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Résumé

L’apprentissage par renforcement profond (RL) a connu d’énormes progrès ces dernières

années, mais il est encore difficile d’appliquer le RL aux problèmes de prise de décision du

monde réel. Cette thèse identifie trois défis clés avec la façon dont nous faisons la recherche

RL elle-même qui entravent les progrès de la recherche RL.

— Évaluation et comparaison peu fiables des algorithmes RL ; les méthodes d’évaluation

actuelles conduisent souvent à des résultats peu fiables.

— Manque d’informations préalables dans la recherche RL ; Les algorithmes RL sont

souvent formés à partir de zéro, ce qui peut nécessiter de grandes quantités de données

ou de ressources informatiques.

— Manque de compréhension de la façon dont les réseaux de neurones profonds inter-

agissent avec RL, ce qui rend difficile le développement de méthodes évolutives de

RL.

Pour relever ces défis susmentionnés, cette thèse apporte les contributions suivantes :

— Une méthodologie plus rigoureuse pour évaluer les algorithmes RL.

— Un flux de travail de recherche alternatif qui se concentre sur la réutilisation des

progrès existants sur une tâche.

— Identification d’un phénomène de perte de capacité implicite avec un entraînement

RL hors ligne prolongé.

Dans l’ensemble, cette thèse remet en question le statu quo dans le RL profond et montre

comment cela peut conduire à des algorithmes de RL plus efficaces, fiables et mieux applicables

dans le monde réel.

Mots-cles. Apprentissage par renforcement profond, RL profond, évaluation, réutilisation

du calcul, RL réincarné, RL hors ligne, régularisation implicite
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Abstract

Deep reinforcement learning (RL) has seen tremendous progress in recent years, but it is

still difficult to apply RL to real-world decision-making problems. This thesis identifies three

key challenges with how we do RL research itself that hinder the progress of RL research.

— Unreliable evaluation and comparison of RL algorithms; current evaluation methods

often lead to unreliable results.

— Lack of prior information in RL research; RL algorithms are often trained from scratch,

which can require large amounts of data or computational resources.

— Lack of understanding of how deep neural networks interact with RL, making it hard

to develop scalable RL methods.

To tackle these aforementioned challenges, this thesis makes the following contributions:

— A more rigorous methodology for evaluating RL algorithms.

— An alternative research workflow that focuses on reusing existing progress on a task.

— Identifying an implicit capacity loss phenomenon with prolonged offline RL training.

Overall, this thesis challenges the status quo in deep reinforcement learning and shows

that doing so can make RL more efficient, reliable and improve its real-world applicability.

Keywords. Deep Reinforcement Learning, Deep RL, Evaluation, Reusing Computation,

Reincarnating RL, Offline RL, Implicit Regularization
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Introduction

Decision making is a complex process that is fundamental to human intelligence. It

involves the selection of an action from among a set of alternatives based on various factors,

such as personal preferences, situational context, and available information. It is a critical

aspect of our daily lives, from mundane choices like what to wear or eat to significant life-

altering decisions like career choices and life partners. Moreover, our current decisions often

shape our future outcomes, making it essential to understand the mechanisms underlying

effective decision making. One of the key challenges in decision making is making a series of

decisions that lead to a desired outcome, known as sequential decision making. This is the

fundamental problem studied in the field of reinforcement learning.

Reinforcement learning (RL) is a branch of machine learning that focuses on developing

computational approaches for creating artificial agents that can learn to make effective deci-

sions in sequential decision-making problems. In RL, an agent interacts with an environment

by selecting actions to take and receiving a scalar reward signal in response to those actions.

The goal of the agent is to learn a policy that maximizes its cumulative reward over time. One

significant development in the last decade has been the integration of RL with deep neural

networks, known as deep reinforcement learning. Deep RL has lead to tremendous advances

in several challenging decision-making problems such as playing challenging games [155, 196],

flying stratospheric balloons [23], control for nuclear fusion [55], robotic manipulation [9, 1],

and aligning models with human preferences [167]. Despite such successes, it is still difficult

to apply deep RL to tackle real-world decision making problems.

One major issue with deep RL is that it often results in high variability in performance,

making it hard to evaluate and compare different algorithms. Additionally, the agents used

in deep RL typically learn from their own experience by interacting with their environment,

which means they need to collect large amounts of data for each experiment. This can be

time-consuming and expensive in practical settings. Moreover, deep RL agents are usually

trained to perform well only in the environments they were trained on, and they may not be

able to generalize to new, unseen environments. Another challenge is that deep RL approaches

usually learn without making use of any prior information, which can limit their scalability

to more complex problems due to their sample and compute inefficiency. Furthermore, the



RL community still does not have a good understanding of how the “deep” part interacts

with RL in deep RL.

This thesis pushes beyond the status quo in deep RL and takes steps towards mitigating

some of the issues that hinder the practical applicability of deep RL. First, the thesis proposes

reliable protocols for evaluating RL algorithms for avoiding false impressions of progress in

the field and ensuring continual advancement. Second, many challenging decision-making

problems are currently infeasible with deep RL, and the thesis suggests building upon existing

computational work to overcome this limitation. This proposal can further democratize RL

and is especially relevant for large-scale decision-making systems. Third, the thesis explores

how the implicit regularization of gradient descent with neural networks can be problematic

in RL, resulting in a peculiar underfitting phenomenon in offline RL with prolonged training.

Thesis Outline

— Chapter 1 discusses the pre-requisite concepts and terminology required in order to

understand this thesis. Additionally, it thoroughly covers prior work to contextualize

the work covered in this thesis.

— Chapter 2 discusses evidence of unreliable results in numerous published deep RL

papers and proposes a more rigorous evaluation methodology for RL and ML bench-

marks that is easily applicable with even a handful of experiment runs. The content

is taken from Agarwal et al. [6]:

— Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville,

and Marc Bellemare. Deep reinforcement learning at the edge of the statistical

precipice. NeurIPS (2021) [Outstanding Paper Award].

— Chapter 3 discusses our work on reincarnating RL, a research workflow that argues

for reusing prior computational work in RL. This work is especially relevant for

large-scale decision-making systems, where learning from scratch can be impractical. I

also organized a workshop on reincarnating RL at ICLR 2023, which was well-received

and timely given the availability of large-scale pretrained models in NLP and vision.

The content is taken from Agarwal et al. [7]:

— Rishabh Agarwal, Max Schwarzer, Pablo Samuel Castro, Aaron Courville,

and Marc Bellemare. Reincarnating Reinforcement Learning: Reusing Prior

Computation to Accelerate Progress. NeurIPS (2022).

— Chapter 4 investigates the “deep” part in deep RL. Specifically, it studies the capacity

loss in deep Q-learning with prolonged training, particularly offline RL, which we show

to stem from how implicit regularization of gradient descent with neural networks

interacts with Q-learning. The content is taken from Agarwal* et al. [3]:

14



— Rishabh Agarwal∗, Aviral Kumar∗, Dibya Ghosh, and Sergey Levine. Implicit

under-parameterization inhibits data-efficient deep reinforcement learning. ICLR

(2021) [∗ denotes equal contribution].

The papers included above were a result of a multi-author collaboration but I was the

primary contributor for the papers included in each of the chapters. As such, I contributed

towards formulating the research, writing the paper, implementing most of the code, and

running the experiments. Details about motivation, impact and my contributions are included

in the preamble for each chapter.

While not discussed in this thesis, I briefly list other promising directions for improving

the real-world applicability of RL. One of the reasons behind the success of deep learning

is being able to learn from large and diverse datasets and RL using only existing logged

datasets [e.g., 4, 243] and using such datasets as a launchpad for future learning would

greatly enable RL for real-world applications. Furthermore, deploying RL agents developed in

simulation in the wild requires developing RL approaches that can easily transfer knowledge

from training tasks to “similar” tasks, such as zero-shot generalization [e.g., 5, 213, 8] or

sim-to-real transfer. Moreover, RL methods whose performance scales with model capacity

and compute, would enable progress akin to benefits that arise from scaling in deep learning.

Some of our recent work finds that scaling RL can enable RL-trained generalist models and

achieve significant sample efficiency improvements. Finally, I strongly believe that further

democratizing RL to the broader research community would accelerate progress in deep RL.

I have done some work related to the above directions as well as on several other topics

that was published during my PhD, but these have not been included in this thesis:
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perspective on offline reinforcement learning." ICML (2020). [Oral]

— Rishabh Agarwal, Marlos C. Machado, Pablo Samuel Castro, and Marc G. Belle-

mare. Contrastive behavioral similarity embeddings for generalization in reinforcement

learning. ICLR (2021). [Spotlight]

— Rishabh Agarwal, Levi Melnick, Nicholas Frosst, Xuezhou Zhang, Ben Lengerich,

Rich Caruana, and Geoffrey E. Hinton. Neural additive models: Interpretable machine
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— Sokar, Ghada, Rishabh Agarwal, Pablo Samuel Castro, and Utku Evci. The

Dormant Neuron Phenomenon in Deep Reinforcement Learning. ICML (2023) [Oral].

— Kumar, Aviral, Rishabh Agarwal, Tengyu Ma, Aaron Courville, George Tucker, and

Sergey Levine. DR3: Value-Based Deep Reinforcement Learning Requires Explicit
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Chapter 1

Background

The field of machine learning (ML) is concerned with the problem of learning from data

to make predictions or decisions. Reinforcement learning (RL) is an area of machine learning

concerned with sequential decision-making problems by training artificial agents that learn

to act optimally based on maximizing their long-term reward. The entity which makes the

decision is referred to as the agent, and everything other than the agent is considered as

the environment. In a typical RL formulation, an agent learns through trial and error in an

environment, receiving feedback in terms of reward when taking a particular action from a

given state. See Sutton & Barto [208] for a more thorough introduction.

