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Résumé

Dans des régions avec beaucoup d’électricité renouvelable, comme le Québec,
une augmentation du nombre de Véhicules Électriques (VE) peut réduire les gaz à
effet de serre. Par contre, l’autonomie réduite des VE et la présence limitée d’infra-
structure publique pour recharger les véhicules peuvent contribuer à un phénomène
nommé anxiété de l’autonomie, où les usagers n’achètent pas des VE par peur qu’ils
tombent en panne. On peut alors planifier l’emplacement de l’infrastructure pu-
blique de recharge de manière stratégique pour combattre cet effet, menant alors à
un taux d’adoption plus élevé pour les VE.

En utilisant des modèles de choix discret, nous incorporons des modèles écono-
métriques de demande avancés capturant les préférences hétérogènes des usagers
à l’intérieur de l’optimisation. En particulier, comme nous le démontrerons, ceci
permet l’inclusion de nouveaux facteurs importants, tels qu’une disponibilité de
la recharge à domicile et des effets de distance plus granulaire. Par contre, la mé-
thodologie existante pour ce processus crée un modèle de programmation linéaire
mixte en nombres entiers qui ne peut pas être résolue, même pour des instances de
taille modeste. Nous développons alors une reformulation efficace en problème de
couverture maximum qui, comme nous le démontrerons, permet une amélioration
de plusieurs ordres de magnitude pour le temps de calcul.

Bien que cette reformulation dans un problème de couverture maximum amé-
liore grandement la capacité à résoudre le modèle, celui-ci demeure difficile à ré-
soudre pour des problèmes de grandes tailles, nécessitant des heuristiques pour
obtenir des solutions de haute qualité. Nous développons alors deux méthodes de
décomposition de Benders spécialisées pour cette application. La première est une
méthode de décomposition de Benders accélérée, qui se spécialise à réduire l’écart
d’optimalité et à la résolution de problèmes de petite taille ou de taille modeste. La
deuxième approche rajoute un branchement local à la méthode de décomposition
de Benders accélérée, qui sacrifie de l’efficacité lors de la résolution de problèmes

ii



de plus petite taille pour une capacité augmentée afin d’obtenir des solutions réa-
lisables de haute qualité.

Finalement, nous présentons une méthode pour dériver des valeurs de para-
mètres autrement difficiles à obtenir pour le modèle de choix discrets dans le mo-
dèle d’optimisation. Ces paramètres dictent les effets de l’infrastructure publique
de recharge sur l’adoption des VE. Pour ce processus, nous regardons les facteurs
qui encouragent les usagers courants des VE à utiliser l’infrastructure existante.
De manière plus précise, nous utilisons des données de recharge réelles de la ville
de Montréal (Québec) pour estimer les impacts des caractéristiques des stations,
tels que la distance des usagers, le nombre de bornes de recharge, et les instal-
lations à proximité. Différents types d’infrastructure sont considérés, de manière
parallèle avec des modèles de choix discrets qui peuvent tenir compte de plusieurs
observations pour chaque individu.

Les contributions de cette thèse sont plus générales que simplement l’adoption
de VE, étant applicable, par exemple, au problème de capture maximum, au pro-
blème de couverture maximum à multiples périodes, et à la prédiction de la station
de recharge choisie par les conducteurs de VE.

Mots clés : Stations de recharge de véhicules électriques, modèles de choix
discrets, modèle de couverture maximum, décomposition de Benders, préférences
révélées
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Abstract

In areas with large amounts of clean renewable electricity, such as Quebec,
an increase to the number of electric vehicles (EVs) can reduce greenhouse gas
emissions. However, the reduced range of EVs and the limited public charging
infrastructure can contribute to a phenomenon known as range anxiety, where
users do not purchase EVs out of concern they run out of charge while driving. We
can strategically optimise the placement of public EV charging infrastructure to
combat this effect, thus leading to increased EV adoption.

By utilising discrete choice models, we incorporate advanced econometric de-
mand models capturing heterogeneous user preferences within the optimisation
framework. In particular, as we demonstrate, this allows for the inclusion of new,
important attributes, such as a more granular home charging availability and a con-
tinuous degradation of quality based on the distance. However, existing method-
ologies for this optimisation framework result in a mixed-integer linear program
which cannot be solved for even moderately sized instances. We thus develop an
efficient reformulation into a maximum covering location problem which, as we
show experimentally, allows for multiple orders of magnitude of improved solving
time.

While the reformulation into a maximum covering location problem greatly
improves the solving capabilities for the model, it remains intractable for large-
scale instances, relying on heuristics to obtain high-quality solutions. As such, we
then develop two specialised Benders decomposition methods for this application.
The first is an accelerated branch-and-Benders-cut method, which excels at solving
small or medium-scale instances and at decreasing the optimality gap. The second
approach incorporates a local branching scheme to the accelerated branch-and-
Benders-cut method, which sacrifices some efficiency in solving smaller instances
for an increased ability to obtain high-quality feasible solutions.

Finally, we discuss a method for deriving difficult-to-obtain parameter values of
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the discrete choice model in the optimisation framework. These parameter values
dictate the effects of the public charging infrastructure on EV adoption and, as
such, play a crucial role in the optimisation model. For this process, we investigate
the attributes that encourage current EV owners to utilise existing infrastructure.
More specifically, we use real charging session data from the city of Montreal (Que-
bec) to determine the impacts of station characteristics such as the distance to the
users, the number of outlets, and the nearby amenities. Different types of charg-
ing infrastructure are considered alongside discrete choice models which take into
account multiple observations from individual users.

The contributions of this thesis lie more broadly than simply EV adoption, being
applicable to, e.g., the maximum capture problem, the multi-period maximum
covering location problem, and the prediction of the charging station selected by
EV drivers.

Keywords: Electric vehicle charging stations, discrete choice models, maxi-
mum covering location problem, Benders decomposition, revealed preferences

v



Contents

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 EV Charging . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1.2 EV Charging Station Network Design . . . . . . . . . . . . . 6

2.2 Modelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 Demand Modelling . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.2 Bilevel Optimisation . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Maximum Covering Location Problem . . . . . . . . . . . . 15

2.3 Solution Methods for the MCLP . . . . . . . . . . . . . . . . . . . . 17
2.3.1 Exact Methods . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Relation to Our Work . . . . . . . . . . . . . . . . . . . . . . . . . 20

3 Optimising Electric Vehicle Charging Station Placement using
Advanced Discrete Choice Models . . . . . . . . . . . . . . . . . . . 22
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3 Problem Formulation and Modelling . . . . . . . . . . . . . . . . . 32

3.3.1 Decision Maker . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vi



3.3.3 Simulation-based Model . . . . . . . . . . . . . . . . . . . . 34
3.3.4 Single-Level Model . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Maximum Covering Model . . . . . . . . . . . . . . . . . . . . . . . 37
3.5 Heuristic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.5.1 Rolling Horizon Heuristic . . . . . . . . . . . . . . . . . . . . 40
3.5.2 Greedy Heuristics . . . . . . . . . . . . . . . . . . . . . . . . 40
3.5.3 GRASP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.6 Computational Results . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.6.1 Test Environment . . . . . . . . . . . . . . . . . . . . . . . . 44
3.6.2 Comparison of the Single-Level and Maximum Covering Models 46
3.6.3 Comparison of the Maximum Covering and GF Models . . . 46
3.6.4 Limitations of the Maximum Covering Model . . . . . . . . 51
3.6.5 Comparing Heuristics . . . . . . . . . . . . . . . . . . . . . . 52

3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4 Accelerated Benders Decomposition and Local Branching for
Dynamic Maximum Covering Location Problems . . . . . . . . . . 59
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.3 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.4 Benders Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 Single Cut Benders Decomposition . . . . . . . . . . . . . . 67
4.4.2 Improvements to the Single-Cut Method . . . . . . . . . . . 70

4.5 Local Branching for Branch-And-Benders-Cut . . . . . . . . . . . . 79
4.5.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.5.2 An Effective Formulation for a Tailored Distance Metric . . 82
4.5.3 Branching . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Computational Experiments . . . . . . . . . . . . . . . . . . . . . . 89
4.6.1 Application: Electric Vehicle Charging Station Placement . . 91
4.6.2 Comparison of Methodologies . . . . . . . . . . . . . . . . . 93
4.6.3 Comparison of Acceleration Techniques . . . . . . . . . . . . 97
4.6.4 Further Results: Local Branching Restricted Subproblem So-

lution Method . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



4.6.5 Further Results: Local Branching Subdomain Separation Scheme102
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5 What makes for a good public electric vehicle charging station?
A revealed preference study . . . . . . . . . . . . . . . . . . . . . . . 108
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
5.2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

5.2.1 Charging Behaviour and Requirements . . . . . . . . . . . . 114
5.2.2 Predicting Charging Station Selection . . . . . . . . . . . . . 115
5.2.3 Relation to Our Work . . . . . . . . . . . . . . . . . . . . . 118

5.3 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.1 Data Description . . . . . . . . . . . . . . . . . . . . . . . . 119
5.3.2 Data Processing . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.3.3 Attribute Encoding . . . . . . . . . . . . . . . . . . . . . . . 129

5.4 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.1 Model Specification . . . . . . . . . . . . . . . . . . . . . . . 135
5.4.2 Estimation and Validation . . . . . . . . . . . . . . . . . . . 137

5.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.1 Level 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
5.5.2 Level 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139

5.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

A Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
A.1 First Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

A.1.1 Bilevel Optimisation Model . . . . . . . . . . . . . . . . . . 173
A.1.2 Parameter Values . . . . . . . . . . . . . . . . . . . . . . . . 178
A.1.3 Growth Function model . . . . . . . . . . . . . . . . . . . . 184

A.2 Second Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190
A.2.1 Example of Benders Cuts . . . . . . . . . . . . . . . . . . . 190
A.2.2 Links to Submodular Optimisation . . . . . . . . . . . . . . 191
A.2.3 Additional Computational Results . . . . . . . . . . . . . . . 194

viii



A.3 Third Article . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204
A.3.1 Data Description, Shared Members . . . . . . . . . . . . . . 204
A.3.2 Distribution of Attributes . . . . . . . . . . . . . . . . . . . 206
A.3.3 Additional Estimation Results . . . . . . . . . . . . . . . . . 209

ix



List of Tables

2.1 Charging levels and characteristics . . . . . . . . . . . . . . . . . . 6

3.1 Summary of key characteristics of EV charging station location models. 29
3.2 Parameter values for the generated instances. . . . . . . . . . . . . 45
3.3 Comparison of MC and SL models . . . . . . . . . . . . . . . . . . 47
3.4 Number of EVs from the solutions of the GF and MC models. . . . 49
3.5 Number of EVs from the solutions of the GF and MC models. . . . 50
3.6 Average performance of CPLEX applied to the MC model . . . . . 52
3.7 Comparison of solving times for heuristic methods across all datasets 54
3.8 Comparison of gaps to the best known solution for heuristic methods 55

4.1 Articles proposing solution methods for the static or dynamic MCLP. 65
4.2 Notable parameter values for the generated instances . . . . . . . . 92
4.3 Average performance details without warmstart . . . . . . . . . . . 96
4.4 Average performance details with warmstart . . . . . . . . . . . . . 96
4.5 Average performance details in Medium instances . . . . . . . . . . 100
4.6 Comparison of restricted subproblem solution methods . . . . . . . 102
4.7 Average performance details of feasible space reduction methods . . 104

5.1 Maximum value of attributes for level 2 and level 3 charging sessions.135
5.2 Parameter ratio values across models and folds for level 2 charging . 140
5.3 Average parameter ratios for level 2 charging . . . . . . . . . . . . . 141
5.4 Performance indicators for level 2 charging and the MNL model,

estimation sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.5 Performance indicators for level 2 charging and the MXL model,

estimation sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
5.6 Performance indicators for level 2 charging, validation sets. . . . . . 142
5.7 Parameter ratio values across models and folds for level 3 charging . 143

x



5.8 Performance indicators for level 3 charging and the MNL model,
estimation sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.9 Performance indicators for level 3 charging and the MXL model,
estimation sets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

5.10 Performance indicators for level 3 charging, validation sets. . . . . . 144
5.11 Average parameter ratios for level 3 charging . . . . . . . . . . . . . 145

A.1 Parameter values for the generated instances . . . . . . . . . . . . 180
A.2 Values of parameter δ4i . . . . . . . . . . . . . . . . . . . . . . . . . 184
A.3 Growth Function parameter values . . . . . . . . . . . . . . . . . . 187
A.4 Average performance details without warmstart . . . . . . . . . . . 194
A.5 Average performance details with warmstart . . . . . . . . . . . . . 195
A.6 Average performance details in Medium instances . . . . . . . . . . 198
A.7 Average performance details in Medium instances (continued) . . . 199
A.8 Average performance details for different feasible space reduction

methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
A.9 Distribution of the number of charging stations with the utility func-

tion thresholds for level 2 charging. . . . . . . . . . . . . . . . . . . 207
A.10 Distribution of the number of charging stations with the utility func-

tion thresholds for level 3 charging. . . . . . . . . . . . . . . . . . . 207
A.11 Parameter values for level 2 charging with the MNL model, and

various amenity thresholds . . . . . . . . . . . . . . . . . . . . . . . 209
A.12 Parameter values for level 2 charging with the MNL model, and

various amenity thresholds (continued) . . . . . . . . . . . . . . . . 210
A.13 Performance indicators for level 2 charging with the MNL model,

and various amenity thresholds . . . . . . . . . . . . . . . . . . . . 210
A.14 Parameter values for level 2 charging with the MNL model, and

various utility function thresholds . . . . . . . . . . . . . . . . . . . 211
A.15 Parameter values for level 2 charging with the MNL model, and

various utility function thresholds (continued) . . . . . . . . . . . . 212
A.16 Performance indicators for level 2 charging with the MNL model,

and various utility function thresholds . . . . . . . . . . . . . . . . 212

xi



A.17 Parameter values for level 2 charging with the MNL model, and
various sample sizes . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

A.18 Parameter values for level 2 charging with the MNL model, and
various sample sizes (continued) . . . . . . . . . . . . . . . . . . . . 214

A.19 Performance indicators for level 2 charging with the MNL model,
and various sample sizes . . . . . . . . . . . . . . . . . . . . . . . . 214

A.20 Parameter values for level 3 charging with the MNL model, and
various amenity thresholds . . . . . . . . . . . . . . . . . . . . . . . 215

A.21 Parameter values for level 3 charging with the MNL model, and
various amenity thresholds (continued) . . . . . . . . . . . . . . . . 216

A.22 Performance indicators for level 3 charging with the MNL model,
and various amenity thresholds . . . . . . . . . . . . . . . . . . . . 216

A.23 Parameter values for level 3 charging with the MNL model, and
various utility function thresholds . . . . . . . . . . . . . . . . . . . 217

A.24 Parameter values for level 3 charging with the MNL model, and
various utility function thresholds (continued) . . . . . . . . . . . . 218

A.25 Performance indicators for level 3 charging with the MNL model,
and various utility function thresholds . . . . . . . . . . . . . . . . 218

xii



List of Figures

3.1 Illustration of decision structure . . . . . . . . . . . . . . . . . . . . 34
3.2 Utilities for user class i, under scenario r, at period t. . . . . . . . . 38
3.3 Trois-Rivières network . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.4 Percentage of population in each zone which purchases an EV by the

end of the simulation when examining the distance to the charging
station. GF model on left side, MC model on right side. . . . . . . 48

3.5 Percentage of Population Covered by Home Charging Access. . . . . 50
3.6 Percentage of population in each zone which purchases an EV by the

end of the simulation when examining the home charging access. GF
model on left side, MC model on right side. . . . . . . . . . . . . . 51

4.1 Performance profiles showing the percentage of Simple, Distance,
and HomeCharging instances solved by each method as a function
of time, combining both with and without the warmstart solution. . 95

4.2 Performance profiles showing the number of Medium instances solved
(across all values of S) by each method as a function of time. . . . . 101

5.1 Number of total members, by date and account type. . . . . . . . . 124
5.2 Number of sessions, by date and account type. The narrow red lines

indicate the excluded period for the COVID 19 pandemic. . . . . . 124
5.3 Distribution of duration of charging, by level of charging outlet. . . 125
5.4 Distribution of energy from charging, by level of charger. . . . . . . 125
5.5 Distribution of starting and ending state of charge at level 3 chargers.126
5.6 Distribution of average number of sessions per month, private vehicles.127
5.7 Distribution of average energy charged per month, private vehicles. 127
5.8 Distribution of average monthly time spent charging, private vehicles.128

xiii



5.9 Distribution of average number of different stations per month, pri-
vate vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5.10 Public charging stations within the Island of Montreal. . . . . . . . 130

A.1 Growth Function Example . . . . . . . . . . . . . . . . . . . . . . . 189
A.2 A simple example of facility and user coverage . . . . . . . . . . . . 190
A.3 Performance profiles for Simple instances . . . . . . . . . . . . . . . 195
A.4 Performance profiles for Distance instances . . . . . . . . . . . . . . 196
A.5 Performance profiles for HomeCharging . . . . . . . . . . . . . . . . 196
A.6 Performance profiles showing the number of Medium instances with

S = 3.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
A.7 Performance profiles showing the number of Medium instances with

S = 3.75 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
A.8 Performance profiles showing the number of Medium instances with

S = 4.25 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
A.9 Evolution of subproblem solution time . . . . . . . . . . . . . . . . 202
A.10 Percentage of restricted subproblems solved in the Price dataset . . 203
A.11 Percentage of restricted subproblems solved in the LongSpan dataset 203
A.12 Distribution of average number of sessions per month, shared vehicles.204
A.13 Distribution of average energy charged per month, shared vehicles. . 205
A.14 Distribution of average monthly time spent charging, shared vehicles. 205
A.15 Distribution of average number of different stations per month, shared

vehicles. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
A.16 Distance from the user’s home to the all available charging stations. 206
A.17 Distance from the user’s home to the selected charging station. . . . 206
A.18 Density of amenities at different distance thresholds, level 2. . . . . 208
A.19 Density of amenities at different distance thresholds, level 3. . . . . 208

xiv



List of Abbreviations
BDS Benders Dual Subproblem

BEV Battery Electric Vehicle

BPS Benders Primal Subproblem

CIRRELT
Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la
Logistique, et le Transport

EV Electric Vehicle

GEV Generalised Extreme Value

GF Growth Function

GIS Geographical Information System

GRASP Greedy Randomised Adaptive Search Procedure

HEV Hybrid Electric Vehicle

ICEV Internal Combustion Engine Vehicle

km Kilometre

kW Kilowatt

kWh Kilowatt-hour

LP Linear Programming

MC Maximum Covering

MCLP Maximum Covering Location Problem

MCPRU Maximum Capture Problem with Random Utilities

MILP Mixed-Integer Linear Program

MNL Multinomial Logit

MP Main Problem

xv



MXL Mixed Logit

NSERC National Sciences and Engineering Research Council of Canada

PHEV Plug-in Hybrid Electric Vehicle

RFID Radio Frequency Identification

RP Revealed Preference

RUM Random Utility Maximisation

SL Single Level

SP Stated Preference

VE Véhicule électrique

xvi



Acknowledgements

J’aimerais premièrement offrir un remerciement solennel pour Bernard Gen-
dron. C’est grâce à lui que j’ai entendu parler de la recherche opérationnelle, et
sa joie de vivre et d’enseigner m’ont convaincu de faire un doctorat avec lui. Mal-
heureusement, il nous a quittés trop tôt, et n’a jamais eu la chance de voir la
complétude du projet. J’espère qu’il serait fier du progrès qu’on a fait.

I am also extremely grateful to my supervisors, Margarida Carvalho and Emma
Frejinger. They have both been an incredible support and superb mentors through-
out the process. The help and expertise they have given is immeasurable, from
giving feedback on my first literature review (which was way too long, as usual),
to staying late in one of our meetings to help me get CPLEX do what I want,
to sitting down with me to translate statistics terms in Biogeme results, just to
name a very few. This journey would have been impossible without them, and I
am grateful beyond words to both of them.

I would also extend thanks to the amazing team for our project with Hydro-
Québec. This includes, of course, our wonderful partners at Hydro-Québec and
IREQ (Jean-Luc Dupre, Ribal Atallah, and Amira Dems) who have lent their in-
credible knowledge and vast experience about electric vehicle charging, the charg-
ing network, and network design. The insight and feedback from other members of
the team have also helped shaped this work today, including Miguel Anjos, Nurit
Oliker, Mahsa Moghaddass, Pierre-Luc Parent, Ismail Sevim, and Nagisa Sugishita.

I would also like to thank the following institutions for their financial support
throughout the doctorate: Hydro-Québec, the Département d’Informatique et de
Recherche Opérationelle (DIRO, Université de Montréal), the Centre Interuniver-
sitaire de Recherche sur les Réseaux d’Entreprise, la Logistique, et le Transport
(CIRRELT), the National Sciences and Engineering Research Council of Canada
(NSERC), and the FRQ-IVADO Research Chair in Data Science for Combinatorial
Game Theory.

xvii



Finally, I would also like to thank my friends and family who supported me
throughout the doctorate process (while only occasionally asking when I would be
done).

xviii



1 Introduction

Drastic reductions of CO2 emissions are necessary to meet global goals. Among
the different sectors of human activity, transportation accounted for 23% of CO2

emissions worldwide in 2021 (International Energy Agency 2023), and 28% of the
emissions in Canada in 2023 (Environment and Climate Change Canada 2023).
In regions where most of the electricity is generated by nuclear power plants or
renewable sources, which includes Quebec, increasing the number of electric vehicles
(EVs) compared to Internal Combustion Engine Vehicles (ICEVs) can reduce these
emissions (Woo et al. 2017, Axsen et al. 2015b).

To convince drivers that EVs are viable primary vehicles, sufficient charging
opportunities must exist to combat the so-called range anxiety of users. For current
EV owners, their charging needs are largely satisfied by home charging (see, e.g.
Figenbaum and Nordbakke 2019, Tal et al. 2020). But this solution is not viable
for all users, as those who make long-distance trips or who cannot install home
chargers (e.g. those living in apartment buildings) may require additional public
charging infrastructure. As this infrastructure is expensive, only a limited number
of facilities may be constructed. It is then reasonable to ask which locations should
be selected to maximise the adoption of EVs. In particular, this is an open question
and ongoing process for our industrial partners, looking to construct public charging
infrastructure within the province of Quebec.

There are multiple possible ways to view the charging station location problem.
From a geographical standpoint, we can consider either intracity or intercity travel.
While both are critical components of the public charging network, their use is
quite different. For most users, the public charging infrastructure within the city
is more a matter of convenience and a safety net, with users charging when already
parked for an activity (Hardman et al. 2018, Figenbaum and Nordbakke 2019, Tal
et al. 2020). However, this does not apply to users who cannot recharge at home,
and are thus reliant on the public network. In the intercity context, the public
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charging network is a necessity, enabling long-distance trips that would otherwise
be impossible.

From a temporal standpoint, we can consider a tactical or strategic point of
view. The tactical planning is geared towards improving the service quality for
existing users, such as by increasing the capacity of heavily used stations or ensur-
ing that charging stations can cover the demand for electricity (e.g. Parent et al.
2023). In the long-term context, the approach is geared towards improving the
overall structure of the charging network, such as improving the regional availabil-
ity of charging stations or increasing the portion of users who pass by charging
infrastructure (e.g. Zhang et al. 2017a). From the perspective of a charging net-
work operator, it also allows for the inclusion of factors such as seasonal effects,
planned infrastructure from other network operators, and population shifts.

In our work, we consider the strategic and intracity context. More specifically,
we assume we are given a list of both existing charging stations and potential
locations for new charging stations within a city over a multi-year timespan. Each
charging station may feature multiple connectors for recharging vehicles, which
we call charging outlets (or chargers). Our goal is then to determine the optimal
placement of these charging outlets to maximise the adoption of EVs.

Throughout this work, we use ‘EV’ as an umbrella term, which includes any
vehicle that features a battery rechargeable via external connection to the power
grid. Two subcategories exist within this context:

Plug-in Hybrid Electric Vehicle (PHEV): These vehicles feature both an in-
ternal combustion engine and a battery which can be recharged via a charging
connector. Typically, they have a smaller battery capacity, and may not be
able to take advantage of faster charging options.

Battery Electric Vehicle (BEV): These vehicles do not contain an internal
combustion engine at all, relying solely on a battery. To compensate, they
usually have much larger battery capacities and can take advantage of the
fastest charging options.

In addition to these, some works on EVs also include Hybrid Electric Vehicles (HEVs,
see Rezvani et al. 2015). However, while these can be propelled via the internal
battery, this battery can only be recharged while driving the vehicle (such as by
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braking). As such, they are effectively more fuel-efficient ICEVs, and are not af-
fected by the placement of public charging infrastructure.

In the following we briefly outline the structure of the thesis and its contribu-
tions: In Chapter 2, we present background information, providing foundational
insights to the readers. The following three chapters correspond to articles, each
of which address a different aspect of the EV network design model. In Chapter 3,
we formulate the EV network design model, based on a framework proposed in
Pacheco Paneque et al. (2021). As the standard version of this framework demon-
strates poor performance, we describe an efficient reformulation into a maximum
covering location problem. This allows for tailored heuristic methods that can
obtain high-quality feasible solutions. However, two particularities of this model
warrant more detail: i) our exact method is not well suited for solving large-scale
instances, and ii) the model requires specific parameters which reflect the impact
of each candidate charging station to EV adoption. Chapter 4 assists with the
first problem, and provides a more efficient solution method. More specifically, we
develop specialised Benders decomposition approaches, tailored for the multi-year
context. From there, Chapter 5 addresses the second problem, and aids in finding
the required parameters for the optimisation framework. For this, we assume that
a charging station which is better for users at the time of charging would result
in a higher adoption of EVs. As a consequence, we use discrete choice models to
predict the EV charging station selected by users, based only on readily available
characteristics of charging stations and users. Finally, in Chapter 6, we conclude
the thesis by discussing possible avenues of future research.
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2 Background

In this chapter, we complement the literature reviews of Chapters 3, 4, and 5
with a discussion of selected topics. To avoid repetition, topics are abridged if they
are discussed in the aforementioned chapters.

2.1 Application

In this section, we provide a background related to the optimal location of EV
charging stations. This begins in Section 2.1.1 with some information about the
charging requirements of vehicles and the different types of charging infrastruc-
ture. Then, in Section 2.1.2, we discuss existing methods for locating EV charging
stations.

2.1.1 EV Charging

Analogous to the gas tank and fuel economy of ICEVs, each type of EV has
a battery size (measured in kWh) and electricity consumption rate (measured in
kWh/km). Combined, these factors determine the travel range of the EV and, con-
sequently, the distance of trips for which public charging infrastructure would be
required. In general, both PHEVs and BEVs have energy consumption rates around
20 kWh per 100 km, but PHEV feature smaller batteries around 10 kWh to 40 kWh,
while (modern) BEVs feature batteries around 60 kWh to 100 kWh (Roulons Élec-
trique 2023). This consumption rate translates to approximately 5 km of electric
range per kWh of the vehicle, which is consistent with the conversion in the litera-
ture (van den Hoed et al. 2013, Hardman et al. 2018). As such, PHEVs can travel
around 50 km to 200 km in electric mode, while BEVs have a range of around 300
km to 500 km. However, it is well known that the electric range of EVs is severely
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reduced by cold weather, and can drop to 60% of its stated level (Roulons Élec-
trique 2023). As such, trips as low as 30 km for PHEVs and 180 km for BEVs could
constitute “long-distance trips” for which public charging would be necessary.

As for the equipment used for charging, the charging infrastructure is usually
categorised into three levels depending on the power. In Table 2.1, we present
characteristics about the different charging levels (Association des véhicules élec-
triques du Québec 2024, Roulons Électrique 2023, Circuit Électrique 2023c, 2024,
Hardman et al. 2018). We note that the power output can vary within the same
charging level (with, notably, some level 3 charging stations reaching 350 kW, Cir-
cuit Électrique 2023c), and the values presented here are the most common for
Quebec. In other words, these values are representative of the chargers that would
be added to the public charging infrastructure, rather than what may be available
more generally.

The charging behaviour of users is highly user-specific, but we note here some
general trends which extend outside of Quebec, and that are useful for determining
the importance and modelling the use of public charging infrastructure (van den
Hoed et al. 2013, Axsen et al. 2015b, Tal et al. 2018, Figenbaum and Nordbakke
2019, Lee et al. 2020, Tal et al. 2020, Visaria et al. 2022, Anderson et al. 2023):

— The vast majority of EV owners (82% to 93%) have access to level 1 or level
2 chargers at home, and do most of their charging there.

— Some users (19% to 40%) additionally have access to workplace charging,
which can be the main recharging source for those without home charging.

— The average number of daily charging sessions per user (at all locations)
ranges from 0.71 to 1.47.

— Current usage of public charging infrastructure is overall low (for many users,
less than once a month), though highly variable by individuals and by area.

— When using public charging, users prefer locations with activities or ameni-
ties, such as shopping facilities, supermarkets, or sports facilities.

We have discussed what kind of charging infrastructure can be installed, as
well as where it might be used. We can now examine the current methods for
placing this public charging infrastructure, thus creating a network of stations for
EV owners to use.
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Level 1 Level 2 Level 3
Power output (kW) 1 7.2 50-100

Range added per hour (km) 6 40 240-400
Location Home, Work Home, Work, Public Public

Typical charging session duration 8 hours or more 2 to 3 hours 25 to 30 minutes

Table 2.1 – Charging levels and characteristics

2.1.2 EV Charging Station Network Design

EV charging station network design problems –though they all aim to de-
termine the optimal location for charging infrastructure – can be categorised by
multiple interconnected facets, centered around the demand assumptions that are
used (Kchaou-Boujelben 2021, Metais et al. 2022). In the node-based approach, the
transportation network is composed of a series of nodes, a subset of which contain
candidate charging station locations. Each node then generates demand for EV
charging, which must be supplied by a nearby charging station node. This frame-
work closely follows the general facility location problem, and thus lends itself well
to many classic extensions. Examples include the set covering (minimising the cost
for satisfying the demand of users, e.g. Wang and Lin 2009), p-median (minimise
the median distance between users and charging stations, e.g. Gavranović et al.
2014), and maximum covering models (maximising the demand that can be satis-
fied given a limited budget for charging stations, e.g. Frade et al. 2011). Typically,
these models do not consider individual drivers or paths and, as such, are best
suited in the intracity environment, where daily travel typically falls well below the
EV range.

In the path-based approach, users are travelling between a series of origin-
destination pairs, the paths for which pass by candidate charging station locations.
The charging stations are then selected to maximise the flow which passes by the
stations, referred to either as Flow Capturing Location Model or Flow Interception
Location Model (Hodgson 1990, Shukla et al. 2011). The Flow Refueling Location
Model extension of Kuby and Lim (2005) can then require that multiple charging
stations be necessary for long trips. Due to the high number of OD pairs (or arcs,
in the case of the arc-cover reformulation of Capar et al. 2013), this approach is not
well suited for the intracity case. As such, it is typically used for intercity travel.
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While the node-based approach and the path-based approach are most common,
other approaches are also used. Most notably, the works of Anjos et al. (2020)
and Sun et al. (2020) combine the node-based and the path-based approaches
for intracity and intercity travel respectively. Additionally, while more commonly
used for electric taxis or buses rather than private vehicles, the activity-based
approach considers the daily travel pattern of users and places charging stations
near their series of destinations (see, e.g. Jung et al. 2014, Asamer et al. 2016). This
highly user-focused approach allows for more detailed consideration of charging
level and charging duration, at the cost of greatly increased complexity. Due to
this complexity and the high data requirements, this approach is best suited for
the intracity case.

In general, the demand is assumed to be constant, an exogenous parameter
for the models. In other words, the number of EVs (in node-based models) or
the traffic flow (in path-based models) are not dependent on the charging station
infrastructure, with two exceptions. In Zhang et al. (2017a), the traffic flow in
a path in a given year is a function of the flow in the previous year, the natural
EV market share growth, the flow coverage in the path in the previous year, and
the overall coverage of all paths in the previous year. In Anjos et al. (2020), the
number of EVs in each area is assumed to increase following a piecewise linear
growth function, but this growth is limited by the capacity of the charging network
in that area.

To include more complex demand patterns, where the number of EVs can evolve
based on the charging network, we must first determine the relationship between
these two. For our purposes, we assume that there is a positive correlation between
the beneficial characteristics of charging stations (distance to users, amenities, etc.)
and the number of EVs. As such, we can examine the current methods for evaluat-
ing demand in the EV charging context, where users must decide which available
charging stations they would use.
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2.2 Modelling

To translate the problem of locating EV charging stations into a mathematical
model, we rely on many different fields. In Section 2.2.1, we discuss the modeling
of demand for charging stations, with a focus on discrete choice models (McFadden
1974). Incorporating the discrete choice models within our optimisation model
leads to a bilevel programming framework, which we describe in Section 2.2.2. As
we show in the first article (Chapter 3), the bilevel model can be reformulated into
a variant of the maximum covering location problem. Both the original formulation
and some variants are presented in Section 2.2.3.

2.2.1 Demand Modelling

To predict the probability of an EV owner selecting a given station, there are
two fields of research we can explore. The first of these is econometrics, and in
particular discrete choice modelling, which assumes a fixed utility structure be-
tween selected characteristics (such as the distance between users and the charging
station). This results in a highly interpretable model, which can easily be extended
to out-of-distribution cases. By contrast, in the second field of research – machine
learning –, techniques such as deep learning can involve highly nonlinear models,
which can reach higher predictive power at the cost of reduced interpretability.
A discussion of these techniques and their strengths are presented in, e.g. Hil-
lel (2020) and Hillel et al. (2021). However, in our application, interpretability
and out-of-distribution generalisation are crucial, as results must be extended to
locations which do not yet exist. Additionally, a framework proposed in Pacheco
Paneque et al. (2021) provides a method for incorporating advanced discrete choice
models directly within the optimisation model, allowing for complex demand pat-
terns. This makes discrete choice models the natural option for our work. For
more general discussions about using machine learning for combinatorial problems
or EV demand modelling, we refer to the reviews of Bengio et al. (2021) and Deb
(2021). There has also been recent work to integrate machine learning and discrete
choice modelling together, which leverages the predictive power of the former while
maintaining the interpretability of the latter (Sifringer et al. 2020).

Within the discrete choice modeling, our work considers additive Random Util-
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ity Maximisation (RUM) models, which we describe below. However, specific ap-
plications of discrete choice modelling to EV charging demand is analysed in detail
in Chapter 5. As such, to avoid repetition, we limit the current discussion to the
general context and to the models which will be used in Chapter 5.

The models and procedures described here are based on Train (2002). In RUM
models, a user i in a set N must select one alternative j from among a set M

based on the attributes k = 1, . . . , K. We note that the term factor is sometimes
used for an attribute in econometrics, while feature is prevalent in the machine
learning community (see, e.g. Train 2002, Hillel et al. 2021, Bengio et al. 2021).
Each alternative is assumed to have a utility function uij, reflecting the value of
alternative j for user i, which combines observable attributes known by the modeller
and unobservable attributes which are known only to the user. More specifically,
the utility function can be given by

uij(βij, xij) = Vij (βij, xij) + εij, i ∈ N, j ∈ M

where βij (respectively, xij) is a K-dimensional vector of parameters (respectively,
attribute values) for observable attributes, Vij is a function of βij and xij, and εij

is an error term to account for the unobservable attributes. User i observes all
attributes, and is assumed to choose the alternative which maximises their utility.
To predict this choice, the modeller defines the functions Vij (xij) based on the
application, and selects appropriate distributions for the error terms. The predicted
probability that a user i chooses alternative j given the vector of attributes xij is
then the probability that it is associated with the highest utility, that is,

Pij(βij, xij) = Prob (Vij (βij, xij) + εij > Vij′ (βij, xij′) + εij′ , j′ ̸= j ∈ M) .

We note that here, and in what follows, we have opted to explicitly write out
βij, uij(βij, xij) and Pij(βij, xij) rather than the more common shorthand of β, uij, Pij.
This is to emphasise the dependence on the user i, both in βij itself as well as in
the calculation of uij(βij, xij) and Pij(βij, xij) via the vectors βij and xij.

In the standard multinomial logit (MNL) specification, we have that: i) the
function Vij (β, xij) is linear in the parameters β, ii) the parameters β are inde-
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pendent of the user i, and iii) the error terms εij are independent and identically
extreme-value distributed across alternatives and users. In other words, the utility
function is given by

uij(β, xij) =
K∑

k=1
βkxijk + εij, i ∈ N, j ∈ M,

where βk ∈ R is the parameter value for attribute k. Under these assumptions,
for a given vector of parameter values β and vector of attribute values xij, the
resulting probability for selecting alternative j is then given by

Pij(β, xij) =
exp

(∑K
k=1 βkxijk

)
∑

j′∈M exp
(∑K

k=1 βkxij′k

) . (2.1)

For a set of vectors xij, i ∈ N , the parameters βk can then be estimated efficiently
by maximising the log-likelihood function

LL(β) =
∑
i∈N

∑
j∈M

yij ln (Pij(β, xij)), (2.2)

were yij = 1 if user i selected alternative j and 0 otherwise.
In the random-parameters mixed logit (MXL) model with panel effects, the

utility for user i ∈ N is given by

uij(β̃i, xij) =
K∑

k=1
β̃ikxijk + εij,

where the parameters β̃ik ∈ R depend on the user i, while the error terms εij

are independent and identically extreme-value distributed across alternatives and
users. Given the vector of attribute values xij, if the vector β̃i were known, the
choice probabilities could then be given by the logit probabilities in Equation (2.1),
resulting in the function

Lij(β̃i, xij) =
exp

(∑K
k=1 β̃ikxijk

)
∑

j′∈M exp
(∑K

k=1 β̃ikxij′k

) ,
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which is called the logit kernel for alternative j. In general, the vectors β̃i are
unknown for individual users. However, it is assumed that the set of parameters
β̃ are distributed over the users i with density fβ(β̃), where β are the parameters
of the distribution f . In this thesis, we assume that β̃ follow normal distributions,
with mean βµ

k and standard deviation βσ
k for each parameter k. We remark that,

for the sake of consistency, the parameters of the density f are denoted β, as they
are the values to be estimated in this model. Therefore, the vector β may not be
K-dimensional and, as such, this does constitute a slight abuse of notation.

The probability of selecting alternative j, for given parameter values β and
vector of attribute values xij, is then given by

Pij(β̃, xij) =
∫

Lj

(
β̃, xij

)
fβ(β̃)d β̃. (2.3)

To take into account panel effects, the choice probabilities in Equation (2.3) are
modified as to take the product of all observations from each user. However, for
the sake of simplicity, the following development omits this product.

The choice probabilities in Equation (2.3) do not have a closed form but, for
any given value of β (i.e. parameters of the density f), can be approximated via
simulation. Let R be the total number of draws used in the approximation, and let
β̃r, r = 1, . . . , R denote the draws of β̃ from the density fβ(β̃). Then the simulated
choice probability in Equation (2.3), for given parameters β and vector of attribute
values xij, is given by

P̂ij(β̃, xij) = 1
R

R∑
r=1

Lij

(
β̃r, xij

)
. (2.4)

The parameters β can then be estimated by maximising the simulated log-likelihood
function

SLL(β) =
∑
i∈N

∑
j∈M

yij ln
(

P̂j(β̃, xij)
)

. (2.5)

To emphasise the difference between the MNL and MXL models, the former
assumes that the parameter values βk are constant across the population, while the
latter allows for variance. As a result, the MXL model aims to find the distribution
of preferences which best matches the population, which it does by estimating the
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parameter values β of the distribution. Crucially, the probability functions for both
models in Equations (2.1) and (2.4) only depend on the attribute values of user i,
rather than their (unknown) individual preferences. As such, they can be applied
to users unobserved in the estimation process.

If we use discrete choice models for demand modelling and embed the util-
ity functions directly within the optimisation framework for EV charging network
design (following the framework of Pacheco Paneque et al. 2021), we obtain a hi-
erarchical structure to our problem. More specifically, the choices of the users
depend intrinsically upon the network design decisions, as the selection by the user
can only be determined once all the set of alternatives and their characteristics are
decided. This application thus falls within the framework of bilevel optimisation,
which we can discuss more in detail next.

2.2.2 Bilevel Optimisation

In many applications, there is a natural hierarchical structure embedded within
the decision processes, where decisions are made in a sequential order. In the bilevel
optimisation context, this takes the form of two groups called the upper level (or
leader) and the lower level (or followers):

1. The upper level takes a decision first, with a specific objective in mind (which
typically depends on both the upper and lower level decisions). They know
the objective of the lower level, but cannot directly control their decisions.

2. After the decisions of the upper level have been revealed, the lower level make
their decisions. The lower level have a separate objective from the upper level,
which depends upon the decisions of the upper level.

We present the simplest case, where both the upper and lower level problems
are linear and the lower level variables are continuous, as that is the context of our
work. More specifically, consider the following model:
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Minimisex,w

J∑
j=1

F x
j xj +

I∑
i=1

F w
i wi, (2.6a)

subject to
J∑

j=1
Gx

jkxj +
I∑

i=1
Gw

ikwi ≥ Bk, 1 ≤ k ≤ K, (2.6b)

w ∈ argmax


I∑

i=1
fw

i w′
i :

J∑
j=1

gx
jlxj +

I∑
i=1

gw
il w

′
i ≥ bl, 1 ≤ l ≤ L,

w′ ≥ 0

 ,

(2.6c)

x ∈ X, (2.6d)

where xj, j ∈ J (respectively, wi, i ∈ I) denote the decision variables for the
upper level (lower level), and X denotes the upper-level domain, which includes
integrality requirements.

The presence of the lower-level subproblem (2.6c) makes the problem much
more difficult to solve, and not directly solvable by a Mixed-Integer Linear Program
(MILP) solver. However, we can reduce the Problem (2.6) to a single-level program.
Indeed, since the lower-level subproblem is a continuous linear program, we can use
standard duality theory to derive necessary and sufficient conditions to guarantee
optimality. More specifically, the dual of lower level problem is given by

Minimise
L∑

l=1
(bl −

J∑
j=1

fx
jlxj)πl, (2.7a)

subject to
L∑

l=1
gw

il πl ≤ fw
i , 1 ≤ i ≤ I, (2.7b)

π ≥ 0. (2.7c)
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From there, optimality is given by the complementary slackness constraints(
fw

i −
L∑

l=1
gw

il πl

)
wi = 0, 1 ≤ i ≤ I, (2.8a)(

J∑
j=1

gx
jlxj +

I∑
i=1

gw
il wi − bl

)
πl = 0, 1 ≤ l ≤ L. (2.8b)

In the more general case, where the lower level is concave, these complementary
slackness conditions are replaced by the Karush-Kuhn-Tucker conditions in the
single-level reduction (Sinha et al. 2017).

The Constraints (2.8) involve the product of variables, rendering them non-
linear. However, they can be linearised through the use of the following so-called
Big-M constraints

fw
i −

L∑
l=1

gw
il πl − Miαi ≤ 0, 1 ≤ i ≤ I, (2.9a)

wi − Mi(1 − αi) ≤ 0, 1 ≤ i ≤ I, (2.9b)
J∑

j=1
gx

jlxj +
I∑

i=1
gw

il wi − bl − Mlβl ≤ 0, 1 ≤ l ≤ L, (2.9c)

πl − Ml(1 − βl) ≤ 0, 1 ≤ l ≤ L, (2.9d)

αi, βl ∈ {0, 1}, 1 ≤ l ≤ L, 1 ≤ i ≤ I, (2.9e)

where Mi, Ml are sufficiently large constants, and α and β are auxiliary variables.
These linearised complementary slackness constraints (2.9) along with the pri-

mal feasibility constraints in (2.6c) and the dual feasibility constraints in (2.7)
can then replace the lower-level subproblem itself (2.6c). The resulting model is a
single-level, mixed-integer linear program, which can be given directly to generic
MILP solvers. However, we note that the complementary slackness constraints (2.9)
involve auxiliary binary variables αi and βi, and the values of Mi, Ml may result in
poor bounds (Pineda and Morales 2019, Kleinert et al. 2020). As a consequence,
the solver may exhibit slow convergence. In an ideal situation, this slow conver-
gence may be significantly improved by reformulating the problem to avoid this
bilevel structure entirely and, consequently, avoiding the need for the big-M con-
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straints. As we will see in Chapter 3, the reformulation we employ results in a
maximum covering location problem.

2.2.3 Maximum Covering Location Problem

The Maximum Covering Location Problem (MCLP), first proposed in Church
and ReVelle (1974), is a subclass of the general facility location problem. In it,
there is a set of facilities I which can be opened, and a set of users J which can be
assigned to facilities. A user is then considered to be “covered” if it is assigned to
a suitable facility (with the definition of “suitable” depending on the application).
As there is no benefit to covering the same user multiple times, this formulation
encourages the spreading of locations so as to cover new users. In general, due to
resource limitations, it is not possible for all users to be covered. As such, the goal is
to cover as much demand from users as possible, while remaining below the resource
thresholds. This distinguishes the MCLP from the set covering formulation, where
the goal is to minimise the cost for maintaining a fixed level of service.

More specifically, the classical MCLP model takes the form

Maximise
∑
j∈J

djzj, (2.10a)

subject to
∑
i∈I

xi = p, (2.10b)∑
i∈I

aijxi ≥ zj,j ∈ J, (2.10c)

xi ∈ {0, 1} , i ∈ I, (2.10d)

zj ∈ {0, 1} j ∈ J. (2.10e)

The variables xi indicate whether or not a facility i ∈ I is open, while the vari-
ables zj indicate whether a user j ∈ J is covered. From there, the objective func-
tion (2.10a) maximises the value of covering users, with dj the weight of user j. In
general, the weights dj are assumed to be non-negative. Since opening a facility can
only be beneficial in this situation, the cardinality constraint (2.10b) limits the total
number of facilities which may be opened. This constraint can also be replaced with
a knapsack-style budget constraint. The covering constraints (2.10c) ensure that at
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least one appropriate facility must be opened for the user j to be considered covered,
where the predefined parameter aij ∈ {0, 1} indicates whether the facility i covers
the user j. For many applications, this coverage is determined via Euclidean dis-
tance, with each facility i covering users within a predefined radius (see, e.g. Church
and ReVelle 1974, Cordeau et al. 2019). The Constraints (2.10d) and (2.10e) re-
strict the variables to be binary. However, it is well-known that integrality can be
relaxed on the variables zj, j ∈ J (Murray 2016).

Since the formulation of the MCLP is quite simple while the applicability is
quite vast, many variations of the MCLP have been developed. Some notable
examples include:

Budgeted MCLP: While not always identified as a variant, this formulation
replaces the cardinality constraint (2.10b) by a budget constraint (Khuller
et al. 1999, Li et al. 2021).

Capacitated MCLP: This variant adds an additional constraint, which imposes
a capacity limit to each facility (de Assis Corrêa et al. 2009, Alizadeh et al.
2021). As such, it requires a more precise tracking of the assignment of users
to facilities.

Dynamic (or Multi-period) MCLP: In some applications, facility construc-
tion or allocation can take place over an extended period of time, with
sequences of facilities built over time. Correspondingly, the formulation is
modified by allowing the decision variables xi, zj, the cardinality p, and the
demands dj to vary by time period (Gunawardane 1982, Porras et al. 2019).

Partial (or Cooperative) MCLP: Rather than the all-or-nothing approach to
coverage in the classical MCLP with aij ∈ {0, 1}, this variant allows for a
facility to only partially cover a user, with aij ∈ [0, 1] (Berman et al. 2013,
Han et al. 2019). In this approach, multiple facilities may need to cooperate
to cover a single user.

Stochastic MCLP (or Under Uncertainty): In the classical MCLP, all of
the parameters p, dj, aij, i ∈ I, j ∈ J are assumed to be known in advance
and fixed. This variant allows for some of these parameters to be uncertain,
and rely on the distribution of the parameters instead (Berman et al. 2013,
Vatsa and Jayaswal 2016, Nelas and Dias 2020).
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Regardless of the formulation used, the model must then be solved. As the
MCLP is known to be NP-hard (Murray 2016), techniques have evolved over the
years to solve more and more complex instances. Naturally, when possible, it is
desirable to use an exact method for obtaining an optimal solution to our problem.

