Université de Montréal

Finer grained evaluation methods for better

understanding of deep neural network representations

par
Florian Bordes

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

These présentée en vue de 'obtention du grade de
Philosophiz Doctor (Ph.D.)
en informatique

Aotit, 2023

© Florian Bordes, 2023

Université de Montréal

Faculté des arts et des sciences

Cette these intitulée

Finer grained evaluation methods for better

understanding of deep neural network representations

présentée par

Florian Bordes

a été évaluée par un jury composé des personnes suivantes :

Aishwarya Agrawal

(président-rapporteur)

Pascal Vincent

(directeur de recherche)

Christopher Pal

(membre du jury)

Yannis Kalantidis

(examinateur externe)

Marine Carrasco
(représentant du doyen de la FESP)

Résumé

Etablir des méthodes d’évaluation pour les systémes d’intelligence artificielle (IA) est une
étape importante pour précisément connaitre leurs limites et ainsi prévenir les dommages
qu’ils pourraient causer et savoir quels aspects devraient étre améliorés. Cela nécessite
d’étre en mesure de dresser des portraits précis des limitations associées a un systéeme d’IA
donné. Cela demande 'acces a des outils et des principes fiables, transparent, a jour et
faciles a utiliser. Malheureusement, la plupart des méthodes d’évaluation utilisées a ce jour
ont un retard significatif par rapport aux performances toujours croissantes des réseaux de
neurones artificiels. Dans cette these par articles, je présente des méthodes et des principes
d’évaluation plus rigoureux pour obtenir une meilleur compréhension des réseaux de neurones

et de leurs limitations.

Dans le premier article, je présente Representation Conditional Diffusion Model (RCDM),
une méthode d’évaluation a I’état de I’art qui permet, a partir d’une représentation donnée —
par exemple les activations d’une couche donnée d’un réseau de neurones artificiels — de générer
une image. En utilisant les dernieres avancées dans la génération d’images, RCDM permet
aux chercheur - euse - s de visualiser I'information contenue a l'intérieur d’une représentation.
Dans le deuxieme article, j'introduis la régularisation par Guillotine qui est une technique bien
connue dans la littérature sur 'apprentissage par transfert mais qui se présente différemment
dans la littérature sur 'auto-apprentissage. Pour améliorer la généralisation a travers
différentes taches, on montre qu’il est important d’évaluer un modele en coupant un certain
nombre de couches. Dans le troisieme article, j’introduis le score DéjaVu qui quantifie a quel
point un réseau de neurones a mémorisé les données d’entrainement. Ce score utilise une petite
partie d’une image d’entrainement puis évalue quelles informations il est possible d’inférer a
propos du reste de I'image. Dans le dernier article, je présente les jeux de données photo-
réalistes PUG (Photorealistic Unreal Graphics) que nous avons développés. Au contraire de
données réelles, pour lesquelles générer des annotations est un processus cotiteux, 'utilisation
de données synthétiques offre un controle total sur la scene générée et sur les annotations.

On utilise un moteur de jeux vidéo qui permet la synthese d’images photo-réalistes de haute

qualité, afin d’évaluer la robustesse d'un réseau de neurones pré-entrainé, ceci sans avoir
besoin d’adapter ce réseau avec un entrainement additionnel.
Mots cles: Apprentissage profond, Evaluation, Mémorisation, Apprentissage Auto-

Supervisé, Données synthétiques

Abstract

Carefully designing benchmarks to evaluate the safety of Artificial Intelligent (AI) agents
is a much-needed step to precisely know the limits of their capabilities and thus prevent
potential damages they could cause if used beyond these limits. Researchers and engineers
should be able to draw precise pictures of the failure modes of a given Al system and find
ways to mitigate them. Drawing such portraits requires reliable tools and principles that
are transparent, up-to-date, and easy to use by practitioners. Unfortunately, most of the
benchmark tools used in research are often outdated and quickly fall behind the fast pace
of improvement of the capabilities of deep neural networks. In this thesis by article, I
focus on establishing more fine-grained evaluation methods and principles to gain a better

understanding of deep neural networks and their limitations.

In the first article, I present Representation Conditional Diffusion Model (RCDM), a
state-of-the-art visualization method that can map any deep neural network representation
to the image space. Using the latest advances in generative modeling, RCDM sheds light on
what is learned by deep neural networks by allowing practitioners to visualize the richness of
a given representation. In the second article, I (re)introduce Guillotine Regularization (GR) —
a trick that has been used for a long time in transfer learning — from a novel understanding
and viewpoint grounded in the self-supervised learning outlook. We show that evaluating a
model by removing its last layers is important to ensure better generalization across different
downstream tasks. In the third article, I introduce the DejaVu score which quantifies how
much models are memorizing their training data. This score relies on leveraging partial
information from a given image such as a crop, and evaluates how much information
one can retrieve about the entire image based on only this partial content. In the last
article, I introduce the Photorealistic Unreal Graphics (PUG) datasets and benchmarks.
In contrast to real data for which getting annotations is often a costly and long process,
synthetic data offers complete control of the elements in the scene and labeling. In this
work, we leverage a powerful game engine that produces high-quality and photorealistic

images to evaluate the robustness of pre-trained neural networks without additional finetuning.

Keywords: Deep Learning, Evaluation, Memorization, Benchmarks, Self-Supervised

Learning, Synthetic Data

Contents

Résumeé e e e e et e)
ADStract . ..o e e et e e e 7
List of tableso e i i i et e 13
List of figurescooii i i i e e e e 15
Liste des sigles et des abréviations............ .. . i i, 19
Acknowledgementsl e e ettt 21
Introduction. i i it it ettt 23
Chapter 1. Backgroundo iiiiiiiiiiiiiiiiiiiiiiiiinnennens 27
1.1. Machine learning basicso 27
1.2, Neural networks 29
1.3. Self-supervised Learningo 36
1.4. Vision Language Models (VLMS)........ooiiii i 40
1.5. Evaluations of deep neural network representations........................... 41
Prologue to Article 1..... .o i i ittt it 47
Chapter 2. Article 1: High Fidelity Visualization of What Your Self-
Supervised Representation Knows About................... 49
2.1 Introduction 50
2.2, Related Work 52
2.3. High-Fidelity Conditioning with Diffusion Models 54
2.4. Visual Analysis of Representations Learned by Self-Supervised Model 58
2.5, ConcClusiono 62

2.6. Reproducibility statement........ 62

2.7. Broader impact statement........ 63
Prologue to Article 2. i i i e et e e 65

Chapter 3. Article 2: Guillotine Regularization: Why removing layers is

needed to improve generalization in Self-Supervised Learning 67
3.1 Introduction 67
3.2. Related Worko o 69

3.3. Guillotine Regularization: A regularization scheme to improve generalization of

deep NetWOrKkso 71

3.4. Reducing the Need for a Projector in Self-Supervised Learning by increasing the

alignment with the downstream task.......... L. 7
3.5, COonCIUSIONo 80
Prologue to Article 3o e e e e e 81

Chapter 4. Article 3: Do SSL Models Have Déja Vu? A Case of Unintended

Memorization in Self-supervised Learning 83

4.1, Introduction 83
4.2. Preliminaries and Related Work........ 85
4.3. Defining Déja Vu Memorization......... i 86
4.4. Quantifying Déja Vu Memorization i 90
4.5. Visualizing Déja Vu Memorization i, 93
4.6. Mitigation of déja vu memorization i 95
4.7, ConClUSIONot 97
Prologue to Article 4. i i i i i i 99

Chapter 5. Article 4: PUG: Photorealistic and Semantically Controllable

Synthetic Data for Representation Learning 101
5.1, Introduction 101
5.2. Related Work 103

10

5.3. Photorealistic Unreal Graphics (PUG) environments and datasets............ 105

DA, Conclusion 112
Chapter 6. Conclusion and Discussion............coiiiiiiiiiiiiiinnenen. 115
6.1. Summary of the contributions presented in this thesis........................ 115
6.2. Other related contributions 116
6.3. A path towards more principled evaluations.................................. 117
6.4. COoNClUSION. 120
References.o i i i i e ittt e i i 121

Appendix A. High Fidelity Visualization of What Your Self-Supervised

Representation Knows About, 145
A.1. Conditional and super-resolution sampling with RCDM...................... 145
A.2. A hierarchical diffusion model for unconditional generation 155
A.3. On the closeness of the samples in the representation space.................. 155
A.4. Analysis of representations learned with Self-Supervised model............... 156

Appendix B. Appendix: Guillotine Regularization: Why removing layers is

needed to improve generalization in Self-Supervised Learning 183

Bl Datasets. 183
B.2. Reproducibility 184
B.3. Additional experimental results......... 185
B4, Limitations. 185

Appendix C. Do SSL Models Have Déja Vu? A Case of Unintended

Memorization in Self-supervised Learning 189
C.1. Limitations and societal impact........... 189
C.2. Experimental details...... 190
C.3. Additional quantitative experiments 193
C.4. Additional reconstruction examples...........o i 201

11

C.5. Detecting Déja vu without Bounding Box Annotations....................... 205

Appendix D. Appendix: PUG: Photorealistic and Semantically Controllable

Synthetic Data for Representation Learning 207
D.1. Limitations and Future Work........ 207
D.2. PUG Datasets. . ..o 208
D.3. Additional experimental details......... 229

12

List of tables

[N R

—_

N O Ot ks W N

RCDM performances in comparison to other generative models.................. 56
OOD performances across layers 76
Performances on PUG: ImageNet for various pretrained models 110
PUG: SPAR setup and evaluations across several pretrained VLMs.............. 113
Hard negative captioning with PUG: SPAR 114
Fine-tuning CLIP on PUG: ARAT 114
Latent variables used to generate views of 3D objects 183
PUG Datasheet 216
Comparing PUG: Animals with other datasets.............. 219
Environments and descriptive captions used in PUG: AR4AT 223
Relations in PUG: ARATo 224
Attributes in PUG: A4ART o 225
Robustness measured by average accuracy across factors on PUG: ImageNet 233

Correlation between standard ImageNet classification and robustness based on the

accuracy for each factor....... 233

Setup and zero-shot evaluation of CLIP models on PUG: SPAR with caption

retrieval in a single environment 235

13

List of figures

© 00 N O Ot s W NN

—
o

—_

Under and over fitting when learning polynomials............................... 29
Perceptron and multilayer perceptron............ i 30
Convolutional Neural Networks 31
Denoising autoencoder (DAE) diagram............... ..o i, 33
Example of an infusion chain......... 35
VICReg diagram 39
Impact of data augmentations in Self-Supervised Learning 40
Contrastive Vision-Language-Model diagram 41
Interpretability with Deep Image Prior......... i 42
CLEVR dataset. 45
Image generation with RCDM conditioned on in- and out-distribution........... 55

Comparison of what is encoded at the backbone and projector representation of
various SSL methods with RCDM 57

RCDM visualization of learned data augmentation invariances with SSL methods 59

Using RCDM to visualize adversarial examples..................... 60
Manipulating the representation space with RCDM 61
[Mustration of the projector trick used in SSL 69
Performances across layers for supervised and self-supervised models 73
SimCLR downstream performances across layers.....................ooi... 74

How training hyper-parameters and downstream tasks change the optimal layer to
On the lack of correlation between the projector and backbone performances.... 77

Increasing the performances at the projector level by aligning the pretext training

task with the downstream classification task i, 78

15

[N N N \C R e N O 00 N O Ot e W N -~

© o0 N O

10

11
12
13

Using RCDM to visualize the information contained across layers 79

DejaVu black swan example. i 84
DejaVu overview: data splits and generation pipeline............. 88
Label inference comparison between the reference and target model 91
Effect of training epoch and dataset size on DejaVu........... 92
How samples are partitioned with respect to epoch and dataset size............. 92
Comparison between correlated and memorized examples with a dam 94
SSL models are memorizing beyond class label 95
Impact of hyper-parameters and Guillotine Regularization on DejaVu........... 96
Impact of capacity and training criteria on DejaVu.....................o.. ... 96
PUG overview pipeline. 103
PUG animals images.ot e 106
Equivariance study on PUG: Animals........... 108
PUG: ImageNet IMagesottt e 109
RODM SEtUD - oot 146
RCDM versus Deep Image Prior.......... ... 147
RCDM 256x256 samples conditioned on ImageNet test data..................... 148
RCDM 256x256 samples conditioned on OOD data.............................. 149
RCDM with conditional batch normalization versus RCDM conditioned with the

built-in conditioning mechanism 150
Training a SSL model on ImageNet but training the RCDM on Cityscape 151
RCDM samples conditioned on low probability data under a classifier........... 154
Super resolution with RCDM 159
Linear interpolations between two SSL embeddings.............................. 160

Diversity in the generated images when performing interpolation between two SSL

embeddings 161
Nearest real data neighbors in the representation space of RCDM samples....... 162
Rank of the nearest neighbors in the validation set.............................. 163

Diversity in the generated samples given one conditioning backbone representation 164

16

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31

Diversity in the generated samples given one conditioning projector representation 165
Unconditional generation with RCDM 166
Squared Euclidean distances in the Dino representation space 167

Squared Euclidean distances in the SimCLR projector head representation space 168

Comparison of the euclidean distance between IC-GAN and RCDM 169
Additional RCDM samples with various SSL methods........................... 170
Impact of data augmentation on the generated samples.......................... 171

Additional analysis of the impact of data augmentation on the generated samples172

Sampling with RCDM using the mean representation of a given class............ 173
OOD conditioning on the backbone versus projector representation.............. 174
Additional visualization of adversarial examples with RCDM 175
Background manipulation in the representation space........................... 176
Additional background manipulation in the representation space................. 177
Algebraic manipulation of representations from real images...................... 178
Conditional generation using vision transformers based representations.......... 179

Conditional generation using a VICReg model trained without data augmentations

(EXCEPE CTOPPINE) « v ettt ettt ettt e e e e e e e e 180
Conditional generation with different model checkpoints across epochs........... 181
Additional earth samples. 182

Rendered views of a skateboard generated by randomly sampling latent variables 184

ImageNet accuracy across layers for various SSL and supervised method with

Resnet architectureso 185

ImageNet accuracy across layers for various SSL and supervised method with

vision-transformer architectures 186
Accuracy of Barlow Twins through epochs 186

Backbone and projector accuracy with linear probing with different alignment with

respect to the classification downstream task................., 187

How different hyper-parameters impact the gap in performances between the

backbone and projector representation 188

Partition of samples in four categories............ 193

17

10

11

N O Ot ks W N

Effect of SSL hyperparameter on déja vu memorization 193
Impact of K on label inference accuracy for target and reference models......... 194

Comparison of déja vu memorization for VICReg, Barlow Twins, Dino, Byol,

SimCLR, and a supervised model 195
Comparison of VICReg déja vu memorization for different architectures and model

SIZES o e ettt 196
DejaVu score when fine-tuning a pretrained VICReg model for 20 epochs........ 197
déja vu memorization and Guillotine Regularization............................. 198

Accuracy of label inference on VICReg and SimCLR, using projector and backbone

TEPTesSEntationS 200

Visualizing the distinction between déja vu memorization and correlation in the

yellow garden spider Class 201
Additional visualization of déja vu memorization beyond class label with ship

IIIAZES . o o v e et ettt ettt e 203
Instances of déja vu memorization by the SimCLR backbone representation 204
Deja Vu Memorization using a simple corner crop...............cooiiiiiein... 205
Random images taken from the PUG: Animals dataset.......................... 218
Random images taken from the PUG: ImageNet dataset......................... 221
Random images taken from the PUG: SPAR dataset 222
Accuracy on held out factors with PUG: Animals 229
Measuring foundation models equivariance with PUG: Animals.................. 231
Additional image equivariance results with respect to camera yaw 231
Failures mode of a OpenCLIP ViT-G-14 i 235

18

Liste des sigles et des abréviations

Al Artificial Intelligence

MSE Mean Square Error

DNN Deep Neural Networks

(D)AE (Denoising) Auto-Encoders

SSL Self-Supervised Learning

OOD Out-Of-Distribution

GAN Generative Adversarial Networks

RCDM Representation Conditional Diffusion Model
PUG Photorealistic Unreal Graphics

VLM Vision Language Model

19

Acknowledgements

This thesis would not have been possible without the support of my advisor Pascal Vincent.
I will always be grateful to Pascal for taking me as his student during the winter of 2016.
From that point on, it has been 7 years of learning and fruitful collaborations. Thank you so

much Pascal for the choice you made that day, you have profoundly changed my life.

I also want to acknowledge Tess Berthier and Lisa Di Jorio for being very supportive
colleagues while I was interning at Imagia. I also want to acknowledge everyone at the
Montreal Meta office. Thank you for taking me as a visiting student and for providing
everything that I needed for my work. Thank you Nicolas Ballas, Mido Assran, Diane
Bouchacourt, Quentin Duval, Michal Drozdzal, Adriana Romero Soriano, Pascal Vincent,
Mike Rabbat and Joelle Pineau for making the office a so great place to work. Thanks
to all my (past and present) fellow part-time students for all the incredible discussions:
Samuel Lavoie, Jonhatan Labensold, Maxime Wabartha, Mohammad Pezeshki, Reyhane
Askari, Mattie Tesfaldet, Arantxa Casanova, Lluis Castrejon. Thank you Glorietta for all the
delicious meals!

Thanks to my co-authors for the incredible works we were able to publish: Adriana
Romero Soriano, Adrien Bardes, Amir Bar, Amir Globerson, Andrew Gordon Wilson, Ari
Morcos, Armand Joulin, Assaf Shocher, Avi Schwarzschild, Casey Meehan, Chuan Guo,
Diane Bouchacourt, Gregoire Mialon, Hamed Pirsiavash, Ishan Misra, Jonas Geiping,
Kamalika Chaudhuri, Lisa Di Jorio, Mahmoud Assran, Mark Ibrahim, Mathilde Caron,
Micah Goldblum, Michal Drozdzal, Mike Rabbat, Mohammad Pezeshki, Nicolas Ballas,
Pascal Vincent, Pierre Fernandez, Piotr Bojanowski, Quentin Duval, Quentin Garrido,
Randall Balestriero, Reyhane Askari, Samuel Lavoie, Shashank Shekhar, Tess Berthier,
Timothée Lesort, Tom Goldstein, Trevor Darrell, Vlad Sobal, Yann LeCun, Yoshua Bengio,

Yuandong Tian.

21

Thanks to the Pascalians: Thomas George, Tom Bosc, Hugo Bérard, Ahmed Touati,

César Laurent, Alexandre de Brébisson, Sina Honari, Vincent Michalski, Xavier Bouthilier.

A special thanks to Randall Balestriero whose support has been essential in giving
me the confidence I needed as a researcher. I will always be grateful to Randall for
supporting the ideas I had and for pushing me to believe in them. Another thanks to
Ari S. Morcos who always pushed me to get more ambitious about my work! Thank you

Yoshua Bengio and Anne-Catherine Sabas for all the stimulating debates and for your support.

I am profoundly thankful to my beloved wife Tamara Nguyen for her patience during
these long and difficult years. I will always be grateful for the infinite support and love I
receive. Thank you for always finding the right words when I felt discouraged. I am very
lucky to have you as my life partner. I also want to emphasize the contribution of our pets:
Jules — a light gray pug who has been a source of inspiration to many things in this thesis —
Martha — a tortoiseshell cat who has been a great desk companion — and Louise — probably
the smallest chihuahua I ever met who is a source of infinite joy. I am also thankful to my

family who despite being far away, has always supported the choices I made.
A PhD can be a very long and difficult journey, there have been many struggling times in

which I felt my work was going nowhere. However, with perseverance and the support of
everyone | was able to finally get through it. Today, I am very proud to present this thesis.

22

Introduction

The concept of Artificial Intelligence (AI) has long been a source of inspiration throughout
human history. We can find early references to artificial beings endowed with intelligence in
Greek mythology. Talos, created by the blacksmith god Hephaestus was made of bronze
and was tasked to protect the island of Crete and her queen Europa. Similarly, Hephaestus
crafted two guardian dogs for Alcinous, king of the Phaeacians. In contrast with automatons
designed to follow a sequence of predetermined instructions, artificial beings like Talos or
Alcinous’s dogs evolved in complex environments with uncertainty about the sequence of
actions to follow. The artificial dogs should be alert about potential invaders, which requires
memories of who is used to being in the house. If Alcinous is friendly with a stranger, the
dogs should not bark or attack this person. Recognizing situations, meeting new people, and
adapting to them, requires a crucial ability which is learning. However, even if Hephaestus
creatures could learn, they were not perfect. Talos, the protector from Crete, had a weakness,
a bronze nail that contained his vital fluid. Medea, a sorceress blocked by Talos on her
way to Crete and well aware of Talos’ weakness, told him she would make him immortal
if he removed his bronze nail. Being convinced by this promise, Talos removed his nail,
which destroyed him. Notwithstanding his extraordinary nature, Talos got defeated by mere
deceiving words. Even if the ancient Greeks only dreamt about Al, these myths shed some
light on a major issue encountered by sophisticated modern systems: with the ability to
learn by interacting with the world comes the risk that the system gets deceived by this
world into a behavior that was not expected. This calls for the need to create systems that

are safe and robust to unusual situations when deployed.

Unlike the god Hephaestus who could easily infuse intelligence to bronze statues, modern
Al systems rely on a set of computing techniques called deep learning. Scientists inspired
by the underlying mechanisms of the brain have tried to distill these mechanisms into
mathematical formulas and algorithms. Such modern artificial systems are built upon the
notion of a large number of connected artificial neurons: a neural network. When many layers
of connected neurons are linked sequentially, they are referred to as deep neural networks.

Like Alcinous’s dogs, deep neural networks must be able to learn to be qualified as intelligent

systems: they need deep learning. However, artificial beings or deep neural networks cannot
learn from nothing. They are crafted with a task in mind; it can be as specific as alerting
when someone enters the house to as general as holding a friendly conversation. Learning to
carry out such a task is often referred to as training the deep neural network. Training can
be performed either using direct human feedback (using knowledge about the answer that a
human would give), which is called supervised learning, or indirect feedback (is the answer
likely given a predefined series of rules about the world?) with unsupervised or self-supervised
learning (SSL). Since we do not want to create an Al system that a user can easily trick
into a behavior that is not desirable, it is crucial, after training, to evaluate the system’s
robustness to guarantee its safe deployment.

Carefully evaluating and designing benchmarks to measure Al systems’ robustness is at
this thesis’s foundation. As teachers test their students to measure how much they learned,
we must evaluate how much deep neural networks have learned. However, we must be careful
when designing such tests. Like a student who might achieve a perfect score on a test by
merely memorizing the correct answers without understanding the fundamentals, an Al
system can also give correct answers on basic tests using rote memorization but perform
poorly on more challenging tests. In addition to providing a view of the system’s failure
modes, better evaluation methods could also give us a better understanding of what precisely
they learned and how. Are they cheating to solve the task? Did they memorize what they
learned? What happens if we try to trick them into giving an incorrect answer? The main
driving force behind the following articles is providing better tools to researchers to answer

these questions.

The first part of this thesis introduces RCDM (Representation Conditional
Diffusion Model): a new tool used to understand better what modern Al systems
learn. Traditionally, assessing what is learned by deep neural networks is mostly measured
through numerical performances on the task of interest. When training them for object
recognition, the standard evaluation benchmark is to compute the accuracy on an annotated
set of data not seen during training (to evaluate how robust this network is to new data
or environments). However, the downside of this kind of evaluation is that it only assesses
if the neural network is classifying correctly, without uncovering the reasoning behind
the prediction. This network can learn to recognize birds by using only the background
information (birds will often have a sky background) instead of what uniquely characterizes
a bird (peak, wings..). In that instance, the network would be cheating, and the evaluation
benchmark might not be able to detect it unless it had been carefully designed based on
such a-priori expected misbehavior. To circumvent these limitations, we propose using a rich
qualitative evaluation method to visualize directly what a deep neural network has learned.

To this effect, we introduce RCDM, based on the latest advances in image generation.

24

RCDM can stochastically map any deep neural network layer representation to the image

space. This allows us to visualize precisely what information is contained in this representation.

In the second part, we analyze what is learned by neural networks at different
intermediate levels of representations by using Guillotine Regularization.
Nowadays, deep neural networks are built with dozens or hundreds of layers, and each of
those layers could contain thousands or millions of artificial neurons. There is a habit in the
research community to always leverage the last layer to solve a given downstream task. Our
second contribution is challenging this habit by showing that different layers contain different
information about a given input. Thus, some intermediate representations might be better
suited for some tasks. This is especially true with Self-Supervised Learning approaches, for
which performance across different downstream tasks can vary significantly depending on

which representation layer is used.

In the third part, I introduce DéjaVu: a score to quantify memorization in deep
neural networks. Since a student could learn by rote memorization to get good grades, a
neural network could do the same to solve the training task. This kind of memorization
is an especially sensitive topic with deep neural networks since it could entail risks of
privacy violation. An attacker could try to reconstruct the training data, which might
induce significant risks when private or proprietary data is used for training. In this third
contribution, we highlight how much self-supervised models rely on memorization and
which parameters increase or decrease the degree of memorization of the training data. By
introducing a new metric, called the DéjaVu score, we give SSL researchers and practitioners

a new tool to analyze how much a given model memorizes its training data.

Lastly, we introduce the PUG (Photorealistic Unreal Graphics) datasets and
benchmarks. Most of the datasets and benchmarks used by the research community
quickly become outdated, falling behind the fast pace of improvement of the capabilities of
deep neural networks. Most synthetic datasets are often small-scale and unrealistic, while
real datasets lack fine-grained control and annotations. Since transparency on a model’s
limitations is crucial to ensure their safe deployment, it is fundamental to create benchmarks
to properly assess the limitations and risks associated with a given model. This work is
inspired by the simulators used in aviation to evaluate how well pilots can react to extremely
rare but possible failure cases. Using a simulator allows pilots to sharpen their skills in
case of unlikely events. Similarly, using synthetic yet realistic-looking data, we can easily
evaluate how much models are robust to unlikely scenes or events. This last contribution
introduces the PUG datasets created using Unreal Engine — a powerful video game engine.

By leveraging the latest photorealistic graphics, we can create virtual environments in which

25

we can asses the robustness of modern systems. Equipped with PUG, we create challenging

configurations under which current neural networks are easily shown to fail.

The four articles presented in this thesis aim to give practitioners and researchers additional
guidance and tools to evaluate deep neural networks better. Much in these articles are centered
on deep neural networks that belong to the Self-Supervised learning family. Unlike traditional
supervised learning, for which the training objective is typically aligned with their intended
usage, Self-Supervised Learning methods solve a more generic objective to learn features
that can be used across different downstream tasks. Consequently, having a way to correctly
evaluate these generic models before releasing them is essential to draw a better picture of
their strengths and weaknesses. However, the guidance and tools presented in these articles
can be generalized to other model families. I hope these contributions will be the foundation
for crafting more robust, safe, and reliable artificial intelligent systems. This thesis starts with
a background chapter in which I introduce the fundamental notions needed to understand the
articles. Then, each article is presented with a prologue that provides context and information
on its conception and highlights its impact on the research community. Lastly, a conclusion
chapter summarizes the contributions and opens up to the remaining research directions and
questions to address. The supplementary material specific to each article can be found at the
end of the thesis, after the bibliography.

26

Chapter 1

Background

This chapter presents an overview of the fundamentals needed to understand the articles
presented in this thesis. It starts with machine learning concepts that are at the core of
modern Al systems. Then, I explain neural networks, their most common forms, and popular

training paradigms. Lastly, I review the latest advances in Self-Supervised Learning.

1.1. Machine learning basics

1.1.1. Introduction

Machine learning is an ensemble of techniques that aim to solve specific tasks using data.
Tasks could be as simple as drawing a line between two clouds of points or much more
complex such as labeling different animal species or playing Go. Labeling species requires
understanding of what an animal is and what are the characteristics of a given animal. It
leads to learning abstractions of concepts such as tail or legs. How to learn better abstractions

is an essential question in machine learning research.

1.1.2. Solving tasks

Machine learning algorithms learn to solve a task by optimizing a predefined training
objective. In a classification task, the algorithm can predict for a given image which category
is the most likely to be associated with this image. This first task belongs to a supervised
learning scenario for which we have category labels, i.e., annotation of the data. This allows
machine learning practitioners to evaluate if an algorithm made a mistake by comparing the
predicted label to the real label. If the task is to generate new images of cats, the objective
is much harder to define. We can ask the algorithm to produce a very close pixel-wise image
to a target image or to produce indistinguishable images from real images under the view of
a second algorithm. This second task belongs to an unsupervised learning scenario for which

we have data with no annotations on them. Similarly, we can define a pretext objective which

might be as generic as "trying to predict a missing word in a sentence" or "a missing patch
in an image". By training on this pretext task, the model might learn representations that
are generic enough to be used for different downstream tasks (like classification or image

segmentation). This third scenario is referred to as Self-Supervised Learning.'

1.1.3. Learning

Learning consists mainly in leveraging the training data to find a function (a specific
parametrization) that best solves the training objective. In most machine learning algorithms,
variables called parameters are used to represent that function. Usually, those parameters are
initialized randomly. Then, the algorithm finds the best parameter values that optimize the
algorithm’s performance in a given task. Finding the optimal parameter values for a given
training task is often referred to as the training phase and is usually performed until the task

is solved sufficiently well.

1.1.4. Evaluating

The evaluation of a machine learning algorithm depends on the chosen downstream
task. In the case of supervised learning, one usually splits the data into three different sets.
The first is the training set the machine learning algorithm uses to learn its parameters.
The second one is the validation set, which tracks performances on unseen data to assess
whether the algorithm is only memorizing the training set or can generalize on new data.
However, tracking performances on a specific set of unseen data can lead to a bias towards
this set, especially if we use this information to choose the algorithm. To prevent it, we use
a third set called the test set, which the algorithm did not use during the training phase.
The performances on this set should give us an unbiased estimate of the algorithm’s actual

performances.

1.1.5. Capacity, generalization, under and over-fitting

The capacity of a machine learning algorithm can be seen as the expressiveness or
representation power it can have. A small capacity implies that the algorithm will be able to
solve only simple tasks, whereas an algorithm with a bigger capacity will be able to solve more
complex tasks. Usually, the capacity is related to the number of parameters the algorithm
can use. We often associate the capacity with the function space: the set of functions the
algorithm can learn. If we look at Figure 1la, the degree of the polynomial function is 1,
which restricts the function space to the set of linear functions such as f(z) = ax with a
Wany ways to better characterize the differences between Unsupervised and Self-Supervised
Learning. For simplicity, we restrict our definition of Unsupervised Learning to learning the data distribution

(thus learning a model that can generate new data points). In contrast, we define Self-Supervised Learning as
leveraging a pretext task to learn a generic representation.

28

as the learnable parameter. However, the algorithm tries to learn the blue training data
points, which a linear function cannot represent. In that case, the linear function is not
fitting the training data points well. Since the expressiveness of the linear function does not
allow the algorithm to represent the data correctly, we are in an under-fitting scenario. If
the polynomial degree becomes higher, as shown in Figure 1b, the algorithm has a bigger
capacity and is better at capturing the training data distribution. In addition, the test data
points in red are also captured by the learned polynomial. In that instance, the algorithm
generalizes to the test data points. However, when the polynomial degree is too high, as
shown in Figure 1c, the algorithm’s capacity becomes too strong to offer good generalization.
In that instance, the model learns precisely the position of the training blue data points but
fails to learn a function that can represent the test red data points. In that instance, the

algorithm is in an over-fitting scenario.

i 0.8+

0.8
0.6 -

0.6
0.4r L B
. 0.2
N
0.2F] B

0

M
I I I I n I I I I I ! I I I I I |
02 04 06 08 1 0 02 04 06 08 1 0 02 04 06 08 1

(a) Underfitting. (b) Good trade-off. (c) Overfitting.

Fig. 1. Plots showing how the capacity of a model influences its ability to fit data points.
Train points are blue, and test points are red. The polynomial learned by the machine
learning algorithm is the black curve. Figure extracted from my master thesis.

1.2. Neural networks

1.2.1. Introduction

Neural networks are a class of machine learning models inspired by neuroscience. Neural
networks are composed of artificial units called neurons whose links are called weights. In
contrast with other machine learning models, neural networks make the compositionality
assumption that complex concepts can be built using simpler elements. Such an assumption
has a lot of grounding in neuroscience since our brain can decompose a complex animal
like a cat under simpler concepts such as paws, tail, pointy ears, whiskers, and small. If
taken individually, each element does not imply they are associated with a cat since they
are common across many different animals. However, if all of them are detected in the
same animal, we can definitively assume it is a cat. If we see a tiger, our brain can think
about how big this cat is compared to our domestic cat (such an association occurs only

because cats and tigers share many characteristics). The ability to reuse simple concepts and

29

associations we learned in the past is a crucial element that allows our brain to generalize to
new environments. Learning simple concepts and combining them is one of the main reasons

behind the success of neural networks.

1.2.2. Perceptron and MultiLayer Perceptron

Inspired by discoveries about the brain, Rosenblatt invented the perceptron [171], an
artificial neuron. The perceptron (Figure 2a) can be seen as a simple linear combination of
the inputs with a threshold. The multilayer perceptron (Figure 2b) was introduced to solve
non-linear problems like XOR. Instead of using one artificial neuron, the idea is to stack
them inside a layer of neurons and combine them with other layers of neurons and non-linear

activation functions.

.\

(a) A model of a Perceptron (b) A Multilayer Perceptron

Fig. 2. Example of perceptron and multilayer perceptron. The input variable is named
z; whereas the output given by those models is called o;. The artificial neuron units are
presented as h.

1.2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) [130] are a specific type of neural network designed
for vision tasks. In contrast to fully connected networks that would associate every pixel to
each of the neurons, CNNs have grids of neurons that analyze only a subset of the pixel to
find some patterns. When having as input an image of a dog (Figure 3), a specific subset of
these neurons will learn to look for something like an ear. They will scan the entire image
grid of pixels by grid of pixels and send a signal to the bottom layer if they find something

that looks like an ear.

30

Fig. 3. An example of a convolution operation applied on an image. In contrast to fully
connected networks that associate every pixel to each of the neurons, CNNs analyze only
a subset of the pixels (in transparent blue) to compute the higher-level activation (in dark
blue).

1.2.4. Transformers

Transformers are a specific type of deep neural network architecture introduced by
Vaswani et al. [210] initially designed for text applications. One of the main components
of the transformer architecture is the attention mechanism introduced by Bahdanau et al.
[15]. The text inputs are converted into tokens, which then are converted into embeddings
on which multiple attention heads are deployed with non-linear activation and feed-forward
layers. By using the attention heads, transformers can learn to attend to specific part of
a given sequence depending on the training task. One of the main advantages of such an
approach is the computational cost which is significantly reduced since the network does not

need to focus on the irrelevant part of a given sequence.

1.2.5. Cost function, and backpropagation

A neural network, like any machine learning algorithm, should optimize a cost (or loss)
function to solve a training task. For a supervised classification task, the cost will be how many
errors a model makes in predicting the class labels. Training a machine learning algorithm
based on a neural network is done by reducing the number of errors made (minimizing the cost)
on the training data. To minimize the cost function, we use optimization techniques based
on gradient descent to find the optimal parameters for the neural network. Backpropagation

of the gradient [173] is a method to efficiently compute gradients adapted to neural networks.

31

Based on the chain-rule principle, we compute the gradient at different layers, starting with

the last one until the first one.?.
1.2.6. Autoencoders

Autoencoders are a class of neural networks trained to reconstruct their input through a
specific architecture. The intuition behind autoencoders is that a model can learn a meaningful
representation of the data by encoding an input into a specific number of dimensions in
a latent space. It is important to note that the autoencoder could cheat by learning to
copy its input. Thus, it is essential to design the autoencoder to avoid that by reducing the
dimension of the input data (undercomplete autoencoder) and using non-linear activation
functions. An alternative is to design autoencoders that project the data into a higher
dimension (overcomplete autoencoders) with strong regularization over the latent or input
space. One popular form of regularized autoencoders is denoising autoencoders (DAE)
[214]. Instead of directly using the training data point as input for the autoencoder, the
input becomes a slightly corrupted version of this data training point. Then the DAE learns
to reconstruct the original data point from this noisy version. This can done by using the

following Mean Squared Error (MSE) objective:

1 .
Juse(®) = Y. Ein(woern 3 6(%,0) — =/

2€Dtrain
where z is the input, Z the slightly corrupted version of x and ¢(Z,) the DAE parametrized
by 6 which takes as input. In that instance, the autoencoder cannot merely copy its input
since the reconstruction error with respect to the clean data point will be high. Figure 4
gives an example of denoising autoencoder. The DAE learns to map the corrupted version of

the data points (in blue) toward the data manifold (in green).
1.2.7. Energy-based models and denoising score matching

Energy-based models (EBMs) [131] are a specific framework that predicts one scalar value
called energy for each configuration of random variables. The model Fy parametrized by 6
is trained to assign low energy on observed variables and high energy on unobserved ones.
Data from the target distribution should have low energy, whereas anything else should have
higher energy. EBMs do not require proper normalization but correspond to a Boltzmann
distribution (Or Gibbs distribution). We consider input data x with an energy function Fy(x)
of parameters f. The corresponding Boltzman distribution density function can be written

as:
€_E9 (CE)

Zg

p(x) =

2For a more detailed explanation, please refer to the book of Goodfellow et al. [90]

32

Fig. 4. An example of a denoising autoencoder (DAE) that learns to map noisy versions of
data points towards the data manifold. The data points are green, whereas the corrupted
ones are blue. The DAE learns to project back the blue point towards the green data points.

with Zy = 32, e #¢(*) which is the normalization factor. To estimate the target distribution
Pp from which input data x are drawn, we can in principle use the traditional maximum
likelihood objective:

argomin Espp(2)[—log Po ()]

whose gradients are:

OE,pp ()[— log Po(z)] E OFEg(z™) E OFEg(z7)
89 — Lizt~Pp(x) 80 z~ ~Py(z) 80

However, this requires to get = ~ Pp(x), which corresponds to sample from the model
distribution that can be intractable. A common strategy is to use Markov Chain Monte Carlo
(MCMC) methods to simulate the sampling distribution of the EBM. The advantage of such
an approach is that there are theoretical guarantees that the chain will converge, but there is
a substantial computational cost.

To overcome such training difficulty, a popular workaround is to use score matching [109]
to train EBMs. Instead of considering the density itlsef, we use the gradient of the density
¢(z,0), called the score, where:

_ Ologp(z,0) —0Ey(x) —0logZy —0FEs(x)

o, 0) ox - or or

Score matching eliminates the partition function log Zy since the score does not depend on =z,

leading to a zero gradient.

33

We need to define a score as a target to train a model by score matching. We would like
dlog

Tg(‘”) of the true (and unknown) data density ¢. If

we knew this term, we could train a model to minimize:

¢(x,0) as close as possible to the score

2

Tou(0) = > ;Hm:p,@)_alog‘-’(m)

xeDt'f‘ain am
but we don’t know the real al%j(m).
Since we do not have the real al%g(m), the idea behind denoising score matching introduced

by Vincent [212] is to add some noise around a data point x to get a new point . The

intuition is that if we were to follow the true gradient %, we would likely get a gradient

|

Interestingly, Vincent [212] demonstrated that the denoising score matching criterion

that will move Z towards x. Thus, we can define a new objective:

(z — 1)

g

1
JDSM(Q) = Z E&:NN(I,UQI) {2 ||¢($,9) -

TEDtrain

Jpsn(0) is equivalent to the Mean Squared Error Loss Jysg(6) that is used when training a

denoising autoencoder.

The DSM objective has been widely used to train the generative models, which are

presented in the next section.

1.2.8. Diffusion/Infusion models

Diffusion models are a family of generative models inspired by non-equilibrium statistical
physics. They were first introduced and described by Sohl-Dickstein et al. [191] as composed
of a diffusion process (which consists of converting a complex distribution into a simple
and tractable distribution by iteratively corrupting it) and the corresponding reversed
diffusion process. If we modelize distribution of images, then the diffusion process will
corrupt iteratively these images (using Gaussian noise, for example) such that after a given
number of iterations, the resulting corrupted images become purely Gaussian. The diffusion
model will learn to reverse each intermediate step such that from pure Gaussian noise, the
network should gradually generate the target images back. To learn the exact reverse process,
the diffusion had to be infinitesimal by construction which requires performing thousands
of tiny reconstruction steps (which leads to important computational costs). In this first
generation of diffusion models, the training loss consisted of optimizing a lower bound over
the log-likelihood. Diffusion models are akin to denoising autoencoders with the difference
that they have iterative components and use a more complex process to corrupt the data.

The diffusion models introduced by Sohl-Dickstein et al. [191] worked well on simple data

34

distributions however, they were not able to generate compelling images.

Fig. 5. An example of an infusion chain by Bordes et al. [28]. Starting from noise, we
gradually infuse very few target pixels into the sampling chain. By doing so, the network
learns to construct back the image gradually. At inference, we remove the infusion steps to
sample from the model.

In a following work, Bordes et al. [28]® demonstrated that diffusion models could be
simplified and improved in such a way that they could outperform all other generative models
that were available at the time of publication. Instead of optimizing a lower bound over the
log-likelihood, we can directly predict the true target x at each time step, corresponding to a
simple denoising score matching criteria. Instead of learning the exact diffusion reversed
process (and their thousand of tiny steps), we introduced another heuristic coined as infusion
that randomly replaces pixels with true target image pixels during the iterative denoising
training process. This approach had the main advantage of requiring only a dozen steps
for sampling from the model. In this work, we also discovered that we could significantly
improve the quality of the sampled images by conditioning the model with the current

denoising timestep.

Despite this progress, the research scene at that time was mostly focused on generative
adversarial networks (GANs [88]). Diffusion models resurfaced some years later with the work
of Song and Ermon [193], who rediscovered independently that a denoising score matching
criteria is well suited to train these models by making a theoretical connection with Langevin
dynamics. Similarly to our work, they emphasized the importance of using a conditional

network that considers the current timestep or noise level applied to the input. The interest

3This work was the subject of my master thesis: Learning to sample from noise with deep generative models.

35

in diffusion models began to increase significantly after the work of Ho et al. [105], who
successfully scaled diffusion model generation to high-resolution images. Then, Dhariwal
and Nichol [60] demonstrated that diffusion models can achieve state of the art in image

generation.

1.3. Self-supervised Learning

Note: Most of this section either reproduces or summarizes the following work I
coauthored: A Cookbook of Self-Supervised Learning [17]. Even if this paper is not part
of the articles presented in this thesis, it constitutes a nice introduction to self-supervised

learning, which I invite the reader to read.

Self-Supervised Learning is a machine learning paradigm in which we do not use human-
annotated data to train the model. In contrast with traditional generative unsupervised
learning, SSL practitioners and researchers define an unlabelled pretext training task for
the model to learn a representation that is generic enough to be able to generalize across
a wide range of modalities. Pretext tasks used in self-supervised methods are often very
simple: from predicting missing instances in sentences to predicting a specific image’s patch
content using another patch from the same image. Another successful pretext task of SSL
is to leverage artificial data augmentations to create invariances which were shown to be

beneficial for learning semantic information about images.

1.3.1. A brief history of Self-supervised Learning through pretext
tasks

Contemporary methods build upon the knowledge we gained from early experiments.
While many of the specific methods have fallen out of mainstream use because they no longer
provide state-of-the-art performance on benchmark problems, the ideas from these papers
form the foundation for many modern methods. For example, the core objective of restoring
missing or distorted parts of an input or contrasting two views of the same image forms the
foundation for modern SSL methods. Early progress in SSL focused on the development of

methods that fell into the following (sometimes overlapping) categories:

1. Information restoration: Many methods have been developed that mask or remove
something from an image and then train a neural network to restore the missing information.
Colorization-based SSL methods convert an image to grayscale and then train a network to
predict the original RGB values [242, 128, 216]. Because colorization requires understanding
object semantics and boundaries, colorization was demonstrated as an early SSL method

for object segmentation. The most straightforward application of information restoration

36

is to mask, aka remove, a portion of an image and then train a network to inpaint the
missing pixel values [164]. This idea evolved into masked auto-encoding methods [99], in

which the masked region is a union of image patches that can be predicted using a transformer.

2. Learning spatial context: This category of methods trains a model to understand
objects’ relative positions and orientations within a scene. RotNet [85] masks the direction
of gravity by applying a random rotation and then asks the model to predict the rotation.
Doersch et al. [62] is one of the first SSL methods that simply predicts the relative location
of two randomly sampled patches in an image. This strategy was superseded by “jigsaw”
methods [164, 159] that break an image into an array of disjoint patches and predict the

relative location of each.

3. Grouping similar images together: One can learn rich features by grouping
semantically similar images together. K-means clustering is one of the most widely used
methods from classical machine learning. A number of studies have adapted k-means to
perform SSL with neural networks. Deep clustering alternates between assigning labels to
images by performing k-means in the feature space and updating the model to respect these

assigned class labels [39].

4. Layerwise pretraining: An early influential SSL method is greedy layer-wise
pretraining [25], in which deep network layers are trained one at a time using an
autoencoder loss. Later advancements improved the representation learning ability of
auto-encoders, including denoising autoencoders [214], cross-channel prediction [243], and
deep canonically correlated autoencoders [218]. Nonetheless, it was ultimately found
that representation transferability is better when the auto-encoder is asked to restore

a missing part of its input, resulting in the “information restoration” category of SSL methods.

5. Multi-view invariance: Many modern SSL methods, especially those I am focusing
on in this thesis, use contrastive learning to create feature representations invariant to
simple transforms. The idea of contrastive learning is to encourage a model to represent
two augmented versions of an input similarly. Several methods led the change in this di-

rection by enforcing invariance in various ways before contrastive learning was widely adopted.

One of the most popular frameworks for learning from unlabeled data is to use a weakly
trained network to apply pseudo labels to images and then train using these labels in a
standard supervised fashion [132]. This approach was later improved by enforcing invariance
to transformations and training a network to maximize the mutual information between the

representations of an image under different views [14]. These augmentation-based methods

37

formed a bridge between the older practices described above and the contemporary methods
that are the focus of this thesis.

1.3.2. A brief overview of some successful SSL methods

Many SSL methods have been introduced in the last few years. In this thesis, we will

focus only on the ones discussed below.

Contrastive based methods (SimCLR) The first one is named SimCLR and belongs
to the family of contrastive SSL. methods. Its pretext task is to learn multiview invariances
defined by a set of handcrafted data augmentations. However, this learning objective is
insufficient since a DNN could cheat by assigning the same representation to all images
in the training set?. To avoid such shortcomings, SimCLR introduces the use of negative
examples. Inspired by the training of energy-based models, SiImCLR minimizes the energy of
two views of a given image while maximizing the energy of every other pair of images in a
given mini-batch. Many have believed using a large batch size, thus having enough negative
pair of images, was needed for SimCLR to perform well over a dataset like ImageNet [56].
However, using small batch sizes for training is fine as long as the learning rate is chosen
accordingly, as demonstrated by Bordes et al. [32].

The Canonical Correlation Analysis Family Many works have suggested removing
the negative examples sampling in SimCLR to focus more on a geometry-based regularization
using the Canonical Correlation Framework (CCA) [107]. The high-level goal of CCA
is to infer the relationship between two variables by analyzing their cross-covariance
matrices. These ideas were extended to deep learning in Deep Canonically Correlated
Autoencoders (DCCAE) — an autoencoder regularized via CCA. Hsich [108] and An-
drew et al. [4] introduce the objective of jointly learning parameters for two networks,
f1, f2, such that their outputs are maximally correlated. From these origins stems SSL
methods such as VICReg [21], Barlow Twins [236], and SWAV [41]. VICReg, the
most recent among these methods, balances three objectives based on co-variance matri-

ces of representations from two views: variance, invariance, and co-variance shown in Figure 6.

The Self-Distillation family Another type of SSL method belongs to the Self-
Distillation family. Instead of having an explicit term to avoid collapse of the representations,
some techniques like Byol[93] or Dino[43] rely on a teacher network (also coined often as
a momentum encoder) for which gradients are not computed. Then a student network is

trained to predict the representation that the teacher network predicts. The teacher network

4this scenario is often referred to as the collapse of the SSL representations

38

V(Z)/'
v : maintain variance
c : bring covariance to zero
c(2) s : minimize distance
t~ T X T : distribution of transformations
/ t,t : random transformations
s(Z,7" .
@) fo-f'a

, « encoders
hg, B’ 4 expanders
I

I :batch of images

—_— - Y — R—— A c(2) X, X’ :batches of views
/ ’ .

t~T X Y,Y’ :batches of representations

Z,7> :batches of embeddings

o)

—>

Fig. 6. VICReg: penalizes variance, invariance, and co-variance terms to learn repre-
sentations from unlabeled data. Regularizing the variance along each dimension of the
representation prevents collapse, the invariance ensures two views are encoded similarly, and
the co-variance encourages different dimensions of the representation to capture different
features. Figure from Balestriero et al. [17].

is updated as an exponential moving average built with the student model gradients update.

Masked Image Modelling (MIM) BERT [59] shook up the natural language processing
world by replacing text tokens input to a transformer language model with learnable mask
tokens and teaching the model to recover the original text. Inspired by its success, several
works mask out portions of an image and train a model to inpaint them. This strategy is
known as masked image modeling (MIM). Inspired by BERT, Dosovitskiy et al. [64] exploits
the vision transformer architecture by masking out patch tokens and replacing them with
learned mask tokens. To streamline MIM pre-training, two concurrent works [99, 227] propose
simplified algorithms, masked autoencoders (MAE) and SimMIM, respectively, which directly
reconstruct masked image patches. Lastly, Assran et al. [10] demonstrated that instead of
using a decoder to reconstruct a patched image, one could learn a predictor trained to predict

the representation of a given masked patch.
1.3.3. The critical ingredients for a successful SSL recipe

As presented in the previous section, there are many training pretext tasks and training
losses in Self-Supervised learning. However, most of those methods share a standard recipe,
allowing them to become serious competitors of traditional supervised approaches. The
first ingredient was to use strong data augmentations to generate different views of a given
image. Most of them were intuitively designed as a natural methods for learning invariances
that could improve classification performance. Color-based augmentations might push the
network to learn more information about the shape of the objects, while random cropping
operation forces learning semantic information by associating different parts of an object. In

Figure 7, we show how various data augmentations impact the performance accuracy of two

39

different SSL methods trained on ImageNet. Using cropping alone is not enough to learn
good representations for a classification task, whereas adding color transformation such as

Grayscale or ColorlJitter significantly improves the performances of the SSL methods.