1.1. Markov Decision Process

Formally, an interactive environment in RL is typically described as a Markov decision

process (MDP) M = (S,A, R, P, γ) [174], with an observation space S, an action space A, a

stochastic real-valued reward function R(s, a), transition dynamics P (s′|s, a) and a discount

factor γ ∈ [0, 1), which encourages the agent to accumulate rewards sooner rather than later.

A stochastic policy π(· | s) maps each state s ∈ S to a distribution (density) over actions.

At each time-step t, the agent receives observation st ∈ S from its environment M and

executes an action at ∈ A according to its behavior policy. The environment then provides

a feedback signal in form of reward rt+1 ∈ R and a new observation st+1 ∈ S to the agent.

This series of actions, observations and rewards defines the agent’s experience. The goal of

RL is to improve the agent’s future reward given its past experience. The MDP formulation

assumes that the next observation and reward depends only on the current observation and

action,

Pr(st+1, rt+1|s1, a1, r1, ...., st, at, rt) = Pr(st+1, rt+1|st, at) (1.1.1)

For a MDP, the observation st summarizes all the information present in the previous

time steps and is also referred as the markovian state. At any given time t, the discounted
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Figure 1. Image from Sutton & Barto [209] showing interaction between an agent and an RL environment.

return Gt can be considered as a summary of future rewards:

Gt = rt+1 + γrt+2 + γ2rt+3 + . . .

= rt+1 + γGt+1

The goal of RL is to learn a policy π that maximizes the expected long-term discounted

return Eπ[G0] starting from the initial observation s0. To do so, we focus on RL methods,

that can learn directly from experience and do not assume any access to knowledge of the

environment’s dynamics. Specifically, we focus on value-based methods that learn the value

of states V (s) or state-action pairs Q(s,a). Optimal policies then involve taking actions with

the maximum expected value.

1.2. Value-based Reinforcement Learning
Our experiments in chapter 3 build on value-based deep RL methods, which we discuss in

detail here. Many successful examples of RL use a value function to summarize the expected

reward for a decision-making policy [e.g., 215, 157, 196]. The value function V π(s) is the

expected return from state s when following policy π. Similarly, for an agent following the

policy π, the action-value function (also known as Q-function), denoted Qπ(s, a), is defined

as the expectation of cumulative discounted return, i.e.,

Qπ(s, a) := E

[∑∞

t=0
γtR(st, at)

]

, s0 = s, a0 = a, st ∼ P (· | st−1, at−1), at ∼ π(· | st).

The goal of RL is to find an optimal policy π∗ that attains maximum expected return, for

which Qπ∗

(s, a) ≥ Qπ(s, a) for all π, s, a. The Bellman optimality equations [25] characterize

the optimal policy in terms of the optimal Q-values, denoted Q∗ = Qπ∗

, via:

Q∗(s, a) = E R(s, a) + γEs′∼P max
a′∈A

Q∗(s′, a′) . (1.2.1)

To learn a policy from interaction with the environment, Q-learning. [230] iteratively

improves an approximate estimate of Q∗, denoted Qθ, by repeatedly regressing the LHS of

(1.2.1) to target values defined by samples from the RHS of (1.2.1).
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Deep Q-learning. For large and complex state spaces, approximate Q-values are ob-

tained using a neural network as the function approximator. To further stabilize optimization,

a target network Qθ′ with frozen parameters may be used for computing the learning tar-

get [155]. The target network parameters θ′ are updated to the current Q-network parameters

θ after a fixed number of time steps.

DQN [155, 157] parameterizes Qθ with a convolutional neural network [128] and uses

Q-learning with a target network while following an ǫ-greedy policy for exploration, i.e.,,

taking a random action with probability ǫ and otherwise taking the greedy action with respect

to Qθ, for data collection. DQN minimizes the temporal difference (TD) error ∆θ using the

loss LT D(DS) on mini-batches of agent’s past experience tuples, (s, a, r, s′), sampled from an

experience replay buffer DS [137] collected during training:

LT D(D) = Es,a,r,s′∼D [ℓλ (∆θ(s, a, r, s′))] , (1.2.2)

∆θ(s, a, r, s′) = Qθ(s, a)− r − γ max
a′

Qθ′(s′, a′)

where lλ is the Huber loss [99] given by

ℓλ(u) =







1
2
u2, if |u| ≤ λ

λ(|u| − 1
2
λ), otherwise.

(1.2.3)

Q-learning is an off-policy algorithm [209], since the learning target can be computed without

any consideration of how the experience was generated.

Distributional RL algorithms are a family of recent off-policy deep RL algorithms that

estimate a density over returns for each state-action pair, denoted Zπ(s, a), instead of directly

estimating the mean Qπ(s, a). Accordingly, one can express a form of distributional Bellman

optimality as

Z∗(s, a) D= r + γZ∗(s′, argmaxa′∈A Q∗(s′,a′)), (1.2.4)

where r ∼ R(s, a), s′ ∼ P (· | s, a).

and D= denotes distributional equivalence and Q∗(s′,a′) is estimated by taking an expectation

with respect to Z∗(s′, a′). C51 [22] approximates Z∗(s, a) by using a categorical distribution

over a set of pre-specified anchor points, and distributional QR-DQN [52] approximates the

return density by using a uniform mixture of K Dirac delta functions, i.e.,

Zθ(s, a) :=
1
K

K∑

i=1

δθi(s,a), Qθ(s, a) =
1
K

K∑

i=1

θi(s, a).

QR-DQN outperforms C51 and DQN on Atari 2600 games [20], a widely-used benchmark

for evaluating deep RL algorithms. Please refer to [24] for a more thorough introduction to

distributional RL.
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Hessel et al. [92] combined six components into a single agent they called Rainbow: priori-

tized experience [188], n-step learning [206], distributional RL [21], double Q-learning [220],

dueling architecture [227] and NoisyNets [72]. Ceron & Castro [37] and Hessel et al. [92]

both showed that n-step learning is one of the most crucial components of Rainbow, in that

removing it caused a large drop in performance.

In n-step learning, instead of computing the temporal difference error using a single-step

transition, one can use n-step targets instead [206], where for a trajectory (s0, a0, r0, s1, a1, · · · )

and update horizon n: R
(n)
t :=

∑n−1
k=0 γkrt+k+1, yielding the multi-step temporal difference:

R
(n)
t + γn maxa′ Qθ(st+n, a′)−Qθ(st, at).

1.3. Offline Reinforcement Learning

Modern off-policy deep RL algorithms (as discussed above) perform remarkably well on

common benchmarks such as the Atari 2600 games [20] and continuous control MuJoCo

tasks [216]. Such off-policy algorithms are considered “online” because they alternate between

optimizing a policy and using that policy to collect more data. Typically, these algorithms

keep a sliding window of most recent experiences in a finite replay buffer, throwing away

stale data to incorporate most on-policy experiences.

Offline RL, in contrast to online RL, describes the fully off-policy setting of learning

using a fixed dataset of experiences, without any further interactions with the environment.

Akin to supervised learning, offline RL also utilizes a fixed dataset but unlike supervised

learning, we don’t have access to the true labels (i.e., optimal actions) and is harder

than supervised learning. Offline RL is considered challenging due to the distribution

mismatch [74, 120, 232, 195] between the current policy and the offline data collection policy,

i.e., when the policy being learned takes a different action than the data collection policy, we

don’t know the reward that should be provided. Such papers propose remedies by regularizing

the learned policy to stay close to training trajectories and we investigate one such approach

in chapter 3. Please refer to Levine et al. [133] for a survey on offline RL.

1.4. Evaluation in Deep RL

Deep RL algorithms are known to have high variability in performance, which makes it

difficult to reliably evaluate such algorithms. Recently, various efforts explicitly investigate the

reproducibility of reported results [91, 104, 47]. These efforts are in part due to the inadequate

experimental practices and reporting in RL and general machine learning [173, 138]. Similar

to such efforts, our work in chapter 2 was motivated by the need for more reliable evaluation

protocols to compare RL algorithms. We discuss differences with prior work in detail below.

While prior work [104, 91, 147] highlights various reproducibility issues in policy-gradient

methods, chapter 2 focuses specifically on the reliability of evaluation procedures on RL
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benchmarks and provides an extensive analysis on common deep RL algorithms on widely-used

benchmarks. For more rigorous performance comparisons on a single RL task, Henderson

et al. [91], Colas et al. [48] provide guidelines for statistical significance testing while Colas

et al. [47] focuses on determining the minimum number of runs needed for such comparisons

to be statistically significant. Instead, we focus on reliable comparisons on a suite of tasks

and mainly recommend reporting stratified bootstrap CIs due to the dichotomous nature and

wide misinterpretation of statistical significance tests (see Remark in Section 2.2). Henderson

et al. [91], Colas et al. [47, 48] also discuss bootstrap CIs but for reporting single task mean

scores – however, 3-5 runs is a small sample size for bootstrapping on Atari 100k, to achieve

true coverage close to 95%, such CIs require at least 20-30 runs per task as opposed to 5-10

runs for stratified bootstrap CIs we present later.

Chan et al. [38] propose metrics to measure the reliability of RL algorithms in terms

of their stability during training and their variability and risk in returns across multiple

episodes. While our work focuses on reliability of evaluation in deep RL itself, performance

profiles (subsection 2.4.2) showing the tail distribution of episodic returns, applicable for even

a single task with multiple runs, can be useful for measuring reliability of an algorithm’s

performance.

