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S O M M A I R E

Cette thèse tente de construire de meilleurs agents d’apprentissage par renforcement
(RL) en tirant parti de l’apprentissage auto-supervisé. Il se présente sous la forme
d’une thèse par article qui contient trois travaux.

Dans le premier article, nous construisons un benchmark basé sur les jeux Atari
pour évaluer systématiquement les méthodes d’apprentissage auto-supervisé dans
les environnements RL. Nous comparons un éventail de ces méthodes à travers une
suite de tâches de sondage pour identifier leurs forces et leurs faiblesses. Nous
montrons en outre qu’une nouvelle méthode contrastive ST-DIM excelle à capturer
la plupart des facteurs génératifs dans les environnements étudiés, sans avoir besoin
de s’appuyer sur des étiquettes ou des récompenses.

Dans le deuxième article, nous proposons des représentations auto-prédictives (SPR)
qui apprennent un modèle latent auto-supervisé de la dynamique de l’environnement
parallèlement à la résolution de la tâche RL en cours. Nous montrons que SPR
réalise des améliorations spectaculaires dans l’état de l’art sur le benchmark Atari
100k difficile où les agents n’ont droit qu’à 2 heures d’expérience en temps réel.

Le troisième article étudie le rôle de la RL basée sur un modèle et de l’apprentissage
auto-supervisé dans le contexte de la généralisation en RL. Grâce à des contrôles
minutieux, nous montrons que la planification et l’apprentissage de représentation
basé sur un modèle contribuent tous deux à une meilleure généralisation pour
l’agent Muzero. Nous améliorons encore MuZero avec des objectifs d’apprentissage
auto-supervisés auxiliaires, et montrons que cet agent MuZero++ obtient des résul-
tats de pointe sur les benchmarks Procgen et Metaworld.

Mots-clés: Apprentissage en profondeur, Apprentissage auto-supervisé, Appren-
tissage par renforcement
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S U M M A RY

This thesis tries to build better Reinforcement Learning (RL) agents by leveraging
self-supervised learning. It is presented as a thesis by article that contains three
pieces of work.

In the first article, we construct a benchmark based on Atari games to systematically
evaluate self-supervised learning methods in RL environments. We compare an
array of such methods across a suite of probing tasks to identify their strengths and
weaknesses. We further show that a novel contrastive method ST-DIM excels at
capturing most generative factors in the studied environments, without needing to
rely on labels or rewards.

In the second article, we propose Self-Predictive Representations (SPR) that learns a
self-supervised latent model of the environment dynamics alongside solving the RL
task at hand. We show that SPR achieves dramatic improvements in state-of-the-art
on the challenging Atari 100k benchmark where agents are allowed only 2 hours of
real-time experience.

The third article studies the role of model-based RL and self-supervised learning
in the context of generalization in RL. Through careful controls, we show that
planning and model-based representation learning both contribute towards better
generalization for the Muzero agent. We further improve MuZero with auxiliary
self-supervised learning objectives, and show that this MuZero++ agent achieves
state-of-the-art results on the Procgen and Metaworld benchmarks.

Keywords: Deep Learning, Reinforcement Learning, Self-Supervised Learning
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1
I N T R O D U C T I O N

Most tasks humans perform involve taking a sequence of decisions or actions by
interacting with our environment. Some are short-term spanning a few seconds, like
a child picking up a toy from the floor, while others can take years like learning and
mastering a music instrument. The ability to learn from interactions and respond to
stimulus or feedback in a wide range of scenarios is thus central to most theories
about intelligence (Minsky, 1961; Turing, 2004), or one may argue the very definition
of intelligence itself (Legg et al., 2007). Emulating this capability in artificial agents
is therefore crucial to making them as intelligent as humans themselves.

Reinforcement Learning (Sutton et al., 2018) is a formulation that directly takes
a stab at this ambitious moonshot. It is a computational framework that entails
letting an agent learn through interaction with an environment. The first attempts
to formalize Reinforcement Learning were made in the 1950s (Bellman, 1957a), and
because of its generality it has since been studied in a variety of fields such as
optimal control, neuroscience, and artificial intelligence.

Early attempts to use Reinforcement Learning focused on “tabular methods” which
required a large amount of memory to store every possible instantiation of the
problem space, and thus were hard to scale up: a problem often termed as “the
curse of dimensionality” (Bellman, 1957b). In the 1990s, Gerry Tesauro (Tesauro et
al., 1995) showed that it’s possible to use Reinforcement Learning methods without
enumerating the whole problem space, and instead approximating it with artificial
neural networks to play Backgammon better than any human players.

These networks were however still small in size, and thus limited in their approxima-
tion power. In early 2010s, the machine learning community started to gain success
in training deep neural networks practically, and this propelled the next generation
of RL systems. The mid-to-late 2010s saw RL agents leverage deep neural networks
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to outperform the strongest humans in long-standing board games like Go (Silver
et al., 2016a) and Chess (Silver et al., 2018); results which are now widely acclaimed.
Similar feats were later achieved in more complex games that require co-ordination
such as StarCraft (Vinyals et al., 2017) and Dota (OpenAI et al., 2019).

These successes have however remained siloed in the narrow game-like domains in
which they were originally developed, and failed to translate to material real-world
successes. Why is this the case? There are a few reasons. First, these algorithms
are quite data-inefficient, often requiring the equivalent of decades of experience to
master a narrow task. This tends to work okay in simulators where we can collect
virtually infinite amounts of data, but does not translate to real-world tasks where
we don’t have that luxury. Secondly, these algorithms are focused on a narrow
goal at a time in a narrow environment, making them brittle and un-adaptive to
environment or task changes. Solving these issues is critical to making reinforcement
learning practical (Dulac-Arnold et al., 2019), and ultimately understanding and
building general intelligence itself. This leads us to the key question underlying this
thesis: How can we design agents that learn efficiently, and generalize well, given
only sensory information and a scalar reward signal?

In my work, I have postulated that self-supervised learning might be the answer.
The key idea behind self-supervised learning is to design machine learning systems
in such a way that they can learn without explicit labels provided by a human
annotator. Typically, self-supervised learning methods generate their own labels
or "supervision" signal based on the structure or properties of the input data
itself. In the context of reinforcement learning, this involves enabling an agent to
learn without explicit rewards, by exploiting the inherent structure present in the
unlabelled interactions to learn meaningful representations or dynamics for the
task.

The paradigm has been remarkably successful elsewhere in other areas of Deep
Learning such as Computer Vision and Natural Language Processing, in what
would only be termed as a revolution when the history books are written. The
most capable systems in these fields now rely purely on tasks that are focused on
modelling the raw unlabelled inputs (Brown et al., 2020; He et al., 2022; Radford
et al., 2021a) and these capabilities improve predictably with scale (Sutton, 2019;
Kaplan et al., 2020; Branwen, 2021a). Reinforcement Learning is due for a similar
revolution, and this thesis takes baby steps in building RL agents that leverage
self-supervised learning to make them more general and data-efficient.

25



2
B A C K G R O U N D

2.1 deep learning

Deep Learning (Goodfellow et al., 2016) colloquially refers to the set of machine
learning algorithms where the prediction function is parameterized by an artificial
neural network (ANN), which uses multiple layers to progressively extract higher-
level features from the raw input. In it’s simplest form, deep learning involves
training a multi-layer perceptron (a feedforward ANN) with a single hidden layer
using backpropagation (Linnainmaa, 1970; Rumelhart et al., 1986).

Convolutional Neural Networks (Fukushima et al., 1982; LeCun et al., 1989)[CNNs]
are a specialized form of deep learning architecture that are most commonly applied
to processing visual data. CNNs are characterized by their use of shared-weight
kernels or features that provide translation equivariance with respect to the inputs.
Modern CNNs also leverage several techniques such as skip connections (He et al.,
2016) and normalization layers (Ioffe et al., 2015b; Ba et al., 2016) to scale to large
number of layers.

Recurrent Neural Networks (Hochreiter et al., 1997; Chung et al., 2014) and its
variants are another popular form of deep learning architecture that are most
commonly applied to processing sequential data.

More recently, Transformers (Vaswani et al., 2017) - an architecture based on self-
attention (Bahdanau et al., 2015) have been showed to scale well across several
modalities (Kaplan et al., 2020; Dosovitskiy et al., 2021) and are fast becoming the
default neural network architecture.
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2.2 reinforcement learning

Reinforcement Learning is a field of machine learning that is concerned with
sequential decision making. In a typical reinforcement learning problem, an agent
interacts with an environment by taking actions and receiving feedback in the form
of positive or negative rewards. The goal of the agent is to learn a policy that will
maximize the total reward it receives over time.

The standard reinforcement learning loop can be broken down into the following
steps:

• Observation: At each timestep t, the agent receives an observation ot of the en-
vironment which is a snapshot of the current complete or partial environment
state st.

• Action: The agent selects an action at to take based on its current state and
the policy π it has learned.

• Transition: The environment transitions to a new state st+1 based on the action
and the dynamics of the environment.

• Reward: The agent receives a reward rt on the action it took and the resulting
state of the environment.

• Update: The agent updates its policy based on the reward it received and the
new state of the environment.

For simplicity, consider that the environment is Markovian, ie the future of the
process only depends on the current observation and not the entire history. We can
then formalize the Reinforcement Learning problem as a Markov decision process
(MDP), defined by the tuple (S ,A, p, r, γ, ρ0). Here S and A are the state and action
spaces, respectively, and γ ∈ (0, 1) is the discount factor. The dynamics or transition
distribution are denoted as p(s′|s, a), the initial state distribution as ρ0(s), and the
reward function as r(s, a).

The goal of reinforcement learning is to find the optimal policy π∗ that maximizes
the expected sum of discounted rewards, denoted by η:

π∗ = argmax
π

η[π] = argmax
π

Eπ

[
∞

∑
t=0

γtr(st, at)

]
.

Reinforcement Learning algorithms typically fall into two major categories, model-
based and model-free methods.
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2.2.1 Model-free Reinforcement Learning

Model-free Reinforcement Learning algorithms learn directly from experience,
without relying on an explicit or learned model of the environment dynamics.
Model-free methods can be further categorized into two major types: Value-based
methods and Policy-based methods.

Value-based Methods: Value-based methods aim to learn a value function that
provides a prediction of how good each state or each state/action pair is. The value
function can be either a lookup-table for small problems, or parameterized by an
artificial neural network when the number of states / actions is too large. The policy
is usually directly derived from the value function, for example by greedily selecting
the action which maximises the value function.

Value-based methods typically use Temporal-Difference (TD) Learning (Sutton, 1988)
to update the value function. The basic idea behind TD learning is that the agent can
learn from the difference between the current value estimate V(st), the discounted
value estimate of V(st+1) and the actual reward rt+1 gained from transitioning
between st and st+1. This difference, called the TD error, is used to update the
agent’s value function as follows:

V(st)←− V(st) + α[rt+1 + γV(st+1)−V(st)] (1)

Sometimes, it is more convenient to estimate the state-value function Q(s, a) (also
commonly referred to as Q function) since it allows us to derive a policy by simply
selecting the action that maximizes the state-value function at a particular state.
This algorithm is commonly called Q-learning, we can write its update rule as:

Q(st, at)←− Q(st, at) + α[rt+1 + γmaxaQ(st+1, a)−Q(st, at)]. (2)

Deep Q-Networks (Mnih et al., 2015, DQNs) showed that learning Q-values with
neural networks and using a replay buffer of past trajectories (Lin, 1992) can lead
to human-level performance in a suite of Atari games. Over the years, several
improvements have been made to DQN including prioritized experience replay
(Schaul et al., 2016), distributional DQN (Bellemare et al., 2017), multi-step learning
(Watkins, 1989), etc which were later combined in a single agent called Rainbow
(Hessel et al., 2018).
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Policy-based Methods: Policy-based methods directly optimize an objective such
as the expected cumulative reward by computing the gradient of the objective with
respect to the policy, and thus broadly referred to as policy gradient methods. The
most direct / naive version of computing the policy gradient is using REINFORCE
(Williams, 1992). There are several methods that improve over reinforce by trying to
reduce the variance of the policy gradient using a learned critic gradient. These are
called actor-critic methods, and popular examples include A2C (Mnih et al., 2016)
and PPO (Schulman et al., 2017).

In this thesis, we will primarily focus on value-based methods.

2.2.2 Model-based Reinforcement Learning

Model-based Reinforcement Learning agents use an explicit or learned model of
the environment. Using the model allows the agent to "look ahead" and predict the
outcome of its actions in the form of rewards or estimated values multiple steps
into the future, before taking an action (often termed as planning). Model-based
RL methods are distinguished by how they use the model, and how they learn the
model.

How to use the model? (Planning) There are several ways in which an RL agent
use predictions from its mode to plan over possible future outcomes. In domains
with discrete actions, its common to use tree search methods such as A∗ search
or Monte-Carlo Tree Search (Coulom, 2006, MCTS). MCTS in particular has been
combined with neural networks and shown to be effective in quite a varied range
of environments such as Go (Silver et al., 2016b), Chess, Shogi (Silver et al., 2018)
and Atari games (Schrittwieser et al., 2020). In environments with continuous
actions, it is more common to use the Cross-Entropy Method (Rubinstein et al., 2004)
for planning, although there have been extensions of MCTS to continuous actions
(Hubert et al., 2021).

How to learn the model? Choosing the objective for learning the dynamics model
(sometimes called the world model) is a critical design choice for model-based RL
methods. A common theme is to use future prediction error to guide learning of
the model. Value equivalent models such as MuZero (Schrittwieser et al., 2020) use
prediction errors of task-specific quantities to learn the model. It’s also common to
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directly predict the future state / observation and use the corresponding prediction
error to learn the model (Finn et al., 2016; Ha et al., 2018; Hafner et al., 2020).

2.3 representation learning

Representation Learning (Bengio et al., 2013) is concerned with learning useful (and
often compact) representations that capture the underlying explanatory factors of
the data, such that these representations are useful in a subsequent learning problem.
This ability to represent data into useful and concise descriptions is considered a
fundamental cognitive capability in humans (Marr, 1982; Gordon et al., 1996), and
allows us to seamlessly transfer knowledge across different tasks.

Recently, deep representation learning has led to tremendous progress in a variety
of machine learning problems across numerous domains (Krizhevsky et al., 2012;
Amodei et al., 2016; Wu et al., 2016; Mnih et al., 2015; Silver et al., 2016a). Typically,
such representations are often learned end-to-end, using the signal from labels or
rewards, which makes such techniques often very sample-inefficient. In contrast, hu-
man learning in the natural world appears to require little to no explicit supervision
for perception (Gross, 1968).

Self-Supervised learning is a paradigm designed to learn representations by op-
timizing an objective that rewards an algorithm for learning about the data itself,
without a particular task in mind. A key motivation for self-supervised learning
is that the underlying data has a much richer structure than what sparse labels or
rewards could provide, and thus leveraging that structure should lead to better
representations.

Contemporary methods for self-supervised representation learning fall into two
modes: generative, and latent representation learning. Generative methods aim to
learn a representation that can be decoded back to the original data itself. Contrastive
methods on the other hand, learn representations by leveraging differences across
similar and dissimilar data points.

2.4 latent representation learning

In context of visual observations, generative methods often rely on the reconstruction
error in the pixel-space as the learning objective. This leads to such methods being
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overly focused on pixel-level details, and failing to capture more abstract latent
factors.

Consider this illustrative experiment conducted by Epstein (2016), where subjects
were asked to draw a picture of the dollar bill as detailed as possible. Figure 1

shows the drawing a subject made by recalling what a dollar bill looks like from
memory. Figure 2 is their drawing subsequently made with a dollar bill present.
As is evident, the drawing made in the absence of the dollar bill is quite different
compared with the drawing made from an exemplar. Thus, even though a dollar
bill is something we have seen countless number of times, we don’t retain a full
visual representation of it, and only enough features which can distinguish it from
another object.

Figure 1: Drawing of a one-dollar bill
completely from memory.

Figure 2: Drawing subsequently made
with a dollar bill present.

2.4.1 Contrastive Methods

Contrastive Learning is one of the pre-dominant methods to learn representations
of high dimentional data like images or videos. In contrastive learning, the goal is
to learn an embedding function f such that:

⟨ f (x), f (x+)⟩ >> ⟨ f (x), f (x−)⟩

That is, given similar data points x, x+, we want the inner product 1 of f (x) and
f (x+) to be much higher than the inner product of f (x) and f (x−), where x− is
a random data point (and thus presumably dissimilar to x). x− is also typically
referred to as a negative sample.

To achieve this, we could construct a loss function of the form:

1 It is common to use other score functions, such as a bilinear critic in place of the inner product.
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Lcont( f ) := E
x,x+,x−

[
− log

(
e f (x)T f (x+)

e f (x)T f (x+) + e f (x)T f (x−)

)]
, (3)

This loss function is reminiscent of many past ideas including kernel learning,
metric learning and co-training (Gutmann et al., 2010; Cortes et al., 2010; Bellet et al.,
2013).

If we use multiple negative samples, we get a lower bound on Mutual Information:

I(X, X+) ≥
N

∑
i=1

log
exp f (xi, x+i )

∑N
j=1 exp f (xi, x−j )

≜ INCE({(xi, x+i )}
N
i=1) (4)

This bound is refer to as the InfoNCE objective, see Oord et al. (2018) and Poole
et al. (2019) for a derivation and more details on this bound.

2.4.2 Bootstrapped Latent Methods

Although contrastive learning has shown remarkably effective, it’s still limited by the
fact that it requires careful treatment of negative examples (which can manifest into
a task design problem itself) to work. Recent works, such as Bootstrap Your Own
Latent (BYOL, Grill et al., 2020b) have worked around this limitation by iteratively
learning from the outputs of the network itself.

Using the same notation as before, we can write the BYOL loss as:

LBYOL( f ) := E
x,x+,

∥∥∥g( f (x))− g( f ′(x+))
∥∥∥2

2
(5)

where g is a small prediction network on top of the encoder, and f ′ is a slower
moving copy (target network) of the encoder, (.) denotes that the representations
are L2 normalized.
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3
P R O L O G U E T O T H E F I R S T A RT I C L E

3.1 article details

Title: Unsupervised State Representation Learning in Atari
Authors: Ankesh Anand, Evan Racah, Sherjil Ozair, Yoshua Bengio, Marc-Alexandre
Côté, R Devon Hjelm
Presented At: Neural Information Processing Systems (NeurIPS), 2019.

3.2 context

Around late 2018, latent self-supervised learning methods like DIM (Hjelm et al.,
2019a) and CPC (Oord et al., 2018) started to show quite a bit of promise in computer
vision, and were shown to scale to large-scale datasets like ImageNet. Around the
same time issues related to brittleness and data-inefficiency of deep RL agents
started to surface up. We wondered if self-supervised learning methods could help
RL agents in visually rich environments, and if we could find a principled way to
show their efficacy.

3.3 contributions

I had discussions with Devon Hjelm and Marc-Alexandre on the role of self-
supervised learning in RL, and prototyped a codebase to experiment with different
representation learning methods. Probing learnt representations to verify if they
had captured salient factors of the environment seemed like a principled way to go
compare these methods. Sherjil suggested that we focus on probing Atari games by
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looking at the evolving RAM state. Evan and I found source code of a bunch of Atari
games, and Evan contributed majority of the labels with help from me and Sherjil. I
implemented several contrastive learning methods, while Evan implemented the
reconstruction based methods. Evan and I launched majority of the experiments to
evaluate different representation learning methods on our probing benchmark with
help from Marc-Alexandre. Evan, Devon and I wrote majority of the paper with
help from Sherjil and Yoshua. Devon and Sherjil also provided weekly feedback
and advise on project, and helped scope our experiments.