= SimCLR /
65 = Barlow Twins
g’ //
g 60
=)
Q
&55
-
z
s 50
=]
a
E 45 /

x) 0 v . f\1
cxops & crr® cr+® Cr+so+G‘*B So»fc«m-*‘

Data augmentations

Fig. 7. Detailed impact of the data augmentations used during SimCLR and Barlow Twins
training on the ImageNet validation accuracy. So corresponds to a Solarization transformation
applied with a 20% probability, Gray corresponds to a Grayscale operation that is also applied
with a 20% probability, B. corresponds to a Gaussian blur applied 100%of the time and Jit is
the ColorJitter operation with 80% probability. In this Figure, we clearly see that adding
grayscaling has the most significant impact on ImageNet accuracy. Figure from Bordes et al.
[32].

The second key ingredient for a successful SSL recipe was introducing a projection head
during training. This projection head is often a 2- or 3-layer multi-layer perceptron with non-
linear activation, which is thrown away once the training is done. The primary justification
for using such a layer was given in the SimCLR paper [238], which states that the invariances
learned by the SSL criteria are too strong for a classification task. However, the use of a
projector head for learning SSL representations can be counterintuitive since one promise of
Self-Supervised learning is to build representations that are generic enough to solve different
downstream tasks. Learning correct invariances could allow SSL researchers and practitioners
to carefully structure an SSL representation so that a specific part of the SSL representation
might be well suited for classification while another part of the representation might be more
suited for segmentation tasks. However, by cutting the projector head, we lose most of the
invariances learned. Understanding the role of the projector in SSL is a crucial contribution

to this thesis which is discussed in depth in Chapter 3.

1.4. Vision Language Models (VLMs)

Vision language models are another model class that learns a text and image representation.

One popular way to train such a model is by using contrastive training[165], which is similar

40

to the contrastive SSL SimCLR method with the exception that the image embedding is
contrasted with text embedding (instead of another image embedding). As shown in Figure
8, the VLM often comprises an image encoder that produces an image embedding and a text
encoder that produces text embedding. Then the model is trained to minimize the distance
between a given image embedding and its corresponding text embedding while increasing the

distance with all other text embeddings that do not describe the image.

Image Input Text Inputs
Comparing each image and text embeddings

Probabilities

Text embeddings

Fig. 8. An illustration of Vision Language Models. They are often composed of an image
encoder which produces an image embedding, and a text encoder which produces a text
embedding. The model learns to assign the highest probability to the text that describes the
image while assigning a lower probability to the text that does not describe the image.

1.5. Evaluations of deep neural network representations

Note: This section is only a glimpse and high-level overview of the evaluation methods
that existed before the articles presented in this thesis. A more in-depth literature review is

available in each of the articles.

A critical issue with neural networks is that they can be considered as black bozes.
In contrast to simpler and interpretable ruled-based systems, there is no straightforward
verbalizable way to know why a given neural network has associated a specific output with
a given input. Knowing that most modern architectures leveraged millions or billions of
artificial neurons, it is impossible to precisely know what made the network perform a given
computation between an input and output. This lack of interpretable information concerning
how a neural network made a decision is an issue for deployment since it is impossible to
know in advance if such a model is reliable. The network could have learned to cheat to solve
the task of interest by relying on a spurious feature, such as the sky, to classify birds from
cars. Without data containing flying cars, it would be impossible to use only the classification
accuracy to know whether the network has cheated. In consequence, interpretability is an

important and very active area of research.

41

Random

Supervised SSL (Dino backbone) SSL (Dino proj)

Fig. 9. Interpretability with Deep Image Prior (DIP). In this figure, we took the represen-
tation of two images (dog and earth) extracted with different models (random, supervised,
SSL). We used DIP to reconstruct the image using only these representations. As we can see,
this method produces most of the time unrealistic images. Figure from Bordes et al. [31]

1.5.1. Interpretability and qualitative evaluations

One of the ways to make neural networks more interpretable is by visualizing what input
information they use for classifying a specific object. We can imagine that for classifying birds,
the bird’s characteristics should be leveraged while the background should be ignored. One
way to visualize which pixels are the most important in a given image is to reverse the neural
network such that instead of predicting the most probable class label given an input, we are
predicting the most probable input pixels given a class label. This can be quickly done by
computing the input’s gradient with respect to a given output activation (which corresponds
to a specific class label) and by iteratively applying gradient descent over the input to
maximize the output activation. There are many works [73, 237, 188, 150, 183, 190, 160]
that rely on such gradient-based techniques to visualize what is learned by neural networks.
Some of them maximize only the activation of a specific neuron to visualize what is learned
by this neuron. Others offer visualization of what is learned at different layers by trying to
"invert" neural networks. All of these use some form of regularization, constraint, or prior
to guiding the optimization process towards realistic images. Another possibility, explored
in Zhao et al. [245], Appalaraju et al. [5], Ericsson et al. [74], is to learn to invert the DN
features through a Deep Image Prior (DIP) model (which was one of the state-of-the-art
methods for interpretability before our work on RCDM). In short, given a mapping f that
produces a representation of interest, the DIP model gy learns ming d(gy(f(x)),x). However,
as demonstrated in Figure 9, this solution not only requires solving a costly optimization

problem for each generated sample but also leads to low-quality generation. In Chapter 2, we

42

introduced a new state-of-the-art interpretability method that significantly outperformed all

previous approaches, such as DIP, regarding image quality.

1.5.2. How to evaluate deep neural networks?

Deep neural networks are often built to produce a lower dimensional output from a high
dimensional input by going through multiple layers that reduce the input’s dimensionality.
The deepest representation is often the one to which the training criterion is applied.
Consequently, leveraging this deepest representation to solve downstream tasks is the
standard way to evaluate neural networks. However, this is not the case in Self-Supervised
Learning. Researchers and practitioners systematically discarded the projector representation
(the deepest representation) and used only the backbone layer for downstream evaluation
(often 3 or 4 layers before the projector representation). Such practice might be surprising
since one would expect the deepest representation to learn the correct invariances to solve the
task. However, such a trick was justified because the invariances learned with SSL might be
too strong [238]. But in the following work, Chen et al. [50] demonstrated that intermediate
projector layers might be more suited in a semi-supervised setting. So even if the invariances

might too strong, there is some setting in which throwing away the entire projector might be

a bad idea.

When looking outside SSL, several papers in the transfer learning literature [161, 149]
already emphasized that using intermediate representations might be more suited depending
on a given downstream task. However, such results are often restricted to a given setting and
do not explain why the optimal layer for a downstream task might change. In addition, some
SSL methods have used a two-layer projector with 2048 artificial neurons while others have
used a three-layer projector with 8192 artificial neurons. These differences in design made
the comparison between different SSL criteria unfair since the number of layers used in the
projector significantly impacts the generalization abilities of an SSL model. In Chapter 3, we
argue that it is important to carefully evaluate the performances of different SSL models across
multiple layers of representation to find the optimal one. In addition, we provide significant in-

sights about why and when the optimal layer to use for a given downstream task might change.

1.5.3. Are deep neural networks memorizing?

Memorization in deep neural networks is often associated with over-fitting. A neural
network can memorize to associate a specific image of a cat in a given background with the
particular cat class without correctly classifying a cat in a different background. This lack of

generalization can be perceived as the network being able to solve the task without learning

43

the features needed to understand what a cat is. In that instance, the neural network perfectly
solves the training task on the training data while performing poorly on the validation or test
set. However, not learning useful features might not always indicates that a given network is
indeed memorizing its training data. It could have learned to solve the task by relying on
spurious features such that the network might generalize well on images that contain these
spurious features but will not generalize on images that do not have them. In that case,
it is unclear how much the network memorizes in contrast to learning incorrect features or
spurious correlations. Without precise annotations, it might be challenging to disentangle
the memorization of training points from learning spurious correlations.

In this thesis, I will try to disentangle learning correlations (even spurious) from
memorization by stating that a neural network is memorizing the training set only if it is
possible, using this neural network, to reconstruct specific information that is unique to the
training images (meaning that they cannot be predicted through simple correlations). There
have been many works in the NLP literature around reconstructing training data [37, 18, 94]
with some extension to images and diffusion models[38]. In our work, we are the first to show
that Self-Supervised Models can memorize their training data beyond any correlations. In
Chapter 4, we introduce the DéjaVu score, a memorization metric that can evaluate how

much invariance-based methods are memorizing their training data.

1.5.4. Current datasets and benchmarks limitations

A popular benchmark to evaluate neural networks is ImageNet[57] which consists of
around 1M images scraped from the internet. Each image is associated with a class label
representing one of the 1000 categories. This classification benchmark has been used for
the last ten years and has become almost a requirement when publishing a paper on deep
learning. However, there are several shortcomings in using a benchmark like ImageNet.
The images contain people who did not consent to appear in this dataset and might also
contain copyrighted content. The label information is also limited to a class label which is an
issue for assessing what a neural network is learning. A network trained on ImageNet can
rely on the sky background to classify planes or birds. In that instance, one will require
additional annotations to assess the performance of a given model fully. But getting more
annotations on real data is a complex process that relies on annotators. However, there is
difficulty in having consistency and how fine-grained we want the annotations to be. Also,
some annotators might be incentivized to complete the annotation task as fast as possible

without considering the annotations’ quality.

44

Fig. 10. Exemple of synthetic data from the CLEVR dataset. Figure from Johnson et al.
[118]

In contrast, synthetic data offer an excellent platform to produce data with reliable
annotations. Compared to neural networks that are black box, a rendering engine can be
seen as a white box in which we can specify everything inside the scene. However, the usage
of synthetic data is not as popular as benchmarks relying on real data such as ImageNet.
Synthetic datasets like CLEVR[118] are used for question-answering and visual reasoning,.
However, as shown in Figure 10, the scope of the dataset is limited to elementary geometric
forms. Other approaches try to leverage synthetic data but often rely on simple rendering
engines that do not produce realistic images. The gap between synthetic images generated
with rendering engines and real images was wide enough that there was an entire part of the
research literature around bridging the sim-to-real gap. However, in recent years, rendering
engines have made such significant progress that it is possible today to render digital and
completely photorealistic clones of a real environment. In Chapter 5, we introduce our new
PUG framework and photorealistic datasets for which neural networks get good zero-shot

performances without needing additional tricks to bridge a sim-to-real gap.

45

Prologue to Article 1

High Fidelity Visualization of What Your Self-Supervised Representation Knows
About, Florian Bordes, Randall Balestriero, and Pascal Vincent, Transactions on Machine

Learning Research, July 2022.

The original motivation for this work was to develop a superior tool to visualize what
information might be contained in Self-Supervised representations. This was something that
Pascal wanted to have as he was interested in exploring augmentations in representation space
for self-supervised learning. Before I joined, Pascal and others tried to learn deterministic
decoders from the representation space to visualize reconstructions. However, the main
challenge they faced was that these decoders were only able to produce blurry reconstructions.
One hypothesis was that there is a need to handle uncertainty when generating images from
an SSL representation. Hence, I started my experiments with diffusion models because they
learn to model, and stochastically produce, a distribution of images. They were known to be
stable to train yet capable of producing sharp images. In order to find a way to condition
the diffusion model on an SSL representation, I drew inspiration from my previous work
on Infusion Generative Modeling[28] in which I used conditional batch normalization to
add extra conditioning when training the model. Once this conditioning was implemented,

training the model was straightforward.

Contribution statement The original idea for this work arose during discussions
between Pascal and 1. I developed the core method, which is a diffusion model conditioned
on a rich SSL latent representation — while about all preexisting diffusion model work
conditioned on a class label or on class-based information. I wrote all the code — that has been
made public in the GitHub repository for the project. I ran all the experiments which are
presented in the paper. I created all the figures, wrote the captions and most of the paper’s
content. Pascal and Randall’s feedback was very helpful in improving the writing of the paper.

I also handled and wrote most of the answers to reviewers during the review process for TMLR.

Impact of this work Even if this work was mostly designed to help with the inter-
pretability of SSL methods, it also had a significant impact on the generative model research
community. DALL - E 2 [167] from OpenAl, which drew a lot of attention from the public,
was inspired by our work. DALL-E 2 and RCDM are almost the same models except that
instead of using a pre-trained SSL models trained on images, OpenAl has used a pre-trained
SSL model trained on text as conditioning (which gives them the ability to control the
generation through text prompts). Concerning Self-Supervised Learning, RCDM was an
important component behind the conception of MSN [9] since it allowed us to understand that
the prototypes learned by this model were class-specific. RCDM has also provided important
visualization for the following works: Assran et al. [8], Bordes et al. [30], Assran et al. [11],
Shekhar et al. [184]. RCDM was also used as a tool in subsequent Articles 2 and 3.

48

Chapter 2

Article 1: High Fidelity Visualization of What
Your Self-Supervised Representation Knows
About

Discovering what is learned by neural networks remains a challenge. In self-supervised learning,
classification starting with the learned representation as input is the most common task used
to evaluate how good a representation is. However, relying only on such downstream task can
limit our understanding of what information is retained in the representation of a given input.
In this work, we showcase the use of a Representation Conditional Diffusion Model (RCDM)
to visualize in data space the representations learned by self-supervised models. The use of
RCDM is motivated by its ability to generate high-quality samples —on par with state-of-the-
art generative models— while ensuring that the representations of those samples are faithful
i.e. close to the one used for conditioning. By using RCDM to analyze self-supervised models,
we are able to clearly show visually that i) SSL (backbone) representation are not invariant
to the data augmentations they were trained with — thus debunking an often restated but
mistaken belief; ii) SSL post-projector embeddings appear indeed invariant to these data
augmentation, along with many other data symmetries; iii) SSL representations appear more
robust to small adversarial perturbation of their inputs than representations trained in a
supervised manner; and iv) that SSL-trained representations exhibit an inherent structure
that can be explored thanks to RCDM visualization and enables image manipulation. Code

and trained models are available at https://github.com/facebookresearch/RCDM.

https://github.com/facebookresearch/RCDM

a SSL model

Earth from ...space an untrained model

7-=- 2 - —

a supervised model

P

2.1. Introduction

Approaches aimed at learning useful representations, from unlabeled data, have a long
tradition in machine learning. These include probabilistic latent variable models and variants
of auto-encoders [2, 104, 177, 213, 121, 168|, that are traditionally put under the broad
umbrella term of unsupervised learning [27]. More recent approaches, under the term
of self-supervised learning (SSL) have used various kinds of "pretext-tasks' to guide the
learning of a useful representations. Filling-in-the-blanks tasks, proposed earlier in [213, 215],
later proved remarkably successful in learning potent representations for natural language
processing [211, 58]. Pretext tasks for the image domain include solving Jigsaw-puzzles
[158], predicting rotations or affine transformations [84, 241] or discriminating instances
[224, 209]. The latest, most successful, modern family of SSL approaches for images
(154, 49, 51, 97, 93, 40, 44, 236, 21|, have two noteworthy characteristics that markedly
distinguish them from traditional unsupervised-learning models such as autoencoder variants
or GANs [88]: a) their training criteria are not based on any input-space reconstruction or
generation, but instead depend only on the obtained distribution in the representation or
embedding space b) they encourage invariance to explicitly provided input transformations

a.k.a. data-augmentations, thus injecting important additional domain knowledge.

Despite their remarkable success in learning representations that perform well on
downstream classification tasks, rivaling with supervised-trained models [49], much remains
to be understood about SSL algorithms and the representations they learn. How do the
particularities of different algorithms affect the representation learned and its usefulness?
What information does the learned representation contain? Answering this question is
the main focus of our work. Since SSL methods mostly rely on learning invariances to a

specific set of handcrafted data augmentations, being able to evaluate these invariances

1We use representations of the real picture of Earth on the left (source: NASA) as conditioning for RCDM.
We show samples (resolution 256 x 256) in cases where the representations (2048-dimensions) were obtained
respectively with a random initialized ResNet50, a supervised-trained one, and a SSL-trained one. More
samples in Fig. 31.

50

will provide insight into how successful the training of the SSL criteria has been. It
is also worth to be noted that recent SSL methods use a projector (usually a small
MLP) on top of a backbone network (resnet50 or vit) during training, where the
projector is usually discarded when using the model on downstream tasks. This projector
trick is essential to get competitive performance on ImageNet i.e we often observe a
performance boost of 10 to 30 percentage accuracy point when using the representation
at the backbone level instead of the ones at the projector level on which SSL criteria are
applied during training. Since SSL criteria are not applied at the backbone level, there
remains a mystery regarding what the backbone does learn that make it better for classifi-

cation than the projector. This is another question that we will be able to answer in this study.

Empirical analyses have so far attempted to analyse SSL algorithms almost exclusively
through the limited lens of the numerical performance they achieve on downstream tasks
such as classification. Contrary to their older unsupervised learning cousins, modern SSL
methods do not provide any direct way of mapping back the representation in image space,
to allow visualizing it. The main goal of our work is thus to enable the visualization of

representations learned by SSL methods, as a tool to improve our understanding.

In our approach (Section 2.3), we propose to generate samples conditioned on a
representation such that (i) the representation of those samples match the one used for
conditioning, and (ii) the visual quality of the sample is as high as possible to maximize the
preciseness of our visual understanding. For this, we employ a conditional generative model
that (implicitly) models. For reasons that we will explain later, we opted for a conditional

diffusion model, inspired by Dhariwal and Nichol [60].

This paper’s main contributions are:

e To demonstrate how recent diffusion models are suitable for conditioning on large vector
representations such as SSL representations. The conditionally generated images, in
addition to being high-quality are also highly representation-faithful i.e. they get encoded
into a representation that closely matches the representation of the images used for the

conditioning (Tab. 1b, Fig. 18).
e To showcase its potential usefulness for qualitatively analyzing SSL representations and

embeddings (also in contrast with supervised representations), by shedding light on what

information about the input image is or isn’t retained in them.
Specifically, by repeatedly sampling from a same conditioning representation, one can

observe which aspects are common to all samples, thus identifying what is encoded in
the representation, while the aspects that vary greatly show what was not retained in the

representation. We make the following observations: (i) SSL projector embeddings appear

o1

most invariant, followed by supervised-trained representation and last SSL representations?
(Fig. 2). (ii) SSL-trained representations retain more detailed information on the content of
the background and object style while supervised-trained representations appear oblivious
to these (Fig. 3). (iii) despite the invariant training criteria, SSL representations appear to
retain information on object scale, grayscale vs color, and color palette of the background,
much like supervised representation (Fig. 3). (iv) Supervised representations appear more
susceptible to adversarial attacks than SSL ones (Fig. 4,24). (v) We can explore and exploit
structure inside SSL representations leading to meaningful manipulation of image content
(such as splitting representation in foreground/background components to allow background
substitution) (Fig, 5, 25, 26).

2.2. Related Work
Visualization methods: Many works [73, 237, 188, 150, 183, 190, 160] used gradient-

based techniques to visualize what is learned by neural networks. Some of them maximize
the activation of a specific neuron to visualize what is learned by this neuron, others offer
visualization of what is learned at different layers by trying to "invert" neural networks. All
of these use some form of regularization, constraint or prior to guide the optimization process
towards realistic images. Dosovitskiy and Brox [63] learn to map back a representation to the
input space by using a Generative Adversarial Networks [88] which is trained to reconstruct
an input given a representation. Since the mapping is deterministic, they obtain only a
single image with respect to a specific conditioning. In contrast, we use a stochastic mapping
that allows us to visualize the diversity of the images associated to a specific representation.
Nguyen et al. [156] also use GANs but instead of trying to invert the entire vector of
representation, they try to find which images (by using an optimization process in the latent
space of the generator) maximize a specific neuron. The following work [157] demonstrates
how using this conditional iterative optimization in the latent space of the generator lead to
high quality conditional image generation. Finally Ludié¢ et al. [146] leverage SSL methods to
create discrete cluster that are used as conditioning for a GAN. Our work focuses only on
continuous representation vectors. More recently, Caron et al. [44] used the attention mask of
transformers to perform unsupervised object segmentation. By contrast, our method is not
model dependent, we can plug any type of representation as conditioning for the diffusion
model. Another possibility, explored in Zhao et al. [245], Appalaraju et al. [5], Ericsson
et al. [74], is to learn to invert the DN features through a Deep Image Prior (DIP) model.
In short, given a mapping f that produces a representation of interest, the DIP model gy
learns ming d(ge(f(x)),x). However, as we will demonstrate in Figure 2 this solution not

only requires to solve an optimization problem for each generated sample but also leads to

2The representation that is produced by a Resnet50 backbone, before the projector.

52

low-quality generation.

Generative models: Several families of techniques have been developed as generative
models, that can be trained on unlabeled data and then employed to generate images.
These include auto-regressive models [208], variational auto-encoders [121, 168], GANs
[88], autoregressive flow models [122], and diffusion models [191]. Conditional versions
are typically developed shortly after their unconditional versions [152, 207]. In principle
one could envision training a conditional model with any of these techniques, to condition
on an SSL or other representation for visualization purpose, as we are doing in this
paper with a diffusion model. One fundamental challenge when conditioning on a rich
representation such as the one produced by a SSL model, is that for a given conditioning
h we will usually have available only a single corresponding input instance x, By contrast
a particularly successful model such as the conditional version of BigGAN [35] conditions
on a categorical variable, the class label, that for each value of the conditioning has a
large number of associated & data. One closely related work to ours is the recent work on
Instance-Conditioned GANs (IC-GAN) of Casanova et al. [46]. Similar to us it also uses
SSL or supervised representations as conditioning when training a conditional generative
model, here a GAN [88], specifically a variant of BigGAN [35] or StyleGAN2 [119]. However,
the model is trained such that, from a specific representation, it learns to generate not
only images that should map to this representation, but a much broader neighborhood of
the training data. Specifically up to 50 training points that are its nearest neighbors in
representation space. It remains to be seen whether such a GAN architecture could be
trained successfully without resorting to a nearest neighbor set. IC-GAN is to be understood
as a conditional generative model of an image’s broad neighborhood, and the primary focus of
the work was on developing a superior quality controllable generative model. By contrast
we want to sample images that map as closely as possible to the original image in the
representation space, as our focus is to build a tool to analyse SSL representations, to enable vi-

sualising what images correspond precisely to a representation. (See Fig. 18 for a comparison.)

Few approaches have focused on conditional generation to unravel the information encoded
in representations of supervised models. In Shocher et al. [185], a hierarchical LSGAN
generator is trained with a class-conditional discriminator [240]. While the main applications
focused on inpainting and style-transfer, this allowed to visually quantify the increasing
invariance of representations associated to deeper and deeper layers. This method however
requires labels to train the generator. On the other hand, Nash et al. [155] proposed to use an
autoregressive model, in particular Pixel CNN++ [180], to specifically study the invariances
that each layer of a DN inherits. In that case, the conditioning was incorporated by regressing

a context vector to the generator biases. As far as we are aware, Pixel CNN++ generator

53

falls short on high-resolution images e.g. most papers focus on 32 x 32 Imagenet. Lastly,
Rombach et al. [169] proposes to learn a Variational Auto Encoder (VAE) that is combined
with an invertible neural network (INN) whose role is to model the relation between the
VAE latent space and the given representations. To allow for interpretable manipulation, a
second invertible network [75] is trained using labels to disentangle the factors of variations
present in the representation. By contrast we train end-to-end a single decoder to model
the entire diversity of inputs that correspond to the conditioning representation, without

imposing constraints of a structured prior or requiring labels for image manipulation.

2.3. High-Fidelity Conditioning with Diffusion Models
We base our work on the Ablated Diffusion Model (ADM) developed by Dhariwal and

Nichol [60] which uses a UNet architecture [170] to learn the reverse diffusion process.
Our conditional variant — called Representation-Conditionned Diffusion Model (RCDM) —
is illustrated in Fig. 1b. To suitably condition on representation h = f(x), we followed
the technique used by Casanova et al. [46] for IC-GAN which rely on conditional batch
normalization [68]. More precisely, we replaced the Group Normalization layers of ADM by
conditional batch normalization layers that take h as conditioning. We also apply a fully
connected layer to h that reduces dimension to a vector of size 512. This vector is then
given as input to multiple conditional batch normalization layers that are placed in each
residual block of the diffusion model. An alternative conditioning method is to use the
original conditioning method built inside ADM, and replace the embedding vector used for
class labels by a linear layer that reduces dimension to a vector of the size of the time steps
embedding. We didn’t observe any differences in term of experimental results between those
two methods as presented in Fig. 5. In this paper, we used the first conditioning method for

most of the experiments in order to make a proper comparison with IC-GAN.

In contrast with Dhariwal and Nichol [60] we don’t use the input gradient of a classifier
to bias the reversed diffusion process towards more probable images (classifier-guidance), nor
do we use any label information for training our model — recall that our goal is building
a visualization tool for SSL models that train on unlabeled data. Another drawback of
classifier-guidance is the need to retrain a classifier on inputs generated by the diffusion
process. Since training SSL models can be very costly, retraining them was not an option,
thus we had to find a method that could use directly the representation of a pretrained

model.

Our first experiments aim at evaluating the abilities of our model to generate realistic-

looking images whose representations are close to the conditioning. To do so, we trained our

54

Fig. 1. a) In-distribution conditional image generation. An image from ImageNet validation set (first
column) is used to compute the representation output by a trained SSL model (Dino backbone). The
representation is used as conditioning for the diffusion model. Resulting samples are shown in the subsequent
columns (see Fig. 3). We observe that our conditional diffusion model produces samples that are very close
to the original image. b) Out of distribution (OOD) conditioning. How well does RCDM generalize when
conditioned on representations given by images from a different distribution? (here a WikiMedia Commons
image, see Fig. 4 for more). Even with an OOD conditioning, the images produced by RCDM match some
characteristics of the original image (which highlights that RCDM is not merely overfitting on ImageNet). c)
Interpolation between two images from ImageNet validation data. We apply a linear interpolation between
the SSL representation of the images in the first column and the representation of the images in the last
column. We use the interpolated vector as conditioning for our model, that produces the samples that are
showed in columns 2 to 6. Fig. 10 in appendix shows more sampled interpolation paths.

Representation-Conditionned Diffusion Model (RCDM), conditioned on the 2048 dimensional
representation given by a Resnet50 [95] trained with Dino [44] on ImageNet [174]. Then we
compute the representations of a set of images from ImageNet validation data to condition
the sampling from the trained RCDM. Fig. 1la shows it is able to sample images that are
very close visually from the one that is used to get the conditioning. We also evaluated
the generation abilities of our model on out of distribution data. Fig. 1b shows that our
model is able to sample new views of an OOD image. We also quantitatively validate that
the generated images’ representations are close to the original image representation in
Tab. 1b, Fig. 12, Fig. 13 and Fig. 14. We do so by verifying that the representation used as

conditioning is the nearest neighbor of the representation of its generated sample.

95

(b) For each encoder, we compute the rank and
mean reciprocal rank (MRR) of the image used as
conditioning within the closest set of neighbor in the
representation space of the samples generated from
the valid set (50K samples). A rank of one means that
all of the generated samples for a given model have
their representations matching the representation
used as conditioning.

(a) We report results for ImageNet to show that our
approach is reliable for generating images which look
realistic. Since the focus of our work is not generative
modelling but to showcase and encourage the use of
such model for representation analysis, we only show
results for one conditional generative models. For each
method, we computed FID and IS with the same eval-
uation setup in Pytorch.

Method Res. |FID 1IS Model IMean rank tMRR
ADM [60] 256 26.8 34.5+ 1.8 Is)vlvr; [[Zﬁ)]] 1-8(1) 833
IC-GAN [46]) 256 20.8 51.3 4+ 2.2 StCLR [40] " 099
IC-GAN [46] w/ KDE* 256 21.6 38.6 4 1.1 Barlow T. [236) oo oo
RCDM w/ KDE* (ours) 256 19.0 519+ 26 Supervised o 069

Table 1. a) Table of results on ImageNet. We compute the FID [103] and IS [179] on 10 000 samples
generated by each models with 10 000 images from the validation set of ImageNet as reference. KDE* means
that we used the unconditional representation sampling scheme based on KDE (Kernel Density Estimation)
for conditioning IC-GAN instead of the method based on K-means introduces by Casanova et al. [46]. b)
Table of ranks and mean reciprocal ranks for different encoders. This table show that RCDM is faithful to
the conditioning by generating images which have their representations close to the original one.

This implies that there is much information kept inside the SSL representation so that
the conditional generative model is able to reconstruct many characteristics of the original
image. We also perform interpolations between two SSL representations in Fig. 1c. This
shows that our model is able to produce interpretable images even for SSL representations
that correspond to an unlikely mix of factors. Both the interpolation and OOD generation
clearly show that the RCDM model is not merely outputting training set images that it
could have memorized. This is also confirmed by Fig. 11 in the appendix that shows nearest

neighbors of generated points.

The conditional diffusion model might also serve as a building block to hierarchically
build an unconditional generative model. Any technique suitable for modeling and sampling
the distribution of (lower dimensional) representations could be used. As this is not our
primary goal in the present study, we experimented only with simple kernel density estimation
(see appendix A.2). This allow us to quantify the quality of our generative process in an
unconditional manner to fairly compare against state-of-the-art generative models such as
ADM; we provide some generative model metrics in Tab. la along some samples in Fig. 3
to show that our method is competitive with the current literature, even in unconditional

generation setting.

56

Model SimCLR SimCLR | Dino Dino | Barlow T. Barlow T. | VicReg VicReg
Trunk Head Trunk Head | Trunk Head Trunk Head

Val acc. |69.1% 612% |748% 64.9% |726% 629% |723% 622%

Table a): ImageNet linear probe validation accuracy on representation given by various SSL models. We
observe an accuracy gap between the linear probes at the trunk level and the linear probes trained at the
head level of around 10 percentage point of accuracy.

Cond. RCDM Samples
@\
3
3}
-
Py
o
=
°

auoqyoeg / yuniL

zngwgy u_ mopeg BayoIn

ouig

N

Jojo9loig J pPeeH

BayoIA

pasintadng Qmopeg

Fig. 2. What is encoded inside various representations? First to fourth rows show RCDM samples conditioned
on the usual resnet50 backbone representation (size 2048) while fifth to eigth rows show samples conditionned on
the projector/head representation of various ssl models. (Note that a separate RCDM generative model was trained
specifically for each representation). Common/stable aspects among a set of generated images reveal what is encoded
in the conditioning representation. Aspects that vary show what is not encoded in the representation. We clearly
see that the projector representation only keeps global information and not its context, contrary to the backbone
representation. This indicates that invariances in SSL models are mostly achieved in the projector representation, not
the backbone. Furthermore, it also confirms the linear classification results of Table a) which show that backbone
representation are better for classifications since they contain more information about an input than the ones at the
projector level. Additional comparisons provided in Fig. 19.

o7

2.4. Visual Analysis of Representations Learned by Self-
Supervised Model

The ability to view generated samples whose representations are very close in the
representation space to that of a conditioning image can provide insights into what’s hidden
in such a representation, learned by self-supervised models. As demonstrated in the previous
section, the samples that are generated with RCDM are really close visually to the image
used as conditioning. This gives an important indication of how much is kept inside a SSL
representation in general. However, it is also interesting to see how much this amount of
'hidden" information varies depending on what specific SSL representation is being considered.
To this end we train several RCDM on SSL representations given by VicReg [21], Dino [44],
Barlow Twins [236] and SimCLR [49]. In many applications that use self-supervised models,
the representation that is subsequently used is the one obtained at the level of the backbone
of the ResNet50. Usually, the representation computed by the projector of the SSL-model
(on which the SSL criterion is applied) is discarded because the results on many downstream
tasks like classification is not as good as when using the backbone representation. However,
since our goal is to visualize and better understand the differences between various SSL

representations, we also trained RCDM on the representation given by the projector.

In Fig. 2 we condition all the RCDM with the image labelled as conditioning and sample
7 images for each model. We observe that the representation at the backbone level does
not allow much variance in the generated samples. Even information about the pose and
size of the animal is kept in the representation. In contrast, when looking at the samples
generated by using representations at the projector level (also coined as head in the figure),
we observe much more variance in the generated samples, which indicates that significant
information about the input has been lost. These qualitative differences are correlated ® with
the quantitative experiment we made in Fig. 2 Table a) highlighting that when training a
linear probe over the corresponding representations, the performances at the backbone level

are better than the ones at the projector level.

2.4.1. Are Self-Supervised Representations Really Invariant to Data-

Augmentations?

In Fig. 3, we apply specific transformations (augmentations) to a test image and we check
whether the samples generated by the diffusion model change accordingly. We also compare
with the behavior of a supervised model. We note that despite their invariant training

criteria, the 2048 dimensional SSL representations do retain information on object scale,

3This point is further demonstrated in Figure 7 in the Appendix.

58

Conditioning SimCLR

Vertical
Zoom out shift

Zoom in

Color Jitter ~ Grayscale

Fig. 3. Using our conditional generative model to gain insight about the invariance (or
covariance) of representations with respect to several data augmentations. On an original image
(top left) we apply specific transformations (visible in the first column). For each transformed image, we
compute the 2048-dimensional representation of a ResNet50 backbone trained with either Dino, SimCLR, or
a fully supervised training. We then condition their corresponding RCDM on that representation to sample 3
images. We see that despite their invariant training criteria, the 2048 dimensional SSL representations appear
to retain information on object scale, grayscale vs color, and color palette of the background, much like the
supervised-trained representation. They do appear insensitive to vertical shifts. We also see that supervised
representation constrain the appearance much less. Refer to Fig. 20 in Appendix for a comparison with using
the lower dimensional projector-head embedding as the conditioning representation.

grayscale status, and color palette of the background, much like the supervised representation.
They do appear invariant to vertical shifts. In the Appendix, Fig. 20 applies the same
transformations, but additionally compares using the 2048 representation with using the lower
dimensional projector head embedding as the representation. There, we observe that the
projector representation seems to encode object scale, but contrary to the 2048 representation,
it appears to have gotten rid of grayscale-status and background color information. Currently,
researchers need to use custom datasets (in which the factors of variation of a specific image
are annotated) to verify how well the representations learned are invariant to those factors.
We hope that RCDM will help researchers in self-supervised learning to alleviate this concern
since our method is "plug and play" and can be easily used on any dataset with any type of

representation.

99

‘X0 [eUeslonpy sd3j

Supervised
Naod

SimCLR
Naod

Swav
Naod

Fig. 4. Using RCDM to visualize the robustness of differently-trained representations to
adversarial attacks. We use Fast Gradient Sign to attack a given image (top-left corner) on different
models with various values for the attack coeflicient epsilon. In the first row, we only show the adversarial
images obtained from a supervised encoder: refer to Fig. 24 in the Appendix to see the (similar looking)
adversarial examples obtained for each model. In the following rows we show, for differently trained models,
the RCDM "stochastic reconstructions" of the adversarially attacked images, from their ResNet-50 backbone
representation. For an adversarial attack on a purely supervised model (second row), RCDM reconstructs an
animal that belongs to another class, a lion in this case. Third and forth rows show what we obtain with
ResNet50 that was pretrained with SimCLR or Swav in SSL fasion, with only their linear softmax output
layer trained in a supervised manner. In contrast to the supervised model, with the SSL-trained models,
RCDM stably reconstructs dogs from the representation of adversarially attacked inputs, even with quite
larger values for epsilon. Images classified incorrectly by a trained linear probe are highlight with a red
square.

2.4.2. Self-Supervised and Supervised Models See Adversarial Ex-
amples Differently

Since our model is able to "project back" representations to the manifold of realistic-
looking images, we follow the same experimental protocol as Rombach et al. [169] to visualize
how adversarial examples affect the content of the representations, as seen through RCDM.
We apply Fast Gradient Sign attacks (FGSM) [89] over a given image and compute the
representation associated to the attacked image. When using RCDM conditioned on the
representation of the adversarial examples, we can visualize if the generated images still
belong to the class of the attacked image or not. In Fig. 4 and 24, the adversarial attacks
change the dog in the samples to a lion in the supervised setting whereas SSL methods
doesn’t seem to be impacted by the adversarial perturbations i.e the samples are still dogs

until the adversarial attack became visible to the human eye.

60

B zero mask of most common indices where dim of representation is non zero

B Least common dim of B where dim of representation is non zero
Fig. 5. Visualization of direct manipulations in the representation space of a ResNet-50 backbone trained
with SimCLR. In this experiment, we find the most common non-zero dimensions among the neighborhood
(in representation space) of the image used as conditioning (top-left clothed dog). In the second row, we set
these dimensions to zero and use RCDM to decode the thus masked representation. We see that RCDM
produces a variety of clothes (but no dog): all information about the background and the dog has been
removed. In the third and forth row, instead of setting these dimensions to zero, we set them to the value
they have in the representation of the unclothed-dog image on the left. As we can see, the generated dog gets
various clothes which were not present in the original image. Additional examples provided in Figure 25, 26.

2.4.3. Self-Supervised Representations Locally Encode background

and Object on Different Dimensions

Experimental manipulation of representations can be useful to analyze to what degree
specific dimensions of the representation can be associated with specific aspects or factors
of variations of the data. In a self-supervised setting in which we don’t have access to
labelled data, it can be difficult to gain insight as to how the information about the data is
encoded in the representation. We showcase a very simple and heuristic setup to remove the
most common information in the representations within a set of the nearest neighbors of a
specific example. We experimentally saw that the nearest neighbors of a given representation
share often similar factors of variation. Having this information in mind, we investigate
how many dimensions are shared in between this set of neighbors. Then, we mask the
most common non-zero dimensions by setting them to zero and use RCDM to decode this
masked representation. In Fig. 5, this simple manipulation visibly yields the removal of all
information about the background and the dog, to only keep information about clothing

(only one dog had clothes in the set of neighbors used to find the most common dimensions).

61

Since the information about the dog and the background are removed, RCDM produces
images of different clothes only. In the third and fourth row, instead of setting the most
common dimensions to zeros, we set them to the value they have in other unclothed dog
images. By using these new representations, RCDM is able to generate the corresponding
dog with clothes. This setup works better with SSL methods, as supervised models learn to
remove from their representation most of the information that is not needed to predict class
labels. We show a similar experiment for background removal and manipulation in Figure 25

in the Appendix.

2.5. Conclusion

Most of the Self-Supervised Learning literature uses downstream tasks that require labeled
data to measure how good the learned representation is and to quantify its invariance to
specific data-augmentations. However one cannot in this way see the entirety of what is
retained in a representation, beyond testing for specific invariances known beforehand, or
predicting specific labeled factors, for a limited (and costly to acquire) set of labels. Yet,
through conditional generation, all the stable information can be revealed and discerned from
visual inspection of the samples. We showcased how to use a simple conditional generative
model (RCDM) to visualize representations, enabling the visual analysis of what information
is contained in a self-supervised representation, without the need of any labelled data. After
verifying that our conditional generative model produces high-quality samples (attested
qualitatively and by FID scores) and representation-faithful samples, we turned to exploring
representations obtained under different frameworks. Our findings clearly separate supervised
from SSL models along a variety of aspects: their respective invariances — or lack thereof — to
specific image transformations, the discovery of exploitable structure in the representation’s

dimensions, and their differing sensitivity to adversarial noise.

2.6. Reproducibility statement

The data and images in this paper were only used for the sole purpose of exchanging
reproducible research results with the academic community.
Our results should be easily reproducible as:
e RCDM, is based on the same code as Dhariwal and Nichol [60] (https://github.
com/openai/guided-diffusion) and uses the same hyper-parameters (See Appendix
I of Dhariwal and Nichol [60] for details about the hyper-parameters).
e To obtain our conditional RCDM, one just needs to replace the GroupNormalization
layers in that architecture by a conditional batch normalization layer of Brock et al.
[35] (using the code from https://github.com/ajbrock/BigGAN-PyTorch).

62

https://github.com/openai/guided-diffusion
https://github.com/openai/guided-diffusion
https://github.com/ajbrock/BigGAN-PyTorch

e The self-supervised pretrained models we used to extract the conditioning rep-
resentations were obtained from the model-zoo of VISSL [92] (code from https:
//github.com/facebookresearch/vissl).

e The unconditonal sampling process is straightforward, as explained in Appendix A.2.

e We are working on cleaning and preparing to release any remaining code glue to easily

reproduce the results in this paper.

2.7. Broader impact statement

Our work aims to promote the use of conditional generative models to project back in
image space the internal representation learned by latest and future techniques to train deep
artificial neural networks — in order to better understand their inner workings. Such improved
understanding through qualitative visualizations, in complement with quantitative metrics, is
expected to foster the development of more robust and reliable neural network algorithms.
Controlled generation of realistic images is not the goal and focus of this work, as we merely
use it as a tool for scientific understanding. Yet conditional generative models have already
been and will likely continue to be used and improved to generate fake images, including of
synthesized imaginary situations and people, that we expect will be increasingly realistic and
hard to impossible to distinguish from real photographs. Such technology will be usable for
positive creative pursuits, as well as for voluntarily misleading portrayals of fakes passed as

truths and facts.

63

https://github.com/facebookresearch/vissl
https://github.com/facebookresearch/vissl

Prologue to Article 2

Guillotine Regularization: Why removing layers is needed to improve generaliza-
tion in Self-Supervised Learning, Florian Bordes, Randall Balestriero, Quentin Garrido,

Adrien Bardes, Pascal Vincent, Transactions on Machine Learning Research, May 2023.

This work’s motivation was to better understand why a projector is needed in Self-
Supervised Learning. The projector is often a small multi-layer perceptron (with 2 or 3 layers)
that is added on top of the network during training and that is immediately discarded once
training is done. Discarding the projector is extremely common in Self-Supervised Learning,
however, it breaks one of the core goals of SSL. which is to learn invariant and structured
representations (since the invariance criterion is applied to the projector representation).
As shown in the first article, representations at the backbone level do not satsify well the
desired invariances while the representations taken at the projector level do. Thus, it is a
little vexing that the invariances learned with SSL methods do not offer better projector
representations that perform well on downstream tasks. In this article, we explore when and
how the invariances directly learned by the projector might be useful for downstream tasks.
By empirically demonstrating and evaluating the performances of SSL models across layers,

we establish some guidelines to better evaluate SSL models.

Contribution statement With the exception of the experiment in Figure 2 (which
was done by Quentin Garrido), all the experiments were done by myself as well as most of
the writing. The project was supervised by Pascal Vincent. Randall, Quentin, Adrien, and
Pascal helped me with the writing. I wrote most of the rebuttal for TMLR.

Chapter 3

Article 2: Guillotine Regularization: Why
removing layers is needed to improve

generalization in Self-Supervised Learning

One unexpected technique that emerged in recent years consists in training a Deep Network
(DN) with a Self-Supervised Learning (SSL) method and using this network on downstream
tasks but with its last few projector layers entirely removed. This trick of throwing away
the projector is actually critical for SSL. methods to display competitive performances on
ImageNet for which more than 30 percentage points can be gained that way. This is a little
vexing, as one would hope that the network layer at which invariance is explicitly enforced
by the SSL criterion during training (the last projector layer) should be the one to use for
best generalization performance downstream. But it seems not to be, and this study sheds
some light on why. This trick, which we name Guillotine Regularization (GR), is in fact a
generically applicable method that has been used to improve generalization performance in
transfer learning scenarios. In this work, we identify the underlying reasons behind its success
and show that the optimal layer to use might change significantly depending on the training
setup, the data or the downstream task. Lastly, we give some insights on how to reduce the

need for a projector in SSL by aligning the pretext SSL task and the downstream task.

3.1. Introduction

Many recent self-supervised learning (SSL) methods consist in learning invari-
ances to specific chosen relations between samples — implemented through data-
augmentations — while using a regularization strategy to avoid collapse of the representations
49, 52, 93, 134, 40, 236, 22, 199, 43, 53, 136, 247, 248]. Incidentally SSL learning frameworks
also heavily rely on a simple trick to improve downstream task performances: removing the
last few layers of the trained deep network depicted in Figure la. From a practical viewpoint,

this technique emerged naturally [49] through the search of ever increasing SSL performances.

In fact, on ImageNet [56], such technique can improve classification performances by around

30 points of percentage (Figure 1b).

Although it improves performances in practice, not using the layer on which the SSL
training was applied is unfortunate. It means throwing away the representation that was
explicitly trained to be invariant to the chosen set of data augmentations, thus breaking
the implied promise of using a more structured, controlled, invariant representation. By
picking instead a representation that was produced an arbitrary number of layers above,
SSL practitioners end up relying on a representation that likely contains much more

information about the input [29] than should be necessary to robustly solve downstream tasks.

Although the use of this technique emerged independently in SSL, using intermediate
layers of a neural network—instead of the deepest layer where the initial training criterion
was applied— has long been known to be useful in transfer learning scenarios [232]. Features
in upstream layers often appear more general and transferable to various downstream tasks
than the ones at the deepest layers which are too specialized towards the initial training
objective. This strongly suggests a related explanation for its success in SSL: does removing
the last layers of a trained SSL model improve performances because of a misalignment

between the SSL training task (source domain) and downstream task (target domain)?

In this paper, we examine that question thoroughly. We first place the SSL trick of
removing the projector post-training under the umbrella of a generically applicable method
that we call Guillotine Regularization. We argue that it is important to distinguish
the action of removing layers during evaluation from architecture modifications because
the optimal layer to use for a given downstream task is not always the backbone and
could be intermediate projector’s layers. Then, we explore how changes in the training
optimization, training data and downstream task impact the optimal layer in both supervised
and self-supervised setting. Lastly, we demonstrate that increasing the *alignment® between

the pretext and downstream task in SSL decreases the need to use a projector in SSL.

To summarize, this paper’s main contributions are the following:
e Since the optimal layer to use in Self-Supervised-Learning might not always be the
backbone, we suggest coining the action of removing layer as a general method called
Guillotine Regularization to distinguish it from the architectural modification which

is the addition of a projector.

68

Projector head trick used in SSL
—
S — — = 3
- = 3
3 'c_‘l 2l e x 33 |32 < 60 \
55 15 lBgl| | sl 125 13|l 5
i g ES 7 e AN RS N
N g | = SRIN) NI .
X g ES!* -Jx>HL:>.wurcc X) -J|> §- E>) g 50 —— SSL: Barlow Twins \
£l H 1 L an) fu | B2 8 | — ssLivicreg
| el T E 20! SSL: SimCLR
- —— SSL: Byol
/— — / — = Supervised :
N / t __—Head T j Trunk Head 1 Head 2 Head 3
Layer
() (b)

Fig. 1. a) An illustration of projector head trick used in SSL. During training, a small neural
network named the Head (also coined as projector in the SSL literature [49]) is added on
top of another deep network refereed as the Trunk. This Head can be viewed as a buffer
between the training loss and the Trunk that can absorb any bias related to a ill optimisation.
When using such network on downstream tasks, we throw away the Head. b) We measure
with linear probes the accuracy at different layers on a Resnet50 (as Trunk) (see Figure 3 for
vision transformers) on which we added a small 3-layer MLP (as Head) for various supervised
and self-supervised methods. For each method, we show the mean and standard deviation
across 3 runs (The std between different runs is low). With traditional supervised learning,
there is a significant drop in performances when using the trunk layer instead of the last
projector layer. However, when looking at self-supervised methods, the gap in performances
between the linear probe trained at the trunk and projector can be as high as 30%.

e To show through experiments that the optimal layer to cut heavily depend on the
training optimization, training data and downstream task for both supervised and self-
supervised models. We hope that this result will encourage the research community
to run more systematic evaluations through different layers.

e The need to use Guillotine Regularization in SSL depends heavily on how the positives
views are defined. When these views are aligned with the downstream-task, the

optimal layer to use become closer to the last layer.

3.2. Related work

Self-supervised learning Many recent works on self-supervised learn-
ing [49, 52, 93, 134, 40, 236, 22, 199, 43, 53, 136, 247, 248] rely on the addition of
few non linear layers (MLP) — termed projection head — on top of a well established neural
network — termed backbone — during training. This addition is done regardless of the neural
network used as backbone, it could be a ResNet50 [96] or a Vision Transformer [67]. After
training, the projector is usually threw away to evaluate the model using the backbone
representation. Even if Chen et al. [50] demonstrated that the optimal layer to use might not

always be the backbone when using few labelled data, most recent works introducing new

69

SSL methods have continued to use only the backbone for evaluation. Some works also tried
to understand why a projection head is needed for self-supervised learning. Appalaraju et al.
[6] argue that the nonlinear projection head acts as filter that can separate the information
used for the downstream task from the information useful for the contrastive loss. In order to
support this claim, they used deep image prior [205] to perform features inversion to visualize
the features at the backbone level and also at the projector level. They observe that features
at the backbone level seem more suitable visually for a downstream classification task than
the ones at the projector level. Another related work [29] similarly tries to map back the
representations to the input space, this time by using a conditional diffusion generative
model. The authors present visual evidence confirming that much of the information about a
given input is lost at the projector level while most of it is still present at the backbone level.
Another line of work tries to train self-supervised models without the use of a projector. Jing
et al. [117] shows that by removing the projector and cutting the representation vector in
two parts, such that a SSL criteria is applied on the first part of the vector while no criterion
is applied on the second part, improves considerably the performances compared to applying
the SSL criteria directly on the entire representation vector. This however works mostly
thanks to the residual connection of the resnet. In contrast with these approaches, our work
focus on identifying which components of traditional SSL training pipelines can explain why
the performances when using the final layers of the network are so much worse than the
ones at the backbone level. This identification will be key for designing future SSL setups in
which the generalisation performance doesn’t drop drastically when using the embedding

that the SSL criterion actually learns.

Transfer learning The idea of using the intermediate layers of a neural network is
very well known in the transfer learning community. Work like Deep Adaptation Network
[144] freeze the first layers of a neural network, fine-tune the last layers while adding a head
which is specific for each target domain. The justification behind this strategy is that deep
networks learn general features [45, 24, 26|, especially the ones at the first layers, that may
be reused across different domain [232]. Oquab et al. [161] demonstrate that when limited
amount of training data are available for the target tasks, using the frozen features extracted
from the intermediate layers of a deep network trained on classification can help solve object
and action classification tasks on other datasets. Another line of work on training with
random or noisy labels also studied how the use of intermediate layers improves significantly
downstream performances [149] while Baldock et al. [16] introduced a measure of example
difficulty that leverages the number of intermediate layers that are aligned towards a given
prediction. In this paper, we show that SSL trained models fall under the realm of transfer
learning, in consequence we can expect that all the observations made in the transfer learning

literature about the use of intermediate layers are also valid for SSL. When viewing the

70

projector SSL trick and cutting layer for transfer as a general machine learning trick to
improve generalization, it’s not surprising anymore that work as Wang et al. [219], Sariyildiz
et al. [182] have been able to show that adding a projector can also be highly beneficial for

supervised training.

