the static fog infrastructure. In
this scenario, the region is said to be overloaded, and requires
additional support.

We propose to use fog-UAVs to service overloaded areas.
Until they are required, each fog-UAV is based in a nearby
station where it charges its battery. When needed, the fog-
UAV is deployed from the station, and may return either to the
original station or to a nearby station once service is complete.
A fog-UAV may need to return to a station before the IoT
service is complete, such as for charging or maintenance. In
this case, our design ensures that there are additional fog-UAVs
ready for deployment to complete unfinished service. All IoT
devices within the fog-UAV service radius have direct one-hop
communication with the fog-UAV, thus minimizing service
latency. The validity of one-hop communication for varying
fog-UAV hovering height and environmental interference is
left for future work.

We assume all stations have both charging and deployment
capabilities. For a set region of IoT users, we simultaneously
a) select the locations for stations, and b) select a set of UAVs
to service the area, each assigned to a subset of total stations
for charging and deployment.

B. IoT Traffic Estimation

Geographic and demographic factors of a region can provide
a strong indication of associated IoT traffic. Within a city, it is
reasonable to estimate the IoT traffic from any given borough
to be proportional to its population [25]. Intuitively, such
an assumption would estimate higher IoT traffic from highly
populated areas, and therefore emphasize these dense areas
in a set cover. Jara et al. [9] consider the effects of Human
Dynamic within a Smart City on the traffic level of IoT, and
conclude that even in the presence of ‘bursty’ data in complex
IoT networks, IoT traffic can still be well approximated by a
Poisson distribution.

We use these concepts of 1) proportionality of traffic with
population, and 2) Poisson traffic over a geographic region, to
partition a geographic region into clusters, known as hotspots,
of K people with approximately equal population and IoT
traffic. Note, a larger cluster size K results in fewer hotspots,
each with higher resource demand, which is more manageable
for the fog-UAV PLSCP. However, since hotspots are disjoint
aggregations of the population, larger hotspots may remove
valuable variability in population density within a hotspot or
between hotspots.

Using the city of Montreal as an example with K = 10, 000,
we gathered the populations of each of Montreal’s bor-
oughs [26], rounded to the nearest integer multiple of K. A
borough with a rounded population of nK is partitioned into
n hotspots of size K. These hotspots are uniformly placed
throughout the borough. The resulting hotspot map is shown
in Fig. 1a. The aggregated set of all hotspots from all boroughs
is denoted H .

Let H be the set of hotspots. For simplicity, we assume
the IoT traffic by population is consistent throughout the city.
Thus, the IoT traffic throughout the city can be modeled
as a set of independent and identically distributed (i.i.d.)
Poisson(λ) distributions with traffic arrival rate λ, one as-
sociated to each hotspot. The IoT traffic aggregated over H
also follows a Poisson distribution such that

Th ∼ Poisson(λ), h ∈ H
=⇒

∑

h∈H
Th ∼ Poisson(|H| · λ), (1)

where Th represents the number of requests from hotspot h.
We consider the dimensioning of CPU, RAM, and storage

resources (STR) within each fog-UAV. For resources R =
{CPU,RAM, STR}, each hotspot h ∈ H has request resource
requirement mean ψ

r

h, r ∈ R. If each fog-UAV can service
a limited number of hotspots, then more populated regions
would require more fog-UAV covers. Fig. 1b gives an example
of a fog-UAV cover over a densely populated region.

C. Busy fraction

Chapman and White [13] use the concept of busy fractions
to represent the fraction of time, and therefore the probability,
that an emergency vehicle was unavailable to service a new
demand. We use this concept to denote the probability that
the static fog infrastructure is saturated and thus unavailable
to service a new IoT request.

Let P(t; λ) be the cumulative Poisson distribution up to
t requests, and let P−1(p; λ) be the p-percentile traffic. We
assume that the static fog infrastructure can service IoT traffic
up to the β-percentile, β ∈ [0.5, 1). We define Tβ as the
maximum number of requests in the β-percentile. That is,

Tβ = P−1(β; |H| · λ). (2)
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(a) Hotspot representation of data

(b) Example set covering

Figure 1: The population of Montreal, Canada, subdivided
into boroughs. IoT and mobile traffic demand is proportionally
estimated by geographic and demographic factors [25], [26].

Consider a set H ′ of adjacent i.i.d. hotspots, H ′ ⊂ H . Then,

P (
∑

h∈H
Th ≤ Tβ) = β

=⇒ P

(
|H ′|
|H|

∑

h∈H
Th ≤

|H ′|
|H| Tβ

)
= β

=⇒ P

(∑

h∈H′

Th ≤
|H ′|
|H| Tβ

)
= β

(3)

Hence, the probability that the static fog infrastructure can
service a subset H ′ ⊆ H of adjacent hotspots is also β. We
say a subset H ′ is overloaded if its IoT traffic surpasses the
capacity of the static fog infrastructure, i.e., β-percentile. The
probability that H ′ becomes overloaded is therefore 1− β.

When a fog-UAV is deployed to assist an overloaded set of
hotspots, the fog-UAV becomes unavailable to other hotspots.
Therefore, 1 − β is also the busy fraction of fog-UAVs, i.e.,
the probability that a fog-UAV is unavailable.

IV. FOG-UAV-MILP MODEL

Let S be the set of all candidate station locations, and let U
be the set of all candidate fog-UAVs. We define the following

Figure 2: Overview of the fog-UAV architecture.

binary decision variables:

xs =1[Station s ∈ S is optimal] (4)
yu =1[UAV u ∈ U is optimal] (5)
puh =1[Hotspot h ∈ H is serviced by UAV u] (6)
wus =1[UAV u is deployed from station s] (7)

where 1[·] is the indicator function. By definition of (7) and
(6), wus serves a linking variable between xs and yu while puh
links each hotspot h to some yu.

We define the continuous dimensioning variable zru,
u ∈ U, r ∈ R such that zru ∈ [0, Zru] for a predefined upper
bound Zru. This variable defines the quantity of resource r
assigned to fog-UAV u to help support overloaded IoT traffic.

We acknowledge the battery restrictions of a UAV would
not allow the UAV to fly indefinitely. By [27], electric vehicle
charge linearly over the first ~80% of its battery charge. For
simplicity, we assume a UAV on a full battery has a fixed
flight time, which does not degrade with multiple charges,
and depletes linearly during its flight. Hence, for simplicity of
mobile fog design, we assume at least one UAV per station is
at 80% charge and ready for deployment at any given time.

We allow the locations of UAVs to be flexible, as long
as they stay within a distance proportional to their battery
capacity from a charging station. We define ηu > 0 as the
distance a UAV can travel on a full battery, and δu > 0 as the
communication radius of u. We assume any IoT hotspot within
the communication radius of a hovering fog-UAV u is serviced
in one-hop and minimal latency. A visual representation of
stations, fog-UAVs and hotspots is presented in Fig. 2. Finally,
each fog-UAV u ∈ U is associated to a default station s ∈ S.
We define this relationship as a mapping ξ : U −→ S where
ξ(u) ∈ S is the default station of u.

A. Pre-processing

Prior to composing the fog-UAV-MILP model, we need to
understand the interactions between fog-UAVs, stations and
hotspots. First, we calculate all the distances du,h between
fog-UAV u ∈ U and hotspot h ∈ H , and the distances ds,s′
for every pair of stations (s, s′) ∈ S2.

We are also interested in the maximum number of hotspots
within each fog-UAV radius for a range of hovering locations.
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Table II: Fog-UAV-MILP Parameters

Variable Description

α The fog-UAV service threshold.

β The static fog coverage percentile.

ηu The maximum flight distance u ∈ U can travel on a
single battery.

δu The communication radius of u ∈ U .

ξ(u) The associated default station of u ∈ U .

Table III: Fog-UAV-MILP Precomputed Parameters

Variable Description

dξ(u),s The distance between a station s ∈ S and a default
station ξ(u).

dsh The distance between a station s and a hotspot h.

Hc
u Set of hotspots in the service region of u ∈ U

centred at c = (a, b).

Chu Set of hotspots that can be serviced simultaneously
with h ∈ H by u ∈ U .

V The set of viable UAV-station-hotspot triples.

Suppose each hotspot h is positioned at a relative coordinate
ch = (ah, bh) ∈ R2. For a relative position c = (a, b) ∈ R2 of
UAV u ∈ U , we define the set of hotspots it can service as

Hc
u = {h ∈ H | dch ≤ δu} (8)

where dch is the distance between coordinate c = (a, b) and h.
The maximum request arrival rate Λuh and requirement Ψr

u,h

per resource r ∈ R from hotspos within some δu-radius cover
containing h are

Λuh = max
c∈R2

{
|Hc

u|λ | h ∈ Hc
u

}
(9)

Ψr
u,h = max

c∈R2

{ ∑

h′∈Hc
u

ψ
r

h′ | h ∈ Hc
u

}
; r ∈ R. (10)

Table III summarizes the variables and sets that are precom-
puted prior to building the fog-UAV-MILP model.

B. Objective Function

The fog-UAV-MILP can be described as the design &
dimensioning cost of a fog-UAV system, given every hotspot is
serviceable with high probability.

We define positive scalars Cs and Vu as the capital expen-
diture costs of station s ∈ S and fog-UAV u ∈ U respectively,
and vru is the unit resource dimensioning cost of r ∈ R in u.
The objective function of fog-UAV minimizes the fixed and
unit costs of design & dimensioning such that

Min
∑

s∈S
xs · Cs +

∑

u∈U

(
yu · Vu +

∑

r∈R
zru · vru

)
. (11)

C. Mobility Constraints

Since a fog-UAV u must be deployed by its default station
ξ(u) ∈ S, we are interested in finding stations from ξ(u) that
are reachable by u within a single battery charge. Recall, by

assumption, there exists at least one fog-UAV with at least 80%
battery charge available for deployment at any given time. We
define constants κ ∈ (0, 0.4] and γ ∈ [0.5, 0.8) such that each
fog-UAV u is able to move freely as long as it stays within κηu
distance from at least one associated station, and all associated
stations are at most γηu distance apart. That is,

dξ(u),s · wus ≤ γηu; u ∈ U, s,∈ S (12)
dsh · wus puh ≤ κηu + δu; u ∈ U, s ∈ S, h ∈ H. (13)

1) Viability preprocessing: Fog-UAV-MILP resolution can
be simplified by precomputing the variables that satisfy the
constraint (12) and non-linear constraint (13). Hence, for u ∈
U, s ∈ S and h ∈ H , we define

W = {(u, s) | dξ(u),s · wus ≤ γηu} (14)
Q = {(u, s, h) | dsh · wus puh ≤ κηu + δu} (15)
V = {(u, s, h) | (u, s) ∈ W and (u, s, h) ∈ Q}. (16)

Set W satisfies constraint (12), and set Q satisfies constraint
(13). Set V represents the viable triplets (u, s, h) which satisfy
both distance constraints. We may use u, s or h as indices
to further filter the sets as needed. For example, Vu,s is the
set of viable hotspots for a fixed UAV-station pair (u, s).
Furthermore, we define

Hu = {h ∈ H | ∃s : (u, h) ∈ Vs} (17)
Uh = {u ∈ U | ∃s : (u, h) ∈ Vs} (18)

where Hu is the set of reachable hotspots from u ∈ U , and
Uh is the set of fog-UAVs that can reach h ∈ H .

D. Service Constraint
The set of fog-UAVs cannot cover all areas at once, hence

we require a high probability that there are sufficient fog-
UAVs to service all overloaded areas. Let α ∈ [0.5, 1) be the
threshold probability that at least one fog-UAV is available to
service an overloaded hotspot h. We define

Chu = {h′ ∈ H | ∃c ∈ R2 : h, h′ ∈ Hc
u} (19)

as the set of hotspots that can be serviced at the same time
as h by u. Hence, the complement Chu is the set of hotspots
that cannot be serviced from fog-UAV u at the same time as
hotspot h. Taking into account that a fog-UAV may service
multiple hotspots, the busy fraction for u to h is Bu,h where

Bu,h = (1− β)
|Chu|
|Hu|

. (20)

To guarantee there are sufficient fog-UAVs to service each
hotspot h ∈ H , we require

P (at least 1 fog-UAV is available) ≥ α
⇐⇒ 1−

∏

u∈Uh
(Bu,h)p

h
u ≥ α

⇐⇒ 1− α ≥
∏

u∈Uh
(Bu,h)p

h
u

⇐⇒ log(1− α) ≥ log
( ∏

u∈Uh
(Bu,h)p

h
u
)

⇐⇒ log(1− α) ≥
∑

u∈Uh
phu log(Bu,h).

(21)
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E. Design Constraints

We define two linking constraints

xs ≥ wus ; (u, s) ∈ W (22)
yu ≥ wus ; (u, s) ∈ W (23)
yu ≥ puh; u ∈ Uh. (24)

Constraints (22) and (24) respectively state that if UAV-station
association wus is part of the optimal solution, then both
station s and fog-UAV u must also be part of the optimal
solution. Similarly, constraint (24) states that if a UAV-hotspot
association puh is part of the optimal solution, then the fog-UAV
u must also be part of the optimal solution.

Let Yu ∈ N≥1 be the minimum number of stations associ-
ated to u ∈ U . Then, we define two UAV-station association
constraints as

xξ(u) = yu; u ∈ U (25)∑

s∈Wu

wus ≥ Yu · yu; u ∈ U (26)

where constraint (25) ensures that any fog-UAV u ∈ U in the
optimal solution must be deployed by ξ(u), and constraint (26)
enforces the mobility of fog-UAVs to more than one station.

