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Résumé

Le domaine de l’écologie des réseaux est encore limité dans sa capacité à faire des inférences
mondiales à grande échelle. Ce défi est principalement dû à la difficulté d’échantillonnage
des interactions sur le terrain, entraînant de nombreuses « lacunes » en ce qui concerne
la couverture mondiale des données. Cette thèse adopte une approche « centrée sur les
méthodes » de l’écologie des réseaux et se concentre sur l’idée de développer des outils pour
aider à combler les lacunes en matière de données en présentant la prédiction comme une
alternative accessible à l’échantillonnage sur le terrain et introduit deux « outils » différents
qui sont prêts à poser des questions à l’échelle mondiale.

Le chapitre 1 présente les outils que nous pouvons utiliser pour faire des prédictions de
réseaux et est motivé par l’idée selon laquelle avoir la capacité de prédire les interactions entre
les espèces grâce à l’utilisation d’outils de modélisation est impératif pour une compréhension
plus globale des réseaux écologiques. Ce chapitre comprend une preuve de concept (dans
laquelle nous montrons comment un simple modèle de réseau neuronal est capable de faire
des prédictions précises sur les interactions entre espèces), une évaluation des défis et des
opportunités associés à l’amélioration des prédictions d’interaction et une feuille de route
conceptuelle concernant l’utilisation de modèles prédictifs pour les réseaux écologiques.

Les chapitres 2 et 3 sont étroitement liés et se concentrent sur l’utilisation de l’intégration
de graphiques pour la prédiction de réseau. Essentiellement, l’intégration de graphes nous
permet de transformer un graphe (réseau) en un ensemble de vecteurs, qui capturent une
propriété écologique du réseau et nous fournissent une abstraction simple mais puissante d’un
réseau d’interaction et servent de moyen de maximiser les informations disponibles. dispo-
nibles à partir des réseaux d’interactions d’espèces. Parce que l’intégration de graphes nous
permet de « décoder » les informations au sein d’un réseau, elle est conçue comme un outil
de prédiction de réseau, en particulier lorsqu’elle est utilisée dans un cadre d’apprentissage
par transfert. Elle s’appuie sur l’idée que nous pouvons utiliser les connaissances acquises
en résolvant un problème connu. et l’utiliser pour résoudre un problème étroitement lié. Ici,
nous avons utilisé le métaweb européen (connu) pour prédire un métaweb pour les espèces
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canadiennes en fonction de leur parenté phylogénétique. Ce qui rend ce travail particulière-
ment passionnant est que malgré le faible nombre d’espèces partagées entre ces deux régions,
nous sommes capables de récupérer la plupart (91%) des interactions.

Le chapitre 4 approfondit la réflexion sur la complexité des réseaux et les différentes ma-
nières que nous pourrions choisir de définir la complexité. Plus spécifiquement, nous remet-
tons en question les mesures structurelles plus traditionnelles de la complexité en présentant
l’entropie SVD comme une mesure alternative de la complexité. Adopter une approche phy-
sique pour définir la complexité nous permet de réfléchir aux informations contenues dans un
réseau plutôt qu’à leurs propriétés émergentes. Il est intéressant de noter que l’entropie SVD
révèle que les réseaux bipartites sont très complexes et ne sont pas nécessairement conformes
à l’idée selon laquelle la complexité engendre la stabilité.

Enfin, je présente le package Julia SpatialBoundaries.jl. Ce package permet à l’utili-
sateur d’implémenter l’algorithme de wombling spatial pour des données disposées de manière
uniforme ou aléatoire dans l’espace. Étant donné que l’algorithme de wombling spatial se
concentre à la fois sur le gradient et sur la direction du changement pour un paysage donné,
il peut être utilisé à la fois pour détecter les limites au sens traditionnel du terme ainsi
que pour examiner de manière plus nuancée la direction des changements. Cette approche
pourrait être un moyen bénéfique de réfléchir aux questions liées à la détection des limites
des réseaux et à leur relation avec les limites environnementales.

Mots-clés: réseaux écologiques, décomposition des valeurs singulières, apprentissage par
transfert, wombling spatial
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Abstract

The field of network ecology is still limited in its ability to make large-scale, global inferences.
This challenge is primarily driven by the difficulty of sampling interactions in the field, leading
to many ‘gaps’ with regards to global coverage of data. This thesis takes a ’methods-centric’
approach to network ecology and focuses on the idea of developing tools to help with filling
in the the data gaps by presenting prediction as an accessible alternative to sampling in the
field and introduces two different ’tools’ that are primed for asking questions at global scales.

Chapter 1 maps out tools we can use to make network predictions and is driven by the idea
that having the ability to predict interactions between species through the use of modelling
tools is imperative for a more global understanding of ecological networks. This chapter
includes a proof-of-concept (where we show how a simple neural network model is able to
make accurate predictions about species interactions), an assessment of the challenges and
opportunities associated with improving interaction predictions, and providing a conceptual
roadmap concerned with the use of predictive models for ecological networks.

Chapters 2 and 3 are closely intertwined and are focused on the use of graph embedding
for network prediction. Essentially graph embedding allows us to transform a graph (net-
work) into a set of vectors, which capture an ecological property of the network and provides
us with a simple, yet powerful abstraction of an interaction network and serves as a way
to maximise the available information available from species interaction networks. Because
graph embedding allows us to ’decode’ the information within a network it is primed as a tool
for network prediction, specifically when used in a transfer learning framework, this builds
on the idea that we can take the knowledge gained from solving a known problem and using
it to solve a closely related problem. Here we used the (known) European metaweb to predict
a metaweb for Canadian species based on their phylogenetic relatedness. What makes this
work particularly exciting is that despite the low number of species shared between these
two regions we are able to recover most (91%) of interactions.

Chapter 4 delves into thinking about the complexity of networks and the different ways
we might choose to define complexity. More specifically we challenge the more traditional
structural measures of complexity by presenting SVD entropy as an alternative measure of
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complexity. Taking a physical approach to defining complexity allows us to think about the
information contained within a network as opposed to their emerging properties. Interest-
ingly, SVD entropy reveals that bipartite networks are highly complex and do not necessarily
conform to the idea that complexity begets stability.

Finally, I present the Julia package SpatialBoundaries.jl. This package allows the
user to implement the spatial wombling algorithm for data arranged uniformly or randomly
across space. Because the spatial wombling algorithm focuses on both the gradient as well as
the direction of change for the given landscape it can be used both for detecting boundaries
in the traditional sense as well as a more nuanced look at at the direction of changes. This
approach could be a beneficial way with which to think about questions which relate to
boundary detection for networks and how these relate to environmental boundaries.

Keywords: ecological networks, singular value decomposition, transfer learning, spatial
wombling

6



Contents

Résumé . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

List of tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

List of figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

List of abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

0.1. A case for tools and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
0.1.1. Prediction for gap-filling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
0.1.2. From prediction to global patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
0.1.3. Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

0.2. Overview of key methodological approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
0.2.1. Transfer learning for network prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

0.2.1.1. Learning using graph embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
0.2.1.2. Graph embedding using SVD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
0.2.1.3. Transferring and inferring using phylogenetic relatedness . . . . . . . . . . . . . . 31
0.2.1.4. Novel Prediction using RDPG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

0.2.2. SVD entropy: a measure of network complexity . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
0.2.3. Spatial wombling for edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

0.2.3.1. Lattice wombling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
0.2.3.2. Triangulation wombling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
0.2.3.3. Boundary detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

0.3. Chapter summaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
0.3.1. Chapter 1: A roadmap for predicting ecological networks . . . . . . . . . . . . . . . . . . 35

7



0.3.2. Chapter 2: Graph embedding for network prediction . . . . . . . . . . . . . . . . . . . . . . 36
0.3.3. Chapter 3: Prediction in action: The Canadian Metaweb . . . . . . . . . . . . . . . . . . 37
0.3.4. Chapter 4: SVD entropy: a measure of network complexity. . . . . . . . . . . . . . . . 39
0.3.5. Chapter 5: SpatialBoundaries.jl: a software for boundary detection . . . . . . . . 40

0.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

Chapter 1. First article. A roadmap towards predicting species interaction
networks (across space and time) . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

1.2. A case study: deep learning of spatially sparse host-parasite interactions . . . . . 55

1.3. Predicting species interaction networks across space: challenges and
opportunities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

1.3.1. Challenges: constraints on predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
1.3.1.1. Ecological network data are scarce and hard to obtain. . . . . . . . . . . . . . . . . 61
1.3.1.2. Powerful predictive tools work better on large data volumes . . . . . . . . . . . 62
1.3.1.3. Scaling-up predictions requires scaled-up data . . . . . . . . . . . . . . . . . . . . . . . . . 62

1.3.2. Opportunities: an emerging ecosystem of open tools and data . . . . . . . . . . . . . 63
1.3.2.1. Data are becoming more interoperable . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
1.3.2.2. Machine learning tools are becoming more accessible . . . . . . . . . . . . . . . . . . 64

1.4. A primer on predicting ecological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.4.1. Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

1.4.1.1. What is a predictive model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
1.4.1.2. What do you need to build a predictive model? . . . . . . . . . . . . . . . . . . . . . . . 67
1.4.1.3. How do we validate a predictive model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

1.4.2. Networks and interactions as predictable objects . . . . . . . . . . . . . . . . . . . . . . . . . . 70
1.4.2.1. Why predict networks and interactions at the same time? . . . . . . . . . . . . . 70
1.4.2.2. What network properties should we use to inform our predictions of

interactions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
1.4.2.3. How do we predict how species that we have never observed together

will interact?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
1.4.2.4. How do we quantify interaction strength? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

8



1.4.2.5. How do we determine what interaction networks are feasible? . . . . . . . . . 75
1.4.2.6. What taxonomic scales are suitable for the prediction of species

interactions? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
1.4.2.7. What about indirect and higher-order interactions? . . . . . . . . . . . . . . . . . . . 76

1.4.3. Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.4.3.1. How much do networks vary over space? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
1.4.3.2. How do we predict what the species pool at a particular location is?. . . 77
1.4.3.3. How do we combine spatial and network predictions?. . . . . . . . . . . . . . . . . . 78

1.4.4. Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
1.4.4.1. Why should we forecast species interaction networks? . . . . . . . . . . . . . . . . . 79
1.4.4.2. How do we turn a predictive model into a forecasting model?. . . . . . . . . . 80
1.4.4.3. How can we validate a forecasting model? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

1.5. Conclusion: why should we predict species interaction networks? . . . . . . . . . . . . . 82

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

Chapter 2. Second article. Graph embedding and transfer learning can
help predict potential species interaction networks despite
data limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

2.2. A metaweb is an inherently probabilistic object . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

2.3. Graph embedding offers promises for the inference of potential interactions . . . 122
2.3.1. Graph embedding produces latent variables (but not traits) . . . . . . . . . . . . . . . 122
2.3.2. Ecological networks are good candidates for embedding . . . . . . . . . . . . . . . . . . . 123

2.4. An illustration of metaweb embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

2.5. The metaweb merges ecological hypotheses and practices . . . . . . . . . . . . . . . . . . . . . 131
2.5.1. Identifying the properties of the network to embed . . . . . . . . . . . . . . . . . . . . . . . . 132
2.5.2. Identifying the scope of the prediction to perform . . . . . . . . . . . . . . . . . . . . . . . . . 132

2.6. Conclusion: metawebs, predictions, and people . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

9



Chapter 3. Third article. Food web reconstruction through phylogenetic
transfer of low-rank network representation. . . . . . . . . . . . . . . . . 151

3.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

3.2. Method description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
3.2.1. Data used for the case study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2.2. Implementation and code availability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158
3.2.3. Step 1: Learning the origin network representation . . . . . . . . . . . . . . . . . . . . . . . . 159
3.2.4. Steps 2 and 3: Transfer learning through phylogenetic relatedness . . . . . . . . . 162
3.2.5. Step 4: Probabilistic prediction of the destination network . . . . . . . . . . . . . . . . 163
3.2.6. Data cleanup, discovery, validation, and thresholding . . . . . . . . . . . . . . . . . . . . . . 165

3.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

Chapter 4. Fourth article. SVD Entropy reveals the high complexity of
ecological networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

4.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

4.2. Data and methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186
4.2.1. Estimating complexity with rank deficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
4.2.2. Estimating complexity with SVD entropy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

4.3. Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.3.1. Most ecological networks are close to full-rank. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
4.3.2. Most elements of network structure capture network complexity . . . . . . . . . . . 189
4.3.3. Complex networks are not more robust to extinction . . . . . . . . . . . . . . . . . . . . . . 192
4.3.4. Plant-pollinator networks are slightly more complex . . . . . . . . . . . . . . . . . . . . . . . 194
4.3.5. Connectance constrains complexity (but also rank deficiency) . . . . . . . . . . . . . 194
4.3.6. Larger networks are less complex than they could be . . . . . . . . . . . . . . . . . . . . . . 197

4.4. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 5. Fifth article. SpatialBoundaries.jl: Edge detection using spatial
wombling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205

10



5.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
5.1.1. Rate of change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
5.1.2. Direction of change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
5.1.3. Candidate boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

5.2. Methods and features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
5.2.1. Wombling. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.2.2. Overall mean wombling value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
5.2.3. Boundaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

5.3. Woody areas of the Hawaiian Islands: a wombling example . . . . . . . . . . . . . . . . . . . 213

5.4. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220

Chapter 6. General Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

6.1. What we have learnt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.1.1. Prediction is attainable and feasible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
6.1.2. Tools for cross-regional comparison. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
6.1.3. Putting it all together. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

6.2. The direction moving forward . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.2.1. Scrutinising our methods. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
6.2.2. Defining ecotrophic zones . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

6.2.2.1. How do the structures within networks vary . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
6.2.2.2. Boundaries for policy or management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

6.2.3. The future collaborative toolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

Appendix A. Supplementary material for chapter 3 . . . . . . . . . . . . . . . . . . . . . . 237

A.1. SVD does not overfit on the European network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
A.1.1. Threshold estimation is robust to species sub-sampling . . . . . . . . . . . . . . . . . . . 238
A.1.2. RDPG recovers withheld interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
A.1.3. RDPG yields an accurate classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
A.1.4. RDPG recreates ecologically realistic networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 244
A.1.5. Consequences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246

11



A.2. The Normal model of latent variable evolution over-predicts . . . . . . . . . . . . . . . . . 247

A.3. RDPG reconstructed networks have diverse structures . . . . . . . . . . . . . . . . . . . . . . . 252

Appendix B. Supplementary material for chapter 2 . . . . . . . . . . . . . . . . . . . . . . 255

Appendix C. Understanding where networks stop . . . . . . . . . . . . . . . . . . . . . . . . 256

C.1. Why boundaries are interesting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C.2. A metacommunity model for boundary detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

C.3. A toy example of boundary detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260

12



List of tables

1 Overview of the validation statistics applied to the case study, alongside the
criteria indicating a successful classifier and a guide to interpretation of the values.
Taken together, these validation measures indicate that the model performs well,
especially considering that it is trained from a small volume of data. . . . . . . . . . . . . 70

1 Overview of some common graph embedding approaches, by type of embedded
objects, alongside examples of their use in the prediction of species interactions.
These methods have not yet been routinely used to predict species interactions;
most examples that we identified were either statistical associations, or analogues
to joint species distribution models. See also Box 1 for an additional discussion on
Graph Neural Networks. a: application is concerned with statistical interactions,
which are not necessarily direct biotic interactions; b:application is concerned
with joint-SDM-like approach, which is also very close to statistical associations
as opposed to direct biotic interactions. Given the need to evaluate different
methods on a problem-specific basis, the fact that a lot of methods have not
been used on network problems is an opportunity for benchmarking and method
development. Note that the row for PCA also applies to kernel/probabilistic
PCA, which are variations on the more general method of SVD. Note further that
tSNE has been included because it is frequently used to embed graphs, including
of species associations/interactions, despite not being strictly speaking, a graph
embedding technique (see e.g., Chami et al., 2022.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

1 Overview of the web-of-life.es dataset. We used all networks with up to 500
species. Although there are spatial biases in the sampling of interaction types
(and some interaction types being under-represented), this dataset covers a range
of latitudes from -43 degrees south to 81 degrees north. The average richness
of the top and bottom level of the bipartite networks are also given in the last
columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

13



1 Intervals used for the uniform distribution from which interaction strengths values
are drawn from for the different types of species pair interactions. Note this
is represent the effect of species type 1 on species type 2 i.e., herbivore-plant
represents the effect of a herbivore species on a plant species . . . . . . . . . . . . . . . . . . . . 257

2 Parameters for the normal distributions used to determine the dispersal decay (L)
for each species depending on its trophic level. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258

14



List of figures

1 One of the biggest factors limiting our ability to ask global questions about
ecological networks is the lack of global data. This figure provides a high-level
overview of how the development and adoption of predictive methods will equip
us to begin asking and answering large-scale questions. . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1 Proof-of-Concept: An empirical metaweb (from Hadfield et al., 2014, i.e. a list of
known possible interactions within a species pool, is converted into latent features
using probabilistic PCA, then used to train a deep neural network to predict
species interactions. Panels A and B represent, respectively, the ROC curve
and the precision-recall curve, with the best classifier (according to Youden’s J)
represented by a black dot. The expected performance of a neutral “random-
guessing” classifier is shown with a dashed line. Panel C shows the imputed using
t-distributed stochastic neighbour embedding (tSNE), and the colours of nodes are
the cluster to which they are assigned based on a k-means clustering of the tSNE
output. Empirical interactions are shown in purple, and imputed interactions in
grey. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

2 A conceptual roadmap highlighting key areas for the prediction of ecological
networks. Starting with the input of data from multiple sources, followed by a
modelling framework for ecological networks and the landscape, which are then
ultimately combined to allow for the prediction of spatially explicit networks. . . . 60

3 The nested nature of developing predictive and forecasting models, showcases the
forward problem and how this relies on a hierarchical structure of the modelling
process. The choice of a specific modelling technique and framework, as well as
the data retained to be part of this model, proceeds directly from our assumptions
about which ecological mechanisms are important in shaping both extant and
future data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

15



1 The embedding process (A) can help to identify links (interactions) that may have
been missed within the original community (represented by the orange dashed
arrows, B). Transfer learning (D) allows for the prediction links (interactions)
even when novel species (C) are included alongside the original community. This
is achieved by learning using other relevant predictors (e.g., traits) in conjunction
with the known interactions to infer latent values (E). Ultimately this allows us
to predict links (interactions) for species external from the original sample (blue
dashed arrows) as well as missing within sample links (F). Within this context the
predicted (and original) networks as well as the ecological predictors used (green
boxes) are products that can be quantified through measurements in the field,
whereas the embedded as well as imputed matrices (purple box) are representative
of a decomposition of the interaction matrices onto the embedding space . . . . . . . . 121

2 Validation of an embedding for a host-parasite metaweb, using Random Dot
Product Graphs. A, decrease in approximation error as the number of dimensions
in the subspaces increases. B, increase in cumulative variance explained as the
number of ranks considered increases; in A and B, the dot represents the point of
inflexion in the curve (at rank 39) estimated using the finite differences method.
C, position of hosts and parasites in the space of latent variables on the first and
second dimensions of their respective subspaces (the results have been clamped to
the unit interval). D, predicted interaction weight from the RDPG based on the
status of the species pair in the metaweb. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3 Ecological analysis of an embedding for a host-parasite metaweb, using Random
Dot Product Graphs. A, relationship between the number of parasites and
position along the first axis of the right-subspace for all hosts, showing that
the embedding captures elements of network structure at the species scale. B,
weak relationship between the body mass of hosts (in grams) and the position
alongside the same dimension. C, weak relationship between body mass of hosts
and parasite richness. D, distribution of positions alongside the same axis for
hosts grouped by taxonomic family. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

1 Overview of the phylogenetic transfer learning (and prediction) of species
interactions networks. Starting from an initial, known, network, we learn its
representation through a graph embedding step (here, a truncated Singular Value
Decomposition; Step 1), yielding a series of latent traits (latent vulnerability traits

16



are more representative of species at the lower trophic-level and latent generality
traits are more representative of species at higher trophic-levels; sensu Schoener,
1989); second, for the destination species pool, we perform ancestral character
estimation using a phylogeny (here, using a Brownian model for the latent traits;
Step 2); we then sample from the reconstructed distribution of latent traits (Step
3) to generate a probabilistic metaweb at the destination (here, assuming a uniform
distribution of traits), and threshold it to yield the final list of interactions (Step
4). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

2 Left: representation of the scree plot of the singular values from the t-SVD on the
European metaweb. The scree plot shows no obvious drop in the singular values
that may be leveraged to automatically detect a minimal dimension for embedding,
after e.g., Zhu and Ghodsi, 2006. Right: cumulative fraction of variance explained
by each dimension up to the rank of the European metaweb. The grey lines
represent cutoffs at 50, 60, . . . , 90% of variance explained. For the rest of the
analysis, we reverted to an arbitrary threshold of 60% of variance explained, which
represented a good tradeoff between accuracy and reduced number of features. . . 161

3 Visual representation of the left (green/purple; left-side matrix) and right
(green/brown; top matrix) subspaces, alongside the adjacency matrix of the
food web they encode (grey scale). Where the color saturation is the magnitude
of the latent trait value. The European metaweb is on the left, and the imputed
Canadian metaweb (before data inflation) on the right. This figure illustrates how
much structure the left subspace captures. As we show in Figure 6, the species
with a value of 0 in the left subspace are species without any prey. . . . . . . . . . . . . . . 164

4 Left: comparison of the probabilities of interactions assigned by the model to
all interactions (grey curve), the subset of interactions found in GloBI (red),
and in the Strong and Leroux, 2014 Newfoundland dataset (blue). The model
recovers more interactions with a low probability compared to data mining, which
can suggest that collected datasets are biased towards more common or easy
to identify interactions. Right: distribution of the in-degree and out-degree of
the mammals from Canada in the reconstructed metaweb, where the rank is the
maximal number of linearly independent columns (interactions) in the metaweb.
This figure describes a flat, relatively short food web, in which there are few
predators but a large number of preys. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

17



5 Left: effect of varying the cutoff for probabilities to be considered non-zero on
the number of unique links and on L̂, the probabilistic estimate of the number of
links assuming that all interactions are independent. Right: effect of varying the
cutoff on the number of disconnected species, and on network connectance. In
both panels, the grey line indicates the cutoff P (i → j) ≈ 0.08 that resulted in
the first species losing all of its interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167

6 Top: biological significance of the first dimension. Left: there is a linear
relationship between the values on the first dimension of the left subspace and
the generality, i.e., the relative number of preys, sensu Schoener, 1989. Species
with a value of 0 in this subspace are at the bottom-most trophic level. Right:
there is, similarly, a linear relationship between the position of a species on
the first dimension of the right subspace and its vulnerability, i.e., the relative
number of predators. Taken together, these two figures show that the first-order
representation of this network would capture its degree distribution. Bottom:
topological consequences of the first dimension. Left: differences in the z-scores of
the actual configuration model for the reconstructed network and the prediction
based only on the first dimension (with a deeper saturation indicating a bigger
difference in scores). Right: distribution of the differences in the left panel. . . . . . . 171

1 The relationship between network richness and relative rank deficiency, and SVD
entropy. The different types of interactions are indicated by the colours. . . . . . . . . . 189

2 The relationship between SVD entropy and the relative rank deficiency of different
species interaction networks Colours indicate the different interaction types of the
networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

3 The relationship between SVD entropy and the nestedness (left panel), spectral
radius (central panel) and connectance (right panel) of ecological networks.
Colours indicate the different interaction types of the networks. . . . . . . . . . . . . . . . . . 191

4 The relationship between SVD entropy and the area under an extinction curve
(as a proxy for resilience to extinction) for both different extinction mechanisms
(Random = the removal of a random species, Decreasing = the removal of
species in order of decreasing number of interactions (i.e most to least number of
interactions), Increasing = the removal of species in order of increasing number
of interactions) as well as along different dimensions (species groups) of the

18



network (All = any species, Top-level = only top-level species, and Bottom-level
= only bottom- level species) Colours indicate the different interaction types of
the networks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

5 The calculated SVD entropy of different interaction networks of different
interaction types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

6 The relationship between the maximum and minimum value of SVD entropy of a
collection of random interaction networks (using simulated annealing) for a given
connectance spanning from 0 to 1 (left panel) and how this relates to the relative
rank deficiency of networks (right panel) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

7 The counts of the zi-scores of different types of networks for both Type I and
Type II null models. Negative zi-scores indicate networks with an SVD entropy
that is lower i.e., less complex than expected. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

8 The logistic zi-scores of different types of networks for both Type I and Type
II null models compared to the species richness of the network. Where zi-scores
below 0.5 indicate networks with an SVD entropy that is lower i.e., less complex
than expected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

1 A visual conceptualisation of how the wombling algorithm interpolates points
across a geographical area (in this case the points are regularly arrange in space)
for a variable of interest (z) to calculate the rate (m) as well as the direction (θ)
of change. Here the sampled landscape is shown in panel A with the size of the
points correlating to the magnitude if the variable of interest (z). Panel B shows
the two components of the landscape once wombled, which are then combined
and superimposed across the original landscape in panel C, with the dashed line
indicating a candidate boundary. Here the colours as well as the size of the arrows
indicate the rate of change and the direction should be interpreted as moving from
the ‘low’ to the ‘high’ point. Note that the dimensions of the wombled landscapes
(B) will be smaller than the original landscape (A) due to the interpolation process
i.e., where we originally had an n× r grid we now have an (n - 1)(r - 1) sized grid.208

2 A Woody plant coverage for Southwestern islands of the Hawaiian Islands based
on the sum of the cover for layers 1-4 from the EarthEnv project. B the overall
mean rate of change (i.e., the composite of the wombled layers for layers 1-4)
but only for the cells identified as candidate boundary cells when using a 10%

19



threshold, with identified boundaries (shown in green) over the rate of change
(shown in levels of grey). The final two panels show the direction of change for all
cells (C) and only for cells considered to be candidate boundary cells (D). . . . . . . 215

20



List of abbreviations

RDPG Random Dot Product Graph

SVD Singular Value Decomposition

t-SVD truncated Singular Value Decomposition

21



For those with the messy notebooks.
To those always seeking a way

22



Acknowledgements

To my many, many (awesome and all around great) collaborators. To the roadmap
team; Michael Catchen, Francis Banville, Dominique Caron, Gabriel Dansereau, Philippe
Desjardins-Proulx, Norma Forero-Muñoz, Gracielle Higino, Benjamin Mercier, Andrew
Gonzalez, Dominique Gravel, and Laura Pollock — thank you for bringing your diverse
scientific backgrounds, thoughts, and ideas to the table. To the metaweb team; Salomé
Bouskila, Francis Banville, Ceres Barros, Dominique Caron, Maxwell Farrell, Marie-Josée
Fortin, Victoria Hemming, Benjamin Mercier, Laura Pollock, and Rogini Runghen — thanks
for the (seemingly) endless rounds of feedback and tweaking to make the manuscripts more
reader friendly and robust - I think we’re almost there! A special shout out to Giulio Dalla
Riva for bringing the endless energy and enthusiasm when it comes to anything SVD related!