2.3 Solution Methods for the MCLP

With the model reformulated into an MCLP, we have access to a variety of
existing methods for solving the model, which can be adapted for our application.
We begin by discussing exact methods in Section 2.3.1, with a focus on the appli-
cation of decomposition techniques. By contrast, we present specialised heuristic
approaches for the MCLP in Section 2.3.2.

2.3.1 Exact Methods

As the MCLP is a mixed-integer linear program, the simplest solution method
is to give the model to a generic MILP solver. However, while effective for small
instances, it has repeatedly been shown that these solvers are unable to solve
large instances (see, e.g. Church and ReVelle 1974, ReVelle et al. 2008, Cordeau
et al. 2019). As such, recent exact approaches have been focused on decomposi-
tion approaches, with specialised column generation and Benders decomposition
approaches.

The column generation procedure of Senne and Lorena (2002) and Pereira et al.
(2007) is based on reformulating the MCLP to a p-median problem, and is partic-
ularly well suited when the set of possible configurations of facilities is extremely
large. Expressed in maximum covering terms, this approach defines a cluster as an
assignment of users i to a facility j ∈ J , with the resulting value as the sum of the
covered demand within the cluster. The objective is then to select the p clusters
which result in the largest possible coverage. As explicitly enumerating all possi-
ble clusters would be computationally infeasible, this method iteratively generates
new ones by computing the currently unsatisfied demand. Clusters which result
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in a strictly positive unsatisfied demand are added to the set of clusters, while the
procedure ends when no such cluster can be found.

The Benders decomposition approach of Cordeau et al. (2019) is particularly
well suited when the set of users J is much larger than the set of facilities I.
Rather than explicitly stating the covering constraints (2.10c), these constraints
are replaced by a cutting plane procedure. This procedure is described in detail in
Section 4. In essence, for a given configuration of facilities xi, i ∈ I, this approach
generates a cut reflecting that the optimal objective value is bounded by the de-
mand which is covered in the configuration xi, plus the unsatisfied demand which
can be covered by new facilities.

As alluded to previously, the column generation and Benders decomposition
methods are best suited for different types of problems. The former is particularly
effective when the set of users J is much larger than the set of facilities I, while
the latter will perform better when the set of users and facilities are closer in size.
This can be seen in the size of the instances solved, with the column generation
method in Pereira et al. (2007) successfully solving instances with |I| = |J | = 818,
while the Benders decomposition method in Cordeau et al. (2019) solved instances
with |I| = 100, |J | = 15, 000, 000. By point of comparison, the generic MILP solver
CPLEX was able to solve instances with |I| = 100 and |J | = 100, 000 in Cordeau
et al. (2019).

For problems beyond these sizes, or for which additional constraints are present,
these methods may be insufficient to obtain a solution. For such cases, we can turn
to the vast array of heuristic techniques, specialised for the MCLP.

2.3.2 Heuristic Methods

We describe the principle mechanisms behind commonly used heuristics below,
which are all a general class of heuristic methods. We list adaptations of the
methods for the MCLP though, for the sake of simplicity, some particularities may
be omitted. For more specific details, we refer to the accompanying references.

Greedy: The greedy algorithm (Church and ReVelle 1974) is an iterative and
deterministic method. It begins with a null solution (that is, xi = 0, i ∈ I),
then selects the facility i which covers the largest amount of the unsatisfied
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demand. This procedure is then repeated, with the unsatisfied demand up-
dated with each new facility, until the full set of facilities have been selected.
A variation of this method is proposed in Church and ReVelle (1974) as well,
called the greedy-substitution algorithm. After a facility is selected using
the above procedure, the method iterates over each selected facility, and at-
tempts to replace it with an unselected facility. If this substitution results in
an increased coverage, the solution is replaced.

Lagrangian relaxation: Discussed in Downs and Camm (1996) and Galvão and
ReVelle (1996), this approach applies Lagrangian relaxation on the covering
constraints (2.10c). Dual multipliers are then found using subgradient opti-
misation, providing an upper bound for the Linear Programming (LP) value.
Meanwhile, lower bounds are provided via the greedy algorithm, both of
which are embedded within a branch-and-bound framework. Slow conver-
gence requires the use of explicit stopping criteria, rendering this a heuristic
method. However, when solved to optimality, this method is equivalent to
the column generation procedure described above.

Simulated annealing: First applied to the MCLP in Murray and Church (1996),
the simulated annealing heuristic emulates the cooling of metals. Starting
from a randomly generated solution (that is, the p facilities such that xi = 1
are determined randomly), the method arbitrarily selects one open facility
and one closed facility. If exchanging these facilities results in an increase
to the coverage, the solution is updated. Otherwise, there is a chance that
this exchange is still accepted, with the likelihood depending on the current
temperature parameter and how recently the solution was updated.

Tabu search: Similar to the simulated annealing method, the tabu search heuris-
tic (Adenso-Díaz and Rodríguez 1997, Gendreau et al. 1997) begins with a
starting solution (such as via the greedy algorithm). The method then it-
eratively exchanges one open facility and one closed facility, selecting the
exchange with the best coverage (even if that coverage is less than the cur-
rent solution). To avoid cycling back to previously visited solutions, a list of
previous exchanges is maintained, and may not be reversed.

GRASP: As with the greedy algorithm, the Greedy Randomised Adaptive Search
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Procedure (GRASP, Resende 1998) is an iterative method which adds facili-
ties to the null solution, but the best facility is not always selected. Instead,
in each iteration, the additional coverage from each facility is determined, and
the selected facility is randomly determined among those with additional cov-
erage within a given threshold of the best option. After this, a local search
phase is conducted, which performs the substitution procedure, as with the
greedy-substitution algorithm.

Genetic algorithm: Adapted for the MCLP in Arakaki and Lorena (2001) and
Xia et al. (2009), the genetic algorithm mimics the processes of natural se-
lection, with generations of solutions that provide beneficial solution char-
acteristics to future generations. This begins with an initial pool of feasible
solutions, which are then combined together in pairs of parents to form an
offspring by selecting a subset of the open facilities in each of the parents.
The offspring from a pair of parents which produces the best coverage then
progresses to the next generation.

Heuristic concentration: The heuristic concentration method (ReVelle et al.
2008) uses a pool of high-quality solutions to fix facilities to be either open or
closed, thus reducing the feasible space for a generic MILP solver. This begins
with a pool of random solutions, which are improved by using the substitution
procedure, as per the greedy-substitution algorithm. From there, facilities
which are selected in all of the solutions in the pool are fixed to be open,
while facilities whose selection rate in the pool falls below a given threshold
are fixed to be closed. All remaining facilities are then determined by using
a generic MILP solver.

2.4 Relation to Our Work

The background provided in this chapter allow us to next summarise and po-
sition the demand modeling and optimisation procedures developed in this thesis.
In Chapter 3, we formulate a mathematical model for determining the optimal
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location of public charging infrastructure in an intracity context, which can in-
clude both level 2 and level 3 charging outlets. This model follows a node-based
approach, where the potential EV owners and the candidate charging station lo-
cations form nodes on the grid. Daily travel patterns are not available, and EV
charging preferences (and thus the benefits of each candidate charging location)
arise solely from the characteristics of the charging station and the user. The im-
pact of these characteristics is codified via discrete choice models, including MNL
and MXL specifications. Using the method of Pacheco Paneque et al. (2021), these
discrete choice models can be embedded directly within the optimisation frame-
work. The resulting formulation can be viewed as a bilevel model, for which we
use a single-level reduction (via complementary slackness conditions) to enable it
to be solved by a generic MILP solver. We then reformulate the model into a dy-
namic MCLP, enabling it to be solved significantly faster. However, even with this
reformulation, the model is intractable for large-scale instances. We thus propose
greedy and GRASP heuristic methods for obtaining high-quality solutions, with
adaptations for the multi-period context. We then progress in Chapter 4 to design
exact algorithms for our model, which modify and accelerate the Benders decom-
position approach proposed in Cordeau et al. (2019). Finally, in Chapter 5, we
delve more deeply into the discrete choice models, and use maximum likelihood to
estimate appropriate parameter values. More specifically, we estimate multinomial
logit and random parameters mixed logit models for predicting the selection of EV
charging station by current EV users.
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3

Optimising Electric Vehicle
Charging Station Placement
using Advanced Discrete
Choice Models

Preface

In Chapter 3, we develop the mathematical program, which uses the framework
of Pacheco Paneque et al. (2021) to model the interaction between the public
charging network and the adoption of EVs. To this end, we specify a discrete
choice model, representing the user’s choice of the primary recharging method for
an EV. These recharging choices include public charging infrastructure or a home
charging alternative (if available to that user), which all correspond to the purchase
of an EV. In addition, there is a single ‘opt-out’ alternative, for which the user does
not purchase an EV.

The primary contribution of this work for the EV charging station location
problem lies in the integration of discrete choice models via the framework of
Pacheco Paneque et al. (2021). As we show experimentally, this creates more
realistic demand dynamics compared with the existing literature, and affects the
optimal decision of the problem. A more general contribution lies in the efficient
reformulation of the model of Pacheco Paneque et al. (2021) to a maximum cover-
ing formulation. This reformulation is applicable not only in our context, but to
any model using the embedded simulated utility framework of Pacheco Paneque
et al. (2021), subject to some assumptions. A comparison of this reformulation
against similar methods was examined in the work of Legault and Frejinger (2023),
while an in-depth discussion about the limiting assumptions of this reformulation
and possible extensions are discussed in Chapter 6. Additionally, we have adapted
heuristics for the classic MCLP, such as the greedy and GRASP methods discussed
in Chapter 2, to our application. As we demonstrate experimentally, these methods
are effective tools for obtaining high-quality solutions, which can then be applied
to similar multi-period MCLP applications.
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This work contains a few important limitations, which we address in future
chapters:

— We are not able to solve large-scale instances. Further, our experiments
showed that not even the LP relaxation could be solved within a two-hour
timespan. As such, in Chapter 4, we develop specialised Benders decomposi-
tion algorithms for obtaining better quality results.

— The utility functions for each charging station alternative require very spe-
cific coefficients, which are not trivial to obtain. These coefficients relate the
impact of that public charging alternative to the EV adoption rate. In Chap-
ter 5, we propose discrete choice models for predicting the choice of public
charging stations by users. Under some assumptions, these could then be
transformed into the required coefficients for the model in this chapter.

The contents of this chapter were published in INFORMS Journal of Comput-
ing. This publication can be cited as follows:

Lamontagne, S., Carvalho, M., Frejinger, E., Gendron, B., Anjos, M.F., Atallah,
R., 2023. Optimising electric vehicle charging station placement using advanced
discrete choice models. INFORMS Journal on Computing 35, 1195–1213.
Contributions of Steven Lamontagne and the coauthors

— The original topic of electric vehicle charging station placement was proposed by
Bernard Gendron, while the research ideas were developed by the student, Bernard
Gendron, Emma Frejinger, and Margarida Carvalho. In particular, the bilevel opti-
misation model, the subsequent maximum covering reformulation, and the adapta-
tions to existing heuristic methods were conceptualised and created by the student.

— All code was written by the student, including the implementations of the branch-
and-cut method and rolling horizon heuristic via CPLEX software, as well as the
greedy and GRASP heuristics. In addition, the test instances were developed and
produced by the student.

— The original draft (including all tables and images) were produced by the student,
while it was revised by Margarida Carvalho, Emma Frejinger, Miguel Anjos, and
Ribal Atallah.
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Abstract

We present a new model for finding the optimal placement of electric vehicle
charging stations across a multi-period time frame so as to maximise electric ve-
hicle adoption. Via the use of stochastic discrete choice models and user classes,
this work allows for a granular modelling of user attributes and their preferences
in regard to charging station characteristics. We adopt a simulation approach and
pre-compute error terms for each option available to users for a given number of
scenarios. This results in a bilevel optimisation model that is, however, intractable
for all but the simplest instances. Our major contribution is a reformulation into
a maximum covering model, which uses the pre-computed error terms to calcu-
late the users covered by each charging station. This allows solutions to be found
more efficiently than for the bilevel formulation. The maximum covering formula-
tion remains intractable in some instances, so we propose rolling horizon, greedy,
and GRASP heuristics to obtain good quality solutions more efficiently. Extensive
computational results are provided, which compare the maximum covering formu-
lation with the current state-of-the-art, both for exact solutions and the heuristic
methods.

Keywords: Electric vehicle charging stations, facility location, integer pro-
gramming, discrete choice models, maximum covering

3.1 Introduction

In order to meet CO2 emissions goals, major changes at the global level are
necessary. This includes the transportation sector, which in 2019 was responsible
for 27% of global CO2 emissions (International Energy Agency 2021) and 30%
of emissions in Canada (Environment and Climate Change Canada 2021). One
initiative that has been proposed to reduce these emissions is the adoption of
electric vehicles (EVs), rather than internal combustion engine vehicles (ICEVs).
Depending on the electricity generation mix, this may be effective in reducing
emissions (Axsen et al. 2015c, Woo et al. 2017).
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Due to the limits of the internal battery, EVs require more frequent refuelling
than CVs. While early adopters of EVs may have access to home charging (Bai-
ley et al. 2015), this can be supplemented with public charging infrastructure to
increase accessibility. The availability of the latter has been found to increase EV
adoption (e.g. Coffman et al. 2017). However, this scenario has been noted to suffer
from a “chicken-and-egg” dilemma (Anjos et al. 2020), where users require charg-
ing infrastructure in order to purchase an EV, while businesses and infrastructure
operators have little incentive to install charging stations when there are few users.
To this end, governmental organisations can alleviate this problem by investing in
public charging infrastructure, thus allowing users to recharge EVs and encourage
EV adoption.

The problem we examine is that of the decision makers responsible for public
charging infrastructure, and the optimal placement of that infrastructure within a
city. They have a set of candidate locations for charging stations, and must decide
which charging stations to open as well as how many charging outlets to place at
each open station. These decisions take place over a long-term planning horizon,
and investment in each period is limited by a budget. The decision makers take into
account the users who are purchasing a vehicle in each period. Depending on the
placement of charging infrastructure, these users may purchase an EV. We assume
that the users anticipate the need to recharge an EV, and will only purchase one if
they have access to charging infrastructure (either public or at home). Additionally,
we assume that more convenient charging (e.g. by a charging station being closer
to home, or having more charging outlets) increases the probability that a user
will purchase an EV. The goal of the decision makers is to plan the placement of
charging infrastructure so that it maximises EV adoption.

The existing literature for this problem is quite narrow, and has limitations
that we address in this work. In the intercity context, the optimisation model
of Zhang et al. (2017a) accounts for EV adoption growth depending on the cov-
erage of paths, but their method is not applicable to the intracity case. To the
best of our knowledge, in the intracity context, only Anjos et al. (2020) formulate
an optimisation model for locating charging stations accounting for EV adoption
growth based on the location of charging stations. There, the total number of
EVs increases according to a piecewise-linear growth function, which accounts for
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natural growth. This growth function is applied indiscriminately to all locations.
Additionally, the fraction of users who have access to home charging is assumed to
be constant across locations in the network. In reality, the EV growth rate varies
by location (Association des Véhicules Électrique du Québec 2021), and access to
home charging depends on the type of residences (Nicholas et al. 2019).

This work presents modelling, algorithmic, and computational contributions.
For the modelling side, we consider user classes, allowing for parameter values to
be considered more specifically for groups of users rather than the entire popu-
lation. Additionally, within each user class, the optimisation model supports the
use of advanced discrete choice models. Acknowledging the uncertainty associ-
ated with demand distribution, these models assign a probability distribution over
available alternatives. This allows to model heterogeneous user preferences and
complex substitution patterns. The combination of the user classes and the ability
to use advanced discrete choice models results in a highly flexible model, which
the decision makers can design to suit their specific problem and available data
sources. The user behaviour is incorporated in the decision-maker’s problem as
in Pacheco Paneque et al. (2021), leading to a bilevel program. While the bilevel
optimisation model presented here can only solve small instances, the maximum
covering reformulation allows for instances to be solved significantly faster. To the
best of our knowledge, such a reformulation has not been presented in the context
of the simulation-based approach of Pacheco Paneque et al. (2021). We note that
this reformulation is effective for our optimisation model, but is also applicable to
more general, uncapacitated bilevel models using the same framework. On the al-
gorithmic side, we propose three heuristics to solve the optimisation models. First,
a rolling horizon method, which was also used in Anjos et al. (2020). Second, a
greedy method (Church and ReVelle 1974), and third, a GRASP method (Resende
1998). We extend the latter two to a multi-period setting with sizing decisions.
On the computational side, we present extensive experimental comparisons examin-
ing: the capabilities of our optimisation model versus the model presented in Anjos
et al. (2020), the bilevel formulation versus maximum covering formulation, and the
heuristic methods. Where possible, parameter values and user class characteristics
are based on real data.

We structure the remainder of the paper as follows: Section 3.2 reviews the
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relevant literature for the problem. Section 3.3 describes the framework of the
problem, as well as briefly presenting the bilevel model and its single-level refor-
mulation. Section 3.4 gives the maximum covering reformulation for the bilevel
model. Section 3.5 discusses various heuristic methods for solving large instance
sizes of practical interest. Section 3.6 provides computational results.

3.2 Literature Review

We review three topics of research that relate closely to our work. First, EV
charging station location models, which determines the optimal location for charg-
ing stations. Second, vehicle acquisition, more specifically relating to EVs, which
discusses factors that affect whether users purchase EVs. Third, Maximum Capture
Problem with Random Utilities (MCPRU), which examines the optimal placement
of facilities in a competitive environment.

On the topic of EV charging station location models, the model proposed by
Anjos et al. (2020), which we refer to as the Growth Function (GF) model, is the
closest to our work. Whereas most charging station location models are examined
with the objective to maximise profits or minimise costs, the GF model is designed
solely to encourage electric vehicle adoption. Its use of a combination of node-based
and path-based approaches allows for the inclusion of a general highway charging
station network while allowing for increased precision within the city. EV adoption
and charging stations are linked via capacity constraints, with users willing to
recharge at any charging station within a fixed distance of their home.

There is an existing literature for EV charging station placement (an excellent
review is presented in Kadri et al. 2020), however two notable differences separate
it from our work. First, in all cases, the users under consideration are those who
already own EVs, and are deciding on a charging station to recharge. Second,
the objective of the decision maker are different, such as profit maximisation (Luo
et al. 2015), maximising the EV flow that can travel each path given a limited EV
range (Lim and Kuby 2010), minimising the users’ costs for recharging the EV and
travel time (González et al. 2022), or maximising the EV charging demand that can
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be covered (Frade et al. 2011). We provide a summary of the key characteristics
of related works in Table 3.1.

Unlike our work, EV recharging demand at each station or along each path
is generally taken to be deterministic. However, in Luo et al. (2015) and Cui
et al. (2019) the demand for each station is estimated using the analytic choice
probabilities from a nested logit model. The demand model they use considers
station characteristics such as the distance to the EV owner and the proximity
of the charging station to amenities (such as restaurants and shopping centres).
In Kadri et al. (2020), the evolution each year of the demand for each path is
modelled with a discrete scenario tree. In the tree, the demand for the current year
is assumed to be known, as are the transition probabilities for each of the possible
states in each subsequent year. This allows for the estimation of the expected
demand of each path considering all subsequent years.

The inclusion of capacity constraints in EV charging station location models is
not consistent. Several models (including our work, as well as others in Table 3.1)
do not consider capacity. For those that do include capacity constraints, the mod-
elling assumptions differ. In Frade et al. (2011) and Zhang et al. (2017a), the
demand that may be satisfied by each charging station is limited by the number
of outlets installed at that location. In Luo et al. (2015), the decision maker must
ensure that charging stations meet minimum quality of service requirements, in-
cluding waiting time and service coverage. In Cui et al. (2019), the decision maker
must ensure that the amount of electricity supplied at each charging station is suf-
ficient for the expected amount of demand. In González et al. (2022), the number
of recharging sessions that will be required at each station is estimated, and used
as a bound for the capacity of the station.

The vehicle acquisition problem examines the attributes that increase the like-
lihood of purchasing EVs, and are useful for determining exogenous attributes for
the demand model and defining user classes. Importantly, the availability of elec-
tric vehicle charging stations increases the likelihood of users purchasing an EV;
This availability (also referred to as ‘fuel availability’), was a significant factor in
the decision to purchase an EV in most articles examining the subject (Achtnicht
et al. 2012, Javid and Nejat 2017, Hackbarth and Madlener 2013, Ziegler 2012,
Rezvani et al. 2015, Coffman et al. 2017). This finding is not unanimous, however,
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Objective Model
Type

De-
mand

Time
Periods

Capac-
ity

In-
tracity
or In-

tercity

Lim and Kuby (2010) Maximise flow
refueled FRLM D Single No Inter

Frade et al. (2011)

Maximise
coverage of EV

charging
demand

Maxi-
mum

Covering
D Single Yes Intra

Shukla et al. (2011) Maximise flow
intercepted FILM D Single No Intra

Capar et al. (2013) Maximise flow
refueled FRLM D Single No Inter

Luo et al. (2015)
Maximise profit

of decision
maker

MINLP S Multi Yes Intra

Zhang et al. (2017a) Maximise flow
refueled FRLM D Multi Yes Inter

Cui et al. (2019) Minimise cost of
decision maker MINLP S Multi Yes Intra

Badri-Koohi et al. (2019)

Minimise costs,
p-median, flow

interception
(weighted sum)

MILP D Single No Intra

Kadri et al. (2020) Maximise flow
refueled FRLM S Multi No Inter

González et al. (2022) Minimise users’
travel cost Bilevel D Single Yes Intra

Legend: FRLM = Flow Refueling Location Model, FILM = Flow Interception Location Model,
MINLP = Mixed Integer Non-Linear Problem, MILP = Mixed Integer Linear Problem,

D = Deterministic, S = Stochastic.

Table 3.1 – Summary of key characteristics of EV charging station location models.

29



as Bailey et al. (2015) propose that a predisposition to EVs makes the users more
likely to notice existing charging infrastructure, not the converse. The conclusions
of Bailey et al. (2015) are also present in Axsen et al. (2015a), an article based
on the same dataset and project. Several studies focus on assessing preferences
in regard to various types of attributes (Hidrue et al. 2011, Achtnicht et al. 2012,
Ziegler 2012, Hackbarth and Madlener 2013, Axsen et al. 2015a, Bailey et al. 2015,
Javid and Nejat 2017). For reviews of EV acquisition models, we refer to Rezvani
et al. (2015), Javid and Nejat (2017), and Coffman et al. (2017).

In this work, we formulate the problem as a MCPRU, generally attributed to
Benati (1999) and Benati and Hansen (2002). In the MCPRU, a company is looking
to place facilities in an environment where competitors have existing facilities. A
Random Utility Maximisation (RUM) discrete choice model is used to assign choice
probabilities of users, based on the set of facilities available to them. The company
aims to place the new facilities to maximise the market share that the new facilities
capture. In general, the MCPRU focuses on two key attributes of facilities in order
to determine which one users choose to patronise: distance to the users, and facility
attractiveness (Berman et al. 2014). It is possible to consider market expansion
in the MCPRU, where the placement of facilities attracts customers that were
not originally in the market (see, e.g., Aboolian et al. 2007). Since a vehicle (EV
or otherwise) is an expensive purchase, it is assumed that the additions to the
charging infrastructure are not sufficient to attract users who were not planning
on purchasing a vehicle at all in the given period. We thus do not include market
expansion in our optimisation model.

Almost all work on the MCPRU has been done in the context of using the multi-
nomial logit (MNL) model for characterising user behaviours, due to the existence
of an analytic formula for calculating choice probabilities. For recent examples, the
linear formulation in Freire et al. (2016) (which improves on the linear formula-
tion in Haase 2009) and the outer approximation and submodular cut methods in
Ljubić and Moreno (2018) both rely on the logit choice probabilities. Exceptions
to the use of MNL model include the work of Mai and Lodi (2020), who express
a mixed logit choice probability as a sum of probabilities of MNL models (though
they do not conduct any computational experiments using this method), and the
work of Dam et al. (2021), who use a method that makes use of the submodularity
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of the objective function for all discrete choice models in the Generalised Extreme
Value (GEV) family (of which MNL and mixed logit are included). Since we do not
assume the use of MNL or the GEV family (in addition to the added complexity
of multi-period and sizing considerations), the methods proposed in these works
cannot be applied directly to our model.

While it can be used more generally, the simulation-based approach in Pacheco
Paneque et al. (2021) can be applied to the MCPRU. Rather than embedding an
analytic probability that users will select an alternative into the objective function,
this approach instead generates error terms for each alternative for a given num-
ber of scenarios. These error terms, pre-computed and given to the optimisation
model as an input, allow for the utility to be calculated for each alternative and
each scenario. Using the RUM principle, users then select, in each scenario, the
alternative which has the highest utility. Alternatives which are not available to
users (such as, in the case of the MCPRU, facilities which are closed) are set to
a lower bound, ensuring they are not selected. This approach supports the use of
any discrete choice model rather than being limited to the MNL model (or even the
GEV family). However, it is computationally difficult to solve in larger instances.

We emphasise that the simulation-based approach of Pacheco Paneque et al.
(2021) differs from the linearisation typically presented for the MCPRU (e.g. Be-
nati and Hansen 2002, Haase 2009, Haase and Müller 2014, Freire et al. 2016). In
the latter case, the analytic choice probabilities for each alternative are linearised
by setting the variable coefficients appropriately. However, this linearisation can
only be done when analytic choice probabilities are known for the discrete choice
model (e.g. MNL). On the contrary, the simulation-based approach assumes that
the utility functions are linear in the decision variables and works directly in the
space of utilities. Under the RUM principle, this allows for linearisation of the
sample average approximation of the choice probabilities (which can be derived for
any discrete choice model for which error terms can be drawn). As a consequence,
the choice probabilities are approximations of their exact form, but also renders the
approach suitable for any discrete choice model. This includes, notably, discrete
choice models for which the choice probabilities are typically estimated via sample
average approximation (e.g. mixed logit Train 2002).

Our work aims to bridge the gap between the EV charging station placement
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models, EV acquisition models, and the MCPRU. Most EV charging station place-
ment models are designed to benefit existing EV owners, instead of maximising EV
adoption. The existing works which include EV growth based on the placement
of EV charging stations, namely the models of Zhang et al. (2017a) and Anjos
et al. (2020), use an aggregate approach for EV growth. However, the literature
on EV acquisition shows that significant factors for determining EV acquisition are
individual characteristics of the users (e.g. income, education level, access to home
charging). This highlights the benefit of user classes in our optimisation model, as
they allow for these individual characteristics to be considered. Moreover, we note
the heterogeneity within each preference class (which function equivalently as a
user class in our work) in the latent class models of Hidrue et al. (2011) and Axsen
et al. (2015a). This suggests the use of a discrete choice model for demand mod-
elling, and naturally leads to a MCPRU formulation for the optimisation model.
As is the case for the MCPRU, in addition to user characteristics, characteristics
from the charging station also impact the choice of users. While the specification
of the discrete choice model for the users is outside the scope of this work, we
note in Appendix A.1.1 characteristics of the demand modelling which makes the
MNL model less suitable. Because of this, we use the simulation-based approach
of Pacheco Paneque et al. (2021).

3.3 Problem Formulation and Modelling

In our problem, we consider the placement of charging infrastructure in a city,
wherein there are two parties with different motives: a decision maker placing the
infrastructure, and the users choosing whether to purchase an EV (depending on
the charging infrastructure). An illustration of this process is given in Figure 3.1.

3.3.1 Decision Maker

The decision maker is planning charging infrastructure over a planning horizon
with T periods (e.g., seasons or years) indexed by 1 ≤ t ≤ T .
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The decision maker has a candidate set of locations M where charging stations
j ∈ M may be installed or expanded with additional outlets to a maximum number
mj. In each period t, there is a budget Bt, which limits the total investment (both
opening stations and installing outlets). Let ct

jk denote the cost to go from k − 1
to k outlets at charging station j ∈ M in period t. Note that this cost concept is
flexible, and accounts for additional costs to be incorporated at certain thresholds
if significant infrastructure upgrades are required. Notably, this includes initial
infrastructure installation for k = 1 but can also include, e.g., increasing electric
power capacity at the station.

Let xt
jk be a binary variable indicating if station j ∈ M has at least k outlets in

period t (with 1 ≤ k ≤ mj). We denote x =
{

xt
jk

}
, j ∈ M, 1 ≤ k ≤ mj, 1 ≤ t ≤ T .

Let x0
jk denote the initial state of each charging station j.

3.3.2 Users

We consider users who are are planning on purchasing a vehicle and, depending
on public charging infrastructure, may choose to purchase an EV. These users are
composed of a set of user classes N . The population size for each user class is
given by N t

i , i ∈ N, 1 ≤ t ≤ T . These parameters provide a flexible modelling.
For instance, they can correspond to the number of potential new EVs in a class
or be configured to prioritise early adopters by decreasing the population size in
later time periods. This would have an effect similar to the classical approach of
discounting future time periods.

Each user considers whether they have a primary option for recharging an EV.
If such an option is available and sufficient for their needs, they decide to purchase
an EV. This decision is modelled via a discrete choice model, with users in user
class i ∈ N selecting an alternative j in choice set Ct

i (x). The inclusion of x
in the notation for the choice set emphasises the dependence on the set of open
stations, since stations without at least one outlet cannot be used to recharge an
EV. The choice set Ct

i (x) contains a subset of the public charging infrastructure,
home charging (if available to user class i), and an opt-out. The latter corresponds
to the alternative to not purchase an EV, while all other alternatives indicate the
user purchases one. In what follows, we denote the opt-out alternative as j = 0.
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Figure 3.1 – The decision maker decides where to place charging infrastructure (stations
and number of outlets) on the simple example network. In response, a subset of users
decide to purchase EVs.

We note that the use of the index j for both alternatives and stations is deliberate
because, as we discuss in Section 3.3.3, the charging stations are the alternatives
for the most part.

At the strategic-level planning, we assume that each charging station j ∈ M

that is opened is uncapacitated, in the sense that there is no limit to the number of
users that may select it. However, we assume that the likelihood of users selecting
a given station increases with the number of outlets. The rationale being that the
higher the number of outlets, the more likely one may be available when required.
This allows us to implicitly take into account that users perceive the capacity as
finite.

3.3.3 Simulation-based Model

We adopt the simulation-based method of Pacheco Paneque et al. (2021) to the
users’ decision to purchase an EV. More specifically, for each user class i ∈ N ,
let Ri be the number of scenarios used to approximate the choice probabilities.
We assume that the decision to purchase an EV is separable for each user class,
each period, and each scenario, meaning that there is no interaction among them.
Therefore, in what follows, we concentrate on detailing a given triplet (t, i, r) ∈
P = {(t′, i′, r′) : 1 ≤ t′ ≤ T, i′ ∈ N, 1 ≤ r′ ≤ Ri′}. For each alternative j ∈ Ct

i (x),
let urt

ji be the simulated utility.
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We previously remarked that the choice set Ct
i (x) depends on which stations are

open. For notational simplicity, we define the two choice sets: C0t
i and C1t

i . The set
C0t

i includes all alternatives exogenous to the optimisation model (i.e. unaffected
by decision variables), for which the availability is not under the control of the
decision maker. This always includes the opt-out alternative, but may also, for
example, include the alternative for home charging. The simulated utility urt

ji, for
j ∈ C0t

i , is thus given by
urt

ji = κt
ji + εrt

ji, (3.1)

where the parameter κt
ji is the alternative-specific constant. In general, the alternative-

specific constants can be any function which does not depend on the decision vari-
ables. Note that we assume only one opt-out alternative as multiple options can
be replaced by a single alternative given by the maximum utility across all opt-out
alternatives.

The set C1t
i includes the alternatives for charging stations which have a non-

zero probability of being chosen (e.g. sufficiently close to be considered). If station
j ∈ C1t

i is open, we consider the utility urt
ji to be a function of the number of charging

outlets available at that station as well as the alternative-specific constant. This
leads to the formulation: urt

ji =
∑mj

k=1 βt
jikxt

jk + κt
ji + εrt

ji. We recall that mj is the
maximum number of outlets at station j. The parameter βt

jik is the incremental
benefit of going from k−1 to k outlets. The model does not impose any restrictions
on the form of the utility coefficients, however, we assume that the coefficients are
non-negative. As before, the alternative-specific constant can be any function which
does not depend on the decision variables. If the station is closed, the utility is set
to a lower bound at

i to ensure that it will not be selected.

3.3.4 Single-Level Model

Given x and a triplet (t, i, r), a user selects the alternative maximising the
simulated utility, i.e., k ∈ arg maxj∈Ct

i (x) urt
ji. If we now integrate the goal of the

decision maker, which is to maximise the purchase of EVs, we naturally obtain a
bilevel formulation. Following the simulation-based method of Pacheco Paneque
et al. (2021), we can reduce the bilevel formulation to a single-level form. Indeed,
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the Single-Level (SL) model of the problem is given by

Minimise
∑

(t,i,r)∈P

N t
i

Ri

wrt
0i, (3.2a)

subject to
∑
j∈M

mj∑
k=1

ct
jk

(
xt

jk − xt−1
jk

)
≤ Bt, 1 ≤ t ≤ T. (3.2b)

xt
jk ≤ xt

jk−1, 1 ≤ t ≤ T, j ∈ M, 1 ≤ k ≤ mj,

(3.2c)

xt
jk ≥ xt−1

jk , 1 ≤ t ≤ T, j ∈ M, 1 ≤ k ≤ mj,

(3.2d)

urt
ji = κt

ji + εrt
ji, (t, i, r) ∈ P, j ∈ C0t

i ,

(3.2e)

urt
ji ≥ at

i, (t, i, r) ∈ P, j ∈ C1t
i , (3.2f)

urt
ji ≤ at

i + νrt
ji x

t
j1, (t, i, r) ∈ P, j ∈ C1t

i ,

(3.2g)

urt
ji ≥

mj∑
k=1

βt
jikxt

jk + κt
ji + εrt

ji − νrt
ji

(
1 − xt

j1
)

,(t, i, r) ∈ P, j ∈ C1t
i ,

(3.2h)

urt
ji ≤

mj∑
k=1

βt
jikxt

jk + κt
ji + εrt

ji, (t, i, r) ∈ P, j ∈ C1t
i , (3.2i)

urt
ji − αrt

i +
(
1 − wrt

ji

)
µrt

ji ≥ 0, (t, i, r) ∈ P, j ∈ C0t
i ∪ C1t

i ,

(3.2j)∑
j∈C0t

i

wrt
ji +

∑
j∈C1t

i

wrt
ji = 1, (t, i, r) ∈ P, (3.2k)

αrt
i ≥ urt

ji, (t, i, r) ∈ P, j ∈ C0t
i ∪ C1t

i ,

(3.2l)

wrt
ji ∈ {0, 1}, (t, i, r) ∈ P, j ∈ C0t

i ∪ C1t
i ,

αrt
i ∈ R, (t, i, r) ∈ P,

urt
ji ∈ R, (t, i, r) ∈ P, j ∈ C0t

i ∪ C1t
i ,

xt
jk ∈ {0, 1}, 1 ≤ t ≤ T, j ∈ M, 1 ≤ k ≤ mj.
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The objective function (3.2a) minimises the number of users who do not purchase
an EV (or, equivalently, maximises those who do) with the auxiliary variables wrt

ji

representing the selection of alternative j by the triplet (t, i, r). Recall that wrt
0i

corresponds to the opt-out alternative, and indicates that the triplet (t, i, r) does
not purchase an EV. Budget constraints (3.2b) are given for each time period t. It
would be possible to supplement the per-period budget with an overall budget, as
was done in Anjos et al. (2020). Constraints (3.2c) impose that to have at least
k outlets, we must have at least k − 1 outlets. Constraints (3.2d) forbid us from
removing outlets once installed. Constraints (3.2e) set the utility for exogenous
alternatives (opt-out, home charging, etc.). Constraints (3.2f)-(3.2i) set the utility
for endogenous alternatives (charging stations). Constraints (3.2j)-(3.2l) ensure
that the alternative with the highest utility is selected for each triplet (t, i, r). We
present the details around the model in Appendix A.1.1.

We note that Constraints (3.2e) set the utility for all exogenous alternatives in
C0t

i , which includes opt-out and may include home charging. However, in practice,
it is better to preprocess any triplets which have access to home charging: if the
utility associated with home charging is lower than that of the opt-out, then home
charging can be ignored (as it will never be selected). If it is higher than for the
opt-out, then the associated opt-out choice variable wrt

0i can be fixed to 0, as we
can guarantee that it will not be selected. As such, the set C0t

i can be reduced to
only contain the opt-out alternative.

3.4 Maximum Covering Model

While the SL model (3.2) is a Mixed-Integer Linear Programming (MILP) opti-
misation problem that can be given directly to a general purpose solver, large-scale
instances can be hard to solve. This is due to the Big-M constraints for the util-
ity (3.2f)-(3.2i) and the linearised lower-level problem (3.2j)-(3.2l), as well as both
sets of binary variables x and w. While the Big-M values are tight given the
bounds, as we will see in Section 3.6, the model is intractable for all but the sim-
plest of instances. For this reason, we propose to reformulate the problem into a
maximum covering problem using the pre-computed error terms εrt

ji.
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For j ∈ C1t
i , define urt

jik =
∑k

k′=1 βt
jik′ + κt

ji + εt
ji. In other words, urt

jik is the
utility for the triplet (t, i, r) for charging station j having k outlets in period t.
This is equivalent to the utility urt

ji with xt
jk′ = 1 if k′ ≤ k and xt

jk′ = 0 if k′ > k.

Definition 1. A charging station j with k charging outlets covers the triplet (t, i, r)
if the following conditions hold: (i) k ≥ 1, (ii) j ∈ C1t

i , and (iii) urt
jik ≥ urt

0i, where
urt

0i represents the opt-out utility for triplet (t, i, r). We say that (t, i, r) is covered
by x if ∃j ∈ M, ∃k ∈ {1, . . . , mj} such that xt

jk = 1 and charging station j with k

charging outlets covers (t, i, r).

Intuitively, a charging station covers a triplet if the station has at least one
outlet (and is thus open), it is available to and considered by the user class in
question, and the charging station is a better option than the opt-out for that
triplet.

Example 2. We consider a given scenario r, user class i, and period t. In Fig-
ure 3.2, we see the utilities urt

ji for each option j ∈ C0t
i ∪ C1t

i . For each option, the
error terms and alternative-specific constants are all pre-computed, which defines
the values for utility with no charging outlets. The opt-out utility does not depend
on the number of outlets, and so it is constant. Stations 1 and 3 only cover the
triplet (t, i, r) if they have at least one and four outlets, respectively. Station 2 is
not able to cover (t, i, r) even with six outlets.

0 1 2 3 4 5 6

Number of Outlets

1

2

3

4

5

u
rt ji

Station 3

Opt Out

Station 1

Station 2

Figure 3.2 – Utilities for user class i, under scenario r, at period t.
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Next, we define art
jik = 1 if station j with k outlets covers (t, i, r), and 0 other-

wise. This vector a of parameters can be pre-computed after the error terms have
been calculated. In the maximum covering formulation, we keep the variables x.
We then define the covering decision variables wrt

i = 1 if (t, i, r) is covered by x,
and 0 otherwise.

The Maximum Covering (MC) model is then

Maximise
∑

(t,i,r)∈P

N t
i

Ri

wrt
i , (3.3a)

subject to (3.2b) − (3.2d)∑
j∈M

mj∑
k=1

art
jikxt

jk ≥ wrt
i ,(t, i, r) ∈ P, (3.3b)

xt
jk ∈ {0, 1} , 1 ≤ t ≤ T, j ∈ M, 1 ≤ k ≤ mj,

wrt
i ∈ [0, 1] , (t, i, r) ∈ P.

The objective function (3.3a) is the maximisation equivalent to the objective in the
SL model (3.2a). Constraints (3.3b) model whether the triplet (t, i, r) is covered by
a given x. We note that due to the direction of the optimisation, these inequalities
are satisfied with equality at an optimum. Since these constraints are the only ones
on the variables wrt

i , it is well-known that their integrality can be relaxed (Murray
2016). These constraints replace the utility constraints for choice set C0t

i (3.2e),
the utility constraints for choice set C1t

i (3.2f)-(3.2i) and the maximisation of the
users’ utilities given by (lower-level problem) constraints (3.2j)-(3.2l). They thus
eliminate all Big-M constraints from the model. It is important to note that the
maximum covering reformulation is possible because we consider the case where
stations are uncapacitated. However, if we wished to include capacity constraints,
this would be straightforward for the SL model (3.2) (as was done in Pacheco
Paneque et al. 2021).
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3.5 Heuristic Methods

While the reformulation from the SL model (3.2) to the MC model (3.3) sig-
nificantly improves tractability, the latter is still unable to solve larger instances,
as shown in Section 3.6. We propose three heuristic methods for solving the MC
model (3.3), including rolling horizon, greedy, and Greedy Randomised Adaptive
Search Procedure (GRASP).

We note that, for the greedy and GRASP methods, it is required to calculate
the quality of a candidate solution x. We denote it by

f (x) =
∑

(t,i,r)∈P

N t
i

Ri

min
(

1,
∑
j∈M

mj∑
k=1

art
jikxt

jk

)
. (3.4)

3.5.1 Rolling Horizon Heuristic

Several variants of the rolling horizon heuristic exist, which form a standard
approach in a multi-period setting. The basic version treats each period inde-
pendently. We use this approach as a baseline. More precisely, we solve the MC
model (3.3) for one period at a time, 1 ≤ t ≤ T . Given the potential difficulty
of solving the MC model (3.3) even when restricted to one period, a time limit is
added. The best incumbent solution found within this time limit is returned by
the heuristic.

An alternate version of the rolling horizon heuristic was tested, where for each
time period 1 ≤ t ≤ T the variables xt

jk are discrete, but taken as continuous
for xt′

jk, t′ > t. The variables xt
jk are then fixed, and we repeat the procedure for

t = t + 1. However, this method did not perform well in our application, due to
the increased time required to solve each time period. Thus, we do not discuss this
heuristic further in the rest of the paper.

3.5.2 Greedy Heuristics

The maximum covering problem is generally attributed to Church and ReVelle
(1974), where they also present a simple greedy heuristic. The algorithm presented
here is a natural extension, where we iteratively place outlets one at a time, selecting
the one which increases the number of new EVs the most.
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More specifically, when considering the number of new EVs covered by a new
outlet, there are two possible search modes. In the myopic search mode, only new
EVs from the current period are counted. In the hyperoptic search mode, since any
outlets placed in the current time period cannot be removed, the EVs in future
time periods that result from these outlets are also counted. Namely, we consider
the following score functions when examining a candidate solution x̃ in time period
t′:

fm (x̃, t′) =
∑
i∈N

Ri∑
r=1

N t′
i

Ri

min
(

1,
∑
j∈M

mj∑
k=1

art′

jikx̃t′

jk

)
,

fh (x̃, t′) =
T∑

t=t′

∑
i∈N

Ri∑
r=1

N t
i

Ri

min
(

1,
∑
j∈M

mj∑
k=1

art
jikx̃t

jk

)
,

with fm and fh being (respectively) for the myopic and hyperoptic search modes.
Independently of the search mode, each greedy heuristic starts with the trivial,

zero solution (which is always feasible). It then iterates over each time period.
Given a time period, for each station, the heuristic determines whether adding an
outlet is feasible. If so, it computes the number of new EVs covered accordingly with
the score function for the search mode (fm or fh). The outlet which maximises the
value of the score function is then selected, and the candidate solution updated.
The iteration over stations for the given period continues until no outlets can
feasibly be added (either due to the budget or the maximum number of outlets at
each station), or the total number of EVs does not increase after adding a station.
The latter is possible if all triplets covered by a possible outlet are already covered
in the incumbent solution. The heuristic then proceeds to the next time period
and repeats the process.

3.5.3 GRASP

GRASP is characterised by two phases. The first utilises a greedy approach to
generate solutions, where each greedy move is randomly selected from all possible
moves that result in a solution with an objective value that is within a factor α of
the optimal greedy move. The second phase performs a local search procedure on
each solution from the first phase. This method was first applied to the maximum
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covering problem by Resende (1998). However, the algorithm described in this
work makes several adaptations in order to support the multi-period and sizing
considerations.

First phase The solution construction phase is similar to the Greedy algorithm,
with the addition of the parameter α ∈ [0, 1]. We randomly select one outlet to
place from amongst the set of outlets that result in an increase within 100 × α %
of the best possible outlet. The myopic and hyperoptic search modes also apply in
the GRASP method.

Solution Filtering In our method, the second phase of GRASP takes consider-
ably longer than the first phase. As such, it is beneficial to filter out unpromising
solutions early on. In a method proposed in Resende and Ribeiro (2018), we ex-
amine whether the local search method, when applied to a candidate solution, is
likely to result in a better objective value than our incumbent solution. For a given
number of candidate solutions, we examine the relative increase to the objective
function before and after applying the local search. For all subsequent candidate
solutions, we then estimate the maximum objective value from the second phase by
multiplying the objective value of the candidate solution by the maximum relative
increase that was observed. If this results in an objective value that is less than our
current best, we filter the candidate solution and do not start the second phase.

Second Phase When examining a candidate solution x̂, we consider the three
following moves:

Add: If the budget permits, we add an outlet to the given station j in period t.
To ensure feasibility of the solution, we also increase the number of outlets
for all subsequent periods t + 1, . . . , T for station j.

Transfer: If the station j has at least one outlet, we consider each station j′, j′ ̸= j,
and transfer all resources spent on station j in each period t, t + 1, . . . , T to
be spent on station j′ instead. To ensure feasibility of the solution, we set
the number of outlets at station j for periods t′ ≥ t to the value in period
t − 1 (or x0

jk if t = 1). If station j′ reaches the maximum number of outlets
and there are resources remaining, they are spent on station j.
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Split: If the station j has at least one outlet, we consider each station j′, j′ > j,
and we evenly split the resources spent on stations j and j′ in each period
t, t+1, . . . , T . We note that this move is symmetric, and so it is only necessary
to attempt this move if j′ > j. In order to ensure feasibility of the solution,
we can only use this move if the resources spent on these stations and the
prior values of the solution for these stations in period t − 1 allow us to open
both stations and place at least one outlet in each.

The moves can be applied to the candidate solution using either the “first
improvement” or “best improvement” methods as described in Resende and Ribeiro
(2018). In the first improvement method, the candidate solution x̂ is updated
whenever a move is found which improves the objective function f (x̂). In the best
improvement method, the candidate solution x̂ is updated with the move from
amongst all stations j which resulted in the highest objective function f (x̂).

Stopping Criteria We wish to prevent the local search from spending consider-
able time making very minor improvements to the candidate solution. At the end
of each loop through the stations, we check the increase in the objective function
via the local search. If the relative increase to the objective function falls below a
given threshold, the local search immediately ends the search in the given period
and proceeds to the following one.

The GRASP algorithm terminates when one of the following conditions have
been satisfied: i) a threshold number of candidate solutions have been examined,
ii) a threshold number of candidate solutions have been filtered out or, iii) a time
limit has been reached.

3.6 Computational Results

In this section, we analyse the results from computational experiments using the
models and heuristic methods discussed in the previous sections. In Section 3.6.1,
we describe the network and datasets used in our experiments. In Section 3.6.2, we
assess the advantage of the MC model (3.3) over the SL model (3.2) when solving
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both with a MILP solver. In Section 3.6.3, we compare the capabilities of the GF
model and the MC model. We show that the MC model (3.3) can more accurately
reflect effects which are known from the literature to affect EV purchase. Finally,
in Section 3.6.4, we discuss the limitations of the MC model (3.3) motivating, in
Section 3.6.5, a computational study comparing it with our heuristic methods.

