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Résumé

Établir des méthodes d’évaluation pour les systèmes d’intelligence artificielle (IA) est une
étape importante pour précisément connaître leurs limites et ainsi prévenir les dommages
qu’ils pourraient causer et savoir quels aspects devraient être améliorés. Cela nécessite
d’être en mesure de dresser des portraits précis des limitations associées à un système d’IA
donné. Cela demande l’accès à des outils et des principes fiables, transparent, à jour et
faciles à utiliser. Malheureusement, la plupart des méthodes d’évaluation utilisées à ce jour
ont un retard significatif par rapport aux performances toujours croissantes des réseaux de
neurones artificiels. Dans cette thèse par articles, je présente des méthodes et des principes
d’évaluation plus rigoureux pour obtenir une meilleur compréhension des réseaux de neurones
et de leurs limitations.

Dans le premier article, je présente Representation Conditional Di�usion Model (RCDM),
une méthode d’évaluation à l’état de l’art qui permet, à partir d’une représentation donnée –
par exemple les activations d’une couche donnée d’un réseau de neurones artificiels – de générer
une image. En utilisant les dernières avancées dans la génération d’images, RCDM permet
aux chercheur·euse·s de visualiser l’information contenue à l’intérieur d’une représentation.
Dans le deuxième article, j’introduis la régularisation par Guillotine qui est une technique bien
connue dans la littérature sur l’apprentissage par transfert mais qui se présente di�éremment
dans la littérature sur l’auto-apprentissage. Pour améliorer la généralisation à travers
di�érentes tâches, on montre qu’il est important d’évaluer un modèle en coupant un certain
nombre de couches. Dans le troisième article, j’introduis le score DéjaVu qui quantifie à quel
point un réseau de neurones a mémorisé les données d’entraînement. Ce score utilise une petite
partie d’une image d’entraînement puis évalue quelles informations il est possible d’inférer à
propos du reste de l’image. Dans le dernier article, je présente les jeux de données photo-
réalistes PUG (Photorealistic Unreal Graphics) que nous avons développés. Au contraire de
données réelles, pour lesquelles générer des annotations est un processus coûteux, l’utilisation
de données synthétiques o�re un contrôle total sur la scène générée et sur les annotations.
On utilise un moteur de jeux vidéo qui permet la synthèse d’images photo-réalistes de haute
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qualité, afin d’évaluer la robustesse d’un réseau de neurones pré-entraîné, ceci sans avoir
besoin d’adapter ce réseau avec un entraînement additionnel.

Mots cles: Apprentissage profond, Évaluation, Mémorisation, Apprentissage Auto-
Supervisé, Données synthétiques
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Abstract

Carefully designing benchmarks to evaluate the safety of Artificial Intelligent (AI) agents
is a much-needed step to precisely know the limits of their capabilities and thus prevent
potential damages they could cause if used beyond these limits. Researchers and engineers
should be able to draw precise pictures of the failure modes of a given AI system and find
ways to mitigate them. Drawing such portraits requires reliable tools and principles that
are transparent, up-to-date, and easy to use by practitioners. Unfortunately, most of the
benchmark tools used in research are often outdated and quickly fall behind the fast pace
of improvement of the capabilities of deep neural networks. In this thesis by article, I
focus on establishing more fine-grained evaluation methods and principles to gain a better
understanding of deep neural networks and their limitations.

In the first article, I present Representation Conditional Di�usion Model (RCDM), a
state-of-the-art visualization method that can map any deep neural network representation
to the image space. Using the latest advances in generative modeling, RCDM sheds light on
what is learned by deep neural networks by allowing practitioners to visualize the richness of
a given representation. In the second article, I (re)introduce Guillotine Regularization (GR) –
a trick that has been used for a long time in transfer learning – from a novel understanding
and viewpoint grounded in the self-supervised learning outlook. We show that evaluating a
model by removing its last layers is important to ensure better generalization across di�erent
downstream tasks. In the third article, I introduce the DejaVu score which quantifies how
much models are memorizing their training data. This score relies on leveraging partial
information from a given image such as a crop, and evaluates how much information
one can retrieve about the entire image based on only this partial content. In the last
article, I introduce the Photorealistic Unreal Graphics (PUG) datasets and benchmarks.
In contrast to real data for which getting annotations is often a costly and long process,
synthetic data o�ers complete control of the elements in the scene and labeling. In this
work, we leverage a powerful game engine that produces high-quality and photorealistic
images to evaluate the robustness of pre-trained neural networks without additional finetuning.
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Introduction

The concept of Artificial Intelligence (AI) has long been a source of inspiration throughout
human history. We can find early references to artificial beings endowed with intelligence in
Greek mythology. Talos, created by the blacksmith god Hephaestus was made of bronze
and was tasked to protect the island of Crete and her queen Europa. Similarly, Hephaestus
crafted two guardian dogs for Alcinous, king of the Phaeacians. In contrast with automatons
designed to follow a sequence of predetermined instructions, artificial beings like Talos or
Alcinous’s dogs evolved in complex environments with uncertainty about the sequence of
actions to follow. The artificial dogs should be alert about potential invaders, which requires
memories of who is used to being in the house. If Alcinous is friendly with a stranger, the
dogs should not bark or attack this person. Recognizing situations, meeting new people, and
adapting to them, requires a crucial ability which is learning. However, even if Hephaestus
creatures could learn, they were not perfect. Talos, the protector from Crete, had a weakness,
a bronze nail that contained his vital fluid. Medea, a sorceress blocked by Talos on her
way to Crete and well aware of Talos’ weakness, told him she would make him immortal
if he removed his bronze nail. Being convinced by this promise, Talos removed his nail,
which destroyed him. Notwithstanding his extraordinary nature, Talos got defeated by mere
deceiving words. Even if the ancient Greeks only dreamt about AI, these myths shed some
light on a major issue encountered by sophisticated modern systems: with the ability to
learn by interacting with the world comes the risk that the system gets deceived by this
world into a behavior that was not expected. This calls for the need to create systems that
are safe and robust to unusual situations when deployed.

Unlike the god Hephaestus who could easily infuse intelligence to bronze statues, modern
AI systems rely on a set of computing techniques called deep learning. Scientists inspired
by the underlying mechanisms of the brain have tried to distill these mechanisms into
mathematical formulas and algorithms. Such modern artificial systems are built upon the
notion of a large number of connected artificial neurons: a neural network. When many layers
of connected neurons are linked sequentially, they are referred to as deep neural networks.
Like Alcinous’s dogs, deep neural networks must be able to learn to be qualified as intelligent



systems: they need deep learning. However, artificial beings or deep neural networks cannot
learn from nothing. They are crafted with a task in mind; it can be as specific as alerting
when someone enters the house to as general as holding a friendly conversation. Learning to
carry out such a task is often referred to as training the deep neural network. Training can
be performed either using direct human feedback (using knowledge about the answer that a
human would give), which is called supervised learning, or indirect feedback (is the answer
likely given a predefined series of rules about the world?) with unsupervised or self-supervised
learning (SSL). Since we do not want to create an AI system that a user can easily trick
into a behavior that is not desirable, it is crucial, after training, to evaluate the system’s
robustness to guarantee its safe deployment.

Carefully evaluating and designing benchmarks to measure AI systems’ robustness is at
this thesis’s foundation. As teachers test their students to measure how much they learned,
we must evaluate how much deep neural networks have learned. However, we must be careful
when designing such tests. Like a student who might achieve a perfect score on a test by
merely memorizing the correct answers without understanding the fundamentals, an AI
system can also give correct answers on basic tests using rote memorization but perform
poorly on more challenging tests. In addition to providing a view of the system’s failure
modes, better evaluation methods could also give us a better understanding of what precisely
they learned and how. Are they cheating to solve the task? Did they memorize what they
learned? What happens if we try to trick them into giving an incorrect answer? The main
driving force behind the following articles is providing better tools to researchers to answer
these questions.

The first part of this thesis introduces RCDM (Representation Conditional
Di�usion Model): a new tool used to understand better what modern AI systems
learn. Traditionally, assessing what is learned by deep neural networks is mostly measured
through numerical performances on the task of interest. When training them for object
recognition, the standard evaluation benchmark is to compute the accuracy on an annotated
set of data not seen during training (to evaluate how robust this network is to new data
or environments). However, the downside of this kind of evaluation is that it only assesses
if the neural network is classifying correctly, without uncovering the reasoning behind
the prediction. This network can learn to recognize birds by using only the background
information (birds will often have a sky background) instead of what uniquely characterizes
a bird (peak, wings..). In that instance, the network would be cheating, and the evaluation
benchmark might not be able to detect it unless it had been carefully designed based on
such a-priori expected misbehavior. To circumvent these limitations, we propose using a rich
qualitative evaluation method to visualize directly what a deep neural network has learned.
To this e�ect, we introduce RCDM, based on the latest advances in image generation.
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RCDM can stochastically map any deep neural network layer representation to the image
space. This allows us to visualize precisely what information is contained in this representation.

In the second part, we analyze what is learned by neural networks at di�erent
intermediate levels of representations by using Guillotine Regularization.
Nowadays, deep neural networks are built with dozens or hundreds of layers, and each of
those layers could contain thousands or millions of artificial neurons. There is a habit in the
research community to always leverage the last layer to solve a given downstream task. Our
second contribution is challenging this habit by showing that di�erent layers contain di�erent
information about a given input. Thus, some intermediate representations might be better
suited for some tasks. This is especially true with Self-Supervised Learning approaches, for
which performance across di�erent downstream tasks can vary significantly depending on
which representation layer is used.

In the third part, I introduce DéjàVu: a score to quantify memorization in deep
neural networks. Since a student could learn by rote memorization to get good grades, a
neural network could do the same to solve the training task. This kind of memorization
is an especially sensitive topic with deep neural networks since it could entail risks of
privacy violation. An attacker could try to reconstruct the training data, which might
induce significant risks when private or proprietary data is used for training. In this third
contribution, we highlight how much self-supervised models rely on memorization and
which parameters increase or decrease the degree of memorization of the training data. By
introducing a new metric, called the DéjàVu score, we give SSL researchers and practitioners
a new tool to analyze how much a given model memorizes its training data.

Lastly, we introduce the PUG (Photorealistic Unreal Graphics) datasets and
benchmarks. Most of the datasets and benchmarks used by the research community
quickly become outdated, falling behind the fast pace of improvement of the capabilities of
deep neural networks. Most synthetic datasets are often small-scale and unrealistic, while
real datasets lack fine-grained control and annotations. Since transparency on a model’s
limitations is crucial to ensure their safe deployment, it is fundamental to create benchmarks
to properly assess the limitations and risks associated with a given model. This work is
inspired by the simulators used in aviation to evaluate how well pilots can react to extremely
rare but possible failure cases. Using a simulator allows pilots to sharpen their skills in
case of unlikely events. Similarly, using synthetic yet realistic-looking data, we can easily
evaluate how much models are robust to unlikely scenes or events. This last contribution
introduces the PUG datasets created using Unreal Engine – a powerful video game engine.
By leveraging the latest photorealistic graphics, we can create virtual environments in which
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we can asses the robustness of modern systems. Equipped with PUG, we create challenging
configurations under which current neural networks are easily shown to fail.

The four articles presented in this thesis aim to give practitioners and researchers additional
guidance and tools to evaluate deep neural networks better. Much in these articles are centered
on deep neural networks that belong to the Self-Supervised learning family. Unlike traditional
supervised learning, for which the training objective is typically aligned with their intended
usage, Self-Supervised Learning methods solve a more generic objective to learn features
that can be used across di�erent downstream tasks. Consequently, having a way to correctly
evaluate these generic models before releasing them is essential to draw a better picture of
their strengths and weaknesses. However, the guidance and tools presented in these articles
can be generalized to other model families. I hope these contributions will be the foundation
for crafting more robust, safe, and reliable artificial intelligent systems. This thesis starts with
a background chapter in which I introduce the fundamental notions needed to understand the
articles. Then, each article is presented with a prologue that provides context and information
on its conception and highlights its impact on the research community. Lastly, a conclusion
chapter summarizes the contributions and opens up to the remaining research directions and
questions to address. The supplementary material specific to each article can be found at the
end of the thesis, after the bibliography.
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Chapter 1

Background

This chapter presents an overview of the fundamentals needed to understand the articles
presented in this thesis. It starts with machine learning concepts that are at the core of
modern AI systems. Then, I explain neural networks, their most common forms, and popular
training paradigms. Lastly, I review the latest advances in Self-Supervised Learning.

1.1. Machine learning basics
1.1.1. Introduction

Machine learning is an ensemble of techniques that aim to solve specific tasks using data.
Tasks could be as simple as drawing a line between two clouds of points or much more
complex such as labeling di�erent animal species or playing Go. Labeling species requires
understanding of what an animal is and what are the characteristics of a given animal. It
leads to learning abstractions of concepts such as tail or legs. How to learn better abstractions
is an essential question in machine learning research.

1.1.2. Solving tasks

Machine learning algorithms learn to solve a task by optimizing a predefined training
objective. In a classification task, the algorithm can predict for a given image which category
is the most likely to be associated with this image. This first task belongs to a supervised
learning scenario for which we have category labels, i.e., annotation of the data. This allows
machine learning practitioners to evaluate if an algorithm made a mistake by comparing the
predicted label to the real label. If the task is to generate new images of cats, the objective
is much harder to define. We can ask the algorithm to produce a very close pixel-wise image
to a target image or to produce indistinguishable images from real images under the view of
a second algorithm. This second task belongs to an unsupervised learning scenario for which
we have data with no annotations on them. Similarly, we can define a pretext objective which



might be as generic as "trying to predict a missing word in a sentence" or "a missing patch
in an image". By training on this pretext task, the model might learn representations that
are generic enough to be used for di�erent downstream tasks (like classification or image
segmentation). This third scenario is referred to as Self-Supervised Learning.1

1.1.3. Learning

Learning consists mainly in leveraging the training data to find a function (a specific
parametrization) that best solves the training objective. In most machine learning algorithms,
variables called parameters are used to represent that function. Usually, those parameters are
initialized randomly. Then, the algorithm finds the best parameter values that optimize the
algorithm’s performance in a given task. Finding the optimal parameter values for a given
training task is often referred to as the training phase and is usually performed until the task
is solved su�ciently well.

1.1.4. Evaluating

The evaluation of a machine learning algorithm depends on the chosen downstream
task. In the case of supervised learning, one usually splits the data into three di�erent sets.
The first is the training set the machine learning algorithm uses to learn its parameters.
The second one is the validation set, which tracks performances on unseen data to assess
whether the algorithm is only memorizing the training set or can generalize on new data.
However, tracking performances on a specific set of unseen data can lead to a bias towards
this set, especially if we use this information to choose the algorithm. To prevent it, we use
a third set called the test set, which the algorithm did not use during the training phase.
The performances on this set should give us an unbiased estimate of the algorithm’s actual
performances.

1.1.5. Capacity, generalization, under and over-fitting

The capacity of a machine learning algorithm can be seen as the expressiveness or
representation power it can have. A small capacity implies that the algorithm will be able to
solve only simple tasks, whereas an algorithm with a bigger capacity will be able to solve more
complex tasks. Usually, the capacity is related to the number of parameters the algorithm
can use. We often associate the capacity with the function space: the set of functions the
algorithm can learn. If we look at Figure 1a, the degree of the polynomial function is 1,
which restricts the function space to the set of linear functions such as f(x) = ax with a

1There are many ways to better characterize the di�erences between Unsupervised and Self-Supervised
Learning. For simplicity, we restrict our definition of Unsupervised Learning to learning the data distribution
(thus learning a model that can generate new data points). In contrast, we define Self-Supervised Learning as
leveraging a pretext task to learn a generic representation.
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as the learnable parameter. However, the algorithm tries to learn the blue training data
points, which a linear function cannot represent. In that case, the linear function is not
fitting the training data points well. Since the expressiveness of the linear function does not
allow the algorithm to represent the data correctly, we are in an under-fitting scenario. If
the polynomial degree becomes higher, as shown in Figure 1b, the algorithm has a bigger
capacity and is better at capturing the training data distribution. In addition, the test data
points in red are also captured by the learned polynomial. In that instance, the algorithm
generalizes to the test data points. However, when the polynomial degree is too high, as
shown in Figure 1c, the algorithm’s capacity becomes too strong to o�er good generalization.
In that instance, the model learns precisely the position of the training blue data points but
fails to learn a function that can represent the test red data points. In that instance, the
algorithm is in an over-fitting scenario.
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Fig. 1. Plots showing how the capacity of a model influences its ability to fit data points.
Train points are blue, and test points are red. The polynomial learned by the machine
learning algorithm is the black curve. Figure extracted from my master thesis.

1.2. Neural networks
1.2.1. Introduction

Neural networks are a class of machine learning models inspired by neuroscience. Neural
networks are composed of artificial units called neurons whose links are called weights. In
contrast with other machine learning models, neural networks make the compositionality
assumption that complex concepts can be built using simpler elements. Such an assumption
has a lot of grounding in neuroscience since our brain can decompose a complex animal
like a cat under simpler concepts such as paws, tail, pointy ears, whiskers, and small. If
taken individually, each element does not imply they are associated with a cat since they
are common across many di�erent animals. However, if all of them are detected in the
same animal, we can definitively assume it is a cat. If we see a tiger, our brain can think
about how big this cat is compared to our domestic cat (such an association occurs only
because cats and tigers share many characteristics). The ability to reuse simple concepts and
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associations we learned in the past is a crucial element that allows our brain to generalize to
new environments. Learning simple concepts and combining them is one of the main reasons
behind the success of neural networks.

1.2.2. Perceptron and MultiLayer Perceptron

Inspired by discoveries about the brain, Rosenblatt invented the perceptron [171], an
artificial neuron. The perceptron (Figure 2a) can be seen as a simple linear combination of
the inputs with a threshold. The multilayer perceptron (Figure 2b) was introduced to solve
non-linear problems like XOR. Instead of using one artificial neuron, the idea is to stack
them inside a layer of neurons and combine them with other layers of neurons and non-linear
activation functions.
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(b) A Multilayer Perceptron

Fig. 2. Example of perceptron and multilayer perceptron. The input variable is named
xi whereas the output given by those models is called oj. The artificial neuron units are
presented as h

i
j.

1.2.3. Convolutional Neural Networks

Convolutional neural networks (CNNs) [130] are a specific type of neural network designed
for vision tasks. In contrast to fully connected networks that would associate every pixel to
each of the neurons, CNNs have grids of neurons that analyze only a subset of the pixel to
find some patterns. When having as input an image of a dog (Figure 3), a specific subset of
these neurons will learn to look for something like an ear. They will scan the entire image
grid of pixels by grid of pixels and send a signal to the bottom layer if they find something
that looks like an ear.
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Fig. 3. An example of a convolution operation applied on an image. In contrast to fully
connected networks that associate every pixel to each of the neurons, CNNs analyze only
a subset of the pixels (in transparent blue) to compute the higher-level activation (in dark
blue).

1.2.4. Transformers

Transformers are a specific type of deep neural network architecture introduced by
Vaswani et al. [210] initially designed for text applications. One of the main components
of the transformer architecture is the attention mechanism introduced by Bahdanau et al.
[15]. The text inputs are converted into tokens, which then are converted into embeddings
on which multiple attention heads are deployed with non-linear activation and feed-forward
layers. By using the attention heads, transformers can learn to attend to specific part of
a given sequence depending on the training task. One of the main advantages of such an
approach is the computational cost which is significantly reduced since the network does not
need to focus on the irrelevant part of a given sequence.

1.2.5. Cost function, and backpropagation

A neural network, like any machine learning algorithm, should optimize a cost (or loss)
function to solve a training task. For a supervised classification task, the cost will be how many
errors a model makes in predicting the class labels. Training a machine learning algorithm
based on a neural network is done by reducing the number of errors made (minimizing the cost)
on the training data. To minimize the cost function, we use optimization techniques based
on gradient descent to find the optimal parameters for the neural network. Backpropagation
of the gradient [173] is a method to e�ciently compute gradients adapted to neural networks.
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Based on the chain-rule principle, we compute the gradient at di�erent layers, starting with
the last one until the first one.2.

1.2.6. Autoencoders

Autoencoders are a class of neural networks trained to reconstruct their input through a
specific architecture. The intuition behind autoencoders is that a model can learn a meaningful
representation of the data by encoding an input into a specific number of dimensions in
a latent space. It is important to note that the autoencoder could cheat by learning to
copy its input. Thus, it is essential to design the autoencoder to avoid that by reducing the
dimension of the input data (undercomplete autoencoder) and using non-linear activation
functions. An alternative is to design autoencoders that project the data into a higher
dimension (overcomplete autoencoders) with strong regularization over the latent or input
space. One popular form of regularized autoencoders is denoising autoencoders (DAE)
[214]. Instead of directly using the training data point as input for the autoencoder, the
input becomes a slightly corrupted version of this data training point. Then the DAE learns
to reconstruct the original data point from this noisy version. This can done by using the
following Mean Squared Error (MSE) objective:

JMSE(◊) =
ÿ

xœDtrain

Ex̃≥N (x,‡2I)

51
2 Î„(x̃, ◊) ≠ xÎ2

6

where x is the input, x̃ the slightly corrupted version of x and „(x̃, ◊) the DAE parametrized
by ◊ which takes x̃ as input. In that instance, the autoencoder cannot merely copy its input
since the reconstruction error with respect to the clean data point will be high. Figure 4
gives an example of denoising autoencoder. The DAE learns to map the corrupted version of
the data points (in blue) toward the data manifold (in green).

1.2.7. Energy-based models and denoising score matching

Energy-based models (EBMs) [131] are a specific framework that predicts one scalar value
called energy for each configuration of random variables. The model E◊ parametrized by ◊

is trained to assign low energy on observed variables and high energy on unobserved ones.
Data from the target distribution should have low energy, whereas anything else should have
higher energy. EBMs do not require proper normalization but correspond to a Boltzmann
distribution (Or Gibbs distribution). We consider input data x with an energy function E◊(x)
of parameters ◊. The corresponding Boltzman distribution density function can be written
as:

p(x) = e
≠E◊(x)

Z◊

2For a more detailed explanation, please refer to the book of Goodfellow et al. [90]
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Fig. 4. An example of a denoising autoencoder (DAE) that learns to map noisy versions of
data points towards the data manifold. The data points are green, whereas the corrupted
ones are blue. The DAE learns to project back the blue point towards the green data points.

with Z◊ = q
x e

≠E◊(x) which is the normalization factor. To estimate the target distribution
PD from which input data x are drawn, we can in principle use the traditional maximum
likelihood objective:

arg min
◊

Ex≥PD(x)[≠ log P◊(x)]

whose gradients are:
ˆEx≥PD(x)[≠ log P◊(x)]

ˆ◊
= Ex+≥PD(x)

ˆE◊(x+)
ˆ◊

≠ Ex≠≥P◊(x)
ˆE◊(x≠)

ˆ◊

However, this requires to get x
≠ ≥ P◊(x), which corresponds to sample from the model

distribution that can be intractable. A common strategy is to use Markov Chain Monte Carlo
(MCMC) methods to simulate the sampling distribution of the EBM. The advantage of such
an approach is that there are theoretical guarantees that the chain will converge, but there is
a substantial computational cost.

To overcome such training di�culty, a popular workaround is to use score matching [109]
to train EBMs. Instead of considering the density itlsef, we use the gradient of the density
„(x, ◊), called the score, where:

„(x, ◊) = ˆ log p(x, ◊)
ˆx

= ≠ˆE◊(x) ≠ ˆ log Z◊

ˆx
= ≠ˆE◊(x)

ˆx

Score matching eliminates the partition function log Z◊ since the score does not depend on x,
leading to a zero gradient.
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We need to define a score as a target to train a model by score matching. We would like
„(x, ◊) as close as possible to the score ˆ log q(x)

ˆx of the true (and unknown) data density q. If
we knew this term, we could train a model to minimize:

JSM(◊) =
ÿ

xœDtrain

1
2

.....„(x, ◊) ≠ ˆ log q(x)
ˆx

.....

2

but we don’t know the real ˆ log q(x)
ˆx .

Since we do not have the real ˆ log q(x)
ˆx , the idea behind denoising score matching introduced

by Vincent [212] is to add some noise around a data point x to get a new point x̃. The
intuition is that if we were to follow the true gradient ˆ log q(x̃)

ˆx̃ , we would likely get a gradient
that will move x̃ towards x. Thus, we can define a new objective:

JDSM(◊) =
ÿ

xœDtrain

Ex̃≥N (x,‡2I)

S

U1
2

.....„(x, ◊) ≠ (x ≠ x̃)
‡2

.....

2
T

V

Interestingly, Vincent [212] demonstrated that the denoising score matching criterion
JDSM (◊) is equivalent to the Mean Squared Error Loss JMSE(◊) that is used when training a
denoising autoencoder.

The DSM objective has been widely used to train the generative models, which are
presented in the next section.

1.2.8. Di�usion/Infusion models

Di�usion models are a family of generative models inspired by non-equilibrium statistical
physics. They were first introduced and described by Sohl-Dickstein et al. [191] as composed
of a di�usion process (which consists of converting a complex distribution into a simple
and tractable distribution by iteratively corrupting it) and the corresponding reversed
di�usion process. If we modelize distribution of images, then the di�usion process will
corrupt iteratively these images (using Gaussian noise, for example) such that after a given
number of iterations, the resulting corrupted images become purely Gaussian. The di�usion
model will learn to reverse each intermediate step such that from pure Gaussian noise, the
network should gradually generate the target images back. To learn the exact reverse process,
the di�usion had to be infinitesimal by construction which requires performing thousands
of tiny reconstruction steps (which leads to important computational costs). In this first
generation of di�usion models, the training loss consisted of optimizing a lower bound over
the log-likelihood. Di�usion models are akin to denoising autoencoders with the di�erence
that they have iterative components and use a more complex process to corrupt the data.
The di�usion models introduced by Sohl-Dickstein et al. [191] worked well on simple data
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distributions however, they were not able to generate compelling images.

Fig. 5. An example of an infusion chain by Bordes et al. [28]. Starting from noise, we
gradually infuse very few target pixels into the sampling chain. By doing so, the network
learns to construct back the image gradually. At inference, we remove the infusion steps to
sample from the model.

In a following work, Bordes et al. [28]3 demonstrated that di�usion models could be
simplified and improved in such a way that they could outperform all other generative models
that were available at the time of publication. Instead of optimizing a lower bound over the
log-likelihood, we can directly predict the true target x at each time step, corresponding to a
simple denoising score matching criteria. Instead of learning the exact di�usion reversed
process (and their thousand of tiny steps), we introduced another heuristic coined as infusion
that randomly replaces pixels with true target image pixels during the iterative denoising
training process. This approach had the main advantage of requiring only a dozen steps
for sampling from the model. In this work, we also discovered that we could significantly
improve the quality of the sampled images by conditioning the model with the current
denoising timestep.

Despite this progress, the research scene at that time was mostly focused on generative
adversarial networks (GANs [88]). Di�usion models resurfaced some years later with the work
of Song and Ermon [193], who rediscovered independently that a denoising score matching
criteria is well suited to train these models by making a theoretical connection with Langevin
dynamics. Similarly to our work, they emphasized the importance of using a conditional
network that considers the current timestep or noise level applied to the input. The interest
3This work was the subject of my master thesis: Learning to sample from noise with deep generative models.
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in di�usion models began to increase significantly after the work of Ho et al. [105], who
successfully scaled di�usion model generation to high-resolution images. Then, Dhariwal
and Nichol [60] demonstrated that di�usion models can achieve state of the art in image
generation.

1.3. Self-supervised Learning
Note: Most of this section either reproduces or summarizes the following work I

coauthored: A Cookbook of Self-Supervised Learning [17]. Even if this paper is not part
of the articles presented in this thesis, it constitutes a nice introduction to self-supervised
learning, which I invite the reader to read.

Self-Supervised Learning is a machine learning paradigm in which we do not use human-
annotated data to train the model. In contrast with traditional generative unsupervised
learning, SSL practitioners and researchers define an unlabelled pretext training task for
the model to learn a representation that is generic enough to be able to generalize across
a wide range of modalities. Pretext tasks used in self-supervised methods are often very
simple: from predicting missing instances in sentences to predicting a specific image’s patch
content using another patch from the same image. Another successful pretext task of SSL
is to leverage artificial data augmentations to create invariances which were shown to be
beneficial for learning semantic information about images.

1.3.1. A brief history of Self-supervised Learning through pretext
tasks

Contemporary methods build upon the knowledge we gained from early experiments.
While many of the specific methods have fallen out of mainstream use because they no longer
provide state-of-the-art performance on benchmark problems, the ideas from these papers
form the foundation for many modern methods. For example, the core objective of restoring
missing or distorted parts of an input or contrasting two views of the same image forms the
foundation for modern SSL methods. Early progress in SSL focused on the development of
methods that fell into the following (sometimes overlapping) categories:

1. Information restoration: Many methods have been developed that mask or remove
something from an image and then train a neural network to restore the missing information.
Colorization-based SSL methods convert an image to grayscale and then train a network to
predict the original RGB values [242, 128, 216]. Because colorization requires understanding
object semantics and boundaries, colorization was demonstrated as an early SSL method
for object segmentation. The most straightforward application of information restoration
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is to mask, aka remove, a portion of an image and then train a network to inpaint the
missing pixel values [164]. This idea evolved into masked auto-encoding methods [99], in
which the masked region is a union of image patches that can be predicted using a transformer.

2. Learning spatial context: This category of methods trains a model to understand
objects’ relative positions and orientations within a scene. RotNet [85] masks the direction
of gravity by applying a random rotation and then asks the model to predict the rotation.
Doersch et al. [62] is one of the first SSL methods that simply predicts the relative location
of two randomly sampled patches in an image. This strategy was superseded by “jigsaw”
methods [164, 159] that break an image into an array of disjoint patches and predict the
relative location of each.

3. Grouping similar images together: One can learn rich features by grouping
semantically similar images together. K-means clustering is one of the most widely used
methods from classical machine learning. A number of studies have adapted k-means to
perform SSL with neural networks. Deep clustering alternates between assigning labels to
images by performing k-means in the feature space and updating the model to respect these
assigned class labels [39].

4. Layerwise pretraining: An early influential SSL method is greedy layer-wise
pretraining [25], in which deep network layers are trained one at a time using an
autoencoder loss. Later advancements improved the representation learning ability of
auto-encoders, including denoising autoencoders [214], cross-channel prediction [243], and
deep canonically correlated autoencoders [218]. Nonetheless, it was ultimately found
that representation transferability is better when the auto-encoder is asked to restore
a missing part of its input, resulting in the “information restoration” category of SSL methods.

5. Multi-view invariance: Many modern SSL methods, especially those I am focusing
on in this thesis, use contrastive learning to create feature representations invariant to
simple transforms. The idea of contrastive learning is to encourage a model to represent
two augmented versions of an input similarly. Several methods led the change in this di-
rection by enforcing invariance in various ways before contrastive learning was widely adopted.

One of the most popular frameworks for learning from unlabeled data is to use a weakly
trained network to apply pseudo labels to images and then train using these labels in a
standard supervised fashion [132]. This approach was later improved by enforcing invariance
to transformations and training a network to maximize the mutual information between the
representations of an image under di�erent views [14]. These augmentation-based methods
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formed a bridge between the older practices described above and the contemporary methods
that are the focus of this thesis.

1.3.2. A brief overview of some successful SSL methods

Many SSL methods have been introduced in the last few years. In this thesis, we will
focus only on the ones discussed below.

Contrastive based methods (SimCLR) The first one is named SimCLR and belongs
to the family of contrastive SSL methods. Its pretext task is to learn multiview invariances
defined by a set of handcrafted data augmentations. However, this learning objective is
insu�cient since a DNN could cheat by assigning the same representation to all images
in the training set4. To avoid such shortcomings, SimCLR introduces the use of negative
examples. Inspired by the training of energy-based models, SimCLR minimizes the energy of
two views of a given image while maximizing the energy of every other pair of images in a
given mini-batch. Many have believed using a large batch size, thus having enough negative
pair of images, was needed for SimCLR to perform well over a dataset like ImageNet [56].
However, using small batch sizes for training is fine as long as the learning rate is chosen
accordingly, as demonstrated by Bordes et al. [32].

The Canonical Correlation Analysis Family Many works have suggested removing
the negative examples sampling in SimCLR to focus more on a geometry-based regularization
using the Canonical Correlation Framework (CCA) [107]. The high-level goal of CCA
is to infer the relationship between two variables by analyzing their cross-covariance
matrices. These ideas were extended to deep learning in Deep Canonically Correlated
Autoencoders (DCCAE) – an autoencoder regularized via CCA. Hsieh [108] and An-
drew et al. [4] introduce the objective of jointly learning parameters for two networks,
f1, f2, such that their outputs are maximally correlated. From these origins stems SSL
methods such as VICReg [21], Barlow Twins [236], and SWAV [41]. VICReg, the
most recent among these methods, balances three objectives based on co-variance matri-
ces of representations from two views: variance, invariance, and co-variance shown in Figure 6.

The Self-Distillation family Another type of SSL method belongs to the Self-
Distillation family. Instead of having an explicit term to avoid collapse of the representations,
some techniques like Byol[93] or Dino[43] rely on a teacher network (also coined often as
a momentum encoder) for which gradients are not computed. Then a student network is
trained to predict the representation that the teacher network predicts. The teacher network

4this scenario is often referred to as the collapse of the SSL representations
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Fig. 6. VICReg: penalizes variance, invariance, and co-variance terms to learn repre-
sentations from unlabeled data. Regularizing the variance along each dimension of the
representation prevents collapse, the invariance ensures two views are encoded similarly, and
the co-variance encourages di�erent dimensions of the representation to capture di�erent
features. Figure from Balestriero et al. [17].

is updated as an exponential moving average built with the student model gradients update.

Masked Image Modelling (MIM) BERT [59] shook up the natural language processing
world by replacing text tokens input to a transformer language model with learnable mask
tokens and teaching the model to recover the original text. Inspired by its success, several
works mask out portions of an image and train a model to inpaint them. This strategy is
known as masked image modeling (MIM). Inspired by BERT, Dosovitskiy et al. [64] exploits
the vision transformer architecture by masking out patch tokens and replacing them with
learned mask tokens. To streamline MIM pre-training, two concurrent works [99, 227] propose
simplified algorithms, masked autoencoders (MAE) and SimMIM, respectively, which directly
reconstruct masked image patches. Lastly, Assran et al. [10] demonstrated that instead of
using a decoder to reconstruct a patched image, one could learn a predictor trained to predict
the representation of a given masked patch.

1.3.3. The critical ingredients for a successful SSL recipe

As presented in the previous section, there are many training pretext tasks and training
losses in Self-Supervised learning. However, most of those methods share a standard recipe,
allowing them to become serious competitors of traditional supervised approaches. The
first ingredient was to use strong data augmentations to generate di�erent views of a given
image. Most of them were intuitively designed as a natural methods for learning invariances
that could improve classification performance. Color-based augmentations might push the
network to learn more information about the shape of the objects, while random cropping
operation forces learning semantic information by associating di�erent parts of an object. In
Figure 7, we show how various data augmentations impact the performance accuracy of two
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di�erent SSL methods trained on ImageNet. Using cropping alone is not enough to learn
good representations for a classification task, whereas adding color transformation such as
Grayscale or ColorJitter significantly improves the performances of the SSL methods.

Fig. 7. Detailed impact of the data augmentations used during SimCLR and Barlow Twins
training on the ImageNet validation accuracy. So corresponds to a Solarization transformation
applied with a 20% probability, Gray corresponds to a Grayscale operation that is also applied
with a 20% probability, B. corresponds to a Gaussian blur applied 100%of the time and Jit is
the ColorJitter operation with 80% probability. In this Figure, we clearly see that adding
grayscaling has the most significant impact on ImageNet accuracy. Figure from Bordes et al.
[32].

The second key ingredient for a successful SSL recipe was introducing a projection head
during training. This projection head is often a 2- or 3-layer multi-layer perceptron with non-
linear activation, which is thrown away once the training is done. The primary justification
for using such a layer was given in the SimCLR paper [238], which states that the invariances
learned by the SSL criteria are too strong for a classification task. However, the use of a
projector head for learning SSL representations can be counterintuitive since one promise of
Self-Supervised learning is to build representations that are generic enough to solve di�erent
downstream tasks. Learning correct invariances could allow SSL researchers and practitioners
to carefully structure an SSL representation so that a specific part of the SSL representation
might be well suited for classification while another part of the representation might be more
suited for segmentation tasks. However, by cutting the projector head, we lose most of the
invariances learned. Understanding the role of the projector in SSL is a crucial contribution
to this thesis which is discussed in depth in Chapter 3.