To my advisor Timothée Poisot. Thank you for taking in the field ecologist who wanted
to dip their toes into the world of thinking boxes and species interaction networks. (Turns
out that the need to have a little cry before continuing with work is not unique to field work
but also extends to trying to make the code go brrr). Thanks for affording me the space to
grow not only as a scientist but also as an artist (sensu lato). The chance to experiment
with visual ways to communicate our science may not necessarily have resulted in more
succinct manuscripts but it has for sure changed the way I interact with my research and
makes me think about the ways we communicate our science maybe a bit too much!

To the (past and present) members of the Poisot Lab. The last few years may not have
been the best environment for nurturing a collaborative environment but you made the
best of it. Despite the lag-y online calls and weird time differences you managed to make
’lab-life’ feel somewhat normal. Thanks for being a first port of call when trying to navigate
university administration. Sorry for always running overtime in my 1:1’s (despite my best
efforts). Look after Ahsoka!

23



A special nod to Gracielle Higino. Thanks for always bringing the ENERGY and for
your continued mentorship and commitment to making science a KINDER place.

To mom and dad. Thanks for letting me draw on the windows when the notebook space
just wasn’t enough. I’m sure the funny letters will wash off one day...

Thank you to those that are the driving force behind the Living Data Project and BIOS2

training programs. The exposure and training opportunities related to ’real world’ science
outside of school has been invaluable.

This work would not have been possible without funding from the Courtois Foundation,
the Canadian Institute for Ecology & Evolution (CIEE), the Viral Emergence Research
Initiative (VERENA), and support provided by Calcul Québec (www.calculquebec.ca) and
Compute Canada (www.computecanada.ca).

24



Introduction

0.1. A case for tools and methods

The way that species interact with one another provides us with a ‘point of departure’

from which to study or understand biodiversity and the environment at a range of scales

(Jordano, 2016a). This ranges from understanding how interactions can shape and drive

population dynamics, the maintenance and functioning of ecosystems, as well as long-term

evolutionary dynamics (Albrecht et al., 2018; Landi et al., 2018). Species interactions (and

the resulting networks) can be formalised and viewed under the lens of graph theory (Dale

and Fortin, 2010) - with species being nodes and interactions being edges. This provides

us with a robust framework built on a mathematical foundation from which to approach

network analysis and quantify various measures of network structure and behaviour (Delmas

et al., 2018).

In the process of assembling ecological networks as graphs we are also ‘encoding’ an

‘ecological fingerprint’ for that community. This raises the question of how far we can

take the idea of ‘decoding’ networks by leveraging the mathematical framework to better

understand the information that they contain. In particular by leaning on the mathematical

properties (and the ecological information they represent) to make network predictions, and

as a means to provide us with more information as to how networks may vary over time or

spatial scales.

Although the field of network ecology might have a strong conceptual and theoretical

basis from which to work with, we are still at somewhat of a loss when is comes to our

ability to leverage this framework to make any generalised or macroecological conclusions



about the properties of networks over larger geographic scales (although see Baiser et al.,

2019; Pinheiro et al., 2023 who explicitly try and tie networks to classical macroecological

theories/laws). This limited understanding can (at least in a large part) be attributed to

the sparse global coverage of interaction data (Cameron et al., 2019; Poisot, Bergeron, et

al., 2021), which itself is driven by the immense challenges associated with observing and

recording interactions in the field (Bennett et al., 2019; Jordano, 2016b). Given the limited

feasibility of being able to curate interaction datasets in a way that will result in a global

coverage it makes sense to turn to predictive methods as a way to begin filling in the ’gaps’

of the global map of interaction data. Although this may seem a daunting task we can lean

on the mathematical formalisation and the information that networks contain to make this

a possibility, once we have crossed that bridge (i.e., filled the global gaps) we may then find

ourselves in a position to be able to ask more global-minded questions (Thuiller et al., 2023;

Windsor et al., 2023).

This pipeline from prediction to global questions is shown in Figure 1 and is the mainstay

of this thesis document i.e., the thesis itself can be thought of as two parts. The first part

is addressing the need for predictive tools and discusses as well as develops methods we can

use to begin filling in the global map. The second phase of the thesis briefly touches on

some new ’tools’ we can use when we start to think about large scale questions pertaining to

network properties, specifically the question of network complexity (and how the definition

thereof matters), as well as detecting boundaries between networks.

0.1.1. Prediction for gap-filling

Current methods for network prediction are often conceptualised around and focused

on a single facet of species interactions, such phylogenetic matching (Elmasri et al., 2020;

Pomeranz et al., 2018), or functional traits (Bartomeus et al., 2016). More recently applica-

tions of ensemble modelling (Becker et al., 2020) and discussions on the potential of machine

learning methods (Desjardins-Proulx et al., 2019) show promise in addressing methodologi-

cal constraints to prediction and the growth of open tools and data may mitigate some data
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Fig. 1. One of the biggest factors limiting our ability to ask global questions about ecological
networks is the lack of global data. This figure provides a high-level overview of how the
development and adoption of predictive methods will equip us to begin asking and answering
large-scale questions.

constraints in the coming years. However, we still lack a clear path forward or research

agenda as to how we can maximise and integrate these resources to allow for ecologically

plausible, and accurate, predictions.

The task of trying to predict networks is discussed in chapters 1 and 2, where we map

out and discuss some of the methodological considerations we are faced with when trying to

approach the task of network prediction. Chapter 1 provides a more scoping discussion on

these methods, whereas Chapter 2 represents a more detailed discussion on the prospect of

using graph embedding and transfer learning for network prediction. These specific methods

are also the framework presented and used in Chapter 3. This section acts as a ’proof-of-

concept’ showcasing that the task of network prediction is both attainable and capable of

producing ecologically plausible networks. Prediction is thus a way in which we can move

from a scenario where we have incomplete global coverage of interaction data (i.e., a ’grey

scaled’ world) to one that exists with less gaps in the data (i.e., is more ’colourful’; Figure 1).
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0.1.2. From prediction to global patterns

Although prediction is a powerful tool in the immediate/local sense (e.g., it can allow local

land managers/custodians to have a first approximation of how species may be interacting

in that given area) it is of course also a feasible way to fill in the global interaction network

map. A ’filled map’ will put us in the position to develop a more mechanistic, global-scaled,

understanding of networks. Specifically, we need tools that will allow us to use the correct

methodology when comparing networks form different regions (chapter 4) and we can begin

to leverage those data to understand the spatial structure of networks (chapter 5). Chapter 4,

which presents a different, more information theory approach to defining complexity using

the singular value vector component of an SVD (Shannon, 1948), and the final chapter of

this thesis (chapter 5) is a Julia package that allows users to implement the Wombling

algorithm (an edge detection mechanism; Womble, 1951).

Ecological networks have always been deemed to be “complex”, and an interest in the

notion of complexity has (in part) been tied to network stability (Landi et al., 2018). How-

ever the relationship between complexity and stability remains inconsistent when rigorously

tested on empirical datasets (Jacquet et al., 2016), and although ecological networks may

be complex, the ways that we currently define complexity do not translate into predictions

about their stability. Traditionally network ecology readily assumes that because a system

has more components (e.g., links) it means that the system itself is complex. In chapter 4 we

challenge the more traditional structural (‘behavioural’) measures of complexity and present

SVD entropy as an alternative (’physical’) measure of complexity.

Being able to subdivide networks into patches within a landscape will help us to better

understand the boundaries of (and between) networks as well as how these may relate to

species or community changes and boundaries - such as when transitioning across habitat

‘boundaries’ (Hackett et al., 2019). Wombling has been discussed as a useful tool for spatial

analyses in ecology (Fortin and Dale, 2005) and has been used to detect transitions across a

landscape (Philibert et al., 2008), changes in biological variables in communities (Barbujani

et al., 1989) and to analyse the spread of invasive species (Fitzpatrick et al., 2010).
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0.1.3. Objectives

Being able to understand, quantify, and work with ecological networks is important from

a conservation and land management perspective as this will have cascading implications

with regards to ecosystem functioning and stability. Yet we are severely hindered by a

lack of high-quality, usable data as well as an appropriate set of tools that can be used to

contextualise and understand ecological networks. There is a need for tools that can help us

construct networks for where there are no data i.e., make predictions, as well as developing

tools (or ideas) that can be used to help further our mechanistic understanding of networks

once we are at a point where we have the large scale data to do so. My work will help

address these two issues in the context of developing tools that will either directly enable us

to make predictions (Chapters 1, 2, and 3), or present methods that are aligned with global

(large-scale) questions that will allow us to compare networks (Chapter 4) or attempt to

delineate them (Chapter 5).

0.2. Overview of key methodological approaches

0.2.1. Transfer learning for network prediction

Transfer learning is a machine learning methodology that uses the knowledge gained

when solving a known problem and applying it to solve a (related) problem by transferring

the knowledge across a shared medium (space; Pan and Yang, 2010; Torrey and Shavlik,

2010). The concept of transfer learning is an approach that is particularly well suited for

the problem of network prediction as it allows us to lean on the data that are available

to enable us to make de novo interaction network predictions. This could be as simple

as pinpointing missing interactions in the existing data (e.g., pairwise learning has been

used to predict plant-pollinator interactions; Stock, 2021) as well as a way to predict novel

interactions (i.e., fill in those global gaps) in a different location. This, in a sense, allows

us to bring knowledge with us from an area for which we have data to an area where it

is lacking. In the case of predicting species interactions, transfer learning is useful because
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interactions are phylogenetically conserved and thus phylogenetic relatedness can be used

to predict interactions (Davies, 2021; Elmasri et al., 2020; Gómez et al., 2010). Chapter 3

presents a transfer learning framework and uses the task of constructing a Canadian metaweb

(a list of all possible interactions for a species pool) using the European metaweb assembled

by (Maiorano et al., 2020) as a proof-of-concept. Below is a high-level summary of that

framework, and a more detailed description of the workflow can be found here.

0.2.1.1. Learning using graph embedding. Before one can transfer any knowledge we

must first learn something about the system using known interaction network. Since ecolog-

ical networks can be represented by their adjacency matrices we can turn to graph theory

to help us find a way to learn something about the known interaction network. Graph

embedding is a low dimensional representation of the graph (interaction network) but, im-

portantly, still preserves its topology (Yan et al., 2005). This process essentially allows us to

learn something about where species (nodes) are situated within the network - which (in an

abstract way) informs us of the role a species plays in the community (e.g., the ‘predator-

ness’ or ‘prey-ness’ of a species). There are multiple embedding approaches discussed in

Chapter 2, but in the context of the framework developed in Chapter 3 we will focus on

the use of SVD as an embedding technique. SVD presents an appropriate embedding of

ecological networks, having been shown to both capture their complex, emerging properties

(Strydom et al., 2021) and allow for the highly accurate prediction of the interactions within

a single network (Poisot, Ouellet, et al., 2021).

0.2.1.2. Graph embedding using SVD. Singular Value Decomposition (Forsythe and

Moler, 1967; Golub and Reinsch, 1971) is the factorisation of an adjacency matrix A (where

Am,n ∈ B) into the form:

U · Σ · VT

Where U is an m×m orthogonal matrix and V an n×n orthogonal matrix. The columns

in these matrices are, respectively, the left- and right-singular vectors of A. Σ is a diagonal

matrix that contains only non-negative σ values.
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An SVD can be truncated so as to remove additional noise in the dataset by omitting

non-zero and/or smaller σ values from Σ using the rank of the matrix. Under a t-SVD Am,n

is decomposed so that Σ is a square r × r diagonal matrix (whith 1 ≤ r ≤ rfull where rfull

is the full rank of A and r the rank at which we truncate the matrix). Additionally, Ut is

now a m × r semi unitary matrix and V′
t an n × r semi-unitary matrix.

In the context of ’learning using embedding’ the learned information is captured using

an SVD, however for the task of network prediction we modified the products of the SVD

so that they could be used for an RDPG. An RDPG estimates the probability of observing

interactions between nodes (species) as a function of the latent variables of the nodes. An

RDPG allows us to turn an SVD (which consists of three matrices) into two matrices that can

be multiplied to provide an approximation of the network. The latent variables used for the

RDPG, called the left and right subspaces are thus constructed from an SVD and are defined

as L = U
√

Σ, and R =
√

ΣV′ – using the full rank of A, L R = A, and using any smaller

rank results in L R ≈ A. These subspaces are ecologically informative and tell us about

the ’generality’ (think predator capacity, sensu Schoener, 1989) and ’vulnerability’ (think

capacity to be prey, sensu Schoener, 1989) of the species in the European network. This in

essence provides us with an idea of where a species is likely to occur within a network/the

space it occupies in the network.

0.2.1.3. Transferring and inferring using phylogenetic relatedness. In order to

transfer the knowledge (the generality and vulnerability values) from a known network to

the destination species pool (i.e., a community for which we have no interaction data), we

performed ancestral character estimation using a Brownian motion model and the Upham

et al., 2019 mammalian phylogeny. This uses the estimated feature vectors (left and right

subspaces) for the species from the known network to create a state reconstruction for all

species and allows us to impute the missing generality and vulnerability values for the des-

tination species pool that are not already in the known network. Essentially this allows us

to infer where in the two subspaces the destination species are located.
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0.2.1.4. Novel Prediction using RDPG. As we now essentially have the left and right

subspaces for the destination species pool we can directly multiply these to yield the metaweb,

specifically using an RDPG. Because of how the phylogenetic reconstruction was imple-

mented the left and right subspaces have an associated uncertainty, therefore, we can as-

semble a probabilistic metaweb, sensu Poisot et al., 2016, i.e., in which every interaction is

represented as a single, independent, Bernoulli event of probability p.

0.2.2. SVD entropy: a measure of network complexity

We can also use SVD as a way to define the complexity of a network. Two potential

candidate measures of complexity can be derived based on the ‘physical structure’ of (i.e.,

information within) a network. The first measure is the rank of the matrix. The rank of

A (noted as r = rk(A)) is the dimension of the vector space spanned by the matrix and

corresponds to the number of linearly independent rows or columns, which works as an

estimate of its ‘external complexity’, since it describes the dimensionality of the vector space

of the matrix. Looking at this from an ecological standpoint, we can think of the this as

quantifying the number of unique ‘strategies’ within a network.

The second measure is to calculate the entropy of the matrix obtained through SVD by

using the singular values Shannon, 1948. This so-called SVD entropy measures the extent to

which each rank encodes an equal amount of information (as the singular values capture the

importance of each rank to reconstruct the original matrix) this approach therefore serves

as a measure of ‘internal complexity’.

Intuitively, the singular value i (σi) measures how much of the dataset is (proportionally)

explained by each vector - therefore, one can measure the entropy of σ following Shannon,

1948. High values of SVD entropy reflects that all vectors are equally important, i.e., that the

structure of the ecological network cannot be efficiently compressed, and therefore indicates

a high complexity (Gu and Shao, 2016). Because networks have different dimensions, we can

use Pielou’s evenness (Pielou, 1975) to ensure that values are lower than unity, and quantify

SVD entropy, using si = σi/sum(σ) as:
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J = − 1
ln(k)

k∑
i=1

si · ln(si)

Where k = rk(A) i.e., the rank of the matrix, which is equal to the number of non-zero

entries in Σ as per the Eckart-Young-Mirsky theorem (Eckart and Young, 1936; Golub et al.,

1987).

0.2.3. Spatial wombling for edge detection

Spatial wombling (an edge detection algorithm; Womble, 1951). Chapter 5 presents a

Julia package that implements both the lattice and triangulation wombling algorithms.

Broadly, wombling interpolates between a given set of points but in addition to looking

at the deference between said points it also looks at the direction (slope) of the difference

between points. First we can calculate the rate of change m which is calculated as:

m =

√
∂f(x,y)

∂x

2

+ ∂f(x,y)
∂y

2

This can be used to find the zones of rapid change across the landscape and identify

potential candidate boundaries (which would be where change is occurring most rapidly). It

is also possible to calculate the direction (θ) for each rate of change. This is calculated as:

θ = arctan
(

∂f(x,y)
∂y

/
∂f(x,y)

∂x

)
+ ∆

where ∆ =

 0 if ∂f(x,y)
∂x

≥ 0

180 if ∂f(x,y)
∂x

< 0


Both m and θ are an approximation on the ‘topology’ of a certain metric (z, e.g., number

of species) between a collection of points in a landscape. Similarity between the z values

indicates a uniformity between those points and thus a low rate of change whereas a high

degree of difference between points is indicative of rapid change i.e., a boundary as we

transition from one zone to the next.
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0.2.3.1. Lattice wombling. For a lattice of points where one will have sampling locations

arranged the ’topology’ i.e. function of the landscape as determined by z (f(x,y)) can be

defined as:

f(x,y) = z1(1 − x)(1 − y) + z2x(1 − y) + z3xy + z4(1 − x)y

0.2.3.2. Triangulation wombling. When working with points that are irregularly dis-

tributed across the landscape it is possible to use triangulation wombling (Fortin and Dra-

peau, 1995). The three nearest neighbours can be determined using a Delaunay triangulation

algorithm Delaunay, 1934 and f(x,y) can be defined as:

f(x,y) = ax + by + c

where:

[
a b c

]
=


x1 y1 1

x2 y2 1

x3 y3 1


−1

·
[

z1 z2 z3

]

and the position of the centroid between points is calculated as follows:

(x1 + x2 + x3

3

)
,
(y1 + y2 + y3

3

)
0.2.3.3. Boundary detection. Detecting boundaries i.e., areas where the angle of the

landscape transitions sharply is surprisingly simple. After having calculated the rate of

change (m) for the geographical area it is possible to use these values to identify and assign

potential boundaries (Fortin and Dale, 2005; Fortin and Drapeau, 1995; Oden et al., 1993).

Following the approach outlined in Fortin and Dale, 2005, a threshold value (or percentile

class) can be set and will determine what proportion of cells will be retained as potential

boundaries.
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0.3. Chapter summaries

0.3.1. Chapter 1: A roadmap for predicting ecological networks

Chapter 1 maps out a series of questions and considerations with regards to approaching

the challenge of predicting species interactions across space and time. This chapter represents

a scoping overview of the ’gap-filling’ portion of this thesis and strongly focuses on the idea

of networks as predictable objects. Section 1.3 starts by outlining the challenges that might

limit our ability to predict networks (which is primarily due to a limitation in data) but also

looks into the opportunities we have to try and circumvent or overcome these limitations.

Overall this section highlights the fact that one of the most limiting factors for prediction (a

lack of data) is also the reason we need predictive tools (to overcome the lack of data), and

that we are (methodologically and computationally) in a place where we can start to make

feasible predictions, particularly if we think about combining different data sources.

Section 1.2 does exactly this by providing a proof-of-concept showcasing the use of co-

occurrence and known interactions to predict novel interactions. This is done using the

Hadfield et al., 2014 dataset, which describes 51 host-parasite networks sampled across

space. Essentially this showcases how we can extract features for each species based on

co-occurrence, use said features to train an artificial neural network to predict interactions,

and apply this classifier to the original features to predict potential interactions across the

entire species pool. This framework essentially allows us to ’correct’ any false negatives

(interactions recorded as missing but are actually plausible) within the existing data. This

is particularly meaningful as interactions intrinsically vary across space and time, and given

the number of species that compose ecological communities, it can be tough to distinguish

between a true negative (where two species never interact) from a false negative (where two

species have not been observed interacting even though they actually do).

The final part of this manuscript (section 1.4) aims to provide a practical overview of

different components to think about and take into consideration when wanting to predict

networks. This body of work is intended to be something that can be taken and used as
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a brief primer, and as such focuses on discussing some fundamental ideas and concepts.

This includes breaking down aspects of the modelling process, aspects of species interaction

networks (and the interactions within them), and predicting networks over space and time.

As a whole, this chapter really serves to sketch out the ’nuts and bolts’ of wanting to take

on the task of network prediction and serve as a useful roadmap for those wishing to find a

more practical and attainable approach to addressing the global interaction data shortage.

0.3.2. Chapter 2: Graph embedding for network prediction

This chapter should be viewed as a prospective companion piece to the more ’tangible’

methods presented in chapter 3, and is strongly rooted in the realm of thinking about

network prediction. This chapter is still related to the idea of transfer learning for network

prediction, however it focuses more on the expanding how we think about (and can use) a

metaweb, as well as potential (alternative) graph embedding methodologies. This chapter

thus pushes forward the ’we need gap-filling methods’ agenda of this thesis and helps in

providing a larger discussion as to the alternative ways we can modify and approach the

transfer learning framework from chapter 3.

Section 2.2 provides a discussion on how we can push the original definition of a metaweb

developed by Dunne, 2006 in a new ’prediction friendly’ direction. As the term ’metaweb’

has been used multiple times it is perhaps useful to define it with regards to its original

function – to act as an inventory of all possible interactions for a given community. This

means that as a concept a metaweb is a realistic, and attainable object to try and predict,

however, it is beneficial to move away from thinking of the interactions in a metaweb as

binary and rather define the interactions as Bernoulli events. Fundamentally this will allow

us greater flexibility in how we weight rare interactions, provide a more nuanced overview

of how the community is actually interacting, or factor in a sense of ’uncertainty’ into our

predictions.

Section 2.3 provides a more detailed overview and discussion of how graph embedding

works and why it is a useful way to approach network prediction. This section also includes
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examples of different graph embedding techniques, and (where possible) their applications

to network ecology. The fundamental argument in favour of using network embedding for

network prediction is that it is capturing elements of the structure of a network (as opposed

to pairwise learning of species a eats b) and thus provides a more powerful abstraction of a

network that can be used for predicting networks for other, non-related, communities. There

is also an illustration of the embedding process, which is discussed in section 2.4 and acts

as a way to showcase how the embedding process captures ecological processes. A more

in-depth tutorial/breakdown of the analysis can be accessed through Appendix B.

The final section (subsection 2.5.1) is more focused on the limitations and scope of net-

work embedding and prediction. There is a particular focus on the limitations of taxonomic

overlap and the need for ’just the right amount’ of species to be shared between known

and target communities. There is of course also the challenge of political scale and how the

construction of metawebs are at regional scales that may not be ecologically relevant (but

are relevant for policy making). Although we are not able to confidently provide a solution

for this problem (as we do not even know what an ’ecologically relevant scale’ is) it is still

important to think about and grapple with these topics.

0.3.3. Chapter 3: Prediction in action: The Canadian Metaweb

Building on the ideas in chapter 1, work on the use of transfer learning for predicting de

novo interactions (Runghen et al., 2021), and the applicability of phylogenetic reconstruction

within the context of ecological networks e.g., (Braga et al., 2021), we set out to create a

probabilistic metaweb for terrestrial Canadian mammals in chapter 3. Despite their impor-

tance in many ecological processes, collecting data and information on ecological interactions

is an exceedingly challenging task. For this reason, large parts of the world have a data deficit

when it comes to species interactions and how the resulting networks are structured. A key

premise of this chapter is the idea of being able to take the information that we do have

and bring it with us to predict networks in an area where we have no information. This is

fundamentally a chance to ’put our money where our mouth is’ and provide a tangible way
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to approach (and round out) the gap-filling portion of this thesis. Specifically, this frame-

work allows us to ‘learn’ the information (latent traits) of species from a known interaction

network (in this case, the European metaweb) and infer the latent traits of another species

pool for which we have no a priori interaction data (in this case Canadian species) based

on their phylogenetic relatedness to species from the known network (see section 0.2.1 for a

more detailed summary of the methodology).

Using the prediction of the Canadian metaweb as a way to test the methodology presented

in this chapter is useful as we have existing datasets with which to test the validity of our

predictions. What is perhaps most exciting about this chapter is that despite sharing about

only 4% of species between Canada and Europe we were able to construct a metaweb that

correctly predicted about 91% of the species interactions in Canada. It should also be

noted that when comparing the European and Canadian metawebs we see a difference in

their structures (section A.3), implying that the embedding process is not ’copy pasting’ the

European network and filling in Canadian species but rather capturing an ecological process.

In addition to testing the validity of the predicted interactions within the Canadian

metaweb we also did some additional tests using just the European metaweb. In this instance

interactions within the European network were modified (either removed or new interactions

were added) and the modified network was used to predict a ’new’ European network. This

allowed us to compare how well the model could recover the original network despite being

’given’ erroneous information. Overall the model is robust to both the addition as well as

removal of interactions, although the removal of interactions does have a more negative effect

on the ability of the model to recover interactions (subsection A.1.3)

Overall it appears that the transfer learning framework presented in this chapter is quite

robust and has potential applicability in a variety of settings (e.g., generating metawebs that

can be used as ‘informative priors’ from which more localised/spatially explicit networks

can be constructed, Cirtwill et al., 2019), can be given to a local expert for more refined

validation, and overall presents a potential mechanism to begin filling in the global gaps.
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0.3.4. Chapter 4: SVD entropy: a measure of network complexity

In chapter 4 we present SVD entropy as a starting point to unifying (and standardising)

how we define the complexity of ecological networks. In the perspective of ’global questions

about patterns’ this of course presents a way in which we can ask a simple question - do

different networks (in the case of this chapter different bipartite networks) have differences

in their complexity. What makes SVD entropy a compelling metric for quantifying com-

plexity (when comparing to the more ’standard’, structural measures such as nestedness,

connectance, and spectral radius) is that it focuses more on the ’physical’ complexity of

the network as opposed to the complexity of the behaviour of the system. This is because

the structural measures of complexity are capturing an emerging property of the network,

whereas SVD entropy captures the information contained in the the network (one can think of

this as the ’compressibility’ of the network, more complex networks are harder to compress).

The primary take away from this chapter is that (at least bipartite networks) are excep-

tionally complex. In subsection 4.3.1 we can see that networks have a relative rank deficiency

of zero (i.e., they have a maximal ’external complexity’) and all networks have an SVD en-

tropy value greater than 0.80, i.e., near maximal ’internal complexity’ (for context the way

that SVD entropy is calculated means that values are constrained between zero and one). In

subsection 4.3.2 we also looked at the corresponding connectance, nestedness, and spectral

radius of these networks . Although there is a correlation between the calculated entropy

and these other metrics the story that is told by the different metrics is different. Namely,

for the structural metrics the ’complexity’ spans the entire potential range of of values, and

there is the potential for ’misinterpreting’ what could be considered complex. For example

networks that have a maximal nestedness have the lowest SVD entropy (i.e., the lowest

physical complexity), this is not necessarily the most intuitive way to interpret a maximal

nestedness. This ’breakdown’ of what complexity means is also echoed in subsection 4.3.3,

here we simulated extinctions to get a measure of network resilience (since a common adage

is that complexity begets stability), however we do not see a strong relationship between
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SVD entropy and resilience. This again highlights that ’structural’ and ’physical’ complex-

ity metrics are capturing different facets of a network, and although it is not to say that

SVD entropy is a ’better’ way to measure the complexity of a network it does highlight that

we need to be mindful of how we are defining ’complexity’ and particularly how that might

impact on how we interpret results based on the complexity of networks.