All tests were run on a server running Linux version 3.10, with an Intel Core
i7-4790 CPU with eight virtual cores and 32 GB of RAM. The code is written in
Python 3.7, and is publicly available 1. We use CPLEX version 12.10, accessed via
the DoCPLEX module (version 2.21). Parameter values can be found in Appendix
A.1.2, and instances used in the simulations are publicly accessible 2.

3.6.1 Test Environment

The network used for the simulations is based on the smallest aggregation level
in the 2016 census (Statistics Canada 2017) for the city of Trois-Rivières, Québec.
This defines 317 zones within the city, with populations and aggregate character-
istics given for each zone. Nodes in the graph are given by the centroids of each
zone. The edges in the graph are created between adjacent zones, with the edge
length being the Euclidean distance between the centroids. We note that the Saint
Lawrence river divides the city into two parts. Edges have been added to the graph
to account for the Laviolette bridge, which connects both parts. The network is
shown in Figure 3.3, with the nodes shown as points.

We generated five datasets , each containing 20 instances with a list of candidate
stations, a set of user classes, and pre-computed error terms. The parameters
and the generation method for the error terms for each dataset are discussed in
Appendix A.1.2, with key parameter values given in Table 3.2. We give a summary
of the important distinctions in each dataset:

Simple A small-scale dataset where key parameter values are fixed such that the
resulting instances are easy to solve. This is the only dataset which the SL
model (3.2) can solve.

Distance This dataset increases the penalisation term in the alternative-specific

1. https://github.com/StevenLamontagne/EVChargingStationModel
2. https://doi.org/10.7488/ds/3850
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Figure 3.3 – Trois-Rivières network

constant for each station to account for distance.

HomeCharging For this dataset, we create two user classes in each node: one
with and one without access to home charging.

LongSpan This dataset increases the number of years from four to ten, but the
user classes remain consistent across the planning horizon.

Price In this dataset, we simulate a decrease in the price of the EV year-by-year,
which affects user classes differently based on their income. The alternative-
specific constant for each station is modified based on the income level of the
user class and the current year.

The Simple, Distance, and HomeCharging datasets have a candidate location set
with ten options, and users will not consider any station which is more than ten
kilometres away. In contrast, the LongSpan and Price datasets have a candidate
location with 30 options, and users may consider any charging station regardless
of the distance. This results in significantly more difficult problems to solve. In
general, CPLEX is not able to solve the exact models for these instances.

Parameter Simple Distance HomeCharging LongSpan Price
T 4 4 4 10 4
|M | 10 10 10 30 30
|N | 317 317 734 317 1397
Ri 15 − 105 15 − 105 15 − 105 465 465
mj (all stations) 2 6 6 6 6

Table 3.2 – Parameter values for the generated instances.
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3.6.2 Comparison of the Single-Level and Maximum Cov-
ering Models

In order to illustrate the advantages of the maximum covering formulation over
the single-level version, we solve all instances in the Simple dataset using both
formulations. Table 3.3 reports the following statistics averaged over the 20 in-
stances: The CPU time for the root and branch-and-cut, as well as the optimality
gaps for each phase and the number of nodes, are as reported in the CPLEX log
file. For the number of instances solved, we consider an instance to be solved if
the solver terminates with a provably-optimal solution. For the CPU time in the
linear relaxation, neither the Python API nor the CPLEX log directly give the
time to solve the linear relaxation of the model. Since CPLEX may run additional
methods at the root node to more rapidly solve a discrete optimisation problem
(e.g. cuts or heuristics) rather than simply solving its linear relaxation, we ran the
solver a second time with the continuous versions of all the variables. As such, the
CPU time for the linear relaxation may be higher than for the root node, due to
run-time differences.

We note a large difference in the solving time of the models. In addition to the
average improvement between the MC model (3.3) and the SL model (3.2), we also
note that the former displays small variance: for the SL model (3.2), the solving
times ranged from 1,978.21 to 4,724.34 seconds, whereas for the MC model (3.3),
the solving times ranged from 0.22 to 0.32 seconds. We also observe improvements
in the optimality gap at the root node as well as in the number of nodes explored,
likely due to the presence of the Big-M constraints in the SL model (3.2).

3.6.3 Comparison of the Maximum Covering and GF Mod-
els

We compare the capabilities of the GF model (Anjos et al. 2020) with those
of the MC model (3.3). To accurately compare the models, we only use the node-
based, intracity part of the GF model. Parameter values are chosen to match as
closely as possible between both models. The modified GF model, as well as the
parameters, are presented in Appendix A.1.3.
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MC SL
CPU time (LP, sec) 0.83 4466.75
CPU time (root, sec) 0.23 2294.71
CPU time (B&C, sec) 0.03 729.24
Optimality gap (root, %) 0.69 2.15
Optimality gap (B&C, %) 0.00 0.00
Nodes explored 8.50 769.85
Instances solved 20 20

Table 3.3 – Average performance of CPLEX applied to the MC model and the SL model
in the Simple dataset; LP denotes the linear relaxation and B&C denotes the branch-and-
cut.

We assume that the capacity of each charging outlet is infinite in the GF model.
This is consistent with the assumption in the MC model that the stations are
uncapacitated.

In Sections 3.6.3 and 3.6.3, we consider two cases. In the first case, we force the
solver to use the same solution for both the GF and the MC models. This allows
for comparing the spread of EVs around charging stations. In the second case, we
find the solution returned by the solver for the GF model. We then calculate the
objective value of the MC model (3.3) using that solution (by using (3.4)). This
allows us to analyse if the differences in the spread of EVs has an impact on solution
quality.

Distance to Charging Station

Distance is a key factor in determining which facility users choose to patronise
in the maximum capture problem (Benati and Hansen 2002, Eiselt et al. 2019) as
well as in models that examine existing EV owners’ choice of charging location (Luo
et al. 2015, Vermeulen et al. 2019, Wolbertus et al. 2021). These works all find that
users are less likely to select a facility as the distance increases. To our knowledge,
there are no studies which examine the impact of the distance of charging stations
to users in the decision to purchase an EV, but we assume that similar results hold
in this case. That is, the utility of a charging option (and thus the likelihood that
the charging option acts as a primary recharging method) decreases with distance.

In the GF model, all users have a maximum distance within which they consider
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Figure 3.4 – Percentage of population in each zone which purchases an EV by the end
of the simulation when examining the distance to the charging station. GF model on left
side, MC model on right side.

charging stations. At a given node, users consider charging at any charging station
within that maximum distance.

In the MC model (3.3), we also assume that the users have a maximum dis-
tance for considering charging stations. However, additionally, the utility decreases
with distance. For this comparison, we use the Distance dataset described in Sec-
tion 3.6.1.

In Figure 3.4, we see the percentage of the population that purchases an EV (at
the end of the planning horizon) when one station is opened. On the left, in the
GF model, we see that the EV adoption rate is the same across the entire region
that considers that station. By comparison, on the right in the MC model, we see
that the EV adoption rate decreases as the distance increases.

In Table 3.4, we report the value of (3.4) for the solutions from both models.
We see that the optimal objective values for the GF model are around 42% lower
than those for the MC model. However, the incentive for the GF model to place
more outlets is linked to the capacity of each station. Thus, in the uncapacitated
case, it will only place one outlet at any station it opens. To counteract this effect
and compare the models more fairly, we examine the objective values of adjusted
solutions. These set the capacity of each station selected to be open by the GF
model to its maximum capacity of 6 outlets. Despite this being an infeasible
solution (due to the budget), the optimal objective values for the adjusted GF
model are still around 20.6% lower than those for the MC model.
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GF GF (Adjusted) MC
5th percentile 9117.18 12954.33 16496.45
Median 9266.85 13113.74 16592.65
95th percentile 9407.89 13244.96 16764.57

Table 3.4 – Number of EVs from the solutions of the GF and MC models.

We note the difference in the spread of EVs observed in Figure 3.4, with the
spread in the MC case being more consistent with the literature (Benati and Hansen
2002, Eiselt et al. 2019). Additionally, as we report in Table 3.4, the quality of the
solutions are considerably different between the two models. This indicates that
these differences have an important impact in the solutions, and highlights the
benefits of the maximum covering formulation.

Access to Home Charging

Given it is a significant factor in the decision to purchase an EV, accurately
modelling access to home charging is critical (Hidrue et al. 2011, Bailey et al. 2015).

In the GF model, it is assumed that a given fraction of new EV owners will
have access to home charging (which depends on the year, but not the location).
The total number of EVs at each location, including both those who have access
to home charging and those who do not, is then bound by the capacity of nearby
stations. Consequently, if there are no charging outlets sufficiently close to the
users, not even those with home charging access may purchase EVs. We note this
effect in Figure 3.6.

In the maximum covering model (3.3), the population and home charging access
for each user class can be set independently. By creating two user classes for
each area, with appropriately set populations, we can more accurately model the
percentage of the population that has access to home charging. Additionally, since
the two user classes are separate in the model, the users who have access to home
charging are allowed to purchase EVs, even if no public charging infrastructure is
sufficiently close. For this comparison, we use the HomeCharging dataset described
in Section 3.6.1.

In Figure 3.5, we depict the percentage of the population in each area that
purchase EVs by the end of the simulation period simply because of home charging
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Figure 3.5 – Percentage of Population Covered by Home Charging Access.

GF GF (Adjusted) MC
5th percentile 13648.43 15990.52 17975.55
Median 13737.12 16091.57 18036.37
95th percentile 13780.56 16133.63 18085.95

Table 3.5 – Number of EVs from the solutions of the GF and MC models.

access (according to the MC model (3.3)). In other words, even if no public charging
infrastructure is installed, these users can charge at home and decide to purchase
an EV. By contrast, in Figure 3.6, we depict the percentage of the population at
the end of the simulation period that purchase EVs when one station is opened.
On the left, in the GF model, we note that only users near the charging station
have purchased EVs. By comparison on the right, in the MC model (3.3), we note
that the users that were covered by home charging in Figure 3.5 have purchased
EVs. Additionally, we see that near the charging station there is an increase to the
percentage of the population that purchases EVs, as users who were not covered
by home charging access are now covered by the charging station.

In Table 3.5, we report the value of (3.4) for the solutions from both models.
We see that not accounting for home charging access results in a decrease in the
number of EVs of around 23.8%. As before, we examine an adjusted solution to
take the infinite capacity into account. Despite this being an infeasible solution, it
results in a decrease in the numbers of EVs of around 10.8% compared to the MC
model. Clearly, the same findings emerge as in Section 3.6.3.
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Figure 3.6 – Percentage of population in each zone which purchases an EV by the end
of the simulation when examining the home charging access. GF model on left side, MC
model on right side.

3.6.4 Limitations of the Maximum Covering Model

While the maximum covering formulation significantly improves tractability by
MILP solvers compared to the single-level formulation, our problem remains diffi-
cult to solve for large instances. To demonstrate this, we solve the MC model (3.3)
over all instances in all five datasets, restricting CPLEX to a time limit of 7,200
seconds. In Table 3.6, we report the average performance, using the same statistics
reported in Section 3.6.2.

We first note that CPLEX is not able to solve any of the instances in the
LongSpan and Price datasets within the time limit. Moreover, not only can it
not complete the root node, it is not even able to solve the LP relaxation This
highlights the complexity of the problem, even for a moderate-sized city and only 30
candidate locations. Concerning the three smallest datasets (Simple, Distance, and
HomeCharging) which are all solved to optimality, we remark that the optimality
gap at the root node is quite good, suggesting that the majority of the difficulty lies
in solving the root node. Finally, we note that, while most of the statistics of each
instance are close to the average, the number of nodes explored and the CPU time
for the branch-and-cut phase vary, depending on how quickly the optimal solution
is found.
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Simple Distance HomeCharging LongSpan Price
CPU time (LP, sec) 0.83 1.01 4.33 - -
CPU time (root, sec) 0.23 2.12 6.29 7202.90 7203.88
CPU time (B&C, sec) 0.03 0.53 4.51 - -
Optimality gap (root, %) 0.69 2.47 2.41 37.34 75.14
Optimality gap (B&C, %) 0 0 0 37.34 75.14
Nodes explored 8.50 99.95 447.75 0 0
Instances solved 20 20 20 0 0

Table 3.6 – Average performance of CPLEX applied to the MC model. The entries for
the Simple dataset are copied from Table 3.3, for ease of comparison.

3.6.5 Comparing Heuristics

We compare solving the MC model (3.3) via the standard branch-and-cut ap-
proach used by CPLEX (labelled as “Exact” in the results) and the heuristics
presented in Section 3.5. We impose a time limit of two hours (7,200 seconds) for
the Exact and all heuristic methods. In the cases of the Exact method and the
Rolling Horizon method, this time limit is given directly to CPLEX, and thus only
limits the CPLEX solving time. The Greedy procedure is tested using both the
myopic and hyperoptic search methods. For the Rolling Horizon method, we ex-
amine two ways of distributing the time across the years. In the first, we divide the
time evenly amongst all years (“Even”). In the second, the time limit is divided
geometrically, with the first year having a time limit of 3,600 seconds and each
successive year having half of the previous time (“Geometric”). For the GRASP
procedure, we test both the myopic and hyperoptic search methods. We set the
value of α to 0.85, as recommended for the maximum covering problem in Resende
and Ribeiro (2018). The GRASP procedures run until 300 solutions have been
examined, or until 500 solutions have been filtered out. The second phase of the
GRASP procedure uses the first improvement method.

Solving Time

In Table 3.7, we report the 5th percentile, the 95th percentile, and the av-
erage solving time across all instances of a given dataset and method. For the
small datasets (Simple, Distance, HomeCharging), the solving time of the Ex-
act method is only surpassed by the Greedy and Rolling Horizon methods. Both
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Greedy methods are undoubtedly the fastest. This is the case in the Simple and
Distance datasets (with the Rolling Horizon methods being nearly as fast in the
Simple dataset), however, it is more noticeable in the HomeCharging, Price, and
LongSpan datasets.

The Rolling Horizon methods both solve quickly for the small datasets. In the
LongSpan test set, the Rolling Horizon methods solve more quickly than the Exact
method. Since the user classes are the same for each year, solutions from previous
years act as good quality warmstart solutions. This allows the later years in the
Rolling Horizon method to terminate before the time limit. However, this does not
occur in the Price test set. Since the user classes change each year, the quality of
the solution for previous years is poorer, which causes the solver to reach the time
limit.

While the GRASP methods took longer to solve than the RollingHorizon meth-
ods in the small datasets, they scaled better for the Price dataset. This resulted
in a solving time around a sixth that of the RollingHorizon and Exact methods.
In the LongSpan dataset, the solving times for the GRASP method are relatively
high. This is due to the fact that both the first and second phases iterate over
every year, which causes the solving time to increase substantially as the number
of time years increases. The hyperoptic method is solved noticeably slower than
the myopic method.

Solution Quality

In Table 3.8, we report the 5th percentile, the 95th percentile, and the average
gaps to the best known solution for all instances of a given test set and method.
More specifically, for each instance, we examine which method found the solution
with the highest objective, whose value is denoted as bestSol. The gap for each
method is then given by gap(x⋆) = bestSol−f(x⋆)

bestSol
, where x⋆ is the solution found by

the given method.
Additionally, we give the number of instances in which a method has found a

solution with objective value equal to that of the best known solution. In the case
of the Simple, Distance, and HomeCharging datasets, the exact solution is known,
thus the corresponding entries for the heuristic methods are the optimality gaps.

While the Exact method produces the best solution value for the smaller tests
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Simple Distance HomeCharging Price LongSpan
Exact 5th percentile 0.22 2.26 9.17 7203.50 7202.70

Average 0.27 2.66 10.80 7203.98 7202.99
95th percentile 0.30 3.04 11.89 7204.51 7203.27

GreedyOne (Myopic) 5th percentile 0.10 0.15 0.15 1.03 1.17
Average 0.10 0.16 0.39 1.06 1.23
95th percentile 0.10 0.17 1.07 1.09 1.65

GreedyOne (Hyperoptic) 5th percentile 0.21 0.29 0.29 2.20 4.98
Average 0.21 0.31 0.57 2.27 5.09
95th percentile 0.21 0.33 1.19 2.36 5.12

RollingHorizon (Even) 5th percentile 0.17 0.37 1.92 7201.49 3557.43
Average 0.18 0.40 2.09 7226.27 3919.75
95th percentile 0.19 0.41 2.22 7298.76 4238.00

RollingHorizon (Geometric) 5th percentile 0.17 0.37 1.92 7201.47 7096.51
Average 0.18 0.40 2.08 7219.97 7163.96
95th percentile 0.19 0.41 2.21 7314.78 7186.91

GRASP (Myopic) 5th percentile 66.48 78.20 88.06 851.76 1593.75
Average 71.22 83.74 91.55 873.47 1635.97
95th percentile 81.70 87.18 101.45 896.95 1666.46

GRASP (Hyperoptic) 5th percentile 99.27 119.29 128.16 1405.71 3058.92
Average 105.07 122.85 132.76 1433.38 3121.60
95th percentile 113.94 127.47 138.17 1478.21 3197.92

Table 3.7 – Comparison of solving times for heuristic methods across all datasets. Times
are given in seconds.

(Simple, Distance, HomeCharging), it is unable to find solutions which are as good
as the heuristic methods in the Price and LongSpan datasets.

The Greedy methods performed slightly worse than the other heuristic meth-
ods in the Simple, Distance, and Home Charging datasets, but they performed
surprisingly well in the LongSpan and Price datasets. They frequently found the
best solution, and with gaps under 0.1% even in cases where the method did not
find the best solution.

The Rolling Horizon methods perform well in the smaller test sets but, similar to
the Exact method, they do not perform as well in the LongSpan and Price datasets
as the other heuristic methods. Both GRASP methods performed comparable to
each other, and comparable with the Greedy methods. However, the GRASP
methods were more consistently able to produce good-quality solutions across all
datasets as compared to the Greedy methods, as can be seen in the Distance
dataset.
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Simple Distance HomeCharging Price LongSpan
Exact 5th percentile 0.00 0.00 0.00 12.67 8.86

Average 0.00 0.00 0.00 12.74 8.94
95th percentile 0.00 0.00 0.01 12.83 9.01
# of best 20 20 20 0 0

GreedyOne (Myopic) 5th percentile 0.00 1.66 0.46 0.00 0.00
Average 0.02 2.08 0.53 0.01 0.01
95th percentile 0.07 2.76 0.68 0.05 0.03
# of best 14 0 0 11 15

GreedyOne (Hyperoptic) 5th percentile 0.00 1.47 0.44 0.00 0.00
Average 0.07 2.03 0.61 0.02 0.02
95th percentile 0.19 2.53 0.84 0.06 0.05
# of best 9 0 0 8 10

RollingHorizon (Even) 5th percentile 0.00 0.00 0.00 12.33 4.11
Average 0.00 0.07 0.02 12.66 4.19
95th percentile 0.00 0.38 0.06 12.83 4.27
# of best 20 14 12 0 0

RollingHorizon (Geometric) 5th percentile 0.00 0.00 0.00 12.51 2.52
Average 0.00 0.07 0.02 12.72 3.95
95th percentile 0.00 0.38 0.06 12.83 4.26
# of best 20 14 12 0 0

GRASP (Myopic) 5th percentile 0.00 0.14 0.16 0.00 0.10
Average 0.02 0.43 0.26 0.02 0.18
95th percentile 0.12 0.68 0.36 0.04 0.24
# of best 16 0 0 5 0

GRASP (Hyperoptic) 5th percentile 0.00 0.19 0.12 0.00 0.10
Average 0.03 0.44 0.23 0.04 0.19
95th percentile 0.16 0.67 0.36 0.07 0.26
# of best 14 0 0 3 0

Table 3.8 – Comparison of gaps to the best known solution for heuristic methods in all
five datasets (in percentage).
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3.7 Conclusion

In this work, we proposed a model for determining the optimal location of EV
charging stations in a long-term planning environment so as to maximise the total
number of EVs. To consider user-specific characteristics, we used discrete choice
models to represent the decision of the users to purchase EVs. When compared to
the existing model for this problem (the GF model in Anjos et al. 2020) this allowed
for more intuitive user behaviour with regards to charging station location and
home charging access. Additionally, solutions for the GF model were significantly
different than those for the MC model, highlighting the benefits of using the latter.

Using the simulation-based approach of Pacheco Paneque et al. (2021) resulted
in a bilevel model. By reformulating the model as a maximum covering problem,
the sets of Big-M constraints were removed, thus improving the tractability. We
note that this reformulation can be applied to other applications of the simulation-
based method (including the MCPRU) if no capacity constraints are present.

For more difficult instances, several heuristic methods were proposed for ob-
taining feasible solutions. While the Rolling Horizon heuristic was not as effective
for more difficult instances, the Greedy and GRASP algorithms both performed
very well. In particular, we note that the Greedy methods were able to find solu-
tions within a few seconds, even on the most difficult instances. Additionally, the
GRASP methods can obtain solutions of near-optimal quality within a few minutes
for the small instances, and they can easily surpass the quality of the best solution
obtained from the exact method, within less than half the time limit. The simi-
lar performances of the Greedy and GRASP methods suggests that more complex
local search moves may be necessary to find better solutions.

While the heuristic methods were able to quickly find feasible solutions, we
are not able to verify the quality of these solutions on the larger instances. Fur-
ther research will examine an exact method specifically tailored for larger scale
instances. A few approaches are possible. Firstly, the structure of the problem
resembles the resource-constrained production scheduling problem (RCPSP), for
which a specialised algorithm exists (Bienstock and Zuckerberg 2010, Muñoz et al.
2018). The method (which is similar to column generation) has a mechanism for
bounding the number of basis elements. However, when this bound is applied to
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our problem, it is greater than the maximum number of basis elements. As such, a
complete enumeration is possible, and the method may require solving the full MC
model (3.3). A successful modification and implementation of this algorithm for
our problem would be the subject of future research. A second possible approach
is the Bender’s decomposition method proposed in Cordeau et al. (2019), which
is designed for large-scale maximum covering problems. Since the restricted mas-
ter problem does not include the full set of covering constraints, and solutions to
the subproblem can be calculated analytically, the method seems quite well-suited.
However, in our preliminary testing, we have found poor convergence. In part, this
is likely due to the higher ratio of stations to users as compared with the original
paper, which the authors note to be an important factor. As such, research is
ongoing to improve the performance of this method in our problem.

Since the MC model (3.3) was designed for the intracity network, it is not
applicable to larger geographical areas. For example, in the MC model (3.3),
there are no constraints related to the range of EVs, which would be necessary for
intercity travel. This is a notable difference with the GF model of Anjos et al.
(2020), which was designed for intracity and intercity networks, and was applied
to the province of Québec. As such, further research will examine an extension of
the MC model (3.3) which includes the intercity network.
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4

Accelerated Benders
Decomposition and Local
Branching for Dynamic
Maximum Covering
Location Problems

Preface

In Chapter 3, we reformulated the single-level model of Pacheco Paneque et al.
(2021) with simulated utilities to an efficient maximum covering formulation. More
specifically, due to the time periods, the resulting model can be described as a
dynamic (or multi-period) MCLP. However, even with this reformulation, there
remain challenges with solving hard instances. Notably, the general-purpose linear
programming solver CPLEX cannot solve the LP relaxation of the problem within
a two-hour time limit. As such, in this chapter, we develop specialised Benders
decomposition algorithms for the multi-period model, expanding the single-period
MCLP method proposed in Cordeau et al. (2019). This includes an accelerated
branch-and-Benders-cut algorithm and a local branching scheme, both of which
exploit separability of our problem by time period to improve convergence and find
better quality solutions.

These specialised algorithms can be applied to any dynamic MCLP with the
only constraint on the users being the covering constraints (2.10c). In other words,
any constraints on the facilities (or stations, in our application) can be used, such
as budgetary, cardinality, or precedence constraints. However, constraints such as
a capacity for the facilities (which link the facility and user variables) or requiring
repeated coverage of users (which act on the user variables between time periods)
are not valid within this framework. Further discussion around these limitations is
presented in Chapter 6.

The contents of this chapter are in the second round of revision for Computers
& Operations Research. A pre-print publication can be cited as follows:

Lamontagne, S., Carvalho, M., Atallah, R., 2023. Accelerated Benders Decom-
position and Local Branching for Dynamic Maximum Covering Location Problems.
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Abstract

The maximum covering location problem (MCLP) is a key problem in facility
location, with many applications and variants. One such variant is the dynamic (or
multi-period) MCLP, which considers the installation of facilities across multiple
time periods. To the best of our knowledge, no exact solution method has been pro-
posed to tackle large-scale instances of this problem. To that end, in this work, we
expand upon the current state-of-the-art branch-and-Benders-cut solution method
in the static case, by exploring several acceleration techniques. Additionally, we
propose a specialised local branching scheme which exploits the separability of the
problem by time period. This scheme uses a novel distance metric in its definition
of subproblems and features a new method for efficient and exact solving of the
subproblems. These methods are then compared through extensive computational
experiments, highlighting the strengths of the proposed methodologies.

Keywords: Maximum covering, dynamic, Benders decomposition

4.1 Introduction

A classic problem in operations research is the optimal location of facilities ac-
cording to different aspects such as users’ preferences and installation cost. Within
this category of problems is the maximum covering location problem (MCLP), at-
tributed to Church and ReVelle (1974). In the MCLP, each facility covers the users
within a certain radius and, due to limited resources, it is not possible to open
every facility. Thus, a decision maker must select a subset of facilities to open,
with the goal of maximising the total coverage. Due to its simplicity and versatil-
ity, the MCLP has been used in a wide range of applications, including emergency
services location (Gendreau et al. 2001, Degel et al. 2015, Nelas and Dias 2020),
healthcare services (Bagherinejad and Shoeib 2018, Alizadeh et al. 2021), safety
camera positioning (Dell’Olmo et al. 2014, Han et al. 2019), ecological monitoring
or conservation (Church et al. 1996, Martín-Forés et al. 2021), bike sharing (Muren
et al. 2020), and disaster relief (Zhang et al. 2017b, Iloglu and Albert 2020, Yang
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et al. 2020). For a review of the MCLP and its applications, we refer to Murray
(2016).

To include more complex interactions and restrictions, several variants of the
MCLP have been developed. The one we consider is the dynamic (or multi-period)
MCLP, where the decision maker conducts facility planning over a long time hori-
zon, divided into discrete time periods (Schilling 1980, Gunawardane 1982). The
intrinsic consideration of the time horizon is vital in many situations, such as when
the demand to be covered varies across time (Porras et al. 2019), when planning in-
frastructure that persists throughout future planning periods (Gunawardane 1982,
Lamontagne et al. 2023), or in real-time operations of emergency services where ex-
act positioning is important (Gendreau et al. 2001). Throughout the time horizon,
open facilities may be forced to remain open for the duration of the time hori-
zon (Lamontagne et al. 2023), may be allowed to change location with or without
cost (Marín et al. 2018), or a subset may be required to be relocated each time
period (Dell’Olmo et al. 2014).

To the best of our knowledge, no exact method exists for solving large-scale
dynamic MCLPs. More specifically, the only exact method employed in the liter-
ature for the dynamic MCLP is branch-and-bound, which has successfully solved
instances with 300 users, 300 facilities, 9 time periods (Dell’Olmo et al. 2014), and
49, 905 users, 60 facilities, 4 time periods (Lamontagne et al. 2023). Meanwhile,
in terms of heuristic methods, Porras et al. (2019) used simulated annealing to
solve instances with 547 users, 547 facilities, 4 time periods, while Lamontagne
et al. (2023) used a greedy method to solve instances with 649, 605 users, 180 facil-
ities, 4 time periods. This compares with specialised methods for the static MCLP,
which have successfully solved instances with 818 users, 818 facilities (Pereira et al.
2007), and 15, 000, 000 users, 100 facilities (Cordeau et al. 2019). Most notably,
the method proposed in Cordeau et al. (2019) is specifically designed for problems
in which there are significantly more users than facilities. This situation can occur
when using a very fine discretisation of a continuous demand (e.g. Lamontagne
et al. 2023) or when creating many different scenarios to model uncertainty in the
problem (Daskin 1983, Berman et al. 2013, Vatsa and Jayaswal 2016, Nelas and
Dias 2020). These categories of use cases support the need for a specialised method
for the dynamic MCLP which can handle large-scale instances.
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In this work, we present several contributions to the literature on the dynamic
MCLP. First, we extend the branch-and-Benders-cut approach for the static MCLP
of Cordeau et al. (2019) to the dynamic case. Second, we detail a suite of accelera-
tion techniques tailored for the dynamic MCLP, which can be selected based on the
structure of the application. This includes an intuitive and effective multi-cut gen-
eration technique based on separability by time period, an efficient Pareto-optimal
cut generation technique with a closed-form solution, a partial Benders decomposi-
tion strategy which leverages the problem structure, and a Benders dual decompo-
sition approach which can further strengthen cuts for fractional solutions. Third,
we present a specialized local branching method embedded within the branch-and-
Benders cut framework. This method makes use of a new distance metric for defin-
ing subproblems, which relies on the separability of the problem by time period.
We then present a novel subproblem solution method, which can efficiently solve
the local branching subproblems in an exact and proven-valid manner. Fourth, we
present extensive computational results comparing our proposed methods. Part of
these experiments are carried out with instances based on real data from an electric
vehicle charging station placement case study, underlying the practical interest of
the dynamic MCLP. Our results validate the suitability of our methodological con-
tributions to provide high-quality solutions to instances involving a large number of
users, candidate locations and a planning horizon. In particular, our methods can
produce solutions with a higher demand covered compared to the greedy heuristic
in Lamontagne et al. (2023), in addition to providing performance guarantees via
optimality gaps.

The rest of this paper is organized as follows: Section 4.2 discusses the lit-
erature about solution methods for the static and dynamic MCLP. Section 4.3
presents the general model for the dynamic MCLP. Section 4.4 is dedicated to the
branch-and-Benders-cut methods, extending the work in Cordeau et al. (2019) and
implementing improvement methods to the general framework. Section 4.5 then
presents the local branching method, based on the work in Rei et al. (2009), with
special consideration for the distance metric and the branching scheme. Finally,
Section 4.6 provides our computational results, while Section 4.7 concludes our
work.
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4.2 Literature Review

Despite its long history, few exact solution methods have been developped for
the MCLP, while heuristic methods are most commonly used (Murray 2016). We
provide a summary of solution methods for both the static and dynamic MCLP in
Table 4.1.

The most common exact method uses standard branch-and-bound techniques,
in conjunction with off-the-shelf mixed-integer linear programming solvers. This
method is commonly used for small-scale instances, or as a benchmark approach for
heuristics. However, it has been repeatedly noted that this is insufficient for solving
large-scale instances (see, e.g., ReVelle et al. 2008, Zarandi et al. 2013, Cordeau
et al. 2019, Lamontagne et al. 2023). In addition, three other exact methods have
been presented for the static MCLP. In Downs and Camm (1996), a lower bound
is generated via a greedy procedure, similar to the one presented in Church and
ReVelle (1974), while an upper bound is generated via Lagrangian relaxation of the
covering constraints. Both are combined within a branch-and-bound framework to
ensure optimality. In Pereira et al. (2007), the MCLP is reformulated as a p-
median problem, with a column generation procedure used to solve the resulting
model. In the procedure, stabilisation techniques are proposed to help improve the
convergence rate, and limits are placed on both the number of columns generated
and the total number of iterations. In Cordeau et al. (2019), the variables associated
with the coverage of users are projected out in the Benders subproblem. An analytic
solution is then given for the solution of the Benders dual subproblem, allowing for
rapid generation of Benders cuts. This process is embedded within a branch-and-
Benders-cut framework, allowing for large-scale problems to be solved efficiently.

In terms of heuristics, we note a wide variety of methods. However, two ap-
proaches which are used repeatedly include greedy methods and simulated anneal-
ing. In the greedy method (e.g. Church and ReVelle 1974), a solution is constructed
by repeatedly opening a facility, each time selecting the one which causes the largest
increase in coverage. In simulated annealing (e.g. Murray and Church 1996), the
process simulates the cooling of metals, with a temperature parameter that varies
across the solving process and which controls the mutability of our current solution
(e.g. swapping an open facility for a closed one). In Xia et al. (2009), these two
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Article Variant Methods proposed Exact versus heuristic
Church and ReVelle (1974) Static Greedy, branch-and-bound Both
Schilling (1980) Dynamic Weighing method Heuristic
Gunawardane (1982) Dynamic Branch-and-bound Exact
Downs and Camm (1996) Static Greedy + Lagrangian relaxation + Branch-and-bound Exact
Galvão and ReVelle (1996) Static Greedy + Lagrangian relaxation Heuristic
Murray and Church (1996) Static Greedy, simulated annealing Heuristic
Adenso-Díaz and Rodríguez (1997) Static Tabu search Heuristic
Resende (1998) Static GRASP Heuristic
Galvão et al. (2000) Static Lagrangian relaxation, surrogate relaxation Heuristic
Arakaki and Lorena (2001) Static Genetic algorithm Heuristic
Gendreau et al. (2001) Dynamic Parallel tabu search Heuristic
Pereira et al. (2007) Static Column generation Exact
ReVelle et al. (2008) Static Heuristic concentration Heuristic
Xia et al. (2009) Static Greedy, simulated annealing, genetic algorithm, tabu search Heuristic
Rodriguez et al. (2012) Static Iterative greedy Heuristic
Zarandi et al. (2013) Dynamic Simulated annealing Heuristic
Dell’Olmo et al. (2014) Dynamic Branch-and-bound Exact
Colombo et al. (2016) Static Variable neighbourhood search, heuristic concentration Heuristic
Calderín et al. (2017) Dynamic Simulated annealing, evolutionary algorithm Heuristic
Máximo et al. (2017) Static Intelligent-guided adaptive search Heuristic
Marín et al. (2018) Dynamic Lagrangian relaxation Heuristic
Cordeau et al. (2019) Static Branch-and-Benders-cut Exact
Porras et al. (2019) Dynamic Simulated annealing Heuristic
Lamontagne et al. (2023) Dynamic Greedy, GRASP, rolling horizon Heuristic

Table 4.1 – Articles proposing solution methods for the static or dynamic MCLP.

heuristics (along with greedy plus substitution, genetic algorithm and tabu search)
were compared, with the simulated annealing method finding solutions of the best
quality. By comparison, the greedy method solved instances faster, with solutions
of value within a 1% relative gap of those of simulated annealing.

Our work contributes to the literature on exact methods for dynamic MCLPs,
which, to our knowledge, is limited to branch-and-bound techniques. These have
proved inadequate for tackling large-scale instances.

4.3 Problem Formulation

We present a general formulation for the dynamic MCLP. Let T be the number
of time periods, J be the set of users and I be the set of facilities. We use the
index 1 ≤ t ≤ T to denote a time period, the index j ∈ J for a user, and the index
i ∈ I for a facility. We define the parameters at

ij such that at
ij = 1 if facility i

covers user j in period t, and 0 otherwise. Let dt
j > 0 denote the demand of user j

in time period t. We introduce a binary decision vector x with entries xt
i such that
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xt
i = 1 if and only if facility i exists in period t. We also include in the model an

auxiliary decision vector z with entries zt
j such that zt

j = 1 if user j is covered by
some facility at period t, and 0 otherwise. Then, the dynamic maximum covering
location is formulated as

Maximise
T∑

t=1

∑
j∈J

dt
jz

t
j, (4.1a)

subject to x ∈ Ω, (4.1b)∑
i∈I

at
ijx

t
i ≥ zt

j,1 ≤ t ≤ T, j ∈ J, (4.1c)

xt
i ∈ {0, 1} , 1 ≤ t ≤ T, i ∈ I, (4.1d)

zt
j ∈ {0, 1} 1 ≤ t ≤ T, j ∈ J. (4.1e)

The objective function (4.1a) maximises the demand covered over all time periods.
Constraint (4.1b) defines the feasible domain Ω for the variables x, which can be
any polytope not involving the variables zt

j. Typically, this includes either a cardi-
nality constraint (e.g. Calderín et al. 2017) or a knapsack constraint (e.g. Cordeau
et al. 2019) to restrict the number of facilities. The set Ω can also include, for
instance, diversification constraints imposing that the set of facilities must change
in each time period (Dell’Olmo et al. 2014), or precedence constraints imposing
that some facilities must be constructed before others (Lamontagne et al. 2023).
Constraints (4.1c) impose that a suitable facility must exist for our users to be con-
sidered covered. Constraints (4.1d) and (4.1e) indicate that both sets of variables
x and z must be binary. However, as noted in Murray (2016), integrality on the
variables zt

j can be relaxed in Constraints (4.1e).
We emphasise that the constraints in Ω may only depend on the variables x.

Most notably, some acceleration techniques in Section 4.4.2 and the local branching
method in Section 4.5 may no longer be valid with additional linking constraints
between the variables x and z, or even uniquely on the variables z. Some examples
include capacity constraints on the facilities in the dynamic MCLP problem of Al-
izadeh et al. (2021), or continual coverage constraints such as in the multi-period
incremental facility location of Albareda-Sambola et al. (2009).

For a given solution x ∈ Ω, it is easy to calculate the resulting coverage or, in
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other words, the total demand covered by the set of facilities defined via x. Let
f(x) denote the coverage of solution x ∈ Ω. Then, as described in ReVelle et al.
(2008), Cordeau et al. (2019), this value can be calculated as

f(x) =
T∑

t=1

∑
j∈J

min
{

1,
∑
i∈I

at
ijx

t
i

}
dt

j. (4.2)

4.4 Benders Decomposition

In this section, we present an accelerated branch-and-Benders-cut approach tai-
lored for the dynamic MCLP. This begins by generalising the current state-of-the-
art approach in the static MCLP, the branch-and-Benders-cut method proposed
by Cordeau et al. (2019), to the dynamic case. We then discuss acceleration tech-
niques which aim to strengthen the formulation and accelerate convergence, applied
within our dynamic context.

4.4.1 Single Cut Benders Decomposition

We detail the development of the branch-and-Benders-cut method proposed
in Cordeau et al. (2019). While the process is nearly identical in the dynamic
case as the static case, the development process is a prerequisite for the accel-
eration techniques we discuss below. As in Cordeau et al. (2019), we define
Js =

{
j ∈ J :

∑T
t=1
∑

i∈I at
ij = 1

}
as the set of users which are covered by only

one facility.
Like in the classical Benders decomposition (Benders 1962), we project out the

(continuous) z variables of model (4.1). The value of the z variables in the objective
function is replaced with an auxiliary variable, θ. Then, in iteration v, the main
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problem (MP) can be written as

Maximise θ, (4.3a)

subject to (4.1b), (4.1d)

Optπr,σr(x) ≥ θ, 1 ≤ r ≤ v, (4.3b)

θ ≥ 0, (4.3c)

where πr and σr are the optimal dual vectors associated with the Benders subprob-
lem in iteration r. To simplify the presentation, the index r is omitted when there
is no risk of confusion. Since the Benders subproblem is feasible ∀x ∈ Ω, it is not
necessary to include feasibility cuts. We note that an initial upper bound on θ must
be provided to ensure that the problem is bounded, such as θ ≤

∑T
t=1
∑

j∈J dt
j.

We denote —now and throughout this paper— x̃ as the candidate solution in
iteration v. Unless otherwise specified, it is assumed that this solution is integer
feasible, i.e. that x̃ ∈ Ω and x̃t

i ∈ {0, 1}, 1 ≤ t ≤ T, i ∈ I. For each 1 ≤ t ≤ T and
j ∈ J , let I t

j(x) =
∑

i∈I at
ijx

t
i denote the coverage of user j in period t by solution

x. When there is no risk of confusion, we use Ĩ t
j = I t

j(x̃).
The Benders Primal Subproblem (BPS) is then given by

Maximise
T∑

t=1

∑
j∈J

dt
jz

t
j, (4.4a)

subject to zt
j ≤ Ĩ t

j , 1 ≤ t ≤ T, j ∈ J, (4.4b)

zt
j ≤ 1, 1 ≤ t ≤ T, j ∈ J, (4.4c)

zt
j ≥ 0, 1 ≤ t ≤ T, j ∈ J. (4.4d)

Let πt
j and σt

j denote the dual variables associated with Constraints (4.4b)
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and (4.4c). The Benders Dual Subproblem (BDS) is then

Minimise
T∑

t=1

∑
j∈J

(
Ĩ t

jπ
t
j + σt

j

)
, (4.5a)

subject to πt
j + σt

j ≥ dt
j, 1 ≤ t ≤ T, j ∈ J, (4.5b)

πt
j, σt

j ≥ 0, 1 ≤ t ≤ T, j ∈ J. (4.5c)

Similar to Cordeau et al. (2019), this subproblem can be easily solved by inspection:
If Ĩ t

j < 1, then the optimal solutions are π̃t
j = dt

j, σ̃t
j = 0. If Ĩ t

j > 1, then π̃t
j =

0, σ̃t
j = dt

j. If Ĩ t
j = 1, then any solution π̃, σ̃ ≥ 0 such that π̃t

j + σ̃t
j = dt

j will be
optimal. The optimality cut associated with these values is then

T∑
t=1

∑
j∈J

((∑
i∈I

at
ijx

t
i

)
π̃t

j + σ̃t
j

)
≥ θ.

The resulting cut, reformulated as a function of the variables x, is presented in
Proposition 4.4.1. We set πv+1, σv+1 = π̃, σ̃, and the left-hand side of the cut forms
the term Optπv+1,σv+1 in (4.3b).

Proposition 4.4.1. The optimality cuts associated with the Benders subproblem
take the form,

T∑
t=1

∑
i∈I

 ∑
j∈Γt(x̃t)

dt
ja

t
ij

xt
i +

T∑
t=1

∑
j∈J\Γt(x̃t)

dt
j ≥ θ (4.6)

where the set Γt(x̃t) can be defined as any of the following expressions:

Γt(x̃t) =
{

j ∈ J : Ĩ t
j < 1

}
, (B0)

Γt(x̃t) =
{

j ∈ J \ Js : Ĩ t
j < 1

}
∪
{

j ∈ Js : Ĩ t
j ≤ 1

}
, (B1)

Γt(x̃t) =
{

j ∈ J : Ĩ t
j ≤ 1

}
. (B2)

We remark that the names of the cuts (B0), (B1), and (B2) correspond to those
of the equivalent cuts in Cordeau et al. (2019).

We note the following observations about these optimality cuts:
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— As in Cordeau et al. (2019), the cuts (B0) are dominated by the cuts (B1).

— By definition of the set Js, the condition Ĩ t
j ≤ 1 will always be satisfied for

j ∈ Js.

— The optimality cuts (4.6) are valid for both integer and fractional candidate
solutions x̃. As described in Cordeau et al. (2019), optimality cuts can be
generated for fractional solutions to improve the convergence rate.

So far, we have presented a simple generalisation of the Benders procedure
of Cordeau et al. (2019) to the dynamic MCLP. However, as we will see in Sec-
tion 4.6.2, this method can exhibit slow convergence. We next explore improve-
ments with respects to its convergence rate.

Remark: While this work focuses on developing a framework for branch-and-
Benders-cut, it is also possible to use a branch-and-cut framework with submodular
cuts. In particular, there are submodular cuts which are analogous to the Benders
cuts described in both Cordeau et al. (2019) and in this work. These are presented
in a more general context in Coniglio et al. (2022). In A.2.2, we provide more detail
as to the links between these approaches, as that may provide additional insight
for the reader.

4.4.2 Improvements to the Single-Cut Method

In this section, we demonstrate and discuss the application of known techniques
to our particular dynamic MCLP. These approaches aim to strengthen the Benders
optimality cuts and improve the dual bound for the decomposition. For the sake
of simplicity, the acceleration techniques are presented separately in relation to the
decomposition presented in Section 4.4.1. However, it is possible to incorporate
multiple techniques simultaneously. For a discussion of acceleration techniques in
the general context of Benders decomposition, we refer to Rahmaniani et al. (2017).

There exist classes of improvement methods which heavily depend on the struc-
ture of Ω, but which do not affect the structure of the Benders subproblems. Since
they involve Ω, their use is application-specific. However, since they do not im-
pact the Benders subproblems, they can be applied to the methods in this work
without affecting their validity. An example of such a technique would be a primal
heuristic providing warmstart solutions. This can be used to obtain a good lower

70



bound on the optimal objective value, which otherwise can be difficult during the
early iterations of the Benders decomposition method (Rahmaniani et al. 2017).
Another example would be valid cuts, which can be added to the main problem to
tighten its linear programming (LP) relaxation. Examples for both techniques can
be found in Santoso et al. (2005), Codato and Fischetti (2006), Costa et al. (2012).

The remainder of the techniques discussed in this section modify the Benders
subproblems in some way, whether by changing the set of users J (which, in turn,
changes the amount of computational work required for the generation of cuts),
modifying the frequency or type of cuts, or by directly providing reformulations for
the BPS (4.4) or the BDS (4.5).

Preprocessing Preprocessing techniques which aggregate users reduce the size
of J and, consequently, the number of Ĩ t

j to be calculated in each iteration of the
Benders decomposition. A method for doing this such that the resulting problem
is equivalent is given in Legault and Frejinger (2023). Their method aggregates
users based on their coverage from facilities, i.e., if users j and j′ are covered by
exactly the same set of facilities then they can be aggregated. An equivalent exact
preprocessing technique is presented, among other techniques, in Chen et al. (2023).
Heuristic methods also exist such as the ones by Dupačová et al. (2003) and Crainic
et al. (2014). However, we note that, due to the analytic solution for the Benders
dual subproblem, the marginal effects of each user is negligible in terms of the cut
generation time.

Multi-cut method Since the variables zt
ij are only involved in the covering Con-

straints (4.1c), the Benders primal subproblem (4.4) can be separated per time
period. This allows for more optimality cuts to be generated each iteration of
the Benders decomposition, which accelerates convergence, as noted by Birge and
Louveaux (1988) and Contreras et al. (2011). More specifically, we replace the
auxiliary variable θ by the sum of new variables θt for 1 ≤ t ≤ T . Then, for each
iteration v, we have the following MP:
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Maximise
t∑

t=1
θt, (4.7a)

subject to (4.1b), (4.1d) (4.7b)

Optπrt,σrt(xt) ≥ θt, 1 ≤ t ≤ T, 1 ≤ r ≤ v, (4.7c)

θt ≥ 0, (4.7d)

where, as before, πrt and σrt are the optimal dual vectors associated with the
Benders subproblem in time period t and iteration r. As in the single-cut case, an
initial upper bound must be added on

∑T
t=1 θt.

The BPS (4.4) and the BDS (4.5) as well as the process for deriving the Benders
cuts is identical to the single-cut case, with the summations (and, as a consequence,
indices) shifted from the subproblem to the main problem. The optimality cuts
themselves are presented in Proposition 4.4.2.

Proposition 4.4.2. For each 1 ≤ t ≤ T , the optimality cuts associated with the
Benders subproblem take the form,

∑
i∈I

 ∑
j∈Γt(x̃t)

dt
ja

t
ij

xt
j +

∑
j∈J\Γt(x̃t)

dt
j ≥ θt. (4.8)

The sets Γt(x̃t) are as defined in Proposition 4.4.1.

Pareto-optimal cuts The optimal solution to the Benders dual subproblem may
not be unique, and the strength of the resulting Benders cut may vary depending
on the solution selected. This phenomenon is the principle behind the B0, B1, and
B2-type cuts introduced in Proposition 4.4.1, with the strength of the resulting
cuts discussed in depth in Cordeau et al. (2019). In the context of general Benders
decomposition, the selection of an optimal solution leading to a Benders cut is
introduced in Magnanti and Wong (1981).

More specifically, in our context, a Benders optimality cut of the form θ ≤
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∑T
t=1
∑

i∈I βt
ix

t
i + γ is said to dominate another cut θ ≤

∑T
t=1
∑

i∈I β
′t
i xt

i + γ′ if

T∑
t=1

∑
i∈I

βt
ix

t
i + γ ≤

T∑
t=1

∑
i∈I

β
′t
i xt

i + γ′

for all x ∈ Ω and if there exists at least one x ∈ Ω for which the inequality is strict.
A Benders cut is said to be Pareto-optimal if it is not dominated by any other cut
of the same form.