F. Dimensioning Constraints

Each fog-UAV has a maximum resource capacity, as well as
an expected resource demand from IoT which are represented
by the dimensioning constraint; this ensures that each dimen-
sioning of fog-UAV u can support the worst-case IoT traffic
demand around u. We define the dimensioning of u by the
positive continuous decision variable zru ∈ [0, Zru], where Zru
is its resource capacity, and let ρ be the estimated ρ-percentile
IoT traffic for resource where ρ ∈ (0, 1). A fog-UAV u should
satisfy additional IoT resource demand around hotspot h up
to Tuh requests per hour,

Tuh = P−1(ρ; Λuh), (27)

where Λuh is the maximum arrival rate for a cluster of hotspots
from u (9). Hence, the dimensioning requirement of each fog-
UAV becomes

zru ≥ tTuhΨr
u,h · puh, u ∈ U, r ∈ R, h ∈ Hu. (28)

for maximum mean request requirement Ψr
u,h per request r

from u (10), and fraction t ∈ (0, 1] of requests per hour u
will process at once.

In summary, fog-UAV-MILP is defined by

Min (11)

Subject to (21) – (26), (28)

G. MILP Relaxation

The fog-UAV-MILP model constraints show a clear depen-
dency among the fog-UAVs, charging stations and hotspots.
However, it is possible to simplify the model to have fewer
variables, fewer constraints, and a linear relaxation on some
integer variables, all while mainting the same optimal design

& dimensioning cost. The relaxed model is known as fog-UAV-
MILP-R, and is defined as

Min (11)

Subject to (21), (25), (28),

1

|Hu|
∑

h∈Hu

puh ≤ yu; u ∈ U (29)

(Yu − 1) · yu ≤
∑

s∈Wu\ξ(u)

xs; u ∈ U (30)

where xs is relaxed to be linear in [0, 1] during solving. The
UAV-station linking variables w are removed. Then, contraints
(22)–(24) and (26) are replaced by constraints (29) and (30)
by considering only viable sets W (15) and H (17) .

1) Complexity Improvements: In the worst case, fog-UAV-
MILP has |S| station design variables x, |U | fog-UAV design
variables y, |U×R| fog-UAV dimensioning variables z, |U×S|
UAV-station linking variables w , and |U × H| UAV-hotspot
linking variables p. That is,

|S|+ |U |+ |U ×R|+ |U × S|+ |U ×H| (31)

total variables. In addition, fog-UAV-MILP has |H| constraints
from (21), at most |U×S| from each of (22) and (23), at most
|U | constraints from each of (24), (25) and (26), and at most
|U ×R×H| constraints from (28). That is

|H|+ 2|U × S|+ 3|U |+ |U ×R×H| (32)

total constraints.
Fog-UAV-MILP-R removes the |U × S| w variables, and

replaces |U × S| constraints (22)–(24) and (23) with 2|U |
constraints (29) and (30). By doing so, the total number of
variables and constraints are reduced to

|S|+ |U |+ |U ×R|+ |U ×H|
|H|+ 3|U |+ |U ×R×H|

in the worst-case.

V. DECOMPOSITIONS AND HEURISTICS

In this section, two additional models are defined. First,
Benders decomposition is used to further increase the scala-
bility of the fog-UAV PLSCP without a loss in optimal cost.
Second, a constraint-optimization model is defined to simply
minimize the number of fog-UAVs and stations selected while
satisfying the constraints.

A. Benders decomposition

Following the exact and relaxation variants of fog-UAV-
MILP, we use Benders decomposition [28] to further increase
the scalability of the fog-UAV PLSCP. Benders decomposition
is most efficient when there is a discernible block structure of
continuous variables.We use fog-UAV-MILP-R as a template,
with relaxed variables and constraints outlined in IV-G. From
the fog-UAV-MILP-R model, it is seen that 1) the optimal set
of station variables x are dependent on fog-UAV variables y,
and 2) the optimal set of dimensioning variables z are depen-
dent on UAV-hotspot variables p. Hence, fog-UAV-MILP-R is
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reformulated as one problem with binary variables y and p,
and two ‘blocks’ – one with variables y and x, and the other
with variables p and z. That is,

(BD0) Min
∑

u∈U
yu · Vu + gy(y) + gp(p) (33)

Subject to

log(1− α) ≥
∑

u∈Uh
phu log(Bu,h) (21)

1

|Hu|
∑

h∈Hu

puh ≤ yu; u ∈ U (29)

where

gy(y) = Min
∑

s∈S
xs · Cs (34)

Subject to
xξ(u) = ỹu; u ∈ U (εu)∑

s∈Wu\ξ(u)

xs ≥ (Yu − 1) · ỹu; u ∈ U (ςu)

and

gp(p) = Min
∑

u∈U

∑

r∈R
vru · zru (35)

Subject to zru ≥ tTuhΨr
u,hp̃

u
h, (θru,h)

(r, u, h) ∈ R× U ×H

for ỹu and p̃uh fixed ∀u ∈ U , ∀h ∈ H .
1) Benders Subproblems: The Benders subproblems are

defined by the duals of gy(y) and gp(p). First, recall that
Ws is the set of viable fog-UAVs that can reach s ∈ S (15).
We define Ξs as the set of fog-UAVs that use s as a base
station. That is,

Ξs = {u ∈ U | ξ(u) = s}, s ∈ S. (36)

Referring to the dual variables εu and ςu corresponding to
their appropriate constraints in gy(y) (34), the subproblem
SPy is defined as

(SPy) Max
∑

u∈U
ỹ · εu +

∑

u∈U
(Yu − 1)ỹu · ςu (37)

Subject to
∑

u∈Ξs

εu +
∑

u∈Ws\Ξs

ςu ≤ Cs (38)

ςu ≥ 0, u ∈ U.

Similarly, referring to the dual variable θru,h corresponding
to their appropriate constraints in gp(p) (35), the subproblem
SPp is defined as

(SPp) Max
∑

r∈R

∑

u∈U

∑

h∈H
tTuhΨr

u,hp̃
u
h · θru,h (39)

Subject to
∑

h∈H
θru,h ≤ vru, (r, u) ∈ R× U (40)

θru,h ≥ 0, (r, u, h) ∈ R× U ×H.

2) Master Problem: Based on the initial reformulation
BD0 (33) and the subproblems SPy (37) and (39), the Benders
Master Problem is defined as

(MP ) Min
∑

u∈U
Vu · yu + µ+ ν (41)

Subject to

log(1− α) ≥
∑

u∈Uh
phu log(Bu,h) (21)

1

|Hu|
∑

h∈Hu

puh ≤ yu; u ∈ U (29)

Optimality Cuts:∑

u∈U
ỹu · (εu)i + (Yu − 1)ỹu · (ςu)i ≤ µ (42)

∑

r∈R

∑

u∈U

∑

h∈H
tTuhΨr

u,hp̃
u
h · (θru,h)i ≤ ν (43)

∀i = 1, 2, . . . , I

Feasibility Cuts:∑

u∈U
ỹu · (εu)i + (Yu − 1)ỹu · (ςu)i ≤ 0 (44)

∑

r∈R

∑

u∈U

∑

h∈H
tTuhΨr

u,hp̃
u
h · (θru,h)j ≤ 0 (45)

∀j = 1, 2, . . . , J,

over I optimality cuts and J feasibility cuts. The master
problem MP along with the subproblems SPy and SPp define
the fog-UAV-Benders model.

3) Solving procedure: To solve fog-UAV-Benders, the mas-
ter problem MP and subproblems SPy and SPp are solved in
alternation. Each solution of MP defines an upper bound to
the optimal solution. Each solution of the subproblems defines
a lower bound to the optimal solution, and also generates
appropriate optimality or feasibility cuts for MP . Fog-UAV-
Benders terminates when the gap between the upper and lower
bounds is sufficiently small [28].

B. Constraint optimization

A constraint optimization approach is defined to mimic a
standard design and dimensioning approach. Known as fog-
UAV-CO, the model is defined as

Min C
∑

s∈S
xs + V

∑

u∈U
yu +

∑

r∈R
vr
(∑

u∈U
zru
)

(46)

Subject to (21), (25), (28), (29), (30).

This model acts as a heuristic benchmark during the following
simulations and analysis.

VI. SIMULATION & ANALYSIS

In this section, we provide a detailed analysis of simulated
results. Fog-UAV-MILP is an exact MILP from which all
relaxations are derived. Therefore, it is used as the best-
case solution cost benchmark and worst-case solution time
benchmark.
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Figure 3: Serviceable local traffic within communication dis-
tance of a fog-UAV dimensioned for ρ-percentile traffic. Ser-
viceability calculated over various stationary fog percentiles β
and IoT request arrival rates Λ.

Section VI-A analyzes the traffic serviceability improve-
ments achieved by the design & dimensioning of fog-UAVs.
Section VI-B describes the simulation configurations and
parameters. Section VI-C describes the computing environ-
ment and software on which the simulations were executed.
Sections VI-D and VI-E analyze and compare the respective
solution times and solution costs of the various models. Sec-
tion VI-F examines the optimal design solutions for each map
configuration. Finally, section VI-G summarizes the simulation
results.

A. Traffic Serviceability

The improvements of fog-UAVs on IoT traffic serviceability
can be observed over local IoT traffic and global IoT traffic.

1) Local IoT traffic: Consider a dense cluster of all IoT
hotspots that are able to communicate, and hence be serviced,
by a fog-UAV u ∈ U . That is, a cluster of hotspots within a
δu-service radius. Let Λδu be the maximal arrival rate among
all such IoT hotspot clusters. Let T βR be the β-percentile
IoT traffic within an R-radius cluster. The total percentile of
serviceable traffic by u is s defined by

T ρδu = P−1(ρ; Λδu) (47)

su = P(T βδu + T ρδu ; Λδu). (48)

That is, the addition of a single fog-UAV dimensioned for ρ
IoT traffic over a cluster with arrival Λ increases the traffic
serviceability to its s-percentile.

Fig. 3 simulates (47) and (48) to show the total local traffic
serviceability within the communication radius of a fog-UAV,
dimensioned for ρ-percentile traffic, for various values of β
and Λ. It can be seen that regardless of the β and Λ values
graphed, a 95-percentile of local traffic can be serviced with
as little as a 20-percentile dimensioning of fog-UAVs.

2) Global IoT traffic: High global IoT traffic is described
by the number of distinct IoT clusters with IoT traffic that
exceeds the β-percentile for any one resource r ∈ R.

Let τu be the ratio of the service radius over the total
mobility radius of a fog-UAV u, considering additional stations
and ∼ 80% battery charge. That is,

Nu = (κ+ γ) · ηu (49)

τu =
δu
Nu

, (50)

where Nu represents the total mobility radius of u, and τu
represents the fraction serviceable hotspots u can service at
any one time.

For $α fog-UAVs within an Nu-radius area, the relative
serviceability increase over the β-percentile traffic is

χu(α, β, ρ) =
T βNu

+$α,β · T ρδu
T βNu

, (51)

where $α,β is defined by

$α,β =

⌈
log 1− α)

log(1− β)

⌉
, (52)

which is a simplification of constraint (21).
Note that

T βNu
= P−1(β; ΛNu) (53)

T ρδu = P−1(ρ; Λrδu)

= P−1(ρ; τu · ΛNu).
(47)

Hence, the added serviceability of the Nu-radius region is the
ρ-percentile of a τu fraction of the region.

Equations (51) and (52) were simulated over increased val-
ues for α and a base traffic serviceability β ∈ {0.5, 0.7, 0.9}.
Based on the local traffic serviceability results in Fig. 3, we
let ρ = 0.2 to achieve a total 95-percentile local serviceability,
based on the results in section VI-A1.

Fig. 4a shows the resulting simulation of the relative global
traffic serviceability increase from the stationary fog infras-
tructure serviceability of β. It can be seen that a lower α
with a lower β can achieve a similar relative serviceability
improvements gain as a higher α with a higher β. For example,
the (α, β) pair (0.45, 0.4) and (0.95, 0.9) both achieve a
relative traffic increase of ∼ 1.07×.

Note, that α determines how many fog-UAVs are required
for a high percentage of network serviceability. By Table IV,
the relative increase in serviceability per fog-UAV is marginal
for lower β. Indeed, a lower β means each fog-UAV with
the same resource dimensioning will have a higher impact
on the network serviceability than with higher β; however,
the low variance of the Poisson distribution contributes to the
small relative difference between the serviceability increases
for various serviceability percentiles β.

Given that the relative serviceability increases are similar,
the larger contributor to design & dimensioning cost becomes
the number of required required fog-UAVs. Fig. 4b shows the
absolute serviceability increase for differing β and number
of fog-UAVs. For example, a fog-infrastructure with base
service percentile of β = 0.4 requires 5 fog-UAVs to achieve
the same serviceability as an infrastructure with base service
percentile β = 0.7 and one fog-UAV. A fog infrastructure
with β = 0.4, 0.5, 0.7 achieve similar total serviceability with
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(a) Multiple (×) increase

(b) Absolute increase

Figure 4: Traffic serviceability increase by fog-UAVs over the
β-percentile support of a stationary fog infrastructure, with the
required number of fog-UAVs over the data points.

Table IV: Relative serviceability increase (×) per additional
fog-UAV in Fig. 4a

β-percentile serviceability 0.4 0.5 0.7 0.9

Serviceability increase (×)
1.0368 1.36 1.0346 1.0323

per fog-UAV

6, 5 and 3 fog-UAVs respectively. Hence, there is a trade-
off between the design & dimensioning of the stationary fog
infrastructure, and the mobile fog-UAV infrastructure. The
optimal balance of serviceability between the stationary and
mobile fog infrastructures will be studied in future work.