Jordan et al. [109] propose a game-theoretic evaluation procedure for “complete” algorithms

that do not require any hyperparameter tuning and recommend evaluating between 1,000

to 10,000 runs per task to detect statistically significant results. Instead, our work focuses

on reliably evaluating performance obtained after the hyperparameter tuning phase, even

with just a handful of runs. That said, run-score distributions based on runs with different

hyperparameter configurations might reveal sensitivity to hyperparameter tuning.

In chapter 2, we propose reporting score distributions, which corresponds to performance

profiles [59] with performance thresholds on the x-axis and fractions of all runs above that

threshold on the y-axis, to reveal the variability in performance across tasks. Recht [178]

proposed an alternative to score distributions, which we call R-profiles, where scores in a

performance profile are replaced by the probability that average task scores of a given method

outperforms the best method (among a given set of methods). The probability in R-profiles

is computed using the Welsh’s t-test [231]. However, R-profiles have several limitations

compared to score distributions. R-profiles lead to a biased estimate and are less robust to

outlier runs. Furthermore, such profiles are insensitive to the size of performance differences,

i.e., two methods that are uniformly 1% and 100% worse than the best method are assigned

the same probability. Moreover, R-profile is only sensible when task score distributions are

Gaussian, as required by Welsh’s t-test. Finally, the ranking of methods depends on the

specific set of methods being compared in such profiles.
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1.5. Prior Computation in RL

While learning tabula rasa - that is without any prior task-specific knowledge such as

offline datasets or prior policies - is the prevalent workflow in RL research, it is computationally

and sample inefficient. To address these inefficiencies, chapter 3 introduces an alternative

workflow, which we call reincarnating RL, that focuses on leveraging prior computational

work (e.g., learned policies) to speed up research progress in RL. To discuss challenges in

setting up this workflow, we investigate policy-to-value reincarnating RL (PVRL) that focuses

on accelerating a value-based RL agent given access to an existing suboptimal policy. Next,

we discuss prior works related to reincarnating RL, including several large-scale deep RL

efforts.

Large-scale reincarnation efforts. Several high-profile RL achievements employ a

limited form of reincarnating RL. OpenAI Five [27], which can play Dota2 at a superhuman

level, required 10 months of large-scale RL training and went through continual changes in

code and environment (e.g., expanding observation spaces) during development. To avoid

restarting from scratch after such changes, OpenAI Five used “surgery” akin to Net2Net [41]

style transformations to convert a trained model to certain bigger architectures with custom

weight initializations. AlphaStar [225] employs population-based training (PBT) [106],

which periodically copies weights of the best performing value-based agents and mutates

hyperparameters during training. Although PBT and surgery methods are efficient, they

can not be used for reincarnating RL when switching to arbitrary architectures (e.g., feed-

forward to recurrent networks) or from one model class to another (e.g., policy to a value

function). In this work, we focus on reincarnating RL methods that allow such architecture

and algorithm changes. Akkaya et al. [9] trained RL policies for several months to manipulate

a robot hand for solving Rubik’s cube. To do so, they “rarely trained experiments from

scratch” but instead initialized new policies, with architectural changes, from previous trained

policies using behavior cloning via on-policy distillation [170, 49]. AlphaGo [196] also

used behavior cloning on human replays for initializing the policy and fine-tuning it further

with RL. However, behavior cloning is only applicable for policy to policy transfer and is

inadequate for the PVRL setting of transferring a policy to a value function [e.g., 164, 219].

Several prior works also fine-tune existing agents with deep RL for reducing training time,

especially on real-world tasks such as chip floor-planning [154], robotic manipulation [110],

aligning language models [15], and compiler optimization [218]. In line with these works, we

find that fine-tuning a value-based agent can be an effective reincarnation strategy (Figure 7).

However, fine-tuning is constrained to use the same architecture as the agent being fine-tuned.

Instead, we focus on reincarnating RL methods that do not have this limitation.

Leveraging existing agents. Existing policies have been previously used for improving

data collection in RL [200, 28, 39, 233, 71]; we evaluate one such recent approach, JSRL [219],
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which improves exploration in goal-reaching RL tasks. However, our PVRL experiments

indicate that JSRL performs poorly on ALE. Closely related to PVRL, Schmitt et al. [190]

propose kickstarting to speed-up actor-critic agents using an interactive teacher policy by

combining on-policy distillation [49, 170] with RL. Empirically, we find that kickstarting is a

strong baseline for PVRL, however it exhibits unstable behavior without n-step returns and

underperforms our proposed QDagger, which we discuss further in chapter 3. PVRL also

falls under the framework of agents teaching agents (ATA) [50] with RL-based students and

teachers. While ATA approaches, such as action advice [217], emphasize how and when to

query the teacher or evaluating the utility of teacher advice, PVRL focuses on sample-efficient

transfer and does not impose constraints on querying the teacher. PVRL is also different from

prior work on accelerating RL using a heuristic or oracle value function [43, 204, 18], as PVRL

only assumes access to a suboptimal policy. Lee et al. [132] tackle robotic manipulation tasks

given a teacher policy and find that training on both the teacher and student collected data,

akin to our proposed method, enables best performance. However, unlike PVRL methods

that wean off the teacher, Lee et al. [132] propose methods that are constrained to stay

close to the suboptimal teacher, which can limit the student’s performance with continued

training (Figure 9).

Leveraging prior data. Learning from demonstrations (LfD) [187, 11, 94, 76, 100]

approaches focus on accelerating RL training using demonstrations. Such approaches typ-

ically assume access to optimal or near-optimal trajectories, often obtained from human

demonstrators, and aim to match the demonstrator’s performance. Instead, PVRL focuses

on leveraging a suboptimal teacher policy, which can be obtained from any trained RL agent,

that we wean off during training. Empirically, we find that DQfD [94], a well-known LfD

approach to accelerate deep Q-learning, when applied to PVRL, exhibits severe performance

degradation when weaning off the teacher. Rehearsal approaches [169, 163, 199] focus on

improving exploration by replaying demonstrations during learning; we find that such ap-

proaches are ineffective for leveraging the teacher in PVRL. Offline RL [125, 133, 4] focuses

on learning solely from fixed datasets while reincarnating RL focuses on leveraging prior

information, which can also be presented as offline datasets, for speeding up further learning

from environment interactions. Recent work [143, 164, 116, 132] use offline RL to pretrain on

prior data and then fine-tune online. We also evaluate this pretraining approach for PVRL.

However, PVRL is more flexible than only using a fixed dataset for pretraining, as it assumes

access to an interactive teacher policy.
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Chapter 2

Reliable Evaluation in Deep RL

Origin and Impact: I started this project as I wasn’t able to get reliable results on the

Atari 100K benchmark: each time I added more seeds, median normalized score improved by

a substantial amount (in hindsight, this was simply the statistical bias of the median). Aaron

and Marc encouraged me to further investigate this finding as opposed to continue my ongoing

project and move to another benchmark. The investigation resulted in this paper, which also

received an outstanding paper award at NeurIPS 2021! The RL community has started to

pick up some of the recommendations by this work, which has already been employed by 250+

papers. Following this work, I also co-led a workshop on ML evaluation standards at ICLR

2022 to further bring attention to this important topic.

Contribution: I initiated the project and drove it from start-to-finish: (1) identifying

problems in prevalent evaluation protocols, (2) proposing more rigorous statistical protocols

and running extensive experiments, (3) carefully and diplomatically interacting with external

authors whose results were brought into question, and (4) writing the first draft.

Abstract: Deep RL algorithms are predominantly evaluated by comparing their relative

performance on a large suite of tasks. Most published results on deep RL benchmarks compare

point estimates of aggregate performance such as mean and median scores across tasks,

ignoring the statistical uncertainty implied by the use of a finite number of training runs.

Beginning with the Arcade Learning Environment (ALE), the shift towards computationally-

demanding benchmarks has led to the practice of evaluating only a small number of runs per

task, exacerbating the statistical uncertainty in point estimates. In this paper, we argue that

reliable evaluation in the few-run deep RL regime cannot ignore the uncertainty in results

without running the risk of slowing down progress in the field. We illustrate this point using

a case study on the Atari 100k benchmark, where we find substantial discrepancies between



conclusions drawn from point estimates alone versus a more thorough statistical analysis.

With the aim of increasing the field’s confidence in reported results with a handful of runs, we

advocate for reporting interval estimates of aggregate performance and propose performance

profiles to account for the variability in results, as well as present more robust and efficient

aggregate metrics, such as interquartile mean scores, to achieve small uncertainty in results.

Using such statistical tools, we scrutinize performance evaluations of existing algorithms on

other widely used RL benchmarks including the ALE, Procgen, and the DeepMind Control

Suite, again revealing discrepancies in prior comparisons. Our findings call for a change in

how we evaluate performance in deep RL, for which we present a more rigorous evaluation

methodology, accompanied with an open-source library rliable, to prevent unreliable results

from stagnating the field.
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of better methods being neglected or even rejected early [153, 144] as such methods fail to

outperform inferior methods simply due to less favorable random conditions. Furthermore,

only reporting point estimates obscures nuances in comparisons [181] and can erroneously

lead the field to conclude which methods are state-of-the-art [136, 179], ensuing wasted effort

when applied in practice [223]. Moreover, not reporting the uncertainty in deep RL results

makes them difficult to reproduce except under the exact same random conditions, which

could lead to a reproducibility crisis similar to the one that plagues other fields [102, 171, 16].

Finally, unreliable results could erode trust in deep RL research itself [103].