An additional interesting result discussed in subsection 4.3.6 is that although the com-

plexity of ecological networks is indeed immense they are still not reaching their maximum

potential complexity, which implies that something might be constraining network complex-

ity. This result is echoed in subsection 4.3.5, which looks at the relationship between network

size, connectance and complexity. Results point to the potential constraint of network size on

complexity. One possible explanation is that networks at the early assembly stages tend to be

severely constrained (Barbier et al., 2018; Saravia et al., 2018) due to conditions needed for

the persistence of multiple species. As networks grow larger, these constraints may “relax”,

leading to networks with more redundancy, and therefore a lower complexity.

0.3.5. Chapter 5: SpatialBoundaries.jl: a software for boundary

detection

In this chapter we present a Julia package SpatialBoundaries.jl, (the documentation

is available here) that has the functionality to implement the spatial wombling algorithm

across both a uniform landscape i.e., lattice wombling as well as irregular/random landscapes

i.e., triangulation wombling. These two methods still calculate the rate of change (m) and

directionality (θ) in the same manner but differ in how the aggregate and quantify the surface

for a set of points (Fortin and Dale, 2005). These two algorithms provide functionality for

most use cases when data are quantitative. SpatialBoundaries.jl has also been developed

so as to integrate with other packages such as SimpleSDMLayers.jl.

Overall this chapter is ’simple’ in its content (a software package that can implement the

spatial wombling algorithm) however it has been developed with the forward-scoping idea

of being used within the context of thinking about boundaries between networks (or if they

40

https://poisotlab.github.io/SpatialBoundaries.jl/dev/


are even present) and thus aligns well with the idea of developing tools for understanding

global/large scale network patterns. Some ideas for implementing this package are presented

in Appendix C, and primarily rest on the idea of using a combination of a metacommunity

model and simulated landscapes to see if networks, species, and environmental boundaries

show a high degree of fidelity or not. The work presented in Appendix C should be treated

as a speculative outline of what we can do with the SpatialBoundaries.jl in the context of

network analysis and could be viewed as an rough first draft on trying to understand ’where

networks stop?’, which echoes one of the challenges discussed in chapter 2, particularly in

subsection 2.5.2.

0.4. Conclusion

As a whole this thesis should be viewed as a computational toolbox for network ecology

that addresses both the issue of data scarcity through the use of predictive tools (addressing

the ‘Eltonian shortfall’ highlighted by Hortal et al., 2015) as well as presenting methods/ideas

geared towards thinking about networks at global scales. This means that we would i) have

‘tangible’ networks from which we can begin to work with in various contexts or situations

and ii) have new methods/tools to begin asking questions about networks at a global scale.

In other words adding more building blocks from which we can begin to take network ecology

to the next level, i.e., bridging the gap from ’local-level network understanding’ to ’tools for

global network analysis’.
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Résumé. Les réseaux d’interactions entre espèces sous-tendent de nombreux processus

écosystémiques, mais il est difficile d’échantillonner de manière exhaustive ces interactions.

Les interactions varient intrinsèquement dans l’espace et dans le temps, et étant donné

le nombre d’espèces qui composent les communautés écologiques, il peut être difficile de

distinguer un vrai négatif (dans lequel deux espèces n’interagissent jamais) d’un faux négatif

(dans lequel deux espèces n’ont même pas été observées en interaction). bien qu’ils le

fassent réellement). Évaluer la probabilité d’interactions entre espèces est un impératif

pour plusieurs domaines de l’écologie. Cela signifie que pour prédire les interactions entre

les espèces – et pour décrire la structure, la variation et l’évolution des réseaux écologiques

qu’elles forment – nous devons nous appuyer sur des outils de modélisation. Nous fournissons

ici une preuve de concept, dans laquelle nous montrons comment un simple modèle de réseau

neuronal fait des prédictions précises sur les interactions entre espèces avec des données

limitées. Nous évaluons ensuite les défis et les opportunités associés à l’amélioration des

prédictions d’interaction et fournissons une feuille de route conceptuelle vers des modèles

prédictifs de réseaux écologiques explicitement spatiaux et temporels. Nous concluons par

une brève introduction aux méthodes et outils pertinents nécessaires pour commencer à

construire ces modèles, qui, nous l’espérons, guideront ce programme de recherche.

Mots clés : réseaux écologiques, apprentissage automatique, apprentissage profond, prévi-

sions écologiques, biogéographie
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Abstract. Networks of species interactions underpin numerous ecosystem processes, but

comprehensively sampling these interactions is difficult. Interactions intrinsically vary across

space and time, and given the number of species that compose ecological communities, it

can be tough to distinguish between a true negative (where two species never interact) from

a false negative (where two species have not been observed interacting even though they

actually do). Assessing the likelihood of interactions between species is an imperative for

several fields of ecology. This means that to predict interactions between species—and to

describe the structure, variation, and change of the ecological networks they form—we need

to rely on modelling tools. Here, we provide a proof-of-concept, where we show how a simple

neural network model makes accurate predictions about species interactions given limited

data. We then assess the challenges and opportunities associated with improving interac-

tion predictions, and provide a conceptual roadmap forward towards predictive models of

ecological networks that is explicitly spatial and temporal. We conclude with a brief primer

on the relevant methods and tools needed to start building these models, which we hope

will guide this research programme forward.

Keywords: ecological networks, machine learning, deep learning, ecological forecasting,

biogeography

1.1. Introduction

Ecosystems are, in large part, constructed by the interactions within them — organisms

interact with one-another and with their environment, either directly or indirectly. Interac-

tions between individuals, populations, and species create networks of interactions that drive

ecological and evolutionary dynamics and maintain the coexistence, diversity, and function-

ing of ecosystems (Albrecht et al., 2018; Delmas et al., 2018; Landi et al., 2018). Species

interaction networks underpin our understanding of numerous ecological processes (Heleno

et al., 2014; Pascual and Dunne, 2006). Yet, even basic knowledge of species interactions

(like being able to list them, or guess which ones may exist) remains one of the most severe

biodiversity shortfalls (Hortal et al., 2015), in large part due to the tedious, time-consuming,

and expensive process of collecting species interaction data. Comprehensively sampling ev-

ery possible interaction is not feasible given the sheer number of species on Earth, and the

data we can collect about interactions tend to be biased and noisy (de Aguiar et al., 2019).
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This is then compounded as species interactions are typically measured as a binary variable

(present or absent) even though it is evident interactions are not all-or-nothing. Empirically

we know species interactions occur probabilistically due to variation in species abundances

in space and time (Poisot et al., 2015). Different types of interactions vary in their intrin-

sic predictability (e.g. some fungal species engage in opportunistic saprotrophy Smith et al.,

2017, obligate parasites are more deterministic in their interactions than facultative parasites

Luong and Mathot, 2019; Poisot et al., 2013). In addition to this variance in predictability,

networks from different systems are structured by different mechanisms.

Still, like all of Earth’s systems, species interaction networks have entered their “long

now” (Carpenter, 2002), where anthropogenic change will have long-term, low-predictability

consequences (Burkle et al., 2013) for our planet’s ecology. Therefore, our field needs a

roadmap towards models that enable prediction (for the present) and forecasting (for the

future) of species interactions and the networks they form, and which accounts for their spa-

tial and temporal variation (McCann, 2007; Seibold et al., 2018). As an example, in disease

ecology, predicting potential hosts of novel disease (recently notably the search for wildlife

hosts of betacoronaviruses; Becker et al., 2020; Wardeh et al., 2021) has received much atten-

tion. Network approaches have been used for the prediction of risk and dynamics of dengue

(Zhao et al., 2020), Chagas disease (Rengifo-Correa et al., 2017), Rickettsiosis (Morand et

al., 2020), Leishmaniasis Stephens, 2009, and a myriad infectious diseases in livestock and

wildlife (Craft, 2015). Additionally, prediction of interaction networks is a growing imper-

ative for next-generation biodiversity monitoring, requiring a conceptual framework and a

flexible set of tools to predict interactions that is explicitly spatial and temporal in per-

spective (Edwards et al., 2021; Magioli and Ferraz, 2021; Zhang and He, 2021). Developing

better models for prediction of these interactions will rely on integration of data from many

sources, and the sources for this data may differ depending on the type of interaction we

wish to predict (Gibb et al., 2021).

Interactions between species can be conceptualised in a multitude of ways (mutualistic

vs. antagonistic, strong vs. weak, symmetric vs. asymmetric, direct vs. indirect) (Jordano,
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2016a; Morales-Castilla et al., 2015). What is common among definitions of species interac-

tions is that at least one of the species is affected by the presence of another (Morales-Castilla

et al., 2015). Networks can be used to represent a variety of interaction types, including:

unipartite networks: where each species can be linked to other species (often food webs),

bipartite networks: where there are two pools of species and all interactions occur between

species in each pool (typically used for pairwise interactions; e.g. hosts and parasites), and

k-partite networks,: which expand to more than two discrete sets of interacting species (e.g.,

some parasitoid webs, seed dispersal networks, and pollination networks; Pocock et al., 2012).

Methods for predicting interactions between species exist, but at the moment are diffi-

cult to generalise as they are typically based around a single mechanism at a single scale:

position in the trophic niche (Gravel et al., 2013; Petchey et al., 2008), phylogenetic dis-

tance (Elmasri et al., 2020; Pomeranz et al., 2018), functional trait matching (Bartomeus

et al., 2016), interaction frequency (Vázquez et al., 2005; Weinstein and Graham, 2017), or

other network properties (Stock et al., 2017; Terry and Lewis, 2020). Species interaction

networks, as we observe them on Earth today, are the product of ecological and evolutionary

mechanisms interacting across spatial, temporal and organisational scales. The interwoven

nature of these processes imposes structure on biodiversity data which is invisible when ex-

amined only through the lens of a single scale, however machine learning (ML) methods have

enormous potential to find this structure in data (Desjardins-Proulx et al., 2019), and have

the potential to be used together with mechanistic models in order to make prediction of

ecological dynamics more robust (Rackauckas et al., 2020).

Here we use a case study to show how machine-learning models (specifically a deep

neural network) can enable prediction of species interactions: we construct a metaweb of

host-parasite interactions across space, using predictors extracted from empirical data and

accounting for the structure of co-occurrence between species. We use this case study to

illustrate a roadmap for improving predictions using open data and ML methods; specifically,

we focus on how emerging tools from ML can be used to deliver more accurate and more

efficient predictions of ecological systems, and how the potential of these approaches will
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be magnified with increased data access. We then provide a non-exhaustive primer on the

literature on interaction prediction, and identify the tools and methods most suited for

the future of interaction network prediction models, covering the spatial, temporal, and

climatic dimensions of network prediction (Burkle and Alarcon, 2011). Both the case study

and primer are largely geared towards binary (interactions are either present or absent)

networks; there are limitations in data and tools that make it a more reasonable starting

approach. First, most ecological networks do not have estimates of interaction strength,

and particularly not estimates that are independent from relative abundances. Second, the

methodological toolkit to analyse the structure of networks is far more developed for binary

interactions (Delmas et al., 2018), meaning that the predictions of binary interactions can

be more readily interpreted.

We argue that adopting a more predictive approach to complex ecological systems (like

networks) will establish a positive feedback loop with our understanding of these systems

(Houlahan et al., 2017): the tasks of understanding and predicting are neither separate nor

opposed (Maris et al., 2017); instead, ML tools have the ability to capture a lot of our

understanding into working assumptions, and comparing predictions to empirical data gives

us better insights about how much we ignore about the systems we model (see for example

Borowiec et al., 2021, who provide an overview of deep learning techniques and concepts in

ecology and evolution). Although data on species interaction networks are currently limited

in the size and spatial coverage, machine learning approaches have a demonstrated track

record of revealing the “unreasonable effectiveness” of data (Halevy et al., 2009); we argue

that with a clear roadmap guiding the use of these methods, the task of predicting species

interaction networks will become more attainable.

1.2. A case study: deep learning of spatially sparse host-

parasite interactions

The premise of this manuscript is that we can predict interactions between species. In

this section we provide a proof-of-concept, where we use data from Hadfield et al., 2014
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describing 51 host-parasite networks sampled across space. In this data, as in most spatially

distributed ecological networks, not all species co-occur across sites. As a direct consequence

there are pairs of species that may or may not be able to interact for which we have no data;

furthermore there are pairs of species that may interact, but have only been documented in a

single location where the interaction was not detected. In short, there are ecological reasons

to believe that a number of negative associations in the metaweb (sensu Dunne, 2006) are

false negatives.

Without any species-level information, we resort to using both co-occurrence and known

interactions to predict novel interactions. To do this we (i) extract features (equivalent to

explanatory variables in a statistical model) for each species based on co-occurrence, (ii) use

these features to train an artificial neural network to predict interactions, and (iii) apply

this classifier (an algorithm that assigns a categorical output based on input features) to

the original features to predict potential interactions across the entire species pool. Machine

learning relies on a lexicon that shares some terms with statistics, albeit with different

meaning; we expand on the precise meanings in the “How to validate a predictive model”

section below. The outputs of the analysis are presented in Figure 1, and the code to

reproduce it is available at https://osf.io/6jp4b/; the entire example was carried out in

Julia 1.6.2 (Bezanson et al., 2017), using the Flux machine learning framework (Innes,

2018).

We first aggregate all species into a co-occurrence matrix A which represents whether a

given pair of species (i,j) was observed coexisting across any location. We then transform

this co-occurrence matrix A via probabilistic PCA (Tipping and Bishop, 1999) and use the

first 15 values from this PCA space as the features vector for each species i. For each pair of

(host, parasite) species (i,j), we then feed the features vectors (vi, vj) into a neural network.

The neural network uses four feed-forward layers (each layer is independent from the one

before and after); the first layer uses the RELU activation function (which ignores input

below a threshold), the rest use a σ function (which transforms linear activation energies
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into logistic responses). All layers have appropriate dropout rates (in order to avoid over-

fitting, only a fraction of the network is updated on each iteration: 1 − 0.8 for the first layer,

1 − 0.6 for the subsequent ones). This produces an output layer with a single node, which is

the probability-score for interaction between species i and j.

We then train (equivalent to fit) this neural network by dividing the original dataset

into testing and training sets (split 80-20 for training and testing respectively). During the

training of this neural network (using the ADAM optimiser), the 5 × 104 batches of 64 items

used for training were constrained to have at least 25% of positive interactions, as (Poisot,

Ouellet, et al., 2021) show slightly inflating the dataset with positive interactions enables us

to counterbalance sampling biases. Furthermore, setting a minimum threshold of response

balance is an established approach for datasets with strong biases (Lemaître et al., 2017).

Validating this model on the test data shows our model provides highly effective prediction

of interactions between pairs of species not present in the training data (Figure 1). The

behaviour of the model was, in addition, checked by measuring the training and testing loss

(difference between the actual value and the prediction, here using mean-squared error) and

stopping well before they diverged (to avoid overfitting).
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Fig. 1. Proof-of-Concept: An empirical metaweb (from Hadfield et al., 2014, i.e. a list of
known possible interactions within a species pool, is converted into latent features using
probabilistic PCA, then used to train a deep neural network to predict species interactions.
Panels A and B represent, respectively, the ROC curve and the precision-recall curve, with
the best classifier (according to Youden’s J) represented by a black dot. The expected
performance of a neutral “random-guessing” classifier is shown with a dashed line. Panel
C shows the imputed using t-distributed stochastic neighbour embedding (tSNE), and the
colours of nodes are the cluster to which they are assigned based on a k-means clustering of
the tSNE output. Empirical interactions are shown in purple, and imputed interactions in
grey.
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This case study shows that a simple neural network can be very effective in predicting

species interactions even without additional species-level data. Applying this model to the

entire dataset (including species pairs never observed to co-occur) identified 1546 new possi-

ble interactions – 746 (48%) of which were between pairs of species for which no co-occurrence

was observed in the original dataset. This model reaches similar levels of predictive efficacy

as previous studies that use far more species-level data and mechanistic assumptions (Gravel

et al., 2013), which serves to highlight the potential for including external sources of data for

improving our prediction of interaction networks even further. For example, Krasnov et al.,

2016 collected traits data for this system that could be added to the model, in addition or

in substitution to latent variables derived from observed interactions.

1.3. Predicting species interaction networks across

space: challenges and opportunities

Here we present a conceptual roadmap (Figure 2) which shows a conceptual path from

data to prediction of species interaction networks, incorporating several modelling frame-

works. We envisage this roadmap to be one conceptual path toward incorporating space in

to our prediction of interaction networks, and developing spatially explicit models of networks

and their properties. In the following sections we discuss the challenges and opportunities

for this path forward, and highlight two specific areas where it can have a strong impact:

the temporal forecasting of species interaction networks structure, and the use of predicted

networks for applied ecology and conservation biology.
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Fig. 2. A conceptual roadmap highlighting key areas for the prediction of ecological net-
works. Starting with the input of data from multiple sources, followed by a modelling
framework for ecological networks and the landscape, which are then ultimately combined
to allow for the prediction of spatially explicit networks.
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1.3.1. Challenges: constraints on predictions

1.3.1.1. Ecological network data are scarce and hard to obtain. At the moment,

prediction of species interactions is made difficult by the limited availability of data. Al-

though we have seen a growth in species occurrence data, this growth is much slower for

ecological interactions because species interactions are challenging to sample comprehen-

sively (Bennett et al., 2019; Jordano, 2016b) and sampling methodology has strong effects

on the resulting data (de Aguiar et al., 2019). In turn, the difficulty of sampling interactions

can lead to biases in our understanding of network structure (de Aguiar et al., 2019). This

knowledge gap has motivated a variety of approaches to deal with interactions in ecological

research based on assumptions that do not always hold, such as the assumption that co-

occurrence is equivalent to meaningful interaction strength (Blanchet et al., 2020). Spatial

biases in data coverage are prevalent at the global scale (with South America, Africa and

Asia being under-represented) and different interaction types show biases towards different

biomes (Poisot, Bergeron, Cazelles, Dallas, Gravel, et al., 2021). These “spatial gaps” serve

as a limitation to our ability to confidently make predictions when accounting for real-world

environmental conditions, especially in environments for which there are no analogous data.

Further, empirical estimation of interaction strength is highly prone to bias as existing

data are usually summarised at the taxonomic scale of the species or higher, thereby losing

information that differentiates the strength in per-individual interactions from the strength of

a whole species interaction (Wells and O’Hara, 2013). Empirical estimations of interaction

strength are still crucial (Novak and Wootton, 2008), but are a hard task to quantify in

natural communities (Sala and Graham, 2002; Wootton, 1997; Wootton and Emmerson,

2005), especially as the number of species composing communities increases, compounded by

the possibility of higher-order interactions or non-linear responses in interactions (Wootton

and Emmerson, 2005). Further, interaction strength is often variable and context dependent

and can be influenced by density-dependence and spatio-temporal variation in community

composition (Wootton and Emmerson, 2005).
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1.3.1.2. Powerful predictive tools work better on large data volumes. This scarcity

of data limits the range of computational tools that can be used by network ecologists. Most

deep learning methods, for instance, are very data expensive. The paucity of data is com-

pounded by a collection of biases in existing datasets. Species interaction data are typically

dominated by food webs, pollination, and host-parasite networks (Ings et al., 2009; Poisot

et al., 2020). This could prove to be a limiting factor when trying to understand or pre-

dict networks of underrepresented interaction types or when trying to integrate networks

of different types (Fontaine et al., 2011), especially given their inherent structural variation

(Michalska-Smith and Allesina, 2019). This stresses the need for an integrated, flexible, and

data-efficient set of computational tools which will allow us to predict ecological networks

accurately from existing and imperfect datasets, but also enable us to perform model vali-

dation and comparison with more flexibility than existing tools. We argue that Figure 1 is

an example of the promise of these tools even when facing datasets of small size. The ability

to extract and engineer features also serves to bolster our predictive power. Although it

may be tempting to rely on approaches like bootstrapping to estimate the consistency of the

predictions, we are confronted with the issues of low data volume and data bias—that we are

more likely to observe interactions between some pairs of species (i.e., those that co-occur

often, e.g. Cazelles et al., 2015, and those with higher relative abundance, e.g. Vazquez

et al., 2009). This introduces risk in training models on pseudo-replicated data. In short,

the current lack of massive datasets must not be an obstacle to prediction; it is an ideal

testing ground to understand how little data is sufficient to obtain actionable predictions,

and how much we can rely on data inflation procedures to reach this minimal amount.

1.3.1.3. Scaling-up predictions requires scaled-up data. We are also currently lim-

ited by the level of biological organisation at which we can describe ecological networks. For

instance, our understanding of individual-based networks (e.g., M. S. Araújo et al., 2008;

Tinker et al., 2012) is still in its infancy (Guimarães, 2020) and acts as a resolution-limit.

Similarly, the resolution of environmental (or landscape) data also limits our ability to pre-

dict networks at small scales, although current trends in remote sensing would suggest that
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this will become less of a hindrance with time (Makiola et al., 2020). Ecosystems are a

quintessential complex-adaptive-system (Levin, 1998) with a myriad of processes at different

spatial, temporal, and organisational scales that influence and respond to one another. Un-

derstanding how the product of these different processes drive the properties of ecosystems

across different scales remains a central challenge of ecological research, and we should strive

to work on methods that will integrate different empirical “snapshots” of this larger system.

1.3.2. Opportunities: an emerging ecosystem of open tools and

data

1.3.2.1. Data are becoming more interoperable. The acquisition of biodiversity and

environmental data has tremendously increased over the past decades thanks to the rise of

citizen science (J. L. Dickinson et al., 2010) and of novel technology (Stephenson, 2020), in-

cluding wireless sensors (Porter et al., 2005), next-generation DNA sequencing (Creer et al.,

2016), and remote sensing (Lausch et al., 2016; Skidmore and Pettorelli, 2015). Open access

databases, such as GBIF (for biodiversity data), NCBI (for taxonomic and genomics data),

TreeBASE (for phylogenetics data), CESTE (Jeliazkov et al., 2020) (for metacommunity

ecology and species traits data), and WorldClim (for bioclimatic data) contain millions of

data points that can be integrated to monitor and model biodiversity at the global scale. For

species interactions data, at the moment Mangal is the most comprehensive open database

of published ecological networks (Poisot et al., 2016), and GloBI is an extensive database of

realised and potential species interactions (Poelen et al., 2014). Developing standard prac-

tices in data integration and quality control (Kissling et al., 2018) and in next-generation

biomonitoring (NGB; Makiola et al., 2020) would improve our ability to make reliable predic-

tions of ecosystem properties on increasing spatial and temporal scales. The advancement

of prediction techniques coupled with a movement towards standardising data collection

protocols (e.g. Pérez-Harguindeguy et al., 2013 for plant functional traits) and metadata

(e.g. DarwinCore)—which facilitates interoperability and integration of datasets—as well as
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a growing interest at the government level (Scholes et al., 2012) paints a positive picture for

data access and usability in the coming years.

1.3.2.2. Machine learning tools are becoming more accessible. This effort is also

supported by a thriving ecosystem of data sources and novel tools. ML methods can often

be more flexible and perform better than classical statistical methods, and can achieve a very

high level of accuracy in many predictive and classification tasks in a relatively short amount

of time (e.g., Cutler et al., 2007; Krizhevsky et al., 2017). Increasing computing power com-

bined with recent advances in machine learning techniques and applications shows promise in

ecology and environmental science (see Christin et al., 2019 for an overview). Moreover, on-

going developments in deep learning are aimed at improvement in low-data regimes and with

unbalanced datasets (Antoniou et al., 2018; Chawla, 2010). Considering the current biases

in network ecology (Poisot, Bergeron, Cazelles, Dallas, Gravel, et al., 2021) and the scarcity

of data of species interactions, the prediction of ecological networks will undoubtedly benefit

from these improvements. Machine learning methods are emerging as the new standard in

computational ecology in general (Christin et al., 2019; Olden et al., 2008), and in network

ecology in particular (Bohan et al., 2017), as long as sufficient, relevant data are available.

Many studies have used machine learning models specifically with ecological interactions.

Relevant examples include species traits used to predict interactions and infer trait-matching

rules (Desjardins-Proulx et al., 2017; Pichler et al., 2020), automated discovery of food webs

(Bohan et al., 2011), reconstruction of ecological networks using next-generation sequencing

data (Bohan et al., 2017), and network inference from presence-absence data (Sander et al.,

2017). As many ecological and evolutionary processes underlie species interactions and the

structure of their ecological networks (e.g., Segar et al., 2020; Vazquez et al., 2009, it can be

difficult to choose relevant variables and model species interactions networks explicitly. A

promising application of machine learning in natural sciences is Scientific-Machine Learning

(SciML), a framework that combines machine learning with mechanistic models (Chuang

and Keiser, 2018; Rackauckas et al., 2020).
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1.4. A primer on predicting ecological networks

Within the constraints outlined in the previous section, we now provide a primer on the

background concepts necessary to build predictive models of species interaction networks,

with a focus on using machine learning approaches in the modelling process. As Figure 2 il-

lustrates, this involves a variety of numerical and computational approaches; therefore, rather

than an exhaustive summary, we aim to convey a high-level understanding that translates

the core concepts into their application to ecological networks.

1.4.1. Models

1.4.1.1. What is a predictive model? Models are used for many purposes, and the term

“model” itself embodies a wide variety of meanings in scientific discourse. All models can be

thought of as a function, f , that takes a set of inputs x (also called features, descriptors, or

independent variables) and parameters θ, and maps them to predicted output states y (also

called label, response, or dependent variable) based on the input to the model: y = f(x,θ).

A given model f can be used for either descriptive or predictive purposes. Many forms of

scientific inquiry are based around using models descriptively, a practice also called inference,

the inverse problem, fitting a model, or training a model (Stouffer, 2019). In this context,

the goal of using a model is to estimate the parameters, θ, that best explain a set of empirical

observations, {x̂, ŷ}. In some cases, these parameter values are themselves of interest (e.g.,

the strength of selection, intrinsic growth rate, dispersal distance), but in others cases, the

goal is to compare a set of competing models f1, f2, . . . to determine which provides the most

parsimonious explanation for a dataset. The quantitative representation of “effects” in these

models—the influence of each input on the output—is often assumed to be linear, and within

the frequentist world-view, the goal is often to determine if the coefficient corresponding

with an input is non-zero to determine its “significance” (often different from its ecological

relevance Martínez-Abraín, 2008) in influencing the outcome.

Models designed for inference have utility—descriptive models of networks can reveal

underlying mechanisms that structure ecological communities, given a proper null model
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(Connor et al., 2017). However, in order for ecology to develop as a predictive science (Evans

et al., 2012), interest has grown in developing models that are used not just for description

of data, but also for prediction. Predictive models are based in the forward problem, where

the aim is to predict new values of the output y given an input x and our estimate value of θ

(Stouffer, 2019). Because the forward problem relies on an estimate of θ, then, the problem

of inference is nested within the forward problem (Figure 3): working towards a predictive

view of ecological networks will give us the needed tools to further our understanding of

them.

Fig. 3. The nested nature of developing predictive and forecasting models, showcases the
forward problem and how this relies on a hierarchical structure of the modelling process.
The choice of a specific modelling technique and framework, as well as the data retained
to be part of this model, proceeds directly from our assumptions about which ecological
mechanisms are important in shaping both extant and future data.
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1.4.1.2. What do you need to build a predictive model? To build a predictive model,

one needs the following: first, data, split into features x̂ and labels ŷ (Figure 3). Second, a

model f , which maps features x to labels y as a function of parameters θ, i.e. y = f(x, θ).