In Magnanti and Wong (1981), the authors propose a model for finding a Pareto-
optimal cut based on a core point, a point in the relative interior of the convex hull
of Ω. This technique was employed in Santoso et al. (2005), Contreras et al. (2011),
and discussed further in Papadakos (2008).

Let x̃ be the candidate solution from the main problem (4.3) and π̃, σ̃ be an
associated optimal solution of the dual subproblem (4.5). Let c

x denote a core point
of Ω. Magnanti and Wong (1981) define a Pareto-optimal cut with respect to a
core point c

x and a candidate solution x̃ as the one obtained by solving the following
subproblem:

( c
π,

c
σ) ∈ argmin

T∑
t=1

∑
j∈J

(
I( c

x)t
jπ

t
j + σt

j

)
, (4.9a)

subject to πt
j + σt

j ≥ dt
j, 1 ≤ t ≤ T, j ∈ J, (4.9b)

T∑
t=1

∑
j∈J

I(x̃)t
jπ

t
j + σt

j =
T∑

t=1

∑
j∈J

I(x̃)t
jπ̃

t
j + σ̃t

j, (4.9c)

πt
j, σt

j ≥ 0, 1 ≤ t ≤ T, j ∈ J, (4.9d)

where ( c
π,

c
σ) is called a Pareto-optimal point.

Due to the presence of Constraint (4.9c), the Magnanti-Wong subproblem (4.9)
is not quite identical to the Benders dual subproblem (4.5). Nevertheless, we are
still able to describe the determination of an optimal solution to subproblem (4.9):

Proposition 4.4.3. For a given candidate solution x̃ and core point c
x, the Pareto-

optimal solutions c
π,

c
σ for problem (4.9) can be calculated pointwise as follows: For

1 ≤ t ≤ T, j ∈ J ,

— If I(x̃)t
j < 1, then c

π
t

j = dt
j,

c
σ

t

j = 0.
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— If I(x̃)t
j > 1, then c

π
t

j = 0,
c
σ

t

j = dt
j.

— If I(x̃)t
j = 1 and I( c

x)t
j < 1, then c

π
t

j = dt
j,

c
σ

t

j = 0.

— If I(x̃)t
j = 1 and I( c

x)t
j > 1, then c

π
t

j = 0,
c
σ

t

j = dt
j.

— If I(x̃)t
j = 1 and I( c

x)t
j = 1, then any value such that c

π
t

j + c
σ

t

j = dt
j is Pareto-

optimal.

Proof. We first emphasise that the solution to the Magnanti-Wong subproblem (4.9)
must also be an optimal solution to the BDS (4.5) for x̃, as specified in Magnanti
and Wong (1981). This is enforced through Constraints (4.9b) and (4.9d) (which
enforce feasibility), combined with Constraint (4.9c) (which enforces optimality).
As described in Section 4.4.1, there is a set of optimal solutions to BDS (4.5) which
can be analytically determined for each period t and customer j based on I(x̃)t

j.
Hence, let us denote by Φt

j the set of optimal solution pairs (π̃t
j, σ̃t

j). Concretely,
recall that if I(x̃)t

j < 1, then Φt
j =

{
(dt

j, 0)
}

. Likewise, I(x̃)t
j > 1 implies that Φt

j ={
(0, dt

j)
}

. Finally, if I(x̃)t
j = 1 then Φt

j =
{

(πt
j, σt

j) : πt
j + σt

j = dt
j, πt

j ≥ 0, σt
j ≥ 0

}
.

In this way, we can equivalently formulate subproblem (4.9) with Constraint (4.9c)
replaced by the following constraint:

(πt
j, σt

j) ∈ Φt
j.

This eliminates the linking constraint which involves all variables, reformulating
the Magnanti-Wong subproblem (4.9) into the following:

Minimise I( c
x)t

jπ
t
j + σt

j, (4.10a)

subject to (4.9b), (4.9d)

πt
j, σt

j ∈ Φt
j. (4.10b)

Now, it is easy to verify the feasibility and optimality of the solution described
in the proposition statement.

Corollary 4.4.1. If the set
{

(t, j) : 1 ≤ t ≤ T, j ∈ J, I(x̃)t
j = 1

}
is empty, then the

Benders optimality cut is unique.
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In practice, Proposition 4.4.3 states that, when determining if j ∈ Γt(x̃t), we
only need to consider the core point when I t

j(x̃) = 1. In those cases, rather than
solely using information from j and x̃ (as is the case for the cuts in Proposi-
tion 4.4.1), we can instead look to the coverage in the core point to determine if
j ∈ Γt(x̃t). If both I t

j(x̃) = 1 and I( c
x)t

j = 1, then a different method is required.
For example, it is possible to create analogous cuts to (B0), (B1), or (B2).

The calculation of Pareto-optimal points relies on finding a core point c
x. For

simple domains Ω, a core point can be easily found, such as the point c
x =

(0.5, 0.5, 0.5) in the example of A.2.1. However, depending on the domain Ω, it may
not be possible to find a core point analytically. An iterative method is proposed
in Papadakos (2008), which starts with a feasible solution and takes the average
with the candidate solution at every iteration to take the role of core point. Alter-
natively, one can use the analytic center of the MP (4.3) as a core point, which can
be estimated by solving the linear relaxation with the barrier method and without
objective (Atkinson and Vaidya 1995, Bonami et al. 2020). By using this analytic
center, the Pareto-optimal cut generation procedure is similar to the in-and-out
stabilisation technique presented in, e.g., Ben-Ameur and Neto (2007).

Benders Dual Decomposition In Benders Dual Decomposition, information
from the main problem is added to the Benders subproblems to generate better
quality cuts. This is done via allowing some (or potentially all) of the upper level
variables to change based on the dual information. Following the work in Rahma-
niani et al. (2020), auxiliary variables yt

i are created by duplicating the decision
variables xt

i. These auxiliary variables are then forced to match a fractional or
integer candidate solution x̃t

i in the Benders subproblem, resulting in the following
subproblem:
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PSP (x̃) = Maximise
T∑

t=1

∑
j∈J

dt
jz

t
j, (4.11a)

subject to yt
i = x̃t

i, 1 ≤ t ≤ T, i ∈ I, (4.11b)

zt
j ≤

∑
i∈I

at
ijy

t
i ,1 ≤ t ≤ T, j ∈ J, (4.11c)

y ∈ Ω, (4.11d)

zt
j ∈ [0, 1], 1 ≤ t ≤ T, j ∈ J. (4.11e)

In its current form, the subproblem (4.11) is entirely equivalent to the origi-
nal subproblem (4.4). However, by applying Lagrangian relaxation on the Con-
straints (4.11b), for a given Lagrangian multiplier λt

i for each 1 ≤ t ≤ T and i ∈ I,
we obtain the following Lagrangian subproblem:

LSP1 (x̃, λ) = Maximise
T∑

t=1

∑
i∈I

(
dt

jz
t
j − λt

i

(
yt

i − x̃t
i

))
, (4.12a)

subject to (4.11c) − (4.11e). (4.12b)

If we take λt
i = λ̃t

i as the optimal dual variables associated with Constraints (4.11b)
after solving the subproblem (4.11) and ȳ, z̄ as the optimal solutions of subproblem
LSP1

(
x̃, λ̃
)
, this results in the optimality cuts

θ ≤
t∑

t=1

∑
j∈J

dt
j z̄

t
j −

T∑
t=1

∑
i∈I

λ̃t
i

(
ȳt

i − xt
i

)
. (4.13)

In Rahmaniani et al. (2020), it was shown that the cuts (4.13) are equivalent to the
standard optimality cuts (4.6) when generated from an integer candidate solution
x̃. On the other hand, the authors also show that the cuts (4.13) are stronger than
cuts (4.6) when generated from a fractional candidate solution.

If we further solve the full Lagrangian subproblem

LSP2 (x̃) = Minimiseλ (LSP1 (x̃, λ)) , (4.14)
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with optimal solutions λ̄, ȳ, z̄, we obtain the following optimality cuts:

θ ≤
t∑

t=1

∑
j∈J

dt
j z̄

t
j −

T∑
t=1

∑
i∈I

λ̄t
i

(
ȳt

i − xt
i

)
. (4.15)

As before, Rahmaniani et al. (2020) show that the cuts (4.15) are only useful for
a fractional candidate solution, where the cuts (4.15) are stronger than both the
standard optimality cuts (4.6) and the cuts (4.13).

However, in order to apply the Benders dual decomposition approach, we must
repeatedly solve Lagrangian subproblems. Notably, depending on the structure of
Ω and the sizes of I, solving the Lagrangian subproblems (4.12) or (4.14) may be
computationally infeasible. As such, contrary to the other acceleration techniques
discussed in this work, the viability of this method is dependent on the application.

Partial Benders Decomposition In Partial Benders Decomposition, informa-
tion from the Benders subproblem is added to the main problem to improve the
dual bound. This is done via including some variables of the Benders subproblem
in the main problem. Following the work in Crainic et al. (2021), we partition J

into two sets, J̄ and J \ J̄ , and define the following reformulation of the maximum
covering problem:

Maximise
T∑

t=1

∑
j∈J̄

dt
jz

t
j +

∑
j∈J\J̄

dt
jz

t
j

 , (4.16a)

subject to (4.1b), (4.1d) (4.16b)∑
i∈I

at
ijx

t
j ≥ zt

j, 1 ≤ t ≤ T, j ∈ J̄ , (4.16c)∑
i∈I

at
ijx

t
j ≥ zt

j, 1 ≤ t ≤ T, j ∈ J \ J̄ , (4.16d)

zt
j ∈ {0, 1} 1 ≤ t ≤ T, j ∈ J̄ , (4.16e)

zt
j ∈ {0, 1} 1 ≤ t ≤ T, j ∈ J \ J̄ . (4.16f)

This formulation is, clearly, equivalent to the original formulation (4.1). However,
when we project the z variables for the Benders decomposition, we keep the vari-
ables zt

j, j ∈ J̄ in the main problem. More specifically, in iteration v of the Benders
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decomposition method, our main problem is given by

Maximise θ +
T∑

t=1

∑
j∈J̄

dt
jz

t
j, (4.17a)

subject to (4.1b), (4.1d), (4.3b), (4.3c) (4.17b)
T∑

t=1

∑
i∈I

at
ijx

t
j ≥ zt

j, 1 ≤ t ≤ T, j ∈ J̄ , (4.17c)

zt
j ∈ {0, 1} 1 ≤ t ≤ T, j ∈ J̄ , (4.17d)

and the Benders primal subproblem is then given by

Maximise
T∑

t=1

∑
j∈J\J̄

dt
jz

t
j, (4.18a)

subject to zt
j ≤ Ĩ t

j , 1 ≤ t ≤ T, j ∈ J \ J̄ , (4.18b)

zt
j ∈ [0, 1], 1 ≤ t ≤ T, j ∈ J \ J̄ , (4.18c)

for which optimality cuts can be derived as before.
The users j′ in Js are particularly well-suited for scenario retention, i.e. to make

J̄ = Js. If we take j′ ∈ Js, by definition„ we have that
∑T

t=1
∑

i∈I at
ij′ = 1. Next,

we take the period t′ and the facility i′ such that at′

i′j′ = 1. Then, since dt
j > 0 by

definition, we have that Constraint (4.17c) will be satisfied with equality. As such,
the variable zt′

j′ can be removed from the main program (4.17), and the objective
function can be replaced by

θ +
T∑

t=1

∑
i∈I

(∑
j∈Js

at
ijd

t
j

)
xt

i.

This scenario retention process is equivalent to the singleton aggregation pre-
processing technique used in Güney et al. (2021), Chen et al. (2023), which replaces
zt

j by xt
i if j ∈ Js and at

ij = 1. We note that, after this process, the Benders cuts
of type (B0) and (B1) coincide (as do their multi-cut equivalents).
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In addition to the scenario-retention method proposed in Crainic et al. (2021),
the authors also propose a scenario-creation method. This involves the creation of
artificial scenarios given by a convex combination of real scenarios. These artifi-
cial scenarios are then kept in the main problem as a proxy for their subproblem
counterparts. A more recent approach proposed in Ramírez-Pico et al. (2023),
called adaptive Benders cuts, follows a similar procedure. Rather than creating
artificial scenarios a priori, it dynamically bundles scenarios which share the same
dual solution. However, these methods rely on the variables zt

j, which are no longer
present in the branch-and-Benders-cut framework presented in Section 4.4.1. As
such, these approaches are not well-suited for this framework, and further research
would be necessary for their successful integration.

4.5 Local Branching for
Branch-And-Benders-Cut

In the local branching method by Fischetti and Lodi (2003) for tackling mixed-
integer programs, small subdomains of the feasible space are defined via distance-
based neighbourhoods around solutions. These small subdomains are then solved
in a separate subproblem via a black-box solver, and excluded from the feasible
space, thus gradually reducing the size of the search space. In Rei et al. (2009),
this process was applied to a branch-and-Benders-cut framework, with the goal of
simultaneously improving the upper and lower bounds for the search tree.

We start in Section 4.5.1 by presenting the framework (following the work in
Rei et al. 2009) for embedding a local branching approach within our branch-and-
Benders-cut method. This defines a modified main problem and the necessary
subproblems, which are all reliant on a distance metric. In Section 4.5.2, we pro-
pose a new distance metric for the dynamic MCLP. Via this distance metric, we
then provide a novel solution method for quickly solving subproblems. Finally, in
Section 4.5.3, we discuss methods for separating the feasible subdomains explored
in our subproblems.
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4.5.1 Overview

We implement the local branching scheme within the framework of our branch-
and-Benders-cut methods, as proposed in Rei et al. (2009). Since it is based on
our branch-and-Benders-cut methods, any of the acceleration techniques presented
in Section 4.4.2 can be applied to the local branching method as well. To that
end, contrary to Section 4.4.2, we present this section using the multi-cut version
of the Benders optimality cuts. Due to the central role of the time period in the
proceeding developments, the multi-cut formulation allows for a more natural and
interpretable explanation. Thus, at iteration v of the Benders decomposition, we
consider the following local branching main problem:

Maximise
T∑

t=1
θt, (4.19a)

subject to (4.1b), (4.1d), (4.3c)

∑
i∈I

 ∑
j∈Γt(xrt)

dt
ja

t
ij

xt
j ≥ θt −

∑
j∈J\Γt(xrt)

dt
j, 1 ≤ t ≤ T, 1 ≤ r ≤ v,

(4.19b)

Distxs (x) ≥ κs, 1 ≤ s ≤ u, (4.19c)

where xs for 1 ≤ s ≤ u are feasible facility location decisions previously deter-
mined. We omit the index s when there is no risk of confusion. The function Distxs

represents a distance metric, indicating that only solutions found at a distance κs

from solution xs may be considered. We note that Constraints (4.19b) are the
Benders optimality cuts (4.7c) provided by Proposition 4.4.2.

Our goal, given an integer candidate solution x̃ and a threshold distance κ̃, is
to find the optimal solution to our original problem (4.1) restricted to distance
κ̃ around x̃. As described in Rei et al. (2009), we can then generate Benders
optimality cuts (4.8) for this high-quality solution, thus improving the upper bound
in the local branching main problem (4.19). Simultaneously, the solution may also
improve upon the incumbent, thus also increasing the lower bound. We can then
exclude the subdomain of distance κ̃ around x̃ from the local branching main
problem (4.19) by adding a constraint of type (4.19c).
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Formally, let x̂ denote the optimal solution to the restricted subproblem centered
around x̃, given by the solution to the following subproblem:

Maximise
T∑

t=1

∑
j∈J

dt
jz

t
j, (4.20a)

subject to (4.1b), (4.1d), (4.4d), (4.4c), (4.19c),

Distx̃ (x) ≤ κ̃. (4.20b)

If x̂ has a strictly higher objective than x̃, we generate Benders optimality
cuts (4.8) for x̃, and we set xs+1 = x̃, κs+1 = κ̃ + 1, s = s + 1 and repeat the
restricted problem (4.20) centered around x̂. If x̂ = x̃, we create a diversified
subproblem which replaces the threshold distance κ̃ in Constraint (4.20b) with
κ̃′ > κ̃, and adds the constraint Distx̃ (x) ≥ 1. This guarantees that the resulting
optimal solution x̂ is different than x̃, and we create Benders optimality cuts (4.8)
from x̂.

By setting xs+1 = x̃, κs+1 = κ̃ + 1, we ensure that the feasible domain in the
restricted subproblem (4.20) in iteration v and the main problem in iteration v + 1
are complementary. More specifically, the restricted subproblem only considers
solutions with distance Distx̃ (x) ≤ κ̃, whereas the main problem considers solutions
with distance Distx̃ (x) ≥ κ̃+1. Since the candidate solution x̃ is integer feasible, it
is not necessary to consider solutions with distance Distx̃ (x) ∈ (κ̃, κ̃ + 1), as these
correspond to fractional solutions.

We remark that the local branching main problem (4.19) and the restricted
subproblem (4.20) can be defined via any distance metric and with any threshold
distance κ̃. By increasing the size of the subdomain, we can remove a larger area
from the feasible space of the local branching main problem (4.19), but at the cost
of a restricted subproblem (4.20) that is harder to solve than that of a smaller
size. We also note that any method can be used to find the optimal solution x̂ to
the restricted subproblem (4.20). In Fischetti and Lodi (2003), a general-purpose
mixed-integer linear solver is used, while the branch-and-Benders-cut approach
with the acceleration techniques proposed in Section 4.4.2 is a natural choice in
our case. However, by carefully selecting our distance metric and threshold distance
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κ̃, we can derive an exact solution method for the restriced subproblem (4.20) which
is more effective than the accelerated branch-and-Benders-cut method.

4.5.2 An Effective Formulation for a Tailored Distance Met-
ric

The distance metric typically used is the Hamming distance (see, e.g., Fischetti
and Lodi 2003, Rei et al. 2009). This results in Constraint (4.20b) taking the form

T∑
t=1

∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

T∑
t=1

∑
i∈I:x̃t

i=0

xt
i ≤ κ̃. (4.21)

However, we propose to use a modified distance metric in the dynamic case,
which enforces that the Hamming distance in each time period must be within our
threshold. This results in Constraint (4.20b) taking the form

∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

∑
i∈I:x̃t

i=0

xt
i ≤ κ̃, 1 ≤ t ≤ T. (4.22)

The motivation behind this new distance metric derives from infrastructure con-
texts, where the facilities under consideration correspond to significant investments
(e.g. warehouses, stores, etc.). In those contexts, facilities which are added in early
time periods are likely to persist throughout the time horizon. In the case of the
general Hamming distance, this incurs a repeated penalty in each time period, in-
creasing the total distance. As an illustration, consider the example in A.2.1 and
the two solutions xt = (1, 0, 0) and x̂t = (1, 1, 0), 1 ≤ t ≤ T , and a time horizon
T = 4. These solutions are at distance 4 when considering the general Hamming
distance, whereas they are only at distance 1 using the new metric.

An important benefit of this new distance metric allows for an efficient solving
method if we consider κ̃ = 2. To describe this method we first note that, for a
candidate solution x̃ and time period t, there are only two sets of modifications
which result in an integer solution at distance exactly 1:

1a) Add one facility which is currently not selected.

1b) Remove one facility which is currently selected.
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Likewise, at distance exactly 2, there are only three sets of modifications:

2a) Add two facilities which are currently not selected.

2b) Remove one facility which is currently selected, and add one facility which is
currently not selected.

2c) Remove two facilities which are currently selected.

Since, by assumption at
ij ∈ {0, 1} and dt

j > 0, options 1b) and 2c) cannot lead to
an increase in the objective function, and hence, can be disregarded.

As a consequence, there is a limited number of feasible solutions contained
within the restricted subproblem (4.20) when considering κ̃ = 2. We can then use
Proposition 4.5.1 to evaluate the quality of feasible solutions (as given in Equa-
tion (4.2)) based on Benders optimality cuts.

Proposition 4.5.1. Let x be an (integer) feasible solution to the maximum covering
model (4.1), and let t be any time period, 1 ≤ t ≤ T . Let î ∈ I be such that xt

î
= 0.

Then the modified solution x̂ with x̂t
î

= 1 and x̂t
i = xt

i, i ̸= î satisfies

∑
i∈I

 ∑
j∈Γt(xt)

dt
ja

t
ij

 x̂t
i +

∑
j∈J\Γt(xt)

dt
j =

∑
j∈J

min
{

1,
∑
i∈I

at
ijx̂

t
i

}
,

when Γt(xt) is given by (B0) or (B1).

Proof. We first note that, by rearranging the terms in the left-hand side, we have
that

∑
i∈I

 ∑
j∈Γt(xt)

dt
ja

t
ij

 x̂t
i +

∑
j∈J\Γt(xt)

dt
j =

∑
j∈Γt(xt)

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J\Γt(xt)

dt
j.

Now, we concentrate on both cases for Γt(xt).
If Γt(xt) is given by (B0), then we have that

∑
j∈Γt(xt)

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J\Γt(xt)

dt
j =

∑
j∈J :I(x)t

j<1

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J :I(x)t
j≥1

dt
j,

=
∑

j∈J :I(x)t
j=0

 ∑
i∈I\{i}

at
ijx

t
i + at

îj

 dt
j +

∑
j∈J :I(x)t

j≥1

dt
j,
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where I(x)t
j =

∑
i∈I at

ijx
t
i < 1 implies that I(x)t

j = 0, since all elements in the
summation are binary.

From there, for the first term, at
îj

being binary also implies that
∑

i∈I at
ijx̂

t
i =∑

i∈I\{̂i} at
ijx

t
i + at

îj
= I t

j(x) + at
îj

≤ 1. As such, we have that

∑
j∈J :I(x)t

j=0

 ∑
i∈I\{̂i}

at
ijx

t
i + at

îj

 dt
j =

∑
j∈J :I(x)t

j=0

min{1,
∑
i∈I

at
ijx̂

t
i}dt

j.

For the second term, we note that since x̂ has an extra facility compared to x, we
also have that the coverage for each user must be equal or greater. Concretely,
I(x)t

j =
∑

i∈I at
ijx

t
i ≤

∑
i∈I at

ijx̂
t
i, and thus∑

j∈J :I(x)t
j≥1 dt

j =
∑

j∈J :I(x)t
j≥1 min{1,

∑
i∈I at

ijx̂
t
i}dt

j.
As a consequence, we have that

∑
j∈J :I(x)t

j=0

 ∑
i∈I\{̂i}

at
ijx

t
i + at

îj

 dt
j +

∑
j∈J :I(x)t

j≥1

dt
j =

∑
j∈J

min{1,
∑
i∈I

at
ijx̂

t
i}dt

j.

If Γt(xt) is given by (B1), then we have that

∑
j∈Γt(xt)

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J\Γt(xt)

dt
j

=
∑
j∈Js

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J\Js:I(x)t
j<1

(∑
i∈I

at
ijx̂

t
i

)
dt

j +
∑

j∈J\Js:I(x)t
j≥1

dt
j.

We note that, by definition of the set Js, we always have that
∑

i∈I at
ijx̂

t
i ≤ 1. As

a consequence, we have that
∑

j∈Js

(∑
i∈I at

ijx̂
t
i

)
dt

j =
∑

j∈Js
min{1,

∑
i∈I at

ijx̂
t
i}dt

j.
The last two terms can be transformed using reasoning similar to that of the prior
case, which gives our result.

We remark that Proposition 4.5.1 does not hold in general if Γt(xt) is given
by (B2). As a counterexample if Γt(xt) is given by (B2), consider the example in
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A.2.1, the candidate solution x = (1, 0, 0), and î = i2. We then have that

∑
i∈I

 ∑
j∈Γt(xt)

dt
ja

t
ij

 x̂t
j +

∑
j∈J\Γt(xt)

dt
j = 36, (4.23)

T∑
t=1

∑
j∈J

min
{

1,
∑
i∈I

at
ijx̂

t
i

}
= 28. (4.24)

Put more simply, Proposition 4.5.1 states that if we take a given solution x and
only add one facility to it, then the Benders optimality cuts for x accurately give
the coverage for the modified solution.

We can then derive an efficient method for finding the optimal solution of
distance two around x̃ by combining the limited number of valid modifications to
x̃ along with Proposition 4.5.1. For this, let ei denote the elemental vector with
1 in position i and 0 elsewhere. We then denote xt + ei (respectively, xt − ei)
as the modified solution which adds the currently unused facility i in period t

(respectively, removes the currently used facility i). We present this method in
Proposition (4.5.2).

Proposition 4.5.2. Let x̂t
j denote the optimal values for the variables xt

j in the
restricted subproblem (4.20) around an integer candidate solution x̃ at distance
κ̃ = 2. Then x̂t

j are also the optimal values for the variables xt
j in the following
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problem:

Maximise
T∑

t=1
θt, (4.25a)

subjectto(4.1b), (4.1d), (4.3b), (4.3c), (4.19c),∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

∑
i∈I:x̃t

i=0

xt
i ≤ 2, 1 ≤ t ≤ T, (4.25b)

∑
i∈I

 ∑
j∈J\Γt(x̃t)

at
ijd

t
j

xt
i +

∑
j∈Γt(x̃t)

dt
j ≥ θt, 1 ≤ t ≤ T, (4.25c)

∑
i∈I

 ∑
j∈J\Γt(x̃t+eî)

at
ijd

t
j

xt
i +

∑
j∈Γt(x̃t+eî)

dt
j ≥ θt, 1 ≤ t ≤ T, î : x̃t

î
= 0,

(4.25d)

∑
i∈I

 ∑
j∈J\Γt(x̃t−eî)

at
ijd

t
j

xt
i +

∑
j∈Γt(x̃t−eî)

dt
j ≥ θt, 1 ≤ t ≤ T, î : x̃t

î
= 1.

(4.25e)

Proof. The feasible space for the variables xt
j are defined via

Constraints (4.1b), (4.1d), (4.19c),
and (4.25b). Since these constraints are present in both models, it follows that

the set of feasible values for xt
j are the same. We now show that the objective value

for every feasible solution x is the same in both models.
From our previous discussion, there is a limited number of feasible solutions

which we must consider: the solution x̃ itself, as well as the resulting solutions
from modifications 1a), 2a) and 2b). The value of the solution x̃ is given by
Constraint (4.25c). For all other solutions, we make use of Proposition 4.5.1. More
specifically, for each type of modification, we have generated an optimality cut for
a solution with exactly one fewer facilities:

— Constraints (4.25c) generate optimality cuts for the solution x̃t for all time
periods t. As a consequence, all solutions which add one facility to x̃ (i.e.
modifications of type 1a) are evaluated correctly.
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— Constraints (4.25d) generate optimality cuts for the solutions x̃t + eî for all
time periods t and for all facilities î which are currently not installed. As a
consequence, all solutions which add one additional facility beyond x̃t + eî

(thus modifications of type 2a) are evaluated correctly.

— Constraints (4.25e) generate optimality cuts for the solutions x̃t − eî for all
time periods t and for all facilities î which are currently not installed. As a
consequence, all solutions removing î and then adding another facility (thus
modifications of type 2b) are evaluated correctly.

We note the following observations about Proposition 4.5.2:

— Due to the presence of Constraints (4.1d), model (4.25) is a mixed-integer
linear program, which can be solved directly via a generic MILP solver. When
solving model (4.25) directly with a generic solver is the strategy for finding
the optimal solution to the restricted subproblem (4.20), we denote this as
SubD. When, instead, the restricted subproblem (4.20) is solved via the
branch-and-Benders-cut method, we denote this SubB.

— Some of Constraints (4.25c)-(4.25e) may be redundant, in the sense that they
allow for the evaluation of solutions which can either be evaluated using other
constraints within the model or which correspond to infeasible solutions. In
general, verifying the feasibility of the solutions before generating the asso-
ciated Constraints (4.25d) or (4.25e) is unlikely to be beneficial, due to the
speed at which these constraints can be built. Instead, infeasible solutions can
be detected by the MILP solver via Constraints (4.1b) and (4.19c). However,
some structures of Ω may make the detection of some infeasible solutions a
trivial task, such as the use of precedence constraints, and thus justify the
computational effort of the verification process.

— From the proof of Proposition 4.5.2, it is clear that the optimal objective value
of the restricted subproblem (4.20) and of model (4.25) are the same. This is
important, as it allows us to verify if the newly found solution has a better
objective value than the incumbent, and update the incumbent accordingly.

Remark: As with the Benders cuts themselves, Propositions 4.5.1 and 4.5.2
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can be interpreted quite naturally through the lens of submodular optimisation.
The submodular versions of these propositions are presented in A.2.2.

4.5.3 Branching

Using Proposition 4.5.2, we can thus easily solve the restricted subproblem (4.20).
However, this ease of solving comes at a cost when moving to solve the full prob-
lem (4.19).

After each candidate solution x̃ and the set of restricted and diversified sub-
problems, the Constraints (4.19c) ensure that the solver removes the subdomain
examined during the subproblems, thus avoiding unnecessary work. In Rei et al.
(2009), the Hamming distance is used in Constraints (4.19c), and hence, the com-
plement of the set Ω̃ = {x ∈ Ω : (4.1d), Distx̃ (x) ≤ κ̃} is simply

Ω̃c =

x ∈ Ω : (4.1d),
T∑

t=1

∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

∑
i∈I:x̃t

i=0

xt
i ≥ κ̃ + 1

 .

However, using the distance metric in Section 4.5.2, the set Ω̃c requires the
Hamming distance to be at least κ̃+1 in at least one time period, which cannot be
modeled as a single linear constraint. Therefore, we must create a branch for each
time period in order to mimic Ω̃c through T disjoint problems. More specifically,
for every 1 ≤ t′ ≤ T , we generate the following problem:

Maximise
T∑

t=1
θt, (4.26a)

subject to (4.1b), (4.1d), (4.3c), (4.19b), (4.19c),∑
i∈I:x̃t′

i =1

(
1 − xt′

i

)
+

∑
i∈I:x̃t′

i =0

xt′

i ≥ κ̃ + 1, (4.26b)

∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

∑
i∈I:x̃t

i=0

xt′

i ≤ κ̃, t < t′. (4.26c)

Each of these problems can be viewed as a branch at node x̃ in the search tree. In
this way, the Constraints (4.19c) are formed of the branching constraints (4.26b)
and (4.26c) from the prior nodes in the search tree. In essence, these branches
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progressively select each time period as the one that exceeds the threshold distance,
and impose all prior years to be below the threshold in order to ensure distinct
sets. When using these branches to separate the subdomains of the restricted and
diversified subproblems, we refer to the method as SepB.

Alternatively, we can model this disjunction through a set of cuts, requiring the
introduction of auxiliary binary variables and Big-M constraints. More specifically,
the set Ω̃c can be obtained by adding to Constraints (4.19c) the constraints

∑
i:x̃t

i=1

(1 − xt
i) +

∑
i:x̃t

i=0

xt
i + δ̃t(κ̃ + 1) ≥ κ̃ + 1, 1 ≤ t ≤ T, (4.27a)

T∑
t=1

δ̃t ≤ T − 1, (4.27b)

δ̃t ∈ {0, 1} , 1 ≤ t ≤ T. (4.27c)

However, since we are adding the binary variables δ̃t and the Big-M constraints (4.27a)
to the main program (4.19), the problem gets progressively more difficult to solve
as more subdomains are removed. When using this disjunction to separate the
subdomains of the restricted and diversified subproblems, we refer to the method
as SepD.

We note that in the case that the distance κ̃ = 0, the Constraints (4.27) are
equivalent to (and thus can be replaced by) the typical no-good cut:

T∑
t=1

∑
i:x̃t

i=1

(1 − xt
i) +

∑
i:x̃t

i=0

xt
i

 ≥ 1, (4.28)

which does not require the use of binary auxiliary variables.

4.6 Computational Experiments

In this section, we compare the performance of the variations of the Benders de-
composition techniques presented in this work. We start in Section 4.6.1 by giving
the background information for the problem instances, which are obtained from an
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electric vehicle (EV) charging station location model, and based on real-life data. In
Section 4.6.2, we then examine the performance metrics when using our Benders
decomposition methods to solve these problem instances, which clearly demon-
strates the capabilities and limitations of each method on a practical example. To
better demonstrate the effects of each acceleration technique, in Section 4.6.3 we
present new synthetic instances. These instances allow us to compare performance
metrics of the proposed methods, along with applying each technique in isolation.
In Section 4.6.4, we evaluate the options for the local branching method presented
in Section 4.5.2 for the restricted subproblem solution method. These experiments
demonstrate the efficiency of solving our reformulated restricted subproblem (4.25),
validating its use in Section 4.6.2. Similarly, in Section 4.6.5, we compare the op-
tions for eliminating feasible space already explored within the local branching
method, as presented in Section 4.5.3. Additionally, we discuss the technical lim-
itations that face the implementation of the SepB method, and the consequences
of using either the SepD or SepBmethods.

To more easily distinguish between the methodologies discussed in this paper,
we present the following nomenclature:

1. The unaccelerated branch-and-Benders-cut procedure in Cordeau et al. (2019)
as described in Section 4.4.1 is referred to as the U-B&BC method.

2. The accelerated branch-and-Benders-cut procedure presented in Section 4.4.2
is referred to as the A-B&BC method. We describe the set of acceleration
techniques in more detail in Section 4.6.1.

3. The accelerated branch-and-Benders-cut procedure with local branching pre-
sented in Section 4.5 is referred to as the A-B&BC+LB-Sub-Sep method,
where Sub indicates the restricted subproblem solution method as described
in Section 4.5.2 and Sep indicates the subdomain separation scheme as de-
scribed in Section 4.5.3. In all cases, we impose a time limit of 60 seconds
for the solving of each restricted and diversified subproblem, after which the
the best incumbent solution is used for the subsequent procedures.

The tests were run on a server running Linux version 3.10, with an Intel Core
i7-4790 CPU with eight virtual cores and 32 GB of RAM. The code is written in
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C++, and is publicly available 1. We use CPLEX version 22.1.1 limited to a single
thread, and with the Benders cuts implemented via the generic callback feature.
Other than the removal of incompatible preprocessing and reformulation options
in the cases which use the callback feature, the only notable parameters which
are not set at default value are the memory management and numerical precision.
The Eigen library (Guennebaud et al. 2010) is used for efficient dense and sparse
matrix calculations, notably for the calculation of Ĩ t

j and the subsequent generation
of cuts. In all tests, we impose a two-hour (7,200 second) time limit for solving
each instance.

4.6.1 Application: Electric Vehicle Charging Station Place-
ment

We apply the proposed methods to the instances of the electric vehicle (EV)
charging station placement problem by Lamontagne et al. (2023). We chose these
problem instances because of their practical interest and the large number of users,
which leads to large-scale dynamic MCLPs and therefore allows us to demonstrate
the capabilities of our methodological contributions.

In this problem, there are two groups making sequential decisions over a multi-
period time span. First, a decision maker which decides where to place public
charging infrastructure. And second, users purchasing a vehicle in the given time
period, who must elect between an EV or a conventional vehicle (a choice which
depends on the charging network). If a user is covered by a charging station (in
the maximum covering sense), then they elect to purchase an EV. The objective
of the decision maker is to place the charging infrastructure in such a way as to
maximise EV adoption.

In addition to determining which charging stations to open, this problem also
aims to find the optimal sizing (i.e. number of charging outlets) of each open
station. For this purpose, the decision variables are binary, indicating if a charging
station i has at least k outlets (with k ranging from 1 to an upper bound mi).
The set Ω is then composed of three sets of constraints: precedence constraints
imposing for each station that in order to have at least k +1 outlets, one must first

1. https://github.com/StevenLamontagne/DynamicMCLP-AcceleratedBranchAndBendersCut
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have at least k outlets, constraints that forbid the removal of outlets between time
periods, and budget constraints which force the cost of installing new outlets to be
below a budget Bt in each time period t. For these budget constraints, the first
outlet at a charging station costs 150 while subsequent outlets each cost 50, with
the budget Bt = 400, 1 ≤ t ≤ T .

The test instances are divided into five datasets, each with different characteris-
tics and each containing 20 instances. The main characteristics of each dataset are
shown in Table 4.2, though we refer to Lamontagne et al. (2023) for a detailed de-
scription. However we note that the Simple, Distance, and HomeCharging datasets
are easier to solve than the LongSpan and Price datasets. Notably, no instance in
the latter two datasets was solved exactly in Lamontagne et al. (2023), with the best
incumbent objective value in the branch-and-cut method (via CPLEX 12.10) being
below that of the greedy method described in that paper. As a consequence, we
refer to the set of instances in the Simple, Distance, and HomeCharging datasets as
the “easy instances”, while those from the LongSpan and Price datasets are called
the “hard instances”.

Parameter Simple Distance HomeCharging LongSpan Price
T 4 4 4 10 4
|I| 20 60 60 180 180
|J t| (per time period) 22575 22575 49905 147405 649605

Table 4.2 – Notable parameter values for the generated instances. The set of users J t is
generated separately in each time period, i.e. user j in period t has no relation to user j
in period t + 1.

Next, we discuss the customisation of the acceleration techniques described in
Section 4.4.2 used for this problem.

— There are two preprocessing techniques we can use to eliminate users from
consideration, without affecting the objective value. The first technique, as
proposed in Legault and Frejinger (2023), is to eliminate any users for which
at

ij = 0, ∀j ∈ J . Note that such users they can never be covered regardless
of our efforts, implying that their elimination does not affect the objective.
The second technique is to eliminate any user which is “precovered” (in the
sense that there is an existing facility or option which guarantees coverage,
regardless of decisions in the model). In particular, in the HomeCharging
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dataset, there are users who have access to a home charging system for their
EV. As a consequence, a subset of those users will purchase an EV, regardless
of the state of the public charging network, and can be eliminated from
consideration.

— For a heuristic warmstart, we use the greedy method proposed in Lamontagne
et al. (2023). This is achieved via the warmstart feature present in CPLEX.

— We keep the users j ∈ Js within the main problem, as described in Sec-
tion 4.4.2.

— For the Benders optimality cuts, we use the multicut equivalent of the Pareto-
optimal cuts in Proposition 4.4.3, using B1-type cuts. In other words, for
1 ≤ t ≤ T , the sets Γt(x̃t) in Proposition 4.4.2 are given by

Γt(x̃t) =
{

j ∈ J \ Js : Ĩ t
j < 1

}
∪
{

j ∈ J \ Js : Ĩ t
j = 1,

c

I
t

j < 1
}

. (4.29)

The users j ∈ Js do not need to be considered, due to the partial Benders
decomposition strategy mentioned above. We use the iterative method pro-
posed in Papadakos (2008) for estimating a core point.

— In the cases of the LongSpan and Price datasets, CPLEX is unable to solve
even the linear programming relaxation of model (4.1) as shown in Lamon-
tagne et al. (2023). As such, we do not use Benders dual decomposition,
as repeatedly solving the Lagrangian subproblems (4.12) or (4.14) would be
computationally infeasible.

4.6.2 Comparison of Methodologies

In this section, we compare the performance of the U-B&BC, A-B&BC, and
A-B&BC+LB-SubD-SepD methods for solving the instances. As will be dis-
cussed later, these options for the local branching method are the best suited for
our application. Additionally, we compare these with a standard branch-and-cut
tree via CPLEX, and the greedy method from Lamontagne et al. (2023). These
last two methods are referred to as the B&C and Greedy methods, respectively.

We run the experiments both with and without using the greedy solution as
a warmstart. This allows us to compare the ability of the methods to find high-
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quality solutions, and to reduce the optimality gap. In Tables 4.3 and 4.4, we
summarise our computational results for each methodology and instance set , re-
spectively, without and with the greedy warmstart. The solving time, objective
value, optimality gap, and number of nodes are reported as given by CPLEX. No-
tably, the“objective value” field presents the value of the incumbent solution if the
optimality threshold has not been reached within the two-hour time limit. How-
ever, we note that the number of nodes in the local branching case only includes
the ones for the main problem. In addition to these metrics, we also include the
gap to the best solution, calculated as the relative gap in each instance between
the objective value of a method and the best objective value among all methods.

Performance profiles for each method in the easy instances (combining all in-
stances both with and without warmstart) are presented in Figure 4.1, indicating
the percentage of instances solved by each method as a function of time. Addi-
tional performance details are presented in A.2.3 , including disaggregate perfor-
mance profiles for the Simple, Distance, and HomeCharging datasets both with
and without considering the warmstart solution.

By examining the results, we note that:

— The U-B&BC method without a warmstart is able to find a non-trivial
solution (i.e. a solution which places at least one facility) for almost all
instances, only failing to find a solution in one instance in the LongSpan
dataset. However, it found worse quality solutions on average than the
Greedy method, A-B&BC, and A-B&BC+LB-SubD-SepD methods in
the hard instances. When given a warmstart solution, both the U-B&BC and
the A-B&BC methods perform comparably to each other in regards to re-
ducing the optimality gap.

— Without a warmstart, the A-B&BC method is able to find solutions of bet-
ter quality than the U-B&BC method and reduce the optimality gap sig-
nificantly more, on average. However, the A-B&BC method also failed to
find non-trivial solutions in eight instances of the LongSpan dataset, signif-
icantly more than the U-B&BC method. In terms of solving time, the
A-B&BC method was able to outperform the U-B&BC method in all in-
stances. In addition, in the easy instances, the A-B&BC method is able to
run faster than the B&C method. However, while it is able to reduce the
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Figure 4.1 – Performance profiles showing the percentage of Simple, Distance, and Home-
Charging instances solved by each method as a function of time, combining both with and
without the warmstart solution.

optimality gap in the hard instances compared to the U-B&BC method, the
objective value is only slightly better than the Greedy method. In fact,
when given the warmstart solution, the A-B&BC method only improved
the objective value compared to the Greedy method in two instances in the
LongSpan dataset, and two instances in the Price dataset.

— The performance of the A-B&BC+LB-SubD-SepD method was nearly
identical both with and without the warmstart solution. It required more
time than either the A-B&BC or the B&C methods in the easy instances,
and the optimality gap is considerably higher than the A-B&BC method in
the hard instances. However, combining both with and without the warm-
start, the A-B&BC+LB-SubD-SepD method improves the objective value
compared to the Greedy method in 39 instances in the LongSpan dataset
and 37 instances in the Price dataset, which is notably more than the A-
B&BC method.
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Table 4.3 – Average performance details without greedy warmstart. Starred entries only
include instances for which non-zero incumbent solutions were found. Entries in bold
indicate the best performance across the exact methods in that dataset and metric.

Simple Distance HomeCharging LongSpan Price
Solve time (sec) Greedy < 0.01 < 0.01 < 0.01 0.05 0.10

B&C 0.20 0.70 6.56 7186.12 7194.97
U-B&BC 0.15 1.57 68.24 7184.25 7184.76
A-B&BC 0.11 0.51 1.37 7184.35 7184.57
A-B&BC+LB-SubD-SepD 4.65 4.74 12.70 7313.04 7344.53

Objective value Greedy 31814.20 16591.75 18016.47 133724.37 33641.74
B&C 31820.15 16627.14 18030.50 0.00 0.00
U-B&BC 31820.15 16627.14 18030.50 122803.68* 32563.31
A-B&BC 31820.15 16627.14 18030.50 133613.34* 33623.02
A-B&BC+LB-SubD-SepD 31820.15 16627.14 18030.50 133772.68 33655.97

Gap to best known solution (%) Greedy 0.02 0.21 0.08 0.04 0.04
B&C 0.00 0.00 0.00 - -
U-B&BC 0.00 0.00 0.00 8.20* 3.25
A-B&BC 0.00 0.00 0.00 0.11* 0.10
A-B&BC+LB-SubD-SepD 0.00 0.00 0.00 0.00 0.00

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01 - -
U-B&BC < 0.01 < 0.01 < 0.01 15.79* 15.00
A-B&BC < 0.01 < 0.01 < 0.01 6.20∗ 11.49
A-B&BC+LB-SubD-SepD < 0.01 < 0.01 < 0.01 12.04 18.91

Number of nodes B&C 59.25 43.35 131.95 0.00 0.00
U-B&BC 52.40 27.85 228.50 0.00 0.00
A-B&BC 152.10 84.50 1012.55 455.30 0.00
A-B&BC+LB-SubD-SepD 65.05 187.30 795.25 6435.35 1099.60

Table 4.4 – Average performance details with greedy warmstart. Entries in bold indicate
the best performance across the exact methods in that dataset and metric.

Simple Distance HomeCharging LongSpan Price
Solve time, (sec) Greedy < 0.01 < 0.01 < 0.01 0.05 0.10

B&C 0.23 0.70 6.46 7187.77 7196.19
U-B&BC 0.14 1.13 58.23 7184.00 7185.39
A-B&BC 0.09 0.52 1.34 7184.54 7185.04
A-B&BC+LB-SubD-SepD 4.67 4.81 13.00 7291.34 7305.71

Objective value Greedy 31814.20 16591.75 18016.47 133724.37 33641.74
B&C 31820.15 16627.14 18030.51 133724.36 33641.73
U-B&BC 31820.15 16627.14 18030.51 133724.36 33641.74
A-B&BC 31820.15 16627.14 18030.51 133728.65 33642.19
A-B&BC+LB-SubD-SepD 31820.15 16627.14 18030.51 133781.88 33650.81

Gap to best known solution (%) Greedy 0.02 0.21 0.08 0.04 0.03
B&C 0.00 0.00 0.00 0.04 0.03
U-B&BC 0.00 0.00 0.00 0.04 0.03
A-B&BC 0.00 0.00 0.00 0.04 0.03
A-B&BC+LB-SubD-SepD 0.00 0.00 0.00 0.00 0.00

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01 25.07 52.84
U-B&BC < 0.01 < 0.01 < 0.01 6.25 11.34
A-B&BC < 0.01 < 0.01 < 0.01 6.12 11.32
A-B&BC+LB-SubD-SepD < 0.01 < 0.01 < 0.01 11.86 18.66

Number of nodes B&C 47.40 35.00 109.30 0.00 0.00
U-B&BC 41.90 17.65 200.75 0.00 0.00
A-B&BC 65.35 75.05 860.45 0.00 1499.60
A-B&BC+LB-SubD-SepD 65.05 205.60 797.35 7282.65 1202.50
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4.6.3 Comparison of Acceleration Techniques

To the best of our knowledge, the instances in Section 4.6.2 (from Lamontagne
et al. 2023) are the only publicly available instances for the uncapacitated, dynamic
MCLP. However, they are not sufficient to illustrate the performance differences
among each of the acceleration techniques. As such, we use a modified version
of the generation procedure in Zarandi et al. (2013) to create new instances, each
with T = 5:

1. We randomly generate 20 facility locations on a 2D plane, with both coor-
dinates drawn from a uniform [0, 30) distribution. Each facility can be of
size k = 1, 2, 3, or 4, with corresponding costs 150, 50, 50 and 50. The total
budget in each time period is 200.

2. For each time period t, we randomly generate 50,000 demand nodes, with
both coordinates drawn from a uniform [0, 30) distribution and with demand
from a uniform [0, 100) distribution.

3. A facility is considered to cover a demand node if the Euclidean distance
between the facility i and the demand node j is below a threshold, which
varies based on the size of the facility. For each value of S in {3.25, 3.75, 4.25}
we generate coverage parameters a as at

ijk = 1 if ∆(i, j) ≤ S + 0.25k, where
∆(i, j) denotes the Euclidean distance between facility i and user j. As such,
the coverage depends not only on the initial coverage S but also on the size
of the facility k.

The above procedure is repeated five times, creating a new dataset of 15 instances
which we call Medium. This modified procedure maintains a similar Ω structure as
the instances in Lamontagne et al. (2023), as well as a similarly high ratio of users
to facilities. We recall that, as in Cordeau et al. (2019), this method is designed
for applications with much larger numbers of users than facilities.

We note that these instances are designed for comparing the performances of
the acceleration techniques. As such, they are principally designed to be more
difficult for the branch-and-Benders-cuts methodologies, rather than the stan-
dard B&C method. To better compare these techniques, we create new methods
which add a single acceleration technique to the unaccelerated branch-and-Benders-
cut method of Cordeau et al. (2019). These new methodologies are denoted U-
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B&BC+XX, where XX is MC for multi-cut generation, PO for Pareto-optimal
cut generation, or PB for partial Benders decomposition.