Out of distribution (OOD) generalization. Kirichenko et al. [123] demonstrates that retraining
only the last layer with a specific reweighting helps to "forget" the spurious correlations that
were learned during the training. Such work emphasizes that most of the spurious correlation
due to the training objective is contained in the last layers of the network. Thus, retraining
them is essential to remove such spurious correlation and generalize better on downstream
tasks. Similarly Rosenfeld et al. [172] show that retraining only the last layers is most of
the time as good as retraining the entire network over a subset of downstream tasks. Lastly,
Evci et al. [77] demonstrates the usefulness of using intermediate layers for OOD. Our study
also confirms that Guillotine Regularization show important properties with respect to OOD

generalization.

3.3. Guillotine Regularization: A regularization scheme

to improve generalization of deep networks

In this section, we provide a definition for Guillotine Regularization. Then, through
experiments, we show that the optimal layer to use changes significantly depending on
different factors. Finally, we show that the performances at a given layer are not always

correlated with the performances one can have at another layer.

3.3.1. (Re)Introducing Guillotine Regularization From First Princi-
ples

We distinguish between a source training task with its associated training set, and
a target downstream task with its associated dataset!. It is the performance on the
downstream task that is ultimately of interest. In the simplest of cases both tasks could be
the same, with their datasets sampled i.i.d. from the same distribution. But more generally
they may differ, as in SSL or transfer learning scenarios. In SSL we typically have an
unsupervised training task, that uses a training set with no labels, while the downstream task
can be a supervised classification task. Also note that while the bulk of training the model’s
parameters happens with the training task, transferring to a different downstream task will
require some additional, typically lighter, training, at least of a final layer specific for that
task. In our study we will focus on the use of a representation computed by the network

trained on the training task and then frozen, which gets fed to a simple linear layer that will

ITerminology pretext-training / downstream comes from SSL, while source / target is used in transfer learning

71

be tuned for the downstream task. This "linear evaluation" procedure is typical in SSL and
aims to evaluate the quality /usefulness of an unsupervised-trained representation. Our focus
is to ensure good generalization to the downstream task. Note that training and downstream

tasks may be misaligned in several different ways.

Informally, Guillotine Regularization consists in the following: for the downstream
task, rather than using the last layer (layer L) representation from the network trained
on the training task, instead use the representation from a few layers above (layer ¢, with
t < L). We thus remove a small multilayer "head" (layers t + 1 to L) of the initially trained

network, hence the name of the technique. We call the remaining part (layers 1 to t) the trunk?.

Formally, we consider a deep network that takes an input X and computes a sequence
of intermediate representations Hj, ..., H; through layer functions fV, ... f(X) such that
Hy = fO(H,_,), starting from Hy = X. The entire computation from input X to last layer

representation H; is thus a composition of layer functions®:

H, = f6,¢>(X) — (f(L) O...of(t+1)of(t) o-~~of(1))(X)

head f;:Ll:L trunk fgl:t

The parameters 6 and ¢ of trunk f}* and head f;H:L are then trained on the entire training
set of examples X®°"® of the training task (optionally with associated targets YY" that we
may have in transfer scenarios, but will typically be absent in SSL), to minimize the training

task objective L3°"e:

A

07 é = arg min Lsource(fé+1:L(f91:t(Xsource>)7 Ysource)
0,6

Then the multilayer head f;fl:L is discarded, we add to the trunk a (usually shallow) new
head s,, and we train its parameters w, using the training set of examples for the downstream

task (Xtareet ytarset) to minimize the downstream task objective Ltareet:

W = arg ur}nin Lmeet(s,, (- flt(Xtareery) ytareet
—

representation Htarget

%head / trunk are also known as projection head / backbone in the SSL literature

3Precisely, a 'layer function' f® can correspond to a standard neural network layer (fully-connected,
convolutional) with no residual or shortcut connections between them, or to entire blocks (as in densenet, or
transformers) which may have internal shortcut connections, but none between them.

72

SimCLR Supervised

0.12 4 0.12

R —— Floor hue
"""" Fao —— Spot hue
‘x\\ —— Spot ¢
0104 0.10 4 \\ —% Spot 6
N

%~ Object rotation

0.08 4 0.08

0.06

Validation MSE

Validation MSE

0.04 1 0.04 4
= Floor hue

—»— Spot hue
~»— Spot ¢

—— Spot 6

—— Object rotation

& J o el 3 v <
& N O 0 N & kS S S
& © " & & & &

Layers Layers

Fig. 2. Training a linear regression to predict latent variables from pooled intermediate
representations of a network trained with a self-supervised objective (using SimCLR) or a
supervised objective (trained to predict 3D rotations of an object). The data used consists of
renderings of 3d objects from 3D Warehouse [202] where we control the floor, lighting and
object pose with latent variables, see samples on the right. The dimension of the intermediate
representations increases throughout the layers and is kept constant in the head, if there is
one. In the supervised setting, when looking at the Validation Mean Squared Error for object
rotations prediction, the lowest error is obtained with the linear probe at the last layer of the
neural networks. In contrast, the lowest error for other attributes like the Spot 6 prediction
are obtained with the linear probes localized 3,4 or 5 layers before the output of the networks.
In the self-supervised setting, we also see that the predictor is responsible for a lot of the
invariance to augmentation, and that the information is most easily retrievable before it.
These results highlight the need to use Guillotine Regularization i.e removing the last layers
of the neural network to generalize better on other tasks.

3.3.2. An empirical analysis of situations in which cutting layers is

benetficial

There are several situations that can create a misalignment between a training and a

downstream task. Here we name of few:

Misalignment between the training (source) and downstream (target) task
while using the same input data distribution. The potential effectiveness of GR
for transfer is not surprising since this technique has been used for years in the transfer
learning research literature [232] to improve generalization across different tasks. As a simple
illustration, we present Figure 2 which show how much performances on a given task can
vary depending on which layer has been chosen as features extractor. In this figure, we used
an artificially created object dataset in which we are able to play with different factors of
variations. The dataset consists of renderings of 3D models from 3D warehouse [202]. Each

scene is built from a 3D object, a floor and a spot placed on top of the object to add lighting.

73

This allows us to control every factor of variation and produce complex transformations
in the scene. We vary the rotation of the object defined as a quaternion, the hue of the
floor, and the spot hue as well as it position on a sphere using spherical coordinates. We
provide more details on the dataset and rendering samples in the appendix. We observe
in Figure 2 that when training a supervised model on the object rotation prediction task
and evaluating the linear probe on the same task across different layers, the best results are
obtained on the last layer. However, when using the same frozen neural network to predict
other attributes like the Spot 6, the best performances are obtained few layers before the last
one. Similarly, when training with a self-supervised objective (SimCLR), we can see that the
different factors of variation are most easily retrievable before the projector. This means that
representations before the projector will be more versatile as they will contain information
that was removed by the pretraining task. For example if our downstream task is to predict
the rotation, the representation at block4 will be optimal while if the downstream task is
to predict the spot hue, the representation at the block 3 will be optimal. Such results
highlight the need to use Guillotine Regularization when there is a shift in the prediction

task. Moreover, the optimality of a layer depends on the downstream task.

Misalignment due to badly optimized network It can be expected that the
optimal layer to use to train a downstream task readout function might be different

depending on how much the pretrained network is overfitting on the pretext task.

To test this hypothesis, we train a headed supervised sl

N
=)

Resnet50 on ImageNet with two different types of

-3
=)

optimization. The first one uses only AdamW with
a small learning rate of le — 4 without any additional '\
/.\

=== ImageNet

Top-1 Val Accuracy
- o
-

w
=]

regularization. The second one uses SGD and

— TmageNet1%

8 o
the recommended hyper-parameters for supervised 20 iy
= Places205
. 10 T
training (with cycling learning rate, weight decay, Trunk Fead1 Head2 Fead3

Layer

and momentum). In Figure 3a, we observe that the
Fig. 4. SimCLR: Linear probe

accuracy on several downstream
tasks. The optimal layer to cut
that are very close across different layers. However, is not the same for different

when looking at the well-regularized model with downstream tasks.
SGD which does not overfit on the task, the readout

performances across layers vary significantly. In a second experiment, we study more in-depth

AdamW trained network that is overfitting on the

classification task has readout function performances

the effect of overfitting by training the Resnet50 over only a random subset of 250 classes.
Then we use the remaining 750 classes as an OOD validation set that is split randomly
in other subset of 250 classes. In Figure 3b, we clearly see that the training readout is

overfitting on the training set while the readout performances across layers are similar on the

74

90 T —_—_ -8 — — Training split /.
-~ 95 - . 7
PR - Validation split - 30
> -
g 8s / & 90 -
-
2 7 5 == g
g 80 // g 85 Validation splits with new classes 8 60
< y < —— Split 1 Split3 = Split 5 2
- - N P N]
% 75 // - % 80/ Split 2 Split 4 Split 6 é
= =
3 gt S *— > a0
z70 2 T — z75 ‘\ & = ImageNet
g 4 g’] === [mageNet 1%
£ 65 24 E 70 ‘ \ 20 Eurosat
= 7 =
7 wemms CIFAR10
60l ,7 — Wellregularized || == Training 65 \ === CLEVR
7 == Badly regularized @ === Validation = Places205
Trunk Head 1 Head 2 Head 3 Trunk Head 1 Head 2 Head 3 Trunk Head 1 Head 2 Head 3
Layer Layer Layer
(a) Training setups (b) Random split (c) Downstream tasks

Fig. 3. Supervised: The optimal layer to cut might change depending of the training
optimization, the data and the downstream task. The best accuracy for each curve is show
as a big square. For each experiments, we trained a headed supervised Resnet50 over ImageNet
(with a 3 layer MLP as projection head). For a) and c) we trained this network over the full training
set whereas for b) we use a random subset of 250 classes. Then, we froze the model parameters
and trained linear probes over representation at different layers. a) We trained two models with
different optimization pipeline: the first one in blue was trained with SGD using a cycling learning
rate, along with momentum and weight decay. The second one in gray was trained with AdamW
without additional regularization. This model is overfitting on the training set, which leads to similar
validation performances across the backbone and projector. In contrast, the first one generalize
much better but the performances across layers change significantly. b) Validation accuracy given
by linear probes on different random subset of 250 ImageNet’s classes for each layers. The validation
split in gray corresponds to the same subset of classes that was used for training whereas Split 1-6
corresponds to different OOD random split. In this instance, we see that the optimal layer to use
is the first layer of the projector. ¢) Validation performances on different downstream tasks. We
have used the well regularized model from a) and evaluate it across different downstream tasks. For
some datasets, the optimal layer to use is the last one, while for some other the optimal layer is the
second layer of the projector.

corresponding in distribution validation set (which is similar to the previous experiment over
the full ImageNet). Then, we train linear probes over the OOD splits and observe that the
performances are radically different from the in distribution validation set. In fact, in this
instance the best layer to use for every of these split is the backbone layer whereas the best
layer to use for the in-distribution split is the projector layer. This result highlights that
the optimal layer to discard can vary depending on the optimization techniques
and downstream data distribution, even when the same training objective is

used.

Misalignment between the training and downstream tasks while using different
data distributions. When using a pretrained model to predict new classes, there is a
bias in the data distribution as well as in the fine-tuning objective (with respect to the

training settings). We did a first experiment in Figure 3¢ in which we train a supervised

75

Resnet50 over ImageNet. Then, we freeze the weights of the model and train a linear probe
over ImageNet [56], CIFAR10 [127], Place205 [246], CLEVR [118] and Eurosat [101] at
different layers. We observe that the readout performances on ImageNet are the best at the
last layer but for datasets like CLEVR or Place205 the best performances are obtained at
the second projector layer. In Figure 4, we performed the same experiment but this time
using SimCLR. In this instance, the best performances for ImageNet are obtained at the
backbone whereas the best performances for Eurosat, CLEVR and Imagenet 1% are obtained
at the first projector layer. This result challenges the common practice of discarding

the entire projector in SSL since the layers to cut depend on the downstream task.

Misalignment between the training input data distribution and testing input
data distribution while using the same training and downstream tasks. Another
type of bias can arise when using a wrongful data distribution after training of the model.

This scenario is often referred to Out Of Distribution Head 3 ‘ Head 2 ‘ Head 1 ‘ Trunk ‘

(OOD) since the distribution of the data used by the ~ 749 ‘ 58.8 ‘ 58.0 ‘ 63.3 ‘

model becomes different from the one seen during Table 1. ImageNet-C mCE (unor-

training. We took the supervised model trained malized) across layers.

on ImageNet along with the linear probe trained

at different layers and evaluate the performances of these readouts on ImageNet-C [102]
which is a modified version of the validation set of ImageNet on which different data
transformations were applied. Our experiment in Table 1 demonstrates that the performances
are better after cutting two layers from the head of the network which highlight that it

might be a good practice to probe intermediate representations when evaluating on OOD tasks.

3.3.3. The readout performances at the projector and backbone

level are not always correlated

In Figure 5 we study the effect of Guillotine Regularization with respect to an hyper-
parameter grid search for various SSL methods (SimCLR, Barlow Twins and Byol). When
looking at the performances on ImageNet using a linear probe at the backbone level, one
can observe an almost stable classification task performance for different hyper-parameters
such as SimCLR temperature, Barlow Twins and Byol learning rate while the corresponding
performances at the projector level change significantly. This highlights that the performances
at the projector level are not always correlated with the performances at the backbone level.
In consequence, knowing the performances of a linear probe at the projector level cannot give

in advance insights about the performances at the backbone level.

76

[=2)
=)

=)
=)
o
a

v —

—— Backbone .

—— Projector
[2

./.*‘/\‘\.

—— Backbone
B) —— Projector

R
0.2 0.4 0.6 06 0.7 08 09 1.0 25 0.5 0.75 1 2.5 5 7.5 04 0.6 0.7 0.8 1.0 1.5 1.7
SimCLR: Temperature Byol: Momentum Teacher Barlow Twins: AdamW Learning Rate (1e-3) Byol: LARS Learning Rate

(a) SimCLR (b) Byol (c) Barlow Twins (d) Byol

/,/& — 0 —o 0 o

—— Backbone
—— Projector

o
(=)
a

%)) =2} (=2}
=] o

(=2}
=)

&)
(=]
'
(=]

w
=
wooa
a_ o

>
(=]
a
=

.

o |
® e

N
=)

ImageNet Top-1 Accuracy
-
=)

ImageNet Top-1 Accuracy

—— Backbone
—— Projector

ImageNet Top-1 Accuracy
- o
a a

ImageNet Top-1 Accuracy

@
.

w
2]}

w

=)
[
=]

Fig. 5. The performances at the projector level aren’t always correlated with
the performances at the backbone level. We train SimCLR, Barlow Twins and Byol
with different hyper-parameters and evaluate with a linear prob, the performances at the
backbone but also at the projector level on ImageNet classification task. For each model,
we observe that the accuracy given by the linear probe at the backbone level isn’t always
correlated with the performance at the projector level.

3.4. Reducing the Need for a Projector in Self-
Supervised Learning by increasing the alignment
with the downstream task

Self-Supervised Learning is often considered a distinct learning paradigm in between
supervised and unsupervised learning. In reality, the distinction is not as sharp, and much of
SSL can be understood as solving a pretext-tasks akin to a supervised task[224, 120], merely
with pseudo-labels obtained in another way than by human annotation. In this section,
we show that different data selection process in SSL influences the alignment between the
downstream and pretext task, which heavily impact the need of using a projector head in
SSL.

To confirm the hypotheses that SSL methods need to use a projector because of a
misalignement between the pretext and downstream task, we have to verify that reducing
this misalignement, results in reducing the performance gap between the Trunk and Head
representations. Ideally, we would like to get close to the supervised scenario in Figure 1 for
which the optimal readout function is obtained at the last layer. To do so, we devise two
experimental setups in which we replace the traditional data augmentation pipeline used
in SSL, which consists of using handcrafted augmentation on each image to create a set of
pairwise positive samples.

In the first setup, while using the exact same SSL criterion (SimCLR), we
use as positive examples pairs of images that belong to the same class, and as
negative examples images that don’t belong to the same class. Note that the SSL

training criteria will push towards a collapse in the representation space of all the images

7

20

" L1 L]
., N _Ei=N_

-10 I

mmm Normal Data Aug.
[} KNN Data Aug.

|
N
(=)

Backbone Acc. - Projector Acc.

—30 mmm Class Data Aug.
‘ $ 3 o S SN
§ FF ST S
S S
& S O & O 4 &
Datasets

Fig. 6. Difference in accuracy with linear probing between the projector and backbone repre-
sentation with different alignments with respect to the classification downstream task. In this
experiment we used SimCLR and we change how the positive pair are defined to better aligned with
a classification downstream task. In blue, our baseline, we trained SimCLR with the traditional SSL
data augmentations which defines the positive view as two augmentations of a same image. In orange,
we use the embedding of a pretrained model to define the positive pair as two nearest neighbors
under a pretrained model (while using the same data augmentation as the baseline). In green, we use
a supervised class label selection to define the positive examples. In this scenario, SimCLR should
learn to produces similar embedding to all images belonging to a given class. All three models are
trained on ImageNet (IN1K), then we evaluate them with a linear probe across a wide range of
downstream tasks at the backbone and projector level and show the difference in accuracy between
both. When the difference is positive, the accuracy at the backbone level is higher than
the one at the projector level, highlighting the benefits of Guillotine Regularization. In
contrast when the difference is negative, the accuracy at the projector level is higher
than the one at the backbone level. In this instance, Guillotine Regularization is not
needed. When positives pairs are defined as belonging to a given class, there is no misalignment
with the imagenet classification downstream task. Thus on ImageNet-1K, ImageNet1k-10P (10% of
the training set to train the linear probe) and ImageNet1k-1P (1% of the training set to train the
linear probe), we observe that the performances at the projector level are much higher than the
ones at the backbone level. Interestingly, the nearest neighbors heuristic reduces considerably the
impact of Guillotine Regularization across several downstream tasks.

belonging to the same class, while pushing further apart the different class clusters. By doing
so the training SSL objective becomes perfectly aligned with the downstream classification

task, despite using a SSL training criteria instead of a traditional cross entropy loss.

In the second setup, we use as positive pairs the closest neighbors found
by a pretrained SSL model trained with the traditional SSL handcrafted data
augmentation pipeline. The reasoning is that if instead of considering each image of the

dataset as its own specific class, we use clusters of many images to define the positive pairs, we

78

Z pesH € pesH

| pesH

Fig. 7. In this figure, we used RCDM [31], a conditional generative model to visualize what
information is decodable at different layers. The leftmost column of images (before the red line)
is the conditioning image that was used to compute the representation that is fed to RCDM. The
subsequent columns are samples generated by the model using this representation. The first row
correspond to the last projector layer, the second row to the second projector layer, the third one to
the first projector layer and the last row to the backbone layer. As show in Figure 6, changing the
alignment with the pretext task change significantly the information encoded by the neural network.
When using SSL augmentations at the projector level, the information about the dog’s breed seem
to have been lost whereas when looking at a network trained with supervised augmentations, the
information is preserved throughout each layers.

might be able to close the gap with respect to a supervised baseline without the need of labels.

In Figure 6, we show the differences in accuracy between the backbone and the projector
with respect to these two new data augmentation scenarios. The baseline, using the
traditional SimCLR positive pairs based on data augmentations is in blue, the nearest
neighbors setup in orange and the class based setup in green. We observe for SimCLR
that using the nearest neighbors based heuristic is helping in reducing the gap between
the pretext and downstream task while having a purely supervised heuristic to define the
positive pair is removing the need to perform Guillotine Regularization across several
downstream tasks. Hence confirming the hypothesis that the effectiveness of a projector

depends of the alignment between the pretext and downstream task in self-supervised learning.

3.4.1. Visualizing the information across layers for different align-

ments

In this section, we use RCDM [31], a conditional generative model to visualize what

information is retain or not in the representation. We train RCDM on ImageNet with blurred

79

faces[229], using the representation given by a SimCLR model trained on handcrafted SSL
views and another which was trained on class based views. In Figure 7, we show that when
looking at different decoding corresponding to different layers in the network, the information
encoded vary a lot depending on the layer to use. When going deeper, RCDM is not able
to reconstruct as much as information about the images than when using the backbone
representation (which contain much more low level features). When looking at the generated
samples that were conditioned on the representation of the model trained with supervised
views, we observe that the breed of the dog stay the same across layers. However when using
traditional data augmentations, the information about the specific golden retriever breed is
lost in the last projector layers. This is correlated with the fact that this model get lower

classification performances when using the projector.

3.4.2. Experimental details

We use Pytorch [163] and FFCV-SSL [32, 129] as data loader. All the experiments were
performed with a Resnet50 [96] (except if mentioned otherwise) as backbone. For each model,
we use a batch of size 2048 and AdamW [145] as optimizer with an adaptive learning rate
schedule. We run the training for 100 epochs. For each model, we add as head a small MLP
of 3 layers of size 2048 (same dimension as the backbone) with ReLLU [86] as activation and
batch normalization [113]. When training different SSL methods, we always used the same
set of data augmentations (with cropping, color-jitter, random grayscale, gaussian blur and

solarization).

3.5. Conclusion

Through empirical evaluations, we demonstrated that the optimal layer to use for down-
stream evaluation vary depending on several factors: optimization, data and downstream task.
These results highlight the need for SSL practitioners to run systematic evaluations at several
layers instead of using always the backbone as reference. We also demonstrated that the use
of a projector in SSL depends on the alignment between the downstream and pretext task.
Despite, its usefulness, having to rely on a trick like Guillotine Regularization to increase
performances reveals an important shortcoming of current self-supervised learning methods:
the inability to design experimental setups and training criteria that learn structured and
truly invariant representations with respect to an appropriate set of factors of variation. As
future work, in order to escape from Guillotine Regularization, we should focus on finding
new training criteria and data augmentations that will be more aligned with the downstream

tasks of interest.

80

Prologue to Article 3

Do SSL Models Have Déja Vu? A Case of Unintended Memorization in
Self-supervised Learning, Casey Meehan*, Florian Bordes*, Pascal Vincent, Kamalika

Chaudhurivt, Chuan Guot, Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS 2023) *

Kamalika and Chuan wanted to explore the use of conditional generative models (like
RCDM) for assessing how much SSL methods are memorizing their training data. Casey,
advised by Kamalika and Chuan, started to work on this project for his internship at Meta.
Casey asked me and Pascal to provide guidance and feedback concerning the use of RCDM
to reconstruct the training data memorized by SSL methods. The main hypothesis behind
this project was that SSL representations are much richer than supervised representations.
In consequence, it might be easier to extract private information from a pre-trained SSL
model than a supervised one. In this article, we showed that indeed some SSL methods are
extremely vulnerable to specific attacks and that it is even possible to reconstruct extremely

specific information about the training data.

Contribution statement The early phase of this project was done by Casey during
his internship while I had a more advisory role concerning the use of RCDM. However,
after Casey’s internship ended, I took the lead role in the project by running additional
experiments to strengthen our contributions. I contributed to having a fine-grained analysis
of memorization with respect to different SSL criteria, Guillotine regularization, number of
parameters, and architecture. Lastly, I suggested and implemented the Déja Vu score to have
a single number to measure memorization in SSL models. I also wrote a significant part of

the NeurIPS rebuttal and added the fine-tuning experiments.

4 denotes equal contribution and 1 denotes equal direction contribution.

Chapter 4

Article 3: Do SSL Models Have Déja Vu? A
Case of Unintended Memorization in

Self-supervised Learning

Self-supervised learning (SSL) algorithms can produce useful image representations by learning
to associate different parts of natural images with one another. However, when taken to
the extreme, SSL models can unintendedly memorize specific parts in individual training
samples rather than learning semantically meaningful associations. In this work, we perform
a systematic study of the unintended memorization of image-specific information in SSL
models—which we refer to as déja vu memorization. Concretely, we show that given the
trained model and a crop of a training image containing only the background (e.g., water,
sky, grass), it is possible to infer the foreground object with high accuracy or even visually
reconstruct it. Furthermore, we show that déjd vu memorization is common to different
SSL algorithms, is exacerbated by certain hyperparameter choices, and cannot be detected
by conventional techniques for evaluating representation quality. Our study of déja vu
memorization reveals previously unknown privacy risks in SSL models, as well as suggests

potential practical mitigation strategies.

4.1. Introduction

Self-supervised learning (SSL) [49, 51, 236, 23, 40, 98] aims to learn general representations
of content-rich data without explicit labels by solving a pretext task. In many recent
works, such pretext tasks rely on joint-embedding architectures whereby randomized image
augmentations are applied to create multiple views of a training sample, and the model is
trained to produce similar representations for those views. When using cropping as random
image augmentation, the model learns to associate objects or parts (including the background
scenery) that co-occur in an image. However, doing so also arguably exposes the training

data to higher privacy risk as objects in training images can be explicitly memorized by the

Private SSL Training Image Public SSL Validation Image

—-

Reconstruction
using public data

Reconstruction
using public data

cropping cropping

Fig. 1. Left: Reconstruction of an SSL training image from a crop containing only the
background. The SSL model memorizes the association of this specific patch of water (pink
square) to this specific foreground object (a black swan) in its embedding, which we decode
to visualize the full training image. Right: The reconstruction technique fails on a public
test image that the SSL model has not seen before.

SSL model. This may allow an adversary to extract such information from the trained model

for targeted individuals.

In this work, we aim to evaluate to what extent SSL models memorize the association of
specific objects in training images or the association of objects and their specific backgrounds,
and whether this memorization signal can be used to reconstruct the model’s training
samples. Our results demonstrate that SSL models memorize such associations beyond simple
correlation. For instance, in Figure 1 (left), we use the SSL representation of a training image
crop containing only water and this enables us to reconstruct the object in the foreground
with remarkable specificity—in this case a black swan. By contrast, in Figure 1 (right),
when using the crop from the background of a test set image that the SSL model has not seen
before, its representation only contains enough information to infer, through correlation, that

the foreground object was likely some kind of waterbird — but not the specific one in the image.

Figure 1 shows that SSL models suffer from the unintended memorization of images
in their training data—a phenomenon we refer to as déja vu memorization ' Beyond
visualizing déja vu memorization through data reconstruction, we also design a series of
experiments to quantify the degree of memorization for different SSL algorithms, model
architectures, training set size, etc. We observe that déja vu memorization is exacerbated by
the atypically large number of training epochs often recommended in SSL training, as well
as certain hyperparameters in the SSL training objective. Perhaps surprisingly, we show

that déja vu memorization occurs even when the training set is large—as large as half of

'The French loanword déja vu means ‘already-seen’, just as an image is seen and memorized in training.

84

ImageNet [57]—and can continually worsen even when standard techniques for evaluating
learned representation quality (such as linear probing) do not suggest increased overfitting.
Our work serves as the first systematic study of unintended memorization in SSL mod-

els and motivates future work on understanding and preventing this behavior. Specifically, we:

e Elucidate how SSL representations memorize aspects of individual training images, what
we call déja vu memorization;

e Design a novel training data reconstruction pipeline for non-generative vision models. This
is in contrast to many prominent reconstruction algorithms like [37, 38|, which rely on the
model itself to generate its own memorized samples and is not possible for SSL models or
classifiers;

e Propose metrics to quantify the degree of déja vu memorization committed by an SSL
model. This allows us to observe how déja vu changes with training epochs, dataset size,

training criteria, model architecture and more.

4.2. Preliminaries and Related Work

Self-supervised learning (SSL) is a machine learning paradigm that leverages unlabeled
data to learn representations. Many SSL algorithms rely on joint-embedding architectures
(e.g., SImCLR [49], Barlow Twins [236], VICReg [23] and Dino [42]), which are trained to
associate different augmented views of a given image. For example, in SimCLR, given a set of
images A = {A;,...,A,} and a randomized augmentation function aug, the model is trained
to maximize the cosine similarity of draws of SSL(aug(4;)) with each other and minimize
their similarity with SSL(aug(A;)) for ¢ # j. The augmentation function aug typically
consists of operations such as cropping, horizontal flipping, and color transformations to

create different views that preserve an image’s semantic properties.

SSL representations. Once an SSL model is trained, its learned representation can be
transferred to different downstream tasks. This is often done by extracting the representation
of an image from the backbone model® and either training a linear probe on top of this
representation or finetuning the backbone model with a task-specific head [30]. It has
been shown that SSL representations encode richer visual details about input images than
supervised models do [29]. However, from a privacy perspective, this may be a cause for
concern as the model also has more potential to overfit and memorize precise details about

the training data compared to supervised learning. We show concretely that this privacy risk

23SL methods often use a trick called guillotine regularization [30], which decomposes the model into two
parts: a backbone model and a projector consisting of a few fully-connected layers. Such trick is needed to
handle the misalignment between the pretext SSL task and the downstream task.

85

can indeed be realized by defining and measuring déja vu memorization.

Privacy risks in ML. When a model is overfit on privacy-sensitive data, it memorizes
specific information about its training examples, allowing an adversary with access to
the model to learn private information [231, 78]. Privacy attacks in ML range from
the simplest and best-studied membership inference attacks [186, 178, 175] to attribute
inference [79, 151, 116] and data reconstruction [37, 18, 94] attacks. In the former, the
adversary only infers whether an individual participated in the training set. Our study
of déja vu memorization is most similar to the latter: we leverage SSL representations of
the training image background to infer and reconstruct the foreground object. In another
line of work in the NLP domain [36, 37]: when prompted with a context string present in
the training data, a large language model is shown to generate the remainder of string at
test time, revealing sensitive text like home addresses. This method was recently extended
to extract memorized images from Stable Diffusion [38]. We exploit memorization in a
similar manner: given partial information about a training sample, the model is prompted to
reveal the rest of the sample.® In our case, however, since the SSL model is not generative,

extraction is significantly harder and requires careful design.

4.3. Defining Déja Vu Memorization

What is déja vu memorization? At a high level, the objective of SSL is to learn general
representations of objects that occur in nature. This is often accomplished by associating
different parts of an image with one another in the learned embedding. Returning to our
example in Figure 1, given an image whose background contains a patch of water, the model
may learn that the foreground object is a water animal such as duck, pelican, otter, etc., by
observing different images that contain water from the training set. We refer to this type of
learning as correlation: the association of objects that tend to co-occur in images from the

training data distribution.

A natural question to ask is “Can the reconstruction of the black swan in Figure 1 be
reasoned as correlation?” The intuitive answer may be no, since the reconstructed image is
qualitatively very similar to the original image. However, this reasoning implicitly assumes
that for a random image from the training data distribution containing a patch of water,
the foreground object is unlikely to be a black swan. Mathematically, if we denote by P the
3We recognize that it is easier to find a context string that might have been in the training data of a large
language model than to find the exact pixels that constitute a crop of a training image. However, this paper

focuses on revealing a memorization phenomenon in SSL and does not aim to provide a complete picture of
all the privacy risks that it might entail.

86

training data distribution and A the image, then
Peorr := Pa~p(object(A) = black swan | crop(A) = water)

is the probability of inferring that the foreground object is a black swan through
correlation. 'This probability may be naturally high due to biases in the distribution
P, e.g., if P contains no other water animal except for black swans. In fact, such cor-

relations are often exploited to learn a model for image inpainting with great success [234, 204].

Despite this, we argue that reconstruction of the black swan in Figure 1 is not due to
correlation, but rather due to unintended memorization: the association of objects unique to
a single training image. As we will show in the following sections, the example in Figure 1 is
not a rare success case and can be replicated across many training samples. More importantly,
failure to reconstruct the foreground object in Figure 1 (right) on test images hints at inferring
through correlation is unlikely to succeed—a fact that we verify quantitatively in Section
4.4.1. Motivated by this discussion, we give a verbal definition of déjd vu memorization below,

and design a testing methodology to quantify déja vu memorization in Section 4.3.1.

Definition: A model exhibits déja vu memorization when it retains information so specific
to an individual training image, that it enables recovery of aspects particular to that image
given a part that does not contain them. The recovered aspect must be beyond what can

be inferred using only correlations in the data distribution.

We intentionally kept the above definition broad enough to encompass different types of
information that can be inferred about the training image, including but not restricted to
object category, shape, color and position. For example, if one can infer that the foreground
object is red given the background patch with accuracy significantly beyond correlation,
we consider this an instance of déja vu memorization as well. We mainly focus on object
category to quantify déja vu memorization in Section 4.4 since the ground truth label can
be easily obtained. We consider other types of information more qualitatively in the visual

reconstruction experiments in Section 4.5.

Distinguishing memorization from correlation. When measuring déja vu memo-
rization, it is crucial to differentiate what the model associates through memorization and
what it associates through correlation. Our testing methodology is based on the following

intuitive definition.

87

Models/Train sets Inference pipeline

Target Reference

set/model set/model P

Train image A, € A Find nearest neighbors il label:

inference ‘black swan’
Public
set X md SSL, SSL,(X)
\ Get KNN ¥ ‘,

subset of X

SSLy

with labels

L o / black black black
e e,

periphery
cropping
crop(4,)

Disjoint set
for inference

WR@

Fig. 2. Overview of testing methodology. Left: Data is split into target set A, reference
set B and public set X that are pairwise disjoint. A and B are used to train two SSL models
SSL 4 and SSLp in the same manner. & is used for KNN decoding or for training an RCDM
to reconstruct the input at test time. Right: Given a training image A; € A, we use SSL 4
to embed crop(A4;) containing only the background, as well as the entire set X and find the
k-nearest neighbors of crop(4;) in X in the embedding space. These KNN samples can be
used directly to infer the foreground object (i.e., class label) in A; using a KNN classifier,
or their embeddings can be averaged as input to the trained RCDM to visually reconstruct
the image A;. For instance, the RCDM reconstruction results in Figure 1 (left) when given
SSL4(crop(A;)) and results in Figure 1 (right) when given SSL 4(crop(B;)) for an image
B; € B.

Definition: If an SSL model associates two parts in a training image, we say that it is due
to correlation if other SSL models trained on a similar dataset from P without this image

would likely make the same association. Otherwise, we say that it is due to memorization.

Notably, such intuition forms the basis for differential privacy (DP; Dwork et al. [70], Dwork
and Roth [69])—the most widely accepted notion of privacy in ML.

4.3.1. Testing Methodology for Measuring Déja Vu Memorization

In this section, we use the above intuition to measure the extent of déja vu memorization

in SSL. Figure 2 gives an overview of our testing methodology.

Dataset splitting. We focus on testing déja vu memorization for SSL models trained
on the ImageNet-1K dataset [57]. Our test first splits the ImageNet training set into three
independent and disjoint subsets A, B and X. The dataset A is called the target set and
B is called the reference set. The two datasets are used to train two separate SSL models,
SSL 4 and SSLp, called the target model and the reference model. Finally, the dataset set X
is used as an auxiliary public dataset to extract information from SSL, and SSLg. Our
dataset splitting serves the purpose of distinguishing memorization from correlation in the

following manner. Given a sample A; € A, if our test returns the same result on SSL 4

38

and SSLp then it is likely due to correlation because A; is not a training sample for SSLp.
Otherwise, because A and B are drawn from the same underlying distribution, our test must
have inferred some information unique to A; due to memorization. Thus, by comparing the
difference in the test results for SSL4 and SSLpg, we can measure the degree of déja vu

memorization?.

Extracting foreground and background crops. Our testing methodology aims
at measuring what can be inferred about the foreground object in an ImageNet sample
given a background crop. This is made possible because ImageNet provides bounding
box annotations for a subset of its training images—around 150K out of 1.3M samples.
We split these annotated images equally between A and B. Given an annotated image
A;, we treat everything inside the bounding box as the foreground object associated with
the image label, denoted object(A;). We take the largest possible crop that does not
intersect with any bounding box as the background crop (or periphery crop), denoted crop(4;)®

KNN-based test design. Joint-embedding SSL approaches encourage the embeddings
of random crops of a training image A; € A to be similar. Intuitively, if the model exhibits
déja vu memorization, it is reasonable to expect that the embedding of crop(A;) is similar
to that of object(A;) since both crops are from the same training image. In other words,
SSL4(crop(A;)) encodes information about object(A;) that cannot be inferred through
correlation. However, decoding such information is challenging as these approaches do not

learn a decoder associated with the encoder SSL 4.

Here, we leverage the public set X’ to decode the information contained in crop(4;) about
object(A;). More specifically, we map images in X to their embeddings using SSL 4 and
extract the k-nearest-neighbor (KNN) subset of SSL 4(crop(4;)) in X. We can then decode

the information contained in crop(A4;) in one of two ways:

o Label inference: Since X is a subset of ImageNet, each embedding in the KNN subset is
associated with a class label. If crop(A;) encodes information about the foreground object,
its embedding will be close to samples in X’ that have the same class label (i.e., foreground
object category). We can then use a KNN classifier to infer the foreground object in A;
given crop(A4;).

e Visual reconstruction: Following Bordes et al. [29], we train an RCDM—a conditional gen-

erative model—on & to decode SSL 4 embeddings into images. The RCDM reconstruction

4See Appendix C.2.1 for details on how the dataset splits are generated.
SWe also present another heuristic in appendix C.5 which takes a corner crop as the background crop, allowing
our test to be run without bounding box annotations.

89

can recover qualitative aspects of an image remarkably well, such as recovering object color
or spatial orientation using its SSL embedding. Given the KNN subset, we average their
SSL embeddings and use the trained RCDM model to visually reconstruct A;.
In Section 4.4, we focus on quantitatively measuring déja vu memorization with label
inference, and then use the RCDM reconstruction to visualize déja vu memorization in
Section 4.5.

4.4. Quantifying Déja Vu Memorization

We apply our testing methodology to quantify a specific form of déja vu memorization:

inferring the foreground object (class label) given a crop of the background.

Extracting model embeddings. We test déja vu memorization on a variety of popular
SSL algorithms, with a focus on VICReg [23]. These algorithms produce two embeddings
given an input image: a backbone embedding and a projector embedding that is derived
by applying a small fully-connected network on top of the backbone embedding. Unless
otherwise noted, all SSL. embeddings refer to the projector embedding. To understand
whether déja vu memorization is particular to SSL, we also evaluate embeddings produced
by a supervised model CLF 4 trained on .A. We apply the same set of image augmentations
as those used in SSL and train CLF 4 using the cross-entropy loss to predict ground truth
labels.

Identifying the most memorized samples. Prior works have shown that certain
training samples can be identified as more prone to memorization than others [78, 220, 230].
Similarly, we provide a heuristic to identify the most memorized samples in our label
inference test using confidence of the KNN prediction. Given a periphery crop, crop(4;), let
KNN 4 (crop(Ai)) C X denote its k-nearest neighbors in the embedding space of SSL 4. From
this KNN subset we can obtain: (1) KNN&°P (crop(Ai)), the vector of class probabilities
(normalized counts) induced by the KNN subset, and (2) KNN¢™ (crop(Ai)>, the negative
entropy of the probability vector KNN&©P (crop(Ai)), as confidence of the KNN predic-

tion. When entropy is low, the neighbors agree on the class of A; and hence confidence is high.
We can sort the confidence score KNNG™ (crop(AQ) across samples A; in decreasing

order to identify the most confidently predicted samples, which likely correspond to the most

memorized samples when A; € A.

90

4.4.1. Population-level Memorization

Our first measure of déja vu memorization is population-level label inference accuracy:
What is the average label inference accuracy over a subset of SSL training images given
their periphery crops? To understand how much of this accuracy is due to SSL’s déja
vu memorization, we compare with a correlation baseline using the reference model:
KNNpg’s label inference accuracy on images A; € A. In principle, this inference ac-
curacy should be significantly above chance level (1/1000 for ImageNet) because the
periphery crop may be highly indicative of the foreground object through correlation,
e.g., if the periphery crop is a basketball player then the foreground object is likely a
basketball. Figure 3 compares the accuracy of KNN4 to that of KNNpg when inferring
the labels of images in A; € A° using crop(4;). Results are shown for VICReg and
the supervised model; trends for other models are shown in Appendix C.3.3. For both
VICReg and supervised models, inferring the class of crop(4;) using KNNg (dashed

line) through correlation achieves a reasonable accuracy that is significantly above chance level.

However, for VICReg, the inference accuracy using 1.0
. > —— Target model (KNN,)
KNN (solid red line) is significantly higher, and the €4 ——- Reference model (KNNa)
accuracy gap between KNN, and KNNpg indicates § 06 —— SSL (VICReg)
the degree of déja vu memorization. We highlight two Eo \ T Supervised
observations: g -
D02 el T—oS=ol
e The accuracy gap of VICReg is significantly larger % ________________________
than that of the supervised model. This is espe- %70 20 40 60 80 100

. . Top % most confident examples
cially notable when accounting for the fact that the

supervised model is trained to associate randomly Fig. 3. Accuracy of label inference
using the target model (trained on A)
vs. the reference model (trained on
B) on the top % most confident exam-
ing training but the embedding of a periphery crop ples 4; € A using only crop(4;). For
can still encode the image label. VICReg, there is a large accuracy gap
between the two models, indicating
a significant degree of déja vu memo-
rization.

augmented crops of images with their ground truth

labels. In contrast, VICReg has no label access dur-

e For VICReg, inference accuracy on the 1% most con-
fident examples is nearly 95%, which shows that our
simple confidence heuristic can effectively identify
the most memorized samples. This result suggests that an adversary can use this heuristic
to identify vulnerable training samples to launch a more focused privacy attack.

The déja vu score. The curves of Figure 3 show memorization across confidence

values for a single training scenario. To study how memorization changes with different

5The sets A and B are exchangeable, and in practice we repeat this test on images from B using SSLp as the
target model and SSL 4 as the reference model, and average the two sets of results.

91

hyperparamters, we extract a single value from these curves: the déja vu score at confidence
level p. In Figure 3, this is the gap between the solid red (or gray) and dashed red (or
gray) where confidence (z-axis) equal p%. In other words, given the periphery crops
of set A, KNN,4 and KNNp separately select and label their top p% most confident
examples, and we report the difference in their accuracy. The déja vu score captures both
the degree of memorization by the accuracy gap and the ability to identify memorized
examples by the confidence level. If the score is 10% for p = 33%, KNN4 has 10% higher
accuracy on its most confident third of A than KNNpg does on its most confident third. In

the following, we set p = 20%, approximately the largest gap for VICReg (red lines) in Figure 3.

Comparison with the linear probe train-test gap. A standard method
for measuring SSL performance is to train a linear classifier—what we call a ‘linear
probe’—on its embeddings and compute its performance on a held out test set. From
a learning theory standpoint, one might expect the linear probe’s train-test accuracy
gap to be indicative of memorization: the more a model overfits, the larger is the
difference between train set and test set accuracy. However, as seen in Figure 4, the

linear probe gap (dark blue) fails to reveal memorization captured by the déja vu score (red) ”.

. 60 60 30 30
§ 50 o § S0 g 25 g 25 /—————’—
o o
%" 302 % 302 g15 g1s
e 05 ¢ 20§ 510 & 10
s < s <
o —— DéaWuscore |10~ @ | =e= Déjd u Score 10~ 5 5
3 —a= Linear Probe Gap 3 == Linear Probe Gap 0 0
200 400 600 800 1000° 100 200 300 400 500° 200 400 600 8001000 100 200 300 400 500
Number of epochs Training set size (thousands) Number of epochs Training set size (thousands)
(a) déja wvu vs.(b) déja vu vs. train (a) déja wvu vs.(b) déja vu vs. train
epochs set size epochs set size

Fig. 4. Effect of training epochs and train Fig. 5. Partition of samples A4; € A

set size with VICReg on déja vu score (red) into the four categories: unassociated (not
in comparison with linear probe accuracy shown), , misrepresented and
train-test gap (dark blue). Left: déja vu correlated for VICReg. The

score increases with training epochs, indi- samples—those whose labels are predicted
cating growing memorization while the lin- by KNN4 but not by KNNg—occupy a
ear probe baseline decreases significantly. significantly larger share of the training set
Right: déja vu score stays roughly con- than the misrepresented samples—those
stant with training set size suggesting that predicted by KNNg but not KNN,4 by
memorization may be problematic even for chance.

large datasets.

"See section 4.6 for further discussion of the déja vu score trends of Figure 4.

92

4.4.2. Sample-level Memorization

The déja vu score shows, on average, how much better an adversary can select and
classify images when using the target model trained on them. This average score does not
tell us how many individual images have their label successfully recovered by KNN 4 but not
by KNNg. In other words, how many images are exposed by virtue of being in training set
A: a risk notion foundational to differential privacy. To better quantify what fraction of the
dataset is at risk, we perform a sample-level analysis by fixing a sample A; € A and observing
the label inference result of KNN 4 vs. KNNg. To this end, we partition samples A4; € A
based on the result of label inference into four distinct categories: Unassociated - label
inferred with neither KNN; - label inferred only with KNN 4; Misrepresented
- label inferred only with KNNp; Correlated - label inferred with both KNNs.

Intuitively, unassociated samples are ones where the embedding of crop(A;) does not
encode information about the label. Correlated samples are ones where the label can be
inferred from crop(A4;) using correlation, e.g., inferring the foreground object is basketball
given a crop showing a basketball player. Ideally, the misrepresented set should be empty
but contains a small portion of examples due to chance. Déja vu memorization occurs
for samples where the embedding of SSLg does not encode the label but the
embedding of SSL4 does. To measure the pervasiveness of déja vu memorization, we
compare the size of the and misrepresented sets. Figure 5 shows how the four
categories of examples change with number of training epochs and training set size. The
unassociated set is not shown since the total share adds up to one. The misrepresented set
remains under 5% and roughly unchanged across all settings, consistent with our explanation
that it is due to chance. In comparison, VICReg’s set surpasses 15% at 1000
epochs. Considering that up to 5% of these memorized examples could also be due to

chance, we conclude that at least 10% of VICReg’s training set is déja vu memorized.

4.5. Visualizing Déja Vu Memorization

Beyond enabling label inference using a periphery crop, we show that déja vu memo-
rization allows the SSL model to encode other forms of information about a training image.
Namely, we train an RCDM [29] on the public dataset X and use it to visually reconstruct
training images given their periphery crop. We aim to answer the following two questions:
(1) Can we visualize the distinction between correlation and déja vu memorization? (2)

What foreground object details can be extracted from the SSL model beyond class label?

93

crop of memorized images € A

g- B

reconstructions
, am—

example

example crop of correlated images € A

ne:.ghbors eXx reconstruct:.ons neighbors € \’

o |
& :

(a) A correlated dam example (b) A memorized dam example

Fig. 6. Correlated and Memorized examples from the dam class. Both SSL 4 and SSLg are
SimCLR models. Left: The periphery crop (pink square) contains a concrete structure that
is often present in images of dams. Consequently, the trained RCDM can reconstruct the
foreground object using representations from both SSL4 and SSLp through this correlation.
Right: The periphery crop only contains a patch of water. The embedding produced by
SSLp only contains enough information to infer that the foreground object is related to
water, as reflected by its KNN set and RCDM reconstruction. In contrast, the embedding
produced by SSL 4 memorizes the association of this patch of water with dam and the RCDM
can visualize the embedding to produce images of dams.

Reconstruction pipeline. RCDM is a conditional generative model that is trained
on the backbone embedding of images X; € X to generate an image that resembles X;. All
training images are first face-blurred for privacy purposes. Bordes et al. [29] showed that the
backbone embedding of SSL. models contains more low-level information about the image,
making them better suited for conditioning the RCDM. At test time, following the pipeline in
Figure 2, we first use the projector embedding to find the KNN subset for the periphery crop,
crop(4;), and then average their backbone embeddings as input to the RCDM model. Ideally,
when the public set contains enough representative images, the average representation of the
KNN subset encodes objects present in A;, and the RCDM model decodes this representation
to visualize these objects.

Visualizing Correlation vs. Memorization. Figure 6 shows examples of dams from
the correlated set (left) and the memorized set (right) as defined in Section 4.4.2, along with
the associated KNN set and RCDM reconstruction. Both SSL,4 and SSLp are SimCLR
models. In Figure 6a, the periphery crop is represented by the pink square, which contains
concrete structure attached to the dam’s main structure. As a result, both SSL, and
SSL g produce embeddings of crop(A4;) whose KNN set in X’ consist of dams, i.e., there is a
correlation between the concrete structure in crop(4;) and the foreground dam. The RCDM
reconstructions also consist of dams or structures that closely resemble dams. In Figure 6b,

the periphery crop only contains a patch of water, which does not strongly correlate with

94

European neighbors € 1" reconstructions
badgers

L 1 AT > b
&_, 5 2)
&0 f o
SN o8 A -

(a) Memorized European badgers (b) Memorized American badgers

Fig. 7. Visualization of déja vu memorization beyond class label. Both SSL 4 and SSLp
are VICReg models. The four images shown belong to the memorized set of SSL 4 from the
badger class. RCDM reconstruction using embeddings from SSL4 can reveal not only the
correct class label, but also the specific badger species: European (left) and American (right).
Such information does not appear to be memorized by the reference model SSL .

dams in the ImageNet distribution. Evidently, the reference model SSLg embeds crop(A;)
close to that of other objects commonly found in water, such as sea turtle and submarine.
In contrast, the KNN set according to SSL 4 all contain dams despite the vast number of
alternative possibilities within the ImageNet classes, and the RCDM reconstruction outputs
dams as well which highlight memorization in SSL 4 between this specific patch of water and
the dam.

Visualizing Memorization Beyond Class Label. We now use our reconstruction
algorithm to show that déja vu memorization can be exploited to reveal detailed information
beyond class label. Figure 7 shows four examples of badgers from the memorized set. In
all four images, the periphery crop (pink square) does not contain any indication that the
foreground object is a badger. Despite this, the KNN set and the RCDM reconstruction
using SSL 4 consistently produce images of badgers, while the same does not hold for SSLp.
More interestingly, reconstructions using SSL 4 in Figure 7a all contain Furopean badgers,
while reconstructions in Figure 7b all contain American badgers, accurately reflecting the
species of badger present in the respective training images. Since ImageNet-1K does not
differentiate between these two species of badgers, our reconstructions show that SSL mod-

els can memorize information that is highly specific to a training sample beyond its class label®.

4.6. Mitigation of déja vu memorization

We cannot yet make claims on why déjd vu occurs so strongly for some SSL training
settings and not for others. To gain some intuition for future work, we present additional

observations that shed light on which parameters have the most salient impact on déja vu

8See Appendix C.4 for additional visualization experiments.

95

v,
" o

S

LirTear F;Fobe Val. Acc. -
&>
o
a

&
Linear Probe V:

4
Now
S o

—e— Déja Vu Score

=e— Linear Probe Val. Acc.
2040 60 80 100" —

Invariance, A oo

—a— Déja Vu Score
== Linear Probe Val. Acc

Déja Vu Score 20% Conf.