Third, a loss function L(ŷ, y), which describes how far a model’s prediction y is from

an empirical value ŷ. Lastly, priors on parameters, P (θ), which describe the modeller’s a

priori belief about the value of the parameters; rather than making an analysis implicit,

specifying priors has the merit of making the modeller’s assumptions explicit, which is a

most desirable feature when communicating predictions to stakeholders (Spiegelhalter et al.,

2000). Often an important step before fitting a model is feature engineering: adjusting

and reworking the features to better uncover feature-label relationships (Kuhn and Johnson,

2019). This can include projecting the features into a lower dimensional space, as we did

through a probabilistic PCA in the case study, or removing the covariance structure using a

Whitening approach. Then, when a model is fitted (synonymous with parameter inference

or the inverse problem, see Figure 3), a fitting algorithm attempts to estimate the values of

θ that minimises the mean value of loss function L(ŷ,y) for all labels ŷ in the provided data

Y . In a Bayesian approach, this typically relys on drawing candidate parameter values from

priors and applying some form of sampling to generate a posterior estimate of parameters,

P (θ|x̂, ŷ). In the training of neural networks, this usually involves some form of error back-

propagation across the edges in order to tune their weights, and the biases of each nodes.

1.4.1.3. How do we validate a predictive model? After we fit a model, we inevitably

want to see how “good” (meaning, “fit for purpose”) it is. This process can be divided into

two parts: (i)) model selection, where the modeller chooses from a set of possible models

and (ii) model assessment, where the modeller determines the performance characteristics of

the chosen model (Hastie et al., 2009).

In the context of model selection, a naïve initial approach is to simply compute the

average error between the model’s prediction and the true data we have, and choose the

model with the smallest error—however this approach inevitably results in overfitting. One

approach to avoid overfitting is using information criteria (e.g., AIC, BIC, MDL) based
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around the heuristic that good models maximise the ratio of information provided by the

model to the number of parameters it has. However, when the intended use-case of a model

is prediction the relevant form of validation is predictive accuracy, which should be tested

with cross-validation. Cross-validation methods divide the original dataset into two—one

which is used to fit the model (called the training set) and one used to validate its predictive

accuracy on the data that it hasn’t “seen” yet (called the test set) (Bishop, 2006). This

procedure is often repeated across different test and training subdivisions of the dataset

(either picked randomly or stratified by some criteria, like balance between positive and

negative interactions in the case study) to determine the uncertainty associated with our

measurement due to our choice of test and training sets (Arlot and Celisse, 2010), in the

same conceptual vein as data bootstrapping: the mean value of the validation metric gives an

overall estimate of its performance, and the variance around this mean represents the effect

of using different data for training and testing. In a robust model/dataset combination,

we expect this variance to be low, although there are no prescriptive guidelines as to how

little variance is acceptable; the choice of whether to use a model is often left to the best

judgement of the modeller.

We still have to define what predictive accuracy means in the context of interaction

network prediction. In the proof-of-concept, we used a neural-network to perform binary

classification by predicting the presence/absence of an interaction between any two species.

There are two ways for the model to be right: the model predicts an interaction and there

is one (a true positive (TP)), or the model predicts no interaction and there isn’t one (a

true negative (TN)). Similarly, there are two ways for the model to be wrong: the model

predicts an interaction which does not exist (a false positive (FP)), or the model predicts no

interaction but it does exist (a false negative (FN)).

A naïve initial approach to measure how well a model does is accuracy, i.e. the proportion

of values it got correct. However, consider what we know about interaction networks: they

are often very sparse, with connectance usually below a third (Cohen et al., 1990). If

we build a model that always guesses there will be no interaction between two species, it
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will be correct in the majority of cases because the majority of potential interactions in a

network typically do not exist. Therefore this “empty-matrix” model would always have

an accuracy of 1 − C, where C is the observed connectance, which would almost always

be greater than 50%. Understanding model performance within sensitivity-specificity space

may be more informative, where sensitivity evaluates how good the model is at predicting

true interactions (True Positive Rate) and specificity refers to the prediction of true “non-

interactions” (True Negative Rate). It must be noted that in ecological networks, there is

no guarantee that the “non-interactions” (assumed true negatives) in the original dataset

are indeed true negatives (Jordano, 2016a, 2016b). This can result in the positive/negative

values, and the false omission/discovery being artificially worse, and specifically decrease our

confidence in predicted interactions.

In response to the general problem of biases in classifiers, many metrics have been pro-

posed to measure binary-classifiers (Drummond and Holte, 2006; Gu et al., 2009) and are

indicative of how well the model performs with regards to some aspect of accuracy, sensitiv-

ity, specificity and/or precision (Table 1). Ultimately the choice of metric will depend on the

intended use of the model: there is not a single definition of “success”, but rather different

interpretation of what sources of error are acceptable for a given application.

In the machine learning literature, a common way of visualising this extensive list of

possible metrics is through the use of ROC (receiver-operating-characteristic; False Posi-

tive Rate on the x-axis, and True Positive Rate on the y-axis) and PR (precision-recall;

True-Positive-Rate on the x-axis, Positive-predictive-value on the y-axis) curves (see Fig-

ure 1). These curves are generated by considering a continuum of thresholds of classifier

acceptance, and computing the values of ROC/PR metrics for each value of the threshold.

The area-under-the-curve (AUC) is then used as a validation metric and are typically called

AUC-ROC (Area-Under-the-Curve Receiver-Operator-Curve) and AUC-PR (Area-Under-

the-Curve Precision-Recall) (e.g. ROC-AUC in Table 1). These measures have the unstated

assumption that the training and testing set are “correct”, or at least correct enough that

the number of true/false positive/negatives are meaningful; although should this assumption
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Name Value Success Description
Random accuracy 0.56 Fraction of correct predictions if the classifier is random

Accuracy 0.81 → 1 Observed fraction of correct predictions
Balanced accuracy 0.80 → 1 Average fraction of correct positive and negative predictions

True Positive Rate 0.77 → 1 Fraction of interactions predicted
True Negative Rate 0.83 → 1 Fraction of non-interactions predicted
False Positive Rate 0.16 → 0 Fraction of non-interactions predicted as interactions
False Negative Rate 0.22 → 0 Fraction of interactions predicted as non-interactions

ROC-AUC 0.86 → 1 Proximity to a perfect prediction (ROC-AUC=1)
Youden’s J 0.60 → 1 Informedness of predictions (trust in individual prediction)
Cohen’s κ 0.58 ≥ 0.5

Positive Predictive Value 0.66 → 1 Confidence in predicted interactions
Negative Predictive Value 0.89 → 1 Confidence in predicted non-interactions

False Omission Rate 0.10 → 0 Expected proportion of missed interactions
False Discovery Rate 0.33 → 0 Expected proportion of wrongly imputed interactions

Table 1. Overview of the validation statistics applied to the case study, alongside the criteria
indicating a successful classifier and a guide to interpretation of the values. Taken together,
these validation measures indicate that the model performs well, especially considering that
it is trained from a small volume of data.

be true, there would be no need for any predictive approach – but it is a well established

fact that machine learning systems are resilient to even relatively high uncertainties in the

data (Halevy et al., 2009).

1.4.2. Networks and interactions as predictable objects

1.4.2.1. Why predict networks and interactions at the same time? Ecological net-

works are quite sparse, and larger networks tend to get sparser (MacDonald et al., 2020); in

other words, although networks are composed of a set of interactions between species pairs,

they also form a much larger set of species pairs that do not interact. If we aim to predict

the structure of networks from the “bottom-up”— by considering each pairwise combination

of S different species—we are left with S2 interaction values to estimate, a majority of which

will be 0. Instead, we can use our existing understanding of the mechanisms that structure

ecological networks to whittle down the set of feasible adjacency matrices, thereby reducing

the amount of information we must predict, and making the problem of predicting interac-

tions less daunting. The processes that structure ecological networks do not only occur at
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the scale of interactions—there are also processes at the network level which limit what in-

teractions (or how many) are realistic. The realised structure of a network is the synthesis of

the interactions forming the basis for network structure, and the network structure refining

the possible interactions—“Part makes whole, and whole makes part” (Levins and Lewontin,

1987).

Another argument for the joint prediction of networks and interactions is to reduce cir-

cularity and biases in the predictions. As an example, models like linear filtering (Stock

et al., 2017) generate probabilities of non-observed interactions existing, but do so based on

measured network properties. Some recent models make interaction-level predictions (e.g.,

Gravel et al., 2019); these are not unlike stacked species distribution models, which are indi-

vidually fit, but collectively outperformed by joint models or rule-based models (Zurell et al.,

2020). By relying on adequate testing of model performance of biases (i.e., optimising not

only accuracy, but paying attention to measures like false discovery and false omission rates),

and developing models around a feedback loop between network and interaction prediction,

it is likely that the quality of the predicted networks will be greatly improved compared to

current models.

1.4.2.2. What network properties should we use to inform our predictions of

interactions? There are many dimensions of network structure (Delmas et al., 2018), yet

there are two arguments to support basing network prediction around a single property:

connectance (the ratio of actual edges to possible edges in the network). First, connectance

is ecologically informative—it relates to resilience to invasion (Baiser et al., 2010; Smith-

Ramesh et al., 2016), can increase robustness to extinction in food webs (Dunne et al.,

2002a), while decreasing it in mutualistic networks (Vieira and Almeida-Neto, 2015), and

connectance relates to network stability (Landi et al., 2018). Second, most (if not all) network

properties covary with connectance (Dunne et al., 2002b; Poisot and Gravel, 2014).

Within the network science literature, there are numerous methods for predicting edges

based on network properties (e.g., block models (Yen and Larremore, 2020) based on modu-

larity, hierarchical models (Kawakatsu et al., 2021) based on embedding, etc.). However, in
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the context of species interaction networks, these properties often co-vary with connectance.

As a result we suggest that using connectance as the primary property of interest is most

likely to be practical to formulate at the moment. We have models to estimate species rich-

ness over space (Jenkins et al., 2013), and because we can predict connectance from species

richness alone (MacDonald et al., 2020), we can then derive distributions of network proper-

ties from richness estimates, that can serve to penalise further models that formulate their

predictions at the scale of each possible interaction.

1.4.2.3. How do we predict how species that we have never observed together will

interact? A neutral approach to ecological interactions would assume the probability of an

interaction to mirror the relative abundance of both species, and would be unaffected by trait

variation (Pichler et al., 2020; Poisot et al., 2015); more accurately, a neutral assumption

states that the relative abundances are sufficient to predict the structure of networks, and

this view is rather well supported in empirical and theoretical systems (Canard et al., 2014;

Canard et al., 2012). However, functional-trait based proxies could enable better predictions

of ecological interactions (Bartomeus, 2013; Bartomeus et al., 2016; Cirtwill and Eklöf, 2018;

Cirtwill et al., 2019). Selection on functional traits could cause interactions to be conserved

at some evolutionary scales, and therefore predictions of interaction could be informed by

phylogenetic analyses (Davies, 2021; Elmasri et al., 2020; Gómez et al., 2010). Phylogenetic

matching in bipartite networks is consistent across scales (Poisot and Stouffer, 2018), even

in the absence of strong selective pressure (Coelho et al., 2017).

A separate family of methods are based on network embedding (as in the proof-of-

concept). A network embedding projects each node of the network into a lower-dimensional

latent space. Previous explorations of the dimensionality of food webs have revealed that a

reduced number of dimensions (7) was sufficient to capture most of their structure (Eklöf

et al., 2013); however, recent quantifications of the complexity of the embedding space of

bipartite ecological networks found a consistent high complexity (Strydom et al., 2021), sug-

gesting that the precise depth of embedding required may vary considerably across systems.

Embeddings enables us to represent the structure of a network, which previously required
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the S2 dimensions of an adjacency matrix, with a smaller number of dimensions. The po-

sition of each node in this lower dimensional space is then treated as a latent measurement

corresponding to the role of that species in the network (e.g., (Poisot, Ouellet, et al., 2021),

where a network of about 1500 species was most accurately described using 12 dimensions).

Species close together in the latent space should interact with similar set of species (Rohr

et al., 2010; Rossberg et al., 2006). However, these models are sensitive to sampling biases

as they are limited to species for which there is already interaction data, and as a result a

methodological breakthrough is needed to extend these models to species for which there is

little or no interaction data.

1.4.2.4. How do we quantify interaction strength? Species interaction networks can

also be used as a means to quantify and understand interaction strength. Interaction strength,

unlike the qualitative presence or absence of an interaction, is a continuous measurement

which attempts to quantify the effect of one species on another. This results in weighted

networks representing different patterns of ‘flows’ between nodes – which can be modelled

in a variety of ways (Borrett and Scharler, 2019). Interaction strength can generally be

divided into two main categories (as suggested by Berlow et al., 2004): 1) the strength

of an interaction between individuals of each species, or 2) the effect that changes in one

species population has on the dynamics of the other species. It can be measured as the

effect over a period of time (in the units of biomass or energy flux Barnes et al., 2018;

Brown et al., 2004) or the relative importance of one species on another (Berlow et al.,

2004; Heleno et al., 2014; Wootton and Emmerson, 2005). One recurring observation is

that networks are often composed of many weak interactions and few strong interactions

(Berlow et al., 2004). The distribution of interaction strength within a network effects its

stability (de Ruiter et al., 1995; Neutel et al., 2002) and functioning (Duffy, 2002; Montoya

et al., 2003), and serves to benefit multi-species models (Wootton and Emmerson, 2005).

Alternatively, understanding flow in modules within networks can aid in understanding the

organisation of networks (Farage et al., 2021; Montoya and Solé, 2002) or the cascading

effects of perturbations (Gaiarsa and Guimarães, 2019).
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In some systems, quantifying interaction strength is relatively straightforward; this in-

cludes a lot of host-parasite systems. For example, freshwater cyprinid fish can be divided

in micro-habitats (fins, skin, digestive system, gill subsections) and the parasites counted

in each of these micro-habitats, giving within-host resolution (Simková et al., 2002); ma-

rine sparids and labrids have similarly been studied this way, see notably (Desdevises, 2006;

Morand et al., 2002; Sasal et al., 1999). In some cases, within-host assessments of interaction

strengths can reveal macro-ecological events, like in the conservatism of micro-habitat use in

amphibian hosts by helminths (Badets et al., 2011). Even ectoparasites can provide reliable

assessments of interaction strength; for example, when rodent hosts are minimally disturbed

during capture, fine combing of their fur will result in exhaustive ectoparasites inventories

(E. R. Dickinson et al., 2020; Hadfield et al., 2014; Karbowiak et al., 2019; Matthee et al.,

2020; Sánchez et al., 2014). Parasites have the desirable property of usually remaining intact

within their host during the interaction, as opposed to prey items as can be recovered through

e.g., gut content analysis or stable isotopes (Macías-Hernández et al., 2018; Schmid-Araya

et al., 2016). As network ecology is starting to explore the use of predictive models, leading

up to forecasting, we argue that host-parasite systems can provide data that are reliable and

trustworthy enough that they can become the foundations for methodological development

and benchmark studies, thereby providing more information about host-parasite systems

and supporting the technical development of the field.

Yet in most situations, much like quantifying the occurrence of an interaction, quantifying

interaction strength in the field is challenging in the majority of systems, and one must often

rely on proxies. In some contexts, interaction strength can be estimated via functional

foraging (Portalier et al., 2019), where the primary basis for inferring interaction is foraging

behaviour like searching, capture and handling times. In food-webs, metabolic based models

use body mass, metabolic demands, and energy loss to infer energy fluxes between organisms

(Berlow et al., 2009; Yodzis and Innes, 1992). In addition, food-web energetics models can be

incorporated at various resolutions for a specific network, ranging from individual-based data

to more lumped data at the species level or trophic group, depending on data availability(
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Barnes et al., 2018; Berlow et al., 2009). Taken together, these considerations impose too

many constraints on predicting continuous interaction strength at the moment, resulting in

our primary focus in binary present/absent interactions within this manuscript.

1.4.2.5. How do we determine what interaction networks are feasible? For several

decades, ecologists have aimed to understand how networks of many interacting species per-

sist through time. The diversity-stability paradox, first explored by (May, 1974), shows that

under a neutral set of assumptions ecological networks should become decreasingly stable as

the number of species increases. Yet, in the natural world we observe networks of interac-

tions that consist of far more species than May’s model predicts (Albouy et al., 2019). As a

result, understanding what aspects of the neutral assumptions of May’s model are incorrect

has branched many investigations into the relationship between ecological network structure

and persistence (Allesina and Tang, 2012). These assumptions can be split into dynamical

assumptions and topological assumptions. Topologically, we know that ecological networks

are not structured randomly. Some properties, like the aforementioned connectance, are

highly predictable (MacDonald et al., 2020). Generative models of food-webs (based on

network embeddings) fit empirical networks more effectively than random models (Allesina

et al., 2008). These models have long used allometry as a single-dimensional niche space—

naturally we want to extend this to traits in general. The second approach to stability is

through dynamics. Early models of community dynamics rely on the assumption of linear

interaction effects, but in recent years models of bioenergetic community dynamics have

shown promise in basing our understanding of energy flow in food-webs in the understood

relationship between allometry and metabolism (Delmas et al., 2017). An additional con-

sideration is the multidimensional nature of “stability” and “feasibility” (e.g., resilience to

environmental change vs extinctions; Domínguez-García et al., 2019) and how different dis-

turbances propagate across levels of biological organisation (Gravel et al., 2016; Kéfi et al.,

2019). Recent approaches such as structural stability (Ferrera et al., 2016; Saavedra et al.,

2017) allow us to think of network feasibility in rigorous mathematical terms, which may

end up as usable parameters to penalise network predictions.
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1.4.2.6. What taxonomic scales are suitable for the prediction of species inter-

actions? If we use different trait-based proxies to predict potential interactions between

species the choice of such proxies should be theoretically linked to the taxonomic and spatial

scale we are using in our prediction (Wiens, 1989). At some scales we can use morpho-

logical traits of co-occurring species to assess the probability of interaction between them

(Bartomeus et al., 2016). On broader taxonomic scales we can infer interaction probability

through the phylogenetic distance, assuming that functional traits themselves are conserved

(Gómez et al., 2010). In this case, we can think of the probability that one species will

interact with another as the distance between them in niche-space (Desjardins-Proulx et al.,

2017), and this can be modelled by simulating neutral expectations of trait variation on phy-

logenetic trees (Davies, 2021). At the narrowest scales, we may be interested in predicting

behavioural traits like foraging behaviour (Bartomeus et al., 2016), and at this scale we may

need to consider abundance’s effect on the probability of an encounter (Wells and O’Hara,

2013).

1.4.2.7. What about indirect and higher-order interactions? Although network ecol-

ogy often assumes that interactions go strictly from one node to the other, the web of life is

made up of a variety of interactions. Indirect interactions—either higher-order interactions

between species, or interaction strengths that themselves interact — have gained interest in

recent years( Golubski and Abrams, 2011; Golubski et al., 2016). One mathematical tool

to describe these situations is hypergraphs: hypergraphs are the generalisation of a graph,

allowing a broad yet manageable approach to complex interactions (Carletti et al., 2020), by

allowing for particular interactions to occur beyond a pair of nodes. An additional degree

of complexity is introduced by multi-layer networks (Hutchinson et al., 2019). Multi-layer

networks include edges across “variants” of the networks (timepoints, locations, or environ-

ments). These can be particularly useful to account for the metacommunity structure (Gross

et al., 2020), or to understand how dispersal can inform conservation action (Albert et al.,

2017). Ecological networks are intrinsically multi-layered (Pilosof et al., 2017). However,

prima facie, increasing the dimensionality of the object we need to predict (the multiple
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layers rather than a single network) makes the problem more complicated. Yet, multi-layer

approaches improve prediction in social networks (Jalili et al., 2017; Najari et al., 2019;

Yasami and Safaei, 2018), and they may prove useful in network ecology going forward.

1.4.3. Space

Although networks were initially used to describe the interactions within a community,

interest in the last decade has shifted towards understanding their structure and variation

over space (Baiser et al., 2019; Trøjelsgaard and Olesen, 2016), and has established network

ecology as an important emerging component of biogeography and macroecology.

1.4.3.1. How much do networks vary over space? Networks can vary across space

either in their structural properties (e.g., connectance or degree distribution) or in their

composition (identity of nodes and edges). Interestingly, variation in the structural prop-

erties of ecological networks primarily responds to changes in the size of the network. The

number of links in ecological networks scales with the number of species (Brose et al., 2004;

MacDonald et al., 2020), and connectance and size drive the rest of network structure (Dunne

et al., 2002b; Poisot and Gravel, 2014; Riede et al., 2010). Species turnover in space results

in changes in the composition of ecological networks. But, this is not the only reason net-

work composition varies (Poisot et al., 2015). Intraspecific variation can result in interaction

turnovers without changes in species composition Bolnick et al., 2011. Similarly, changes

in species abundances can lead to variation in interaction strengths (Canard et al., 2014;

Vázquez et al., 2007). Variation in the abiotic environment and indirect interactions Golub-

ski et al., 2016 could modify the occurrence and strength of individual interactions. Despite

this, empirical networks tend to share a common backbone (Bramon Mora et al., 2018) and

functional composition (Dehling et al., 2020) across space.

1.4.3.2. How do we predict what the species pool at a particular location is? As

the species pool forms the basis for network structure, predicting which species are present at

a particular location is essential to predict networks across space. Species distribution models

(SDMs) are increasingly ubiquitous in macroecology— these models predict the range of a
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species based on known occurrences and environmental conditions, such as climate and land

cover (Elith et al., 2006; Guisan and Thuiller, 2005). Including interactions or co-occurrences

in SDMs generally improves predictive performance (Wisz et al., 2013). Several approaches

exist to combine multiple SDMs: community assemblage at a particular site can be predicted

either by combining independent single-species SDMs (stacked-SDMs, SSDMs) or by directly

modelling the entire species assemblage and multiple species at the same time (joint SDMs,

JSDMs) (Norberg et al., 2019). Building on the JSDM framework, hierarchical modelling

of species communities (Ovaskainen et al., 2017) has the advantage of capturing processes

that structure communities. Spatially Explicit Species Assemblage Modelling (SESAM)

constrains SDM predictions using macro-ecological models (Guisan and Rahbek, 2011) —

for example, variation in species richness across space can constrain assemblage predictions

(D’Amen et al., 2015).

The next step is to constrain distribution predictions using network properties. This

builds on previous calls to adopt a probabilistic view: a probabilistic species pool (Karger

et al., 2016), and probabilistic interactions through Bayesian networks (Staniczenko et al.,

2017). Blanchet et al., 2020 argue that the probabilistic view avoids confusion between

interactions and co-occurrences, but that it requires prior knowledge of interactions. This

could potentially be solved through our framework of predicting networks first, interactions

next, and finally the realised species pool.

1.4.3.3. How do we combine spatial and network predictions? In order to predict

networks across space, we need to combine multiple models—one which predicts what the

species pool will be at a given location, and one to predict what interaction networks com-

posed from this species pool are likely to be (see Figure 2). Both of these models contain

uncertainty, and when we combine them the uncertainty from each model should be prop-

agated into the combined model. The Bayesian paradigm provides a convenient solution to

this—if we have a chain of models where each model feeds into the next, we can sample from

the posterior of the input models. A different approach is ensemble modelling which com-

bines the predictions made by several models, where each model is predicting the same thing
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(Parker, 2013). Error propagation, an important step in building any ecological model, de-

scribes the effect of the uncertainty of input variables on the uncertainty of output variables

(Draper, 1995; Parysow et al., 2000). Benke et al., 2018 identifies two broad approaches

to model error propagation: analytically using differential equations or stochastically using

Monte-Carlo simulation methods. Errors induced by the spatial or temporal extrapolation

of data also need to be taken into account when estimating the uncertainty of a model’s

output (Peters and Herrick, 2004).

1.4.4. Time

1.4.4.1. Why should we forecast species interaction networks? Forecasting species

interactions are critical for informing ecosystem management (Harvey et al., 2017) and sys-

tematic conservation prioritisation (Pollock et al., 2020), and for anticipating extinctions and

their consequences (McDonald-Madden et al., 2016; McWilliams et al., 2019). Ecological in-

teractions shape species distributions at both local and broad spatial scales, and including

interactions in SDM models typically improves predictive performance (M. B. Araújo and

Luoto, 2007; Pigot and Tobias, 2013; Wisz et al., 2013). However, these tend to rely on

approaches involving estimating pairwise dependencies based on co-occurrence, using sur-

rogates for biotic-interaction gradients, and hybridising SDMs with dynamic models (Wisz

et al., 2013). Most existing models to predict the future distribution of species ignore in-

teractions (Urban et al., 2016). Changes in species ranges and phenology will inevitably

create spatiotemporal mismatches and affect encounter rates between species (Gilman et al.,

2010), which will further shift the distribution of species across space. New interactions will

also appear between species that are not currently co-occurring (Gilman et al., 2010). Only

by forecasting how species will interact can we hope to have an accurate portrait of how

biodiversity will be distributed under the future climate.

Forecasting how climate change will alter biodiversity is also crucial for maximising con-

servation outcomes. Improving SDMs through interactions is crucial for conservation, as

nearly 30% of models in SDM studies are used to assess population declines or landscape
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ability to support populations (M. B. Araújo et al., 2019). Reliable predictions about how

ecological networks will change over time will give us critical information that could be com-

municated to decision-makers and the scientific community about what future environmental

risks we are awaiting and how to mitigate them (Kindsvater et al., 2018). Not only this, but

how biodiversity is structured influences the functioning of the whole ecosystem, community

stability and persistence (Stouffer and Bascompte, 2010; Thompson et al., 2012). Will cli-

mate change impact the distribution of network properties (e.g., connectance)? If so, which

regions or species groups need special conservation efforts? These overarching questions are

yet to be answered (but see Albouy et al., 2013; Hattab et al., 2016; Kortsch et al., 2015). We

believe that the path toward forecasting ecological networks provides useful guidelines to ul-

timately better predict how climate change will affect the different dimensions of biodiversity

and ecosystem functioning.

1.4.4.2. How do we turn a predictive model into a forecasting model? On

some scales, empirical time-series encode enough information about ecological processes for

machine-learning approaches to make accurate forecasts. However, there is an intrinsic limit

to the predictability of ecological time-series (Pennekamp et al., 2019). A forecast inherently

has a resolution limit in space, time, and organisation. For example, one could never hope

to predict the precise abundance of every species on Earth on every day hundreds of years

into the future. There is often a trade-off between the resolution and horizon of forecast,

e.g., a lower resolution forecast, like primary production will be at a maximum in the sum-

mer, is likely to be true much further into the future than a higher resolution forecast. If

we want to forecast the structure of ecological networks beyond the forecasting horizon of

time-series based methods, we need forecasts of our predictive model’s inputs—a forecast of

the distribution of both environmental conditions and the potential species pool across space

(Figure 3).