B. Simulation Configurations

The size and hotspot density of the two maps used for simu-
lation are meant to loosely approximate the size and density of
Montreal and Toronto, two large and densely populated cities.
By Statistics Canada, the populations of Montreal and Toronto
were ~1, 794, 000 and ~2, 857, 000 people respectively in 2021
with 95% confidence, over areas of ~365 km2 and ~631 km2

respectively [29]. As each hotspot represents ~10, 000 people,

Class Travel Distance Radius Resource Capacity

Class 0: 3 km 0.5 km (2.5 GHz, 4 GB, 8 GB)

Class 1: 8 km 1 km (5 GHz, 8 GB, 16 GB)

Class 2: 12 km 2 km (7.5 GHz, 16 GB, 64 GB)

Table V: Fog-UAV configurations for simulation.

two maps were created with 150 and 250 hotspots respectively.
Furthermore, historic analysis of international cities show that
most cities are approximately circular or elliptical, with a
higher population density at their center [30]. Hence, each
map was created by uniformly placing hotspots over a 25×25
unit region with polar coordinates within the ellipse

(0.85x)2 + (1.1y)2 = 12.52.

Such an ellipse adds variety in the hotspot density along the
city’s length and width, and has an area of 525 km2. Figure 5
depicts the two hotspot maps of different population densities
used for simulation. The population densities of these two
maps are ~2850 km2 and ~4750 km2.

Each hotspot h ∈ H with location (hx, hy) has an hourly
request arrival rate of h = 100, which yields high local
IoT serviceability for a low ρ-dimensioning (Fig. VI-A1).
Each hotspot also corresponds to a station candidate s ∈ S
with same location (hx, hy) and uniform random station cost
Cs ∈ [500, 1000]. Each station is the base station to 3 classes
of fog-UAV, each with a set travel distance ηu and radius δu
in kilometres (km), and a resource capacity (Zru)3

r=1 triplet
for resources r ∈ R. This was done to mimic the variety
and power of different UAVs on the market today [31]. The
configuration details of the UAV classes are available in
Table V. The travel distance and radius of each fog-UAV class
is represented over the maps in Fig. 5. The mobility fractions
(κ, γ) for hotspot and station reachability were set to (0.4, 0.8)
to ensure fog-UAVs could move between stations and outreach
to hotspots without worrying about battery failures. Fog-UAV
CAPEX costs were set to Vu ∈ {$250, $500, $750} depending
on class, and per unit resource costs were set randomly to
vru ∈ [$50, $100].

Each iteration i of the simulation casts a service area
covering 2i km2. Let Hi be the set of hotspots serviced in
iteration i. The total demand (i.e., number of requests) over
simulation i is

di = λ(1− β) · |Hi| (54)
Di ∼ Poisson(di). (55)

The mean demand di becomes the x-axis of the solution
graphs in Fig. 6 and 7.

The simulations execute each of the four defined models:
fog-UAV-MILP, fog-UAV-MILP-R, fog-UAV-B, and fog-UAV-
CO. Each simulation iteration i ∈ N≥1 is executed over an
increasing subset of hotspots, candidate stations and candidate
fog-UAVs. Each iteration is executed 3 times, and the average
is used for analysis purposes.

Based on analysis of traffic serviceability in VI-A, sim-
ulations were executed for parameter values (β, α) in
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(a) Legend

(b) Density ~2850 people/km2

(c) Density ~4750 people/km2

Figure 5: Map configurations used for simulations, represent-
ing the hotspot placements and fog-UAV mobility & service
radii defined in VI-B.

{(0.7, 0.95), (0.8, 0.5)} to achieve a high percentage of total
serviceability, and for each simulation map of densities ~2850
km2 and ~4750 km2 in Fig. 5. That is, two parameter pairs and
two simulation maps of different population densities yielded
four sets of simulations and sets of results.

C. Environmental Configurations

All simulations were executed with IBM CPLEX optimiza-
tion software in C++. Simulations were executed on a machine
with 24GB of RAM and an Intel i5-7500 CPU @ 3.40 GHz.

D. Solution Time

Solution times in seconds of each model are shown over in-
creasing demand in Fig. 6 for parameters β = 0.7, α = 0.95,
and in Fig. 7 for parameters β = 0.8, α = 0.5. From the

Table VI: Analysis of execution time increases between vari-
ous model pairs, for varying α, β and map density.

(a) β = 0.7, α = 0.95, density ~2850 people/km2

Base Improved Improvement
Model Model Mean Std. Dev.

Fog-UAV-MILP Fog-UAV-MILP-R 5.233× 3.154×
Fog-UAV-MILP Fog-UAV-Benders 6.703× 4.448×
Fog-UAV-MILP-R Fog-UAV-Benders 1.238× 0.118×
Fog-UAV-Benders Fog-UAV-CO 5.793× 135.99×

(b) β = 0.7, α = 0.95, density ~4750 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 13.9485× 0.7996×
Fog-UAV-MILP Fog-UAV-Benders 17.025× 6.868×
Fog-UAV-MILP-R Fog-UAV-Benders 1.5221× 0.347×
Fog-UAV-Benders Fog-UAV-CO 0.291× 0.0344×

(c) β = 0.8, α = 0.5, density ~2850 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 2.51× 1.16×
Fog-UAV-MILP Fog-UAV-Benders 3.03× 0.693×
Fog-UAV-MILP-R Fog-UAV-Benders 1.21× 0.34×
Fog-UAV-Benders Fog-UAV-CO 7.425× 68.54×

(d) β = 0.8, α = 0.5, density ~4750 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 7.52× 0.758×
Fog-UAV-MILP Fog-UAV-Benders 7.982× 1.96×
Fog-UAV-MILP-R Fog-UAV-Benders 1.11× 0.035×
Fog-UAV-Benders Fog-UAV-CO 1.08× 0.1935×

graphs, it can be seen that Fog-UAV-MILP executes signifi-
cantly slower than the other models, whereas Fog-UAV-CO,
the heuristic, executes quicker as demand grows. Both Fog-
UAV-MILP-R and Fog-UAV-Benders remain scalable over in-
creasing demand, with Fog-UAV-Benders outperforming Fog-
UAV-MILP-R on average by 11-52%. Though this decrease
in execution time varies significantly, Fig. 6 and 7 show this
decrease is consistent over time.

A numerical analysis of the improvements in execution time
between various models is outlined in Table VI for each of the
four parameter-map pairings. Indeed, Fog-UAV-Benders exe-
cutes on average as low as 3.03× faster than Fog-UAV-MILP
for β = 0.8, α = 0.5 and density ~2850 km2, and as much as
17.025× faster for β = 0.7, α = 0.95 and density ~4750 km2.
The solution time improvement of Fog-UAV-Benders over
Fog-UAV-MILP increases over higher density maps, given the
same parameter pair (β, α). Conversely, though Fog-UAV-CO
executed more quickly on average than Fog-UAV-Benders,
the improvement in solution time decreased as map density
increases.

E. Solution Cost

A numerical analysis of the increase in solution cost be-
tween various models is outlined in Table VII for each of the
four parameter-map pairings. Over all simulation iterations,
the cost of Fog-UAV-MILP, Fog-UAV-MILP-R and Fog-UAV-
Benders are identical. Since Fog-UAV-MILP executes signif-
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(a) β = 0.7, α = 0.95, density ~2850 people/km2

(b) β = 0.7, α = 0.95, density ~4750 people/km2

Figure 6: Solution time of each model for varying map density;
β = 0.7, α = 0.95

icantly slower than both Fog-UAV-MILP-R and Fog-UAV-
Benders with identical cost, it is always preferable to use one
of the two relaxed models.

On average over the four parameter-map pairings, Fog-
MILP-CO has a solution cost between 8.17% and 13.65%
worse than the exact solution, which may be viewed as a
significant increase.

F. Design Solution

The optimal design solutions over a map with population
density ~4750km2 is shown in Fig. 8. Based on the service
constraint (21), the (β, α) pair (0.7, 0.95) is expected to
require more fog-UAVs per hotspot than the pair (0.8, 0.5).
Indeed, the optimal solution of pair (0.7, 0.95) in Fig. 8b
requires more fog-UAVs and charging stations than the optimal
solution of pair (0.8, 0.5) in Fig. 8c. Interestingly, the optimal
solution is composed primarily of lower cost fog-UAVs with
lower mobility and service radius. As expected, charging
stations are clustered towards the densest portion of the map.
This implies there is a reliance on the mobility of fog-UAVs
to service the demand outside the city center. This may also

(a) β = 0.8, α = 0.5, density ~2850 people/km2

(b) β = 0.8, α = 0.5, density ~4750 people/km2

Figure 7: Solution time of each model for varying map density;
β = 0.7, α = 0.5

suggest that the majority of traffic spikes are near the city
centers.

G. Summary of Results

The continuous relaxation of certain binary variables in fog-
UAV-MILP-R and the precomputation of viability constraints
were chosen to guarantee an equivalent cost as fog-UAV-MILP
while decreasing the model complexity. As seen in Table VII,
this hypothesis holds as fog-UAV-MILP-R yields an equivalent
solution cost. By using Benders decomposition, we decreased
the complexity and execution time of fog-UAV-Benders by
~11-52%, while maintaining the optimal cost of fog-UAV-
MILP. Therefore, it is reasonable to use fog-UAV-Benders for
a large scale fog-UAV PLSCP.

VII. CONCLUSION & FUTURE WORK

In this paper, we designed & dimensioned a fog-UAV
PLSCP to supplement a fixed fog infrastructure and support
overloaded hotspots. The design & dimension of a fog-UAV
set covering is optimized to have 1) flexible UAV deployment,
2) additional fog-UAVs per station for backup in case of a



12

(a) Legend

(b) β = 0.7, α = 0.95 over 30 km2 area

(c) β = 0.8, α = 0.5 over 36 km2 area

Figure 8: Optimal station and fog-UAV placements for map
density of ~4750 people/km2 over varying α and β and
coverage area. Fog-UAV service radius is depicted over its
associated base station.

depleted battery, 3) untethered mobility of fog-UAVs, and 4)
minimal latency of UAV deployment.

The MILP models were designed with chance constraints
to derive reasonable fog-UAV service in extreme cases of
severely high traffic. Constraint precomputation and variable
relaxations were used to reduce the complexity of the MILP
model. Benders decomposition was used to further reduce the
complexity of the relaxed MILP model. In-depth analysis of
simulated execution time and cost show that the fog-UAV-
Benders model is significantly faster than the MILP variants,

Table VII: Analysis of relative cost differences between the
exact solution and others, for varying α, β and map density.

(a) β = 0.7, α = 0.95, density ~2850 people/km2

Exact Heuristic Increase
Model Model Mean Std. Dev.

Fog-UAV-MILP Fog-UAV-MILP-R 0.0% 0.0%

Fog-UAV-MILP-R Fog-UAV-B 0.0% 0.0%

Fog-UAV-MILP-B Fog-MILP-CO 10.06% 0.858%

(b) β = 0.7, α = 0.95, density ~4750 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 0.0% 0.0%

Fog-UAV-MILP-R Fog-UAV-B 0.0% 0.0%

Fog-UAV-MILP-B Fog-MILP-CO 6.58% 0.0476%

(c) β = 0.8, α = 0.5, density ~2850 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 0.0% 0.0%

Fog-UAV-MILP-R Fog-UAV-B 0.0% 0.0%

Fog-UAV-MILP-B Fog-MILP-CO 9.24% 0.18%

(d) β = 0.8, α = 0.5, density ~4750 people/km2

Fog-UAV-MILP Fog-UAV-MILP-R 0.0% 0.0%

Fog-UAV-MILP-R Fog-UAV-B 0.0% 0.0%

Fog-UAV-MILP-B Fog-MILP-CO 8.17% 0.24%

while maintaining the optimal design & dimensioning cost.
This paper makes simplifications and assumptions for the

sake of a concise model that can be expanded in future work.
Firstly, our definition of ‘high IoT traffic’ is limited to the
number of requests from each hotspots. Future models will
consider high traffic both in the number of requests, and in
the resource requirements of the requests.

Our model ensures that each fog-UAV has multiple reach-
able charging stations. We assume that all deployed fog-
UAVs are at least 80% charged, and each station can store all
reachable fog-UAVs. We will use a stochastic programming
models [32] to find optimal fog-UAV partial charging and
re-distribution policies among charging stations. Larger scale
discrete event simulations [33] will be used to evaluate the
real-time performance of resulting solutions.

Our model assumes a one-hop unhindered communication
between fog-UAVs and hotspots within a fog-UAV’s service
radius. That is, forms of communication interference such as
buildings, natural terrain or other communication networks
are not considered [34]. In addition, communication strength
for varying fog-UAV hovering heights are not considered. In
future work, we will seek to construct a Proof-of-Concept fog-
UAV model to explore the effects of terrain and distance on
the strength and consistency of fog-UAV communication with
IoT.

Based on simulations over the IoT traffic serviceability
increase with fog-UAVs given a base stationary fog infrastruc-
ture, it can be seen that there is a significant trade-off between
the size of the stationary and mobile fog infrastructures to
achieve an equivalent traffic serviceability. Hence, once a
better understanding of IoT traffic and UAV communication
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interference is obtained, we will design an end-to-end mobile
of fog design & dimensioning which include both stationary
and mobile fog elements.

Furthermore, we will construct a fog infrastructure that is
composed of fixed fog nodes [7], on-demand fog nodes [8],
and mobile fog-UAVs. Using this fog infrastructure over a
city network of hotspots, we will simulate the activation and
support of fog nodes to varying IoT requests over time, and
factoring both flight time, discharge time [35] and charging
time [27]. In doing so, we can quantify the significance of the
proposed fog infrastructure, identify outstanding bottlenecks
in the system, and move closer towards a reliable real-time
fog infrastructure.
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Chapter 6

A Blockchain-Based Audit
Mechanism for Trust and Integrity
in IoT-Fog Environments

Abstract The full realization of smart city technology is dependent on the secure and honest
collaboration between IoT applications and edge-computing. In particular, resource constrained
IoT devices may rely on fog-computing to alleviate the computing load of IoT tasks. Mutual
authentication is needed between IoT and fog to preserve IoT data security, and monetization of
fog services is needed to promote the fog service ecosystem. However, there is no guarantee that
fog nodes will always respond to IoT requests correctly, either intentionally or accidentally. In the
public decentralized IoT-fog environment, it is crucial to enforce integrity among fog nodes. In
this paper, we propose a blockchain-based system that 1) streamlines the mutual authentication
service monetization between IoT and fog, 2) verifies the integrity of fog nodes via service audits,
and 3) discourages malicious activity and promotes honesty among fog nodes through incentives
and penalties.