In Table 4.5, we summarise our computational results for each methodology,
with no warmstart applied in any method. The performance fields are identical
to the prior section, with the addition of the number of instances solved. Further
computational results are presented in A.2.3. We make the following observations
about the performances:

— The comparative performances of the U-B&BC and A-B&BC methods are
consistent with those presented in Section 4.6.2, with the solve time and opti-
mality gap of the U-B&BC method higher than with the A-B&BC method.
Additionally, the A-B&BC method was able to solve all instances for all val-
ues of S, contrary to the U-B&BC method.

— The average solve time and the number of nodes of the A-B&BC method
were worse than the B&C method for S = 3.25, but better for S = 3.75 and
S = 4.25. As both methods were able to solve all instances, the objective
value and number of solved instances were identical.

— Similar to the U-B&BC method, the A-B&BC+LB-SubD-SepD method
was outperformed in all metrics by the A-B&BC method. The
A-B&BC+LB-SubD-SepD method was able to find the optimal solution
in all instances (as indicated by the “Objective value” entries), but was not
able to reduce the optimality gap as effectively.

— Comparing the effects of each acceleration technique in isolation, we see that
each technique shows improvements compared to the unaccelerated method
in terms of the average solve time. However, it is clear that the multi-cut
generation has the largest impact on the effectiveness of the techniques, as
the U-B&BC+MC method outperformed all but the A-B&BC method
(and the B&C method in the instances with S = 3.25). Notably, the U-
B&BC+MC, B&C, and A-B&BC methods were the only ones able to
solve all 15 instances in the dataset.

— By comparison, the effects from the Pareto-optimal cut generation are more
minor, with the U-B&BC+PO performing worse than the U-B&BC method
in some instances for the objective value, but performing better or compara-
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bly in terms of the solve time and the optimality gap.

— Finally, the U-B&BC+PB method also showed improvements compared to
the U-B&BC method, with better solve time and optimality gap (even in
the instances with S = 3.75, for which the objective value was worse).

As in Section 4.6.2, we complement these results with performance profiles in
Figure 4.2. In it, we present the percentage of instances solved by each method,
aggregating across all values of S, as a function of time. Separate performance
profiles for each value of S are presented in A.2.3.

These results clearly demonstrate the benefits of the acceleration techniques
discussed in Section 4.4.2, even when used in isolation. However, none of the
individual acceleration techniques performed as well as the combination, via the
A-B&BC method.

Additionally, the results from this section combined with Section 4.6.2 high-
light the different use cases for the A-B&BC and the A-B&BC+LB-SubD-
SepD methods. The A-B&BC method excels at reducing optimality gaps and
proving optimality. However, it can struggle to produce or improve solutions for
hard instances, which makes it ideally suited for small to medium difficulty in-
stances that can be solved to proven optimality. By contrast, the performance
of the A-B&BC+LB-SubD-SepD method is the opposite. Even when given
the same warmstart solution, it cannot reduce the optimality gap as effectively as
the A-B&BC method. However, its performance is nearly identical both with and
without a warmstart solution, finding high-quality solutions even in hard instances.
This makes it best suited for hard to solve instances, for which a heuristic solution
is sought.

4.6.4 Further Results: Local Branching Restricted Sub-
problem Solution Method

In this section, we compare the methods for solving the restricted subprob-
lems (4.20) of the local branching procedure. Since these subproblems are solved
many times in each instance, it is imperative that they are solved efficiently. For
this, we use the SubD and SubB procedures presented in Section 4.5.2. We recall
that the SubD method solves the restricted subproblem (4.20) by directly pro-
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Table 4.5 – Average performance details in Medium instances. Entries in bold indicate
the best performance across the exact methods in that dataset and metric.

S = 3.25 S = 3.75 S = 4.25

Solve time, MIP (sec) B&C 23.40 187.48 73.31
U-B&BC 7110.49 6515.51 5001.91
U-B&BC+MC 79.44 86.67 40.71
U-B&BC+PO 5009.42 4928.70 4711.18
U-B&BC+PB 4516.99 4300.18 3403.50
A-B&BC 56.11 51.88 36.80
A-B&BC+LB-SubD-SepD 2077.59 2943.88 3725.03

Objective value B&C 1877854.46 2398990.73 2970338.08
U-B&BC 1877081.97 2398147.48 2968357.31
U-B&BC+MC 1877854.46 2398990.73 2970338.08
U-B&BC+PO 1877040.15 2396647.52 2967975.96
U-B&BC+PB 1877179.18 2397067.08 2969571.91
A-B&BC 1877854.46 2398990.73 2970338.08
A-B&BC+LB-SubD-SepD 1877854.46 2398990.73 2970338.08

Gap to best known solution (%) B&C 0.00 0.00 0.00
U-B&BC 0.04 0.04 0.07
U-B&BC+MC 0.00 0.00 0.00
U-B&BC+PO 0.04 0.10 0.08
U-B&BC+PB 0.04 0.08 0.03
A-B&BC 0.00 0.00 0.00
A-B&BC+LB-SubD-SepD 0.00 0.00 0.00

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01
U-B&BC 2.60 1.77 3.00
U-B&BC+MC < 0.01 < 0.01 < 0.01
U-B&BC+PO 1.98 1.89 2.96
U-B&BC+PB 0.85 1.47 0.93
A-B&BC < 0.01 < 0.01 < 0.01
A-B&BC+LB-SubD-SepD 0.07 0.19 1.13

Number of nodes B&C 8351.60 62989.40 24196.40
U-B&BC 22776.80 24473.60 9865.80
U-B&BC+MC 103045.80 86509.80 52664.80
U-B&BC+PO 30834.00 25441.00 10147.80
U-B&BC+PB 19181.20 13130.00 8498.00
A-B&BC 68917.80 58596.60 49838.20
A-B&BC+LB-SubD-SepD 2631.60 8132.00 4233.40

Number of solved instances B&C 5 5 5
U-B&BC 0 1 2
U-B&BC+MC 5 5 5
U-B&BC+PO 2 2 2
U-B&BC+PB 3 3 3
A-B&BC 5 5 5
A-B&BC+LB-SubD-SepD 4 4 4
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Figure 4.2 – Performance profiles showing the number of Medium instances solved (across
all values of S) by each method as a function of time.

viding the reformulation (4.25) to a generic MILP solver (in this case, CPLEX),
while the SubB procedure solves the restricted subproblem (4.20) with the A-
B&BC method.

For a more accurate comparison between the SubD and SubB methods, we
simulate the entire solving process. This starts with the MP (4.19), with no opti-
mality cuts (4.7c) nor feasible space reductions (4.19c). We then generate randomly
a sequence of 255 feasible candidate solutions x̃, which are used for both SubD and
SubB methods. For each solution, we solve the resulting restricted problem (4.20)
using each method. Then, we add the Constraints (4.27) and the Benders optimal-
ity cuts derived from the set (4.29) for x̃, and continue to the next solution.

In Table 4.6, we report the average results across all instances in each dataset.
The objective value and solve times are as reported as CPLEX, however only
instances which terminate before the time limit are included in the solve time. For
the subproblems solved it is indicated the percentage of the subproblems which
were successfully solved before the time limit was reached.

Examining the results, we note that both methods performed nearly identically
in the easy instances. Additionally, in terms of solving time, both methods were
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Simple Distance HomeCharging LongSpan Price
Objective value SubD 25382.61 12539.70 15817.63 130526.42 32559.12

SubB 25382.61 12539.70 15817.63 130462.23 32544.02
Solve time (fully solved, sec) SubD 0.07 0.16 0.21 30.78 14.67

SubB 0.08 0.14 0.20 38.84 14.39
Subproblems solved (%) SubD 100.00 100.00 100.00 89.04 100.00

SubB 100.00 100.00 100.00 1.75 5.69

Table 4.6 – Comparison of cutting planes solution method and accelerated Benders
decomposition for restricted subproblems. Entries in bold indicate the best performance
across the exact methods in that dataset and metric.

very similar in the hard instances. By contrast, the percentage of subproblems
solved within the time limit is drastically different between the two methods, with
the SubD method successfully solving nearly all instances whilst the SubB method
is able to solve very few. This can also be seen in the objective values, with the
average objective value for the SubD method being better than the SubB method
in the hard instances. These results demonstrate quite clearly that the proposed
method is much better for solving the subproblem in hard problems compared to
the SubB method.

A detailed view of the evolution of the solve times in terms of the number of
evaluated solutions is presented in A.2.3. In brief, we observe a similar increase in
the solve time for both methods, with more variability in the SubB method.

4.6.5 Further Results: Local Branching Subdomain Sepa-
ration Scheme

In this section, we compare the two distinct approaches presented in Sec-
tion 4.5.3 for exploring the disjoint search spaces in the local branching subprob-
lems. We recall that the SepB approach consists in creating a series of branches
indicating the time period for which the distance from our candidate exceeds the
distance threshold. These branches can be created after any feasible solution, and
so we compare branching after every iteration of the Benders decomposition with
branching only in iterations of the Benders decomposition for which the solution
found is better than the current incumbent. The SepD approach consists in using
the Constraints (4.27) to model the disjunctive set. These constraints are added for
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every candidate solution encountered during the series of restricted and diversified
subproblems.

From technical standpoint, it is only possible to create two branches at every
branch-and-bound node of CPLEX (IBM 2022). As the SepB approach demands
a branch per time period, this comparison is only possible for T = 2. Since all of
the problem instances contain at least four time periods, we modify the instances
in this section by not considering any time periods beyond the first two.

In Table 4.7, we see the average results across all instances in each dataset. The
solve time, objective value, and optimality gap are reported directly by CPLEX.
The number of diversified subproblems and restricted subproblems are collected as
part of the callback, and include all subproblems regardless of their solution status.
The number of local branching separations is also collected as part of the callback,
and reports the number of branches created as part of the separation procedure.

By examining the results, we observe that the SepB method which branches
after every iteration had the worst performance overall. In particular, the ob-
jective value is lower and the optimality gap is higher than both other methods.
Comparing the SepD and the SepB method which branches only after improving
solutions, we see a trade-off in terms of objective value and optimality gap. There
is also a notable difference in terms of the number of restricted subproblems, with
the SepD method performing roughly 50% more subproblems.

To better explain this difference, it is important to keep in mind how both the
SepB and SepD methods work at a high level. On the one hand, the SepB method
creates two branches at the candidate solution, corresponding to the threshold
distance being exceeded in either the first time period or the second. As such, each
of these branches solves the main problem (4.19) at a local level, within relatively
large subdomains. By selecting to explore a subdomain which contains better
quality solutions, the solver can then improve the incumbent. However, as the
subdomains get more restrictive, the bounds provided by the Benders optimality
cuts become more accurate, making it more difficult to find new, improving nodes
to explore. Additionally, as a consequence of this branching procedure, any upper
bounds that are found are locally valid, leading to a decreased optimality gap in
unexplored branches. On the other hand, the SepD method effectively creates
a hole within the feasible domain, imposing that all solutions must exceed the
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Table 4.7 – Average performance details for different feasible space reduction methods.
Entries in bold indicate the best performance across the exact methods in that dataset
and metric. Metrics or datasets with no clear “best” value do not have any entries in bold.

Simple Distance HomeCharging LongSpan Price
Solve time (sec) SepB, all solutions 46.52 2.32 1460.34 7176.68 9045.39

SepB, improving solutions 0.72 1.17 8.95 7192.53 7269.47
SepD 1.12 1.68 4.99 7175.38 7292.31

Objective value SepB, all solutions 13718.14 6635.17 8151.72 18473.34 13439.35
SepB, improving solutions 13718.14 6635.17 8151.72 18882.63 13601.62
SepD 13718.14 6635.17 8151.72 18851.94 13552.85

Optimality gap (%) SepB, all solutions < 0.01 < 0.01 0.21 21.92 22.41
SepB, improving solutions < 0.01 < 0.01 < 0.01 13.38 18.05
SepD < 0.01 < 0.01 < 0.01 12.47 17.47

Number of nodes SepB, all solutions 509.10 100.60 3061.90 1003.45 589.73
SepB, improving solutions 12.75 73.95 216.35 2654.30 1117.95
SepD 10.00 64.10 170.80 4273.90 1592.75

Number of diversified subproblems SepB, all solutions 662.45 26.70 2892.20 760.50 278.27
SepB, improving solutions 13.60 13.05 61.80 889.15 276.30
SepD 18.00 15.85 30.55 876.80 268.90

Number of restricted subproblems SepB, all solutions 1424.90 98.25 13127.65 4838.15 1708.62
SepB, improving solutions 31.25 41.60 195.60 4783.15 1338.45
SepD 87.75 101.95 170.40 6773.35 1973.20

Number of user-created branches SepB, all solutions 654.70 27.00 2887.90 741.20 260.38
SepB, improving solutions 2.20 4.70 6.70 12.40 9.30

threshold distance. As such, the main problem (4.19) is working at a global level,
not divided into subdomains. This may make it easier to find new, improving nodes,
as the solver may easily move to areas of the feasible domain which have not been
explored and, thus, areas in which the bounds from the Benders optimality cuts
are less accurate. Additionally, since the main problem works at a global level, any
upper bounds that are found are globally valid, leading to an improved optimality
gap overall. Due to the black-box nature of the solver, it is not possible to verify
this hypothesis. However, it is supported by the progressively increasing number
of nodes and the progressively decreasing optimality gap from the SepB method
at all solutions, to the SepB method at improving solutions, and then to the
SepD method.

These results suggest that it may be beneficial to consider the SepB method
for subproblem separation at improving solutions when higher-quality feasible so-
lutions are sought. However, the limitations in terms of the number of time periods
would need to be addressed in order to apply the SepB method more generally.

Additional performance details are presented in A.2.3.
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4.7 Conclusion

In this work, we present two new methods for solving the dynamic MCLP in an
exact manner. The accelerated branch-and-Benders-cut method expands upon the
current state-of-the-art in the static case, the Benders decomposition in Cordeau
et al. (2019), adding several acceleration techniques from the literature to im-
prove convergence. Computational experiments showed that the proposed method
resulted in better performance across solving time, objective value, and optimal-
ity gap compared to the state-of-the-art. Most notably, while each acceleration
technique was able to improve convergence in some instances compared with the
unaccelerated method, the best performance was obtained via the combination of
the techniques.

Additionally, the general nature of the model and the acceleration techniques
may allow for the improved method to be applied to different structures of Ω. For
example, the dynamic equivalent to the budgeted MCLP (Khuller et al. 1999, Li
et al. 2021, Wei and Hao 2023) or the MCLP under uncertainty (Daskin 1983,
Berman et al. 2013, Vatsa and Jayaswal 2016, Nelas and Dias 2020). The ac-
celerated branch-and-Benders-cut method could also be extended to the MCLP
with partial coverage (Karasakal and Karasakal 2004), also known as the coop-
erative MCLP (Berman et al. 2010). This variant allows for the coverage at

ij to
be fractional, and thus may require multiple facilities to cover a user. While the
Benders primal subproblem solution and Benders cuts themselves are equivalent
in the partial coverage case, we note that the integrality property does not hold
for the Benders primal subproblem. As such, a generalised Benders decomposition
approach would be required (see, e.g. Rahmaniani et al. 2017).

In addition to the dynamic versions of these variants of the MCLP, the ideas
behind our methods can also be applied to related facility location problems. An
example would be the partial set covering model, which minimises the cost for
maintaining a predetermined level of coverage for users. As discussed in Cordeau
et al. (2019), this problem features an analogous Benders decomposition approach
as for the MCLP. As such, when considering the dynamic variant of this problem,
the separability would allow analogous acceleration techniques and a similar local
branching approach. This dynamic variant of the partial set covering model is
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similar to the incremental facility location problems studied in Albareda-Sambola
et al. (2009) and Arulselvan et al. (2019). Though we note that the models in
these works include constraints which break separability of the subproblems by
time period, for which the multi-cut acceleration technique and the local branching
method are no longer valid.

The accelerated branch-and-Benders-cut method with local branching develops
a specialised local branching scheme for the dynamic MCLP. This combines an
intuitive distance metric with an innovative subproblem solution method to find
improved feasible solutions. Indeed, in computational experiments, this method
was the only one able to consistently find better quality feasible solutions compared
to the warmstart solution. However, in instances which can be solved to optimality
by the accelerated branch-and-Benders-cut method, this method outperformed the
local branching approach. As such, the local branching method is best used in
difficult instances, where attaining higher-quality feasible solutions is paramount.

Both the accelerated branch-and-Benders-cut and the local branching methods
were applied to an existing problem in the literature, an EV charging station place-
ment model (Lamontagne et al. 2023). This provided faster solution methods with
better performance guarantees, as well as improved lower bounds. These results
validate the methodological contributions provided in this work for the dynamic
MCLP.

From our experiments, we conclude that potential speedups should exploit the
structure of Ω. In other words, it is crucial to obtain primal formulations in which
the linear relaxation is tight in the main problem variables. Hence, future work on
specific dynamic MCLPs could follow this research direction in order to improve
the performance of our Benders framework. In another potential research direction,
recent work has explored the integration of mixed integer rounding cuts within the
branch-and-Benders-cut framework (Bodur and Luedtke 2017). This framework
does not depend on the structure of Ω, and thus may be applicable for the dynamic
MCLP.

106



Acknowledgements

The authors gratefully acknowledge the assistance of Jean-Luc Dupre from Di-
rection Mobilité of Hydro-Québec for sharing his expertise on EV charging stations
and the network, as well as Ismail Sevim for his insights into the project. We
also gratefully acknowledge the assistance of Walter Rei of Université de Québec
à Montréal and Mathieu Tanneau of Georgia Institute of Technology in discussion
about Benders decomposition techniques.

This research was supported by Hydro-Québec, NSERC Collaborative Research
and Development Grant CRDPJ 536757 - 19, and the FRQ-IVADO Research Chair
in Data Science for Combinatorial Game Theory.

107



5

What makes for a good
public electric vehicle
charging station? A
revealed preference study

Preface

In Chapter 3, we described how to embed advanced demand patterns (via, e.g.,
discrete choice models) directly into the optimisation framework. However, these
discrete choice models must describe the interaction between the placement of
public charging infrastructure and the adoption of EVs. Notably, this is controlled
by the parameters of the utility functions βt

jik and κt
ji, 1 ≤ t ≤ T, i ∈ N, j ∈

C0t
i ∪ C1t

i , 1 ≤ k ≤ mj. As these parameters are quite specific to our case-study,
in this chapter, we make progress towards obtaining appropriate values. More
specifically, we investigate the high-level factors which affect the selection of public
charging stations by existing EV users, under the assumption that stations which
would exhibit a higher preference should result in higher EV adoption when opened.
For our case study, we consider the real-world charging preferences obtained from
EV users and charging sessions within the city of Montreal (Quebec).

The model in this chapter is designed explicitly for inclusion within optimisa-
tion models for EV charging network design, as it does not require user-specific
information such as daily travel or battery state of charge. It can thus be applied
for any such optimisation context, even beyond the EV adoption model we propose.
Furthermore, the discrete choice model itself is designed to predict charging sta-
tion selection. As such, this makes it suitable for estimating the usage of candidate
charging station locations before such facilities exist, or determining favourable
locations for charging stations.

The contents of this chapter are being prepared for submission to a peer-
reviewed international journal in the domain of operations research.
Contributions of Steven Lamontagne and the coauthors

— The research ideas were developed by the student, Emma Frejinger and Margarida
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Carvalho. In particular, the specification of the discrete choice models was done
by the student, following the thorough research of existing work and an extensive
testing process.

— All code was written by the student, including the estimation and analysis of the
discrete choice models via Biogeme software. The analysis and filtering process for
the real data were also developed and implemented by the student.

— The original draft (including all tables and images) were produced by the student,
while it was revised by Emma Frejinger, Margarida Carvalho, and Ribal Atallah.

109



Abstract

To determine the optimal locations for electric vehicle charging stations within a
charging network, optimisation models must predict which charging stations users
will select. However, existing demand models are typically estimated using stated
preference data, and include user-specific characteristics which may not be avail-
able for charging network operators, such as daily trips and vehicle state of charge.
To that end, we estimate discrete choice models to predict the usage of charging
stations, based only on readily available information for charging network opera-
tors. Notably, the parameter values are estimated using a unique dataset of real
charging sessions within the city of Montreal, Quebec. We find that the distance
between the charging stations and the users, the close proximity of the charging
station to the area of the users home, and the number of outlets at each station are
significant factors for predicting station usage. Additionally, the value of ameni-
ties near the charging station tend to have an overall neutral effect, with some
users demonstrating strong preference or aversion for these locations. High vari-
ability among the preferences of users highlight the importance of models which
incorporate panel effects.

Keywords: Electric vehicles, discrete choice models, mixed logit, revealed
preferences

5.1 Introduction

Scope Whether operated by a private company or a governmental entity, electric
vehicle (EV) public charging station network operators want their charging stations
to be used frequently. Each charging station is expensive to install, and as such,
private companies require many customers to recuperate this cost, while high usage
of charging stations demonstrates a wise deployment of resources for governmental
entities. To aid in this, a tool for predicting aggregate usage of public charging
stations can inform on the potential impacts of candidate locations for new sta-
tions. Moreover, such a tool can then be embedded within optimisation models for
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charging network planning, with the goal of selecting future public charging station
locations in a long-term context.

A crucial component of this optimisation is the prediction of demand for each
station. In charging station placement models, the demand for a charging station
is based on either the location of the users and charging stations on the network
(so called node-based models), or the path of a user between origin and destination
on a trip (flow-based models, or activity-based models if considering a sequence
of trips) (Kchaou-Boujelben 2021, Metais et al. 2022). Since it only requires the
locations of users and charging stations, the node-based approach is particularly
well-suited to intracity charging network optimisation, which may have limited data
on the daily activities of their users. However, the level of demand in these models
is typically determined via distance-based coverage or p-median models, which do
not allow for more complex behaviours such as cannibalisation of demand between
stations or limited charging capacity (Metais et al. 2022).

By contrast, the state-of-the-art in charging station demand modeling is dom-
inated by discrete choice models, where the alternatives are the charging stations
available to the driver (Potoglou et al. 2023). The flexibility and interpretability
of discrete choice models make it an ideal choice for predicting existing behaviour
and extending these predictions for candidate charging stations. In addition, the
underlying behavioral assumptions in these models can allow for the more complex
behaviours described above. However the integration of existing discrete choice
demand models to charging network operation is non-trivial. Additionally, while
discrete choice models can be estimated using stated preference (SP) or revealed
preference (RP) data, the vast majority are from SP data. More specifically, the
surveys for these SP-driven works present hypothetical trip and charging stations to
respondent in order to simulate real-time decision making. As a consequence, these
experiments typically include real-time operation attributes such as remaining ve-
hicle range, parking time at destination, or sociodemographic characteristics (e.g.
Wang et al. 2021, Visaria et al. 2022, Anderson et al. 2023). Since these attributes
cannot be known in advance by the charging network operator, their inclusion in
the demand models renders them ill-suited for strategic optimisation.

In this work, we estimate discrete choice models specifically tailored for in-
tegration within intracity, node-based charging network optimisation. More con-
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cretely, the models predict charging station choices based on vehicle-agnostic and
trip-agnostic characteristics, for example, the home area of the user and station
characteristics. Such information is readily available by charging network opera-
tors, thus allowing for a priori estimation of demand of both existing and candidate
stations. Recent advances in competitive facility location problems then describe
the integration of these discrete choice models directly within optimisation frame-
works (e.g., Mai and Lodi 2020, Pacheco Paneque et al. 2021, Lamontagne et al.
2023, Legault and Frejinger 2023). These frameworks embed the evaluation of
charging station demand directly into the optimisation model, preserving the un-
derlying behavioural assumptions of the demand models, and thus enabling the
selection of optimal charging station locations. Public charging infrastructure is
available with different power outputs, referred to as level 2 and level 3 charging,
and which exhibit drastically different usage and behaviour (Hardman et al. 2018,
Figenbaum and Nordbakke 2019, Tal et al. 2020). As such, we estimate separate
parameter values for each of these charging levels.

Contributions Our work presents several contributions to EV demand model-
ing. Firstly, we specify models tailored for charging station operators, ensuring
their high interpretability and rendering seamless their integration into network
optimisation models. More specifically, we estimate multinomial logit (MNL) and
mixed logit (MXL), with the latter including the panel effect of repeated obser-
vations from individual users. Secondly, we estimate our models from revealed
preference (RP) data rather than stated preference data, thus avoiding the well-
studied hypothetical bias (Haghani et al. 2021a,b). To the best of our knowledge,
only Sun et al. (2016) uses RP data for charging station demand estimation, and
only in the context of intercity EV charging. In addition, the dataset we use for
estimation is unique in that the charging network represents 90% of charging sta-
tions within the province (Association des véhicules électriques du Québec 2023),
thus accounting for nearly all available alternatives. By point of comparison, the
charging network operator in Pevec et al. (2018) is reported to only account for
15% of the total network. Thirdly, we complement this unique usage data with Ge-
ographical Information System (GIS) data from OpenStreetMap (OpenStreetMap
contributors 2017), allowing us to examine the travel network and amenities in
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proximity to the stations when each session took place. Notably, the presence of
amenities has been observed to affect EV charging decisions in Philipsen et al.
(2016), Anderson et al. (2018), Sheldon et al. (2019) but, to the best of our knowl-
edge, has not yet been included in RP studies with discrete choice models. We
note that RP data and GIS information have been used in machine learning mod-
els for charging station prediction (Pevec et al. 2018, Straka et al. 2020). However
the resulting machine learning models are not well-suited for selecting multiple
new charging stations simultaneously, thus making for a difficult integration into
charging network optimisation. Our key findings indicate, unsurprisingly, that the
distance between the charging stations is the most significant factor for predicting
charging station usage. Additionally, the number of outlets at each station and
the charging station being within a short walk of the home area of the user are
also found to increase usage of a station. In the MNL models, the average effects
of some amenities are significant. However, the MXL models indicate an overall
neutral average effect and significant variance among users. This suggests that the
significant average effect observed in the MNL models may be caused by a high
number of sessions from users with strong preferences or aversions, rather than an
overall trend within the population. As a consequence, optimisation models which
employ MNL formulations for demand modeling may incorrectly relate the usage
of stations with amenities.

Paper Organisation In Section 5.2, we present a review of the relevant litera-
ture on charging preferences and charging station selection. Section 5.3 presents
general characteristics about EV charging in Quebec, along with the process for
generating the value of the attributes in our models. In Section 5.4, we discuss the
specifications of our MNL and MXL models. The results of the estimation process
are presented in Section 5.5, while they are discussed in Section 5.6. Finally, we
conclude our work in Section 5.7.
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5.2 Literature Review

There is a vast literature on EV charging habits. Thus, for the sake of brevity,
we present here works relating to the use or selection of charging stations by private
EV owners. We start with a focus toward the data used, followed by an exploration
of literature addressing charging preferences. This specifically includes preferences
related to the public charging network. Lastly, we delve into the methodologies
employed for predicting charging station selection. For recent reviews of these and
other aspects of charging activity, we refer to Hardman et al. (2018) and Potoglou
et al. (2023).

5.2.1 Charging Behaviour and Requirements

We start by noting the works detailing the charging behaviour for private ve-
hicle users. These allow us to identify and validate charging behaviour of real
users, as well as isolate irregular behaviour. Collectively, these works report on
millions of charging sessions and thousands of EV owners across the Netherlands,
British Columbia (Canada), Norway, Ireland, California (United States), and New
Zealand (van den Hoed et al. 2013, Axsen et al. 2015d, Figenbaum and Kolben-
stvedt 2016, Morrissey et al. 2016, Figenbaum and Nordbakke 2019, Nicholas et al.
2017, Tal et al. 2018, 2020, Burroughs et al. 2021). Additionally, while other works
focus on a specific research question, they may also present survey results or re-
vealed data on charging behaviour. Examples include the surveys of Franke and
Krems (2013), Chakraborty et al. (2019), Lee et al. (2020), Visaria et al. (2022),
and Anderson et al. (2023). By combining this vast literature, we obtain a di-
verse portfolio of preferences of EV drivers across multiple years and geographical
regions, thus rendering it possible to compare against existing behaviour and iden-
tify irregularities.

The dependency on the public charging network varies greatly depending on
the user. When charging their vehicle, users may have access to private charging
outlets located at their home or workplace. Indeed, currently, the majority of users
charge primarily at home, with between 82% and 93% of EV owners recharging
frequently at home (Figenbaum and Nordbakke 2019, Lee et al. 2020, Tal et al.
2020, Visaria et al. 2022, Anderson et al. 2023). For workplace charging, there is
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more variability in terms of availability and frequency of use, with the percentage
of frequent users ranging from 19% to 40% (ibid.). Notably, in Helmus et al.
(2020) they find that a minority of sessions in the Netherlands are associated with
workplace charging, at around 14%. This compares with 35% associated with non-
workplace daytime charging and 50% associated with overnight public charging.
The attributes contributing to the frequency of each type of charging location were
examined in more detail in Chakraborty et al. (2019) and Lee et al. (2020), which
included income, dwelling type, access to level 2 charging at home versus level 1
charging, and the electric range of the vehicle. The access to home or workplace
charging can decrease the reliance on the public charging network, and can thus lead
to a disproportionate representation of public charging sessions by those without
access to these other types of charging.

5.2.2 Predicting Charging Station Selection

Once a user has opted to use the public charging network, they must then se-
lect a charging station to use. Depending on its characteristics, each station may
successfully draw the demand of that user. In this sense, this viewpoint is simi-
lar to the approach of node-based optimisation models, with the demand of each
charging station depending on multiple attributes rather than simply the distance.
In the demand modeling literature, researchers have then tried to characterise or
predict this selection. In many cases, they use a discrete choice model to predict a
charging station choice, with significant attributes including cost, charger availabil-
ity or waiting time, distance to home or detour time, location type, proximity to
amenities, number of chargers at the station, electricity obtained from a renewable
source, and the rating of the charging station on a mobile phone application (Luo
et al. 2015, Cui et al. 2019, Moon et al. 2018, Sheldon et al. 2019, Wang et al.
2021, Lamontagne et al. 2023, Ma et al. 2022, Visaria et al. 2022, Anderson et al.
2023). In the case of Luo et al. (2015), Cui et al. (2019), Lamontagne et al. (2023),
charging demand was predicted using discrete choice models, and embedded within
optimisation models. No parameter values or estimation results are presented in
Luo et al. (2015), Cui et al. (2019), while parameter values for a MNL model are
presented in Lamontagne et al. (2023) based on real charging session data. In all
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other cases, the models are estimated based on a curated survey, where respondents
are presented a set of charging options with different characteristics and must select
an option.

Of particular note for our study is the work in Sheldon et al. (2019), involving
a choice experiment with 1,261 drivers (not necessarily EV) in California, as it in-
cludes the proximity to amenities as an attribute. More specifically, the proximity
of a station to amenities is treated as a categorical characteristic which classifies
charging stations into one of the following location types: workplace, grocery stores,
shopping malls, public transit, sports facilities, schools, entertainment venues, level
3 near home, and level 3 near the highway. They find that respondents exhibited a
preference for locations identified as near grocery stores, shopping malls, and hav-
ing level 3 charging stations near their homes and close to the highway network, as
opposed to the baseline location near entertainment locations. Moreover, respon-
dents demonstrated indifference or a tendency to disfavor locations identified as
being near transit, sports facilities, and schools (even students). In all cases, these
public charging locations were favoured less than workplace charging. However,
the authors find that these preferences vary significantly among the respondents.

Under a similar node-based viewpoint but not using discrete choice models,
in Philipsen et al. (2015), they ask a discussion group of 15 non-EV drivers from
Germany about their preferences for charging. As part of this, a series of evalua-
tion criteria for charging stations were brought up: combining the charging session
with everyday activities (dual use), compatibility with existing habits, avoiding
detours or added delays (accessibility), easy to find and see (visibility), availability
of chargers when needed (reliability), safe to leave vehicle or to stay for extended
periods of time, allowing for longer trips that could otherwise not be done, and
connection to the public transportation network. The participants also proposed
several locations which fit the above criteria, such as supermarkets, public authori-
ties, gas stations, motorway service stations, medical centres, recreational facilities,
and sports venues. These findings were validated in Philipsen et al. (2016) through
a survey of 252 respondents in Germany, asking each to rank to importance of
the evaluation criteria and locations proposed in Philipsen et al. (2015). For the
ranking of criteria, reliability and dual use were most important, followed by ac-
cessibility and visibility. For location type, motorway service stations were deemed
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most important, followed by workplace, gas stations, and shopping facilities (at
roughly equal importance), then leisure facilities and educational facilities. These
preferences for evaluation criteria and location were found to vary based on so-
ciodemographic (notably, based on gender) and if the respondent was presently an
EV driver. In a similar approach, in Anderson et al. (2018), they conduct a survey
of 761 EV owners in Germany in which respondents were asked where to place
additional charging stations based on their personal needs. For each station, they
could indicate the power level (3.7 kW, 22 kW, 50 kW), the projected frequency of
use, and the activity while charging at that location (such as work, stop-to-charge,
or shopping). Overall, users placed charging stations within cities, preferred 22 kW
charging, and wanted activities close to their charging stations (with only 29% of
the stations indicating stop-to-charge). Additionally, the activities selected varied
considerably between the different power levels, highlighting different usage.

Across the node-based viewpoint, we note the lack of RP data, relying exclu-
sively on choice experiments or survey results. Additionally, while the distance or
accessibility of a station is crucial, there is support for the idea that users pre-
fer activities near their public charging stations (an idea which is implicit in the
activity-based optimisation). As such, this suggests that the inclusion of such
attributes in node-based and activity-based optimisation would be beneficial.

Rather than focusing on the charging stations in isolation, other works consider
the station as one part of a user’s trip between their origin and destination. In this
context, the selection of a charging station can thus be viewed as the deviation of a
path for the purposes of charging. As such, this viewpoint is akin to the path-based
optimisation models. In all of these works, discrete choice models are used to pre-
dict which charging station is selected by the users, however the exact decision being
modelled can vary. In both Sun et al. (2016) and Yang et al. (2016), some routes
can be completed without charging, so users must decide if they select a route with
charging at all and, if applicable, which route with charging. They find that the
state of charge and sociodemographic characteristics were significant attributes for
selecting a route with charging. In terms of route deviation for charging, Sun et al.
(2016) noted that maximum acceptable deviations from the shortest path varied
between 500 metres and 1,750 metres depending on vehicle type (private versus
commercial) and day (weekday versus weekend). Similarly to Sun et al. (2016),
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Yang et al. (2016), in Ashkrof et al. (2020), users must select a route between their
origin and destination, with some routes including fast charging stations along the
way and some destinations including a slow charger. They find that availability
of a slow charging station at the destination decreased the chances of selecting a
route with fast charging, while female drivers and younger drivers were more likely
to select routes with fast charging. In general, for shorter trips, local streets are
preferred while for longer trips freeways and arterial ways are preferred. Rather
than selecting a route, in Ge and MacKenzie (2022), users are presented with a
route and vehicle characteristics. The process then simulates a real trip, where
users arrive at a charging station with given vehicle and trip characteristics (e.g.
remaining state of charge and distance to next charging station), and then must
decide whether to charge at this charging station or to continue on the route. They
find that the remaining state of charge, charging cost, access time, and having ac-
cess to full amenities (restroom, Wifi, and a restaurant) were significant attributes
for users deciding to charge. In terms of data for discrete choice model estimation,
we note that only Sun et al. (2016) uses revealed-preference data, while all others
use survey data.

Overall, these path-based viewpoints consider analogous attributes to those of
node-based, such as the distance to the charging station being replaced by path
deviation. However, a major difference is in the data assumption about users,
where the researcher is assumed to be aware of the path (or at least the origin and
destination) of the user in the path-based viewpoint.

5.2.3 Relation to Our Work

As with many of the prior articles, our work uses discrete choice models to
predict the choice of charging station by users, more specifically following the
node-based viewpoint for intracity charging. However, our work expands upon
the existing literature by estimating with RP data, previously only used in the
intercity model of Sun et al. (2016). Additionally, by combining this RP data
with GIS information from OpenStreetMaps, we can include amenity information,
previously only considered in discrete choice estimation with SP data such as in
Sheldon et al. (2019), Visaria et al. (2022). By comparing the available amenities
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near a charging station with the usage of the stations, we can then empirically
verify the value of the location types proposed in Philipsen et al. (2015, 2016),
Anderson et al. (2018).

5.3 Data

In our work, we use a dataset of charging sessions from the charging network
operator Circuit Électrique. We begin, in Section 5.3.1, with a brief discussion
about the charging network and the charging process in Quebec. Additionally,
though this dataset has been used in Lamontagne et al. (2023), Elhattab et al.
(2023), Parent et al. (2023), descriptive statistics were not provided for charging
behaviour. These are provided along with a comparison with other reports on
charging behaviour (mentioned previously in the literature review). As we are
interested in intracity charging, in Section 5.3.2, we isolate the data for the city of
Montreal, Quebec. Finally, in Section 5.3.3, we describe the procedure for obtaining
attribute values which are not found in the charging session data.

5.3.1 Data Description

A key component to our charging session data, and a notable difference with
other charging networks is the membership card. Indeed, in addition to manag-
ing operations of the charging stations, Circuit Électrique also has a membership
program to which users can register (Circuit Électrique 2023a). Registered users
can receive by mail one or more cards with Radio Frequency Identification (RFID)
capabilities, and which are connected to their account information; All sessions
initiated by a membership card (including at some charging stations not operated
by Circuit Électrique) are then linked and charged to the associated account. How-
ever, a membership card is not required at all charging outlets operated by Circuit
Électrique, as sessions may be initiated by guest accounts and charged to a credit or
debit card. As such, recorded sessions contained within the dataset include those
completed by registered and guest members at Circuit Électrique charging, as well
as some sessions completed by registered members at third-party charging stations.
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Since we cannot accurately identify the preferences and habits of guest accounts
(which represent roughly 47% of users and 11% of sessions), they are excluded from
the analysis and estimation processes. Even for non-guest members, reliable vehicle
information is not available for member accounts and, in addition, multiple vehicles
may be associated with the same account. As such, it is not directly known if the
account corresponds to a private user, or a fleet of commercial vehicles. Since our
aim is to evaluate public charging stations from the perspective of private vehicle
owners, we must identify and isolate the corresponding member accounts. To do
this, we have combined the expertise of our industrial partners, as well as the
descriptions of typical charging behaviour from the literature, to create a series
of filters for categorisation. For the purposes of these filters, we do not take into
account charging behaviour or sessions which occurred between February 1st 2020
and June 30th 2021, as the COVID-19 pandemic had noticeable effects on charging
habits which could interfere with the filters.

Unplugged Member accounts which have no charging sessions associated with
them. These members may correspond to users who only use home charg-
ing (which correspond to 53% of respondents in Lee et al. 2020), or PHEV
owners who never charge their vehicles (Chakraborty et al. 2020). Our indus-
trial partners have also suggested that these could correspond to duplicate
accounts, where users have forgotten account sign-in information, and have
simply created a new account. Since the classification of users excludes the
period of February 1st 2020 to June 30th 2021, users are classified as un-
plugged if their only charging sessions are during this time.

Shared Member accounts presumed to correspond to fleets or commercial vehicles.
Several filters identify this case:

— Member accounts which are associated with multiple sessions occurring
at the same time.

— Member accounts which have been charged four or more times in a single
day. This threshold value is much higher than the average charging rates
of 18 to 20 sessions per year in van den Hoed et al. (2013), average 1.47
sessions per day in Axsen et al. (2015d) (median of 1), average 1.17
sessions per day in Tal et al. (2018), median 0.71 sessions per day in
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Visaria et al. (2022) (mean of 0.75, maximum of 4.29), and average
1.1 sessions per day in Tal et al. (2020) (highest rate among all vehicle
types). Additionally, while less commonly found in the literature, in Tal
et al. (2020) the average number of charging sessions on days in which
charging occurred was reported to be below 1.66 sessions per day for all
vehicle types.

— Member accounts which have an average recharge rate over 500 kWh
per month, or 6,000 kWh per year. This threshold is similar to the
highest annual energy requirements reported in Tal et al. (2020) (6,565
kWh, followed by 5,043 kWh). While the energy efficiency varies by
vehicle and climate, 6,000 kWh per year corresponds to over 30,000
kilometres of travel (van den Hoed et al. 2013, Hardman et al. 2018).
By comparison, the average annual driving distances for EVs was 20,150
kilometres in Axsen et al. (2015d), 15,563 kilometres for non-Tesla EVs
in Figenbaum and Kolbenstvedt (2016), and 23,367 kilometres for Tesla
EVs in Figenbaum and Kolbenstvedt (2016).

Rental Member accounts which have less than 14 days between the creation of
the account and the last charging session, and have at least three charging
sessions during that time. While this corresponds to a reasonable charging
rate, the short duration of the account suggests that this may be a temporary
vehicle. As such, the charging behaviour may not correspond to general
vehicle ownership, particularly if the rental vehicle is used for long-distance
trips to cottages or other vacation destinations (Figenbaum and Kolbenstvedt
2016, Figenbaum and Nordbakke 2019).

Private All remaining accounts.

We note that a different classification of users was proposed in Helmus et al. (2020),
partly based on the types of charging sessions initiated by that user. However, this
relies on (unavailable to us) vehicle information, and the resulting classifications
do not isolate car sharing and taxis from private vehicles. As such, they are not of
practical interest for our study. The total number of members in each month and
of each type is given in Figure 5.1.

In total, there are 2,873,345 valid recorded sessions by 120,952 non-guest mem-
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ber accounts at 81,239 outlets and 43,056 stations, which take place between Jan-
uary 2018 to August 2022. For each charging session (of level 2 or level 3), the
unique identifiers for the charging outlet and the member account are recorded,
along with the time that the charging connection started, the time the connection
ended, and the amount of energy charged. Additionally, for some level 3 charging
outlets, the starting and ending state of charge are also recorded. However, we
note that the price of charging is not available, nor is waiting time before charging.
The number of sessions in each month and by each type of member is given in
Figure 5.2.

We present summary statistics of charging session characteristics in Figures 5.3-
5.5. These statistics are separated, as applicable, by level of the charging outlet.
However, these statistics are similar among different account types, and thus ac-
count types are aggregated. These values are compared with reports of level 2
charging sessions on public charging infrastructure in van den Hoed et al. (2013),
Morrissey et al. (2016), Helmus et al. (2020) and level 3 sessions on public charging
in Morrissey et al. (2016). While charging sessions information is presented in Tal
et al. (2020), home charging is not separated from public charging, rendering the
comparability questionable. However, as level 3 charging is not available at home,
the relevant charging session information in Tal et al. (2020) can be used.

— In Figure 5.3, we report the distribution of the duration of charging sessions.
In this graph, the horizontal lines indicate the 25th, 50th, and 75th percentile,
while the width of the shaded background illustrates the distribution of each
duration (with larger width corresponding to more sessions). As vehicles may
be connected to chargers much longer than their charging time (e.g. Morrissey
et al. 2016, Helmus et al. 2020), we cap the duration at 720 minutes, which
applies for around 2.2% of level 2 sessions and only two level 3 sessions. The
median of 116 minutes for level 2 and 23 minutes for level 3 is comparable
to the corresponding values of 128.78 minutes and 26.62 minutes for level 2
and level 3 presented in Morrissey et al. (2016), and within the distribution
of around 17 minutes to 37 minutes (depending on vehicle type and day)
reported in Tal et al. (2020). However, this does differ significantly from
the average level 2 connection time of 435 minutes presented in van den
Hoed et al. (2013) and median of 537 minutes in Helmus et al. (2020). In
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Helmus et al. (2020), they note that over 75% of EV users are dependent on
public charging facilities. As such, a higher ratio of overnight charging may
contribute to this increased duration.

— In Figure 5.4, we report the distribution of energy (in kWh) charged during
the session. The median energy per level 2 session is 6.9 kWh while the median
for level 3 session is 13.4 kWh. The value for level 2 charging matches with
those in the literature, with 6.8 kWh per session in Morrissey et al. (2016)
and Helmus et al. (2020), and 8.31 kWh in van den Hoed et al. (2013). The
value for level 3 charging is higher than the 8.32 kWh reported in Morrissey
et al. (2016), and within the distribution of 7.9 kWh to 26.3 kWh (depending
on vehicle type) reported in Tal et al. (2020).

— In Figure 5.5, we report the distribution for the starting and ending state
of charge for level 3 charging sessions, with median values of 30% and 73%,
respectively. We recall that state of charge information is not available for
level 2 sessions. These values are slightly below the distribution of 30.3 to
48.4% for starting and 74.7 to 92.5% for ending state of charge (depending
on vehicle type) presented in Tal et al. (2020). State of charge information is
not reported in Morrissey et al. (2016).

Rather than reporting on charging sessions, in Figures 5.6-5.9, we present sum-
mary statistics for private vehicle accounts. Summary statistics for shared accounts
are presented and discussed in A.3.1, while they are not presented for rental vehicle
or unplugged accounts. For rental vehicle accounts this is due to the small sample
size, while there is no charging activity to report for unplugged accounts.

— By construction, the average number of sessions and total energy charged are
lower for private vehicles (Figures 5.6 and 5.7) than for shared accounts. Me-
dian values for the number of charging sessions and total energy per month
for private vehicles are, respectively, 0.57 sessions and 5.89 kWh, while the
median values for shared accounts are 2.75 sessions and 34.7 kWh. Compa-
rable values in the literature were discussed at the beginning of this section
as part of our user classification process.

— In Figures 5.8, we present the distribution for the average amount of time
spent charging every month, with the duration of each charging session
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Figure 5.1 – Number of total members, by date and account type.

Figure 5.2 – Number of sessions, by date and account type. The narrow red lines indicate
the excluded period for the COVID 19 pandemic.
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Figure 5.3 – Distribution of duration of charging, by level of charging outlet.

Figure 5.4 – Distribution of energy from charging, by level of charger.
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Figure 5.5 – Distribution of starting and ending state of charge at level 3 chargers.

capped at 720 minutes as before. The median value is 47.7 minutes for
private vehicles. In terms of comparable values, Tal et al. (2020) reports an
average daily duration of between 97.33 and 266.96 minutes (depending on
vehicle type). However, we note that this charging duration includes home
charging and, as such, may not be an accurate proxy for public charging, even
for those that lack access to home chargers. For public charging specifically,
by combining the average number of 18 to 20 charging sessions per year and
7.25 hour session duration in van den Hoed et al. (2013), we obtain a monthly
average of between 652.5 and 720 minutes. As with the duration of individual
sessions, this higher value for members may be attributed to a higher rate of
overnight charging.

— In Figure 5.9, we present the distribution for the average number of different
stations visited each month. The median value is 0.45 stations for private
vehicles. Only van den Hoed et al. (2013) reported the number of stations
visited, with an average of 4 and 77 different locations visited per year for
private vehicles and car sharing vehicles, respectively. Accordingly, the value
for private vehicles is quite comparable to that of van den Hoed et al. (2013).
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Figure 5.6 – Distribution of average number of sessions per month, private vehicles.

Figure 5.7 – Distribution of average energy charged per month, private vehicles.
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Figure 5.8 – Distribution of average monthly time spent charging, private vehicles.

Figure 5.9 – Distribution of average number of different stations per month, private
vehicles.
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5.3.2 Data Processing

For the estimation process, we use the public charging network on the island of
Montreal. As we consider intracity charging by private vehicle owners in this work,
we only select members who have provided a postal code, and whose postal code lies
within the island. Furthermore, since our industrial partners have advised us that
there are many taxi accounts in Montreal, we exclude users from our estimation
process if they have ever charged three or more times within the island in a day.
These two conditions –postal code within Montreal, and maximum of two or fewer
daily charging sessions on the island– are applied in addition to the filters for
private vehicle owners in Section 5.3.1.