1.4.4.3. How can we validate a forecasting model? Often the purpose of building

a forecasting model is to inform present action (Dietze et al., 2018). Yet, the nature of

forecasting—trying to predict the future—is that you can only know if a forecast is “right”
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once it is too late to change it. If we want to maximise the chance that reality falls within

a forecasting model’s predictions, there are two directions to approach this problem: the

first is to extend model validation techniques to a forecasting context, and the second is to

attempt to maximise the amount of uncertainty in the forecast without compromising its

resolution. Cross-validation (see subsubsection 1.4.1.3) can be used to test the efficacy of a

forecasting model. Given a time-series of N observations, a model can iteratively be trained

on the first n time-points of data, and the forecasting model’s accuracy can be evaluated on

the remaining time-points it hasn’t “seen” (Bishop, 2006). This enables us to understand

both how much temporal data is required for a model to be robust, and also enables us to

explore the forecasting horizon of a process. Further, this approach can also be applied in

the opposite temporal direction— if we have reliable data from the past, “hindcasting” can

also be used to test a forecast’s robustness.

However, these methods inevitably bump into a hard-limitation on what is feasible for a

forecasting model. The future is uncertain. Any empirical time-series we use to validate a

model was collected in past conditions that may not persist into the future. Any system we

wish to forecast will undergo only one of many possible scenarios, yet we can only observe

the realised outcome of the system under the scenario that actually unfolds. It is therefore

impossible to assess the quality of a forecasting model in scenarios that remain hypothetical.

If the goal is to maximise the probability that reality will fall within the forecast’s estimates,

forecasts should incorporate as much uncertainty about the future scenario as possible—

one way to do this is ensemble modelling (Parker, 2013). However, as we increase the

amount of uncertainty we incorporate into a forecasting model, the resolution of the forecast’s

predictions could shrink (Lei and Whitaker, 2017), and therefore the modeller should be

mindful of the trade-off between resolution and accuracy when developing any forecast.

Finally, ensemble models are not guaranteed to give more accurate results: for example,

Becker et al., 2020 noted that the ensemble model outperforms the best-in-class models,

which should be taken as an indication that careful model building and selection is of the
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utmost importance when dealing with a problem as complex as the prediction of species

interactions.

1.5. Conclusion: why should we predict species interac-

tion networks?

Because we almost can, and because we definitely should.

A better understanding of species interactions, and the networks they form, would help

unify the fields of community, network, and spatial ecology; improve the quantification of the

functional relationships between species (Dehling and Stouffer, 2018; O’Connor et al., 2020);

re-evaluate metacommunities in light of network structure (Guzman et al., 2019); and enable

a new line of research into the biogeography of species interactions (Braga et al., 2019; Massol

et al., 2017) which incorporates a synthesis of both Eltonian and Grinnellian niche (Gravel

et al., 2019). Further, the ability to reliably predict and forecast species interactions would

inform conservation efforts for protecting species, communities, and ecosystems. Integration

of species interactions into the assessment of vulnerability to climate change is a needed

methodological advancement (Foden and Young, 2016). International panels draw on models

to establish scientific consensus (M. B. Araújo et al., 2019), and they can be improved

through more effective prediction of species distributions and interactions (Syfert et al.,

2014). Further, recent studies argue for a shift in focus from species to interaction networks

for biodiversity conservation to better understand ecosystem processes (Harvey et al., 2017).

We should invest in network prediction because the right conditions to do so reliably

and rapidly are beginning to emerge. Given the possible benefits to a variety of ecological

disciplines that would result from an increased ability to predict networks, we feel strongly

that the research agenda we outline here should be picked up by the community. Although

novel technologies are bringing massive amounts of data to some parts of ecology (primarily

environmental DNA and remote sensing, but now more commonly image analysis and bioa-

coustics), it is even more important to be intentional about reconciling data. This involves
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not only the work of understanding the processes encoded within data, but also the ground-

work of developing pipelines to bridge the ever-expanding gap between “high-throughput”

and “low-throughput” sampling methods. An overall increase in the volume of data will not

result in an increase of our predictive capacity as long as this data increase is limited to

specific aspects of the problem. In the areas we highlight in Figure 2, many data steps are

still limiting: documenting empirical interactions is natural history work that doesn’t lend

itself to systematic automation; expert knowledge is by design a social process that may be

slightly accelerated by text mining and natural language processing (but is not yet, or not

routinely or at scale). These limitations are affecting our ability to reconstruct networks.

But the tools to which we feed these data, incomplete as they may be, are gradually

getting better; that is, they can do predictions faster, they handle uncertainty and propagate

it well, and they can accommodate data volumes that are lower than we may expect (Pichler

et al., 2020). It is clear attempting to predict the structure of ecological networks at any

scale is a methodological and ecological challenge; yet it will result in qualitative changes in

our understanding of complex adaptive systems, as well as changes to our ability to leverage

information about network structure for conservation decision. It is perhaps even more

important to forecast the structure of ecological networks because it is commonly neglected

as a facet of biodiversity that can (and should) be managed. In fact, none of the Aichi

targets mention biostructure or its protection, despite this being recognised as an important

task (McCann, 2007), either implicitly or explicitly. Being able to generate reliable datasets

on networks in space or time will make this information more actionable.
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Résumé. 1. Les métawebs (réseaux d’interactions potentielles au sein d’un pool d’espèces)

constituent une abstraction puissante pour comprendre comment sont structurés les réseaux

d’interactions d’espèces à grande échelle.

2. Étant donné que les métawebs sont généralement exprimés à de grandes échelles spatiales

et taxonomiques, leur assemblage est un processus fastidieux et coûteux ; les méthodes

prédictives peuvent aider à contourner les limitations liées aux carences des données, en

fournissant une première approximation des métawebs.

3. Une façon d’améliorer notre capacité à prédire les métawebs consiste à maximiser les

informations disponibles en utilisant des graphiques intégrés, par opposition à une liste

exhaustive des interactions entre espèces. L’intégration de graphes est un domaine émergent

de l’apprentissage automatique qui recèle un grand potentiel de problèmes écologiques.

4. Ici, nous décrivons comment les défis associés à l’inférence de métawebs s’alignent avec

les avantages des intégrations de graphes ; suivi d’une discussion sur la façon dont le choix

du pool d’espèces a des conséquences sur le réseau reconstruit, en particulier sur le rôle des

frontières créées par l’homme (ou arbitrairement assignées) et comment celles-ci peuvent

influencer les hypothèses écologiques.

Mots clés : réseaux écologiques, intégration de réseaux, apprentissage par transfert, ma-

croécologie de réseau
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Abstract. 1. Metawebs (networks of potential interactions within a species pool) are a

powerful abstraction to understand how large-scale species interaction networks are struc-

tured.

2. Because metawebs are typically expressed at large spatial and taxonomic scales, assem-

bling them is a tedious and costly process; predictive methods can help circumvent the

limitations in data deficiencies, by providing a first approximation of metawebs.

3. One way to improve our ability to predict metawebs is to maximize available information

by using graph embeddings, as opposed to an exhaustive list of species interactions. Graph

embedding is an emerging field in machine learning that holds great potential for ecological

problems.

4. Here, we outline how the challenges associated with inferring metawebs line-up with

the advantages of graph embeddings; followed by a discussion as to how the choice of the

species pool has consequences on the reconstructed network, specifically as to the role of

human-made (or arbitrarily assigned) boundaries and how these my influence ecological

hypotheses.

Keywords: ecological networks, network embedding, transfer learning, netwrok macroe-

cology

2.1. Introduction

The ability to infer potential interactions could serve as a significant breakthrough in

our ability to conceptualize species interaction networks over large spatial scales (Hortal et

al., 2015). Reliable inferences would not only boost our understanding of the structure of

species interaction networks, but also increase the amount of information that can be used for

biodiversity management. In a recent overview of the field of ecological network prediction,

Strydom, Catchen, et al., 2021 identified two challenges of interest to the prediction of

interactions at large scales. First, there is a relative scarcity of relevant data in most places

globally – which, due to the limitations in most predictive methods, restricts the ability

to infer interactions to locations where it is least required (i.e., regions where we already

have interaction data) leaving us unable to make inference in data scarce regions (where we

most need it); second, accurate predictors are important for accurate predictions, and the

lack of methods that can leverage a small amount of accurate data is a serious impediment
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to our predictive ability. In most places, our most reliable biodiversity knowledge is that

of a species pool where a set of potentially interacting species in a given area could occur:

through the analysis of databases like the Global Biodiversity Information Facility (GBIF)

or the International Union for the Conservation of Nature (IUCN), it is possible to construct

a list of species for a region of interest; however inferring the potential interactions between

these species still remains a challenge.

Following the definition of Dunne, 2006, a metaweb is the ecological network analogue

to the species pool; specifically, it inventories all potential interactions between species for a

spatially delimited area (and so captures the γ diversity of interactions). The metaweb itself

is not a prediction of local networks at specific locations within the spatial area it covers: it

will have a different structure, notably by having a larger connectance (see e.g., Wood et al.,

2015) and complexity (see e.g., Galiana et al., 2022), than any of these local networks. These

local networks (which capture the α diversity of interactions) are a subset of the metaweb’s

species and its realized interactions, and have been called “metaweb realizations” (Poisot

et al., 2015). Differences between local networks and their metawebs are due to chance,

species abundance and co-occurrence, local environmental conditions, and local distribution

of functional traits, among others. Specifically, although co-occurrence can be driven by

interactions (Cazelles et al., 2016), co-occurrence alone is not a predictor of interactions

(Blanchet et al., 2020; Thurman et al., 2019), and therefore the lack of co-occurrence cannot

be used to infer the lack of a feasible interaction. Yet, recent results by Saravia et al., 2021

strongly suggested that local (metaweb) realizations only respond weakly to local conditions:

instead, they reflect constraints inherited by the structure of their metaweb. This sets up

the core goal of predictive network ecology as the prediction of metaweb structure, as it is

required to accurately produce downscaled, local predictions.

Because the metaweb represents the joint effect of functional, phylogenetic, and macroe-

cological processes (Morales-Castilla et al., 2015), it holds valuable ecological information.

Specifically, it represents the “upper bounds” on what the composition of the local networks,

given a local species pool, can be (see e.g., McLeod et al., 2021); this information can help
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evaluate the ability of ecological assemblages to withstand the effects of, for example, climate

change (Fricke et al., 2022). These local networks may be reconstructed given an appropri-

ate knowledge of local species composition and provide information on the structure of food

webs at finer spatial scales. This has been done for example for tree-galler-parasitoid systems

(Gravel et al., 2018), fish trophic interactions (Albouy et al., 2019), tetrapod trophic inter-

actions (J. Braga et al., 2019; O’Connor et al., 2020), and crop-pest networks (Grünig et al.,

2020). In this contribution, we highlight the power of viewing (and constructing) metawebs

as probabilistic objects in the context of low-probability interactions, discuss how a family of

machine learning tools (graph embeddings and transfer learning) can be used to overcome

data limitations to metaweb inference, and highlight how the use of metawebs introduces

important questions for the field of network ecology.

2.2. A metaweb is an inherently probabilistic object

Treating interactions as probabilistic (as opposed to binary) events is a more nuanced

and realistic way to represent them. Dallas et al., 2017 suggested that most interactions

(links) in ecological networks are cryptic, i.e., uncommon or hard to observe. This argument

echoes Jordano, 2016: sampling ecological interactions is difficult because it requires first the

joint observation of two species, and then the observation of their interaction. In addition, it

is generally expected that weak or rare interactions will be more prevalent in networks than

common or strong interactions (Csermely, 2004), compared to strong, persistent interactions;

this is notably the case in food chains, wherein many weaker interactions are key to the

stability of a system (Neutel et al., 2002). In the light of these observations, we expect to

see an over-representation of low-probability (hereafter rare) interactions under a model that

accurately predicts interaction probabilities.

Yet, the original metaweb definition, and indeed most past uses of metawebs, was based

on the presence/absence of interactions. Moving towards probabilistic metawebs, by repre-

senting interactions as Bernoulli events (see e.g., Poisot et al., 2016), offers the opportunity
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to weigh these rare interactions appropriately. The inherent plasticity of interactions is im-

portant to capture: there have been documented instances of food webs undergoing rapid

collapse/recovery cycles over short periods of time (e.g., Pedersen et al., 2017). Further-

more, because the structure of the metaweb cannot be known in advance, it is important to

rely on predictive tools that do not assume a specific network topology for link prediction

(Gaucher et al., 2021), but are able to work on generalizations of the network. These con-

siderations emphasize why metaweb predictions should focus on quantitative (preferentially

probabilistic) predictions, and this should constrain the suite of models that are appropriate

for prediction.

It is important to recall that a metaweb is intended as a catalogue of all potential (feasi-

ble) interactions, which is then filtered for a given application (Morales-Castilla et al., 2015).

It is therefore important to separate the interactions that happen “almost surely” (repeated

observational data), “almost never” (repeated lack of evidence or evidence that the link is

forbidden through e.g., trait mis-match), and interactions with a probability that lays some-

where in between (Catchen et al., 2023). In a sense, that most ecological interactions are

elusive can call for a slightly different approach to sampling: once the common interactions

are documented, the effort required in documenting each rare interaction will increase ex-

ponentially (Jordano, 2016). Recent proposals in other fields relying on machine learning

approaches emphasize the idea that algorithms meant to predict, through the assumption

that they approximate the process generating the data, can also act as data generators

(Hoffmann et al., 2019). High quality observational data can be used to infer core rules

underpinning network structure, and be supplemented with synthetic data coming from pre-

dictive models trained on them, thereby increasing the volume of information available for

analysis. Indeed, Strydom, Catchen, et al., 2021 suggested that knowing the metaweb may

render the prediction of local networks easier, because it fixes an “upper bound” on which

interactions can exist. In this context, a probabilistic metaweb represents an aggregation

of informative priors on the biological feasibility of interactions, which is usually hard to

obtain yet has possibly the most potential to boost our predictive ability of local networks
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(Bartomeus, 2013; Bartomeus et al., 2016). This would represent a departure from simple

rules expressed at the network scale (e.g., Williams and Martinez, 2000 to a view of network

prediction based on learning the rules that underpin interactions and their variability (Gupta

et al., 2022).

Fig. 1. The embedding process (A) can help to identify links (interactions) that may have
been missed within the original community (represented by the orange dashed arrows, B).
Transfer learning (D) allows for the prediction links (interactions) even when novel species
(C) are included alongside the original community. This is achieved by learning using other
relevant predictors (e.g., traits) in conjunction with the known interactions to infer latent
values (E). Ultimately this allows us to predict links (interactions) for species external from
the original sample (blue dashed arrows) as well as missing within sample links (F). Within
this context the predicted (and original) networks as well as the ecological predictors used
(green boxes) are products that can be quantified through measurements in the field, whereas
the embedded as well as imputed matrices (purple box) are representative of a decomposition
of the interaction matrices onto the embedding space
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2.3. Graph embedding offers promises for the inference

of potential interactions

Graph (or network) embedding (Figure 1) is a family of machine learning techniques,

whose main task is to learn a mapping function from a discrete graph to a continuous

domain (Arsov and Mirceva, 2019; Chami et al., 2022). Their main goal is to learn a low

dimensional vector representation of the graph (embeddings), such that its key properties

(e.g., local or global structures) are retained in the embedding space (Yan et al., 2005). The

embedding space may, but will not necessarily, have lower dimensionality than the graph.

Ecological networks are promising candidates for the routine application of embeddings, as

they tend to possess a shared structural backbone (see e.g., Bramon Mora et al., 2018), which

hints at structural invariants in empirical data. Assuming that these structural invariants are

common enough, they would dominate the structure of networks, and therefore be adequately

captured by the first (lower) dimensions of an embedding, without the need to measure

derived aspects of their structure (e.g., motifs, paths, modularity, . . . ).

2.3.1. Graph embedding produces latent variables (but not traits)

Before moving further, it is important to clarify the epistemic status of node values

derived from embeddings: specifically, they are not functional traits, and therefore should

not be interpreted in terms of effects or responses. As per the framework of Malaterre et al.,

2019, these values neither derive from, nor result in, changes in organismal performance, and

should therefore not be used to quantify e.g., functional diversity. This holds true even when

there are correlations between latent values and functional traits: although these enable an

ecological discussion of how traits condition the structure of the network, the existence of a

statistical relationship does not elevate the latent values to the status of functional traits.

Rather than directly predicting biological rules (see e.g., Pichler et al., 2020 for an

overview), which may be confounded by the sparse nature of graph data, learning em-

beddings works in the low-dimensional space that maximizes information about the net-

work structure. This approach is further justified by the observation, for example, that the
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macro-evolutionary history of a network is adequately represented by some graph embed-

dings (Random dot product graphs (RDPG); see Dalla Riva and Stouffer, 2016). In a recent

publication, Strydom et al., 2022 have used an embedding (based on RDPG) to project a

metaweb of trophic interactions between European mammals, and transferred this informa-

tion to mammals of Canada, using the phylogenetic distance between related clades to infer

the values in the latent subspace into which the European metaweb was projected. By per-

forming the RDPG step on re-constructed values, this approach yields a probabilistic trophic

metaweb for mammals of Canada based on knowledge of European species, despite a limited

(≈ 5%) taxonomic overlap, and illustrates how the values derived from an embedding can

be used for prediction without being “traits” of the species they represent.

2.3.2. Ecological networks are good candidates for embedding

Food webs are inherently low-dimensional objects, and can be adequately represented

with less than ten dimensions (J. Braga et al., 2019; M. P. Braga et al., 2021; Eklöf et

al., 2013). Simulation results by Botella et al., 2022 suggested that there is no dominant

method to identify architectural similarities between networks: multiple approaches need to

be tested and compared to the network descriptor of interest on a problem-specific basis.

This matches previous results on graph embedding, wherein different embedding algorithms

yield different network embeddings (Goyal and Ferrara, 2018), calling for a careful selection

of the problem-specific approach to use. In Table 1, we present a selection of common graph

and node embedding methods, alongside examples of their use to predict interactions or

statistical associations between species. These methods rely largely on linear algebra or

pseudo-random walks on graphs. All forms of embeddings presented in Table 1 share the

common property of summarizing their objects into (sets of) dense feature vectors, that

capture the overall network structure, pairwise information on nodes, and emergent aspects

of the network, in a compressed way (i.e., with some information loss, as we later discuss in

the illustration). Node embeddings tend to focus on maintaining pairwise relationships (i.e.,

species interactions), while graph embeddings focus on maintaining the network structure
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(i.e., emergent properties). Nevertheless, some graph embedding techniques (like RDPG, see

e.g., Wu et al., 2021) will provide high-quality node-level embeddings while also preserving

network structure.

Graph embeddings can serve as a dimensionality reduction method. For example, RDPG

(Strydom et al., 2022) and t-SVD (truncated Singular Value Decomposition; (Poisot et

al., 2021) typically embed networks using fewer dimensions than the original network (the

original network has as many dimensions as species, and as many informative dimensions as

trophically unique species; Strydom, Dalla Riva, et al., 2021). However, this is not necessarily

the case – indeed, one may perform a PCA (a special case of SVD) to project the raw

data into a subspace that improves the efficacy of t-SNE (t-distributed stochastic neighbor

embedding; van der Maaten, 2009). There are many dimensionality reductions (Anowar

et al., 2021) that can be applied to an embedded network should the need for dimensionality

reduction (for example for data visualization) arise. In brief, many graph embeddings can

serve as dimensionality reduction steps, but not all do, neither do all dimensionality reduction

methods provide adequate graph embedding capacities. In the next section (and Figure 1),

we show how the amount of dimensionality reduction can affect the quality of the embedding.
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Method Object Technique Reference Application
tSNE nodes statistical divergence Hinton and Roweis, 2002 Cieslak et al., 2020, species-environment responsesa

Gibb et al., 2021, host-virus network representation
LINE nodes stochastic gradient descent Tang et al., 2015
SDNE nodes gradient descent D. Wang et al., 2016

node2vec nodes stochastic gradient descent Grover and Leskovec, 2016
HARP nodes meta-strategy H. Chen et al., 2017
DMSE joint nodes deep neural network D. Chen et al., 2017 D. Chen et al., 2017, species-environment interactionsb

graph2vec sub-graph skipgram network Narayanan et al., 2017
RDPG graph SVD Young and Scheinerman, 2007 Dalla Riva and Stouffer, 2016, trophic interactions

Poisot et al., 2021, host-virus network prediction
GLEE graph Laplacian eigenmap Torres et al., 2020

DeepWalk graph stochastic gradient descent Perozzi et al., 2014 Wardeh et al., 2021, host-virus interactions
GraphKKE graph stochastic differential equation Melnyk et al., 2020 Melnyk et al., 2020, microbiome species associationsa

FastEmbed graph eigen decomposition Ramasamy and Madhow, 2015
PCA graph eigen decomposition Surendran, 2013 Strydom, Catchen, et al., 2021, host-parasite interactions

Joint methods multiple graphs multiple strategies S. Wang et al., 2021

Table 1. Overview of some common graph embedding approaches, by type of embedded
objects, alongside examples of their use in the prediction of species interactions. These
methods have not yet been routinely used to predict species interactions; most examples that
we identified were either statistical associations, or analogues to joint species distribution
models. See also Box 1 for an additional discussion on Graph Neural Networks. a: application
is concerned with statistical interactions, which are not necessarily direct biotic interactions;
b:application is concerned with joint-SDM-like approach, which is also very close to statistical
associations as opposed to direct biotic interactions. Given the need to evaluate different
methods on a problem-specific basis, the fact that a lot of methods have not been used
on network problems is an opportunity for benchmarking and method development. Note
that the row for PCA also applies to kernel/probabilistic PCA, which are variations on
the more general method of SVD. Note further that tSNE has been included because it is
frequently used to embed graphs, including of species associations/interactions, despite not
being strictly speaking, a graph embedding technique (see e.g., Chami et al., 2022.)

125



Box 1

Graph Neural Networks

One prominent family of approaches we do not discuss in the present manuscript is

Graph Neural Networks (GNN; Zhou et al., 2020). GNN are, in a sense, a method

to embed a graph into a dense subspace, but belong to the family of deep learning

methods, which has its own set of practices (see e.g., Goodfellow et al., 2016). An

important issue with methods based on deep learning is that, because their parameter

space is immense, the sample size of the data fed into them must be similarly large

(typically thousands of instances). This is a requirement for the model to converge

correctly during training, but this assumption is unlikely to be met given the size of

datasets currently available for metawebs (or single time/location species interaction

networks). This data volume requirement is mostly absent from the techniques we

list below. Furthermore, GNN still have some challenges related to their shallow

structure, and concerns related to scalability (see Gupta et al., 2021 for a review),

which are mostly absent from the methods listed in Table 1. Assuming that the

uptake of next-generation biomonitoring techniques does indeed deliver larger datasets

on species interactions (Bohan et al., 2017), there is nevertheless the potential for GNN

to become an applicable embedding/predictive technique in the coming years.

The popularity of graph embedding techniques in machine learning is more than the

search for structural invariants: graphs are discrete objects, and machine learning tech-

niques tend to handle continuous data better. Bringing a sparse graph into a continuous,

dense vector space (Xu, 2021) opens up a broader variety of predictive algorithms, notably

of the sort that are able to predict events as probabilities (Murphy, 2022). Furthermore, the

projection of the graph itself is a representation that can be learned; (Runghen et al., 2021),

for example, used a neural network to learn the embedding of a network in which not all

interactions were known, based on the nodes’ metadata. This example has many parallels in
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ecology (see Figure 1 C), in which node metadata can be represented by phylogeny, abun-

dance, or functional traits. Using phylogeny as a source of information assumes (or strives

to capture) the action of evolutionary processes on network structure, which at least for food

webs have been well documented (M. P. Braga et al., 2021; Dalla Riva and Stouffer, 2016;

Eklöf and Stouffer, 2016; Stouffer et al., 2007; Stouffer et al., 2012); similarly, the use of func-

tional traits assumes that interactions can be inferred from the knowledge of trait-matching

rules, which is similarly well supported in the empirical literature (Bartomeus, 2013; Bar-

tomeus et al., 2016; Goebel et al., 2023; Gravel et al., 2013). Relating this information to an

embedding rather than a list of network measures would allow to capture their effect on the

more fundamental aspects of network structure; conversely, the absence of a phylogenetic

or functional signal may suggest that evolutionary/trait processes are not strong drivers of

network structure, therefore opening a new way to perform hypothesis testing.

2.4. An illustration of metaweb embedding

In this section, we illustrate the embedding of a collection of bipartite networks collected

by Hadfield et al., 2014, using t-SVD and RDPG. Briefly, an RDPG decomposes a network

into two subspaces (left and right), which are matrices that when multiplied give an approx-

imation of the original network. RDPG has the particularly desirable properties of being a

graph embedding technique that produces relevant node-level feature vectors, and provides

good approximations of graphs with varied structures (Athreya et al., 2017). The code to

reproduce this example is available as supplementary material in Appendix B (note, for the

sake of comparison, that Strydom, Catchen, et al., 2021 have an example using embedding

through PCA followed by prediction using a deep neural network on the same dataset). The

resulting (binary) metaweb M has 2131 interactions between 206 parasites and 121 hosts,

and its adjacency matrix has full rank (i.e., it represents a space with 121 dimensions). All

analyses were done using Julia (Bezanson et al., 2017) version 1.7.2, Makie.jl (Danisch

and Krumbiegel, 2021), and EcologicalNetworks.jl (Poisot et al., 2019).
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Fig. 2. Validation of an embedding for a host-parasite metaweb, using Random Dot Product
Graphs. A, decrease in approximation error as the number of dimensions in the subspaces
increases. B, increase in cumulative variance explained as the number of ranks considered
increases; in A and B, the dot represents the point of inflexion in the curve (at rank 39)
estimated using the finite differences method. C, position of hosts and parasites in the
space of latent variables on the first and second dimensions of their respective subspaces
(the results have been clamped to the unit interval). D, predicted interaction weight from
the RDPG based on the status of the species pair in the metaweb.
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In Figure 2, we focus on some statistical checks of the embedding. In panel A, we

show that the averaged L2 loss (i.e., the sum of squared errors) between the empirical and

reconstructed metaweb decreases when the number of dimensions (rank) of the subspace

increases, with an inflection at 39 dimensions (out of 120 initially) according to the finite

differences method. As discussed by Runghen et al., 2021, there is often a trade-off between

the number of dimensions to use (more dimensions are more computationally demanding)

and the quality of the representation. In panel B, we show the increase in cumulative

variance explained at each rank, and visualize that using 39 ranks explains about 70% of

the variance in the empirical metaweb. This is a different information from the L2 loss

(which is averaged across interactions), as it works on the eigenvalues of the embedding, and

therefore captures higher-level features of the network. In panel C, we show positions of

hosts and parasites on the first two dimensions of the left and right subspaces. Note that

these values largely skew negative, because the first dimensions capture the coarse structure

of the network: most pairs of species do not interact, and therefore have negative values.