In this work, we show that recent deep RL papers compare unreliable point estimates, which

are dominated by statistical uncertainty, as well as exploit non-standard evaluation protocols,

using a case study on Atari 100k (Section 2.3). Then, we illustrate how to reliably evaluate

performance with only a handful of runs using a more rigorous evaluation methodology

that accounts for uncertainty in results (Section 2.4). To exemplify the necessity of such

methodology, we scrutinize performance evaluations of existing algorithms on widely used

benchmarks, including the ALE [20] (Atari 100k, Atari 200M), Procgen [45] and DeepMind

Control Suite [214], again revealing discrepancies in prior comparisons (Section 2.5). Our

findings call for a change in how we evaluate performance in deep RL, for which we present a

better methodology to prevent unreliable results from stagnating the field.

How do we reliably evaluate performance on deep RL benchmarks with only a handful of

runs? As a practical solution that is easily applicable with 3-10 runs per task, we identify three

statistical tools for improving the quality of experimental reporting. Since any performance

estimate based on a finite number of runs is a random variable, we argue that it should be

treated as such. Specifically, we argue for reporting aggregate performance measures using

interval estimates via stratified bootstrap confidence intervals, as opposed to point estimates.

Among prevalent aggregate measures, mean can be easily dominated by performance on a

few outlier tasks, while median has high variability and zero performance on nearly half of

the tasks does not change it. To address these deficiencies, we present more efficient and

robust alternatives, such as interquartile mean, which are not unduly affected by outliers and

have small uncertainty even with a handful of runs. Furthermore, to reveal the variability

in performance across tasks, we propose reporting performance distributions across all runs.

Compared to prior work [20, 178], these distributions result in performance profiles [59]

that are statistically unbiased, more robust to outliers, and require fewer runs for smaller

uncertainty.
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2.2. Formalism

We consider the setting in which a reinforcement learning algorithm is evaluated on M

tasks. For each of these tasks, we perform N independent runs 2 which each provide a scalar,

normalized score xm,n, m = 1, . . . , M and n = 1, . . . , N . These normalized scores are obtained

by linearly rescaling per-task scores 3 based on two reference points; for example, performance

on the Atari games is typically normalized with respect to a random agent and an average

human, who are assigned a normalized score of 0 and 1 respectively [157]. We denote the set

of normalized scores by x1:M,1:N .

In most experiments, there is inherent randomness in the scores obtained from different

runs. This randomness can arise from stochasticity in the task, exploratory choices made

during learning, randomized initial parameters, but also software and hardware considerations

such as non-determinism in GPUs and in machine learning frameworks [242]. Thus, we model

the algorithm’s normalized score on the mth task as a real-valued random variable Xm. Then,

the score xm,n is a realization of the random variable Xm,n, which is identically distributed as

Xm. For τ ∈ R, we define the tail distribution function of Xm as Fm(τ) = P(Xm > τ). For

any collection of scores y1:K , the empirical tail distribution function is given by F̂ (τ ; y1:K) =
1
K

∑K
k=1 1[yk > τ ]. In particular, we write F̂m(τ) = F̂ (τ ; xm,1:N).

The aggregate performance of an algorithm maps the set of normalized scores x1:M,1:N

to a scalar value. Two prevalent aggregate performance metrics are the mean and median

normalized scores. If we denote by x̄m = 1
N

∑N
n=1 xm,n the average score on task m across N

runs, then these aggregate metrics are Mean(x̄1:M) and Median(x̄1:M). More precisely, we

call these sample mean and sample median over the task means since they are computed from

a finite set of N runs. Since x̄m is a realization of the random variable X̄m = 1
N

∑N
n=1 Xm,n,

the sample mean and median scores are point estimates of the random variables Mean(X̄1:M )

and Median(X̄1:M) respectively. We call true mean and true median the metrics that would

be obtained if we had unlimited experimental capacity (N →∞), given by Mean(E[X1:M ])

and Median(E[X1:M ]) respectively.

Confidence intervals (CIs) for a finite-sample score can be interpreted as an estimate

of plausible values for the true score. A α × 100% CI computes an interval such that if

we rerun the experiment and construct the CI using a different set of runs, the fraction of

calculated CIs (which would differ for each set of runs) that contain the true score would

tend towards α× 100%, where α ∈ [0, 1] is the nominal coverage rate. 95% CIs are typically

used in practice. If the true score lies outside the 95% CI, then a sampling event has occurred

which had a probability of 5% of happening by chance.

2. A run can be different from using a fixed random seed. Indeed, fixing the seed may not be able to
control all sources of randomness such as non-determinism of ML frameworks with GPUs.

3. Often the average undiscounted return obtained during an episode (see Chapter 1 for an explanation of
the reinforcement learning setting).
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Statistical concerns cannot be satisfactorily addressed with few runs. While

claiming improvements with 3 or fewer runs may naturally raise eyebrows, folk wisdom in

experimental RL suggests that 20 or 30 runs are enough. By calculating 95% confidence

interval 5 on sample medians for a varying number of runs (Figure 2, right), we find that this

number is closer to 50–100 runs in Atari 100k – far too many to be computationally feasible

for most research projects.

Consider a setting in which an algorithm is known to be better – what is the reliability

of median and IQM (Section 2.4.3) for accurately assessing performance differences as the

number of runs varies? Specifically, we consider two identical N -run experiments involving

spr, except that we artificially inflate one of the experiments’ scores by a fixed fraction or

lift of +ℓ% (Figure 4). In particular, ℓ = 0 corresponds to running the same experiment

twice but with different runs. We find that statistically defensible improvements with median

scores is only achieved for 25 runs (ℓ = 25) and 100 runs (ℓ = 10). With ℓ = 0, even 100 runs

are insufficient, with deviations of 20% possible.

Changes in evaluation protocols invalidates comparisons to prior work. A

typical and relatively safe approach for measuring the performance of an RL algorithm is

to average the scores received in their final training episodes [148]. However, the field has

seen a number of alternative protocols used, including reporting the maximum evaluation

score achieved during training [157, 4, 14] or across multiple runs [107, 67, 177]. A similar

protocol is also used by curl and sunrise [130].

Results produced under alternative protocols involving maximum are generally incompa-

rable with end-performance reported results. On Atari 100k, we find that the two protocols

produce substantially different results (Figure 5), of a magnitude greater than the actual

difference in score. In particular, evaluating der with curl’s protocol results in scores far

above those reported for curl. In other words, this gap in evaluation procedures resulted in

curl being assessed as achieving a greater true median than der, where our experiment gives

strong support to der being superior. Similarly, we find that a lot of sunrise’s improvement

over der can be explained by the change in evaluation protocol (Figure 5).

2.4. Recommendations and Tools for Reliable Evalua-

tion

Our case study shows that the increase in the number of runs required to address the

statistical uncertainty issues is typically infeasible for computationally demanding deep RL

benchmarks. In this section, we identify three tools for improving the quality of experimental

5. Specifically, we use the m/n bootstrap [29] to calculate the interval between [2.5th, 97.5th] percentiles
of the distribution of sample medians (95% CIs).
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In this paper, we propose the use of a performance profile we call run-score distributions

or simply score distributions (Figure 7, right), particularly well-suited to the few-run regime.

A score distribution shows the fraction of runs above a certain normalized score and is given

by

F̂X(τ) = F̂ (τ ; x1:M,1:N) =
1

M

M∑

m=1

F̂m(τ) =
1

M

M∑

m=1

1

N

N∑

n=1

1[xm,n > τ ]. (2.4.1)

One advantage of the score distribution is that it is an unbiased estimator of the underlying
distribution F (τ) = 1

N

∑M
m=1 Fm(τ). Another advantage is that an outlier run with extremely

high score can change the output of score distribution for any τ by at most a value of 1
MN

.

It is useful to contrast score distributions to average-score distributions, originally proposed

in the context of the ALE [20] as a generalization of the median score. Average-score

distributions correspond to the performance profile of a random variable X̄, F̂X̄(τ) =

F̂ (τ ; x̄1:M), which shows the fraction of tasks on which an algorithm performs better than

a certain score. However, such distributions are a biased estimate of the thing they seek

to represent. Run-score distributions are more robust than average-score distributions, as

they are a step function in 1/MN versus 1/M intervals, and typically has less variance:

σ2
X = 1

M2N

∑M
m=1 Fm(τ)(1 − Fm(τ)) versus σ2

X̄
= 1

M2

∑M
m=1 FX̄m

(τ)(1 − FX̄m
(τ)). Figure 7

illustrates these differences.

Another alternative [178] is to replace scores in a performance profile by the probability

that average task scores of a given method outperforms the best method (among a given

set of methods), computed using the Welsh’s t-test [231]. However, this profile is (1) also a

biased estimate, (2) less robust to outlier runs, (3) is insensitive to the size of performance

differences, i.e., two methods that are uniformly 1% and 100% worse than the best method

are assigned the same probability, (4) is only sensible when task score distributions are

Gaussian, as required by Welsh’s t-test, and finally, (5) the ranking of methods depends on

the specific set of methods being compared in such profiles.

2.4.3. Robust and Efficient Aggregate Metrics

Performance profiles allow us to compare different methods at a glance. If one curve is

strictly above another, the better method is said to stochastically dominate 7 the other [134,

60]. In RL benchmarks with a large number of tasks, however, stochastic dominance is

rarely observed: performance profiles often intersect at multiple points. Finer quantitative

comparisons must therefore entail aggregate metrics.

We can extract a number of aggregate metrics from score distributions, including median

(mixing runs and tasks) and mean normalized scores (matching our usual definition). As we

already argued that these metrics are deficient, we now consider interesting alternatives also

derived from score distributions.