As for the charging stations, they are excluded if they are private or semi-private
stations (similar to Sun et al. 2016) , or if they were permanently closed before
January 1st 2018. Additionally, while members can use their Circuit Électrique
membership cards at charging stations operated by ChargePoint, this incurs an
additional fee (Circuit Électrique 2023c). These stations have few recorded sessions,
likely due to users using a ChargePoint rather than a Circuit Électrique membership
card to avoid the additional fee. As such, to avoid incorrectly biasing the results,
we exclude the charging stations operated by ChargePoint. After filtering, there
are 736 charging stations of level 2 charging stations, and 19 charging stations of
level 3. The stations are displayed in Figure 5.10.

5.3.3 Attribute Encoding

In order to estimate parameter values, we must first determine the appropriate
value of each attribute. As the session data spans from January 2018 to August
2022, it is important to get historical data. For charging station attributes, we
use the data directly from Circuit Électrique as well as publicly available charging
station information (Circuit Électrique 2023c). For network information and avail-
able amenities, we use OpenStreetMaps (OpenStreetMap contributors 2017) data,
queried at the start of every month. We use attributes which have been examined,
or for which similar attributes have been examined, previously in the literature.
These attributes are:

Distance: The distance between the user and the charging station (or the devi-
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Figure 5.10 – Public charging stations within the Island of Montreal.

ation from their path between home and destination) is the most common
attribute in charging station choice modelling, and has consistently been
found to be a significant attribute for the user’s choices (e.g. Yang et al.
2016, Lamontagne et al. 2023, Ma et al. 2022, Visaria et al. 2022). A shorter
distance between the user’s home and the charging station improves the ac-
cessibility of the station as described in Philipsen et al. (2015, 2016). We use
two measures for these distances; First, we use OpenStreetMaps to calculate
the road network distance between the user’s home and the charging station.
Second, we include a binary flag indicating whether the Euclidean (i.e. walk-
ing) distance between the charging station and the user’s home is less than
400 metres, which indicates that the charging station may be convenient for
charging near home (Lee et al. 2020). Though Lee et al. (2020) proposes a
distance of 300 metres, we adjust this threshold slightly to account for the
distance errors due to having postal codes rather than precise addresses.

Number of outlets: Included in Lamontagne et al. (2023), Visaria et al. (2022),
this attribute indicates the total number of outlets at each charging station.
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A higher number of outlets at the station increases the likelihood that one
is available when needed, thus improving the reliability of the station as
described in Philipsen et al. (2015, 2016). The number of outlets in each
station is calculated from the Circuit Électrique data based on the installation
and closure dates of each outlet.

Is at a gas station: Somewhat surprisingly, the charging station being installed
at a gas station has been found to be beneficial for users (Philipsen et al. 2015,
Sun et al. 2016, Philipsen et al. 2016). This is attributed in Philipsen et al.
(2015) to habit, where the gas stations are those previously used by the users
for their ICEVs. In our case, we use a binary variable to indicate whether
or not the charging station is located at a gas station, and is determined
by the presence of a gas station within 50 metres of the charging station in
OpenStreetMaps.

Proximity to amenities: In Anderson et al. (2018), Figenbaum and Nordbakke
(2019), it was reported that users prefer to do activities while their vehicle is
charging, with activities differing between users and charging level. Various
location types and activities have been proposed across the literature, which
we discuss in detail below. For each amenity type, we calculate density
measures by taking the logarithm of the number of amenities of that type
in OpenStreetMaps within various threshold distances around the charging
station.

Restaurants, Fast food: The presence of restaurants was included as an
attribute in the demand models of Luo et al. (2015), Cui et al. (2019),
though the value was not estimated. The highest tier of amenities in
Ge and MacKenzie (2022), Visaria et al. (2022), Anderson et al. (2023)
included access to the combination of washrooms, a restaurant, and
free Wifi. As such it is unclear if the presence of a restaurant alone
is sufficient. Restaurants are included as part of an “Other" category
in Anderson et al. (2018, 2023), while the location is not included in
Philipsen et al. (2016). Additionally, while less than 1% of respondents
in Burroughs et al. (2021) indicated that they currently used charging
stations near restaurants, cafés, or bars, 76% of respondents indicated
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that they prefer to eat and drink while charging. In summary, while
restaurants have been included in many surveys and reports, there are
conflicting assessments as to the value of such amenities. For our es-
timation, we separate fast food restaurants from other types; Due to
the difference in preparation time, fast food restaurants may be more
beneficial for level 3 charging sessions.

Shopping, Supermarkets, Shopping malls: At an aggregate level, the
presence of general shopping facilities was found to increase charging
station usage for some users in Anderson et al. (2023), while the de-
mand models in Luo et al. (2015), Cui et al. (2019), Sheldon et al. (2019)
includes separate attributes for supermarkets and shopping malls. No-
tably, in Sheldon et al. (2019), both supermarkets and shopping malls
were found to increase the likelihood that users select a station in com-
parison to locations near entertainment venues, with supermarkets hav-
ing a larger impact than malls. The overall benefit of shopping is con-
sistent with the findings in Anderson et al. (2018), where 18.4% of the
placed charging outlets were designated for shopping purposes, and in
Philipsen et al. (2016), where shopping was rated as important for users.
In practice, Anderson et al. (2023) report that around 20-32% of respon-
dents charged at least once a month near shopping locations. In Axsen
et al. (2015d), shopping malls were reported as the most frequent loca-
tion type for public charging (though they note that public charging was
overall infrequently used), while Figenbaum and Kolbenstvedt (2016) re-
port that around 7% of BEVs recharge at least weekly at shopping cen-
tres and similar commercial locations. In Burroughs et al. (2021), only
3% and 2% of respondents indicated that they recharged near supermar-
kets and shopping malls (respectively), while 55% of respondents said
they liked to go shopping while recharging their vehicle. In summary,
the presence of shopping facilities (and, where applicable, supermarkets
and shopping centres) are generally seen as important by users, though
they may be used in practice less often than anticipated. For our esti-
mation, we consider supermarkets and shopping malls separately from
other types of shopping. For supermarkets, this is due to the habitual
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and more frequent usage (as discussed in Philipsen et al. 2015). On the
contrary, for shopping malls (a category which also includes the public
marketplaces in Montreal), this is due to the presence of multiple types
of different shopping in one location, often not individually identified in
OpenStreetMaps. As such, using a separate attribute for shopping malls
can better capture the more diverse shopping opportunities available.

Leisure, Sports: Combined into one category, sport locations (such as tracks
or arenas) and leisure locations (such as cinemas or dog parks) were con-
sidered in Anderson et al. (2023) and found to be important for some
users. In Sheldon et al. (2019), entertainment venues were used as the
baseline location type for other types, and found that gyms and sports
facilities were dispreferred compared with this baseline, with high vari-
ability among users. In Anderson et al. (2018), around 18.3% of the
placed charging outlets were designated for leisure purposes, almost
identical to those for shopping purposes. By contrast, in Philipsen
et al. (2016), leisure locations were deemed less important than shop-
ping. Likewise, in Anderson et al. (2023) report that only around 4% of
respondents charged at least once a month near leisure locations. This
is consistent with the findings in Burroughs et al. (2021), who report
that 1% of respondents charged in the “Other” category (which includes
entertainment venues and sports facilities), while 13% of respondents
indicated that they would like to use such facilities while charging. In
summary, the use of charging stations near entertainment venues or
sports facilities is typically lower than other amenities, though is impor-
tant for some users. As with fast food restaurants, we separate sports
and leisure locations due to potential variations in the duration of these
activities.

The maximum value for each of the attributes for each charging level are presented
in Table 5.1. Additionally, we present the associated notation xk for each attribute
k in the model.

We note that some common attributes from the literature have not been in-
cluded, either because they are not appropriate for our case study or because
accurate values can not be determined:
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Charging power and duration: The power supplied by the charging station or,
similarly, the duration of charging has been shown to have an impact on the
selection of charging stations, with higher power or lower duration being
preferred (e.g. Yang et al. 2016, Ge and MacKenzie 2022, Visaria et al.
2022). However, in Quebec, the charging power can be set independently for
each charging outlet, and as such may not be consistent within each charging
station. Additionally, while over 95% of the level 2 outlets have a charging
power of 7.2 kW (Circuit Électrique 2023c), the charging power for level
3 outlets varies between 24-100 kW with different power levels deliberately
placed at the same stations (Circuit Électrique 2023b).

Charging price: As expected, users have been found to avoid charging stations
which have higher costs compared to others (Ge and MacKenzie 2022, Visaria
et al. 2022, Wang et al. 2021). However, while the cost of charging in Que-
bec can vary slightly by location and provider, it is subject to governmental
regulation, and is determined based on the charging power of the outlet, the
charging power drawn by the vehicle, and state of charge of the vehicle (Cir-
cuit Électrique 2023b). As a consequence, the charging price can vary not
only within a charging station but based on the charging profile of each in-
dividual vehicle. In Montreal, over 95% of the level 2 charging stations have
a cost of 1$ per hour which, given the median duration of a level 2 session,
results in a per-session cost of around 1.93$ (Circuit Électrique 2023c). By
contrast, the cost for level 3 charging varies between 6.39-15.73$ per hour,
with the majority having a cost of 12.77$ per hour (resulting in a per-session
median cost of around 4.90$).

Charging stations are considered to be available for users if at least one charging
outlet is installed at the time of the charging, and if a path is found between the
users’ home and the charging station.
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Attribute name Notation Level 2 Level 3

Network distance to station (km) xdist 98.658 49.668
Is the station within a short walk xisWalkHome 1 1
Number of outlets xoutlets 13 5
Is at a gas station xisGas 1 1
Restaurant density xrest 4.635 3.638
Fast food density xff 4.060 2.079
Shopping facility density xshop 5.257 4.007
Supermarket density xsm 2.303 0.693
Shopping mall density xmall 1.099 0.693
Leisure density xleis 3.526 3.091
Sports facility density xsport 2.833 2.565

Table 5.1 – Maximum value of attributes for level 2 and level 3 charging sessions.

5.4 Methods

Similar to many of the works described in Section 5.2, we use Random Utility
Maximisation (RUM) discrete choice models for predicting the selection of charging
station by users. As mentioned previously, the reasons why we use these models
are twofold: (i) the comprehensive nature of our data, which offers an exceptional
setup for their estimation, and (ii) the existing literature permitting their direct
integration into optimisation models.

In Section 5.4.1, we provide the specifications of the model as to the interactions
of the attributes and attribute levels. While in Section 5.4.2, we describe the
validation process used to compare the various models.

5.4.1 Model Specification

For the sake of simplicity, in this section, we only detail aspects of our models
which are relevant for the discussion of results. For the model properties and
derivations, we refer to McFadden (1974), Revelt and Train (1998), McFadden and
Train (2000), Train (2002). We provide the specifications for both MNL and MXL
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models, with the latter considering panel effects. As noted in, e.g., Philipsen et al.
(2016), Sheldon et al. (2019), Burroughs et al. (2021), the evaluation of location
types and amenities vary significantly among individuals, making the MXL well-
suited for this application. The high number of alternatives (i.e. charging stations),
the total number of users, and the small number of observations for many users (in
many cases just a single observation) make it computationally infeasible to compute
alternative-specific or user-specific constants. Additionally, while such constants
are useful in predicting individual behaviour, they are not practical for large-scale
network operation. As such, we adopt a random parameters specification for our
MXL model. Rather than identifying parameter values for specific individuals,
this specification aims to estimate the distribution of parameter values across the
population. This makes it well-suited for predicting aggregate-level demand, as it
can be applied to users who have not been observed.

In our application, each user i must select a charging station alternative j based
on the attributes k = 1, . . . , K given in Section 5.3.3. Each alternative is assumed
to have a utility function uij = Vij + εij, a prediction of the value of alternative
j for user i, which combines observable attributes Vij known by the modeller and
unobservable attributes ε which are known only to the user. In both the MNL and
MXL models, we assume that our observable utility takes the standard form which
is linear in parameters

Vij =
K∑

k=1
βkxijk.

We recall that xijk denotes the value of attribute k for user i and charging station j.
We note that the parameters βk are independent of the user i in this formulation,
and the dependence of the observable utility on the user appears only via the
attributes xijk. In the case of our MXL model, the mean βµ

k and standard deviation
βσ

k are estimated for each attribute k, while only the mean value is estimated for
MNL.

We assume that users are either charging near their home or charging while per-
forming daily activities (Hardman et al. 2018), with different attributes considered
for each case. We note that Hardman et al. (2018) also list workplace charging and
charging during long-distance travel, which do not apply in our situation. Since
the charging session dataset does not include the paths travelled by the user (cf.
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Sun et al. 2016), it is not possible to determine whether the user is charging near
their home or while performing daily activities (most notably, their activity may
be near their home). As such, we use a cutoff threshold based on the distance from
home, with charging sessions within 1.5 km (network distance) being considered
as charging near home and charging sessions outside of 1.5 km being considered
as charging near an activity. This threshold distance was selected based on the
attributes for walking proximity to home, and is also similar to the maximum path
deviation distance of 1.75 km for charging by private vehicle users in Sun et al.
(2016).

More specifically, the observable utility within 1.5 km is given by

V = βdistNearxdist + βoutletsNearxoutlets + βisWalkHomexisWalkHome,

where the indices for user i and station j have been omitted from the attribute
levels x for ease of reading. The parameters βdistNear, βoutletsNear, and βisWalkHome are
respectively those for the distance to home, the number of outlets, and the station
being a short walk from home.

When outside of 1.5 km, the observable utility is given by

V = βdistFarxdist + βoutletsFarxoutlets + βisGasxisGas + βleisxleis + βsportxsport

+ βsmxsm + βshopxishop + βmallxmall + βrestxrest + βffxf,

where the indices i and j have been omitted as before. The parameters βdistFar and
βoutletsFar, as well as the attribute levels xdist and xoutlets are equivalent to the prior
case. The parameter and attribute level βisGas and xisGas are those for whether sta-
tion j is located at a gas station. The parameters βleis, βsport, βsm, βshop, βmall, βrest,
and βff are those for the proximity to amenities, respectively for leisure facilities,
sports facilities, supermarkets, shopping facilities, shopping malls, restaurants, and
fast food locations.

5.4.2 Estimation and Validation

To estimate, validate, and compare the MNL and MXL models, we employ
internal five-fold cross-validation (Parady et al. 2021). More specifically, due to
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the presence of panel data, we use a grouped sampling approach based on the users
to prevent data leakage (Hillel 2020, Hillel et al. 2021). In this approach, users are
randomly divided into five groups, while keeping a similar number of observations
in each group. The observations from some groups are used for estimation, while
the others are kept for validation (the specifics of which observations are different
for level 2 and level 3 charging, and are given below). For validation, only the last
observation (i.e. the latest observation in time) is used.

For level 3 charging, each group contains 214 users and approximately 853
observations. For each fold, the estimation set is composed of four out of the five
groups, with the last observation of the users in the remaining group reserved for
validation. This results in a roughly 94-6 split of observations between estimation
and validation. For level 2 charging, each group contains approximately 1,180
users and 11,682 observations. However, the high number of observations and
alternatives make it intractable to solve even one group. As such, for each fold, the
estimation set samples 5,000 observations from one group, with the last observation
of the users in the remaining groups reserved for validation. This results in a
roughly 51-49 split of observations between estimation and validation.

In addition to parameter values, we report a series of standard performance
indicators about the results in both the estimation and validation sets, such as the
log-likelihood (of both the final parameter values and with all parameter values
set to 0), ρ, ρ̄2, Akaike Information Criterion, and Bayesian Information Crite-
rion (Parady et al. 2021, Bierlaire 2023). In addition, for the validation set, we
present some statistics relating to the distribution of the probability of the chosen
alternatives for the estimated model, denoted “DPSA, final” in the tables below.
The mean of this distribution – given by 1

|N |
∑

i∈N

∑
j∈M yijP (β∗, xij) with β∗ the

final parameter values – corresponds to the fitting factor described in Parady et al.
(2021). Since the number of available alternatives is not constant throughout the
observations, we also present the distribution of the choice probabilities correspond-
ing to the uniform distribution, denoted “DPSA, null” in the tables below. Higher
values are preferred for the log-likelihoods, ρ, ρ̄2, and DPSA, while lower values
are desirable for the Akaike Information Criterion and the Bayesian Information
Criterion.
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5.5 Results

In this section, we present the results of the estimation and validation processes,
obtaining the parameter values using Biogeme version 3.2.12 (Bierlaire 2023). A
total of 1,000 draws are used for the simulations, where required. The results for
level 2 and level 3 charging are presented, respectively, in Sections 5.5.1 and 5.5.2,
while a discussion of these results is reserved for Section 5.6.

Further computational results are presented in A.3.3.

5.5.1 Level 2

Parameter ratio values for both MNL and MXL models in each fold are pre-
sented in Table 5.2, while the averages of these ratios across folds are presented in
Table 5.3. We note that the parameter values for all but one fold (Fold 2) in the
MXL model are preliminary, as the convergence criteria has not been achieved. In
particular, the simulated log-likelihood and its derivatives are highly time consum-
ing to obtain, given the number of observations. Statistical significance is not yet
available for the folds which have not converged.

Performance indicators for MNL and MXL models in the estimation sets are,
respectively, presented in Tables 5.4 and 5.5. In addition to the standard perfor-
mance indicators, we include the gradient norm in each fold for the MXL model.
We recall that the estimation results are not comparable between the MNL and
MXL models, due to the panel effect in the MXL model. In Table 5.6 we present
the performance indicators of both models in the validation sets, which can be
compared.

5.5.2 Level 3

Parameter values for both MNL and MXL models are presented in Table 5.7,
while the average of the parameter ratios are presented in Table 5.11. Performance
indicators for MNL and MXL models in the estimation sets are, respectively, pre-
sented in Tables 5.8 and 5.9. As with level 2 charging, the estimation results are
not comparable between the MNL and MXL models. In Table 5.10, we present
the performance indicators of both models in the validation sets, which can be
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Table 5.2 – Parameter ratio values across models and folds for level 2 charging. ***
indicates significance at 1% level, ** significance at 5% level, and * significance at 10%
level. Statistical significance is not available for entries in bold.

Fold 0 1 2 3 4
Model MNL MXL MNL MXL MNL MXL MNL MXL MNL MXL

βµ
distNear 0.2062*** −0.3309 0.3309*** −0.249 0.2246*** -0.4948*** 0.2079*** −0.2749 0.2693*** −0.2251

βσ
distNear - 0.8242 - 0.8297 - 0.9905*** - 0.7534 - 0.7715

βµ
distF ar -0.0526*** −0.159 -0.0462*** −0.0769 -0.0371*** -0.0982*** -0.0496*** −0.1052 -0.049*** −0.0816

βσ
distF ar - 0.1192 - 0.0755 - 0.0834*** - 0.0923 - 0.0704

βµ
ff -0.031*** −0.1302 -0.0369*** −0.1271 -0.0314*** -0.1352*** -0.0396*** −0.1146 -0.03*** −0.0985

βσ
ff - 0.2849 - 0.2128 - 0.3942*** - 0.1604 - 0.1532

βµ
leis -0.0513*** −0.0598 -0.037*** −0.0241 -0.0746*** -0.1005*** -0.0528*** −0.0298 -0.0583*** −0.0434

βσ
leis - 0.4915 - 0.2666 - 0.363*** - 0.3001 - 0.2855

βµ
mall 0.0875*** −0.1184 0.0945*** −0.0676 0.0564*** -0.0865 0.2021*** 0.0808 0.1511*** 0.0318

βσ
mall - 0.8005 - 0.5455 - 0.6543*** - 0.5454 - 0.621

βµ
outletsNear 0.1049*** 0.0688 0.0851*** −0.0999 0.0687*** 0.0579* 0.0738*** 0.0226 0.0565*** 0.0209

βσ
outletsNear - 0.3485 - 0.5712 - 0.4055*** - 0.2377 - 0.3823

βµ
outletsF ar 0.0367*** 0.0182 0.0339*** 0.023 0.0274*** 0.0262*** 0.0279*** 0.0321 0.022*** 0.024

βσ
outletsF ar - 0.1281 - 0.0701 - 0.091*** - 0.0586 - 0.0518

βµ
rest 0.1147*** 0.3019 0.1242*** 0.2111 0.1076*** 0.2587*** 0.1142*** 0.1759 0.1204*** 0.1962

βσ
rest - 0.3913 - 0.2158 - 0.3426*** - 0.2177 - 0.2549

βµ
shop -0.0316*** −0.1163 -0.0312*** −0.0549 -0.0142** -0.0651** -0.0341*** −0.0581 -0.0455*** −0.0624

βσ
shop - 0.1808 - 0.1413 - 0.22*** - 0.1094 - 0.1453

βµ
sport 0.0258*** −0.0406 0.022*** 0.0076 0.0219*** 0.0562** 0.0353*** 0.0222 0.0126 −0.0069

βσ
sport - 0.3975 - 0.3012 - 0.4046*** - 0.2573 - 0.2614

βµ
sm 0.0325*** 0.002 0.0358*** −0.0202 0.0125 0.0253 0.0514*** 0.0368 0.0783*** 0.0431

βσ
sm - 0.4785 - 0.4456 - 0.4074*** - 0.3554 - 0.3719

βµ
isGas -0.0779** −0.3685 -0.1074*** −0.4726 0.0352 -0.8033*** -0.1437*** −0.2005 -0.1265*** −0.3104

βσ
isGas - 0.4689 - 0.4605 - 0.9415*** - 0.2131 - 0.43

βµ
isW alkHome 1.0*** 1.0 1.0*** 1.0 1.0*** 1.0*** 1.0*** 1.0 1.0*** 1.0

βσ
isW alkHome - 1.5797 - 1.0219 - 1.5057*** - 1.2341 - 0.9119
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MNL MXL

βµ
distNear 0.2478 -0.4948

βσ
distNear - 0.9905

βµ
distF ar -0.0469 -0.0982

βσ
distF ar - 0.0834

βµ
ff -0.0338 -0.1352

βσ
ff - 0.3942

βµ
leis -0.0548 -0.1005

βσ
leis - 0.3630

βµ
mall 0.1183 -0.0865

βσ
mall - 0.6543

βµ
outletsNear 0.0778 0.0579

βσ
outletsNear - 0.4055

βµ
outletsF ar 0.0296 0.0262

βσ
outletsF ar - 0.0910

βµ
rest 0.1162 0.2587

βσ
rest - 0.3426

βµ
shop -0.0313 -0.0651

βσ
shop - 0.2200

βµ
sport 0.0235 0.0562

βσ
sport - 0.4046

βµ
sm 0.0421 0.0253

βσ
sm - 0.4074

βµ
isGas -0.0841 -0.8033

βσ
isGas - 0.9415

βµ
isW alkHome 1.000 1.000

βσ
isW alkHome - 1.5057

Table 5.3 – Parameter ratios for MNL and MXL models for level 2 charging, average
across folds. Only Fold 2 is included for the MXL model, as the other folds have not
converged.
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0 1 2 3 4

Null log-likelihood -30989.9555 -30883.5489 -30834.3888 -30905.2845 -30896.4595
Final log-likelihood -26169.0401 -26370.6137 -25960.7399 -25492.0146 -25590.8942
ρ 0.1556 0.1461 0.1581 0.1752 0.1717
ρ̄2 0.1551 0.1457 0.1576 0.1747 0.1713
Akaike Information Criterion 52364.0801 52767.2274 51947.4798 51010.0292 51207.7885
Bayesian Information Criterion 52448.8036 52851.9509 52032.2033 51094.7527 51292.5120

Table 5.4 – Performance indicators for level 2 charging and the MNL model, estimation
sets.

0 1 2 3 4

Null log-likelihood -30989.9555 -30883.5489 -30834.3888 -30905.2845 -30896.4595
Final log-likelihood -22556.2595 -23046.4296 -23108.1584 -22717.0839 -22595.5230
ρ 0.2721 0.2538 0.2506 0.2649 0.2687
ρ̄2 0.2713 0.2529 0.2497 0.2641 0.2678
Akaike Information Criterion 45164.5190 46144.8592 46268.3168 45486.1679 45243.0460
Bayesian Information Criterion 45333.9660 46314.3062 46437.7638 45655.6149 45412.4930
Gradient norm 3e+01 1e+00 3.37e-02 1e+02 5e+01

Table 5.5 – Performance indicators for level 2 charging and the MXL model, estimation
sets.

Fold 0 1 2 3 4
Model MNL MXL MNL MXL MNL MXL MNL MXL MNL MXL

Null log-likelihood -30187.7778 -30187.7778 -30193.6513 -30193.6513 -30195.0828 -30195.0828 -30212.3235 -30212.3235 -30206.8255 -30206.8255
Final log-likelihood -26625.7833 -26974.2261 -26393.6309 -26630.9121 -26527.7925 -26761.5221 -26584.7775 -26709.8950 -26511.3104 -26593.9676
ρ 0.1180 0.1065 0.1259 0.1180 0.1215 0.1137 0.1201 0.1159 0.1223 0.1196
ρ̄2 0.1176 0.1056 0.1254 0.1171 0.1210 0.1129 0.1196 0.1151 0.1219 0.1187
Akaike Information Criterion 53277.5665 54000.4522 52813.2617 53313.8242 53081.5850 53575.0442 53195.5549 53471.7901 53048.6209 53239.9353
Bayesian Information Criterion 53361.5464 54168.4119 52897.2416 53481.7838 53165.5649 53743.0039 53279.5375 53639.7553 53132.6035 53407.9005
DPSA null, min 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014 0.0014
DPSA null, mean 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
DPSA null, max 0.0037 0.0037 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038
DPSA final, min 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001 0.0000 0.0001
DPSA final, mean 0.0210 0.0220 0.0197 0.0191 0.0224 0.0186 0.0212 0.0235 0.0223 0.0218
DPSA final, max 0.5830 0.4413 0.5820 0.2998 0.5699 0.3494 0.6041 0.4587 0.6341 0.4190

Table 5.6 – Performance indicators for level 2 charging, validation sets.
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Fold 0 1 2 3 4
Model MNL MXL MNL MXL MNL MXL MNL MXL MNL MXL

βµ
distNear 0.6148*** 0.2005* 0.8744*** 0.1413 0.6265*** 0.1687 0.8691*** 0.2696 0.8801*** 0.3891*

βσ
distNear - 0.1192*** - 1.0022*** - 0.2401*** - 0.7604** - 0.3439**

βµ
distF ar -0.0885*** -0.0752*** -0.1029*** -0.1428*** -0.1003*** -0.055*** -0.1305*** -0.1937*** -0.0924*** -0.1358***

βσ
distF ar - 0.0577*** - 0.1078*** - 0.0429*** - 0.1548*** - 0.1004***

βµ
ff -0.2159*** -0.2602*** -0.322*** -0.4012*** -0.2377*** -0.1274*** -0.1939*** -0.5005*** -0.1899*** -0.2837***

βσ
ff - 0.2689*** - 0.363*** - 0.1339*** - 0.4024*** - 0.3189***

βµ
leis 0.079*** 0.0347 0.1419*** 0.169*** 0.0463* 0.0595*** 0.1723*** 0.1447*** 0.0934*** 0.1081***

βσ
leis - 0.263*** - 0.5392*** - 0.2202*** - 0.619*** - 0.3361***

βµ
mall 0.1057*** -0.0343 0.0783* -0.2957*** 0.2267*** 0.0078 0.287*** -0.021 0.1566*** -0.071

βσ
mall - 0.4823*** - 0.9875*** - 0.2797*** - 0.9135*** - 0.8865***

βµ
outletsNear 0.0064 0.0603 -0.0464 0.2259 0.0979** 0.0744 0.1238* 0.2778* -0.1152*** -0.0411

βσ
outletsNear - 0.4151*** - 0.4682*** - 0.3678*** - 0.6916*** - 0.3747***

βµ
outletsF ar 0.148*** 0.0705*** 0.1714*** 0.0769*** 0.1819*** 0.0365*** 0.2136*** 0.1537*** 0.178*** 0.1119***

βσ
outletsF ar - 0.101*** - 0.2959*** - 0.0691*** - 0.2806*** - 0.2313***

βµ
rest -0.1446*** -0.064 -0.1612*** -0.1294*** -0.1733*** -0.0406*** -0.2922*** -0.1984*** -0.2136*** -0.1714***

βσ
rest - 0.1593*** - 0.4012*** - 0.1401*** - 0.5425*** - 0.2956***

βµ
shop 0.0614*** 0.0372 0.0657*** -0.0166 0.1015*** -0.0003 0.0726** 0.0306 0.0754*** -0.0005

βσ
shop - 0.1069** - 0.1347** - 0.0682*** - 0.3185*** - 0.1981***

βµ
sport -0.1595*** -0.188*** -0.2952*** -0.4407*** -0.1611*** -0.0924*** -0.2435*** -0.3894*** -0.1968*** -0.2663***

βσ
sport - 0.2872*** - 0.6739*** - 0.1487*** - 0.771*** - 0.3883***

βµ
sm 0.0067 -0.1492** 0.0236 -0.0852 -0.0088 -0.0696** 0.013 -0.1616 -0.0266 -0.2381***

βσ
sm - 0.4688*** - 0.8234*** - 0.2523*** - 1.0051*** - 0.8895***

βµ
isGas -0.0929*** -0.1387*** -0.116*** -0.2974*** -0.2335*** -0.093*** -0.1718*** -0.5714** -0.1261*** -0.178***

βσ
isGas - 0.3896*** - 0.6172*** - 0.188*** - 0.9149*** - 0.3139***

βµ
isW alkHome 1.0*** 1.0*** 1.0*** 1.0*** 1.0*** 1.0*** 1.0*** 1.0*** 1.0*** 1.0***

βσ
isW alkHome - 0.3111*** - 0.3686 - 0.1263 - 0.785*** - 0.6906***

Table 5.7 – Parameter ratio values across models and folds for level 3 charging. ***
indicates significance at 1% level, ** significance at 5% level, and * significance at 10%
level

compared.

5.6 Discussion

We begin by discussing aspects which apply to both the level 2 and level 3
models. Firstly, we note that both the MNL and MXL models have a DPSA (no-
tably, a fitting factor) that is better than the null model (which reflects random
assignment). Combined with the ρ and ρ̄2, this indicates an increased predictive
power in comparison with random assignment. Secondly, consistent with the liter-
ature, we observe a high level of heterogeneity among the population. Notably, the
standard deviation terms in the MXL models are nearly always highly statistically
significant, and larger than their mean counterpart. In addition, we note that there
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Fold 0 1 2 3 4

Null log-likelihood -8419.7258 -8385.2235 -8356.5570 -8627.8104 -8605.7668
Final log-likelihood -5345.6229 -5280.0078 -5208.7181 -5335.3427 -5281.3956
ρ 0.3651 0.3703 0.3767 0.3816 0.3863
ρ̄2 0.3636 0.3688 0.3751 0.3801 0.3848
Akaike Information Criterion 10717.2458 10586.0156 10443.4361 10696.6854 10588.7913
Bayesian Information Criterion 10796.8367 10665.6603 10523.1001 10776.6114 10668.7399

Table 5.8 – Performance indicators for level 3 charging and the MNL model, estimation
sets.

Fold 0 1 2 3 4

Null log-likelihood -8419.7258 -8385.2235 -8356.5570 -8627.8104 -8605.7668
Final log-likelihood -3766.3995 -3623.5473 -3562.6887 -3637.0272 -3744.4518
ρ 0.5527 0.5679 0.5737 0.5785 0.5649
ρ̄2 0.5496 0.5648 0.5706 0.5754 0.5619
Akaike Information Criterion 7584.7989 7299.0947 7177.3773 7326.0543 7540.9036
Bayesian Information Criterion 7743.9806 7458.3842 7336.7052 7485.9064 7700.8007

Table 5.9 – Performance indicators for level 3 charging and the MXL model, estimation
sets.

Fold 0 1 2 3 4
Model MNL MXL MNL MXL MNL MXL MNL MXL MNL MXL

Null log-likelihood -550.7606 -550.7606 -552.2736 -552.2736 -545.7064 -545.7064 -549.6208 -549.6208 -545.3061 -545.3061
Final log-likelihood -357.6648 -349.7332 -404.1204 -399.0165 -387.7339 -373.2738 -426.1003 -413.0833 -389.8922 -375.0958
ρ 0.3506 0.3650 0.2683 0.2775 0.2895 0.3160 0.2247 0.2484 0.2850 0.3121
ρ̄2 0.3270 0.3178 0.2447 0.2304 0.2657 0.2683 0.2011 0.2011 0.2612 0.2645
Akaike Information Criterion 741.3296 751.4663 834.2408 850.0330 801.4677 798.5476 878.2005 878.1667 805.7844 802.1917
Bayesian Information Criterion 785.0873 838.9817 877.9985 937.5483 845.2254 886.0630 921.8973 965.5603 849.4812 889.5853
DPSA null, min 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556 0.0556
DPSA null, mean 0.0825 0.0825 0.0824 0.0824 0.0858 0.0858 0.0805 0.0805 0.0843 0.0843
DPSA null, max 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500 0.2500
DPSA final, min 0.0027 0.0066 0.0014 0.0037 0.0008 0.0046 0.0006 0.0042 0.0025 0.0027
DPSA final, mean 0.3106 0.3136 0.2959 0.2844 0.3210 0.3125 0.2654 0.2591 0.2944 0.2985
DPSA final, max 0.9364 0.9275 0.9419 0.8582 0.9515 0.9139 0.9544 0.7882 0.9462 0.8183

Table 5.10 – Performance indicators for level 3 charging, validation sets.
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MNL MXL

βµ
distNear 0.7730 0.2338

βσ
distNear - 0.4455

βµ
distF ar -0.1029 -0.1205

βσ
distF ar - 0.0093

βµ
ff -0.2319 -0.3146

βσ
ff - 0.2974

βµ
leis 0.1066 0.1032

βσ
leis - 0.3955

βµ
mall 0.1709 -0.0828

βσ
mall - 0.7099

βµ
outletsNear 0.0133 0.1195

βσ
outletsNear - 0.4635

βµ
outletsF ar 0.1786 0.0899

βσ
outletsF ar - 0.1956

βµ
rest -0.1970 -0.1207

βσ
rest - 0.3077

βµ
shop 0.0753 0.0101

βσ
shop - 0.0861

βµ
sport -0.2112 -0.2754

βσ
sport - 0.4538

βµ
sm 0.0016 -0.1408

βσ
sm - 0.6878

βµ
isGas -0.1481 -0.2557

βσ
isGas - 0.4847

βµ
isW alkHome 1.0000 1.0000

βσ
isW alkHome - 0.7922

Table 5.11 – Parameter ratios for MNL and MXL models for level 3 charging, average
across folds.
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are some differences in sign or significance between the two models, such as the
network distance when near home, the density of shopping malls, and the density of
shopping facilities. For the average parameter ratios for level 2 in Table 5.3, we also
note that the parameter value for the network distance in the MXL model is more
than double that of the MNL model. These factors suggests that the MXL model
should be privileged for optimisation models, despite the similar performances of
the MNL and MXL models in the validation sets. We note that the MXL model
performed worse than the MNL model in the validation set for Fold 2, the only fold
for which the MXL model converged. This warrants further investigation, once final
results are available for all folds. Given the differences between the models, we con-
centrate on the MXL model in the discussion below, only considering the fold that
successfully converged in the level 2 case. Thirdly, when considering charging close
to home, the effects of the network distance and the charging station being a short
walk from home are comparable (since, by assumption, the distance is bound by 1.5
km in this case), while the number of outlets has a lesser (though still positive and
statistically significant) effect. However, when considering charging far from home,
the most important attribute is certainly the distance. More specifically, there is
a higher bound on the attribute values for the distance compared with the other
parameters, with a maximum of around 50 km for level 3 and 100 km for level 2.
By contrast, the density measures for the amenities have a maximum of around 5,
while the number of outlets has a maximum of 5 outlets for level 3 and 13 outlets
for level 2. Fourthly, we observe different preferences between level 2 and level 3
charging stations, particularly as it pertains to the amenities. This highlights the
different use cases for the types of charging, consistent with Anderson et al. (2018).

As it pertains to the impact of amenities for level 2 charging in Table 5.3,
the only overall positive and statistically significant effects were for the density of
restaurants and sports facilities. In addition to this, the effects of the density of
shopping malls and supermarkets were overall neutral, with a standard deviation
term at least an order of magnitude higher than the mean terms. Despite the
positive impact of restaurants, the density of fast food locations had a negative
and statistically significant effect, suggesting a preference for longer duration or
possible other confounding factors. Likewise, the charging station being located
at a gas station likewise had a negative and statistically significant effect, as did
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the densities of leisure locations and shopping facilities. As the main value of gas
stations was associated with habit in Philipsen et al. (2015, 2016), this suggests
that the long-term habits of EV users have adapted around the new refueling
requirements. Given their respective bounds, the effects of the amenities near the
charging station can have a larger impact than the number of outlets.

For level 3 charging, we first note that the average parameter ratios in Table 5.11
indicates a positive effect for the network distance when charging close to home. As
discussed previously, a possible explanation for the positive effect of the distance
is that users with access to home charging may prefer to use that rather than
a public charger when near home. However, in over 75% of the observations,
there are no charging stations are within 1.5 km of the user (for more details,
see Table A.10 in A.3.2). As such, unexpected phenomena may be due to a lack
of observations. For the amenities, the density of leisure locations has a positive
and statistically significant effect, while fast food locations, restaurants, sports
facilities, supermarkets, and gas stations had negative and statistically significant
average effects. The aversion to restaurants, sports facilities, and supermarkets
for level 3 charging may be attributable to longer duration of these activities in
comparison with the charging time. The impacts of shopping malls and shopping
facilities were overall neutral, but with a standard deviation terms nearly an order
of magnitude higher than the mean terms.

5.7 Conclusion

In this work, we estimated multinomial logit and mixed logit models for analysing
and predicting electric vehicle charging station usage, for both level 2 and level 3
locations. Our models rely on characteristics of charging stations that are readily
available for charging network operators, and thus make them well-suited for opti-
misation purposes. Internal 5-fold cross validation was performed to evaluate the
accuracy and predictive power of our models, demonstrating improved performance
over random selection.

By design, these estimation results can be integrated into electric vehicle charg-
ing stations network design models such as Luo et al. (2015), Cui et al. (2019),
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Lamontagne et al. (2023). In addition, our findings indicate that the demand mod-
els integrated into these optimisation programs should factor panel effects. No-
tably, users who recharge frequently on the public network significantly influence
the average preferences of the MNL model, while the MXL model can identify the
outlying behaviour. As a consequence, optimisation models which do not include
panel effects may integrate unrealistic user behaviour, thus incorrectly evaluating
the potential benefits of stations.

Overall, users prefer level 2 charging stations closer to their home (especially
within walking distance), while preferences for level 3 charging stations were more
variable. Far from home, the most significant attribute was the distance between
the home area of the users and the charging locations, with the number of outlets
having a positive (if more muted) impact. High heterogeneity was observed for
nearly all attributes, suggesting the existence of users with higher preference for
all attributes (even those for which a general aversion is observed).

For the amenities, we observe that the network distance between charging sta-
tions at gas stations or near fast food locations are avoided, regardless of charging
level. For level 2 charging stations, locations near restaurants were preferred while
locations near shopping facilities, shopping malls, leisure activities, and restaurants
had a neutral effect, with high variability among users. For level 3 charging sta-
tions, locations near leisure locations were favored while longer duration activities
(including restaurants, sports facilities, supermarkets, and shopping malls) were
avoided. As the locations of amenities are primarily identified via the definitions
from OpenStreetMaps (OpenStreetMap contributors 2017), it is possible that fur-
ther refinement may be able to better distinguish the impacts of these attributes.
For example, the ‘leisure’ category includes locations such as public parks and cin-
emas, which have notably different durations. However, further study would be
necessary as to partitioning types of locations.

Our work focuses on the intracity case, where both the charging stations and
the users are located within the same city. However, future work could extend this
approach to the intercity case, where the charging stations are being used during
the course of long-distance trips. Additionally, while not relevant in this market,
future work could also incorporate charging price to the selection process.
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6 Conclusion

While the advances are presented in the context of promoting EV adoption,
the articles contained within this work also provide contributions in more general
contexts. For the first article (Chapter 3), the efficient reformulation into a MCLP
can be used alongside the simulation-based approach of Pacheco Paneque et al.
(2021) whenever it is not necessary to know the exact alternative selected by users.
For the second article (Chapter 4), both the accelerated Benders decomposition
and the local branching method can be applied to dynamic MCLP applications
with only covering constraints on the users. Notably, our results indicate that
the accelerated Benders decomposition method we propose constitutes the fastest
exact method for such cases. For the third article (Chapter 5), our parameter
estimations are specifically designed for integration into more general EV charging
network optimisation, such as the ones in Luo et al. (2015) and Cui et al. (2019),
rather than simply for EV adoption. Additionally, as these discrete choice models
are for predicting charging station selection without user-specific characteristics,
they are well suited for tasks such as demand forecasting for strategic planning.

In conclusion, this thesis has provided important stepping stones for more accu-
rate EV charging network design models and their solving methodologies. Building
upon our findings, future research should expand the limitations of our assump-
tions. This is discussed in the next sections.

Joint Optimisation of Intracity and Intercity Network The EV adoption
model of Anjos et al. (2020) is designed to optimise both intracity and intercity
placement of EV charging stations simultaneously. Using the notation from the
first article (Chapter 3), the availability sets C1t

i in the single-level model and
the coverage parameters art

jik in the maximum covering model can handle multiple
disjoint cities. One must simply not include charging stations in different cities
from the users in their availability sets, or set the associated coverage parameter
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to 0. This would result in a multi-period MCLP with disjoint covering constraints
for each city, with the budget constraints being the only ones linking the problem
among different cities.

However, this neglects intercity traveling, and thus, the best way to handle the
intercity network design remains an open question. This is particularly important
for the province of Quebec given its vast territory. Ideally, one could include the
intercity charging network as a component to the utility functions (i.e. a better
intercity network increases the utility for all charging alternatives). Unfortunately,
this approach breaks the separability of the utility functions by alternative, a crucial
component for the maximum covering reformulation. Additionally, it is not clear if
data sources exist to accurately estimate the effect of the intercity network on EV
adoption. For instance, it would likely be necessary to have disaggregate origin-
destination or paths for individual users within each city.

Alternatively, a simple way to take into account the intercity charging network
without modifying the utility functions would be as a bound constraint:

∑
j∈IC

mj∑
k=1

k
(
xt

jk − xt
jk−1

)
≥ α

∑
i∈N

Ri∑
r=1

N t−1
i

Ri

wrt−1
i , 1 ≤ t ≤ T,

where IC is a particular section of the intercity network and α ≥ 0. Effectively, this
constraint ensures that there are at least 1

α
outlets on the intercity network per user.

With this approach, the formulation remains an MCLP model. Moreover, for the
accelerated Benders decomposition in the second article (Chapter 4), the term on
the right-hand side is given by the auxiliary variables θt−1. As a consequence, this
constraint does not affect the Benders subproblem structure, and the accelerated
Benders decomposition and local branching methods are still valid.

Capacity Constraints on Alternatives In our first article (Chapter 3), we as-
sume that there is no capacity limit for each alternative, which differs from the ca-
pacity constraint for each charging station imposed in Anjos et al. (2020). While our
assumption is not a strict requirement of the single-level model (notably, capacity
constraints are used in the original formulation of Pacheco Paneque et al. 2021), this
does interfere with the maximum covering reformulation. In particular, the cover-
ing variables wrt

i and associated covering constraints wrt
i ≤

∑
j∈M

∑mj

k=1 art
jikxt

jk are
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built around the assumption that we do not need to track the alternative selected
by the users.

A partial workaround that allows for capacity constraints can be obtained
by using different partial coverage variables wrt

ji and covering constraints wrt
ji ≤∑mj

k=1 art
jikxt

jk. Capacity constraints can then be imposed on these partial coverage
variables: ∑

(t,i,r)∈P

N t−1
i

Ri

wrt
ji ≤ Cap(k),

where Cap(k) is a predefined capacity function which depends on the number of
outlets. We then define a new coverage variable w̄rt

i with constraints w̄rt
i ≤ wrt

ji , j ∈
M , which replaces our original covering variables wrt

i in the objective function.
Using this preserves the maximum covering reformulation. A feasible solution

to this new model ensures that there is at least one valid assignment of users
to alternatives which satisfies our capacity constraints and the preferences of the
users. However, this method may result in some econometric issues. For example,
consider a situation with two users (i1 and i2), along with two charging stations
(j1 and j2) each with a capacity of 1. The charging station j1 covers users i1 and
i2, while the charging station j2 only covers the user i1. Naturally, the optimal
solution will assign user i1 to station j2 and user i2 to station j1. But it is possible
that the utility of user i1 for station j1 is higher than the utility for station j2. In
other words, in this situation, the selection of user i1 does not follow the utility
maximisation principle.

Considering the second article (Chapter 4) instead, we note that these modifi-
cations do change the structure of the Benders subproblem. Notably, the capacity
constraints (which must be added to the Benders subproblem) have several detri-
mental effects:

— As the capacity depends on the assignment of all of the users, this breaks the
separability of the subproblem by user. As a consequence, the efficiency of
the subproblem solution is likely to be impacted.

— Currently, the Benders subproblem (and its dual) has an analytical solution.
It is not clear that this would hold in the capacitated case, further impacting
the efficiency of the subproblem solution.

— For standard Benders decomposition to apply, we rely on the relaxation of
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the integrality constraints on the variables zt
j in the Benders subproblem.

However, integrality is highly unlikely to hold when considering the capac-
ity. As such, a generalised Benders approach would be necessary (see, e.g.
Rahmaniani et al. 2017).

These effects pose serious concerns as to the applicability and viability of the pro-
posed Benders approach in the capacitated case. As such, adaptations may be
necessary for an efficient implementation.

In summary, a simple adaptation of the model can allow for capacity consid-
erations. While this does pose some econometric concerns, it does preserve the
maximum covering formulation. However, serious modifications would be neces-
sary for the accelerated Benders decomposition, and it may not be applicable at
all.

Alternative-dependent Objective Function An additional assumption in the
first article (Chapter 3) is that alternatives can broadly be categorised as either
“good” or “bad” in the objective function. In our case, this means that the opt-out
alternative has a value of 0 in the objective, while the home charging and public
charging alternatives all correspond to a value of Nt

i

Ri
. However, there are cases, such

as in pricing problems (e.g. Bortolomiol et al. 2021a,b, Pinzon et al. 2023), where
each alternative may correspond to a different profit in the objective function.

The same workaround can be applied as for the capacitated case, with partial
coverage variables wrt

ji and covering constraints wrt
ji ≤

∑mj

k=1 art
jikxt

jk. The objective
function can then be modified as

∑
(t,i,r)∈P

∑
j∈M

pjw
rt
ji ,

where pj is the profit associated with the alternative j. In this way, the maximum
covering reformulation can still be applied. The coverage variables wrt

i or w̄rt
i are

not necessary in this case, though the constraints
∑

j∈M wrt
ji ≤ 1 would be necessary

to ensure users are only assigned to one alternative.
However, this poses even more serious econometric concerns than the capaci-

tated case. Notably, the solver will assign each user i to the alternative j which
corresponds to the maximum profit, subject to the coverage. That is, for each user
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i, the optimal solutions wrt
ji , j ∈ M solve the following problem

Maximise
∑
j∈M

pjw
rt
ji ,

subject to
∑
j∈M

wrt
ji ≤ 1,

wrt
ji ≤

mj∑
k=1

art
jikxt

jk, j ∈ M,

wrt
ji ≤ 1, j ∈ M,

wrt
ji ≥ 0, j ∈ M.

(6.1)

This problem can be solved by inspection, and has an analytical solution given
by wrt

ji = 1 if j ∈ argmaxj′∈M

{
pj′ :

∑mj′

k=1 art
j′ikxt

j′k ≥ 1
}

, and wrt
ji = 0 otherwise.

If multiple alternatives have the same profit, then the assignment among the as-
sociated alternatives is arbitrary. However, as with the capacitated case, there is
the concern that selection of users does not follow the utility maximisation prin-
ciple. But, contrary to the capacitated case, the interests of the users and the
decision maker are diametrically opposed: Users want the cheapest option, while
the decision maker wants users to select the most profitable (and usually expen-
sive) alternative. As such, the maximum covering formulation may greatly over
evaluate the profit compared to the simulation-based approach (bilevel model), as
the former pushes users to select more expensive alternatives than the latter.