3.4 research impact

The paper was quite well received, and is often cited as one of the first works to
show how to leverage latent self-supervised learning in RL environments. The
AtariARI benchmark we proposed has been used numerous times to evaluate agents
or representations (Tupper et al., 2020; Khan et al., 2021; Veličković et al., 2021).
The work also inspired follow-up papers which leveraged contrastive or other
latent methods to build better RL agents (Srinivas et al., 2020; Mazoure et al., 2020;
Schwarzer et al., 2021a).
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4
U N S U P E RV I S E D S TAT E R E P R E S E N TAT I O N L E A R N I N G I N
ATA R I

Abstract: State representation learning, or the ability to capture latent generative
factors of an environment, is crucial for building intelligent agents that can perform
a wide variety of tasks. Learning such representations without supervision from
rewards is a challenging open problem. We introduce a method that learns state
representations by maximizing mutual information across spatially and temporally
distinct features of a neural encoder of the observations. We also introduce a new
benchmark based on Atari 2600 games where we evaluate representations based
on how well they capture the ground truth state variables. We believe this new
framework for evaluating representation learning models will be crucial for future
representation learning research. Finally, we compare our technique with other
state-of-the-art generative and contrastive representation learning methods.

4.1 introduction

The ability to perceive and represent visual sensory data into useful and concise
descriptions is considered a fundamental cognitive capability in humans (Marr,
1982; Gordon et al., 1996), and thus crucial for building intelligent agents (Lake
et al., 2017). Representations that succinctly reflect the true state of the environment
should allow agents to learn to act in those environments with fewer interactions,
and effectively transfer knowledge across different tasks in the environment.

Recently, deep representation learning has led to tremendous progress in a variety
of machine learning problems across numerous domains (Krizhevsky et al., 2012;
Amodei et al., 2016; Wu et al., 2016; Mnih et al., 2015; Silver et al., 2016a). Typically,
such representations are often learned via end-to-end learning using the signal from
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Figure 3: We use a collection of 22 Atari 2600 games to evaluate state representations. We
leveraged the source code of the games to annotate the RAM states with important
state variables such as the location of various objects in the game. We compare
various unsupervised representation learning techniques based on how well the
representations linearly-separate the state variables. Shown above are examples of
state variables annotated for Montezuma’s Revenge and MsPacman.

labels or rewards, which makes such techniques often very sample-inefficient. In
contrast, human learning in the natural world appears to require little to no explicit
supervision for perception (Gross, 1968).

Unsupervised (Dumoulin et al., 2017; Kingma et al., 2014; Dinh et al., 2017) and
self-supervised representation learning (Pathak et al., 2016; Doersch et al., 2017;
Kolesnikov et al., 2019) have emerged as an alternative to supervised versions which
can yield useful representations with reduced sample complexity. In the context of
learning state representations (Lesort et al., 2018), current unsupervised methods
rely on generative decoding of the data using either VAEs (Watter et al., 2015;
Higgins et al., 2017; Ha et al., 2018; Duan, 2017) or prediction in pixel-space (Oh
et al., 2015; Finn et al., 2016). Since these objectives are based on reconstruction
error in the pixel space, they are not incentivized to capture abstract latent factors
and often default to capturing pixel level details.

In this work, we leverage recent advances in self-supervision that rely on scalable
estimation of mutual information (Belghazi et al., 2018; Oord et al., 2018; Hjelm et al.,
2019b; Veličković et al., 2019), and propose a new contrastive state representation

37



learning method named Spatiotemporal DeepInfomax (ST-DIM), which maximizes
the mutual information across both the spatial and temporal axes.

To systematically evaluate the ability of different representation learning methods at
capturing the true underlying factors of variation, we propose a benchmark based
on Atari 2600 games using the Arcade Learning Environment (ALE, Bellemare
et al., 2013). A simulated environment provides access to the underlying generative
factors of the data, which we extract using the source code of the games. These
factors include variables such as the location of the player character, location of
various items of interest (keys, doors, etc.), and various non-player characters, such
as enemies (see figure 3). Performance of a representation learning technique in
the Atari representation learning benchmark is then evaluated using linear probing
(Alain et al., 2017), i.e. the accuracy of linear classifiers trained to predict the latent
generative factors from the learned representations.

Our contributions are the following

1. We propose a new self-supervised state representation learning technique
which exploits the spatial-temporal nature of visual observations in a rein-
forcement learning setting.

2. We propose a new state representation learning benchmark using 22 Atari
2600 games based on the Arcade Learning Environment (ALE).

3. We conduct extensive evaluations of existing representation learning tech-
niques on the proposed benchmark and compare with our proposed method.

4.2 related work

Unsupervised representation learning via mutual information estimation: Recent
works in unsupervised representation learning have focused on extracting latent
representations by maximizing a lower bound on the mutual information between
the representation and the input. Belghazi et al. (2018) estimate the mutual informa-
tion with neural networks using the Donsker-Varadhan representation of the KL
divergence (Donsker et al., 1983), while Chen et al. (2016) use the variational bound
from Barber et al. (2003) to learn discrete latent representations. Hjelm et al. (2019b)
learn representations by maximizing the Jensen-Shannon divergence between joint
and product of marginals of an image and its patches. Oord et al. (2018) maximize
mutual information using a multi-sample version of noise contrastive estimation

38



(Gutmann et al., 2010; Ma et al., 2018). See (Poole et al., 2019) for a review of
different variational bounds for mutual information.

State representation learning: Learning better state representations is an active
area of research within robotics and reinforcement learning. Jonschkowski et al.
(2015) and Jonschkowski et al. (2017) propose to learn representations using a set of
handcrafted robotic priors. Several prior works use a VAE and its variations to learn
a mapping from observations to state representations (Higgins et al., 2018; Watter
et al., 2015; Hoof et al., 2016). Thomas et al. (2017) aims to learn the representations
that maximize the causal relationship between the distributed policies and the
representation of changes in the state. Recently, Cuccu et al. (2019) shows that
visual processing and policy learning can be effectively decoupled in Atari games.
Nachum et al. (2019) connects mutual information estimators to representation
learning in hierarchical RL. Warde-Farley et al. (2019) learns controllable aspects
of an environment by maximizing mutual information b/w realized and target
goals. Our work is also closely related to recent work in learning object-oriented
representations (Burgess et al., 2019).

Evaluation frameworks of representations: Evaluating representations is an open
problem, and doing so is usually domain specific. In vision tasks, it is common
to evaluate based on the presence of linearly separable label-relevant information,
either in the domain the representation was learned on (Coates et al., 2011) or in
transfer learning tasks (Xian et al., 2018; Triantafillou et al., 2017). In NLP, the
SentEval (Conneau et al., 2018) and GLUE (Wang et al., 2019a) benchmarks provide
a means of providing a more linguistic-specific understanding of what the model
has learned, and these have become a standard tool in NLP research. Our evaluation
framework can be thought of as a GLUE-like benchmarking tool for RL, providing a
fine-grained understanding of how well the RL agent perceives the objects in the
scene. Analogous to GLUE in NLP, we anticipate that our benchmarking tool will
be useful in RL research for better designing components of agent learning.

4.3 spatiotemporal deep infomax

We assume a setting where an agent interacts with an environment and observes a
set of high-dimensional observations X = {x1, x2, . . . , xN} across several episodes.
Our goal is to learn an abstract representation of the observation that captures the
underlying latent generative factors of the environment.
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This representations should focus on high-level semantics (e.g., the concept of
agents, enemies, objects, score, etc.) and ignore the low-level details such as the
precise texture of the background, which warrants a departure from the class of
methods that rely on a generative decoding of the full observation. Prior work in
neuroscience (Friston, 2005; Rao et al., 1999) has suggested that the brain maximizes
predictive information (Bialek et al., 1999) at an abstract level to avoid sensory overload.
Predictive information, or the mutual information between consecutive states, has
also been shown to be the organizing principle of retinal ganglion cells in salamander
brains (Palmer et al., 2015). Thus our representation learning approach relies on
maximizing an estimate based on a lower bound on the mutual information over
consecutive observations xt and xt+1.

4.3.1 Maximizing mutual information across space and time

local-local infomax global-local infomax

conv layers

conv layers

dense layers

xt

Positive Sample  
(consecutive obs.)

Negative Sample
(non-consecutive obs.)

Discriminator

xt

CNN

Bilinear

local featureslocal / global
 features

CNN CNN

Bilinear

local featureslocal / global
 features

CNN

Figure 4: A schematic overview of SpatioTemporal DeepInfoMax (ST-DIM). (a) shows the
two different mutual information objectives: local infomax and global infomax.
(b) shows a simplified version of the contrastive task we use to estimate mutual
information. In practice, we use multiple negative samples.

Given a mutual information estimator, we follow DIM (Hjelm et al., 2019b) and
maximize a sum of patch-level mutual information objectives. The global objectives
maximize the mutual information between the full observation at time t with small
patches of the observation at time t + 1. The representations of the small image
patches are taken to be the hidden activations of the convolutional encoder applied
to the full observation. The layer is picked appropriately to ensure that the hidden
activations only have a limited receptive field corresponding to 1/16th the size of the
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full observations. The local objective maximizes the mutual information between
the local feature at time t with the corresponding local feature at time t + 1. Figure
4 is a visual depiction of our model which we call Spatiotemporal Deep Infomax
(ST-DIM).

It has been shown that mutual information bounds can be loose for large values of
the mutual information (McAllester et al., 2018) and in practice fail to capture all the
relevant features in the data (Ozair et al., 2019) when used to learn representations.
To alleviate this issue, our approach constructs multiple small mutual information
objectives (rather than a single large one) which are easier to estimate via lower
bounds, which has been concurrently found to work well in the context of semi-
supervised learning (Bachman et al., 2019).

For the mutual information estimator, we use infoNCE (Oord et al., 2018), a multi-
sample variant of noise-contrastive estimation (Gutmann et al., 2010) that was also
shown to work well with DIM. Let {(xi, yi)}N

i=1 be a paired dataset of N samples
from some joint distribution p(x, y). For any index i, (xi, yi) is a sample from the
joint p(x, y) which we refer to as positive examples, and for any i ̸= j, (xi, yj) is
a sample from the product of marginals p(x)p(y)1, which we refer to as negative
examples. The InfoNCE objective learns a score function f (x, y) which assigns large
values to positive examples and small values to negative examples by maximizing
the following bound (see Oord et al., 2018; Poole et al., 2019, for more details on
this bound),

INCE({(xi, yi)}N
i=1) =

N

∑
i=1

log
exp f (xi, yi)

∑N
j=1 exp f (xi, yj)

(6)

The above objective has also been referred to as multi-class n-pair loss (Sohn, 2016;
Sermanet et al., 2018) and ranking-based NCE (Ma et al., 2018), and is similar to
MINE (Belghazi et al., 2018) and the JSD-variant of DIM (Hjelm et al., 2019b).

Following Oord et al. (2018) we use a bilinear model for the score function f (x, y) =
ϕ(x)TWϕ(y), where ϕ is the representation encoder. The bilinear model combined
with the InfoNCE objective forces the encoder to learn linearly predictable repre-
sentations, which we believe helps in learning representations at the semantic
level. In our context, the positive examples correspond to pairs of consecutive
observations (xt, xt+1) and negative samples correspond to pair to pair of non-
consecutive observations (xt, xt∗), where t∗ is a randomly sampled time index
from the episode. For ST-DIM, the final score function for the global objective is

1 For convenience, ignoring those that are in the support of the joint.
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fg(xt, xt+1) = ϕ(xt)TWgϕl,m,n(xt+1) and the score function of the local objective is
fl(xt, xt+1) = ϕl,m,n(xt)TWlϕl,m,n(xt+1), where ϕl,m,n is the feature map at the lth

layer at the (m, n) spatial location.

Table 1: Number of ground truth labels available in the benchmark for each game across
each category. Localization is shortened for local. See next section for descriptions
and examples for each category.

agent small object other score/clock/lives/

game local. local. local. display misc overall

asteroids 2 4 30 3 3 41

berzerk 2 4 19 4 5 34

bowling 2 2 0 2 10 16

boxing 2 0 2 3 0 7

breakout 1 2 0 1 31 35

demonattack 1 1 6 1 1 10

freeway 1 0 10 1 0 12

frostbite 2 0 9 4 2 17

hero 2 0 0 3 3 8

montezumarevenge 2 0 4 4 5 15

mspacman 2 0 10 2 3 17

pitfall 2 0 3 0 0 5

pong 1 2 1 2 0 6

privateeye 2 0 2 4 2 10

qbert 3 0 2 0 0 5

riverraid 1 2 0 2 0 5

seaquest 2 1 8 4 3 18

spaceinvaders 1 1 2 2 1 7

tennis 2 2 2 2 0 8

venture 2 0 12 3 1 18

videopinball 2 2 0 2 0 6

yarsrevenge 2 4 2 0 0 8

total 39 27 124 49 70 308
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4.4 the atari annotated ram interface (aari)

Measuring the usefulness of a representation is still an open problem, as a core
utility of representations is their use as feature extractors in tasks that are different
from those used for training (e.g., transfer learning). Measuring classification per-
formance, for example, may only reveal the amount of class-relevant information
in a representation, but may not reveal other information useful for segmentation.
It would be useful, then, to have a more general set of measures on the usefulness
of a representation, such as ones that may indicate more general utility across
numerous real-world tasks. In this vein, we assert that in the context of dynamic,
visual, interactive environments, the capability of a representation to capture the
underlying high-level factors of the state of an environment will be generally useful
for a variety of downstream tasks such as prediction, control, and tracking.

We find video games to be a useful candidate for evaluating visual representation
learning algorithms primarily because they are spatiotemporal in nature, which is (1)
more realistic compared to static i.i.d. datasets and (2) prior work Hyvärinen et al.,
2004; Locatello et al., 2019 have argued that without temporal structure, recovering
the true underlying latent factors is undecidable. Apart from this, video games
also provide ready access to the underlying ground truth states, unlike real-world
datasets, which we need to evaluate performance of different techniques.

Annotating Atari RAM: ALE does not explicitly expose any ground truth state
information. However, ALE does expose the RAM state (128 bytes per timestep)
which are used by the game programmer to store important state information such
as the location of sprites, the state of the clock, or the current room the agent is in.
To extract these variables, we consulted commented disassemblies (Whalen et al.,
2008) (or source code) of Atari 2600 games which were made available by Engelhardt
(2019) and Jentzsch et al. (2019). We were able to find and verify important state
variables for a total of 22 games. Once this information is acquired, combining it
with the ALE interface produces a wrapper that can automatically output a state
label for every example frame generated from the game. We make this available
with an easy-to-use gym wrapper, which returns this information with no change
to existing code using gym interfaces. Table 1 lists the 22 games along with the
categories of variables for each game. We describe the meaning of each category in
the next section.
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State variable categories: We categorize the state variables of all the games among
six major categories: agent localization, small object localization, other localization,
score/clock/lives/display, and miscellaneous. Agent Loc. (agent localization) refers
to state variables that represent the x or y coordinates on the screen of any sprite
controllable by actions. Small Loc. (small object localization) variables refer to the
x or y screen position of small objects, like balls or missiles. Prominent examples
include the ball in Breakout and Pong, and the torpedo in Seaquest. Other Loc.
(other localization) denotes the x or y location of any other sprites, including enemies
or large objects to pick up. For example, the location of ghosts in Ms Pacman or the
ice floes in Frostbite. Score/Clock/Lives/Display refers to variables that track the
score of the game, the clock, or the number of remaining lives the agent has, or some
other display variable, like the oxygen meter in Seaquest. Misc. (Miscellaneous)
consists of state variables that are largely specific to a game, and don’t fall within
one of the above mentioned categories. Examples include the existence of each block
or pin in Breakout and Bowling, the room number in Montezuma’s Revenge, or Ms.
Pacman’s facing direction.

Probing: Evaluating representation learning methods is a challenging open prob-
lem. The notion of disentanglement (Bengio, 2009; Bengio et al., 2013) has emerged as
a way to measure the usefulness of a representation (Eastwood et al., 2018; Higgins
et al., 2018). In this work, we focus only on explicitness, i.e the degree to which
underlying generative factors can be recovered using a linear transformation from
the learned representation. This is standard methodology in the self-supervised
representation learning literature (Doersch et al., 2017; Oord et al., 2018; Caron
et al., 2018; Kolesnikov et al., 2019; Hjelm et al., 2019b). Specifically, to evaluate
a representation we train linear classifiers predicting each state variable, and we
report the mean F1 score.

4.5 experimental setup

We evaluate the performance of different representation learning methods on our
benchmark. Our experimental pipeline consists of first training an encoder, then
freezing its weights and evaluating its performance on linear probing tasks. For
each identified generative factor in each game, we construct a linear probing task
where the representation is trained to predict the ground truth value of that factor.
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Note that the gradients are not backpropagated through the encoder network, and
only used to train the linear classifier on top of the representation.

4.5.1 Data preprocessing and acquisition

We consider two different modes for collecting the data: (1) using a random agent
(steps through the environment by selecting actions randomly), and (2) using a PPO
(Schulman et al., 2017) agent trained for 50M timesteps. For both these modes, we
ensure there is enough data diversity by collecting data using 8 differently initialized
workers. We also add additional stochasticity to the pretrained PPO agent by using
an ϵ-greedy like mechanism wherein at each timestep we take a random action with
probability ϵ 2.

4.5.2 Methods

In our evaluations, we compare the following methods:

1. Randomly-initialized CNN encoder (random-cnn).

2. Variational autoencoder (vae) (Kingma et al., 2014) on raw observations.

3. Next-step pixel prediction model (pixel-pred) inspired by the "No-action
Feedforward" model from Oh et al., 2015.

4. Contrastive Predictive Coding (cpc) (Oord et al., 2018), which maximizes the
mutual information between current latents and latents at a future timestep.

5. supervised model which learns the encoder and the linear probe using the
labels. The gradients are backpropagated through the encoder in this case, so
this provides a base-case performance bound.

All methods use the same base encoder architecture, which is the CNN from (Mnih
et al., 2013), but adapted for the full 160x210 Atari frame size. To ensure a fair
comparison, we use a representation size of 256 for each method. As a sanity check,
we include a blind majority classifier (maj-clf), which predicts label values based
on the mode of the train set.

2 For all our experiments, we used ϵ = 0.2.
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4.5.3 Probing

We train a different 256-way3 linear classifier with the representation under consid-
eration as input. We ensure the distribution of realizations of each state variable has
high entropy by pruning any variable with entropy less than 0.6. We also ensure
there are no duplicates between the train and test set. We train each linear probe
with 35,000 frames and use 5,000 and 10,000 frames each for validation and test
respectively. We use early stopping and a learning rate scheduler based on plateaus
in the validation loss.