7. A random variable X has stochastic dominance over random variable Y if P (X > τ) ≥ P (Y > τ) for
all τ , and for some τ , P (X > τ) > P (Y > τ).

35











et al. [80] calls results reproducibility), others [172] have highlighted that there might be missing

information about the experiments themselves (methods reproducibility). We remark that the

problem is not solved by fixing random seeds, as has sometimes been proposed [162, 115],

since it does not really address the question of whether an algorithm would perform well under

similar conditions but with different seeds. Furthermore, fixed seeds might benefit certain

algorithms more than others. Nor can the problem be solved by the use of dichotomous

statistical significance tests, as discussed in Section 2.2.

One way to minimize the risks associated with statistical effects is to report results in a

more complete fashion, paying close attention to bias and uncertainty within these estimates.

To further support RL researchers in this endeavour, we released an easy-to-use Python

library, rliable along with a Colab notebook for implementing our recommendations, as

well as all the individual runs used in our experiments. Again, we emphasize the importance

of published papers providing results for all runs to allow for future statistical analyses.

A barrier to adoption of evaluation protocols proposed in this work, and more generally,

rigorous evaluation, is whether there are clear incentives for researchers to do so, as more rigor

generally entails more nuanced and tempered claims. Arguably, doing good and reproducible

science is one such incentive. We hope that our findings about erroneous conclusions in

published papers would encourage researchers to avoid fooling themselves, even if that requires

tempered claims. That said, a more pragmatic incentive would be if conferences and reviewers

required more rigorous evaluation for publication, e.g., NeurIPS 2021 checklist asks whether

error bars are reported. Moving towards reliable evaluation is an ongoing process and we

believe that this paper would greatly benefit it.

Given the substantial influence of statistical considerations in experiments involving

40-year old Atari 2600 video games and low-DOF robotic simulations, we argue that it is

unlikely that an increase in available computation will resolve the problem for the future

generation of RL benchmarks. Instead, just as a well-prepared rock-climber can skirt the

edge of the steepest precipices, it seems likely that ongoing progress in reinforcement learning

will require greater experimental discipline.
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Chapter 3

Reusing Prior Computation In RL

Origin and Impact: This paper was a response to a open-ended challenge posed by

Marc: "Come up with a new experimental paradigm in which one continuously improves on

an existing trained (RL) agent." Another motivation for me was to normalize reusing prior

computation in RL research. To further facilitate research, I also organized a workshop on

reincarnating RL at ICLR 2023, which was well-received. With the recent rise of large-scale

pretrained language models, the RL community already recognizes that "tabula rasa" RL is

not worthwile in domains involving natural language. With this work, my hope is that reusing

prior computation becomes the go-to approach for most domains where we can apply deep RL.

Contribution: I led this project and contributed in the following ways: (1) Formalized

reincarnation and scoped the project to focus on policy to value reincarnating RL (PVRL),

(2) Identified the existing literature state and came up with a generally applicable PVRL

algorithm, and (3) Designed, implemented and owned most of the experiments, and wrote the

paper.

Abstract: Learning tabula rasa, that is without any prior knowledge, is the prevalent

workflow in reinforcement learning (RL) research. However, RL systems, when applied to

large-scale settings, rarely operate tabula rasa. Such large-scale systems undergo multiple

design or algorithmic changes during their development cycle and use ad hoc approaches for

incorporating these changes without re-training from scratch, which would have been prohibi-

tively expensive. Additionally, the inefficiency of tabula rasa RL typically excludes researchers

without access to industrial-scale resources from tackling computationally-demanding problems.

To address these issues, we present reincarnating RL as an alternative workflow, where prior

computational work (e.g., learned policies) is reused or transferred between design iterations of

an RL agent, or from one RL agent to another. As a step towards enabling reincarnating RL



from any agent to any other agent, we focus on the specific setting of efficiently transferring

an existing sub-optimal policy to a standalone value-based RL agent. We find that existing

approaches fail in this setting and propose a simple algorithm to address their limitations.

Equipped with this algorithm, we demonstrate reincarnating RL’s gains over tabula rasa RL

on Atari 2600 games, a challenging locomotion task, and the real-world problem of navigating

stratospheric balloons. Overall, this work argues for an alternate approach to RL research,

which we believe could significantly improve real-world RL adoption and help democratize it

further.
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3.1. Introduction

Reinforcement learning (RL) is a general-purpose paradigm for making data-driven

decisions. Due to this generality, the prevailing trend in RL research is to learn systems that

can operate efficiently tabula rasa, that is without much previously learned knowledge about

the problem. However, tabula rasa RL systems are typically the exception rather than the

norm for solving large-scale RL problems [196, 9, 27, 225]. Such large-scale RL systems often

need to function for long periods of time and continually experience new data; restarting them

from scratch may require weeks if not months of computation, and there may be billions of

data points to re-process – this makes the tabula rasa approach impractical. For example, the

system that plays Dota 2 at a superhuman level [27] or the system that manipulates a robot

hand for solving Rubik’s cube [9], underwent several months of RL training with continual

changes (e.g., in model architecture, environment, etc. ) during their development; this

necessitated building upon the previously trained system after such changes to circumvent

re-training from scratch, which was done using ad hoc approaches. Furthermore, tackling

challenging problems with deep RL often incurs substantial computational and financial cost:

AlphaStar [225], which achieves grandmaster level in StarCraft, was trained using TPUs

for more than a month and replicating it would cost several million dollarsAs a result, the

majority of the RL community outside certain resource-rich labs is currently excluded from

tackling such problems.

To address both the computational and sample inefficiencies of tabula rasa RL, we present

reincarnating RL as an alternative research workflow. Reincarnating RL focuses on maximally

leveraging existing computational work, such as learned network weights and collected data,

to accelerate training across design iterations of an RL agent or when moving from one agent

to another. In this workflow, agents need not be trained tabula rasa, except for initial forays

into new problems. Reincarnating RL can be seen as an attempt to provide a more formal

foundation for the prior ad hoc strategies to confront the challenges of large-scale RL model

development [e.g., 27, 9].

Reincarnating RL also suggests a different benchmarking paradigm that can democratize

RL by allowing the broader community to continually improve and update existing trained

agents, and even collaboratively tackle problems that are currently infeasible with tabula rasa

RL. For example, imagine a researcher who has trained a deep RL agent A1 for a long time

(e.g., weeks), but now this or another researcher wants to experiment with better algorithms

or architectures. While the tabula rasa workflow requires re-training another agent from

scratch, reincarnating RL provides the more viable option of transferring A1 to another agent

and training this agent further, or simply fine-tuning A1 (Figure 1). However, beyond some

large-scale reincarnation efforts (Section 4.3), the research community has not focused much
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to improve the benchmarking ecosystem in reincarnating RL, we will open-source our code

and trained agents.

3.2. Case Study: Policy to Value Reincarnating RL

Reincarnating RL can leverage different ways of representing prior knowledge: logged

datasets, learned policies, pretrained models (e.g., value functions, dynamics models), repre-

sentations, and others. While prior large-scale efforts have used a limited form of reincarnating

RL (Section 4.3), such as transferring one policy to another, it is unclear how to design

reincarnation approaches that can be incorporated in any RL research project. To exem-

plify the challenges of designing such approaches, we focus on policy-to-value reincarnating

RL (PVRL) for transferring a suboptimal teacher policy to a value-based student agent to

accelerate learning. While we can obtain a policy from any RL agent, we chose this setting

because value-based RL methods (Q-learning, actor-critic) can leverage off-policy data for

better sample efficiency. The difficulty in PVRL arises from the fact that policies do not

estimate discounted returns but only distribution over actions, while value functions do. To

be broadly useful for reincarnating agents, a PVRL algorithm should satisfy the following

desiderata:

— Teacher-agnostic. Reincarnating RL has limited utility if the student is constrained

by the teacher’s architecture or learning algorithm. Thus, we require the student to be

teacher-agnostic.

— Weaning. It is undesirable to maintain dependency on past teachers when reincarnation

may occur several times over the course of a project, or one project to another. Thus, it

is necessary that the student’s dependence on the teacher policy can be weaned off, as

training progresses.

— Sample-efficient. Naturally, reincarnating RL is only useful if it is computationally

cheaper than training from scratch. Thus, it is desirable that the student can recover

and possibly improve upon the teacher’s performance using fewer environment samples

than training tabula rasa.

PVRL on Atari 2600 games. Given the above desiderata for PVRL, we now empirically

investigate whether existing methods that leverage existing data or agents (see Section 4.3)

suffice for PVRL. The specific methods that we consider were chosen because they are simple

to implement, and also because they have been designed with closely related goals in mind.

Experimental setup. We conduct experiments on ALE with sticky actions [148]. To

reduce the computational cost of our experiments, we use a subset of 10 commonly-used Atari

2600 games: Asterix, Breakout, Space Invaders, Seaquest, Q∗Bert, Beam Rider, Enduro, Ms

Pacman, Bowling and River Raid. We obtain the teacher policy πT by running DQN [157]

with Adam optimizer for 400 million environment frames, requiring 7 days of training per
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steps. To evaluate JSRL, we vary the maximum number of roll-in steps, α, that can

be taken by the teacher and sample a random number of roll-in steps between [0, α]

every episode. As the student improves, we decay the steps taken by the teacher every

iteration (1M frames) by a factor of β.

— RL Pretraining: Given access to teacher data DT , we can pre-train the student using

offline RL. To do so, we use CQL [122], a widely used offline RL algorithm, which jointly

minimizes the TD and behavior cloning on logged transitions in DT (Equation 3.2.1).