Déja Vu Score 20% Conf.

20

2 S o
" . y
v““\“t v""\“e wvnt

(a) Loss
parameter

hyper-(b) Guillotine regulariza-
tion

Fig. 8. Effect of two kinds of hyper-
parameters on VICReg memorization. Left:
déja vu score (red) versus the invariance loss
parameter, A, used in the VICReg criterion
(100k dataset). Larger \ significantly reduces
déja vu , with minimal effect on linear probe
validation performance (green). A = 25 (near
maximum déjd vu) is recommended in the
original paper Right: déja vu score versus
projector layer—guillotine regularization
[30]—from projector to backbone. Removing
the projector can significantly reduce déja vu

Appendix C.3.6 shows that the backbone

o B[EEmggo Criteria DV | Acc P/B
0 vitode | Supervised | 8.9 [55.3/61.1
£ . Byol[93] 8.0 [54.3/59.4
Y] IS— SimCLR[49] | 10.0 [44.2/54.1
3| osite, Dino[42] | 14.5 | 26.3/55.7
220 Barlow T.[236] | 30.5 | 33.7/54.4
g [everioy VICReg[23] |33.2[40.3/55.2

-
w

0 100 200 300 400
Number of parameters (millions)

(a) déja vu vs. capac-(b) déja vu (DV) vs. Cri-
ity terion

Fig. 9. Effect of model architecture and
criterion on déja vu memorization. Left:
déja vu score with VICReg for resnet (pur-
ple) and vision transformer (green) architec-
tures versus number of model parameters.
As expected, memorization grows with larger
model capacity. This trend is more pro-
nounced for convolutional (resnet) than trans-
former (ViT) architectures. Right: Compari-
son of déja vu score 20% conf. and ImageNet
linear probe validation accuracy (P: using
projector embeddings, B: using backbone em-
beddings) for various SSL criteria.

still can memorize, however; we demonstrate
reconstructions using the SimCLR backbone.

memorization.

Déja vu memorization worsens by increasing number of training epochs.
Figure 4a shows how déja vu memorization changes with number of training epochs for
VICReg. The training set size is fixed to 300K samples. From 250 to 1000 epochs, the déja
vu score (red curve) grows threefold: from under 10% to over 30%. Remarkably, this trend in
memorization is not reflected by the linear probe gap (dark blue), which only changes by a

few percent beyond 250 epochs.

Training set size has minimal effect on déja vu memorization. Figure 4b shows
how déja vu memorization responds to the model’s training set size. The number of training
epochs is fixed to 1000. Interestingly, training set size appears to have almost no influence
on the déja vu score (red line), indicating that memorization is equally prevalent with a
100K dataset and a 500K dataset. This result suggests that déja vu memorization may
be detectable even for large datasets. Meanwhile, the standard linear probe train-test

accuracy gap declines by more than half as the dataset size grows, failing to represent the

96

memorization quantified by our test.

Training loss hyper-parameter has a strong effect. Loss hyper-parameters, like
VICReg’s invariance coefficient (Figure 8a) or SimCLR’s temperature parameter (Appendix
Figure 2a) significantly impact déja vu with minimal impact on the linear probe validation

accuracy.

Some SSL criteria promote stronger déja wvu memorization. Table 9b
demonstrates that the degree of memorization varies widely for different training criteria.
VICReg and Barlow Twins have the highest déja vu scores while SiImCLR and Byol have the
lowest. With the exception of Byol, all SSL. models have more déja vu memorization than the
supervised model. Interestingly, different criteria can lead to similar linear probe validation
accuracy and very different degrees of déja vu as seen with SimCLR and Barlow Twins. Note
that low degrees of déja vu can still risk training image reconstruction, as exemplified by the

SimCLR reconstructions in Figures 6 and 9.

Larger models have increased déja vu memorization. Figure 9a validates the
common intuition that lower capacity architectures (Resnet18/34) result in less memorization
than their high capacity counterparts (Resnet50/101). We see the same trend for vision

transformers as well.

Guillotine regularization can help reduce déja vu memorization. Previous
experiments were done using the projector embedding. In Figure 8b, we present how
Guillotine regularization[30] (removing final layers in a trained SSL model) impacts déja
vu with VICReg®. Using the backbone embedding instead of the projector embedding
seems to be the most straightforward way to mitigate déjd vu memorization. However, as
demonstrated in Appendix C.4.1, backbone representation with low déja vu score can still be

leveraged to reconstruct some of the training images.

4.7. Conclusion

We defined and analyzed déja vu memorization, a notion of unintended memorization of
partial information in image data. As shown in Sections 4.4 and 4.5, SSL models can largely
exhibit déja vu memorization on their training data, and this memorization signal can be
extracted to infer or visualize image-specific information. Since SSL models are becoming

increasingly widespread as foundation models for image data, negative consequences of déja

“Further experiments are available in Appendix C.3.6.

97

vu memorization can have profound downstream impact and thus deserves further attention.
Future work should focus on understanding how déja vu emerges in the training of SSL
models and why methods like Byol are much more robust to déja vu than VICReg and Barlow
Twins. In addition, trying to characterize which data points are the most at risk of déja vu

could be crucial to get a better understanding on this phenomenon.

98

Prologue to Article 4

PUG: Photorealistic and Semantically Controllable Synthetic Data for Represen-
tation Learning, Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt,
Pascal Vincent, Ari S. Morcos, Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS 2023) Datasets and Benchmarks track.

Despite their impressive performances across many benchmarks, deep neural networks
struggle to understand the world the same way we do. A photograph of a cow in a winter
background will be a very rare occurrence. However, a human will easily recognize the
cow despite the unusual background. Since neural networks are learning by association,
they might learn to associate the concept of grass with the concept of cow which makes
them unable to detect a cow on unusual backgrounds. Unfortunately, most benchmarks
and evaluations lack fine-grained labeling, which would allow practitioners to detect if the
network is relying on a spurious feature for classification. Since the cost of fine-grained
labeling of real data is too high and uncertain, I decided to leverage a powerful video game
engine (the Unreal Engine) for dataset generation. Most synthetic datasets available when
writing this thesis were too toyish and lacked the realism needed to evaluate models trained
on real images. With the Unreal Engine, we can significantly improve realism while keeping
complete control over the environments. In this article, we introduced our setup called
PUG (Photorealistic Unreal Graphics) and four datasets for Out-Of-Distribution (OOD)

generalization, ImageNet benchmarking, vision-language model evaluation, and fine-tuning.

Contribution statement I started preliminary exploration for this project in 2021, and
in 2022 Ari joined the project and provided very insightful guidance and support. I started
developing an interactive web demo in which a user could change the factors of variation in a
scene (like camera position, object orientation, textures, and backgrounds). When changing a
factor, the images were passed through different neural networks, and their predictions were
printed live on the screen. This demo allowed us to better grasp the failure modes of neural
networks and to get people interested in the project. Afterwards, with Ari, we decided to buy

a significant number of 3D assets, to have a diverse enough set of environments, to create

datasets that people could use to evaluate their models. I created the first PUG: Animal
dataset, which was targeted towards OOD generalization by providing all combinations of a
set of factors of variation. Then, I created a second dataset coined PUG: ImageNet as an
additional benchmark for pre-trained ImageNet models. The third dataset I created is PUG:
SPAR (Spatial, Position, Attribute, And Relation), which benchmark vision-language models
(VLMs). Shashank joined the project later to create a fourth dataset called PUG: ARAT
to show that in addition to using synthetic data for evaluation, we can also use them for
fine-tuning CLIP-based models to improve reasoning abilities. Diane added the equivariance
experiments while Mark ran the evaluations on PUG: ImageNet. Writing the paper was a
common effort between all the co-authors. I made all the code on GitHub and developed the

website.

100

Chapter 5

Article 4: PUG: Photorealistic and
Semantically Controllable Synthetic Data for

Representation Learning

Synthetic image datasets offer unmatched advantages for designing and evaluating deep neural
networks: they make it possible to (i) render as many data samples as needed, (ii) precisely
control each scene and yield granular ground truth labels (and captions), (iii) precisely control
distribution shifts between training and testing to isolate variables of interest for sound
experimentation. Despite such promise, the use of synthetic image data is still limited —
and often played down — mainly due to their lack of realism. Most works therefore rely on
datasets of real images, which have often been scraped from public images on the internet,
and may have issues with regards to privacy, bias, and copyright, while offering little control
over how objects precisely appear. In this work, we present a path to democratize the use of
photorealistic synthetic data: we develop a new generation of interactive environments for
representation learning research, that offer both controllability and realism. We use the Unreal
Engine, a powerful game engine well known in the entertainment industry, to produce PUG
(Photorealistic Unreal Graphics) environments and datasets for representation learning.
In this paper, we demonstrate the potential of PUG to enable more rigorous evaluations of

vision models. The datasets can be downloaded at https://pug.metademolab.com/.

5.1. Introduction

A grand goal of machine learning is to learn representations of data that are useful
across many tasks. Essential to measuring and making progress towards this goal is the
availability of ample controllable, realistic data for evaluation and training. This is especially
true when considering deep neural network models not only in terms of their raw accuracy,
but also their robustness and fairness—crucial properties for models deployed in real-world

applications. However, collecting such data is challenging, presenting issues with privacy,

https://pug.metademolab.com/

bias, and copyright. Furthermore, the majority of available image datasets lack fine-grained
labels and are challenging to manipulate beyond coarse image augmentations (e.g. with a

photograph, it is hard to change the viewpoint or the time of day).

Using synthetic image data where we precisely control all the factors affecting the
rendered scene gives easy access to the corresponding rich set of factor labels. This enables
evaluating the extent of a trained deep neural network’s abilities, most importantly its
robustness. Is the network robust to change in pose? Are the predictions similar for different
textures? All these questions may be answered systematically by using synthetic data,
enabling highly rigorous evaluations of deep neural network models. In addition, training
could also benefit from controllable factors!, by increasing the robustness of models with
respect to these factors. They may also be used to monitor training, e.g. tracking which
factors a model focuses on or becomes most invariant to, and in which order, as training
progresses. This potentially enables better understanding of the training and generalization
dynamics in deep neural networks. However the lack of realism typical in many of the
currently available synthetic image datasets, and their usually very limited scope greatly

limits their usefulness for general image representation learning research.

To address this, we introduce? a new family of synthetic Photorealistic Unreal Graphics
(PUG) datasets, designed for ease of use by the representation learning research community,
where image realism is significantly improved compared to current public synthetic image
datasets. The environments were built using the Unreal Engine [72], which is widely used
in the video game and entertainment industries and praised for its realism. In addition to
pre-rendered static image datasets, we also introduce the TorchMultiverse python library,
which offers a simple python interface to enable easily controlled dataset creation from any
given PUG environment. Using these tools, we contribute 4 new datasets and show their

usefulness across several different research domains. To summarize:

e We introduce a new family of environments and image datasets (coined as PUG) for

representation learning, based on the Unreal Engine [72].

e We present PUG: Animals for research on out-of-distribution (OOD) generalization and to

study the representational space of foundation models.

We define factors here as distinctive attributes that describe the data, such as color or pose of an object.
2As a reminder, any use of content or technologies made available by Unreal and/or Epic Games, or any other
provider, should comply with their applicable terms (such as the Content License Agreement available at
https://www.unrealengine.com/en-US/eula/content or any other direct agreement you may have with
Epic / Unreal)

102

https://www.unrealengine.com/en-US/eula/content

PUG Environment Generation PUG Dataset The PUG Family
Generation PUG: Animals : PUG: ImageNet : PUG: SPAR

Compilation “A goldfish on the right

of the picture”

Unreal Engine 5.0

TorchMultiverse

JSon Dataset Config

A bl a red elephant
. in a desert background environment™

Fig. 1. The PUG Dataset Family (left) Cartoon illustration of our dataset creation
setup, which consists of two steps: environment creation and then data creation. (right)
Example images from PUG: Animals, PUG: Image-Net, and PUG: SPAR.

e We introduce PUG: ImageNet as an additional robustness test set to ImageNet, containing

a rich set of factor changes such as pose, background, size, texture, and lighting.

e We introduce PUG: SPAR for evaluating vision-language models. We use it to demonstrate
how synthetic data can be utilized to address known benchmark limitations. In addition,
we introduce PUG: AR/T for fine-tuning vision-language models and use it to demonstrate
the reliability of PUG: SPAR in contrast to other benchmarks.

5.2. Related work

Synthetic data for representation learning To address robustness shortcomings,
researchers today commonly study representations using lower-fidelity controlled datasets
such as CLEVR, Biased Cars, and ShapeNet [118, 147, 48]. Other datasets also contain
precise factor labels useful for probing how well a representation encodes each factor in a
structured form [87, 195, 221]. While these datasets offer control in terms of the factors that
change as well as the train and evaluation splits enabling controlled scientific experimentation,
they lack realism. This gap between the lower-fidelity controlled data and the real world poses
a challenge for the broader application of these studies. On the other hand, photorealistic
datasets have been explored in various application-specific domains in machine learning
(outside of representation learning.) This is especially relevant when trying to evaluate and
train models on rare events in which getting real data might be really difficult, such as for
autonomous driving. CARLA [65] is a popular self-driving car simulator which offer highly
realistic environment with a significant amount of controllable factors such as environmental
conditions, full control of all static and dynamic actors and maps rendering. Another
domain where simulated environments are commonly used is reinforcement learning (RL), as

RL algorithms often requires the ability to run millions of simulations to learn to master

103

non-trivial tasks, and this cannot be done in a real environment. Data environments based
on video games like Atari have been very popular to design and evaluate RL algorithms.
Alternatively, platforms like Habitat [196] offers indoor scene for training home assistant
agents. While these simulators, games or datasets can offer some photo-realism and mimic
real world interactions for agents, they are relegated to domain-specific applications making
them challenging to use for evaluating the representations of deep neural networks more
broadly. Since our focus is not RL, we do not need to embed a fast simulator capable of
rendering several thousands frames per second for effective online-training. Instead we can
pre-render custom high-quality datasets offline. Photorealistic environments and datasets
have also been explored for more general domains with the ThreeDWorld platform [80].
Based on the Unity game engine, it offers an interactive environment that can be leveraged to
create datasets. The environment is presented as a simulator that is generic enough to handle
multiple uses cases, and users can customize the setup of a scene and the data smapling
through a low level API. One such dataset that utilizes ThreeDWorld is the Synthetic Visual
Concepts (SyVIC) dataset [47], which uses the API to create scene images and descriptive
captions for training vision-language models. One of the downsides of ThreeDWorld is that
the back-end, the simulator itself, is closed source which limits external contributions. In
contrast with ThreeDWorld, we do not provide a platform or a generic simulator for people
to use. In fact, we believe that tools like the Unreal Engine are simple enough to be used
directly by researchers to create the environments they want without the need to use an
intermediate platform. In addition, being free of such intermediate platform allows us to
leverage most of the content created for video gaming directly into our simulator by using

the existing Epic Games marketplace.

Evaluating model robustness To study model robustness, there is an inherent
trade-off between photo-realism and control. Photo-realism depicts objects as they appear
in the real world, but often lacks control to precisely define the factors to describe the
object such as pose or background. Prior works either collect natural images with specific
factor changes [225, 20] or label distinctive factors in existing datasets [111]. Such datasets
allow researchers to measure average accuracy on photo-realistic images but lack granular
control necessary for precisely controlled robustness experiments. On the other hand, prior
studies [110, 1, 3] examine model robustness with respect to factors such as pose and size
by rendering 3D-objects such as buses. These studies precisely control how each object is
depicted, but lack realism. In this work, we advance the photo-realism of these prior works
by using the Unreal engine 5.0 [72], a rendering engine commonly used in high-end cinematic
CGI and high-resolution video games which allows us to measure robustness with respect to

factors of variation such as lighting.

104

Benefits and limitations of using generative models as data generator Another
way to generate realistic datasets is to use generative models[106, 91]. However, one limitation
of such models, despite impressive improvements in the last few years [60], is the lack of
quality control on what the model can produce [81]. It’s not uncommon to find cases in which
the model will ignore parts of the conditioning prompt. Despite such limitations, many works
have tried to leverage generative model as an additional source of data to train deep neural
networks with some success [12, 19, 200, 13, 244, 138, 114, 115, 181, 100]. Another limitation
of using generative models is privacy concerns that arise from such models replicating data
from their training datasets [192]. Finally, Shumailov et al. [187] recently demonstrated that
training on data recursively generated from such models results in increasing underestimates of
the tails and overestimates of the mode, amplifying bias in datasets. In contrast to generative
models that might produce unreliable results, we use an entirely controllable environment for

which we can have a known and accurate generation with respect to a set of factors.

5.3. Photorealistic Unreal Graphics (PUG) environ-

ments and datasets

5.3.1. Leveraging Unreal Engine to create environments and

datasets for representation learning

We introduce the Photorealistic Unreal Graphics (PUG) environments, a family of 3D
graphics environments that leverage Unreal Engine for rendering image data for representation
learning research. To create a PUG environment, we first obtain a number of assets ® which
can be 3D objects or 3D backgrounds. Then, we import them in the Unreal Engine editor
and create blueprints that yield a simple generic 3D environment. Once this generic and
controllable environment is created, it is compiled into a Linux binary file, which can be
run on standard GPU clusters. This environment is programmed in such a way that when
running, it is listening for incoming packets through WebRTC which can specify instructions
about how to change a scene. Since most machine learning practitioners are used to python
scripting, we wanted to have a very simple approach by which a user can request image data
rendered from a packaged PUG environment, through very simple python code and JSON
config files. To do so, we developed a python API, TorchMultiverse, that allows a user to
easily specify a scene configuration in JSON and request rendered images from the PUG
by using WebRTC. Once the factors have been set as requested by the user, for a specific
environment configuration, the user can send a command to freeze the current environment
and receive back an image. It takes around 1 second to render an image at a resolution of

3We purchased assets from the Epic Game Store and used assets from Sketchfab [55]. The complete list of
assets we have used is available at https://github.com/facebookresearch/PUG

105

https://github.com/facebookresearch/PUG

512x512 on a V100 GPU*. We illustrate this setup in Figure 1. It shows how starting from 3D
assets, we design interactive environments that enable us to create different datasets. In the
present work, we focus on pre-rendered static image datasets, however, our setup also allows
dynamic communication between a PUG environment and a pytorch program, meaning that
new data could be requested and rendered on the fly while training a deep neural network.
We leave the exploration of such active learning setups, as well as the rendering of videos, as

future work.?

5.3.2. PUG: Animals

Fig. 2. We present PUG: Animals, a new photorealistic synthetic dataset with annotated
factors of variations to evaluate the out-of-distribution (OOD) robustness of models.

As the first member of the PUG family, we introduce PUG: Animals (Figure 2), which
contains 215 040 pre-rendered images using 70 animals assets, 64 backgrounds, 3 object
sizes, 4 textures, under 4 different camera orientations. PUG: Animals is designed with
the intent to create a dataset with every combination of the factors of variation available.
PUG: Animals allows one to precisely control distribution shifts between training and testing
which can give researchers better insight on how a deep neural network generalizes on held
out factors of variations. Surprisingly, the usage of 3D realistic synthetic data is limited in
OOD generalization research — with the exception of Biased-cars[148] that has been used
to study generalization on new category-viewpoints. Commons OOD datasets are Colored
MNIST [7] — to study how well a network can generalize to unseen combinations of digits
and colors and MNIST-R [83] — to study generalization on a new combination of digits
and rotations. However, MNIST-based dataset might be too toyish to evaluate modern
architectures. A more realistic dataset based on real images is Nico++[228] — to study
generalization with respect to different domains or environments. However, in Nico++ the
objects and backgrounds are never entirely disentangled (the context background is different

for each image). Thus, it is never clear if the model is failing because of the context or

4In our setup, we paralyze the rendering across 64 GPUs. A dataset like PUG: Animals which contains 200K
images has taken around 1h to be entirely rendered.

°Tt might also conceivably be used as a photorealistic interactive environment for reinforcement learning (RL),
but the high quality image rendering achieved in this system currently appears too compute-intensive and
slow to be practically useful in the context of current RL research. Our initial targeted research community
and use case is that of supervised and self/unsupervised representation learning from image data, rather than
RL.

106

because of a specific object (since the contexts and the objects are never disentangled).

In contrast, in PUG: Animals the animal asset is always the same, in that case, the
environment factor and the objects are perfectly disentangled such that if the model is able to
classify correctly an elephant on a road and is not able to classify the elephant in a museum,
we can rigorously say that the failure is caused by the change in context background. In
addition to analysis of the robustness with respect to the background scene, it is also possible
to analyze with PUG: Animal the robustness with respect to the camera position, asset size,

and texture (as we demonstrated in Appendix D.3).

Studying foundation model representational space PUG: Animal can also be
to study the equivariance of foundation models’ representations. For this, we augment
each image in PUG: Animals with a caption that describes it according to its factor
values (sizes are converted to three adjectives: “small”, “medium” or “big”, see Appendix
D.3.1 for details), using the following template®: “A photo of a [size] sized [character]
textured with [tezture] on a [background] background”. Informally, equivariance of a model’s
representation with respect to a factor means that when the factor changes from one
value to another, the embedding of the corresponding image (or caption) changes in a
predictable manner. Equivariance is a sought-after property to improve sample efficiency and
robustness to transformations [124, 197, 217]. Similar to previous works on equivariance
and compositionality Bouchacourt et al. [34], Xie et al. [226], we measure equivariance as
the alignment (i.e. parallelism) between embedding differences. First, we feed images and
their corresponding captions to 9 pretrained vision-language models including multiple CLIP
models Radford et al. [166], NegCLIP Yuksekgonul et al. [235] Flava Singh et al. [189], BLIP
Li et al. [139] and X-VLM Zeng et al. [239] and collect their embeddings of PUG: Animals
images and created captions. For each model, we compute difference vectors between the
embeddings of two images (or captions) of an object undergoing a factor change: e.g. a big
penguin textured with grass on a background “village square” modified to the same penguin
but with background “restaurant”, see arrows in Figure 3 (left). Specifically, for a sample
1, undergoing a change from background b, for background b;, we denote the difference
vector between the embedding of the image of the sample with backgorund by and the image
of the same sample but with background b; by v};k Lp,- Similarly, we denote by uzk _p, the

difference vector between the embedding of each of the two captions accompanying the images.

Then, we measure the alignment of difference vectors across pairs wundergoing the

SNote that the camera and character orientations are not described, as well as the texture when it is default.

107

same factor change (here, the penguin and the cat) as their cosine similarity”. We estimate
three types of equivariance: (i) Image equivariance: how parallel (measured with cosine
similarity) are difference vectors across image pairs? (lined and dashed red arrows) (ii) Text
equivariance: same but for caption pairs (parallelism of lined and dashed green arrows) (iii)
Across modalities equivariance: for the same object, alignment of difference vectors between
pairs of image-caption (i.e. alignment of the two arrows for the penguin). Specifically, for

image equivariance between sample ¢ and j, for background change by to b;, we compute:

T
. . U 'U
sim(v; vy b’“_)bl bk_)bl 5.3.1

For text equivariance, we compute be sim(uy, _;, ;uj,) While for across equivariance, we com-
pute sim(vy, Uy,). We report cosine similarity averaged over pairs and possible changes
for each factor (higher value means higher equivariance, 1 is the maximum). Specifically, the

image equivariance for background writes as
1 1 ' . ‘
B(B-1) ; ; NN 1) Z Xj: ST (Up, b,V —s1,) (5.3.2)
k 1 1

where B is the number of possible backgrounds and N is the number of samples.

Image equivariance background
/ lmage
X sim(v)) .llll. l
.-
.

/ Text
Tee Y siml) Ill.l. I ‘
.

-

A photo of a big sized penguin ,-&\.

textured with grass on a N
restaurant background —

A photo of a medium sized

Across . Across equivariance background
cat textured with sky on a / e /
restaurant background / slm(vbﬁ bt)
E 4

bl --—--- -‘

A photo of a big sized per.lguin - A photo of a medium siz<'-:*d cat Le" - %v & & @‘b & V\o* (y\q \\&
textured with grass on a village ul textured with sky on a village - J . @ & QA’\ Q\(\ & RN & ¥
square background b—b square background by—b, Equivariance types & O TS

Fig. 3. Measuring foundation models equivariance thanks to PUG: Animals. Left:
Iustration of how to use PUG: Animals to compute equivariance. Right: Image and text
equivariance is present with respect to background, while across modalities equivariance to
background doesn’t hold as much. See main text for detailed results.

We show in Figure 3 (right) results for equivariance with respect to background. Plots
for equivariance to texture and size are in Figure 5. Looking at Figure 3 results (right side,
top row), we see that the foundation models’ image embeddings present high equivariance to
background (0.78 4 0.04 on average over models). There is also (see Figure 5a) small image
equivariance to texture (0.15 £ 0.04), but almost no equivariance to size (0.06 £ 0.02). Text
equivariance is high with respect to background (average of 0.87 4+ 0.03), but is also strong
for size and texture (0.71 £0.11 for size and 0.81 + 0.03 for texture, see Figure 5b) suggesting

that foundation models’ caption embeddings can be manipulated with vector arithmetic,

"Note that foundation model representations belong to the hypersphere, yet measuring equivariance as
parallelism relies on Euclidean geometry, we discuss this in Appendix D.3.1. Still, cosine similarity is a
starting point to showcase how PUG: Animals can be used to study models’ representations.

108

similar to word vectors behaviours Ethayarajh et al. [76]. This aligns with the recent work of
[201] that show linear behavior of VLMs text embedding spaces. Across modalities, small
equivariance is present with respect to background (0.22 + 0.03 and Figure 3 right side,
bottom row). However when size or texture change for a given object, its image and caption
representations seem to move in non-aligned directions (0.07 4+ 0.01 for texture and 0.04 +0.01
for size, see Figure 5¢). While more syntactically complex captions and other equivariance
metrics could be designed, our aim here is to provide an initial study to showcase how PUG:

Animals can be easily used to study state-of-the-art models representations.

5.3.3. PUG: ImageNet

Fig. 4. We present PUG: ImageNet, a new photorealistic synthetic dataset with annotated
factors of variations as an additional test set for ImageNet pretrained models.

As a second member of the PUG family, we introduce PUG: ImageNet (Figure 4), which
contains 88,328 pre-rendered images using 724 assets representing 151 ImageNet classes with
64 backgrounds, 7 sizes, 9 textures, 18 different camera orientation, 18 different character
orientation and 7 light intensity. In contrast to PUG: Animals, PUG: ImageNet was created
by varying only a single factor at a time (which explain the lower number of images than PUG:
Animals despite using more factors). The main purpose of this dataset is to provide a novel
useful benchmark, paralleling ImageNet, but for fine-grained evaluation of the robustness of
image classifiers, along several factors of variation.

An extensive evaluation of the robustness of SOTA models Our PUG: ImageNet
dataset offers both photo-realism and precise control over how each object is depicted from
pose and size to environment and camera-angle. We also provide a collection of objects
with mappings to classes in the popular ImageNet dataset, enabling researchers to probe
the robustness of SoTA vision models without retraining. We assess a variety of model
architectures across several pretraining datasets including ImageNet-1/-21k, LAION (400M
and 2B), and JFT300M [125, 143, 66]. We observe in Table 1 that the models that perform
the best on the ImageNet validation accuracy are not always the ones which offer the best
robustness on PUG: ImageNet. For example, the pretrained ViT-B32 trained on ImageNet-21k
is better on the ImageNet validation set compared to a Swin-B, but offers worse robustness

across all factors. We confirm no statistically significant relationship exists between ImageNet

109

accuracy and robustness by computing Pearson’s correlation coefficients (Appendix D.3.3).
This result showcases how PUG: ImageNet can be added as an additional benchmark to

evaluate vision models

‘ ‘ PUG: ImageNet Top-1 Accuracy across Factors of Variation

‘ ImageNet Val. ‘ Camera (Yaw,Pitch,Roll) Pose (Yaw,Pitch,Roll) Size Texture Light Background
ResNet50 81.5 (38.1, 33.1, 26.9) (38.0, 23.6, 22.9) 35.7 27.0 13.6 29.5
ResNet101 82.3 (43.4, 35.9, 29.4) (45.1, 26.7, 25.6) 39.7 31.1 14.1 32.8
ViTLarge 85.8 (52.2, 40.4, 37.1) (52.4, 30.4, 28.4) 46.4 42.9 8.9 34.6
ViTBasePretrained21k 84.3 (37.5, 34.3, 31.7) (38.0, 21.8, 20.5) 33.0 28.5 4.1 26.6
Swin 83.6 (56.0, 45.6, 41.8) (56.9, 35.3, 34.2) 52.9 40.1 19.1 42.0
BiT (JFT300M) 80.3 (40.5, 32.3, 26.0) (42.1, 23.6, 22.8) 37.3 234 6.3 20.5
DINOv2 (LVD-142M) 84.5 (45.6, 41.1, 37.4) (47.5, 28.8, 28.5) 43.1 35.0 6.1 30.9
Flava (PMD 70M) 75.5 (31.7, 23.4, 17.6) (30.8, 17.6, 15.4) 30.5 24.2 7.8 21.9
CLIPViTB32 (400M) 62.9 (41.7, 30.2, 22.1) (41.6, 23.8, 20.9) 40.1 34.4 5.7 24.4
CLIPViTB32 (2B) 66.6 (44.0, 31.5, 24.1) (13.8, 24.8, 21.8) 122 347 33 26.0
CLIPViITL14 (400M) 72.8 (52.3, 39.8, 35.7) (51.8, 29.0, 26.4) 50.6 41.1 4.3 33.0

Table 1. Robustness measured by average top-1 accuracy across factors on PUG: ImageNet (We show on the second column
the traditional ImageNet validation set accuracy for comparison). Pretraining dataset sizes are indicated in parenthesis with the
default being ImageNet-1k. CLIP uses ViT-B32 or ViT-L14. Camera orientation and object pose indicate accuracy along (yaw,
pitch, roll) axes.

5.3.4. PUG: SPAR for VLMs

As a third member of the PUG family, we introduce PUG: SPAR (Scene, Position,
Attribute and Relation) for evaluating vision-language models (VLMs). In contrast to pure
vision based models, VL.Ms should be able to predict the correct caption (from a given set of
captions) that describe the content of a given image. Several benchmarks to evaluate VLM
models already exist such as Winoground [198] or ARO [235]. However, recent works[198, 61]
have highlighted an important limitation in these benchmarks: some image-caption pairs in
Winoground might be even too difficult to solve for a human whereas ARO has been shown
by Lin et al. [141] to be mostly solvable without even using the image information at all.
Consider that for an image containing a horse eating grass, ARO will propose two captions:
"the horse eating the grass" and "the grass eating the horse”. The model should predict
the correct caption between these two. However, the second caption is impossible, so even
without looking at the image, any model can be confident that the first caption is the correct

one.

Another shortcoming of current benchmarks is that most of them probe only if the model
is correctly able to understand the relations or the attributes between objects. However, it is
not clear if the failures in finding the correct relations or attributes come from the model
not understanding them or come from not understanding which objects are present in the
scene. For example, to understand complex relations like A photo of an elephant on the left
and a camel on the right in a desert background, the model should first be able to identify
whether the background of the picture is an actual desert. Then, the model should identify
whether there is an elephant on the picture. It should understand what is an elephant on the
left. The model could be very effective at identifying individual elephants or camels, but it

could unexpectedly fail when a camel and an elephant appear in the same picture. If the

110

model does not fail in recognizing the animals, then we can probe the model to evaluate
the position of each of them. We built PUG: SPAR with the goal of having a progressive
evaluation scheme in which we can easily determine exactly what are the failure modes of
a given VLM. From basic scene understanding to complex relations and attributes, our
dataset offers a simple yet effective way to get a better understanding of the capabilities and
limitations of VLMs.

The dataset contains 43,560 images with the associated factors of variations: 10
backgrounds, 32 animals, 4 relations (left /right, bottom/top), and 4 animal texture attributes
(blue/red, grass/stone). We have images containing either 1) only the background (for
scene recognition) 2) only one animal at a different left/right or bottom/top position 3)
two animals at different left/right or bottom/top positions. And for each of the scenes
(either single or multiple animals), we vary the texture of the animals and the background to
evaluate the robustness of the model. Our setup and experiments are presented in Figure 2
in which we display some images from the dataset with the corresponding captions used
for evaluations. In our benchmark, we used 6 different types of captions to evaluate the
following: 1) Scene Recognition (first row) 2) Single animal classification (second row) 3)
Single animal position detection (third row) 4) Multiple animals classification (fourth row) 5)
Multiple animal position detection (fifth row) 6) Multiple animal and textures prediction
(sixth row). For each of them, we evaluate the top-1 retrieval accuracy of the correct captions
within the set of captions associated with each setup. We evaluate multiple models on these
setups: OpenAl CLIP [166], OpenCLIP [112], Flava [189], BLIP [139], X-VLM [239] and
NegCLIP [235]. Most of the models are correctly able to solve the scene recognition task
(which is not surprising since we used only 10 environments that are very different from
each other). Concerning the simple object recognition task when using a single animal, the
performances across models is highly variable. Our experiments also highlight that the VLM
performance in a multiple animals detection setting are much worse than the performance in
a single animal detection setting. Those experiments show that despite their successes, VLMs
are far from having a good understanding of the world and that improving the robustness of

these models is a needed step for real-world robustness.

Inspired by Winoground [198], we present an experimental setup in which we leverage
hard-negative pair of images. Instead of performing caption retrieval within all captions
associated to a given setup, we performed caption retrieval between the correct and the hard
negative caption. For example, the hard negative caption of "An elephant on the left of the
picture and a camel on the right of the picture” will be "A camel on the left of the picture
and an elephant on the right of the picture". In addition of switching the relation (left/right
and bottom/top), we also provide hard negative captioning for the attributes (blue/red and

111

grass/stone). In Table 3, we present our results using the hard-negative pair. We clearly
observe that none of the models are able to predict the correct captions, with many models

being close to random performance (50%).

5.3.4.1. PUG: ARAT. Lastly, we introduce PUG: ARAT (Attributes and Relations for
training). In contrast to PUG: SPAR which is only an evaluation benchmark, PUG: AR4T
was created as an additional fine-tuning dataset for VLMs.®* As shown in the previous section,
VLMs struggle to understand spatial relations or attributes and thus are good candidates
for our fine-tuning scenario. PUG: AR4T contains 249,986 training images with captions
and 23,216 test images®. In Table 4, we present CLIP fine-tuning results on the ARO and
PUG: SPAR benchmark. We also compare our results against Syn-CLIP, which is CLIP
fine-tuned on the SyVIC synthetic dataset. Our results are very similar to Syn-CLIP, but
Syn-CLIP training requires several additional tricks to arrive at this performance (Section
3.2 in [47]). On the other hand, the photo-realistic nature of PUG: ARAT enables us to
match Syn-CLIP without any of these additional bells and whistles. However, even if we note
some improvements on ARQO, we are still far from having a model able to understand spatial
relations. This is highlighted by the results given on our PUG: SPAR benchmark for which
the improvement on single animal position prediction is still only above random chance while
there is no improvement on the double animal location prediction task. This confirms the
unreliability of the ARO benchmark highlighted by Lin et al. [141].

5.4. Conclusion

The fine-grained controllability of synthetic rendered image data makes it ideal for design-
ing challenging evaluation benchmarks to better understand the properties and limitations of
vision models, as well as for controlled training scenarios — if only it was closer to real data.
To this effect, we introduced PUG datasets for representation learning. By leveraging the pho-
torealism of the Unreal Engine[72], we created 4 new datasets and showcased their utility for
robust evaluation. We showed how PUG: Animals could be leveraged for OOD generalization
and to study properties of the representation spaces. We developed PUG: ImageNet as a new
challenging benchmark that researchers can easily use to assess and compare the robustness
of image classifiers. With PUG: SPAR we provide a reliable benchmark for vision-language
models while PUG:ARAT offers additional data that could be leveraged to fine-tune VLMs.
Together, the PUG family of datasets represents a new standard of photorealism and control

for synthetic image data.

8The assets used to create PUG: SPAR and PUG: AR4T are different enough such that PUG: SPAR is still a
good benchmark to evaluate models fine-tuned with PUG: ARAT.

%We also run experiments with a version of this dataset which contain 1M images but as shown in Table 4,
adding more images does not increase performance on PUG: SPAR. We only release publicly the version of
PUG:ARAT that contain 249,986 images.

112

Scene recognition ' Single Animal : Multiple Animals
Detection

TR AN ——

Apholgnﬂ;_a A'bad(grwndf Jl A‘i”no :7 {gcz:([cfwaz;lol] o: %ﬁ;imﬁ ‘ A p';:: : mfer] A photo of a [character] A photo of a [character]
onmes environment in a [background] ' in a background] on the [pos1] and a [character] textured with [texture1]
. an t environment on the [pos2] of the picture and a [character] textured
- [packground] = 10 environment names - oas] = fsiright or bottomvtop) na,’b._sckgmu;’dl with [texture2] in a [background]
- [character] = 32 animal names - [texture] = (blue/red or grass/stone)
) 5\
P & o P
& V & V Q S
> S S Ao &
\2d O s O O
& & & & & &
R R < Q Q <
v v D 3 D D Q
> > > > > > 5
Y < Y V¥ < s Q SO
R I N P
Caption Texture < < < < < < < 2 <
“A photo in a [background/ N/A 100.00 100.00 100.00 90.00 100.00 100.00 60.00 100.00 90.00 100.00
environment
A photo of a [character] in Default 39.61 41.80 78.44 60.00 70.23 78.36 31.41 52.73 44.84 32.42
a [background] Blue/Red 27.66 29.84 59.84 45.00 50.78 63.75 15.94 34.69 25.62 24.69
environment Grass/Stone 23.13 27.19 54.53 40.00 45.00 53.91 13.44 32.81 23.44 2297
“A photo of a [character] Default 19.84 20.00 39.38 30.31 35.94 42.19 14.69 27.03 22.66 16.56
on the (left/right) of the
picture in a [background]
environment“
“A photo of a [character] Default 9.42 11.88 44.08 25.36 34.98 50.66 6.30 22.29 13.50 7.32
and a [character] in a Blue/Red 3.54 6.03 23.00 14.16 14.59 28.54 193 7.02 249 294
[background] environment“ Grass/Stone 2.89 4.94 16.98 1121 1221 21.89 111 5.67 248 3.28
“A photo of a [character] Default 4.82 6.75 22,20 13.00 2094 29.83 3.43 11.51 742 492

on the left and a [charac-

ter] on the right in a [back-

ground] environment*

“A photo of a [character] — Blue/Red 1.69 3.03 9.18 6.37 8.25 15.89 1.73 4.20 250 1.44
textured with [texturel] Grass/Stone 1.20 2.24 8.46 6.14 7.08 13.50 150 3.50 1.89 1.52
and a [character] textured

with [texture2] in a

[background] environment*

Table 2. Setup and zero-shot evaluation of CLIP models on PUG: SPAR with caption retrieval. By using synthetic data, we
can increase progressively the difficulty of a scene. Our setup is presented in the image above the table in which we show 6
different types of image captioning. 1) caption for background scene recognition for which we have 10 different backgrounds
which are easy to distinguish from each other. 2) caption for single animal class prediction, the model should predict the correct
categories over the 32 possible animals and 10 backgrounds (for a total of 320 captions). 3) caption for single animal position
prediction that increases the number of caption up to 640 and lead to a significant drop in accuracy for every models. 4) caption
for two animals class prediction, the model should predict the correct categories of the two animals presented in the images
(5120 captions). 5) caption for two animals positions prediction, the model should predict the position of the two animals in the
picture (over a total of 10240 captions). 6) caption for two textured animals class prediction, the model should recognize a blue
elephant from a red camel. The performances of several VLMs models are presented in the table for which each row corresponds
to one of the scenario described previously.

113

q)
* s & &
< & S & & & Q
& R ot o R S
I N N N SN &
Caption Values < % Y Y et ¢ <> A% 4 <~
“A photo of a [character] Left/Right 49.53 47.66 50.00 46.72 49.84 50.31 49.22 51.88 52.03 48.91
on the [position] of the Bottom/Top 54.84 52.34 66.87 60.62 56.56 5891 50.47 54.84 53.28 54.06
picture in a [background]
environment“

“A photo of a [character] Left/Right 53.88 55.62 53.17 56.23 55.74 54.44 5441 53.79 55.02 54.36
on the [position1] and a Bottom/Top 51.15 53.84 54.06 53.51 57.24 56.49 55.23 60.26 58.87 54.09
[character] on the

[position2] in a

[background] environment*

“A photo of a [character] Blue/Red 52.77 53.63 54.43 56.94 5548 54.42 54.22 57.32 56.19 51.74
textured with [texturel] Grass/Stone 52.79 54.14 56.31 57.28 56.62 57.19 54.53 53.94 54.26 49.92
and a [character] textured

with [texture2] in a

[background] environment*

Table 3. We present the performances of several VLMs with hard negatives captioning on PUG: SPAR in which we perform
retrieval between two captions: the correct caption and the hard-negative corresponding caption. In that instance, the model
should choose the correct caption between both of them (the probability to get the correct one with a random model would be
50%). Interestingly, none of the model presented in this table seem to be able to get a real understanding of simple position (left,
right, bottom, top) or colors.

ARO PUG: SPAR (left/right)
VG-Relation VG-Attribution COCO-Order Flickr30k-Order Average Single Double
(Macro-Accuracy%) (Macro-Accuracy%) (Precision@1) (Precision@1) (Precision@1) (Precision@1)
CLIP-ViT-B/32 (400M) 59.16 | 55.50 62.18 | 61.52 47.96 59.98 57.32 49.84 54.42
+ FT w/ Syn-CLIP 71.40 66.94 59.06 70.96 67.09 (+9.77) || N/A N/A
+ FT w/ PUG:AR4T (200K) | 68.36 | 75.18 65.54 | 64.44 57.80 69.74 65.36 (+8.04)

)4) || 50.78(+0.94) 54.23(-0.19)
+ FT w/ PUG:AR4T (1M) 71.03 | 76.57 65.15 | 64.32 61.07 72.84 67.52 (+10.3) || 50.16(+0.32) 54.19(-0.23)
Table 4. Fine-tuning CLIP on PUG: ARAT. For VG-Relation and Attribution, the results (Accl | Acc2) indicate macro-accuracy
across all relations and attributes (Accl), and macro-accuracy on the subset of relations and attributes present in both ARO
and PUG (Acc2). For PUG: SPAR, we evaluate on images in which there is only one animal (Single) or two animals (Double)
with the relation being left or right. We were not able to run SynCLIP on PUG: SPAR because the model was not public at the
time of the publication.

114

Chapter 6

Conclusion and Discussion

6.1. Summary of the contributions presented in this
thesis

Precisely assessing the performances of deep neural networks is crucial to understand bet-
ter what these systems learn and their limitations. With deep neural networks taking a more
prominent place in our lives, we must create and design evaluation systems to ensure their safe
deployment. Even if the road towards a complete and reliable set of benchmarks to evaluate
the safety of Al systems is still long ahead, I introduced in this thesis key components that will

help researchers and practitioners better understand the limitations of current neural networks.

e By providing a new state-of-the-art qualitative evaluation method with
RCDM, researchers are now able to visualize and better understand which in-
formation is retained in a given representation — this without the need to gather
extra labeling information. RCDM significantly impacted the SSL community by
providing key visualizations for MSN[9] and I-JEPA[10]. In addition, it is a cited
conditional generative model predecessor of DALL - E 2[167], which was a qualitative
breakthrough in text-to-image generation.

e To better characterize the performance of neural networks, it is essential to perform
evaluation across different layers with Guillotine Regularization. Otherwise,
the results presented might be biased depending on the choice of training hyper-
parameters or tasks. This is especially important for SSL methods since the pretext
training task is typically different from the downstream task.

e When evaluating neural networks, it is important to quantify how much they mem-
orized their training data. To do that, I introduced the Déja vu Score, a metric
targeted at join-embedding Self-Supervised models that highlights how much they

retain precise information about their training data.

e Lastly, I introduced PUG, a new generation of datasets and benchmarks
that enable photo-realistic and controllable generation of synthetic data.
In contrast to previous works, which offered toyish-looking objects and scenes, we
leveraged video game engines and bought video game assets to build diverse and
rich scene environments. We demonstrated how these datasets can be used for OOD
research, equivariance studies, model robustness evaluation, vision-language model

spatial relation understanding, and CLIP fine-tuning.

6.2. Other related contributions

In this thesis, I presented four articles. However, during my thesis I also co-authored

other articles that could be of interest to the reader.

A cookbook of self-supervised learning [17] In this work, we offer a complete review
of Self-Supervised Learning along with some guidance and tips on how to develop, improve,

and evaluate SSL systems.

Towards Democratizing Joint-Embedding Self-Supervised Learning [32] In this
work, I introduced a library called FFCV-SSL (based on the FFCV library of Leclerc et al.
[129]). T developed this library to yield substantial speedup for training SSL methods up to 6
times faster, and demonstrated that one could train an SSL method like SimCLR (which had
the reputation of being costly and long to train) in a few hours on an 8 GPU cluster or around
a day in a single GPU setup. This work was a crucial enabler of several papers presented
in this thesis, since it allowed us to speed up all our experiments significantly. The library
is available at the following URL: https://github.com/facebookresearch/FFCV-SSL. It

also gave us significant speed-ups for our evaluation pipelines.

A surprisingly simple technique to control the pretraining bias for better
transfer: Expand or Narrow your representation [33] This work follows up on the
findings from Bordes et al. [29] and Bordes et al. [30], and is a thorough empirical exploration
of how changing the backbone dimension impacts the performances of Self-Supervised
models. This research was primarily motivated by the observation that about all SSL
models were based on the same architecture as their supervised counterparts. However,
since SSL models extract more information about their inputs, the hypothesis I had was
that wider representations might be beneficial for SSL training. One of the main findings
was that supervised methods yield better in-distribution generalization if the size of the
backbone representation is close to the number of classes. However, when using such a

network for transfer learning to a different distribution, it is preferable to use a wider

116

https://github.com/facebookresearch/FFCV-SSL

backbone. Our finding is that the performance of SSL. methods increases significantly
across various benchmarks if we merely increase the size of their backbone representation.
We are also the first to show that when using a linear projector to train SSL methods,

the ratio between the projector and backbone dimensions is an important parameter to adjust.

The hidden uniform cluster prior in self-supervised learning [8] In this work, we
show that many SSL methods are learning semantic information that is highly dependent on
how the mini-batch is constructed. If the dataset is built in such a way that its classes are
distributed uniformly, by taking a random mini-batch that is big enough, we can expect to
get at least one image per class in the mini-batch. Then the most discriminative information
that is used by SSL methods to learn to differentiate each image within a mini-batch is the
class label. Because of that, the SSL model will be pushed to learn class related features
since it will be the easiest way to solve the contrastive objective. However, if we do not have
a uniform class distribution within a mini-batch, SSL performances can drop significantly. In
this paper, we show that most SSL. methods do not work well with unbalanced data, which
breaks the promise of using SSL to leverage unlabelled and uncurated data. We advise

researchers to evaluate their model on imbalanced data when introducing a new SSL method.

Objectives Matter: Understanding the Impact of Self-Supervised Objectives
on Vision Transformer Representations [184] In this work, we analyze with several
metrics how different SSL training objectives, ranging from join-embeddings SSL methods
(like Dino) to reconstruction based SSL methods (like MAE), impact the representations

learned by Vision transformers.

6.3. A path towards more principled evaluations

In this thesis, I presented building blocks to create better benchmarks for Al systems.
The benchmarks should be adapted and improved as these Al systems progress and improve.
In addition, we can expect that soon, Al systems will be regulated such that they will have
to follow a set of specific standards before being deployed. Building such standards requires
foreseeing the capabilities of the Al systems of tomorrow. In this section, I present some

ideas that could help us to establish new standards for the evaluation of Al systems.
6.3.1. Towards a more complete evaluation suite for vision systems

With PUG: ImageNet, we introduced a dataset to evaluate pre-trained models across the
following factors: backgrounds, camera orientation, object orientation, object texture, and
scale, as well as scene lightning. To offer a complete benchmark, we would need more factors,

such as:

117

e a variety of geographical locations that could match the diversity we have in the real
world.

e weather variation: heavy rain, snow, or fog with different intensity levels.

e partial occlusion where objects can be behind fences, leaves, or windows.

e light variations: natural lighting that depend on the time of the day and artificial
lightning.

e simulating different kinds of cameras.

Such a more complete evaluation system would enable the creation of precise model cards,
specifying in which conditions a given model is expected to work and its limitations. We can
expect that such model cards might become a requirement when open-sourcing models (or
any Al-based applications) in the future. For example, when buying a pair of smart glasses
equipped with an Al agent, we should know whether this agent will work well in outdoor

environments, and if so, if it will also work well enough in rainy /foggy /snowy environments.

6.3.2. A dive into Vision Language Models

There has recently been a surge in interest in vision language models and their capabilities.
Commons benchmarks like ARO[235] rely on finding the correct caption associated with given
images. By doing that, we can measure if a given VLM can understand a relation such as "an
object being on the left or the right of another object". However, those models often cheat by
relying on natural statistical occurrences in the text. For example, a coffee cup will probably
always be on a table and not under the table. Consequently, many relation benchmarks can
be largely solved without using the information in the image. To evaluate if a model can
understand what an image contains, we can leverage endless variations of scenes and captions
with the PUG framework, including unusual ones, so that natural statistical occurrences
will not bias the benchmarks. However, we should go beyond simple relations like left /right,
top/bottom, that we used for PUG: SPAR. The next generation of benchmarks for vision
language models should include rich labeled scenes, for which we will be able to ask precise
questions such as: "What color is the dog’s tail?", "How many books are in the library?",
"What color is the 23rd book from the left located on the fifth shelf in the bookshelf that we

can see on the right of the picture?”