1.4. Vision Language Models (VLMs)
Vision language models are another model class that learns a text and image representation.

One popular way to train such a model is by using contrastive training[165], which is similar
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to the contrastive SSL SimCLR method with the exception that the image embedding is
contrasted with text embedding (instead of another image embedding). As shown in Figure
8, the VLM often comprises an image encoder that produces an image embedding and a text
encoder that produces text embedding. Then the model is trained to minimize the distance
between a given image embedding and its corresponding text embedding while increasing the
distance with all other text embeddings that do not describe the image.

Fig. 8. An illustration of Vision Language Models. They are often composed of an image
encoder which produces an image embedding, and a text encoder which produces a text
embedding. The model learns to assign the highest probability to the text that describes the
image while assigning a lower probability to the text that does not describe the image.

1.5. Evaluations of deep neural network representations
Note: This section is only a glimpse and high-level overview of the evaluation methods

that existed before the articles presented in this thesis. A more in-depth literature review is
available in each of the articles.

A critical issue with neural networks is that they can be considered as black boxes.
In contrast to simpler and interpretable ruled-based systems, there is no straightforward
verbalizable way to know why a given neural network has associated a specific output with
a given input. Knowing that most modern architectures leveraged millions or billions of
artificial neurons, it is impossible to precisely know what made the network perform a given
computation between an input and output. This lack of interpretable information concerning
how a neural network made a decision is an issue for deployment since it is impossible to
know in advance if such a model is reliable. The network could have learned to cheat to solve
the task of interest by relying on a spurious feature, such as the sky, to classify birds from
cars. Without data containing flying cars, it would be impossible to use only the classification
accuracy to know whether the network has cheated. In consequence, interpretability is an
important and very active area of research.
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Fig. 9. Interpretability with Deep Image Prior (DIP). In this figure, we took the represen-
tation of two images (dog and earth) extracted with di�erent models (random, supervised,
SSL). We used DIP to reconstruct the image using only these representations. As we can see,
this method produces most of the time unrealistic images. Figure from Bordes et al. [31]

1.5.1. Interpretability and qualitative evaluations

One of the ways to make neural networks more interpretable is by visualizing what input
information they use for classifying a specific object. We can imagine that for classifying birds,
the bird’s characteristics should be leveraged while the background should be ignored. One
way to visualize which pixels are the most important in a given image is to reverse the neural
network such that instead of predicting the most probable class label given an input, we are
predicting the most probable input pixels given a class label. This can be quickly done by
computing the input’s gradient with respect to a given output activation (which corresponds
to a specific class label) and by iteratively applying gradient descent over the input to
maximize the output activation. There are many works [73, 237, 188, 150, 183, 190, 160]
that rely on such gradient-based techniques to visualize what is learned by neural networks.
Some of them maximize only the activation of a specific neuron to visualize what is learned
by this neuron. Others o�er visualization of what is learned at di�erent layers by trying to
"invert" neural networks. All of these use some form of regularization, constraint, or prior
to guiding the optimization process towards realistic images. Another possibility, explored
in Zhao et al. [245], Appalaraju et al. [5], Ericsson et al. [74], is to learn to invert the DN
features through a Deep Image Prior (DIP) model (which was one of the state-of-the-art
methods for interpretability before our work on RCDM). In short, given a mapping f that
produces a representation of interest, the DIP model g◊ learns min◊ d(g◊(f(x)),x). However,
as demonstrated in Figure 9, this solution not only requires solving a costly optimization
problem for each generated sample but also leads to low-quality generation. In Chapter 2, we
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introduced a new state-of-the-art interpretability method that significantly outperformed all
previous approaches, such as DIP, regarding image quality.

1.5.2. How to evaluate deep neural networks?

Deep neural networks are often built to produce a lower dimensional output from a high
dimensional input by going through multiple layers that reduce the input’s dimensionality.
The deepest representation is often the one to which the training criterion is applied.
Consequently, leveraging this deepest representation to solve downstream tasks is the
standard way to evaluate neural networks. However, this is not the case in Self-Supervised
Learning. Researchers and practitioners systematically discarded the projector representation
(the deepest representation) and used only the backbone layer for downstream evaluation
(often 3 or 4 layers before the projector representation). Such practice might be surprising
since one would expect the deepest representation to learn the correct invariances to solve the
task. However, such a trick was justified because the invariances learned with SSL might be
too strong [238]. But in the following work, Chen et al. [50] demonstrated that intermediate
projector layers might be more suited in a semi-supervised setting. So even if the invariances
might too strong, there is some setting in which throwing away the entire projector might be
a bad idea.

When looking outside SSL, several papers in the transfer learning literature [161, 149]
already emphasized that using intermediate representations might be more suited depending
on a given downstream task. However, such results are often restricted to a given setting and
do not explain why the optimal layer for a downstream task might change. In addition, some
SSL methods have used a two-layer projector with 2048 artificial neurons while others have
used a three-layer projector with 8192 artificial neurons. These di�erences in design made
the comparison between di�erent SSL criteria unfair since the number of layers used in the
projector significantly impacts the generalization abilities of an SSL model. In Chapter 3, we
argue that it is important to carefully evaluate the performances of di�erent SSL models across
multiple layers of representation to find the optimal one. In addition, we provide significant in-
sights about why and when the optimal layer to use for a given downstream task might change.

1.5.3. Are deep neural networks memorizing?

Memorization in deep neural networks is often associated with over-fitting. A neural
network can memorize to associate a specific image of a cat in a given background with the
particular cat class without correctly classifying a cat in a di�erent background. This lack of
generalization can be perceived as the network being able to solve the task without learning
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the features needed to understand what a cat is. In that instance, the neural network perfectly
solves the training task on the training data while performing poorly on the validation or test
set. However, not learning useful features might not always indicates that a given network is
indeed memorizing its training data. It could have learned to solve the task by relying on
spurious features such that the network might generalize well on images that contain these
spurious features but will not generalize on images that do not have them. In that case,
it is unclear how much the network memorizes in contrast to learning incorrect features or
spurious correlations. Without precise annotations, it might be challenging to disentangle
the memorization of training points from learning spurious correlations.

In this thesis, I will try to disentangle learning correlations (even spurious) from
memorization by stating that a neural network is memorizing the training set only if it is
possible, using this neural network, to reconstruct specific information that is unique to the
training images (meaning that they cannot be predicted through simple correlations). There
have been many works in the NLP literature around reconstructing training data [37, 18, 94]
with some extension to images and di�usion models[38]. In our work, we are the first to show
that Self-Supervised Models can memorize their training data beyond any correlations. In
Chapter 4, we introduce the DéjaVu score, a memorization metric that can evaluate how
much invariance-based methods are memorizing their training data.

1.5.4. Current datasets and benchmarks limitations

A popular benchmark to evaluate neural networks is ImageNet[57] which consists of
around 1M images scraped from the internet. Each image is associated with a class label
representing one of the 1000 categories. This classification benchmark has been used for
the last ten years and has become almost a requirement when publishing a paper on deep
learning. However, there are several shortcomings in using a benchmark like ImageNet.
The images contain people who did not consent to appear in this dataset and might also
contain copyrighted content. The label information is also limited to a class label which is an
issue for assessing what a neural network is learning. A network trained on ImageNet can
rely on the sky background to classify planes or birds. In that instance, one will require
additional annotations to assess the performance of a given model fully. But getting more
annotations on real data is a complex process that relies on annotators. However, there is
di�culty in having consistency and how fine-grained we want the annotations to be. Also,
some annotators might be incentivized to complete the annotation task as fast as possible
without considering the annotations’ quality.
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Fig. 10. Exemple of synthetic data from the CLEVR dataset. Figure from Johnson et al.
[118]

In contrast, synthetic data o�er an excellent platform to produce data with reliable
annotations. Compared to neural networks that are black box, a rendering engine can be
seen as a white box in which we can specify everything inside the scene. However, the usage
of synthetic data is not as popular as benchmarks relying on real data such as ImageNet.
Synthetic datasets like CLEVR[118] are used for question-answering and visual reasoning.
However, as shown in Figure 10, the scope of the dataset is limited to elementary geometric
forms. Other approaches try to leverage synthetic data but often rely on simple rendering
engines that do not produce realistic images. The gap between synthetic images generated
with rendering engines and real images was wide enough that there was an entire part of the
research literature around bridging the sim-to-real gap. However, in recent years, rendering
engines have made such significant progress that it is possible today to render digital and
completely photorealistic clones of a real environment. In Chapter 5, we introduce our new
PUG framework and photorealistic datasets for which neural networks get good zero-shot
performances without needing additional tricks to bridge a sim-to-real gap.
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Prologue to Article 1

High Fidelity Visualization of What Your Self-Supervised Representation Knows
About, Florian Bordes, Randall Balestriero, and Pascal Vincent, Transactions on Machine
Learning Research, July 2022.

The original motivation for this work was to develop a superior tool to visualize what
information might be contained in Self-Supervised representations. This was something that
Pascal wanted to have as he was interested in exploring augmentations in representation space
for self-supervised learning. Before I joined, Pascal and others tried to learn deterministic
decoders from the representation space to visualize reconstructions. However, the main
challenge they faced was that these decoders were only able to produce blurry reconstructions.
One hypothesis was that there is a need to handle uncertainty when generating images from
an SSL representation. Hence, I started my experiments with di�usion models because they
learn to model, and stochastically produce, a distribution of images. They were known to be
stable to train yet capable of producing sharp images. In order to find a way to condition
the di�usion model on an SSL representation, I drew inspiration from my previous work
on Infusion Generative Modeling[28] in which I used conditional batch normalization to
add extra conditioning when training the model. Once this conditioning was implemented,
training the model was straightforward.

Contribution statement The original idea for this work arose during discussions
between Pascal and I. I developed the core method, which is a di�usion model conditioned
on a rich SSL latent representation – while about all preexisting di�usion model work
conditioned on a class label or on class-based information. I wrote all the code – that has been
made public in the GitHub repository for the project. I ran all the experiments which are
presented in the paper. I created all the figures, wrote the captions and most of the paper’s
content. Pascal and Randall’s feedback was very helpful in improving the writing of the paper.
I also handled and wrote most of the answers to reviewers during the review process for TMLR.



Impact of this work Even if this work was mostly designed to help with the inter-
pretability of SSL methods, it also had a significant impact on the generative model research
community. DALL·E 2 [167] from OpenAI, which drew a lot of attention from the public,
was inspired by our work. DALL-E 2 and RCDM are almost the same models except that
instead of using a pre-trained SSL models trained on images, OpenAI has used a pre-trained
SSL model trained on text as conditioning (which gives them the ability to control the
generation through text prompts). Concerning Self-Supervised Learning, RCDM was an
important component behind the conception of MSN [9] since it allowed us to understand that
the prototypes learned by this model were class-specific. RCDM has also provided important
visualization for the following works: Assran et al. [8], Bordes et al. [30], Assran et al. [11],
Shekhar et al. [184]. RCDM was also used as a tool in subsequent Articles 2 and 3.
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Chapter 2

Article 1: High Fidelity Visualization of What
Your Self-Supervised Representation Knows

About

Discovering what is learned by neural networks remains a challenge. In self-supervised learning,
classification starting with the learned representation as input is the most common task used
to evaluate how good a representation is. However, relying only on such downstream task can
limit our understanding of what information is retained in the representation of a given input.
In this work, we showcase the use of a Representation Conditional Di�usion Model (RCDM)
to visualize in data space the representations learned by self-supervised models. The use of
RCDM is motivated by its ability to generate high-quality samples —on par with state-of-the-
art generative models— while ensuring that the representations of those samples are faithful
i.e. close to the one used for conditioning. By using RCDM to analyze self-supervised models,
we are able to clearly show visually that i) SSL (backbone) representation are not invariant
to the data augmentations they were trained with – thus debunking an often restated but
mistaken belief; ii) SSL post-projector embeddings appear indeed invariant to these data
augmentation, along with many other data symmetries; iii) SSL representations appear more
robust to small adversarial perturbation of their inputs than representations trained in a
supervised manner; and iv) that SSL-trained representations exhibit an inherent structure
that can be explored thanks to RCDM visualization and enables image manipulation. Code
and trained models are available at https://github.com/facebookresearch/RCDM.

https://github.com/facebookresearch/RCDM


Earth from . . . space1 an untrained model a supervised model a SSL model

2.1. Introduction
Approaches aimed at learning useful representations, from unlabeled data, have a long

tradition in machine learning. These include probabilistic latent variable models and variants
of auto-encoders [2, 104, 177, 213, 121, 168], that are traditionally put under the broad
umbrella term of unsupervised learning [27]. More recent approaches, under the term
of self-supervised learning (SSL) have used various kinds of "pretext-tasks" to guide the
learning of a useful representations. Filling-in-the-blanks tasks, proposed earlier in [213, 215],
later proved remarkably successful in learning potent representations for natural language
processing [211, 58]. Pretext tasks for the image domain include solving Jigsaw-puzzles
[158], predicting rotations or a�ne transformations [84, 241] or discriminating instances
[224, 209]. The latest, most successful, modern family of SSL approaches for images
[154, 49, 51, 97, 93, 40, 44, 236, 21], have two noteworthy characteristics that markedly
distinguish them from traditional unsupervised-learning models such as autoencoder variants
or GANs [88]: a) their training criteria are not based on any input-space reconstruction or
generation, but instead depend only on the obtained distribution in the representation or
embedding space b) they encourage invariance to explicitly provided input transformations
a.k.a. data-augmentations, thus injecting important additional domain knowledge.

Despite their remarkable success in learning representations that perform well on
downstream classification tasks, rivaling with supervised-trained models [49], much remains
to be understood about SSL algorithms and the representations they learn. How do the
particularities of di�erent algorithms a�ect the representation learned and its usefulness?
What information does the learned representation contain? Answering this question is
the main focus of our work. Since SSL methods mostly rely on learning invariances to a
specific set of handcrafted data augmentations, being able to evaluate these invariances

1We use representations of the real picture of Earth on the left (source: NASA) as conditioning for RCDM.
We show samples (resolution 256 ◊ 256) in cases where the representations (2048-dimensions) were obtained
respectively with a random initialized ResNet50, a supervised-trained one, and a SSL-trained one. More
samples in Fig. 31.
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will provide insight into how successful the training of the SSL criteria has been. It
is also worth to be noted that recent SSL methods use a projector (usually a small
MLP) on top of a backbone network (resnet50 or vit) during training, where the
projector is usually discarded when using the model on downstream tasks. This projector
trick is essential to get competitive performance on ImageNet i.e we often observe a
performance boost of 10 to 30 percentage accuracy point when using the representation
at the backbone level instead of the ones at the projector level on which SSL criteria are
applied during training. Since SSL criteria are not applied at the backbone level, there
remains a mystery regarding what the backbone does learn that make it better for classifi-
cation than the projector. This is another question that we will be able to answer in this study.

Empirical analyses have so far attempted to analyse SSL algorithms almost exclusively
through the limited lens of the numerical performance they achieve on downstream tasks
such as classification. Contrary to their older unsupervised learning cousins, modern SSL
methods do not provide any direct way of mapping back the representation in image space,
to allow visualizing it. The main goal of our work is thus to enable the visualization of
representations learned by SSL methods, as a tool to improve our understanding.

In our approach (Section 2.3), we propose to generate samples conditioned on a
representation such that (i) the representation of those samples match the one used for
conditioning, and (ii) the visual quality of the sample is as high as possible to maximize the
preciseness of our visual understanding. For this, we employ a conditional generative model
that (implicitly) models. For reasons that we will explain later, we opted for a conditional
di�usion model, inspired by Dhariwal and Nichol [60].

This paper’s main contributions are:
• To demonstrate how recent di�usion models are suitable for conditioning on large vector

representations such as SSL representations. The conditionally generated images, in
addition to being high-quality are also highly representation-faithful i.e. they get encoded
into a representation that closely matches the representation of the images used for the
conditioning (Tab. 1b, Fig. 18).

• To showcase its potential usefulness for qualitatively analyzing SSL representations and
embeddings (also in contrast with supervised representations), by shedding light on what
information about the input image is or isn’t retained in them.

Specifically, by repeatedly sampling from a same conditioning representation, one can
observe which aspects are common to all samples, thus identifying what is encoded in
the representation, while the aspects that vary greatly show what was not retained in the
representation. We make the following observations: (i) SSL projector embeddings appear
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most invariant, followed by supervised-trained representation and last SSL representations2

(Fig. 2). (ii) SSL-trained representations retain more detailed information on the content of
the background and object style while supervised-trained representations appear oblivious
to these (Fig. 3). (iii) despite the invariant training criteria, SSL representations appear to
retain information on object scale, grayscale vs color, and color palette of the background,
much like supervised representation (Fig. 3). (iv) Supervised representations appear more
susceptible to adversarial attacks than SSL ones (Fig. 4,24). (v) We can explore and exploit
structure inside SSL representations leading to meaningful manipulation of image content
(such as splitting representation in foreground/background components to allow background
substitution) (Fig, 5, 25, 26).

2.2. Related Work
Visualization methods: Many works [73, 237, 188, 150, 183, 190, 160] used gradient-

based techniques to visualize what is learned by neural networks. Some of them maximize
the activation of a specific neuron to visualize what is learned by this neuron, others o�er
visualization of what is learned at di�erent layers by trying to "invert" neural networks. All
of these use some form of regularization, constraint or prior to guide the optimization process
towards realistic images. Dosovitskiy and Brox [63] learn to map back a representation to the
input space by using a Generative Adversarial Networks [88] which is trained to reconstruct
an input given a representation. Since the mapping is deterministic, they obtain only a
single image with respect to a specific conditioning. In contrast, we use a stochastic mapping
that allows us to visualize the diversity of the images associated to a specific representation.
Nguyen et al. [156] also use GANs but instead of trying to invert the entire vector of
representation, they try to find which images (by using an optimization process in the latent
space of the generator) maximize a specific neuron. The following work [157] demonstrates
how using this conditional iterative optimization in the latent space of the generator lead to
high quality conditional image generation. Finally Lu�iÊ et al. [146] leverage SSL methods to
create discrete cluster that are used as conditioning for a GAN. Our work focuses only on
continuous representation vectors. More recently, Caron et al. [44] used the attention mask of
transformers to perform unsupervised object segmentation. By contrast, our method is not
model dependent, we can plug any type of representation as conditioning for the di�usion
model. Another possibility, explored in Zhao et al. [245], Appalaraju et al. [5], Ericsson
et al. [74], is to learn to invert the DN features through a Deep Image Prior (DIP) model.
In short, given a mapping f that produces a representation of interest, the DIP model g◊

learns min◊ d(g◊(f(x)),x). However, as we will demonstrate in Figure 2 this solution not
only requires to solve an optimization problem for each generated sample but also leads to

2The representation that is produced by a Resnet50 backbone, before the projector.
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low-quality generation.

Generative models: Several families of techniques have been developed as generative
models, that can be trained on unlabeled data and then employed to generate images.
These include auto-regressive models [208], variational auto-encoders [121, 168], GANs
[88], autoregressive flow models [122], and di�usion models [191]. Conditional versions
are typically developed shortly after their unconditional versions [152, 207]. In principle
one could envision training a conditional model with any of these techniques, to condition
on an SSL or other representation for visualization purpose, as we are doing in this
paper with a di�usion model. One fundamental challenge when conditioning on a rich
representation such as the one produced by a SSL model, is that for a given conditioning
h we will usually have available only a single corresponding input instance x, By contrast
a particularly successful model such as the conditional version of BigGAN [35] conditions
on a categorical variable, the class label, that for each value of the conditioning has a
large number of associated x data. One closely related work to ours is the recent work on
Instance-Conditioned GANs (IC-GAN) of Casanova et al. [46]. Similar to us it also uses
SSL or supervised representations as conditioning when training a conditional generative
model, here a GAN [88], specifically a variant of BigGAN [35] or StyleGAN2 [119]. However,
the model is trained such that, from a specific representation, it learns to generate not
only images that should map to this representation, but a much broader neighborhood of
the training data. Specifically up to 50 training points that are its nearest neighbors in
representation space. It remains to be seen whether such a GAN architecture could be
trained successfully without resorting to a nearest neighbor set. IC-GAN is to be understood
as a conditional generative model of an image’s broad neighborhood, and the primary focus of
the work was on developing a superior quality controllable generative model. By contrast
we want to sample images that map as closely as possible to the original image in the
representation space, as our focus is to build a tool to analyse SSL representations, to enable vi-
sualising what images correspond precisely to a representation. (See Fig. 18 for a comparison.)

Few approaches have focused on conditional generation to unravel the information encoded
in representations of supervised models. In Shocher et al. [185], a hierarchical LSGAN
generator is trained with a class-conditional discriminator [240]. While the main applications
focused on inpainting and style-transfer, this allowed to visually quantify the increasing
invariance of representations associated to deeper and deeper layers. This method however
requires labels to train the generator. On the other hand, Nash et al. [155] proposed to use an
autoregressive model, in particular PixelCNN++ [180], to specifically study the invariances
that each layer of a DN inherits. In that case, the conditioning was incorporated by regressing
a context vector to the generator biases. As far as we are aware, PixelCNN++ generator

53



falls short on high-resolution images e.g. most papers focus on 32 ◊ 32 Imagenet. Lastly,
Rombach et al. [169] proposes to learn a Variational Auto Encoder (VAE) that is combined
with an invertible neural network (INN) whose role is to model the relation between the
VAE latent space and the given representations. To allow for interpretable manipulation, a
second invertible network [75] is trained using labels to disentangle the factors of variations
present in the representation. By contrast we train end-to-end a single decoder to model
the entire diversity of inputs that correspond to the conditioning representation, without
imposing constraints of a structured prior or requiring labels for image manipulation.

2.3. High-Fidelity Conditioning with Di�usion Models
We base our work on the Ablated Di�usion Model (ADM) developed by Dhariwal and

Nichol [60] which uses a UNet architecture [170] to learn the reverse di�usion process.
Our conditional variant – called Representation-Conditionned Di�usion Model (RCDM) –
is illustrated in Fig. 1b. To suitably condition on representation h = f(x), we followed
the technique used by Casanova et al. [46] for IC-GAN which rely on conditional batch
normalization [68]. More precisely, we replaced the Group Normalization layers of ADM by
conditional batch normalization layers that take h as conditioning. We also apply a fully
connected layer to h that reduces dimension to a vector of size 512. This vector is then
given as input to multiple conditional batch normalization layers that are placed in each
residual block of the di�usion model. An alternative conditioning method is to use the
original conditioning method built inside ADM, and replace the embedding vector used for
class labels by a linear layer that reduces dimension to a vector of the size of the time steps
embedding. We didn’t observe any di�erences in term of experimental results between those
two methods as presented in Fig. 5. In this paper, we used the first conditioning method for
most of the experiments in order to make a proper comparison with IC-GAN.

In contrast with Dhariwal and Nichol [60] we don’t use the input gradient of a classifier
to bias the reversed di�usion process towards more probable images (classifier-guidance), nor
do we use any label information for training our model – recall that our goal is building
a visualization tool for SSL models that train on unlabeled data. Another drawback of
classifier-guidance is the need to retrain a classifier on inputs generated by the di�usion
process. Since training SSL models can be very costly, retraining them was not an option,
thus we had to find a method that could use directly the representation of a pretrained
model.

Our first experiments aim at evaluating the abilities of our model to generate realistic-
looking images whose representations are close to the conditioning. To do so, we trained our
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(a) (b)

(c)

Fig. 1. a) In-distribution conditional image generation. An image from ImageNet validation set (first
column) is used to compute the representation output by a trained SSL model (Dino backbone). The
representation is used as conditioning for the di�usion model. Resulting samples are shown in the subsequent
columns (see Fig. 3). We observe that our conditional di�usion model produces samples that are very close
to the original image. b) Out of distribution (OOD) conditioning. How well does RCDM generalize when
conditioned on representations given by images from a di�erent distribution? (here a WikiMedia Commons
image, see Fig. 4 for more). Even with an OOD conditioning, the images produced by RCDM match some
characteristics of the original image (which highlights that RCDM is not merely overfitting on ImageNet). c)
Interpolation between two images from ImageNet validation data. We apply a linear interpolation between
the SSL representation of the images in the first column and the representation of the images in the last
column. We use the interpolated vector as conditioning for our model, that produces the samples that are
showed in columns 2 to 6. Fig. 10 in appendix shows more sampled interpolation paths.

Representation-Conditionned Di�usion Model (RCDM), conditioned on the 2048 dimensional
representation given by a Resnet50 [95] trained with Dino [44] on ImageNet [174]. Then we
compute the representations of a set of images from ImageNet validation data to condition
the sampling from the trained RCDM. Fig. 1a shows it is able to sample images that are
very close visually from the one that is used to get the conditioning. We also evaluated
the generation abilities of our model on out of distribution data. Fig. 1b shows that our
model is able to sample new views of an OOD image. We also quantitatively validate that
the generated images’ representations are close to the original image representation in
Tab. 1b, Fig. 12, Fig. 13 and Fig. 14. We do so by verifying that the representation used as
conditioning is the nearest neighbor of the representation of its generated sample.
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(a) We report results for ImageNet to show that our
approach is reliable for generating images which look
realistic. Since the focus of our work is not generative
modelling but to showcase and encourage the use of
such model for representation analysis, we only show
results for one conditional generative models. For each
method, we computed FID and IS with the same eval-
uation setup in Pytorch.

Method Res. ¿FID øIS

ADM [60] 256 26.8 34.5 ± 1.8
IC-GAN [46]) 256 20.8 51.3 ± 2.2
IC-GAN [46] w/ KDE* 256 21.6 38.6 ± 1.1
RCDM w/ KDE* (ours) 256 19.0 51.9 ± 2.6

(b) For each encoder, we compute the rank and
mean reciprocal rank (MRR) of the image used as
conditioning within the closest set of neighbor in the
representation space of the samples generated from
the valid set (50K samples). A rank of one means that
all of the generated samples for a given model have
their representations matching the representation
used as conditioning.

Model ¿Mean rank øMRR

Dino [44] 1.00 0.99
Swav [40] 1.01 0.99
SimCLR [49] 1.16 0.97
Barlow T. [236]) 1.00 0.99
Supervised 5.65 0.69

Table 1. a) Table of results on ImageNet. We compute the FID [103] and IS [179] on 10 000 samples
generated by each models with 10 000 images from the validation set of ImageNet as reference. KDE* means
that we used the unconditional representation sampling scheme based on KDE (Kernel Density Estimation)
for conditioning IC-GAN instead of the method based on K-means introduces by Casanova et al. [46]. b)
Table of ranks and mean reciprocal ranks for di�erent encoders. This table show that RCDM is faithful to
the conditioning by generating images which have their representations close to the original one.

This implies that there is much information kept inside the SSL representation so that
the conditional generative model is able to reconstruct many characteristics of the original
image. We also perform interpolations between two SSL representations in Fig. 1c. This
shows that our model is able to produce interpretable images even for SSL representations
that correspond to an unlikely mix of factors. Both the interpolation and OOD generation
clearly show that the RCDM model is not merely outputting training set images that it
could have memorized. This is also confirmed by Fig. 11 in the appendix that shows nearest
neighbors of generated points.

The conditional di�usion model might also serve as a building block to hierarchically
build an unconditional generative model. Any technique suitable for modeling and sampling
the distribution of (lower dimensional) representations could be used. As this is not our
primary goal in the present study, we experimented only with simple kernel density estimation
(see appendix A.2). This allow us to quantify the quality of our generative process in an
unconditional manner to fairly compare against state-of-the-art generative models such as
ADM; we provide some generative model metrics in Tab. 1a along some samples in Fig. 3
to show that our method is competitive with the current literature, even in unconditional
generation setting.
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Model SimCLR SimCLR Dino Dino Barlow T. Barlow T. VicReg VicReg
Trunk Head Trunk Head Trunk Head Trunk Head

Val acc. 69.1 % 61.2 % 74.8 % 64.9 % 72.6 % 62.9 % 72.3 % 62.2 %

Table a): ImageNet linear probe validation accuracy on representation given by various SSL models. We
observe an accuracy gap between the linear probes at the trunk level and the linear probes trained at the
head level of around 10 percentage point of accuracy.
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Fig. 2. What is encoded inside various representations? First to fourth rows show RCDM samples conditioned
on the usual resnet50 backbone representation (size 2048) while fifth to eigth rows show samples conditionned on
the projector/head representation of various ssl models. (Note that a separate RCDM generative model was trained
specifically for each representation). Common/stable aspects among a set of generated images reveal what is encoded
in the conditioning representation. Aspects that vary show what is not encoded in the representation. We clearly
see that the projector representation only keeps global information and not its context, contrary to the backbone
representation. This indicates that invariances in SSL models are mostly achieved in the projector representation, not
the backbone. Furthermore, it also confirms the linear classification results of Table a) which show that backbone
representation are better for classifications since they contain more information about an input than the ones at the
projector level. Additional comparisons provided in Fig. 19.

57



2.4. Visual Analysis of Representations Learned by Self-
Supervised Model

The ability to view generated samples whose representations are very close in the
representation space to that of a conditioning image can provide insights into what’s hidden
in such a representation, learned by self-supervised models. As demonstrated in the previous
section, the samples that are generated with RCDM are really close visually to the image
used as conditioning. This gives an important indication of how much is kept inside a SSL
representation in general. However, it is also interesting to see how much this amount of
"hidden" information varies depending on what specific SSL representation is being considered.
To this end we train several RCDM on SSL representations given by VicReg [21], Dino [44],
Barlow Twins [236] and SimCLR [49]. In many applications that use self-supervised models,
the representation that is subsequently used is the one obtained at the level of the backbone
of the ResNet50. Usually, the representation computed by the projector of the SSL-model
(on which the SSL criterion is applied) is discarded because the results on many downstream
tasks like classification is not as good as when using the backbone representation. However,
since our goal is to visualize and better understand the di�erences between various SSL
representations, we also trained RCDM on the representation given by the projector.

In Fig. 2 we condition all the RCDM with the image labelled as conditioning and sample
7 images for each model. We observe that the representation at the backbone level does
not allow much variance in the generated samples. Even information about the pose and
size of the animal is kept in the representation. In contrast, when looking at the samples
generated by using representations at the projector level (also coined as head in the figure),
we observe much more variance in the generated samples, which indicates that significant
information about the input has been lost. These qualitative di�erences are correlated 3 with
the quantitative experiment we made in Fig. 2 Table a) highlighting that when training a
linear probe over the corresponding representations, the performances at the backbone level
are better than the ones at the projector level.

2.4.1. Are Self-Supervised Representations Really Invariant to Data-
Augmentations?

In Fig. 3, we apply specific transformations (augmentations) to a test image and we check
whether the samples generated by the di�usion model change accordingly. We also compare
with the behavior of a supervised model. We note that despite their invariant training
criteria, the 2048 dimensional SSL representations do retain information on object scale,

3This point is further demonstrated in Figure 7 in the Appendix.
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Fig. 3. Using our conditional generative model to gain insight about the invariance (or
covariance) of representations with respect to several data augmentations. On an original image
(top left) we apply specific transformations (visible in the first column). For each transformed image, we
compute the 2048-dimensional representation of a ResNet50 backbone trained with either Dino, SimCLR, or
a fully supervised training. We then condition their corresponding RCDM on that representation to sample 3
images. We see that despite their invariant training criteria, the 2048 dimensional SSL representations appear
to retain information on object scale, grayscale vs color, and color palette of the background, much like the
supervised-trained representation. They do appear insensitive to vertical shifts. We also see that supervised
representation constrain the appearance much less. Refer to Fig. 20 in Appendix for a comparison with using
the lower dimensional projector-head embedding as the conditioning representation.

grayscale status, and color palette of the background, much like the supervised representation.
They do appear invariant to vertical shifts. In the Appendix, Fig. 20 applies the same
transformations, but additionally compares using the 2048 representation with using the lower
dimensional projector head embedding as the representation. There, we observe that the
projector representation seems to encode object scale, but contrary to the 2048 representation,
it appears to have gotten rid of grayscale-status and background color information. Currently,
researchers need to use custom datasets (in which the factors of variation of a specific image
are annotated) to verify how well the representations learned are invariant to those factors.
We hope that RCDM will help researchers in self-supervised learning to alleviate this concern
since our method is "plug and play" and can be easily used on any dataset with any type of
representation.
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Fig. 4. Using RCDM to visualize the robustness of di�erently-trained representations to
adversarial attacks. We use Fast Gradient Sign to attack a given image (top-left corner) on di�erent
models with various values for the attack coe�cient epsilon. In the first row, we only show the adversarial
images obtained from a supervised encoder: refer to Fig. 24 in the Appendix to see the (similar looking)
adversarial examples obtained for each model. In the following rows we show, for di�erently trained models,
the RCDM "stochastic reconstructions" of the adversarially attacked images, from their ResNet-50 backbone
representation. For an adversarial attack on a purely supervised model (second row), RCDM reconstructs an
animal that belongs to another class, a lion in this case. Third and forth rows show what we obtain with
ResNet50 that was pretrained with SimCLR or Swav in SSL fasion, with only their linear softmax output
layer trained in a supervised manner. In contrast to the supervised model, with the SSL-trained models,
RCDM stably reconstructs dogs from the representation of adversarially attacked inputs, even with quite
larger values for epsilon. Images classified incorrectly by a trained linear probe are highlight with a red
square.

2.4.2. Self-Supervised and Supervised Models See Adversarial Ex-
amples Di�erently

Since our model is able to "project back" representations to the manifold of realistic-
looking images, we follow the same experimental protocol as Rombach et al. [169] to visualize
how adversarial examples a�ect the content of the representations, as seen through RCDM.
We apply Fast Gradient Sign attacks (FGSM) [89] over a given image and compute the
representation associated to the attacked image. When using RCDM conditioned on the
representation of the adversarial examples, we can visualize if the generated images still
belong to the class of the attacked image or not. In Fig. 4 and 24, the adversarial attacks
change the dog in the samples to a lion in the supervised setting whereas SSL methods
doesn’t seem to be impacted by the adversarial perturbations i.e the samples are still dogs
until the adversarial attack became visible to the human eye.
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zero mask of most common indices where dim of representation is non zero
Least common dim of     where dim of representation is non zero

Fig. 5. Visualization of direct manipulations in the representation space of a ResNet-50 backbone trained
with SimCLR. In this experiment, we find the most common non-zero dimensions among the neighborhood
(in representation space) of the image used as conditioning (top-left clothed dog). In the second row, we set
these dimensions to zero and use RCDM to decode the thus masked representation. We see that RCDM
produces a variety of clothes (but no dog): all information about the background and the dog has been
removed. In the third and forth row, instead of setting these dimensions to zero, we set them to the value
they have in the representation of the unclothed-dog image on the left. As we can see, the generated dog gets
various clothes which were not present in the original image. Additional examples provided in Figure 25, 26.

2.4.3. Self-Supervised Representations Locally Encode background
and Object on Di�erent Dimensions

Experimental manipulation of representations can be useful to analyze to what degree
specific dimensions of the representation can be associated with specific aspects or factors
of variations of the data. In a self-supervised setting in which we don’t have access to
labelled data, it can be di�cult to gain insight as to how the information about the data is
encoded in the representation. We showcase a very simple and heuristic setup to remove the
most common information in the representations within a set of the nearest neighbors of a
specific example. We experimentally saw that the nearest neighbors of a given representation
share often similar factors of variation. Having this information in mind, we investigate
how many dimensions are shared in between this set of neighbors. Then, we mask the
most common non-zero dimensions by setting them to zero and use RCDM to decode this
masked representation. In Fig. 5, this simple manipulation visibly yields the removal of all
information about the background and the dog, to only keep information about clothing
(only one dog had clothes in the set of neighbors used to find the most common dimensions).
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Since the information about the dog and the background are removed, RCDM produces
images of di�erent clothes only. In the third and fourth row, instead of setting the most
common dimensions to zeros, we set them to the value they have in other unclothed dog
images. By using these new representations, RCDM is able to generate the corresponding
dog with clothes. This setup works better with SSL methods, as supervised models learn to
remove from their representation most of the information that is not needed to predict class
labels. We show a similar experiment for background removal and manipulation in Figure 25
in the Appendix.

2.5. Conclusion
Most of the Self-Supervised Learning literature uses downstream tasks that require labeled

data to measure how good the learned representation is and to quantify its invariance to
specific data-augmentations. However one cannot in this way see the entirety of what is
retained in a representation, beyond testing for specific invariances known beforehand, or
predicting specific labeled factors, for a limited (and costly to acquire) set of labels. Yet,
through conditional generation, all the stable information can be revealed and discerned from
visual inspection of the samples. We showcased how to use a simple conditional generative
model (RCDM) to visualize representations, enabling the visual analysis of what information
is contained in a self-supervised representation, without the need of any labelled data. After
verifying that our conditional generative model produces high-quality samples (attested
qualitatively and by FID scores) and representation-faithful samples, we turned to exploring
representations obtained under di�erent frameworks. Our findings clearly separate supervised
from SSL models along a variety of aspects: their respective invariances – or lack thereof – to
specific image transformations, the discovery of exploitable structure in the representation’s
dimensions, and their di�ering sensitivity to adversarial noise.