Previous chapters enable the implementation of a scalable, fault-tolerant fog infrastructure in
a dynamic IoT-fog environment. This chapter defines a blockchain-based system to enhance the
security and integrity between IoT and fog, and to facilitate fog service monetization. This chapter
has been submitted to IEEE Transactions on Industrial Informatics [42].
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A Blockchain-Based Audit Mechanism for Trust
and Integrity in IoT-Fog Environments

Ismael Martinez, Abdelhakim Senhaji Hafid, Michel Gendreau

Abstract—The full realization of smart city technology is
dependent on the secure and honest collaboration between
IoT applications and edge-computing. In particular, resource
constrained IoT devices may rely on fog-computing to alleviate
the computing load of IoT tasks. Mutual authentication is
needed between IoT and fog to preserve IoT data security, and
monetization of fog services is needed to promote the fog service
ecosystem. However, there is no guarantee that fog nodes will
always respond to IoT requests correctly, either intentionally or
accidentally. In the public decentralized IoT-fog environment, it
is crucial to enforce integrity among fog nodes. In this paper,
we propose a blockchain-based system that 1) streamlines the
mutual authentication service monetization between IoT and fog,
2) verifies the integrity of fog nodes via service audits, and 3)
discourages malicious activity and promotes honesty among fog
nodes through incentives and penalties.

Index terms— Internet of Things, fog computing,
blockchain, service auditing, mutual authentication, smart con-
tracts

I. INTRODUCTION

THE Internet of Things (IoT) is an ever growing paradigm of
sensors and computing devices inter-connected through

the internet. IoT has emerged in both public and private sectors
with the main objective of facilitating our lives [1]. A wide
scale network of collaborative IoT applications is the first step
towards the implementation of smart cities [2].

Many IoT devices and applications rely on external compu-
tation and storage due to limited internal resources. Though
Cloud data-centers are heavily equipped to support any number
of IoT requests, network congestion near distant Cloud data-
centers may result in high response latency to IoT devices [3].
This high latency can be an inhibiting factor for certain
real-time IoT applications in health care [4], autonomous
vehicles [5], and multimedia [6].

Fog-computing is a computational extension of Cloud ser-
vices to the edge of the network. The fog layer is composed
of geographically distributed ‘micro data-centers’, or nodes,
that are positioned to support IoT with minimal latency [7].
Indeed, fog, alongside IoT and Cloud, are integral in creating
an energy-efficient network computing architecture for smart
cities [8], [9], [10].
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Current research in fog-computing focuses on the effective
design of fog infrastructures [10], and resource off-loading
policies from IoT to fog nodes [11]. However, such research
does not consider the mutual needs of IoT and fog. IoT devices
require real-time, secure and correct service from an authen-
ticated server. Fog nodes require payment and advertisement
for services from authenticated sources.

Furthermore, current work assumes that fog nodes always
behave with integrity. That is, IoT devices are meant to
blindly trust fog nodes even though it is possible that a
fog node returns a faulty response, either intentionally or
accidentally [12]. Indeed, the IoT-fog environment is trustless
and currently lacks accountability for fog nodes to behave
correctly. If IoT devices rely on fog nodes for computational
processing, it is critical that we ensure active fog nodes are
processing correctly, and eject malicious fog nodes from the
IoT-fog environment.

In addition, IoT networks can be easy to tamper with and
compromise without proper security measures. Blockchain
technologies have been studied as a possible solution to
provide security, privacy and access control to IoT due to
the decentralization, immutability and high transparency of
blockchain [13]. Hence, blockchain can be used to provide a
secure line of communication between IoT and fog via mutual
authentication [14]. Furthermore, blockchain can streamline
the payment process from IoT for fog computing services,
and enforce integrity among the fog nodes.

Based on observations of IoT-fog requirements, and lim-
itations of current work, there exists a need for a single
streamlined system in a trustless IoT-fog environment that
1) mutually authenticates IoT and fog prior to service, 2)
facilitates service payment from IoT to fog, 3) verifies and
holds malicious fog nodes accountable, and 4) benefits honesty
and discourages malicious activity among fog nodes.

Inspired by current data auditing techniques [15], we pro-
pose a service auditing process for fog-computing to enforce
computational integrity. To the best of our knowledge, this is
the first attempt to enforce the service integrity of fog via a
service auditing scheme. We also integrate current mutual au-
thentication [14], [16] and fog monetization schemes [17], [18]
into a single blockchain application, and leverage blockchain-
enabled fog nodes to decrease latency [19]. That is, we propose
the Fog Identity & Service Integrity Enforcement (FISIE)
system that streamlines IoT-fog authentication, service, mone-
tization, and integrity auditing through a single smart contract.
The FISIE smart contract described in this paper is a Proof-of-
Concept based on Ethereum [20]. However, any other smart-
contract capable blockchain platform would be compatible
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with this system.
Our contributions are as follows:
• We review and summarize current literature related to

payment, service and mutual authentication.
• We propose a general architecture of heterogeneous IoT

and blockchain-enabled fog that is compatible with any
smart contract-enabled blockchain.

• We define a smart contract-based system for mutual
authentication, monetization, and service auditing.

• We describe a penality system to enforce service integrity.
• We discuss the security of the system, and analyze various

auditing scheduling policies for optimal system integrity.
The remainder of this paper is organized as follows. Sec-

tion II reviews the current contributions in related fields to
inspire our solution. Section III provides an overview of
the different components of the FISIE system. Section IV
provides background knowledge and configurations specifics
of blockchain, cryptography, and the IoT-fog physical layers.
Section V initializes the smart contract. Sections VI, VII and
VIII respectively define the identity management, payment
management and integrity verification functions of the smart
contract. Section IX describes how the smart contract functions
provide penalties and incentives for fog integrity. Section X
discusses the FISIE system security, and analyses the affects of
different sampling policies on long-term fog integrity. Finally,
section XI summarizes future work and concludes the paper.

II. RELATED WORK

We are interested in providing security and integrity to
the IoT-fog environment without significantly increasing com-
munication latency. Our reviewed literature focuses on the
state-of-the-art in a) IoT-fog security, b) data auditing of
fog, c) blockchain-based monetization, and d) blockchain-fog
integration.

A. IoT-fog security
Two of the key elements in providing security to any system

is the inclusion of authorization & authentication [13]. In
particular for the IoT-fog environment, we review implementa-
tions of access control for IoT data, and mutual authentication
between IoT and fog.

1) Authorization: An access control policy defines which
entities have the authority to access the data of which devices.
Access control policies may list individual valid entities, or
list attributes that entities must have to gain access [21]. A
micro server such as fog has sufficient storage and computing
resources to define and validate its own access control policy.
However, IoT devices have minimal resources, and may not be
able to store its own list of valid entities. In this case, the IoT
access control policies are stored in a separate trusted server
with sufficient resources.

Algarni et al. [22] propose a blockchain-based access con-
trol scheme for IoT. This scheme takes advantage of the
transparency and security of blockchain to house all IoT access
control policies. Since the blockchain itself cannot be hosted
on the IoT devices, the fog layer can be used to host the
blockchain and decrease communication latency between the
blockchain and IoT.

2) Authentication: The authorization process often works
in tandem with an authentication mechanism to prove the
identity of a communicating entity [21]. The authentication
process is crucial in protecting IoT and fog from security risks
such as man-in-the-middle attacks and replay attacks [23].
Secure authentication in IoT, fog and Cloud are often based
in standard encryption schemes such as RSA or elliptic curve
cryptography (ECC), though ECC is known to be more secure
than RSA for equivalent key sizes [24]. In the IoT-fog envi-
ronment, we are interested in mutual authentication, wherein
an IoT device and a fog node authenticate each other prior to
communicating and data sharing [25].

Singh and Chaurasiya [25] propose a lightweight mutual
authentication scheme with a centralized Cloud data-center as
a trusted third-party. Based on ECC, the Cloud data-center
sets all relevant cryptographic parameters, while IoT devices
and fog nodes store only their own public keys. That is,
private keys are stored on Cloud instead of the IoT/fog devices.
Though this scheme is lightweight, storing minimal data on
IoT devices, it requires absolute trust in the Cloud data-center.
In addition, requiring communication with the Cloud increases
communication latency for IoT.

Instead, we consider the use of a decentralized blockchain
for the authentication process. Current contributions [14], [16],
[26] use a smart contract-based scheme to register or remove
identification information from IoT devices and fog nodes.
Once registered, the information is stored and queried from a
trusted off-chain table. However, these schemes rely on an
additional centralized registration authority to generate and
store keys for IoT devices and fog nodes [14], [16]. Giving
a centralized authority this level of control over the system’s
private keys is a potential security risk. Instead, we propose to
limit the use of any off-chain resources, and keep all private
keys on their respective devices.

Patwary et al. [26] propose a blockchain-based mutual
authentication scheme that uses the physical fog location data
as part of the authentication process. Though the use of
centralized resources are limited, this scheme only works with
stationary IoT devices and fog nodes since authentication relies
on a static location validation. Instead, we seek to implement
a generalized authentication scheme that allows for device
mobility without compromising IoT-fog security.

B. Data auditing of Fog

Several contributions propose a similar data auditing scheme
to verify the data replica cache of edge servers [12], [15], [27].
A vendor who has previously cached its own data to edge
servers may request the hash of the data replica from edge
servers. The vendor compares the hash with its own data hash
to verify the data integrity of an edge server.

Zikratov et al. [28] propose a data auditing scheme based
on a private blockchain. Data is distributed to clients and is
also stored on the blockchain. Periodically, the client data is
downloaded and verified with the blockchain data by a third
party auditor.

Tian et al. [29] address the problem of data auditing in
a public IoT-fog environment. They propose to tag IoT data
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which is sent to a fog node which places its own tag, and then
sends it to the Cloud. A third party auditor can then verify
the integrity of the fog nodes via a zero-knowledge proof of
integrity.

In both cases [28], [29], absolute cooperation is needed from
fog nodes to honestly share or allow access to its server data.
This level of trust cannot be guaranteed in a trustless system.

C. Blockchain-based Monetization

Service payments from IoT to fog have been previously
considered by means of blockchain smart contracts [17], [18].
Debe et al. [17] consider a monetization smart contract in
which IoT devices deposit Ether, which are then used to pay
for fog services. Huang et al. [18] use a smart contract to hold
a collateral deposit from IoT until the IoT device directly pays
the fog node. If payment is not processed in a timely manner,
the collateral is given to the fog node.

The system by Huang et al. [18] uses a commitment-based
sampling approach in which the IoT devices samples a portion
of the result from the fog node, to decide whether to pay or
not. In such a case that the IoT device is not satisfied with the
fog results and decides not to pay, it may start a dispute with
a third party to retrieve its deposit.

Note, that this proposed system [18] requires a separate
blockchain transaction for the 1) initial deposit, 2) a confir-
mation of deposit from fog, 3) sending a separate payment
from IoT to fog, 4) then returning the deposit to IoT. This
payment process can be costly in blockchain fees due to
the total number of required transactions. Furthermore, this
process requires verification of the result from the IoT device,
which may not be computationally possible from resource-
constrained devices.

D. Blockchain-fog integration

Fog nodes are geographicaly distributed, and blockchains
are replicated and hosted on distributed servers. Therefore,
it is reasonable to combine these concepts to minimize the
communication latency between fog nodes and the blockchain.
Blockchain-enabled fog nodes are fog nodes that use a portion
of their resources to host a copy of the blockchain. By doing
so, all communication delay between fog and blockchain is
eliminated. Almadhoun et al. [23] uses blockchain-enabled
fog nodes for IoT authentication – a process whose speed is
highly dependent on communication delay between IoT, fog
and blockchain. The resource requirements of the blockchain
can be further reduced by using ‘light nodes’ which use block
summarization to reduce the amount of data stored on the fog
node [19], [30], [31]. In particular, in this paper we store only
blockchain data relevant to the authentication and auditing
processes.

E. Summary of Reviewed Literature

None of the reviewed contributions consider a penalty or
action to be taken if a fog node or edge server is found
to be corrupted. If the corruption is accidental, then the
appropriate server could be given the correct data. However,

if the corrupted data is malicious, then there is no penalty to
stop the server from continuing to alter cached or processed
IoT data. At worst, a fog node that returns malicious data is
simply not paid [18].

In public systems, a call-and-response process of requesting
a proof of data integrity from servers must be taken. However,
there is no incentive given for the data servers to comply with
the audit [12], [15], [27]. To validate service integrity, it is
left to the IoT device to verify the work done by the fog is
correct before giving payment, a task which is not always
computationally feasible by resource constrained IoT [18].
Even in private networks [28], it may not be reasonable to
have a third party auditor with full accessibility of client files
without major privacy concerns of individuals.

The focus of this paper is to validate the service integrity of
fog nodes who are meant to support IoT. We take inspiration
from related work to form the FISIE system, a blockchain-
based system that streamlines IoT-fog mutual authentication,
fog service monetization, and verification of fog integrity. We
also recognize the benefits of integrating blockchain within
the fog layer for low-latency mutual authentication. We find
the addition of an incentive and penalty mechanism to be
necessary to enforce auditing cooperation from fog nodes and
overall IoT-fog system integrity. A comparison of the proposed
FISIE system with other contributions is shown in Table I.

III. FISIE SYSTEM OVERVIEW

The FISIE system aims to 1) streamline IoT-fog mutual
authentication and fog service monetization, 2) verify the
integrity of fog nodes via external service auditing, and 3)
promote the honest collaboration between IoT and fog via
incentives and penalties. These objectives are accomplished
via the Identity & Integrity Management Smart Contract
(IIMSC) which interacts with IoT, fog, and an oracle – an
off-chain semi-trusted third-party. A generalized blockchain
structure will increase the likelihood by others of adopting the
FISIE system. Hence, though our default implementation uses
Ethereum [20], other implementations may use smart contract-
capable blockchain platforms such as Solana1 or Layer 2
platforms such as Arbitrum2 or Optimism3 for scalability and
lower processing fees [32], [33].