Finally in panel D, we show the predicted weight (i.e., the result of the multiplication of

the RDGP subspaces at a rank of 39) as a function of whether the interactions are observed,

not-observed, or unknown due to lack of co-occurrence in the original dataset. This reveals

that the observed interactions have higher predicted weights, although there is some overlap;

the usual approach to identify potential interactions based on this information would be a

thresholding analysis, which is outside the scope of this manuscript (and is done in the

papers cited in this illustration). Because the values returned from RDPG are not bound

to the unit interval, we performed a clamping of the weights to the unit space, showing a

one-inflation in documented interactions, and a zero-inflation in other species pairs. This last

figure crosses from the statistical into the ecological, by showing that species pairs with no

documented co-occurrence have weights that are not distinguishable from species pairs with

no documented interactions, suggesting that (as befits a host-parasite model) the ability to

interact is a strong predictor of co-occurrence.
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Fig. 3. Ecological analysis of an embedding for a host-parasite metaweb, using Random Dot
Product Graphs. A, relationship between the number of parasites and position along the
first axis of the right-subspace for all hosts, showing that the embedding captures elements of
network structure at the species scale. B, weak relationship between the body mass of hosts
(in grams) and the position alongside the same dimension. C, weak relationship between
body mass of hosts and parasite richness. D, distribution of positions alongside the same
axis for hosts grouped by taxonomic family.
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The results of Figure 2 show that we can extract an embedding of the metaweb that

captures enough variance to be relevant; specifically, this is true for both L2 loss (indicating

that RDPG is able to capture pairwise processes) and the cumulative variance explained

(indicating that RDPG is able to capture network-level structure). Therefore, in Figure 3,

we relate the values of latent variables for hosts to different ecologically-relevant data. In

panel A, we show that host with a higher value on the first dimension have fewer parasites.

This relates to the body size of hosts in the PanTHERIA database (Jones et al., 2009), as

shown in panel B: interestingly, the position on the first axis is only weakly correlated to

body mass of the host; this matches well established results showing that body size/mass is

not always a direct predictor of parasite richness in terrestrial mammals (Morand and Poulin,

1998), a result we observe in panel C. Finally, in panel D, we can see how different taxonomic

families occupy different positions on the first axis, with e.g., Sciuridae being biased towards

higher values. These results show how we can look for ecological informations in the output

of network embeddings, which can further be refined into the selection of predictors for

transfer learning.

2.5. The metaweb merges ecological hypotheses and

practices

Metaweb inference seeks to provide information about the interactions between species

at a large spatial scale, typically a scale large enough to be considered of biogeographic

relevance (indeed, many of the examples covered in the introduction span areas larger than

a country, some of them global). But as Herbert, 1965 rightfully pointed out, “[y]ou can’t

draw neat lines around planet-wide problems”; any inference of a metaweb must therefore

contend with several novel, interwoven, families of problems. In this section, we outline

three that we think are particularly important, and can discuss how they may addressed

with subsequent data analysis or simulations, and how they emerge in the specific context

of using embeddings; some of these issues are related to the application of these methods at

the science-policy interface.
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2.5.1. Identifying the properties of the network to embed

If the initial metaweb is too narrow in scope, notably from a taxonomic point of view,

the chances of finding another area with enough related species (through phylogenetic re-

latedness or similarity of functional traits) to make a reliable inference decreases. This is

because transfer requires similarity (Figure 1). A diagnostic for the lack of similar species

would likely be large confidence intervals during estimation of the values in the low-rank

space. In other words, the representation of the original graph is difficult to transfer to the

new problem. Alternatively, if the initial metaweb is too large (taxonomically), then the re-

sulting embeddings would need to represent interactions between taxonomic groups that are

not present in the new location. This would lead to a much higher variance in the starting

dataset, and to under-dispersion in the target dataset, resulting in the potential under or

over estimation of the strength of new predicted interactions. Llewelyn et al., 2022 provided

compelling evidence for these situations by showing that, even at small spatial scales, the

transfer of information about interactions becomes more challenging when areas rich with

endemic species are considered. The lack of well documented metawebs is currently prevent-

ing the development of more concrete guidelines. The question of phylogenetic relatedness

and distribution is notably relevant if the metaweb is assembled in an area with mostly en-

demic species (e.g., a system that has undergone recent radiation or that has remained in

isolation for a long period of time might not have an analogous system with which to draw

knowledge from), and as with every predictive algorithm, there is room for the application

of our best ecological judgement. Because this problem relates to distribution of species in

the geographic or phylogenetic space, it can certainly be approached through assessing the

performance of embedding transfer in simulated starting/target species pools.

2.5.2. Identifying the scope of the prediction to perform

The area for which we seek to predict the metaweb should determine the species pool on

which the embedding is performed. Metawebs can be constructed by assigning interactions

in a list of species within specific regions. The upside of this approach is that information
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relevant for the construction of this dataset is likely to exist, as countries usually set con-

servation goals at the national level (Buxton et al., 2021), and as quantitative instruments

are consequently designed to work at these scales (Turak et al., 2017); specific strategies are

often enacted at smaller scales, nested within a specific country (Ray et al., 2021). However,

there is no guarantee that these arbitrary boundaries are meaningful. In fact, we do not have

a satisfying answer to the question of “where does an ecological network stop?”, the answer

to which would dictate the spatial span to embed/predict. Recent results by Martins et al.,

2022 suggested that networks are shaped within eco-regions, with abrupt structural transi-

tions from an eco-region to the next. Should this trend hold generally, this would provide

an ecologically-relevant scale at which metawebs can be downscaled and predicted. Other

solutions could leverage network-area relationships to identify areas in which networks are

structurally similar (see e.g., Fortin et al., 2021; Galiana et al., 2022; Galiana et al., 2018).

Both of these solutions require ample pre-existing information about the network in space.

Nevertheless, the inclusion of species for which we have data but that are not in the right

spatial extent may improve the performance of approaches based on embedding and transfer,

if they increase the similarity between the target and destination network. This proposal

can specifically be evaluated by adding nodes to the network to embed, and assessing the

performance of predictive models (see e.g., Llewelyn et al., 2022).

2.6. Conclusion: metawebs, predictions, and people

Predictive approaches in ecology, regardless of the scale at which they are deployed and

the intent of their deployment, originate in the framework that contributed to the ongo-

ing biodiversity crisis (Adam, 2014) and reinforced environmental injustice (Choudry, 2013;

Domínguez and Luoma, 2020). The risk of embedding this legacy in our models is real,

especially when the impact of this legacy on species pools is being increasingly documented.

This problem can be addressed by re-framing the way we interact with models, especially

when models are intended to support conservation actions. Particularly on territories that
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were traditionally stewarded by Indigenous people, we must interrogate how predictive ap-

proaches and the biases that underpin them can be put to task in accompanying Indigenous

principles of land management (Eichhorn et al., 2019; No’kmaq et al., 2021). The discus-

sion of “algorithm-in-the-loop” approaches that is now pervasive in the machine learning

community provides examples of why this is important. Human-algorithm interactions are

notoriously difficult and can yield adverse effects (Green and Chen, 2019; Stevenson and

Doleac, 2021), suggesting the need to systematically study them for the specific purpose of,

here, biodiversity governance. Improving the algorithmic literacy of decision makers is part

of the solution (e.g., Lamba et al., 2019; Mosebo Fernandes et al., 2020), as we can reason-

ably expect that model outputs will be increasingly used to drive policy decisions (Weiskopf

et al., 2022). Our discussion of these approaches need to go beyond the technical and sta-

tistical, and into the governance consequences they can have. To embed data also embeds

historical and contemporary biases that acted on these data, both because they shaped the

ecological processes generating them, and the global processes leading to their measurement

and publication. For a domain as vast as species interaction networks, these biases exist at

multiple scales along the way, and a challenge for prediction is not only to develop (or adopt)

new quantitative tools, but to assess the behavior of these tools in the proper context.
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Box 2

Minding legacies shaping ecological datasets

In large parts of the world, boundaries that delineate geographic regions are merely a

reflection the legacy of settler colonialism, which drives global disparity in capacity to

collect and publish ecological data. Applying any embedding to biased data does not

debias them, but rather embeds these biases, propagating them to the models using

embeddings to make predictions. Furthermore, the use of ecological data itself is not an

apolitical act (Nost and Goldstein, 2021): data infrastructures tend to be designed to

answer questions within national boundaries (therefore placing contingencies on what

is available to be embedded), their use often drawing upon, and reinforcing, territorial

statecraft (see e.g., Barrett, 2005). As per Machen and Nost, 2021, these biases are

particularly important to consider when knowledge generated algorithmically is used to

supplement or replace human decision-making, especially for governance (e.g., enacting

conservation decisions on the basis of model prediction). As information on networks is

increasingly leveraged for conservation actions (see e.g., Eero et al., 2021; Naman et al.,

2022; Stier et al., 2017), the need to appraise and correct biases that are unwittingly

propagated to algorithms when embedded from the original data is immense. These

considerations are even more urgent in the specific context of biodiversity data. Long-

term colonial legacies still shape taxonomic composition to this day (Lenzner et al.,

2022; Raja, 2022), and much shorter-term changes in taxonomic and genetic richness of

wildlife emerged through environmental racism (Schmidt and Garroway, 2022). Thus,

the set of species found at a specific location is not only as the result of a response

to ecological processes separate from human influence, but also the result of human-

environment interaction as well as the result legislative/political histories.
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Résumé. 1. Malgré leur importance dans de nombreux processus écologiques, la collecte

de données et d’informations sur les interactions écologiques est une tâche extrêmement

complexe. Pour cette raison, de nombreuses régions du monde révèlent un déficit de

données en ce qui concerne les interactions entre les espèces et la structure des réseaux qui

en résultent. Comme il est peu probable que la collecte de données soit suffisante à elle

seule, les écologistes des communautés doivent adopter des méthodes prédictives.

2. Nous présentons un cadre méthodologique qui utilise l’incorporation graphique et

l’apprentissage par transfert pour établir une liste prédictive des interactions trophiques

d’un bassin d’espèces dont les interactions sont inconnues. Plus précisément, nous «

apprenons » l’information (caractères latents) des espèces à partir d’un réseau d’interaction

connu et inférons les caractères latents d’un autre bassin d’espèces pour lequel nous n’avons

pas de données d’interaction a priori fondées sur leur lien phylogénétique avec les espèces

du réseau connu. Les traits latents peuvent ensuite être utilisés pour prédire les interactions

et construire un réseau d’interaction.

3. Ici, nous avons assemblé un méta-réseau (metaweb) pour les mammifères canadiens à

partir des interactions dans le réseau trophique européen, en dépit d’un partage d’espèces

communes de seulement 4% entre les deux sites. Les résultats du modèle prédictif sont

comparés aux bases de données répertoriées d’interactions par paires, montrant que nous

recouvrons correctement 91% des interactions connues.

4. Le cadre est intrinsèquement robuste, même lorsque le réseau connu est incomplet

ou contient des interactions fallacieuses, en faisant un candidat idéal comme outil pour

combler les lacunes en ce qui concerne les interactions entre les espèces. Nous fournissons

des conseils sur la façon dont ce cadre peut être adapté en remplaçant certaines approches

ou certains prédicteurs afin de le rendre plus généralement applicable.

Mots clés : estimation des caractères ancestraux, biogéographie, réseaux écologiques, in-

tégration de réseaux, apprentissage par transfert
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Abstract. 1. Despite their importance in many ecological processes, collecting data and

information on ecological interactions is an exceedingly challenging task. For this reason,

large parts of the world have a data deficit when it comes to species interactions and how

the resulting networks are structured. As data collection alone is unlikely to be sufficient,

community ecologists must adopt predictive methods.

2. We present a methodological framework that uses graph embedding and transfer learning

to assemble a predicted list of trophic interactions of a species pool for which their interac-

tions are unknown. Specifically, we ‘learn’ the information (latent traits) of species from a

known interaction network and infer the latent traits of another species pool for which we

have no a priori interaction data based on their phylogenetic relatedness to species from the

known network. The latent traits can then be used to predict interactions and construct an

interaction network.

3. Here we assembled a metaweb for Canadian mammals derived from interactions in the

European food web, despite only 4% of common species being shared between the two lo-

cations. The results of the predictive model are compared against databases of recorded

pairwise interactions, showing that we correctly recover 91% of known interactions.

4. The framework itself is robust even when the known network is incomplete or contains

spurious interactions making it an ideal candidate as a tool for filling gaps when it comes

to species interactions. We provide guidance on how this framework can be adapted by

substituting some approaches or predictors in order to make it more generally applicable.

Keywords: ancestral character estimation, biogeography, ecological networks, network em-

bedding, transfer learning

3.1. Introduction

There are two core challenges we are faced with in furthering our understanding of eco-

logical networks across space, particularly at macro-ecologically relevant scales (e.g., Trøjels-

gaard and Olesen, 2016). First, ecological networks within a location are difficult to sample

properly (Jordano, 2016a, 2016b), resulting in a widespread “Eltonian shortfall” (Hortal

et al., 2015), i.e., a lack of knowledge about inter- and intra- specific relationships. This

first challenge has been, in large part, addressed by the recent emergence of a suite of meth-

ods aiming to predict interactions within existing networks, many of which are reviewed in
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(Strydom, Catchen, et al., 2021). Second, recent analyses based on collected data (Poisot,

Bergeron, et al., 2021) or metadata (Cameron et al., 2019) highlight that ecological net-

works are currently studied in a biased subset of space and bioclimates, which impedes our

ability to generalize any local understanding of network structure. Meaning that, although

the framework to address incompleteness within networks exists, there would still be regions

for which, due to a lack of local interaction data, we are unable to infer potential species

interactions.

Here, we present a general method to infer potential trophic interactions, relying on the

transfer learning of network representations, specifically by using similarities of species in a

biologically/ecologically relevant proxy space (e.g., shared morphology or ancestry). Trans-

fer learning is a machine learning methodology that uses the knowledge gained from solving

one problem and applying it to a related (destination) problem (Pan and Yang, 2010; Torrey

and Shavlik, 2010). In this instance, we solve the problem of predicting trophic interactions

between species, based on knowledge extracted from another species pool for which interac-

tions are known by using phylogenetic structure as a medium for transfer. There is a plurality

of measures of species similarities that can be used for inferring potential species interactions

i.e., metaweb reconstruction (see e.g., Morales-Castilla et al., 2015); however, phylogenetic

proximity has several desirable properties when working at large scales. Gerhold et al., 2015

made the point that phylogenetic signal captures diversification of characters (large macro-

evolutionary process), but not necessarily community assembly (fine ecological process);

Dormann et al., 2010 previously found very similar conclusions. Interactions tend to reflect

a phylogenetic signal because they have a conserved pattern of evolutionary convergence

that encompasses a wide range of ecological and evolutionary mechanisms (Cavender-Bares

et al., 2009; Mouquet et al., 2012), and - most importantly - retain this signal even if it is

obscured at the community scale due to e.g., local conditions (Hutchinson et al., 2017; Poisot

and Stouffer, 2018). Finally, species interactions at macro-ecological scales seem to respond

mostly to macro-evolutionary processes (Price, 2003); which is evidenced by the presence of

conserved backbones in food webs (Bramon Mora et al., 2018; Dalla Riva and Stouffer, 2016),
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strong evolutionary signature on prey choice (Stouffer et al., 2012), and strong phylogenetic

signature in food web intervality (Eklöf and Stouffer, 2016). Phylogenetic reconstruction has

also previously been used within the context of ecological networks, namely understanding

ancestral plant-insect interactions (Braga et al., 2021). Taken together, these considerations

suggest that phylogenies can reliably be used to transfer knowledge on species interactions.

Fig. 1. Overview of the phylogenetic transfer learning (and prediction) of species interac-
tions networks. Starting from an initial, known, network, we learn its representation through
a graph embedding step (here, a truncated Singular Value Decomposition; Step 1), yielding
a series of latent traits (latent vulnerability traits are more representative of species at the
lower trophic-level and latent generality traits are more representative of species at higher
trophic-levels; sensu Schoener, 1989); second, for the destination species pool, we perform
ancestral character estimation using a phylogeny (here, using a Brownian model for the
latent traits; Step 2); we then sample from the reconstructed distribution of latent traits
(Step 3) to generate a probabilistic metaweb at the destination (here, assuming a uniform
distribution of traits), and threshold it to yield the final list of interactions (Step 4).

In Figure 1, we provide a methodological overview based on learning the embedding of

a metaweb of trophic interactions for European mammals (known interactions; Maiorano

et al., 2020a, 2020b) and, based on phylogenetic relationships between mammals globally

i.e., phylogenetic tree (Upham et al., 2019), infer a metaweb for the Canadian mammalian
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species pool (using only a species list i.e., we have no prior data on species interaction

data for Canada in this instance). Our case study shows that phylogenetic transfer learning

is an effective approach to the generation of probabilistic metawebs. This showcases that

although the components (species) that make up the Canadian and European communities

may be minimally shared (the overall species overlap is less than 4%), if the medium (proxy

space) selected in the transfer step is biologically plausible, we can still effectively learn from

the known network and make biologically relevant predictions of interactions. Indeed, as

we detail in the results, when validated against the known (but fractional) data of trophic

interactions present between Canadian mammals, our model achieves a predictive accuracy

of approximately 91%.

3.2. Method description

The core point of our method is the transfer of knowledge of a known ecological network

to predict interactions between species for another location for which the network is unknown

(or partially known) and is summarized in the grey text boxes in Figure 1. The method we

develop is, ecologically speaking, a “black box”, i.e., an algorithm that can be understood

mathematically, but whose component parts are not always directly tied to ecological pro-

cesses. There is a growing realization in machine learning that (unintentional) black box

algorithms are not necessarily a bad thing (Holm, 2019), as long as their constituent parts

can be examined (which is the case with our method). But more importantly, data hold

more information than we might think; as such, even algorithms that are disconnected from

a model can make correct guesses most of the time (Halevy et al., 2009); in fact, in an

instance of ecological forecasting of spatio-temporal systems, model-free approaches (i.e.,

drawing all of their information from the data) outperformed model-informed ones (Perretti

et al., 2013).
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3.2.1. Data used for the case study

We use data from the European metaweb assembled by Maiorano et al., 2020b. This was

assembled using data extracted from scientific literature (including published papers, books,

and grey literature) from the last 50 years and includes all terrestrial tetrapods (mammals,

breeding birds, reptiles and amphibians) occurring on the European sub-continent (and

Turkey) - with the caveat that only species introduced in historical times and currently nat-

uralized being included. The European metaweb was filtered using the Global Biodiversity

Information Facility (GBIF) taxonomic backbone (GBIF Secretariat, 2021) so as to contain

only terrestrial and semi-aquatic mammals. As all species had valid matches to the GBIF

taxonomy it was used as the backbone for the remaining reconciliation steps namely, the

mammalian consensus supertree by Upham et al., 2019 (which is used for the knowledge

transfer step) and for the Canadian species list—which was extracted from the International

Union for Conservation of Nature (IUCN) checklist, and corresponds to the same selection

criteria that was applied by Maiorano et al., 2020b in the European metaweb. After taxo-

nomic cleaning and reconciliation the European metaweb has 260 species, and the Canadian

species pool 163; of these, 17 (about 4% of the total) are shared, and 89 species from Canada

(54%) had at least one congeneric species in Europe. The similarity for both species pools

predictably increases with higher taxonomic order, with 19% of shared genera, 47% of shared

families, and 75% of shared orders; for the last point, Canada and Europe each had a single

unique order (Didelphimorphia for Canada, Erinaceomorpha for Europe).

3.2.2. Implementation and code availability

The entire pipeline is implemented in Julia 1.6 (Bezanson et al., 2017) and is available

under the permissive MIT License at https://osf.io/2zwqm/. The taxonomic cleanup

steps are done using GBIF.jl (Dansereau and Poisot, 2021). The network embedding and

analysis is done using EcologicalNetworks.jl (Banville et al., 2021; Poisot et al., 2019).

The phylogenetic simulations are done using PhyloNetworks.jl (Solís-Lemus et al., 2017)

and Phylo.jl (Reeve et al., 2016). A complete Project.toml file specifying the full tree of
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dependencies is available alongside the code. This material also includes a fully annotated

copy of the entire code required to run this project (describing both the intent of the code and

discussing some technical implementation details), a vignette for every step of the process,

and a series of Jupyter notebooks with the text and code. The pipeline can be executed

on a laptop in a matter of minutes, and therefore does not require extensive computational

power.

3.2.3. Step 1: Learning the origin network representation

The first step in transfer learning is to learn the structure of the original dataset. In

order to do so, we rely on an approach inspired from representational learning, where we

learn a representation of the metaweb (in the form of the latent subspaces), rather than a

list of interactions (species a eats b). This approach is conceptually different from other

metaweb-scale predictions (e.g., Albouy et al., 2019), in that the metaweb representation

is easily transferable. Specifically, we use a Random Dot Product Graph model (hereafter

RDPG; S. J. Young and Scheinerman, 2007) to create a number of latent variables that can

be combined into an approximation of the network adjacency matrix. RDPG is known to

capture the evolutionary backbone of food webs (Dalla Riva and Stouffer, 2016), resulting

in strong phylogenetic signal in RDPG results; in other words, the latent variables of an

RDPG can be mapped onto a phylogenetic tree, and phylogenetically similar predators

should share phylogenetically similar preys. In addition, recent advances show that the

latent variables produced this way can be used to predict de novo interactions. Interestingly,

the latent variables do not need to be produced by decomposing the network itself; in a

recent contribution, (Runghen et al., 2021) showed that deep artificial neural networks are

able to reconstruct the left and right subspaces of an RDPG, in order to predict human

movement networks from individual/location metadata and opens up the possibility of using

additional metadata as predictors.

The latent variables are created by performing a truncated Singular Value Decomposition

(t-SVD; Halko et al., 2011) on the adjacency matrix. SVD is an appropriate embedding of
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ecological networks, which has recently been shown to both capture their complex, emerging

properties (Strydom, Dalla Riva, et al., 2021) and to allow highly accurate prediction of

the interactions within a single network (Poisot, Ouellet, et al., 2021). Under SVD, an

adjacency matrix A (where Am,n ∈ B where 1 indicates predation and 0 an absence thereof)

is decomposed into three components resulting in A = UΣV′. Here, Σ is a m × n diagonal

matrix and contains only singular (σ) values along its diagonal, U is a m×m unitary matrix,

and V′ a n × n unitary matrix. Truncating the SVD removes additional noise in the dataset

by omitting non-zero and/or smaller σ values from Σ using the rank of the matrix. Under a

t-SVD Am,n is decomposed so that Σ is a square r × r diagonal matrix (with 1 ≤ r ≤ rfull

where rfull is the full rank of A and r the rank at which we truncate the matrix) containing

only non-zero σ values. Additionally, U is now an m × r semi unitary matrix and V′ an

r × n semi-unitary matrix.

The specific rank at which the SVD ought to be truncated is a difficult question. The

purpose of SVD is to remove the noise (expressed at high dimensions) and to focus on the

signal (expressed at low dimensions). In datasets with a clear signal/noise demarcation, a

scree plot of Σ can show a sharp drop at the rank where noise starts (Zhu and Ghodsi, 2006).

Because the European metaweb is almost entirely known, the amount of noise (uncertainty)

is low; this is reflected in Fig.2 (left), where the scree plot shows no important drop, and

in Fig.2 (right) where the proportion of variance explained increases smoothly at higher

dimensions. For this reason, we default back to a threshold that explains 60% of the variance

in the underlying data, corresponding to 12 dimensions - i.e., a tradeoff between accuracy

and a reduced number of features.

An RDPG estimates the probability of observing interactions between nodes (species) as

a function of the nodes’ latent variables, and is a way to turn an SVD (which decompose one

matrix into three) into two matrices that can be multiplied to provide an approximation of

the network. The latent variables used for the RDPG, called the left and right subspaces,

are defined as L = U
√

Σ, and R =
√

ΣV′ – using the full rank of A, L R = A, and

using any smaller rank results in L R ≈ A. Using a rank of 1 for the t-SVD provides a
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first-order approximation of the network. One advantage of using an RDPG for the network

reconstruction rather than an SVD is that the number of components to estimate decreases;

notably, one does not have to estimate the singular values of the SVD. Furthermore, the two

subspaces can be directly multiplied to yield a network.

Fig. 2. Left: representation of the scree plot of the singular values from the t-SVD on the
European metaweb. The scree plot shows no obvious drop in the singular values that may
be leveraged to automatically detect a minimal dimension for embedding, after e.g., Zhu
and Ghodsi, 2006. Right: cumulative fraction of variance explained by each dimension up
to the rank of the European metaweb. The grey lines represent cutoffs at 50, 60, . . . , 90%
of variance explained. For the rest of the analysis, we reverted to an arbitrary threshold of
60% of variance explained, which represented a good tradeoff between accuracy and reduced
number of features.

Because RDPG relies on matrix multiplication, the higher dimensions essentially serve to

make specific interactions converge towards 0 or 1; therefore, for reasonably low ranks, there

is no guarantee that the values in the reconstructed network will be within the unit range. In

order to determine what constitutes an appropriate threshold for probability, we performed

the RDPG approach on the European metaweb, and evaluated the probability threshold by

treating this as a binary classification problem, specifically assuming that both 0 and 1 in

the European metaweb are all true. Given the methodological details given in Maiorano

et al., 2020b and O’Connor et al., 2020, this seems like a reasonable assumption, although
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one that does not hold for all metawebs. We used the thresholding approach presented in

Poisot, Ouellet, et al., 2021, and picked a cutoff that maximized Youden’s J statistic (a

measure of the informedness (trust) of predictions; Youden, 1950); the resulting cutoff was

0.22, and gave an accuracy above 0.99. In section A.1, we provide several lines of evidence

that using the entire network to estimate the threshold does not lead to overfitting; that

using a subset of species would yield the same threshold; that decreasing the quality of

the original data by adding or removing interactions would minimally affect the predictive

accuracy of RDPG applied to the European metaweb; and that the networks reconstructed

from artificially modified data are reconstructed with the correct ecological properties.

The left and right subspaces for the European metaweb, accompanied by the threshold

for prediction, represent the knowledge we seek to transfer. In the next section, we explain

how we rely on phylogenetic similarity to do so.

3.2.4. Steps 2 and 3: Transfer learning through phylogenetic relat-

edness

In order to transfer the knowledge from the European metaweb to the Canadian species

pool, we performed ancestral character estimation using a Brownian motion model, which

is a conservative approach in the absence of strong hypotheses about the nature of phy-

logenetic signal in the network decomposition (Litsios and Salamin, 2012). This uses the

estimated feature vectors for the European mammals to create a state reconstruction for

all species (conceptually something akin to a trait-based mammalian phylogeny using latent

generality and vulnerability traits) and allows us to impute the missing (latent) trait data

for the Canadian species that are not already in the European network; as we are focused on

predicting contemporary interactions, we only retained the values for the tips of the tree. We

assumed that all traits (i.e., the feature vectors for the left and right subspaces) were inde-

pendent, which is a reasonable assumption as every trait/dimension added to the t-SVD has

an additive effect to the one before it. Note that the Upham et al., 2019 tree itself has some

uncertainty associated to inner nodes of the phylogeny. In this case study we have decided

162



to not propagate this uncertainty as it would complexify the process. The Brownian motion

algorithm returns the average value of the trait, and its upper and lower bounds. Because

we do not estimate other parameters of the traits’ distributions, we considered that every

species trait is represented as a uniform distribution between these bounds. The choice of

the uniform distribution was made because the algorithm returns a minimum and maximum

point estimate for the value, and given this information, the uniform distribution is the one

with maximum entropy. Had all mean parameters estimates been positive, the exponential

distribution would have been an alternative, but this is not the case for the subspaces of

an RDPG. In order to examine the consequences of the choice of distribution, we estimated

the variance per latent variable per node to use a Normal distribution; as we show in sec-

tion A.2, this decision results in dramatically over-estimating the number and probability of

interactions, and therefore we keep the discussions in the main text to the uniform case. The

inferred left and right subspaces for the Canadian species pool (L̂ ) and (R̂) have entries that

are distributions, representing the range of values for a given species at a given dimension.