2.6. Reproducibility statement
The data and images in this paper were only used for the sole purpose of exchanging

reproducible research results with the academic community.
Our results should be easily reproducible as:

• RCDM, is based on the same code as Dhariwal and Nichol [60] (https://github.

com/openai/guided-diffusion) and uses the same hyper-parameters (See Appendix
I of Dhariwal and Nichol [60] for details about the hyper-parameters).

• To obtain our conditional RCDM, one just needs to replace the GroupNormalization
layers in that architecture by a conditional batch normalization layer of Brock et al.
[35] (using the code from https://github.com/ajbrock/BigGAN-PyTorch).
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• The self-supervised pretrained models we used to extract the conditioning rep-
resentations were obtained from the model-zoo of VISSL [92] (code from https:

//github.com/facebookresearch/vissl).
• The unconditonal sampling process is straightforward, as explained in Appendix A.2.
• We are working on cleaning and preparing to release any remaining code glue to easily

reproduce the results in this paper.

2.7. Broader impact statement
Our work aims to promote the use of conditional generative models to project back in

image space the internal representation learned by latest and future techniques to train deep
artificial neural networks – in order to better understand their inner workings. Such improved
understanding through qualitative visualizations, in complement with quantitative metrics, is
expected to foster the development of more robust and reliable neural network algorithms.
Controlled generation of realistic images is not the goal and focus of this work, as we merely
use it as a tool for scientific understanding. Yet conditional generative models have already
been and will likely continue to be used and improved to generate fake images, including of
synthesized imaginary situations and people, that we expect will be increasingly realistic and
hard to impossible to distinguish from real photographs. Such technology will be usable for
positive creative pursuits, as well as for voluntarily misleading portrayals of fakes passed as
truths and facts.
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Prologue to Article 2

Guillotine Regularization: Why removing layers is needed to improve generaliza-
tion in Self-Supervised Learning, Florian Bordes, Randall Balestriero, Quentin Garrido,
Adrien Bardes, Pascal Vincent, Transactions on Machine Learning Research, May 2023.

This work’s motivation was to better understand why a projector is needed in Self-
Supervised Learning. The projector is often a small multi-layer perceptron (with 2 or 3 layers)
that is added on top of the network during training and that is immediately discarded once
training is done. Discarding the projector is extremely common in Self-Supervised Learning,
however, it breaks one of the core goals of SSL which is to learn invariant and structured
representations (since the invariance criterion is applied to the projector representation).
As shown in the first article, representations at the backbone level do not satsify well the
desired invariances while the representations taken at the projector level do. Thus, it is a
little vexing that the invariances learned with SSL methods do not o�er better projector
representations that perform well on downstream tasks. In this article, we explore when and
how the invariances directly learned by the projector might be useful for downstream tasks.
By empirically demonstrating and evaluating the performances of SSL models across layers,
we establish some guidelines to better evaluate SSL models.

Contribution statement With the exception of the experiment in Figure 2 (which
was done by Quentin Garrido), all the experiments were done by myself as well as most of
the writing. The project was supervised by Pascal Vincent. Randall, Quentin, Adrien, and
Pascal helped me with the writing. I wrote most of the rebuttal for TMLR.





Chapter 3

Article 2: Guillotine Regularization: Why
removing layers is needed to improve

generalization in Self-Supervised Learning

One unexpected technique that emerged in recent years consists in training a Deep Network
(DN) with a Self-Supervised Learning (SSL) method and using this network on downstream
tasks but with its last few projector layers entirely removed. This trick of throwing away
the projector is actually critical for SSL methods to display competitive performances on
ImageNet for which more than 30 percentage points can be gained that way. This is a little
vexing, as one would hope that the network layer at which invariance is explicitly enforced
by the SSL criterion during training (the last projector layer) should be the one to use for
best generalization performance downstream. But it seems not to be, and this study sheds
some light on why. This trick, which we name Guillotine Regularization (GR), is in fact a
generically applicable method that has been used to improve generalization performance in
transfer learning scenarios. In this work, we identify the underlying reasons behind its success
and show that the optimal layer to use might change significantly depending on the training
setup, the data or the downstream task. Lastly, we give some insights on how to reduce the
need for a projector in SSL by aligning the pretext SSL task and the downstream task.

3.1. Introduction
Many recent self-supervised learning (SSL) methods consist in learning invari-

ances to specific chosen relations between samples – implemented through data-
augmentations – while using a regularization strategy to avoid collapse of the representations
[49, 52, 93, 134, 40, 236, 22, 199, 43, 53, 136, 247, 248]. Incidentally SSL learning frameworks
also heavily rely on a simple trick to improve downstream task performances: removing the
last few layers of the trained deep network depicted in Figure 1a. From a practical viewpoint,
this technique emerged naturally [49] through the search of ever increasing SSL performances.



In fact, on ImageNet [56], such technique can improve classification performances by around
30 points of percentage (Figure 1b).

Although it improves performances in practice, not using the layer on which the SSL
training was applied is unfortunate. It means throwing away the representation that was
explicitly trained to be invariant to the chosen set of data augmentations, thus breaking
the implied promise of using a more structured, controlled, invariant representation. By
picking instead a representation that was produced an arbitrary number of layers above,
SSL practitioners end up relying on a representation that likely contains much more
information about the input [29] than should be necessary to robustly solve downstream tasks.

Although the use of this technique emerged independently in SSL, using intermediate
layers of a neural network–instead of the deepest layer where the initial training criterion
was applied– has long been known to be useful in transfer learning scenarios [232]. Features
in upstream layers often appear more general and transferable to various downstream tasks
than the ones at the deepest layers which are too specialized towards the initial training
objective. This strongly suggests a related explanation for its success in SSL: does removing
the last layers of a trained SSL model improve performances because of a misalignment
between the SSL training task (source domain) and downstream task (target domain)?

In this paper, we examine that question thoroughly. We first place the SSL trick of
removing the projector post-training under the umbrella of a generically applicable method
that we call Guillotine Regularization. We argue that it is important to distinguish
the action of removing layers during evaluation from architecture modifications because
the optimal layer to use for a given downstream task is not always the backbone and
could be intermediate projector’s layers. Then, we explore how changes in the training
optimization, training data and downstream task impact the optimal layer in both supervised
and self-supervised setting. Lastly, we demonstrate that increasing the *alignment* between
the pretext and downstream task in SSL decreases the need to use a projector in SSL.

To summarize, this paper’s main contributions are the following:
• Since the optimal layer to use in Self-Supervised-Learning might not always be the

backbone, we suggest coining the action of removing layer as a general method called
Guillotine Regularization to distinguish it from the architectural modification which
is the addition of a projector.
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Fig. 1. a) An illustration of projector head trick used in SSL. During training, a small neural
network named the Head (also coined as projector in the SSL literature [49]) is added on
top of another deep network refereed as the Trunk. This Head can be viewed as a bu�er
between the training loss and the Trunk that can absorb any bias related to a ill optimisation.
When using such network on downstream tasks, we throw away the Head. b) We measure
with linear probes the accuracy at di�erent layers on a Resnet50 (as Trunk) (see Figure 3 for
vision transformers) on which we added a small 3-layer MLP (as Head) for various supervised
and self-supervised methods. For each method, we show the mean and standard deviation
across 3 runs (The std between di�erent runs is low). With traditional supervised learning,
there is a significant drop in performances when using the trunk layer instead of the last
projector layer. However, when looking at self-supervised methods, the gap in performances
between the linear probe trained at the trunk and projector can be as high as 30%.

• To show through experiments that the optimal layer to cut heavily depend on the
training optimization, training data and downstream task for both supervised and self-
supervised models. We hope that this result will encourage the research community
to run more systematic evaluations through di�erent layers.

• The need to use Guillotine Regularization in SSL depends heavily on how the positives
views are defined. When these views are aligned with the downstream-task, the
optimal layer to use become closer to the last layer.

3.2. Related work
Self-supervised learning Many recent works on self-supervised learn-

ing [49, 52, 93, 134, 40, 236, 22, 199, 43, 53, 136, 247, 248] rely on the addition of
few non linear layers (MLP) – termed projection head – on top of a well established neural
network – termed backbone – during training. This addition is done regardless of the neural
network used as backbone, it could be a ResNet50 [96] or a Vision Transformer [67]. After
training, the projector is usually threw away to evaluate the model using the backbone
representation. Even if Chen et al. [50] demonstrated that the optimal layer to use might not
always be the backbone when using few labelled data, most recent works introducing new
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SSL methods have continued to use only the backbone for evaluation. Some works also tried
to understand why a projection head is needed for self-supervised learning. Appalaraju et al.
[6] argue that the nonlinear projection head acts as filter that can separate the information
used for the downstream task from the information useful for the contrastive loss. In order to
support this claim, they used deep image prior [205] to perform features inversion to visualize
the features at the backbone level and also at the projector level. They observe that features
at the backbone level seem more suitable visually for a downstream classification task than
the ones at the projector level. Another related work [29] similarly tries to map back the
representations to the input space, this time by using a conditional di�usion generative
model. The authors present visual evidence confirming that much of the information about a
given input is lost at the projector level while most of it is still present at the backbone level.
Another line of work tries to train self-supervised models without the use of a projector. Jing
et al. [117] shows that by removing the projector and cutting the representation vector in
two parts, such that a SSL criteria is applied on the first part of the vector while no criterion
is applied on the second part, improves considerably the performances compared to applying
the SSL criteria directly on the entire representation vector. This however works mostly
thanks to the residual connection of the resnet. In contrast with these approaches, our work
focus on identifying which components of traditional SSL training pipelines can explain why
the performances when using the final layers of the network are so much worse than the
ones at the backbone level. This identification will be key for designing future SSL setups in
which the generalisation performance doesn’t drop drastically when using the embedding
that the SSL criterion actually learns.

Transfer learning The idea of using the intermediate layers of a neural network is
very well known in the transfer learning community. Work like Deep Adaptation Network
[144] freeze the first layers of a neural network, fine-tune the last layers while adding a head
which is specific for each target domain. The justification behind this strategy is that deep
networks learn general features [45, 24, 26], especially the ones at the first layers, that may
be reused across di�erent domain [232]. Oquab et al. [161] demonstrate that when limited
amount of training data are available for the target tasks, using the frozen features extracted
from the intermediate layers of a deep network trained on classification can help solve object
and action classification tasks on other datasets. Another line of work on training with
random or noisy labels also studied how the use of intermediate layers improves significantly
downstream performances [149] while Baldock et al. [16] introduced a measure of example
di�culty that leverages the number of intermediate layers that are aligned towards a given
prediction. In this paper, we show that SSL trained models fall under the realm of transfer
learning, in consequence we can expect that all the observations made in the transfer learning
literature about the use of intermediate layers are also valid for SSL. When viewing the
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projector SSL trick and cutting layer for transfer as a general machine learning trick to
improve generalization, it’s not surprising anymore that work as Wang et al. [219], Sarıyıldız
et al. [182] have been able to show that adding a projector can also be highly beneficial for
supervised training.

Out of distribution (OOD) generalization. Kirichenko et al. [123] demonstrates that retraining
only the last layer with a specific reweighting helps to "forget" the spurious correlations that
were learned during the training. Such work emphasizes that most of the spurious correlation
due to the training objective is contained in the last layers of the network. Thus, retraining
them is essential to remove such spurious correlation and generalize better on downstream
tasks. Similarly Rosenfeld et al. [172] show that retraining only the last layers is most of
the time as good as retraining the entire network over a subset of downstream tasks. Lastly,
Evci et al. [77] demonstrates the usefulness of using intermediate layers for OOD. Our study
also confirms that Guillotine Regularization show important properties with respect to OOD
generalization.

3.3. Guillotine Regularization: A regularization scheme
to improve generalization of deep networks

In this section, we provide a definition for Guillotine Regularization. Then, through
experiments, we show that the optimal layer to use changes significantly depending on
di�erent factors. Finally, we show that the performances at a given layer are not always
correlated with the performances one can have at another layer.

3.3.1. (Re)Introducing Guillotine Regularization From First Princi-
ples

We distinguish between a source training task with its associated training set, and
a target downstream task with its associated dataset1. It is the performance on the
downstream task that is ultimately of interest. In the simplest of cases both tasks could be
the same, with their datasets sampled i.i.d. from the same distribution. But more generally
they may di�er, as in SSL or transfer learning scenarios. In SSL we typically have an
unsupervised training task, that uses a training set with no labels, while the downstream task
can be a supervised classification task. Also note that while the bulk of training the model’s
parameters happens with the training task, transferring to a di�erent downstream task will
require some additional, typically lighter, training, at least of a final layer specific for that
task. In our study we will focus on the use of a representation computed by the network
trained on the training task and then frozen, which gets fed to a simple linear layer that will
1Terminology pretext-training / downstream comes from SSL, while source / target is used in transfer learning
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be tuned for the downstream task. This "linear evaluation" procedure is typical in SSL and
aims to evaluate the quality/usefulness of an unsupervised-trained representation. Our focus
is to ensure good generalization to the downstream task. Note that training and downstream
tasks may be misaligned in several di�erent ways.

Informally, Guillotine Regularization consists in the following: for the downstream
task, rather than using the last layer (layer L) representation from the network trained
on the training task, instead use the representation from a few layers above (layer t, with
t < L). We thus remove a small multilayer "head" (layers t + 1 to L) of the initially trained
network, hence the name of the technique. We call the remaining part (layers 1 to t) the trunk2.

Formally, we consider a deep network that takes an input X and computes a sequence
of intermediate representations H1, . . . , HL through layer functions f

(1)
, . . . f

(L) such that
H¸ = f

(¸)(H¸≠1), starting from H0 = X. The entire computation from input X to last layer
representation HL is thus a composition of layer functions3:

HL = f◊,„(X) = (f (L) ¶ · · · ¶ f
(t+1)

¸ ˚˙ ˝
head f t+1:L

„

¶ f
(t) ¶ · · · ¶ f

(1)
¸ ˚˙ ˝

trunk f1:t
◊

)(X)

The parameters ◊ and „ of trunk f
1:t
◊ and head f

t+1:L
„ are then trained on the entire training

set of examples Xsource of the training task (optionally with associated targets Ysource that we
may have in transfer scenarios, but will typically be absent in SSL), to minimize the training
task objective L

source:

◊̂, „̂ = arg min
◊,„

L
source(f t+1:L

„ (f 1:t
◊ (Xsource)), Ysource)

Then the multilayer head f
t+1:L
„ is discarded, we add to the trunk a (usually shallow) new

head sw and we train its parameters w, using the training set of examples for the downstream
task (Xtarget

, Ytarget), to minimize the downstream task objective L
target:

ŵ = arg min
w

L
target(sw( f

1:t
◊̂

(Xtarget)
¸ ˚˙ ˝

representation Htarget

), Ytarget)

2head / trunk are also known as projection head / backbone in the SSL literature
3Precisely, a "layer function" f (¸) can correspond to a standard neural network layer (fully-connected,
convolutional) with no residual or shortcut connections between them, or to entire blocks (as in densenet, or
transformers) which may have internal shortcut connections, but none between them.
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Fig. 2. Training a linear regression to predict latent variables from pooled intermediate
representations of a network trained with a self-supervised objective (using SimCLR) or a
supervised objective (trained to predict 3D rotations of an object). The data used consists of
renderings of 3d objects from 3D Warehouse [202] where we control the floor, lighting and
object pose with latent variables, see samples on the right. The dimension of the intermediate
representations increases throughout the layers and is kept constant in the head, if there is
one. In the supervised setting, when looking at the Validation Mean Squared Error for object
rotations prediction, the lowest error is obtained with the linear probe at the last layer of the
neural networks. In contrast, the lowest error for other attributes like the Spot ◊ prediction
are obtained with the linear probes localized 3,4 or 5 layers before the output of the networks.
In the self-supervised setting, we also see that the predictor is responsible for a lot of the
invariance to augmentation, and that the information is most easily retrievable before it.
These results highlight the need to use Guillotine Regularization i.e removing the last layers
of the neural network to generalize better on other tasks.

3.3.2. An empirical analysis of situations in which cutting layers is
beneficial

There are several situations that can create a misalignment between a training and a
downstream task. Here we name of few:

Misalignment between the training (source) and downstream (target) task
while using the same input data distribution. The potential e�ectiveness of GR
for transfer is not surprising since this technique has been used for years in the transfer
learning research literature [232] to improve generalization across di�erent tasks. As a simple
illustration, we present Figure 2 which show how much performances on a given task can
vary depending on which layer has been chosen as features extractor. In this figure, we used
an artificially created object dataset in which we are able to play with di�erent factors of
variations. The dataset consists of renderings of 3D models from 3D warehouse [202]. Each
scene is built from a 3D object, a floor and a spot placed on top of the object to add lighting.
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This allows us to control every factor of variation and produce complex transformations
in the scene. We vary the rotation of the object defined as a quaternion, the hue of the
floor, and the spot hue as well as it position on a sphere using spherical coordinates. We
provide more details on the dataset and rendering samples in the appendix. We observe
in Figure 2 that when training a supervised model on the object rotation prediction task
and evaluating the linear probe on the same task across di�erent layers, the best results are
obtained on the last layer. However, when using the same frozen neural network to predict
other attributes like the Spot ◊, the best performances are obtained few layers before the last
one. Similarly, when training with a self-supervised objective (SimCLR), we can see that the
di�erent factors of variation are most easily retrievable before the projector. This means that
representations before the projector will be more versatile as they will contain information
that was removed by the pretraining task. For example if our downstream task is to predict
the rotation, the representation at block4 will be optimal while if the downstream task is
to predict the spot hue, the representation at the block 3 will be optimal. Such results
highlight the need to use Guillotine Regularization when there is a shift in the prediction
task. Moreover, the optimality of a layer depends on the downstream task.

Misalignment due to badly optimized network It can be expected that the
optimal layer to use to train a downstream task readout function might be di�erent
depending on how much the pretrained network is overfitting on the pretext task.

Fig. 4. SimCLR: Linear probe
accuracy on several downstream
tasks. The optimal layer to cut
is not the same for di�erent
downstream tasks.

.

To test this hypothesis, we train a headed supervised
Resnet50 on ImageNet with two di�erent types of
optimization. The first one uses only AdamW with
a small learning rate of 1e ≠ 4 without any additional
regularization. The second one uses SGD and
the recommended hyper-parameters for supervised
training (with cycling learning rate, weight decay,
and momentum). In Figure 3a, we observe that the
AdamW trained network that is overfitting on the
classification task has readout function performances
that are very close across di�erent layers. However,
when looking at the well-regularized model with
SGD which does not overfit on the task, the readout
performances across layers vary significantly. In a second experiment, we study more in-depth
the e�ect of overfitting by training the Resnet50 over only a random subset of 250 classes.
Then we use the remaining 750 classes as an OOD validation set that is split randomly
in other subset of 250 classes. In Figure 3b, we clearly see that the training readout is
overfitting on the training set while the readout performances across layers are similar on the
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(a) Training setups (b) Random split (c) Downstream tasks

Fig. 3. Supervised: The optimal layer to cut might change depending of the training
optimization, the data and the downstream task. The best accuracy for each curve is show
as a big square. For each experiments, we trained a headed supervised Resnet50 over ImageNet
(with a 3 layer MLP as projection head). For a) and c) we trained this network over the full training
set whereas for b) we use a random subset of 250 classes. Then, we froze the model parameters
and trained linear probes over representation at di�erent layers. a) We trained two models with
di�erent optimization pipeline: the first one in blue was trained with SGD using a cycling learning
rate, along with momentum and weight decay. The second one in gray was trained with AdamW
without additional regularization. This model is overfitting on the training set, which leads to similar
validation performances across the backbone and projector. In contrast, the first one generalize
much better but the performances across layers change significantly. b) Validation accuracy given
by linear probes on di�erent random subset of 250 ImageNet’s classes for each layers. The validation
split in gray corresponds to the same subset of classes that was used for training whereas Split 1-6
corresponds to di�erent OOD random split. In this instance, we see that the optimal layer to use
is the first layer of the projector. c) Validation performances on di�erent downstream tasks. We
have used the well regularized model from a) and evaluate it across di�erent downstream tasks. For
some datasets, the optimal layer to use is the last one, while for some other the optimal layer is the
second layer of the projector.

corresponding in distribution validation set (which is similar to the previous experiment over
the full ImageNet). Then, we train linear probes over the OOD splits and observe that the
performances are radically di�erent from the in distribution validation set. In fact, in this
instance the best layer to use for every of these split is the backbone layer whereas the best
layer to use for the in-distribution split is the projector layer. This result highlights that
the optimal layer to discard can vary depending on the optimization techniques
and downstream data distribution, even when the same training objective is
used.

Misalignment between the training and downstream tasks while using di�erent
data distributions. When using a pretrained model to predict new classes, there is a
bias in the data distribution as well as in the fine-tuning objective (with respect to the
training settings). We did a first experiment in Figure 3c in which we train a supervised
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Resnet50 over ImageNet. Then, we freeze the weights of the model and train a linear probe
over ImageNet [56], CIFAR10 [127], Place205 [246], CLEVR [118] and Eurosat [101] at
di�erent layers. We observe that the readout performances on ImageNet are the best at the
last layer but for datasets like CLEVR or Place205 the best performances are obtained at
the second projector layer. In Figure 4, we performed the same experiment but this time
using SimCLR. In this instance, the best performances for ImageNet are obtained at the
backbone whereas the best performances for Eurosat, CLEVR and Imagenet 1% are obtained
at the first projector layer. This result challenges the common practice of discarding
the entire projector in SSL since the layers to cut depend on the downstream task.

Misalignment between the training input data distribution and testing input
data distribution while using the same training and downstream tasks. Another
type of bias can arise when using a wrongful data distribution after training of the model.

Head 3 Head 2 Head 1 Trunk
59.0 58.8 58.0 63.3

Table 1. ImageNet-C mCE (unor-
malized) across layers.

This scenario is often referred to Out Of Distribution
(OOD) since the distribution of the data used by the
model becomes di�erent from the one seen during
training. We took the supervised model trained
on ImageNet along with the linear probe trained
at di�erent layers and evaluate the performances of these readouts on ImageNet-C [102]
which is a modified version of the validation set of ImageNet on which di�erent data
transformations were applied. Our experiment in Table 1 demonstrates that the performances
are better after cutting two layers from the head of the network which highlight that it
might be a good practice to probe intermediate representations when evaluating on OOD tasks.

3.3.3. The readout performances at the projector and backbone
level are not always correlated

In Figure 5 we study the e�ect of Guillotine Regularization with respect to an hyper-
parameter grid search for various SSL methods (SimCLR, Barlow Twins and Byol). When
looking at the performances on ImageNet using a linear probe at the backbone level, one
can observe an almost stable classification task performance for di�erent hyper-parameters
such as SimCLR temperature, Barlow Twins and Byol learning rate while the corresponding
performances at the projector level change significantly. This highlights that the performances
at the projector level are not always correlated with the performances at the backbone level.
In consequence, knowing the performances of a linear probe at the projector level cannot give
in advance insights about the performances at the backbone level.
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(a) SimCLR (b) Byol (c) Barlow Twins (d) Byol

Fig. 5. The performances at the projector level aren’t always correlated with
the performances at the backbone level. We train SimCLR, Barlow Twins and Byol
with di�erent hyper-parameters and evaluate with a linear prob, the performances at the
backbone but also at the projector level on ImageNet classification task. For each model,
we observe that the accuracy given by the linear probe at the backbone level isn’t always
correlated with the performance at the projector level.

3.4. Reducing the Need for a Projector in Self-
Supervised Learning by increasing the alignment
with the downstream task

Self-Supervised Learning is often considered a distinct learning paradigm in between
supervised and unsupervised learning. In reality, the distinction is not as sharp, and much of
SSL can be understood as solving a pretext-tasks akin to a supervised task[224, 120], merely
with pseudo-labels obtained in another way than by human annotation. In this section,
we show that di�erent data selection process in SSL influences the alignment between the
downstream and pretext task, which heavily impact the need of using a projector head in
SSL.

To confirm the hypotheses that SSL methods need to use a projector because of a
misalignement between the pretext and downstream task, we have to verify that reducing
this misalignement, results in reducing the performance gap between the Trunk and Head
representations. Ideally, we would like to get close to the supervised scenario in Figure 1 for
which the optimal readout function is obtained at the last layer. To do so, we devise two
experimental setups in which we replace the traditional data augmentation pipeline used
in SSL, which consists of using handcrafted augmentation on each image to create a set of
pairwise positive samples.

In the first setup, while using the exact same SSL criterion (SimCLR), we
use as positive examples pairs of images that belong to the same class, and as
negative examples images that don’t belong to the same class. Note that the SSL
training criteria will push towards a collapse in the representation space of all the images
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Fig. 6. Di�erence in accuracy with linear probing between the projector and backbone repre-
sentation with di�erent alignments with respect to the classification downstream task. In this
experiment we used SimCLR and we change how the positive pair are defined to better aligned with
a classification downstream task. In blue, our baseline, we trained SimCLR with the traditional SSL
data augmentations which defines the positive view as two augmentations of a same image. In orange,
we use the embedding of a pretrained model to define the positive pair as two nearest neighbors
under a pretrained model (while using the same data augmentation as the baseline). In green, we use
a supervised class label selection to define the positive examples. In this scenario, SimCLR should
learn to produces similar embedding to all images belonging to a given class. All three models are
trained on ImageNet (IN1K), then we evaluate them with a linear probe across a wide range of
downstream tasks at the backbone and projector level and show the di�erence in accuracy between
both. When the di�erence is positive, the accuracy at the backbone level is higher than
the one at the projector level, highlighting the benefits of Guillotine Regularization. In
contrast when the di�erence is negative, the accuracy at the projector level is higher
than the one at the backbone level. In this instance, Guillotine Regularization is not
needed. When positives pairs are defined as belonging to a given class, there is no misalignment
with the imagenet classification downstream task. Thus on ImageNet-1K, ImageNet1k-10P (10% of
the training set to train the linear probe) and ImageNet1k-1P (1% of the training set to train the
linear probe), we observe that the performances at the projector level are much higher than the
ones at the backbone level. Interestingly, the nearest neighbors heuristic reduces considerably the
impact of Guillotine Regularization across several downstream tasks.

belonging to the same class, while pushing further apart the di�erent class clusters. By doing
so the training SSL objective becomes perfectly aligned with the downstream classification
task, despite using a SSL training criteria instead of a traditional cross entropy loss.

In the second setup, we use as positive pairs the closest neighbors found
by a pretrained SSL model trained with the traditional SSL handcrafted data
augmentation pipeline. The reasoning is that if instead of considering each image of the
dataset as its own specific class, we use clusters of many images to define the positive pairs, we
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(a) SimCLR trained with SSL augmentations.

Trunk
H

ead 1
H

ead 2
H

ead 3

(b) SimCLR trained with class labels.

Fig. 7. In this figure, we used RCDM [31], a conditional generative model to visualize what
information is decodable at di�erent layers. The leftmost column of images (before the red line)
is the conditioning image that was used to compute the representation that is fed to RCDM. The
subsequent columns are samples generated by the model using this representation. The first row
correspond to the last projector layer, the second row to the second projector layer, the third one to
the first projector layer and the last row to the backbone layer. As show in Figure 6, changing the
alignment with the pretext task change significantly the information encoded by the neural network.
When using SSL augmentations at the projector level, the information about the dog’s breed seem
to have been lost whereas when looking at a network trained with supervised augmentations, the
information is preserved throughout each layers.

might be able to close the gap with respect to a supervised baseline without the need of labels.

In Figure 6, we show the di�erences in accuracy between the backbone and the projector
with respect to these two new data augmentation scenarios. The baseline, using the
traditional SimCLR positive pairs based on data augmentations is in blue, the nearest
neighbors setup in orange and the class based setup in green. We observe for SimCLR
that using the nearest neighbors based heuristic is helping in reducing the gap between
the pretext and downstream task while having a purely supervised heuristic to define the
positive pair is removing the need to perform Guillotine Regularization across several
downstream tasks. Hence confirming the hypothesis that the e�ectiveness of a projector
depends of the alignment between the pretext and downstream task in self-supervised learning.

3.4.1. Visualizing the information across layers for di�erent align-
ments

In this section, we use RCDM [31], a conditional generative model to visualize what
information is retain or not in the representation. We train RCDM on ImageNet with blurred
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faces[229], using the representation given by a SimCLR model trained on handcrafted SSL
views and another which was trained on class based views. In Figure 7, we show that when
looking at di�erent decoding corresponding to di�erent layers in the network, the information
encoded vary a lot depending on the layer to use. When going deeper, RCDM is not able
to reconstruct as much as information about the images than when using the backbone
representation (which contain much more low level features). When looking at the generated
samples that were conditioned on the representation of the model trained with supervised
views, we observe that the breed of the dog stay the same across layers. However when using
traditional data augmentations, the information about the specific golden retriever breed is
lost in the last projector layers. This is correlated with the fact that this model get lower
classification performances when using the projector.

3.4.2. Experimental details

We use Pytorch [163] and FFCV-SSL [32, 129] as data loader. All the experiments were
performed with a Resnet50 [96] (except if mentioned otherwise) as backbone. For each model,
we use a batch of size 2048 and AdamW [145] as optimizer with an adaptive learning rate
schedule. We run the training for 100 epochs. For each model, we add as head a small MLP
of 3 layers of size 2048 (same dimension as the backbone) with ReLU [86] as activation and
batch normalization [113]. When training di�erent SSL methods, we always used the same
set of data augmentations (with cropping, color-jitter, random grayscale, gaussian blur and
solarization).

3.5. Conclusion
Through empirical evaluations, we demonstrated that the optimal layer to use for down-

stream evaluation vary depending on several factors: optimization, data and downstream task.
These results highlight the need for SSL practitioners to run systematic evaluations at several
layers instead of using always the backbone as reference. We also demonstrated that the use
of a projector in SSL depends on the alignment between the downstream and pretext task.
Despite, its usefulness, having to rely on a trick like Guillotine Regularization to increase
performances reveals an important shortcoming of current self-supervised learning methods:
the inability to design experimental setups and training criteria that learn structured and
truly invariant representations with respect to an appropriate set of factors of variation. As
future work, in order to escape from Guillotine Regularization, we should focus on finding
new training criteria and data augmentations that will be more aligned with the downstream
tasks of interest.

80



Prologue to Article 3

Do SSL Models Have Déjà Vu? A Case of Unintended Memorization in
Self-supervised Learning, Casey Meehan*, Florian Bordes*, Pascal Vincent, Kamalika
Chaudhuriv†, Chuan Guo†, Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS 2023) 4

Kamalika and Chuan wanted to explore the use of conditional generative models (like
RCDM) for assessing how much SSL methods are memorizing their training data. Casey,
advised by Kamalika and Chuan, started to work on this project for his internship at Meta.
Casey asked me and Pascal to provide guidance and feedback concerning the use of RCDM
to reconstruct the training data memorized by SSL methods. The main hypothesis behind
this project was that SSL representations are much richer than supervised representations.
In consequence, it might be easier to extract private information from a pre-trained SSL
model than a supervised one. In this article, we showed that indeed some SSL methods are
extremely vulnerable to specific attacks and that it is even possible to reconstruct extremely
specific information about the training data.

Contribution statement The early phase of this project was done by Casey during
his internship while I had a more advisory role concerning the use of RCDM. However,
after Casey’s internship ended, I took the lead role in the project by running additional
experiments to strengthen our contributions. I contributed to having a fine-grained analysis
of memorization with respect to di�erent SSL criteria, Guillotine regularization, number of
parameters, and architecture. Lastly, I suggested and implemented the Déjà Vu score to have
a single number to measure memorization in SSL models. I also wrote a significant part of
the NeurIPS rebuttal and added the fine-tuning experiments.

4* denotes equal contribution and † denotes equal direction contribution.





Chapter 4

Article 3: Do SSL Models Have Déjà Vu? A
Case of Unintended Memorization in

Self-supervised Learning

Self-supervised learning (SSL) algorithms can produce useful image representations by learning
to associate di�erent parts of natural images with one another. However, when taken to
the extreme, SSL models can unintendedly memorize specific parts in individual training
samples rather than learning semantically meaningful associations. In this work, we perform
a systematic study of the unintended memorization of image-specific information in SSL
models—which we refer to as déjà vu memorization. Concretely, we show that given the
trained model and a crop of a training image containing only the background (e.g., water,
sky, grass), it is possible to infer the foreground object with high accuracy or even visually
reconstruct it. Furthermore, we show that déjà vu memorization is common to di�erent
SSL algorithms, is exacerbated by certain hyperparameter choices, and cannot be detected
by conventional techniques for evaluating representation quality. Our study of déjà vu
memorization reveals previously unknown privacy risks in SSL models, as well as suggests
potential practical mitigation strategies.

4.1. Introduction
Self-supervised learning (SSL) [49, 51, 236, 23, 40, 98] aims to learn general representations

of content-rich data without explicit labels by solving a pretext task. In many recent
works, such pretext tasks rely on joint-embedding architectures whereby randomized image
augmentations are applied to create multiple views of a training sample, and the model is
trained to produce similar representations for those views. When using cropping as random
image augmentation, the model learns to associate objects or parts (including the background
scenery) that co-occur in an image. However, doing so also arguably exposes the training
data to higher privacy risk as objects in training images can be explicitly memorized by the



Fig. 1. Left: Reconstruction of an SSL training image from a crop containing only the
background. The SSL model memorizes the association of this specific patch of water (pink
square) to this specific foreground object (a black swan) in its embedding, which we decode
to visualize the full training image. Right: The reconstruction technique fails on a public
test image that the SSL model has not seen before.

SSL model. This may allow an adversary to extract such information from the trained model
for targeted individuals.

In this work, we aim to evaluate to what extent SSL models memorize the association of
specific objects in training images or the association of objects and their specific backgrounds,
and whether this memorization signal can be used to reconstruct the model’s training
samples. Our results demonstrate that SSL models memorize such associations beyond simple
correlation. For instance, in Figure 1 (left), we use the SSL representation of a training image
crop containing only water and this enables us to reconstruct the object in the foreground
with remarkable specificity—in this case a black swan. By contrast, in Figure 1 (right),
when using the crop from the background of a test set image that the SSL model has not seen
before, its representation only contains enough information to infer, through correlation, that
the foreground object was likely some kind of waterbird — but not the specific one in the image.

Figure 1 shows that SSL models su�er from the unintended memorization of images
in their training data—a phenomenon we refer to as déjà vu memorization 1 Beyond
visualizing déjà vu memorization through data reconstruction, we also design a series of
experiments to quantify the degree of memorization for di�erent SSL algorithms, model
architectures, training set size, etc. We observe that déjà vu memorization is exacerbated by
the atypically large number of training epochs often recommended in SSL training, as well
as certain hyperparameters in the SSL training objective. Perhaps surprisingly, we show
that déjà vu memorization occurs even when the training set is large—as large as half of
1The French loanword déjà vu means ‘already-seen’, just as an image is seen and memorized in training.
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ImageNet [57]—and can continually worsen even when standard techniques for evaluating
learned representation quality (such as linear probing) do not suggest increased overfitting.
Our work serves as the first systematic study of unintended memorization in SSL mod-
els and motivates future work on understanding and preventing this behavior. Specifically, we:

• Elucidate how SSL representations memorize aspects of individual training images, what
we call déjà vu memorization;

• Design a novel training data reconstruction pipeline for non-generative vision models. This
is in contrast to many prominent reconstruction algorithms like [37, 38], which rely on the
model itself to generate its own memorized samples and is not possible for SSL models or
classifiers;

• Propose metrics to quantify the degree of déjà vu memorization committed by an SSL
model. This allows us to observe how déjà vu changes with training epochs, dataset size,
training criteria, model architecture and more.

4.2. Preliminaries and Related Work
Self-supervised learning (SSL) is a machine learning paradigm that leverages unlabeled

data to learn representations. Many SSL algorithms rely on joint-embedding architectures
(e.g., SimCLR [49], Barlow Twins [236], VICReg [23] and Dino [42]), which are trained to
associate di�erent augmented views of a given image. For example, in SimCLR, given a set of
images A = {A1, . . . ,An} and a randomized augmentation function aug, the model is trained
to maximize the cosine similarity of draws of SSL(aug(Ai)) with each other and minimize
their similarity with SSL(aug(Aj)) for i ”= j. The augmentation function aug typically
consists of operations such as cropping, horizontal flipping, and color transformations to
create di�erent views that preserve an image’s semantic properties.