The key processes of IIMSC are summarized as 1) Identity
Management, 2) Payment Management, and 3) Integrity Verifi-
cation. The key processes of IIMSC are shown in Fig. 1. These
key components are summarized below, and further explored
in sections VI, VII, and VIII. These three components offer
incentives and penalties for fog nodes to behave honestly (see
Section IX).

A. Identity Management

IIMSC defines lookup tables that hold information about
IoT and fog blockchain addresses, current token holdings,
and fog reputation. These lookup tables are used for mutual

1https://solana.com/
2https://arbitrum.io/
3https://www.optimism.io/
4IoT icons by https://www.avsystem.com
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Contribution

Mutual
Authentication

Fog Service
Monetization

Resource
Constrained
IoT-Compatible

Immutable
(Blockchain)

Fog
Penalization

Fog
Honesty
Verification

Public
Fog
Auditing

Penalization
for Malicious
Fog

Debe [17] ✗ ✓ ✓ ✓ ✗ ✗ ✗ ✗

Almadhoun [23] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Singh [25] ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗

Patwary [26] ✓ ✗ ✓ ✓ ✗ ✗ ✗ ✗

Tian [29] ✗ ✗ ✗ ✗ ✗ ✓ ✓ ✗

Huang [18] ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✗

FISIE ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table I: Inspiration for the FISIE system is taken from various contributions.

Figure 1: The main objectives of the FISIE system is to use
a blockchain smart contract to 1) facilitate authentication and
service and payment between IoT devices4and fog nodes, and
2) enforce service integrity among fog nodes.

authentication between IoT devices and fog nodes. Prior to
participating in the FISIE system, all IoT devices and fog
nodes must register with IIMSC. The blockchain addresses
are used both to validate an entity’s identity, as well as to
forward payment. Current IoT token holdings are listed to
ensure IoT devices have enough funds to pay for fog services.
Fog devices have two fields for current token holdings – one
for a collateral deposit to use the FISIE system, and another
to accrue fog service payments. Both collateral deposit and
a fog’s reputation score give indication of a fog node’s past
behaviour, whether honest or malicious, i.e., their reliability.
Hence, IoT devices may filter candidate fog nodes to which it
is comfortable sending data based on a fog’s reliability.

B. Payment Management

Once an IoT-fog pair has authenticated each other, an IoT
device may send its request to the fog node for service. This
is done off-chain via ECC encryption [34]. Once service is
complete and successfully returned to the IoT device, a pre-
determined amount is transferred from the IoT device’s funds
to the fog node’s service payment funds via IIMSC lookup
tables. That is, all funds remain within IIMSC until the fog
node withdraws them.

C. Integrity Verification

To the best of our knowledge, there does not exist any
research contributions in the enforcement of fog service in-
tegrity. We seek to implement a fog service auditing mecha-
nism based on a call-and-response for the service output from

fog nodes for an IoT request. Unlike previous contributions,
we include both an incentive to encourage fog nodes to
participate in the call-and-response, and a penalty in the case
the fog node fails the service audit.

We assume that IoT devices have limited resources and are
therefore unable to verify the correctness of fog node’s service.
Therefore, we define a service auditing scheme to allow an
oracle to verify the integrity of fog nodes without revealing
its identity. Indeed, if a fog node was aware that it was being
audited by the oracle, it may change it’s behaviour. Instead,
by using a Zero-Knowledge Proof of Membership [35], the
oracle disguises itself as another IoT device, encouraging the
fog node to behave as it normally does.

D. Penalty & Incentive Mechanisms

The existence of an auditor in itself acts as a deterrent to
malicious behaviour from fog nodes. If a fog node is found
to return a faulty response, we employ a penalty mechanism
to both reduce the fog node’s collateral deposit and reputation
score. If the audit is successful, the fog node’s reputation score
may increase up to a fixed cap. A higher reputation score may
lead to more service requests from IoT, and hence more service
payments. Therefore, such a reward also acts as an incentive
for fog nodes to behave honestly.

IV. DOMAIN BACKGROUND & CONFIGURATIONS

In this section, we provide background knowledge of
blockchain, the IoT-fog environment, and cryptography, and
define their role in the FISIE system.

A. Blockchain

Public blockchains, such as Bitcoin and Ethereum, are
decentralized ledgers that enforce block consensus across all
immutable blockchain nodes, which allows them to oper-
ate in a trustless environment [36]. Public blockchains also
provide pseudo-anonymity, fault tolerance, and auditability.
Blockchain technology is viewed as a key technology in
adding security & privacy to IoT and industrial IoT (IIoT)
applications [37].

1) Smart Contracts: A smart contract is an agreement
between two or more parties that self-executes when specific
conditions are met [38]. A smart contract on the blockchain
benefits from the same immutability, persistency and auditabil-
ity as other blockchain transactions. A common use case for
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blockchain smart contracts is providing access control of IoT
data, which can mitigate security & privacy issues in IoT [39].
The FISIE system’s implementation of the Identity & Integrity
Management Smart Contract (IIMSC) is compatible with any
smart contract-capable blockchain.

2) Oracles: Often, a smart contract is dependent on real-
world data to determine when its execution conditions are
satisfied. However, the blockchain is isolated from the real-
world internet environment, creating a need for a separate
entity to convey the appropriate external information to the
blockchain. An oracle is an off-chain third-party that is used to
inject external data into smart contracts. Since oracles operate
off-chain, it is necessary to validate the trustworthiness of both
the oracle and the external data sources [40]. For this reason,
centralized oracles are not often used since the validity of the
communicated data from a single centralized entity cannot be
trusted. Instead, multiple decentralized oracles are often used
to cross-verify each other and create a trusted data feed [41].
The FISIE system relies on external decentralized oracles to
audit fog nodes and trigger the appropriate smart contracts.

B. Elliptic Curve Cryptography – Definitions & Settings

The FISIE system uses elliptic curve cryptography (ECC),
a public-key cryptographic method that uses a globally agreed
upon elliptic curve and base point over a finite field to generate
public and private keys [34].

Consider the finite field Fp for large prime number p. Over
the elliptic curve E, beginning from a base point G, we select
a secret key k and derive the public key P as

P = k ·G (1)

where we ‘add’ (·) G k times over the finite field of E.
1) The elliptic curve: Bitcoin and Ethereum use the

secp256k1 system for the Elliptic Curve Digital Signature
Algorithm (ECDSA) [42] to sign blockchain transactions. The
secp256k1 elliptic curve is defined as

E : y2 = x3 + 7, (2)

and produces 256-bit keys [43], [44]. Unlike other contri-
butions that trust a third party to define the elliptic curve
parameters and generate device keys [14], [25], we will
simplify the process and use the built-in ECC parameters of
these blockchains for secure IoT-fog communication.

2) Encryption: Suppose entity A has public key PA and
private key kA, and entity B has public key PB and private
key kB . Then a symmetric key can be formed between A and
B since,

kBPA = kB · (kAG) = kA · (kBG) = kAPB . (3)

Using this symmetric key, we can encrypt and decrypt a
message between A and B using a symmetric encryption
algorithm such as AES [34], [45].

3) ECDSA: ECDSA is the primary signature genera-
tion and verification algorithm in Bitcoin and Ethereum
blockchains [44]. No transaction is accepted by the blockchain
without a valid signature. Suppose a user A submits a signature
to a verifier B. ECDSA enables a verifier B to recover the

public key PA from a valid signature s. Hence, there is no
need for A to submit PA to B. For the remainder of this
paper, every signature used is an ECDSA signature.

4) One-way hash function: We define the function H :
{0, 1}∗ 7→ {0, 1}256 as a secure, one-way 256-bit hash
function. Examples of viable hash functions with this prop-
erty are SHA-256 and Keccak-256 used by Bitcoin and
Ethereum ECDSA respectively [36], [20]. Importantly, these
hash functions also derive a user’s address by hashing the
user’s public key. The address of a user with public key P is
defined as the last 20 bytes of the hash H(P ) [20]. We define
the operation ||n to be the n-byte right hand truncation of a
value. Hence, a user with public key P has address H(P )||20.

C. Physical Architecture

Our proposed architecture is meant to be as general as
possible so it may fit any existing IoT-fog infrastructure. Both
IoT devices and fog nodes are heterogeneous and distributed.
The architecture is divided into an IoT layer, a fog layer, and
a Cloud layer. For simplicity of discussion, we consider the
blockchain as part of the fog layer.

1) IoT layer: The IoT layer is composed of devices with
varying resource capabilities and requirements from higher
layers. We focus our approach on devices with limited com-
puting/storage resources that require processing from the fog
layer, and may send data to the Cloud layer for long-term
storage. We define I as the set of IoT devices in the FISIE
system. All IoT devices in I have at least enough resources to
store the necessary encryption keys and to communicate with
higher layers.

2) Fog layer: The fog layer is composed of fog nodes,
oracles, and blockchain nodes for a smart contract-capable
blockchain. We define F as the set of fog nodes and O as the
set of oracles in the FISIE system. The fog nodes in F have
varying resource capabilities, and some may have sufficient
resources to run a light blockchain node [30], a blockchain
oracle [41], or both. Blockchain nodes may exist separately,
or within a fog node, i.e., blockchain-enabled fog nodes [19].

3) Cloud layer: The Cloud layer is composed of mega
data-centers capable of long-term data storage and substantial
computing power [46]. Data that require storage may come
from the fog layer after it has been processed, or directly from
the IoT layer.

V. IIMSC - INITIALIZATION

Beginning in this section, and continuing in sections VI,
VII and VIII, we define in detail the functionalities of IIMSC,
including its initial parameters and tables. Every function of
IIMSC takes a signature s as a final argument, which is
validated via ECDSA before executing the function. Therefore,
we omit the signature validation from the description of IIMSC
functions. The functions and lookup tables of IIMSC are
designed to 1) facilitate the mutual authentication process,
2) provide security and accountability to the IoT-fog service
payment process, and 3) enable incentive and penalty mech-
anisms for fog integrity. A summary of all IIMSC functions
are provided in Table II and are described in future sections.
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Table II: A summary of IIMSC functions

Initialisation Initialisation()

Registration IoT_registration(Ether Eu)

Fog_registration(Ether Eu)

Oracle_registration()

Funds IoT_add_funds(Ether Eu)

IoT_withdraw_funds(float u)

Fog_withdraw_funds(float u)

Removal IoT_remove()

Fog_remove()

Payment IoT_fog_payment(float d)

Audit result Fog_reward(Address af, Ring sign. Rω)

Fog_penalize(Address af, Ring sign. Rω)

A. Lookup tables

Secure mutual authentication schemes rely on a trusted
third-party to validate the identity of each authenticating mem-
ber [23], [25]. Therefore, we propose that IoT devices and fog
nodes register with respective IoT and fog lookup tables on the
blockchain. The registration process uses ECDSA signatures
to initially confirm the identity of the registering party. Hence,
all registration information on the lookup tables are publicly
accessible and pre-verified. To register with the blockchain, we
require a payment deposit from IoT devices, and a collateral
deposit from fog nodes. These deposited amounts are reflected
in the lookup tables. Since our default implementation uses
Ethereum, all mentions of payments, funds and deposits will
use the Ether cryptocurrency [20].

For each IoT device i ∈ I , the fields in the IoT lookup table
TI are defined as

• IoTAddress: The address of the IoT device i, which is
also the truncated hash of the IoT public key H(Pi)||20.

• AvailFunds: The available funds of IoT device i. These
funds are used to pay for fog services.

For record ti ∈ TI of IoT device i, we denote these entries as
ti.A, and tf .AF respectively.

For each fog node f ∈ F , the fields in the fog lookup table
TF are defined as

• FogAddress: The address of the fog node f , which is
also the truncated hash of the IoT public key H(Pf )||20.

• Deposit: The collateral deposit given by fog node f . A
portion of the deposit may be lost as a penalty for failing
a service audit.

• AvailFunds: The available funds of fog node f . Available
funds come from IoT service payments and may be
withdrawn at the fog node’s discretion.

• Reputation: The reputation score of fog node f . This
reputation score is updated based on the results of a
service audit. IoT devices may choose which fog nodes
to work with based on their respective reputation scores.

For record tf ∈ TF of fog node f , we denote these entries as
tf .A, tf .AF , tf .D, and tf .R respectively.

By default, the lookup tables are implemented on-chain.
Alternatively, the tables may be placed off-chain and managed

by a reverse oracle, i.e., an outbound oracle that executes
on behalf of the blockchain [47]. In this case, we add an
additional column to both tables labeled ‘LastUpdateHeader’.
For each table record, the ’LastUpdateHeader’ field contains
the blockchain header associated with the latest record update.
By referencing this hash in the lookup tables, we also enforce
immutability on the values of the off-chain lookup table.

In addition, we define an on-chain oracle lookup table
TO to register any oracle that wishes to participate in the
service auditing process. TO has a single field OracleAddress,
denoted to.A for record to ∈ TO of oracle o ∈ O.

B. Initialization

The Initialization function is the constructor of
IIMSC. It creates the IoT, fog and oracle lookup tables
{IIMSC.TI , IIMSC.TF , IIMSC.TO}, and sets the following
parameters:

• the minimum, initial and maximum reputation scores
{IIMSC.RMin, IIMSC.RInit, IIMSC.RMax}, where
IIMSC.RMin ≤ IIMSC.RInit ≤ IIMSC.RMax

• the reputation penalty and reward
{IIMSC.r−, IIMSC.r+}, where IIMSC.r− > IIMSC.r+

• the fog collateral deposit amount IIMSC.D and penalty
deposit deduction IIMSC.d−

It is important that the reward r+ is smaller than the penalty r−

to deter fog nodes from behaving outside of what is expected.