These objects represent the transferred knowledge, which we can use for prediction of the

Canadian metaweb.

3.2.5. Step 4: Probabilistic prediction of the destination network

The phylogenetic reconstruction of L̂ and R̂ has an associated uncertainty, represented

by the breadth of the uniform distribution associated to each of their entries. Therefore, we

can use this information to assemble a probabilistic metaweb in the sense of Poisot et al.,

2016, i.e., in which every interaction is represented as a single, independent, Bernoulli event

of probability p.

Specifically, we have adopted the following approach. For every entry in (L̂ ) and (R̂),

we draw a value from its distribution. This results in one instance of the possible left (l̂)

and right (r̂) subspaces for the Canadian metaweb. These can be multiplied, to produce one

matrix of real values. Because the entries in l̂ and r̂ are in the same space where (L ) and

(R) were originally predicted, it follows that the threshold (ρ) estimated for the European
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Fig. 3. Visual representation of the left (green/purple; left-side matrix) and right
(green/brown; top matrix) subspaces, alongside the adjacency matrix of the food web they
encode (grey scale). Where the color saturation is the magnitude of the latent trait value.
The European metaweb is on the left, and the imputed Canadian metaweb (before data
inflation) on the right. This figure illustrates how much structure the left subspace captures.
As we show in Figure 6, the species with a value of 0 in the left subspace are species without
any prey.

metaweb also applies. We use this information to produce one random Canadian metaweb,

N = L̂ R̂ ′ ≥ ρ. As we can see in (Figure 3), the European and Canadian metawebs

are structurally similar (as would be expected given the biogeographic similarities) and the

two (left and right) subspaces are distinct i.e., capturing predation (generality) and prey

(vulnerability) latent traits.

Because the intervals around some trait values can be broad (in fact, probably broader

than what they would actually be, see e.g., Garland et al., 1999), we repeat the above

process 2 × 105 times, which results in a probabilistic metaweb P , where the probability

of an interaction (here conveying our degree of trust that it exists given the inferred trait

distributions) is given by the number of times where it appears across all random draws N ,

divided by the number of samples. An interaction with Pi,j = 1 means that these two species

were predicted to interact in all 2 × 105 random draws.
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It must be noted that despite bringing in a large amount of information from the Euro-

pean species pool and interactions, the Canadian metaweb has distinct structural properties.

Following an approach similar to Vermaat et al., 2009, we show in section A.3 that not only

can we observe differences in the multivariate space between the European and Canadian

metawebs, we can also observe differences in the same space between random subgraphs

from these networks. These results line up with the studies spatializing metawebs that have

been discussed in the introduction: changes in the species pool are driving local structural

changes in the networks.

3.2.6. Data cleanup, discovery, validation, and thresholding

Once the probabilistic metaweb for Canada has been produced, we followed a number

of data inflation steps to finalize it. This step is external to the actual transfer learning

framework but rather serves as a way to augment and validate the predicted metaweb.

First, we extracted the network corresponding to the 17 species shared between the

European and Canadian pools and replaced these interactions with a probability of 0 (non-

interaction) or 1 (interaction), according to their value in the European metaweb. This

represents a minute modification of the inferred network (about 0.8% of all species pairs

from the Canadian web), but ensures that we are directly re-using knowledge from Europe.

Second, we looked for all species in the Canadian pool known to the Global Biotic In-

teractions (GloBI) database Poelen et al., 2014), and extracted their known interactions.

Because GloBI aggregates observed interactions, it is not a networks data source, and there-

fore the only information we can reliably extract from it is that a species pair was reported to

interact at least once. This last statement should yet be taken with caution, as some sources

in GloBI (e.g., Thessen and Parr, 2014) are produced through text analysis, and therefore

may not document direct evidence of the interaction. Nevertheless, should the predictive

model work, we would expect that a majority of interactions known to GloBI would also be

predicted. We retrieved 366 interactions between mammals from the Canadian species pool

from GloBI, 33 of which were not predicted by the model; this results in a success rate of
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Fig. 4. Left: comparison of the probabilities of interactions assigned by the model to all
interactions (grey curve), the subset of interactions found in GloBI (red), and in the Strong
and Leroux, 2014 Newfoundland dataset (blue). The model recovers more interactions with
a low probability compared to data mining, which can suggest that collected datasets are
biased towards more common or easy to identify interactions. Right: distribution of the in-
degree and out-degree of the mammals from Canada in the reconstructed metaweb, where the
rank is the maximal number of linearly independent columns (interactions) in the metaweb.
This figure describes a flat, relatively short food web, in which there are few predators but
a large number of preys.

91%. After performing this check, we set the probability of all interactions known to GloBI

to 1.

Finally, we downloaded the data from Strong and Leroux, 2014, who mined various

literature sources to identify trophic interactions in Newfoundland. This dataset documented

25 interactions between mammals, only two of which were not part of our (Canada-level)

predictions, resulting in a success rate of 92%. These two interactions were added to our

predicted metaweb with a probability of 1. A comparison of interaction densities for the

inferred metaweb, and the Globi and Newfoundland is shown in Fig.4 and a table listing all

interactions in the predicted Canadian metaweb can be found in the supplementary material.

Because the confidence intervals on the inferred trait space are probably over-estimates,

we decided to apply a thresholding step to the interactions after data inflation (see Fig.5

showing the effect of varying the cutoff on P (i → j)). Cirtwill and Hambäck, 2021 proposed
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Fig. 5. Left: effect of varying the cutoff for probabilities to be considered non-zero on the
number of unique links and on L̂, the probabilistic estimate of the number of links assuming
that all interactions are independent. Right: effect of varying the cutoff on the number of
disconnected species, and on network connectance. In both panels, the grey line indicates
the cutoff P (i → j) ≈ 0.08 that resulted in the first species losing all of its interactions.

a number of strategies to threshold probabilistic networks. Their methodology assumes the

underlying data to be tag-based sequencing, which represents interactions as co-occurrences

of predator and prey within the same tags; this is conceptually identical to our Bernoulli-trial

based reconstruction of a probabilistic network. We performed a full analysis of the effect

of various cutoffs, and as they either resulted in removing too few interactions, or removing

enough interactions that species started to be disconnected from the network, we set this

threshold for a probability equivalent to 0 to the largest possible value that still allowed

all species to have at least one interaction with a non-zero probability. The need for this

slight deviation from the Cirtwill and Hambäck, 2021 methodology highlights the need for

additional development on network thresholding.

3.3. Results and discussion

Using a transfer learning framework we were able to construct a probabilistic metaweb

and (as per Dunne, 2006) is a list of potential interactions, meaning that they will not
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necessarily be realized wherever the two species co-occur. The t-SVD embedding is able to

learn relevant ecological features for the network. Fig.6 shows that the first rank correlates

linearly with generality and vulnerability (Schoener, 1989), i.e., the number of preys and

predators for each species. Importantly, this implies that a rank 1 approximation represents

the configuration model for the metaweb, i.e., a set of random networks generated from a

given degree sequence (Park and Newman, 2004). Accounting for the probabilistic nature of

the degrees, the rank 1 approximation also represents the soft configuration model (van der

Hoorn et al., 2018). Both models are maximum entropy graph models (Garlaschelli et al.,

2018), with sharp (all network realizations satisfy the specified degree sequence) and soft

(network realizations satisfy the degree sequence on average) local constraints, respectively.

The (soft) configuration model is an unbiased random graph model widely used by ecologists

in the context of null hypothesis significance testing of network structure (e.g., Bascompte et

al., 2003) and can provide informative priors for Bayesian inference of network structure (e.g.,

J.-G. Young et al., 2021). It is noteworthy that for this metaweb, the relevant information

was extracted at the first rank. Because the first rank corresponds to the leading singular

value of the system, the results of Fig.6 have a straightforward interpretation: degree-based

processes are the most important in structuring the mammalian food web.

One important aspect in which Europe and Canada differ (despite their comparable bio-

climatic conditions) is the degree of the legacy of human impacts, which have been much

longer in Europe. Nenzén et al., 2014 showed that even at small scales (the Iberian penin-

sula), mammal food webs retain the signal of both past climate change and human activity,

even when this human activity was orders of magnitude less important than it is now. Sim-

ilarly, Yeakel et al., 2014 showed that changes in human occupation over several centuries

can lead to food web collapse. Megafauna in particular seems to be very sensitive to human

arrival (Pires et al., 2015). In short, there is well-substantiated support for the idea that

human footprint affects more than the risk of species extinction (Marco et al., 2018), and

can lead to changes in interaction structure.
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Cirtwill et al., 2019 showed that network inference techniques based on Bayesian ap-

proaches would perform far better in the presence of an interaction-level informative prior;

the desirable properties of such a prior would be that it is expressed as a probability, prefer-

ably representing a Bernoulli event, the value of which would be representative of relevant

biological processes (probability of predation in this case). We argue that the probability

returned at the very last step of our framework may serve as this informative prior; indeed,

the output of our analysis can be used in subsequent steps, also possibly involving expert

elicitation to validate some of the most strongly recommended interactions. One important

caveat to keep in mind when working with interaction inference is that interactions can never

really be true negatives (in the current state of our methodological framework and data col-

lection limitations); this renders the task of validating a model through the usual application

of binary classification statistics very difficult (although see Strydom, Catchen, et al., 2021

for a discussion of alternative suggestions). The other way through which our framework

can be improved is by substituting the predictors that are used for transfer. For example,

in the presence of information on species traits that are known to be predictive of species

interactions, one might want to rely on functional rather than phylogenetic distances – in

food webs, body size (and allometrically related variables) has been established as such a

variable (Brose et al., 2006); the identification of relevant functional traits is facilitated by

recent methodological developments (Rosado et al., 2013).

Finally, it should be noted that the framework we have presented is amenable to changes

lending to applicability to a broad range of potential scenarios. For example in this case study

we have embedded the original metaweb using t-SVD, because it lends itself to an RDPG

reconstruction, which is known to capture the consequences of evolutionary processes (Dalla

Riva and Stouffer, 2016); this being said, there are other ways to embed graphs (Arsov

and Mirceva, 2019; Cai et al., 2017; Cao et al., 2019), which can be used as alternatives.

Regarding the transfer step it is possible to use distinct trees if working with distinct clades

(such as pollination networks) or an alternative measure of similarity (transfer medium) such

as information on foraging (Beckerman et al., 2006), cell-level mechanisms (Boeckaerts et al.,

169



2021), or a combination of traits and phylogenetic structure (Stock, 2021). Most importantly,

although we focus on a trophic system, it is an established fact that different (non-trophic)

interactions do themselves interact with and influence the outcome of trophic interactions

(see e.g., Kawatsu et al., 2021; Kéfi et al., 2012). Future development of metaweb inference

techniques should cover the prediction of multiple interaction types.
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Fig. 6. Top: biological significance of the first dimension. Left: there is a linear relationship
between the values on the first dimension of the left subspace and the generality, i.e., the
relative number of preys, sensu Schoener, 1989. Species with a value of 0 in this subspace
are at the bottom-most trophic level. Right: there is, similarly, a linear relationship between
the position of a species on the first dimension of the right subspace and its vulnerability,
i.e., the relative number of predators. Taken together, these two figures show that the
first-order representation of this network would capture its degree distribution. Bottom:
topological consequences of the first dimension. Left: differences in the z-scores of the
actual configuration model for the reconstructed network and the prediction based only on
the first dimension (with a deeper saturation indicating a bigger difference in scores). Right:
distribution of the differences in the left panel.
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Résumé. Quantifier la complexité des réseaux écologiques reste difficile à évaluer. Prin-

cipalement, la complexité a été définie sur la base de la complexité structurelle (ou com-

portementale) du système. Ces définitions ignorent la notion de « complexité physique

», qui peut mesurer la quantité d’informations contenues dans un réseau écologique et la

difficulté de les compresser. Nous présentons respectivement le déficit de rang relatif et l’en-

tropie SVD comme mesures de la complexité "externe" et "interne". En utilisant des réseaux

écologiques bipartites, nous constatons qu’ils présentent tous une complexité physique très

élevée, presque maximale. Les réseaux de pollinisation, en particulier, sont plus complexes

que d’autres types d’interactions. De plus, nous constatons que l’entropie SVD est liée à

d’autres mesures structurelles de complexité (imbrication, connectivité et rayon spectral),

mais ne renseigne pas sur la résilience d’un réseau lors de l’utilisation de cascades d’extinc-

tion simulées, ce qui a déjà été rapporté pour des mesures structurelles de complexité. Nous

soutenons que l’entropie SVD fournit une mesure fondamentalement plus "correcte" de la

complexité des réseaux et devrait être ajoutée à la boîte à outils des descripteurs des réseaux

écologiques à l’avenir.

Mots clés : décomposition en valeurs singulières, complexité physique, réseau bipartite,

entropie, pollinisation, analyse de réseaux écologiques
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Abstract. Quantifying the complexity of ecological networks has remained elusive. Pri-

marily, complexity has been defined on the basis of the structural (or behavioural) complex-

ity of the system. These definitions ignore the notion of “physical complexity,” which can

measure the amount of information contained in an ecological network, and how difficult it

would be to compress. We present relative rank deficiency and SVD entropy as measures

of “external” and “internal” complexity, respectively. Using bipartite ecological networks,

we find that they all show a very high, almost maximal, physical complexity. Pollination

networks, in particular, are more complex when compared to other types of interactions.

In addition, we find that SVD entropy relates to other structural measures of complexity

(nestedness, connectance, and spectral radius), but does not inform about the resilience of

a network when using simulated extinction cascades, which has previously been reported

for structural measures of complexity. We argue that SVD entropy provides a fundamen-

tally more “correct” measure of network complexity and should be added to the toolkit of

descriptors of ecological networks moving forward.

Keywords: singular value decomposition, physical complexity, bipartite network, entropy,

pollination, ecological network analysis

4.1. Introduction

Ecologists have turned to network theory because it offers a powerful mathematical for-

malism to embrace the complexity of ecological communities (Bascompte and Jordano, 2007).

Indeed, analysing ecological systems as networks highlighted how their structure ties into

ecological properties and processes (Poulin, 2010; Proulx et al., 2005), and there has been a

subsequent explosion of measures that purport to capture elements of network structure, to

be related to the ecology of the system they describe (Delmas et al., 2018). Since the early

days of network ecology, ecological networks have been called “complex”. This sustained

interest for the notion of complexity stems, in part, from the strong ties it has to stability

(Landi et al., 2018). As such, many authors have looked for clues, in the network structure,

as to why the networks do not collapse (Borrelli, 2015; Brose et al., 2006; Gravel et al., 2016;

Staniczenko et al., 2013). Yet decades of theoretical refinements on the relationship be-

tween complexity and stability had a hard time when rigorously tested on empirical datasets
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(Jacquet et al., 2016); although ecological networks may be complex, our current measures

of complexity do not translate into predictions about stability.

Surprisingly, complexity itself has proven an elusive concept to define in a rigorous way.

It has over time been defined as connectance (Rozdilsky and Stone, 2001), as measures of

the diversity of species or their interactions (Landi et al., 2018), or as a combination of

species richness and trophic diversity (Duffy et al., 2007). In short, network ecology as a

field readily assumes that because we have more information about a system, or because this

system has more components, or simply because this system can be expressed as a network,

it follows that the system is complex. But such a diversity of definitions, for a concept

that is so central to our quest to understand network stability, decreases the clarity of what

complexity means, and what all of these alternative definitions do actually capture. This is

a common thread in some measures of ecological network structure, as has been discussed

at length for the various definitions of nestedness (Ulrich et al., 2009).

None of the previous definitions of complexity are formally wrong, in that they do capture

an aspect of complexity that ultimately ties to the behaviour of the system, i.e., its low

predictability over time. Yet (Adami, 2002) provides a compelling argument for why the

complexity of the behaviour does not necessarily reflects the complexity of the system; in

fact, one would be very hard pressed to think of a more simple system than the logistic map

used by May, 1976 to illustrate how easily complexity of behaviour emerges. Rather than

yielding to the easy assumption that a system will be complex because it has many parts, or

because it exhibits a complex behaviour, Adami, 2002 suggests that we focus on measuring

“physical complexity”, i.e., the amount of information required to encode the system, and

how much signal this information contains. Complex systems, in this perspective, are those

who cannot easily be compressed - and this is a notion we can explore for the structure of

ecological networks.

Ecological networks are primarily represented by their adjacency matrices, i.e., a matrix

in which every entry represents a pair of species, which can take a value of 1 when the

two species interact, and a value of 0 when they do not. These matrices (as any matrices)
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can easily be factorised using Singular Value Decomposition (Forsythe and Moler, 1967;

Golub and Reinsch, 1971), which offers two interesting candidate measures of complexity for

ecological networks (both of which we describe at length in the methods). The first measure

is the rank of the matrix, which works as an estimate of “external complexity”, in that

it describes the dimension of the vector space of this matrix, and therefore the number of

linearly independent rows (or columns) of it. From an ecological standpoint, this quantifies

the number of unique “strategies” represented in the network: a network with two modules

that are distinct complete graphs has a rank of 2. The second measure is an application of

the entropy measure of Shannon, 1948 to the non-zero singular values of the matrix obtained

through SVD. This so-called SVD entropy measures the extent to which each rank encodes

an equal amount of information, as the singular values capture the importance of each rank

to reconstruct the original matrix; this approach therefore serves as a measure of “internal

complexity”.

In this manuscript, we present and evaluate the use of both the rank and SVD entropy of

ecological networks as alternative and more robust measures of complexity when compared

to traditional approaches to defining complexity. This is done by using a collection of 220

bipartite networks from various types of interaction, sizes, connectances, and environments.

We show that while the rank of the adjacency matrix holds little information, SVD entropy

functions as an appropriate quantification of the complexity of ecological systems. Notably,

SVD entropy is an intuitive, robust, non-structural approach to defining the (surprisingly

high) complexity of ecological networks, by relating them to their ‘physical’ as opposed

to ‘behavioural’ complexity. In this process we showcase a breakdown in the assumption

that all measures of complexity of networks are indicative of their robustness to extinctions.

Finally, we show that, despite their high complexity, observed networks are less complex

when compared to pseudo-random networks, especially for larger networks. We propose

that taking a physical approach to quantifying the complexity of ecological networks is a

step in the right direction to unifying how we define complexity in the context of ecological
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networks, as it restores other measures (like connectance and nestedness) to their original

role and signification.

4.2. Data and methods

We used all bipartite networks contained in the web-of-life.es database. This database

extracted species interaction networks from supplementary materials across all inhabited

continents and covers a large array of sampling years, environments, organisms, and sampling

methodologies. As such, this dataset is particularly suited to describe general trends across

all ecological networks. We specifically worked on the version of this dataset distributed

with the EcologicalNetworks.jl package (Poisot et al., 2019) for the Julia (Bezanson et

al., 2017) programming language, in which all analyses were conducted. Using bipartite

networks means that interacting species are split into two sets (or interacting groups) and

along different dimensions in the interaction matrix. Thus, columns in the matrix represent

one group (or type) of species and rows represent the other group of species involved in the

interaction. Because SVD gives similar results on the matrix and its transpose, it captures

the complexity of both sides of the system at once. A summary of the dataset is given in

Table 1.

Interaction type Sample size Latitude range Richness (top) Richness (bottom)
Host-Parasite 51 38.77 → 72.65 20.47 12.23

Plant-Ant 4 -16.11 → -2.40 18.75 21.75
Plant-Herbivore 4 30.20 → 64.91 49.5 29.25

Pollination 134 -43.09 → 81.81 40.22 18.02
Seed Dispersal 33 -28.95 → 53.05 18.75 25.12

Table 1. Overview of the web-of-life.es dataset. We used all networks with up to 500
species. Although there are spatial biases in the sampling of interaction types (and some
interaction types being under-represented), this dataset covers a range of latitudes from -43
degrees south to 81 degrees north. The average richness of the top and bottom level of the
bipartite networks are also given in the last columns.
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4.2.1. Estimating complexity with rank deficiency

The rank of A (noted as r = rk(A)) is the dimension of the vector space spanned by the

matrix and corresponds to the number of linearly independent rows or columns; therefore,

the maximum rank of a matrix (M = rkmax(A)) will always be equal to the length of the

shortest dimension of A, which ecologically speaking is the richness of the least species-rich

compartment of the bipartite network (or the richness in the case of unipartite networks).

A matrix is “full-ranked” when r = M , i.e., all of its rows/columns are unique. Matrices

that are not full-ranked are called rank deficient, and we can measure rank deficiency using

d = M − r. So as to control for the difference in species richness of the different networks,

we report the relative rank deficiency, i.e., expressed as a ratio between rank deficiency and

the maximal rank:

D = 1 − r

M

This measure returns values between 0 (the matrix is full ranked) and 1 − M−1 ≈ 1

(the matrix has rank 1). This serves as a coarse estimate of complexity, as the more unique

columns/rows are in the matrix, the larger this value will be. Yet it may also lack sensi-

tivity, because it imposes a stringent test on uniqueness, which calls for more quantitative

approaches to complexity.

4.2.2. Estimating complexity with SVD entropy

Singular Value Decomposition (SVD) is the factorisation of a matrix A (where Am,n ∈ B

in our case, but SVD works for matrices of real numbers as well) into the form U · Σ · VT .

Where U is an m × m orthogonal matrix and V an n × n orthogonal matrix. The columns

in these matrices are, respectively, the left- and right-singular vectors of A, were U = AAT

and V = AT A. Σ is a matrix that only contains non-negative σ values along its diagonal

and all other entries are zero. Where σi = Σii, which contains the singular values of A.

When the values of σ are arranged in descending order, the singular values (Σ) are unique,

though the singular vectors (U and V) may not be.
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After the Eckart-Young-Mirsky theorem (Eckart and Young, 1936; Golub et al., 1987),

the number of non-zero entries (after rounding of small values if required due to numerical

precision issues in computing the factorisation) in σ is the rank of matrix A. For the sake

of simplicity in notation, we will use k = rk(A)) for the rank of the matrix. Because only

the first k elements of σ are non-zero, and that the result of the SVD is a simple matrix

multiplication, one can define a truncated SVD containing only the first k singular values.

Intuitively, the singular value i (σi) measures how much of the dataset is (proportionally)

explained by each vector - therefore, one can measure the entropy of σ following Shannon,

1948. High values of SVD entropy reflects that all vectors are equally important, i.e., that the

structure of the ecological network cannot efficiently be compressed, and therefore indicates

high complexity (Gu and Shao, 2016). Because networks have different dimensions, we use

Pielou’s evenness (Pielou, 1975) to ensure that values are lower than unity, and quantify

SVD entropy, using si = σi/sum(σ) as:

J = − 1
ln(k)

k∑
i=1

si · ln(si)

4.3. Results and discussion

4.3.1. Most ecological networks are close to full-rank

The majority (63% of our dataset) of bipartite ecological networks have a relative rank

deficiency of 0 (Figure 1), which indicates that all species have different and unique interac-

tion lists. Interestingly, the networks that had a comparatively larger relative rank deficiency

tended to be smaller ones. Yet because most of the networks return the same value, matrix

rank does not appear to be a useful or discriminant measure of network complexity. Another

striking result (from Figure 1) is that the SVD entropy of ecological networks is really large

– although the value can range from 0 to 1, all ecological networks had SVD entropy larger

than 0.8, which is indicative of a strong complexity.

As expected following the observation that ecological networks are overwhelmingly full

ranked, we do not see a relationship between SVD entropy and relative rank deficiency,
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Fig. 1. The relationship between network richness and relative rank deficiency, and SVD
entropy. The different types of interactions are indicated by the colours.

neither do we observe differences between interaction types (2). Based on these results, we

feel confident that SVD entropy provides a more informative measure of the complexity of

ecological networks, and will use it moving forward.

4.3.2. Most elements of network structure capture network com-

plexity

We compared SVD entropy to some of the more common measures of complexity, namely

nestedness (η, as per Bastolla et al., 2009), connectance (Co), and the spectral radius of

the network (ρ, following Staniczenko et al., 2013). All of these measures are positively

correlated, especially over the range of connectances covered by empirical bipartite ecological

networks.
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Fig. 2. The relationship between SVD entropy and the relative rank deficiency of different
species interaction networks Colours indicate the different interaction types of the networks.

Nestedness is calculated based on the number of interactions shared between species

pairs and is a measure of the degree of overlap between species links (or strategies) in the

community, where larger assemblages are made up of a subset of smaller ones that share

common interactions. Networks with a higher degree of nestedness could be considered

simpler when compared to networks with a lower degree of nestedness. Connectance is the

realised number of interactions (links) in an ecological network and is calculated as the

fraction of the total number of realised interactions (or links) and the maximum number

of possible interactions in a network (Martinez, 1992). This has been shown to be a good

estimate of a community’s resilience to perturbation (Dunne et al., 2002). The spectral

radius of a matrix is the largest absolute value of its eigenvalues, which, in addition to being

presented as a measure of network complexity has also been suggested as an indicator of the

ability of a system to dampen disturbances (Phillips, 2011).
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We find that SVD entropy has a clear negative relationship with nestedness, spectral

radius, and connectance (Figure 3). As in Figure 5, mutualistic networks tend to be more

complex, and they also are both sparser and less nested than other types of networks. Bas-

tolla et al., 2009 give a convincing demonstration that mutualistic networks are shaped to

minimise competition – this can be done by avoiding to duplicate overlap in interactions,

thereby resulting in a network that is close to full rank, and with high SVD entropy. In-

terestingly, Figure 3 suggests that both nestedness and connectance measure the lack of

complexity in an ecological network, which contrasts to how they may commonly be viewed

(Landi et al., 2018).

Fig. 3. The relationship between SVD entropy and the nestedness (left panel), spectral
radius (central panel) and connectance (right panel) of ecological networks. Colours indicate
the different interaction types of the networks.
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4.3.3. Complex networks are not more robust to extinction

One approach to calculating the overall structural robustness of an ecological network

is by simulating extinction events through the sequential removal of species, which allows

constructing an extinction curve that plots the relationship between species removed and

cumulative secondary extinctions (Dunne et al., 2002; Memmott et al., 2004). Extinction

events can be simulated in a manner of different ways, either by removing 1) a random indi-

vidual, 2) systematically removing the most connected species (one with the highest number

of interactions with other species) and 3) the least connected species (Dunne et al., 2002).

After each extinction event, we remove species from the network that no longer have any

interacting partners, thereby simulating secondary extinctions. This is then repeated until

there are no species remaining in the network. Furthermore, we can restrict extinction events

to only one dimension of the interaction matrix, i.e., removing only top-level or bottom-level

species, or alternatively removing a species from any dimension of the matrix. Extinction

curves are then constructed by plotting the proportion of species remaining against those

that have been removed; it stands to reason that a flatter curve ‘maintains’ its species pool

for a longer number of cumulative extinctions, and could be seen as more resilient, when

compared to a curve that has a much steeper decline. As per previous studies, we measure

the robustness to extinction as the area under the extinction curve (AUC), calculated using

the Trapezoidal rule. AUC values close to 0 means that a single extinction is enough to

collapse the network almost entirely, and values close to 1 means that most species persist

even when the number of extinctions is really high.