SSL representations. Once an SSL model is trained, its learned representation can be
transferred to di�erent downstream tasks. This is often done by extracting the representation
of an image from the backbone model2 and either training a linear probe on top of this
representation or finetuning the backbone model with a task-specific head [30]. It has
been shown that SSL representations encode richer visual details about input images than
supervised models do [29]. However, from a privacy perspective, this may be a cause for
concern as the model also has more potential to overfit and memorize precise details about
the training data compared to supervised learning. We show concretely that this privacy risk

2SSL methods often use a trick called guillotine regularization [30], which decomposes the model into two
parts: a backbone model and a projector consisting of a few fully-connected layers. Such trick is needed to
handle the misalignment between the pretext SSL task and the downstream task.
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can indeed be realized by defining and measuring déjà vu memorization.

Privacy risks in ML. When a model is overfit on privacy-sensitive data, it memorizes
specific information about its training examples, allowing an adversary with access to
the model to learn private information [231, 78]. Privacy attacks in ML range from
the simplest and best-studied membership inference attacks [186, 178, 175] to attribute
inference [79, 151, 116] and data reconstruction [37, 18, 94] attacks. In the former, the
adversary only infers whether an individual participated in the training set. Our study
of déjà vu memorization is most similar to the latter: we leverage SSL representations of
the training image background to infer and reconstruct the foreground object. In another
line of work in the NLP domain [36, 37]: when prompted with a context string present in
the training data, a large language model is shown to generate the remainder of string at
test time, revealing sensitive text like home addresses. This method was recently extended
to extract memorized images from Stable Di�usion [38]. We exploit memorization in a
similar manner: given partial information about a training sample, the model is prompted to
reveal the rest of the sample.3 In our case, however, since the SSL model is not generative,
extraction is significantly harder and requires careful design.

4.3. Defining Déjà Vu Memorization
What is déjà vu memorization? At a high level, the objective of SSL is to learn general
representations of objects that occur in nature. This is often accomplished by associating
di�erent parts of an image with one another in the learned embedding. Returning to our
example in Figure 1, given an image whose background contains a patch of water, the model
may learn that the foreground object is a water animal such as duck, pelican, otter, etc., by
observing di�erent images that contain water from the training set. We refer to this type of
learning as correlation: the association of objects that tend to co-occur in images from the
training data distribution.

A natural question to ask is “Can the reconstruction of the black swan in Figure 1 be
reasoned as correlation?” The intuitive answer may be no, since the reconstructed image is
qualitatively very similar to the original image. However, this reasoning implicitly assumes
that for a random image from the training data distribution containing a patch of water,
the foreground object is unlikely to be a black swan. Mathematically, if we denote by P the

3We recognize that it is easier to find a context string that might have been in the training data of a large
language model than to find the exact pixels that constitute a crop of a training image. However, this paper
focuses on revealing a memorization phenomenon in SSL and does not aim to provide a complete picture of
all the privacy risks that it might entail.
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training data distribution and A the image, then

pcorr := PA≥P(object(A) = black swan | crop(A) = water)

is the probability of inferring that the foreground object is a black swan through
correlation. This probability may be naturally high due to biases in the distribution
P, e.g., if P contains no other water animal except for black swans. In fact, such cor-
relations are often exploited to learn a model for image inpainting with great success [234, 204].

Despite this, we argue that reconstruction of the black swan in Figure 1 is not due to
correlation, but rather due to unintended memorization: the association of objects unique to
a single training image. As we will show in the following sections, the example in Figure 1 is
not a rare success case and can be replicated across many training samples. More importantly,
failure to reconstruct the foreground object in Figure 1 (right) on test images hints at inferring
through correlation is unlikely to succeed—a fact that we verify quantitatively in Section
4.4.1. Motivated by this discussion, we give a verbal definition of déjà vu memorization below,
and design a testing methodology to quantify déjà vu memorization in Section 4.3.1.

Definition: A model exhibits déjà vu memorization when it retains information so specific
to an individual training image, that it enables recovery of aspects particular to that image
given a part that does not contain them. The recovered aspect must be beyond what can
be inferred using only correlations in the data distribution.

We intentionally kept the above definition broad enough to encompass di�erent types of
information that can be inferred about the training image, including but not restricted to
object category, shape, color and position. For example, if one can infer that the foreground
object is red given the background patch with accuracy significantly beyond correlation,
we consider this an instance of déjà vu memorization as well. We mainly focus on object
category to quantify déjà vu memorization in Section 4.4 since the ground truth label can
be easily obtained. We consider other types of information more qualitatively in the visual
reconstruction experiments in Section 4.5.

Distinguishing memorization from correlation. When measuring déjà vu memo-
rization, it is crucial to di�erentiate what the model associates through memorization and
what it associates through correlation. Our testing methodology is based on the following
intuitive definition.

87



Fig. 2. Overview of testing methodology. Left: Data is split into target set A, reference
set B and public set X that are pairwise disjoint. A and B are used to train two SSL models
SSLA and SSLB in the same manner. X is used for KNN decoding or for training an RCDM
to reconstruct the input at test time. Right: Given a training image Ai œ A, we use SSLA

to embed crop(Ai) containing only the background, as well as the entire set X and find the
k-nearest neighbors of crop(Ai) in X in the embedding space. These KNN samples can be
used directly to infer the foreground object (i.e., class label) in Ai using a KNN classifier,
or their embeddings can be averaged as input to the trained RCDM to visually reconstruct
the image Ai. For instance, the RCDM reconstruction results in Figure 1 (left) when given
SSLA(crop(Ai)) and results in Figure 1 (right) when given SSLA(crop(Bi)) for an image
Bi œ B.

Definition: If an SSL model associates two parts in a training image, we say that it is due
to correlation if other SSL models trained on a similar dataset from P without this image
would likely make the same association. Otherwise, we say that it is due to memorization.

Notably, such intuition forms the basis for di�erential privacy (DP; Dwork et al. [70], Dwork
and Roth [69])—the most widely accepted notion of privacy in ML.

4.3.1. Testing Methodology for Measuring Déjà Vu Memorization

In this section, we use the above intuition to measure the extent of déjà vu memorization
in SSL. Figure 2 gives an overview of our testing methodology.

Dataset splitting. We focus on testing déjà vu memorization for SSL models trained
on the ImageNet-1K dataset [57]. Our test first splits the ImageNet training set into three
independent and disjoint subsets A, B and X . The dataset A is called the target set and
B is called the reference set. The two datasets are used to train two separate SSL models,
SSLA and SSLB, called the target model and the reference model. Finally, the dataset set X
is used as an auxiliary public dataset to extract information from SSLA and SSLB. Our
dataset splitting serves the purpose of distinguishing memorization from correlation in the
following manner. Given a sample Ai œ A, if our test returns the same result on SSLA
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and SSLB then it is likely due to correlation because Ai is not a training sample for SSLB.
Otherwise, because A and B are drawn from the same underlying distribution, our test must
have inferred some information unique to Ai due to memorization. Thus, by comparing the
di�erence in the test results for SSLA and SSLB, we can measure the degree of déjà vu
memorization4.

Extracting foreground and background crops. Our testing methodology aims
at measuring what can be inferred about the foreground object in an ImageNet sample
given a background crop. This is made possible because ImageNet provides bounding
box annotations for a subset of its training images—around 150K out of 1.3M samples.
We split these annotated images equally between A and B. Given an annotated image
Ai, we treat everything inside the bounding box as the foreground object associated with
the image label, denoted object(Ai). We take the largest possible crop that does not
intersect with any bounding box as the background crop (or periphery crop), denoted crop(Ai)5

KNN-based test design. Joint-embedding SSL approaches encourage the embeddings
of random crops of a training image Ai œ A to be similar. Intuitively, if the model exhibits
déjà vu memorization, it is reasonable to expect that the embedding of crop(Ai) is similar
to that of object(Ai) since both crops are from the same training image. In other words,
SSLA(crop(Ai)) encodes information about object(Ai) that cannot be inferred through
correlation. However, decoding such information is challenging as these approaches do not
learn a decoder associated with the encoder SSLA.

Here, we leverage the public set X to decode the information contained in crop(Ai) about
object(Ai). More specifically, we map images in X to their embeddings using SSLA and
extract the k-nearest-neighbor (KNN) subset of SSLA(crop(Ai)) in X . We can then decode
the information contained in crop(Ai) in one of two ways:

• Label inference: Since X is a subset of ImageNet, each embedding in the KNN subset is
associated with a class label. If crop(Ai) encodes information about the foreground object,
its embedding will be close to samples in X that have the same class label (i.e., foreground
object category). We can then use a KNN classifier to infer the foreground object in Ai

given crop(Ai).
• Visual reconstruction: Following Bordes et al. [29], we train an RCDM—a conditional gen-

erative model—on X to decode SSLA embeddings into images. The RCDM reconstruction

4See Appendix C.2.1 for details on how the dataset splits are generated.
5We also present another heuristic in appendix C.5 which takes a corner crop as the background crop, allowing
our test to be run without bounding box annotations.
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can recover qualitative aspects of an image remarkably well, such as recovering object color
or spatial orientation using its SSL embedding. Given the KNN subset, we average their
SSL embeddings and use the trained RCDM model to visually reconstruct Ai.

In Section 4.4, we focus on quantitatively measuring déjà vu memorization with label
inference, and then use the RCDM reconstruction to visualize déjà vu memorization in
Section 4.5.

4.4. Quantifying Déjà Vu Memorization
We apply our testing methodology to quantify a specific form of déjà vu memorization:

inferring the foreground object (class label) given a crop of the background.

Extracting model embeddings. We test déjà vu memorization on a variety of popular
SSL algorithms, with a focus on VICReg [23]. These algorithms produce two embeddings
given an input image: a backbone embedding and a projector embedding that is derived
by applying a small fully-connected network on top of the backbone embedding. Unless
otherwise noted, all SSL embeddings refer to the projector embedding. To understand
whether déjà vu memorization is particular to SSL, we also evaluate embeddings produced
by a supervised model CLFA trained on A. We apply the same set of image augmentations
as those used in SSL and train CLFA using the cross-entropy loss to predict ground truth
labels.

Identifying the most memorized samples. Prior works have shown that certain
training samples can be identified as more prone to memorization than others [78, 220, 230].
Similarly, we provide a heuristic to identify the most memorized samples in our label
inference test using confidence of the KNN prediction. Given a periphery crop, crop(Ai), let
KNNA

1
crop(Ai)

2
™ X denote its k-nearest neighbors in the embedding space of SSLA. From

this KNN subset we can obtain: (1) KNNprob
A

1
crop(Ai)

2
, the vector of class probabilities

(normalized counts) induced by the KNN subset, and (2) KNNconf
A

1
crop(Ai)

2
, the negative

entropy of the probability vector KNNprob
A

1
crop(Ai)

2
, as confidence of the KNN predic-

tion. When entropy is low, the neighbors agree on the class of Ai and hence confidence is high.

We can sort the confidence score KNNconf
A

1
crop(Ai)

2
across samples Ai in decreasing

order to identify the most confidently predicted samples, which likely correspond to the most
memorized samples when Ai œ A.

90



4.4.1. Population-level Memorization

Our first measure of déjà vu memorization is population-level label inference accuracy:
What is the average label inference accuracy over a subset of SSL training images given
their periphery crops? To understand how much of this accuracy is due to SSLA’s déjà
vu memorization, we compare with a correlation baseline using the reference model:
KNNB’s label inference accuracy on images Ai œ A. In principle, this inference ac-
curacy should be significantly above chance level (1/1000 for ImageNet) because the
periphery crop may be highly indicative of the foreground object through correlation,
e.g., if the periphery crop is a basketball player then the foreground object is likely a
basketball. Figure 3 compares the accuracy of KNNA to that of KNNB when inferring
the labels of images in Ai œ A6 using crop(Ai). Results are shown for VICReg and
the supervised model; trends for other models are shown in Appendix C.3.3. For both
VICReg and supervised models, inferring the class of crop(Ai) using KNNB (dashed
line) through correlation achieves a reasonable accuracy that is significantly above chance level.

Fig. 3. Accuracy of label inference
using the target model (trained on A)
vs. the reference model (trained on
B) on the top % most confident exam-
ples Ai œ A using only crop(Ai). For
VICReg, there is a large accuracy gap
between the two models, indicating
a significant degree of déjà vu memo-
rization.

However, for VICReg, the inference accuracy using
KNNA (solid red line) is significantly higher, and the
accuracy gap between KNNA and KNNB indicates
the degree of déjà vu memorization. We highlight two
observations:
• The accuracy gap of VICReg is significantly larger

than that of the supervised model. This is espe-
cially notable when accounting for the fact that the
supervised model is trained to associate randomly
augmented crops of images with their ground truth
labels. In contrast, VICReg has no label access dur-
ing training but the embedding of a periphery crop
can still encode the image label.

• For VICReg, inference accuracy on the 1% most con-
fident examples is nearly 95%, which shows that our
simple confidence heuristic can e�ectively identify
the most memorized samples. This result suggests that an adversary can use this heuristic
to identify vulnerable training samples to launch a more focused privacy attack.

The déjà vu score. The curves of Figure 3 show memorization across confidence
values for a single training scenario. To study how memorization changes with di�erent

6The sets A and B are exchangeable, and in practice we repeat this test on images from B using SSLB as the
target model and SSLA as the reference model, and average the two sets of results.
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hyperparamters, we extract a single value from these curves: the déjà vu score at confidence
level p. In Figure 3, this is the gap between the solid red (or gray) and dashed red (or
gray) where confidence (x-axis) equal p%. In other words, given the periphery crops
of set A, KNNA and KNNB separately select and label their top p% most confident
examples, and we report the di�erence in their accuracy. The déjà vu score captures both
the degree of memorization by the accuracy gap and the ability to identify memorized
examples by the confidence level. If the score is 10% for p = 33%, KNNA has 10% higher
accuracy on its most confident third of A than KNNB does on its most confident third. In
the following, we set p = 20%, approximately the largest gap for VICReg (red lines) in Figure 3.

Comparison with the linear probe train-test gap. A standard method
for measuring SSL performance is to train a linear classifier—what we call a ‘linear
probe’—on its embeddings and compute its performance on a held out test set. From
a learning theory standpoint, one might expect the linear probe’s train-test accuracy
gap to be indicative of memorization: the more a model overfits, the larger is the
di�erence between train set and test set accuracy. However, as seen in Figure 4, the
linear probe gap (dark blue) fails to reveal memorization captured by the déjà vu score (red) 7.

(a) déjà vu vs.
epochs

(b) déjà vu vs. train
set size

Fig. 4. E�ect of training epochs and train
set size with VICReg on déjà vu score (red)
in comparison with linear probe accuracy
train-test gap (dark blue). Left: déjà vu
score increases with training epochs, indi-
cating growing memorization while the lin-
ear probe baseline decreases significantly.
Right: déjà vu score stays roughly con-
stant with training set size suggesting that
memorization may be problematic even for
large datasets.

(a) déjà vu vs.
epochs

(b) déjà vu vs. train
set size

Fig. 5. Partition of samples Ai œ A
into the four categories: unassociated (not
shown), memorized, misrepresented and
correlated for VICReg. The memorized
samples—those whose labels are predicted
by KNNA but not by KNNB—occupy a
significantly larger share of the training set
than the misrepresented samples—those
predicted by KNNB but not KNNA by
chance.

7See section 4.6 for further discussion of the déjà vu score trends of Figure 4.

92



4.4.2. Sample-level Memorization

The déjà vu score shows, on average, how much better an adversary can select and
classify images when using the target model trained on them. This average score does not
tell us how many individual images have their label successfully recovered by KNNA but not
by KNNB. In other words, how many images are exposed by virtue of being in training set
A: a risk notion foundational to di�erential privacy. To better quantify what fraction of the
dataset is at risk, we perform a sample-level analysis by fixing a sample Ai œ A and observing
the label inference result of KNNA vs. KNNB. To this end, we partition samples Ai œ A
based on the result of label inference into four distinct categories: Unassociated - label
inferred with neither KNN; Memorized - label inferred only with KNNA; Misrepresented
- label inferred only with KNNB; Correlated - label inferred with both KNNs.

Intuitively, unassociated samples are ones where the embedding of crop(Ai) does not
encode information about the label. Correlated samples are ones where the label can be
inferred from crop(Ai) using correlation, e.g., inferring the foreground object is basketball
given a crop showing a basketball player. Ideally, the misrepresented set should be empty
but contains a small portion of examples due to chance. Déjà vu memorization occurs
for memorized samples where the embedding of SSLB does not encode the label but the
embedding of SSLA does. To measure the pervasiveness of déjà vu memorization, we
compare the size of the memorized and misrepresented sets. Figure 5 shows how the four
categories of examples change with number of training epochs and training set size. The
unassociated set is not shown since the total share adds up to one. The misrepresented set
remains under 5% and roughly unchanged across all settings, consistent with our explanation
that it is due to chance. In comparison, VICReg’s memorized set surpasses 15% at 1000
epochs. Considering that up to 5% of these memorized examples could also be due to
chance, we conclude that at least 10% of VICReg’s training set is déjà vu memorized.

4.5. Visualizing Déjà Vu Memorization
Beyond enabling label inference using a periphery crop, we show that déjà vu memo-

rization allows the SSL model to encode other forms of information about a training image.
Namely, we train an RCDM [29] on the public dataset X and use it to visually reconstruct
training images given their periphery crop. We aim to answer the following two questions:
(1) Can we visualize the distinction between correlation and déjà vu memorization? (2)
What foreground object details can be extracted from the SSL model beyond class label?
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(a) A correlated dam example (b) A memorized dam example

Fig. 6. Correlated and Memorized examples from the dam class. Both SSLA and SSLB are
SimCLR models. Left: The periphery crop (pink square) contains a concrete structure that
is often present in images of dams. Consequently, the trained RCDM can reconstruct the
foreground object using representations from both SSLA and SSLB through this correlation.
Right: The periphery crop only contains a patch of water. The embedding produced by
SSLB only contains enough information to infer that the foreground object is related to
water, as reflected by its KNN set and RCDM reconstruction. In contrast, the embedding
produced by SSLA memorizes the association of this patch of water with dam and the RCDM
can visualize the embedding to produce images of dams.

Reconstruction pipeline. RCDM is a conditional generative model that is trained
on the backbone embedding of images Xi œ X to generate an image that resembles Xi. All
training images are first face-blurred for privacy purposes. Bordes et al. [29] showed that the
backbone embedding of SSL models contains more low-level information about the image,
making them better suited for conditioning the RCDM. At test time, following the pipeline in
Figure 2, we first use the projector embedding to find the KNN subset for the periphery crop,
crop(Ai), and then average their backbone embeddings as input to the RCDM model. Ideally,
when the public set contains enough representative images, the average representation of the
KNN subset encodes objects present in Ai, and the RCDM model decodes this representation
to visualize these objects.

Visualizing Correlation vs. Memorization. Figure 6 shows examples of dams from
the correlated set (left) and the memorized set (right) as defined in Section 4.4.2, along with
the associated KNN set and RCDM reconstruction. Both SSLA and SSLB are SimCLR
models. In Figure 6a, the periphery crop is represented by the pink square, which contains
concrete structure attached to the dam’s main structure. As a result, both SSLA and
SSLB produce embeddings of crop(Ai) whose KNN set in X consist of dams, i.e., there is a
correlation between the concrete structure in crop(Ai) and the foreground dam. The RCDM
reconstructions also consist of dams or structures that closely resemble dams. In Figure 6b,
the periphery crop only contains a patch of water, which does not strongly correlate with
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(a) Memorized European badgers (b) Memorized American badgers

Fig. 7. Visualization of déjà vu memorization beyond class label. Both SSLA and SSLB

are VICReg models. The four images shown belong to the memorized set of SSLA from the
badger class. RCDM reconstruction using embeddings from SSLA can reveal not only the
correct class label, but also the specific badger species: European (left) and American (right).
Such information does not appear to be memorized by the reference model SSLB.
dams in the ImageNet distribution. Evidently, the reference model SSLB embeds crop(Ai)
close to that of other objects commonly found in water, such as sea turtle and submarine.
In contrast, the KNN set according to SSLA all contain dams despite the vast number of
alternative possibilities within the ImageNet classes, and the RCDM reconstruction outputs
dams as well which highlight memorization in SSLA between this specific patch of water and
the dam.

Visualizing Memorization Beyond Class Label. We now use our reconstruction
algorithm to show that déjà vu memorization can be exploited to reveal detailed information
beyond class label. Figure 7 shows four examples of badgers from the memorized set. In
all four images, the periphery crop (pink square) does not contain any indication that the
foreground object is a badger. Despite this, the KNN set and the RCDM reconstruction
using SSLA consistently produce images of badgers, while the same does not hold for SSLB.
More interestingly, reconstructions using SSLA in Figure 7a all contain European badgers,
while reconstructions in Figure 7b all contain American badgers, accurately reflecting the
species of badger present in the respective training images. Since ImageNet-1K does not
di�erentiate between these two species of badgers, our reconstructions show that SSL mod-
els can memorize information that is highly specific to a training sample beyond its class label8.

4.6. Mitigation of déjà vu memorization
We cannot yet make claims on why déjà vu occurs so strongly for some SSL training

settings and not for others. To gain some intuition for future work, we present additional
observations that shed light on which parameters have the most salient impact on déjà vu

8See Appendix C.4 for additional visualization experiments.
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(a) Loss hyper-
parameter

(b) Guillotine regulariza-
tion

Fig. 8. E�ect of two kinds of hyper-
parameters on VICReg memorization. Left:
déjà vu score (red) versus the invariance loss
parameter, ⁄, used in the VICReg criterion
(100k dataset). Larger ⁄ significantly reduces
déjà vu , with minimal e�ect on linear probe
validation performance (green). ⁄ = 25 (near
maximum déjà vu ) is recommended in the
original paper Right: déjà vu score versus
projector layer—guillotine regularization
[30]—from projector to backbone. Removing
the projector can significantly reduce déjà vu
. Appendix C.3.6 shows that the backbone
still can memorize, however; we demonstrate
reconstructions using the SimCLR backbone.

(a) déjà vu vs. capac-
ity

Criteria DV Acc P/B
Supervised 8.9 55.3/61.1

Byol[93] 8.0 54.3/59.4
SimCLR[49] 10.0 44.2/54.1

Dino[42] 14.5 26.3/55.7
Barlow T.[236] 30.5 33.7/54.4

VICReg[23] 33.2 40.3/55.2

(b) déjà vu (DV) vs. Cri-
terion

Fig. 9. E�ect of model architecture and
criterion on déjà vu memorization. Left:
déjà vu score with VICReg for resnet (pur-
ple) and vision transformer (green) architec-
tures versus number of model parameters.
As expected, memorization grows with larger
model capacity. This trend is more pro-
nounced for convolutional (resnet) than trans-
former (ViT) architectures. Right: Compari-
son of déjà vu score 20% conf. and ImageNet
linear probe validation accuracy (P: using
projector embeddings, B: using backbone em-
beddings) for various SSL criteria.

memorization.

Déjà vu memorization worsens by increasing number of training epochs.
Figure 4a shows how déjà vu memorization changes with number of training epochs for
VICReg. The training set size is fixed to 300K samples. From 250 to 1000 epochs, the déjà
vu score (red curve) grows threefold: from under 10% to over 30%. Remarkably, this trend in
memorization is not reflected by the linear probe gap (dark blue), which only changes by a
few percent beyond 250 epochs.

Training set size has minimal e�ect on déjà vu memorization. Figure 4b shows
how déjà vu memorization responds to the model’s training set size. The number of training
epochs is fixed to 1000. Interestingly, training set size appears to have almost no influence
on the déjà vu score (red line), indicating that memorization is equally prevalent with a
100K dataset and a 500K dataset. This result suggests that déjà vu memorization may
be detectable even for large datasets. Meanwhile, the standard linear probe train-test
accuracy gap declines by more than half as the dataset size grows, failing to represent the
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memorization quantified by our test.

Training loss hyper-parameter has a strong e�ect. Loss hyper-parameters, like
VICReg’s invariance coe�cient (Figure 8a) or SimCLR’s temperature parameter (Appendix
Figure 2a) significantly impact déjà vu with minimal impact on the linear probe validation
accuracy.

Some SSL criteria promote stronger déjà vu memorization. Table 9b
demonstrates that the degree of memorization varies widely for di�erent training criteria.
VICReg and Barlow Twins have the highest déjà vu scores while SimCLR and Byol have the
lowest. With the exception of Byol, all SSL models have more déjà vu memorization than the
supervised model. Interestingly, di�erent criteria can lead to similar linear probe validation
accuracy and very di�erent degrees of déjà vu as seen with SimCLR and Barlow Twins. Note
that low degrees of déjà vu can still risk training image reconstruction, as exemplified by the
SimCLR reconstructions in Figures 6 and 9.

Larger models have increased déjà vu memorization. Figure 9a validates the
common intuition that lower capacity architectures (Resnet18/34) result in less memorization
than their high capacity counterparts (Resnet50/101). We see the same trend for vision
transformers as well.

Guillotine regularization can help reduce déjà vu memorization. Previous
experiments were done using the projector embedding. In Figure 8b, we present how
Guillotine regularization[30] (removing final layers in a trained SSL model) impacts déjà
vu with VICReg9. Using the backbone embedding instead of the projector embedding
seems to be the most straightforward way to mitigate déjà vu memorization. However, as
demonstrated in Appendix C.4.1, backbone representation with low déjà vu score can still be
leveraged to reconstruct some of the training images.

4.7. Conclusion
We defined and analyzed déjà vu memorization, a notion of unintended memorization of

partial information in image data. As shown in Sections 4.4 and 4.5, SSL models can largely
exhibit déjà vu memorization on their training data, and this memorization signal can be
extracted to infer or visualize image-specific information. Since SSL models are becoming
increasingly widespread as foundation models for image data, negative consequences of déjà

9Further experiments are available in Appendix C.3.6.

97



vu memorization can have profound downstream impact and thus deserves further attention.
Future work should focus on understanding how déjà vu emerges in the training of SSL
models and why methods like Byol are much more robust to déjà vu than VICReg and Barlow
Twins. In addition, trying to characterize which data points are the most at risk of déjà vu
could be crucial to get a better understanding on this phenomenon.
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Prologue to Article 4

PUG: Photorealistic and Semantically Controllable Synthetic Data for Represen-
tation Learning, Florian Bordes, Shashank Shekhar, Mark Ibrahim, Diane Bouchacourt,
Pascal Vincent, Ari S. Morcos, Thirty-seventh Conference on Neural Information Processing
Systems (NeurIPS 2023) Datasets and Benchmarks track.

Despite their impressive performances across many benchmarks, deep neural networks
struggle to understand the world the same way we do. A photograph of a cow in a winter
background will be a very rare occurrence. However, a human will easily recognize the
cow despite the unusual background. Since neural networks are learning by association,
they might learn to associate the concept of grass with the concept of cow which makes
them unable to detect a cow on unusual backgrounds. Unfortunately, most benchmarks
and evaluations lack fine-grained labeling, which would allow practitioners to detect if the
network is relying on a spurious feature for classification. Since the cost of fine-grained
labeling of real data is too high and uncertain, I decided to leverage a powerful video game
engine (the Unreal Engine) for dataset generation. Most synthetic datasets available when
writing this thesis were too toyish and lacked the realism needed to evaluate models trained
on real images. With the Unreal Engine, we can significantly improve realism while keeping
complete control over the environments. In this article, we introduced our setup called
PUG (Photorealistic Unreal Graphics) and four datasets for Out-Of-Distribution (OOD)
generalization, ImageNet benchmarking, vision-language model evaluation, and fine-tuning.

Contribution statement I started preliminary exploration for this project in 2021, and
in 2022 Ari joined the project and provided very insightful guidance and support. I started
developing an interactive web demo in which a user could change the factors of variation in a
scene (like camera position, object orientation, textures, and backgrounds). When changing a
factor, the images were passed through di�erent neural networks, and their predictions were
printed live on the screen. This demo allowed us to better grasp the failure modes of neural
networks and to get people interested in the project. Afterwards, with Ari, we decided to buy
a significant number of 3D assets, to have a diverse enough set of environments, to create



datasets that people could use to evaluate their models. I created the first PUG: Animal
dataset, which was targeted towards OOD generalization by providing all combinations of a
set of factors of variation. Then, I created a second dataset coined PUG: ImageNet as an
additional benchmark for pre-trained ImageNet models. The third dataset I created is PUG:
SPAR (Spatial, Position, Attribute, And Relation), which benchmark vision-language models
(VLMs). Shashank joined the project later to create a fourth dataset called PUG: AR4T
to show that in addition to using synthetic data for evaluation, we can also use them for
fine-tuning CLIP-based models to improve reasoning abilities. Diane added the equivariance
experiments while Mark ran the evaluations on PUG: ImageNet. Writing the paper was a
common e�ort between all the co-authors. I made all the code on GitHub and developed the
website.
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Chapter 5

Article 4: PUG: Photorealistic and
Semantically Controllable Synthetic Data for

Representation Learning

Synthetic image datasets o�er unmatched advantages for designing and evaluating deep neural
networks: they make it possible to (i) render as many data samples as needed, (ii) precisely
control each scene and yield granular ground truth labels (and captions), (iii) precisely control
distribution shifts between training and testing to isolate variables of interest for sound
experimentation. Despite such promise, the use of synthetic image data is still limited –
and often played down – mainly due to their lack of realism. Most works therefore rely on
datasets of real images, which have often been scraped from public images on the internet,
and may have issues with regards to privacy, bias, and copyright, while o�ering little control
over how objects precisely appear. In this work, we present a path to democratize the use of
photorealistic synthetic data: we develop a new generation of interactive environments for
representation learning research, that o�er both controllability and realism. We use the Unreal
Engine, a powerful game engine well known in the entertainment industry, to produce PUG
(Photorealistic Unreal Graphics) environments and datasets for representation learning.
In this paper, we demonstrate the potential of PUG to enable more rigorous evaluations of
vision models. The datasets can be downloaded at https://pug.metademolab.com/.

5.1. Introduction
A grand goal of machine learning is to learn representations of data that are useful

across many tasks. Essential to measuring and making progress towards this goal is the
availability of ample controllable, realistic data for evaluation and training. This is especially
true when considering deep neural network models not only in terms of their raw accuracy,
but also their robustness and fairness—crucial properties for models deployed in real-world
applications. However, collecting such data is challenging, presenting issues with privacy,

https://pug.metademolab.com/


bias, and copyright. Furthermore, the majority of available image datasets lack fine-grained
labels and are challenging to manipulate beyond coarse image augmentations (e.g. with a
photograph, it is hard to change the viewpoint or the time of day).

Using synthetic image data where we precisely control all the factors a�ecting the
rendered scene gives easy access to the corresponding rich set of factor labels. This enables
evaluating the extent of a trained deep neural network’s abilities, most importantly its
robustness. Is the network robust to change in pose? Are the predictions similar for di�erent
textures? All these questions may be answered systematically by using synthetic data,
enabling highly rigorous evaluations of deep neural network models. In addition, training
could also benefit from controllable factors1, by increasing the robustness of models with
respect to these factors. They may also be used to monitor training, e.g. tracking which
factors a model focuses on or becomes most invariant to, and in which order, as training
progresses. This potentially enables better understanding of the training and generalization
dynamics in deep neural networks. However the lack of realism typical in many of the
currently available synthetic image datasets, and their usually very limited scope greatly
limits their usefulness for general image representation learning research.

To address this, we introduce2 a new family of synthetic Photorealistic Unreal Graphics
(PUG) datasets, designed for ease of use by the representation learning research community,
where image realism is significantly improved compared to current public synthetic image
datasets. The environments were built using the Unreal Engine [72], which is widely used
in the video game and entertainment industries and praised for its realism. In addition to
pre-rendered static image datasets, we also introduce the TorchMultiverse python library,
which o�ers a simple python interface to enable easily controlled dataset creation from any
given PUG environment. Using these tools, we contribute 4 new datasets and show their
usefulness across several di�erent research domains. To summarize:

• We introduce a new family of environments and image datasets (coined as PUG) for
representation learning, based on the Unreal Engine [72].

• We present PUG: Animals for research on out-of-distribution (OOD) generalization and to
study the representational space of foundation models.

1We define factors here as distinctive attributes that describe the data, such as color or pose of an object.
2As a reminder, any use of content or technologies made available by Unreal and/or Epic Games, or any other
provider, should comply with their applicable terms (such as the Content License Agreement available at
https://www.unrealengine.com/en-US/eula/content or any other direct agreement you may have with
Epic / Unreal)
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Fig. 1. The PUG Dataset Family (left) Cartoon illustration of our dataset creation
setup, which consists of two steps: environment creation and then data creation. (right)
Example images from PUG: Animals, PUG: Image-Net, and PUG: SPAR.

• We introduce PUG: ImageNet as an additional robustness test set to ImageNet, containing
a rich set of factor changes such as pose, background, size, texture, and lighting.

• We introduce PUG: SPAR for evaluating vision-language models. We use it to demonstrate
how synthetic data can be utilized to address known benchmark limitations. In addition,
we introduce PUG: AR4T for fine-tuning vision-language models and use it to demonstrate
the reliability of PUG: SPAR in contrast to other benchmarks.

5.2. Related work
Synthetic data for representation learning To address robustness shortcomings,

researchers today commonly study representations using lower-fidelity controlled datasets
such as CLEVR, Biased Cars, and ShapeNet [118, 147, 48]. Other datasets also contain
precise factor labels useful for probing how well a representation encodes each factor in a
structured form [87, 195, 221]. While these datasets o�er control in terms of the factors that
change as well as the train and evaluation splits enabling controlled scientific experimentation,
they lack realism. This gap between the lower-fidelity controlled data and the real world poses
a challenge for the broader application of these studies. On the other hand, photorealistic
datasets have been explored in various application-specific domains in machine learning
(outside of representation learning.) This is especially relevant when trying to evaluate and
train models on rare events in which getting real data might be really di�cult, such as for
autonomous driving. CARLA [65] is a popular self-driving car simulator which o�er highly
realistic environment with a significant amount of controllable factors such as environmental
conditions, full control of all static and dynamic actors and maps rendering. Another
domain where simulated environments are commonly used is reinforcement learning (RL), as
RL algorithms often requires the ability to run millions of simulations to learn to master
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non-trivial tasks, and this cannot be done in a real environment. Data environments based
on video games like Atari have been very popular to design and evaluate RL algorithms.
Alternatively, platforms like Habitat [196] o�ers indoor scene for training home assistant
agents. While these simulators, games or datasets can o�er some photo-realism and mimic
real world interactions for agents, they are relegated to domain-specific applications making
them challenging to use for evaluating the representations of deep neural networks more
broadly. Since our focus is not RL, we do not need to embed a fast simulator capable of
rendering several thousands frames per second for e�ective online-training. Instead we can
pre-render custom high-quality datasets o�ine. Photorealistic environments and datasets
have also been explored for more general domains with the ThreeDWorld platform [80].
Based on the Unity game engine, it o�ers an interactive environment that can be leveraged to
create datasets. The environment is presented as a simulator that is generic enough to handle
multiple uses cases, and users can customize the setup of a scene and the data smapling
through a low level API. One such dataset that utilizes ThreeDWorld is the Synthetic Visual
Concepts (SyVIC) dataset [47], which uses the API to create scene images and descriptive
captions for training vision-language models. One of the downsides of ThreeDWorld is that
the back-end, the simulator itself, is closed source which limits external contributions. In
contrast with ThreeDWorld, we do not provide a platform or a generic simulator for people
to use. In fact, we believe that tools like the Unreal Engine are simple enough to be used
directly by researchers to create the environments they want without the need to use an
intermediate platform. In addition, being free of such intermediate platform allows us to
leverage most of the content created for video gaming directly into our simulator by using
the existing Epic Games marketplace.

Evaluating model robustness To study model robustness, there is an inherent
trade-o� between photo-realism and control. Photo-realism depicts objects as they appear
in the real world, but often lacks control to precisely define the factors to describe the
object such as pose or background. Prior works either collect natural images with specific
factor changes [225, 20] or label distinctive factors in existing datasets [111]. Such datasets
allow researchers to measure average accuracy on photo-realistic images but lack granular
control necessary for precisely controlled robustness experiments. On the other hand, prior
studies [110, 1, 3] examine model robustness with respect to factors such as pose and size
by rendering 3D-objects such as buses. These studies precisely control how each object is
depicted, but lack realism. In this work, we advance the photo-realism of these prior works
by using the Unreal engine 5.0 [72], a rendering engine commonly used in high-end cinematic
CGI and high-resolution video games which allows us to measure robustness with respect to
factors of variation such as lighting.