3 Each RAM variable is a single byte thus has 256 possible values ranging from 0 to 255.
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4.6 results

Table 2: Probe F1 scores averaged across categories for each game (data collected by random
agents)

Game maj-clf random-cnn vae pixel-pred cpc st-dim supervised

asteroids 0.28 0.34 0.36 0.34 0.42 0.49 N/A

berzerk 0.18 0.43 0.45 0.55 0.56 0.53 0.68

bowling 0.33 0.48 0.50 0.81 0.90 0.96 0.95

boxing 0.01 0.19 0.20 0.44 0.29 0.58 0.83

breakout 0.17 0.51 0.57 0.70 0.74 0.88 0.94

demonattack 0.16 0.26 0.25 0.32 0.57 0.69 0.83

freeway 0.01 0.50 0.26 0.81 0.47 0.81 0.98

frostbite 0.08 0.57 0.01 0.72 0.76 0.75 0.85

hero 0.22 0.75 0.51 0.74 0.90 0.93 0.98

montezumarevenge 0.08 0.68 0.69 0.74 0.75 0.78 0.87

mspacman 0.10 0.48 0.38 0.74 0.65 0.70 0.87

pitfall 0.07 0.34 0.56 0.44 0.46 0.60 0.83

pong 0.10 0.17 0.09 0.70 0.71 0.81 0.87

privateeye 0.23 0.70 0.71 0.83 0.81 0.91 0.97

qbert 0.29 0.49 0.49 0.52 0.65 0.73 0.76

riverraid 0.04 0.34 0.26 0.41 0.40 0.36 0.57

seaquest 0.29 0.57 0.56 0.62 0.66 0.67 0.85

spaceinvaders 0.14 0.41 0.52 0.57 0.54 0.57 0.75

tennis 0.09 0.41 0.29 0.57 0.60 0.60 0.81

venture 0.09 0.36 0.38 0.46 0.51 0.58 0.68

videopinball 0.09 0.37 0.45 0.57 0.58 0.61 0.82

yarsrevenge 0.01 0.22 0.08 0.19 0.39 0.42 0.74

mean 0.14 0.44 0.39 0.58 0.60 0.68 0.83
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Table 3: Probe F1 scores for different methods averaged across all games for each category
(data collected by random agents)

Category maj-clf random-cnn vae pixel-pred cpc st-dim supervised

Small Loc. 0.14 0.19 0.17 0.31 0.42 0.51 0.69

Agent Loc. 0.12 0.31 0.30 0.48 0.43 0.58 0.83

Other Loc. 0.14 0.50 0.36 0.61 0.66 0.69 0.81

Score/Clock/Lives/Display 0.13 0.58 0.53 0.76 0.83 0.86 0.93

Misc. 0.26 0.59 0.65 0.70 0.71 0.74 0.86

We report the F1 averaged across all categories for each method and for each game
in Table 2 for data collected by random agent. In addition, we provide a breakdown
of probe results in each category, such as small object localization or score/lives
classification in Table 3 for the random agent. We include the corresponding tables
for these results with data collected by a pretrained PPO agent in tables 10 and
11. The results in table 2 show that ST-DIM largely outperforms other methods
in terms of mean F1 score. In general, contrastive methods (ST-DIM and CPC)
methods seem to perform better than generative methods (VAE and PIXEL-PRED)
at these probing tasks. We find that RandomCNN is a strong prior in Atari games
as has been observed before (Burda et al., 2019), possibly due to the inductive
bias captured by the CNN architecture empirically observed in (Ulyanov et al.,
2018). We find similar trends to hold on results with data collected by a PPO agent.
Despite contrastive methods performing well, there is still a sizable gap between
ST-DIM and the fully supervised approach, leaving room for improvement from
new unsupervised representation learning techniques for the benchmark.

4.7 discussion

Ablations: We investigate two ablations of our ST-DIM model: Global-T-DIM,
which only maximizes the mutual information between the global representations
and JSD-ST-DIM, which uses the NCE loss (Hyvärinen et al., 1999) instead of the
InfoNCE loss, which is equivalent to maximizing the Jensen Shannon Divergence
between representations. We report results from these ablations in Figure 5 and 6.
We see from the results in that 1) the InfoNCE loss performs better than the JSD loss
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Figure 5: InfoNCE vs JSD
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Figure 6: Effect of Spatial Loss

and 2) contrasting spatiotemporally (and not just temporally) is important across
the board for capturing all categories of latent factors.

We found ST-DIM has two main advantages which explain its superior performance
over other methods and over its own ablations. It captures small objects much better
than other methods, and is more robust to the presence of easy-to-exploit features
which hurts other contrastive methods. Both these advantages are due to ST-DIM
maximizing mutual information of patch representations.

Capturing small objects: As we can see in Table 3, ST-DIM performs better at
capturing small objects than other methods, especially generative models like VAE
and pixel prediction methods. This is likely because generative models try to model
every pixel, so they are not penalized much if they fail to model the few pixels
that make up a small object. Similarly, ST-DIM holds this same advantage over
Global-T-DIM (see Table 13), which is likely due to the fact that Global-T-DIM is not
penalized if its global representation fails to capture features from some patches of
the frame.
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Table 4: Different ablations of ST-DIM. F1 scores for for each category averaged across all
games (data collected by random agents)

jsd-st-dim global-t-dim st-dim

Small Loc. 0.44 0.37 0.51

Agent Loc. 0.47 0.43 0.58

Other Loc. 0.64 0.53 0.69

Score/Clock/Lives/Display 0.69 0.76 0.86

Misc. 0.64 0.66 0.74

Table 5: Breakdown of F1 Scores for every state variable in Boxing for ST-DIM, CPC, and
Global-T-DIM, an ablation of ST-DIM that removes the spatial contrastive constraint,
for the game Boxing

method vae pixel-pred cpc global-t-dim st-dim

clock 0.03 0.27 0.79 0.81 0.92

enemy_score 0.19 0.58 0.59 0.74 0.70

enemy_x 0.32 0.49 0.15 0.17 0.51

enemy_y 0.22 0.42 0.04 0.16 0.38

player_score 0.08 0.32 0.56 0.45 0.88

player_x 0.33 0.54 0.19 0.13 0.56

player_y 0.16 0.43 0.04 0.14 0.37

Robust to presence of easy-to-exploit features: Representation learning with
mutual information or contrastive losses often fail to capture all salient features if a
few easy-to-learn features are sufficient to saturate the objective. This phenomenon
has been linked to the looseness of mutual information lower bounds (McAllester
et al., 2018; Ozair et al., 2019) and gradient starvation (Combes et al., 2018). We see the
most prominent example of this phenomenon in Boxing. The observations in Boxing
have a clock showing the time remaining in the round. A representation which
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encodes the shown time can perform near-perfect predictions without learning any
other salient features in the observation. Table 5 shows that CPC, Global T-DIM,
and ST-DIM perform well at predicting the clock variable. However only ST-DIM
does well on encoding the other variables such as the score and the position of the
boxers.

We also observe that the best generative model (PIXEL-PRED) does not suffer
from this problem. It performs its worst on high-entropy features such as the
clock and player score (where ST-DIM excels), and does slightly better than ST-
DIM on low-entropy features which have a large contribution in the pixel space
such as player and enemy locations. This sheds light on the qualitative difference
between contrastive and generative methods: contrastive methods prefer capturing
high-entropy features (irrespective of contribution to pixel space) while generative
methods do not, and generative methods prefer capturing large objects which have
low entropy. This complementary nature suggests hybrid models as an exciting
direction of future work.

4.8 conclusion

We present a new representation learning technique which maximizes the mutual
information of representations across spatial and temporal axes. We also propose a
new benchmark for state representation learning based on the Atari 2600 suite of
games to emphasize learning multiple generative factors. We demonstrate that the
proposed method excels at capturing the underlying latent factors of a state even for
small objects or when a large number of objects are present, which prove difficult for
generative and other contrastive techniques, respectively. We have shown that our
proposed benchmark can be used to study qualitative and quantitative differences
between representation learning techniques, and hope that it will encourage more
research in the problem of state representation learning.
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5
P R O L O G U E T O T H E S E C O N D A RT I C L E

5.1 article details

Title: Data-Efficient Reinforcement Learning with Self-Predictive Representations.
Authors: Max Schwarzer, Ankesh Anand, Rishab Goel, R Devon Hjelm, Aaron
Courville, Philip Bachman.
Presented At: International Conference on Learning Representations (ICLR), 2021.

5.2 context

Encouraged by the promising results of self-supervised learning methods on probing
tasks (Anand et al., 2019), we thought it would be great to explore their role in
control. At that time, the Atari 100k benchmark (Kaiser et al., 2020) (2̃hrs of realtime
play per game) was seen as a significantly challenging testbed for RL algorithms,
and a domain where SotA agents performed quite poorly compared to humans.
Our intuition was that a dynamics-aware representation learning method ought to
improve the data-efficiency of RL agents.

5.3 contribution

I proposed the initial idea for abstract world models in my predoc report, and
refined the idea after feedback from Aaron Courville and Phil Bachman. I set up
the initial codebase with RL infrastructure and ran initial experiments testing out
a few contrastive model-based RL ideas. Max and I tried a self-predictive instead
of a contrastive model and that ended up giving great initial results. I ported our
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codebase to rlpyt (Stooke et al., 2019) which significantly improved our wall-clock
training time. Max added data augmentations on the suggestion of Phil which
further improved performance. Max and I ran most experiments on the Mila and
Microsoft Research clusters. Max and I wrote the initial draft of the paper with
significant feedback and improvements from Devon, Phil and Aaron. Aaron, Devon
and Phil provided weekly advice and guidance on the project, and helped concretize
the scope of the project.

5.4 research impact

The SPR paper was very well received and surprised a lot of folks due to the large
improvements in the SoTA on the challenging Atari 100k benchmark. The method
has since then been validated in a number of domains, including Procgen (Anand
et al., 2021) and DeepMind Control (McInroe et al., 2021).

In a follow-up work, we also showed its efficacy as a pre-training objective (Schwarzer
et al., 2021b), while another group showed its efficacy as an exploration objec-
tive (Guo et al., 2022).

SPR was further improved by using the model to also perform planning (something
we postulated as future work). EfficientZero (Ye et al., 2021) combined SPR with
MuZero to achieve new SoTAs on Atari 100k (comparable to human scores), and
MuZero++ (Anand et al., 2021) combined SPR with MuZero to achieve new SoTA
results on Procgen.
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6
D ATA - E F F I C I E N T R E I N F O R C E M E N T L E A R N I N G W I T H
S E L F - P R E D I C T I V E R E P R E S E N TAT I O N S

Abstract: While deep reinforcement learning excels at solving tasks where large
amounts of data can be collected through virtually unlimited interaction with the
environment, learning from limited interaction remains a key challenge. We posit
that an agent can learn more efficiently if we augment reward maximization with
self-supervised objectives based on structure in its visual input and sequential
interaction with the environment. Our method, Self-Predictive Representations
(SPR), trains an agent to predict its own latent state representations multiple steps
into the future. We compute target representations for future states using an encoder
which is an exponential moving average of the agent’s parameters and we make
predictions using a learned transition model. On its own, this future prediction
objective outperforms prior methods for sample-efficient deep RL from pixels. We
further improve performance by adding data augmentation to the future prediction
loss, which forces the agent’s representations to be consistent across multiple
views of an observation. Our full self-supervised objective, which combines future
prediction and data augmentation, achieves a median human-normalized score
of 0.415 on Atari in a setting limited to 100k steps of environment interaction,
which represents a 55% relative improvement over the previous state-of-the-art.
Notably, even in this limited data regime, SPR exceeds expert human scores on
7 out of 26 games. We’ve made the code associated with this work available at
https://github.com/mila-iqia/spr.
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6.1 introduction

Deep Reinforcement Learning (deep RL, François-Lavet et al., 2018) has proven
to be an indispensable tool for training successful agents on difficult sequential
decision-making problems (Bellemare et al., 2013; Tassa et al., 2018). The success
of deep RL is particularly noteworthy in highly complex, strategic games such as
StarCraft (Vinyals et al., 2019) and DoTA2 (OpenAI et al., 2019), where deep RL
agents now surpass expert human performance in some scenarios.

Deep RL involves training agents based on large neural networks using large
amounts of data (Sutton, 2019), a trend evident across both model-based (Schrit-
twieser et al., 2020) and model-free (Badia et al., 2020) learning. The sample
complexity of such state-of-the-art agents is often incredibly high: MuZero (Schrit-
twieser et al., 2020) and Agent-57 (Badia et al., 2020) use 10-50 years of experience
per Atari game, and OpenAI Five (OpenAI et al., 2019) uses 45,000 years of experi-
ence to accomplish its remarkable performance. This is clearly impractical: unlike
easily-simulated environments such as video games, collecting interaction data for
many real-world tasks is costly, making improved data efficiency a prerequisite for
successful use of deep RL in these settings (Dulac-Arnold et al., 2019).

Meanwhile, new self-supervised representation learning methods have significantly
improved data efficiency when learning new vision and language tasks, particularly
in low data regimes or semi-supervised learning (Xie et al., 2020; Hénaff et al., 2019;
Chen et al., 2020b). Self-supervised methods improve data efficiency by leveraging
a nearly limitless supply of training signal from tasks generated on-the-fly, based
on “views" drawn from the natural structure of the data (e.g., image patches, data
augmentation or temporal proximity, see Noroozi et al., 2016; Oord et al., 2018;
Hjelm et al., 2019a; Tian et al., 2019; Bachman et al., 2019; He et al., 2020; Chen et al.,
2020a).

Motivated by successes in semi-supervised and self-supervised learning (Tarvainen
et al., 2017; Xie et al., 2020; Grill et al., 2020b), we train better state representations
for RL by forcing representations to be temporally predictive and consistent when
subject to data augmentation. Specifically, we extend a strong model-free agent by
adding a dynamics model which predicts future latent representations provided
by a parameter-wise exponential moving average of the agent itself. We also add
data augmentation to the future prediction task, which enforces consistency across
different views of each observation. Contrary to some methods (Kaiser et al., 2019;
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Figure 7: Median and Mean Human-Normalized scores of different methods across 26

games in the Atari 100k benchmark (Kaiser et al., 2019), averaged over 10 random
seeds for SPR, and 5 seeds for most other methods except CURL, which uses 20.
Each method is allowed access to only 100k environment steps or 400k frames
per game. (*) indicates that the method uses data augmentation. SPR achieves
state-of-art results on both mean and median human-normalized scores. Note that,
even without data augmentation, SPR still outperforms all prior methods on both
metrics.

Hafner et al., 2019), our dynamics model operates entirely in the latent space and
does not rely on reconstructing raw states.

We evaluate our method, which we call Self-Predictive Representations (SPR), on the
26 games in the Atari 100k benchmark (Kaiser et al., 2019), where agents are allowed
only 100k steps of environment interaction (producing 400k frames of input) per
game, which roughly corresponds to two hours of real-time experience. Notably,
the human experts in Mnih et al. (2015) and Van Hasselt et al. (2016) were given
the same amount of time to learn these games, so a budget of 100k steps permits a
reasonable comparison in terms of data efficiency.

In our experiments, we augment a modified version of Data-Efficient Rainbow
(DER) (Hasselt et al., 2019) with the SPR loss, and evaluate versions of SPR with
and without data augmentation. We find that each version is superior to controlled
baselines. When coupled with data augmentation, SPR achieves a median score
of 0.415, which is a state-of-the-art result on this benchmark, outperforming prior
methods by a significant margin. Notably, SPR also outperforms human expert
scores on 7 out of 26 games while using roughly the same amount of in-game
experience.
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6.2 method

We consider reinforcement learning (RL) in the standard Markov Decision Process
(MDP) setting where an agent interacts with its environment in episodes, each
consisting of sequences of observations, actions and rewards. We use st, at and
rt to denote the state, the action taken by the agent and the reward received at
timestep t. We seek to train an agent whose expected cumulative reward in each
episode is maximized. To do this, we combine a strong model-free RL algorithm,
Rainbow (Hessel et al., 2018), with Self-Predictive Representations as an auxiliary
loss to improve sample efficiency. We now describe our overall approach in detail.

6.2.1 Deep Q-Learning

We focus on the Atari Learning Environment (Bellemare et al., 2013), a challenging
setting where the agent takes discrete actions while receiving purely visual, pixel-
based observations. A prominent method for solving Atari, Deep Q Networks (Mnih
et al., 2015), trains a neural network Qθ to approximate the agent’s current Q-function
(policy evaluation) while updating the agent’s policy greedily with respect to this
Q-function (policy improvement). This involves minimizing the error between
predictions from Qθ and a target value estimated by Qξ , an earlier version of the
network:

LDQN
θ =

(
Qθ(st, at)− (rt + γ max

a
Qξ(st+1, a))

)2
. (7)

Various improvements have been made over the original DQN: Distributional RL
(Bellemare et al., 2017) models the full distribution of future reward rather than
just the mean, Dueling DQN (Wang et al., 2016b) decouples the value of a state
from the advantage of taking a given action in that state, Double DQN (Van Hasselt
et al., 2016) modifies the Q-learning update to avoid overestimation due to the max
operation, among many others. Rainbow (Hessel et al., 2018) consolidates these
improvements into a single combined algorithm and has been adapted to work well
in data-limited regimes (Hasselt et al., 2019).
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Figure 8: An illustration of the full SPR method. Representations from the online encoder are
used in the reinforcement learning task and for prediction of future representations
from the target encoder via the transition model. The target encoder and projection
head are defined as an exponential moving average of their online counterparts
and are not updated via gradient descent. For brevity, we illustrate only the kth

step of future prediction, but in practice we compute the loss over all steps from 1
to K. Note: our implementation for this paper includes go in the Q-learning head.

59



6.2.2 Self-Predictive Representations

For our auxiliary loss, we start with the intuition that encouraging state represen-
tations to be predictive of future states given future actions should improve the
data efficiency of RL algorithms. Let (st:t+K, at:t+K) denote a sequence of K + 1
previously experienced states and actions sampled from a replay buffer, where K
is the maximum number of steps into the future which we want to predict. Our
method has four main components which we describe below:

• Online and Target networks: We use an online encoder fo to transform observed
states st into representations zt ≜ fo(st). We use these representations in an
objective that encourages them to be predictive of future observations up to
some fixed temporal offset K, given a sequence of K actions to perform. We
augment each observation st independently when using data augmentation.
Rather than predicting representations produced by the online encoder, we
follow prior work (Tarvainen et al., 2017; Grill et al., 2020b) by computing target
representations for future states using a target encoder fm, whose parameters
are an exponential moving average (EMA) of the online encoder parameters.
Denoting the parameters of fo as θo, those of fm as θm, and the EMA coefficient
as τ ∈ [0, 1), the update rule for θm is:

θm ← τθm + (1− τ)θo. (8)

The target encoder is not updated via gradient descent. The special case
τ = 0, θm = θo is noteworthy, as it performs well when regularization is
already provided by data augmentation.

• Transition Model: For the prediction objective, we generate a sequence of K
predictions ẑt+1:t+K of future state representations z̃t+1:t+K using an action-
conditioned transition model h. We compute ẑt+1:t+K iteratively: ẑt+k+1 ≜

h(ẑt+k, at+k), starting from ẑt ≜ zt ≜ fo(st). We compute z̃t+1:t+K by applying
the target encoder fm to the observed future states st+1:t+K: z̃t+k ≜ fm(st+k).
The transition model and prediction loss operate in the latent space, thus
avoiding pixel-based reconstruction objectives. We describe the architecture of
h in section 6.2.3.

• Projection Heads: We use online and target projection heads go and gm (Chen
et al., 2020a) to project online and target representations to a smaller latent
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space, and apply an additional prediction head q (Grill et al., 2020b) to the online
projections to predict the target projections:

ŷt+k ≜ q(go(ẑt+k)), ∀ẑt+k ∈ ẑt+1:t+K; ỹt+k ≜ gm(z̃t+k), ∀z̃t+k ∈ z̃t+1:t+K. (9)

The target projection head parameters are given by an EMA of the online
projection head parameters, using the same update as the online and target
encoders.

• Prediction Loss: We compute the future prediction loss for SPR by summing
over cosine similarities1 between the predicted and observed representations
at timesteps t + k for 1 ≤ k ≤ K:

LSPR
θ (st:t+K, at:t+K) = −

K

∑
k=1

(
ỹt+k
||ỹt+k||2

)⊤ ( ŷt+k
||ŷt+k||2

)
, (10)

where ỹt+k and ŷt+k are computed from (st:t+K, at:t+K) as we just described.