C. IIMSC pooled funds

During registration process, IoT devices, fog nodes and
the oracles each submit deposits, either for payments or as
collateral. These funds are ‘moved’ during the payment and
penalty processes. All funds deposited into IIMSC are pooled
within the smart contract, and the individual token holdings
are detailed in the lookup table for each device. Hence, any
payments that occur through IIMSC have no actual transfer
of payments between devices. Rather, the lookup table values
are updated, and token changes are realized upon withdrawal.

VI. IIMSC – IDENTITY MANAGEMENT

The objective of the identity management functions of
IIMSC is to facilitate mutual authentication between IoT
and fog. Prior to sending a request, the IoT device must
authenticate a fog node by verifying it is registered in TF
and has a sufficient reputation score. Likewise, the fog node
must authenticate the IoT device to ensure it is registered in
TI and has sufficient funds to pay the fog node.

A. Registration

Once IIMSC has initialized, any entity that wishes to partake
in the FISIE system must first register with the blockchain.

1) IoT registration: The IoT_registration function
takes an itial Ether deposit Eu of amount u > 0 from IoT
device i ∈ I . After ensuring ai = H(Pi)||20 is not already in
TI , the values ti.A ← ai and ti.AF ← u are added to new
record ti ∈ TI .
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2) Fog registration: The Fog_registration function
takes a deposit Ed of amount d for fog node f ∈ F , with
d ≥ IIMSC.D. An amount IIMSC.D is used for the deposit,
and the remainder v = d− IIMSC.D is set as the initial avail-
able funds. The reputation of f is set to the initial reputation
r = IIMSC.RInit. After ensuring af = H(Pf )||20 is not
already in TF , the values tf .A ← af , tf .D ← IIMSC.D,
tf .AF ← v and tf .R ← r are added to the new record
tf ∈ TF .

3) Oracle registration: An oracle o ∈ O with public key
PΩ must register with the blockchain in order to securely
communicate its oracle results. Therefore, we define a function
Oracle_registration to create a record to ∈ TO with
to.A← H(PΩ)||20.

B. Removal

If an IoT device i ∈ I no longer wishes to be a part of the
network, it may call the IoT_remove function. All available
funds under the record H(Pi)||20 are returned to IoT device
i, and the record is removed from TI .

A fog node may request to exit the system, or it may be re-
moved forcefully by IIMSC. In both cases, the Fog_remove
function is executed. If the Fog_remove function is initiated
by the fog node, then the remaining deposit and available funds
under the record H(Pf )||20 is returned to fog node f , and the
record is removed from TF . If at any point the fog deposit
reaches zero or the reputation score falls below IIMSC.RMin,
the Fog_remove function is automatically triggered, the
remaining available funds and deposit (if any) are returned
and the fog node is removed from TF .

C. Mutual Authentication

We outline the mutual authentication process between an
IoT device i ∈ I and a fog node f ∈ F .

1) IoT device i sends a signature si to fog node f .
2) Fog node f will recover Pi from si, and query H(Pi)||20

as the address of i from the IoT lookup table TI .
3) If the IoT address is found in step 2), continue with step

4). If not, mutual authentication fails.
4) Fog node f sends a signature sf to IoT device i.
5) IoT device i will simultaneously

(a) recover Pf from sf and query H(Pf )||20 as the address
of f from the IoT lookup table TF .

(b) verify that the reputation score tf .R meets the reputa-
tion threshold i.R set by i.

6) If the fog address is found and the reputation threshold
is met in step 5), continue to step 7). If not, mutual
authentication fails.

7) IoT device i and fog node f have successfully completed
mutual authentication, and established a symmetric key
Pfki = Pikf for secured communication. They may
begin to collaborate.

The mutual authentication process is summarized in Fig. 2.

Figure 2: The mutual authentication process. Recall, every
function takes a signature, from which the associated public
key is recovered.

VII. IIMSC – PAYMENT MANAGEMENT

The objective of the payment management functions of
IIMSC is to streamline the IoT-fog service payment process,
while also providing security and accountability. Since all
payment transactions are posted on the blockchain, visibility of
payment records can be used in the case of a payment dispute.
Once an IoT device and fog node are mutually authenticated,
the IoT device may send any computation requests to the fog
node in exchange for a portion of deposited funds.

A. Addition and withdrawal of funds

Once a device has registered with IIMSC, it may add or
withdraw funds used for service payments.

1) IoT funds: After an IoT device i has registered with
the blockchain, it may add additional funds to its avail-
able reserve. The IoT_add_funds function takes additional
funds Eu of amount u > 0. The record ti ∈ TI where
ti.A = H(Pi)||20 is updated with ti.AF ← ti.AF +u. Simi-
larly, the IoT_withdraw_funds may be used to withdraw
an amount u ∈ (0, ti.AF ] from the available funds. Then, the
record ti ∈ TI is updated with ti.AF ← ti.AF − u and Eu
Ether is sent to IoT device i.

2) Fog funds: Once fog node f begins to service IoT
requests, it will accumulate payments in its available funds.
Fog node f may request to withdraw an amount u ≤
tf .AF through the Fog_withdraw_funds function. The
Fog_withdraw_funds function takes an amount to with-
draw u ∈ (0, tf .AF ]. The record tf ∈ TI where tf .A =
H(Pf )||20 is updated with ti.AF ← ti.AF−u, and Eu Ether
is sent to f .

B. IoT-Fog service and payment

Once the mutual authentication process is successfully
completed and a symmetric key Pikf = Pfki has been
established between i ∈ I and f ∈ F , IoT device i may
request computational support from fog node f via symmetric
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encryption. We outline the IoT-fog service process between
IoT device i and fog node f .

1) IoT device i transmits a proposed payment d, a package
g, and the signature si of the transaction to fog node f .

2) If f doesn’t accept, it sends a ‘reject’ return statement
OR lets the request time out. The process ends.

3) Else, f processes package g and gets result τ .
4) The fog node f returns result τ to IoT device i.
5) IoT device i triggers the IoT_fog_payment function

with parameters: agreed payment d and IoT signature si.
6) The IoT_fog_payment function verifies signature si,

and transfers an amount d from ti.AF to tf .AF , ti ∈ TI ,
tf ∈ TF .

The service and payment process is summarized in Fig. 3.

C. Matching, Bargaining, and Disputes

The default implementations of mutual authentication and
service payment described above are streamlined, without
consideration of fog selection, price bargaining or payment
disputes. In reality, there is room for flexibility to address these
concerns in these processes.

Prior to mutual authentication, IoT devices must select to
which fog node it wishes to contact for service. There exist
many, more sophisticated matching algorithms for pairing IoT
devices with fog nodes based on proximity and available fog
resource capacity [48].

Once devices have been authenticated and the IoT device
submits its request with proposed payment, the fog node may
counter-offer. That is, the IoT device and fog node may enter
into a round of bargaining to determine an agreed price [49].
Indeed, the matching and bargaining processes can even be
combined into an auction-based process whereby fog nodes
are matched by bidding on the IoT request [50].

Once the service process is complete and the fog node has
returned the processed result τ of package g, it is up to the
IoT device to trigger the IoT_fog_payment function. If it
does not within a reasonable amount of time, the fog node may
start a dispute with a decentralized dispute resolution platform
such as Kleros5 [51]. Conversely, if the IoT device does not
recieve a response from the fog in a timely manner, the IoT
device may start a dispute. These dispute resolution processes
may prove to be costly for IoT devices and fog nodes, thus
incentivizing timely processing of IoT requests, and timely
triggering of the payment smart contract.

VIII. IIMSC – INTEGRITY VERIFICATION

By occasionally checking the processing results of fog
nodes, we can add a level of integrity and trust to the IoT-
fog environment. We rely on trusted decentralized oracles to
audit and verify the integrity of fog nodes. An oracle o ∈ O
uses two key pairs – one registered as an ‘IoT device’ and one
registered as an oracle. All audits are submitted by the address
associated to the IoT lookup table TI , so that fog nodes believe
the audit is a normal IoT request. This is crucial to verify the
natural behavior of a fog node when not under supervision.

5https://kleros.io/

Figure 3: The IoT-fog processing and payment workflow.

Figure 4: A ring signature, zero-knowledge proof of member-
ship, hides the identity of the oracle among IoT.

A. Ring Signature - Proof of Membership

Suppose oracle o ∈ O has two key pairs (Pω, kω) and
(PΩ, kΩ). Prior to auditing, oracle o registers itself with the
blockchain as an IoT device using key pair (Pω, kω), and as
an oracle using key pair (PΩ, kΩ). These key pairs result in
different hashes across different tables. Therefore, the identity
of oracle o on the IoT table is not known to fog nodes nor
the blockchain. Hence, when submitting an audit result to the
blockchain, the oracle must prove that the audit came from a
valid IoT service request. In other words, it must prove that it
belongs to the IoT lookup table without revealing the identity
of its IoT address.

This problem relates to the class of zero knowledge proofs
for set membership [35], which have been proven essential in
blockchain applications [52]. Given the information publicly
available in the IoT lookup table, we choose to implement a
ring signature scheme [53].

Let PI be the set of public keys from table TI . We choose
some enumerated subset P̄ ⊆ PI containing Pω such that
|P̄ | = n and P̄ = {P1, P2, . . . , Pn} where Pω = Pj for some
1 ≤ j ≤ n.

An oracle with key-pair (Pω, kω) = (Pj , kj) builds a ring
signature of message m over the elliptic curve of prime p and
base point G as follows:

1) Choose a random integer q ∈ [0, p− 1].
2) Calculate Tj = (xj , yj) = q ·G.
3) ∀i = 1, . . . , n, i ̸= j, pick random integers σi ∈ [0, p−1].
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4) for i = j + 1, . . . , n, 1, . . . , j − 1:
ci = H(m|xi−1)
Ti = (xi, yi) = σi ·G+ ci · Pi

5) cj = H(m|xj−1)
6) σj = q − cjkj .

Let σ = [σ1, . . . , σn] and P = [P1, . . . , Pn]. Oracle o submits
(c1,σ,P ).

1) Verification: The verifier (IIMSC) begins with c1, and
caluclates

T1 = (x1, y1) = σ1 ·G+ c1 · P1

for i = 2, . . . , n:
ci = H(m|xi−1)
Ti = (xi, yi) = σi ·G+ ci · Pi

c′1 = H(m|xn).
The ring signature is accepted if c1 = c′1.

2) Correctness: : By the original choice of Tj = q ·G, the
final choice of sj ‘closes’ the ring. That is,

Tj = σj ·G+ cjPj

= (q − cjkj) ·G+ cjkj ·G
= q ·G.

B. Reward & Penalty Functions

IIMSC alters the deposit and reputation scores of fog nodes
based on the results of a service audit. Both the Fog_reward
and Fog_penalize functions take a ring signature Rω from
an oracle o ∈ O. If the ring signature is valid, then there exists
an address in TI that belongs to oracle o.

1) Passed audit: When a fog node f ∈ F passes a service
audit sent by oracle o ∈ O with public key PΩ, the oracle
calls the Fog_reward function which takes the fog address
af and a ring signature Rω . After verifying H(PΩ)||20 is in
TO, af is in TF and verifying the validity of ring signature
Rω , the function increases the fog reputation by an amount
IIMSC.r+, up to a maximum IIMSC.RMax. That is, tf .R ←
min{tf .R+ IIMSC.r+, IIMSC.RMax}.

2) Failed audit: When a fog node f ∈ F fails a service
audit sent by oracle o ∈ O with public key PΩ, the oracle calls
the Fog_penalize function which takes the fog address
af and a ring signature Rω . After verifying H(PΩ)||20 is in
TO, af is in TF , and verifying the validity of ring signature
Rω , the function 1) decreases the fog reputation by an
amount IIMSC.r−, and 2) decreases the deposit by an amount
IIMSC.d−, or to 0, whichever is higher. That is, tf .R ←
tf .R − IIMSC.r− and tf .D ← max{tf .D − IIMSC.d−, 0}.
The lost deposit is distributed among the registered IoT
devices. If the updated reputation t.R falls below IIMSC.RMin,
or if the updated deposit t.D reaches 0, then Fog_remove
is automatically called on f .

C. Service Audit

We define the IoT address aω = H(Pω)||20 and oracle
address aΩ = H(PΩ)||20 as the two addresses used by oracle
o ∈ O for fog and blockchain communication respectively.

1) Oracle o and fog node f mutually authenticate and
establish a symmetric key Pωkf = Pfkω .

2) Oracle o sends a package g to f following the process in
section VII-B.

3) Simultaneously, oracle o
a) waits for request response τf from f .
b) calculates the expected output τω of g.

4) Oracle o computes a ring signature Rω = {c1,σ,P } and
compares the fog result τf with the expected result τω .

a) If τf = τΩ, fog node f has passed the service audit.
Oracle o calls the Fog_reward function with fog
address af , oracle signature sΩ, and ring signature Rω .

b) Else, if τf ̸= τΩ, and f has failed the service audit.
Oracle o calls the Fog_penalize function with fog
address af , oracle signature sΩ, and ring signature Rω .

1) Oracle payment: When an oracle o executes a service
audit, it takes time and uses processing resources for the
benefit of the FISIE system. In addition, since oracle o is
disguising a service audit as an IoT service request, it must
pay a service fee to the audited fog node. In both cases, the
oracle should be fairly compensated and reimbursed for its
efforts.

By default, IIMSC takes a service fee from IoT devices
whenever a call to IoT_fog_payment(d) is made. That
is, IIMSC takes a small portion of the service payment d as
the service fee. These fees are pooled by IIMSC. A portion
of the pool is used to pay the oracles, and the rest is used to
pay the owners of the smart contract.