104



Benefits and limitations of using generative models as data generator Another
way to generate realistic datasets is to use generative models[106, 91]. However, one limitation
of such models, despite impressive improvements in the last few years [60], is the lack of
quality control on what the model can produce [81]. It’s not uncommon to find cases in which
the model will ignore parts of the conditioning prompt. Despite such limitations, many works
have tried to leverage generative model as an additional source of data to train deep neural
networks with some success [12, 19, 200, 13, 244, 138, 114, 115, 181, 100]. Another limitation
of using generative models is privacy concerns that arise from such models replicating data
from their training datasets [192]. Finally, Shumailov et al. [187] recently demonstrated that
training on data recursively generated from such models results in increasing underestimates of
the tails and overestimates of the mode, amplifying bias in datasets. In contrast to generative
models that might produce unreliable results, we use an entirely controllable environment for
which we can have a known and accurate generation with respect to a set of factors.

5.3. Photorealistic Unreal Graphics (PUG) environ-
ments and datasets

5.3.1. Leveraging Unreal Engine to create environments and
datasets for representation learning

We introduce the Photorealistic Unreal Graphics (PUG) environments, a family of 3D
graphics environments that leverage Unreal Engine for rendering image data for representation
learning research. To create a PUG environment, we first obtain a number of assets 3 which
can be 3D objects or 3D backgrounds. Then, we import them in the Unreal Engine editor
and create blueprints that yield a simple generic 3D environment. Once this generic and
controllable environment is created, it is compiled into a Linux binary file, which can be
run on standard GPU clusters. This environment is programmed in such a way that when
running, it is listening for incoming packets through WebRTC which can specify instructions
about how to change a scene. Since most machine learning practitioners are used to python
scripting, we wanted to have a very simple approach by which a user can request image data
rendered from a packaged PUG environment, through very simple python code and JSON
config files. To do so, we developed a python API, TorchMultiverse, that allows a user to
easily specify a scene configuration in JSON and request rendered images from the PUG
by using WebRTC. Once the factors have been set as requested by the user, for a specific
environment configuration, the user can send a command to freeze the current environment
and receive back an image. It takes around 1 second to render an image at a resolution of
3We purchased assets from the Epic Game Store and used assets from Sketchfab [55]. The complete list of
assets we have used is available at https://github.com/facebookresearch/PUG
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512x512 on a V100 GPU4. We illustrate this setup in Figure 1. It shows how starting from 3D
assets, we design interactive environments that enable us to create di�erent datasets. In the
present work, we focus on pre-rendered static image datasets, however, our setup also allows
dynamic communication between a PUG environment and a pytorch program, meaning that
new data could be requested and rendered on the fly while training a deep neural network.
We leave the exploration of such active learning setups, as well as the rendering of videos, as
future work.5

5.3.2. PUG: Animals

Fig. 2. We present PUG: Animals, a new photorealistic synthetic dataset with annotated
factors of variations to evaluate the out-of-distribution (OOD) robustness of models.

As the first member of the PUG family, we introduce PUG: Animals (Figure 2), which
contains 215 040 pre-rendered images using 70 animals assets, 64 backgrounds, 3 object
sizes, 4 textures, under 4 di�erent camera orientations. PUG: Animals is designed with
the intent to create a dataset with every combination of the factors of variation available.
PUG: Animals allows one to precisely control distribution shifts between training and testing
which can give researchers better insight on how a deep neural network generalizes on held
out factors of variations. Surprisingly, the usage of 3D realistic synthetic data is limited in
OOD generalization research – with the exception of Biased-cars[148] that has been used
to study generalization on new category-viewpoints. Commons OOD datasets are Colored
MNIST [7] – to study how well a network can generalize to unseen combinations of digits
and colors and MNIST-R [83] – to study generalization on a new combination of digits
and rotations. However, MNIST-based dataset might be too toyish to evaluate modern
architectures. A more realistic dataset based on real images is Nico++[228] – to study
generalization with respect to di�erent domains or environments. However, in Nico++ the
objects and backgrounds are never entirely disentangled (the context background is di�erent
for each image). Thus, it is never clear if the model is failing because of the context or
4In our setup, we paralyze the rendering across 64 GPUs. A dataset like PUG: Animals which contains 200K
images has taken around 1h to be entirely rendered.
5It might also conceivably be used as a photorealistic interactive environment for reinforcement learning (RL),
but the high quality image rendering achieved in this system currently appears too compute-intensive and
slow to be practically useful in the context of current RL research. Our initial targeted research community
and use case is that of supervised and self/unsupervised representation learning from image data, rather than
RL.
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because of a specific object (since the contexts and the objects are never disentangled).

In contrast, in PUG: Animals the animal asset is always the same, in that case, the
environment factor and the objects are perfectly disentangled such that if the model is able to
classify correctly an elephant on a road and is not able to classify the elephant in a museum,
we can rigorously say that the failure is caused by the change in context background. In
addition to analysis of the robustness with respect to the background scene, it is also possible
to analyze with PUG: Animal the robustness with respect to the camera position, asset size,
and texture (as we demonstrated in Appendix D.3).

Studying foundation model representational space PUG: Animal can also be
to study the equivariance of foundation models’ representations. For this, we augment
each image in PUG: Animals with a caption that describes it according to its factor
values (sizes are converted to three adjectives: “small”, “medium” or “big”, see Appendix
D.3.1 for details), using the following template6: “A photo of a [size] sized [character]
textured with [texture] on a [background] background”. Informally, equivariance of a model’s
representation with respect to a factor means that when the factor changes from one
value to another, the embedding of the corresponding image (or caption) changes in a
predictable manner. Equivariance is a sought-after property to improve sample e�ciency and
robustness to transformations [124, 197, 217]. Similar to previous works on equivariance
and compositionality Bouchacourt et al. [34], Xie et al. [226], we measure equivariance as
the alignment (i.e. parallelism) between embedding di�erences. First, we feed images and
their corresponding captions to 9 pretrained vision-language models including multiple CLIP
models Radford et al. [166], NegCLIP Yuksekgonul et al. [235] Flava Singh et al. [189], BLIP
Li et al. [139] and X-VLM Zeng et al. [239] and collect their embeddings of PUG: Animals
images and created captions. For each model, we compute di�erence vectors between the
embeddings of two images (or captions) of an object undergoing a factor change: e.g. a big
penguin textured with grass on a background “village square” modified to the same penguin
but with background “restaurant”, see arrows in Figure 3 (left). Specifically, for a sample
i, undergoing a change from background bk for background bl, we denote the di�erence
vector between the embedding of the image of the sample with backgorund bk and the image
of the same sample but with background bl by v

i
bkæbl

. Similarly, we denote by u
i
bkæbl

the
di�erence vector between the embedding of each of the two captions accompanying the images.

Then, we measure the alignment of di�erence vectors across pairs undergoing the

6Note that the camera and character orientations are not described, as well as the texture when it is default.
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same factor change (here, the penguin and the cat) as their cosine similarity7. We estimate
three types of equivariance: (i) Image equivariance: how parallel (measured with cosine
similarity) are di�erence vectors across image pairs? (lined and dashed red arrows) (ii) Text
equivariance: same but for caption pairs (parallelism of lined and dashed green arrows) (iii)
Across modalities equivariance: for the same object, alignment of di�erence vectors between
pairs of image-caption (i.e. alignment of the two arrows for the penguin). Specifically, for
image equivariance between sample i and j, for background change bk to bl, we compute:

sim(vi
bkæbl

,v
j
bkæbl

) =
v

i
bkæbl

T
v

j
bkæbl

||vi
bkæbl

|| ||vj
bkæbl

||
(5.3.1)

For text equivariance, we compute be sim(ui
bkæbl

,u
j
bkæbl

) while for across equivariance, we com-
pute sim(vi

bkæbl
,u

i
bkæbl

). We report cosine similarity averaged over pairs and possible changes
for each factor (higher value means higher equivariance, 1 is the maximum). Specifically, the
image equivariance for background writes as

1
B(B ≠ 1)

ÿ

bk

ÿ

bl

1
N(N ≠ 1)

ÿ
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ÿ

j

sim(vi
bkæbl
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j
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) (5.3.2)

where B is the number of possible backgrounds and N is the number of samples.
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Fig. 3. Measuring foundation models equivariance thanks to PUG: Animals. Left:
Illustration of how to use PUG: Animals to compute equivariance. Right: Image and text
equivariance is present with respect to background, while across modalities equivariance to
background doesn’t hold as much. See main text for detailed results.

We show in Figure 3 (right) results for equivariance with respect to background. Plots
for equivariance to texture and size are in Figure 5. Looking at Figure 3 results (right side,
top row), we see that the foundation models’ image embeddings present high equivariance to
background (0.78 ± 0.04 on average over models). There is also (see Figure 5a) small image
equivariance to texture (0.15 ± 0.04), but almost no equivariance to size (0.06 ± 0.02). Text
equivariance is high with respect to background (average of 0.87 ± 0.03), but is also strong
for size and texture (0.71 ± 0.11 for size and 0.81 ± 0.03 for texture, see Figure 5b) suggesting
that foundation models’ caption embeddings can be manipulated with vector arithmetic,

7Note that foundation model representations belong to the hypersphere, yet measuring equivariance as
parallelism relies on Euclidean geometry, we discuss this in Appendix D.3.1. Still, cosine similarity is a
starting point to showcase how PUG: Animals can be used to study models’ representations.
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similar to word vectors behaviours Ethayarajh et al. [76]. This aligns with the recent work of
[201] that show linear behavior of VLMs text embedding spaces. Across modalities, small
equivariance is present with respect to background (0.22 ± 0.03 and Figure 3 right side,
bottom row). However when size or texture change for a given object, its image and caption
representations seem to move in non-aligned directions (0.07 ± 0.01 for texture and 0.04 ± 0.01
for size, see Figure 5c). While more syntactically complex captions and other equivariance
metrics could be designed, our aim here is to provide an initial study to showcase how PUG:
Animals can be easily used to study state-of-the-art models representations.

5.3.3. PUG: ImageNet

Fig. 4. We present PUG: ImageNet, a new photorealistic synthetic dataset with annotated
factors of variations as an additional test set for ImageNet pretrained models.

As a second member of the PUG family, we introduce PUG: ImageNet (Figure 4), which
contains 88,328 pre-rendered images using 724 assets representing 151 ImageNet classes with
64 backgrounds, 7 sizes, 9 textures, 18 di�erent camera orientation, 18 di�erent character
orientation and 7 light intensity. In contrast to PUG: Animals, PUG: ImageNet was created
by varying only a single factor at a time (which explain the lower number of images than PUG:
Animals despite using more factors). The main purpose of this dataset is to provide a novel
useful benchmark, paralleling ImageNet, but for fine-grained evaluation of the robustness of
image classifiers, along several factors of variation.

An extensive evaluation of the robustness of SOTA models Our PUG: ImageNet
dataset o�ers both photo-realism and precise control over how each object is depicted from
pose and size to environment and camera-angle. We also provide a collection of objects
with mappings to classes in the popular ImageNet dataset, enabling researchers to probe
the robustness of SoTA vision models without retraining. We assess a variety of model
architectures across several pretraining datasets including ImageNet-1/-21k, LAION (400M
and 2B), and JFT300M [125, 143, 66]. We observe in Table 1 that the models that perform
the best on the ImageNet validation accuracy are not always the ones which o�er the best
robustness on PUG: ImageNet. For example, the pretrained ViT-B32 trained on ImageNet-21k
is better on the ImageNet validation set compared to a Swin-B, but o�ers worse robustness
across all factors. We confirm no statistically significant relationship exists between ImageNet
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accuracy and robustness by computing Pearson’s correlation coe�cients (Appendix D.3.3).
This result showcases how PUG: ImageNet can be added as an additional benchmark to
evaluate vision models.

PUG: ImageNet Top-1 Accuracy across Factors of Variation

ImageNet Val. Camera (Yaw,Pitch,Roll) Pose (Yaw,Pitch,Roll) Size Texture Light Background

ResNet50 81.5 (38.1, 33.1, 26.9) (38.0, 23.6, 22.9) 35.7 27.0 13.6 29.5
ResNet101 82.3 (43.4, 35.9, 29.4) (45.1, 26.7, 25.6) 39.7 31.1 14.1 32.8
ViTLarge 85.8 (52.2, 40.4, 37.1) (52.4, 30.4, 28.4) 46.4 42.9 8.9 34.6
ViTBasePretrained21k 84.3 (37.5, 34.3, 31.7) (38.0, 21.8, 20.5) 33.0 28.5 4.1 26.6
Swin 83.6 (56.0, 45.6, 41.8) (56.9, 35.3, 34.2) 52.9 40.1 19.1 42.0
BiT (JFT300M) 80.3 (40.5, 32.3, 26.0) (42.1, 23.6, 22.8) 37.3 23.4 6.3 20.5
DINOv2 (LVD-142M) 84.5 (45.6, 41.1, 37.4) (47.5, 28.8, 28.5) 43.1 35.0 6.1 30.9
Flava (PMD 70M) 75.5 (31.7, 23.4, 17.6) (30.8, 17.6, 15.4) 30.5 24.2 7.8 21.9
CLIPViTB32 (400M) 62.9 (41.7, 30.2, 22.1) (41.6, 23.8, 20.9) 40.1 34.4 5.7 24.4
CLIPViTB32 (2B) 66.6 (44.0, 31.5, 24.1) (43.8, 24.8, 21.8) 42.2 34.7 3.3 26.0
CLIPViTL14 (400M) 72.8 (52.3, 39.8, 35.7) (51.8, 29.0, 26.4) 50.6 41.1 4.3 33.0

Table 1. Robustness measured by average top-1 accuracy across factors on PUG: ImageNet (We show on the second column
the traditional ImageNet validation set accuracy for comparison). Pretraining dataset sizes are indicated in parenthesis with the
default being ImageNet-1k. CLIP uses ViT-B32 or ViT-L14. Camera orientation and object pose indicate accuracy along (yaw,
pitch, roll) axes.

5.3.4. PUG: SPAR for VLMs

As a third member of the PUG family, we introduce PUG: SPAR (Scene, Position,
Attribute and Relation) for evaluating vision-language models (VLMs). In contrast to pure
vision based models, VLMs should be able to predict the correct caption (from a given set of
captions) that describe the content of a given image. Several benchmarks to evaluate VLM
models already exist such as Winoground [198] or ARO [235]. However, recent works[198, 61]
have highlighted an important limitation in these benchmarks: some image-caption pairs in
Winoground might be even too di�cult to solve for a human whereas ARO has been shown
by Lin et al. [141] to be mostly solvable without even using the image information at all.
Consider that for an image containing a horse eating grass, ARO will propose two captions:
"the horse eating the grass" and "the grass eating the horse". The model should predict
the correct caption between these two. However, the second caption is impossible, so even
without looking at the image, any model can be confident that the first caption is the correct
one.

Another shortcoming of current benchmarks is that most of them probe only if the model
is correctly able to understand the relations or the attributes between objects. However, it is
not clear if the failures in finding the correct relations or attributes come from the model
not understanding them or come from not understanding which objects are present in the
scene. For example, to understand complex relations like A photo of an elephant on the left
and a camel on the right in a desert background, the model should first be able to identify
whether the background of the picture is an actual desert. Then, the model should identify
whether there is an elephant on the picture. It should understand what is an elephant on the
left. The model could be very e�ective at identifying individual elephants or camels, but it
could unexpectedly fail when a camel and an elephant appear in the same picture. If the
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model does not fail in recognizing the animals, then we can probe the model to evaluate
the position of each of them. We built PUG: SPAR with the goal of having a progressive
evaluation scheme in which we can easily determine exactly what are the failure modes of
a given VLM. From basic scene understanding to complex relations and attributes, our
dataset o�ers a simple yet e�ective way to get a better understanding of the capabilities and
limitations of VLMs.

The dataset contains 43,560 images with the associated factors of variations: 10
backgrounds, 32 animals, 4 relations (left/right, bottom/top), and 4 animal texture attributes
(blue/red, grass/stone). We have images containing either 1) only the background (for
scene recognition) 2) only one animal at a di�erent left/right or bottom/top position 3)
two animals at di�erent left/right or bottom/top positions. And for each of the scenes
(either single or multiple animals), we vary the texture of the animals and the background to
evaluate the robustness of the model. Our setup and experiments are presented in Figure 2
in which we display some images from the dataset with the corresponding captions used
for evaluations. In our benchmark, we used 6 di�erent types of captions to evaluate the
following: 1) Scene Recognition (first row) 2) Single animal classification (second row) 3)
Single animal position detection (third row) 4) Multiple animals classification (fourth row) 5)
Multiple animal position detection (fifth row) 6) Multiple animal and textures prediction
(sixth row). For each of them, we evaluate the top-1 retrieval accuracy of the correct captions
within the set of captions associated with each setup. We evaluate multiple models on these
setups: OpenAI CLIP [166], OpenCLIP [112], Flava [189], BLIP [139], X-VLM [239] and
NegCLIP [235]. Most of the models are correctly able to solve the scene recognition task
(which is not surprising since we used only 10 environments that are very di�erent from
each other). Concerning the simple object recognition task when using a single animal, the
performances across models is highly variable. Our experiments also highlight that the VLM
performance in a multiple animals detection setting are much worse than the performance in
a single animal detection setting. Those experiments show that despite their successes, VLMs
are far from having a good understanding of the world and that improving the robustness of
these models is a needed step for real-world robustness.

Inspired by Winoground [198], we present an experimental setup in which we leverage
hard-negative pair of images. Instead of performing caption retrieval within all captions
associated to a given setup, we performed caption retrieval between the correct and the hard
negative caption. For example, the hard negative caption of "An elephant on the left of the
picture and a camel on the right of the picture" will be "A camel on the left of the picture
and an elephant on the right of the picture". In addition of switching the relation (left/right
and bottom/top), we also provide hard negative captioning for the attributes (blue/red and
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grass/stone). In Table 3, we present our results using the hard-negative pair. We clearly
observe that none of the models are able to predict the correct captions, with many models
being close to random performance (50%).

5.3.4.1. PUG: AR4T. Lastly, we introduce PUG: AR4T (Attributes and Relations for
training). In contrast to PUG: SPAR which is only an evaluation benchmark, PUG: AR4T
was created as an additional fine-tuning dataset for VLMs.8 As shown in the previous section,
VLMs struggle to understand spatial relations or attributes and thus are good candidates
for our fine-tuning scenario. PUG: AR4T contains 249,986 training images with captions
and 23,216 test images9. In Table 4, we present CLIP fine-tuning results on the ARO and
PUG: SPAR benchmark. We also compare our results against Syn-CLIP, which is CLIP
fine-tuned on the SyVIC synthetic dataset. Our results are very similar to Syn-CLIP, but
Syn-CLIP training requires several additional tricks to arrive at this performance (Section
3.2 in [47]). On the other hand, the photo-realistic nature of PUG: AR4T enables us to
match Syn-CLIP without any of these additional bells and whistles. However, even if we note
some improvements on ARO, we are still far from having a model able to understand spatial
relations. This is highlighted by the results given on our PUG: SPAR benchmark for which
the improvement on single animal position prediction is still only above random chance while
there is no improvement on the double animal location prediction task. This confirms the
unreliability of the ARO benchmark highlighted by Lin et al. [141].

5.4. Conclusion
The fine-grained controllability of synthetic rendered image data makes it ideal for design-

ing challenging evaluation benchmarks to better understand the properties and limitations of
vision models, as well as for controlled training scenarios – if only it was closer to real data.
To this e�ect, we introduced PUG datasets for representation learning. By leveraging the pho-
torealism of the Unreal Engine[72], we created 4 new datasets and showcased their utility for
robust evaluation. We showed how PUG: Animals could be leveraged for OOD generalization
and to study properties of the representation spaces. We developed PUG: ImageNet as a new
challenging benchmark that researchers can easily use to assess and compare the robustness
of image classifiers. With PUG: SPAR we provide a reliable benchmark for vision-language
models while PUG:AR4T o�ers additional data that could be leveraged to fine-tune VLMs.
Together, the PUG family of datasets represents a new standard of photorealism and control
for synthetic image data.

8The assets used to create PUG: SPAR and PUG: AR4T are di�erent enough such that PUG: SPAR is still a
good benchmark to evaluate models fine-tuned with PUG: AR4T.
9We also run experiments with a version of this dataset which contain 1M images but as shown in Table 4,
adding more images does not increase performance on PUG: SPAR. We only release publicly the version of
PUG:AR4T that contain 249,986 images.
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“A photo in a [background]
environment“

N/A 100.00 100.00 100.00 90.00 100.00 100.00 60.00 100.00 90.00 100.00

A photo of a [character] in
a [background]
environment

Default 39.61 41.80 78.44 60.00 70.23 78.36 31.41 52.73 44.84 32.42
Blue/Red 27.66 29.84 59.84 45.00 50.78 63.75 15.94 34.69 25.62 24.69
Grass/Stone 23.13 27.19 54.53 40.00 45.00 53.91 13.44 32.81 23.44 22.97

“A photo of a [character]
on the (left/right) of the
picture in a [background]
environment“

Default 19.84 20.00 39.38 30.31 35.94 42.19 14.69 27.03 22.66 16.56

“A photo of a [character]
and a [character] in a
[background] environment“

Default 9.42 11.88 44.08 25.36 34.98 50.66 6.30 22.29 13.50 7.32
Blue/Red 3.54 6.03 23.00 14.16 14.59 28.54 1.93 7.02 2.49 2.94
Grass/Stone 2.89 4.94 16.98 11.21 12.21 21.89 1.11 5.67 2.48 3.28

“A photo of a [character]
on the left and a [charac-
ter] on the right in a [back-
ground] environment“

Default 4.82 6.75 22.20 13.00 20.94 29.83 3.43 11.51 7.42 4.92

“A photo of a [character]
textured with [texture1]
and a [character] textured
with [texture2] in a
[background] environment“

Blue/Red 1.69 3.03 9.18 6.37 8.25 15.89 1.73 4.20 2.50 1.44
Grass/Stone 1.20 2.24 8.46 6.14 7.08 13.50 1.50 3.50 1.89 1.52

Table 2. Setup and zero-shot evaluation of CLIP models on PUG: SPAR with caption retrieval. By using synthetic data, we
can increase progressively the di�culty of a scene. Our setup is presented in the image above the table in which we show 6
di�erent types of image captioning. 1) caption for background scene recognition for which we have 10 di�erent backgrounds
which are easy to distinguish from each other. 2) caption for single animal class prediction, the model should predict the correct
categories over the 32 possible animals and 10 backgrounds (for a total of 320 captions). 3) caption for single animal position
prediction that increases the number of caption up to 640 and lead to a significant drop in accuracy for every models. 4) caption
for two animals class prediction, the model should predict the correct categories of the two animals presented in the images
(5120 captions). 5) caption for two animals positions prediction, the model should predict the position of the two animals in the
picture (over a total of 10240 captions). 6) caption for two textured animals class prediction, the model should recognize a blue
elephant from a red camel. The performances of several VLMs models are presented in the table for which each row corresponds
to one of the scenario described previously.
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Caption Values B-32
CLIP

B-32
Open

Clip
2B

L-14
CLIP

L-14
Open

Clip
2B

H-14
Open

CLIP
2B

G-14
Open

CLIP
2B

Flav
a

BLIP
XVLM

Neg
CLIP

“A photo of a [character]
on the [position] of the
picture in a [background]
environment“

Left/Right 49.53 47.66 50.00 46.72 49.84 50.31 49.22 51.88 52.03 48.91
Bottom/Top 54.84 52.34 66.87 60.62 56.56 58.91 50.47 54.84 53.28 54.06

“A photo of a [character]
on the [position1] and a
[character] on the
[position2] in a
[background] environment“

Left/Right 53.88 55.62 53.17 56.23 55.74 54.44 54.41 53.79 55.02 54.36
Bottom/Top 51.15 53.84 54.06 53.51 57.24 56.49 55.23 60.26 58.87 54.09

“A photo of a [character]
textured with [texture1]
and a [character] textured
with [texture2] in a
[background] environment“

Blue/Red 52.77 53.63 54.43 56.94 55.48 54.42 54.22 57.32 56.19 51.74
Grass/Stone 52.79 54.14 56.31 57.28 56.62 57.19 54.53 53.94 54.26 49.92

Table 3. We present the performances of several VLMs with hard negatives captioning on PUG: SPAR in which we perform
retrieval between two captions: the correct caption and the hard-negative corresponding caption. In that instance, the model
should choose the correct caption between both of them (the probability to get the correct one with a random model would be
50%). Interestingly, none of the model presented in this table seem to be able to get a real understanding of simple position (left,
right, bottom, top) or colors.

ARO PUG: SPAR (left/right)
VG-Relation VG-Attribution COCO-Order Flickr30k-Order Average Single Double
(Macro-Accuracy%) (Macro-Accuracy%) (Precision@1) (Precision@1) (Precision@1) (Precision@1)

CLIP-ViT-B/32 (400M) 59.16 | 55.50 62.18 | 61.52 47.96 59.98 57.32 49.84 54.42
+ FT w/ Syn-CLIP 71.40 66.94 59.06 70.96 67.09 (+9.77) N/A N/A
+ FT w/ PUG:AR4T (200K) 68.36 | 75.18 65.54 | 64.44 57.80 69.74 65.36 (+8.04) 50.78(+0.94) 54.23(-0.19)
+ FT w/ PUG:AR4T (1M) 71.03 | 76.57 65.15 | 64.32 61.07 72.84 67.52 (+10.3) 50.16(+0.32) 54.19(-0.23)

Table 4. Fine-tuning CLIP on PUG: AR4T. For VG-Relation and Attribution, the results (Acc1 | Acc2) indicate macro-accuracy
across all relations and attributes (Acc1), and macro-accuracy on the subset of relations and attributes present in both ARO
and PUG (Acc2). For PUG: SPAR, we evaluate on images in which there is only one animal (Single) or two animals (Double)
with the relation being left or right. We were not able to run SynCLIP on PUG: SPAR because the model was not public at the
time of the publication.
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Chapter 6

Conclusion and Discussion

6.1. Summary of the contributions presented in this
thesis

Precisely assessing the performances of deep neural networks is crucial to understand bet-
ter what these systems learn and their limitations. With deep neural networks taking a more
prominent place in our lives, we must create and design evaluation systems to ensure their safe
deployment. Even if the road towards a complete and reliable set of benchmarks to evaluate
the safety of AI systems is still long ahead, I introduced in this thesis key components that will
help researchers and practitioners better understand the limitations of current neural networks.

• By providing a new state-of-the-art qualitative evaluation method with
RCDM, researchers are now able to visualize and better understand which in-
formation is retained in a given representation – this without the need to gather
extra labeling information. RCDM significantly impacted the SSL community by
providing key visualizations for MSN[9] and I-JEPA[10]. In addition, it is a cited
conditional generative model predecessor of DALL·E 2[167], which was a qualitative
breakthrough in text-to-image generation.

• To better characterize the performance of neural networks, it is essential to perform
evaluation across di�erent layers with Guillotine Regularization. Otherwise,
the results presented might be biased depending on the choice of training hyper-
parameters or tasks. This is especially important for SSL methods since the pretext
training task is typically di�erent from the downstream task.

• When evaluating neural networks, it is important to quantify how much they mem-
orized their training data. To do that, I introduced the Déjà vu Score, a metric
targeted at join-embedding Self-Supervised models that highlights how much they
retain precise information about their training data.



• Lastly, I introduced PUG, a new generation of datasets and benchmarks
that enable photo-realistic and controllable generation of synthetic data.
In contrast to previous works, which o�ered toyish-looking objects and scenes, we
leveraged video game engines and bought video game assets to build diverse and
rich scene environments. We demonstrated how these datasets can be used for OOD
research, equivariance studies, model robustness evaluation, vision-language model
spatial relation understanding, and CLIP fine-tuning.

6.2. Other related contributions
In this thesis, I presented four articles. However, during my thesis I also co-authored

other articles that could be of interest to the reader.

A cookbook of self-supervised learning [17] In this work, we o�er a complete review
of Self-Supervised Learning along with some guidance and tips on how to develop, improve,
and evaluate SSL systems.

Towards Democratizing Joint-Embedding Self-Supervised Learning [32] In this
work, I introduced a library called FFCV-SSL (based on the FFCV library of Leclerc et al.
[129]). I developed this library to yield substantial speedup for training SSL methods up to 6
times faster, and demonstrated that one could train an SSL method like SimCLR (which had
the reputation of being costly and long to train) in a few hours on an 8 GPU cluster or around
a day in a single GPU setup. This work was a crucial enabler of several papers presented
in this thesis, since it allowed us to speed up all our experiments significantly. The library
is available at the following URL: https://github.com/facebookresearch/FFCV-SSL. It
also gave us significant speed-ups for our evaluation pipelines.

A surprisingly simple technique to control the pretraining bias for better
transfer: Expand or Narrow your representation [33] This work follows up on the
findings from Bordes et al. [29] and Bordes et al. [30], and is a thorough empirical exploration
of how changing the backbone dimension impacts the performances of Self-Supervised
models. This research was primarily motivated by the observation that about all SSL
models were based on the same architecture as their supervised counterparts. However,
since SSL models extract more information about their inputs, the hypothesis I had was
that wider representations might be beneficial for SSL training. One of the main findings
was that supervised methods yield better in-distribution generalization if the size of the
backbone representation is close to the number of classes. However, when using such a
network for transfer learning to a di�erent distribution, it is preferable to use a wider
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backbone. Our finding is that the performance of SSL methods increases significantly
across various benchmarks if we merely increase the size of their backbone representation.
We are also the first to show that when using a linear projector to train SSL methods,
the ratio between the projector and backbone dimensions is an important parameter to adjust.

The hidden uniform cluster prior in self-supervised learning [8] In this work, we
show that many SSL methods are learning semantic information that is highly dependent on
how the mini-batch is constructed. If the dataset is built in such a way that its classes are
distributed uniformly, by taking a random mini-batch that is big enough, we can expect to
get at least one image per class in the mini-batch. Then the most discriminative information
that is used by SSL methods to learn to di�erentiate each image within a mini-batch is the
class label. Because of that, the SSL model will be pushed to learn class related features
since it will be the easiest way to solve the contrastive objective. However, if we do not have
a uniform class distribution within a mini-batch, SSL performances can drop significantly. In
this paper, we show that most SSL methods do not work well with unbalanced data, which
breaks the promise of using SSL to leverage unlabelled and uncurated data. We advise
researchers to evaluate their model on imbalanced data when introducing a new SSL method.

Objectives Matter: Understanding the Impact of Self-Supervised Objectives
on Vision Transformer Representations [184] In this work, we analyze with several
metrics how di�erent SSL training objectives, ranging from join-embeddings SSL methods
(like Dino) to reconstruction based SSL methods (like MAE), impact the representations
learned by Vision transformers.

6.3. A path towards more principled evaluations
In this thesis, I presented building blocks to create better benchmarks for AI systems.

The benchmarks should be adapted and improved as these AI systems progress and improve.
In addition, we can expect that soon, AI systems will be regulated such that they will have
to follow a set of specific standards before being deployed. Building such standards requires
foreseeing the capabilities of the AI systems of tomorrow. In this section, I present some
ideas that could help us to establish new standards for the evaluation of AI systems.

6.3.1. Towards a more complete evaluation suite for vision systems

With PUG: ImageNet, we introduced a dataset to evaluate pre-trained models across the
following factors: backgrounds, camera orientation, object orientation, object texture, and
scale, as well as scene lightning. To o�er a complete benchmark, we would need more factors,
such as:

117



• a variety of geographical locations that could match the diversity we have in the real
world.

• weather variation: heavy rain, snow, or fog with di�erent intensity levels.
• partial occlusion where objects can be behind fences, leaves, or windows.
• light variations: natural lighting that depend on the time of the day and artificial

lightning.
• simulating di�erent kinds of cameras.

Such a more complete evaluation system would enable the creation of precise model cards,
specifying in which conditions a given model is expected to work and its limitations. We can
expect that such model cards might become a requirement when open-sourcing models (or
any AI-based applications) in the future. For example, when buying a pair of smart glasses
equipped with an AI agent, we should know whether this agent will work well in outdoor
environments, and if so, if it will also work well enough in rainy/foggy/snowy environments.

6.3.2. A dive into Vision Language Models

There has recently been a surge in interest in vision language models and their capabilities.
Commons benchmarks like ARO[235] rely on finding the correct caption associated with given
images. By doing that, we can measure if a given VLM can understand a relation such as "an
object being on the left or the right of another object". However, those models often cheat by
relying on natural statistical occurrences in the text. For example, a co�ee cup will probably
always be on a table and not under the table. Consequently, many relation benchmarks can
be largely solved without using the information in the image. To evaluate if a model can
understand what an image contains, we can leverage endless variations of scenes and captions
with the PUG framework, including unusual ones, so that natural statistical occurrences
will not bias the benchmarks. However, we should go beyond simple relations like left/right,
top/bottom, that we used for PUG: SPAR. The next generation of benchmarks for vision
language models should include rich labeled scenes, for which we will be able to ask precise
questions such as: "What color is the dog’s tail?", "How many books are in the library?",
"What color is the 23rd book from the left located on the fifth shelf in the bookshelf that we
can see on the right of the picture?"

6.3.3. Will neural networks be able to handle uncertainty?

An essential component of creating an autonomous intelligent machine system is the
ability to manage uncertainty, by learning to predict the situations that are likely to happen
given a specific context. A co�ee mug is more likely to be next to a computer, whereas a
watering can is more likely to be next to a plant. Consequently, when having only an image
crop containing a computer and a handle, the model should predict that the handle is more
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likely to be part of a co�ee mug than a watering can. If we have videos, from a few frames,
we should be able to predict several most likely future possibilities. A video dataset like
Moving-MNIST[194] has either random or deterministic digit trajectories. When the digit is
inside the video frame, its trajectory is deterministic. However, its trajectory is random when
the digit bounces back from a side. A model that can handle uncertainty should be able to
predict what is deterministic while displaying uncertainty on the factors with randomness
in them. Thus, when the digit bounces back from a side, the model should predict several
di�erent probable future trajectories, while it should predict a single immediate trajectory
continuation when the digit is inside the frame with no contact to the borders. Being able to
properly handle and model this kind of uncertainty is a current missing but much-needed
piece towards more reliable AI systems. But a huge gap exists between a simple dataset such
as Moving-MNIST and real videos. Using PUG, we could create image and video datasets to
control the number of predictable and random factors, while having more realistic scenes. If
we look back at our smart AI glasses examples, there will be countless situations in which
some objects might be occluded. In that instance, having a PUG dataset focused on occlusion
could be an excellent way to evaluate how robust a model is to classification uncertainty in
the presence of occlusions (partial or full).

6.3.4. How to evaluate neural networks that can plan ?

Once neural networks can handle uncertainty, the next logical step is to think about
planning. Let’s take an example about a pedestrian possibly crossing a street. There are
two plans that an autonomous driving system can follow: stop if the pedestrian crosses
the street or continue if the pedestrian does not cross the street. However, there might
be more complex plans, such as designing a complete itinerary in which there could be
unanticipated road works. Computer games can also be excellent environments to evaluate
planning, since gaming often requires precise actions in a changing environment. However,
how do we ensure an AI-based planning system is safe and robust? When playing a game,
we do not want the system to find a way to cheat. When encountering road work, we do not
want the system to shut down if there are too many orange tra�c cones1. When designing an
evaluation benchmark for a planning based-AI system, it will be crucial to manage and test
the robustness of the model to ensure it can adapt quickly to unexpected events. One way to
do that is to randomly introduce adversarial events to see if this system can be tricked into a
problematic behavior. In a PUG-based simulator, an AI agent that could walk/run or drive
toward a specific destination should be tested when there are: random objects on the road,
animals or humans moving around, falling buildings, and road signs that tell the AI to drive

1Otherwise, the system will never work in Montreal!

119



into a lake. The primary motivation is to find ways to asses whether the AI agent might be
easily deceived in a treacherous environment.