Following pretraining, we fine-tune the learned Q-network using TD loss on the student’s

replay DS.

LP retrain = LT D(DT ) + λEs,a∼DT

[

log
(∑

a′

Q(s, a′)
)

−Q(s,a)

]

(3.2.1)

— Kickstarting (Figure 3, right): Akin to kickstarting [190], we jointly optimize the TD

loss with an on-policy distillation loss on the student’s self-collected data in DS. The

distillation loss uses the cross-entropy between teacher’s policy πT and the student policy

π(·|s) = softmax(Q(s, ·)/τ), where τ corresponds to temperature. To wean off the teacher,

we decay the distillation coefficient as training progresses. Note that kickstarting does

not pretrain on teacher data.

— DQfD (Figure 4, left): Following DQfD [93], we initially pretrain the student on teacher

data DT using a combination of TD loss with a large margin classification loss to imitate

the teacher actions (Equation 3.2.2). After pretraining, we train the student on its replay

data DS, again using a combination of TD and margin loss. While DQfD minimizes the

margin loss throughout training, we decay the margin loss coefficient during the online

phase, akin to kickstarting.

LDQfD(D) = LT D(D) + ηtEs∼D

[

max
a

(Q(s, a) + f(aT (s), a))−Q(s, aT (s))
]

(3.2.2)

Results. Rehearsal, with best-performing teacher data ratio (ρ = 1/16), is marginally

better than tabula rasa DQN but significantly underperforms the teacher (Figure 2, teal),

which seems related to the difficulty of standard value-based methods to learn from off-policy

teacher data [168]. JSRL does not improve performance compared to tabula rasa DQN and

even hurts performance with a large number of teacher roll-in steps (Figure 3, right). The

ineffectiveness of JSRL on ALE is likely due to the state-distribution mismatch between the

student and the teacher, as the student may never visit the states visited by the teacher and

as a result, doesn’t learn to correct for its previous mistakes [39].

Pretraining with offline RL on logged teacher data recovers around 50% of the teacher’s

performance and fine-tuning this pretrained Q-function online marginally improves perfor-

mance (Figure 2, pink). However, fine-tuning degrades performance with 1-step returns,
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3.2.1. QDagger: A simple PVRL baseline

To address the limitations of prior approaches, we propose QDagger, a simple method for

PVRL that combines Dagger [184], an interactive imitation learning algorithm, with n-step

Q-learning (Figure 4, right). Specifically, we first pre-train the student on teacher data DT

by minimizing LQDagger(DT ), which combines distillation loss with the TD loss, weighted

by a constant λ. This pretraining phase helps the student to mimic the teacher’s state

distribution, akin to the behavior cloning phase in Dagger. After pretraining, we minimize

LQDagger(DS) on the student’s replay DS, akin to kickstarting, where the teacher “corrects”

the mistakes on the states visited by the student. As opposed to minimizing the Dagger loss

indefinitely, QDagger decays the distillation loss coefficient λt (λ0 = λ) as training progresses,

to satisfy the weaning desiderata for PVRL. Weaning allows QDagger to deviate from the

suboptimal teacher policy πT , as opposed to being perpetually constrained to stay close to

πT (Figure 9). We find that both decaying λt linearly over training steps or using an affine

function of the ratio of student and teacher performance worked well. Assuming the student

policy π(·|s) = softmax(Q(s, ·)/τ), the QDagger loss is given by:

LQDagger(D) = LT D(D) + λtEs∼D

[
∑

a

πT (a|s) log π(a|s)
]

(3.2.3)

Figure 2 shows that QDagger outperforms prior methods and surpasses the teacher. We

remark that DQfD can be viewed as a QDagger ablation that uses a margin loss instead of

a distillation loss, while kickstarting as another ablation that does not pretrain on teacher

data. Equipped with QDagger, we show how to incorporate PVRL into our workflow and

demonstrate its benefits over tabula rasa RL.

3.3. Reincarnating RL as a research workflow

Revisiting ALE. As Mnih et al. [157]’s development of Nature DQN established the

tabula rasa workflow on ALE, we demonstrate how iterating on ALE agents’ design can

be significantly accelerated using a reincarnating RL workflow, starting from Nature DQN,

in Figure 1. Although Nature DQN used RMSProp, Adam yields better performance than

RMSProp [4, 166]. While we can train another DQN agent from scratch with Adam, fine-

tuning Nature DQN with Adam, with a reduced learning rate (see Figure 7), matches the

performance of this tabula rasa DQN trained for 400M frames, using a 20 times smaller

sample budget (Panel 2 in Figure 1). As such, on a P100 GPU, fine-tuning only requires

training for a few hours rather than a week needed for tabula rasa training. Given this

fine-tuned DQN, fine-tuning it further results in diminishing returns with additional frames

due to being constrained to use the 3-layer convolutional neural network (CNN) with the

DQN algorithm.
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that fine-tuning this TD3 agent degrades performance after 15M environment steps, which

may be related to capacity loss in value-based RL with prolonged training [3, 146]. For

reincarnation, we use single-actor D4PG [17], a distributional RL variant of DDPG [135],

with a larger policy and critic architecture than TD3. Reincarnated D4PG performs better

than its tabula rasa counterpart for the first 10M environment interactions. Both these agents

converge to similar performance, which is likely a limitation of QDagger. This result also

raises the question of whether better PVRL methods can lead to reincarnated agents that

outperform their tabula rasa counterpart throughout learning. Nevertheless, tabula rasa

D4PG requires additional training for 10-12 hours on a V100 GPU to match reincarnated

D4PG’s performance, which might quickly add up to a substantial savings in compute when

running a large set of experiments (e.g., architectural or hyperparameter sweeps).

Balloon Learning Environment (BLE) [81]. One of the motivations for our work is

to be able to use deep RL in real-world tasks in a data and computationally efficient manner.

To this end, the BLE provides a high-fidelity simulator for navigating stratospheric balloons

using RL [23]. An agent in the BLE can choose from three actions to control the balloon:

move up, down, or stay in place. The balloon can only move laterally by “surfing” the

winds at its altitude; the winds change over time and vary as the balloon changes position

and altitude. Thus, the agent is interacting with a partially observable and non-stationary

system, rendering this environment quite challenging. For the teacher, we use the Perciatelli

QR-DQN agent provided by BLE, trained using large-scale distributed RL for 40 days on

the production-level Loon simulator by Bellemare et al. [23] and further fine-tuned in BLE.

For our experiments, we train agents using Acme with 64 distributed actors for a budget

of 50,000 episodes on a single cloud TPU-v2 (costs $4.5/hour), taking approximately 10-12

hours per run.

In Figure 6, we compare the final performance of agents trained tabula rasa (in pink), with

reincarnation (in blue), and fine-tuned (in yellow). We consider three agents, QR-DQN [52]

with an MLP architecture (same as Perciatelli), IQN [51] with a Densenet architecture [98],

and a recurrent agent R2D6 1 for addressing the partial observability in BLE. When trained

tabula rasa, none of these agents are able to match the teacher performance, with the

teacher-lookalike QR-DQN agent performing particularly poorly. As R2D6 and IQN have

substantial architectural differences from the teacher, we utilize PVRL for transferring the

teacher. Reincarnation allows IQN to match and R2D6 to surpass teacher performance,

although both lag behind fine-tuning the teacher.

When fine-tuning, we are reloading the weights from Perciatelli, which was notably trained

on a broader geographical region than BLE and whose training distribution can be considered

a superset of what is used by the other agents; this is likely the reason that fine-tuning

1. R2D6 builds on recurrent replay distributed DQN (R2D2) [112], which uses a LSTM-based policy, and
incorporates dueling networks [228], distributional RL [24], DenseNet [98], and double Q-learning [221].
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Particularly, more research is needed for enabling workflows that can incorporate knowledge

provided in a form other than a policy, such as pretrained models or representations, developing

better methods for PVRL, and extending PVRL to transfer a policy to model-based agents.

We hope that this work motivates RL researchers to release computational work (e.g., model

checkpoints) for their publications, which would allow others to directly build on their work.

In this regards, we have open-sourced our code and trained agents. Concurrent to this work,

Gogianu et al. [79] released 25,000 trained Atari agents, which we believe would further

facilitate reincarnating RL. As Newton put it “If I have seen further it is by standing on the

shoulders of giants”, we argue that reincarnating RL can substantially accelerate progress by

building on prior computational work, as opposed to always redoing this work from scratch.
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Chapter 4

Implicit Capacity Loss in Data-Efficient RL

Origin & Impact: Based on our prior experience in offline RL, both and Aviral I knew

that offline RL methods typically collapse in performance with prolonged training. As such,

we wanted to investigate why this collapse happens and in doing so, we ended up connecting

results in deep learning generalization theory (self-distillation, implicit regularization of SGD)

to bootstrapping in Q-learning and theoretically derived an phenomenon that also happens

empirically. This work led to several follow-ups on studying capacity loss in both online and

offline RL [e.g. 165, 146], including some of my own work [e.g., 123, 201]. Particularly, the

feature regularization method proposed by [123] to tackle capacity loss ended up being a crucial

ingredient for our work on scaling offline RL to train a generalist RL agent [124].

Contribution: I co-led the project, steered the narrative from start to end (e.g, this doc),

designed and ran most of the Atari experiments, and jointly proved theoretical results.