We call our method Self-Predictive Representations (SPR), following the predictive
nature of the objective and the use of an exponential moving average target network
similar to (Tarvainen et al., 2017; He et al., 2020). During training, we combine the
SPR loss with the Q-learning loss for Rainbow. The SPR loss affects fo, go, q and h.
The Q-learning loss affects fo and the Q-learning head, which contains additional
layers specific to Rainbow. Denoting the Q-learning loss from Rainbow as LRL

θ , our
full optimization objective is: Ltotal

θ = LRL
θ + λLSPR

θ .

Unlike some other proposed methods for representation learning in reinforcement
learning (Srinivas et al., 2020), SPR can be used with or without data augmentation,
including in contexts where data augmentation is unavailable or counterproductive.
Moreover, compared to related work on contrastive representation learning, SPR
does not use negative samples, which may require careful design of contrastive
tasks, large batch sizes (Chen et al., 2020a), or the use of a buffer to emulate large
batch sizes (He et al., 2020)

1 Cosine similarity is linearly related to the “normalized L2" loss used in BYOL (Grill et al., 2020b).
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Algorithm 1: Self-Predictive Representations

1 Denote parameters of online encoder fo and projection go as θo

2 Denote parameters of target encoder fm and projection gm as θm

3 Denote parameters of transition model h, predictor q and Q-learning head as
ϕ

4 Denote the maximum prediction depth as K, batch size as N
5 initialize replay buffer B
6 while Training do
7 collect experience (s, a, r, s′) with (θo, ϕ) and add to buffer B
8 sample a minibatch of sequences of (s, a, r, s′) ∼ B
9 for i in range(0, N) do
10 if augmentation then
11 si ← augment(si); s′i ← augment(s′i)
12 end
13 zi

0 ← fθ(si
0) // online representations

14 li ← 0
15 for k in (1, . . . , K) do
16 ẑi

k ← h(ẑi
k−1, ai

k−1) // latent states via transition model

17 z̃i
k ← fm(si

k) // target representations

18 ŷi
k ← q(go(ẑi

k)), ỹi
k ← gm(z̃i

k) // projections

19 li ← li −
(

ỹi
k

||ỹi
k||2

)⊤ (
ŷi

k
||ŷi

k||2

)
// SPR loss at step k

20 end

21 li ← λli + RL loss(si, ai, ri, s′i; θo) // Add RL loss for batch with

θo

22 end
23 l ← 1

N ∑N
i=0 li // average loss over minibatch

24 θo, ϕ← optimize((θo, ϕ), l) // update online parameters

25 θm ← τθo + (1− τ)θm // update target parameters

26 end
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6.2.3 Transition Model Architecture

For the transition model h, we apply a convolutional network directly to the 64×
7× 7 spatial output of the convolutional encoder fo. The network comprises two 64-
channel convolutional layers with 3× 3 filters, with batch normalization (Ioffe et al.,
2015a) after the first convolution and ReLU nonlinearities after each convolution.
We append a one-hot vector representing the action taken to each location in the
input to the first convolutional layer, similar to Schrittwieser et al. (2020). We use a
maximum prediction depth of K = 5, and we truncate calculation of the SPR loss at
episode boundaries to avoid encoding environment reset dynamics into the model.

6.2.4 Data Augmentation

When using augmentation, we use the same set of image augmentations as in DrQ
from Yarats et al. (2021b), consisting of small random shifts and color jitter. We
normalize activations to lie in [0, 1] at the output of the convolutional encoder and
transition model, as in Schrittwieser et al., 2020. We use Kornia (Riba et al., 2020)
for efficient GPU-based data augmentations.

When not using augmentation, we find that SPR performs better when dropout
(Srivastava et al., 2014) with probability 0.5 is applied at each layer in the online
and target encoders. This is consistent with Laine et al. (2017) and Tarvainen et al.
(2017), who find that adding noise inside the network is important when not using
image-specific augmentation, as proposed by Bachman et al. (2014).

6.2.5 Implementation Details

For our Atari experiments, we largely follow Hasselt et al., 2019 for DQN hyperpa-
rameters, with four exceptions. We follow DrQ (Yarats et al., 2021b) by: using the
3-layer convolutional encoder from Mnih et al., 2015, using 10-step returns instead of
20-step returns for Q-learning, and not using a separate DQN target network when
using augmentation. We also perform two gradient steps per environment step
instead of one. We show results for this configuration with and without augmen-
tation in Table 19, and confirm that these changes are not themselves responsible
for our performance. We reuse the first layer of the DQN MLP head as the SPR
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projection head go. When using dueling DQN (Wang et al., 2016b), go concatenates
the outputs of the first layers of the value and advantage heads. When these layers
are noisy (Fortunato et al., 2018), go does not use the noisy parameters. Finally, we
parameterize the predictor q as a linear layer. We use τ = 0.99 when augmentation
is disabled and τ = 0 when enabled. For Ltotal

θ = LRL
θ + λLSPR

θ , we use λ = 2.
Hyperparameters were tuned over a subset of games (following Mnih et al., 2015;
Machado et al., 2018). We list the complete hyperparameters in Table 17.

Our implementation uses rlpyt (Stooke et al., 2019) and PyTorch (Paszke et al.,
2019). We find that SPR modestly increases the time required for training, which we
discuss in more detail in Appendix 12.6.

6.3 related work

6.3.1 Data-Efficient RL:

A number of works have sought to improve sample efficiency in deep RL. SiMPLe
(Kaiser et al., 2019) learns a pixel-level transition model for Atari to generate
simulated training data, achieving strong results on several games in the 100k frame
setting, at the cost of requiring several weeks for training. However, Hasselt et al.,
2019 and Kielak, 2020 introduce variants of Rainbow (Hessel et al., 2018) tuned for
sample efficiency, Data-Efficient Rainbow (DER) and OTRainbow, which achieve
comparable or superior performance with far less computation.

In the context of continuous control, several works propose to leverage a latent-space
model trained on reconstruction loss to improve sample efficiency (Hafner et al.,
2019; Lee et al., 2020; Hafner et al., 2020). Most recently, DrQ (Yarats et al., 2021b)
and RAD (Laskin et al., 2020) have found that applying modest image augmentation
can substantially improve sample efficiency in reinforcement learning, yielding
better results than prior model-based methods. Data augmentation has also been
found to improve generalization of reinforcement learning methods (Combes et
al., 2018; Laskin et al., 2020) in multi-task and transfer settings. We show that
data augmentation can be more effectively leveraged in reinforcement learning by
forcing representations to be consistent between different augmented views of an
observation while also predicting future latent states.
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6.3.2 Representation Learning in RL:

Representation learning has a long history of use in RL – see Lesort et al., 2018. For
example, CURL (Srinivas et al., 2020) proposed a combination of image augmen-
tation and a contrastive loss to perform representation learning for RL. However,
follow-up results from RAD (Laskin et al., 2020) suggest that most of the benefits of
CURL come from image augmentation, not its contrastive loss.

CPC (Oord et al., 2018), CPC|Action (Guo et al., 2018), ST-DIM (Anand et al., 2019)
and DRIML (Mazoure et al., 2020) propose to optimize various temporal contrastive
losses in reinforcement learning environments. We perform an ablation comparing
such temporal contrastive losses to our method in Section 6.5. Kipf et al., 2019

propose to learn object-oriented contrastive representations by training a structured
transition model based on a graph neural network.

SPR bears some resemblance to DeepMDP (Gelada et al., 2019), which trains a
transition model with an unnormalized L2 loss to predict representations of future
states, along with a reward prediction objective. However, DeepMDP uses its online
encoder to generate prediction targets rather than employing a target encoder, and is
thus prone to representational collapse (sec. C.5 in Gelada et al., 2019). To mitigate
this issue, DeepMDP relies on an additional observation reconstruction objective. In
contrast, our model is self-supervised, trained entirely in the latent space, and uses
a normalized loss. Our ablations (sec. 6.5) demonstrate that using a target encoder
has a large impact on our method.

SPR is also similar to PBL (Guo et al., 2020), which directly predicts representations
of future states. However, PBL uses two separate target networks trained via
gradient descent, whereas SPR uses a single target encoder, updated without
backpropagation. Moreover, PBL studies multi-task generalization in the asymptotic
limits of data, whereas SPR is concerned with single-task performance in low data
regimes, using 0.01% as much data as PBL. Unlike PBL, SPR additionally enforces
consistency across augmentations, which empirically provides a large boost in
performance.

6.4 results

We test SPR on the sample-efficient Atari setting introduced by Kaiser et al., 2019

and Hasselt et al., 2019. In this task, only 100,000 environment steps of training data
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are available – equivalent to 400,000 frames, or just under two hours – compared
to the typical standard of 50,000,000 environment steps, or roughly 39 days of
experience. When used without data augmentation, SPR demonstrates scores
comparable to the previous best result from Yarats et al., 2021b. When combined
with data augmentation, SPR achieves a median human-normalized score of 0.415,
which is a new state-of-the-art result on this task. SPR achieves super-human
performance on seven games in this data-limited setting: Boxing, Krull, Kangaroo,
Road Runner, James Bond and Crazy Climber, compared to a maximum of two for
any previous methods, and achieves scores higher than DrQ (the previous state-
of-the-art method) on 23 out of 26 games. See Table 6 for aggregate metrics and
Figure 9 for a visualization of results. A full list of scores is presented in Table 18.
For consistency with previous works, we report human and random scores from
Wang et al., 2016b.

Table 6: Performance of different methods on the 26 Atari games considered by Kaiser et al.,
2019 after 100k environment steps. Results are recorded at the end of training and
averaged over 10 random seeds for SPR, 20 for CURL, and 5 for other methods. SPR
outperforms prior methods on all aggregate metrics, and exceeds expert human
performance on 7 out of 26 games.

Metric Random Human SimPLe DER OTRainbow CURL DrQ SPR (no Aug) SPR

Mean Human-Norm’d 0.000 1.000 0.443 0.285 0.264 0.381 0.357 0.463 0.704

Median Human-Norm’d 0.000 1.000 0.144 0.161 0.204 0.175 0.268 0.307 0.415

Mean DQN@50M-Norm’d 0.000 23.382 0.232 0.239 0.197 0.325 0.171 0.336 0.510

Median DQN@50M-Norm’d 0.000 0.994 0.118 0.142 0.103 0.142 0.131 0.225 0.361

# Games Superhuman 0 N/A 2 2 1 2 2 5 7
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Figure 9: A boxplot of the distribution of human-normalized scores across the 26 Atari
games under consideration, after 100k environment steps. The whiskers represent
the interquartile range of human-normalized scores over the 26 games. Scores for
each game are recorded at the end of training and averaged over 10 random seeds
for SPR, 20 for CURL, and 5 for other methods.

6.4.1 Evaluation

We evaluate the performance of different methods by computing the average episodic
return at the end of training. We normalize scores with respect to expert human
scores to account for different scales of scores in each game, as done in previ-
ous works. The human-normalized score of an agent on a game is calculated as
agent score−random score

human score−random score and aggregated across the 26 games by mean or median.

We find that human scores on some games are so high that differences between
methods are washed out by normalization, making it hard for these games to
influence aggregate metrics. Moreover, we find that the median score is typically
only influenced by a handful of games. Both these factors compound together to
make the median human-normalized score an unreliable metric for judging overall
performance. To address this, we also report DQN-normalized scores, defined
analogously to human-normalized scores and calculated using scores from DQN
agents (Mnih et al., 2015) trained over 50 million steps, and report both mean and
median of those metrics in all results and ablations, and plot the distribution of
scores over all the games in Figure 9.

Additionally, we note that the standard evaluation protocol of evaluating over only
500,000 frames per game is problematic, as the quantity we are trying to measure
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Table 7: Scores on the 26 Atari games under consideration for ablated variants of SPR. All
variants listed here use data augmentation.

Variant Human-Normalized Score DQN@50M-Normalized Score

mean median mean median

SPR 0.704 0.415 0.510 0.361

1-step SPR 0.570 0.301 0.337 0.346

Non-temporal SPR 0.507 0.271 0.326 0.295

Quadratic SPR 0.047 0.040 -0.016 0.031

SPR without projections 0.437 0.171 0.247 0.174

Rainbow (controlled, w/ aug.) 0.480 0.346 0.284 0.278

is expected return over episodes. Because episodes may last up to up to 108,000

frames, this method may collect as few as four complete episodes. As variance of
results is already a concern in deep RL see Henderson et al., 2018, we recommend
evaluating over 100 episodes irrespective of their length. Moreover, to address
findings from Henderson et al., 2018 that comparisons based on small numbers of
random seeds are unreliable, we average our results over ten random seeds, twice
as many as most previous works.

6.5 analysis

The target encoder We find that using a separate target encoder is vital in all
cases. A variant of SPR in which target representations are generated by the
online encoder without a stopgradient (as done by e.g., Gelada et al., 2019) exhibits
catastrophically reduced performance, with median human-normalized score of
0.278 with augmentation versus 0.415 for SPR. However, there is more flexibility in
the EMA constant used for the target encoder. When using augmentation, a value of
τ = 0 performs best, while without augmentation we use τ = 0.99. The success of
τ = 0 is interesting, since the related method BYOL reports very poor representation
learning performance in this case. We hypothesize that optimizing a reinforcement
learning objective in parallel with the SPR loss explains this difference, as it provides
an additional gradient which discourages representational collapse. Full results for
these experiments are presented in Section 12.5.
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Figure 10: Performance of SPR with various prediction depths. Results are averaged across
ten seeds per game, for all 26 games. To equalize the importance of games, we
calculate an SPR-normalized score analogously to human-normalized scores, and
show its mean and median across all 26 games. All other hyperparameters are
identical to those used for SPR with augmentation.

Dynamics modeling is key A key distinction between SPR and other recent
approaches leveraging representation learning for reinforcement learning, such as
CURL (Srinivas et al., 2020) and DRIML (Mazoure et al., 2020), is our use of an
explicit multi-step dynamics model. To illustrate the impact of dynamics modeling,
we test SPR with a variety of prediction depths K. Two of these ablations, one with
no dynamics modeling and one that models only a single step of dynamics, are
presented in Table 7 (as Non-temporal SPR and 1-step SPR), and all are visualized
in Figure 10. We find that extended dynamics modeling consistently improves
performance up to roughly K = 5. Moving beyond this continues to improve
performance on a subset of games, at the cost of increased computation. Note that
the non-temporal ablation we test is similar to using BYOL (Grill et al., 2020b) as an
auxiliary task, with particular architecture choices made for the projection layer and
predictor.

Comparison with contrastive losses Though many recent works in representa-
tion learning employ contrastive learning, we find that SPR consistently outperforms
both temporal and non-temporal variants of contrastive losses (see Table 20), includ-
ing CURL (Srinivas et al., 2020).
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Using a quadratic loss causes collapse SPR’s use of a cosine similarity objec-
tive (or a normalized L2 loss) sets it in contrast to some previous works, such
as DeepMDP (Gelada et al., 2019), which have learned latent dynamics models
by minimizing an un-normalized L2 loss over predictions of future latents. To
examine the importance of this objective, we test a variant of SPR that minimizes
un-normalized L2 loss (Quadratic SPR in Table 7), and find that it performs only
slightly better than random. This is consistent with results from Gelada et al., 2019,
who find that DeepMDP’s representations are prone to collapse, and use an auxiliary
reconstruction objective to prevent this.

Projections are critical Another distinguishing feature of SPR is its use of pro-
jection and prediction networks. We test a variant of SPR that uses neither, instead
computing the SPR loss directly over the 64 × 7 × 7 convolutional feature map
used by the transition model (SPR without projections in Table 7). We find that this
variant has inferior performance, and suggest two possible explanations. First, the
convolutional network represents only a small fraction of the capacity of SPR’s
network, containing only some 80,000 parameters out of a total of three to four
million. Employing the first layer of the DQN head as a projection thus allows the
SPR objective to affect far more of the network, while in this variant its impact is
limited. Second, the effects of SPR in forcing invariance to augmentation may be
undesirable at this level; as the convolutional feature map is the product of only
three layers, it may be challenging to learn features that are simultaneously rich and
invariant.

6.6 future work

Recent work in both visual (Chen et al., 2020b) and language representation learning
(Brown et al., 2020) has suggested that self-supervised models trained on large
datasets perform exceedingly well on downstream problems with limited data,
often outperforming methods trained using only task-specific data. Future works
could similarly exploit large corpora of unlabelled data, perhaps from multiple
MDPs or raw videos, to further improve the performance of RL methods in low-data
regimes. As the SPR objective is unsupervised, it could be directly applied in such
settings.
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Another interesting direction is to use the transition model learned by SPR for
planning. MuZero (Schrittwieser et al., 2020) has demonstrated that planning with
a model supervised via reward and value prediction can work extremely well given
sufficient (massive) amounts of data. It remains unclear whether such models
can work well in low-data regimes, and whether augmenting such models with
self-supervised objectives such as SPR can improve their data efficiency.

It would also be interesting to examine whether self-supervised methods like SPR
can improve generalization to unseen tasks or changes in environment, similar to
how unsupervised pretraining on ImageNet can generalize to other datasets (He
et al., 2020; Grill et al., 2020b).

6.7 conclusion

In this paper we introduced Self-Predictive Representations (SPR), a self-supervised
representation learning algorithm designed to improve the data efficiency of deep
reinforcement learning agents. SPR learns representations that are both temporally
predictive and consistent across different views of environment observations, by
directly predicting representations of future states produced by a target encoder.
SPR achieves state-of-the-art performance on the 100k steps Atari benchmark,
demonstrating significant improvements over prior work. Our experiments show
that SPR is highly robust, and is able to outperform the previous state of the art
when either data augmentation or temporal prediction is disabled. We identify
important directions for future work, and hope continued research at the intersection
of self-supervised learning and reinforcement learning leads to algorithms which
rival the efficiency and robustness of humans.
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7
P R O L O G U E T O T H E T H I R D A RT I C L E

7.1 artice details

Title: Procedural Generalization by Planning with Self-Supervised World Models
Authors: Ankesh Anand, Jacob Walker, Yazhe Li, Eszter Vértes, Julian Schrittwieser,
Sherjil Ozair, Théophane Weber, Jessica B. Hamrick
Presented At: International Conference on Learning Representations (ICLR), 2022

7.2 context

Having made headways on data-efficiency in our prior work, I was interested in
investigating if world models and self-supervised learning could similarly help in
generalization of RL algorithms. MuZero (Schrittwieser et al., 2020) was the leading
model-based method, so we sought to investigate its generalization capability and
whether self-supervised learning provides any benefits there.

7.3 contributions

I proposed the research idea to Jess Hamrick, who provided very detailed and
concrete feedback which helped solidify the research plan. Jess helped me navigate
the DeepMind technical infrastructure and I wrote the code to run MuZero on
Procgen and Metaworld. I also implemented the SPR and Pixel-prediction methods
and ran experiments with them. Jacob Walker implemented the contrastive methods.
Jacob also ran some important ablations. Julian and Sherjil helped me resolve
questions about the MuZero infrastructure and codebase at DeepMind. Eszter, Jess
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and Theo provided detailed feedback during research meetings. Yazhe implemented
the Q-learning baseline, and ran experiments on more seeds along with Eszter. Me
and Jess wrote most of the initial draft of the paper which was refined with feedback
from everyone. Jess also provided very frequent advice on the project and helped
prioritize experiments.