6.3.3. Will neural networks be able to handle uncertainty?

An essential component of creating an autonomous intelligent machine system is the
ability to manage uncertainty, by learning to predict the situations that are likely to happen
given a specific context. A coffee mug is more likely to be next to a computer, whereas a
watering can is more likely to be next to a plant. Consequently, when having only an image

crop containing a computer and a handle, the model should predict that the handle is more

118

likely to be part of a coffee mug than a watering can. If we have videos, from a few frames,
we should be able to predict several most likely future possibilities. A video dataset like
Moving-MNIST[194] has either random or deterministic digit trajectories. When the digit is
inside the video frame, its trajectory is deterministic. However, its trajectory is random when
the digit bounces back from a side. A model that can handle uncertainty should be able to
predict what is deterministic while displaying uncertainty on the factors with randomness
in them. Thus, when the digit bounces back from a side, the model should predict several
different probable future trajectories, while it should predict a single immediate trajectory
continuation when the digit is inside the frame with no contact to the borders. Being able to
properly handle and model this kind of uncertainty is a current missing but much-needed
piece towards more reliable Al systems. But a huge gap exists between a simple dataset such
as Moving-MNIST and real videos. Using PUG, we could create image and video datasets to
control the number of predictable and random factors, while having more realistic scenes. If
we look back at our smart Al glasses examples, there will be countless situations in which
some objects might be occluded. In that instance, having a PUG dataset focused on occlusion
could be an excellent way to evaluate how robust a model is to classification uncertainty in

the presence of occlusions (partial or full).

6.3.4. How to evaluate neural networks that can plan ?

Once neural networks can handle uncertainty, the next logical step is to think about
planning. Let’s take an example about a pedestrian possibly crossing a street. There are
two plans that an autonomous driving system can follow: stop if the pedestrian crosses
the street or continue if the pedestrian does not cross the street. However, there might
be more complex plans, such as designing a complete itinerary in which there could be
unanticipated road works. Computer games can also be excellent environments to evaluate
planning, since gaming often requires precise actions in a changing environment. However,
how do we ensure an Al-based planning system is safe and robust? When playing a game,
we do not want the system to find a way to cheat. When encountering road work, we do not
want the system to shut down if there are too many orange traffic cones'. When designing an
evaluation benchmark for a planning based-Al system, it will be crucial to manage and test
the robustness of the model to ensure it can adapt quickly to unexpected events. One way to
do that is to randomly introduce adversarial events to see if this system can be tricked into a
problematic behavior. In a PUG-based simulator, an Al agent that could walk/run or drive
toward a specific destination should be tested when there are: random objects on the road,

animals or humans moving around, falling buildings, and road signs that tell the Al to drive

LOtherwise, the system will never work in Montreal!

119

into a lake. The primary motivation is to find ways to asses whether the Al agent might be

easily deceived in a treacherous environment.

6.3.5. The curse of dimensionality for benchmarking

Evaluating and benchmarking Al agents is a crucial step to ensure their safe deployment.
However, by increasing the number of interactions they can have with the world, we are
also significantly increasing the number of ways in which they could derail into unexpected
and potentially problematic behaviors. An Al agent specialized in playing a video game
might be easy to evaluate since the number of actions it can take is restricted in the game.
The same is true for smart glasses, which could run a local on-device agent system that can
be restricted to give travel tips. However, the more the Al agent can richly interact with
a complex world through images/video/text/sound and maybe touch, the more it will be
difficult to correctly asses its robustness. For example creating reliable autonomous aircrafts
is actually much easier than creating reliable autonomous self-driving cars precisely because
the number of possible unexpected situations on the ground is much higher than in the sky.
When conceiving a general Al agents performing a wide range of actions while evolving on the
ground of a busy city, the number of potential failure cases is exponentially larger than when
designing a highly specialized agent with a restricted number of actions evolving in a highly
predictable factory environment. Even with all the best benchmarks and evaluation systems
that can be designed, we should always keep in mind that by increasing the complexity
and the reach of the Al system we are developing, we are also significantly increasing the
complexity of making benchmarks to evaluate such systems, and thus making it much harder

to guarantee their safety.

6.4. Conclusion

In this thesis, I developed building blocks toward better and more fine grained evaluation
of deep neural networks. There is often an urge within the research community to increase
the performance of deep neural networks, which might come at the cost of correctly assessing
the robustness and the safety of the system we are deploying. In this thesis, I introduced new
methods and approaches to evaluate Al systems, which are essential to better understand
what the system has truly learned. However, as science progrsses and Al systems become
more general agents, it will likely become more and more challenging to thoroughly assess
the reliability of the Al system we are deploying. Consequently, it may be wise to restrict the
use of Al systems to specific scenarios under which their robustness can be easily measured

and guaranteed.

120

References

[1] Amro Abbas and Stéphane Deny. Progress and limitations of deep networks to recognize
objects in unusual poses. arXiv preprint arXiv:2207.08034, 2022.

[2] David H. Ackley, Geoffrey E. Hinton, and Terrence J. Sejnowski. A learning algorithm
for boltzmann machines. Cognitive Science, 9:147-169, 1985.

[3] Michael A Alcorn, Qi Li, Zhitao Gong, Chengfei Wang, Long Mai, Wei-Shinn Ku, and
Anh Nguyen. Strike (with) a pose: Neural networks are easily fooled by strange poses
of familiar objects. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 4845-4854, 2019.

[4] Galen Andrew, Raman Arora, Jeff Bilmes, and Karen Livescu. Deep canonical correlation
analysis. In International conference on machine learning, pages 1247-1255. PMLR,
2013.

[5] Srikar Appalaraju, Yi Zhu, Yusheng Xie, and Istvan Fehérvari. Towards good practices
in self-supervised representation learning. arXiv preprint arXiv:2012.00868, 2020.

[6] Srikar Appalaraju, Yi Zhu, Yusheng Xie, and Istvan Fehérvari. Towards good practices
in self-supervised representation learning. In NeurlPS Self-Supervision Workshop, 2020.

[7] Martin Arjovsky, Léon Bottou, Ishaan Gulrajani, and David Lopez-Paz. Invariant risk
minimization, 2020.

[8] Mahmoud Assran, Randall Balestriero, Quentin Duval, Florian Bordes, Ishan Misra,
Piotr Bojanowski, Pascal Vincent, Michael Rabbat, and Nicolas Ballas. The hidden
uniform cluster prior in self-supervised learning, 2022. URL https://arxiv.org/abs/
2210.07277.

[9] Mahmoud Assran, Mathilde Caron, Ishan Misra, Piotr Bojanowski, Florian Bordes,
Pascal Vincent, Armand Joulin, Mike Rabbat, and Nicolas Ballas. Masked siamese
networks for label-efficient learning. In Computer Vision — ECCV 2022: 17th European
Conference, Tel Aviv, Israel, October 23-27, 2022, Proceedings, Part XXXI, page
456-473, Berlin, Heidelberg, 2022. Springer-Verlag. ISBN 978-3-031-19820-5. doi: 10.
1007/978-3-031-19821-2_26. URL https://doi.org/10.1007/978-3-031-19821-2_
26.

https://arxiv.org/abs/2210.07277
https://arxiv.org/abs/2210.07277
https://doi.org/10.1007/978-3-031-19821-2_26
https://doi.org/10.1007/978-3-031-19821-2_26

[10] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent,
Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images
with a joint-embedding predictive architecture. arXiv preprint arXiv:2501.08243, 2023.

[11] Mahmoud Assran, Quentin Duval, Ishan Misra, Piotr Bojanowski, Pascal Vincent,
Michael Rabbat, Yann LeCun, and Nicolas Ballas. Self-supervised learning from images
with a joint-embedding predictive architecture, 2023.

[12] Pietro Astolfi, Arantxa Casanova, Jakob Verbeek, Pascal Vincent, Adriana Romero-
Soriano, and Michal Drozdzal. Instance-conditioned gan data augmentation for repre-
sentation learning, 2023.

[13] Shekoofeh Azizi, Simon Kornblith, Chitwan Saharia, Mohammad Norouzi, and David J.
Fleet. Synthetic data from diffusion models improves imagenet classification, 2023.

[14] Philip Bachman, R Devon Hjelm, and William Buchwalter. Learning representations by
maximizing mutual information across views. Advances in neural information processing
systems, 32, 2019.

[15] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation
by jointly learning to align and translate. In Yoshua Bengio and Yann LeCun, editors,
3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA,
USA, May 7-9, 2015, Conference Track Proceedings, 2015. URL http://arxiv.org/
abs/1409.0473.

[16] Robert J. N. Baldock, Hartmut Maennel, and Behnam Neyshabur. Deep learning
through the lens of example difficulty. In Neural Information Processing Systems, 2021.

[17] Randall Balestriero, Mark Ibrahim, Vlad Sobal, Ari Morcos, Shashank Shekhar, Tom
Goldstein, Florian Bordes, Adrien Bardes, Gregoire Mialon, Yuandong Tian, Avi
Schwarzschild, Andrew Gordon Wilson, Jonas Geiping, Quentin Garrido, Pierre Fer-
nandez, Amir Bar, Hamed Pirsiavash, Yann LeCun, and Micah Goldblum. A cookbook
of self-supervised learning, 2023.

[18] Borja Balle, Giovanni Cherubin, and Jamie Hayes. Reconstructing training data with
informed adversaries. arXiv preprint arXiv:2201.04845, 2022.

[19] Hritik Bansal and Aditya Grover. Leaving reality to imagination: Robust classification
via generated datasets, 2023.

[20] Andrei Barbu, David Mayo, Julian Alverio, William Luo, Christopher Wang, Dan
Gutfreund, Josh Tenenbaum, and Boris Katz. Objectnet: A large-scale bias-controlled
dataset for pushing the limits of object recognition models. Advances in neural infor-
mation processing systems, 32, 2019.

[21] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. arXiv preprint arXiv:2105.04906, 2021.

[22] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance

regularization for self-supervised learning. In ICLR, 2022.

122

http://arxiv.org/abs/1409.0473
http://arxiv.org/abs/1409.0473

[23] Adrien Bardes, Jean Ponce, and Yann LeCun. Vicreg: Variance-invariance-covariance
regularization for self-supervised learning. In The Tenth International Conference
on Learning Representations, ICLR 2022, Virtual Event, April 25-29, 2022. OpenRe-
view.net, 2022. URL https://openreview.net/forum?id=xm6YD62D1Ub.

[24] Yoshua Bengio. Deep learning of representations for unsupervised and transfer learning.
In Isabelle Guyon, Gideon Dror, Vincent Lemaire, Graham Taylor, and Daniel Silver, ed-
itors, Proceedings of ICML Workshop on Unsupervised and Transfer Learning, volume 27
of Proceedings of Machine Learning Research, pages 17-36, Bellevue, Washington, USA,
02 Jul 2012. PMLR. URL https://proceedings.mlr.press/v27/bengiol2a.html.

[25] Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy layer-wise
training of deep networks. Advances in neural information processing systems, 19, 2006.

[26] Yoshua Bengio, Frédéric Bastien, Arnaud Bergeron, Nicolas Boulanger—Lewandowski,
Thomas Breuel, Youssouf Chherawala, Moustapha Cisse, Myriam Co6té, Dumitru Erhan,
Jeremy Eustache, Xavier Glorot, Xavier Muller, Sylvain Pannetier Lebeuf, Razvan
Pascanu, Salah Rifai, Francois Savard, and Guillaume Sicard. Deep learners benefit
more from out-of-distribution examples. In Geoffrey Gordon, David Dunson, and
Miroslav Dudik, editors, Proceedings of the Fourteenth International Conference on
Artificial Intelligence and Statistics, volume 15 of Proceedings of Machine Learning
Research, pages 164-172, Fort Lauderdale, FL, USA, 11-13 Apr 2011. PMLR. URL
https://proceedings.mlr.press/v15/bengiollb.html.

[27] Yoshua Bengio, Aaron Courville, and Pascal Vincent. Representation learning: A review
and new perspectives. [EFE transactions on pattern analysis and machine intelligence,
35(8):1798-1828, 2013. URL http://arxiv.org/abs/1206.5538. cite arxiv:1206.5538.

[28] Florian Bordes, Sina Honari, and Pascal Vincent. Learning to generate samples from
noise through infusion training. In International Conference on Learning Representations
(ICLR), 2017.

[29] Florian Bordes, Randall Balestriero, and Pascal Vincent. High fidelity visualization of
what your self-supervised representation knows about. CoRR, abs/2112.09164, 2021.
URL https://arxiv.org/abs/2112.09164.

[30] Florian Bordes, Randall Balestriero, Quentin Garrido, Adrien Bardes, and Pascal
Vincent. Guillotine regularization: Improving deep networks generalization by removing
their head, 2022. URL https://arxiv.org/abs/2206.13378.

[31] Florian Bordes, Randall Balestriero, and Pascal Vincent. High fidelity visualization
of what your self-supervised representation knows about. Transactions on Machine
Learning Research, 2022. URL https://openreview.net/forum?id=urfWb7VjmL.

[32] Florian Bordes, Randall Balestriero, and Pascal Vincent. Towards democratizing joint-
embedding self-supervised learning, 2023. URL https://arxiv.org/abs/2303.01986.

123

https://openreview.net/forum?id=xm6YD62D1Ub
https://proceedings.mlr.press/v27/bengio12a.html
https://proceedings.mlr.press/v15/bengio11b.html
http://arxiv.org/abs/1206.5538
https://arxiv.org/abs/2112.09164
https://arxiv.org/abs/2206.13378
https://openreview.net/forum?id=urfWb7VjmL
https://arxiv.org/abs/2303.01986

[33] Florian Bordes, Samuel Lavoie, Randall Balestriero, Nicolas Ballas, and Pascal Vincent.
A surprisingly simple technique to control the pretraining bias for better transfer:
Expand or narrow your representation, 2023.

[34] Diane Bouchacourt, Mark Ibrahim, and Ari Morcos. Grounding inductive biases in
natural images: invariance stems from variations in data. In M. Ranzato, A. Beygelz-
imer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan, editors, Advances in Neu-
ral Information Processing Systems, volume 34, pages 19566-19579. Curran Asso-
ciates, Inc., 2021. URL https://proceedings.neurips.cc/paper_files/paper/
2021/file/a2fe8c05877ec786290dd1450c3385cd-Paper. pdf.

[35] Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale GAN training for high fi-
delity natural image synthesis. In International Conference on Learning Representations,
2019. URL https://openreview.net/forum?id=B1lxsqjO9Fm.

[36] Nicholas Carlini, Chang Liu, Ulfar Erlingsson, Jernej Kos, and Dawn Song. The secret
sharer: Evaluating and testing unintended memorization in neural networks. In 28th
USENIX Security Symposium (USENIX Security 19), pages 267-284, 2019.

[37] Nicholas Carlini, Florian Tramer, Eric Wallace, Matthew Jagielski, Ariel Herbert-
Voss, Katherine Lee, Adam Roberts, Tom Brown, Dawn Song, Ulfar Erlingsson, et al.
Extracting training data from large language models. In 30th USENIX Security
Symposium (USENIX Security 21), pages 2633-2650, 2021.

[38] Nicholas Carlini, Jamie Hayes, Milad Nasr, Matthew Jagielski, Vikash Sehwag, Florian
Tramer, Borja Balle, Daphne Ippolito, and Eric Wallace. Extracting training data from
diffusion models. arXiv preprint arXiw:2501.13188, 2023.

[39] Mathilde Caron, Piotr Bojanowski, Armand Joulin, and Matthijs Douze. Deep clustering
for unsupervised learning of visual features. In Proceedings of the Furopean conference
on computer vision (ECCYV), pages 132-149, 2018.

[40] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and
Armand Joulin. Unsupervised learning of visual features by contrasting cluster assign-
ments. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors,
Advances in Neural Information Processing Systems, volume 33, pages 9912-9924.
Curran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/
file/70feb62b69f16e0238f741fab228fec2-Paper . pdf.

[41] Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand
Joulin. Unsupervised learning of visual features by contrasting cluster assignments.
Advances in Neural Information Processing Systems, 33:9912-9924, 2020.

[42] Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou, and Julien Mairal Piotr
Bojanowski Armand Joulin. Emerging properties in self-supervised vision transformers.

In ICCV, 2021.

124

https://proceedings.neurips.cc/paper_files/paper/2021/file/a2fe8c05877ec786290dd1450c3385cd-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2021/file/a2fe8c05877ec786290dd1450c3385cd-Paper.pdf
https://openreview.net/forum?id=B1xsqj09Fm
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/70feb62b69f16e0238f741fab228fec2-Paper.pdf

[43] Mathilde Caron, Hugo Touvron, Ishan Misra, Herve Jegou, and Julien Mairal Piotr
Bojanowski Armand Joulin. Emerging properties in self-supervised vision transformers.
In ICCV, 2021.

[44] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bo-
janowski, and Armand Joulin. Emerging properties in self-supervised vision transformers.
In Proceedings of the International Conference on Computer Vision (ICCV), 2021.

[45] Rich Caruana. Learning many related tasks at the same time with backpropagation.
In G. Tesauro, D. Touretzky, and T. Leen, editors, Advances in Neural Information
Processing Systems, volume 7. MIT Press, 1994. URL https://proceedings.neurips.
cc/paper/1994/file/0£840be9b8db4d3fbd5ba2ce59211£55-Paper . pdf.

[46] Arantxa Casanova, Marléne Careil, Jakob Verbeek, Michal Drozdzal, and Adriana
Romero. Instance-conditioned gan. In Thirty-Fifth Conference on Neural Information
Processing Systems, 2021.

[47] Paola Cascante-Bonilla, Khaled Shehada, James Seale Smith, Sivan Doveh, Donghyun
Kim, Rameswar Panda, Gl Varol, Aude Oliva, Vicente Ordonez, Rogerio Feris, et al.
Going beyond nouns with vision & language models using synthetic data. arXiv preprint
arXiw:2303.17590, 2023.

[48] Angel X Chang, Thomas Funkhouser, Leonidas Guibas, Pat Hanrahan, Qixing Huang,
Zimo Li, Silvio Savarese, Manolis Savva, Shuran Song, Hao Su, et al. Shapenet: An
information-rich 3d model repository. arXiv preprint arXiv:1512.03012, 2015.

[49] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple
framework for contrastive learning of visual representations. In International conference
on machine learning, pages 1597-1607. PMLR, 2020.

[50] Ting Chen, Simon Kornblith, Kevin Swersky, Mohammad Norouzi, and Geoffrey Hinton.
Big self-supervised models are strong semi-supervised learners. In NeurlPS, 2020.

[51] Xinlei Chen and Kaiming He. Exploring simple siamese representation learning. In
CVPR, 2020.

[52] Xinlei Chen, Haoqi Fan, Ross Girshick, and Kaiming He. Improved baselines with
momentum contrastive learning. arXiv preprint arXiv:2003.04297, 2020.

[53] Xinlei Chen, Saining Xie, and Kaiming He. An empirical study of training self-supervised
vision transformers. In ICCV, 2021.

[54] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo Rehfeld, Markus Enzweiler,
Rodrigo Benenson, Uwe Franke, Stefan Roth, and Bernt Schiele. The cityscapes dataset
for semantic urban scene understanding. In CVPR, 2016.

[55] Matt Deitke, Dustin Schwenk, Jordi Salvador, Luca Weihs, Oscar Michel, Eli VanderBilt,
Ludwig Schmidt, Kiana Ehsani, Aniruddha Kembhavi, and Ali Farhadi. Objaverse: A
universe of annotated 3d objects. arXiv preprint arXiv:2212.08051, 2022.

125

https://proceedings.neurips.cc/paper/1994/file/0f840be9b8db4d3fbd5ba2ce59211f55-Paper.pdf
https://proceedings.neurips.cc/paper/1994/file/0f840be9b8db4d3fbd5ba2ce59211f55-Paper.pdf

[56]

[57]

[58]

[59]

[60]

[61]

[64]

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In C'VPR, 2009.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE conference on computer vision
and pattern recognition, pages 248-255. leee, 2009.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: pre-
training of deep bidirectional transformers for language understanding. In Jill Burstein,
Christy Doran, and Thamar Solorio, editors, Proceedings of the 2019 Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019,
Volume 1 (Long and Short Papers), pages 4171-4186. Association for Computational
Linguistics, 2019. doi: 10.18653/v1/n19-1423. URL https://doi.org/10.18653/v1/
n19-1423.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training
of deep bidirectional transformers for language understanding. In Proceedings of the
2019 Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pages
4171-4186, 2019.

Prafulla Dhariwal and Alexander Quinn Nichol. Diffusion models beat GANs on image
synthesis. In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.
URL https://openreview.net/forum?id=AAWuCvzaVt.

Anuj Diwan, Layne Berry, Eunsol Choi, David Harwath, and Kyle Mahowald. Why
is winoground hard? investigating failures in visuolinguistic compositionality. In Pro-
ceedings of the 2022 Conference on Empirical Methods in Natural Language Processing,
pages 2236-2250, Abu Dhabi, United Arab Emirates, December 2022. Association for
Computational Linguistics. URL https://aclanthology.org/2022.emnlp-main. 143.
Carl Doersch, Abhinav Gupta, and Alexei A Efros. Unsupervised visual representation
learning by context prediction. In Proceedings of the IEEE international conference on
computer vision, pages 1422-1430, 2015.

Alexey Dosovitskiy and Thomas Brox. Generating images with perceptual similarity
metrics based on deep networks. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and
R. Garnett, editors, Advances in Neural Information Processing Systems, volume 29.
Curran Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/
file/371bce7dc83817b7893bcdeed13799b5-Paper . pdf.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, et al. An image is worth 16x16 words: Transformers for image recognition

at scale. In International Conference on Learning Representations.

126

https://doi.org/10.18653/v1/n19-1423
https://doi.org/10.18653/v1/n19-1423
https://openreview.net/forum?id=AAWuCvzaVt
https://aclanthology.org/2022.emnlp-main.143
https://proceedings.neurips.cc/paper/2016/file/371bce7dc83817b7893bcdeed13799b5-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/371bce7dc83817b7893bcdeed13799b5-Paper.pdf

[65] Alexey Dosovitskiy, German Ros, Felipe Codevilla, Antonio Lopez, and Vladlen Koltun.
CARLA: An open urban driving simulator. In Proceedings of the 1st Annual Conference
on Robot Learning, pages 1-16, 2017.

[66] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale, 2021.

[67] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua
Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold,
Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words:
Transformers for image recognition at scale. In ICLR, 2021.

[68] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur. A learned representa-
tion for artistic style. In 5th International Conference on Learning Representations,
ICLR 2017, Toulon, France, April 24-26, 2017, Conference Track Proceedings. OpenRe-
view.net, 2017. URL https://openreview.net/forum?id=BJ0-BuTlg.

[69] Cynthia Dwork and Aaron Roth. The algorithmic foundations of differential privacy.
Theoretical Computer Science, 9(3-4):211-407, 2013.

[70] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. In Theory of cryptography, pages 265-284. Springer,
2006.

[71] Cian Eastwood and Christopher K. I. Williams. A framework for the quantitative
evaluation of disentangled representations. In International Conference on Learning
Representations, 2018. URL https://openreview.net/forum?id=By-7dz-AZ.

[72] EpicGames. URL https://www.unrealengine.com. Unreal Engine is a copyright of
Epic Games, Inc. and its affiliates (collectively, “Epic”). Any use of images, datasets, or
other content made available by Epic, including without limitation through the Unreal
Engine Marketplace or the Epic Games Launcher, in connection with your use of the
PUG environments and datasets we've outlined in this paper and released publicly in
connection hereto (the “PUG environments and datasets”) or otherwise, is subject to
the Epic Content License Agreement available at https://www.unrealengine.com/
en-US/eula/content or other agreement between you and Epic.

[73] Dumitru Erhan, Yoshua Bengio, Aaron Courville, and Pascal Vincent. Visualizing
higher-layer features of a deep network. University of Montreal, 1341(3):1, 2009.

[74] Linus Ericsson, Henry Gouk, and Timothy M Hospedales. How well do self-supervised
models transfer? In Proceedings of the IEEE/CVFE Conference on Computer Vision
and Pattern Recognition, pages 5414-5423, 2021.

[75] Patrick Esser, Robin Rombach, and Bjorn Ommer. A disentangling invertible interpre-
tation network for explaining latent representations. In Proceedings of the IEEE/CVF

127

https://openreview.net/forum?id=BJO-BuT1g
https://openreview.net/forum?id=By-7dz-AZ
https://www.unrealengine.com
https://www.unrealengine.com/en-US/eula/content
https://www.unrealengine.com/en-US/eula/content

[77]

[30]

[81]

[82]

[83]

[84]

Conference on Computer Vision and Pattern Recognition, pages 9223-9232, 2020.
Kawin Ethayarajh, David Duvenaud, and Graeme Hirst. Towards understanding linear
word analogies. In Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics, pages 3253-3262, Florence, Italy, July 2019. Association for
Computational Linguistics. doi: 10.18653/v1/P19-1315. URL https://aclanthology.
org/P19-1315.

Utku Evci, Vincent Dumoulin, Hugo Larochelle, and Michael C Mozer. Head2Toe:
Utilizing intermediate representations for better transfer learning. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 6009-6033. PMLR, 17-23 Jul 2022.
URL https://proceedings.mlr.press/v162/evci22a.html.

Vitaly Feldman. Does learning require memorization? a short tale about a long tail. In
Proceedings of the 52nd Annual ACM SIGACT Symposium on Theory of Computing,
pages 954-959, 2020.

Matthew Fredrikson, Eric Lantz, Somesh Jha, Simon Lin, David Page, and Thomas
Ristenpart. Privacy in pharmacogenetics: An {End-to-End} case study of personalized
warfarin dosing. In 23rd USENIX Security Symposium (USENIX Security 14), pages
17-32, 2014.

C Gan, J Schwartz, S Alter, M Schrimpf, J Traer, J De Freitas, J Kubilius, A Bhand-
waldar, N Haber, M Sano, et al. Threedworld: A platform for interactive multi-modal
physical simulation. Advances in Neural Information Processing Systems (NeurIPS),
2021.

Rohit Gandikota, Joanna Materzynska, Jaden Fiotto-Kaufman, and David Bau. Erasing
concepts from diffusion models. arXiv preprint arXiv:2305.07345, 2023.

Timnit Gebru, Jamie Morgenstern, Briana Vecchione, Jennifer Wortman Vaughan,
Hanna Wallach, Hal Daumé lii, and Kate Crawford. Datasheets for datasets. Commu-
nications of the ACM, 64(12):86-92, 2021.

Muhammad Ghifary, W. Kleijn, Mengjie Zhang, and David Balduzzi. Domain gen-
eralization for object recognition with multi-task autoencoders. 2015 IEEE Inter-
national Conference on Computer Vision (ICCV), pages 2551-2559, 2015. URL
https://api.semanticscholar.org/CorpusID:12825123.

Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. In 6th International Conference on Learning
Representations, ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Con-
ference Track Proceedings. OpenReview.net, 2018. URL https://openreview.net/
forum?7id=S1v4N210-.

128

https://aclanthology.org/P19-1315
https://aclanthology.org/P19-1315
https://proceedings.mlr.press/v162/evci22a.html
https://api.semanticscholar.org/CorpusID:12825123
https://openreview.net/forum?id=S1v4N2l0-
https://openreview.net/forum?id=S1v4N2l0-

[85] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation
learning by predicting image rotations. arXiv preprint arXiv:1803.07728, 2018.

[86] Xavier Glorot, Antoine Bordes, and Yoshua Bengio. Deep sparse rectifier neural networks.
In Geoffrey Gordon, David Dunson, and Miroslav Dudik, editors, Proceedings of the
Fourteenth International Conference on Artificial Intelligence and Statistics, volume 15 of
Proceedings of Machine Learning Research, pages 315-323, Fort Lauderdale, FL, USA, 11—
13 Apr 2011. PMLR. URL https://proceedings.mlr.press/v15/glorotila.html.

[87] Muhammad Waleed Gondal, Manuel Wuthrich, Djordje Miladinovic, Francesco Lo-
catello, Martin Breidt, Valentin Volchkov, Joel Akpo, Olivier Bachem, Bernhard
Scholkopf, and Stefan Bauer. On the transfer of inductive bias from simulation to the
real world: a new disentanglement dataset. In H. Wallach, H. Larochelle, A. Beygelzimer,
F. d'Alché-Buc, E. Fox, and R. Garnett, editors, Advances in Neural Information Pro-
cessing Systems, volume 32. Curran Associates, Inc., 2019. URL https://proceedings.
neurips.cc/paper/2019/file/d97d404b6119214e4a7018391195240a-Paper. pdf.

[88] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sher-
jil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances
in neural information processing systems, 27, 2014.

[89] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing
adversarial examples. In International Conference on Learning Representations, 2015.
URL http://arxiv.org/abs/1412.6572.

[90] Tan Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press, 2016.
http://www.deeplearningbook.org.

[91] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adversarial networks.
Communications of the ACM, 63(11):139-144, 2020.

[92] Priya Goyal, Quentin Duval, Jeremy Reizenstein, Matthew Leavitt, Min Xu, Benjamin
Lefaudeux, Mannat Singh, Vinicius Reis, Mathilde Caron, Piotr Bojanowski, Armand
Joulin, and Ishan Misra. Vissl. https://github.com/facebookresearch/vissl, 2021.

[93] Jean-Bastien Grill, Florian Strub, Florent Altché, Corentin Tallec, Pierre H. Richemond,
Elena Buchatskaya, Carl Doersch, Bernardo Avila Pires, Zhaohan Daniel Guo, Moham-
mad Gheshlaghi Azar, Bilal Piot, Koray Kavukcuoglu, Rémi Munos, and Michal Valko.
Bootstrap your own latent: A new approach to self-supervised learning. In NeurlPS,
2020.

[94] Chuan Guo, Brian Karrer, Kamalika Chaudhuri, and Laurens van der Maaten. Bounding
training data reconstruction in private (deep) learning. arXiv preprint arXiv:2201.12383,
2022.

[95] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision and

129

https://proceedings.mlr.press/v15/glorot11a.html
https://proceedings.neurips.cc/paper/2019/file/d97d404b6119214e4a7018391195240a-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/d97d404b6119214e4a7018391195240a-Paper.pdf
http://arxiv.org/abs/1412.6572
http://www.deeplearningbook.org
https://github.com/facebookresearch/vissl

[96]

[97]

[98]

[101]

[102]

[103]

[104]

[105]

[106]

pattern recognition, pages 770-778, 2016.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In C'VPR, 2016.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast
for unsupervised visual representation learning. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9729-9738, 2020.
Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), pages 16000-16009,
June 2022.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollar, and Ross Girshick.
Masked autoencoders are scalable vision learners. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 16000-16009, 2022.
Ruifei He, Shuyang Sun, Xin Yu, Chuhui Xue, Wenqing Zhang, Philip Torr, Song Bai,
and XIAOJUAN QL. IS SYNTHETIC DATA FROM GENERATIVE MODELS READY
FOR IMAGE RECOGNITION? In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=nUmCcZ5RKF.
Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A
novel dataset and deep learning benchmark for land use and land cover classification.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
12(7):2217-2226, 2019. doi: 10.1109/JSTARS.2019.2918242.

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to
common corruptions and perturbations. Proceedings of the International Conference on
Learning Representations, 2019.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp
Hochreiter. GANs trained by a two time-scale update rule converge to a local Nash
equilibrium. In NeurIPS, 2017.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for
deep belief nets. Neural Computation, 18:1527-1554, 2006.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan, and
Hsuan-Tien Lin, editors, Advances in Neural Information Processing Systems 33:
Annual Conference on Neural Information Processing Systems 2020, NeurIPS 2020,
December 6-12, 2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/
2020/hash/4cbbcfec8584af0d967f1ab10179cadb-Abstract.html.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models.
Advances in Neural Information Processing Systems, 33:6840-6851, 2020.

130

https://openreview.net/forum?id=nUmCcZ5RKF
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/4c5bcfec8584af0d967f1ab10179ca4b-Abstract.html

[107] Harold Hotelling. Relations between two sets of variates. In Breakthroughs in statistics,
pages 162-190. Springer, 1992.

[108] William W Hsieh. Nonlinear canonical correlation analysis by neural networks. Neural
Networks, 13(10):1095-1105, 2000.

[109] Aapo Hyvérinen. Estimation of non-normalized statistical models by score matching.
Journal of Machine Learning Research, 6(Apr):695-709, 2005.

[110] Mark Ibrahim, Quentin Garrido, Ari Morcos, and Diane Bouchacourt. The robustness
limits of sota vision models to natural variation. arXiv preprint arXiv:2210.13604, 2022.

[111] Badr Youbi Idrissi, Diane Bouchacourt, Randall Balestriero, Ivan Evtimov, Caner
Hazirbas, Nicolas Ballas, Pascal Vincent, Michal Drozdzal, David Lopez-Paz, and
Mark Ibrahim. Imagenet-x: Understanding model mistakes with factor of variation
annotations. arXiw preprint arXiv:2211.01866, 2022.

[112] Gabriel Ilharco, Mitchell Wortsman, Ross Wightman, Cade Gordon, Nicholas Car-
lini, Rohan Taori, Achal Dave, Vaishaal Shankar, Hongseok Namkoong, John Miller,
Hannaneh Hajishirzi, Ali Farhadi, and Ludwig Schmidt. Openclip, July 2021. URL
https://doi.org/10.5281/zenodo.5143773. If you use this software, please cite it
as below.

[113] Sergey loffe and Christian Szegedy. Batch normalization: Accelerating deep network
training by reducing internal covariate shift. In Francis Bach and David Blei, editors,
Proceedings of the 32nd International Conference on Machine Learning, volume 37 of
Proceedings of Machine Learning Research, pages 448-456, Lille, France, 0709 Jul 2015.
PMLR. URL https://proceedings.mlr.press/v37/ioffel5.html.

[114] Ali Jahanian, Xavier Puig, Yonglong Tian, and Phillip Isola. Generative models as a data
source for multiview representation learning. In International Conference on Learning
Representations, 2022. URL https://openreview.net/forum?id=qhAeZjs7dCL.

[115] Saachi Jain, Hannah Lawrence, Ankur Moitra, and Aleksander Madry. Distilling model
failures as directions in latent space. In The Eleventh International Conference on Learn-
ing Representations, 2023. URL https://openreview.net/forum?id=99RpBVpLiX.

[116] Bargav Jayaraman and David Evans. Are attribute inference attacks just imputation?
arXiv preprint arXiv:2209.01292, 2022.

[117] Li Jing, Pascal Vincent, Yann LeCun, and Yuandong Tian. Understanding dimensional
collapse in contrastive self-supervised learning. In ICLR, 2022.

[118] Justin Johnson, Bharath Hariharan, Laurens van der Maaten, Li Fei-Fei, C Lawrence
Zitnick, and Ross Girshick. Clevr: A diagnostic dataset for compositional language and
elementary visual reasoning. In C'VPR, 2017.

[119] Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo
Aila. Analyzing and improving the image quality of StyleGAN. In CVPR, 2020.

131

https://doi.org/10.5281/zenodo.5143773
https://proceedings.mlr.press/v37/ioffe15.html
https://openreview.net/forum?id=qhAeZjs7dCL
https://openreview.net/forum?id=99RpBVpLiX

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

[129]

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron Sarna, Yonglong Tian, Phillip
Isola, Aaron Maschinot, Ce Liu, and Dilip Krishnan. Supervised contrastive learning.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances
in Neural Information Processing Systems, volume 33, pages 18661-18673. Curran
Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/file/
d89a66c7c80a29blbdbab0f2alad94af8-Paper.pdf.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. In Proceedings
of the 2nd International Conference on Learning Representations (ICLR 2014), 2014.
Durk P Kingma, Tim Salimans, Rafal Jozefowicz, Xi Chen, Ilya Sutskever,
and Max Welling. Improved variational inference with inverse autoregressive
flow. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors,
Advances in Neural Information Processing Systems, volume 29. Curran Asso-
ciates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
ddeebdeefdb7e7e7a697elc3e3d8ef54-Paper. pdf.

Polina Kirichenko, Pavel Izmailov, and Andrew Gordon Wilson. Last layer re-training
is sufficient for robustness to spurious correlations, 2022. URL https://arxiv.org/
abs/2204.02937.

David Klee, Ondrej Biza, Robert Platt, and Robin Walters. Image to sphere: Learning
equivariant features for efficient pose prediction. In The FEleventh International Confer-
ence on Learning Representations, 2023. URL https://openreview.net/forum?id=
_2bDpAtr7PI.

Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung,
Sylvain Gelly, and Neil Houlsby. Big transfer (bit): General visual representation
learning, 2020.

Alexander Kolesnikov, Alexey Dosovitskiy, Dirk Weissenborn, Georg Heigold, Jakob
Uszkoreit, Lucas Beyer, Matthias Minderer, Mostafa Dehghani, Neil Houlsby, Sylvain
Gelly, Thomas Unterthiner, and Xiaohua Zhai. An image is worth 16x16 words:
Transformers for image recognition at scale. 2021.

Alex Krizhevsky. Learning multiple layers of features from tiny images. pages 32-33, 20009.
URL https://wuw.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf.
Gustav Larsson, Michael Maire, and Gregory Shakhnarovich. Learning representations
for automatic colorization. In Computer Vision-ECCV 2016: 14th European Conference,
Amsterdam, The Netherlands, October 11-14, 2016, Proceedings, Part IV 1/, pages
577-593. Springer, 2016.

Guillaume Leclerc, Andrew Ilyas, Logan Engstrom, Sung Min Park, Hadi Salman,
and Aleksander Madry. ffcv. https://github.com/libffcv/ffcv/, 2022. commit

XXXXXXX.

132

https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2020/file/d89a66c7c80a29b1bdbab0f2a1a94af8-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/ddeebdeefdb7e7e7a697e1c3e3d8ef54-Paper.pdf
https://arxiv.org/abs/2204.02937
https://arxiv.org/abs/2204.02937
https://openreview.net/forum?id=_2bDpAtr7PI
https://openreview.net/forum?id=_2bDpAtr7PI
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://github.com/libffcv/ffcv/

[130] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, Richard E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten digit recognition with a
back-propagation network. In Advances in neural information processing systems, pages
396-404, 1990.

[131] Yann LeCun, Sumit Chopra, Raia Hadsell, Marc’Aurelio Ranzato, and Fu-Jie Huang.
A tutorial on energy-based learning. In G. Bakir, T. Hofman, B. Scholkopf, A. Smola,
and B. Taskar, editors, Predicting Structured Data. MIT Press, 2006.

[132] Dong-Hyun Lee et al. Pseudo-label: The simple and efficient semi-supervised learning
method for deep neural networks. In Workshop on challenges in representation learning,
ICML, volume 3, page 896, 2013.

[133] J.M. Lee. Introduction to Topological Manifolds. Graduate texts in mathematics.
Springer, 2000. ISBN 9780387950266. URL https://books.google.fr/books?id=
5LqQgkS3--MC.

[134] Kuang-Huei Lee, Anurag Arnab, Sergio Guadarrama, John Canny, and Ian Fischer.
Compressive visual representations. In NeurIPS, 2021.

[135] Karel Lenc and Andrea Vedaldi. Understanding image representations by measuring
their equivariance and equivalence. International Journal of Computer Vision, 2018.
doi: 10.1007/s11263-018-1098-y.

[136] Chunyuan Li, Jianwei Yang, Pengchuan Zhang, Mei Gao, Bin Xiao, Xiyang Dai, Lu Yuan,
and Jianfeng Gao. Efficient self-supervised vision transformers for representation
learning. In ICLR, 2022.

[137] Da Li, Yongxin Yang, Yi-Zhe Song, and Timothy M Hospedales. Deeper, broader and
artier domain generalization. In Proceedings of the IEEE international conference on
computer vision, pages 5542-5550, 2017.

[138] Daiqing Li, Huan Ling, Seung Wook Kim, Karsten Kreis, Sanja Fidler, and Antonio
Torralba. Bigdatasetgan: Synthesizing imagenet with pixel-wise annotations. In
IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 21298-21308. IEEE, 2022. doi:
10.1109/CVPR52688.2022.02064. URL https://doi.org/10.1109/CVPR52688.2022.
02064.

[139] Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-
image pre-training for unified vision-language understanding and generation. In ICML,
2022.

[140] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D. Bourdev, Ross B. Girshick,
James Hays, Pietro Perona, Deva Ramanan, Piotr Doll’a r, and C. Lawrence Zitnick.
Microsoft COCO: common objects in context. CoRR, abs/1405.0312, 2014. URL
http://arxiv.org/abs/1405.0312.

133

https://books.google.fr/books?id=5LqQgkS3--MC
https://books.google.fr/books?id=5LqQgkS3--MC
https://doi.org/10.1109/CVPR52688.2022.02064
https://doi.org/10.1109/CVPR52688.2022.02064
http://arxiv.org/abs/1405.0312

[141]

[142]

[143]

[144]

[145]

[146]

[147]

[148]

[149]

[150]

Zhiqiu Lin, Xinyue Chen, Deepak Pathak, Pengchuan Zhang, and Deva Ramanan.
Visualgptscore: Visio-linguistic reasoning with multimodal generative pre-training
scores, 2023.

Jiashuo Liu, Zheyan Shen, Yue He, Xingxuan Zhang, Renzhe Xu, Han Yu, and Peng
Cui. Towards out-of-distribution generalization: A survey, 2023.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and
Baining Guo. Swin transformer: Hierarchical vision transformer using shifted windows,
2021.

Mingsheng Long, Yue Cao, Jianmin Wang, and Michael I. Jordan. Learning transferable
features with deep adaptation networks. In Proceedings of the 32nd International
Conference on International Conference on Machine Learning - Volume 37, ICML’15,
page 97-105. JMLR.org, 2015.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In 7th
International Conference on Learning Representations, ICLR 2019, New Orleans, LA,
USA, May 6-9, 2019. OpenReview.net, 2019. URL https://openreview.net/forum?
1d=Bkg6RiCqY7.

Mario Lucié¢, Michael Tschannen, Marvin Ritter, Xiaohua Zhai, Olivier Bachem, and
Sylvain Gelly. High-fidelity image generation with fewer labels. In Kamalika Chaudhuri
and Ruslan Salakhutdinov, editors, Proceedings of the 36th International Conference
on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pages
4183-4192. PMLR, 09-15 Jun 2019. URL https://proceedings.mlr.press/v97/
lucicl9a.html.

Spandan Madan, Tomotake Sasaki, Tzu-Mao Li, Xavier Boix, and Hanspeter Pfister.
Small in-distribution changes in 3d perspective and lighting fool both CNNs and
transformers. URL http://arxiv.org/abs/2106.16198.

Spandan Madan, Timothy Henry, Jamell Dozier, Helen Ho, Nishchal Bhandari, To-
motake Sasaki, Frédo Durand, Hanspeter Pfister, and Xavier Boix. When and how
convolutional neural networks generalize to out-of-distribution category—viewpoint com-
binations. Nature Machine Intelligence, 4(2):146-153, Feb 2022. ISSN 2522-5839. doi:
10.1038/s42256-021-00437-5. URL https://doi.org/10.1038/s42256-021-00437-5.
Hartmut Maennel, Ibrahim Alabdulmohsin, Ilya Tolstikhin, Robert J. N. Baldock,
Olivier Bousquet, Sylvain Gelly, and Daniel Keysers. What do neural networks learn
when trained with random labels? In Proceedings of the 34th International Conference
on Neural Information Processing Systems, NIPS’20, Red Hook, NY, USA, 2020. Curran
Associates Inc. ISBN 9781713829546.

Aravindh Mahendran and Andrea Vedaldi. Understanding deep image representa-
tions by inverting them. In C'VPR, pages 5188-5196. IEEE Computer Society, 2015.
ISBN 978-1-4673-6964-0. URL http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.

134

https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://proceedings.mlr.press/v97/lucic19a.html
https://proceedings.mlr.press/v97/lucic19a.html
http://arxiv.org/abs/2106.16198
https://doi.org/10.1038/s42256-021-00437-5
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#MahendranV15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#MahendranV15

html#MahendranV15.

[151] Shagufta Mehnaz, Sayanton V Dibbo, Ehsanul Kabir, Ninghui Li, and Elisa Bertino.
Are your sensitive attributes private? novel model inversion attribute inference attacks
on classification models. arXiv preprint arXiv:2201.09370, 2022.

[152] Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv
preprint, (arXiv:1411.1784), 2014.

[153] Samarth Mishra, Rameswar Panda, Cheng Perng Phoo, Chun-Fu Richard Chen, Leonid
Karlinsky, Kate Saenko, Venkatesh Saligrama, and Rogerio S Feris. Task2sim: Towards
effective pre-training and transfer from synthetic data. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 9194-9204, 2022.

[154] Ishan Misra and Laurens van der Maaten. Self-supervised learning of pretext-invariant
representations. In C'VPR, 2020.

[155] Charlie Nash, Nate Kushman, and Christopher KI Williams. Inverting supervised
representations with autoregressive neural density models. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 1620-1629. PMLR, 2019.

[156] Anh Nguyen, Alexey Dosovitskiy, Jason Yosinski, Thomas Brox, and Jeff Clune. Synthe-
sizing the preferred inputs for neurons in neural networks via deep generator networks.
In Proceedings of the 30th International Conference on Neural Information Processing
Systems, NIPS’16, page 3395-3403, Red Hook, NY, USA, 2016. Curran Associates Inc.
ISBN 9781510838819.

[157] Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug
& play generative networks: Conditional iterative generation of images in latent space.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
IEEE, 2017.

[158] Mehdi Noroozi and Paolo Favaro. Unsupervised learning of visual representations by
solving jigsaw puzzles. In Proceedings of the European Conference on Computer Vision
(ECCYV), 2016.

[159] Mehdi Noroozi, Ananth Vinjimoor, Paolo Favaro, and Hamed Pirsiavash. Boosting
self-supervised learning via knowledge transfer. In Proceedings of the IEEE conference
on computer vision and pattern recognition, pages 9359-9367, 2018.

[160] Chris Olah, Alexander Mordvintsev, and Ludwig Schubert. Feature visualization. Distill,
2017. doi: 10.23915/distill.00007. https://distill.pub/2017 /feature-visualization.

[161] Maxime Oquab, Leon Bottou, Ivan Laptev, and Josef Sivic. Learning and transferring
mid-level image representations using convolutional neural networks. In Proceedings
of the IEEFE conference on computer vision and pattern recognition, pages 1717-1724,
2014.

[162] Maxime Oquab, Timothée Darcet, Theo Moutakanni, Huy V. Vo, Marc Szafraniec,

Vasil Khalidov, Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby,

135

http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#MahendranV15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#MahendranV15
http://dblp.uni-trier.de/db/conf/cvpr/cvpr2015.html#MahendranV15

Russell Howes, Po-Yao Huang, Hu Xu, Vasu Sharma, Shang-Wen Li, Wojciech Galuba,
Mike Rabbat, Mido Assran, Nicolas Ballas, Gabriel Synnaeve, Ishan Misra, Herve
Jegou, Julien Mairal, Patrick Labatut, Armand Joulin, and Piotr Bojanowski. Dinov2:
Learning robust visual features without supervision, 2023.

[163] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmai-
son, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani,
Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala.
Pytorch: An imperative style, high-performance deep learning library. In NeurlPS,
2019.

[164] Deepak Pathak, Philipp Krahenbuhl, Jeff Donahue, Trevor Darrell, and Alexei A. Efros.
Context encoders: Feature learning by inpainting. In CVPR, 2016.

[165] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger,
and Ilya Sutskever. Learning Transferable Visual Models From Natural Language
Supervision. arziv:2103.00020[cs], February 2021. doi: 10.48550/arXiv.2103.00020.
URL http://arxiv.org/abs/2103.00020.

[166] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini
Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision. In International conference
on machine learning, pages 8748-8763. PMLR, 2021.

[167] Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierar-
chical text-conditional image generation with clip latents, 2022.

[168] D. J. Rezende, S. Mohamed, and D. Wierstra. Stochastic backpropagation and approx-
imate inference in deep generative models. In International Conference on Machine
Learning (ICML 2014), 2014.

[169] Robin Rombach, Patrick Esser, and Bjorn Ommer. Making sense of cnns: Interpreting
deep representations and their invariances with inns. In Computer Vision-ECCV 2020:
16th European Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part XVII
16, pages 647-664. Springer, 2020.

[170] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks
for biomedical image segmentation. volume 9351, pages 234-241, 10 2015. ISBN
978-3-319-24573-7. doi: 10.1007/978-3-319-24574-4 28.

[171] Frank Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological review, 65(6):386, 1958.

[172] Elan Rosenfeld, Pradeep Ravikumar, and Andrej Risteski. Domain-adjusted regression
or: Erm may already learn features sufficient for out-of-distribution generalization, 2022.
URL https://arxiv.org/abs/2202.06856.

136

http://arxiv.org/abs/2103.00020
https://arxiv.org/abs/2202.06856

[173] David E Rumelhart, Geoffrey E Hinton, and Ronald J Williams. Learning internal
representations by error propagation. Technical report, DTIC Document, 1985.

[174] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge. International
Journal of Computer Vision, 115(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

[175] Alexandre Sablayrolles, Matthijs Douze, Cordelia Schmid, Yann Ollivier, and Hervé
Jégou. White-box vs black-box: Bayes optimal strategies for membership inference. In
International Conference on Machine Learning, pages 5558-5567. PMLR, 2019.

[176] Shiori Sagawa*, Pang Wei Koh*, Tatsunori B. Hashimoto, and Percy Liang. Distribution-
ally robust neural networks. In International Conference on Learning Representations,
2020. URL https://openreview.net/forum?id=ryxGuJrFvs.

[177] Ruslan Salakhutdinov, Andriy Mnih, and Geoffrey Hinton. Restricted boltzmann
machines for collaborative filtering. In Proceedings of the 24th International Conference
on Machine Learning, ICML ’07, page 791-798, New York, NY, USA, 2007. Association
for Computing Machinery. ISBN 9781595937933. doi: 10.1145/1273496.1273596. URL
https://doi.org/10.1145/1273496.1273596.

[178] Ahmed Salem, Yang Zhang, Mathias Humbert, Pascal Berrang, Mario Fritz, and
Michael Backes. Ml-leaks: Model and data independent membership inference attacks
and defenses on machine learning models. arXiv preprint arXiv:1806.01246, 2018.

[179] T. Salimans, I. Goodfellow, W. Zaremba, V. Cheung, A. Radford, and X. Chen.
Improved techniques for training GANs. In NeurIPS, 2016.

[180] Tim Salimans, Andrej Karpathy, Xi Chen, and Diederik P. Kingma. Pixelenn++: A
pixelenn implementation with discretized logistic mixture likelihood and other modifi-
cations. In ICLR, 2017.

[181] Mert Bulent Sariyildiz, Karteek Alahari, Diane Larlus, and Yannis Kalantidis. Fake
it till you make it: Learning transferable representations from synthetic imagenet
clones. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition (CVPR), 2023.

[182] Mert Biilent Sariyildiz, Yannis Kalantidis, Karteek Alahari, and Diane Larlus. No
reason for no supervision: Improved generalization in supervised models. In The
Eleventh International Conference on Learning Representations, 2023. URL https:
//openreview.net/forum?id=3Y5Uhf5KgGK.