While the econometric concerns are more severe than the capacitated case,
the application of the accelerated Benders decomposition from the second article
(Chapter 4) is simpler. Notably, the Benders subproblem would be separable for
each (t, i, r), as given in Equation (6.1). As we noted, it has an analytical solu-
tion which clearly preserves the integrality property. As a consequence, while the
modifications would change the exact form of the Benders optimality cuts, it is
likely that the methodology would still be applicable, as would the acceleration
techniques.

To summarise, a similar modification to the capacitated case could also allow
for an alternative-dependent objective function. While the maximum covering
reformulation is likely amenable for the accelerated Benders decomposition, there
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are serious econometric concerns as to the validity of this transformation.

Connecting Charging Preferences and EV Adoption In the third article
(Chapter 5), we estimated a discrete choice model for predicting EV charging sta-
tion selection, under the assumption that better charging stations would correlate
with higher EV adoption. It remains to determine how this correlation works, par-
ticularly in regards to the parameters βt

jik and κt
ji from the first article (Chapter 3).

Similar to the maximum likelihood estimation process used to obtain the pa-
rameter values βk, 1 ≤ k ≤ K in the third article (Chapter 5), we can use maximum
likelihood again to estimate the contributions for EV adoption. To improve the
readability, we denote by β̄t

jik and κ̄t
ji the parameters in the first article (i.e. relating

to EV adoption), while we denote by βµ
k the parameters values in the third article

(i.e. relating to charging station selection). As per the third article, the parameter
values βµ

k are known, while β̄t
jik and κ̄t

ji are not. For simplicity, while we present
the process using only the mean values, one could use a simulation approach to
consider the standard deviation terms as well. For a given user i and charging
station j, if the network distance between i and j is less than 1.5 km, then we set

β̄t
jik = βµ

outletsNear,

κ̄t
ji = βµ

distNearxdist + βµ
isWalkHomexisWalkHome,

where the parameters βµ and attribute values x are defined as in the third article
(Chapter 5). We note that the values of βµ depend on the level of the charging
station, and so should be chosen appropriately for station j. Analogously, if the
network distance between user i and station j is greater than 1.5 km, then we set

β̄t
jik =βµ

outletsFar,

κ̄t
ji =βµ

distFarxdist + βµ
isGasxisGas + βµ

leisxleis + βµ
sportxsport

+ βµ
smxsm + βµ

shopxishop + βµ
mallxmall + βµ

restxrest + βµ
ffxf,

where, as before, βµ and x are defined as in the third article and set appropriate
for the charging level.

With the values β̄t
jik and κ̄t

ji set for all charging stations, it remains to deter-
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mine an appropriate value for the opt-out alternative κ̄t
0i (and all other exogenous

alternatives, which can use a similar process). There is also an additional hurdle in
this case compared to the charging preferences: While disaggregate charging pref-
erences are available (i.e. the charging stations selected by each individual user),
it is possible that only aggregate EV adoption is known (i.e. the total number of
EVs in each region). As such, rather than the index i representing a single user, in
the EV adoption context it may represent a class of users sharing similar sociode-
mographic and geographic characteristics. We then estimate the value of κ̄t

0i in the
resulting discrete choice model for EV adoption

ūt
0i = κ̄t

0i + ε̄t
0i,

ūrt
ji =

mj∑
k=1

β̄t
jikxt

jk + κ̄t
ji + ε̄rt

ji, j ∈ C1t
i ,

for which β̄t
jik and κ̄t

ji are kept fixed. More specifically, this estimates the value of
κ̄t

0i which maximises the likelihood of achieving the distribution of EV adoption for
each user class i. As such, this requires data on the EV adoption rate of each user
class i and time period t.

An extension of this method can be found in Sifringer et al. (2020), where
they combine machine learning and discrete choice models. Machine learning is
used on a portion of the terms in the utility functions, which allows for better
predictive power compared to typical utility functions. However, they maintain
interpretability of the resulting hybrid approach by forcing the machine learning
component of utility to have an elasticity of zero. Alternatively, another method
to determine appropriate values to use for κ̄t

0i can be found in Berry et al. (1995).
There, they provide a methodology specifically designed for aggregate measures,
such as the EV adoption in each region. This method determines the values as to
replicate the moments of the distribution for the aggregate measure.
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A Appendix

In this chapter, we present supplemental information for each of the articles.
These are presented sequentially for each article in Sections A.1 to A.3.

A.1 First Article

A.1.1 Bilevel Optimisation Model

The natural hierarchical structure of our problem suggests a bilevel formulation.
Bilevel optimisation models sequential decision making, where first, the leader takes
a decision (upper level) and then, the followers react by solving an optimisation
problem (lower level). The optimal solution of a bilevel model are the decision
values for the leader that optimise its objective function, based on the optimal
reaction of the lower-level users to the values of those variables. In our case, the
decision maker is in the upper-level while the users are in the lower-level.

The choice in the lower-level to purchase an EV is modelled via a discrete
choice model, where the users (followers) maximise their utility. More specifically,
the users must choose an alternative from a finite set of available alternatives
(here, open stations, home charging, and opt-out). The value of each alternative
is predicted through the use of a utility function, which associates the value of a
given alternative for users based on observable and unobservable factors. Under
the RUM assumption, users then, as rational beings, select the alternative which
presents the maximum benefit to them, as represented by the alternative with the
highest utility. For each period 1 ≤ t ≤ T , user class i ∈ N , and alternative
j ∈ Ct

i (x), the utility is denoted ut
ji.

The analyst has imperfect knowledge of the utility of the users, so we model
it as a random variable. Hence, instead of a deterministic model identifying the
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alternative chosen by the users, we obtain a probability distribution over the set of
available alternatives. Consequently, the leader maximises the expected number of
users purchasing an EV or, equivalently, minimises the expected number of users
that do not purchase an EV. This is given by

min
x∈X

T∑
t=1

∑
i∈N

N t
iPε

[
ut

0i(x, ε) ≥ ut
ji(x, ε), ∀j ∈ Ct

i (x)
]

, (A.1)

where X denotes the upper-level constraints, and ε denotes the random error term.
These constraints are discussed in more detail in Appendix A.1.1. We recall that
index j = 0 indicates the opt-out alternative, thus ut

0i is the opt-out utility for user
class i in year t.

If the error terms are independent, and identically extreme-value type I dis-
tributed, the choice probabilities have an analytic formula (the well-known MNL
model). In our application, this assumption may not hold. For example, if sta-
tions are near each other, they will also have similar amenities near them (e.g.
restaurants, shopping centres, etc.). If a user places high value in those amenities
(and they are not explicitly included in the observable factors), the error terms
for those stations may be highly correlated. To allow for general discrete choice
models which relax this restriction and support flexible substitution patterns, we
use the simulation-based approach of Pacheco Paneque et al. (2021).

Recall that Ri is the number of scenarios for user class i, P is the set of triplets
(t, i, r) for user class i, alternative j, scenario r, and period t, and εrt

ji is the reali-
sation of the random variable ε in triplet (t, i, r) . Then, ∀j ∈ Ct

i (x), we denote

wrt
ji =

1, if j ∈ argmaxj′∈Ct
i (x)
{

ut
j′i(x, εrt

j′i)
}

,

0, otherwise.
(A.2)

The details of the lower-level problem are discussed in Appendix A.1.1. For the
sake of simplicity, in a flagrant abuse of notation, we denote the vector w =

{
wrt

ji

}
with wrt

ji given by (A.2) for each (t, i, r), j ∈ Ct
i (x) as w ∈ argmaxj∈C(x) {u(x, ε)}.
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Then, we can write a sample average approximation of (A.1) as

min
x∈X

∑
(t,i,r)∈P

N t
i

Ri

wrt
0i,

s.t. w = argmaxj∈C(x) {u(x, ε)} .

Lower-Level Problem

The lower-level problem is assumed to be separable for each user class, each pe-
riod, and each scenario, meaning that there is no interaction among them. There-
fore, in what follows, we concentrate on detailing a given triplet (t, i, r). For each
alternative j ∈ Ct

i (x), let urt
ji = ut

ji(x, εrt
ji) be the simulated utility.

We previously remarked that the choice set Ct
i (x) depends on which stations are

open and we defined the choice sets C0t
i and C1t

i as the sets related to alternatives
exogenous and endogenous to the optimisation model, respectively. To ensure
that the alternative associated with a closed station j ∈ C1t

i cannot be chosen,
we set the simulated utility urt

ji to a lower bound if xt
j1 = 0. This concept is

referred to as the “discounted utility” in Pacheco Paneque et al. (2021). Let at
i =

min
({

κt
ji + εrt

ji, j ∈ C1t
i , 1 ≤ r ≤ Ri

})
and brt

ji =
∑mj

k=1 βt
jik +κt

ji+εrt
ji be respectively

lower and upper bounds on the simulated utility urt
ji, and let νt

ji = brt
ji −at

i. For each
i ∈ N , we assume that Ri is sufficiently large such that for each 1 ≤ t ≤ T, 1 ≤
r ≤ Ri we have at

i < urt
0i. We note that the lower bound at

i could be strengthened
by adding the utility of one outlet, (e.g. min

{
βrt

j1 + κt
ji + εrt

ji

}
). However, in our

testing, this did not have a significant impact. We also note that, since the error
terms εrt

ji can come from unbounded distributions, it is not generally possible to
use a fixed lower bound for urt

0i, e.g. at
i = 0.
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The linear formulation for the simulated utility urt
ji is given by

urt
ji ≥ at

i, j ∈ C1t
i , (t, i, r) ∈ P, (A.3)

urt
ji ≤ at

i + νrt
ji x

t
j1, j ∈ C1t

i , (t, i, r) ∈ P, (A.4)

urt
ji ≥

mj∑
k=1

βt
jikxt

jk + κt
ji + εrt

ji − νrt
ji

(
1 − xt

j1
)

, j ∈ C1t
i , (t, i, r) ∈ P, (A.5)

urt
ji ≤

mj∑
k=1

βt
jikxt

jk + κt
ji + εrt

ji, j ∈ C1t
i , (t, i, r) ∈ P. (A.6)

For each (t, i, r) ∈ P , the value of wrt
ji for j ∈ C0t

i ∪ C1t
i is then given by

the solution of the following optimisation problem, which acts as the lower-level
problem in our bilevel optimisation model:

Maximise
∑

j∈C0t
i

wrt
jiu

rt
ji +

∑
j∈C1t

i

wrt
jiu

rt
ji, (A.7a)

subject to
∑

j∈C0t
i

wrt
ji +

∑
j∈C1t

i

wrt
ji = 1, (A.7b)

wrt
ji ∈ {0, 1} , j ∈ C0t

i ∪ C1t
i . (A.7c)

It is easy to see that the binary requirements can be relaxed.

Upper-Level Problem

The placement of charging outlets and stations in the upper-level is restricted
by the following set of constraints

∑
j∈M

mj∑
k=1

ct
jk

(
xt

jk − xt−1
jk

)
≤ Bt, 1 ≤ t ≤ T. (A.8)

xt
jk ≤ xt

jk−1, 1 ≤ t ≤ T, j ∈ M, (A.9)

xt
jk ≥ xt−1

jk , 1 ≤ t ≤ T, j ∈ M, 1 ≤ k ≤ mj. (A.10)

These correspond to Constraints (3.2b)-(3.2d) presented in Section 3.3.4. Note
that it would also be possible to supplement the per-period budget with an overall
budget, as was done in Anjos et al. (2020).

176



Constraints (A.9) enforces that if we have at least k outlets, we must also have
at least k − 1 outlets.

Constraints (A.10) forbid the model from removing charging outlets. These
constraints assume that it would be suboptimal to remove a station.

Bilevel Model

We now introduce the full, bilevel model

Minimise
∑

(t,i,r)∈P

N t
i

Ri

wrt
0i, (A.11)

subject to (3.1), (A.3) − (A.6), (A.8) − (A.10)

wrt
ji ∈ argmax

{ ∑
j∈C0t

i

wrt
jiu

rt
ji +

∑
j∈C1t

i

wrt
jiu

rt
ji : (A.7b) − (A.7c)

}

urt
ji ∈ R,

xt
jk ∈ {0, 1} .

We consider the optimistic version of the bilevel problem which means that
the users do not select the opt-out alternative if a different alternative has equal
utility. While this in theory has a zero probability (given that the error terms are
drawn from continuous distributions), this can occur in practice due to numerical
precision.

In order to solve the model, we reformulate it as a single-level optimisation
problem by transforming the lower-level model (A.7) into a series of constraints for
the upper-level model. To this end, we apply the Karush-Kuhn-Tucker conditions
which are necessary and sufficient for the optimality of the (linear) lower-level
problem (Sinha et al. 2017), and we linearize the terms wrt

ji · urt
ji through Big-M

constraints. In this way, for each (t, i, r) ∈ P , the lower-level problem (A.7) is
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replaced by the following constraints:

urt
ji − αrt

i +
(
1 − wrt

ji

)
µrt

ji ≥ 0, j ∈ C0t
i ∪ C1t

i , (A.12)∑
j∈C0t

i

wrt
ji +

∑
j∈C1t

i

wrt
ji = 1, (A.13)

αrt
i ≥ urt

ji, j ∈ C0t
i ∪ C1t

i , (A.14)

wrt
ji ∈ {0, 1}, j ∈ C0t

i ∪ C1t
i , (A.15)

αrt
i ∈ R, (A.16)

where the Big-M constants, µrt
ji, are given by

µrt
ji =

{
max

({
brt

ji, j ∈ C1t
i

}
∪
{

κrt
ji + εrt

ji, j ∈ C0t
i

})
− κrt

ji − εrt
ji, j ∈ C0t

i ,

max
({

brt
ji, j ∈ C1t

i

}
∪
{

κrt
ji + εrt

ji, j ∈ C0t
i

})
− at

i, j ∈ C1t
i .

A.1.2 Parameter Values

In this section, we describe the parameter values for each dataset, as well as
the mechanism for drawing error terms for each of the instances. We start by
describing the general framework used for the error terms, as that is common to all
of the datasets. Table A.1 provides a list of parameter values, with more detailed
explanations in the following subsections for parameter values which differ. Unless
otherwise specified, parameter values are set arbitrarily. We note that, in all
datasets, the number of scenarios is set to 15×|Cit

0 ∪ Cit
1 |. In the case of the Simple,

Distance, and HomeCharging datasets, the size of Cit
1 varies by user class, due to the

maximum distance of 10km for considering a charging station. As a consequence,
the number of scenarios varies from 15 (only the opt-out is considered) to 105
(opt-out plus six charging stations). On the contrary, in the Price and LongSpan
datasets, there is no maximum distance for consideration, and thus every station
is included in the set Cit

1 . As a consequence, |Cit
0 ∪ Cit

1 | = 31, and the number of
scenarios is always 465.

In all of our datasets:

— Each user class i ∈ N includes the home location (as a node in the network).
This allows us to estimate population based on the census data (Statistics
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Canada 2017), with the number of user classes per node and the partitioning
method depending on the dataset.

— Each dataset includes 20 instances, where each instance generates different
sets of error terms εrt

ji, j ∈ Crt
0i ∪ Crt

1i .

— For each i ∈ N, 1 ≤ t ≤ T , the alternative-specific constant for the opt-out
option κt

0i is set to 4.5.

In order to simulate the error terms for the demand model, we employ the error
components formulation of the mixed logit model to approximate a nested logit
model, as described in Train (2002) and Walker et al. (2004). The notation in
what follows matches the latter work, and we refer to the aforementioned work for
detailed explanations of the process.

For each i ∈ N, 1 ≤ t ≤ T, 1 ≤ r ≤ Ri, the vector of error terms εrt
i =

(εrt
i )j∈C0t

i ∪C1t
i

is given by
εrt

i = FTξr + ζr, (A.17)

with

— F a factor loading matrix.

— T a diagonal matrix with the standard deviation of each factor.

— ξr a vector of IID random terms from a normal distribution.

— ζr a vector of IID random terms from a Gumbel distribution.

The form of the matrices F and T vary in each dataset. However, in all datasets,
ξr has a location of zero and a scale of one, and ζr has location of zero and a scale
of three.

Simple Dataset

The set of user classes N includes one user class for every node in the network.
The population of user class i, N t

i , is given by the population of the node in the
2016 census multiplied by a factor of 0.1. In other words, 10% of the population
in each node are deciding to purchase a vehicle each year.

For each i ∈ N, 1 ≤ t ≤ T , the choice set C1t
i includes all stations which are

within ten kilometres of the location of the user class. The utility for j ∈ C1t
i is
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Parameter Simple Distance HomeCharging LongSpan Price
T 4 4 4 10 4
|M | 10 10 10 30 30
|N | 317 317 634 317 1397
|Cit

0 | 1 2 1 1 1
|Cit

1 | Varies Varies Varies 30 30
x0

jk (all stations and outlets) 0 0 0 0 0
Ri 15 − 105 15 − 105 15 − 105 465 465
Bt (per year) 400 400 400 400 400
mj (all stations) 2 6 6 6 6
ct

j1 (all stations and years) 150 150 150 150 150
ct

jk (all other outlets) 50 50 50 50 50

Table A.1 – Parameter values for the generated instances

linear in terms of the number of charging outlets, with

βt
jik = 0.281k, ∀j ∈ C1t

i . (A.18)

Additionally, the alternative-specific constant for each station j ∈ C1t
i is calculated

as
κt

ji = 1.464δ1 − 0.063δ2 + 0.174δ3, (A.19)

with

— δ1: binary coefficient indicating if the station is level 3 (i.e. fast charging).
We note that in our tests all stations were considered level 3.

— δ2: the distance (in kilometres, shortest path in the network) between the
user’s home and the charging station,

— δ3: binary coefficient indicating if the station is in the city center (defined as
a subset of the nodes in the network).

The coefficients for these parameters were estimated using real-world data. A dis-
crete choice model was created which examined which charging station was selected
by EV owners when recharging their vehicle. A MNL model was estimated with the
maximum likelihood approach with the BIOGEME package in Python (Bierlaire
2020), using real charging data for EV owners in the province of Québec.

For the error terms for each i ∈ N, 1 ≤ t ≤ T , the options j ∈ C0t
i ∪ C1t

i are
divided into two nests: one for the opt-out option and one for all charging stations.
The |C0t

i ∪ C1t
i | × 2 factor loading matrix F and 2 × 2 diagonal matrix T are given
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by

F =



1 0

0 1
... ...

0 1


, T =

1 0

0 1

 . (A.20)

Distance Dataset

The user classes, choice sets, and error terms are all identical to the Simple
dataset.

The coefficient for distance in the alternative-specific constant has been in-
creased by a factor of ten. More specifically, for each i ∈ N, 1 ≤ t ≤ T , the
alternative-specific constant for each station j ∈ C1t

i is calculated as

κt
ji = 1.464δ1 − 0.63δ2 + 0.174δ3, (A.21)

with δ1, δ2, δ3 defined as in the Simple dataset.

Home Charging Dataset

The set of user classes N includes two user classes for every node in the network:
one which has access to home charging, and one which does not. We estimate the
access to home charging via the housing information in the 2016 census (Statistics
Canada 2017). Based on recommendations from our industrial partners, we assume
that 90% of users in single homes have access to home charging, while 75% of
those in attached homes, and 40% of those in apartments also have access. The
population of each of the two user classes are given by the respective estimates
multiplied by a factor of 0.1.

For user classes i which have access to home charging and for each 1 ≤ t ≤ T ,
the utility for j ∈ C1t

i is linear in terms of the number of charging outlets, with

βt
jik = 0.211k, ∀j ∈ C1t

i . (A.22)

For user classes i which do not have access to home charging and for each 1 ≤ t ≤ T ,
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the utility for j ∈ C1t
i is linear in terms of the number of charging outlets, with

βt
jik = 0.351k, ∀j ∈ C1t

i . (A.23)

In both cases, the choice set C1t
i includes all stations which are within ten kilometres

of the location of the user class and the alternative-specific constants are identical
to the Simple dataset.

For user classes i which do not have access to home charging, the error terms
are identical to the Simple dataset. For user classes i which have access to home
charging and for each 1 ≤ t ≤ T , the options j ∈ C0t

i ∪ C1t
i are divided into three

nests: one for the opt-out option, one for home charging, and one for all charging
stations. The |C0t

i ∪ C1t
i | × 3 factor loading matrix F and 3 × 3 diagonal matrix T

are given by

F =



1 0 0

0 1 0

0 0 1
... ... ...

0 0 1


, T =


1 0 0

0 1 0

0 0 1

 . (A.24)

LongSpan Dataset

The mechanisms for the user classes, alternative-specific constants, and error
terms are all identical to the Simple dataset. However, the choice sets for each
user class now include all stations, not only those within ten kilometres. This,
combined with the increased number of stations and the longer time span, results
in a significantly more difficult problem to solve.

Price Dataset

The alternative-specific constants, error terms, and choice sets are identical to
the LongSpan dataset.

In this dataset, we simulate a price decrease year-by-year, which affects different
user classes differently based on their income. The set of user classes N includes
five user classes for every node in the network, based on the partitioning in Javid
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and Nejat (2017) for income. In the aforementioned work, a logit model for EV
acquisition was estimated, with one of the considered factors being the annual
household income. The income level was classified as a categorical variable, with
the categories defined via income

— Less than 25 000$,

— 25 000$ - 49 999$,

— 50 000$ - 74 999$,

— 75 000 - 99 999$,

— Greater or equal to 100 000$.

In the final estimation of the logit model, the income variable was found to be
significantly significant. The utility coefficient for the categorical variable was
estimated as 0.443.

In our work, we estimate the population in each node that falls within each
of the five income brackets using the household income field in the 2016 Statistics
Canada census (Statistics Canada 2017), and assigned each to a user class. 1 The
population of each of the five user classes are given by the respective estimates
multiplied by a factor of 0.1, and any user class which would have a population
< 1 are removed.

An additional term is added to the alternative specific constants for all charging
stations based on the income bracket, in increments of 0.443. We then modify the
value of the penalisation term each year to account for a decrease in price affecting
each user class differently (with the modification affecting the lower income brackets
more). More specifically, for each i ∈ N, 1 ≤ t ≤ T , the alternative-specific constant
for each station j ∈ C1t

i is calculated as

κt
ji = 1.464δ1 − 0.063δ2 + 0.174δ3 + 0.443δ4i + 0.443 (t − 1)

(
2 − δ4i

4

)
, (A.25)

with δ1, δ2, δ3 defined as in the Simple dataset and δ4i given in Table A.2.

1. The census provides data in brackets of 10 000$, and so the population in certain fields was
divided evenly into two user classes (e.g. half of the population of the “20 000$ to 29 999$” field
in the census was assigned to the “Less than 25 000$” user class whereas the other half was added
to the “25 000$ - 49 999$” user class.)
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Income level of user class i δ4i

Less than 25 000$ -2
25 000$ - 49 999$ -1
50 000$ - 74 999$ 0
75 000 - 99 999$ 1
Greater or equal to 100 000$ 2

Table A.2 – Values of parameter δ4i

A.1.3 Growth Function model

Intracity model

For comparing the GF model of Anjos et al. (2020) to the MC model (3.3), it
must be reduced to an intracity form. More precise definitions and development
of each of these variables and equations, we refer to the previous work. Note that
some variable names have been changed from the original work to avoid confusion
with notation in MC model (3.3) and the SL model (3.2). We assume that the city
occupies a single urban centre u. We also eliminate the path-based constraints from
the optimisation model, as these represent users travelling between urban centres.
Given these simplifications, we use the following notation:

— T : Set of investment periods.

— N : Set of population centers.

— M : Set of candidate locations.

— Nj, j ∈ M : Set of locations which are willing to charge at location j.

— ej, j ∈ M : Maximum number of charging outlets at location j.

— r: Population of the city.

— ri: Population in location i.

— lj, j ∈ M : Number of charging outlets already installed at location j.

— cU : Cost for installing a charging outlet at any location.

— cF
j , j ∈ M : One-time cost for opening location j.

— Bt, t ∈ T : Budget for year t.
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— α: Fraction of EV users that choose to charge at home.

— at, t ∈ T : Capacity increase for each charging outlet in year t.

— S: Set of segments in the (piecewise linear) GF.

— qs−1, qs, s ∈ S: Breakpoints of segment s in the growth function.

— ms, s ∈ S: Slope of segment s in the growth function.

— os, s ∈ S: Intercept of segment s in the growth function.

— xt
j, j ∈ M, t ∈ T : Number of charging outlets at station i in year t.

— yt
j, j ∈ M, t ∈ T : 1 if station is open in year t, 0 otherwise.

— wst, s ∈ S, t ∈ T : 1 if the city is at penetration level s at the beginning of
year t, 0 otherwise.

— ht
ij, i ∈ N, j ∈ M, t ∈ T : Number of EVs based in location i choosing to

charge in location j in year t.

— zst, s ∈ S, t ∈ T : Number of EVs in the city which is at penetration level s

at the beginning of year t.

The list of parameter values can be found in Table A.3.
The model used for the comparisons is the following:
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Maximise
∑
j∈M

∑
i∈Nj

ht−1
ij , (A.26)

subject to
∑
j∈M

cU

(
xt

j − xt−1
j

)
+
∑
j∈M

cF
j

(
yt

j − yt−1
j

)
≤ Bt, t ∈ T, (A.27)

xt
j ≤ ejy

t
j, j ∈ M, 1 ≤ t ≤ T, (A.28)

xt
j ≥ xt−1

j , j ∈ M, 1 ≤ t ≤ T, (A.29)

yt
j ≥ yt−1

j , j ∈ M, 1 ≤ t ≤ T, (A.30)∑
s∈S

zst =
∑
j∈M

∑
i∈Nj

ht−1
ij , t ∈ T, (A.31)

qs−1wst ≤ zst ≤ qswst, s ∈ S, t ∈ T, (A.32)∑
s∈S

wst ≤ 1, t ∈ T, (A.33)∑
i∈Nj

ht
ij ≤

∑
i∈Nj

ht−1
ij + ri

r

∑
s∈S

(
oswst + (ms − 1) zst

)
, j ∈ M, t ∈ T,

(A.34)∑
i∈Nj

ht−1
ij ≤

∑
i∈Nj

ht
ij, j ∈ M, t ∈ T, (A.35)

α
∑
i∈Nj

ht
ij ≤ at

(
x0

j +
∑
t′≤t

xt′

j

)
j ∈ N, t ∈ T. (A.36)

The objective function (A.26) aims to maximise the total number of EV users
in the final year. Constraints (A.27) are budget constraints, ensuring that the
cost of opening charging stations and installing charging outlets does not exceed
the budget for that year. Constraints (A.28) both enforce a maximum number of
charging outlets at each station and also ensures that the one-time cost to open
charging stations is paid. Constraints (A.29) prevent removing charging outlets
and constraints (A.30) prevent closing charging stations from one year to the next.
Constraints (A.31) set the number of EVs at the start of one year as the num-
ber at the end of the previous year. Constraints (A.32) find the segment of the
growth function that the current EV population is in. Constraints (A.33) ensure
that only one segment of the growth function is selected. Constraints (A.34) cap
the the number of EVs by the end of the year by following the growth function.
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Parameter Value
T 4
|N | 317
|M | 10
|Nj| Varies
ej (all stations) 6
r 181624
lj (all stations) 0
cU (all stations) 50
cF

j (all stations) 100
Bt (per year) 400
α 0.566
at (all years) +∞
|S| 5
qs−1, qs Varies
ms Varies
os Varies

Table A.3 – Growth Function parameter values

Constraints (A.35) ensure that the total number of EVs does not decrease from
year to year. Constraints (A.36) are capacity constraints, ensuring that potential
new EV users will only decide to purchase an EV if there exists sufficient charging
infrastructure.

Generating the Growth Function

The growth function in the GF model gives the number of EVs in the current
year as a function of the number of EVs in the previous year. In the absence
of the capacity contraints (A.36), the growth function would directly dictate the
number of EVs each year via Constraints (A.31). We can ensure that the EV
growth remains comparable between the MC and GF models by using the output
from the MC model to create the growth function.

More specifically, we assume there are no EV owners at the start of the optimi-
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sation period. While this is not a realistic assumption, it ensures feasibility in the
GF model. Given a candidate solution (x, y), we solve the MC model (3.3) with
the desired user classes and parameters over the 20 instances in the dataset. In
each instance and for 1 ≤ t ≤ T we calculate the number of users who are covered
by x (given by

∑
i∈N

∑Ri

r=1
Nt

i

Ri
wrt

i ). To calculate the total number of EVs, we add
the new EVs in each year to the EVs from the previous year (or the starting EVs
in the case of the first year). We take the average result over all instances for each
year as our desired growth function, which mimics perfectly the EV growth from
the MC model (3.3).

After normalising for the population–which gives the percentage of the popu-
lation with EVs in the following year given the percentage of the population with
EVs in the current year–, we extend the growth function to cover the entire [0, 1]
domain. Both of these steps allow the growth function to be used regardless of
population. An example of the normalised, extended growth function is given in
Figure A.1.
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Figure A.1 – Growth Function Example
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Figure A.2 – A simple example, with T = 1, three facilities {i1, i2, i3} and user coverage
given by the numbers within the regions. Numbers within the intersection of facilities
indicate overlapping coverage.

A.2 Second Article

A.2.1 Example of Benders Cuts

We present a simple example of this in Figure A.2. We drop the superscript
t as there is only one time period. In this case, the domain Ω is given simply by
Ω = {(xi1 , xi2 , xi3) : xi ∈ [0, 1], i = i1, i2, i3}. If we generate the optimality cuts for
the candidate solution x̃ = (1, 0, 0), i.e. facility i1 is opened whereas facilities i2

and i3 are closed, we have the following optimality cuts

(B0): 0xi1 + 8xi2 + 10xi3 + 20 ≥ θ,

(B1): 10xi1 + 8xi2 + 10xi3 + 10 ≥ θ,

(B2): 20xi1 + 16xi2 + 12xi3 + 0 ≥ θ.

All three types of cuts correctly identify the objective value of solution x̃ as 20,
matching the value in Equation (4.2). However, if we then use these optimality cuts
to calculate the objective value of the solution x̄ = (0, 0.75, 0.75), we obtain the
values 33.5, 23.5, and 21 (for B0, B1, and B2 cuts respectively), while Equation (4.2)
gives 19.5.
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A.2.2 Links to Submodular Optimisation

The dynamic MCLP (4.1) can be viewed as a particular case of the general sub-
modular problem in Coniglio et al. (2022), with the additional embedded structure
of the time periods. For 1 ≤ t ≤ T , let St ⊂ I represent the subset of open facilities.
Then, we define the real-valued set function f t (St) =

∑
j∈J min

{
1,
∑

i∈St at
ij

}
dt

j,
and the marginal gains function ϕt (i, St) = f t (St ∪ {i}) − f t (St). It can then
easily be verified that the function f t is submodular, for example via the marginal
gains property (iii) of Proposition 2.1 in Nemhauser et al. (1978).

We note that submodularity holds not only within each time period, but when
considering the time period-facility pairs (t, i) more generally. That is, as the sum of
submodular functions, the function f

(
∪T

t=1S
t
)

=
∑T

t=1 f t(St) is also submodular.
Accordingly, single-cut equivalents to the multi-cuts described in A.2.2 can be used.
However, for the sake of simplicity, we limit our discussion to the multi-cut versions.

Submodular Cuts and Benders Cuts

As mentioned previously, there are submodular cuts analogous to the Benders
cuts presented in this work, and which can be used in a branch-and-cut framework.
However, these submodular cuts are only defined for integer solutions, contrary to
the Benders cuts. For 1 ≤ t ≤ T , let xt

i be an integer feasible solution to the main
problem (4.7), and let St(x) = {i ∈ I : xt

i = 1}. When there is no risk of confusion,
we use S̃t = St(x̃t

i), for x̃t
i the integer feasible candidate solution at the current

iteration.
As before, let Js =

{
j ∈ J :

∑T
t=1
∑

i∈I at
ij = 1

}
and Ĩ t

j = I t
j(x̃) =

∑
i∈I at

ijx̃
t
i.

Then, in Coniglio et al. (2022), the authors propose the following submodular cuts:

θt ≤ f t(S̃t) +
∑

i∈I\S̃t

ϕt
(
i, S̃t

)
xt

i −
∑
i∈S̃t

ϕt (i, I \ {i}) (1 − xt
i), (SC1)

θt ≤ f t(S̃t) +
∑

i∈I\S̃t

ϕt (i, ∅) xt
i −
∑
i∈S̃t

ϕt
(
i, S̃t \ {i}

)
(1 − xt

i), (SC2)

θt ≤ f t(S̃t) +
∑

i∈I\S̃t

ϕt
(
i, S̃t

)
xt

i. (SC3)

As demonstrated in Coniglio et al. (2022), the submodular cuts (SC1) are equivalent
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to the Benders cuts (B1), the cuts(SC3) are equivalent to the cuts (B0), and the
cuts (SC2) are weaker than the cuts (B2). This can be easily verified in the example
of A.2.1, as well as by rewriting the set functions with respect to Ĩ t

j , which yields
the following equivalent cuts:

θt ≤
∑

j∈J :Ĩt
j≥1

dt
j +

∑
i∈I:x̃t

i=0

 ∑
j∈J :Ĩt

j=0

at
ijd

t
j

xt
i −

∑
i∈I:x̃t

i=1

 ∑
j∈Js:Ĩt

j=1

at
ijd

t
j

 (1 − xt
i),

(SC1’)

θt ≤
∑

j∈J :Ĩt
j≥1

dt
j +

∑
i∈I:x̃t

i=0

(∑
j∈J

at
ijd

t
j

)
xt

i −
∑

i∈I:x̃t
i=1

 ∑
j∈J :Ĩt

j=1

at
ijd

t
j

 (1 − xt
i),

(SC2’)

θt ≤
∑

j∈J :Ĩt
j≥1

dt
j +

∑
i∈I:x̃t

i=0

 ∑
j∈J :Ĩt

j=0

at
ijd

t
j

xt
i.

(SC3’)

Submodular Interpretation of the Local Branching Subproblem

As in A.2.2, for 1 ≤ t ≤ T , let x̃t
i be an integer feasible solution to the main

problem (4.7), S̃t = {i ∈ I : x̃t
i = 1}, and Ĩ t

j = I t
j(x̃) =

∑
i∈I at

ijx̃
t
i. The equivalent

versions of Propositions 4.5.1 and 4.5.2 using the submodular cuts are, respectively,
given in Propositions A.2.1 and A.2.2.

Proposition A.2.1. Let x be an (integer) feasible solution to the maximum cov-
ering model (4.1), and let t be any time period, 1 ≤ t ≤ T . Let î ∈ I be such that
xt

î
= 0. Then the modified solution x̂ with x̂t

î
= 1 and x̂t

i = xt
i, i ̸= î satisfies

f t
(

St(x) ∪
{

î
})

= f t(S̃t) +
∑

i∈I\S̃t

ϕt
(
i, S̃t

)
xt

i, (A.37)

f t
(

St(x) ∪
{

î
})

= f t(S̃t) +
∑

i∈I\S̃t

ϕt
(
i, S̃t

)
xt

i −
∑
i∈S̃t

ϕt (i, I \ {i}) (1 − xt
i).

(A.38)

(A.39)
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Proof. As x̂t
i = xt

i for i ∈ I \
{

î
}

, in both cases the summation on the right-hand
side reduces to

f t
(
St(x)

)
+ ϕt

(
î, St(x)

)
xt

î
. (A.40)

The result then follows by definition of the marginal gains function ϕt.

Proposition A.2.2. Let x̂t
j denote the optimal values for the variables xt

j in the
restricted subproblem (4.20) around an integer candidate solution x̃ at distance
κ̃ = 2. Then x̂t

j are also the optimal values for the variables xt
j in the following

problem:

Maximise
T∑

t=1
θt, (A.41a)

subject to (4.1b), (4.1d), (4.3b), (4.3c), (4.19c),∑
i∈I:x̃t

i=1

(
1 − xt

i

)
+

∑
i∈I:x̃t

i=0

xt
i ≤ 2, 1 ≤ t ≤ T, (A.41b)

f t(S̃t) +
∑

i∈I\S̃t

ϕt
(
i, S̃t

)
xt

i −
∑
i∈S̃t

ϕt (i, I \ {i}) (1 − xt
i) ≥ θt,

1 ≤ t ≤ T, (A.41c)

f t(S̃t ∪
{

î
}

) +
∑

i∈I\S̃t

ϕt
(

i, S̃t ∪
{

î
})

xt
i ≥ θt, 1 ≤ t ≤ T, î : x̃t

î
= 0,

(A.41d)

f t(S̃t \
{

î
}

) +
∑

i∈I\S̃t

ϕt
(

i, S̃t \
{

î
})

xt
i ≥ θt, 1 ≤ t ≤ T, î : x̃t

î
= 1.

(A.41e)

Proof. The proof is identical to that of Proposition 4.5.2.

As mentioned in Appendix A.2.2, the submodular cuts (SC1) and (SC3) are,
respectively, equivalent to the Benders cuts (B1) and (B0). Additionally, since the
candidate solutions must be integer valued for the local branching framework, both
the submodular and Benders cuts methodologies are entirely equivalent.
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Table A.4 – Average performance details without greedy warmstart. Starred entries
only include instances for which non-zero incumbent solutions were found. Entries in
bold indicate the best performance across the exact methods in that dataset and metric.

Simple Distance HomeCharging LongSpan Price
Solve time (sec) Greedy <0.01 <0.01 <0.01 0.05 0.10

B&C 0.20 0.70 6.56 7186.12 7194.97
U-B&BC 0.15 1.57 68.24 7184.25 7184.76
A-B&BC 0.11 0.51 1.37 7184.35 7184.57
A-B&BC+LB-SubD-SepD 4.65 4.74 12.70 7313.04 7344.53

Objective value Greedy 31814.20 16591.75 18016.47 133724.37 33641.74
B&C 31820.15 16627.14 18030.50 0.00 0.00
U-B&BC 31820.15 16627.14 18030.50 122803.68* 32563.31
A-B&BC 31820.15 16627.14 18030.50 133613.34* 33623.02
A-B&BC+LB-SubD-SepD 31820.15 16627.14 18030.50 133772.68 33655.97

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01 - -
U-B&BC < 0.01 < 0.01 < 0.01 15.79* 15.00
A-B&BC < 0.01 < 0.01 < 0.01 6.20∗ 11.49
A-B&BC+LB-SubD-SepD < 0.01 < 0.01 < 0.01 12.04 18.91

Number of nodes B&C 59.25 43.35 131.95 0.00 0.00
U-B&BC 52.40 27.85 228.50 0.00 0.00
A-B&BC 152.10 84.50 1012.55 455.30 0.00
A-B&BC+LB-SubD-SepD 65.05 187.30 795.25 6435.35 1099.60

Average lazy cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01 0.04 0.08
A-B&BC < 0.01 < 0.01 < 0.01 0.05 0.11
A-B&BC+LB-SubD-SepD 0.20 0.30 0.51 125.37 72.75

Average user cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01 0.05 0.11
A-B&BC < 0.01 < 0.01 < 0.01 0.06 0.12
A-B&BC+LB-SubD-SepD 0.02 < 0.01 0.01 0.07 0.75

Number of restricted subproblems A-B&BC+LB-SubD-SepD 127.90 143.85 185.70 1045.00 1169.95
Number of diversified subproblems A-B&BC+LB-SubD-SepD 27.10 16.20 25.35 58.60 102.15
Solve time, LP (sec) A-B&BC 0.01 0.02 0.02 0.82 1.31

A.2.3 Additional Computational Results

Comparison of Methodologies

In Tables A.4 and A.5, we report additional performance details for each of
the solution methods compared in Section 4.6.2. The entries with the solve time,
objective value, optimality gap, and the number of nodes have been duplicated
in this table for ease of comparison. In addition, we present the number and
average time for both lazy cuts (for integer candidate solutions) and user cuts (for
fractional candidate solutions). Finally, since the local branching method solves the
LP relaxation of the model with the multi-cut method independently, we include
the LP solve time here.

In Figures A.3-A.5, we see the number of instances solved by each method as a
function of time (in seconds).
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Table A.5 – Average performance details with greedy warmstart. Entries in bold indicate
the best performance across the exact methods in that dataset and metric.

Simple Distance HomeCharging LongSpan Price
Solve time, (sec) Greedy <0.01 <0.01 <0.01 0.05 0.10

B&C 0.23 0.70 6.46 7187.77 7196.19
U-B&BC 0.14 1.13 58.23 7184.00 7185.39
A-B&BC 0.09 0.52 1.34 7184.54 7185.04
A-B&BC+LB-SubD-SepD 4.67 4.81 13.00 7291.34 7305.71

Objective value Greedy 31814.20 16591.75 18016.47 133724.37 33641.74
B&C 31820.15 16627.14 18030.51 133724.36 33641.73
U-B&BC 31820.15 16627.14 18030.51 133724.36 33641.74
A-B&BC 31820.15 16627.14 18030.51 133728.65 33642.19
A-B&BC+LB-SubD-SepD 31820.15 16627.14 18030.51 133781.88 33650.81

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01 25.07 52.84
U-B&BC < 0.01 < 0.01 < 0.01 6.25 11.34
A-B&BC < 0.01 < 0.01 < 0.01 6.12 11.32
A-B&BC+LB-SubD-SepD < 0.01 < 0.01 < 0.01 11.86 18.66

Number of nodes B&C 47.40 35.00 109.30 0.00 0.00
U-B&BC 41.90 17.65 200.75 0.00 0.00
A-B&BC 65.35 75.05 860.45 0.00 1499.60
A-B&BC+LB-SubD-SepD 65.05 205.60 797.35 7282.65 1202.50

Average lazy cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01 0.04 0.08
A-B&BC < 0.01 < 0.01 < 0.01 0.06 0.12
A-B&BC+LB-SubD-SepD 0.20 0.31 0.51 124.45 71.14

Average user cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01 0.05 0.11
A-B&BC < 0.01 < 0.01 < 0.01 0.06 0.12
A-B&BC+LB-SubD-SepD 0.02 < 0.01 0.01 0.07 1.09

Number of diversified subproblems A-B&BC+LB-SubD-SepD 27.10 16.10 25.50 59.55 103.10
Solve time, LP (sec) A-B&BC 0.01 0.01 0.01 0.08 0.11

Figure A.3 – Performance profiles showing the number of Simple instances solved by
each method as a function of time, both without a warmstart (left) and with a warmstart
(right).
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Figure A.4 – Performance profiles showing the number of Distance instances solved by
each method as a function of time, both without a warmstart (left) and with a warmstart
(right).

Figure A.5 – Performance profiles showing the number of HomeCharging instances solved
by each method as a function of time, both without a warmstart (left) and with a warmstart
(right).
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Figure A.6 – Performance profiles showing the number of Medium instances with S =
3.25 solved by each method as a function of time.

Comparison of Acceleration Techniques

In Table A.6, we report additional performance details for each of the solution
methods compared in Section 4.6.3. The entries with the solve time, objective value,
optimality gap, and the number of nodes have been duplicated in this table for
ease of comparison. In addition, we present the number and average time for both
lazy cuts (for integer candidate solutions) and user cuts (for fractional candidate
solutions). Finally, since the local branching method solves the LP relaxation of
the model with the multi-cut method independently, we include the LP solve time
here.

In Figures A.6-A.8, we present the performance profiles for each method for
each value of S. As in Section 4.6.3, these indicate the number of solved instances
as a function of time for each method.

Further Results: Local Branching Restricted Subproblem Solution Method

In Figure A.9, we report the average solve time as a function of the number of
separated solutions in each of the datasets. We recall that there are 20 instances in
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Table A.6 – Average performance details in Medium instances. Entries in bold indicate
the best performance across the exact methods in that dataset and metric.

S=3.25 S=3.75 S=4.25

Solve time, MIP (sec) B&C 23.40 187.48 73.31
U-B&BC 7110.49 6515.51 5001.91
U-B&BC+MC 79.44 86.67 40.71
U-B&BC+PO 5009.42 4928.70 4711.18
U-B&BC+PB 4516.99 4300.18 3403.50
A-B&BC 56.11 51.88 36.80
A-B&BC+LB-SubD-SepD 2077.59 2943.88 3725.03

Objective value B&C 1877854.46 2398990.73 2970338.08
U-B&BC 1877081.97 2398147.48 2968357.31
U-B&BC+MC 1877854.46 2398990.73 2970338.08
U-B&BC+PO 1877040.15 2396647.52 2967975.96
U-B&BC+PB 1877179.18 2397067.08 2969571.91
A-B&BC 1877854.46 2398990.73 2970338.08
A-B&BC+LB-SubD-SepD 1877854.46 2398990.73 2970338.08

Gap to best known solution (%) B&C 0.00 0.00 0.00
U-B&BC 0.04 0.04 0.07
U-B&BC+MC 0.00 0.00 0.00
U-B&BC+PO 0.04 0.10 0.08
U-B&BC+PB 0.04 0.08 0.03
A-B&BC 0.00 0.00 0.00
A-B&BC+LB-SubD-SepD 0.00 0.00 0.00

Optimality gap (%) B&C < 0.01 < 0.01 < 0.01
U-B&BC 2.60 1.77 3.00
U-B&BC+MC < 0.01 < 0.01 < 0.01
U-B&BC+PO 1.98 1.89 2.96
U-B&BC+PB 0.85 1.47 0.93
A-B&BC < 0.01 < 0.01 < 0.01
A-B&BC+LB-SubD-SepD 0.07 0.19 1.13

Number of nodes B&C 8351.60 62989.40 24196.40
U-B&BC 22776.80 24473.60 9865.80
U-B&BC+MC 103045.80 86509.80 52664.80
U-B&BC+PO 30834.00 25441.00 10147.80
U-B&BC+PB 19181.20 13130.00 8498.00
A-B&BC 68917.80 58596.60 49838.20
A-B&BC+LB-SubD-SepD 2631.60 8132.00 4233.40

Number of solved instances B&C 5 5 5
U-B&BC 0 1 2
U-B&BC+MC 5 5 5
U-B&BC+PO 2 2 2
U-B&BC+PB 3 3 3
A-B&BC 5 5 5
A-B&BC+LB-SubD-SepD 4 4 4
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Table A.7 – Average performance details in Medium instances (continued). Entries in
bold indicate the best performance across the exact methods in that dataset and metric.

S=3.25 S=3.75 S=4.25

Average lazy cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01
U-B&BC+MC < 0.01 < 0.01 < 0.01
U-B&BC+PO < 0.01 < 0.01 < 0.01
U-B&BC+PB < 0.01 < 0.01 < 0.01
A-B&BC < 0.01 < 0.01 < 0.01
A-B&BC+LB-SubD-SepD 2.75 3.17 2.46

Average user cut time (sec) U-B&BC < 0.01 < 0.01 < 0.01
U-B&BC+MC < 0.01 < 0.01 < 0.01
U-B&BC+PO < 0.01 < 0.01 < 0.01
U-B&BC+PB < 0.01 < 0.01 < 0.01
A-B&BC < 0.01 < 0.01 < 0.01
A-B&BC+LB-SubD-SepD 0.29 0.09 0.15

Number of restricted subproblems A-B&BC+LB-SubD-SepD 2420.40 3363.40 4686.60
Number of diversified subproblems A-B&BC+LB-SubD-SepD 551.80 817.60 1063.60
Solve time, LP (sec) A-B&BC 0.18 0.19 0.19

Figure A.7 – Performance profiles showing the number of Medium instances with S =
3.75 solved by each method as a function of time.
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Figure A.8 – Performance profiles showing the number of Medium instances with S =
4.25 solved by each method as a function of time.

the dataset, and in each instance we randomly generated a series of 255 candidate
solutions. The restricted subproblem (4.20) around each candidate solution was
then solved using either the method SubD, which directly solves the reformula-
tion (4.25) with a generic solver, or the method SubB, which solves the restricted
subproblem (4.20) via the A-B&BCmethod. By taking the average solve time
of the subproblems across all instances for a fixed number of solved subproblems,
we can then examine the impact of the increasing number of cuts to both of the
methods.