7.4 research impact

This work remains the best performing method on the Procgen benchmark, and
represented a significant improvement over existing methods. It was also the first
model-based method shown to work on generalization-first benchmarks of Procgen
and MetaWorld. The work was cited in the 2021 AI Index Report (Zhang et al., 2022)
as one of the key indicators of progress in Reinforcement Learning. Moreover, the
work identified the strengths and weakness of MuZero, a staple RL algorithm these
days which and is helping guide its further usage and algorithm improvements.
Lastly, it has paved way for more model-based methods to be used to exhibit
generalization in a way that model-free methods lack. More recently, we built on
this work and conducted further analysis on the benefits model-based methods in
exploration and transfer (Walker et al., 2023).
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8
P R O C E D U R A L G E N E R A L I Z AT I O N B Y P L A N N I N G W I T H
S E L F - S U P E RV I S E D W O R L D M O D E L S

Abstract: One of the key promises of model-based reinforcement learning is the
ability to generalize using an internal model of the world to make predictions in
novel environments and tasks. However, the generalization ability of model-based
agents is not well understood because existing work has focused on model-free
agents when benchmarking generalization. Here, we explicitly measure the general-
ization ability of model-based agents in comparison to their model-free counterparts.
We focus our analysis on MuZero (Schrittwieser et al., 2020), a powerful model-based
agent, and evaluate its performance on both procedural and task generalization.
We identify three factors of procedural generalization—planning, self-supervised
representation learning, and procedural data diversity—and show that by combin-
ing these techniques, we achieve state-of-the art generalization performance and
data efficiency on Procgen (Cobbe et al., 2020). However, we find that these factors
do not always provide the same benefits for the task generalization benchmarks in
Meta-World (Yu et al., 2020b), indicating that transfer remains a challenge and may
require different approaches than procedural generalization. Overall, we suggest
that building generalizable agents requires moving beyond the single-task, model-
free paradigm and towards self-supervised model-based agents that are trained in
rich, procedural, multi-task environments.

8.1 introduction

The ability to generalize to previously unseen situations or tasks using an internal
model of the world is a hallmark capability of human general intelligence (Craik,
1952; Lake et al., 2017) and is thought by many to be of central importance in
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machine intelligence as well (Dayan et al., 1995; Ha et al., 2018; Schmidhuber, 1991;
Sutton, 1991). Although significant strides have been made in model-based systems
in recent years (Hamrick, 2019), the most popular model-based benchmarks consist
of identical training and testing environments (e.g. Hafner et al., 2021; Wang et al.,
2019b) and do not measure or optimize for for generalization at all. While plenty of
other work in model-based RL does measure generalization (e.g. Finn et al., 2017b;
Nagabandi et al., 2019; Weber et al., 2017; Zhang et al., 2018a), each approach is
typically evaluated on a bespoke task, making it difficult to ascertain the state of
generalization in model-based RL more broadly.

Model-free RL, like model-based RL, has also suffered from both the “train=test”
paradigm and a lack of standardization around how to measure generalization. In
response, recent papers have discussed what generalization in RL means and how to
measure it (Chollet, 2019; Cobbe et al., 2019; Justesen et al., 2019; Nichol et al., 2018;
Witty et al., 2018), and others have proposed new environments such as Procgen
(Cobbe et al., 2020) and Meta-World (Yu et al., 2020b) as benchmarks focusing
on measuring generalization. While popular in the model-free community (e.g.
Mohanty et al., 2021; Yu et al., 2020a; Zhang et al., 2021), these benchmarks have not
yet been widely adopted in the model-based setting. It is therefore unclear whether
model-based methods outperform model-free approaches when it comes to gener-
alization, how well model-based methods perform on standardized benchmarks,
and whether popular model-free algorithmic improvements such as self-supervision
(Dittadi et al., 2021; Mazoure et al., 2022) or procedural data diversity (Tobin et al.,
2017; Zhang et al., 2018b) yield the same benefits for generalization in model-based
agents.

In this paper, we investigate three factors of generalization in model-based RL:
planning, self-supervised representation learning, and procedural data diversity.
We analyze these methods through a variety of modifications and ablations to
MuZero Reanalyse (Schrittwieser et al., 2020; Schrittwieser et al., 2021), a state-of-
the-art model-based algorithm. To assess generalization performance, we test our
variations of MuZero on two types of generalization (See Figure 11): procedural and
task. Procedural generalization involves evaluating agents on unseen configurations
of an environment (e.g., changes in observation rendering, map or terrain changes,
or new goal locations) while keeping the reward function largely the same. Task
generalization, in contrast, involves evaluating agents’ adaptability to unseen reward
functions (“tasks”) within the same environment. We focus on two benchmarks
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Figure 11: Two different kinds of generalization, using Procgen and Meta-World as ex-
amples. Procedural generalization involves evaluating on unseen environment
configurations, whereas task generalization evaluates adaptability to unseen tasks
(reward functions).

designed for both types of generalization, Procgen (Cobbe et al., 2020) and Meta-
World (Yu et al., 2020b).

Our results broadly indicate that self-supervised, model-based agents hold promise
in making progress towards better generalization. We find that (1) MuZero achieves
state-of-the-art performance on Procgen and the procedural and multi-task Meta-
World benchmarks (ML-1 and ML-45 train), outperforming a controlled model-free
baseline; (2) MuZero’s performance and data efficiency can be improved with the
incorporation of self-supervised representation learning; and (3) that with self-
supervision, less data diversity is required to achieve good performance. However,
(4) these ideas help less for task generalization on the ML-45 test set from Meta-
World, suggesting that different forms of generalization may require different
approaches.
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8.2 motivation and background

8.2.1 Generalization in RL

We are interested in the setting where an agent is trained on a set of ntrain MDPs
drawn IID from the same distribution, Mtrain = {Mi}ntrain

i=1 , whereMi ∼ p(M). The
agent is then tested on another set of ntest MDPs drawn IID1 from p, but disjoint from
the training set: Mtest = {Mj}ntest

j=1 whereMj ∼ p(M) such thatMj ̸∈Mtrain ∀Mj.
Generalization, then, is how well the agent performs in expectation on the test MDPs
after training (analogous to how well a supervised model performs on the test
set). Qualitatively, generalization difficulty can be roughly seen as a function of the
number (ntrain) of distinct MDPs seen during training (what we will refer to as data
diversity), as well as the breadth or amount of variation in p(M) itself. Intuitively, if
the amount of diversity in the training set is small (i.e. low values of ntrain) relative
to the breadth of p(M), then this poses a more difficult generalization challenge.
As ntrain → ∞, we will eventually enter a regime where p(M) is densely sampled,
and generalization should become much easier.

Given the above definition of generalization, we distinguish between two qualitative
types of distributions over MDPs. In procedural generalization, all MDPs with non-
zero probability under p(M) share the same underlying logic to their dynamics
(e.g., that walls are impassable) and rewards (e.g., that coins are rewarding), but
differ in how the environment is laid out (e.g., different mazes) and in how it is
rendered (e.g., color or background). In task generalization, MDPs under p(M)

share the same dynamics and rendering, but differ in the reward function (e.g.,
picking an object up vs. pushing it), which may be parameterized (e.g. specifying a
goal location).

Procedural generalization Many recent works attempt to improve procedural
generalization in different ways. For example, techniques that have been successful
in supervised learning have also been shown to help procedural generalization
in RL, including regularization (Cobbe et al., 2020; Igl et al., 2019; Laskin et al.,
2020) and auxiliary self-supervised objectives (Mazoure et al., 2020; Mazoure et al.,

1 Technically, the different tasks contained in Meta-World (see Section 8.3) are not quite drawn IID as
they were designed by hand. However, they qualitatively involve the same types of objects and level
of complexity, so we feel this fits approximately into this regime.
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2022). Other approaches including better hyperparameter tuning (Mohanty et al.,
2021), curriculum learning strategies (Jiang et al., 2021), and stronger architectural
inductive biases (Bapst et al., 2019; Guez et al., 2019; Zambaldi et al., 2018) may also
be effective. However, these various ideas are often only explored in the model-free
setting, and are not usually evaluated in combination, making it challenging to know
which are the most beneficial for model-based RL. Here we focus explicitly on model-
based agents, and evaluate three factors in combination: planning, self-supervision,
and data diversity.

Task generalization Generalizing to new tasks or reward functions has been a
major focus of meta-RL (Finn et al., 2017a; Rakelly et al., 2019), in which an agent
is trained on a dense distribution of tasks during training and a meta-objective
encourages few-shot generalization to new tasks. However, meta-RL works have
primarily focused on model-free algorithms (though see Nagabandi et al., 2019), and
the distribution from which train/test MDPs are drawn is typically quite narrow
and low dimensional. Another approach to task generalization has been to first
train task-agnostic representations (Yarats et al., 2021a) or dynamics (Sekar et al.,
2020) in an exploratory pre-training phase, and then use them for transfer. Among
these, Sekar et al. (2020) focus on the model-based setting but require access to the
reward function during evaluation. In Section 8.4.2, we take a similar approach of
pre-training models and using them for task transfer, with the goal of evaluating
whether planning and self-supervised learning might assist in this.

8.2.2 Factors of Generalization

Planning Model-based RL is an active area of research (Hamrick, 2019; Moerland
et al., 2020) with the majority of work focusing on gains in data efficiency (Ha
et al., 2018; Hafner et al., 2021; Janner et al., 2019; Kaiser et al., 2020; Schrittwieser
et al., 2021), though it is often motivated by a desire for better zero- or few-shot
generalization as well (Finn et al., 2017b; Hamrick et al., 2021; Nagabandi et al.,
2019; Sekar et al., 2020; Weber et al., 2017). In particular, model-based techniques
may benefit data efficiency and generalization in three distinct ways. First, model
learning can act as an auxiliary task and thus aid in learning representations that
better capture the structure of the environment and enable faster learning (Gregor
et al., 2019). Second, the learned model can be used to select actions on-the-fly via
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MPC (Finn et al., 2017b), enabling faster adaptation in the face of novelty. Third, the
model can also be used to train a policy or value function by simulating training
data (Sutton, 1991) or constructing more informative losses (Grill et al., 2020a; Heess
et al., 2015), again enabling faster learning (possibly entirely in simulation). A
recent state-of-the-art agent, MuZero (Schrittwieser et al., 2020), combines all of
these techniques: model learning, MPC, simulated training data, and model-based
losses.2 We focus our analysis on MuZero for this reason, and compare it to baselines
that do not incorporate model-based components.

Self-supervision Model learning is itself a form of self-supervision, leveraging an
assumption about the structure of MDPs in order to extract further learning signal
from collected data than is possible via rewards alone. However, recent work has
argued that this is unnecessary for model-based RL: all that should be required is for
models to learn the task dynamics, not necessarily environment dynamics (Grimm
et al., 2020). Yet even in the context of model-free RL, exploiting the structure of the
dynamics has been shown to manifest in better learning efficiency, generalization,
and representation learning (Mazoure et al., 2022; Schwarzer et al., 2021a; Yarats
et al., 2021a). Here, we aim to test the impact of self-supervision in model-based
agents by focusing on three popular classes of self-supervised losses: reconstruction,
contrastive, and self-predictive. Reconstruction losses involve directly predicting
future observations (e.g. Finn et al., 2017b; Hafner et al., 2021; Kaiser et al., 2020;
Weber et al., 2017). Contrastive objectives set up a classification task to determine
whether a future frame could result from the current observation (Banino et al.,
2021; Kipf et al., 2019; Oord et al., 2018). Finally, self-predictive losses involve having
agents predict their own future latent states (Guo et al., 2020; Schwarzer et al.,
2021a).

Data diversity Several works have shown that exposing a deep neural network
to a diverse training distribution can help its representations better generalize to
unseen situations (Djolonga et al., 2021; Radford et al., 2021b). A dense sampling
over a diverse training distribution can also act as a way to sidestep the out-of-

2 In this paper, we refer to planning as some combination of MPC, simulated training data, and
model-based losses (excluding model learning iteself). We are agnostic to the question of how deep
or far into the future the model must be used; indeed, it may be the case that in the environments
we test, very shallow or even single-step planning may be sufficient, as in Hamrick et al. (2021) and
Hessel et al. (2021).
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distribution generalization problem (Radford et al., 2021b). In robotics, collecting
and training over a diverse range of data has been found to be critical particularly in
the sim2real literature where the goal is to transfer a policy learned in simulation to
the real world (Andrychowicz et al., 2020; Tobin et al., 2017). Guez et al. (2019) also
showed that in the context of zero-shot generalization, the amount of data diversity
can have interesting interactions with other architectural choices such as model size.
Here, we take a cue from these findings and explore how important procedural data
diversity is in the context of self-supervised, model-based agents.

8.2.3 MuZero

We evaluate generalization with respect to a state-of-the-art model-based agent,
MuZero (Schrittwieser et al., 2020). MuZero is an appealing candidate for investigat-
ing generalization because it already incorporates many ideas that are thought to be
useful for generalization and transfer, including replay (Schrittwieser et al., 2021),
planning (Silver et al., 2018), and model-based representation learning (Grimm
et al., 2020; Oh et al., 2017). However, while these components contribute to strong
performance across a wide range of domains, other work has suggested that MuZero
does not necessarily achieve perfect generalization on its own (Hamrick et al., 2021).
It therefore serves as a strong baseline but with clear room for improvement.

MuZero learns an implicit (or value-equivalent, see Grimm et al. (2020)) world
model by simply learning to predict future rewards, values and actions. It then
plans with Monte-Carlo Tree Search (MCTS) (Kocsis et al., 2006; Coulom, 2006) over
this learned model to select actions for the environment. Data collected from the
environment, as well as the results of planning, are then further used to improve
the learned reward function, value function, and policy.

More specifically, MuZero optimizes the following loss at every time-step t, applied
to a model that is unrolled 0 . . . K steps into the future: lt(θ) = ∑K

k=0(l
k
π + lk

v + lk
r ) =

∑K
k=0(CE(π̂k, πk) + CE(v̂k, vk) + CE(r̂k, rk)), where π̂k, v̂k and r̂k are respectively the

policy, value and reward prediction produced by the k-step unrolled model. The
targets for these predictions are drawn from the corresponding time-step t + k of
the real trajectory: πk is the improved policy generated by the search tree, vk is
an n-step return bootstrapped by a target network, and rk is the true reward. As
MuZero uses a distributional approach for training the value and reward functions
(Dabney et al., 2018), their losses involve computing the cross-entropy (CE); this
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also typically results in better representation learning. For all our experiments, we
specifically parameterize v and r as categorical distributions similar to the Atari
experiments in Schrittwieser et al. (2020).

To enable better sample reuse and improved data efficiency, we use the Reanalyse
version of MuZero (Schrittwieser et al., 2021). Reanalyse works by continuously
re-running MCTS on existing data points, thus computing new improved training
targets for the policy and value function. It does not change the loss function
described in Section 8.2.3. In domains that use continuous actions (such as Meta-
World), we use Sampled MuZero (Hubert et al., 2021) that modifies MuZero to plan
over sampled actions instead. See Section 13.1.1 for more details on MuZero.

8.3 experimental design

We analyze three potential drivers of generalization (planning, self-supervision, and
data diversity) across two different environments. For each algorithmic choice, we
ask: to what extent does it improve procedural generalization, and to what extent
does it improve task generalization?

8.3.1 Environments

Procgen Procgen (Cobbe et al., 2020) is a suite of 16 different Atari-like games
with procedural environments (e.g. game maps, terrain, and backgrounds), and was
explicitly designed as a setting in which to test procedural generalization. It has also
been extensively benchmarked (Cobbe et al., 2020; Cobbe et al., 2021; Jiang et al.,
2021; Raileanu et al., 2021a). For each game, Procgen allows choosing between two
difficulty settings (easy or hard) as well as the number of levels seen during training.
In our experiments, we use the “hard” difficulty setting and vary the numbers of
training levels to test data diversity (see below). For each Procgen game, we train
an agent for 30M environment frames. We use the same network architecture and
hyper-parameters that Schrittwieser et al. (2021) used for Atari and perform no
environment specific tuning. We report mean normalized scores across all games as
in Cobbe et al. (2020). Following the recommendation of Agarwal et al. (2021), we
report the min-max normalized scores across all games instead of PPO-normalized
scores. Thus, the normalized score for each game is computed as (score−min)

(max−min) , where
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Figure 12: The impact of planning and self-supervision on procedural generalization in
Procgen (hard difficulty, 500 train levels). We plot the zero-shot evaluation per-
formance on unseen levels for each agent throughout training. The Q-Learning
agent (QL) is a replica of the MuZero (MZ) with its model-based components
removed. MZ+Contr is a MuZero agent augmented with a temporal contrastive
self-supervised loss that is action-conditioned (we study other losses in Figure 13).
We observe that both planning and self-supervision improve procedural gener-
alization on Procgen. Comparing with existing state-of-the-art methods which
were trained for 200M frames on the right (PPO (Schulman et al., 2017), PLR
(Jiang et al., 2021), and UCB-DrAC+PLR (Raileanu et al., 2021b; Jiang et al., 2021),
data from (Jiang et al., 2021)), we note that MuZero itself exceeds state-of-the-art
performance after being trained on only 30M frames. For all plots, dark lines
indicate median performance across 3 seeds and the shaded regions denote the
min and max performance across seeds. For training curves see Figure 22, for
additional metrics see Figure 20.

min and max are the minimum and maximum scores possible per game as reported
in (Cobbe et al., 2020). We then average the normalized scores across all games to
report the mean normalized score.

Meta-World Meta-World (Yu et al., 2020b) is a suite of 50 different tasks on a
robotic SAWYER arm, making it more suitable to test task generalization. Meta-
World has three benchmarks focused on generalization: ML-1, ML-10, and ML-45.
ML-1 consists of 3 goal-conditioned tasks where the objective is to generalize
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to unseen goals during test time. ML-10 and ML-45 require generalization to
completely new tasks (reward functions) at test time after training on either 10 or 45

tasks, respectively. Meta-World exposes both state and pixel observations, as well as
dense and sparse versions of the reward functions. In our experiments, we use the
v2 version of Meta-World, dense rewards, and the corner3 camera angle for pixel
observations. For Meta-World, we trained Sampled MuZero (Hubert et al., 2021) for
50M environment frames. We measure performance in terms of average episodic
success rate across task(s). Note that this measure is different from task rewards,
which are dense.

8.3.2 Factors of Generalization

Planning To evaluate the contribution of planning (see paragraph 8.2.2), we
compared the performance of a vanilla MuZero Reanalyse agent with a Q-Learning
agent. We designed the Q-Learning agent to be as similar to MuZero as possible:
for example, it shares the same codebase, network architecture, and replay strategy.
The primary difference is that the Q-Learning agent uses a Q-learning loss instead
of the MuZero loss in Section 8.2.3 to train the agent, and uses ϵ-greedy instead of
MCTS to act in the environment. See Section 13.2 for further details.

Self-supervision We looked at three self-supervised methods as auxiliary losses
on top of MuZero: image reconstruction, contrastive learning (Guo et al., 2018), and
self-predictive representations (Schwarzer et al., 2021a). We do not leverage any
domain-specific data-augmentations for these self-supervised methods.

Reconstruction. Our approach for image reconstruction differs slightly from the
typical use of mean reconstruction error over all pixels. In this typical setting, the
use of averaging implies that the decoder can focus on the easy to model parts of the
observation and still perform well. To encourage the decoder to model all including
the hardest to reconstruct pixels, we add an additional loss term which corresponds
to the max reconstruction error over all pixels. See Section 13.2.1 for details.