[183] Ramprasaath R Selvaraju, Abhishek Das, Ramakrishna Vedantam, Michael Cogswell,
Devi Parikh, and Dhruv Batra. Grad-cam: Why did you say that? arXiv preprint
arXiw:1611.07450, 2016.

[184] Shashank Shekhar, Florian Bordes, Pascal Vincent, and Ari Morcos. Objectives

matter: Understanding the impact of self-supervised objectives on vision transformer

137

https://openreview.net/forum?id=ryxGuJrFvS
https://doi.org/10.1145/1273496.1273596
https://openreview.net/forum?id=3Y5Uhf5KgGK
https://openreview.net/forum?id=3Y5Uhf5KgGK

representations, 2023.

[185] Assaf Shocher, Yossi Gandelsman, Inbar Mosseri, Michal Yarom, Michal Irani, William T
Freeman, and Tali Dekel. Semantic pyramid for image generation. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages T457-7466,
2020.

[186] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership
inference attacks against machine learning models. In 2017 IEEE symposium on security
and privacy (SP), pages 3-18. IEEE, 2017.

[187] Ilia Shumailov, Zakhar Shumaylov, Yiren Zhao, Yarin Gal, Nicolas Papernot, and Ross
Anderson. The curse of recursion: Training on generated data makes models forget,
2023.

[188] Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

[189] Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech
Galuba, Marcus Rohrbach, and Douwe Kiela. FLAVA: A foundational language and
vision alignment model. In CVPR, 2022.

[190] Daniel Smilkov, Nikhil Thorat, Been Kim, Fernanda Viégas, and Martin Wattenberg,.
Smoothgrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825, 2017.

[191] Jascha Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and Surya Ganguli.
Deep unsupervised learning using nonequilibrium thermodynamics. In Francis R.
Bach and David M. Blei, editors, Proceedings of the 32nd International Conference
on Machine Learning, ICML 2015, Lille, France, 6-11 July 2015, volume 37 of JMLR
Workshop and Conference Proceedings, pages 2256-2265. JMLR.org, 2015. URL http:
//proceedings.mlr.press/v37/sohl-dicksteinl5.html.

[192] Gowthami Somepalli, Vasu Singla, Micah Goldblum, Jonas Geiping, and Tom Goldstein.
Diffusion art or digital forgery? investigating data replication in diffusion models. arXiv
preprint arXiv:2212.03860, 2022.

[193] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the
data distribution. 07 2019.

[194] Nitish Srivastava, Elman Mansimov, and Ruslan Salakhutdinov. Unsupervised learning
of video representations using LSTMs. In ICML, 2015.

[195] Oliver Struckmeier, Kshitij Tiwari, and Ville Kyrki. Autoencoding slow representations
for semi-supervised data-efficient regression. Machine Learning, pages 1-19, 2023.

[196] Andrew Szot, Alex Clegg, Eric Undersander, Erik Wijmans, Yili Zhao, John Turner,
Noah Maestre, Mustafa Mukadam, Devendra Chaplot, Oleksandr Maksymets, Aaron
Gokaslan, Vladimir Vondrus, Sameer Dharur, Franziska Meier, Wojciech Galuba, Angel
Chang, Zsolt Kira, Vladlen Koltun, Jitendra Malik, Manolis Savva, and Dhruv Batra.

138

http://proceedings.mlr.press/v37/sohl-dickstein15.html
http://proceedings.mlr.press/v37/sohl-dickstein15.html

Habitat 2.0: Training home assistants to rearrange their habitat, 2021.

[197] Kai Sheng Tai, Peter Bailis, and Gregory Valiant. Equivariant transformer networks.
In Kamalika Chaudhuri and Ruslan Salakhutdinov, editors, Proceedings of the 36th
International Conference on Machine Learning, ICML 2019, 9-15 June 2019, Long
Beach, California, USA, volume 97 of Proceedings of Machine Learning Research, pages
6086-6095. PMLR, 2019. URL http://proceedings.mlr.press/v97/tail9a.html.

[198] Tristan Thrush, Ryan Jiang, Max Bartolo, Amanpreet Singh, Adina Williams, Douwe
Kiela, and Candace Ross. Winoground: Probing vision and language models for visio-
linguistic compositionality. In Proceedings of the IEEE/CVE Conference on Computer
Vision and Pattern Recognition, pages 5238-5248, 2022.

[199] Nenad Tomasev, loana Bica, Brian McWilliams, Lars Buesing, Razvan Pascanu, Charles
Blundell, and Jovana Mitrovic. Pushing the limits of self-supervised resnets: Can
we outperform supervised learning without labels on imagenet? arXiv preprint
arXiv:2201.05119, 2022.

[200] Brandon Trabucco, Kyle Doherty, Max Gurinas, and Ruslan Salakhutdinov. Effective
data augmentation with diffusion models, 2023.

[201] Matthew Trager, Pramuditha Perera, Luca Zancato, Alessandro Achille, Parminder
Bhatia, and Stefano Soatto. Linear spaces of meanings: Compositional structures in
vision-language models, 2023.

[202] Trimble Inc. 3d warehouse. https://3dwarehouse.sketchup.com/. Accessed: 2022-
03-07.

[203] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2018.

[204] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
9446-9454, 2018.

[205] Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Deep image prior. In CVPR,
2018.

[206] Asahi Ushio, Luis Espinosa Anke, Steven Schockaert, and Jose Camacho-Collados.
BERT is to NLP what AlexNet is to CV: Can pre-trained language models iden-
tify analogies? In Proceedings of the 59th Annual Meeting of the Association for
Computational Linguistics and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers), Online, August 2021. Association for
Computational Linguistics.

[207] Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu,
Oriol Vinyals, and Alex Graves. Conditional image generation with pixelenn

decoders. In D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett,

139

http://proceedings.mlr.press/v97/tai19a.html
https://3dwarehouse.sketchup.com/

208]

[209)]

210]

[211]

212]

[213]

[214]

[215]

216]

editors, Advances in Neural Information Processing Systems, volume 29. Curran
Associates, Inc., 2016. URL https://proceedings.neurips.cc/paper/2016/file/
b1301141feffabac455e1£90a7de2054-Paper.pdf.

Aédron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent
neural networks. In Proceedings of the 33rd International Conference on International
Conference on Machine Learning - Volume 48, ICML’16, page 1747-1756. JMLR.org,
2016.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with
contrastive predictive coding. arXiv preprint arXiw:1807.03748, 2018.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, T, ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran As-
sociates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4al845aa-Paper. pdf.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, ¥, ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems, volume 30. Curran
Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/file/
3fbee243547dee91fbd053c1c4a84baa-Paper. pdf.

Pascal Vincent. A connection between score matching and denoising autoencoders.
Neural computation, 23(7):1661-1674, 2011.

Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. FEx-
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th International Conference on Machine Learning, ICML 08, page 1096-1103,
New York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054.
doi: 10.1145/1390156.1390294. URL https://doi.org/10.1145/1390156.1390294.
Pascal Vincent, Hugo Larochelle, Yoshua Bengio, and Pierre-Antoine Manzagol. FEx-
tracting and composing robust features with denoising autoencoders. In Proceedings of
the 25th international conference on Machine learning, pages 1096-1103, 2008.

Pascal Vincent, Hugo Larochelle, Isabelle Lajoie, Yoshua Bengio, and Pierre-Antoine
Manzagol. Stacked denoising autoencoders: Learning useful representations in a deep
network with a local denoising criterion. Journal of Machine Learning Research, 11
(110):3371-3408, 2010. URL http://jmlr.org/papers/vil/vincent10a.html.

Carl Vondrick, Abhinav Shrivastava, Alireza Fathi, Sergio Guadarrama, and Kevin
Murphy. Tracking emerges by colorizing videos. In Proceedings of the European
conference on computer vision (ECCYV), pages 391-408, 2018.

140

https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper/2016/file/b1301141feffabac455e1f90a7de2054-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/1390156.1390294
http://jmlr.org/papers/v11/vincent10a.html

[217)

[218]

219]

[220]

221]
222

223)]

224]

[225]

[226]

Tan Wang, Kevin Lin, Linjie Li, Chung-Ching Lin, Zhengyuan Yang, Hanwang Zhang,
Zicheng Liu, and Lijuan Wang. Equivariant similarity for vision-language foundation
models, 2023.

Weiran Wang, Raman Arora, Karen Livescu, and Jeff Bilmes. On deep multi-view
representation learning. In International conference on machine learning, pages 1083~
1092. PMLR, 2015.

Yizhou Wang, Shixiang Tang, Feng Zhu, Lei Bai, Rui Zhao, Donglian Qi, and Wanli
Ouyang. Revisiting the transferability of supervised pretraining: an MLP perspective.
In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022,
New Orleans, LA, USA, June 18-24, 2022, pages 9173-9183. IEEE, 2022. doi: 10.1109/
CVPR52688.2022.00897. URL https://doi.org/10.1109/CVPR52688.2022.00897.
Lauren Watson, Chuan Guo, Graham Cormode, and Alex Sablayrolles. On the im-
portance of difficulty calibration in membership inference attacks. arXiv preprint
arXiv:2111.08440, 2021.

Lilian Weng. From autoencoder to beta-vae. lilianweng.github.io, 2018. URL https:
//1lilianweng.github.io/posts/2018-08-12-vae/.

Ross Wightman, Hugo Touvron, and Hervé Jégou. Resnet strikes back: An improved
training procedure in timm, 2021.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue,
Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison,
Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame, Quentin Lhoest, and Alexander M.
Rush. Transformers: State-of-the-art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Natural Language Processing: System
Demonstrations, pages 38-45, Online, October 2020. Association for Computational
Linguistics. URL https://www.aclweb.org/anthology/2020.emnlp-demos.6.
Zhirong Wu, Yuanjun Xiong, Stella X Yu, and Dahua Lin. Unsupervised feature learning
via non-parametric instance discrimination. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 3733-3742, 2018.

Kai Xiao, Logan Engstrom, Andrew Ilyas, and Aleksander Madry. Noise or signal: The
role of image backgrounds in object recognition. arXiv preprint arXiv:2006.09994, 2020.
Sirui Xie, Ari S Morcos, Song-Chun Zhu, and Ramakrishna Vedantam. COAT: Mea-
suring object compositionality in emergent representations. In Kamalika Chaudhuri,
Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato, editors,
Proceedings of the 39th International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pages 24388-24413. PMLR, 17-23 Jul 2022.
URL https://proceedings.mlr.press/v162/xie22b.html.

141

https://doi.org/10.1109/CVPR52688.2022.00897
https://lilianweng.github.io/posts/2018-08-12-vae/
https://lilianweng.github.io/posts/2018-08-12-vae/
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://proceedings.mlr.press/v162/xie22b.html

[227] Zhenda Xie, Zheng Zhang, Yue Cao, Yutong Lin, Jianmin Bao, Zhuliang Yao, Qi Dai,
and Han Hu. Simmim: A simple framework for masked image modeling. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
9653-9663, 2022.

[228] Renzhe Xu Han Yu Zheyan Shen Peng Cui Xingxuan Zhang, Yue He. Nico++: Towards
better benchmarking for domain generalization, 2022.

[229] Kaiyu Yang, Jacqueline Yau, Li Fei-Fei, Jia Deng, and Olga Russakovsky. A study
of face obfuscation in imagenet. In International Conference on Machine Learning
(ICML), 2022.

[230] Jiayuan Ye, Aadyaa Maddi, Sasi Kumar Murakonda, Vincent Bindschaedler, and Reza
Shokri. Enhanced membership inference attacks against machine learning models. arXiv
preprint arXiw:2111.09679, 2021.

[231] Samuel Yeom, Irene Giacomelli, Matt Fredrikson, and Somesh Jha. Privacy risk in
machine learning: Analyzing the connection to overfitting. In 2018 IEEE 31st computer
security foundations symposium (CSF'), pages 268-282. IEEE, 2018.

[232] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence,
and K.Q. Weinberger, editors, Advances in Neural Information Processing Systems,
volume 27. Curran Associates, Inc., 2014. URL https://proceedings.neurips.cc/
paper/2014/file/375c71349b295fbe2dcdca9206£20a06-Paper . pdf.

[233] Yang You, Igor Gitman, and Boris Ginsburg. Large batch training of convolutional
networks. arXiv preprint arXiv:1708.03888, 2017.

[234] Jiahui Yu, Zhe Lin, Jimei Yang, Xiaohui Shen, Xin Lu, and Thomas S Huang. Generative
image inpainting with contextual attention. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 5505-5514, 2018.

[235] Mert Yuksekgonul, Federico Bianchi, Pratyusha Kalluri, Dan Jurafsky, and James
Zou. When and why vision-language models behave like bags-of-words, and what to
do about it? In International Conference on Learning Representations, 2023. URL
https://openreview.net/forum?id=KRLUvxh8uaX.

[236] Jure Zbontar, Li Jing, Ishan Misra, Yann Lecun, and Stephane Deny. Barlow twins:
Self-supervised learning via redundancy reduction. In Marina Meila and Tong Zhang,
editors, Proceedings of the 38th International Conference on Machine Learning, volume
139 of Proceedings of Machine Learning Research, pages 12310-12320. PMLR, 18-24
Jul 2021. URL https://proceedings.mlr.press/v139/zbontar2la.html.

[237] Matthew D Zeiler and Rob Fergus. Visualizing and understanding convolutional
networks. In Furopean conference on computer vision, pages 818-833. Springer, 2014.

[238] Hui Zeng and Xiaohui Cui. Simeclrt: A simple framework for contrastive learning of
rumor tracking. Eng. Appl. Artif. Intell., 110:104757, 2022. doi: 10.1016/j.engappai.

142

https://proceedings.neurips.cc/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/375c71349b295fbe2dcdca9206f20a06-Paper.pdf
https://openreview.net/forum?id=KRLUvxh8uaX
https://proceedings.mlr.press/v139/zbontar21a.html

2022.104757. URL https://doi.org/10.1016/j.engappai.2022.104757.

[239] Yan Zeng, Xinsong Zhang, and Hang Li. Multi-grained vision language pre-training:
Aligning texts with visual concepts. arXiv preprint arXiv:2111.08276, 2021.

[240] Han Zhang, Tan Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention
generative adversarial networks. In International conference on machine learning, pages
7354-7363. PMLR, 2019.

[241] Liheng Zhang, Guo-Jun Qi, Ligiang Wang, and Jiebo Luo. Aet vs. aed: Unsupervised
representation learning by auto-encoding transformations rather than data. arXiv
preprint, (arXiv:1901.04596), 2019.

[242] Richard Zhang, Phillip Isola, and Alexei A. Efros. Colorful image colorization. In
ECCV, 2016.

[243] Richard Zhang, Phillip Isola, and Alexei A. Efros. Split-brain autoencoders: Unsuper-
vised learning by crosschannel prediction. In C'VPR, 2017.

[244] Yuxuan Zhang, Huan Ling, Jun Gao, Kangxue Yin, Jean-Francois Lafleche, Adela
Barriuso, Antonio Torralba, and Sanja Fidler. Datasetgan: Efficient labeled data factory
with minimal human effort. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 10145-10155, 2021.

[245] Nanxuan Zhao, Zhirong Wu, Rynson W. H. Lau, and Stephen Lin. What makes instance
discrimination good for transfer learning? In 9th International Conference on Learning
Representations, ICLR 2021, Virtual Fvent, Austria, May 3-7, 2021. OpenReview.net,
2021. URL https://openreview.net/forum?id=tC6iW2UUbJE.

[246] Bolei Zhou, Agata Lapedriza, Jianxiong Xiao, Antonio Torralba, and Aude
Oliva. Learning deep features for scene recognition using places database. In
Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K.Q. Weinberger, ed-
itors, Advances in Neural Information Processing Systems, volume 27. Curran
Associates, Inc., 2014. URL https://proceedings.neurips.cc/paper/2014/file/
3£e94a002317b5£9259£82690aeceadcd-Paper. pdf.

[247] Jinghao Zhou, Chen Wei, Huiyu Wang, Wei Shen, Cihang Xie, Alan Yuille, and Tao
Kong. ibot: Image bert pre-training with online tokenizer. In ICLR, 2022.

[248] Pan Zhou, Yichen Zhou, Chenyang Si, Weihao Yu, Teck Khim Ng, and Shuicheng Yan.

Mugs: A multi-granular self-supervised learning framework. 2022.

143

https://doi.org/10.1016/j.engappai.2022.104757
https://openreview.net/forum?id=tC6iW2UUbJf
https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf
https://proceedings.neurips.cc/paper/2014/file/3fe94a002317b5f9259f82690aeea4cd-Paper.pdf

Appendix A

High Fidelity Visualization of What Your

Self-Supervised Representation Knows About

A.1. Conditional and super-resolution sampling with
RCDM

As presented in the main text, we introduce RCDM to generate samples that preserved
well the semantics of the images used for the conditioning. The training of the model is
simple and presented in Figure 1b. We show in Figure 3 additional samples of RCDM when
conditioning on the SSL representation of ImageNet validation set images (which were never
used for training). We observe that the information hidden in the SSL representation is so
rich that RCDM is almost able to reconstruct entirely the image used for conditioning. To
further evaluate the abilities of this model, we present in Figure 4 a similar experiment except
that we use out of distribution images as conditioning. We used cell images from microscope
and a photo of a status (Both from Wikimedia Commons), sketch and cartoons from PACS
[137], image segmentation from Cityscape [54] and an image of the Earth by NASA. Even in
the OOD scenario, RCDM is able to generate images that share common features to the one
used as conditioning because of the richness of ssl representations. However, if the images
used as OOD are too far from the training distribution, which is the case when using image
segmentation mask from Cityscapes, the model will have more difficulty to reconstruct the
images used as conditioning. To investigate if this failure is due to the SSL network used to
produced the conditioning, we run the experiment in Figure 6 in which we kept the same
SSL model with an RCDM trained on ImageNet and another one on Cityscape. We observe
that when using Cityscapes segmentation mask as conditioning with an RCDM trained on
Cityscapes segmentation mask, despite using a SSL model trained only on ImageNet, RCDM

is able to reconstruct the conditioning very faithfully. This mean that the failure mode

Sampling from RCDM / -
Sampling from RCDM U(x , h) = deep network with

x 2
- conditional batch norm on
e W Y
e 4 conditionning In this paper:
conditioning & “l = h representation
L U(x , h) = U-Net(x , h)
\ J

7
7
P 7 RTNEAE

X X

3
g
3
<3
> ®
22
2
@
o
S

Training sample §§

yields
h=f(x) Noised sample
(Denoising)

(a) (b)

Fig. 1. (a) Illustration of considered image generation methods. A real input x yields
representation k. All methods start from a random noise image ©). Gradient-based repre-
sentation matching (light blue arrows) will move it towards S(h) i.e. until its representation
matches h, but won’t land on the data-manifold M. Unconditional reverse diffusion (ADM
model, green arrows) will move it towards the data manifold. Our representation-conditioned
diffusion model (RCDM, red arrows) will move it towards M N S(h), yielding a different
natural-looking image with the same given representation. (b) Representation-Conditionned
Diffusion Model (RCDM). From a diffusion process that progressively corrupts an image,
the model learns the reverse process by predicting the noise that it should remove at each
step. We also add as conditioning a vector h, which is the representation given by a SSL
or supervised model for a given image . Thus, the network is trained explicitly to denoise
towards a specific example given the corresponding conditioning. The diffusion model used
is the same as the one presented by Dhariwal and Nichol [60] with the exception of the
conditioning on the representations.

observed in OOD are mostly due to the visualization model (RCDM) and not due to the
representation used for conditioning.

In those examples we used conditional batch-normalization (which is the same technique
as used by Casanova et al. [46]). However one can also use the sampling technique built-in in
the ADM model of Dhariwal and Nichol [60]. Instead of using an embedding layer that take
discrete representation, we can use a linear layer to map a representation to the dimension of
the time steps embedding and add it along the time step conditioning. A comparison with
these two conditioning methods is shown in Figure 5.

We also use the super-resolution model presented by Dhariwal and Nichol [60] to generate
images of higher resolutions. In Figure 8, we use the small images on the top of the bigger
images as conditioning for a RCDM trained on images of size 128x128. Then, we feed the
128x128 samples into the super-resolution model of Dhariwal and Nichol [60] to get images of
size 512x512. Since the model of Dhariwal and Nichol [60] is conditional and need labels, we
used a random label when upsampling from RCDM. Despite using the "wrong" label, the
high resolution samples are still very close to the conditioning. This show that RCDM can

146

Random Supervised SSL (Dino backbone) SSL (Dino proj)

DIP

Random Supervised SSL (Dino backbone) SSL (Dino proj)

Conditioning ‘. A

RCDM

Fig. 2. We compare RCDM with the approach of Zhao et al. [245] that use Deep Image
Prior (DIP [203]) to visualize the features learn by Self-supervised models. We run this
experiment by using as conditioning an In-Distribution image (with the dog from ImageNet
validation set) and an Out-Of-Distribution image with an image from the Earth (Source:
NASA). For both methods, we compare with representations extracted at the backbone level
of a Resnet (after average pooling) from a random initialized network, a supervised network
and a network trained with SSL (Dino). We also use the representation extracted at the
projector level for Dino. We observe that the samples we obtained with RCDM have a better
quality than the ones generated with DIP and are also more insightful about the properties
of the representations. In this instance, we clearly see with RCDM that the supervised

representation is invariant to background which is something more difficult to assess with
DIP.

be used jointly with a super-resolution model to sample high fidelity images in the close
neighborhood of the conditioning.

To verify how well our model can produce realistic samples from different combinations
of representations, we take two images from which we compute their representations and
perform a linear interpolation between those. This give us new vectors of representation that
can be used as conditioning for RCDM. We can see on Figure 9 and Figure 10 that RCDM is
able to generate samples that contains the semantic characteristics of both images.

Finally, in Figure 11, we search the nearest neighbors of a series of samples in the ImageNet
training set. As demonstrated by Figure 11, RCDM samples images that are new and far

enough from images belonging to the training set of ImageNet.

147

Fig. 3. Generated samples from RCDM on 256x256 images trained with representations
produced by Dino. We put on the first column the images that are used to compute the
representation conditioning. On the following column, we can see the samples generated by

RCDM. It is worth to denote our generated samples are qualitatively close to the original
image.

148

PN
¥

5?7/,% 3 :'I;‘ “6/ (B

S A

Fig. 4. Generated samples from RCDM model on 256x256 images trained with representations
produced by Dino on Out of Distribution data. We put on the first column the images that
are used to compute the representation. On the following column, we can see the samples
generated by RCDM. It is worth to denote our generated sample are close to the original
image. The images used for the conditioning are from Wikimedia Commons, Cityscapes [54],

PACS [137] and the image of earth from NASA.

149

Conditioning Using Cond. Batch Norm conditioning

Fig. 5. Comparison between conditioning RCDM with batch normalization and the built-in
conditioning mechanism offered by ADM. For this example, we took the representation
backbone of dino trained on ImageNet with resolution 128x128. There doesn’t seem to be
any significant differences between both methods.

150

P Dino trained on ImageNet, RCDM trained on ImageNet

segmentation mask)

Conditioning

{Cityscapes
segmentation mask)

Fig. 6. We perform this experiment to see if the failures mode on OOD, especially when
conditioning on segmentation mask of Cityscapes, are due to the self-supervised representations
not containing enough information to reconstruct the image, or are due to RCDM not being
able to reconstruct OOD images. On the first line, we show the samples generated by an
RCDM trained on ImageNet with the self-supervised representation of Dino that was also
trained on ImageNet. On the second line, we show the samples generated by an RCDM
trained on the segmentation masks of cityscapes that use the same self-supervised model
of Dino that was trained on ImageNet. We can clearly see that despite using a SSL model
trained on ImageNet, when RCDM is trained on CityScapes, the reconstruction almost match
the original conditioning. Hence, one should train or fine-tune RCDM on any target dataset
to then use it to sample representation conditioned images from a (frozen) pre-trained model.

151

F Most confident linear probe classification F Less confident linear probe classification

a) RCDM samples using a conditioned-representation having the highest probabilities under
a linear classifier.

152

l_ Most confident linear probe classification Less confident linear probe classification

Barlow T. (Trunk)

Barlow T. (Head)

Vicreg (Trunk)

Vicreg (Head)

b) RCDM samples on conditioning that have the lowest probabilities under a linear classifier.

153

d) More RCDM samples on conditioning that have the lowest probabilities under a linear classifier.

Fig. 7. We trained a linear probe for classification by using the representation (at the backbone
and projector level) given by various SSL models. Then we find, among the ImageNet validation
set, the images that yield the highest softmax probability under this linear probe and use RCDM
to generate samples with respect to their representations. We also find the images that yield the
lowest softmax probabilities. On the first column and seventh column in a) and b), we present
the images used as conditioning (thus, the ones with highest and lowest softmax probabilities). In
the following columns we show the corresponding RCDM samples. We observe that all generated
images belong to the same class as the one that was used as conditioning when looking at the most
confident representation . However when looking at the least confident representation, the generated
samples does not seem to belong to a unique class. This experiment shows that the uncertainty in
the predictions of a downstream classification task can also be predicted by simple visual inspection
of samples produces by RCDM.

154

A.2. A hierarchical diffusion model for unconditional
generation

We provided a novel and conditional generative model based on a given latent represen-
tation e.g. from a SSL embedding, and a diffusion model. This allows visualizing and thus
provides insight regarding what is or isn’t encoded in a particular representations. We can
go one step further and augment this conditional model with an unconditional one that can
generate those representations. This will provide us with the ability to generate new samples
without the need to condition on a given input. As a by-product, it will allow us to quantify
the quality of our generative process in an unconditional manner to fairly compare against
state-of-the-art generative models.

We shall recall that our goal is to employ the conditional generative model to provide
understanding into learned (SSL) representations. The unconditional model is only developed
to compare our generative model and ensure that its quality is reliable for any further down
analysis. As such, we propose to learn the representation distribution in a very simple manner
via the usual Kernel Density Estimation (KDE). That is, the distribution is modeled as

ph) = 3 3 N (ki (@) 1)

with o set to 0.01. By using the above distribution, we are able to sample representations h
to then sample images & conditionally to that h using our diffusion model. We provide some
samples in Figure 15 to show that even with our very simple conditioning, our method is still

able to generate realistic images.

A.3. On the closeness of the samples in the representa-
tion space

Even if we show that RCDM is able to generate images that seems visually close to
the image used for the conditioning, it’s still unclear how close those images are in the
representation space. We can compute euclidean distances but to know how close the
generated samples are to the conditioning, we need to have references that can be used to
compare this distance with. As references, we compute the euclidean distance between a
conditioning image and random images in the validation set of ImageNet, random images
belonging to the same class as the conditioning, the closest images in the training set, the
conditioning image on which we applied single data augmentations and the conditoning image
on which we applied the data augmentation performed by Swav and Dino [40, 44]. The
results can be seen in Figure 16 for a RCDM trained with Dino representations and in Figure
17 for a RCDM trained with SimCLR representations. On both Figure, we observe that the

155

generated images with RCDM are closer to the conditioning than the closest neighbors in
the entire training set of ImageNet. We also computed the mean and reciprocal mean rank
in the main paper (Table 1b) which show that for most SSL models the closest examples
in the representation space of the generated images is the image used as conditioning. We
also added Figure 12 to show which rank is associated to samples generated by RCDM. For
SimCLR, the rank is mostly always 1 whereas we got more diversity for the supervised case.
This difficulty of RCDM to generated samples which have their representation that map back
to the one used for the conditioning can be explain by the nature of a supervised training. In
such scenario, the encoder is trained to map a big set of images (often a specific class) to a
specific type of representation whereas SSL models are explicitly train to push each examples
farther away from each others. Thus, it seems more likely that a little perturbation on the
supervised representation induces a change of nearest neighbor. This hypothesis is supported
by Figure 24 which show that small adversarial attack are enough to induces a change of

class in the representation which is not the case for SSL encoders.

A.4. Analysis of representations learned with Self-
Supervised model

Having generated samples that are close in the representation space to a conditioning image
can give us an insight on what’s hidden in the representations learned with self-supervised
models. As demonstrated in the previous section, the samples that are generated with RCDM
are really close visually to the image used as conditioning. This give an important proof of
how much is kept inside a SSL representation. However, it’s also important to consider how
much this amount of "hidden" information varied depending on the SSL representation that is
used. Therefore, we train several RCDM on SSL representations given by VicReg [21], Dino
[44], Barlow Twins [236] and SimCLR [49]. In many applications that used self-supervised
models, the representation that is used is the one corresponding to the backbone of the
ResNet50. Usually, the representation given by the projector of the SSL-model (on which
the SSL criterion is applied) is discarded because the results on many downstream tasks like
classification is not as good as the backbone. However, since our work is to visualize and
better understand the differences between SSL representations, we also trained RCDM on
the representation given by the projector of Dino, Barlow Twins and SimCLR. In Figure 19
we condition all the RCDM with the image labelled as conditioning and sample 9 images for
each model. If we look at the projector of the SSL models, the generated samples have a
higher variance.

To further compare and analyse the different SSL models, we visualize how much SSL
representations can be invariant with respect to a transformation that is applied on the

conditioning image. In Figure 20, we apply several Data Augmentation: Vertical shift, Zoom

156

out, Zoom In, Grayscale and a Collor Jitter on a given conditioning image. Then we compute
the SSL representations of the transformed image with different SSL. models and use our
corresponding RCDM to see how much the samples have changed with respect to the samples
generated on the vanilla conditioning image. We observe that the representation (the 2048
backbone one) of all SSL methods are not invariant to scale and change of colors. Whereas
the representation of the projector doesn’t seem to take into account any small transformation
in the original conditioning outside the scale for Dino. For SimCLR, there is still some
information about the background that is kept in the representation however the samples are
not as close visually with respect to the 2048 representation. Barlow Twins is interesting
because there isn’t much differences between the backbone representation (2048) one and the
representation of the projector (Size 8192). With the exception that this last representation
seems to be more invariant to color shift than the backbone one.

We also perform an experiment in Figure 23 using OOD images to ensure that the

conclusions drawn with our methods about SSL representation are not specific to ImageNet.

A.4.1. Visualization of adversrial examples

We use RCDM to visualize adversarial examples for different models. For each model,
we trained a linear classifier on top of their representations to predict class labels for the
ImageNet dataset. Then, we use FGSM attacks over the trained model using a NLL loss
to generate adversarial examples. In Figure 24 we show the adversarial examples that are
created for each model, the samples generated by RCDM with respect to the representation
of the adversarial perturbed example and the class label predicted by the linear classifier over
the adversarial examples. The supervised model is very sensitive to the attack whereas SSL

models seems more robust.

A.4.2. Manipulation of SSL representations

It is also possible to manipulate SSL representations to generate new images. We try to
apply addition and subtractions over SSL representations (similarly to what has been done in
NLP). From two different images, we compute the difference between the two corresponding
representations and add the difference vector to a third image. Figure 27 shows that it is
possible to apply such transformations meaningfully in the SSL space. We also used another
setup where we choose specific dimensions in the representation based on how many times
these dimensions are non zero in the representation space of a set of neighbors. Then we
set this dimension to zero which surprisingly induces the removing of the background in the
generated images. We also replace them by the same corresponding dimension of another
images which induces a change of background toward the one of the new image. Results are

shown in Figure 25.

157

A.4.3. Experiments with vision transformers

All the experiments in this paper were conducted with Resnet50 since most of the
SSL baselines are available with this model. However, RCDM can work with any type
of architecture, including vision transforms. In Figure 28, we show RCDM samples using
representations of Dino trained with a VIT-B 16 [126].

A.4.4. Why is my model over-fitting on the training set ?

By enabling the visualization of what is learned in a representation, RCDM can help
researchers to get a better understanding of the failures modes of their models. In one of
our experiments, we trained a SSL models with VicReg by using only cropping as data
augmentation (thus discarding the traditional colorjiterring/grayscaling and other transforms
that change the colors). Training a linear probe on such network resulted in a training
accuracy of 95% on the training set while the validation accuracy was only about 20%. To
better understand how the model was able to overfit on the training set, we trained RCDM
on the representations of this model. The samples obtained are shown in Figure 29. This
experiment validate the hypothesis that removing color related augmentations during the

training of SSL models leads to learn representations that are only colors and textures based.

A.4.5. Visualizing how representations are changing during training

Another way one can use RCDM, is to consider how representations are changing during
training. In this experiment, we trained 3 RCDM models on the representation given by
SSL models (VicReg) trained after 1 epoch, 5 epochs and 50 epochs. In this experiment, we
want to visualize what is changing in the representation during training. The hypothesis
was that at the beginning of the training, the network is learning some easy feature, like
some color information, and later in the training more complex features, probably containing
more shape based information. In Figure 30, we observe that after 1 epoch of SSL training,
the information retain in the representation is mostly color/texture based while after only 5

epochs, we can see that the shape are better defined.

158

Fig. 8. High resolution samples from our conditional diffusion generative model using the
super resolution model of Dhariwal and Nichol [60]. We use the small images on the top of
each bigger image as conditioning (source NASA for the earth picture) for a diffusion model
trained with Dino representation on 128x128 images. Then, we feed the samples generated
to the super resolution model of Dhariwal and Nichol [60] which produces images of size
512x512. Since the super resolution model is conditional, we sample a random label. We
note that the high resolution samples are still very close to the conditioning.

159

| Buluompuod

Z Buluonpuod

Z BUIUORIPUOD

Z buluonipuod

2 Buluonipuo

(a) Linear interpolation between the image of the golden retriever in conditioning 1 with various
other images belonging to the same class as conditioning 2.

| BuopuoD

2 Buuonipuod

2 Buiuoipuo)

¢ Buonipuod

¢ Buuonipuod

(b) Linear interpolation between the image of the pug in conditioning 1 with various other images
belonging to the espresso class as conditioning 2.

Fig. 9. Each vectors that result from the linear interpolation is feed to a RCDM trained
with Barlow Twins representation.

160

-,g‘ i‘('vm

%‘Wf ‘?x m;@ £

~.'r¢, qr-v 1
' ’

’ NS ’ S
X . i 3 g
- [

h’

¥)
.. . N
;) 3
<V =S | ,.cg ..rq

% i

vc. m'wr’T"

Ea T“" 3"

e

»

»

e i‘r-m -
=

W

A e —
:
5

Ny

_—

; P
| -~
NH /

=/ ~

o
o~
(i

Ry l"]“WH.’ Ve

W e e
Red - { -~ AN ,-k,. VN
‘(« ‘ . ‘ “'
) S| ~ B &

N

»

-

w"u mwu"w‘- T T —-q- -

‘?’WV'\“\’

‘h q\'ﬂm

\‘l\

»

N

——
. \

)

T m(wu-rf"

-Wmmo

ng‘,]‘('-m vr e T

W g

Fig. 10. Diversity of the samples generated by RCDM on interpolated representations. Each
row corresponds to different random noise for the same conditioning. On the first and last
column are the real images used for the interpolation. All of the images in-between those
rows are samples from RCDM.

»

«’ "o ’ \\§ ’ Wi ’
o~ 2 g » g - 0 »
[N 4 h

'ﬂ‘r

;"b
b
(4)
)

161

abews
Bujuren yses0|D

Bujues 1595010

Bujures ys9s0j0

(a) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino

(backbone) representation (2048).

abew
Bujues 3s9s0|0

soldwes

= W 7"" -
S ol R
A!'s”" ‘& "r f" "

abeun
Bujures 1585010

se|duesg

Buiuies 1595010

(b) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino

projector representation (256).

Fig. 11. We find the nearest neighbors in the representation space of samples generated by

RCDM. The images in the red squared are the ones used for conditioning.

162

SimCLR Supervised

RCDM

NN

Rank 1 1 1 1 1 1 1 1 5 2 1 1 2 5

Rank 1 1 1 1 1 1 1 1 2 8 1 1 4 1

Rk 4111

Rank

Fig. 12. After generating samples with respect to a specific conditioning, we compute back the
representation of the generated samples and find which are the closest neighbors in the validation
set. Then, we compute the rank of the original image that was used as conditioning within the set
of neighbors. When the rank is one, it implies that the nearest neighbors of the generated samples
is the conditioning itself, meaning that the generated samples have their representation that is very
close in the representation space to the one used as conditioning. We can see that for SimCLR,
the generated samples are much closer in the representation space to their conditioning than the
supervised representation. This is easily explain by the fact that supervised model learn to map
images from a same class toward a similar representation whereas SSL models try to push further
away different examples.

163

Fig. 13. Visual analysis of the variance of the generated samples for a specific image when
using the trunk/backbone of a Barlow Twins encoder. The first image (in red) in the one
used as conditioning.

164

Fig. 14. Visual analysis of the variance of the generated samples for a specific image when
using the projector/head of a Barlow Twins encoder. The first image (in red) in the one used
as conditioning.

165

Fig. 15. Unconditional generation following the protocol of section A.2. Our simple genera-
tive model of representations consists in applying a small Gaussian noise over representation
computed from random training images of ImageNet. We use these noisy vector as con-
ditioning for our 256x256 RCDM trained with Dino representations. We note that the
generated images looks realistic despite some generative artefact like a two-headed dog and
an elephant-horse.

166

wopuey

0.0 636.5 868.7 1042.9 712.5 1443.8

SSE|D SWeS

sebew 1seso)

23.8 478.3 64.5 173.9 147.3

417.7 510.0 444.5 445.6 379.5

pajeisueD

r——

132.5 393.8 31.4 122.0 124.5

Fig. 16. Squared Euclidean distances in the Dino representation space. We show
the squared euclidean distance between the conditioning image on the leftmost column on
first row and different images to get an insight about how close the samples generated by the
diffusion model stay close to the representation used as conditioning. The distances with the
conditioning is printed below each images. On the first row, we show random images from the
ImageNet validation data. On the second row, we take random validation examples belonging
to the same class as the conditioning. On the third row, we find the closest training neighbors
of the conditioning in the representation space. On forth row, D.A. means Data Augmentation
which consist in horizontal flip, CenterCrop, ColorJitter, GrayScale and solarization. On fifth
row (D.A. 2), we use the random data Augmentation used in the paper of [40, 44]. On the
last row, we show the generated samples from our conditional diffusion model that use Dino
representation. The samples produces by our model are much closer to the conditioning
than other images.

167

wopuey

SSE|0 SWeS

35.4 13.7 6.0 3.0 13.3

sebew 1ses0|)

pejesausn)

13 2.4 125 2.4 2.2

Fig. 17. Squared Euclidean distances in the SimCLR projector head represen-
tation space.We show the squared euclidean distance between the conditioning image on
the leftmost column on first row and different images to get an insight about how close the
samples generated by the diffusion model stay close to the representation used as conditioning.
The distances with the conditioning is printed below each images. On the first row, we show
random images from the ImageNet validation data. On the second row, we take random
validation example belonging to the same class as the conditioning. On third row, we find
the closest training neigbords of the conditioning in the representation space. On forth row,
D.A. means Data Augmentation which consist in horizontal flip, CenterCrop, ColorJitter,
GrayScale and solarization. On fifth row (D.A. 2), we use the random data Augmentation
used in the paper of [40, 44]. On the last row, we show the generated samples from our
conditional diffusion model that use SimCLR projector head representation. The
samples produces by our model are much closer to the conditioning than other images.

168

=002

i

Z> O

Distance: 0 35.5 33.6 42.4 32.9 — 29.6 37.

S00=X

Distance: 0 31.5 34.9 35.2 34.6 33.7 31.9

O —

Z> O

R
C
D
M
Distance: 0 31 20.5 28.8 26.2 26.8 25.6
|
C - »
G '3
A <
N g = .
Distance: 0 48.2 50.6 43.8 43.2 40.7 43.1

Fig. 18. Comparison of the euclidean distance between IC-GAN and RCDM. We use the
same self-supervised representation as conditioning (Swav encoder) for RCDM and IC-GAN.
We compute the euclidean distance between the representation of the generated images versus
the representation used as conditioning. We observe that samples of RCDM are much closer
in the representation space (and also visually) to the conditioning. Samples of IC-GAN show
a higher variability, thus farther away in the representation space.

169

5 o
S

:) S
-

3

pESH HIOWIS pesH moueg pesH ouiq Boyon yowis Mmopeg ouig

pesivedng

Fig. 19. Generated samples from RCDM trained with representation from various self-
supervised models. We generate 9 samples for each model with different random seeds. We
observe that the representation given by dino isn’t very invariant while the one given by
SimCLR or VicReg show much better invariance. We also show the samples of RCDM trained
on the representation given by the projector (The embedding on which is usually applied
the SSL criterion). There is a much higher variability in the generated samples. Maybe too
much to be used for a classification task since we can observe class crossing.

170

Conditioning Dino SimCLR Barlow

Zoom in Zoom out

Color Jitter ~ Grayscale

Vertical
Zoom out shift

Zoom in

Color Jitter ~ Grayscale

Fig. 20. We compare how much the samples generated by RCDM change depending on different
transformations of a given image and the model and layer used to produces the representation. Top
half uses 2048 representation. Bottom half uses the lower dimensional projector head embedding.
We observe that using the projector head representation leads to a much larger variance in the
generated samples whereas using the traditional backbone (2048) representation leads to samples
that are very close to the original image. We also observe that the projector representation seems
to encode object scale, but contrary to the 2048 representation, it seems to have gotten rid of
grayscale-status and background color information.

171

Vertical
shift

Zoom out

Grayscale

Color Jitter

Vertical
shift

Zoom in Zoom out

Grayscale

Color Jitter

Zoom in

Conditioning Barlow T. SimCLR Supervised

Fig. 21. Same setup as Figure 20 except with other images as conditioning.

172

Fig. 22. Generated samples from RCDM using the mean representation for a specific class

(golden retriever) in ImageNet for various SSL models.

173

00D

conditioning Dino (Resnet50) backbone
‘ ! ’ \ | | "') $!
- S — [—— - L P - B i -5
00D Dino (Resnet50) projector

conditioning

o

e

%" fiw o e R 3

Fig. 23. We compare the visualization obtained with representations from Dino (resnet50) at
the backbone level and also at the projector level on OOD images to ensure that conclusions
drawn with our model about SSL representations are not specific to ImageNet. We confirm
that we observe the sames phenomenons in an OOD settings as the ones we could get on an
In-Distribution scenario.

174

Supervised

Waoy

Golden Retriever Lion Lion Lion Quilt Chain mail Bubble

sse|D

0.0 0.01 0.05 0.1 0 2.0

X8 |eLeseApY sd3

SimCLR

WaoH

Golden Retriever Leonberg Golden Retriever Golden Retriever Coyotte Chain mail Chain mail

SSe|D

X0 |eifesoApy sd3

Waoy

Golden Retriever Golden Retriever Lion Chow chow Brain coral Brain coral Nematode

X8 [eUBSISAPY sdglsse;o

Barlow T.

Waoy

o
g0

Golden Retriever Golden Retriever Golden Retriever Chow chow Chainlink fence Brain coral Brain coral § B
R
g

Fig. 24. Visualization of adversarial examples We use RCDM to visualize adversarial
examples for different models. For each model, we trained a linear classifier on top of their
representations to predict class labels for the ImageNet dataset. Then, we use FGSM attack
over the trained model using a NLL loss to generate adversarial examples towards the class
lion. For each model, we visualize adversarial examples for different values of € which is the
coefficient used in front of the gradient sign. In the supervised scenario, even for small values
of epsilon which doesn’t seem to change the original image, the decoded image as well as
the predicted label by the linear classifier becomes a lion. However it’s not the case in the
self-supervised setting where the dog still get the same class or get another breed of dog as
label until the adversarial attack becomes more visible to the human eye (For € value superior

to 0.5).
175

m zero mask of most common indices where dim of representation is non zero
B Least common dim of i where dim of representation is non zero

Fig. 25. Background suppression and addition Visualization of direct manipulations
over the representation space. On the first row, we used the full representation of the dog’s
image on the top-left as conditioning for RCDM. Then, we find the most common non zero
dimension across the neighborhood of the image used as conditioning. On the second row,
we set these dimensions to zero and use RCDM to decode the truncated representation.
We observe that RCDM produces examples of the dog with a high variety of unnatural
background meaning that all information about the background is removed. In the third and
forth row, instead of setting the most common non zero dimension to zero, we set them to
the value of corresponding dimension of the representation associated to the image on the
left. As we can see, the original dog get a new background and a new pose.

176

0

..

m zero mask of least common indices where dim of representation is non zero
B Least common dim of | where dim of representation is non zero

Fig. 26. Same setup as Figure 25 except that instead of using the most common non
zero-dimensions as mask, we used the least common non-zero dimensions as mask. On the
second row, we observe that some information about the original dog is removed such that in
each column, we get a slightly different breed of dog while the background stay fixed. On the
third and forth row, we saw that the information about the background (grass) is propagated
through the samples (which was not the case in Figure 25).

177

Fig. 27. Algebraic manipulation of representations from real images (left-hand side of =)
allows RCDM to generate new images with novel combination of factors. Here we use this
technique with ImageNet images, to attempt background substitutions.

178

Fig. 28. Conditional generation with RCDM using representation extracted from a VIT-B
16 trained with Dino. This experiment shows that RCDM is able to successfully use the
representation extracted form different kinds of architectures.

179

Fig. 29. Conditional generation with RCDM using representation extracted from a Resnet50
trained with VicReg using only cropping as data augmentation (thus discarding all transforms
related to color change). This experiment shows that training an SSL model without learning
any invariances to colors lead to learn only statistics about the colors in the representation.
We can clearly see that the samples generated from the guitar are clearly following the same
colors statistics as the conditioning but totally fail to reconstruct anything related to the
shape information. The source for the picture of the earth is NASA.

180

trained for 1 epoch

.
A TP
el TR B | ot

trained for 5 epochs

§i
/
X %
.

trained for 50 epochs

Fig. 30. Conditional generation with RCDM using representation extracted from a Resnet50
trained with VicReg for 1, 5 and 50 training epochs (a new RCDM generator is trained fully
for each case). This experiment shows that the SSL model first (after 1 epoch) learns to retain
mostly information about color and texture in its representation (see e.g. how conditioning
on the parrot representation yields vehicles with similar color-themes). It encodes accurate
information on the more precise shape only later in training.

181

(c) Earth from a SSL representation (Dino Resnet50 backbone).

Fig. 31. Different samples of RCDM conditioned on a satellite image of the earth (source:
NASA). We show the samples we obtained in a) when using a random initialized network
to get representations, b) when using a pretrained resnet50, ¢) when using a self supervised
model (Dino).

182

Appendix B

Appendix: Guillotine Regularization: Why
removing layers is needed to improve

generalization in Self-Supervised Learning

B.1. Datasets

In this work, we use ImageNet [56] (Term of license on https://www.image-
net.org/download.php) for our experiments. We also used a synthetic 3D dataset

that will be described in the next subsection.
B.1.1. 3D models dataset

We will now discuss the dataset used for figure 2. As previously mentioned, this dataset
consists of 3D models from 3D Warehouse [202], freely available under a General Model
License, and rendered with Blender’s Python API. We alter the scene by uniformly varying

the latent variables described in table 1.
Table 1. Latent variables used to generate views of 3D objects. All variables are sampled

from a uniform distribution.

Latent variable ‘ Min. value ‘ Max. value

Object yaw —7/2 /2
Object pitch —m/2 /2
Object roll —7/2 /2
Floor hue 0 1

Spot 6 0 /4
Spot ¢ 0 2m
Spot hue 0 1

The variety in the scenes that can be generated is illustrated in figure 1. We can see that
each latent variables can significantly impact the scene, giving a significant variety in the

rendered images.

Fig. 1. Rendered views of a skateboard generated by randomly sampling latent variables.
The influence of each parameter is easily visible, which is expected to make their prediction
easier.

B.2. Reproducibility

Our work does not introduce a novel algorithm nor a significant modification over already
existing algorithm. Thus, to reproduce our results, one can simply use the public github
repository of the following models: SimCLR, Barlow Twins, VicReg or the PyTorch Imagenet
example (for supervised learning) with the following twist: adding a linear probe at each
layer of the projector (and backbone) when evaluating the model. However, since many of
these models can have different hyper-parameters, or data-augmentations, especially for the
SSL models, we recommend to use a single code base with a given optimizer, a given set of
data augmentations so that comparisons between models are fair and focus on the effect of
Guillotine Regularization. In this paper, except if mentioned otherwise, we use as Head, a
MLP with 3 layers of dimensions 2048 each (which match the number of dimensions at the

trunk of a Resnet50) along with batch normalizaton and ReLU activations.

184

80 : ,
70 & 70 ,/
= j
=1 3
Q (&}
2 < 60l
=60 - 60
& 2,
: \ e
g 50| —— SSL: Barlow Twins T g 50 —— SSL: Barlow Twins
@ | = SSL: VICReg \ ® | = SSL: VICReg
IS . Qi) . Qi
£ a0l SSL: SimCLR £ 40l SSL: SimCLR
= SSL: Byol = SSL: Byol
= Supervised = Supervised
Trunk Head 1 Head 2 Head 3 Trunk Head 1 Head 2 Head 3
Layer Layer
(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 2. We measure with linear probes the accuracy at different layers on a resnet50 (as
Trunk) on which we added a small 3 layers MLP (as Head) for various supervised and
self-supervised methods on the training and validation set. For each method, we show the
mean and standard deviation across 3 runs (The std between different runs is low). When
looking at self-supervised methods, the gap in performances between the linear probe trained
at different levels can be as high as 30 points of percentage.

B.3. Additional experimental results

In this section, we present additional experimental results. The first one in Figure 2 is
an extended version of Figure 1 with additional results on the training set. Figure 3 is a
similar setup to the one in Figure 2 where we compared the performances at different layers
for SSL methods and a supervised one except that we use a VIT-B instead of a Resnet50.
We observe an important gap on the classification performances reached with a linear probe
on different layers with the VIT-B when using SSL. methods.

In Figure 4, we show how the performances at different layers change during training by
using an online linear probing. At the beginning of the training the gap of performances
between layers is low, however it increases significantly after 10 epochs.

In Figure 5 we show the accuracy computed with linear probes trained using projector
and backbone representations. This figure is similar to Figure 6 except that we present the

absolute accuracy value instead of the difference in accuracy with respect to the backbone.

B.4. Limitations

In this work we focused mostly on analyzing the use of Guillotine Regularization in the
context of Self-Supervised Learning. However, this kind of regularization might be useful for
a variety of other types of training methods which we don’t investigate in this paper. We
also mostly focus on generalization for classification tasks, but other tasks could also been

worth exploring.