2) Scheduling policy: The audit scheduling policy defines
how often oracles can execute service audits. By default, one
oracle completes one service audit every η requests, where
η is defined by IIMSC. A large η ensures that more than
enough fees have been collected to pay the oracle fairly, but
may not result in frequent enough service audits. In contrast,
a small η results in more, frequent service audits, but would
require larger fees to be taken from IoT service payments to
cover the oracle costs. Other more sophisticated scheduling
policies [54], [55] can be considered for service auditing that
take into account the overall health of the system. This is left
for future work.

IX. IIMSC – PENALTY & INCENTIVE MECHANISMS

The lookup tables, IIMSC parameters, and integrity verifi-
cation functions are used to provide incentives and penalties
for fog nodes to encourage integrity.

A. Fog monetization

An IoT device i ∈ I may request service from a fog node,
in exchance for a proposed payment d, where d ≤ ti.AF .
That is, the IoT device has sufficient available funds to satisfy
the proposed payment. Once a fog node has serviced an IoT
request, the IoT device pays the fog node for its services. This
IoT payment provides a monetary incentive to fog nodes
to service IoT. A service payment from an IoT device is
deducted from its available funds in TI , which is the total of
all previously deposited and unspent funds, in IIMSC, from
the IoT during or after registration.
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B. Fog collateral deposit

Upon registry, a fog node f ∈ F has collateral deposit
tf .D = IIMSC.D. Periodically, a service audit is sent out
to fog node f by an oracle posing as an IoT device. The fog
node, unaware the request is from an oracle, would respond to
the request normally, either with a correct or faulty response.
If the response is incorrect, i.e., fog node f has failed the
service audit, then a portion of the fog deposited funds tf .D
are deducted from TF and redistributed to IoT. This loss of
collateral provides a monetary penalty to fog nodes if they
fail a service audit. If a fog node loses its entire deposit, i.e.,
tf .D = 0, then the fog node is removed from TF , and hence,
from the FISIE system.

By default, the collateral deposit amount IIMSC.D is fixed,
and any additional deposit is converted to available funds.
Alternatively, a possible implementation of IIMSC could allow
for flexible deposit amounts, and a more sophisticated deposit
deduction or reduction mechanisms [56]. For example, IIMSC
could decrease the required deposit from long-term behaving
fog nodes. In this case, the additional deposit over the newly
reduced deposit threshold is converted to available funds that
the fog node may withdraw. This implementation provides an
additional incentive to fog nodes to behave properly over the
long-term.

C. Fog reputation

Fog nodes are given a reputation score in lookup table
TF . The reputation score is updated by IIMSC based on the
results of a service audit. That is, the reputation in TF is
decreased if a fog node fails a service audit, and is increased
if it passes. An IoT device may filter the fog nodes based on
their reputation score before choosing where to send a request.
Therefore, it is beneficial to the fog node to always behave
properly, as to have a higher reputation and the possibility
for more IoT requests, i.e., IoT payments. This provides a
service incentive to fog nodes if they pass a service audit.
Conversely, a loss of reputation provides a service penalty to
fog nodes if they fail a service audit. Every fog node begins at
the same initial reputation score IIMSC.RInit, can increase
up to a fixed maximum score IIMSC.RMax, and is removed
from the system if the score falls below a minimal reputation
threshold IIMSC.RMin.

By default, IIMSC will decrease and increase the reputation
score by a fixed IIMSC.r− and IIMSC.r+ respectively, where
IIMSC.r− > IIMSC.r+. However, more sophisticated strate-
gies for calculating [57] and updating [58] reputation score can
be used, taking into account factors such as the number of IoT
requests, and service level agreement (SLA) compliance [59].

D. Fog deposit distribution

If a fog node fails an audit, an amount d− is deducted from
its collateral deposit on the fog lookup table TF . The associ-
ated Ether Ed− is still attached to IIMSC. Hence, we choose
to distribute the amount IIMSC.d− amount among a subset of
IoT devices Ī ⊆ I by updating available funds in the lookup
table TI by an equivalent amount. That is, for each i ∈ Ī , we

select an amount di > 0 such that
∑
i∈Ī di = IIMSC.d−, and

increase the available funds ti.AF ← ti.AF + di,∀i ∈ Ī .
By default, IIMSC distributes the deducted deposit from

f ∈ F equally among all IoT devices by an amount d−/n
where n = |TI |. Other distributions strategies are possible,
such as distributing only to IoT devices that have previously
been serviced by f in either an equal or weighted manner.

X. SIMULATION OF INTEGRITY

To the best of our knowledge, no other contribution provides
both an incentive and a penalty mechanism to enforce the
integrity of an IoT-fog system. We first discuss the security
of the FISIE system. To determine the effectiveness of our
proposed system, we execute an auditing simulation over a set
of malicious nodes. We also define several auditing scheduling
policies to compare their effectiveness amongst each other.

A. Security Analysis – Discussion

The FISIE system streamlines the IoT-fog mutual authen-
tication, service and payment processes while maintaining
secure and accountable IoT-fog communication.

1) Encrypted Communication: All direct communication
between IoT and fog is encrypted by a 256-bit ECC protocol.
A 256-bit ECC key size ensures a high level of security com-
parable to a 2072-bit RSA key size – the former encryption
standard [24], [60]. Furthermore, the secp256k1 elliptic
curve proposed is already used by most blockchains [42].
Hence, there is no need for external third parties to define
the system cryptographic parameters [25], which preserves the
security of the FISIE system.

2) Lookup Tables: For a particular IoT device or fog node,
its address on the lookup table is its blockchain address,
which is generated from the hash of its public key. When
device A communicates with device B, B verifies the address
of A on the lookup tables by extracting the public key of
A from its signature, which is generated by its secret key.
That is, some third entity C cannot impersonate A unless C
possess the secret key of A. Hence, the security of the mutual
authentication and identity verification, is equivalent to the
security of the 256-bit ECC protocol used [24].

3) Payment: All payments are recorded on the blockchain
via IIMSC. Hence, any disputes that may arise can be verified
against the blockchain to ensure the accuracy of all claims.
Furthermore, since all entities are registered with IIMSC,
future implementations could freeze IoT assets until a dispute
is resolved, or add a reputation score to IoT devices to track
how often they default on service payments.

4) Ring Signature: An oracle uses an IoT address aω to
pose as an IoT device when interacting with a fog node.
The oracle then submits its audit results to IIMSC using an
oracle address aΩ. The oracle audit submission includes a ring
signature, which is a zero-knowledge proof of membership
to prove the audit was done with an IoT address, without
revealing which. Since all blockchain records are public, fog
nodes can see which IoT devices are in the ring, and therefore
could potentially be the oracle. The probability that any IoT
address in the ring belongs to the oracle is 1/n for a ring of
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n IoT addresses, which diminishes as n increases. However,
a larger n requires more logging space on the blockchain and
more verification computation from IIMSC, which could be
costly. Hence, a balance is required to increase n as much as
is reasonable. Alternatively, oracle o may send a ring signature
Rω with a large n to a secondary computing oracle such as
TrueBit6 for transparent verification. The computing oracle
then sends the result to IIMSC. This process would allow for
larger ring signatures, thus increasing audit security, without
inflating the cost of the smart contract.

B. Auditing sampling policies

For a set of fog nodes F and a size C, we sample a distinct
subset FC from F of C nodes. Service audits are executed
over members in FC either sequentially or simultaneously.
The purpose of clustering fog nodes even when executing
sequentially is to limit the number of repeated audits to the
same fog node in a short time period. That is, a larger size
C increases the expected time between audits to the same fog
node. Each sampling policy defines a specific way that clusters
are sampled.

1) Random sampling: Clusters of size C are sampled
randomly without repetition from the set F . This sampling
method weighs all members equally, and makes no distinction
between fog nodes who have previously passed their service
audits, and those who haven’t.

2) Weighted sampling: This sampling assigns a weight to
each fog node, based on their previous audit history. The
weights are initialized to be uniform. If a fog node fails a
service audit, the weight is increased, denoting that this fog
node should be audited more often. Similarly, if a fog node
passes a service audit, we decrease the weight, indirectly
giving audit priority to all other fog nodes. In practice, this
method would require an oracle to keep a separate internal log
of fog audit history.

3) BIBD sampling: This method is based on combinatorial
design theory [61] where we build a series of finite balanced
sets [62] of fog nodes FB . We define the (F ,B, B)-balanced
incomplete block design (BIBD) as a series of blocks, i.e.,
subsets of F , that are of size B and have each fog node appear
in B distinct blocks. The (F ,B, B)-BIBD is computed at the
beginning of the simulation, and is re-computed every time a
fog node is ejected from the system.

C. Auditing cost

We assign each fog node f ∈ F a random ‘malicious rate’
mf ∈ [0.4, 1], a probability that the next request response will
be faulty. By the definition of Fog_penalize, a fog node
penalty will deduct a portion of the fog deposit, and remove
the fog node from the system once that deposit reaches 0. For
our simulation, we set each fog deposit to 3 and enforce a
penalty of -1. That is, a fog node is removed from the system
if it fails 3 service audits. For this simulation, we suppose the
malicious rate of each fog node does not change in response
to an audit result. The simulation is executed 1000 times per

6https://truebit.io/

(a) Mean, G = 5 (b) Mean, G = 25

(c) Variance, G = 5 (d) Variance, G = 25

Figure 5: The means and variances of auditing costs necessary
to expel all malicious nodes.

audit scheduling policy. We show the average of the results in
Fig. 5a and 5b, and the variance of the results in Fig. 5c and 5d.
From the results, the weighted sampling method consistently
outperforms both random sampling and BIBD sampling in
both mean and variance. Between random and BIBD methods,
BIBD sampling performs marginally better. It is noted that
using a larger cluster size C has no significant effect on the
auditing cost.

D. State of the system

Now we suppose that a fog node may alter it’s malicious
rate in response to a service audit result. If a fog node fails
a service audit, we decrease the malicious rate by a random
fraction. Two scenarios may result: 1) the fog node adjusts
its malicious rate slowly towards 0 and redeems its reputation
score, thus staying in the system, or 2) the fog node fails more
service audits before fully redeeming its reputation score, and
is ejected from the system. In both cases, the integrity of the
overall system increases. We observe this trade-off between
the number of malicious nodes and the integrity of the system
by simulating the state of the system over time. For these
simulations, we set IIMSC.RMin = 0, and IIMSC.RInit =
IIMSC.RMax = 10.

1) By malicious rate: When a fog node fails a service audit,
we decrease its malicious rate. Therefore, we expect the overall
malicious rate to decrease over time. If a fog node is ejected
from the system, then only fog nodes with lower malicious
rates would stay in the system, further supporting our hypoth-
esis. Indeed, as seen in Fig. 6a, there is a significant drop in
the malicious rate over the first several audits. As expected,
the overall reputation score initially drops, but slowly recovers
once the majority of the fog nodes begin to behave properly.
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(a) By mean malicious rate

(b) By number of fog nodes

Figure 6: The integrity of the FISIE system over time

The redemption of the overall reputation score of the system
is quicker with the weighted sampling method.

2) By number of fog nodes: Though not as drastic of a
drop as the malicious rate, we do observe a decrease in the
number of total fog nodes. Over time, fog nodes who have not
sufficiently decreased their malicious rate are ejected from the
system. A smaller pool of fog nodes, mostly composed of
honorable fog nodes, will increase the total average reputation
score. This is seen in the direct trade-off between increased
reputation score and decreased number of fog nodes in Fig. 6b.
The decrease in the number of active fog nodes is more drastic
with the weighted sampling method. Over both simulation
results, it is clear that the Weighted sampling method reaches
full integrity in a shorter amount of time.

XI. FUTURE WORK AND CONCLUSIONS

A key aspect of IoT security is ensuring the integrity of the
fog nodes that interact with IoT. In this paper, we proposed
a general architecture for heterogeneous IoT and blockchain-
enabled fog nodes. We defined a smart contract-based system

for mutual authentication, monetization, and fog integrity
enforcement. Finally, we analyzed the security of our system,
and analysed the simulation results of our proposed service
auditing over several audit scheduling policies. We found the
weighted sampling method to increase system integrity in
fewer total audits, hence lower blockchain cost.

In this study, the construction and analysis of the proposed
system is theoretical. In future work, we will build a Proof of
Concept model to study the feasibility of blockchain-enabled
fog nodes, the actual incurred latency of mutual authentication
and IoT task processing, and the actual behaviour of fog nodes
over time. Furthermore, we will test various audit scheduling
policies based on the real-time results of the system. Finally,
we will include a data auditing mechanism in a public system
to expand the scope of fog integrity. In a public IoT-fog envi-
ronment with decentralized fog devices, integrity enforcement
of fog will keep the environment safe and stable for IoT,
and enable the expansion of IoT applications with the full
cooperation of fog towards a real-world smart city [2].
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Chapter 7

Conclusion

7.1 Summary of current work

Our research sought to formulate a scalable design & dimensioning scheme that constructs a general,
robust and dynamic fog infrastructure. The first contributions formulates a scalable design &
dimensioning scheme for a generalized static fog infrastructure. The fog infrastructure supports a
high degree of multi-task IoT requests over a possibly congested network. The second contribution
extends the static fog infrastructure to include on-demand fog nodes, which activate in light of a
network overload. Such an overload may occur either from high network traffic, or from failed fog
nodes that put stress on the remaining active nodes. The addition of on-demand fog nodes creates
a robust fog infrastructure for a dynamic IoT-fog environment. The third contribution introduces
fog-enabled UAVs to further support overloaded fog nodes and IoT devices in remote areas. The
mobility of fog-UAVs is only restricted by nearby charging stations. We allow for fog-UAVs to
move between charging stations, and therefore broaden their range of movement. The addition of
mobile fog-UAVs creates a mobile and flexible fog infrastructure for a volatile IoT-fog environment.
Finally, the fourth contribution enforces integrity onto fog nodes through a blockchain-based service
auditing system. Penalties and incentives are applied to the fog node by the blockchain, based on
the audit results. Hence, fog nodes are encouraged to act with integrity at all times, or risk being
penalized or ejected from the system. Furthermore, the system enables secure communication
between IoT and fog and streamlined IoT service payments to fog. This results in a fair and secure
fog infrastructure for a trustless IoT-fog environment.