Contrastive. We also experiment with a temporal contrastive objective which treats
pairs of observations close in time as positive examples and un-correlated times-
tamps as negative examples (Anand et al., 2019; Oord et al., 2018; Guez et al., 2019).
Our implementation of the contrastive objective is action-conditioned and uses the
MuZero dynamics model to predict future embeddings. Similar to ReLIC (Mitrovic

84



0 10M 20M 30M
Environment frames

0.0

0.2

0.4

0.6

M
ea

n 
No

rm
al

ize
d 

Sc
or

e

 
MZ
QL
QL+Model

0 10M 20M 30M
Environment frames

0.0

0.2

0.4

0.6

M
ea

n 
No

rm
al

ize
d 

Sc
or

e

 
MZ
QL+Model+Recon
MZ+SPR
MZ+Contr
MZ+Recon

Figure 13: Evaluation performance on Procgen (hard, 500 train levels). On the left, we
ablate the effectiveness of planning. The Q-Learning agent (QL) is a replica
of MuZero (MZ) without model-based components. We then add a model to
this agent (QL+Model) (see Section 13.2) to disentangle the effects of the model-
based representation learning from planning in the full MuZero model (MZ).
On the right, we ablate the effect of self-supervision with three different losses:
Contrastive (Contr), Self-Predictive (SPR), and Image Reconstruction (Recon). We
also include a Q-Learning+Model agent with reconstruction (QL+Model+Recon)
as a baseline. For all plots, dark lines indicate median performance across 3 seeds
(5 seeds for MZ and MZ+Recon) and the shaded regions denote the min and max
performance across seeds. For corresponding training curves see Figure 23.

et al., 2021), we also use a KL regularization term in addition to the contrastive
loss. The contrastive loss operates entirely in the latent space and does not need
decoding to the pixel space at each prediction step, unlike the reconstruction loss.
See Section 13.2.2 for details.

Self-predictive. Finally, we experiment with self-predictive representations (SPR)
(Schwarzer et al., 2021a) which are trained by predicting future representations of
the agent itself from a target network using the MuZero dynamics model. Similar
to the contrastive loss, this objective operates in the latent space but does not need
negative examples. See Section 13.2.3 for details.

Data diversity To evaluate the contribution of data diversity (see Section 8.2.1),
we ran experiments on Procgen in which we varied the number of levels seen during
training (either 10, 100, 500, or ∞). In all cases, we evaluated on the infinite test
split. Meta-World does not expose a way to modify the amount of data diversity,
therefore we did not analyze this factor in our Meta-World experiments.
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8.4 results

We ran all experiments according to the design described in Section 8.3. Unless
otherwise specified, all reported results are on the test environments of Procgen
and Meta-World and are computed as medians across seeds.

8.4.1 Procedural Generalization

Overall results on Procgen are shown in Figure 12 and Table 24. MuZero achieves a
mean-normalized test score of 0.50, which is slightly higher than earlier state-of-the-
art methods like UCB-DrAC+PLR which was specifically designed for procedural
generalization tasks (Jiang et al., 2021), while also being much more data efficient
(30M frames vs. 200M frames). MuZero also outperforms our Q-Learning baseline
which gets a score of 0.36. Performance is further improved by the addition of
self-supervision, indicating that both planning and self-supervised model learning
are important.

Effect of planning While not reaching the same level of performance of MuZero,
the Q-Learning baseline performs quite well and achieves a mean normalized
score of 0.36, matching performance of other specialized model-free methods such
as PLR (Jiang et al., 2021). By modifying the Q-Learning baseline to learn a 5-
step value equivalent model (similar to MuZero), we find its performance further
improves to 0.45, though does not quite catch up to MuZero itself (see Figure 13,
left). This suggests that while simply learning a value-equivalent model can bring
representational benefits, the best results come from also using this model for action
selection and/or policy optimization.

We also tested the effect of planning in the Meta-World ML-1 benchmark from
states. Table 26 and Figure 24 show the results. We find that both the Q-Learning
and MuZero agents achieve perfect or near-perfect generalization performance
on this task, although MuZero is somewhat more stable and data-efficient. The
improvement of MuZero in stability or data efficiency again suggests that model-
learning and planning can play a role in improving performance.

Effect of self-supervision Next, we looked at how well various self-supervised
auxiliary losses improve over MuZero’s value equivalent model on Procgen (Fig-
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Figure 14: Qualitative comparison of the information encoded in the embeddings learned
by MuZero with and without the auxiliary pixel reconstruction loss. For MuZero,
embeddings are visualized by learning a standalone pixel decoder trained with
MSE. Visualized are environment frames (top row) and decoded frames (bottom
row) for two games (Chaser and Climber), for embeddings at the current time
step (k = 0) and 5 steps into the future (k = 5). Colored circles highlight
important entities that are or are not well captured (blue=captured, yellow=so-so,
red=missing).

ure 13, right). We find that contrastive learning and self-predictive representations
both substantially improve over MuZero’s normalized score of 0.50 to 0.63 (con-
trastive) or 0.64 (SPR), which are new state-of-the-art scores on Procgen. The
reconstruction loss also provides benefits but of a lesser magnitude, improving
MuZero’s performance from 0.50 to 0.57. All three self-supervised losses also im-
prove the data efficiency of generalization. Of note is the fact that a MuZero agent
with the contrastive loss can match the final performance of the baseline MuZero
agent using only a third of the data (10M environment frames).

To further tease apart the difference between MuZero with and without self-
supervision, we performed a qualitative comparison between reconstructed ob-
servations of MuZero with and without image reconstruction. The vanilla MuZero
agent was modified to include image reconstruction, but with a stop gradient on
the embedding so that the reconstructions could not influence the learned repre-
sentations. We trained each agent on two games, Chaser and Climber. As can be
seen in Figure 14, it appears that the primary benefit brought by self-supervision is
in learning a more accurate world model and capturing more fine-grained details
such as the position of the characters and enemies. In Chaser, for example, the
model augmented with a reconstruction loss is able to to predict the position of
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Figure 15: Interaction of self-supervision and data diversity on procedural generalization.
Each plot shows generalization performance as a function of environment frames
for different numbers of training levels. With only 10 levels, self-supervision does
not bring much benefit over vanilla MuZero. Once the training set includes at
least 100 levels, there is large improvement with self-supervised learning both in
terms of data efficiency and final performance. For all plots, dark lines indicate
median performance across seeds and shading indicates min/max seeds.

the character across multiple time steps, while MuZero’s embedding only retains
precise information about the character at the current time step. This is somewhat
surprising in light of the arguments made for value-equivalent models (Grimm et al.,
2020), where the idea is that world models do not need to capture full environment
dynamics—only what is needed for the task. Our results suggest that in more
complex, procedurally generated environments, it may be challenging to learn even
the task dynamics from reward alone without leveraging environment dynamics,
too. Further gains in model quality might be gained by also properly handling
stochasticity (Ozair et al., 2021) and causality (Rezende et al., 2020).

Effect of data diversity Overall, we find that increased data diversity improves
procedural generalization in Procgen, as shown in Figure 15. Specifically, at 10

levels, self-supervision barely improves the test performance on Procgen over
MuZero. But as we increase the number of levels to 100, 500, or ∞, we observe a
substantial improvement when using self-supervision. This is an interesting finding
which suggests that methods that improve generalization might show promise only
when we evaluate them on environments with a lot of inherent diversity, such as
procedurally generated environments. Consequently, evaluating methods solely on
single task settings (as is common in RL) might lead us to overlook innovations
which might have a big impact on generalization.
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MAML RL2 QL MZ MZ+Recon

ML-10 train 44.4% 86.9% 85.2% 97.6% 97.8%

zero-shot - - 6.8% 26.5% 25.0%

few-shot 31.6% 35.8% - - -

finetune - - 80.1% 94.1% 97.5%

ML-45 train 40.7% 70% 55.9% 77.2% 74.9%

zero-shot - - 10.8% 17.7% 18.5%

few-shot 39.9% 33.3% - - -

finetune - - 78.1% 76.7% 81.7%

Table 8: Train and various test success rates (zero-shot, few-shot, finetuning) on the ML-10

and ML-45 task generalization benchmarks of Meta-World. Shown are baseline
results on MAML (Finn et al., 2017a) and RL2 (Duan et al., 2016) from the Meta-
World paper (Yu et al., 2020a) as well as our results with Q-Learning and MuZero.
Note that MAML and RL2 were trained for around 400M environment steps from
states, whereas MuZero was trained from pixels for 50M steps on train tasks and
10M steps on test tasks for fine-tuning.

Not only do we find that MuZero with self-supervision achieves better final gen-
eralization performance than the baselines, we also observe that self-supervision
improves generalization performance even when controlling for training performance.
To see this, we visualized generalization performance as a function of training
performance (see Figure 21). The figure shows that even when two agents are
equally strong (according to the rewards achieved during training), they differ at
test time, with those trained with self-supervision generally achieving stronger gen-
eralization performance. This suggests that in addition to improving data efficiency,
self-supervision leads to more robust representations—a feature that again might
be overlooked if not measuring generalization.

8.4.2 Task Generalization

As we have shown, planning, self-supervision, and data diversity all play an impor-
tant role in procedural generalization. We next investigated whether this trend holds
for task generalization, too. To test this, we pre-trained the Q-Learning and MuZero
agents with and without self-supervision on the ML-10 and ML-45 training sets
of Meta-World and then evaluated zero-shot test performance. In all experiments,
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Figure 16: Finetuning performance on ML-10 and ML-45, shown as cumulative regret
over the success rate (lower is better). Both the pre-trained Q-Learning and
MuZero agents have lower regret than corresponding agents trained from scratch.
MuZero also achieves lower regret than Q-Learning, indicating a positive benefit
of planning (though the difference is small on ML-45). Self-supervision (pixel
reconstruction) does not provide any additional benefits. Solid lines indicate
median performance across seeds, and shading indicates min/max seeds.

we trained agents from pixels using the dense setting of the reward functions. We
report the agent’s success rate computed the same way as in Yu et al. (2020b).

As shown in Table 8, we can observe that MuZero reaches better training perfor-
mance on ML-10 (97.6%) and ML-45 (77.2%) compared to existing state-of-the-art
agents (Yu et al., 2020b). These existing approaches are meta-learning methods, and
are therefore not directly comparable in terms of test performance due to different
data budgets allowed at test time; although MuZero does not reach the same level
of performance as these agents at test, we find it compelling that it succeeds as
often as it does, especially after being trained for only 50M environment steps
(compared to 400M for the baselines). MuZero also outperforms Q-Learning in
terms of zero-shot test performance, indicating a positive benefit of planning for
task generalization. However, reconstruction and other forms of self-supervision do
not improve performance and may even decrease it.

We also looked at whether the pre-trained representations or dynamics would assist
in more data-efficient task transfer by fine-tuning the agents on the test tasks for
10M environment steps. Figure 16 shows the results, measured as cumulative
regret. Using pre-trained representations or dynamics does enable both Q-Learning
and MuZero to outperform corresponding agents trained from scratch—evidence
for weak positive transfer to unseen tasks for these agents. Additionally, MuZero
exhibits better data efficiency than Q-Learning, again showing a benefit for planning.
However, self-supervision again does not yield improvements in fine-tuning, and as
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before may hurt in some cases. This indicates that while MuZero (with or without
self-supervision) excels at representing variation across tasks seen during training,
there is room for improvement to better transfer this knowledge to unseen reward
functions.

We hypothesize that MuZero only exhibits weak positive transfer to unseen tasks
due to a combination of factors. First, the data that its model is trained on is biased
towards the training tasks, and thus may not be sufficient for learning a globally-
accurate world model that is suitable for planning in different tasks. Incorporating
a more exploratory pre-training phase (e.g. Sekar et al., 2020) might help to alleviate
this problem. Second, because the model relies on task-specific gradients, the
model may over-represent features that are important to the training tasks (perhaps
suggesting that value-equivalent models (Grimm et al., 2020) may be poorly suited
to task generalization). Third, during finetuning, the agent must still discover what
the reward function is, even if it already knows the dynamics. It is possible that the
exploration required to do this is the primary bottleneck for task transfer, rather
than the model representation itself.

8.5 conclusion

In this paper, we systematically investigate how well modern model-based methods
perform at hard generalization problems, and whether self-supervision can improve
the generalization performance of such methods. We find that in the case of proce-
dural generalization in Procgen, both model-based learning and self-supervision
have additive benefits and result in state-of-the-art performance on test levels with
remarkable data efficiency. In the case of task generalization in Meta-World, we find
that while a model-based agent does exhibit weak positive transfer to unseen tasks,
auxiliary self-supervision does not provide any additional benefit, suggesting that
having access to a good world model is not always sufficient for good generalization
(Hamrick et al., 2021). Indeed, we suspect that to succeed at task generalization,
model-based methods must be supplemented with more sophisticated online explo-
ration strategies, such as those learned via meta-learning (Duan et al., 2016; Kirsch
et al., 2020; Wang et al., 2016a) or by leveraging world models in other ways (Sekar
et al., 2020). Overall, we conclude that self-supervised model-based methods are a
promising starting point for developing agents that generalize better, particularly
when trained in rich, procedural, and multi-task environments.
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9
C O N C L U S I O N

This thesis studies a challenging scientific and engineering problem: How do we
build AI agents that learn efficiently and generalize well when learning largely only
interacting with an environment, just like humans do?

We explore building agents that learn using self-supervised objectives in an in-
teractive environment using Reinforcement Learning (RL) as the core problem
formulation. We develop novel ways of building and studying RL agents equipped
with self-supervised representations and world models, and find significant evi-
dence that such agents dramatically improve learning efficiency and generalization
of RL agents. The methods and findings in the following articles have had longevity,
and inspired several follow-up works that pushed these frontiers even further.

Here’s a summary of the contributions of the individual articles:

1. What do self-supervised representations learn? (Chapter 4): In Anand et al.,
2019 we perform a comprehensive study of what different representation
learning methods learn in a visual RL environment like the Atari games.
We build a benchmark that allows us to quantitatively compare an array of
such methods across a suite of probing tasks to identify their strengths and
weaknesses. Findings from this work influenced design decisions in our future
work, and more importantly convinced us of the feasibility of leveraging
self-supervised learning in RL environments.

2. Building extremely data-efficient agents with self-supervised learning (Chap-
ter 6): In Schwarzer et al., 2021a, we introduced Self-Predictive Representations
(SPR) where an agent learns a latent world model by predicting future latent
vectors of the agent itself. SPR demonstrates dramatic improvement over the
state-of-art in terms of data efficiency on the challenging Atari 100k bench-
mark where agents are allowed only 2 hours of real-time experience. SPR has
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since been a key ingredient in several follow-up works that also show further
improvements in data efficiency (Nikishin et al., 2022; Schwarzer et al., 2023).
In (Schwarzer et al., 2021b) we further show that SPR can also be used as a
pre-training objective for RL agents.

3. Building self-supervised world models that generalize well (Chapter 8):
Anand et al., 2021 studies how learning world models in conjunction with self-
supervised learning can improving the generalization abilities of RL agents.
Therein, we augment MuZero (Schrittwieser et al., 2020) with auxiliary self-
supervised learning objectives, and show that this MuZero++ agent achieves
state-of-the-art results on the Procgen and Metaworld benchmarks, a result
that still stands. We also perform very careful ablations, and find that plan-
ning and model-based representation learning both contribute towards better
generalization. In Walker et al., 2023 we further extend this study towards an
exploration and transfer learning setting.
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10
F U T U R E W O R K : R E I N F O R C E M E N T L E A R N I N G A S A
F I N E - T U N I N G PA R A D I G M

TL;DR: Reinforcement Learning (RL) should be better seen as a “fine-tuning”
paradigm that can add capabilities to general-purpose pretrained models, rather
than a paradigm that can bootstrap intelligence from scratch.

Most contemporary reinforcement learning works involve training agents “tabula-
rasa”, without relying on any sort of knowledge about the world. So when solving
a task(s), the agent not only has to optimize the reward function at hand, but in the
process also discover how to see, how physics works, what consequences its actions
have, how language works, and so forth. This tends to work okay in simulations
where we can collect infinite data, and don’t need to discover a lot of common-sense
knowledge because the simulators themselves are quite niche. But it breaks down
when solving tasks in the real world which has fractals of complexity and practical
limits on how much data we can collect.

To train agents on real-world data, why don’t we simply endow them with knowl-
edge about the real world, and let the RL algorithms focus on what they are good
at: black-box optimization of a reward function.

Thanks to large-scale self-supervised models trained on the internet — ones that
soak up enormous amounts of physical and cultural knowledge, we now have a
way of doing so. After training general-purpose pre-trained models, reinforcement
learning (and/or search) can be used to fine-tune them to amplify their capabilities
— making them experts at a particular tasks (goal-directedness), providing them
agency, learning from feedback, aligning them with human values, and many more.

RL fine-tuning provides a way out of the “simulation trap”, and lets us train agents
on real world data and environments directly.
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Figure 17: Pre-training and RL fine-tuning, a two stage process. While pre-trained models
are super general, RL fine-tuning can make them highly capable at individual
tasks.

10.1 why rl fine-tuning over other alternatives?

Now, it’s natural to ask why don’t we just use prompts to discover capabilities (Just
ask for Generalization (Jang, 2021)), or use supervised learning to fine-tune. RL
fine-tuning stands out in a few ways:

• It can directly optimize a non-differentiable objective, instead of merely trying
to mimic existing data, and thus does not have performance ceilings. "Other
learning paradigms are about minimization; reinforcement learning is about
maximization" (Lu et al., 2021).

• It should have (and has shown to have) better scaling laws compared to
prompts or supervised learning.

• Meta-capabilities (such as having agency) just fit better in the RL fine-tuning
paradigm. A model having agency will be better than a model without it (Why
Tool AIs Want to Be Agent AIs, Branwen, 2021b).
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11
A P P E N D I X T O T H E F I R S T A RT I C L E

11.1 architecture details

All architectures below use the same encoder architecture as a base, which is the
one used in Mnih et al., 2013 adapted to work for the full 160x210 frame size as
shown in figure 18.

• Linear Probe:
The linear probe is a linear layer of width 256 with a softmax activation and
trained with a cross-entropy loss.

• Majority Classifier (maj-clsf):
The majority classifier is parameterless and just uses the mode of the distribu-
tion of classes from the training set for each state variable and guesses that
mode for every example on the test set at test time.

• Random-CNN:
The Random-CNN is the base encoder with randomly initialzied weights and
no training

• VAE and Pixel-Pred:
The VAE and Pixel Prediction model use the base encoder plus each have an
extra 256 wide fully connected layer to parameterize the log variance for the
VAE and to more closely resemble the No Action Feed Forward model from
Oh et al., 2015. In addition bith models have a deconvolutional network as a
decoder, which is the exact transpose of the base encoder in figure 18.

• CPC:
CPC uses the same architecture as described in Oord et al., 2018 with our base
encoder from figure 18 being used as the image encoder genc.
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• ST-DIM (and its ablations):
ST-DIM and the two ablations, JSD-ST-DIM and Global-T-DIM, all use the
same architecture which is the base encoder plus a 1x256x256 bilinear layer.

• Supervised:
The supervised model is our base encoder plus our linear probe trained
end-to-end with the ground truth labels.

• PPO Features (section 11.5):
The PPO model is our base encoder plus two linear layers for the policy and
the value function, respectively.

/255

Conv. 8 * 8, stride 4 

ReLU

160 * 210

Conv. 4 * 4, stride 2 

ReLU

Conv. 4 * 4, stride 2 

ReLU

Conv. 3 *3, stride 1 

ReLU

FC 256

32

64

128

64

Figure 18: The base encoder architecture used for all models in this work
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11.2 preprocessing and hyperparameters

We preprocess frames primarily in the same way as described in Mnih et al., 2013,
with the key difference being we use the full 210x160 images for all our experiments
instead of downsampling to 84x84. Table 9 lists the hyper-parameters we use across
all games. For all our experiments, we use a learning rate scheduler based on
plateaus in the validation loss (for both contrastive training and probing).