185

70F ' '
oy / % 65
o /\ Q
Sy e <00 \
.65 A
o —
o o
& / S 55
5 60 l/‘% 3
zZ) Z .
g 55 == SSL: Barlow Twins g 50 = SSL: Barlow Twins
£ —— SSL: VICReg & ——— SSL: VICReg
= 50 SSL: SimCLR =45l SSL: SimCLR
450 = Supervised = Supervised
Trunk Head 1 Head 2 Head 3 Trunk Head 1 Head 2 Head 3
Layer Layer
(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 3. Same experiment as in Figure 2 but this time, we measure with linear probes the
accuracy at different layers on a VIT-B (as Trunk) on which we added a small 3 layers MLP
(as Head) for various supervised and self-supervised methods. Since the outputs of the VIT-B
has a lower number of dimensions than a Resnet, we added at the trunk of the VIT-B a
linear layer with ReLLU activation to project into a 2048 dimensional vector. In the supervised
learning setting, the best performances are obtained when using the last layers of the model.
But, when looking at self-supervised methods, the gap in performances between the linear
probe trained at different levels can be as high as 20 points of percentage. Interesting, it
seems for the VIT-B that we got the best performances at Head 1 for SimCLR whereas for
the ResNet, the best performances were obtained at the Trunk. It is likely that for different
architectures, the optimal number of layers on which to apply Guillotine Regularization will
vary.

2]
=]

=)
(=]

]
=]
[
=]

S B
Q Q
g g
s 5
3 3
< j : <
® 40 ; e et N I 40
. -~ g
S 30; / 230
= —— Trunk = —— Trunk
D 20t 4 Q@ 20]
% —— Head 1 % —— Head 1
glo» Head 2 | glo Head 2 |
= —— Head 3 | & —— Head 3
=% 20 40 60 80 100 0 20 10 60 80 100
Epochs Epochs
(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 4. a) Accuracy of Barlow Twins through epochs computed with online linear probing at
different layers. At the beginning of the training the gap in performances between the probes
is small however after 10 epochs, the gap becomes larger and larger both on the training and
validation set.

186

= Normal Data Aug. |
mmm KNN Data Aug.
mmm Class Data Aug.

~
[=)

Backbone Accuracy
=N W R U O
© © © © © © ©
,
%
‘o
%’0—

Q Q X %)
A Q ’ g Q a3
¢N & & ¢ Vg> Q}ﬁ Qzﬁ &0{9 0‘;" NQ&
éN & c} C}Q o\) o\) < Q{b’
Datasets
70 - Normal bata Aug.]
mmm KNN Data Aug.
o 60— Rl g e mmm Class Data Aug.
Q
E 50— B N
S
<40 B —
g
530 5| | e B | mm | e i | |
2
20 i | | e | - - - -
[~¥
10— . - - - - || e
0
& $ 3 o e L 9 S I
P ¢ S P &S
AP T P s SR A
& S S S & o N
Datasets

Fig. 5. Backbone and projector accuracy with linear probing with different alignment
with respect to the classification downstream task. In this experiment we used SimCLR
and we change how the positive pair are defined to better aligned with a classification downstream
task. In blue, our baseline, we trained SimCLR with the traditional SSL data augmentations which
defines the positive view as two augmentations of a same image. In orange, we use the embedding of
a pretrained model to define the positive pair as two nearest neighbor under this pretrained model
(while using the same data augmentation as the baseline). In green, we use a supervised class label
selection to define the positive example. In this scenario, SimCLR should learn to produces similar
embedding to all images belonging to a given class. All three models are trained on ImageNet
(IN1K), then we evaluate them with a linear probe across a wide range of downstream tasks at
the projector and backbone level. When positives pairs are defined as belonging to a given class,
there is no misalignment with the imagenet classification downstream task. Thus on ImageNet-1K,
ImageNet1k-10P (10% of the training set to train the linear probe) and ImageNet1k-1P (1% of
the training set to train the linear probe), we observe that the performances at the projector level
are much higher than the ones using the traditional SSL augmentations. Interestingly, the nearest
neighbors heuristic reduces considerably the impact of Guillotine Regularization across several
downstream tasks.

187

& M > — 9o 0 ¢ > .ﬁ“.\‘\._‘ >
3) S 9) 60
Z60/ . EGO//. , g 60 ‘ '\‘é . ——JJ
3 8 3 §50
< 50 < < <
a 3,50 —— Backbone 250 340/ — Backbone
o L) . o S) s
= 0. " = —— Projector |~ = —— Projector
B 40! | e 3 N 240l o - o 5 30re
z s 0240/ z40® L. e ®
> | —— Backbone |2 |@ e . = | —— Backbone gzo AN Pt
g 30l L i e | i /
E30, Projector |E 20 7 —e E 30 I Projector |E ;0 <
0 5 10 15 0.2 0.4 0.6 0.00 0.02 0.04 06 07 08 09 1.0
VICReg: Cov loss coeff SimCLR: Temperature Barlow Twins: Lambd Byol: Momentum Teacher
(a) VICReg (b) SimCLR (c) Barlow Twins (d) Byol
Figure 5.1: Loss hyper-parameters.
68 66 1 '/4‘\‘ 65 .\‘
& & %65 ././.—_4 ‘\" 260 ’\IH.
E 66 £ 64 ol g
264 131 31 a1 !
< <62 200 g5 ‘\\\‘
a 4,60 & .50
£ 60 € S55 g —
3 R 358 3 545
Z 58 z 4 50 4
& \ $56 ® S e
56 a — @ g40
E —— Backbone "\ £ 54} —— Backbone 'E45 —— Backbone E —— Backbone
545 Projector \. 52 —— Projector —— Projector I\“ R p— Projector —o
04 06 0.7 0.8 1.0 1.5 1.7 04 06 0.7 0.8 1.0 15 1.7 .25 0.5 0.75 25 5 7.5 0.4 0.6 0.7 0.8 1.0 15 1.7
VICReg: LARS Learning Rate SimCLR: LARS Learning Rate Barlow Twins: AdamW Learning Rate (1e-3) Byol: LARS Learning Rate
(e) VICReg (f) SimCLR (g) Barlow Twins (h) Byol
Figure 5.2: Learning rate.
I : 651 : 65 —— Backbone '\“
67.5 y-/.’__. > 2 260 —— Projector
g g goo g
£ 65.0 « 3 = 555
8 360 8 3 >
S625 < <50 <50 —¢
b : : D! ¢
§,60.0 5‘55 §)./‘D—’_‘ §<45 ./
% 57.5] 340 B 40! ¢
2 Z 50 z z
S 55.0)) &
2 ® <] © 35
E52.5 —— Backbone | £ — Backbone | £ 3° —— Backbone | £
50.0! ¢ —— Projector 45 —— Projector P —— Projector 30
16 32 64 128 16 32 64 128 16 32 64 128 16 32 64 128
VICReg: Batch Size SimCLR: Batch Size Barlow Twins: Batch Size Byol: Batch Size
(i) VICReg (j) SimCLR (k) Barlow Twins (1) Byol

Figure 5.3: Batch size.

Fig. 6. How different hyper-parameters impact the gap in performances between the backbone
and projector representation. We train SimCLR, VicReg, Barlow Twins and Byol with different
hyper-parameters and evaluate with a linear prob, the performances at the backbone but
also at the projector level on ImageNet classification task. For each model, we observe that
the accuracy given by the linear probe at the backbone level is fairly stable across the grid
search of hyper-parameters while the linear probe at the projector level can reach very low
accuracy. This highly that the probes performances at different layers might not be always
correlated with each others.

188

Appendix C

Do SSL Models Have Déja Vu? A Case of
Unintended Memorization in Self-supervised

Learning

C.1. Limitations and societal impact

Limitations. Our work sets out to define, quantify, and visualize data memorization
in SSL. Our tests guide us towards potential mitigation strategies. However, note that
these strategies are distinct from provable privacy (e.g. DP), and do not guarantee that
data is not memorized. It is possible that — even if our tests detect no memorization —
data is being memorized in some other fashion, and could be detected with a different test.
Furthermore, we focus on detecting image memorization with a curated, de-duplicated
dataset (ImageNet-1k), which may over- or underestimate data memorization in practice.
We chose this in order to claim the learning algorithm as the cause for memorization as
opposed to the dataset itself. It is possible that models exhibit different memorization
behavior on larger, less curated datasets. With orders of magnitude more data it is pos-

sible that memorization is reduced, but with more data duplication it also may be exacerbated.

Societal Impact. Our work’s findings have a critical societal impact from a privacy
perspective. We show that it is possible for SSL—an increasingly popular learning paradigm—
to memorize training images, which could have significant privacy implications. This direction
of research is important if we want to understand how we can train such models without
exposing user data. Additionally, our proposed mitigation strategies point to the possibility
of having strong privacy without significant loss in utility. Ultimately, we open a promising

direction towards making SSL vision models more secure.

C.2. Experimental details

C.2.1. Details on dataset splits

There are 1,281,167 training images in the ImageNet dataset. Within these images, only
456,567 of them have bounding boxes annotations (which are needed to compute the Deja Vu
score). The private set A and B are sampled from these 456,567 bounding boxes annotated

images in such a way that set A and B are disjoint.

If we remove the 456,567 bounding boxes annotated images from the 1,281,167 training
images, we get 824,600 remaining images without annotations which never overlap with A
or B . From this set of 800K images, we took 500k images as our public set X. So now,
we have three non overlapping sets A, B , and X. Then, if we remove the 500K public set
images from the 824,600 images without annotations, it leaves us with 324,600 images that
are neither in A, B or X. For simplicity, let us call this set of remaining 324,600 images the
set C. Then, we have split the entire ImageNet training set into four non-overlapping splits
called A, B, C and X.

When running our experiments with a small number of training images, we only use the
set A to train SSL 4 and the set B to train SSLp and then use the set X as a public set for
evaluation. However, to run larger scale experiments, we use as additional training data for
SSL 4 and SSLp: the images sampled from the set C. Here, SSL 4 will still be trained on set
A but it will be augmented with images from set C. The same goes for SSLp which will still
be trained on the set B but augmented with images from the set C. As such, some images
sampled from C to train SSL4 or to train SSLpg might overlap. However, this is not an issue
since the evaluation is done using only images from the bounding boxes annotated set A and

set B which are never overlapping.

To identify memorization, our tests only attempt to infer the labels of the unique
examples A and B that differentiate the two private sets. The periphery crop, crop(4;), is
computed as the largest possible crop that does not intersect with the foreground object
bounding box. In some instances the largest periphery crop is small, and not high enough
resolution to get a meaningful embedding. To circumvent this, we only run the test on

bounding box examples where the periphery crop is at least 100 x 100 pixels.

190

Each size of training set, 100k to 500k, includes an equal number of examples per class in
both sets A and B. The total bounding box annotated examples of each class are evenly
divided between A and B. The remaining examples in each class are the examples from C.
We reiterate that the bounding box examples in set A are unique to set A, and thus can only

be memorized by SSL 4.

The disjoint public set, X, contains ground truth labels but no bounding-box annotations.

The size and content of X remains fixed for all tests.

C.2.2. Details on the training setup

Model Training: We use PyTorch [163] with FFCV-SSL [32]. All models are trained
for 1000 epochs with model checkpoints taken at 50, 100, 250, 500, 750, and 1000 epochs.
We note that 1000 epochs is used in the original papers of both VICReg and SimCLR. All
sweeps of epochs use the 300k dataset. All sweeps of datasets use the final, 1000 epoch
checkpoint. We use a batch size of 1024, and LARS optimizer [233] for all SSL models. All
models use Resnet101 for the backbone. As seen in Appendix C.3.4, a Resnet50 backbone

results in déja vu consistent with that of Resnet101.

VICReg Training: VICReg is trained with the 3-layer fully connected projector used
in the original paper with layer dimensions 8192-8192-8192. The invariance, variance, and
covariance parameters are set to A = 25, u = 25, v = 1, respectively, which are used in the
original paper [23]. The LARS base learning rate is set to 0.2, and weight decay is set to le-6.

SimCLR Training: SimCLR is trained with the 2-layer fully connected projector
used in the original paper with layer dimensions 2048-256. The temperature parame-

ter is set to 7 = 0.15. The LARS base learning rate is set to 0.3, and weight decay is set to le-6.

Supervised Training: Unlike the SSL models, the supervised model is trained with
label access using cross-entropy loss. To keep architectures as similar as possible, the
supervised model also uses a Resnet101 backbone and the same projector as VICReg. A final
batchnorm, ReLLU, and linear layer is added to bring the 8192 dimension projector output
to 1000-way classification activations. We use these activations as the supervised model’s

projector embedding. The supervised model uses the LARS optimizer with learning rate 0.2.

191

C.2.3. Details on the evaluation setup

KNN: For each test, we build two KNN’s: one using the target model, SSL4 (or
CLF,4), and one using the reference model SSLp (or CLFp). As depicted in Figure
2, each KNN is built using the projector embeddings of all images in the public set
X as the neighbor set. When testing for memorization on an image A; € A, we first
embed crop(4;) using SSL 4, and find its K = 100 Ly nearest neighbors within the SSL 4
embeddings of X. See section C.3.2 for a discussion on selection of K. We then take
the majority vote of the neighbors’ labels to determine the class of A;. This entire piple-

line is repeated using reference model SSL g and its KNN to compute reference model accuracy.

In practice, all of our quantitative tests are repeated once with SSL 4 as the target model
(recovering labels of images in set A) and again with SSLp as the target model (recovering
labels of images in set B3). All results shown are the average of these two tests. Throughout
the paper, we describe SSL 4 as the target model and SSLp as the reference model for ease

of exposition.

RCDM: The RCDM is trained on a face-blurred version of ImageNet [57] and is used to
decode the SSL backbone embedding of an image back into an approximation of the original
image. All RCDMs are trained on the public set of images X used for the KNN. A separate
RCDM must be trained for each SSL model, since each model has a unique mapping from

image space to embedding space.

At inference time, the RCDM is used to reconstruct the foreground object given only the
periphery cropping. To produce this reconstruction, the RCDM needs an approximation of
the backbone embedding of the original image. The backbone of image A; is approximated
by 1) computing crop embedding SSLE® (crop(4;)), 2) finding the five public set nearest
neighbors of the crop embedding, and 3) averaging the five nearest neighbors’ backbone
embeddings. In practice, these public set nearest neighbors are often a very good ap-

proximation of the original image, capturing aspects like object class, position, subspecies, etc..

192

C.3. Additional quantitative experiments

C.3.1. Sample-level memorization

VICReg Supervised

| MW Correlated
I Misrepresented

VICReg Supervised

30. ™ Correlated
B Misrepresented

35

I 825

S 2 [Memorized ° . Memorized
o o

g 215

2 2

6l 51

0100 200 300 400 500 0100 200 300 400 500

200 400 600 8001000
Number of epochs Number of epochs Training set size (thousands) Training set size (thousands)

200 400 600 8001000

(a) Categories of training samples vs. number of (b) Categories of training samples vs. training
epochs set size

Fig. 1. Partition of samples A; € A into the four categories: unassociated (not shown),
memorized, misrepresented and correlated. The memorized samples—ones whose labels are
predicted by KNN 4 but not by KNNg—occupy a significantly larger share for VICReg
compared to the supervised model, indicating that sample-level déja vu memorization is more
prevalent in VICReg.

0.5 1.0 0.5 1.0
I Correlated \ I Correlated
0.4| M Misrepresented §O 8 0.4| W Misrepresented §08
= [Memorized 5 = [Memorized 5
o v
So03 2 0.6 S0.3 0.6
G 2 ‘G b
(] o (] o
s 0.2 G 0.4 Pogross === ==m—— —e s 0.2 6041 _e==———e—ta_,
< o < - -
wn © (%] ©
[[
0.1 5 0.2 —e— Train 0.1 5 0.2 —o— Train
—e- Validation —e- Validation
0.0 0.0 0.0 0.0
0.2 0.4 0.6 0.8 1.0 0.2 04 0.6 0.8 1.0 20 40 60 80 100 20 40 60 80 100
Temperature T Temperature T Invariance A Invariance A
(a) SimCLR (b) VICReg

Fig. 2. Effect of SSL hyperparameter on déja vu memorization. The left plot of Figures
2a and 2b show the size of the memorized set as a function of the temperature parameter
for SiImCLR and invariance parameter for VICReg, respectively. Déja vu memorization is
the highest within a narrow band of hyperparameters, and one can mitigate against déja vu
memorization by selecting hyperparameters outside of this band. Doing so has negligible effect
on the quality of SSL embeddings as indicated by the linear probe accuracy on ImageNet
validation set.

Many SSL algorithms contain hyperparameters that control how similar the embeddings
of different views should be in the training objective. We show that these hyperparameters
directly affect déja vu memorization. Figure 2 shows the size of the memorized set for SimCLR

(left) and VICReg (right) as a function of their respective hyperparameters, 7 and A\. We

193

observe that the memorized set is largest within a relatively narrow band of hyperparameter
values, indicating strong déja vu memorization. By selecting hyperparameters outside this
band, déja vu memorization sharply decreases while the linear probe validation accuracy on

ImageNet remains roughly the same.

C.3.2. Selection of K for KNN

In this section, we describe the impact of K on the KNN label inference accuracy.

2 1.00
S ® accuracy on top 20% conf. I correlated
8 0751 ® accuracy on all examples — 0.41 mmm forgotten
é:)) = = ref. model correlation baseline o g [memorized
O Al
£ 050 %o
= o _
“QE) po——-——-6--—-——--—2 §0.2
= 0.251 o = = < 2
éOOO it it dinininin Shulninh 0.0

0 25 50 75 100 0 100 200

Number of neighbors: K Number of neighbors: K
(a) VICReg Accuracy (b) VICReg with share of memorized examples

Fig. 3. Impact of K on label inference accuracy for target and reference models. Left:
the population-level label inference accuracy experiment of Section 4.4.1 on VICReg vs. K.
Right: the individualized memorization test of Section 4.4.2 on VICReg vs. K. In both
cases, we see that our tests are relatively robust to choice of K beyond K = 50.

Figure 3 above shows how the tests of Section 4.4 change with number of public set
nearest neighbors K used to make label inferences. Both tests are relatively robust to any
choice of K. Results are shown on VICReg trained for 1k epochs on the 300k dataset. We
see that any choice of K greater than 50 and less than the number of examples per class
(300, in this case) appears to have good performance. Since our smallest dataset has 100

images per class, we chose to set K = 100 for all experiments.

194

C.3.3. Effect of SSL criteria

We repeat the quantitative memorization tests of Section 4.4 on different models:
VICReg[23], Barlow-Twins[236], Dino[42], Byol[93], SimCLR|[238] and a supervised model
in figure 4. We observe differences between SSL training criteria with respect to Dejavu
memorization. The easy ones to attack are VICReg and Barlow Twins whereas SimCLR
and Byol are more robust to these attacks. While the degree of memorization appears to
be reduced for SImCLR compared with VICReg, it is still stronger than the supervised baseline.

210 0.5 . 210 05
g ® acceracy o top 20.% con. [<] @ acceracy om top 200/ coaf - correlated
D 08| © sccencycmall cxamples 0,41 - forpeac D08] ©® sccenacyca sl examples . 0.4 ™ forgomen
‘é == ref, model comelation banclise 7] - memorined z == rof, model comelation besclise = W mcmonined
= =]
206 So3 — 206 =03
g 2 o O S 2 5
& 3 H &2 5
O So4 202/ 5o go2
5 = = = &
—02 L 01 3" 0.1
2
Joo 00 3 = 0.0 -
- 250 500 750 1000 250 500 750 1000 250 500 750 1000
epochs epochs epochs
o 05 210 05
g ® accurscy onlop 2007% coaf, - ccerclied E ® accuracy on top 0.0 conf - corclaed
D081 ® sccurcyonall examples 0.4 ™ forpoeen 208 ® sccuracyonall examples 0.41 W focgouca
; | == st madel comelation basctine T | W memonized &: | = et model ccerelation haseline T | W memonized
. 8
2 2 906f S03 T 506 P
oLz o U a8 =
= é . ° O 5 <
K- :;j 0.4 go2 (% :j 04 go2
- = -——- z
= B s s P Z02| e TG,
2 2 |t '
3 0.0*) Joo 0ol J
250 500 R 750 1000 250 500 N 750 1000 O 250 500 750 1000
epochs epochs epochs
2107 05 210+ § ; 05
g ® accuracy on top 0.0% conf. = comelaed g ‘ ® acceracy on top 20.0% coaf, | - corclaea
D081 ¢ sccuracyonall examgles — 041 forpoticn 208l ® acowacy onall examples 0.4 = focgonen
E == ref. model corrclaticn haseline g . scmoined o <$ | e et model correlation basclise = | W memorieed
e § 067 % 03 g 806 E 03
oz 2o2 ; 5 S
5 502 a =04 2o2
= z g3 go02
- 0.1 ? = s
2 3 0.1
00 250 500 750 00 250 500 750 1000 3 nd
- ’ ; - o ’ = 250 s00 750 1000 00 250 500 750 1000
epochs epochs enochs 25 L s
Pochs epochs

Fig. 4. Comparison of déja vu memorization for VICReg, Barlow Twins, Dino, Byol,
SimCLR, and a supervised model. All tests are described in Section 4.4. We are showing déja
vu vs. number of training epochs. We see that SImCLR (center row) shows less déja vu than
VICReg, yet marginally more than the supervised model. Even with this reduced degree
of memorization, we are able to produce detailed reconstructions of training set images, as

shown in Figures 6 and 9.

195

C.3.4. Effect of Model Architecture and Complexity

Results shown in the main paper use Resnet101 for the model backbone. To understand
the relationship between déja vu and overparameterization, we compare with the smaller
Resnet50 and Resnetl8 in Figure 5.
parameters of the model leads to higher degree of déja vu memorization. The same trend
holds when using Vision Transformers (VIT-Tiny, -Small, -Base, and -Large with patch size
of 16) of various sizes as the SSL backbone, instead of a Resnet. This highlights that déjd vu

memorization is not unique to convolution architectures.

VIT-Tiny

Label Inference Accuracy

VIT-Small
Label Inference Accuracy

VIT-Base

Label Inference Accuracy

VIT-Large

Label Inference Accuracy

Fig. 5. Comparison of VICReg déja vu memorization for different architectures and model
sizes. On the left, we present deja vu memorization using VIT architectures (from vit-tiny in
the first row to vit-base in the last row). On the right, we use Resnet based architectures
(from resnetl8 in the first row to resnetl01 in the last row). All tests are described in
Section 4.4, with the plots showing déja vu vs. number of training epochs. Reducing model
complexity from Resnet101 to Resnet18 or from Vit-Large to Vit-tiny has a significant impact

by

Ed

=
>

=
=

5

Overall, we find that increasing the number of

s

£

e
>

=
=

o

=)

2
*

>

=

® accuracy ca top 200 coaf.
® occuracy oa all examples
- ref. mode] comelation bancline

Share of total

Share of total

Label Inference Accuracy

250 500

epochs

750 1000

- coerclued
- fepeen
. memorized

05 10 05
© accuracy on top 20.0% coud. [Sg— 2 sccurscy on top 2047% coud ol =
® accuracy on all examgles | 04 W forpomen = 081 © sccumcyonall examples | 0.4 ™ forgomen
==&l madd comclution basclios <} SR mcmorived @ S| == el mode correlation baseline - Bl R ——
= - E
| <03 Z 506 | 203
=} x S D
202 5 c
5 02 S04 | go2s
w = =
| z " ‘
0 00 :
250 500 750 G000 =304 230 s0 750 oo 0 250 00 750 1000
epochs epochs epochs
1.0 0s
© accuracy on top 20,0% coud. @ acceracy om top 20.07% conf [Sge——
® accuracy on all examles 08) ® sccenacy el exsmples 0.4 W forgomen
- ref model corrclation hascline == rof. model comelation bencline memoneed
06 03

Share of total

2 = @
= B

250 500 750 1000
epochs
0.5
® accwracy om fop 200% coal. - corclua
® accency oa all examples 0.4 . forgonen
== ref. model comelation beclise = BN memonsed
-]
=031
=]
202
<]
=
« 4

Label Inference Accuracy
=
e

S

=

250 $00 750 1000 250 500 750 1000
epochs epochs
05 1.0
® acceracy oa top 20.0%% coaf. . comelated ® acoeracy oa top 200% conf.

® acceeacy om all examples
== rof, model comelation bescline

250

500
epochs

750

Share of total

- forgouen
- memonized

RN101
Label Inference Accuracy

°

250 500

epochs

750

on the degree of memorization.

196

® accenacy ca all cxamples
- rof, model comelation benclise

250 500

epochs

750

. corrcliad

250 500

epochs

750

C.3.5. The impact of finetuning

Self-Supervised learning is often used as a pre-taining strategy. In many instances,
practitioners are using frozen features extracted from the model to train a simple KNN
or linear head to learn to solve a downstream task. This is why we have mostly focused
this work on using a set of frozen features from the pre-trained model. However, another
common strategy is to fine-tune the model to solve the downstream task. In Figure 6,
we show how the Dejavu score changes when fine-tuning a pretrained VICReg model.
This pretrained model was trained on the set A for 1000 epochs and fine-tuned on a
classification task on the set A for 20 epochs (which can be seen in the x axis on the
figure). Interestingly, the DejaVu score decreases significantly in the first finetuning epochs
while the validation accuracy is increasing. However after 5 epochs, the DejaVu score is
increasing and after 20 epochs become almost as high at the original value before fine-tuning.

This behavior indicates that even fine-tuning might not help in reducing DejaVu memorization.

35
= 60
o 30 50]
S <
3% .
v 20 40;
o

3 15 30 %
310 20
E% 5 | == Déja Vu Score 10"
)] == |inear Probe Val. Acc.

0 0 10 20 0

Finetuning epoch
Fig. 6. DejaVu score when fine-tuning a pretrained VICReg model for 20 epochs. We

observe that by fine-tuning we significantly increase the classification performances however
the DejaVu score is as high as before after finetuning.

197

C.3.6. The impact of Guillotine Regularization on Deja Vu

In our experiments, we show déja vu using the projector representation. The SSL loss
directly pushes the projector representation to be invariant to random crops of a particular
image. As such, we expect the projector to be the most overfit and produce the strongest
déja vu . Here, we study whether earlier representations between the projector and backbone
exhibit less déja vu memorization. This phenomenon — ‘guillotine regularization’ — has
recently been studied from the perspective of generalization in Bordes et al. [30]. Here, we

study it from the perspective of memorization.

To show how guillotine regularization impacts déja vu , we repeat the tests of
Section 4.4 on each layer of the VICReg projector: the 2048-dimension backbone
(layer 0) up to the projector output (layer 3). We evaluate whether memorization is

indeed reduced for the more reqularized layers between the projector output and the backbone.

>
Q B ——
S 0.6 @ accuracyontop 20% conf. I correlated
§ ® accuracy on all examples =021 I forgotten
< = = ref. model correlation baseline g . [memorized
D) -
% 0.4+ 3

)
o) £ 0.1
= <=
= 7
— 0.21
8
3 0.0- ,

0 1 2 3
Layer Layer
(a) population level accuracy (b) share of memorized examples

Fig. 7. déja vu memorization versus layer from backbone (0) to projector output (3). The
memorization tests of Section 4.4 are evaluated at each level of the VICReg projector. We
see that déja vu is significantly stronger closer to the projector output and nearly zero near
the backbone. Interestingly, most memorization appears to occur in the final two layers of

VICReg.

Figure 7 shows how guillotine regularization significantly reduces the degree of
memorization in VICReg. The vast majority of VICReg’s déja vu appears to occur in the
final two layers of the projector (2,3): in earlier layers (0,1), the label inference accuracy
of the target model and reference model are comparable. This suggests that — like the
hyperparameter selection of Section 4.7 — guillotine regularization can also significantly

mitigate déja vu memorization. In the following, we extend this result to SimCLR and

198

supervised models by measuring the degree of déja vu in the backbone (layer 0) versus

training epochs and dataset size.

Comparison of déja vu in projector and backbone vs. epochs and dataset
size Since the backbone is mostly used at inference time, we now evaluate how much déja
vu exists in the backbone representation for VICReg and SimCLR. We repeat the tests of
Section 4.4 versus training epochs and train set size.

Figure 8 shows that, indeed, déja vu is significantly reduced in the backbone representation.
For SimCLR, however, we see that backbone memorization is comparable with projector
memorization. In light of the Guillotine regularization results above, this makes some sense
since SIMCLR uses fewer layers in its projector. Given that we were able to generate accurate
reconstructions with the SimCLR projector (see Figures 9 and 6), we now evaluate whether
we can produce accurate reconstructions of training examples using the SimCLR backbone

alone.

199

go = 03 210 05—~ -
. B ® accuracy om top 2007% conf, . comelated g ® accuracy o top 200% conf. - comelated
£ T 081 scmeyolieanghs — 0.4{ WM forgoacn | S8l ® scuncyomall cxampies | 04] mm fogoncn
8 é == ref. model comelation haseline g W memorized :t’ | - ref. model comrelation baseline |
T 806 =03 {506 e
2 s g =
@ 204 go2 | 204 g
- 2 -———t
2 = PSS s
c = 7] = P =
o 502 >0, |Soje==——m———""T—" |
> 'é 2 L s giiuiuin aluieiis Sl
o0 0.0 . T ookt ! I] J
250 500 750 1000 100 200 300 400 500 100 200 300 400 500
epochs train set size (thousands) train set size (thousands)
-
210 =
g . 05 210
E g ® accuracy om top X0% con. S conimcd é ® sccuracy cm lop 200% con, 05 -— cerclied
S 081 ® wcuncyomall examples | - forgouca = ® accuncy om all examples W foepomen
£ g == ref. model corrclation hascline 3 041 o memcrized :t‘: OB rer. model corelution buscline = 041 o memrized
-]
EE 06 Sos 806 Zo3
o & b4 £ s
g 04 202 5 04 go2
] = <
g 302y =t T ¥ Soafgmm=FTmt 1| 4,
é 0.0 % el
. 0.0 =300
250 .'w,h, 750 1000 250 500 750 1000 = U100 200 300 40 s0 oo 200 300 4 500
epochs epochs train set size (thousands) train set size (thousands)
(a) VICReg
210 - 05 2.0 05— T
H g ® accuracy om top 20.0% conf. . corelaed =] ® accuracy on top 20.07% cond. W coerelaed
s 3 08+ ©® acuracycmall cxamples 04 W focpoeien a 08] ® accuracyon all examples 04 . forgoticn
9 é == ref. model coerelation bascline =] B memorized z == ref. model comelation baseline = _ memonzed
g 206 sl 206 o3
o = =] 2 <
& S04 2o2 Sodf e &
- ——— = = ————————— | =
02 e n chuininte "’ul} =02 emmm T s
7} B "__,_._..-n—_far-—-ﬁ E e LS S
Soo 0.0 S0 X
250 500 750 1000 250 500 750 1000 100 200 300 400 500 100 200 300 400 500
epochs epochs train set size (thousands) train set size (thousands)
o 10 05 - T 210 0.5
s il ® accuracy on top 200 cond, N comclated] ® accuracy ca top 20.0% coaf W cocrclaed
g D08 ® acvuyonall cramples o 08 ® accuncycaall cxamples 0.4] ™= fogoncn
x é - ref, model correlation bascline ::' | = et model commelasion baseline T | e momcised
@ 806 206 o3
c 5 g °
a Sos S04 202
O = 4 2 '—/_.____..4—-—_-::_?. -‘g -
E S0s _geeet——- - 2 £, e i 7
I = 02{e-= 0.1
.§ =8 z S
J 00~ . - - v 3 0. 1
50 00 750 1000 250 50 70 100 =G0 2w w0 w0 S0 "0 200 300 40 %0
epochs epochs train set size (thousands) train set size (thousands)

(b) SimCLR

Fig. 8. Accuracy of label inference on VICReg and SimCLR using projector and backbone
representations. First two columns: Effect of training epochs on memorization for each
representation. Last two columns: Effect of training set size on memorization for each
representation. In contrast with VICReg, the déja vu memorization detected in SimCLR’s
projector and backbone representations is quite similar. While SimCLR’s projector memoriza-
tion appears weaker than that of VICReg, its backbone memorization is markedly stronger.
This kind be easily explained as a byproduct of Guillotine Regularization [30], i.e. removing
layers close to the objective reduce the bias of the network with respect to the training
task. Since SimCLR’s projector has fewer layers than VICReg’s, the impact of Guillotine
Regularization is less salient.

200

C.4. Additional reconstruction examples

The two reconstruction experiments of Section 4.5 are each exemplified within one class.
However, we see strong reconstructions using SSL 4 in several classes, and similar experimental

results. To demonstrate this, we repeat the experiments 4.5 using the yellow garden spider

class and the and the aircraft carrier class.
example

crop of memorized images € 4

Il

neighbors € Y reconstructions neighbors € X’ reconstructions

o RN R o B
o RS o~ s

(a) SimCLR correlated yellow garden spider ex- (b) SimCLR memorized yellow garden spider
amples examples

example

crop of correlated images € A

Fig. 9. Visualizing the distinction between déja vu memorization and correlation in the
yellow garden spider class. Left, we see the periphery crops of the ten ‘most correlated’
images: those where both KNN 4 and KNNpg have high confidence. Seven of these crops
clearly depict a stabilimentum: the signature zig-zag web pattern sewn by spiders of the
argiope genus, thus revealing the concealed spider by correlation. Right, we see the periphery
crops of the ten ‘most memorized’ images: those that have the highest confidence discrepancy
between KNN4 (high confidence) and KNNg (low confidence). Nearly all of these crops
show generic blurred views of the background with no evidence of the foreground spider.
Below, we show the public set nearest neighbors of the pink highlighted crop, and the RCDM
reconstruction of the foreground object. We see that the target model (SSL 4) can be used to
reconstruct the yellow garden spider spider in both the memorized and correlated cases. The
reference model (SSLg) can only be used to reconstruct this type of spider in the correlated
case.

Selection of Memorized and Correlated Images: The images of Figure 6 and 9 were chosen

methodically as follows.

Image selection: The 20 images of Figures 6 and 9 are selected deterministically using
label inference accuracy and KNN confidence score. The 10 most correlated images are
those images in the correlated set (both models infer label correctly) of A with the highest
confidence agreement between models SSL 4 and SSLg. To measure confidence agreement
we take the minimum confidence of the two models. The 10 most memorized images are
those images in the memorized set (only target model infers the label correctly) of A with
the highest confidence difference between models SSL 4 and SSLjp.

201

Class selection: To find classes with a high degree of déja vu , classes were sorted by
the label inference accuracy gap between the target and reference model. We selected the
class based on a handful of criteria. First, we prioritized classes without images of human
faces, thereby removing classes like ‘basketball’; ‘bobsled’, ‘train station’, and even ‘tench’
which is a fish often depicted in the hands of a fisherman. Second, we prioritized classes
that include at least ten images with a high confidence difference between the target and
reference models (‘most memorized’ images described above) and at least ten images with
high confidence agreement (‘most correlated’ images described above). This led us to the

dam and yellow garden spider classes.

202

Ship ¢ 4 neighbors € Y’ reconstructions ship ¢ 4 neighbors E} reconstructions
’EEHM

(a) extracting side of ship from VICReg (b) extracting front of ship from VICReg

Fig. 10. Visualization of déja vu memorization beyond class label. Both SSL 4 and SSLp
are VICReg models. The four images shown belong to the memorized set of SSL 4 from the
aircraft carrier class. RCDM reconstruction using embeddings from SSL 4 can reveal not
only the correct class label, but also the orientation of the ship: the side of the ship (left) and
the front of the ship (right) given only a generic crop of the background sky and/or water.
Such information does not appear to be memorized by the reference model SSL .
Selection of Beyond-Label-Inference Images: The images of Figure 7 and 10 were

chosen methodically as follows.

Image selection: The four images of Figures 7 and 10 are selected using KNN confidence
score, and, necessarily, hand picked selection for unlabeled features. Within a given class, we
look at the top 40 images with highest target model KNN confidence scores. We then filter
through these images to identify a distinguishable feature like different species within the
same class or different object positions within the same class. This step is necessary because
we are looking for features that are not labeled by ImageNet. We then choose two of these
top 40 with one feature (e.g. American badger) and two with the alternative feature (e.g.

European badger).

Class selection: To find classes with a high degree of déja vu , classes were
sorted by the target model’s top-40 KNN confidence values within each class. As in the

memorization vs. correlation experiment, we prioritized classes without images of human faces.

C.4.1. Reconstructions using SimCLR Backbone

The label inference results in Appendix C.3.6 show that the SimCLR backbone exhibits a
similar degree of déjd vu memorization as the projector does. To evaluate the risk of such
memorization, we repeat the reconstruction experiment of Section 4.5 on the dam class using
the SimCLR backbone instead of its projector.

203

Dam € A neighbors € Y/ reconstructions

(a) First memorized dam example
neighbors € Y reconstructions

(b) Second memorized dam example

Fig. 11. Instances of déja vu memorization by the SImCLR backbone representation. Here,
the backbone embedding of the crop is used instead of the projector embedding on the same
training images used in Figure 6. Interestingly, we see that déja vu memorization is still
present in the SImCLR backbone representation. Here, the nearest neighbor set recovers dam
given an uninformative crop of still or running water. Even without projector access, we are
able to reconstruct images in set A using SSL 4, and are unable using SSLp.

Figure 11 demonstrates that we are able to reconstruct training set images using the
SimCLR backbone alone. This indicates that déja vu memorization can be leveraged to
make detailed inferences about training set images without any access to the projector. As
such, withholding the projector for model release may not be a strong enough mitigation

against déja vu memorization.

204

C.5. Detecting Déja vu without Bounding Box Annota-

tions

The memorization tests presented critically depend on bounding box annotations in order
to separate the foreground object from the periphery crop. Since such annotations are often
not available, we propose a heuristic test that simply uses the lower left corner of an image
as a surrogate for the periphery crop. Since foreground objects tend to be near the center of

the image, the corner crop usually excludes the foreground object and does not require a

bounding box annotation.

Figure 12 demonstrates that this heuristic test can successfully capture the trends of
the original tests (seen in Figure 4) without access to bounding box annotations. However,
as compared to Figure 4, the heuristic tends to slightly underestimate the degree of
memorization. This is likely due to the fact that some corner crops partially include the
foreground object, thus enabling the KNN to successfully recover the label with the reference
model where it would have failed with a proper periphery crop that excludes the foreground

object.
210 0.5 210
g ® scceacy on top 20.0% coaf - cerclited <] ® accuracy on vop 20.0% conf
= ® aceacy on all examples - forgoten D08l @ accurcyonallexamples g——
§ 081 __ ref. model correlation haseline * = 04 B memorized 2 == _ref. mddel comelation baseline | _ _ .- = -
o c — e =" g
o 206 =03 8061 " o« 03
c 2 s é PPtae S
‘s’ £04 2o2 50417 go.
2 £ £ |2
~02 e =m0 !l)(“ E().‘_’,’—__*____—o-—- .
2
e C
0 . 0.0 .
~ 00 250 500 750 1000 00 250 500 750 1000 '3 100 200 . 300 400 500 100 _2(!) . 300 400 500
epochs epochs train set size (thousands) train set size (thousands)
-
1.0 05 0 e . . -
Y 5 10
8 ® accuracy on top 20.0% coaf. - corclsed E ® accuracy on top 20.0% coaf. 03 . corelaed
a 081 ® accuracy on all examples 04 W forpoticn a 081 ® accuracy on all examples 041 . focgoticn
« 2 == ref. model comrelatson baseline E] B memocized é - ref. model correlation bascline T | e memcrized
4 2067 =03 1 8
% g b 0 ; 06 203
=]
» 504 go2 504fe” 2o2
Ci 5 = =
E"-’ 0.1 —o02 — === |y,
2|5
&S
J00 0.0 0.0 -
250 500 750 1000 20 50 750 1000 =% 0 3w w0 50 O oo oo oo Sk
epochs epochs train set size (thousands) train set size (thousands)
210 05 210
el ® accuracy on top 200% conf . correlatod & ® accuracy on Wop 200 conf,
Sosl ® acuracyonallexsmples 0.4] = forgonca Z 08l @ wccuracyoaall eamples
'§ g == ref. model correlation bascline = ‘ B memorized 2 O] == ref. model correiation basetime =
2 -]]
06 =03 0.6 8
e 3 & 0] g™ =
S) 2 s
g 2o o2 5o. 2
» 'z = 2 = =
- = =
£ . T 7 =
i oam e s Sn) L) z ’
Foo0 (0.0
250 -S(N)-h' 750 000 00 250 500 750 1000 =00 100 200 300 400 500 00 200 300 400 500
epochs epochs train set size (thousands) train set size (thousands)

Fig. 12. Deja Vu Memorization using a simple corner crop instead of the periphery crop
extracted using bounding box annotations. While the heuristic overall underestimates the
degree of déja vu , it roughly follows the same trends versus dataset size and training
epochs. This is crucial, since it allows us to estimate déja vu without access to bounding box

annotations.

205

Appendix D

Appendix: PUG: Photorealistic and
Semantically Controllable Synthetic Data for

Representation Learning

D.1. Limitations and Future Work
D.1.1. Limitations

In this work, we introduced 4 new datasets that were created using the Unreal Engine. We
presented a set of case studies, demonstrating how these datasets can be leveraged to improve
both evaluation and training for representation learning. Deeper work would be needed to
fully unlock the potential these datasets can offer. In addition, we merely scratch the surface
of what a powerful engine such as the Unreal Engine can offer. With advanced techniques
such as Lumen, Nanite and Megascans, it is now possible to create even more realistic
environments. In addition, the datasets we provide have a single simple label, whereas future
uses could easily provide detailed rich labels for the entire scene underlying each generate

image.

D.1.2. Future Work

A long vision for the PUG family would be to yield a series of benchmarks that can probe
the robustness of vision models. PUG: ImageNet is a first step in this direction, however we
might want to get more factors of variation such as weather and occlusion. A second take
would be to increase the richness of the labelling by making available detailed segmentation
masks and labels. Making a short video dataset in which we have complete control over the
factors is also a promising future direction since Al research on video is still far behind what

can be done with images. The active learning pipeline direction is also worth to explore

since the model could bias the PUG environment to produces samples that are the best for a

specific downstream task[153].

D.2. PUG Datasets
The datasets PUG: Animals, PUG: ImageNet, PUG: SPAR and PUG:ARAT are available

under the cc-by-nc license with the restrictions that they should not be use to
train generative AI models. They are available to download on the following website:
https://pug.metademolab.com/. The datasets can be read by a torchvision ImageFolder.
We have one class by folder and all the images associated to one class are saved in this
folder as png. There is a csv file associated to each dataset that map a filename (with
unique ID) to its associated factors of variations. Examples of dataloaders are available at
https://github.com/facebookresearch/PUG.

D.2.1. Datasheet

Motivation

For what purpose was the | The 4 datasets we presented in this paper
dataset created? were created for representation learning re-
search. PUG: Animals is a strong dataset for
OOD research as well as for being able to bet-
ter probe the representation of vision models.
PUG: ImageNet was designed as an additional
benchmark for ImageNet pretrained model to
offer a better comprehension of vision models
capabilities in term of robustness to specific
factor of variations. PUG: SPAR showcase
how synthetic data can be used to evaluate
VLMs understanding while PUG: ARA4T can

be leveraged to fine-tune them.

Who created the dataset and | This dataset was created by the FAIR team
on behalf of which entity? at Meta Al

Who funded the creation of | Meta.
the dataset?

Composition

208

https://pug.metademolab.com/
https://github.com/facebookresearch/PUG

What do the instances that
comprise the dataset repre-

sent?

The instances represent images of animals in
various environment for PUG: Animals. In
contrast PUG: ImageNet contains 151 object
classes (the full list is available in Appendix
D.2.3). PUG: SPAR uses the sames assets
as PUG: Animal while PUG: AR4T use the
same objects as PUG: ImageNet.

How many instances are there

in total?

PUG: Animals: 215 040 images; see
Appendix D.2.2.
PUG: ImageNet: 88,328 images; see
Appendix D.2.3.
PUG: SPAR: 43,560 images; see Ap-

pendix D.2.4.

PUG: ARAT: 249,986 images for training
and 23,216 test images; see Appendix D.2.5.

Does the dataset contain
all possible instances or is
it a sample (not necessarily
random) of instances from a

larger set?

PUG: Animals contains all possible combi-
nation of factors of variations. In contrast
PUG: ImageNet was sampled by changing
only 1 factor at a time and is therefore a ran-
dom sample of the distribution. Images in
PUG: SPAR were sampled using all possible
combination of factors of variations (with the
exception that for the attributes the blue or
grass animal is always on the left). Image-text

pairs in PUG: AR4T were randomly sampled.

What data does each instance

consist of?

For PUG: Animals, PUG: ImageNet, PUG:
SPAR we release images along the factor of
variation. For PUG: SPAR, we release the
script to generate the captions from the fac-
tors of variations. For PUG: AR4T, we release

images along with corresponding captions.

209

Is there a label or target as-

sociated with each instance?

Yes, a csv file. Each instance have a row in
this csv files with all the factors of variation
used to generate this image. For PUG:
Animals, the csv file contain the following

columns:

filename, world_name, character _name,
character _scale, camera_yaw, charac-

ter texture

while for PUG: ImageNet, it contains:

filename, world_name, character _name,
character _label, character _rotation_yaw,
character _rotation_ roll, charac-
ter__rotation__pitch, character _scale,
camera__roll, camera__pitch, camera__yaw,

character__texture, scene__light.

For PUG: SPAR, the csv contains:

filename, world_name, character _name,
character2 name, characterl_pos, char-
acter?2 pos, character texture, charac-

ter2 texture

For PUG: ARA4T, the csv contains:

Relation, Actor1Category, Actor2Category,
Actor1Name, Actor2Name, ActorlLocation,
Actor2Location, Actor1Rotation, Ac-
tor2Rotation, Actor1Scale, Actor2Scale,

Actorl Texture, Actor2Texture, Ac-
tor1Attribute, Actor2Attribute, Camera_ roll,
Camera__pitch, Camera_yaw, caption,

alt_caption, Level, World.Name, filename,

filename__neg, filepath

210

Is any information missing

from individual instances?

No, all relevant information is included.

Are relationships between in-
dividual instances made ex-
plicit?

N/A.

Are there recommended data

splits?

There is no specific split concerning PUG:
Animals because this dataset should be used
for OOD research. We primarily let the
researchers choose their own held out or
training/validation/testing split to train their
models. In contrast, PUG:ImageNet and
PUG:SPAR should only be used as an ad-
ditional test set. For PUG: ARAT, splits are
described in Appendix D.2.5.

Are there any errors, sources
of noise, or redundancies in
the dataset?

We did not explicitly filter for occlusion, so
some images may contain occluded views.
PUG: Animals and PUG:SPAR are very clean
and each animal is easily identifiable. In con-
trast, PUG: ImageNet and PUG: ARAT lever-
age assets from Sketchfab and the asset qual-

ity vary significantly.

Is the dataset self-contained,
or does it link to or otherwise

rely on external resources?

The dataset is self-contained however
the to build
the dataset belongs to external sources
which are listed in the github at https:

//github.com/facebookresearch/PUG.

assets that were wused

Does the dataset contain data
that might be considered con-
fidential?

No.

Does the dataset contain data
that, if viewed directly, might
be offensive, insulting, threat-
ening, or might otherwise

cause anxiety?

Collection

211

https://github.com/facebookresearch/PUG
https://github.com/facebookresearch/PUG

How was the data associated

with each instance acquired?

The data
through

(3D assets) acquired
the Market-

https://www.unrealengine.com/

were
Unreal Engine
place
marketplace/en-US/store and Sketchfab
https://sketchfab.com/.

then incorporated into the Unreal Engine to

Assets were

generate realistic 3D scenes and correspond-
ing images. The 3D assets were manually

selected to ensure high quality.

What mechanisms or proce-
dures were used to collect the
data?

Manual human curation. Assets were manu-

ally collected.

If the dataset is a sample from
a larger set, what was the

sampling strategy?

For PUG: Animals and PUG: SPAR, all com-
binations are included. For PUG: ImageNet
and PUG: ARAT, a random sample of possi-

ble combinations is provided.

Who was involved in the data
collection process and how

were they compensated?

Only the authors of this work were involved.

Over what timeframe was the
data collected?

The data were collected between June 2022
and June 2023

Were any ethical review pro-
cesses conducted?

No.

Did you collect the data from
the individuals in question di-
rectly, or obtain it via third
parties or other sources (e.g.,
websites)?

Third parties:
place
marketplace/en-US/store and Sketchfab
https://sketchfab.com/.

Unreal Engine Market-

https://www.unrealengine.com/

212

https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://sketchfab.com/
https://www.unrealengine.com/marketplace/en-US/store
https://www.unrealengine.com/marketplace/en-US/store
https://sketchfab.com/

Were the individuals in ques-
tion notified about the data
collection? If so, please de-
scribe (or show with screen-
shots or other information)
how notice was provided, and
provide a link or other access
point to, or otherwise repro-
duce, the exact language of

the notification itself.

There is no personally identifiable information
in our datasets as they are purely synthetic
and contain no images of people. We pur-
chased 3D assets from different marketplaces
where required, however we did not explicitly

contact the individual creators.

Did the individuals in ques-
tion consent to the collection
and use of their data? If
so, please describe (or show
with screenshots or other in-
formation) how consent was
requested and provided, and
provide a link or other ac-
cess point to, or otherwise re-
produce, the exact language
to which the individuals con-

sented.

N/A. See above.

If consent was obtained, were
the consenting individuals
provided with a mechanism
to revoke their consent in
the future or for certain
uses? If so, please provide a
description, as well as a link
or other access point to the

mechanism (if appropriate).

N/A. See above.

213

Has an analysis of the poten-
tial impact of the dataset and
its use on data subjects (e.g.,
a data protection impact anal-
ysis) been conducted? If so,
please provide a description
of this analysis, including the
outcomes, as well as a link or
other access point to any sup-

porting documentation.

No data about specific individuals is included

in these data. See above.

Preprocessing

Was any preprocessing/clean-
ing/labeling of the data done?

N/A.

Was the “raw” data saved in
addition to the preprocessed/-
cleaned/labeled data?

N/A.

Is the software that was used
to preprocess/clean/label the

data available?

N/A.

Uses

Has the dataset been used for

any tasks already?

Yes, these data were used for the experiments

that were presented in this paper.

Is there a repository that
links to any or all papers or
systems that use the dataset?

No.

What (other) tasks could the

dataset be used for?