Looking at Figure A.9, we observe, for both methods, that the time to solve the
restricted subproblem tends to increases along with the number of separated solu-
tions. This is unsurprising, due to the addition of the Big-M Constraints (4.27a).
More interestingly, we remark a much higher variability in the solving times for
the SubBmethod, with the solve times shifting rapidly by 50% or more. The
only dataset for which we see a higher variability in the SubDmethod is in the
LongSpan dataset, where nearly all subproblems terminate at the time limit for
the SubBmethod.

In Figures A.10 and A.11, we see the percentage of restricted subproblems
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Table A.8 – Average performance details for different feasible space reduction methods.
Entries in bold indicate the best performance across the exact methods in that dataset
and metric. Metrics or datasets with no clear “best” value do not have any entries in bold.

Simple Distance HomeCharging LongSpan Price
Solve time (sec) SepB, all solutions 46.52 2.32 1460.34 7176.68 9045.39

SepB, improving solutions 0.72 1.17 8.95 7192.53 7269.47
SepD 1.12 1.68 4.99 7175.38 7292.31

Objective value SepB, all solutions 13718.14 6635.17 8151.72 18473.34 13439.35
SepB, improving solutions 13718.14 6635.17 8151.72 18882.63 13601.62
SepD 13718.14 6635.17 8151.72 18851.94 13552.85

Optimality gap (%) SepB, all solutions < 0.01 < 0.01 0.21 21.92 22.41
SepB, improving solutions < 0.01 < 0.01 < 0.01 13.38 18.05
SepD < 0.01 < 0.01 < 0.01 12.47 17.47

Number of nodes SepB, all solutions 509.10 100.60 3061.90 1003.45 589.73
SepB, improving solutions 12.75 73.95 216.35 2654.30 1117.95
SepD 10.00 64.10 170.80 4273.90 1592.75

Average lazy cut time (sec) SepB, all solutions 0.05 0.09 0.16 8.93 33.00
SepB, improving solutions 0.05 0.09 0.13 9.13 31.90
SepD 0.06 0.10 0.17 9.05 33.47

Number of lazy cuts SepB, all solutions 9.50 3.25 11.65 23.85 23.15
SepB, improving solutions 7.90 3.35 11.00 68.90 47.50
SepD 11.45 10.05 9.40 42.10 41.35

Average user cut time (sec) SepB, all solutions 0.03 0.01 0.08 3.76 12.16
SepB, improving solutions 0.01 0.01 0.02 1.01 3.01
SepD 0.01 < 0.01 0.01 0.33 0.95

Number of user cuts SepB, all solutions 652.95 23.45 2880.55 736.65 255.12
SepB, improving solutions 5.70 9.70 50.80 820.25 228.80
SepD 6.55 5.80 21.15 834.70 227.55

Number of diversified subproblems SepB, all solutions 662.45 26.70 2892.20 760.50 278.27
SepB, improving solutions 13.60 13.05 61.80 889.15 276.30
SepD 18.00 15.85 30.55 876.80 268.90

Number of restricted subproblems SepB, all solutions 1424.90 98.25 13127.65 4838.15 1708.62
SepB, improving solutions 31.25 41.60 195.60 4783.15 1338.45
SepD 87.75 101.95 170.40 6773.35 1973.20

Solve time, LP (sec) SepB, all solutions < 0.01 0.01 0.01 0.05 0.24
SepB, improving solutions < 0.01 < 0.01 < 0.01 0.05 0.27
SepD < 0.01 0.01 0.01 0.14 0.62

Number of user-created branches SepB, all solutions 654.70 27.00 2887.90 741.20 260.38
SepB, improving solutions 2.20 4.70 6.70 12.40 9.30

solved by each subproblem solution method as a function of time (for the Price
and LongSpan datasets, respectively). As the subproblem solution time in the
easy instances is nearly always less than one second regardless of the method, the
corresponding figures have not been included.

Further Results: Local Branching Subdomain Separation Scheme

In Table A.8, we report additional performance details for the subproblem so-
lution methods, where values in the table are defined equivalently as A.2.3.
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Figure A.9 – Evolution of subproblem solution time as a factor of the number of sub-
problem separations completed.
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Figure A.10 – Percentage of restricted subproblems solved in the Price dataset by each
method as a function of time.

Figure A.11 – Percentage of restricted subproblems solved in the LongSpan dataset by
each method as a function of time.
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Figure A.12 – Distribution of average number of sessions per month, shared vehicles.

A.3 Third Article

A.3.1 Data Description, Shared Members

In general, shared members have a much higher usage of public charging in-
frastructure across all metrics. This can be seen by comparing the figures in Sec-
tion 5.3.1 for private vehicles with their counterpart in Figures A.12-A.15. For ease
of reading, the median values for private vehicles are repeated in this section.

— By construction, the average number of sessions and total energy charged are
presented in Figures A.12 and A.13. Median values for the number of charging
sessions and total energy per month for private vehicles are, respectively, 0.57
sessions and 5.89 kWh, while the median values for shared accounts are 2.75
sessions and 34.7 kWh.

— In Figure A.14, we present the distribution for the average amount of time
spent charging every month, with the duration of each charging session
capped at 720 minutes as before. The median values are 47.7 minutes for
private vehicles and 162.7 minutes for shared accounts.

— In Figure A.15, we present the distribution for the average number of different
stations visited each month. The median values are 0.45 and 1.85 stations,
respectively, for private vehicles and shared accounts.
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Figure A.13 – Distribution of average energy charged per month, shared vehicles.

Figure A.14 – Distribution of average monthly time spent charging, shared vehicles.

Figure A.15 – Distribution of average number of different stations per month, shared
vehicles.
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Figure A.16 – Distance from the user’s home to the all available charging stations.

Figure A.17 – Distance from the user’s home to the selected charging station.

A.3.2 Distribution of Attributes
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500m 750m 1000m 1250m 1500m

mean 0.8127 2.0735 3.9996 6.5259 9.5881
std 1.1767 2.4713 4.5060 6.9330 9.7409
min 0 0 0 0 0
25% 0 0 1 1 2
50% 0 1 3 5 7
75% 1 3 6 10 15
max 15 23 42 55 70

Table A.9 – Distribution of the number of charging stations with the utility function
thresholds for level 2 charging.

500m 750m 1000m 1250m 1500m

mean 0.0152 0.0658 0.1080 0.1609 0.2223
std 0.1225 0.2480 0.3156 0.3843 0.4442
min 0 0 0 0 0
25% 0 0 0 0 0
50% 0 0 0 0 0
75% 0 0 0 0 0
max 1 1 2 2 2

Table A.10 – Distribution of the number of charging stations with the utility function
thresholds for level 3 charging.
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Figure A.18 – Density of amenities at different distance thresholds, level 2.

Figure A.19 – Density of amenities at different distance thresholds, level 3.
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A.3.3 Additional Estimation Results

0 1 2 3 4
Parameter Distance

βµ
distF ar 100 -0.1591*** -0.1422*** -0.1283*** -0.1619*** -0.1582***

200 -0.1616*** -0.145*** -0.1293*** -0.1608*** -0.1608***
300 -0.163*** -0.1454*** -0.1296*** -0.164*** -0.1608***
400 -0.1623*** -0.1443*** -0.129*** -0.1628*** -0.1596***

βµ
distNear 100 0.5991*** 1.0374*** 0.7813*** 0.723*** 0.8911***

200 0.6434*** 1.0774*** 0.8139*** 0.9184*** 0.9184***
300 0.6391*** 1.0422*** 0.7845*** 0.6879*** 0.8845***
400 0.5709*** 0.9572*** 0.6848*** 0.6034*** 0.811***

βµ
ff 100 0.0005 0.0791** 0.0129 -0.0465 -0.0472

200 -0.1015*** -0.1728*** -0.2049*** -0.1663*** -0.1663***
300 -0.0961*** -0.1161*** -0.1098*** -0.1311*** -0.0985***
400 -0.1042*** -0.0907*** -0.1004*** -0.1099*** -0.0513**

βµ
isGas 100 -0.324*** -0.415*** -0.003 -0.4791*** -0.4317***

200 -0.2123** -0.3062*** 0.1074 -0.3652*** -0.3652***
300 -0.2414** -0.3383*** 0.1231 -0.4756*** -0.4155***
400 -0.2582*** -0.3583*** 0.08 -0.483*** -0.4052***

βµ
isW alkHome 100 3.0644*** 3.1369*** 3.4862*** 3.3313*** 3.2841***

200 3.1021*** 3.1773*** 3.5186*** 3.3121*** 3.3121***
300 3.0992*** 3.1498*** 3.4934*** 3.3087*** 3.2845***
400 3.0426*** 3.0794*** 3.407*** 3.2376*** 3.2243***

βµ
leis 100 -0.1515*** 0.0269 -0.2136*** 0.2344*** -0.0001

200 -0.0884*** -0.0846*** -0.1754*** -0.1332*** -0.1332***
300 -0.159*** -0.1166*** -0.2607*** -0.1748*** -0.1916***
400 -0.2475*** -0.1591*** -0.3302*** -0.2523*** -0.2983***

βµ
mall 100 0.6322*** 0.6795*** 0.5981*** 1.1677*** 0.7985***

200 0.3663*** 0.3058*** 0.2705*** 0.4025*** 0.4025***
300 0.2711*** 0.2975*** 0.197*** 0.6687*** 0.4962***
400 0.1605*** 0.2353*** 0.2327*** 0.5829*** 0.3509***

βµ
outletsF ar 100 0.1374*** 0.1284*** 0.1163*** 0.1102*** 0.0954***

200 0.1221*** 0.1146*** 0.1058*** 0.0839*** 0.0839***
300 0.1136*** 0.1067*** 0.0958*** 0.0923*** 0.0724***
400 0.1169*** 0.1068*** 0.0927*** 0.078*** 0.0718***

βµ
outletsNear 100 0.3219*** 0.2669*** 0.2393*** 0.2475*** 0.1863***

200 0.3258*** 0.2711*** 0.2422*** 0.19*** 0.19***
300 0.3251*** 0.2681*** 0.2399*** 0.2442*** 0.1857***
400 0.3181*** 0.2602*** 0.2314*** 0.2347*** 0.1766***

Table A.11 – Parameter values for level 2 charging with the MNL model, and various
amenity thresholds. The utility function threshold is set at 1.5km and the sample size is
5,000. *** indicates significance at 1% level, ** significance at 5% level, and * significance
at 10% level
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0 1 2 3 4
Parameter Distance

βµ
rest 100 0.2273*** 0.3801*** 0.377*** 0.2648*** 0.3425***

200 0.3181*** 0.4165*** 0.3732*** 0.3822*** 0.3822***
300 0.3556*** 0.3912*** 0.376*** 0.3777*** 0.3956***
400 0.3469*** 0.3746*** 0.3966*** 0.3989*** 0.3719***

βµ
shop 100 -0.0223 -0.0575** -0.0291 0.0453* -0.0146

200 -0.0941*** -0.0504*** -0.0095 -0.0692*** -0.0692***
300 -0.098*** -0.0981*** -0.0496** -0.1129*** -0.1494***
400 -0.0785*** -0.1419*** -0.0949*** -0.1603*** -0.1428***

βµ
sm 100 0.1547*** 0.0994 -0.1608*** 0.0734 0.0238

200 0.1724*** 0.1505*** 0.0684 0.3255*** 0.3255***
300 0.1006*** 0.1129*** 0.0437 0.1702*** 0.2572***
400 0.0646* 0.1595*** 0.049 0.1336*** 0.2197***

βµ
sport 100 0.1797*** 0.0869** -0.0112 -0.0255 -0.1036**

200 0.0814*** 0.1227*** -0.0167 0.0039 0.0039
300 0.0798*** 0.0694*** 0.0765*** 0.1168*** 0.0413
400 0.0895*** 0.0161 0.0566** 0.1298*** 0.0859***

Table A.12 – Parameter values for level 2 charging with the MNL model, and various
amenity thresholds (continued). The utility function threshold is set at 1.5km and the
sample size is 5,000. *** indicates significance at 1% level, ** significance at 5% level, and
* significance at 10% level

Distance 100 200 300 400
Mean Std Mean Std Mean Std Mean Std

Test set Score

Estimation Akaike Information Criterion 52019.7700 652.8600 51937.1900 604.2400 51859.3200 668.2300 51865.2400 664.9100
Bayesian Information Criterion 52104.4900 652.8600 52021.9100 604.2400 51944.0400 668.2300 51949.9600 664.9100
Final log-likelihood -25996.8853 326.4277 -25955.5947 302.1192 -25916.6605 334.1137 -25919.6182 332.4531
Null log-likelihood -30901.9274 50.3773 -30900.1624 50.3833 -30901.9274 50.3773 -30901.9274 50.3773
ρ 0.1587 0.0104 0.1600 0.0095 0.1613 0.0107 0.1612 0.0106
ρ̄2 0.1583 0.0104 0.1596 0.0095 0.1609 0.0107 0.1608 0.0106

Validation Akaike Information Criterion 53369.9400 193.0700 53115.9900 164.1200 53083.3200 157.7800 53144.9600 162.9300
Bayesian Information Criterion 53453.9200 193.0700 53199.9700 164.1200 53167.3000 157.7800 53228.9400 162.9300
DPSA final, max 0.5792 0.0222 0.6033 0.0277 0.5946 0.0226 0.5816 0.0290
DPSA final, mean 0.0212 0.0009 0.0213 0.0010 0.0213 0.0010 0.0214 0.0010
DPSA final, min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DPSA null, max 0.0038 0.0000 0.0038 0.0000 0.0038 0.0000 0.0038 0.0000
DPSA null, mean 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000
DPSA null, min 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000
Final log-likelihood -26671.9687 96.5372 -26544.9946 82.0617 -26528.6589 78.8882 -26559.4805 81.4667
Null log-likelihood -30199.1322 9.0394 -30198.0326 7.5853 -30199.1322 9.0394 -30199.1322 9.0394
ρ 0.1168 0.0032 0.1210 0.0028 0.1215 0.0026 0.1205 0.0027
ρ̄2 0.1164 0.0032 0.1205 0.0028 0.1211 0.0026 0.1201 0.0027

Table A.13 – Performance indicators for level 2 charging with the MNL model, and
various amenity thresholds. The utility function threshold is set at 1.5km and the sample
size is 5,000.
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0 1 2 3 4
Parameter Distance

βµ
distF ar 0.5 -0.1952*** -0.1781*** -0.1632*** -0.1967*** -0.2023***

0.75 -0.1783*** -0.168*** -0.1517*** -0.1869*** -0.187***
1.0 -0.17*** -0.1627*** -0.1391*** -0.1801*** -0.1757***
1.25 -0.1658*** -0.1556*** -0.1331*** -0.1692*** -0.169***
1.5 -0.163*** -0.1454*** -0.1296*** -0.164*** -0.1608***

βµ
distNear 0.5 -3.8529*** -2.3207*** -2.7967*** -2.9456*** -3.8382***

0.75 0.8015*** -0.1358 -0.1549 -0.1444 -0.0426
1.0 1.2063*** 0.5303*** 1.4025*** 0.4651*** 1.1343***
1.25 0.8708*** 0.8543*** 1.0689*** 0.7694*** 0.8666***
1.5 0.6391*** 1.0422*** 0.7845*** 0.6879*** 0.8845***

βµ
ff 0.5 -0.1442*** -0.1496*** -0.1927*** -0.1917*** -0.1749***

0.75 -0.1201*** -0.149*** -0.1523*** -0.1603*** -0.1421***
1.0 -0.1119*** -0.1504*** -0.1281*** -0.1446*** -0.1093***
1.25 -0.0973*** -0.1314*** -0.12*** -0.1404*** -0.0938***
1.5 -0.0961*** -0.1161*** -0.1098*** -0.1311*** -0.0985***

βµ
isGas 0.5 -0.2311** -0.319*** 0.1141 -0.3755*** -0.3989***

0.75 -0.2443*** -0.3863*** 0.1015 -0.5085*** -0.4941***
1.0 -0.2303** -0.3795*** 0.1146 -0.5092*** -0.493***
1.25 -0.2598*** -0.3775*** 0.1121 -0.4966*** -0.4525***
1.5 -0.2414** -0.3383*** 0.1231 -0.4756*** -0.4155***

βµ
isW alkHome 0.5 5.6532*** 5.3508*** 5.5593*** 5.5003*** 5.691***

0.75 2.8536*** 3.6115*** 3.7672*** 3.9158*** 4.005***
1.0 2.7698*** 3.1226*** 3.1435*** 3.2018*** 3.192***
1.25 2.9403*** 3.1045*** 3.2977*** 3.2061*** 3.2324***
1.5 3.0992*** 3.1498*** 3.4934*** 3.3087*** 3.2845***

βµ
leis 0.5 -0.0241 0.0216 -0.1333*** -0.0832*** -0.0384

0.75 -0.0933*** -0.0416* -0.1881*** -0.1181*** -0.1134***
1.0 -0.126*** -0.0662*** -0.2648*** -0.1577*** -0.1477***
1.25 -0.146*** -0.0819*** -0.2593*** -0.1631*** -0.1747***
1.5 -0.159*** -0.1166*** -0.2607*** -0.1748*** -0.1916***

βµ
mall 0.5 0.1741*** 0.2047*** 0.0848 0.5263*** 0.385***

0.75 0.216*** 0.2582*** 0.1505*** 0.5834*** 0.4625***
1.0 0.2603*** 0.2759*** 0.1905*** 0.6065*** 0.4995***
1.25 0.28*** 0.2754*** 0.2038*** 0.6376*** 0.5029***
1.5 0.2711*** 0.2975*** 0.197*** 0.6687*** 0.4962***

βµ
outletsF ar 0.5 0.1472*** 0.1365*** 0.1259*** 0.1233*** 0.1012***

0.75 0.1249*** 0.119*** 0.1099*** 0.1131*** 0.0902***
1.0 0.1203*** 0.1108*** 0.0998*** 0.0968*** 0.0808***
1.25 0.1153*** 0.1102*** 0.0969*** 0.0971*** 0.0744***
1.5 0.1136*** 0.1067*** 0.0958*** 0.0923*** 0.0724***

βµ
outletsNear 0.5 0.0077 -0.0314 -0.0417 -0.0493 -0.155***

0.75 0.4203*** 0.3154*** 0.286*** 0.167*** 0.0547*
1.0 0.3627*** 0.3354*** 0.2588*** 0.2853*** 0.1637***
1.25 0.3354*** 0.2818*** 0.2608*** 0.2475*** 0.1815***
1.5 0.3251*** 0.2681*** 0.2399*** 0.2442*** 0.1857***

Table A.14 – Parameter values for level 2 charging with the MNL model, and various
utility function thresholds. The amenity threshold is set at 300m and the sample size is
5,000. *** indicates significance at 1% level, ** significance at 5% level, and * significance
at 10% level
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0 1 2 3 4
Parameter Distance

βµ
rest 0.5 0.3192*** 0.3079*** 0.3368*** 0.3564*** 0.3023***

0.75 0.3274*** 0.337*** 0.3333*** 0.3715*** 0.3531***
1.0 0.3458*** 0.3468*** 0.3735*** 0.3875*** 0.359***
1.25 0.3512*** 0.3554*** 0.3821*** 0.3663*** 0.3635***
1.5 0.3556*** 0.3912*** 0.376*** 0.3777*** 0.3956***

βµ
shop 0.5 -0.0557*** -0.0587*** 0.0307 -0.0657*** -0.0481**

0.75 -0.0798*** -0.0722*** 0.0027 -0.0991*** -0.108***
1.0 -0.0904*** -0.072*** -0.0312 -0.1289*** -0.1207***
1.25 -0.1044*** -0.0846*** -0.051** -0.1015*** -0.1376***
1.5 -0.098*** -0.0981*** -0.0496** -0.1129*** -0.1494***

βµ
sm 0.5 0.1579*** 0.1612*** 0.0859*** 0.3017*** 0.3057***

0.75 0.1599*** 0.1292*** 0.0871*** 0.2691*** 0.296***
1.0 0.1221*** 0.121*** 0.076** 0.2711*** 0.2793***
1.25 0.1173*** 0.1018*** 0.056 0.1942*** 0.2834***
1.5 0.1006*** 0.1129*** 0.0437 0.1702*** 0.2572***

βµ
sport 0.5 0.1544*** 0.111*** 0.1451*** 0.0881*** 0.0904***

0.75 0.0848*** 0.1064*** 0.1171*** 0.0895*** 0.051**
1.0 0.0801*** 0.0838*** 0.1129*** 0.0802*** 0.044*
1.25 0.0749*** 0.0566*** 0.0953*** 0.0964*** 0.0425*
1.5 0.0798*** 0.0694*** 0.0765*** 0.1168*** 0.0413

Table A.15 – Parameter values for level 2 charging with the MNL model, and various
utility function thresholds (continued). The amenity threshold is set at 300m and the
sample size is 5,000. *** indicates significance at 1% level, ** significance at 5% level, and
* significance at 10% level

Distance 0.5 0.75 1.0 1.25 1.5
Mean Std Mean Std Mean Std Mean Std Mean Std

Test set Score

Estimation Akaike Information Criterion 53092.5700 616.9900 52498.7400 653.5600 52118.0600 698.4400 51993.8400 728.4000 51859.3200 668.2300
Bayesian Information Criterion 53188.3300 617.0400 52594.5000 653.6100 52213.8100 698.5100 52089.5900 728.4600 51944.0400 668.2300
Final log-likelihood -26533.2857 308.4955 -26236.3715 326.7782 -26046.0282 349.2219 -25983.9190 364.1997 -25916.6605 334.1137
Null log-likelihood -30901.9274 50.3773 -30901.9274 50.3773 -30901.9274 50.3773 -30901.9274 50.3773 -30901.9274 50.3773
ρ 0.1414 0.0102 0.1510 0.0108 0.1571 0.0113 0.1591 0.0117 0.1613 0.0107
ρ̄2 0.1409 0.0102 0.1506 0.0108 0.1567 0.0113 0.1587 0.0117 0.1609 0.0107

Validation Akaike Information Criterion 54012.0549 126.7889 53563.5112 135.7686 53267.2156 135.0333 53126.8781 145.8170 53083.3178 157.7764
Bayesian Information Criterion 54096.0359 126.7895 53647.4921 135.7692 53351.1965 135.0335 53210.8591 145.8173 53167.2988 157.7766
DPSA final, max 0.7335 0.0557 0.6304 0.0568 0.6179 0.0535 0.5945 0.0372 0.5946 0.0226
DPSA final, mean 0.0208 0.0006 0.0211 0.0009 0.0214 0.0010 0.0213 0.0009 0.0213 0.0010
DPSA final, min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DPSA null, max 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DPSA null, mean 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DPSA null, min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Final log-likelihood -26993.0275 63.3945 -26768.7556 67.8843 -26620.6078 67.5166 -26550.4391 72.9085 -26528.6589 78.8882
Null log-likelihood -30199.1322 9.0394 -30199.1322 9.0394 -30199.1322 9.0394 -30199.1322 9.0394 -30199.1322 9.0394
ρ 0.1062 0.0021 0.1136 0.0022 0.1185 0.0022 0.1208 0.0024 0.1215 0.0026
ρ̄2 0.1057 0.0021 0.1132 0.0022 0.1181 0.0022 0.1204 0.0024 0.1211 0.0026

Table A.16 – Performance indicators for level 2 charging with the MNL model, and
various utility function thresholds. The amenity threshold is set at 300m and the sample
size is 5,000.
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0 1 2 3 4
Parameter Sample size

βµ
distF ar 1000 -0.1449*** -0.1306*** -0.1213*** -0.1775*** -0.1624***

3000 -0.1615*** -0.1437*** -0.1263*** -0.1686*** -0.1649***
5000 -0.163*** -0.1454*** -0.1296*** -0.164*** -0.1608***
7000 -0.1592*** -0.1478*** -0.1299*** -0.157*** -0.1625***

βµ
distNear 1000 0.6025*** 0.9028*** 0.9079*** 0.7305*** 0.8192***

3000 0.6146*** 1.0851*** 0.7936*** 0.7123*** 0.8924***
5000 0.6391*** 1.0422*** 0.7845*** 0.6879*** 0.8845***
7000 0.6525*** 1.0282*** 0.806*** 0.6908*** 0.8752***

βµ
ff 1000 -0.0392 -0.1667*** -0.0084 -0.2112*** -0.0269

3000 -0.1034*** -0.1426*** -0.1069*** -0.1481*** -0.134***
5000 -0.0961*** -0.1161*** -0.1098*** -0.1311*** -0.0985***
7000 -0.1018*** -0.1403*** -0.1041*** -0.1368*** -0.1104***

βµ
isGas 1000 -0.3528 -0.3691 0.0597 -0.8249*** -0.6176*

3000 -0.3125** -0.2669* 0.0686 -0.5475*** -0.4784***
5000 -0.2414** -0.3383*** 0.1231 -0.4756*** -0.4155***
7000 -0.3174*** -0.3788*** 0.098 -0.4722*** -0.4213***

βµ
isW alkHome 1000 3.002*** 3.2534*** 3.6752*** 3.1939*** 3.3787***

3000 3.011*** 3.1172*** 3.4777*** 3.2558*** 3.2743***
5000 3.0992*** 3.1498*** 3.4934*** 3.3087*** 3.2845***
7000 3.1229*** 3.1425*** 3.561*** 3.3311*** 3.2716***

βµ
leis 1000 -0.1944*** -0.0048 -0.3333*** -0.1536*** -0.1785***

3000 -0.1494*** -0.1163*** -0.2759*** -0.1645*** -0.185***
5000 -0.159*** -0.1166*** -0.2607*** -0.1748*** -0.1916***
7000 -0.153*** -0.1279*** -0.2453*** -0.1823*** -0.1839***

βµ
mall 1000 0.3014*** 0.1744 0.1894 0.7692*** 0.4778***

3000 0.2275*** 0.3175*** 0.1614** 0.6539*** 0.5013***
5000 0.2711*** 0.2975*** 0.197*** 0.6687*** 0.4962***
7000 0.2756*** 0.2978*** 0.1829*** 0.6668*** 0.4985***

βµ
outletsF ar 1000 0.0991*** 0.0999*** 0.0861*** 0.0845*** 0.0768***

3000 0.1023*** 0.1147*** 0.0965*** 0.087*** 0.078***
5000 0.1136*** 0.1067*** 0.0958*** 0.0923*** 0.0724***
7000 0.1091*** 0.1027*** 0.1076*** 0.0925*** 0.0764***

βµ
outletsNear 1000 0.3372*** 0.3*** 0.1892*** 0.2854*** 0.1459***

3000 0.3411*** 0.2747*** 0.2403*** 0.2348*** 0.1898***
5000 0.3251*** 0.2681*** 0.2399*** 0.2442*** 0.1857***
7000 0.3274*** 0.2725*** 0.2459*** 0.2362*** 0.1894***

Table A.17 – Parameter values for level 2 charging with the MNL model, and various
sample sizes. The amenity threshold is set at 300m and the utility function threshold is
1,5km. *** indicates significance at 1% level, ** significance at 5% level, and * significance
at 10% level
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0 1 2 3 4
Parameter Sample size

βµ
rest 1000 0.3016*** 0.361*** 0.4669*** 0.3992*** 0.3349***

3000 0.3439*** 0.4012*** 0.3932*** 0.3741*** 0.4106***
5000 0.3556*** 0.3912*** 0.376*** 0.3777*** 0.3956***
7000 0.362*** 0.3917*** 0.3821*** 0.3659*** 0.3892***

βµ
shop 1000 -0.1368*** -0.0886* -0.0983* -0.1189** -0.1306***

3000 -0.0952*** -0.1053*** -0.0405 -0.0872*** -0.138***
5000 -0.098*** -0.0981*** -0.0496** -0.1129*** -0.1494***
7000 -0.0988*** -0.096*** -0.0509*** -0.1044*** -0.1507***

βµ
sm 1000 0.2847*** 0.2098*** -0.0212 0.2968*** 0.3009***

3000 0.1377*** 0.1048** 0.056 0.1673*** 0.2358***
5000 0.1006*** 0.1129*** 0.0437 0.1702*** 0.2572***
7000 0.0922*** 0.1252*** 0.026 0.1392*** 0.2698***

βµ
sport 1000 0.0518 0.0961* 0.1639*** 0.1914*** 0.0185

3000 0.0706** 0.0936*** 0.0882*** 0.0938*** 0.071**
5000 0.0798*** 0.0694*** 0.0765*** 0.1168*** 0.0413
7000 0.0589*** 0.0807*** 0.0931*** 0.1125*** 0.027

Table A.18 – Parameter values for level 2 charging with the MNL model, and various
sample sizes. The amenity threshold is set at 300m and the utility function threshold is
1,5km (continued). *** indicates significance at 1% level, ** significance at 5% level, and
* significance at 10% level

Sample size 1000 3000 5000 7000
Mean Std Mean Std Mean Std Mean Std

Test set Score

Estimation Akaike Information Criterion 10480.7700 240.7100 31224.4800 442.5100 51859.3200 668.2300 72541.2300 820.6900
Bayesian Information Criterion 10544.5700 240.7100 31302.5700 442.5100 51944.0400 668.2300 72630.3200 820.6900
Final log-likelihood -5227.3846 120.3561 -15599.2423 221.2528 -25916.6605 334.1137 -36257.6129 410.3451
Null log-likelihood -6185.5388 15.4519 -18539.4485 35.4542 -30901.9274 50.3773 -43262.0048 79.5915
ρ 0.1549 0.0191 0.1586 0.0122 0.1613 0.0107 0.1619 0.0091
ρ̄2 0.1528 0.0191 0.1579 0.0122 0.1609 0.0107 0.1616 0.0091

Validation Akaike Information Criterion 53148.7700 179.0100 53081.9700 161.1900 53083.3200 157.7800 53084.3000 137.1300
Bayesian Information Criterion 53232.7500 179.0100 53165.9500 161.1900 53167.3000 157.7800 53168.2800 137.1300
DPSA final, max 0.5802 0.0412 0.5903 0.0300 0.5946 0.0226 0.5969 0.0204
DPSA final, mean 0.0207 0.0014 0.0208 0.0009 0.0213 0.0010 0.0215 0.0009
DPSA final, min 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
DPSA null, max 0.0038 0.0000 0.0038 0.0000 0.0038 0.0000 0.0038 0.0000
DPSA null, mean 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000 0.0017 0.0000
DPSA null, min 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000 0.0014 0.0000
Final log-likelihood -26561.3830 89.5047 -26527.9849 80.5963 -26528.6589 78.8882 -26529.1505 68.5667
Null log-likelihood -30199.1322 9.0394 -30199.1322 9.0394 -30199.1322 9.0394 -30199.1322 9.0394
ρ 0.1205 0.0029 0.1216 0.0027 0.1215 0.0026 0.1215 0.0023
ρ̄2 0.1200 0.0029 0.1211 0.0027 0.1211 0.0026 0.1211 0.0023

Table A.19 – Performance indicators for level 2 charging with the MNL model, and var-
ious sample sizes. The amenity threshold is set at 300m and the utility function threshold
is 1,5km. *** indicates significance at 1% level, ** significance at 5% level, and * signifi-
cance at 10% level
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0 1 2 3 4
Parameter Distance

βµ
distF ar 100 -0.176*** -0.1741*** -0.1832*** -0.1832*** -0.1837***

200 -0.1737*** -0.1715*** -0.1798*** -0.1791*** -0.1806***
300 -0.1739*** -0.1738*** -0.1807*** -0.1819*** -0.1823***
400 -0.1742*** -0.1733*** -0.1817*** -0.1797*** -0.1831***

βµ
distNear 100 1.411*** 1.743*** 1.322*** 1.3636*** 1.9477***

200 1.2063*** 1.4573*** 1.1227*** 1.1926*** 1.7204***
300 1.1971*** 1.4446*** 1.0276*** 1.0765*** 1.6485***
400 1.2011*** 1.508*** 1.0773*** 1.1526*** 1.6488***

βµ
ff 100 -0.3821*** -0.6857*** -0.4282*** -0.3854*** -0.5555***

200 -0.4237*** -0.5366*** -0.4259*** -0.266*** -0.3712***
300 -0.0479 -0.1621*** 0.1073 0.0505 0.0409
400 0.2099*** 0.0838 0.329*** 0.3817*** 0.2778***

βµ
isGas 100 0.1049 0.0454 -0.1722** 0.0253 0.0037

200 -0.1824*** -0.1933*** -0.4185*** -0.2357*** -0.2465***
300 -0.3423*** -0.3846*** -0.5826*** -0.4111*** -0.4357***
400 -0.1634*** -0.1328** -0.4461*** -0.2873*** -0.2091***

βµ
isW alkHome 100 2.0464*** 1.7839*** 1.8796*** 1.4404*** 2.0454***

200 1.9622*** 1.6666*** 1.7922*** 1.3722*** 1.9548***
300 1.9035*** 1.5773*** 1.6888*** 1.2823*** 1.8437***
400 1.9187*** 1.6313*** 1.7537*** 1.3088*** 1.8588***

βµ
leis 100 0.2584*** 0.3385*** 0.1879** 0.3869*** 0.2217***

200 0.1551*** 0.2365*** 0.083* 0.2364*** 0.1826***
300 0.3323*** 0.4502*** 0.2744*** 0.3302*** 0.3286***
400 0.0084 0.1055*** -0.0594 -0.0429 0.0155

βµ
mall 100 0.3925*** 0.4002*** 0.51*** 0.4583*** 0.4416***

200 0.2075*** 0.1304* 0.4064*** 0.3938*** 0.3062***
300 0.6607*** 0.6946*** 0.8865*** 0.7802*** 0.7251***
400 0.8997*** 0.9646*** 1.0536*** 0.9838*** 0.9663***

βµ
outletsF ar 100 0.3965*** 0.4726*** 0.4457*** 0.4166*** 0.494***

200 0.2905*** 0.2857*** 0.326*** 0.2931*** 0.3479***
300 0.2022*** 0.1823*** 0.1993*** 0.1692*** 0.2174***
400 0.3001*** 0.3195*** 0.3038*** 0.297*** 0.3428***

βµ
outletsNear 100 0.0506 -0.0115 0.2013*** 0.2003** -0.1789**

200 0.0126 -0.0773 0.1754** 0.1698* -0.2252***
300 -0.0107 -0.1007 0.1431* 0.1367 -0.2777***
400 0.0371 -0.0357 0.1799** 0.1862** -0.2063***

Table A.20 – Parameter values for level 3 charging with the MNL model, and various
amenity thresholds. The utility function threshold is set to 1,5km. *** indicates signifi-
cance at 1% level, ** significance at 5% level, and * significance at 10% level

215



0 1 2 3 4
Parameter Distance

βµ
rest 100 -0.1871*** -0.1848*** -0.2134*** -0.2781*** -0.2602***

200 -0.2837*** -0.2687*** -0.3107*** -0.401*** -0.4175***
300 -0.1182*** -0.0878* -0.1855*** -0.204*** -0.2553***
400 -0.1324** -0.0559 -0.1809*** -0.2868*** -0.2071***

βµ
shop 100 -0.3348*** -0.3325*** -0.3579*** -0.4193*** -0.3614***

200 0.1204*** 0.1095*** 0.1818*** 0.0996** 0.1475***
300 -0.2306*** -0.3053*** -0.2609*** -0.2551*** -0.2172***
400 -0.4168*** -0.4875*** -0.4565*** -0.3506*** -0.4777***

βµ
sm 100 0.5238 1.0688*** 1.2679*** 0.9772*** 0.7517**

200 0.0131 0.0393 -0.0158 0.0178 -0.0521
300 0.2098*** 0.4397*** 0.333*** 0.43*** 0.306***
400 0.8362*** 0.9826*** 0.9871*** 0.9231*** 1.0172***

βµ
sport 100 -0.4973*** -0.7591*** -0.5213*** -0.6338*** -0.6354***

200 -0.3129*** -0.4919*** -0.2887*** -0.3342*** -0.3847***
300 -0.2794*** -0.4374*** -0.3163*** -0.2945*** -0.337***
400 -0.1467*** -0.3012*** -0.0911** -0.146*** -0.2263***

Table A.21 – Parameter values for level 3 charging with the MNL model, and various
amenity thresholds. The utility function threshold is set to 1,5km (continued). *** indi-
cates significance at 1% level, ** significance at 5% level, and * significance at 10% level

Distance 100 200 300 400
Mean Std Mean Std Mean Std Mean Std

Test set Score

Estimation Akaike Information Criterion 10693.9800 88.9800 10606.4300 97.6900 10735.1200 105.4700 10655.0700 113.7000
Bayesian Information Criterion 10773.7300 88.9800 10686.1900 97.7200 10814.8700 105.5200 10734.8200 113.7200
Final log-likelihood -5333.9900 44.4899 -5290.2174 48.8472 -5354.5580 52.7369 -5314.5332 56.8513
Null log-likelihood -8479.0167 114.4676 -8479.0167 114.4676 -8479.0167 114.4676 -8479.0167 114.4676
ρ 0.3708 0.0083 0.3760 0.0076 0.3684 0.0069 0.3731 0.0081
ρ̄2 0.3693 0.0083 0.3745 0.0076 0.3669 0.0069 0.3716 0.0081

Validation Akaike Information Criterion 825.2300 44.2000 812.2000 44.7700 823.3700 45.3500 816.9000 48.3000
Bayesian Information Criterion 868.9600 44.1800 855.9400 44.7500 867.1100 45.3400 860.6400 48.2800
DPSA final, max 0.9549 0.0053 0.9461 0.0065 0.9462 0.0117 0.9497 0.0117
DPSA final, mean 0.2884 0.0190 0.2974 0.0188 0.2910 0.0179 0.2938 0.0210
DPSA final, min 0.0011 0.0006 0.0016 0.0009 0.0015 0.0008 0.0016 0.0009
DPSA null, max 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000
DPSA null, mean 0.0831 0.0018 0.0831 0.0018 0.0831 0.0018 0.0831 0.0018
DPSA null, min 0.0556 0.0000 0.0556 0.0000 0.0556 0.0000 0.0556 0.0000
Final log-likelihood -399.6134 22.0993 -393.1023 22.3839 -398.6860 22.6755 -395.4509 24.1482
Null log-likelihood -548.7335 2.7691 -548.7335 2.7691 -548.7335 2.7691 -548.7335 2.7691
ρ 0.2717 0.0402 0.2836 0.0406 0.2735 0.0409 0.2793 0.0438
ρ̄2 0.2481 0.0402 0.2599 0.0406 0.2498 0.0409 0.2556 0.0438

Table A.22 – Performance indicators for level 3 charging with the MNL model, and
various amenity thresholds. The utility function threshold is set to 1,5km. *** indicates
significance at 1% level, ** significance at 5% level, and * significance at 10% level
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0 1 2 3 4
Parameter Distance

βµ
distF ar 0.5 -0.1935*** -0.1915*** -0.198*** -0.2002*** -0.2004***

0.75 -0.1858*** -0.184*** -0.1941*** -0.1934*** -0.1928***
1.0 -0.182*** -0.1821*** -0.1897*** -0.1897*** -0.1891***
1.25 -0.1812*** -0.1787*** -0.1856*** -0.1837*** -0.1866***
1.5 -0.1737*** -0.1715*** -0.1798*** -0.1791*** -0.1806***

βµ
distNear 0.5 -6.9284 0.2229 -1.5196 -0.0655 0.927

0.75 1.0473 1.606*** 3.2752*** 1.035 0.7309
1.0 2.4474*** 1.9191*** 2.1093*** 1.7397*** 2.4352***
1.25 0.676** 1.3522*** 1.1083*** 1.9382*** 1.5369***
1.5 1.2063*** 1.4573*** 1.1227*** 1.1926*** 1.7204***

βµ
ff 0.5 -0.3137*** -0.3711*** -0.3261*** -0.0649 -0.2145***

0.75 -0.409*** -0.4809*** -0.3713*** -0.145* -0.3271***
1.0 -0.4871*** -0.5187*** -0.4233*** -0.234*** -0.4081***
1.25 -0.4619*** -0.5708*** -0.448*** -0.2716*** -0.4395***
1.5 -0.4237*** -0.5366*** -0.4259*** -0.266*** -0.3712***

βµ
isGas 0.5 -0.1969*** -0.1714*** -0.412*** -0.215*** -0.2436***

0.75 -0.1866*** -0.1533*** -0.4001*** -0.2062*** -0.2324***
1.0 -0.1954*** -0.1842*** -0.4277*** -0.24*** -0.2675***
1.25 -0.1831*** -0.191*** -0.4147*** -0.2197*** -0.2533***
1.5 -0.1824*** -0.1933*** -0.4185*** -0.2357*** -0.2465***

βµ
isW alkHome 0.5 5.0925*** 1.5596 1.3657 2.2746 1.9765

0.75 2.0835*** 2.2644*** 2.4458*** 2.1489*** 2.7706***
1.0 2.1762*** 1.6867*** 1.7287*** 1.6861*** 1.8825***
1.25 2.0271*** 1.7278*** 1.8199*** 1.4059*** 1.9651***
1.5 1.9622*** 1.6666*** 1.7922*** 1.3722*** 1.9548***

βµ
leis 0.5 0.2254*** 0.3259*** 0.0838* 0.3032*** 0.2357***

0.75 0.1603*** 0.2512*** 0.0655 0.2482*** 0.1637***
1.0 0.1541*** 0.2312*** 0.0688 0.2346*** 0.1586***
1.25 0.164*** 0.2443*** 0.0873* 0.2495*** 0.1824***
1.5 0.1551*** 0.2365*** 0.083* 0.2364*** 0.1826***

βµ
mall 0.5 0.1487* 0.1024 0.398*** 0.378*** 0.2917***

0.75 0.1426* 0.0967 0.3991*** 0.3692*** 0.2826***
1.0 0.1358* 0.0847 0.3637*** 0.3512*** 0.2548***
1.25 0.1729** 0.0943 0.3861*** 0.3862*** 0.2687***
1.5 0.2075*** 0.1304* 0.4064*** 0.3938*** 0.3062***

βµ
outletsF ar 0.5 0.2343*** 0.2247*** 0.2872*** 0.2343*** 0.2886***

0.75 0.2517*** 0.2514*** 0.2987*** 0.2485*** 0.3119***
1.0 0.2695*** 0.2576*** 0.2994*** 0.26*** 0.3255***
1.25 0.2702*** 0.2648*** 0.3075*** 0.2797*** 0.3354***
1.5 0.2905*** 0.2857*** 0.326*** 0.2931*** 0.3479***

βµ
outletsNear 0.5 0.1295 0.3088 1.5361 0.2389 0.2481

0.75 0.0711 -0.2416 -0.3532 -0.0263 -0.162
1.0 -0.3237** -0.2531* 0.0082 -0.1406 -0.3656***
1.25 0.0723 -0.1202 0.1297 -0.0614 -0.2175**
1.5 0.0126 -0.0773 0.1754** 0.1698* -0.2252***

Table A.23 – Parameter values for level 3 charging with the MNL model, and various
utility function thresholds. The amenity threshold is set to 200m. *** indicates significance
at 1% level, ** significance at 5% level, and * significance at 10% level
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0 1 2 3 4
Parameter Distance

βµ
rest 0.5 -0.3397*** -0.3278*** -0.3376*** -0.4622*** -0.4658***

0.75 -0.3234*** -0.2961*** -0.3353*** -0.4532*** -0.4447***
1.0 -0.2814*** -0.2873*** -0.3237*** -0.4247*** -0.4209***
1.25 -0.2738*** -0.2495*** -0.2926*** -0.3968*** -0.3898***
1.5 -0.2837*** -0.2687*** -0.3107*** -0.401*** -0.4175***

βµ
shop 0.5 0.1114*** 0.0837** 0.2038*** 0.0527 0.1318***

0.75 0.1562*** 0.1185*** 0.211*** 0.0999** 0.1733***
1.0 0.1593*** 0.1298*** 0.2143*** 0.1215*** 0.1841***
1.25 0.1278*** 0.1146*** 0.1824*** 0.1038*** 0.1556***
1.5 0.1204*** 0.1095*** 0.1818*** 0.0996** 0.1475***

βµ
sm 0.5 0.0736 0.1047 0.0131 0.1807* -0.0009

0.75 0.0795 0.1253 0.0237 0.1745* -0.0027
1.0 0.0137 0.0752 0.0063 0.0998 -0.0743
1.25 0.0097 0.0386 -0.0262 0.0294 -0.0782
1.5 0.0131 0.0393 -0.0158 0.0178 -0.0521

βµ
sport 0.5 -0.1829*** -0.3273*** -0.1623*** -0.1981*** -0.2401***

0.75 -0.225*** -0.3769*** -0.1746*** -0.2331*** -0.282***
1.0 -0.2736*** -0.3935*** -0.2045*** -0.276*** -0.3285***
1.25 -0.3075*** -0.4727*** -0.2753*** -0.3279*** -0.3778***
1.5 -0.3129*** -0.4919*** -0.2887*** -0.3342*** -0.3847***

Table A.24 – Parameter values for level 3 charging with the MNL model, and various
utility function thresholds (continued). The amenity threshold is set to 200m. *** indi-
cates significance at 1% level, ** significance at 5% level, and * significance at 10% level

Distance 0.5 0.75 1.0 1.25 1.5
Mean Std Mean Std Mean Std Mean Std Mean Std

Test set Score

Estimation Akaike Information Criterion 10909.0800 90.5500 10791.4700 81.5900 10758.3700 96.0200 10704.4000 94.7800 10606.4300 97.6900
Bayesian Information Criterion 10988.8300 90.6100 10871.2300 81.6500 10838.1200 96.0600 10784.1600 94.7800 10686.1900 97.7200
Final log-likelihood -5441.5394 45.2774 -5382.7351 40.7970 -5366.1834 48.0075 -5339.2006 47.3914 -5290.2174 48.8472
Null log-likelihood -8479.0167 114.4676 -8479.0167 114.4676 -8479.0167 114.4676 -8479.0167 114.4676 -8479.0167 114.4676
ρ 0.3582 0.0067 0.3651 0.0065 0.3671 0.0070 0.3702 0.0085 0.3760 0.0076
ρ̄2 0.3566 0.0068 0.3636 0.0065 0.3655 0.0070 0.3687 0.0085 0.3745 0.0076

Validation Akaike Information Criterion 832.1997 38.0500 826.7232 35.6112 820.5784 37.9845 820.2844 42.8279 812.2046 44.7679
Bayesian Information Criterion 875.9330 38.0377 870.4565 35.5982 864.3118 37.9693 864.0177 42.8114 855.9379 44.7517
DPSA final, max 0.9563 0.0241 0.9555 0.0137 0.9551 0.0130 0.9441 0.0092 0.9461 0.0065
DPSA final, mean 0.2820 0.0177 0.2842 0.0150 0.2885 0.0173 0.2889 0.0173 0.2974 0.0188
DPSA final, min 0.0009 0.0004 0.0012 0.0005 0.0013 0.0007 0.0014 0.0007 0.0016 0.0009
DPSA null, max 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000 0.2500 0.0000
DPSA null, mean 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000 0.0800 0.0000
DPSA null, min 0.0600 0.0000 0.0600 0.0000 0.0600 0.0000 0.0600 0.0000 0.0600 0.0000
Final log-likelihood -403.0998 19.0250 -400.3616 17.8056 -397.2892 18.9923 -397.1422 21.4140 -393.1023 22.3839
Null log-likelihood -548.7335 2.7691 -548.7335 2.7691 -548.7335 2.7691 -548.7335 2.7691 -548.7335 2.7691
ρ 0.2654 0.0339 0.2704 0.0320 0.2760 0.0343 0.2763 0.0389 0.2836 0.0406
ρ̄2 0.2417 0.0339 0.2467 0.0319 0.2523 0.0343 0.2526 0.0389 0.2599 0.0406

Table A.25 – Performance indicators for level 3 charging with the MNL model, and
various utility function thresholds. The amenity threshold is set to 200m. *** indicates
significance at 1% level, ** significance at 5% level, and * significance at 10% level
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