Table 9: Preprocessing steps and hyperparameters

Parameter Value

Image Width 160

Image Height 210

Grayscaling Yes

Action Repetitions 4

Max-pool over last N action repeat frames 2

Frame Stacking None

End of episode when life lost Yes

No-Op action reset Yes

Batch size 64

Sequence Length (CPC) 100

Learning Rate (Training) 3e-4

Learning Rate (Probing) 3e-4

Entropy Threshold 0.6

Encoder training steps 80000

Probe training steps 35000

Probe test steps 10000

Compute infrastructure: We run our experiments on a autoscaling-cluster with
multiple P100 and V100 GPUs. We use 8 cores per machines to distribute data
collection across different workers.
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11.3 results with probes trained on data collected by a pretrained

rl agent

In addition to evaluating on data collected by a random agent, we also evaluate
different representation learning methods on data collected by a pretrained PPO
(Schulman et al., 2017) agent. Specifically, we use a PPO agent trained for 50M steps
on each game. We choose actions stochastically by sampling from the PPO agent’s
action distribution at every time step, and inject additional stochasticity by using an
ϵ-greedy mechanism with ϵ = 0.2. Table 10 shows the game-by-game breakdown of
mean F1 probe scores obtained by each method in this evaluation setting. Table 11

additionally shows the category-wise breakdown of results for each method. We
observe a similar trend in performance as observed earlier with a random agent.

11.4 more detailed ablation results

We expand on the results reported on different ablations (JSD-ST-DIM and Global-
T-DIM) of STDIM in the main text, and provide a game by game breakdown of
results in Table 12, and a category-wise breakdown in Table 13. We also include
an additional Static-DIM ablation which gets rid of any temporal context in the
contrastive task by sampling negatives from a different game.

11.5 probing pretrained rl agents

We make a first attempt at examining the features that RL agents learn. Specifically,
we train linear probes on the representations from PPO agents that were trained for
50 million frames. The architecture of the PPO agent is described in section 11.1. As
we see from table 14, the features perform poorly in the probing tasks compared to
the baselines. Kansky et al. (2017) and Zhang et al. (2018b) have also argued that
model-free agents have trouble encoding high level state information. However,
we note that these are preliminary results and require thorough investigation over
different policies and models.
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11.5.1 Accuracy Metric

In tables 15 and 16, we report the game by game and categorical probe results for
each method, but we use a standard percent accuracy metric instead of the F1 score
that was used in tables 2 and 3.
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Table 10: Probe F1 scores for all games for data collected by a pretrained PPO (50M steps)
agent

game mean agent rewards maj-clf random-cnn vae pixel-pred cpc st-dim supervised

asteroids 489862.00 0.23 0.31 0.35 0.31 0.38 0.40 0.56

berzerk 1913.00 0.13 0.33 0.35 0.39 0.38 0.43 0.61

bowling 29.80 0.23 0.61 0.51 0.81 0.90 0.98 0.98

boxing 93.30 0.05 0.30 0.32 0.57 0.32 0.66 0.87

breakout 580.40 0.09 0.34 0.59 0.47 0.55 0.66 0.87

demonattack 428165.00 0.03 0.19 0.18 0.26 0.43 0.58 0.76

freeway 33.50 0.01 0.36 0.02 0.60 0.38 0.60 0.76

frostbite 3561.00 0.13 0.57 0.46 0.70 0.74 0.69 0.85

hero 44999.00 0.12 0.54 0.60 0.68 0.86 0.77 0.96

mzrevenge 0.00 0.08 0.68 0.58 0.72 0.77 0.76 0.88

mspacman 4588.00 0.07 0.34 0.36 0.52 0.45 0.49 0.71

pitfall 0.00 0.16 0.39 0.37 0.53 0.69 0.74 0.92

pong 21.00 0.02 0.10 0.24 0.67 0.63 0.79 0.87

privateeye -10.00 0.24 0.71 0.69 0.87 0.83 0.91 0.99

qbert 30590.00 0.06 0.36 0.38 0.39 0.51 0.48 0.65

riverraid 20632.00 0.04 0.25 0.21 0.34 0.31 0.22 0.59

seaquest 1620.00 0.29 0.64 0.58 0.75 0.69 0.75 0.90

spaceinvaders 2892.50 0.02 0.28 0.30 0.41 0.32 0.41 0.65

tennis -4.30 0.15 0.25 0.13 0.65 0.63 0.65 0.61

venture 0.00 0.05 0.32 0.36 0.37 0.50 0.59 0.69

videopinball 356362.00 0.13 0.36 0.42 0.56 0.57 0.54 0.79

yarsrevenge 5520.00 0.03 0.14 0.26 0.23 0.38 0.43 0.74

mean - 0.11 0.38 0.38 0.54 0.56 0.62 0.78
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Table 11: Probe F1 scores for different methods averaged across all games for each category
(data collected by a pretrained PPO (50M steps) agent

category maj-clf random-cnn vae pixel-pred cpc st-dim supervised

Small Loc. 0.10 0.13 0.14 0.27 0.31 0.41 0.65

Agent Loc. 0.11 0.34 0.34 0.48 0.45 0.54 0.83

Other Loc. 0.14 0.47 0.38 0.56 0.58 0.61 0.74

Score/Clock/Lives/Display 0.05 0.44 0.50 0.71 0.74 0.80 0.90

Misc. 0.19 0.53 0.57 0.62 0.65 0.67 0.83
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Table 12: Probe F1 scores for different ablations of ST-DIM for all games averaged across
each category (data collected by random agents)

game static-dim jsd-st-dim global-t-dim st-dim

asteroids 0.37 0.44 0.38 0.49

berzerk 0.41 0.49 0.49 0.53

bowling 0.34 0.91 0.77 0.96

boxing 0.09 0.61 0.32 0.58

breakout 0.19 0.85 0.71 0.88

demonattack 0.30 0.44 0.43 0.69

freeway 0.02 0.70 0.76 0.81

frostbite 0.27 0.52 0.68 0.75

hero 0.59 0.85 0.87 0.93

montezumarevenge 0.17 0.55 0.67 0.78

mspacman 0.17 0.70 0.53 0.72

pitfall 0.22 0.47 0.44 0.60

pong 0.13 0.80 0.65 0.81

privateeye 0.25 0.79 0.81 0.91

qbert 0.41 0.59 0.57 0.73

riverraid 0.16 0.28 0.33 0.36

seaquest 0.41 0.55 0.59 0.67

spaceinvaders 0.40 0.44 0.44 0.57

tennis 0.17 0.57 0.52 0.60

venture 0.25 0.40 0.47 0.58

videopinball 0.21 0.54 0.53 0.61

yarsrevenge 0.12 0.32 0.18 0.42

mean 0.26 0.58 0.55 0.68
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Table 13: Different ablations of ST-DIM. F1 scores for for each category averaged across all
games (data collected by random agents)

static-dim jsd-st-dim global-t-dim st-dim

Small Loc. 0.18 0.44 0.37 0.51

Agent Loc. 0.19 0.47 0.43 0.58

Other Loc. 0.27 0.64 0.53 0.69

Score/Clock/Lives/Display 0.33 0.69 0.76 0.87

Misc. 0.41 0.64 0.66 0.75
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Table 14: Probe results on features from a PPO agent trained on 50 million timesteps
compared with a majority classifier and random-cnn baseline. The probes for all
three methods are trained with data from the PPO agent that was trained for 50M
frames

maj-clf random-cnn pretrained-rl-agent

asteroids 0.23 0.31 0.31

berzerk 0.13 0.33 0.30

bowling 0.23 0.61 0.48

boxing 0.05 0.30 0.12

breakout 0.09 0.34 0.23

demonattack 0.03 0.19 0.16

freeway 0.01 0.36 0.26

frostbite 0.13 0.57 0.43

hero 0.12 0.54 0.42

montezumarevenge 0.08 0.68 0.07

mspacman 0.06 0.34 0.26

pitfall 0.16 0.39 0.23

pong 0.02 0.10 0.09

privateeye 0.24 0.71 0.31

qbert 0.06 0.36 0.34

riverraid 0.04 0.25 0.10

seaquest 0.29 0.64 0.50

spaceinvaders 0.02 0.28 0.19

tennis 0.15 0.25 0.66

venture 0.05 0.32 0.08

videopinball 0.13 0.36 0.21

yarsrevenge 0.03 0.14 0.09

mean 0.11 0.38 0.27
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Table 15: Probe Accuracy scores averaged across categories for each game (data collected by
random agents)

game maj-clf random-cnn vae pixel-pred cpc st-dim supervised

asteroids 0.37 0.42 0.41 0.43 0.48 0.52 0.53

berzerk 0.30 0.48 0.46 0.56 0.57 0.54 0.69

bowling 0.43 0.54 0.56 0.83 0.90 0.96 0.95

boxing 0.05 0.22 0.23 0.45 0.32 0.59 0.83

breakout 0.28 0.55 0.61 0.71 0.75 0.89 0.94

demonattack 0.26 0.30 0.31 0.35 0.58 0.70 0.83

freeway 0.06 0.53 0.07 0.85 0.49 0.82 0.99

frostbite 0.19 0.59 0.54 0.72 0.76 0.75 0.85

hero 0.34 0.78 0.72 0.75 0.90 0.93 0.98

montezumarevenge 0.16 0.70 0.41 0.74 0.76 0.78 0.87

mspacman 0.22 0.54 0.60 0.75 0.67 0.73 0.87

pitfall 0.20 0.42 0.35 0.47 0.49 0.61 0.83

pong 0.20 0.26 0.19 0.72 0.73 0.82 0.88

privateeye 0.35 0.72 0.72 0.83 0.81 0.91 0.97

qbert 0.42 0.52 0.53 0.54 0.66 0.74 0.76

riverraid 0.13 0.40 0.31 0.43 0.41 0.37 0.58

seaquest 0.43 0.63 0.61 0.65 0.69 0.69 0.85

spaceinvaders 0.24 0.46 0.57 0.61 0.57 0.59 0.76

tennis 0.22 0.49 0.37 0.59 0.61 0.61 0.81

venture 0.19 0.40 0.43 0.48 0.52 0.59 0.68

videopinball 0.16 0.39 0.47 0.58 0.59 0.61 0.82

yarsrevenge 0.05 0.25 0.11 0.20 0.41 0.43 0.74

mean 0.24 0.48 0.44 0.60 0.62 0.69 0.82
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Table 16: Probe Accuracy scores for different methods averaged across all games for each
category (data collected by random agents)

random

Category maj-clf cnn vae pixel-pred cpc st-dim supervised

Small Loc. 0.23 0.29 0.26 0.36 0.46 0.53 0.67

Agent Loc. 0.21 0.37 0.37 0.51 0.46 0.59 0.81

Other Loc. 0.22 0.54 0.42 0.63 0.67 0.70 0.80

Score/Clock/Lives/Display 0.24 0.61 0.56 0.77 0.84 0.87 0.91

Misc. 0.38 0.61 0.65 0.71 0.72 0.75 0.83
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12
A P P E N D I X T O T H E S E C O N D A RT I C L E

12.1 hyperparameters

We provide a full set of hyperparameters used in both the augmentation and
no-augmentation cases in Table 17, including new hyperparameters for SPR.

12.2 full results

We provide full results across all 26 games for the methods considered, including
SPR with and without augmentation, in Table 18. Methods are ordered in rough
order of their date of release or publication.

12.3 controlled baselines

To ensure that the minor hyper-parameter changes we make to the DER baseline
are not solely responsible for our improved performance, we perform controlled
experiments using the same hyper-parameters and same random seeds for base-
lines. We find that our controlled Rainbow implementation without augmentation
is slightly stronger than Data-Efficient Rainbow but comparable to Overtrained
Rainbow (Kielak, 2020), while with augmentation enabled our results are somewhat
stronger than DrQ.1 None of these methods, however, are close to the performance
of SPR.

1 This is perhaps not surprising, given that the model used by DrQ omits many of the components of
Rainbow.

110



Table 19: Scores on the 26 Atari games under consideration for our controlled Rainbow
implementation with and without augmentation, compared to previous methods.
The high mean DQN-normalized score of our DQN without augmentation is due
to an atypically high score on Private Eye, a hard exploration game on which the
original DQN achieves a low score.

Variant Human-Normalized Score DQN@50M-Normalized Score

mean median mean median

Rainbow (controlled, no aug) 0.240 0.204 0.374 0.149

OTRainbow 0.264 0.204 0.197 0.103

DER 0.285 0.161 0.239 0.142

Rainbow (controlled, w/ aug) 0.480 0.346 0.284 0.278

DrQ 0.357 0.268 0.171 0.131

12.4 comparison with a contrastive loss

To compare SPR with alternative methods drawn from contrastive learning, we
examine several variants of a contrastive losses based on InfoNCE (Oord et al., 2018):

• A contrastive loss based solely on different views of the same state, similar to
CURL (Srinivas et al., 2020).

• A temporal contrastive loss with both augmentation and where targets are
drawn one step in the future, equivalent to single-step CPC (Oord et al., 2018).

• A temporal contrastive loss with an explicit dynamics model, similar to
CPC|Action (Guo et al., 2018). Predictions are made up to five steps in
the future, and encodings of every state except st+k are used as negative
samples for st+k.

• A soft contrastive approach inspired by Wang et al., 2020, who propose to
decouple the repulsive and attractive effects of contrastive learning into two
separate losses, one of which is similar to the SPR objective and encourages
representations to be invariant to augmentation or noise, and one of which en-
courages representations to be uniformly distributed on the unit hypersphere.
We optimize this uniformity objective jointly with the SPR loss, which takes
the role of the “invariance” objective proposed by (Wang et al., 2020). We use
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t = 2 in the uniformity loss, and give it a weight equal to that given to the
SPR loss, based on hyperparameters used by Wang et al., 2020.

To create as fair a comparison as possible, we use the same augmentation (random
shifts and intensity) and the same Rainbow hyperparameters as in SPR with aug-
mentation. As in SPR, we calculate contrastive losses using the output of the first
layer of the Q-head MLP, with a bilinear classifier (as in Oord et al., 2018). Following
Chen et al., 2020a, we use annealed cosine similarities with a temperature of 0.1 in
the contrastive loss. We present results in Table 20.

Although all of these variants outperform the previous contrastive result on this
task, CURL, none of them substantially improve performance over the controlled
Rainbow they use as a baseline. We consider these results broadly consistent with
those of CURL, which observes a relatively small performance boost over their
baseline, Data-Efficient Rainbow (Hasselt et al., 2019).

Table 20: Scores on the 26 Atari games under consideration for various contrastive alter-
natives to SPR implemented in our codebase. All variants listed here use data
augmentation.

Variant Human-Normalized Score DQN@50M-Normalized Score

mean median mean median

SPR 0.704 0.415 0.510 0.361

Rainbow (controlled) 0.480 0.346 0.284 0.278

Non-temporal contrastive 0.379 0.200 0.268 0.179

1-step contrastive 0.473 0.231 0.280 0.213

5-step contrastive 0.506 0.172 0.239 0.142

Uniformity loss 0.422 0.176 0.271 0.144

12.5 the role of the target encoder in spr

We consider several variants of SPR with the target network modified, and present
aggregate metrics for these experiments in Table 21. We first evaluate a a variant
of SPR in which target representations are drawn from the online encoder and
gradients allowed to propagate into the online encoder through them, effectively
allowing the encoder to learn to make its representations more predictable. We
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find that this leads to drastic reductions in performance both with and without
augmentation, which we attribute to representational collapse.

Table 21: Scores on the 26 Atari games under consideration for variants of SPR with different
target encoder schemes, without augmentation.

Variant Human-Normalized Score DQN@50M-Normalized Score

Without Augmentation mean median mean median

SPR 0.463 0.307 0.336 0.225

No Stopgradient 0.375 0.208 0.301 0.233

With Augmentation

SPR 0.704 0.415 0.510 0.361

No Stopgradient 0.515 0.278 0.344 0.231

To illustrate the influence of the EMA constant τ, we evaluate τ at 9 values log-
arithmically interpolated2 between 0.999 and 0 on a subset of 10 Atari games.3

We use 10 seeds per game, and evaluate SPR both with and without augmenta-
tion; parameters other than τ are identical to those listed in Table 17. To equal-
ize the importance of games in this analysis, we normalize by the average score
across all tested values of τ for each game to calculate a self-normalized score, as
scoresns ≜

agent score−random score
average score−random score .

We test SPR both with and without augmentation, and calculate the self-normalized
score separately between these cases. Results are shown in Figure 19. With aug-
mentation, we observe a clear peak in performance at τ = 0, equivalent to a target
encoder with no EMA-based smoothing. Without augmentation, however, the story
is less clear, and the method appears less sensitive to τ (note y-axis scales). We use
τ = 0.99 in this case, based on its reasonable performance and consistency with
prior work (e.g., Grill et al., 2020b). Overall, however, we note that SPR does not
appear overly sensitive to τ, unlike purely unsupervised methods such as BYOL; in
no case does SPR fail to train.

We hypothesize that the difference between the augmentation and no-augmentation
cases is partially due to augmentation rendering the stabilizing effect of using an

2 τ ∈ {0.999, 0.9976, 0.9944, 0.9867, 0.9684, 0.925, 0.8222, 0.5783, 0}.
3 Pong, Breakout, Up N Down, Kangaroo, Bank Heist, Assault, Boxing, BattleZone, Frostbite and

Crazy Climber

113



0.999 0.998 0.995 0.99 0.978 0.954 0.9 0.785 0.536 0.0

0.8

0.9

1.0

1.1

1.2

1.3
M

ea
n 

SN
S

0.999 0.998 0.995 0.99 0.978 0.954 0.9 0.785 0.536 0.0
0.94

0.96

0.98

1.00

1.02

1.04

M
ea

n 
SN

S

Figure 19: Performance on a subset of 10 Atari games for different values of the EMA
parameter τ with augmentation (left) and without (right). Scores are averaged
across 10 seeds per game for each value of τ. Self-normalized score is calculated
separately for the augmentation and no-augmentation cases.

EMA target network (e.g., as observed by Grill et al., 2020b; Tarvainen et al., 2017)
redundant. Prior work has already noted that using an EMA target network can
slow down learning early in training (Tarvainen et al., 2017); in our context, where a
limited number of environment samples are taken in parallel with optimization, this
may “waste” environment samples by collecting them with an inferior policy. To
resolve this, Tarvainen et al., 2017 proposed to increase τ over the course of training,
slowing down changes to the target network later in training. It is possible that
doing so here could allow SPR to achieve the best of both worlds, but it would
require tuning an additional hyperparameter, the schedule by which τ is increased,
and we thus leave this topic for future work.

12.6 wall clock times

We report wall-clock runtimes for a selection of methods in Table 22. SPR with
augmentation for a 100K steps on Atari takes around 4 and a half to finish a complete
training and evaluation run on a single game. We find that using data augmentation
adds an overhead, and SPR without augmentation can run in just 3 hours.

SPR’s wall-clock run-time compares very favorably to previous works such as
SimPLe (Kaiser et al., 2019), which requires roughly three weeks to train on a GPU
comparable to those used for SPR.
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Table 17: Hyperparameters for SPR on Atari, with and without aug-
mentation.

Parameter Setting (for both variations)

Gray-scaling True

Observation down-sampling 84x84

Frames stacked 4

Action repetitions 4

Reward clipping [-1, 1]

Terminal on loss of life True

Max frames per episode 108K

Update Distributional Q

Dueling True

Support of Q-distribution 51

Discount factor 0.99

Minibatch size 32

Optimizer Adam

Optimizer: learning rate 0.0001

Optimizer: β1 0.9

Optimizer: β2 0.999

Optimizer: ϵ 0.00015

Max gradient norm 10

Priority exponent 0.5

Priority correction 0.4→ 1

Exploration Noisy nets

Noisy nets parameter 0.5

Training steps 100K

Evaluation trajectories 100

Min replay size for sampling 2000

Replay period every 1 step

Updates per step 2

Multi-step return length 10

Q network: channels 32, 64, 64

Q network: filter size 8× 8, 4× 4, 3× 3

Q network: stride 4, 2, 1

Q network: hidden units 256

Non-linearity ReLU

Target network: update period 1

λ (SPR loss coefficient 2

K (Prediction Depth) 5

Parameter With Augmentation Without Augmentation

Data Augmentation Random shifts (±4 pixels) & None

Intensity(scale=0.05)

Dropout 0 0.5

τ (EMA coefficient) 0 0.99
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Table 18: Mean episodic returns on the 26 Atari games considered by Kaiser et al., 2019

after 100k environment steps. The results are recorded at the end of training and
averaged over 10 random seeds. SPR outperforms prior methods on all aggregate
metrics, and exceeds expert human performance on 7 out of 26 games while using
a similar amount of experience.