These Datasets could be used widely for eval-
For

example, assessing disentanglement of models

uating and training neural networks.

with respect to PUG: Animals factors of vari-
ation (e.g. with DCI metric Eastwood and
Williams [71]).

214

Is there anything about the
composition of the dataset
or the way it was collected
and preprocessed/cleaned/la-
beled that might impact

future uses?

No.

Are there tasks for which the

dataset should not be used?

These datasets should not be used for gen-

erative modelling purposes.

Distribution

Will the dataset be dis-
tributed to third parties
outside of the entity on
behalf of which the dataset

was created?

Yes, the dataset will be publicly distributed.

How will the dataset will be
distributed?

Tarball on a website.

Will the dataset be dis-
tributed under a copyright
or other intellectual property
(IP) license, and/or under

applicable terms of use
(ToU)?

The license of the dataset is cc-by-nc with
the mention that these data should not

be used for generative Al purposes.

Have any third parties im-
posed IP-based or other re-
strictions on the data associ-

ated with the instances?

See EpicGames [72].

Do any export controls or
other regulatory restrictions
apply to the dataset or to in-

dividual instances?

N/A

Maintenance

Who will be supporting/host-
ing/maintaining the dataset?

Meta Al

215

How can the owner/curator/-

Please contact the corresponding author of

manager of the dataset be | this paper.
contacted?
Is there an erratum? No.

Will the dataset be updated?

Yes the dataset will be updated with version-

ing.

If the dataset relates to peo-
ple, are there applicable lim-
its on the retention of the
data associated with the in-
stances (e.g., were the indi-
viduals in question told that
their data would be retained
for a fixed period of time and
then deleted)? If so, please
describe these limits and ex-
plain how they will be en-

forced.

N/A.

Will older versions of the
dataset continue to be sup-
ported /hosted /maintained?
If so, please describe how.

If not, please describe how

its obsolescence will be
communicated to dataset
consumers.

It depends. If the dataset is updated because
one of the asset creators has requested to
remove their assets, we will not continue to
host the dataset containing these assets. Only
the newer version of the dataset which will

not contain these assets will be available.

If others want to extend/aug-
ment /build on/contribute to
the dataset, is there a mecha-

nism for them to do so?

No mechanisms are in place yet, but they
can contact the authors of this paper if they

would like to contribute.

Table 1. Datasheet for PUG, following the framework introduced by Gebru et al. [82].

D.2.2. PUG: Animals

PUG Animals contains 215 040 pre-rendered images using 70 animals assets, 64 back-

grounds, 3 sizes, 4 textures, under 4 different camera orientations. To create PUG: Animals,

216

we use Animals assets from the following bundle in the Epic Game Marketplace (https://www.
unrealengine.com/marketplace/en-US/product/complete-animals/reviews). The list
of environments used can be found in the dataset folder or at https://github.com/
facebookresearch/PUG. Below, we list all the values for the factors of variation, we have
used:

e World_ Name : ["Egypt", "Desert", "AmusementPark", "ArcadeClub", "Arena", "Battle-
ground", "Catacombs", "Tableland", "EuropeanStreet", "JunkYard", "OceanFloor", "Race-
track", "Ruins", "SciFiCity", "SciFiGarage", "Spacelsland", "SpaceHangar", "SpatialSta-
tion", "TokyoDay", "TokyoNight", "TrainStation", "Bridge", "Beach", "BusStationlnte-
rior", "BusStationExterior", "Subway", "IndoorStairs", "Bar", "ScreeningCheckpoint", "Cir-

cus', "Appartment", "Hallway", "TrashRoom", "FuturisticSubway", "Footbridge", "Boxin-
gRing", "Hangar", "Mansion", "ShoppingMall", "ConferenceRoom", "SpacePort", "VillageOut-
skirt","VillageSquare","Courtyard", "ElvenRuins", "Forge", "Library", "Museum", "Gallery",
"ModernGallery", "Opera", "AncientAgora", "Restaurant”, "RuralAustralia", "Australian-
Road", "ShadyRoad", "SaltFlats", "Castle", "StylizedEgypt", "Temple", "Snow", "Grass',
"DryGrass", "Forest'],

° Character_Name : ["Goldfish","Caribou","Elephant","Camel","Penguin"," Cassowary","Zebra'",
"Turtle","Bear","Beaver","Capybara","Crocodile"," Armadillo","Cat","Gecko","Crow","Giant Anteater",
"GiantTortoise","KomodoDragon","Rhinoceros","Dolphin","EarlessSeal","FruitBat","Goat", "Hippopota-
mus","Horse","Impala”,"Lion","Orca","Pig","Rabbit","Squirrel", "Tapir","Wildbeest","Wolf", "Anly-
losaurus","BlackRockFish","Parasaurolophus","PoisonDartFrog","Spinosaurus","Triceraptos","Chicken",
"HarpyEagle","Ostrich","Raven","RedCrownedCrane","Robin","Seagull","Secretarybird","Shoebill","Swan",
"Toucan","Vulture"," Ammonite"," Ant","Scorpion","GoldBeetle","Hornet","SnowCrab","Tarantula","WhiteShark",
"Tuna',"Arowana', "Ayu", "Betta", "Koi", "Pirarucu', "Salmon', "Cattle", "Jerboa'],

e Character__Scale : [0.7, 1.0, 1.3],

e Camera_ Yaw : [0, 45, 225, 315],

e Character_Texture : ['Default", "Sky", "Grass", "Asphalt"|

PUG: Animals is built by using all combinations of the factor of variation above. In
Figure 1, we show random images from the PUG: animal dataset that highlight the diversity
of this dataset.

Following Liu et al. [142], we present a comparison in Table 2 with other datasets that

are often used in OOD research:

D.2.3. PUG: ImageNet

PUG: ImageNet contains 88,328 pre-rendered images using 724 assets representing 151

ImageNet classes with 64 backgrounds, 7 sizes, 10 textures, 18 different camera orientation,

217

https://www.unrealengine.com/marketplace/en-US/product/complete-animals/reviews
https://www.unrealengine.com/marketplace/en-US/product/complete-animals/reviews
https://github.com/facebookresearch/PUG
https://github.com/facebookresearch/PUG

Fig. 1. Random images taken from the PUG: Animals dataset.

18 different character orientation and 7 light intensity. Below is the values we used for each

of these factors:

218

Image Data Colored MINIST | MINIST-R | Waterbirds | Biased-Cars Nico+—+ PUG: Animals
7 [83] [176] [148] [228] Ours
Domains 3 6 2 - 10 64
Categories 2 10 2 5 80 70
Examples - 6k 4.8k 450k 230k 215k
Shift Type Color Angle Background Views Background | Back./Text./Size./View
Image Type Digits Digits Birds Synthetic Cars | Real Objects Synthetic Animals

Table 2. Comparing PUG: Animals with other datasets traditionally used for OOD research.
In contrast to other datasets that have variations across only a single domain, that have noisy
annotations or that are to unrealistic, PUG: Animal over high quality images with reliable
annotations across different domains such as the background,texture,size and view.

e World_ Name : ["Egypt", "Desert", "AmusementPark", "ArcadeClub", "Arena", "Battle-
ground", "Catacombs", "Tableland", "EuropeanStreet", "JunkYard", "OceanFloor", "Race-
track", "Ruins", "SciFiCity", "SciFiGarage", "Spacelsland", "SpaceHangar", "SpatialSta-
tion", "TokyoDay", "TokyoNight", "TrainStation", "Bridge", "Beach", "BusStationlnte-
rior", "BusStationExterior", "Subway", "IndoorStairs", "Bar", "ScreeningCheckpoint", "Cir-
cus', "Appartment", "Hallway", "TrashRoom", "FuturisticSubway", "Footbridge", "Boxin-
gRing", "Hangar", "Mansion", "ShoppingMall"', "ConferenceRoom", "SpacePort", "VillageOut-
skirt","VillageSquare',"Courtyard", "ElvenRuins", "Forge", "Library", "Museum", "Gallery",
"ModernGallery", "Opera", "AncientAgora", "Restaurant”, "RuralAustralia", "Australian-
Road", "ShadyRoad", "SaltFlats", "Castle", "StylizedEgypt", "Temple", "Snow", "Grass',
"DryGrass", "Forest'],

e Character_ Name : 724 Sketchfab assets (See github for the list)

e Character__Rotation__Yaw : [0, 45, 135, 180, 225, 270],

e Character__Rotation_ Roll : [45, 90, 135, 180, 225, 270],

e Character_ Rotation_ Pitch : [45, 90, 135, 180, 225, 270],

e Character__Scale : [0.5, 0.6, 0.7, 0.8, 1.3, 1.6],

e Camera_ Roll : [45, 90, 135, 180, 225, 270],

e Camera_ Pitch : [240, 260, 280, 300, 320, 340],

e Camera_ Yaw : [0, 45, 135, 180, 225, 270],

e Character_ Texture : ['Default", "Sky', "Green", "Gray", "Red", "Grass", "Color",

"Black", "Curtain'],,
e Scene_ Light : ['255,255,255,0","0,0,255,0", "0,255,0,0", '255,0,0,0", '0,255,255,0",
"255,0,255,0", "255,255,0,0"] (The value for the lights are in RGBA format)

To generate PUG:ImageNet, we change only one factor at a time for each assets. When
changing the background (World_Name), all the other factors (Camera/Object Orientation,
Size, Texture, Light) are at 0 or at their default value. When changing the other factors
(Camera/Object Orientation, Size, Texture), the background is set to "SaltFlats 0" (Which
is the most basic background). When changing the light of the scene, we have used the

environment "Opera".

219

The assets in PUG:ImageNet were selected base on 151 ImageNet classes which are listed
below:
[BirdHouse’, ’Chest’, 'Bagel’, "WarPlane’, 'Rocking_ Chair’, "Bridge’, 'Street_ Sign’, Cabbage’, 'Pay_ Phone’,
‘Butternut_ Squash’, ’JellyFish’, *Jack_O_ Lantern’, 'Bookcase’, 'Stonewall’, "Punching_Bag’, 'Toaster’,
"Mushroom’, ’Frog’, 'Jeep’, 'Television’, 'Pineapple’, ’Vacuum’, 'Torch’, ’Carousel’, 'Desk’, "WineBottle’,
"Wallet’, 'Dining_ Table’, "Military_uniform’, ’"Car_ Wheel’, 'Table_ Lamb’, ’Digital Watch’, ’Electric_ Fan’,
‘Sweatshirt’, "Komodo__dragon’, 'Racket’, ’Cheeseburger’, ’Can_ Opener’, 'Pomegranate’, ’Convertible’, 'Lap-
top’, ’Chicken__hen’, "Wolf’, 'Bulletproof vest’, "Shield’, 'Bathtub’, "Throne’, ’Lighter’, 'Bycicle’, 'Cofee_ Mug’,
"Motor__Scooter’, "Jean’, ’Soccer_ Ball’, "Vending machine’, "Hatchet’, "Umbrella’, ’Bear’; ’Artichoke’, "Vase’,
'Radiator’, ’SpaceShuttle’, '"Manhole Cover’, 'Polaroid Camera’, "Traffic_ Light’, "Radio’, ’Soup_ Bowl’,
"Zucchini’, 'Barrel’, "Tennis_ Ball’, ’Sunglasses’, "Microwave’, "Joystick’, ’Aircraft_ Carrier’, ’Fox’, ’Submarine’,
'BasketBall’, 'Running Shoe’, ’Chain-saw’, 'Piano’, ’Crate’, ’Loupe’, ’Minivan’, ’Shirt’, 'Remote_ controler’,
"Airliner’, ’Sock’, ’Shovel’, "Mask’, "Tractor’, ’Sandal’, "Wooden_ Spoon’, 'Drum’, ’Goldfish’, ’Gasmask’, Mail-
box’, "Volley_ Ball’, 'Banana’, 'Penguin’, *Sliding_ Door’, "Pool Table’, 'Burrito’, ’Candle’, "Purse’, ’Canoe’,
"Typewriter__Keyboard’, "Espresso_ maker’, ’Carton’, "Park_ Bench’, 'Screen’, ’African__crocodile’, 'Cat’, "Hay’,
"Elephant’, "WaterBottle’, 'Modem’, "Palace’, 'Ice_ Cream’, "Washer’, ’Sewing_Machine’, 'HairDryer’, 'Rab-
bit’, 'Dishwasher’, 'Bell_Pepper’, ’Ambulance’, ’French_ Loaf’, 'Refrigerator’, '"Mouse’, ’Obelisk’, ’Starfish’,
"Brocolli’, '"Microphone’; 'Great_ white_shark’, ’Power-drill’, "Locomotive’, 'Perfume’, "Whale’, ’Screwdriver’,
'Dial_telephone’, 'Backpack’, "Harmonica’, 'Binocular’, ’Skirt’, 'Pizza’, 'Cowboy_ Hat’, "Computer_Keyboard’,
"'Kangarou’, 'Baseball’, "Tile_ Roof’, "Lawn_ Mower’, ’Safe’, ’Cellular__telephone’|

In Figure 2, we show random images taken from the PUG: ImageNet dataset.

D.2.4. PUG: SPAR

PUG: SPAR contains 43,560 pre-rendered images using 32 animals assets, 10 backgrounds,
4 positions and 4 textures. In contrast with the other PUG datsets, PUG: SPAR contain up
to two animal in a single scene. For generating the PUG: SPAR dataset, we utilize the same
subset of assets as PUG: Animals.

e World_ Name : | 'Desert’, ’Arena’, ’OceanFloor’, 'Racetrack’, "TokyoDay’, 'Circus’,
‘BoxingRing’, ’AustralianRoad’, ’SaltFlats’, "Museum’],

e Character_ Name : ['Goldfish’, ’Caribou’, ’Elephant’, 'Camel’, 'Penguin’, "Zebra’, 'Bear’,
‘Beaver’, ’Cattle’, ’Armadillo’, ’Gecko’, "Crow’, 'Scorpion’, ’GiantTortoise’, *Tarantula’,
"Rhinoceros’, ’Dolphin’, ’EarlessSeal’, ’Goat’, "Hippopotamus’, ’"Horse’, 'Impala’, 'Lion’,
Orca’, 'Pig’, ’"Rabbit’, ’Squirrel’, ’Chicken’, "WhiteShark’, ’Anlylosaurus’, ’'BlackRockFish’,
"PoisonDartFrog’],

e Character__pos : ['Left/Right", "Bottom/Top'|

e Character__Texture : ['Default", "Blue/Red", "Grass/Stone'"]

In Figure 2, we show random images taken from the PUG: SPAR.

220

Fig. 2. Random images taken from the PUG: ImageNet dataset.

D.2.5. PUG: AR4T

Assets and Environments. For generating the PUG: AR4T dataset, we utilize the same subset
of Sketchfab assets as used in PUG: ImageNet. This leaves us with a set of 680 unique assets

chosen from across 151 ImageNet categories, each manually inspected to quality control

221

Fig. 3. Random images taken from the PUG: SPAR dataset.

for photo-realism as much as possible. For this PUG dataset we are primarily concerned
with object-object and object-attribute information, hence we utilize a single camera and
character orientation. Since Sketchfab assets differs widely in their scales, we first scaled
down the longest edge of the asset bounding box to 150 pixels to normalize the order of

magnitude of the asset dimensions, before any further scaling based on attributes. Next, we

222

select a total of 26 unique environments as our background environments. The richness of
some environments enables us to manually select different camera views in each environment
as a novel environment view, and we generate a total of 28 visually unique backgrounds for
our PUG: ARAT dataset. We provide each background with human-intelligible descriptive
names for use in the dataset captions (Table 3). The PUG: ARAT dataset is composed with

two subset described in the following sections.

Envi N s . Envi N . .
. nVlronmel‘ft ame Descriptive Caption for PUG . nv1r0nmer}t ame Descriptive Caption for PUG
(with camera view variant) (with camera view variant)
Arena arena IceRoad icy road
VillageOutskirt village Jungle jungle
VillageSquare village Library library
Battleground battleground Museum museum
Beach beach OceanFloor ocean floor
Bridge bridge AncientAgora castle outskirts
Circus circus Racetrack race track
Clift cliff RuralAustralia rural wilderness
Courtyard courtyard AustralianRoad desert road
Egypt egypt SaltFlats salt flats
ElvenRuins ruins Spacelsland space
EuropeanStreet european street StylizedEgypt egypt
FightingArena fighting arena Temple temple
Forge forge TrainStation train station

Table 3. Environments and descriptive captions used in PUG: AR4T
PUG: AR4T-Relations. For generating the PUG: AR4T-Relations subset, we utilize the

spatial relationships from Visual Genome that are not symmetric, as noted in the ARO
benchmark [235]. The set of relationships used in PUG: AR4T-Relations is given in Table
4. Tt consists of three unary relations (at, in, inside) and ten binary relations (above,
on, on top of, behind, in front of, below, beneath, under, to the left of,

to the right of.) For each relation, the corresponding objects are picked randomly from
the set of assets, and placed in the scene based on the co-ordinates given in Table 4. We add
a random offset in the range [0-25] along each dimension for every individual object for every
scene, so that the dataset does not contain shortcuts where the object locations can directly
inform the underlying relation. The size of each asset is chosen randomly on a scale of 1-10,

where 1 corresponds to 110 pixels and 10 to 200 pixels for the longest edge of the scaled asset.

The caption for a scene is generated using one of two templates based on whether the
spatial relationship in the scene is unary or binary:
e Unary Relation: “/ImageNet class label of asset 1] [relation] [human-intelligible back-
ground description]” e.g. Banana inside museum
e Binary Relation: “/ImageNet class label of asset 1] [relation] [ImageNet class label of
asset 2| [(random) unary relation] [human-intelligible background description/” e.g. Banana
to the left of chair inside museum
For each binary relation, we also sample the corresponding hard negative scene and
caption, by replacing the relation with its negative from Table 4 such that the semantic

meaning of the scene and caption represents a switch from the original relation between

223

Relation Object 1 co?r.dinates Object 2 co?r_dinates Negative Relation
(wrt origin) (wrt origin)

At (0,0, 0) N/A N/A
In (0,0, 0) N/A N/A
Tnside 0,0, 0) N/A N/A
Above (0, 0, 300) (0,0, 0) Below, Beneath, Under
On top of (0, 0, 300) (0, 0, 0) Below, Beneath, Under
On (0, 0, 300) (0, 0, 0) Below, Beneath, Under
Below (0,0, 0) (0, 0, 300) Above, On Top Of, On
Beneath (0, 0, 0) (0, 0, 300) Above, On Top Of, On
Under (0, 0, 0) (0, 0, 300) Above, On Top Of, On
Behind (150, 0, 0) (-150, 0, 0) In front of
In front of (-150, 0, 0) (150, 0, 0) Behind
To the left of | (0, -150, 0) (0, 150, 0) To the right of
To the right of | (0, 150, 0) (0, -150, 0) To the left of

Table 4. Relations, corresponding asset locations wrt to camera origin, and corresponding
hard negative relation used in PUG: AR4T

objects. For example, the negative of “Banana to the left of chair inside museum” is given

by “Banana to the right of chair inside museum”.

We sample a total of 310 binary relation scenes (155 random + 155 negatives), and 310
unary relation scenes for each background, thus leading to a dataset of 112,840 image-caption
samples (28 backgrounds x (310 pairs x 10 binary relations 4+ 310 pairs x 3 unary relations)).
The PUG:Relations dataset generation process described above is summarized as psueduocode
in Algorithm 1.

Lastly, we split the dataset into 101,920 train and 10,920 test image-caption samples,
such that the test set is balanced by background and relations (28 backgrounds x 13 relations
x 30 samples). We also release the subset of training and test samples that only contain
pairs of objects in scenes along with their hard negatives, which contains 78,400 training
and 8,400 test samples, or 39,200 training pairs and 4,200 test pairs. This subset enables
Winoground [198] style evaluation as well as training with hard visual negative mining for
VLMs in future work. The PUG:Relations dataset generation process described above is

summarized as psueduocode in Algorithm 1

PUG: AR4T-Attributes. For PUG: AR4T-Attributes the selection of assets, relations between
assets, and spatial locations of assets is done exactly as for PUG: AR4T-Relations. However,
since the focus of this dataset is on the object-attribute pairs, the relations between objects
are not represented in the corresponding scene caption in any form. The attribute for each
object is chosen randomly from the set of 53 attributes described in Table 5. For size based
attributes, the asset’s material instance remains the same but its size is varied between 50

pixels (short, small, little, tiny) and 200 pixels (big, long, tall, large). For all

224

Attribute Category | Attribute | Variants | Attribute Category | Attribute | Variants
Brick 3 Black 2
Metal 2 Blue 2
Wood 2 Yellow 2

Material Glass 2 White 2
Cloth 2 Green 2
Plastic 2 Gray 2
Rock 2 Color Brown 2
Big 1 Red 2
Long 1 Silver 2
Tall 1 Orange 2
Large 1 Pink 2

Size Short 1 Gold 2
Small 1 Striped 2
Little 1 Texture Dark 2
Tiny 1 Cloudy 2

Total= | 53

Table 5. Attributes and corresponding number of variants used in PUG: AR4T-Attributes

other attributes, the material instance of the object is changed in Unreal using Pytorch

Multiverse.

The caption of the scene is generated using one of two templates based on whether the
spatial relationship in the scene is unary or binary:
e Unary Relation: “/Attribute of asset 1] [ImageNet class label of asset 1] [relation]
[human-intelligible background description/” e.g. Green banana inside museum
e Binary Relation: “[Attribute of asset 1][ImageNet class label of asset 1] and [Attribute
of asset 2J[ImageNet class label of asset 2] [(random) unary relation] [human-intelligible
background description]” e.g. Green banana and large chair inside museum
For each binary relation, we also sample the corresponding hard negative scene and
caption, by swapping the attributes between objects such that the semantic meaning of the
scene and caption represents a switch from the original object-attribute associations. For
example, the negative of “Green banana and large chair inside museum” is given by “Large
banana and green chair inside museum”. For each of the 53 object attributes, we sample 2
scenes of it in conjugation with another object and attribute, and 2 scenes of the attribute in
isolation in a scene. We repeat this for each possible background, thus leading to a dataset
of 160,272 image-caption samples (28 backgrounds x (53 attributes x (53 attributes x 2
samples) + 2 samples)). The PUG:Attributes dataset generation process described above is

summarized as pseudocode in Algorithm 2.

Lastly, we split the dataset into 147,976 train and 12,296 test images. For each attribute
pair in a scene, we select 4 image-caption samples in the test set (4 samples x 53 attributes x
53 attributes = 11,236 sample). And we sample the remaining test samples by selecting 20

image-caption samples for each attribute in isolation in a scene (20 samples x 53 attributes =

225

1,060 samples). Similar to PUG-attributes, we also separately release the subset of training
and test set with scenes and captions containing only pairs of scenes with their corresponding
hard negatives, leading to 146,158 training samples and 11,236 test samples, or 73,0739

training and 5,618 test sample pairs.

Caption variants in PUG: AR4T. In order to emphasize the idea that each scene can have
multiple descriptive captions associated with it, we utilize a simple template to generate
alternate captions for scenes with binary relations that are semantically consistent but
linguistically different. During fine-tuning, the model randomly sees either the original
caption or the alternate caption. The presence of alternate captions also prevents the VLM to
learn shortcuts between the position of the object descriptions in captions and the underlying

spatial relationship or object-attribute association.

e PUG: Relations “/ImageNet class label of asset 2] [negative relation] [ImageNet class
label of asset 1] [(random) unary relation] [human-intelligible background description]” e.g.
The alternate caption for ‘Banana to the left of chair inside museum’ is ’Chair to the right
of banana inside museum’

e PUG: Attributes “[Attribute of asset 2/[ImageNet class label of asset 2] and [Attribute
of asset 1][ImageNet class label of asset 1] [(random) unary relation] [human-intelligible
background description]” e.g. The alternate caption for 'Green banana and large chair

inside museum’ is 'Large chair and green banana inside museum’

226

Algorithm 1 PUG: AR4T-Relations subset generation

Unary = {At, In, Inside}
Categories = {Set of ImageNet Class Labels}
Environments = {Set of Unreal Environments}
Relations = {Set of Relations}
NegRelations = {Dictionary of relations as key, semantically negative relations as values}
Assets = {Dictionary of Sketchfab assets, keys being ImageNet Class Labels}
AssetLocations = {Function that returns locations of assets based on relation with a
random offset}
Dataset = ¢
for env in Env do
for rel in Rel do
> For binary relations we also add the negative scene+caption to the dataset, thus
the effective number of samples per background is 2*¥15 = 30
if rel € Unary then
num_ samples = 15
else
num_ samples = 30
end if
for : = 1 to num_ samples do
catl = random.choice(Categories)
assetl = random.choice(Assets|catl])
if rel ¢ Unary then
cat2 = random.choice(Categories)
asset2 = random.choice(Assets[cat2])
end if
locationl, location2 = AssetLocations(rel)
scenel = TorchMultiverse(asset1, asset2, locationl, location2, env)
if rel ¢ Unary then
rel2 = random.choice(Unary)
captionl = catl +’ " 4+ rel +7 7 4 cat2 +’ 7 +rel2 + 77 4 env
Dataset U {scenel, captionl}
> Generate hard negative scene and caption
scenel = TorchMultiverse(asset1, asset2, location2, locationl, env)
caption2 = catl + ’ 7 4+ NegRelations[rel] + " + cat2 + 7 + rel2 + 7 +

env
Dataset U {scene2, caption2}
else
captionl = catl +’ 7+ rel + 7 + env
Dataset U {scenel, captionl}
end if
end for
end for
end for

return Dataset

227

Algorithm 2 PUG: AR4T-Attributes subset generation

Unary = {At, In, Inside}
Categories = {Set of ImageNet Class Labels}
Environments = {Set of Unreal Environments}
Relations = {Set of Relations}
Attributes = {Set of Attributes}
Assets = {Dictionary of Sketchfab assets, keys being ImageNet Class Labels}
AssetLocations = {Function that returns locations of assets based on relation with a random
offset }
Dataset = ¢
for attl in Attributes do
for att2 in Attributes + [None] do
if att2 == None then
num_ samples = 20
else
> For binary relations we also add the negative scene+caption to the dataset, thus
the effective number of samples per background and attribute is 2*2 = 4
num_ samples = 2
end if
for i = 1 to num_samples do env = random.choice(Environments)
if att2 == None then
rel = random.choice(Unary)
else
rel = random.choice(Relations - Unary)
end if
catl = random.choice(Categories)
assetl = random.choice(Assets|catl])
if att2 != None then
cat2 = random.choice(Categories)
asset2 = random.choice(Assets|cat2])
end if
locationl, location2 = AssetLocations(rel)
scenel = TorchMultiverse(assetl, asset2, locationl, location2, attl, att2, env)
if rel ¢ Unary then
rel2 = random.choice(Unary)
captionl = attl + '’ + catl + and "+ att2 + '+ cat2 + ' 4+ rel2 + ' + env
Dataset U {scenel, captionl}
> Generate hard negative scene and caption by switching object-attribute
associations
scene2 = TorchMultiverse(assetl, asset2, locationl, location2, att2, attl, env)
caption2 = att2 + '’ + catl + *and > + attl + '+ cat2 + 7’ + rel2 + 7’ + env
Dataset U {scene2, caption2}
else
captionl = attl + "+ catl +’ "+ rel +’’ 4 env
Dataset U {scenel, captionl}
end if
end for
end for
end for
return Dataset

228

D.3. Additional experimental details

To the of

we trained a classifier on held-out factors split on PUG: Ani-

demonstrate usefulness
mals and evaluate its generalization on the held-out factors of
variations, In the first experiment, we held out some factors of
variation during training (backgrounds, sizes or textures) except
for a specific number of animals C' and use the held-out data as
validation set. Thus, C' = 0 means that the network never saw
the factor during training (this is an OOD scenario with unseen
factors) while C' = 10 implies that the network saw this factor
for at least 10 different animals (OOD scenario with unseen com-
binations of factors). In Figure 4, we present our results training
a ResNetb0 with different held-out factors. Every model reached
more than 99% accuracy on the training set. First, we trained
on 50 backgrounds and used the remaining 14 backgrounds for
validation: here, the network reached an accuracy of 80%. How-
ever, when using only 30 backgrounds for training and using the
remaining 34 as validation, the accuracy dropped significantly.
Interestingly, showing every background for some of the animals
(having unseen combinations of factors instead of just unseen
factors) decreases performance. In contrast, for texture, we found
that having at least 10 animals for which every possible textures
are seen during training improves generalization. Interestingly,
the network overfits much more to the grass texture relative to

the default one. Lastly, when looking at the size factor, it seems

PUG: Animals

for OOD research,

-
=3
<

=3
<

—

=~
-~
- ~ \
— Cc=0 T

C=10 Smiy S .

— C=20 o WY
50 40 30 20 10
Nb. of worlds used for training

»
=

Held out Accuracy
N (-]
S =]

[\]

2 80
E'/o i
= -~
S 60 VA ~
fso o]
2 40 LYg—c=o
27 c=10
= 30 — C=20
B 7 :
= 2%mall Medium Large
Asset Size
>
3 80 P
IREN £~
250 —C=0
Cc=10
=
3 10 N 4 — C=20
5] \\Nvéd
Tl NP
=

Default Grass Sky Asphalt

Training Texture

Fig. 4. Accuracy on held out fac-
tors with PUG: Animals. Each
line and value C correspond to
the number of animals for which
all the factors are seen. The test
space is built by taking all the
factors minus the training factors.
If we train on the Default texture,
then the network is evaluated on
Grass, Sky and Asphalt. If we
train on 50 backgrounds, then we
evaluate on 64 (total number of
backgrounds) - 50 (training back-
ground) = 14 backgrounds.

that training on medium size assets leads to good generalization on small and large assets

while training only on small assets leads to worse performance on medium and large assets.

D.3.1. Equivariance study details

In section 5.3.2, we used PUG: Animals to study how foundation vision-language models

behave with respect to changes in factors of variations. We showed high image and text

equivariance with respect to background, and text equivariance with respect to size and

texture too. Here, we provide more details and results.

In our study, we use the following pretrained models:

e BLIP with ViT base backbone from the Huggingface transformers library [223], trained

on COCO dataset [140],

229

e NegCLIP from [235],

e As in [235] we use X-VLM pretrained on COCO dataset from https://github.com/
zengyan-97/X-VLM,

e Flava with ViT-B/32 backbone from Huggingface transformers (https:
//huggingface.co/facebook/flava-full)

e CLIP models all come from OpenAl CLIP https://github.com/openai/CLIP. We
use the versions with ResNet50, ResNet101, ViT-L/14, ViT-B/16, ViT-B/32.

We compute equivariance to each of the factors of variations. Since the text captions do
not take into account camera and asset orientations, when we compute the equivariance with
respect to the other factors we take only samples for a given orientation of the character and
camera (0 for roll, pitch and yaw in both cases). Furthermore, in the text caption, we replace
sizes by three adjectives as follows: 0.7 is mapped to small, 1.0 to medium and 1.3 to big.
Inspired by [34], we compute equivariance as the alignment between embedding difference
vectors. That is, we compute embedding difference vectors z; — z; where z; and z; are the
(normalized) embeddings of two images (or texts) of an object undergoing a given factor
change. We then measure pairwise alignment as cosine similarity of embedding difference
vectors (either between image pairs, text pairs, or image-text pairs) corresponding to the
same factor change. We report averaged cosine similarity of randomly paired vectors, and a

higher value implies higher equivariance.

Note that a model can present image equivariance but no text equivariance (cap-
tion and image are not guaranteed to be encoded in the same vector), or have high
equivariance across modalities but no image or text equivariance and vice-versa. In Figure 6
we report image equivariance with respect to the orientation of the camera yaw. We see
that there is little to no equivariance to it, suggesting that image embeddings are more
predictable when changing the background than the camera yaw. Note that foundation
model representations belong to the hypersphere, yet our measurement of equivariance as
parallelism (measured with cosine similarity) relies on Euclidean geometry. Still, cosine
similarity is a starting point to showcase how PUG: Animals can be used to study models’
representational spaces. This could also explain the higher equivariance values of text
representations: since textual captions follow the same template, embeddings might be close
to each other (relative to image embedding distances). In this case the hypersphere locally
behaves like an Euclidean space [133], for which the Euclidean geometry is better suited. We
leave for future work the exploration more complex equivariance metrics potentially based on
spherical geometry to study foundation models’ representational spaces. Studying model’s
representations is key to better understanding and improving them Bouchacourt et al.
[34], Xie et al. [226], Ushio et al. [206], Lenc and Vedaldi [135]. Our study showcases that

PUG: Animals advantages (rich diversity of factors, knowledge of their values, control either

230

https://github.com/zengyan-97/X-VLM
https://github.com/zengyan-97/X-VLM
https://huggingface.co/facebook/flava-full
https://huggingface.co/facebook/flava-full
https://github.com/openai/CLIP

background background

0IIIII I I N II IIIII
0.0 0.0

size size

N N ll .lIII
00 m—— i —— — —-— 0.0

texture texture

N N II IIII
001 [T | [| 001
g > @ { S
%l o N >
& & &
B

n

J
& &
N

(a) Image equivariance (b) Text equivariance

background
1.0

0.5

ool o I 1§ F]

size

1.0

0.5

0.04 — — e — — — ——

1.0

0.5

0.0 — — — N B m—

(¢) Across modalities equivari-
ance

Fig. 5. Measuring foundation models equivariance thanks to PUG: Animals: all three factors.

camera yaw

Fig. 6. Additional image equivariance results with respect to camera yaw.

one factor at a time but also all together) make it a great dataset to study state-of-the-art

models representational properties.
D.3.2. Classification with held out sets

In section D.3, we study how one can leverage PUG: Animsl to study OOD generalization
in two settings: 1) Generalization on unseen factors 2) Generalization on unseen combination

of factors.

231

For this experiment, we use PUG: Animals with held out sets. Typically, we random select
a number of number of animals (0, 10 or 20) within our 70 assets. Then for the remaining
animals we decided to remove from PUG: Animals a number of background, object size or
object texture. This give us a training set. Then the images that were excluded from this
training set are put as a test or held out set in which we measure the performance of a model.
This model is typically a Resnet50 trained for 100 epochs with AdamW as optimizer with a
batch size of 2048.

D.3.3. Robustness of SOTA models additional details

In addition to evaluating robustness for the models in the main paper, in Table 6 we provide
an analysis of several additional models including the recent self-supervised DINOv2 model
as well as BLIP a contrastive vision-language model. Parenthesis indicate the pretraining
dataset: ImageNet 21k, LVD-142M, JFT 300M, LAION 400M, and LAION 2B. Models
without parethesis are pretrained on the standard ImageNet-1k dataset. For ResNet models
we use the publicly available pretrained checkpoints from the Timm package based on the
training recipe from Wightman et al. [222]. For the vision transformer models and Swin
we use the pretrained models from the Timm package with patch size 16 for ViT and Swin
Base with a patch size of 4 and window size of 7. For the BiT model we use the pretrained
checkpoint trained on Google’s JE'T 300M dataset from the Timm package with a ResNetv2
101 architecture. For DINOv2, we use the officially released repo to evaluate the base ViT
architecture trained on 132 million samples [162]. For BLIP we use the checkpoint available
in HuggingFace and evaluate the model using zero shot classification via the prompt ‘This is
a photo of a [. We evaluate CLIP model variants in a similar zero shot fashion and rely on
OpenCLIP’s implementation. The parenthesis indicates the pretraining dataset size from
the LAION dataset. We report the average accuracy as each factor (see columns of Table 6)
varies.

We also measure the relationship between standard in-distribution accuracy and robustness
based on the accuracy as each factor in PUG:ImageNet varies. We measure Pearson’s
correlation coefficient between ImageNet accuracy and accuracy for each factor in Table 7.
We find no statistically significant relationship between standard classification accuracy and

factor robustness.

D.3.3.1. Performances. To understand if the differences in performance between the real
ImageNet and our PUG dataset is caused by a sim-to-real gap or by the factor of variations,
we show below the zero-shot accuracy obtained with a pretrained resnet101 for each class in
PUG: ImageNet. There is only 3 classes for which there is not a single configurations of the
factors that lead to a correct classification. For all the other classes, there is always at least

one configuration for which the network is correctly predicting the class. In that instance,

232

https://huggingface.co/docs/transformers/model_doc/blip

‘ ‘ PUG: ImageNet
‘lmachct‘Camcrain\w Camera_Pitch Camera_Roll Object_Yaw Object Pitch Object_Roll Object_ Scale Object Texture Scene Light Background

ResNet50 81.5 38.1 33.1 26.9 38.0 23.6 229 35.7 27.0 13.6 29.5
ResNet101 82.3 434 35.9 294 45.1 26.7 25.6 39.7 311 14.1 32.8
BiT (JFT300M) 80.3 40.5 32.3 26.0 42.1 23.6 22.8 373 234 6.3 20.5
DINOv2 (LVD-142M) 84.5 45.6 411 374 47.5 28.8 28.5 43.1 35.0 6.1 30.9
Flava (PMD 70M) 75.5 31.7 234 17.6 30.8 17.6 15.4 30.5 24.2 7.8 21.9
Swin 83.6 56.0 45.6 418 56.9 35.3 34.2 52.9 40.1 19.1 42.0
ViT-Base 84.3 37.5 34.3 31.7 38.0 21.8 20.5 33.0 28.5 41 26.6
ViT-Large 85.8 52.2 40.4 37.1 52.4 30.4 284 46.4 429 8.9 34.6
BLIP (100-+M) - 0.5 0.4 0.5 0.8 0.6 0.7 0.9 0.7 0.7 0.7
CLIPViTB32 (2B) 66.6 44.0 31.5 24.1 43.8 24.8 21.8 42.2 34.7 3.3 26.0
CLIPViTB32 (400M) 62.9 41.7 30.2 2211 41.6 23.8 20.9 40.1 344 5.7 24.4
CLIPViTL14 (2B) 75.3 49.7 34.9 28.2 50.3 26.3 25.3 46.8 39.4 4.8 30.8
CLIPViTL14 (400M) 72.8 52.3 39.8 35.7 51.8 29.0 26.4 50.6 41.1 4.3 33.0

Table 6. Robustness measured by average accuracy across factors. We report zero shot
classification accuracy for BLIP, Flava, all CLIP models. The pretraining dataset is indicated
in parenthesis next to each model name with ImageNet-1k being the default unless otherwise
indicated.

factor correlation pvalue
Object Pitch 0.29 0.45
Camera Roll 0.61 0.08
Camera Pitch 0.53 0.14
Camera Yaw 0.12 0.76
Background 0.43 0.25
Object Yaw 0.18 0.64
Object Texture -0.10 0.81
Scene Light 0.53 0.14
Object Scale -0.05 0.90
Object Roll 0.45 0.22

Table 7. We compute the correlation between standard ImageNet classification and robust-
ness based on the accuracy for each factor. We find no statistically significant relationship
for standard classification and factor robustness.

we assume that if the objects in a given class are correctly predicted at least one time, the
failures in predicting the correct class for the same objects with different factors is probably
due to the changes of factors.

Zero-shot top-1 accuracy per class Soccer_Ball: 100.00 , Pineapple: 95.62 , Barrel: 95.00
, Cellular__telephone: 89.45 , Pomegranate: 88.12 , Jack O_ Lantern: 85.94 , Vase: 85.62 , BirdHouse: 81.88 ,
BasketBall: 81.25 , Sewing_Machine: 80.94 , Umbrella: 80.00 , Washer: 78.75 , Pool_Table: 76.88 , Baseball: 76.88 ,
Safe: 76.25 , Cabbage: 75.78 , Cofee_ Mug: 75.31 , Mask: 74.06 , Brocolli: 73.44 | Starfish: 72.50 , Rocking_ Chair:
71.25 , Punching_ Bag: 70.94 , Chicken_ hen: 69.38 , WineBottle: 66.88 , Gasmask: 66.56 , Joystick: 64.06 , Television:
63.44 , Chest: 63.44 , Elephant: 62.50 , Bell Pepper: 61.46 , Cheeseburger: 60.62 , Pay_Phone: 60.00 , Tennis_ Ball:
58.44 , Jean: 56.25 , Binocular: 55.86 , Racket: 55.62 , Motor_ Scooter: 55.00 , Hay: 54.06 , Park_ Bench: 53.44 |
Bookcase: 53.44 , Zucchini: 52.08 , Banana: 50.00 , Sliding Door: 48.75 , Military_ uniform: 47.50 , Ambulance:
47.50 , Pizza: 47.19 , Tractor: 46.88 , Dishwasher: 46.88 , Cowboy_ Hat: 46.35 , Drum: 45.31 , Typewriter_Keyboard:
44.92 | Toaster: 44.69 , Obelisk: 44.38 , Laptop: 44.38 , Throne: 43.75 , Backpack: 43.44 | Shield: 41.88 , Artichoke:
41.80 , Penguin: 41.56 , Bathtub: 40.31 , WaterBottle: 40.00 , SpaceShuttle: 37.19 , Bagel: 36.88 , Bear: 36.25 ,

233

Vacuum: 35.94 , Radiator: 35.62 , Shovel: 35.55 | Refrigerator: 35.00 , Running_ Shoe: 34.38 , Goldfish: 34.38 , Crate:
34.38 , Polaroid_ Camera: 33.98 , Table_ Lamb: 33.75 , Bulletproof vest: 33.75 , Microphone: 33.12 , Traffic_ Light:
32.50 , Carton: 31.25 , Volley_ Ball: 30.62 , Vending machine: 30.62 , Lawn_ Mower: 29.38 ; Car_ Wheel: 29.38 ,
Harmonica: 28.12 , Lighter: 27.50 , Carousel: 27.34 , Mailbox: 27.19 , Airliner: 27.19 , Butternut_ Squash: 26.95 ,
Sweatshirt: 26.56 , Sock: 25.62 , French_ Loaf: 25.00 , Dial_telephone: 24.61 , Rabbit: 24.06 , Remote_ controler:
22.81 , Modem: 22.50 , Chain-saw: 21.35 , Screwdriver: 20.31 , Power-drill: 19.69 , Electric_ Fan: 19.06 , HairDryer:
18.75 , Purse: 18.12 , Wallet: 17.50 , Sunglasses: 17.50 , Minivan: 17.50 , Cat: 15.94 ; Microwave: 15.62 , Candle: 15.62
, Mushroom: 15.31 , Dining_ Table: 14.06 , Ice. Cream: 13.75 , Perfume: 13.44 , Komodo_ dragon: 13.44 , Bycicle:
13.12 , Wooden_ Spoon: 12.81 , JellyFish: 12.81 , Canoe: 12.81 , Radio: 12.19 , Desk: 12.19 , African_ crocodile:
11.88 , Hatchet: 11.25 , Sandal: 10.00 , Stonewall: 9.69 , Burrito: 9.38 , Palace: 9.06 , Mouse: 7.50 , Convertible: 7.19
, Espresso__maker: 6.88 ; Can_ Opener: 6.56 , Jeep: 6.25 , Fox: 6.25 , Tile_ Roof: 5.86 , Street_ Sign: 5.62 , WarPlane:
5.47 , Frog: 5.47 , Wolf: 5.31 , Whale: 5.00 , Torch: 5.00 , Soup_ Bowl: 4.69 , Great_ white_shark: 4.38 ; Kangarou:
3.91 , Digital _Watch: 2.81 , Skirt: 2.50 , Computer_ Keyboard: 2.50 , Piano: 1.88 ; Manhole_Cover: 1.88 , Bridge:
0.94 | Aircraft_ Carrier: 0.39 , Screen: 0.31 , Locomotive: 0.31 , Submarine: 0.00 , Shirt: 0.00 , Loupe: 0.00

D.3.4. Additional PUG:SPAR experiments

Instead of using all the background environments presented in the main part of the paper,
we also introduce a much simple setup in which we have a single background (thus we do not
need the background information in the caption anymore). The background that we choose
is the simplest one named "salt flats". This is also the background for which the retrieval
accuracy is the highest across all the backgrounds. In table 8, we present the performances
of several VLMs when using this single environment. We can observe a significant boost in
accuracy for the single object detection task for which the best model achieve 94% accuracy
(this value is to contrast with the 78% accuracy obtained across all the background). This
show that VLMs are definitively not robust to background changes. However as in the
previous case, when probing for the positional information, the performance of the model is
still decreasing significantly. We also illustrate in Figure 7 very simple failure cases on the
best model.

D.3.5. CLIP fine-tuning details

We utilize the OpenCLIP framework [112] for all our CLIP experiments. The ViT-B/32
model is used as the image encoder for all our experiments. The CLIP model we fine-tune is
the OpenAl 400M pre-trained model (‘ViT-B-32°, ‘openai’)’. Fine-tuning on PUG: ARAT
is done for 10 epochs on the 200K dataset while training is done for 2 epochs on the 1M
dataset.

'NOTE: We do not perform any training on the proprietary 400M dataset from OpenAl. We strictly only use
the pre-trained models released, and fine-tune them on our PUG datasets.

234

2)
S & o P
& AN R $
S RS A e
> S > 9 9
QQ)Q QQ}Q & & & Q‘Zﬁ\
SRS RS R R
O AN A > N
G AN A N N < A S o
F &S S S S S
Caption Texture < < < < < < < 2 4 <
Default 57.81 75.78 91.41 88.28 94.53 94.53 64.06 7891 67.19 64.84
“A photo of a [character]“ Blue/Red 48.44 54.69 71.88 70.31 75.00 84.38 42.19 53.12 48.44 48.44
Grass/Stone 39.06 45.31 67.19 68.75 76.56 78.12 39.06 56.25 45.31 50.00
“A photo of a [character] Default 29.69 37.50 39.06 40.62 50.00 51.56 32.81 42.19 34.38 31.25
on the (left/right) of the
picture“
“A photo of a [character] Default 29.69 23.44 4531 43.75 46.88 4531 23.44 34.38 34.38 23.44
on the (bottom/top) of the
picture*
“A photo of a [character] Default 24.56 32.47 68.85 59.67 72.66 80.96 1855 40.58 24.71 21.04
dp h tor]® Blue/Red 10.84 18.55 38.57 30.66 34.28 51.56 9.86 10.94 3.12 8.01
and a [character] Grass/Stone 9.38 18.16 31.35 30.47 30.18 47.85 6.84 11.33 596 8.98
“A photo of a [character] Default 14.11 14.92 38.10 30.85 40.83 42.14 13.71 23.99 14.01 14.21
on the left and a [character]
on the right“
“A photo of a [character] Default 12.00 1542 34.07 35.48 44.05 45.26 10.99 26.51 14.62 8.17
on the bottom and a [char-
acter] on the top“
“A photo of a [character] Blue/Red 4.44 6.65 19.15 15.52 20.56 29.84 6.15 10.28 5.44 4.13
P Grass/Stone 3.43 5.44 15.73 17.24 19.05 27.32 5.54 7.76 6.35 4.03

textured with [texturel]
and a [character] textured
with [texture2]“

Table 8. Setup and zero-shot evaluation of CLIP models on PUG: SPAR with caption retrieval in a single environment.
In contrast with the figure presented in the main paper, we present the result only using the salt flats environment. The
motivation for this experiment is to showcase the failures mode of VLMs in a very simple setup in which the model robustness
to background does not impact the prediction.

A very simple failure mode of the OpenCLIP ViT-G-14 (2B)

The caption predicted by the model is presented below each image (correct/wrong)

A photo of a Goldffish

A photo of a Goldfish on the
left of the picture

A photo of a Goldfish

A photo of a Goldfish on the
left of the picture

The model does not understand positional information

— -

<

A photo of a Crow

A photo of a Orca

A photo of a Goldfish

A photo of a Goldfish

and a Orca

The model does not understand compositionality

Fig. 7. Failures mode of a OpenCLIP ViT-G-14. Our PUG: SPAR dataset provides very
simple images and captions and yet even large models are failing on them.

235

	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	Liste des sigles et des abréviations
	Acknowledgements
	Introduction
	Chapter 1. Background
	1.1. Machine learning basics
	1.2. Neural networks
	1.3. Self-supervised Learning
	1.4. Vision Language Models (VLMs)
	1.5. Evaluations of deep neural network representations

	Prologue to Article 1
	Chapter 2. Article 1: High Fidelity Visualization of What Your Self-Supervised Representation Knows About
	2.1. Introduction
	2.2. Related Work
	2.3. High-Fidelity Conditioning with Diffusion Models
	2.4. Visual Analysis of Representations Learned by Self-Supervised Model
	2.5. Conclusion
	2.6. Reproducibility statement
	2.7. Broader impact statement

	Prologue to Article 2
	Chapter 3. Article 2: Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
	3.1. Introduction
	3.2. Related work
	3.3. Guillotine Regularization: A regularization scheme to improve generalization of deep networks
	3.4. Reducing the Need for a Projector in Self-Supervised Learning by increasing the alignment with the downstream task
	3.5. Conclusion

	Prologue to Article 3
	Chapter 4. Article 3: Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in Self-supervised Learning
	4.1. Introduction
	4.2. Preliminaries and Related Work
	4.3. Defining Déjà Vu Memorization
	4.4. Quantifying Déjà Vu Memorization
	4.5. Visualizing Déjà Vu Memorization
	4.6. Mitigation of déjà vu memorization
	4.7. Conclusion

	Prologue to Article 4
	Chapter 5. Article 4: PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning
	5.1. Introduction
	5.2. Related work
	5.3. Photorealistic Unreal Graphics (PUG) environments and datasets
	5.4. Conclusion

	Chapter 6. Conclusion and Discussion
	6.1. Summary of the contributions presented in this thesis
	6.2. Other related contributions
	6.3. A path towards more principled evaluations
	6.4. Conclusion

	References
	Appendix A. High Fidelity Visualization of What Your Self-Supervised Representation Knows About
	A.1. Conditional and super-resolution sampling with RCDM
	A.2. A hierarchical diffusion model for unconditional generation
	A.3. On the closeness of the samples in the representation space
	A.4. Analysis of representations learned with Self-Supervised model

	Appendix B. Appendix: Guillotine Regularization: Why removing layers is needed to improve generalization in Self-Supervised Learning
	B.1. Datasets
	B.2. Reproducibility
	B.3. Additional experimental results
	B.4. Limitations

	Appendix C. Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in Self-supervised Learning
	C.1. Limitations and societal impact
	C.2. Experimental details
	C.3. Additional quantitative experiments
	C.4. Additional reconstruction examples
	C.5. Detecting Déjà vu without Bounding Box Annotations

	Appendix D. Appendix: PUG: Photorealistic and Semantically Controllable Synthetic Data for Representation Learning
	D.1. Limitations and Future Work
	D.2. PUG Datasets
	D.3. Additional experimental details