6.3.5. The curse of dimensionality for benchmarking

Evaluating and benchmarking AI agents is a crucial step to ensure their safe deployment.
However, by increasing the number of interactions they can have with the world, we are
also significantly increasing the number of ways in which they could derail into unexpected
and potentially problematic behaviors. An AI agent specialized in playing a video game
might be easy to evaluate since the number of actions it can take is restricted in the game.
The same is true for smart glasses, which could run a local on-device agent system that can
be restricted to give travel tips. However, the more the AI agent can richly interact with
a complex world through images/video/text/sound and maybe touch, the more it will be
di�cult to correctly asses its robustness. For example creating reliable autonomous aircrafts
is actually much easier than creating reliable autonomous self-driving cars precisely because
the number of possible unexpected situations on the ground is much higher than in the sky.
When conceiving a general AI agents performing a wide range of actions while evolving on the
ground of a busy city, the number of potential failure cases is exponentially larger than when
designing a highly specialized agent with a restricted number of actions evolving in a highly
predictable factory environment. Even with all the best benchmarks and evaluation systems
that can be designed, we should always keep in mind that by increasing the complexity
and the reach of the AI system we are developing, we are also significantly increasing the
complexity of making benchmarks to evaluate such systems, and thus making it much harder
to guarantee their safety.

6.4. Conclusion
In this thesis, I developed building blocks toward better and more fine grained evaluation

of deep neural networks. There is often an urge within the research community to increase
the performance of deep neural networks, which might come at the cost of correctly assessing
the robustness and the safety of the system we are deploying. In this thesis, I introduced new
methods and approaches to evaluate AI systems, which are essential to better understand
what the system has truly learned. However, as science progrsses and AI systems become
more general agents, it will likely become more and more challenging to thoroughly assess
the reliability of the AI system we are deploying. Consequently, it may be wise to restrict the
use of AI systems to specific scenarios under which their robustness can be easily measured
and guaranteed.
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Appendix A

High Fidelity Visualization of What Your
Self-Supervised Representation Knows About

A.1. Conditional and super-resolution sampling with
RCDM

As presented in the main text, we introduce RCDM to generate samples that preserved
well the semantics of the images used for the conditioning. The training of the model is
simple and presented in Figure 1b. We show in Figure 3 additional samples of RCDM when
conditioning on the SSL representation of ImageNet validation set images (which were never
used for training). We observe that the information hidden in the SSL representation is so
rich that RCDM is almost able to reconstruct entirely the image used for conditioning. To
further evaluate the abilities of this model, we present in Figure 4 a similar experiment except
that we use out of distribution images as conditioning. We used cell images from microscope
and a photo of a status (Both from Wikimedia Commons), sketch and cartoons from PACS
[137], image segmentation from Cityscape [54] and an image of the Earth by NASA. Even in
the OOD scenario, RCDM is able to generate images that share common features to the one
used as conditioning because of the richness of ssl representations. However, if the images
used as OOD are too far from the training distribution, which is the case when using image
segmentation mask from Cityscapes, the model will have more di�culty to reconstruct the
images used as conditioning. To investigate if this failure is due to the SSL network used to
produced the conditioning, we run the experiment in Figure 6 in which we kept the same
SSL model with an RCDM trained on ImageNet and another one on Cityscape. We observe
that when using Cityscapes segmentation mask as conditioning with an RCDM trained on
Cityscapes segmentation mask, despite using a SSL model trained only on ImageNet, RCDM
is able to reconstruct the conditioning very faithfully. This mean that the failure mode
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Fig. 1. (a) Illustration of considered image generation methods. A real input x yields
representation h. All methods start from a random noise image x(0). Gradient-based repre-
sentation matching (light blue arrows) will move it towards S(h) i.e. until its representation
matches h, but won’t land on the data-manifold M. Unconditional reverse di�usion (ADM
model, green arrows) will move it towards the data manifold. Our representation-conditioned
di�usion model (RCDM, red arrows) will move it towards M fl S(h), yielding a di�erent
natural-looking image with the same given representation. (b) Representation-Conditionned
Di�usion Model (RCDM). From a di�usion process that progressively corrupts an image,
the model learns the reverse process by predicting the noise that it should remove at each
step. We also add as conditioning a vector h, which is the representation given by a SSL
or supervised model for a given image x. Thus, the network is trained explicitly to denoise
towards a specific example given the corresponding conditioning. The di�usion model used
is the same as the one presented by Dhariwal and Nichol [60] with the exception of the
conditioning on the representations.

observed in OOD are mostly due to the visualization model (RCDM) and not due to the
representation used for conditioning.

In those examples we used conditional batch-normalization (which is the same technique
as used by Casanova et al. [46]). However one can also use the sampling technique built-in in
the ADM model of Dhariwal and Nichol [60]. Instead of using an embedding layer that take
discrete representation, we can use a linear layer to map a representation to the dimension of
the time steps embedding and add it along the time step conditioning. A comparison with
these two conditioning methods is shown in Figure 5.

We also use the super-resolution model presented by Dhariwal and Nichol [60] to generate
images of higher resolutions. In Figure 8, we use the small images on the top of the bigger
images as conditioning for a RCDM trained on images of size 128x128. Then, we feed the
128x128 samples into the super-resolution model of Dhariwal and Nichol [60] to get images of
size 512x512. Since the model of Dhariwal and Nichol [60] is conditional and need labels, we
used a random label when upsampling from RCDM. Despite using the "wrong" label, the
high resolution samples are still very close to the conditioning. This show that RCDM can
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Fig. 2. We compare RCDM with the approach of Zhao et al. [245] that use Deep Image
Prior (DIP [203]) to visualize the features learn by Self-supervised models. We run this
experiment by using as conditioning an In-Distribution image (with the dog from ImageNet
validation set) and an Out-Of-Distribution image with an image from the Earth (Source:
NASA). For both methods, we compare with representations extracted at the backbone level
of a Resnet (after average pooling) from a random initialized network, a supervised network
and a network trained with SSL (Dino). We also use the representation extracted at the
projector level for Dino. We observe that the samples we obtained with RCDM have a better
quality than the ones generated with DIP and are also more insightful about the properties
of the representations. In this instance, we clearly see with RCDM that the supervised
representation is invariant to background which is something more di�cult to assess with
DIP.

be used jointly with a super-resolution model to sample high fidelity images in the close
neighborhood of the conditioning.

To verify how well our model can produce realistic samples from di�erent combinations
of representations, we take two images from which we compute their representations and
perform a linear interpolation between those. This give us new vectors of representation that
can be used as conditioning for RCDM. We can see on Figure 9 and Figure 10 that RCDM is
able to generate samples that contains the semantic characteristics of both images.

Finally, in Figure 11, we search the nearest neighbors of a series of samples in the ImageNet
training set. As demonstrated by Figure 11, RCDM samples images that are new and far
enough from images belonging to the training set of ImageNet.
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Fig. 3. Generated samples from RCDM on 256x256 images trained with representations
produced by Dino. We put on the first column the images that are used to compute the
representation conditioning. On the following column, we can see the samples generated by
RCDM. It is worth to denote our generated samples are qualitatively close to the original
image.
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Fig. 4. Generated samples from RCDM model on 256x256 images trained with representations
produced by Dino on Out of Distribution data. We put on the first column the images that
are used to compute the representation. On the following column, we can see the samples
generated by RCDM. It is worth to denote our generated sample are close to the original
image. The images used for the conditioning are from Wikimedia Commons, Cityscapes [54],
PACS [137] and the image of earth from NASA.
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Fig. 5. Comparison between conditioning RCDM with batch normalization and the built-in
conditioning mechanism o�ered by ADM. For this example, we took the representation
backbone of dino trained on ImageNet with resolution 128x128. There doesn’t seem to be
any significant di�erences between both methods.
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Fig. 6. We perform this experiment to see if the failures mode on OOD, especially when
conditioning on segmentation mask of Cityscapes, are due to the self-supervised representations
not containing enough information to reconstruct the image, or are due to RCDM not being
able to reconstruct OOD images. On the first line, we show the samples generated by an
RCDM trained on ImageNet with the self-supervised representation of Dino that was also
trained on ImageNet. On the second line, we show the samples generated by an RCDM
trained on the segmentation masks of cityscapes that use the same self-supervised model
of Dino that was trained on ImageNet. We can clearly see that despite using a SSL model
trained on ImageNet, when RCDM is trained on CityScapes, the reconstruction almost match
the original conditioning. Hence, one should train or fine-tune RCDM on any target dataset
to then use it to sample representation conditioned images from a (frozen) pre-trained model.
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a) RCDM samples using a conditioned-representation having the highest probabilities under
a linear classifier.
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b) RCDM samples on conditioning that have the lowest probabilities under a linear classifier.
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c) More RCDM samples on conditioning that have the highest probabilities under a linear classifier.

d) More RCDM samples on conditioning that have the lowest probabilities under a linear classifier.

Fig. 7. We trained a linear probe for classification by using the representation (at the backbone
and projector level) given by various SSL models. Then we find, among the ImageNet validation
set, the images that yield the highest softmax probability under this linear probe and use RCDM
to generate samples with respect to their representations. We also find the images that yield the
lowest softmax probabilities. On the first column and seventh column in a) and b), we present
the images used as conditioning (thus, the ones with highest and lowest softmax probabilities). In
the following columns we show the corresponding RCDM samples. We observe that all generated
images belong to the same class as the one that was used as conditioning when looking at the most
confident representation . However when looking at the least confident representation, the generated
samples does not seem to belong to a unique class. This experiment shows that the uncertainty in
the predictions of a downstream classification task can also be predicted by simple visual inspection
of samples produces by RCDM.
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A.2. A hierarchical di�usion model for unconditional
generation

We provided a novel and conditional generative model based on a given latent represen-
tation e.g. from a SSL embedding, and a di�usion model. This allows visualizing and thus
provides insight regarding what is or isn’t encoded in a particular representations. We can
go one step further and augment this conditional model with an unconditional one that can
generate those representations. This will provide us with the ability to generate new samples
without the need to condition on a given input. As a by-product, it will allow us to quantify
the quality of our generative process in an unconditional manner to fairly compare against
state-of-the-art generative models.

We shall recall that our goal is to employ the conditional generative model to provide
understanding into learned (SSL) representations. The unconditional model is only developed
to compare our generative model and ensure that its quality is reliable for any further down
analysis. As such, we propose to learn the representation distribution in a very simple manner
via the usual Kernel Density Estimation (KDE). That is, the distribution is modeled as

p(h) = 1
N

Nÿ

n=1
N (h; f(xn); I‡)

with ‡ set to 0.01. By using the above distribution, we are able to sample representations h

to then sample images x conditionally to that h using our di�usion model. We provide some
samples in Figure 15 to show that even with our very simple conditioning, our method is still
able to generate realistic images.

A.3. On the closeness of the samples in the representa-
tion space

Even if we show that RCDM is able to generate images that seems visually close to
the image used for the conditioning, it’s still unclear how close those images are in the
representation space. We can compute euclidean distances but to know how close the
generated samples are to the conditioning, we need to have references that can be used to
compare this distance with. As references, we compute the euclidean distance between a
conditioning image and random images in the validation set of ImageNet, random images
belonging to the same class as the conditioning, the closest images in the training set, the
conditioning image on which we applied single data augmentations and the conditoning image
on which we applied the data augmentation performed by Swav and Dino [40, 44]. The
results can be seen in Figure 16 for a RCDM trained with Dino representations and in Figure
17 for a RCDM trained with SimCLR representations. On both Figure, we observe that the
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generated images with RCDM are closer to the conditioning than the closest neighbors in
the entire training set of ImageNet. We also computed the mean and reciprocal mean rank
in the main paper (Table 1b) which show that for most SSL models the closest examples
in the representation space of the generated images is the image used as conditioning. We
also added Figure 12 to show which rank is associated to samples generated by RCDM. For
SimCLR, the rank is mostly always 1 whereas we got more diversity for the supervised case.
This di�culty of RCDM to generated samples which have their representation that map back
to the one used for the conditioning can be explain by the nature of a supervised training. In
such scenario, the encoder is trained to map a big set of images (often a specific class) to a
specific type of representation whereas SSL models are explicitly train to push each examples
farther away from each others. Thus, it seems more likely that a little perturbation on the
supervised representation induces a change of nearest neighbor. This hypothesis is supported
by Figure 24 which show that small adversarial attack are enough to induces a change of
class in the representation which is not the case for SSL encoders.

A.4. Analysis of representations learned with Self-
Supervised model

Having generated samples that are close in the representation space to a conditioning image
can give us an insight on what’s hidden in the representations learned with self-supervised
models. As demonstrated in the previous section, the samples that are generated with RCDM
are really close visually to the image used as conditioning. This give an important proof of
how much is kept inside a SSL representation. However, it’s also important to consider how
much this amount of "hidden" information varied depending on the SSL representation that is
used. Therefore, we train several RCDM on SSL representations given by VicReg [21], Dino
[44], Barlow Twins [236] and SimCLR [49]. In many applications that used self-supervised
models, the representation that is used is the one corresponding to the backbone of the
ResNet50. Usually, the representation given by the projector of the SSL-model (on which
the SSL criterion is applied) is discarded because the results on many downstream tasks like
classification is not as good as the backbone. However, since our work is to visualize and
better understand the di�erences between SSL representations, we also trained RCDM on
the representation given by the projector of Dino, Barlow Twins and SimCLR. In Figure 19
we condition all the RCDM with the image labelled as conditioning and sample 9 images for
each model. If we look at the projector of the SSL models, the generated samples have a
higher variance.

To further compare and analyse the di�erent SSL models, we visualize how much SSL
representations can be invariant with respect to a transformation that is applied on the
conditioning image. In Figure 20, we apply several Data Augmentation: Vertical shift, Zoom
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out, Zoom In, Grayscale and a Collor Jitter on a given conditioning image. Then we compute
the SSL representations of the transformed image with di�erent SSL models and use our
corresponding RCDM to see how much the samples have changed with respect to the samples
generated on the vanilla conditioning image. We observe that the representation (the 2048
backbone one) of all SSL methods are not invariant to scale and change of colors. Whereas
the representation of the projector doesn’t seem to take into account any small transformation
in the original conditioning outside the scale for Dino. For SimCLR, there is still some
information about the background that is kept in the representation however the samples are
not as close visually with respect to the 2048 representation. Barlow Twins is interesting
because there isn’t much di�erences between the backbone representation (2048) one and the
representation of the projector (Size 8192). With the exception that this last representation
seems to be more invariant to color shift than the backbone one.

We also perform an experiment in Figure 23 using OOD images to ensure that the
conclusions drawn with our methods about SSL representation are not specific to ImageNet.

A.4.1. Visualization of adversrial examples

We use RCDM to visualize adversarial examples for di�erent models. For each model,
we trained a linear classifier on top of their representations to predict class labels for the
ImageNet dataset. Then, we use FGSM attacks over the trained model using a NLL loss
to generate adversarial examples. In Figure 24 we show the adversarial examples that are
created for each model, the samples generated by RCDM with respect to the representation
of the adversarial perturbed example and the class label predicted by the linear classifier over
the adversarial examples. The supervised model is very sensitive to the attack whereas SSL
models seems more robust.

A.4.2. Manipulation of SSL representations

It is also possible to manipulate SSL representations to generate new images. We try to
apply addition and subtractions over SSL representations (similarly to what has been done in
NLP). From two di�erent images, we compute the di�erence between the two corresponding
representations and add the di�erence vector to a third image. Figure 27 shows that it is
possible to apply such transformations meaningfully in the SSL space. We also used another
setup where we choose specific dimensions in the representation based on how many times
these dimensions are non zero in the representation space of a set of neighbors. Then we
set this dimension to zero which surprisingly induces the removing of the background in the
generated images. We also replace them by the same corresponding dimension of another
images which induces a change of background toward the one of the new image. Results are
shown in Figure 25.
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A.4.3. Experiments with vision transformers

All the experiments in this paper were conducted with Resnet50 since most of the
SSL baselines are available with this model. However, RCDM can work with any type
of architecture, including vision transforms. In Figure 28, we show RCDM samples using
representations of Dino trained with a VIT-B 16 [126].

A.4.4. Why is my model over-fitting on the training set ?

By enabling the visualization of what is learned in a representation, RCDM can help
researchers to get a better understanding of the failures modes of their models. In one of
our experiments, we trained a SSL models with VicReg by using only cropping as data
augmentation (thus discarding the traditional colorjiterring/grayscaling and other transforms
that change the colors). Training a linear probe on such network resulted in a training
accuracy of 95% on the training set while the validation accuracy was only about 20%. To
better understand how the model was able to overfit on the training set, we trained RCDM
on the representations of this model. The samples obtained are shown in Figure 29. This
experiment validate the hypothesis that removing color related augmentations during the
training of SSL models leads to learn representations that are only colors and textures based.

A.4.5. Visualizing how representations are changing during training

Another way one can use RCDM, is to consider how representations are changing during
training. In this experiment, we trained 3 RCDM models on the representation given by
SSL models (VicReg) trained after 1 epoch, 5 epochs and 50 epochs. In this experiment, we
want to visualize what is changing in the representation during training. The hypothesis
was that at the beginning of the training, the network is learning some easy feature, like
some color information, and later in the training more complex features, probably containing
more shape based information. In Figure 30, we observe that after 1 epoch of SSL training,
the information retain in the representation is mostly color/texture based while after only 5
epochs, we can see that the shape are better defined.
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Fig. 8. High resolution samples from our conditional di�usion generative model using the
super resolution model of Dhariwal and Nichol [60]. We use the small images on the top of
each bigger image as conditioning (source NASA for the earth picture) for a di�usion model
trained with Dino representation on 128x128 images. Then, we feed the samples generated
to the super resolution model of Dhariwal and Nichol [60] which produces images of size
512x512. Since the super resolution model is conditional, we sample a random label. We
note that the high resolution samples are still very close to the conditioning.
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(a) Linear interpolation between the image of the golden retriever in conditioning 1 with various
other images belonging to the same class as conditioning 2.

(b) Linear interpolation between the image of the pug in conditioning 1 with various other images
belonging to the espresso class as conditioning 2.

Fig. 9. Each vectors that result from the linear interpolation is feed to a RCDM trained
with Barlow Twins representation.
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Fig. 10. Diversity of the samples generated by RCDM on interpolated representations. Each
row corresponds to di�erent random noise for the same conditioning. On the first and last
column are the real images used for the interpolation. All of the images in-between those
rows are samples from RCDM.
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(a) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino
(backbone) representation (2048).

(b) Closest real images (ImageNet training set) from images sampled with RCDM trained on Dino
projector representation (256).

Fig. 11. We find the nearest neighbors in the representation space of samples generated by
RCDM. The images in the red squared are the ones used for conditioning.
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Fig. 12. After generating samples with respect to a specific conditioning, we compute back the
representation of the generated samples and find which are the closest neighbors in the validation
set. Then, we compute the rank of the original image that was used as conditioning within the set
of neighbors. When the rank is one, it implies that the nearest neighbors of the generated samples
is the conditioning itself, meaning that the generated samples have their representation that is very
close in the representation space to the one used as conditioning. We can see that for SimCLR,
the generated samples are much closer in the representation space to their conditioning than the
supervised representation. This is easily explain by the fact that supervised model learn to map
images from a same class toward a similar representation whereas SSL models try to push further
away di�erent examples.
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Fig. 13. Visual analysis of the variance of the generated samples for a specific image when
using the trunk/backbone of a Barlow Twins encoder. The first image (in red) in the one
used as conditioning.
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Fig. 14. Visual analysis of the variance of the generated samples for a specific image when
using the projector/head of a Barlow Twins encoder. The first image (in red) in the one used
as conditioning.
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Fig. 15. Unconditional generation following the protocol of section A.2. Our simple genera-
tive model of representations consists in applying a small Gaussian noise over representation
computed from random training images of ImageNet. We use these noisy vector as con-
ditioning for our 256x256 RCDM trained with Dino representations. We note that the
generated images looks realistic despite some generative artefact like a two-headed dog and
an elephant-horse.
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Fig. 16. Squared Euclidean distances in the Dino representation space. We show
the squared euclidean distance between the conditioning image on the leftmost column on
first row and di�erent images to get an insight about how close the samples generated by the
di�usion model stay close to the representation used as conditioning. The distances with the
conditioning is printed below each images. On the first row, we show random images from the
ImageNet validation data. On the second row, we take random validation examples belonging
to the same class as the conditioning. On the third row, we find the closest training neighbors
of the conditioning in the representation space. On forth row, D.A. means Data Augmentation
which consist in horizontal flip, CenterCrop, ColorJitter, GrayScale and solarization. On fifth
row (D.A. 2), we use the random data Augmentation used in the paper of [40, 44]. On the
last row, we show the generated samples from our conditional di�usion model that use Dino
representation. The samples produces by our model are much closer to the conditioning
than other images.
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Fig. 17. Squared Euclidean distances in the SimCLR projector head represen-
tation space.We show the squared euclidean distance between the conditioning image on
the leftmost column on first row and di�erent images to get an insight about how close the
samples generated by the di�usion model stay close to the representation used as conditioning.
The distances with the conditioning is printed below each images. On the first row, we show
random images from the ImageNet validation data. On the second row, we take random
validation example belonging to the same class as the conditioning. On third row, we find
the closest training neigbords of the conditioning in the representation space. On forth row,
D.A. means Data Augmentation which consist in horizontal flip, CenterCrop, ColorJitter,
GrayScale and solarization. On fifth row (D.A. 2), we use the random data Augmentation
used in the paper of [40, 44]. On the last row, we show the generated samples from our
conditional di�usion model that use SimCLR projector head representation. The
samples produces by our model are much closer to the conditioning than other images.
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Fig. 18. Comparison of the euclidean distance between IC-GAN and RCDM. We use the
same self-supervised representation as conditioning (Swav encoder) for RCDM and IC-GAN.
We compute the euclidean distance between the representation of the generated images versus
the representation used as conditioning. We observe that samples of RCDM are much closer
in the representation space (and also visually) to the conditioning. Samples of IC-GAN show
a higher variability, thus farther away in the representation space.
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Fig. 19. Generated samples from RCDM trained with representation from various self-
supervised models. We generate 9 samples for each model with di�erent random seeds. We
observe that the representation given by dino isn’t very invariant while the one given by
SimCLR or VicReg show much better invariance. We also show the samples of RCDM trained
on the representation given by the projector (The embedding on which is usually applied
the SSL criterion). There is a much higher variability in the generated samples. Maybe too
much to be used for a classification task since we can observe class crossing.
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Fig. 20. We compare how much the samples generated by RCDM change depending on di�erent
transformations of a given image and the model and layer used to produces the representation. Top
half uses 2048 representation. Bottom half uses the lower dimensional projector head embedding.
We observe that using the projector head representation leads to a much larger variance in the
generated samples whereas using the traditional backbone (2048) representation leads to samples
that are very close to the original image. We also observe that the projector representation seems
to encode object scale, but contrary to the 2048 representation, it seems to have gotten rid of
grayscale-status and background color information.
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Fig. 21. Same setup as Figure 20 except with other images as conditioning.
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Fig. 22. Generated samples from RCDM using the mean representation for a specific class
(golden retriever) in ImageNet for various SSL models.
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Fig. 23. We compare the visualization obtained with representations from Dino (resnet50) at
the backbone level and also at the projector level on OOD images to ensure that conclusions
drawn with our model about SSL representations are not specific to ImageNet. We confirm
that we observe the sames phenomenons in an OOD settings as the ones we could get on an
In-Distribution scenario.
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Fig. 24. Visualization of adversarial examples We use RCDM to visualize adversarial
examples for di�erent models. For each model, we trained a linear classifier on top of their
representations to predict class labels for the ImageNet dataset. Then, we use FGSM attack
over the trained model using a NLL loss to generate adversarial examples towards the class
lion. For each model, we visualize adversarial examples for di�erent values of ‘ which is the
coe�cient used in front of the gradient sign. In the supervised scenario, even for small values
of epsilon which doesn’t seem to change the original image, the decoded image as well as
the predicted label by the linear classifier becomes a lion. However it’s not the case in the
self-supervised setting where the dog still get the same class or get another breed of dog as
label until the adversarial attack becomes more visible to the human eye (For ‘ value superior
to 0.5).
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Fig. 25. Background suppression and addition Visualization of direct manipulations
over the representation space. On the first row, we used the full representation of the dog’s
image on the top-left as conditioning for RCDM. Then, we find the most common non zero
dimension across the neighborhood of the image used as conditioning. On the second row,
we set these dimensions to zero and use RCDM to decode the truncated representation.
We observe that RCDM produces examples of the dog with a high variety of unnatural
background meaning that all information about the background is removed. In the third and
forth row, instead of setting the most common non zero dimension to zero, we set them to
the value of corresponding dimension of the representation associated to the image on the
left. As we can see, the original dog get a new background and a new pose.

176



Fig. 26. Same setup as Figure 25 except that instead of using the most common non
zero-dimensions as mask, we used the least common non-zero dimensions as mask. On the
second row, we observe that some information about the original dog is removed such that in
each column, we get a slightly di�erent breed of dog while the background stay fixed. On the
third and forth row, we saw that the information about the background (grass) is propagated
through the samples (which was not the case in Figure 25).
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Fig. 27. Algebraic manipulation of representations from real images (left-hand side of =)
allows RCDM to generate new images with novel combination of factors. Here we use this
technique with ImageNet images, to attempt background substitutions.
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Fig. 28. Conditional generation with RCDM using representation extracted from a VIT-B
16 trained with Dino. This experiment shows that RCDM is able to successfully use the
representation extracted form di�erent kinds of architectures.
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Fig. 29. Conditional generation with RCDM using representation extracted from a Resnet50
trained with VicReg using only cropping as data augmentation (thus discarding all transforms
related to color change). This experiment shows that training an SSL model without learning
any invariances to colors lead to learn only statistics about the colors in the representation.
We can clearly see that the samples generated from the guitar are clearly following the same
colors statistics as the conditioning but totally fail to reconstruct anything related to the
shape information. The source for the picture of the earth is NASA.
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Fig. 30. Conditional generation with RCDM using representation extracted from a Resnet50
trained with VicReg for 1, 5 and 50 training epochs (a new RCDM generator is trained fully
for each case). This experiment shows that the SSL model first (after 1 epoch) learns to retain
mostly information about color and texture in its representation (see e.g. how conditioning
on the parrot representation yields vehicles with similar color-themes). It encodes accurate
information on the more precise shape only later in training.
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(a) Earth from an untrained representation (Random initialized Resnet 50).

(b) Earth from a supervised representation (Pretrained resnet50 on ImageNet)

(c) Earth from a SSL representation (Dino Resnet50 backbone).

Fig. 31. Di�erent samples of RCDM conditioned on a satellite image of the earth (source:
NASA). We show the samples we obtained in a) when using a random initialized network
to get representations, b) when using a pretrained resnet50, c) when using a self supervised
model (Dino).
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Appendix B

Appendix: Guillotine Regularization: Why
removing layers is needed to improve

generalization in Self-Supervised Learning

B.1. Datasets
In this work, we use ImageNet [56] (Term of license on https://www.image-

net.org/download.php) for our experiments. We also used a synthetic 3D dataset
that will be described in the next subsection.

B.1.1. 3D models dataset

We will now discuss the dataset used for figure 2. As previously mentioned, this dataset
consists of 3D models from 3D Warehouse [202], freely available under a General Model
License, and rendered with Blender’s Python API. We alter the scene by uniformly varying
the latent variables described in table 1.
Table 1. Latent variables used to generate views of 3D objects. All variables are sampled
from a uniform distribution.

Latent variable Min. value Max. value
Object yaw ≠fi/2 fi/2
Object pitch ≠fi/2 fi/2
Object roll ≠fi/2 fi/2
Floor hue 0 1
Spot ◊ 0 fi/4
Spot „ 0 2fi

Spot hue 0 1

The variety in the scenes that can be generated is illustrated in figure 1. We can see that
each latent variables can significantly impact the scene, giving a significant variety in the
rendered images.



Fig. 1. Rendered views of a skateboard generated by randomly sampling latent variables.
The influence of each parameter is easily visible, which is expected to make their prediction
easier.

B.2. Reproducibility
Our work does not introduce a novel algorithm nor a significant modification over already

existing algorithm. Thus, to reproduce our results, one can simply use the public github
repository of the following models: SimCLR, Barlow Twins, VicReg or the PyTorch Imagenet
example (for supervised learning) with the following twist: adding a linear probe at each
layer of the projector (and backbone) when evaluating the model. However, since many of
these models can have di�erent hyper-parameters, or data-augmentations, especially for the
SSL models, we recommend to use a single code base with a given optimizer, a given set of
data augmentations so that comparisons between models are fair and focus on the e�ect of
Guillotine Regularization. In this paper, except if mentioned otherwise, we use as Head, a
MLP with 3 layers of dimensions 2048 each (which match the number of dimensions at the
trunk of a Resnet50) along with batch normalizaton and ReLU activations.
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(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 2. We measure with linear probes the accuracy at di�erent layers on a resnet50 (as
Trunk) on which we added a small 3 layers MLP (as Head) for various supervised and
self-supervised methods on the training and validation set. For each method, we show the
mean and standard deviation across 3 runs (The std between di�erent runs is low). When
looking at self-supervised methods, the gap in performances between the linear probe trained
at di�erent levels can be as high as 30 points of percentage.

B.3. Additional experimental results
In this section, we present additional experimental results. The first one in Figure 2 is

an extended version of Figure 1 with additional results on the training set. Figure 3 is a
similar setup to the one in Figure 2 where we compared the performances at di�erent layers
for SSL methods and a supervised one except that we use a VIT-B instead of a Resnet50.
We observe an important gap on the classification performances reached with a linear probe
on di�erent layers with the VIT-B when using SSL methods.

In Figure 4, we show how the performances at di�erent layers change during training by
using an online linear probing. At the beginning of the training the gap of performances
between layers is low, however it increases significantly after 10 epochs.

In Figure 5 we show the accuracy computed with linear probes trained using projector
and backbone representations. This figure is similar to Figure 6 except that we present the
absolute accuracy value instead of the di�erence in accuracy with respect to the backbone.

B.4. Limitations
In this work we focused mostly on analyzing the use of Guillotine Regularization in the

context of Self-Supervised Learning. However, this kind of regularization might be useful for
a variety of other types of training methods which we don’t investigate in this paper. We
also mostly focus on generalization for classification tasks, but other tasks could also been
worth exploring.
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(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 3. Same experiment as in Figure 2 but this time, we measure with linear probes the
accuracy at di�erent layers on a VIT-B (as Trunk) on which we added a small 3 layers MLP
(as Head) for various supervised and self-supervised methods. Since the outputs of the VIT-B
has a lower number of dimensions than a Resnet, we added at the trunk of the VIT-B a
linear layer with ReLU activation to project into a 2048 dimensional vector. In the supervised
learning setting, the best performances are obtained when using the last layers of the model.
But, when looking at self-supervised methods, the gap in performances between the linear
probe trained at di�erent levels can be as high as 20 points of percentage. Interesting, it
seems for the VIT-B that we got the best performances at Head 1 for SimCLR whereas for
the ResNet, the best performances were obtained at the Trunk. It is likely that for di�erent
architectures, the optimal number of layers on which to apply Guillotine Regularization will
vary.

(a) Accuracy on the training set (b) Accuracy on the validation set

Fig. 4. a) Accuracy of Barlow Twins through epochs computed with online linear probing at
di�erent layers. At the beginning of the training the gap in performances between the probes
is small however after 10 epochs, the gap becomes larger and larger both on the training and
validation set.
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Fig. 5. Backbone and projector accuracy with linear probing with di�erent alignment
with respect to the classification downstream task. In this experiment we used SimCLR
and we change how the positive pair are defined to better aligned with a classification downstream
task. In blue, our baseline, we trained SimCLR with the traditional SSL data augmentations which
defines the positive view as two augmentations of a same image. In orange, we use the embedding of
a pretrained model to define the positive pair as two nearest neighbor under this pretrained model
(while using the same data augmentation as the baseline). In green, we use a supervised class label
selection to define the positive example. In this scenario, SimCLR should learn to produces similar
embedding to all images belonging to a given class. All three models are trained on ImageNet
(IN1K), then we evaluate them with a linear probe across a wide range of downstream tasks at
the projector and backbone level. When positives pairs are defined as belonging to a given class,
there is no misalignment with the imagenet classification downstream task. Thus on ImageNet-1K,
ImageNet1k-10P (10% of the training set to train the linear probe) and ImageNet1k-1P (1% of
the training set to train the linear probe), we observe that the performances at the projector level
are much higher than the ones using the traditional SSL augmentations. Interestingly, the nearest
neighbors heuristic reduces considerably the impact of Guillotine Regularization across several
downstream tasks.
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(a) VICReg (b) SimCLR (c) Barlow Twins (d) Byol

Figure 5.1: Loss hyper-parameters.

(e) VICReg (f) SimCLR (g) Barlow Twins (h) Byol

Figure 5.2: Learning rate.

(i) VICReg (j) SimCLR (k) Barlow Twins (l) Byol

Figure 5.3: Batch size.

Fig. 6. How di�erent hyper-parameters impact the gap in performances between the backbone
and projector representation. We train SimCLR, VicReg, Barlow Twins and Byol with di�erent
hyper-parameters and evaluate with a linear prob, the performances at the backbone but
also at the projector level on ImageNet classification task. For each model, we observe that
the accuracy given by the linear probe at the backbone level is fairly stable across the grid
search of hyper-parameters while the linear probe at the projector level can reach very low
accuracy. This highly that the probes performances at di�erent layers might not be always
correlated with each others.
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Appendix C

Do SSL Models Have Déjà Vu? A Case of
Unintended Memorization in Self-supervised

Learning

C.1. Limitations and societal impact
Limitations. Our work sets out to define, quantify, and visualize data memorization

in SSL. Our tests guide us towards potential mitigation strategies. However, note that
these strategies are distinct from provable privacy (e.g. DP), and do not guarantee that
data is not memorized. It is possible that — even if our tests detect no memorization —
data is being memorized in some other fashion, and could be detected with a di�erent test.
Furthermore, we focus on detecting image memorization with a curated, de-duplicated
dataset (ImageNet-1k), which may over- or underestimate data memorization in practice.
We chose this in order to claim the learning algorithm as the cause for memorization as
opposed to the dataset itself. It is possible that models exhibit di�erent memorization
behavior on larger, less curated datasets. With orders of magnitude more data it is pos-
sible that memorization is reduced, but with more data duplication it also may be exacerbated.

Societal Impact. Our work’s findings have a critical societal impact from a privacy
perspective. We show that it is possible for SSL—an increasingly popular learning paradigm—
to memorize training images, which could have significant privacy implications. This direction
of research is important if we want to understand how we can train such models without
exposing user data. Additionally, our proposed mitigation strategies point to the possibility
of having strong privacy without significant loss in utility. Ultimately, we open a promising
direction towards making SSL vision models more secure.



C.2. Experimental details
C.2.1. Details on dataset splits

There are 1,281,167 training images in the ImageNet dataset. Within these images, only
456,567 of them have bounding boxes annotations (which are needed to compute the Deja Vu
score). The private set A and B are sampled from these 456,567 bounding boxes annotated
images in such a way that set A and B are disjoint.

If we remove the 456,567 bounding boxes annotated images from the 1,281,167 training
images, we get 824,600 remaining images without annotations which never overlap with A
or B . From this set of 800K images, we took 500k images as our public set X. So now,
we have three non overlapping sets A, B , and X. Then, if we remove the 500K public set
images from the 824,600 images without annotations, it leaves us with 324,600 images that
are neither in A, B or X. For simplicity, let us call this set of remaining 324,600 images the
set C. Then, we have split the entire ImageNet training set into four non-overlapping splits
called A, B, C and X.

When running our experiments with a small number of training images, we only use the
set A to train SSLA and the set B to train SSLB and then use the set X as a public set for
evaluation. However, to run larger scale experiments, we use as additional training data for
SSLA and SSLB: the images sampled from the set C. Here, SSLA will still be trained on set
A but it will be augmented with images from set C. The same goes for SSLB which will still
be trained on the set B but augmented with images from the set C. As such, some images
sampled from C to train SSLA or to train SSLB might overlap. However, this is not an issue
since the evaluation is done using only images from the bounding boxes annotated set A and
set B which are never overlapping.

To identify memorization, our tests only attempt to infer the labels of the unique
examples A and B that di�erentiate the two private sets. The periphery crop, crop(Ai), is
computed as the largest possible crop that does not intersect with the foreground object
bounding box. In some instances the largest periphery crop is small, and not high enough
resolution to get a meaningful embedding. To circumvent this, we only run the test on
bounding box examples where the periphery crop is at least 100 ◊ 100 pixels.

190



Each size of training set, 100k to 500k, includes an equal number of examples per class in
both sets A and B. The total bounding box annotated examples of each class are evenly
divided between A and B. The remaining examples in each class are the examples from C.
We reiterate that the bounding box examples in set A are unique to set A, and thus can only
be memorized by SSLA.

The disjoint public set, X, contains ground truth labels but no bounding-box annotations.
The size and content of X remains fixed for all tests.