Abstract: We identify an implicit under-parameterization phenomenon in value-based

deep RL methods that use bootstrapping: when value functions, approximated using deep

neural networks, are trained with gradient descent using iterated regression onto target values

generated by previous instances of the value network, more gradient updates decrease the

expressivity of the current value network. We characterize this loss of expressivity via a drop

in the rank of the learned value network features, and show that this typically corresponds to

a performance drop. We demonstrate this phenomenon on Atari and Gym benchmarks, in

both offline and online RL settings. We formally analyze this phenomenon and show that it

results from a pathological interaction between bootstrapping and gradient-based optimization.



4.1. Introduction

Many commonly used deep reinforcement learning (RL) algorithms estimate value func-

tions using bootstrapping, which corresponds to sequentially fitting value functions to target

value estimates generated from the value function learned in the previous iteration. Despite

high-profile achievements [197], these algorithms are highly unreliable due to poorly under-

stood optimization issues. Although a number of hypotheses have been proposed to explain

these issues [2, 26, 73, 101, 142, 121], a complete understanding remains elusive.

We identify an “implicit under-parameterization” phenomenon that emerges when value

networks are trained using gradient descent combined with bootstrapping. This phenomenon

manifests as an excessive aliasing of features learned by the value network across states, which

is exacerbated with more gradient updates. While the supervised deep learning literature

suggests that some feature aliasing is desirable for generalization [e.g., 83, 13], implicit

under-parameterization results in more pronounced aliasing than in supervised learning.

This over-aliasing causes an otherwise expressive value network to implicitly behave as an

under-parameterized network, often resulting in poor performance.

Implicit under-parameterization becomes aggravated when the rate of data re-use is

increased, restricting the sample efficiency of deep RL methods. In online RL, increasing

the number of gradient steps in between data collection steps for data-efficient RL [73, 70]

causes the problem to emerge more frequently. In the extreme case when no additional data

is collected, referred to as offline RL [125, 4, 133], implicit under-parameterization manifests

consistently, limiting the viability of offline methods.

We demonstrate the existence of implicit under-parameterization in common value-based

deep RL methods, including Q-learning [156, 93] and actor-critic [85], as well as neural

fitted-Q iteration [180, 65]. To isolate the issue, we study the effective rank of the features in

the penultimate layer of the value network (Section 4.4). We observe that after an initial

learning period, the rank of the learned features drops steeply. As the rank decreases, the

ability of the features to fit subsequent target values and the optimal value function generally

deteriorates and results in a sharp decrease in performance (Section 4.4.1).

To better understand the emergence of implicit under-parameterization, we formally study

the dynamics of Q-learning under two distinct models of neural net behavior (Section 4.5):

kernel regression [105, 159] and deep linear networks [12]. We corroborate the existence of

this phenomenon in both models, and show that implicit under-parameterization stems from

a pathological interaction between bootstrapping and the implicit regularization of gradient

descent. Since value networks are trained to regress towards targets generated by a previous

version of the same model, this leads to a sequence of value networks of potentially decreasing

expressivity, which can result in degenerate behavior and a drop in performance.

56





Algorithm 1 Fitted Q-Iteration (FQI)

1: Initialize Q-network Qθ, buffer µ.
2: for fitting iteration k in {1, . . . , N} do

3: Compute Qθ(s,a) and target values yk(s, a) = r + γ maxa′ Qk−1(s′, a′)
on {(s, a)} ∼ µ for training

4: Minimize TD error for Qθ via t = 1, · · · , T gradient descent updates,
minθ (Qθ(s,a)− yk)2

5: end for

of the penultimate layer of the deep Q-network as the learned feature matrix Φ, such that

Q(s, a) = wT Φ(s, a), where w ∈ R
d and Φ ∈ R

|S||A|×d.

For simplicity of analysis, we abstract deep Q-learning methods into a generic fitted

Q-iteration (FQI) framework [65]. We refer to FQI with neural nets as neural FQI [180].

In the k-th fitting iteration, FQI trains the Q-function, Qk, to match the target values,

yk = R + γP πQk−1 generated using previous Q-function, Qk−1 (Algorithm 1). Practical

methods can be instantiated as variants of FQI, with different target update styles, different

optimizers, etc.

4.3. Related Work

Prior work has extensively studied the learning dynamics of Q-learning with tabular

and linear function approximation, to study error propagation [160, 68] and to prevent

divergence [54, 149, 211, 53], as opposed to deep Q-learning analyzed in this work. Q-learning

has been shown to have favorable optimization properties with certain classes of features [77],

but our work shows that the features learned by a neural net when minimizing TD error do

not enjoy such guarantees, and instead suffer from rank collapse. Recent theoretical analyses

of deep Q-learning have shown convergence under restrictive assumptions [237, 34, 240, 234],

but Theorem 2 shows that implicit under-parameterization appears when the estimates of the

value function approach the optimum, potentially preventing convergence. Xu et al. [235? ]

present variants of LSTD [32], which model the Q-function as a kernel-machine but do not

take into account the regularization from gradient descent, as done in Equation 4.5.1, which

is essential for implicit under-parameterization. Igl et al. [101], Fedus et al. [69] argue that

non-stationarity arising from distribution shift hinders generalization and recommend periodic

network re-initialization. Under-parameterization is not caused by this distribution shift, and

we find that network re-initialization does little to prevent rank collapse (Figure 7). Luo

et al. [145] proposes a regularization similar to ours, but in a different setting, finding that

more expressive features increases performance of on-policy RL methods. Finally, Yang et al.

[236] study the effective rank of the Q∗-values when expressed as a |S| × |A| matrix in online

RL and find that low ranks for this Q∗-matrix are preferable. We analyze a fundamentally
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different object: the learned features (and illustrate that a rank-collapse of features can hurt),

not the Q∗-matrix, whose rank is upper-bounded by the number of actions (e.g., 24 for Atari).

4.4. Implicit Under-Parameterization in Deep Q-

Learning
In this section, we empirically demonstrate the existence of implicit under-parameterization

in deep RL methods that use bootstrapping. We characterize implicit under-parameterization

in terms of the effective rank [236] of the features learned by a Q-network. The effective rank

of the feature matrix Φ, for a threshold δ (we choose δ = 0.01), denoted as srankδ(Φ), is

given by srankδ(Φ) = min
{

k :
∑

k

i=1
σi(Φ)

∑
d

i=1
σi(Φ)

≥ 1− δ
}

, where {σi(Φ)} are the singular values of

Φ in decreasing order, i.e., σ1 ≥ · · · ≥ σd ≥ 0. Intuitively, srankδ(Φ) represents the number

of “effective” unique components of the feature matrix Φ that form the basis for linearly

approximating the Q-values. When the network maps different states to orthogonal feature

vectors, then srankδ(Φ) has high values close to d. When the network “aliases” state-action

pairs by mapping them to a smaller subspace, Φ has only a few active singular directions,

and srankδ(Φ) takes on a small value.

Definition 1. Implicit under-parameterization refers to a reduction in the effective rank of

the features, srankδ(Φ), that occurs implicitly as a by-product of learning deep neural network

Q-functions.
While rank decrease also occurs in supervised learning, it is usually beneficial for obtaining

generalizable solutions [83, 13]. However, we will show that in deep Q-learning, an interaction

between bootstrapping and gradient descent can lead to more aggressive rank reduction (or

rank collapse), which can hurt performance.

Experimental setup. To study implicit under-parameterization empirically, we compute

srankδ(Φ) on a minibatch of state-action pairs sampled i.i.d. from the training data (i.e., the

dataset in the offline setting, and the replay buffer in the online setting). We investigate offline

and online RL settings on benchmarks including Atari games [19] and Gym environments [33].

We also utilize gridworlds described by Fu et al. [73] to compare the learned Q-function

against the oracle solution computed using tabular value iteration. We evaluate DQN [156]

on gridworld and Atari and SAC [85] on Gym domains.

Data-efficient offline RL. In offline RL, our goal is to learn effective policies by

performing Q-learning on a fixed dataset of transitions. We investigate the presence of

rank collapse when deep Q-learning is used with broad state coverage offline datasets from

Agarwal et al. [4]. In the top row of Figure 2, we show that after an initial learning period,

srankδ(Φ) decreases in all domains (Atari, Gym and the gridworld). The final value of

srankδ(Φ) is often quite small – e.g., in Atari, only 20-100 singular components are active for

512-dimensional features, implying significant underutilization of network capacity. Since

under-parameterization is implicitly induced by the learning process, even high-capacity value
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which corresponds to the solution obtained by performing gradient descent on TD error for a

small number of iterations with early stopping in each round [203] and thus, resembles how

the updates in Algorithm 1 are typically implemented in practice.

Qk+1 ← arg min
Q∈Q

∑

si,ai∈D

(Q(si, ai)− yk(si, ai))
2 + c

∑

(s,a)

∑

(s′,a′)

u((s, a), (s′, a′))Q(s, a)Q(s′, a′).

(4.5.1)

The solution to Equation 4.5.1 can be expressed as Qk+1(s, a) = gT
(s,a)(cI+)−1yk, where

is the Gram matrix for a special positive-definite kernel [61] and g(s,a) denotes the row

of corresponding to the input (s, a) [159, Proposition 1]. When combined with the fitted

Q-iteration recursion, setting labels yk = R + γP πQk−1, we recover a recurrence that relates

subsequent value function iterates

Qk+1 = (cI+)−1yk = (cI+)−1

︸ ︷︷ ︸

A

[R + γP πQk] = A

(
k∑

i=1

γk−i (P πA)k−i

)

R := AMkR.

(4.5.2)

Equation 4.5.2 follows from unrolling the recurrence and setting the algorithm-agnostic

initial Q-value, Q0, to be 0. We now show that the sparsity of singular values of the matrix Mk

generally increases over fitting iterations, implying that the effective rank of Mk diminishes

with more iterations. For this result, we assume that the matrix S is normal, i.e., the norm

of the (complex) eigenvalues of S is equal to its singular values.