Game Random Human SimPLe DER OTRainbow CURL DrQ SPR (no Aug) SPR

Alien 227.8 7127.7 616.9 739.9 824.7 558.2 771.2 847.2 801.5

Amidar 5.8 1719.5 88.0 188.6 82.8 142.1 102.8 142.7 176.3

Assault 222.4 742.0 527.2 431.2 351.9 600.6 452.4 665.0 571.0

Asterix 210.0 8503.3 1128.3 470.8 628.5 734.5 603.5 820.2 977.8

Bank Heist 14.2 753.1 34.2 51.0 182.1 131.6 168.9 425.6 380.9

BattleZone 2360.0 37187.5 5184.4 10124.6 4060.6 14870.0 12954.0 10738.0 16651.0

Boxing 0.1 12.1 9.1 0.2 2.5 1.2 6.0 12.7 35.8

Breakout 1.7 30.5 16.4 1.9 9.8 4.9 16.1 12.9 17.1

ChopperCommand 811.0 7387.8 1246.9 861.8 1033.3 1058.5 780.3 667.3 974.8

Crazy Climber 10780.5 35829.4 62583.6 16185.3 21327.8 12146.5 20516.5 43391.0 42923.6

Demon Attack 152.1 1971.0 208.1 508.0 711.8 817.6 1113.4 370.1 545.2

Freeway 0.0 29.6 20.3 27.9 25.0 26.7 9.8 16.1 24.4

Frostbite 65.2 4334.7 254.7 866.8 231.6 1181.3 331.1 1657.4 1821.5

Gopher 257.6 2412.5 771.0 349.5 778.0 669.3 636.3 774.5 715.2

Hero 1027.0 30826.4 2656.6 6857.0 6458.8 6279.3 3736.3 5707.4 7019.2

Jamesbond 29.0 302.8 125.3 301.6 112.3 471.0 236.0 367.2 365.4

Kangaroo 52.0 3035.0 323.1 779.3 605.4 872.5 940.6 1359.5 3276.4

Krull 1598.0 2665.5 4539.9 2851.5 3277.9 4229.6 4018.1 3123.1 3688.9

Kung Fu Master 258.5 22736.3 17257.2 14346.1 5722.2 14307.8 9111.0 15469.7 13192.7

Ms Pacman 307.3 6951.6 1480.0 1204.1 941.9 1465.5 960.5 1247.7 1313.2

Pong -20.7 14.6 12.8 -19.3 1.3 -16.5 -8.5 -16.0 -5.9

Private Eye 24.9 69571.3 58.3 97.8 100.0 218.4 -13.6 52.6 124.0

Qbert 163.9 13455.0 1288.8 1152.9 509.3 1042.4 854.4 606.6 669.1

Road Runner 11.5 7845.0 5640.6 9600.0 2696.7 5661.0 8895.1 10511.0 14220.5

Seaquest 68.4 42054.7 683.3 354.1 286.9 384.5 301.2 580.8 583.1

Up N Down 533.4 11693.2 3350.3 2877.4 2847.6 2955.2 3180.8 6604.6 28138.5

Mean Human-Norm’d 0.000 1.000 0.443 0.285 0.264 0.381 0.357 0.463 0.704

Median Human-Norm’d 0.000 1.000 0.144 0.161 0.204 0.175 0.268 0.307 0.415

Mean DQN@50M-Norm’d 0.000 23.382 0.232 0.239 0.197 0.325 0.171 0.336 0.510

Median DQN@50M-Norm’d 0.000 0.994 0.118 0.142 0.103 0.142 0.131 0.225 0.361

# Superhuman 0 N/A 2 2 1 2 2 5 7

116



Table 22: Wall-clock runtimes for various algorithms for a complete training and evaluation
run on a single Atari game using a P100 GPU. Rainbow (controlled) is roughly
comparable to DrQ, although its runtime will differ due different DQN hyperpa-
rameters. Runtime for SimPLe is taken from its v3 version on Arxiv, although the
latest version doesn’t mention runtime. All runtimes are approximate, as exact
running times vary from game to game.

Model Runtime in hours (100k env steps)

SPR 4.6

Rainbow (controlled) 2.1

SPR (No aug) 3.0

Rainbow (controlled, no aug) 1.4

SimPLe 500
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13
A P P E N D I X T O T H E T H I R D A RT I C L E

13.1 agent details

13.1.1 MuZero

Network Architecture: We follow the same network architectures follow the ones
used in MuZero ReAnalyse (Schrittwieser et al., 2021). For pixel based inputs, the
images are first sent through a convolutional stack that downsamples the 96× 96
image down to an 8× 8 tensor (for Procgen) or a 16× 16 tensor (for Meta-World).
This tensor then serves as input to the encoder. Both the encoder and the dynamics
model were implemented by a ResNet with 10 blocks, each block containing 2 layers.
For pixel-based inputs (Procgen and ML-45) each layer of the residual stack was
convolutional with a kernel size of 3x3 and 256 planes. For state based inputs (ML-1)
each layer was fully-connected with a hidden size of 512.

Hyperparameters We list major hyper-parameters used in this work in Table 23.
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Table 23: Hyper-parameters

Hyper-parameter Value (Procgen) Value (Meta-World)

Training

Model Unroll Length 5 5

TD-Steps 5 5

ReAnalyse Fraction 0.945 0.95

Replay Size (in sequences) 50000 2000

MCTS

Number of Simulations 50 50

UCB-constant 1.25 1.25

Number of Samples n/a 20

Self-Supervision

Reconstruction Loss Weight 1.0 1.0

Contrastive Loss Weight 1.0 0.1

SPR Loss Weight 10.0 1.0

Optimization

Optimizer Adam Adam

Initial Learning Rate 10−4 10−4

Batch Size 1024 1024

Additional Implementation Details: For Meta-World experiments, we provide
the agent with past reward history as well. We found this to be particularly helpful
when training on Meta-World since implicit task inference becomes easier. In both
Procgen and Meta-World, the agent is given a history of the 15 last observations.
The images are concatenated by channel and then input as one tensor to the encoder.
For each game, we trained our model using 2 TPUv3-8 machines. A separate actor
gathered environment trajectories with 1 TPUv3-8 machine.

13.2 controlled model-free baseline

Our controlled Q-Learning baseline begins with the same setup as the MuZero
agent (Section 13.1.1) and modifies it in a few key ways to make it model-free rather
than model-based.
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The Q-Learning baseline uses n-step targets for action value function. Given a
trajectory {st, at, rt}T

t=0, the target action value is computed as follow

Qtarget(st, at) =
n−1

∑
i=0

γirt+i + γn max
a∈A

Qξ(st+n, a) (11)

Where Qξ is the target network whose parameter ξ is updated every 100 training
steps.

In order to make the model architecture most similar to what is used in the MuZero
agent, we decompose the action value function into two parts: a reward prediction
r̂ and a value prediction V, and model these two parts separately. The total loss
function is, therefore, Ltotal = Lreward + Lvalue. The reward loss is exactly the same
as that of MuZero. For the value loss, we can decompose Equation 11 in the same
way:

Qtarget(st, at) = r̂t + γVtarget(s)

=
n−1

∑
i=0

γirt+i + γn max
a∈A

(
r̂t+n + γVξ(s

′
)
)

=⇒ Vtarget(s) =
n−1

∑
i=1

γi−1rt+i + γn−1 max
a∈A

(
r̂t+n + γVξ(s

′
)
)

(12)

Since the reward prediction should be taken care of by Lreward and it usually
converges fast, we assume r̂t = rt and the target is simplified to Equation 12. We can
then use this value target to compute the value loss Lvalue = CE(Vtarget(s), V(s)).

In Meta-World, since it has a continuous action space, maximizing over the entire
action space is infeasible. We follow the Sampled Muzero approach (Hubert et al.,
2021) and maximize only over the sampled actions.

The Q-Learning baseline uses 5-step targets for computing action values. This is
the same as in MuZero, but unlike MuZero, the Q-Learning baseline only trains the
dynamics for a single step. However, we also provide results for a 5-step dynamics
function which we call QL+Model and QL+Model+Recon which further adds an
auxiliary for reconstruction.
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13.2.1 MuZero + Reconstruction

The decoder architecture mirrors the ResNet encoder with 10 blocks, but with
each convolutional layer replaced by a de-convolutional layer (Noh et al., 2015). In
addition to the regular mean reconstruction loss, we add an additional max-loss
term which computes the maximum reconstruction loss across all pixels. This
incentives the reconstruction objective to not neglect the hardest to reconstruct
pixels, and in turn makes the reconstructions sharper. The reconstruction loss can
be used as follows:

L(X, Y) =

(
1
|X| ∑i,j, f

ℓ(Xij f , Yij f )

)
+ max

i,j, f
ℓ(Xij f , Yij f ),

where ℓ(x, y) = (x− y)2 is the element-wise squared distance between each feature
(i.e. RGB) value in the image array, where i and j are the pixel indices, where f is
the feature index, and where |X| is the size of the array.

13.2.2 MuZero + Contrastive

Our implementation of the contrastive loss does not rely on any image augmenta-
tions but focuses on the task of predicting future embeddings of the image encoder
(Banino et al., 2021; Oord et al., 2018). Howerver, in this case, the dynamics function
produces a predicted vector xn at each step n in the unroll, making the contrastive
task action-conditional similar to CPC|Action (Guo et al., 2018). We utilize the same
target network used in train temporal difference in MuZero to compute our target
vectors. We then attempt to match xn with the corresponding target vector yn di-
rectly computed from the observation at that timestep. We compute the target vector
yn with the same target network weights used to compute the temporal difference
loss in MuZero. Since the contrastive loss is ultimately a classification problem,
we also need negative examples. For each pair xn and yn, the sets {xi}N

i=0,i ̸=n and
{yi}N

i=0,i ̸=n serve as the negative examples with N the set of randomly sampled
examples in the minibatch. We randomly sample 10% of the examples to constitute
N. As in previous work (Banino et al., 2021; Chen et al., 2020a; Mitrovic et al., 2021)
we use a cosine distance between xi and yi and feed this distance metric through
a softmax function. We use the loss function in ReLIC (Mitrovic et al., 2021) and
CoBERL (Banino et al., 2021) and use a temperature of 0.1.

121



The 256-dimensional vector xn is derived from a two layer critic function which is
first a convolutional layer with stride 1 and kernel size 3 on top of the state of the
dynamics function. This is then fed into a fully connected layer to produce xn. For
each step n, the target vector yn, which serves as a positive example, is derived from
the final convolutional layer (8) that is fed into the residual stack of the encoder. The
vector is computed by inputting the encoder, using the target network weights, with
the corresponding image at that future step n. The encoding is then fed into the
critic network to compute yn.

The encoder of MuZero uses 15 past images as history. However, when we compute
the target vectors, our treatment of the encoding history is different from that of
the agent; instead of stacking all of the historical images (n− 15...n− 1) up to the
corresponding step n, we simply replace the history stack with 15 copies of the
image at the current step n. We found that this technique enhanced the performance
of contrastive learning.

13.2.3 MuZero + SPR

The implementation of SPR is similar to the contrastive objective except that it
does not use negative examples. Thus it only uses a mean squared error instead
of InfoNCE. The architecture for SPR is nearly identical to what is described in
Section 13.2.2. The same layers mentioned compute predicted and target vectors
xn and yn respectively. However, SPR relies on an additional projection layer for
learning. We thus add a projection layer pn of 256 dimensions on top of the critic
function mentioned in Section 13.2.2. Instead of computing a loss between xn and
yn, we follow the original formulation of SPR and compute mean squared error
between L2-normalized pn and L2-normalized yn.

122



MuZero Q-Learning

Game Mode MZ MZ+Contr MZ+Recon MZ+SPR QL QL+Model QL+Model+Recon

bigfish
train 0.77 0.73 0.80 0.79 0.60 0.53 0.57

test 0.60 0.55 0.61 0.59 0.58 0.59 0.51

bossfight
train 0.91 0.93 0.94 0.94 0.51 0.64 0.71

test 0.92 0.94 0.92 0.95 0.57 0.65 0.79

caveflyer
train 0.91 0.90 0.87 0.67 0.82 0.83 0.88

test 0.77 0.81 0.77 0.58 0.65 0.64 0.73

chaser
train 0.28 0.89 0.26 0.89 0.16 0.53 0.54

test 0.24 0.89 0.24 0.89 0.17 0.68 0.65

climber
train 0.72 0.96 0.92 0.94 0.42 0.58 0.81

test 0.42 0.87 0.76 0.83 0.27 0.40 0.68

coinrun
train 0.98 0.98 0.98 0.97 0.85 0.87 0.87

test 0.64 0.71 0.68 0.73 0.58 0.60 0.68

dodgeball
train 0.78 0.30 0.74 0.42 0.58 0.60 0.62

test 0.77 0.29 0.73 0.41 0.54 0.64 0.59

fruitbot
train 0.33 0.44 0.55 0.52 0.56 0.61 0.65

test 0.31 0.38 0.57 0.48 0.69 0.72 0.75

heist
train 0.13 0.17 0.18 0.13 0.14 0.14 0.25

test -0.17 -0.09 -0.18 -0.16 -0.17 -0.17 0.05

jumper
train 0.75 0.89 0.87 0.90 0.54 0.61 0.82

test 0.32 0.78 0.77 0.73 0.06 0.09 0.66

leaper
train 0.98 0.98 0.97 0.97 0.70 0.75 0.74

test 0.86 0.90 0.88 0.90 0.80 0.85 0.85

maze
train 0.58 0.38 0.54 0.44 0.26 0.30 0.39

test -0.25 -0.39 -0.19 -0.31 -0.41 -0.39 -0.39

miner
train 0.82 0.96 1.06 1.06 0.27 0.46 0.56

test 0.59 0.78 0.85 0.94 0.23 0.15 0.11

ninja
train 0.98 0.98 0.98 0.98 0.70 0.77 0.83

test 0.84 0.87 0.83 0.85 0.52 0.61 0.78

plunder
train 0.38 0.97 0.31 0.97 0.32 0.41 0.50

test 0.17 0.94 0.13 0.91 0.04 0.05 0.40

starpilot
train 1.19 1.16 1.23 0.93 0.65 0.76 0.77

test 0.98 0.95 0.91 0.84 0.66 0.77 0.80

Average
train 0.72 (0.70/0.75) 0.78 (0.78/0.79) 0.75 (0.74/0.88) 0.79 (0.71/0.79) 0.51 (0.49/0.51) 0.60 (0.59/0.60) 0.66 (0.58/0.66)

test 0.50 (0.48/0.55) 0.63 (0.61/0.65) 0.57 (0.54/0.75) 0.64 (0.57/0.64) 0.36 (0.35/0.37) 0.45 (0.44/0.47) 0.54 (0.45/0.54)

Table 24: Final normalised training and test scores on Procgen when training on 500 levels for
30M environment frames, reporting the median across 3 seeds (for MZ, MZ+Recon
across 5 seeds). Min/max over seeds are shown in parentheses. Final scores for
each seed were computed as means over data points from the last 1M frames. A
subset of the experiments on Maze have terminated before 30M frames therefore
we computed final scores at 27M for all agents on this game.
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Training levels Mode MZ MZ+Contr MZ+Recon MZ+SPR

10

train 0.73 0.76 0.76 0.68

test 0.07 0.13 0.12 0.09

100

train 0.72 0.76 0.82 0.79

test 0.29 0.46 0.47 0.40

500

train 0.72 0.78 0.75 0.79

test 0.50 0.63 0.57 0.64

All
train 0.71 0.82 0.93 0.85

test 0.68 0.80 0.93 0.83

Table 25: MuZero with self-supervised losses on Procgen. Final mean normalised training
and test scores for different number of training levels. Reporting median values
over 1 seed on 10, 100 levels; on 500 levels 3 seeds for MZ+Contr, MZ+SPR and 5

seeds for MZ, MZ+Recon; on infinite levels 1 seed for MZ+Contr, MZ+SPR and
2 seeds for MZ, MZ+Recon. Final scores for each seed were computed as means
over data points from the last 1M frames.
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reach push pick-place

Agent Test Test Test

RL2
100% 96.5% 98.5%

MuZero 100% 100% 100%

Q-Learning 97.5% 99.8% 99.9%

Table 26: Zero-shot test performance on the ML-1 procedural generalization benchmark
of Meta-World. Shown are baseline results on RL2 (Duan et al., 2016) from the
Meta-World paper (Yu et al., 2020a) as well as our results on MuZero. Note that
RL2 is a meta-learning method and was trained for 300M environment steps,
while MuZero and Q-Learning do not require meta-training were only trained
for 50M steps and fine-tune for 10M. We average the success rate of the last 1M
environment steps for each seed and report medians across three seeds for MuZero
and Q-Learning (RL2 results from (Duan et al., 2016)).

0.4 0.6 0.8
UCB-DrAC+PLR
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MZ+Recon
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Optimality Gap

Min-Max Normalized Score

Figure 20: Additional metrics (proposed in Agarwal et al. (2021)) indicating zero-shot test
performance of different methods on ProcGen. IQM corresponds to the Inter-
Quratile Mean among all runs, and Optimality Gap refers to the amount by
which the algorithm fails to meet a minimum score of 1.0.
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Figure 21: Isolating the interaction between self-supervision and data diversity. Each plot
shows the generalization performance as a function of training performance for
different numbers of training levels. Also shown is the unity line, where training
and testing performance are equivalent (note that with infinite training levels, all
lines collapse to the unity line, as in this case there is no difference between train
and test). Generally speaking, self-supervision results in stronger generalization
than MuZero. Reporting median values over 1 seed on 10, 100 levels; on 500 levels
3 seeds for MZ+Contr, MZ+SPR and 5 seeds for MZ, MZ+Recon; on infinite levels
1 seed for MZ+Contr, MZ+SPR and 2 seeds for MZ, MZ+Recon. For visibility,
min/max seeds are not shown.
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Figure 22: Training performance on Procgen. See Figure 12 in the main text for results on
the test set. Reporting median values over 3 seeds (5 seeds for MZ), with shaded
regions indicating min/max seeds.
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Figure 24: Zero-shot test success rates MuZero and Q-Learning on unseen goals on the ML-1
procedural generalization benchmark of Meta-World. While both MuZero and
Q-Learning achieve near optimal performance, MuZero is more stable and a bit
more data-efficient than Q-Learning. Shown are medians across three seeds (for
visibility, min/max seeds are not shown).
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MuZero Q-Learning

Game Mode MZ MZ+Contr MZ+Recon MZ+SPR QL

ML10

train 97.6% 78.1% 97.8% 82.5% 85.2%

zero-shot test 26.5% 17.0% 25.0% 17.8% 6.8%

fine-tune test 94.1% 60.0% 97.5% 51.3% 80.1%

ML45

train 77.2% 57.5% 74.9% 54.4% 55.9%

zero-shot test 17.7% 12.5% 18.5% 16.0% 10.8%

fine-tune test 76.7% 77.3% 81.7% 77.2% 78.1%

Table 27: Success rates for MuZero (with and without self-supervision) and Q-Learning
on ML-10 and ML-45. Training results are shown at 50M frames and fine-tuning
results are shown at 10M frames. Reporting average of the last 1M frames and
then medians across 3 seeds (2 for MZ and MZ+Recon on ML10).
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