C.2.2. Details on the training setup

Model Training: We use PyTorch [163] with FFCV-SSL [32]. All models are trained
for 1000 epochs with model checkpoints taken at 50, 100, 250, 500, 750, and 1000 epochs.
We note that 1000 epochs is used in the original papers of both VICReg and SimCLR. All
sweeps of epochs use the 300k dataset. All sweeps of datasets use the final, 1000 epoch
checkpoint. We use a batch size of 1024, and LARS optimizer [233] for all SSL models. All
models use Resnet101 for the backbone. As seen in Appendix C.3.4, a Resnet50 backbone
results in déjà vu consistent with that of Resnet101.

VICReg Training: VICReg is trained with the 3-layer fully connected projector used
in the original paper with layer dimensions 8192-8192-8192. The invariance, variance, and
covariance parameters are set to ⁄ = 25, µ = 25, ‹ = 1, respectively, which are used in the
original paper [23]. The LARS base learning rate is set to 0.2, and weight decay is set to 1e-6.

SimCLR Training: SimCLR is trained with the 2-layer fully connected projector
used in the original paper with layer dimensions 2048-256. The temperature parame-
ter is set to · = 0.15. The LARS base learning rate is set to 0.3, and weight decay is set to 1e-6.

Supervised Training: Unlike the SSL models, the supervised model is trained with
label access using cross-entropy loss. To keep architectures as similar as possible, the
supervised model also uses a Resnet101 backbone and the same projector as VICReg. A final
batchnorm, ReLU, and linear layer is added to bring the 8192 dimension projector output
to 1000-way classification activations. We use these activations as the supervised model’s
projector embedding. The supervised model uses the LARS optimizer with learning rate 0.2.
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C.2.3. Details on the evaluation setup

KNN: For each test, we build two KNN’s: one using the target model, SSLA (or
CLFA), and one using the reference model SSLB (or CLFB). As depicted in Figure
2, each KNN is built using the projector embeddings of all images in the public set
X as the neighbor set. When testing for memorization on an image Ai œ A, we first
embed crop(Ai) using SSLA, and find its K = 100 L2 nearest neighbors within the SSLA

embeddings of X . See section C.3.2 for a discussion on selection of K. We then take
the majority vote of the neighbors’ labels to determine the class of Ai. This entire piple-
line is repeated using reference model SSLB and its KNN to compute reference model accuracy.

In practice, all of our quantitative tests are repeated once with SSLA as the target model
(recovering labels of images in set A) and again with SSLB as the target model (recovering
labels of images in set B). All results shown are the average of these two tests. Throughout
the paper, we describe SSLA as the target model and SSLB as the reference model for ease
of exposition.

RCDM: The RCDM is trained on a face-blurred version of ImageNet [57] and is used to
decode the SSL backbone embedding of an image back into an approximation of the original
image. All RCDMs are trained on the public set of images X used for the KNN. A separate
RCDM must be trained for each SSL model, since each model has a unique mapping from
image space to embedding space.

At inference time, the RCDM is used to reconstruct the foreground object given only the
periphery cropping. To produce this reconstruction, the RCDM needs an approximation of
the backbone embedding of the original image. The backbone of image Ai is approximated
by 1) computing crop embedding SSLproj

A (crop(Ai)), 2) finding the five public set nearest
neighbors of the crop embedding, and 3) averaging the five nearest neighbors’ backbone
embeddings. In practice, these public set nearest neighbors are often a very good ap-
proximation of the original image, capturing aspects like object class, position, subspecies, etc..
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C.3. Additional quantitative experiments
C.3.1. Sample-level memorization

(a) Categories of training samples vs. number of
epochs

(b) Categories of training samples vs. training
set size

Fig. 1. Partition of samples Ai œ A into the four categories: unassociated (not shown),
memorized, misrepresented and correlated. The memorized samples—ones whose labels are
predicted by KNNA but not by KNNB—occupy a significantly larger share for VICReg
compared to the supervised model, indicating that sample-level déjà vu memorization is more
prevalent in VICReg.

(a) SimCLR (b) VICReg

Fig. 2. E�ect of SSL hyperparameter on déjà vu memorization. The left plot of Figures
2a and 2b show the size of the memorized set as a function of the temperature parameter
for SimCLR and invariance parameter for VICReg, respectively. Déjà vu memorization is
the highest within a narrow band of hyperparameters, and one can mitigate against déjà vu
memorization by selecting hyperparameters outside of this band. Doing so has negligible e�ect
on the quality of SSL embeddings as indicated by the linear probe accuracy on ImageNet
validation set.

Many SSL algorithms contain hyperparameters that control how similar the embeddings
of di�erent views should be in the training objective. We show that these hyperparameters
directly a�ect déjà vu memorization. Figure 2 shows the size of the memorized set for SimCLR
(left) and VICReg (right) as a function of their respective hyperparameters, · and ⁄. We
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observe that the memorized set is largest within a relatively narrow band of hyperparameter
values, indicating strong déjà vu memorization. By selecting hyperparameters outside this
band, déjà vu memorization sharply decreases while the linear probe validation accuracy on
ImageNet remains roughly the same.

C.3.2. Selection of K for KNN

In this section, we describe the impact of K on the KNN label inference accuracy.

(a) VICReg Accuracy (b) VICReg with share of memorized examples

Fig. 3. Impact of K on label inference accuracy for target and reference models. Left:
the population-level label inference accuracy experiment of Section 4.4.1 on VICReg vs. K.
Right: the individualized memorization test of Section 4.4.2 on VICReg vs. K. In both
cases, we see that our tests are relatively robust to choice of K beyond K = 50.

Figure 3 above shows how the tests of Section 4.4 change with number of public set
nearest neighbors K used to make label inferences. Both tests are relatively robust to any
choice of K. Results are shown on VICReg trained for 1k epochs on the 300k dataset. We
see that any choice of K greater than 50 and less than the number of examples per class
(300, in this case) appears to have good performance. Since our smallest dataset has 100
images per class, we chose to set K = 100 for all experiments.
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C.3.3. E�ect of SSL criteria

We repeat the quantitative memorization tests of Section 4.4 on di�erent models:
VICReg[23], Barlow-Twins[236], Dino[42], Byol[93], SimCLR[238] and a supervised model
in figure 4. We observe di�erences between SSL training criteria with respect to Dejavu
memorization. The easy ones to attack are VICReg and Barlow Twins whereas SimCLR
and Byol are more robust to these attacks. While the degree of memorization appears to
be reduced for SimCLR compared with VICReg, it is still stronger than the supervised baseline.

Fig. 4. Comparison of déjà vu memorization for VICReg, Barlow Twins, Dino, Byol,
SimCLR, and a supervised model. All tests are described in Section 4.4. We are showing déjà
vu vs. number of training epochs. We see that SimCLR (center row) shows less déjà vu than
VICReg, yet marginally more than the supervised model. Even with this reduced degree
of memorization, we are able to produce detailed reconstructions of training set images, as
shown in Figures 6 and 9.
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C.3.4. E�ect of Model Architecture and Complexity

Results shown in the main paper use Resnet101 for the model backbone. To understand
the relationship between déjà vu and overparameterization, we compare with the smaller
Resnet50 and Resnet18 in Figure 5. Overall, we find that increasing the number of
parameters of the model leads to higher degree of déjà vu memorization. The same trend
holds when using Vision Transformers (VIT-Tiny, -Small, -Base, and -Large with patch size
of 16) of various sizes as the SSL backbone, instead of a Resnet. This highlights that déjà vu
memorization is not unique to convolution architectures.

Fig. 5. Comparison of VICReg déjà vu memorization for di�erent architectures and model
sizes. On the left, we present deja vu memorization using VIT architectures (from vit-tiny in
the first row to vit-base in the last row). On the right, we use Resnet based architectures
(from resnet18 in the first row to resnet101 in the last row). All tests are described in
Section 4.4, with the plots showing déjà vu vs. number of training epochs. Reducing model
complexity from Resnet101 to Resnet18 or from Vit-Large to Vit-tiny has a significant impact
on the degree of memorization.
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C.3.5. The impact of finetuning

Self-Supervised learning is often used as a pre-taining strategy. In many instances,
practitioners are using frozen features extracted from the model to train a simple KNN
or linear head to learn to solve a downstream task. This is why we have mostly focused
this work on using a set of frozen features from the pre-trained model. However, another
common strategy is to fine-tune the model to solve the downstream task. In Figure 6,
we show how the Dejavu score changes when fine-tuning a pretrained VICReg model.
This pretrained model was trained on the set A for 1000 epochs and fine-tuned on a
classification task on the set A for 20 epochs (which can be seen in the x axis on the
figure). Interestingly, the DejaVu score decreases significantly in the first finetuning epochs
while the validation accuracy is increasing. However after 5 epochs, the DejaVu score is
increasing and after 20 epochs become almost as high at the original value before fine-tuning.
This behavior indicates that even fine-tuning might not help in reducing DejaVu memorization.

Fig. 6. DejaVu score when fine-tuning a pretrained VICReg model for 20 epochs. We
observe that by fine-tuning we significantly increase the classification performances however
the DejaVu score is as high as before after finetuning.
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C.3.6. The impact of Guillotine Regularization on Deja Vu

In our experiments, we show déjà vu using the projector representation. The SSL loss
directly pushes the projector representation to be invariant to random crops of a particular
image. As such, we expect the projector to be the most overfit and produce the strongest
déjà vu . Here, we study whether earlier representations between the projector and backbone
exhibit less déjà vu memorization. This phenomenon – ‘guillotine regularization’ – has
recently been studied from the perspective of generalization in Bordes et al. [30]. Here, we
study it from the perspective of memorization.

To show how guillotine regularization impacts déjà vu , we repeat the tests of
Section 4.4 on each layer of the VICReg projector: the 2048-dimension backbone
(layer 0) up to the projector output (layer 3). We evaluate whether memorization is
indeed reduced for the more regularized layers between the projector output and the backbone.

(a) population level accuracy (b) share of memorized examples

Fig. 7. déjà vu memorization versus layer from backbone (0) to projector output (3). The
memorization tests of Section 4.4 are evaluated at each level of the VICReg projector. We
see that déjà vu is significantly stronger closer to the projector output and nearly zero near
the backbone. Interestingly, most memorization appears to occur in the final two layers of
VICReg.

Figure 7 shows how guillotine regularization significantly reduces the degree of
memorization in VICReg. The vast majority of VICReg’s déjà vu appears to occur in the
final two layers of the projector (2,3): in earlier layers (0,1), the label inference accuracy
of the target model and reference model are comparable. This suggests that – like the
hyperparameter selection of Section 4.7 – guillotine regularization can also significantly
mitigate déjà vu memorization. In the following, we extend this result to SimCLR and
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supervised models by measuring the degree of déjà vu in the backbone (layer 0) versus
training epochs and dataset size.

Comparison of déjà vu in projector and backbone vs. epochs and dataset
size Since the backbone is mostly used at inference time, we now evaluate how much déjà
vu exists in the backbone representation for VICReg and SimCLR. We repeat the tests of
Section 4.4 versus training epochs and train set size.

Figure 8 shows that, indeed, déjà vu is significantly reduced in the backbone representation.
For SimCLR, however, we see that backbone memorization is comparable with projector
memorization. In light of the Guillotine regularization results above, this makes some sense
since SimCLR uses fewer layers in its projector. Given that we were able to generate accurate
reconstructions with the SimCLR projector (see Figures 9 and 6), we now evaluate whether
we can produce accurate reconstructions of training examples using the SimCLR backbone
alone.
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(a) VICReg

(b) SimCLR

Fig. 8. Accuracy of label inference on VICReg and SimCLR using projector and backbone
representations. First two columns: E�ect of training epochs on memorization for each
representation. Last two columns: E�ect of training set size on memorization for each
representation. In contrast with VICReg, the déjà vu memorization detected in SimCLR’s
projector and backbone representations is quite similar. While SimCLR’s projector memoriza-
tion appears weaker than that of VICReg, its backbone memorization is markedly stronger.
This kind be easily explained as a byproduct of Guillotine Regularization [30], i.e. removing
layers close to the objective reduce the bias of the network with respect to the training
task. Since SimCLR’s projector has fewer layers than VICReg’s, the impact of Guillotine
Regularization is less salient.
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C.4. Additional reconstruction examples
The two reconstruction experiments of Section 4.5 are each exemplified within one class.

However, we see strong reconstructions using SSLA in several classes, and similar experimental
results. To demonstrate this, we repeat the experiments 4.5 using the yellow garden spider
class and the and the aircraft carrier class.

(a) SimCLR correlated yellow garden spider ex-
amples

(b) SimCLR memorized yellow garden spider
examples

Fig. 9. Visualizing the distinction between déjà vu memorization and correlation in the
yellow garden spider class. Left, we see the periphery crops of the ten ‘most correlated’
images: those where both KNNA and KNNB have high confidence. Seven of these crops
clearly depict a stabilimentum: the signature zig-zag web pattern sewn by spiders of the
argiope genus, thus revealing the concealed spider by correlation. Right, we see the periphery
crops of the ten ‘most memorized’ images: those that have the highest confidence discrepancy
between KNNA (high confidence) and KNNB (low confidence). Nearly all of these crops
show generic blurred views of the background with no evidence of the foreground spider.
Below, we show the public set nearest neighbors of the pink highlighted crop, and the RCDM
reconstruction of the foreground object. We see that the target model (SSLA) can be used to
reconstruct the yellow garden spider spider in both the memorized and correlated cases. The
reference model (SSLB) can only be used to reconstruct this type of spider in the correlated
case.
Selection of Memorized and Correlated Images: The images of Figure 6 and 9 were chosen
methodically as follows.

Image selection: The 20 images of Figures 6 and 9 are selected deterministically using
label inference accuracy and KNN confidence score. The 10 most correlated images are
those images in the correlated set (both models infer label correctly) of A with the highest
confidence agreement between models SSLA and SSLB. To measure confidence agreement
we take the minimum confidence of the two models. The 10 most memorized images are
those images in the memorized set (only target model infers the label correctly) of A with
the highest confidence di�erence between models SSLA and SSLB.
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Class selection: To find classes with a high degree of déjà vu , classes were sorted by
the label inference accuracy gap between the target and reference model. We selected the
class based on a handful of criteria. First, we prioritized classes without images of human
faces, thereby removing classes like ‘basketball’, ‘bobsled’, ‘train station’, and even ‘tench’
which is a fish often depicted in the hands of a fisherman. Second, we prioritized classes
that include at least ten images with a high confidence di�erence between the target and
reference models (‘most memorized’ images described above) and at least ten images with
high confidence agreement (‘most correlated’ images described above). This led us to the
dam and yellow garden spider classes.
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(a) extracting side of ship from VICReg (b) extracting front of ship from VICReg

Fig. 10. Visualization of déjà vu memorization beyond class label. Both SSLA and SSLB

are VICReg models. The four images shown belong to the memorized set of SSLA from the
aircraft carrier class. RCDM reconstruction using embeddings from SSLA can reveal not
only the correct class label, but also the orientation of the ship: the side of the ship (left) and
the front of the ship (right) given only a generic crop of the background sky and/or water.
Such information does not appear to be memorized by the reference model SSLB.

Selection of Beyond-Label-Inference Images: The images of Figure 7 and 10 were
chosen methodically as follows.

Image selection: The four images of Figures 7 and 10 are selected using KNN confidence
score, and, necessarily, hand picked selection for unlabeled features. Within a given class, we
look at the top 40 images with highest target model KNN confidence scores. We then filter
through these images to identify a distinguishable feature like di�erent species within the
same class or di�erent object positions within the same class. This step is necessary because
we are looking for features that are not labeled by ImageNet. We then choose two of these
top 40 with one feature (e.g. American badger) and two with the alternative feature (e.g.
European badger).

Class selection: To find classes with a high degree of déjà vu , classes were
sorted by the target model’s top-40 KNN confidence values within each class. As in the
memorization vs. correlation experiment, we prioritized classes without images of human faces.

C.4.1. Reconstructions using SimCLR Backbone

The label inference results in Appendix C.3.6 show that the SimCLR backbone exhibits a
similar degree of déjà vu memorization as the projector does. To evaluate the risk of such
memorization, we repeat the reconstruction experiment of Section 4.5 on the dam class using
the SimCLR backbone instead of its projector.
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(a) First memorized dam example

(b) Second memorized dam example

Fig. 11. Instances of déjà vu memorization by the SimCLR backbone representation. Here,
the backbone embedding of the crop is used instead of the projector embedding on the same
training images used in Figure 6. Interestingly, we see that déjà vu memorization is still
present in the SimCLR backbone representation. Here, the nearest neighbor set recovers dam
given an uninformative crop of still or running water. Even without projector access, we are
able to reconstruct images in set A using SSLA, and are unable using SSLB.

Figure 11 demonstrates that we are able to reconstruct training set images using the
SimCLR backbone alone. This indicates that déjà vu memorization can be leveraged to
make detailed inferences about training set images without any access to the projector. As
such, withholding the projector for model release may not be a strong enough mitigation
against déjà vu memorization.
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C.5. Detecting Déjà vu without Bounding Box Annota-
tions

The memorization tests presented critically depend on bounding box annotations in order
to separate the foreground object from the periphery crop. Since such annotations are often
not available, we propose a heuristic test that simply uses the lower left corner of an image
as a surrogate for the periphery crop. Since foreground objects tend to be near the center of
the image, the corner crop usually excludes the foreground object and does not require a
bounding box annotation.

Figure 12 demonstrates that this heuristic test can successfully capture the trends of
the original tests (seen in Figure 4) without access to bounding box annotations. However,
as compared to Figure 4, the heuristic tends to slightly underestimate the degree of
memorization. This is likely due to the fact that some corner crops partially include the
foreground object, thus enabling the KNN to successfully recover the label with the reference
model where it would have failed with a proper periphery crop that excludes the foreground
object.

Fig. 12. Deja Vu Memorization using a simple corner crop instead of the periphery crop
extracted using bounding box annotations. While the heuristic overall underestimates the
degree of déjà vu , it roughly follows the same trends versus dataset size and training
epochs. This is crucial, since it allows us to estimate déjà vu without access to bounding box
annotations.
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Appendix D

Appendix: PUG: Photorealistic and
Semantically Controllable Synthetic Data for

Representation Learning

D.1. Limitations and Future Work
D.1.1. Limitations

In this work, we introduced 4 new datasets that were created using the Unreal Engine. We
presented a set of case studies, demonstrating how these datasets can be leveraged to improve
both evaluation and training for representation learning. Deeper work would be needed to
fully unlock the potential these datasets can o�er. In addition, we merely scratch the surface
of what a powerful engine such as the Unreal Engine can o�er. With advanced techniques
such as Lumen, Nanite and Megascans, it is now possible to create even more realistic
environments. In addition, the datasets we provide have a single simple label, whereas future
uses could easily provide detailed rich labels for the entire scene underlying each generate
image.

D.1.2. Future Work

A long vision for the PUG family would be to yield a series of benchmarks that can probe
the robustness of vision models. PUG: ImageNet is a first step in this direction, however we
might want to get more factors of variation such as weather and occlusion. A second take
would be to increase the richness of the labelling by making available detailed segmentation
masks and labels. Making a short video dataset in which we have complete control over the
factors is also a promising future direction since AI research on video is still far behind what
can be done with images. The active learning pipeline direction is also worth to explore



since the model could bias the PUG environment to produces samples that are the best for a
specific downstream task[153].

D.2. PUG Datasets
The datasets PUG: Animals, PUG: ImageNet, PUG: SPAR and PUG:AR4T are available

under the cc-by-nc license with the restrictions that they should not be use to
train generative AI models. They are available to download on the following website:
https://pug.metademolab.com/. The datasets can be read by a torchvision ImageFolder.
We have one class by folder and all the images associated to one class are saved in this
folder as png. There is a csv file associated to each dataset that map a filename (with
unique ID) to its associated factors of variations. Examples of dataloaders are available at
https://github.com/facebookresearch/PUG.

D.2.1. Datasheet

Motivation

For what purpose was the
dataset created?

The 4 datasets we presented in this paper
were created for representation learning re-
search. PUG: Animals is a strong dataset for
OOD research as well as for being able to bet-
ter probe the representation of vision models.
PUG: ImageNet was designed as an additional
benchmark for ImageNet pretrained model to
o�er a better comprehension of vision models
capabilities in term of robustness to specific
factor of variations. PUG: SPAR showcase
how synthetic data can be used to evaluate
VLMs understanding while PUG: AR4T can
be leveraged to fine-tune them.

Who created the dataset and
on behalf of which entity?

This dataset was created by the FAIR team
at Meta AI.

Who funded the creation of
the dataset?

Meta.

Composition
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What do the instances that
comprise the dataset repre-
sent?

The instances represent images of animals in
various environment for PUG: Animals. In
contrast PUG: ImageNet contains 151 object
classes (the full list is available in Appendix
D.2.3). PUG: SPAR uses the sames assets
as PUG: Animal while PUG: AR4T use the
same objects as PUG: ImageNet.

How many instances are there
in total?

PUG: Animals: 215 040 images; see
Appendix D.2.2.

PUG: ImageNet: 88,328 images; see
Appendix D.2.3.

PUG: SPAR: 43,560 images; see Ap-
pendix D.2.4.

PUG: AR4T: 249,986 images for training
and 23,216 test images; see Appendix D.2.5.

Does the dataset contain
all possible instances or is
it a sample (not necessarily
random) of instances from a
larger set?

PUG: Animals contains all possible combi-
nation of factors of variations. In contrast
PUG: ImageNet was sampled by changing
only 1 factor at a time and is therefore a ran-
dom sample of the distribution. Images in
PUG: SPAR were sampled using all possible
combination of factors of variations (with the
exception that for the attributes the blue or
grass animal is always on the left). Image-text
pairs in PUG: AR4T were randomly sampled.

What data does each instance
consist of?

For PUG: Animals, PUG: ImageNet, PUG:
SPAR we release images along the factor of
variation. For PUG: SPAR, we release the
script to generate the captions from the fac-
tors of variations. For PUG: AR4T, we release
images along with corresponding captions.
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Is there a label or target as-
sociated with each instance?

Yes, a csv file. Each instance have a row in
this csv files with all the factors of variation
used to generate this image. For PUG:
Animals, the csv file contain the following
columns:

filename, world_name, character_name,
character_scale, camera_yaw, charac-
ter_texture

while for PUG: ImageNet, it contains:

filename, world_name, character_name,
character_label, character_rotation_yaw,
character_rotation_roll, charac-
ter_rotation_pitch, character_scale,
camera_roll, camera_pitch, camera_yaw,
character_texture, scene_light.

For PUG: SPAR, the csv contains:

filename, world_name, character_name,
character2_name, character1_pos, char-
acter2_pos, character_texture, charac-
ter2_texture

For PUG: AR4T, the csv contains:

Relation, Actor1Category, Actor2Category,
Actor1Name, Actor2Name, Actor1Location,
Actor2Location, Actor1Rotation, Ac-
tor2Rotation, Actor1Scale, Actor2Scale,
Actor1Texture, Actor2Texture, Ac-
tor1Attribute, Actor2Attribute, Camera_roll,
Camera_pitch, Camera_yaw, caption,
alt_caption, Level, World.Name, filename,
filename_neg, filepath
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Is any information missing
from individual instances?

No, all relevant information is included.

Are relationships between in-
dividual instances made ex-
plicit?

N/A.

Are there recommended data
splits?

There is no specific split concerning PUG:
Animals because this dataset should be used
for OOD research. We primarily let the
researchers choose their own held out or
training/validation/testing split to train their
models. In contrast, PUG:ImageNet and
PUG:SPAR should only be used as an ad-
ditional test set. For PUG: AR4T, splits are
described in Appendix D.2.5.

Are there any errors, sources
of noise, or redundancies in
the dataset?

We did not explicitly filter for occlusion, so
some images may contain occluded views.
PUG: Animals and PUG:SPAR are very clean
and each animal is easily identifiable. In con-
trast, PUG: ImageNet and PUG: AR4T lever-
age assets from Sketchfab and the asset qual-
ity vary significantly.

Is the dataset self-contained,
or does it link to or otherwise
rely on external resources?

The dataset is self-contained however
the assets that were used to build
the dataset belongs to external sources
which are listed in the github at https:

//github.com/facebookresearch/PUG.

Does the dataset contain data
that might be considered con-
fidential?

No.

Does the dataset contain data
that, if viewed directly, might
be o�ensive, insulting, threat-
ening, or might otherwise
cause anxiety?

No.

Collection
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How was the data associated
with each instance acquired?

The data (3D assets) were acquired
through the Unreal Engine Market-
place https://www.unrealengine.com/

marketplace/en-US/store and Sketchfab
https://sketchfab.com/. Assets were
then incorporated into the Unreal Engine to
generate realistic 3D scenes and correspond-
ing images. The 3D assets were manually
selected to ensure high quality.

What mechanisms or proce-
dures were used to collect the
data?

Manual human curation. Assets were manu-
ally collected.

If the dataset is a sample from
a larger set, what was the
sampling strategy?

For PUG: Animals and PUG: SPAR, all com-
binations are included. For PUG: ImageNet
and PUG: AR4T, a random sample of possi-
ble combinations is provided.

Who was involved in the data
collection process and how
were they compensated?

Only the authors of this work were involved.

Over what timeframe was the
data collected?

The data were collected between June 2022
and June 2023

Were any ethical review pro-
cesses conducted?

No.

Did you collect the data from
the individuals in question di-
rectly, or obtain it via third
parties or other sources (e.g.,
websites)?

Third parties: Unreal Engine Market-
place https://www.unrealengine.com/

marketplace/en-US/store and Sketchfab
https://sketchfab.com/.
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Were the individuals in ques-
tion notified about the data
collection? If so, please de-
scribe (or show with screen-
shots or other information)
how notice was provided, and
provide a link or other access
point to, or otherwise repro-
duce, the exact language of
the notification itself.

There is no personally identifiable information
in our datasets as they are purely synthetic
and contain no images of people. We pur-
chased 3D assets from di�erent marketplaces
where required, however we did not explicitly
contact the individual creators.

Did the individuals in ques-
tion consent to the collection
and use of their data? If
so, please describe (or show
with screenshots or other in-
formation) how consent was
requested and provided, and
provide a link or other ac-
cess point to, or otherwise re-
produce, the exact language
to which the individuals con-
sented.

N/A. See above.

If consent was obtained, were
the consenting individuals
provided with a mechanism
to revoke their consent in
the future or for certain
uses? If so, please provide a
description, as well as a link
or other access point to the
mechanism (if appropriate).

N/A. See above.
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Has an analysis of the poten-
tial impact of the dataset and
its use on data subjects (e.g.,
a data protection impact anal-
ysis) been conducted? If so,
please provide a description
of this analysis, including the
outcomes, as well as a link or
other access point to any sup-
porting documentation.

No data about specific individuals is included
in these data. See above.

Preprocessing

Was any preprocessing/clean-
ing/labeling of the data done?

N/A.

Was the “raw” data saved in
addition to the preprocessed/-
cleaned/labeled data?

N/A.

Is the software that was used
to preprocess/clean/label the
data available?

N/A.

Uses

Has the dataset been used for
any tasks already?

Yes, these data were used for the experiments
that were presented in this paper.

Is there a repository that
links to any or all papers or
systems that use the dataset?

No.

What (other) tasks could the
dataset be used for?

These Datasets could be used widely for eval-
uating and training neural networks. For
example, assessing disentanglement of models
with respect to PUG: Animals factors of vari-
ation (e.g. with DCI metric Eastwood and
Williams [71]).
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Is there anything about the
composition of the dataset
or the way it was collected
and preprocessed/cleaned/la-
beled that might impact
future uses?

No.

Are there tasks for which the
dataset should not be used?

These datasets should not be used for gen-
erative modelling purposes.

Distribution

Will the dataset be dis-
tributed to third parties
outside of the entity on
behalf of which the dataset
was created?

Yes, the dataset will be publicly distributed.

How will the dataset will be
distributed?

Tarball on a website.

Will the dataset be dis-
tributed under a copyright
or other intellectual property
(IP) license, and/or under
applicable terms of use
(ToU)?

The license of the dataset is cc-by-nc with
the mention that these data should not
be used for generative AI purposes.

Have any third parties im-
posed IP-based or other re-
strictions on the data associ-
ated with the instances?

See EpicGames [72].

Do any export controls or
other regulatory restrictions
apply to the dataset or to in-
dividual instances?

N/A

Maintenance

Who will be supporting/host-
ing/maintaining the dataset?

Meta AI.
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How can the owner/curator/-
manager of the dataset be
contacted?

Please contact the corresponding author of
this paper.

Is there an erratum? No.

Will the dataset be updated? Yes the dataset will be updated with version-
ing.

If the dataset relates to peo-
ple, are there applicable lim-
its on the retention of the
data associated with the in-
stances (e.g., were the indi-
viduals in question told that
their data would be retained
for a fixed period of time and
then deleted)? If so, please
describe these limits and ex-
plain how they will be en-
forced.

N/A.

Will older versions of the
dataset continue to be sup-
ported/hosted/maintained?
If so, please describe how.
If not, please describe how
its obsolescence will be
communicated to dataset
consumers.

It depends. If the dataset is updated because
one of the asset creators has requested to
remove their assets, we will not continue to
host the dataset containing these assets. Only
the newer version of the dataset which will
not contain these assets will be available.

If others want to extend/aug-
ment/build on/contribute to
the dataset, is there a mecha-
nism for them to do so?

No mechanisms are in place yet, but they
can contact the authors of this paper if they
would like to contribute.

Table 1. Datasheet for PUG, following the framework introduced by Gebru et al. [82].

D.2.2. PUG: Animals

PUG Animals contains 215 040 pre-rendered images using 70 animals assets, 64 back-
grounds, 3 sizes, 4 textures, under 4 di�erent camera orientations. To create PUG: Animals,
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we use Animals assets from the following bundle in the Epic Game Marketplace ( https://www.

unrealengine.com/marketplace/en-US/product/complete-animals/reviews). The list
of environments used can be found in the dataset folder or at https://github.com/

facebookresearch/PUG. Below, we list all the values for the factors of variation, we have
used:

• World_Name : ["Egypt", "Desert", "AmusementPark", "ArcadeClub", "Arena", "Battle-
ground", "Catacombs", "Tableland", "EuropeanStreet", "JunkYard", "OceanFloor", "Race-
track", "Ruins", "SciFiCity", "SciFiGarage", "SpaceIsland", "SpaceHangar", "SpatialSta-
tion", "TokyoDay", "TokyoNight", "TrainStation", "Bridge", "Beach", "BusStationInte-
rior", "BusStationExterior", "Subway", "IndoorStairs", "Bar", "ScreeningCheckpoint", "Cir-
cus", "Appartment", "Hallway", "TrashRoom", "FuturisticSubway", "Footbridge", "Boxin-
gRing", "Hangar", "Mansion", "ShoppingMall", "ConferenceRoom", "SpacePort", "VillageOut-
skirt","VillageSquare","Courtyard", "ElvenRuins", "Forge", "Library", "Museum", "Gallery",
"ModernGallery", "Opera", "AncientAgora", "Restaurant", "RuralAustralia", "Australian-
Road", "ShadyRoad", "SaltFlats", "Castle", "StylizedEgypt", "Temple", "Snow", "Grass",
"DryGrass", "Forest"],

• Character_Name : ["Goldfish","Caribou","Elephant","Camel","Penguin","Cassowary","Zebra",

"Turtle","Bear","Beaver","Capybara","Crocodile","Armadillo","Cat","Gecko","Crow","GiantAnteater",

"GiantTortoise","KomodoDragon","Rhinoceros","Dolphin","EarlessSeal","FruitBat","Goat", "Hippopota-

mus","Horse","Impala","Lion","Orca","Pig","Rabbit","Squirrel", "Tapir","Wildbeest","Wolf", "Anly-

losaurus","BlackRockFish","Parasaurolophus","PoisonDartFrog","Spinosaurus","Triceraptos","Chicken",

"HarpyEagle","Ostrich","Raven","RedCrownedCrane","Robin","Seagull","Secretarybird","Shoebill","Swan",

"Toucan","Vulture","Ammonite","Ant","Scorpion","GoldBeetle","Hornet","SnowCrab","Tarantula","WhiteShark",

"Tuna","Arowana", "Ayu", "Betta", "Koi", "Pirarucu", "Salmon", "Cattle", "Jerboa"],
• Character_Scale : [0.7, 1.0, 1.3],
• Camera_Yaw : [0, 45, 225, 315],
• Character_Texture : ["Default", "Sky", "Grass", "Asphalt"]

PUG: Animals is built by using all combinations of the factor of variation above. In
Figure 1, we show random images from the PUG: animal dataset that highlight the diversity
of this dataset.

Following Liu et al. [142], we present a comparison in Table 2 with other datasets that
are often used in OOD research:

D.2.3. PUG: ImageNet

PUG: ImageNet contains 88,328 pre-rendered images using 724 assets representing 151
ImageNet classes with 64 backgrounds, 7 sizes, 10 textures, 18 di�erent camera orientation,
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Fig. 1. Random images taken from the PUG: Animals dataset.

18 di�erent character orientation and 7 light intensity. Below is the values we used for each
of these factors:
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Image Data Colored MNIST MNIST-R Waterbirds Biased-Cars Nico++ PUG: Animals
[7] [83] [176] [148] [228] Ours

# Domains 3 6 2 - 10 64
# Categories 2 10 2 5 80 70
# Examples - 6k 4.8k 450k 230k 215k
Shift Type Color Angle Background Views Background Back./Text./Size./View
Image Type Digits Digits Birds Synthetic Cars Real Objects Synthetic Animals

Table 2. Comparing PUG: Animals with other datasets traditionally used for OOD research.
In contrast to other datasets that have variations across only a single domain, that have noisy
annotations or that are to unrealistic, PUG: Animal over high quality images with reliable
annotations across di�erent domains such as the background,texture,size and view.