Theorem 1. Let S be a shorthand for S = γP πA and assume S is a normal matrix.

Then there exists an infinite, strictly increasing sequence of fitting iterations, (kl)
∞
l=1

starting from k1 = 0, such that, for any two singular-values σi(S) and σj(S) of S with

σi(S) < σj(S),

∀ l ∈ N and l′ ≥ l,
σi(Mk

l′
)

σj(Mk
l′
)

<
σi(Mkl

)

σj(Mkl
)
≤

σi(S)

σj(S)
. (4.5.3)

Hence, srankδ(Mk
l′
) ≤ srankδ(Mkl

). Moreover, if S is positive semi-definite, then

(kl)
∞
l=1 = N, i.e., srank continuously decreases in each fitting iteration.

A stronger variant that shows a gradual decrease in the effective rank for fitting iterations

outside this infinite sequence can also be proved. As k increases along the sequence of

iterations given by k = (kl)
∞
l=1, the effective rank of the matrix Mk drops, leading to low

expressivity of this matrix. Since Mk linearly maps rewards to the Q-function (Equation 4.5.2),

drop in expressivity results of Mk in the inability to model the actual Qπ.

Summary of our analysis. Our analysis of bootstrapping and gradient descent from

the view of regularized kernel regression suggests that rank drop happens with more training

(i.e., with more rounds of bootstrapping). In contrast to self-distillation [159], rank drop may
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not happen in every iteration (and rank may increase between two consecutive iterations

occasionally), but srankδ exhibits a generally decreasing trend.

4.5.2. Analysis with Deep Linear Networks under Gradient Descent

While Section 4.5.1 demonstrates rank collapse will occur in a kernel-regression model

of Q-learning, it does not illustrate when the rank collapse occurs. To better specify a

point in training when rank collapse emerges, we present a complementary derivation for

the case when the Q-function is represented as a deep linear neural network [13], which is a

widely-studied setting for analyzing implicit regularization of gradient descent in supervised

learning [83, 84, 12, 13]. Our analysis will show that rank collapse can emerge as the generated

target values begin to approach the previous value estimate, in particular, when in the vicinity

of the optimal Q-function.

Proof strategy. Our proof consists of two steps: (1) We show that the effective rank

of the feature matrix decreases within one fitting iteration (for a given target value) due to

the low-rank affinity, (2) We show that this effective rank drop is “compounded” as we train

using a bootstrapped objective. Proposition 1 explains (1) and Proposition 2, Theorem 2

discuss (2).

Additional notation and assumptions. We represent the Q-function as a deep linear

network with at ≥ 3 layers, such that Q(s, a) = WNWφ[s; a], where N ≥ 3, WN ∈ R
1×dN−1

and Wφ = WN−1WN−2 · · ·W1 with Wi ∈ R
di×di−1 for i = 1, . . . , N − 1. Wφ maps an input

[s; a] to corresponding penultimate layer’ features Φ(s, a). Let Wj(k, t) denotes the weight

matrix Wj at the t-th step of gradient descent during the k-th fitting iteration (Algorithm 1).

We define Wk,t = WN (k, t)Wφ(k, t) and LN,k+1(Wk,t) as the TD error objective in the k-th

fitting iteration. We study srankδ(Wφ(k, t)) since the rank of features Φ = Wφ(k, t)[S,A] is

equal to rank of Wφ(k, t) provided the state-action inputs have high rank.

We assume that the evolution of the weights is governed by a continuous-time differential

equation [12] within each fitting iteration k. To simplify analysis, we also assume that all

except the last-layer weights follow a “balancedness” property, which suggests that the weight

matrices in the consecutive layers in the deep linear network share the same singular values

(but with different permutations). However, note that we do not assume balancedness for the

last layer which trivially leads to rank-1 features, making our analysis strictly more general

than conventionally studied deep linear networks. In this model, we can characterize the

evolution of the singular values of the feature matrix Wφ(k, t), using techniques analogous to

Arora et al. [13]:

Proposition 1. The singular values of the feature matrix Wφ(k, t) evolve according to:

σ̇r(k, t) = −N ·
(

σ2
r(k, t)

)1− 1

N−1 ·

〈

WN(k, t)T dLN,k+1(WK,t)

dW
, ur(k, t)vr(k, t)T

〉

, (4.5.4)
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note that when r(s, a) = 0 and P π = I, i.e., when the bootstrapping update resembles

self-regression, we first note that just “copying over weights” from iteration k − 1 to iteration

k is a feasible point for solving Equation 4.5.5, which attains zero TD error with no increase

in srankδ. A better solution to Equation 4.5.5 can thus be obtained by incurring non-zero TD

error at the benefit of a decreased srank, indicating that in this setting, srankδ(Wφ) drops in

each fitting iteration, leading to a compounding rank drop effect.

We next extend this analysis to the full bootstrapping setting. Unlike the self-training

setting, yk(s, a) is not directly expressible as a function of the previous Wφ(k, T ) due to

additional reward and dynamics transformations. Assuming closure of the function class

under the Bellman update [161, 40], we reason about the compounding effect of rank drop

across iterations in Proposition 2. Specifically, srankδ can increase in each fitting iteration

due to R and P π transformations, but will decrease due to low rank preference of gradient

descent. This change in rank then compounds as shown below.

Proposition 2. Assume that the Q-function is initialized to Wφ(0) and WN (0). Let the

Q-function class be closed under the backup, i.e., ∃ WP
N , WP

φ , s.t. (R + γP πQk−1)
T =

WP
N (k)WP

φ (k)[S;A]T , and assume that the change in srank due to dynamics and reward

transformations is bounded: srankδ(W
P
φ (k)) ≤ srankδ(Wφ(k − 1)) + ck. Then,

srankδ(Wφ(k)) ≤ srankδ(Wφ(0)) +
k∑

j=1

cj −
k∑

j=1

||Qj − yj||

λj

.

Proposition 2 provides a bound on the value of srank after k rounds of bootstrapping.

srank decreases in each iteration due to non-zero TD errors, but potentially increases due

to reward and bootstrapping transformations. To instantiate a concrete case where rank

clearly collapses, we investigate ck as the value function gets closer to the Bellman fixed

point, which is a favourable initialization for the Q-function in Theorem 2. In this case, the

learning dynamics begins to resemble the self-training regime, as the target values approach

the previous value iterate yk ≈ Qk−1, and thus, as we show next, the potential increase in

srank (ck in Proposition 2) converges to 0.

Theorem 2. Suppose target values yk = R + γP πQk−1 are close to the pre-

vious value estimate Qk−1, i.e. ∀ s, a, yk(s, a) = Qk−1(s, a) + ε(s, a), with

|ε(s, a)| ≪ |Qk−1(s, a)|. Then, there is a constant ǫ0 depending upon WN and

Wφ, such that for all ‖ε‖ < ε0, ck = 0. Thus, srank decreases in iteration k:

srankδ(Wφ(k)) ≤ srankδ(Wφ(k − 1))− ||Qk − yk||/λk.

To empirically show the consequence of Theorem 2 that a decrease in srankδ(Wφ)

values can lead to an increase in the distance to the fixed point in a neighborhood around the

fixed point, we performed a controlled experiment on a deep linear net shown in Figure 10

that measures the relationship between of srankδ(Φ) and the error to the projected TD fixed
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point |Q−Q∗|. Note that a drop in srankδ(Φ) corresponds to a increased value of |Q−Q∗|

indicating that rank drop when Q get close to a fixed point can affect convergence to it.

4.6. Conclusion

We identified an implicit under-parameterization phenomenon in deep RL algorithms

that use bootstrapping, where gradient-based optimization of a bootstrapped objective can

lead to a reduction in the expressive power of the value network. This effect manifests as

a collapse of the rank of the features learned by the value network, causing aliasing across

states and often leading to poor performance. Our analysis reveals that this phenomenon is

caused by the implicit regularization due to gradient descent on bootstrapped objectives.

More broadly, understanding the effects of neural nets and associated factors such as

initialization, choice of optimizer, etc. on the learning dynamics of deep RL algorithms,

using tools from deep learning theory, is likely to be key towards developing robust and

data-efficient deep RL algorithms.
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Conclusion

“The greatest threat to progress is the belief that the status quo is sufficient.” – ChatGPT

This thesis addressed several challenges that hinder the real-world application of re-

inforcement learning (RL). Our proposed solutions could enable a number of advances,

including:

— Reliable and reproducible RL research: Our proposed methodology for evaluat-

ing RL algorithms could help make RL research more reliable and reproducible. This

can allow researchers to more easily compare different algorithms and identify the

best ones for a particular task.

— Efficient and practical RL: Our proposed research workflow in Chapter 3, which

focuses on reusing existing progress, could help make RL research more efficient and

practical. This would allow researchers to build on the work of others and avoid

having to start from scratch every time they work on a new task. Future research

with our proposed workflow could further improve the practical applicability of RL.

— Generalizable RL algorithms: Our work on understanding how deep neural

networks interact with RL could help develop more generalizable RL algorithms. This

means that they are based on sound theoretical foundations and can be applied to a

wider range of tasks and environments.

Overall, I believe that these contributions can significantly enhance the capabilities of

reinforcement learning (RL) as a powerful and versatile tool for solving real-world problems.

I hope that this thesis will inspire others to continue to push the boundaries of RL research

and development. I am excited to see how this work will be used by researchers in the future

and what breakthroughs RL will enable.
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