7.2 Impact

The fog-computing paradigm is the collaboration of distributed heterogeneous nodes on the network
edge, capable of providing real-time communication and processing. The research considers (1) that
the constructed fog infrastructure should be flexible and operable in any IoT environment, (2) that
IoT traffic may be volatile and spread out over a large region, and (3) that the IoT-fog environment
is trustless and fog nodes may be malicious. The resulting fog infrastructure keeps the strengths of
fog-computing while addressing its weaknesses.

Much research has been done on the interactions between IoT, fog and Cloud on a pre-existing fog
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infrastructure [8]. However, a real-life implementation of an efficient fog infrastructure is dependent
on the optimal design & dimensioning given the particular goals of the implementer. The focus of
our research is to provide a blueprint of a general fog infrastructure over multiple considerations of
fog reliability, mobility and integrity, as well as IoT traffic. Therefore, our generalized fog design
& dimensioning scheme encourages the adoption, development and implementation of real-life fog
infrastructures towards collaborative smart cities.

7.3 Limitations and Future Work

Several assumptions and simplifications over the IoT-fog network were made in order to concentrate
the scope of the research. Further investigation is needed in order to verify to what degree our
assumptions hold true, and extend our work to accommodate environmental restrictions. Hence,
the current limitations of this thesis motivate a plan for future work.

7.3.1 IoT traffic distributions

In the presence of Human Dynamics, IoT traffic can be approximated to follow a Poisson distri-
bution [36]. Thus, chapters 3 to 5 assume IoT traffic follows a Poisson distribution in our traffic
estimations. For the estimation of network congestion, we once again assumed a Poisson arrival
rate of IoT traffic to the network. However, not all IoT requests require fog assistance. Indeed, the
true distribution and size of IoT requests that require fog support may be different than those used
in our models.

In the case of IoT traffic, analysis over live IoT data is needed to verify actual IoT traffic patterns
in both the best-case and worst-case. Similarly, analysis of actual network congestion and faulty
transmission can be done to gauge the effects of network factors on the total round-trip latency of
IoT requests.

7.3.2 Communication interference

In chapters 3 and 4, our models consider IoT request latency caused only by network congestion
to and from the fog nodes. That is, we assumed all communication between IoT and the network
edge were unimpeded by environmental interference or faults in IoT-fog communication. Indeed, it
may be that IoT-fog communication suffers from similar building and environmental interference
as Wi-Fi [43].

When working with fog-UAVs for IoT support such as in chapter 5, further considerations are
needed in regards to outdoor IoT-fog communication. Since a fog-UAV is deployed and hovers
over an IoT service area, we must consider interference caused by the fog-UAV hovering height.
Furthermore, we assume that a fog-UAV can support all IoT devices within its service radius.
However, only a subset of these IoT devices may have clear communication due to environmental
factors.

7.3.3 Fog-UAV battery charge and mobility

For electric vehicles, the first ~80% of a battery charges approximately linear [44]. For simplicity, we
extended this assumption to fog-UAVs, and assumed there was always at least one charged fog-UAV
ready for deployment. However, the approximate charging function of a UAV may be different than
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an electric vehicle in practice. Furthermore, it may not be reasonable to assume there is always a
charged fog-UAV ready for deployment. Indeed, a fog-UAV needs idle time to charge its battery,
which was not considered in this first iteration of the fog-UAV set covering problem.

7.3.4 Mobility restrictions

In chapter 5, fog-UAV mobility is assumed to only be restricted by its battery. That is, we ignore
any environmental obstacles and assume direct fog-UAV flight ‘as the crow flies’. However, cities
with tall buildings or mountainous regions may impede fog-UAV mobility, shortening its overall
distance radius for the same battery charge.

The fog-UAV probabilistic location set covering problem assumes that all fog-UAVs deployed
to service IoT have an ~80% charged battery, and therefore have the majority of their mobility
potential. In reality, this may not be the case, and partial charging may be needed to ensure optimal
IoT service. Future work for fog-UAVs includes a stochastic programming model that considers
charging time, partial charging, and fog-UAV re-distribution among charging stations for future
deployment. Discrete-event simulation can be used to verify the resulting fog-UAV infrastructure.

7.3.5 Blockchain-based integrity enforcement – cost and delay

In chapter 6, we defined a smart contract to streamline IoT-fog mutual authentication, monetiza-
tion and integrity enforcement. The blockchain-based service auditing system is evaluated over a
theoretical malicious rate and audit reaction of fog nodes. However, the cost of the smart contract
functionalities, and in particular the service audits, were not explored in detailed. Since our imple-
mentation is generalized to any smart contract-capable blockchain, implementation costs may vary
across blockchain platforms. Indeed, we recognize the value in evaluating the efficiency and cost of
a live system. This will also allow us to evaluate the system over different audit scheduling policies
to determine the optimal configuration for ensuring fog integrity.

Furthermore, the latency delay from mutual authentication was not explored in detail. Once
again, the largest latency factor in mutual authentication is the communication delay which is
affected by communication interference between IoT, fog, and the blockchain. Though blockchain-
enabled fog nodes can minimize this latency, further exploration is needed with a Proof of Concept
(PoC) implementation.

Isma’s Note: what is the delay improvement when using blockchain-enabled fog nodes, and
can we design a fog infrastructure with bc nodes

7.3.6 Theoretical formulation and simulation

The fog design & dimensioning scheme is formulated to support a high degree of IoT traffic. How-
ever, the optimal designed fog infrastructure solution is not simulated as a ‘live’ system to see to
what degree the full fog infrastructure is used. Future work may include the implementation of
discrete-even simulation over the resulting fog infrastructure. Such a simulation would verify if (1)
the fog infrastructure is sufficient in supporting any volatile IoT environment, and (2) the result-
ing fog infrastructure is overambitious in size, having several sparingly used fog nodes. That is, a
balance is needed between the cost of the fog infrastructure and the percentile of total IoT traffic
that is supported.
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7.3.7 End-to-end fog design & dimensioning

Each of our contributions related to fog design & dimensioning builds upon the previous contri-
bution. On-demand fog node design, dimensioning and rerouting configurations were added onto
an existing static fog infrastructure, and mobile fog-UAVs and UAV recharge stations were added
onto an existing dynamic fog infrastructure. There may exist an optimal design & dimensioning
configuration of static, on-demand and mobile fog nodes that has not been seen due to the layering
of different models. Therefore, there exists an opportunity to combine the separate models into a
master one-shot model. Furthermore, sensitivity analysis over the master model can be done to
gauge the effects of future localized increases in IoT traffic on the resulting fog infrastructure.

7.3.8 Proof of Concept

The largest opportunity, and the purpose of our research, is to evaluate the effectiveness of a real-life
fog infrastructure. A small scale Proof of Concept (PoC) of a fog infrastructure should be evaluated
and analyzed to determine the effectiveness of our approach and whether there are any aspects of
the IoT-fog environment that we have failed to consider. Indeed, the objective of our research is to
facilitate the implementation of a live fog infrastructure. Hence, the construction and evaluation
of a PoC would be the next step in realizing a cooperative IoT-fog-Cloud environment for real-life
smart cities.

7.4 Retrospective

This section provides a retrospective of my time as a Master’s and a PhD student. It details what
I have learned and how my work has evolved throughout my studies.

7.4.1 Modeling

In chapter 3, I was given an initial MILP model, and Column Generation variant, which I modified
slightly. In chapter 4, I extended the work from the previous chapter and continued to use Column
Generation to scale the intractable MILP model. However, though faster, both Column Generation
models created a heuristic solution. That is, the Column Generation solutions were not optimal.
Though I was able to reduce its optimal cost by restricting the viable columns that could be
generated per iteration, it became clear that Column Generation was not fit for the types of MILP
models that were formulated. Indeed, suboptimal results are still results, since they indicate that
a better method may exist.

In chapter 5, I used Benders Decomposition as the decomposition technique, which gave an
equal optimal solution. It was also in this publication that I used pre-computation techniques to
simplify viable constraints and simplify the model. Indeed, this was the first publication in which I
formulated the model from scratch, and had more freedom to adjust the model during development.
By this point, I had become comfortable with model formulations and relaxations.

CPLEX

All models were executed in C++ with IBM CPLEX Optimization Studio. I learned C++ at
the beginning of my studies with the primary objective to write the model simulation codes in
CPLEX. By coding my models, and observing the effects of certain types of constraints, integer
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versus continuous decision variables, and large variable sets on the execution time, I gained a
solid understanding of how the theoretical MILP models translated to coded implementations.
This motivated the pre-computed constraint simplifications in chapter 5, which was both easier to
understand on paper, as well as quicker to execute in code. Certainly, since the eventual objectives
of my formulated large-scale MILP models are to be implemented, great focus was given to making
them easy to understand and hence straightforward to code.

‘Ideal’ configurations

Assumptions and simplifications were essential to containing the scope of the formulated models.
Without them, the focus and objective of each model risks being lost on the reader. Though, at
times these assumptions would create ‘ideal’ circumstances that may not be realistic, they provide
a starting point for the current and future contributions.

In chapter 3, I attempted to model every component of IoT-fog interaction. In doing so, the
scope of the problem became quite large. Indeed, it may have served the contribution better to
separate the components of static fog design & dimensioning, and IoT traffic congestion estimation
into two detailed contributions of their own.

In chapter 5, I did not consider environmental interference or communication loss from a high-
altitude fog-UAV. In other words, ‘ideal’ circumstances were assumed for IoT-UAV communication.
However, this allowed the focus of the manuscript to be on the probabilistic location set covering
of fog-UAVs. Furthermore, this invites for future contributions that focus purely on the reliability
of IoT-UAV communication in different environments.

7.4.2 Simulation

In each of chapters 3, 4 and 5, simulation was used to validate the efficiency of the different models in
terms of execution time, optimal solution cost and optimal fog design. In chapter 3, larger candidate
networks were built by simply scaling the resources of previous iterations. Starting in chapter 4, I
began to add more noise and variability into the initial configurations used for each iteration of the
simulation. This increased the breadth of configurations that the models were compared against,
giving a more accurate view of the efficiency of the relaxed, decomposed or heuristic models against
the exact MILP model.

Up until now, discrete-event simulation has not been used to validate the optimal fog infrastruc-
tures. Such a simulation would help gauge the practical applicability of the proposed methods. In
particular, when dynamic and/or mobile fog nodes are used, discrete-event simulation can be useful
to analyze when dynamic fog nodes are needed, or the charging statuses of mobile fog nodes when
they are deployed. Furthermore, current models have considered a ‘worst-case’ IoT traffic scenario
when modeling the optimal fog infrastructure. Hence, there exists a future opportunity to continue
this work in fog design & dimensioning using different simulation techniques and evaluation metrics
to further validate or update current models.

7.4.3 Blockchain

At the beginning of my Master’s, I knew very little regarding blockchain, cryptography, and zero-
knowledge proofs – topics that became the core of chapter 6. Indeed, enforcing the security and
integrity of the IoT-fog environment is equally as important to my other contributions when con-
sidering their applicability to smart cities. As my last major contribution of this thesis, I had
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become comfortable with how to research and learn new topics, and the learning curve on this last
contribution was significantly lower than that of my first contribution.

7.4.4 Research Skills Development

Overall, since my first contribution in the summer of 2019, I am far more comfortable and confident
with finding supporting research, with identifying opportunities among the state-of-the-art, and
with writing scientific papers. Initially, I relied heavily on the guidance of my supervisors to help
define my research. My first two contributions in particular in chapters 2 and 3 went through
multiple rewrites, updates and revisions with countless hours of support from my supervisors. By
the last two contributions in chapters 5 and 6, I had taken a more self-directed approach, with
minimal direction from my supervisors as I had taken more ownership of my research. With each
contribution, my supervisors entrusted me with greater autonomy, as I had shown to have a clear
vision, and a better grasp of the material. I am grateful for the increasing trust and autonomy my
supervisors gave me throughout my PhD journey, which assisted in my growth as a researcher.

7.4.5 Teaching & Time Management

Throughout the last couple of years, I had the privilege to work as a Teaching Assistant, and later
as a Lecturer. These roles helped me to become comfortable and confident in front of a classroom,
and to become organized and attentive to detail in lesson preparation. These teaching opportunities
translated to my research, as I learned to write concisely and clearly.

However, these teaching roles added to my overall workload, forcing me to learn to manage
my time well between teaching and research. Though this past semester has been hectic and
overwhelming at times, it has also been profoundly rewarding. It has served as an excellent exercise
in prioritization, which will no doubt be helpful in future professional settings.

7.4.6 Problem Solving & Perseverance

None of the contributions of this thesis were straightforward. Embracing more autonomy of my
research also left it to me to find my research direction and come up with novel solutions to my
problems. Though some of these took me a few days to figure out, others would take me several
months of refinement to properly define. For example, chapter 5 went through several iterations
before I was satisfied with the problem statement and the model formulation. However, this was
excellent in developing my problem solving skills, and taught me perseverance. Indeed, when I
found myself at an impasse in my research, I learned to take some time away from it, then come
back to the problem from a different angle. This technique was instrumental in helping me overcome
hurdles and evenutally complete my thesis.

7.4.7 Future Outlook

I view the collection of publications in this thesis as merely a starting point for optimal fog design
& dimensioning for IoT support in smart cities. As discussed in chapter 7.3, many opportunities
exist as future work to continue this line of research.

It is clear to me that, though there still remains much work in the theoretical modelling of the
fog infrastructure, the natural next step towards real-life implementations is a small-scale Proof of
Concept (PoC). Such a PoC would gather new insights into the optimal design & dimensioning of
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a live fog infrastructure. Furthermore, continued research with a PoC could potentially lead to live
large-scale implementations in smart cities.
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