• World_Name : ["Egypt", "Desert", "AmusementPark", "ArcadeClub", "Arena", "Battle-
ground", "Catacombs", "Tableland", "EuropeanStreet", "JunkYard", "OceanFloor", "Race-
track", "Ruins", "SciFiCity", "SciFiGarage", "SpaceIsland", "SpaceHangar", "SpatialSta-
tion", "TokyoDay", "TokyoNight", "TrainStation", "Bridge", "Beach", "BusStationInte-
rior", "BusStationExterior", "Subway", "IndoorStairs", "Bar", "ScreeningCheckpoint", "Cir-
cus", "Appartment", "Hallway", "TrashRoom", "FuturisticSubway", "Footbridge", "Boxin-
gRing", "Hangar", "Mansion", "ShoppingMall", "ConferenceRoom", "SpacePort", "VillageOut-
skirt","VillageSquare","Courtyard", "ElvenRuins", "Forge", "Library", "Museum", "Gallery",
"ModernGallery", "Opera", "AncientAgora", "Restaurant", "RuralAustralia", "Australian-
Road", "ShadyRoad", "SaltFlats", "Castle", "StylizedEgypt", "Temple", "Snow", "Grass",
"DryGrass", "Forest"],

• Character_Name : 724 Sketchfab assets (See github for the list)
• Character_Rotation_Yaw : [0, 45, 135, 180, 225, 270],
• Character_Rotation_Roll : [45, 90, 135, 180, 225, 270],
• Character_Rotation_Pitch : [45, 90, 135, 180, 225, 270],
• Character_Scale : [0.5, 0.6, 0.7, 0.8, 1.3, 1.6],
• Camera_Roll : [45, 90, 135, 180, 225, 270],
• Camera_Pitch : [240, 260, 280, 300, 320, 340],
• Camera_Yaw : [0, 45, 135, 180, 225, 270],
• Character_Texture : ["Default", "Sky", "Green", "Gray", "Red", "Grass", "Color",

"Black", "Curtain"],,
• Scene_Light : ["255,255,255,0","0,0,255,0", "0,255,0,0", "255,0,0,0", "0,255,255,0",

"255,0,255,0", "255,255,0,0"] (The value for the lights are in RGBA format)
To generate PUG:ImageNet, we change only one factor at a time for each assets. When

changing the background (World_Name), all the other factors (Camera/Object Orientation,
Size, Texture, Light) are at 0 or at their default value. When changing the other factors
(Camera/Object Orientation, Size, Texture), the background is set to "SaltFlats_0" (Which
is the most basic background). When changing the light of the scene, we have used the
environment "Opera".
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The assets in PUG:ImageNet were selected base on 151 ImageNet classes which are listed
below:
[’BirdHouse’, ’Chest’, ’Bagel’, ’WarPlane’, ’Rocking_Chair’, ’Bridge’, ’Street_Sign’, ’Cabbage’, ’Pay_Phone’,

’Butternut_Squash’, ’JellyFish’, ’Jack_O_Lantern’, ’Bookcase’, ’Stonewall’, ’Punching_Bag’, ’Toaster’,

’Mushroom’, ’Frog’, ’Jeep’, ’Television’, ’Pineapple’, ’Vacuum’, ’Torch’, ’Carousel’, ’Desk’, ’WineBottle’,

’Wallet’, ’Dining_Table’, ’Military_uniform’, ’Car_Wheel’, ’Table_Lamb’, ’Digital_Watch’, ’Electric_Fan’,

’Sweatshirt’, ’Komodo_dragon’, ’Racket’, ’Cheeseburger’, ’Can_Opener’, ’Pomegranate’, ’Convertible’, ’Lap-

top’, ’Chicken_hen’, ’Wolf’, ’Bulletproof_vest’, ’Shield’, ’Bathtub’, ’Throne’, ’Lighter’, ’Bycicle’, ’Cofee_Mug’,

’Motor_Scooter’, ’Jean’, ’Soccer_Ball’, ’Vending_machine’, ’Hatchet’, ’Umbrella’, ’Bear’, ’Artichoke’, ’Vase’,

’Radiator’, ’SpaceShuttle’, ’Manhole_Cover’, ’Polaroid_Camera’, ’Tra�c_Light’, ’Radio’, ’Soup_Bowl’,

’Zucchini’, ’Barrel’, ’Tennis_Ball’, ’Sunglasses’, ’Microwave’, ’Joystick’, ’Aircraft_Carrier’, ’Fox’, ’Submarine’,

’BasketBall’, ’Running_Shoe’, ’Chain-saw’, ’Piano’, ’Crate’, ’Loupe’, ’Minivan’, ’Shirt’, ’Remote_controler’,

’Airliner’, ’Sock’, ’Shovel’, ’Mask’, ’Tractor’, ’Sandal’, ’Wooden_Spoon’, ’Drum’, ’Goldfish’, ’Gasmask’, ’Mail-

box’, ’Volley_Ball’, ’Banana’, ’Penguin’, ’Sliding_Door’, ’Pool_Table’, ’Burrito’, ’Candle’, ’Purse’, ’Canoe’,

’Typewriter_Keyboard’, ’Espresso_maker’, ’Carton’, ’Park_Bench’, ’Screen’, ’African_crocodile’, ’Cat’, ’Hay’,

’Elephant’, ’WaterBottle’, ’Modem’, ’Palace’, ’Ice_Cream’, ’Washer’, ’Sewing_Machine’, ’HairDryer’, ’Rab-

bit’, ’Dishwasher’, ’Bell_Pepper’, ’Ambulance’, ’French_Loaf’, ’Refrigerator’, ’Mouse’, ’Obelisk’, ’Starfish’,

’Brocolli’, ’Microphone’, ’Great_white_shark’, ’Power-drill’, ’Locomotive’, ’Perfume’, ’Whale’, ’Screwdriver’,

’Dial_telephone’, ’Backpack’, ’Harmonica’, ’Binocular’, ’Skirt’, ’Pizza’, ’Cowboy_Hat’, ’Computer_Keyboard’,

’Kangarou’, ’Baseball’, ’Tile_Roof’, ’Lawn_Mower’, ’Safe’, ’Cellular_telephone’]

In Figure 2, we show random images taken from the PUG: ImageNet dataset.

D.2.4. PUG: SPAR

PUG: SPAR contains 43,560 pre-rendered images using 32 animals assets, 10 backgrounds,
4 positions and 4 textures. In contrast with the other PUG datsets, PUG: SPAR contain up
to two animal in a single scene. For generating the PUG: SPAR dataset, we utilize the same
subset of assets as PUG: Animals.

• World_Name : [ ’Desert’, ’Arena’, ’OceanFloor’, ’Racetrack’, ’TokyoDay’, ’Circus’,
’BoxingRing’, ’AustralianRoad’, ’SaltFlats’, ’Museum’],

• Character_Name : [’Goldfish’, ’Caribou’, ’Elephant’, ’Camel’, ’Penguin’, ’Zebra’, ’Bear’,
’Beaver’, ’Cattle’, ’Armadillo’, ’Gecko’, ’Crow’, ’Scorpion’, ’GiantTortoise’, ’Tarantula’,
’Rhinoceros’, ’Dolphin’, ’EarlessSeal’, ’Goat’, ’Hippopotamus’, ’Horse’, ’Impala’, ’Lion’,
’Orca’, ’Pig’, ’Rabbit’, ’Squirrel’, ’Chicken’, ’WhiteShark’, ’Anlylosaurus’, ’BlackRockFish’,
’PoisonDartFrog’],

• Character_pos : ["Left/Right", "Bottom/Top"]
• Character_Texture : ["Default", "Blue/Red", "Grass/Stone"]

In Figure 2, we show random images taken from the PUG: SPAR.
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Fig. 2. Random images taken from the PUG: ImageNet dataset.

D.2.5. PUG: AR4T

Assets and Environments. For generating the PUG: AR4T dataset, we utilize the same subset
of Sketchfab assets as used in PUG: ImageNet. This leaves us with a set of 680 unique assets
chosen from across 151 ImageNet categories, each manually inspected to quality control
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Fig. 3. Random images taken from the PUG: SPAR dataset.

for photo-realism as much as possible. For this PUG dataset we are primarily concerned
with object-object and object-attribute information, hence we utilize a single camera and
character orientation. Since Sketchfab assets di�ers widely in their scales, we first scaled
down the longest edge of the asset bounding box to 150 pixels to normalize the order of
magnitude of the asset dimensions, before any further scaling based on attributes. Next, we
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select a total of 26 unique environments as our background environments. The richness of
some environments enables us to manually select di�erent camera views in each environment
as a novel environment view, and we generate a total of 28 visually unique backgrounds for
our PUG: AR4T dataset. We provide each background with human-intelligible descriptive
names for use in the dataset captions (Table 3). The PUG: AR4T dataset is composed with
two subset described in the following sections.

Environment Name
(with camera view variant) Descriptive Caption for PUG Environment Name

(with camera view variant) Descriptive Caption for PUG

Arena arena IceRoad icy road
VillageOutskirt village Jungle jungle
VillageSquare village Library library
Battleground battleground Museum museum

Beach beach OceanFloor ocean floor
Bridge bridge AncientAgora castle outskirts
Circus circus Racetrack race track
Cli� cli� RuralAustralia rural wilderness

Courtyard courtyard AustralianRoad desert road
Egypt egypt SaltFlats salt flats

ElvenRuins ruins SpaceIsland space
EuropeanStreet european street StylizedEgypt egypt
FightingArena fighting arena Temple temple

Forge forge TrainStation train station

Table 3. Environments and descriptive captions used in PUG: AR4T

PUG: AR4T-Relations. For generating the PUG: AR4T-Relations subset, we utilize the
spatial relationships from Visual Genome that are not symmetric, as noted in the ARO
benchmark [235]. The set of relationships used in PUG: AR4T-Relations is given in Table
4. It consists of three unary relations (at, in, inside) and ten binary relations (above,

on, on top of, behind, in front of, below, beneath, under, to the left of,

to the right of.) For each relation, the corresponding objects are picked randomly from
the set of assets, and placed in the scene based on the co-ordinates given in Table 4. We add
a random o�set in the range [0-25] along each dimension for every individual object for every
scene, so that the dataset does not contain shortcuts where the object locations can directly
inform the underlying relation. The size of each asset is chosen randomly on a scale of 1-10,
where 1 corresponds to 110 pixels and 10 to 200 pixels for the longest edge of the scaled asset.

The caption for a scene is generated using one of two templates based on whether the
spatial relationship in the scene is unary or binary:
• Unary Relation: “[ImageNet class label of asset 1] [relation] [human-intelligible back-

ground description]” e.g. Banana inside museum
• Binary Relation: “[ImageNet class label of asset 1] [relation] [ImageNet class label of

asset 2] [(random) unary relation] [human-intelligible background description]” e.g. Banana
to the left of chair inside museum

For each binary relation, we also sample the corresponding hard negative scene and
caption, by replacing the relation with its negative from Table 4 such that the semantic
meaning of the scene and caption represents a switch from the original relation between
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Relation Object 1 coordinates
(wrt origin)

Object 2 coordinates
(wrt origin) Negative Relation

At (0, 0, 0) N/A N/A
In (0, 0, 0) N/A N/A
Inside (0, 0, 0) N/A N/A
Above (0, 0, 300) (0, 0, 0) Below, Beneath, Under
On top of (0, 0, 300) (0, 0, 0) Below, Beneath, Under
On (0, 0, 300) (0, 0, 0) Below, Beneath, Under
Below (0, 0, 0) (0, 0, 300) Above, On Top Of, On
Beneath (0, 0, 0) (0, 0, 300) Above, On Top Of, On
Under (0, 0, 0) (0, 0, 300) Above, On Top Of, On
Behind (150, 0, 0) (-150, 0, 0) In front of
In front of (-150, 0, 0) (150, 0, 0) Behind
To the left of (0, -150, 0) (0, 150, 0) To the right of
To the right of (0, 150, 0) (0, -150, 0) To the left of

Table 4. Relations, corresponding asset locations wrt to camera origin, and corresponding
hard negative relation used in PUG: AR4T

objects. For example, the negative of “Banana to the left of chair inside museum” is given
by “Banana to the right of chair inside museum”.

We sample a total of 310 binary relation scenes (155 random + 155 negatives), and 310
unary relation scenes for each background, thus leading to a dataset of 112,840 image-caption
samples (28 backgrounds x (310 pairs x 10 binary relations + 310 pairs x 3 unary relations)).
The PUG:Relations dataset generation process described above is summarized as psueduocode
in Algorithm 1.

Lastly, we split the dataset into 101,920 train and 10,920 test image-caption samples,
such that the test set is balanced by background and relations (28 backgrounds x 13 relations
x 30 samples). We also release the subset of training and test samples that only contain
pairs of objects in scenes along with their hard negatives, which contains 78,400 training
and 8,400 test samples, or 39,200 training pairs and 4,200 test pairs. This subset enables
Winoground [198] style evaluation as well as training with hard visual negative mining for
VLMs in future work. The PUG:Relations dataset generation process described above is
summarized as psueduocode in Algorithm 1

PUG: AR4T-Attributes. For PUG: AR4T-Attributes the selection of assets, relations between
assets, and spatial locations of assets is done exactly as for PUG: AR4T-Relations. However,
since the focus of this dataset is on the object-attribute pairs, the relations between objects
are not represented in the corresponding scene caption in any form. The attribute for each
object is chosen randomly from the set of 53 attributes described in Table 5. For size based
attributes, the asset’s material instance remains the same but its size is varied between 50
pixels (short, small, little, tiny) and 200 pixels (big, long, tall, large). For all
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Attribute Category Attribute Variants Attribute Category Attribute Variants

Material

Brick 3

Color

Black 2
Metal 2 Blue 2
Wood 2 Yellow 2
Glass 2 White 2
Cloth 2 Green 2
Plastic 2 Gray 2
Rock 2 Brown 2

Size

Big 1 Red 2
Long 1 Silver 2
Tall 1 Orange 2
Large 1 Pink 2
Short 1 Gold 2
Small 1

Texture

Striped 2
Little 1 Dark 2
Tiny 1 Cloudy 2

Total= 53

Table 5. Attributes and corresponding number of variants used in PUG: AR4T-Attributes

other attributes, the material instance of the object is changed in Unreal using Pytorch
Multiverse.

The caption of the scene is generated using one of two templates based on whether the
spatial relationship in the scene is unary or binary:
• Unary Relation: “[Attribute of asset 1] [ImageNet class label of asset 1] [relation]

[human-intelligible background description]” e.g. Green banana inside museum
• Binary Relation: “[Attribute of asset 1][ImageNet class label of asset 1] and [Attribute

of asset 2][ImageNet class label of asset 2] [(random) unary relation] [human-intelligible
background description]” e.g. Green banana and large chair inside museum

For each binary relation, we also sample the corresponding hard negative scene and
caption, by swapping the attributes between objects such that the semantic meaning of the
scene and caption represents a switch from the original object-attribute associations. For
example, the negative of “Green banana and large chair inside museum” is given by “Large
banana and green chair inside museum”. For each of the 53 object attributes, we sample 2
scenes of it in conjugation with another object and attribute, and 2 scenes of the attribute in
isolation in a scene. We repeat this for each possible background, thus leading to a dataset
of 160,272 image-caption samples (28 backgrounds x (53 attributes x (53 attributes x 2
samples) + 2 samples)). The PUG:Attributes dataset generation process described above is
summarized as pseudocode in Algorithm 2.

Lastly, we split the dataset into 147,976 train and 12,296 test images. For each attribute
pair in a scene, we select 4 image-caption samples in the test set (4 samples x 53 attributes x
53 attributes = 11,236 sample). And we sample the remaining test samples by selecting 20
image-caption samples for each attribute in isolation in a scene (20 samples x 53 attributes =
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1,060 samples). Similar to PUG-attributes, we also separately release the subset of training
and test set with scenes and captions containing only pairs of scenes with their corresponding
hard negatives, leading to 146,158 training samples and 11,236 test samples, or 73,0739
training and 5,618 test sample pairs.

Caption variants in PUG: AR4T. In order to emphasize the idea that each scene can have
multiple descriptive captions associated with it, we utilize a simple template to generate
alternate captions for scenes with binary relations that are semantically consistent but
linguistically di�erent. During fine-tuning, the model randomly sees either the original
caption or the alternate caption. The presence of alternate captions also prevents the VLM to
learn shortcuts between the position of the object descriptions in captions and the underlying
spatial relationship or object-attribute association.

• PUG: Relations “[ImageNet class label of asset 2] [negative relation] [ImageNet class
label of asset 1] [(random) unary relation] [human-intelligible background description]” e.g.
The alternate caption for ’Banana to the left of chair inside museum’ is ’Chair to the right
of banana inside museum’

• PUG: Attributes “[Attribute of asset 2][ImageNet class label of asset 2] and [Attribute
of asset 1][ImageNet class label of asset 1] [(random) unary relation] [human-intelligible
background description]” e.g. The alternate caption for ’Green banana and large chair
inside museum’ is ’Large chair and green banana inside museum’
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Algorithm 1 PUG: AR4T-Relations subset generation
Unary = {At, In, Inside}
Categories = {Set of ImageNet Class Labels}
Environments = {Set of Unreal Environments}
Relations = {Set of Relations}
NegRelations = {Dictionary of relations as key, semantically negative relations as values}
Assets = {Dictionary of Sketchfab assets, keys being ImageNet Class Labels}
AssetLocations = {Function that returns locations of assets based on relation with a
random o�set}
Dataset = „

for env in Env do
for rel in Rel do

Û For binary relations we also add the negative scene+caption to the dataset, thus
the e�ective number of samples per background is 2*15 = 30
if rel œ Unary then

num_samples = 15
else

num_samples = 30
end if
for i = 1 to num_samples do

cat1 = random.choice(Categories)
asset1 = random.choice(Assets[cat1])
if rel /œ Unary then

cat2 = random.choice(Categories)
asset2 = random.choice(Assets[cat2])

end if
location1, location2 = AssetLocations(rel)
scene1 = TorchMultiverse(asset1, asset2, location1, location2, env)
if rel /œ Unary then

rel2 = random.choice(Unary)
caption1 = cat1 + ’ ’ + rel + ’ ’ + cat2 + ’ ’ + rel2 + ’ ’ + env
Dataset fi {scene1, caption1}
Û Generate hard negative scene and caption
scene1 = TorchMultiverse(asset1, asset2, location2, location1, env)
caption2 = cat1 + ’ ’ + NegRelations[rel] + ’ ’ + cat2 + ’ ’ + rel2 + ’ ’ +

env
Dataset fi {scene2, caption2}

else
caption1 = cat1 + ’ ’ + rel + ’ ’ + env
Dataset fi {scene1, caption1}

end if
end for

end for
end for
return Dataset
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Algorithm 2 PUG: AR4T-Attributes subset generation
Unary = {At, In, Inside}
Categories = {Set of ImageNet Class Labels}
Environments = {Set of Unreal Environments}
Relations = {Set of Relations}
Attributes = {Set of Attributes}
Assets = {Dictionary of Sketchfab assets, keys being ImageNet Class Labels}
AssetLocations = {Function that returns locations of assets based on relation with a random
o�set}
Dataset = „
for att1 in Attributes do

for att2 in Attributes + [None] do
if att2 == None then

num_samples = 20
else

Û For binary relations we also add the negative scene+caption to the dataset, thus
the e�ective number of samples per background and attribute is 2*2 = 4
num_samples = 2

end if
for i = 1 to num_samples do env = random.choice(Environments)

if att2 == None then
rel = random.choice(Unary)

else
rel = random.choice(Relations - Unary)

end if
cat1 = random.choice(Categories)
asset1 = random.choice(Assets[cat1])
if att2 != None then

cat2 = random.choice(Categories)
asset2 = random.choice(Assets[cat2])

end if
location1, location2 = AssetLocations(rel)
scene1 = TorchMultiverse(asset1, asset2, location1, location2, att1, att2, env)
if rel /œ Unary then

rel2 = random.choice(Unary)
caption1 = att1 + ’ ’ + cat1 + ’ and ’ + att2 + ’ ’ + cat2 + ’ ’ + rel2 + ’ ’ + env
Dataset fi {scene1, caption1}
Û Generate hard negative scene and caption by switching object-attribute
associations
scene2 = TorchMultiverse(asset1, asset2, location1, location2, att2, att1, env)
caption2 = att2 + ’ ’ + cat1 + ’ and ’ + att1 + ’ ’ + cat2 + ’ ’ + rel2 + ’ ’ + env
Dataset fi {scene2, caption2}

else
caption1 = att1 + ’ ’ + cat1 + ’ ’ + rel + ’ ’ + env
Dataset fi {scene1, caption1}

end if
end for

end for
end for
return Dataset
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D.3. Additional experimental details
To demonstrate the usefulness of PUG: Animals for OOD research,

Fig. 4. Accuracy on held out fac-
tors with PUG: Animals. Each
line and value C correspond to
the number of animals for which
all the factors are seen. The test
space is built by taking all the
factors minus the training factors.
If we train on the Default texture,
then the network is evaluated on
Grass, Sky and Asphalt. If we
train on 50 backgrounds, then we
evaluate on 64 (total number of
backgrounds) - 50 (training back-
ground) = 14 backgrounds.

we trained a classifier on held-out factors split on PUG: Ani-
mals and evaluate its generalization on the held-out factors of
variations, In the first experiment, we held out some factors of
variation during training (backgrounds, sizes or textures) except
for a specific number of animals C and use the held-out data as
validation set. Thus, C = 0 means that the network never saw
the factor during training (this is an OOD scenario with unseen
factors) while C = 10 implies that the network saw this factor
for at least 10 di�erent animals (OOD scenario with unseen com-
binations of factors). In Figure 4, we present our results training
a ResNet50 with di�erent held-out factors. Every model reached
more than 99% accuracy on the training set. First, we trained
on 50 backgrounds and used the remaining 14 backgrounds for
validation: here, the network reached an accuracy of 80%. How-
ever, when using only 30 backgrounds for training and using the
remaining 34 as validation, the accuracy dropped significantly.
Interestingly, showing every background for some of the animals
(having unseen combinations of factors instead of just unseen
factors) decreases performance. In contrast, for texture, we found
that having at least 10 animals for which every possible textures
are seen during training improves generalization. Interestingly,
the network overfits much more to the grass texture relative to
the default one. Lastly, when looking at the size factor, it seems
that training on medium size assets leads to good generalization on small and large assets
while training only on small assets leads to worse performance on medium and large assets.

D.3.1. Equivariance study details

In section 5.3.2, we used PUG: Animals to study how foundation vision-language models
behave with respect to changes in factors of variations. We showed high image and text
equivariance with respect to background, and text equivariance with respect to size and
texture too. Here, we provide more details and results.

In our study, we use the following pretrained models:
• BLIP with ViT base backbone from the Huggingface transformers library [223], trained

on COCO dataset [140],
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• NegCLIP from [235],
• As in [235] we use X-VLM pretrained on COCO dataset from https://github.com/

zengyan-97/X-VLM,
• Flava with ViT-B/32 backbone from Huggingface transformers (https:

//huggingface.co/facebook/flava-full)
• CLIP models all come from OpenAI CLIP https://github.com/openai/CLIP. We

use the versions with ResNet50, ResNet101, ViT-L/14, ViT-B/16, ViT-B/32.
We compute equivariance to each of the factors of variations. Since the text captions do

not take into account camera and asset orientations, when we compute the equivariance with
respect to the other factors we take only samples for a given orientation of the character and
camera (0 for roll, pitch and yaw in both cases). Furthermore, in the text caption, we replace
sizes by three adjectives as follows: 0.7 is mapped to small, 1.0 to medium and 1.3 to big.
Inspired by [34], we compute equivariance as the alignment between embedding di�erence
vectors. That is, we compute embedding di�erence vectors zi ≠ zj where zi and zj are the
(normalized) embeddings of two images (or texts) of an object undergoing a given factor
change. We then measure pairwise alignment as cosine similarity of embedding di�erence
vectors (either between image pairs, text pairs, or image-text pairs) corresponding to the
same factor change. We report averaged cosine similarity of randomly paired vectors, and a
higher value implies higher equivariance.

Note that a model can present image equivariance but no text equivariance (cap-
tion and image are not guaranteed to be encoded in the same vector), or have high
equivariance across modalities but no image or text equivariance and vice-versa. In Figure 6
we report image equivariance with respect to the orientation of the camera yaw. We see
that there is little to no equivariance to it, suggesting that image embeddings are more
predictable when changing the background than the camera yaw. Note that foundation
model representations belong to the hypersphere, yet our measurement of equivariance as
parallelism (measured with cosine similarity) relies on Euclidean geometry. Still, cosine
similarity is a starting point to showcase how PUG: Animals can be used to study models’
representational spaces. This could also explain the higher equivariance values of text
representations: since textual captions follow the same template, embeddings might be close
to each other (relative to image embedding distances). In this case the hypersphere locally
behaves like an Euclidean space [133], for which the Euclidean geometry is better suited. We
leave for future work the exploration more complex equivariance metrics potentially based on
spherical geometry to study foundation models’ representational spaces. Studying model’s
representations is key to better understanding and improving them Bouchacourt et al.
[34], Xie et al. [226], Ushio et al. [206], Lenc and Vedaldi [135]. Our study showcases that
PUG: Animals advantages (rich diversity of factors, knowledge of their values, control either
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(a) Image equivariance (b) Text equivariance

(c) Across modalities equivari-
ance

Fig. 5. Measuring foundation models equivariance thanks to PUG: Animals: all three factors.

Fig. 6. Additional image equivariance results with respect to camera yaw.

one factor at a time but also all together) make it a great dataset to study state-of-the-art
models representational properties.

D.3.2. Classification with held out sets

In section D.3, we study how one can leverage PUG: Animsl to study OOD generalization
in two settings: 1) Generalization on unseen factors 2) Generalization on unseen combination
of factors.
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For this experiment, we use PUG: Animals with held out sets. Typically, we random select
a number of number of animals (0, 10 or 20) within our 70 assets. Then for the remaining
animals we decided to remove from PUG: Animals a number of background, object size or
object texture. This give us a training set. Then the images that were excluded from this
training set are put as a test or held out set in which we measure the performance of a model.
This model is typically a Resnet50 trained for 100 epochs with AdamW as optimizer with a
batch size of 2048.

D.3.3. Robustness of SOTA models additional details

In addition to evaluating robustness for the models in the main paper, in Table 6 we provide
an analysis of several additional models including the recent self-supervised DINOv2 model
as well as BLIP a contrastive vision-language model. Parenthesis indicate the pretraining
dataset: ImageNet 21k, LVD-142M, JFT 300M, LAION 400M, and LAION 2B. Models
without parethesis are pretrained on the standard ImageNet-1k dataset. For ResNet models
we use the publicly available pretrained checkpoints from the Timm package based on the
training recipe from Wightman et al. [222]. For the vision transformer models and Swin
we use the pretrained models from the Timm package with patch size 16 for ViT and Swin
Base with a patch size of 4 and window size of 7. For the BiT model we use the pretrained
checkpoint trained on Google’s JFT 300M dataset from the Timm package with a ResNetv2
101 architecture. For DINOv2, we use the o�cially released repo to evaluate the base ViT
architecture trained on 132 million samples [162]. For BLIP we use the checkpoint available
in HuggingFace and evaluate the model using zero shot classification via the prompt ‘This is
a photo of a [ ]’. We evaluate CLIP model variants in a similar zero shot fashion and rely on
OpenCLIP’s implementation. The parenthesis indicates the pretraining dataset size from
the LAION dataset. We report the average accuracy as each factor (see columns of Table 6)
varies.

We also measure the relationship between standard in-distribution accuracy and robustness
based on the accuracy as each factor in PUG:ImageNet varies. We measure Pearson’s
correlation coe�cient between ImageNet accuracy and accuracy for each factor in Table 7.
We find no statistically significant relationship between standard classification accuracy and
factor robustness.

D.3.3.1. Performances. To understand if the di�erences in performance between the real
ImageNet and our PUG dataset is caused by a sim-to-real gap or by the factor of variations,
we show below the zero-shot accuracy obtained with a pretrained resnet101 for each class in
PUG: ImageNet. There is only 3 classes for which there is not a single configurations of the
factors that lead to a correct classification. For all the other classes, there is always at least
one configuration for which the network is correctly predicting the class. In that instance,
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PUG: ImageNet
ImageNet Camera_Yaw Camera_Pitch Camera_Roll Object_Yaw Object_Pitch Object_Roll Object_Scale Object_Texture Scene_Light Background

ResNet50 81.5 38.1 33.1 26.9 38.0 23.6 22.9 35.7 27.0 13.6 29.5
ResNet101 82.3 43.4 35.9 29.4 45.1 26.7 25.6 39.7 31.1 14.1 32.8
BiT (JFT300M) 80.3 40.5 32.3 26.0 42.1 23.6 22.8 37.3 23.4 6.3 20.5
DINOv2 (LVD-142M) 84.5 45.6 41.1 37.4 47.5 28.8 28.5 43.1 35.0 6.1 30.9
Flava (PMD 70M) 75.5 31.7 23.4 17.6 30.8 17.6 15.4 30.5 24.2 7.8 21.9
Swin 83.6 56.0 45.6 41.8 56.9 35.3 34.2 52.9 40.1 19.1 42.0
ViT-Base 84.3 37.5 34.3 31.7 38.0 21.8 20.5 33.0 28.5 4.1 26.6
ViT-Large 85.8 52.2 40.4 37.1 52.4 30.4 28.4 46.4 42.9 8.9 34.6
BLIP (100+M) – 0.5 0.4 0.5 0.8 0.6 0.7 0.9 0.7 0.7 0.7
CLIPViTB32 (2B) 66.6 44.0 31.5 24.1 43.8 24.8 21.8 42.2 34.7 3.3 26.0
CLIPViTB32 (400M) 62.9 41.7 30.2 22.1 41.6 23.8 20.9 40.1 34.4 5.7 24.4
CLIPViTL14 (2B) 75.3 49.7 34.9 28.2 50.3 26.3 25.3 46.8 39.4 4.8 30.8
CLIPViTL14 (400M) 72.8 52.3 39.8 35.7 51.8 29.0 26.4 50.6 41.1 4.3 33.0

Table 6. Robustness measured by average accuracy across factors. We report zero shot
classification accuracy for BLIP, Flava, all CLIP models. The pretraining dataset is indicated
in parenthesis next to each model name with ImageNet-1k being the default unless otherwise
indicated.

factor correlation pvalue
Object Pitch 0.29 0.45
Camera Roll 0.61 0.08
Camera Pitch 0.53 0.14
Camera Yaw 0.12 0.76
Background 0.43 0.25
Object Yaw 0.18 0.64
Object Texture -0.10 0.81
Scene Light 0.53 0.14
Object Scale -0.05 0.90
Object Roll 0.45 0.22

Table 7. We compute the correlation between standard ImageNet classification and robust-
ness based on the accuracy for each factor. We find no statistically significant relationship
for standard classification and factor robustness.

we assume that if the objects in a given class are correctly predicted at least one time, the
failures in predicting the correct class for the same objects with di�erent factors is probably
due to the changes of factors.

Zero-shot top-1 accuracy per class Soccer_Ball: 100.00 , Pineapple: 95.62 , Barrel: 95.00

, Cellular_telephone: 89.45 , Pomegranate: 88.12 , Jack_O_Lantern: 85.94 , Vase: 85.62 , BirdHouse: 81.88 ,

BasketBall: 81.25 , Sewing_Machine: 80.94 , Umbrella: 80.00 , Washer: 78.75 , Pool_Table: 76.88 , Baseball: 76.88 ,

Safe: 76.25 , Cabbage: 75.78 , Cofee_Mug: 75.31 , Mask: 74.06 , Brocolli: 73.44 , Starfish: 72.50 , Rocking_Chair:

71.25 , Punching_Bag: 70.94 , Chicken_hen: 69.38 , WineBottle: 66.88 , Gasmask: 66.56 , Joystick: 64.06 , Television:

63.44 , Chest: 63.44 , Elephant: 62.50 , Bell_Pepper: 61.46 , Cheeseburger: 60.62 , Pay_Phone: 60.00 , Tennis_Ball:

58.44 , Jean: 56.25 , Binocular: 55.86 , Racket: 55.62 , Motor_Scooter: 55.00 , Hay: 54.06 , Park_Bench: 53.44 ,

Bookcase: 53.44 , Zucchini: 52.08 , Banana: 50.00 , Sliding_Door: 48.75 , Military_uniform: 47.50 , Ambulance:

47.50 , Pizza: 47.19 , Tractor: 46.88 , Dishwasher: 46.88 , Cowboy_Hat: 46.35 , Drum: 45.31 , Typewriter_Keyboard:

44.92 , Toaster: 44.69 , Obelisk: 44.38 , Laptop: 44.38 , Throne: 43.75 , Backpack: 43.44 , Shield: 41.88 , Artichoke:

41.80 , Penguin: 41.56 , Bathtub: 40.31 , WaterBottle: 40.00 , SpaceShuttle: 37.19 , Bagel: 36.88 , Bear: 36.25 ,
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Vacuum: 35.94 , Radiator: 35.62 , Shovel: 35.55 , Refrigerator: 35.00 , Running_Shoe: 34.38 , Goldfish: 34.38 , Crate:

34.38 , Polaroid_Camera: 33.98 , Table_Lamb: 33.75 , Bulletproof_vest: 33.75 , Microphone: 33.12 , Tra�c_Light:

32.50 , Carton: 31.25 , Volley_Ball: 30.62 , Vending_machine: 30.62 , Lawn_Mower: 29.38 , Car_Wheel: 29.38 ,

Harmonica: 28.12 , Lighter: 27.50 , Carousel: 27.34 , Mailbox: 27.19 , Airliner: 27.19 , Butternut_Squash: 26.95 ,

Sweatshirt: 26.56 , Sock: 25.62 , French_Loaf: 25.00 , Dial_telephone: 24.61 , Rabbit: 24.06 , Remote_controler:

22.81 , Modem: 22.50 , Chain-saw: 21.35 , Screwdriver: 20.31 , Power-drill: 19.69 , Electric_Fan: 19.06 , HairDryer:

18.75 , Purse: 18.12 , Wallet: 17.50 , Sunglasses: 17.50 , Minivan: 17.50 , Cat: 15.94 , Microwave: 15.62 , Candle: 15.62

, Mushroom: 15.31 , Dining_Table: 14.06 , Ice_Cream: 13.75 , Perfume: 13.44 , Komodo_dragon: 13.44 , Bycicle:

13.12 , Wooden_Spoon: 12.81 , JellyFish: 12.81 , Canoe: 12.81 , Radio: 12.19 , Desk: 12.19 , African_crocodile:

11.88 , Hatchet: 11.25 , Sandal: 10.00 , Stonewall: 9.69 , Burrito: 9.38 , Palace: 9.06 , Mouse: 7.50 , Convertible: 7.19

, Espresso_maker: 6.88 , Can_Opener: 6.56 , Jeep: 6.25 , Fox: 6.25 , Tile_Roof: 5.86 , Street_Sign: 5.62 , WarPlane:

5.47 , Frog: 5.47 , Wolf: 5.31 , Whale: 5.00 , Torch: 5.00 , Soup_Bowl: 4.69 , Great_white_shark: 4.38 , Kangarou:

3.91 , Digital_Watch: 2.81 , Skirt: 2.50 , Computer_Keyboard: 2.50 , Piano: 1.88 , Manhole_Cover: 1.88 , Bridge:

0.94 , Aircraft_Carrier: 0.39 , Screen: 0.31 , Locomotive: 0.31 , Submarine: 0.00 , Shirt: 0.00 , Loupe: 0.00

D.3.4. Additional PUG:SPAR experiments

Instead of using all the background environments presented in the main part of the paper,
we also introduce a much simple setup in which we have a single background (thus we do not
need the background information in the caption anymore). The background that we choose
is the simplest one named "salt flats". This is also the background for which the retrieval
accuracy is the highest across all the backgrounds. In table 8, we present the performances
of several VLMs when using this single environment. We can observe a significant boost in
accuracy for the single object detection task for which the best model achieve 94% accuracy
(this value is to contrast with the 78% accuracy obtained across all the background). This
show that VLMs are definitively not robust to background changes. However as in the
previous case, when probing for the positional information, the performance of the model is
still decreasing significantly. We also illustrate in Figure 7 very simple failure cases on the
best model.

D.3.5. CLIP fine-tuning details

We utilize the OpenCLIP framework [112] for all our CLIP experiments. The ViT-B/32
model is used as the image encoder for all our experiments. The CLIP model we fine-tune is
the OpenAI 400M pre-trained model (‘ViT-B-32’, ‘openai’)1. Fine-tuning on PUG: AR4T
is done for 10 epochs on the 200K dataset while training is done for 2 epochs on the 1M
dataset.

1NOTE: We do not perform any training on the proprietary 400M dataset from OpenAI. We strictly only use
the pre-trained models released, and fine-tune them on our PUG datasets.

234



Caption Texture ViT
-B

-32
(O

pen
AI CLIP

)

ViT
-B

-32
(O

pen
Clip

2B
)

ViT
-L

-14
(O

pen
AI CLIP

)

ViT
-L

-14
(O

pen
Clip

2B
)

ViT
-H

-14
(O

pen
CLIP

2B
)

ViT
-G

-14
(O

pen
CLIP

2B
)

Flav
a

BLIP
XVLM

Neg
CLIP

“A photo of a [character]“
Default 57.81 75.78 91.41 88.28 94.53 94.53 64.06 78.91 67.19 64.84
Blue/Red 48.44 54.69 71.88 70.31 75.00 84.38 42.19 53.12 48.44 48.44
Grass/Stone 39.06 45.31 67.19 68.75 76.56 78.12 39.06 56.25 45.31 50.00

“A photo of a [character]
on the (left/right) of the
picture“

Default 29.69 37.50 39.06 40.62 50.00 51.56 32.81 42.19 34.38 31.25

“A photo of a [character]
on the (bottom/top) of the
picture“

Default 29.69 23.44 45.31 43.75 46.88 45.31 23.44 34.38 34.38 23.44

“A photo of a [character]
and a [character]“

Default 24.56 32.47 68.85 59.67 72.66 80.96 18.55 40.58 24.71 21.04
Blue/Red 10.84 18.55 38.57 30.66 34.28 51.56 9.86 10.94 3.12 8.01
Grass/Stone 9.38 18.16 31.35 30.47 30.18 47.85 6.84 11.33 5.96 8.98

“A photo of a [character]
on the left and a [character]
on the right“

Default 14.11 14.92 38.10 30.85 40.83 42.14 13.71 23.99 14.01 14.21

“A photo of a [character]
on the bottom and a [char-
acter] on the top“

Default 12.00 15.42 34.07 35.48 44.05 45.26 10.99 26.51 14.62 8.17

“A photo of a [character]
textured with [texture1]
and a [character] textured
with [texture2]“

Blue/Red 4.44 6.65 19.15 15.52 20.56 29.84 6.15 10.28 5.44 4.13
Grass/Stone 3.43 5.44 15.73 17.24 19.05 27.32 5.54 7.76 6.35 4.03

Table 8. Setup and zero-shot evaluation of CLIP models on PUG: SPAR with caption retrieval in a single environment.
In contrast with the figure presented in the main paper, we present the result only using the salt flats environment. The
motivation for this experiment is to showcase the failures mode of VLMs in a very simple setup in which the model robustness
to background does not impact the prediction.

Fig. 7. Failures mode of a OpenCLIP ViT-G-14. Our PUG: SPAR dataset provides very
simple images and captions and yet even large models are failing on them.
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