When looking at the relationship between SVD entropy and the area under an extinction

curve (as a proxy for resilience to extinction) we find differences depending on both the

extinction mechanism as well as along which dimension the species removal occurred (Fig-

ure 4). As a whole we do not observe any obvious relationships between SVD entropy and

resilience, nor for different interaction types. We do however see differences in the resilience

of networks depending on how the extinctions were simulated. Generally we see a higher
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resilience in networks where species of only a specific group are removed or in networks where

species were either randomly removed or based on an increasing number of interactions.

Fig. 4. The relationship between SVD entropy and the area under an extinction curve (as
a proxy for resilience to extinction) for both different extinction mechanisms (Random =
the removal of a random species, Decreasing = the removal of species in order of decreasing
number of interactions (i.e most to least number of interactions), Increasing = the removal
of species in order of increasing number of interactions) as well as along different dimensions
(species groups) of the network (All = any species, Top-level = only top-level species, and
Bottom-level = only bottom- level species) Colours indicate the different interaction types
of the networks.

As highlighted in Figure 3 SVD entropy can be used as an additional measure of network

complexity. However, as shown in Figure 4, the assumption that network complexity begets

resilience to extinction begins to unravel when we use a measure of physical complexity.

This is in contrast to previous studies that have shown how connectance plays a role in the

resilience of networks to extinctions (Dunne et al., 2002; Memmott et al., 2004). This does

not discount the role of using structural measures of network complexity (e.g., connectance,

nestedness or spectral radius) as indicators of their resilience (although possibly hinting as
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to why there is no strong emerging consensus as to how structural complexity relates to

this), but rather points to an erroneous assumption as to what aspects of a network we have

previously used to define its complexity.

4.3.4. Plant-pollinator networks are slightly more complex

Although we don’t observe clear differences in the relationship between different interac-

tion types when comparing amongst various measures of complexity, we do find that different

types of interaction networks have differing SVD entropy’s. When comparing calculated SVD

entropy between interaction types using an ANOVA (after excluding Plant-Ant and Plant-

Herbivore interactions due to their small sample size in our dataset) we find a significant

difference between group means (F = 47.047, p < 10−3). A Tukey’s HSD test reveals that

plant-pollinator networks (µ = .924) are more complex than both host- parasite networks

(µ = .885, p < 10−3) and seed dispersal (µ = .888, p < 10−3). Host-parasite and seed

dispersal networks had apparently no difference in average complexity (p = .889). These

results suggest that mutualistic networks may be more complex, which matches with pre-

vious literature: these networks have been shown to minimise competition (Bastolla et al.,

2009) and favour unique interactions, thereby increasing network complexity. This specific

structure can appear as a side-process of either ecological (Maynard et al., 2018) or evolu-

tionary (Valverde et al., 2018) processes, but nevertheless leaves a profound imprint on the

complexity of the networks.

4.3.5. Connectance constrains complexity (but also rank defi-

ciency)

We used simulated annealing (Kirkpatrick, 1984) to generate networks with the highest,

or lowest, possible SVD entropy values. From a set network size (30 species, 15 on each

side) with a random number of interactions (spanning the entire range from minimally to

maximally connected), we reorganised interactions until the SVD entropy was as close to 0

or 1 as possible. We repeated the process 25 times for every number of interactions. We also
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Fig. 5. The calculated SVD entropy of different interaction networks of different interaction
types

measured the relative rank deficiency of the generated networks. This allows identifying the

boundaries of both measures of complexity. The specific simulated annealing we used is as

follows. We set an initial temperature T0 = 2. At every timestep t (up until t = 104), the

temperature is set to Tt = T0 × λt, so that is decays exponentially at a rate λ = 1 − 10−4.

At each timestep, we switch two interactions in the network N at random to generate a

proposal network M. The score of this proposal is the difference between the squared error

of N and M i.e., ∆ = (f(M) − θ)2 − (f(N ) − θ)2, where f is the SVD entropy and θ is the

target for optimisation (either 0 or 1 for respectively minimally or maximally complex). A

proposal is accepted with probability P(N → M|∆) = exp
(
−∆ × T −1

t

)
.

By exploring the minimal and maximal values of SVD entropy for networks of a given

size, we can show that the range of complexity that a network can express varies as a function

of connectance (Figure 6). As reported by Poisot and Gravel, 2014, there is no variation
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when the networks are either minimally or maximally connected, but any connectance in

between can give rise to networks of varying complexities. This being said – minimally

connected networks always show the largest complexity, and an increase in connectance will

always decrease complexity. Interestingly, this relationship is monotonous, and there is no

peak of complexity where the maximal number of possible networks combination exists, i.e.,

around Co ≈ 0.5 (Poisot and Gravel, 2014). This is an intriguing result – ecological networks

are indeed extremely complex, but whereas ecologists have usually interpreted connectance

as a measure of complexity, it is in fact sparse networks that are the complex ones, and

connectance acts to decomplexify network structure.

Fig. 6. The relationship between the maximum and minimum value of SVD entropy of a
collection of random interaction networks (using simulated annealing) for a given connectance
spanning from 0 to 1 (left panel) and how this relates to the relative rank deficiency of
networks (right panel)

The right panel of Figure 6 shows the average rank deficiency of networks for which

SVD entropy was either maximised or minimised. Complex networks (meaning, maximally

complex given their connectance) had a lower deficiency, indicating that except at extreme

connectances, there are combinations of networks for which all species can interact in unique
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ways – this is a natural consequence of the results reported by Poisot and Gravel, 2014,

whereby the number of possible networks is only really constrained at the far ends of the

connectance gradient. Minimally complex networks, on the other hand, saw their rank

deficiency increase with connectance. This hints at the fact that the decrease in complexity

with connectance may be primarily driven by the infeasibility of having enough species for

them to all interact uniquely as connectance increases. Because non-unique interactions tend

to result in competition Bascompte and Jordano, 2007, this can “push” networks towards

the full-rank configuration (as suggested by the results in Figure 1), thereby maximising

complexity regardless of connectance.

4.3.6. Larger networks are less complex than they could be

To assess whether ecological networks are more, or less, complex than expected, we

applied two null models that generate pseudo-random networks: Type I (Fortuna and Bas-

compte, 2006), where interactions happen proportionally to connectance, and Type II (Bas-

compte et al., 2003), where interactions happen proportionally to the joint degree of the

two species involved. The models are equivalent to, respectively, the Erdos-Renyi and Con-

figuration models (Newman, 2010), both of which are maximum entropy generative models

that reflect global (Type I) or local (Type II) constraints (Park and Newman, 2004). We

generated 999 samples for every network in the dataset, and measured the z-score of the

empirical network as

zi = xi − µi

σi

where xi is the SVD entropy of network i, and µi and σi are respectively the average

and standard deviation of the distribution of SVD entropy under the null model. Negative

values of zi reflect a network that has lower entropy than expected under the assumptions

of the null model. In Figure 7, we show that despite high absolute values of SVD entropy,

ecological networks are not as complex as they could be. This is consistently true for both

null models, and for the three types of networks that had a sufficient sample size.
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Fig. 7. The counts of the zi-scores of different types of networks for both Type I and Type
II null models. Negative zi-scores indicate networks with an SVD entropy that is lower i.e.,
less complex than expected

Previous work on random networks (using a model that is essentially the Type I null

model) shows that sufficiently large networks achieve maximal von Neuman entropy (Du

et al., 2010; Passerini and Severini, 2011). In Figure 8, we compare the logistic of zi to the

richness of the network. Transforming to the logistic smooths out differences in absolute

value that are apparent in Figure 7, and projects the values in the unit range, with values
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above 0.5 being more complex than expected. It is quite obvious that, across both models and

the three types of interactions, only smaller networks achieve higher entropy. Both Barbier

et al., 2018 and Saravia et al., 2018 have previously noted that the early stages of network

assembly usually result in severely constrained networks, due to the conditions required for

multiple species to persist; as networks grow larger, these constraints may “relax”, leading

in networks with more redundancy, and therefore a lower complexity.

4.4. Conclusion

We present SVD entropy as a starting point to unifying (and standardising) how we

should approach defining the complexity of ecological networks. The use of a unified defini-

tion will allow us to revisit how complexity relates to the ecological properties of networks

using a standardised method. One important result from using SVD entropy is that the com-

plexity of ecological networks is indeed immense, yet despite this high complexity networks

are still not reaching their maximum potential complexity. We suggest that the assembly

dynamics of networks may explain this observation but this still raises the question as to

why larger (or more mature) networks are not ‘maintaining’ their expected complexity and

prompts further exploration as to the role of ecological assembly in structuring networks.
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Résumé. Le wombling spatial est une approche permettant de détecter les contours d’un

paysage bidimensionnel défini. Ceci est réalisé en calculant le taux et la direction du chan-

gement grâce à l’interpolation de points. Cela donne non seulement une approximation de

la forme du paysage, mais peut également être utilisé pour identifier des cellules de limites

potentielles qui délimitent un passage d’un état à un autre au sein du paysage. Nous présen-

tons ici le package SpatialBoundaries.jl pour Julia, qui a été développé pour implémenter

l’algorithme de wombling pour les ensembles de données référencés spatialement pour des

paysages échantillonnés de manière uniforme ou aléatoire. D’un point de vue pratique, la

fonctionnalité de wombling permet à l’utilisateur de répondre à deux questions: dans quelle

mesure et dans quelle direction la variable d’intérêt change-t-elle ? et la fonctionnalité de

limites identifie des cellules limites candidates. Nous concluons en fournissant un exemple

fonctionnel du package utilisant les différentes couches de plantes ligneuses pour la Grande-

Bretagne et l’Irlande à partir de la base de données EarthEnv.

Mots clés : wombling spatial, détection des contours, limites, écologie spatiale, logiciel,

Julia

Abstract. Spatial wombling is an approach for detecting edges within a defined two-

dimensional landscape. This is achieved by calculating the rate and direction of change

through the interpolation of points. This not only gives an approximation as to the shape

of the landscape but can also be used to identify candidate boundaries cells that delimit a

shift from one state to another within the landscape. Here we introduce the SpatialBound-

aries.jl package for Julia, which has been developed to implement the wombling algorithm

for datasets that are spatially referenced for both uniformly or randomly sampled land-

scapes.From a practical perspective, the wombling functionality allow the user to answer

two questions: how much and in which direction does the variable of interest change? and

the boundaries functionality identifies candidate boundary cells. We conclude by providing

a working example of the package using the various woody plant layers for Britain and

Ireland from the EarthEnv database.

Keywords: spatial wombling, edge detection, boundaries, spatial ecology, software, Julia

5.1. Background

There is value in being able to identify boundaries within a landscape as it provides us

with a starting point from which to understand changes in species assemblages, ecological
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communities, or even simply to delineate areas (based on a shared property) into discrete

units, for example ecosystemic regions (Fortin et al., 2000; Post et al., 2007). Here we

present a Julia (Bezanson et al., 2017) package aimed at detecting boundaries across a

specified geographical area by identifying zones of rapid change using the wombling edge

detection algorithm. This approach was originally developed by Womble, 1951 in the context

of understanding trait variation within a geographic area and was later modified by Barbujani

et al., 1989 for the purpose of understanding changes in gene frequencies, although it also

has a more general ecological application with regards to spatial data (Fortin and Dale,

2005), serving as a complimentary approach to cluster analysis (Fortin and Drapeau, 1995).

Wombling has applicability to a wide range scenarios e.g., trait measurements or genotypes

(Barbujani et al., 1989), species interaction networks (Fortin et al., 2021), and has explicitly

been used (to list a few examples) to detect transitions within a landscape (Camarero et

al., 2000; Philibert et al., 2008), and analyse the spread of invasive species (Fitzpatrick

et al., 2010). Although the origins of wombling may be rooted in anthropology and has

been extensively used in ecology the potential applicability also extends to other systems

such as high-energy experiments in physics (Matchev et al., 2020), or to understand the

genetic-linguistic patterns of European populations (Sokal et al., 1990).

Broadly speaking spatial wombling is an edge-detection algorithm which traverses a ge-

ographic area (for the purpose of this discussion let’s imagine a spatially referenced dataset

pertaining to species richness for each location) and defines this area in terms of the rate (m)

and corresponding direction of change (θ) through interpolating between nearest neighbours.

Although the wombling algorithm (as implemented here) is designed to work with two-

dimensional i.e., planar data (as delimited by x and y — which would be the co-ordinates of

where species richness was sampled), it is beneficial to view this plane as a three-dimensional

object (or series of curves), as shown in Figure 1, panel A. Here the ‘amplitude’ of the curva-

ture of the plane is determined by the value of z (species richness) and the rate and direction

of change is calculated by using the first-order partial derivative ∂ of the surface (curve) as

described by f(x,y). This then gives us an indication of how steep the gradient/curve (m) is
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between neighbouring cells as well as the direction (from the ‘low’ to the ‘high’ point; θ) of

the slope (panel B, Figure 1). Large values of m are associated with zones of rapid change

in the landscape and are indicative of a shift from one ‘state’ to another i.e., a potential

ecological boundary within the landscape (Fortin and Dale, 2005; dashed line in panel C,

Figure 1). One benefit of the wombling approach is that interpolation is not necessarily

restricted to a rectangular (2 × 2) window (that would entail a landscape where points are

regularly arranged in space) and can easily be re-written so as to accommodate points that

are not regularly arranged across space (as per Fortin, 1994), thereby giving the user more

flexibility with regards to how the sampling points are arranged (i.e., sampled) across the

landscape.

Fig. 1. A visual conceptualisation of how the wombling algorithm interpolates points across
a geographical area (in this case the points are regularly arrange in space) for a variable of
interest (z) to calculate the rate (m) as well as the direction (θ) of change. Here the sampled
landscape is shown in panel A with the size of the points correlating to the magnitude if the
variable of interest (z). Panel B shows the two components of the landscape once wombled,
which are then combined and superimposed across the original landscape in panel C, with
the dashed line indicating a candidate boundary. Here the colours as well as the size of the
arrows indicate the rate of change and the direction should be interpreted as moving from
the ‘low’ to the ‘high’ point. Note that the dimensions of the wombled landscapes (B) will
be smaller than the original landscape (A) due to the interpolation process i.e., where we
originally had an n × r grid we now have an (n - 1)(r - 1) sized grid.
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5.1.1. Rate of change

The rate of change (m) can be used to find the zones of rapid change within the geo-

graphical area — which, in turn, can be used to identify potential candidate boundaries.

The rate of change is calculated as follows:

m =

√
∂f(x,y)

∂x

2

+ ∂f(x,y)
∂y

2

(5.1.1)

Where f(x,y) can be expanded as:

f(x,y) = z1(1 − x)(1 − y) + z2x(1 − y) + z3xy + z4(1 − x)y

For convenience the values of the centroid of the ‘search window’ i.e., x and y can be

standardised to 0.5 when working with points regularly arranged in space. Additionally, as we

are interpolating between points, it should also be noted that the original n ∗ r geographical

area will now be an (n − 1)(r − 1) sized grid (i.e., one less row and one less column of values

for the wombled landscape as illustrated in panel C of Figure 1).

When we are working with points that are irregularly arranged within the geographical

area it is possible to use triangulation wombling (Fortin, 1994; Fortin and Dale, 2005; Fortin

et al., 2021). Here the approach to wombling has been modified by Fortin, 1992 so as

to interpolate the plane between the three nearest neighbours (as opposed to the usual

2 × 2 grid). Nearest neighbours are found by using the Delaunay triangulation algorithm

(Delaunay, 1934) after which the rate of change is still calculated in the same manner as in

Equation 5.1.1, however as we are now only working with a three-point ‘window’ f(x,y) will

be defined as:

f(x,y) = ax + by + c

where
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[
a b c

]
=


x1 y1 1

x2 y2 1

x3 y3 1


−1

·
[

z1 z2 z3

]

and the x and y co-ordinates of the centroid of the triangle formed by the three points

are calculated as follows:

(x1 + x2 + x3

3

)
,
(y1 + y2 + y3

3

)
5.1.2. Direction of change

It is also possible to calculate a corresponding direction (θ) for each rate of change (noting

that the same equation can be used for both lattice and triangulation wombling). This is

calculated as:

θ = arctan
(

∂f(x,y)
∂y

/
∂f(x,y)

∂x

)
+ ∆

where ∆ =

 0 if ∂f(x,y)
∂x

≥ 0

180 if ∂f(x,y)
∂x

< 0


This gives the direction of change which, as the name implies, indicates the direction

the rate of change is ‘travelling’. The direction of change should be interpreted as wind

direction i.e., where the change is coming from and not where it is moving towards. As is

the nature of maths when the rate of change is zero it is still possible to calculate a real

direction for the non-change — which will be 180◦. This means it is possible to think of and

use the direction of change independently of calculating boundaries per se and can be used

to inform how the landscape is behaving/changing in a more ‘continuous’ way as opposed

to discrete zones/boundaries. For example if changes in species richness are more gradual

(rate of change is near constant) but the the direction of change is consistently East to West

(i.e., 90◦) we can still infer that species richness is more or less uniformly increasing in a
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South-North direction (this is somewhat exemplified in the direction of change landscape of

panel B in Figure 1 where the dominant direction of change is East-West).

5.1.3. Candidate boundaries

Detecting boundaries i.e., areas where the angle of the landscape transitions sharply is

surprisingly simple. After having calculated the rate of change (m) for the geographical

area it is possible to use these values to identify and assign potential boundaries (Fortin and

Dale, 2005; Fortin and Drapeau, 1995; Oden et al., 1993). As large rate of change values are

indicative of a steep gradient it stands to reason that these points are indicative of a shift

from one state to another i.e., indicative of a boundary. Following the approach outlined in

Fortin and Dale, 2005 a threshold value (or percentile class) can be set and will determine

what proportion of cells will be retained as potential boundaries. For example if using a 0.1

threshold then the highest 10% of points (which are ranked based on m) will be classified as

candidate boundaries. Note that points with the same rate of change will be assigned the

same rank meaning that more than 10% of the (n − 1)(r − 1) could potentially be identified

as candidate boundary cells. This approach to identifying potential boundary cells is not

the sole approach and there are other ways and nuances from which to approach boundary

estimation, such as the use of Voronoi tessellations (Fortin and Drapeau, 1995; Matchev

et al., 2020; Oden et al., 1993).

5.2. Methods and features

SpatialBoundaries v0.0.3 implements the Wombling algorithm within the

Julia ecosystem and is made available under the permissive MIT license.

The source code (along with more extensive documentation) can be found at

https://poisotlab.github.io/SpatialBoundaries.jl/. This is an open project and is thus

open to contributions. The package itself has two main functions 1) calculate the rate

(m) and direction (θ) of change for landscapes for points that are both regularly (i.e.,

lattice wombling) and irregularly arranged cross space (triangulation wombling) arranged
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in space using the wombling function (for which layers can also be aggregated using mean),

and 2) identifying candidate boundary cells based on a user defined threshold value using

the boundaries function. Objects that have been passed through a wombling function

are of the Womble abstract type (which has the two sub-types of LatticeWomble and

TriangulationWomble). This package is, to the best of our knowledge, the only package to

implement the Wombling algorithm within Julia.

5.2.1. Wombling

The wombling function calculates and outputs both the rate (m) and direction (θ; where

the direction is denoted from the ‘low’ to the ‘high’ point) of change for a given geographical

area. Leveraging the multiple dispatch within Julia this one function will execute either the

lattice or triangulation wombling algorithm depending on the structure (spatial referencing)

of the input dataset, meaning that it does not need to be user specified. When a matrix of z

values is used (where the row and column id’s act as the co-ordinates) the lattice wombling

algorithm will be executed and when three vectors (consisting of the co-ordinates (x and y),

and z values respectively) the triangulation wombling algorithm is executed. The resulting

output object will have two components (m and θ) and will be typed based on the wombling

method used. That is a uniform matrix will result in an object of the type LatticeWomble

and irregularly arranged points will be of the type TriangulationWomble.

5.2.2. Overall mean wombling value

The mean function calculates the Overall mean wombling value. The methodology stems

from the Overall Mean Lattice-Wombling Value (m̄) used by Fortin, 1994 in which multiple

surfaces (think different z variables) can be overlaid for the purpose of finding the mean

rates and directions of change for a composite landscape. The mean rate of change can be

defined as the average of m values (for a specific centroid) for the given set of surfaces and

the same is done for the direction of change using the θ values. Alongside the mean the

standard deviation is also calculated for both the rate and direction of change. Although
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Fortin, 1994 only present this approach for lattice wombled landscapes we have extended

the functionality to include both lattice and triangulation wombled types. This is provided

that the landscape (i.e., co-ordinates) of the different surfaces are exactly the same. Note

here that the original wombling type is retained and the output data will remain either type

LatticeWomble or TriangulationWomble.

5.2.3. Boundaries

The boundaries function takes the rate of change (m) of an object of either of the

two Womble types (i.e., LatticeWomble or TriangulationWomble), and identifies potential

boundary cells based on a user specified threshold (with the default being 0.1). As opposed

to selecting only one threshold value we recommend inputting a range of threshold values

into the boundaries function to assess how it changes the number of points retained (i.e.,

boundary cells identified). For example we might see sharp transitions in the number of

points that are retained as the threshold value is increased. This inflection point is probably

the ideal threshold value to use for boundary selection as a rapid increase in the number of

points retained is indicative of a large number of cells with the same rate of change.

5.3. Woody areas of the Hawaiian Islands: a wombling

example

Below is an example using the various functions within SpatialBoundaries to estimate

boundaries for (i.e., patches of) wooded areas on the Southwestern islands of the Hawaiian

Islands using landcover data from the EarthEnv project (Tuanmu and Jetz, 2014) as well

as integrating some functionality from SimpleSDMLayers (Dansereau and Poisot, 2021) for

easier work with the spatial nature of the input data. The SpatialBoundaries package

works really well with SimpleSDMLayers, so that you can (i) apply wombling and boundaries

finding to a SimpleSDMLayer object, and (ii) convert the output of a Womble object to a pair

of SimpleSDMLayer corresponding to the rate and direction of change.
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Because there are four different layers in the EarthEnv database that represent different

types of woody cover we will use the overall mean wombling value. As the data are arranged

in a matrix i.e., a lattice this example will focus on lattice wombling, however for triangu-

lation wombling the implementation of functions and workflow would look similar with the

exception that the input data would be structured differently (as three vectors of x, y, z)

and the output data would be typed as TriangulationWomble objects.

using SpatialBoundaries

using SpeciesDistributionToolkit

using CairoMakie

import Plots

Note that the warning about dependencies is a side-effect of loading some functionalities

for SimpleSDMLayers as part of SpatialBoundaries, and can safely be ignored.

First we can start by defining the extent of the Southwestern islands of Hawaii, which

can be used to restrict the extraction of the various landcover layers from the EarthEnv

database. We do the actual database querying using SimpleSDMLayers.

hawaii = (left = -160.2, right = -154.5, bottom = 18.6, top = 22.5)

dataprovider = RasterData(EarthEnv, LandCover)

landcover_classes = SimpleSDMDatasets.layers(dataprovider)

landcover = [SimpleSDMPredictor(dataprovider;

layer=class, full=true, hawaii...)

for class in landcover_classes]

We can remove all the areas that contain 100% water from the landcover data as our

question of interest is restricted to the terrestrial realm. We do this by using the “Open

Water” layer to mask over each of the landcover layers individually:

ow_index = findfirst(isequal("Open Water"), landcover_classes)

not_water = landcover[ow_index] .!== 0x64

lc = [mask(not_water, layer) for layer in landcover]
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As layers one through four of the EarthEnv data are concerned with data on woody cover

(i.e., “Evergreen/Deciduous Needleleaf Trees”, “Evergreen Broadleaf Trees”, “Deciduous

Broadleaf Trees”, and “Mixed/Other Trees”) we will work with only these layers. To get a

sense of the overall structure of raw landcover components we can sum these four layers and

plot the total woody cover for the Southwestern islands (The code for the plot below will

give us panel A in Figure 2).

classes_with_trees = findall(contains.(landcover_classes, "Trees"))

tree_lc = convert(Float32, reduce(+, lc[classes_with_trees]))

heatmap(tree_lc; colormap=:linear_kbgyw_5_98_c62_n256)

Fig. 2. A Woody plant coverage for Southwestern islands of the Hawaiian Islands based
on the sum of the cover for layers 1-4 from the EarthEnv project. B the overall mean
rate of change (i.e., the composite of the wombled layers for layers 1-4) but only for the
cells identified as candidate boundary cells when using a 10% threshold, with identified
boundaries (shown in green) over the rate of change (shown in levels of grey). The final
two panels show the direction of change for all cells (C) and only for cells considered to be
candidate boundary cells (D).
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Although we have previously summed the four landcover layers for the actual wombling

part we will apply the wombling function to each layer before we calculate the overall mean

wombling value. We can broadcast wombling in an element-wise fashion to the four different

woody cover layers. This will give as a vector containing four LatticeWomble objects (since

the input data was in the form of a matrix).

wombled_layers = wombling.(lc[classes_with_trees])

As we are interested in overall woody cover for Southwestern islands we can take the

wombled_layers vector and use them with the mean function to get the overall mean

wombling value of the rate and direction of change for woody cover. This will ‘flatten’

the four wombled layers into a single LatticeWomble object.

wombled_mean = mean(wombled_layers)

From the wombled_mean object we can ‘extract’ the layers for both the mean rate

and direction of change. For ease of plotting we will also convert these layers to

SimpleSDMPredictor type objects. It is also possible to call these matrices directly from

the wombled_mean object, which has fields for m (the magnitude of change) and θ (the

direction of change).

rate, direction = SimpleSDMPredictor(wombled_mean)

Lastly we can identify candidate boundaries using the boundaries. Here we will use a

thresholding value (t) of 0.1 and save these candidate boundary cells as b. Note that we are

now working with a SimpleSDMResponse object and this is simply for ease of plotting.

b = similar(rate)

b.grid[boundaries(wombled_mean, 0.1; ignorezero = true)] .= 1.0

In addition to being used to help find candidate boundary cells we can also use this object

(b) as masking layer when visualising wombling outputs. In this case we can view the rate

layer in a similar fashion to the original landcover layer but by masking it with b we only

plot the candidate boundaries (B in Figure 2) i.e., the cells with the top 10% of highest rate

of change values. For visualisation we will overlay the identified boundaries (in green) over

the rate of change (in levels of grey)
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heatmap(rate, colormap=[:grey95, :grey5])

heatmap!(b, colormap=[:transparent, :green])

current_figure()

For this example we will plot the direction of change as radial plots (third and fourth

panels in Figure 2) to get an idea of the prominent direction of change. Here we will plot all

the direction values from direction for which the rate of change is greater than zero (so as

to avoid denoting directions for a slope that does not exist) as well as the direction values

from only candidate cells using the same masking principle as what we did for the rate of

change. It is of course also possible to forgo the radial plots and plot the direction of change

in the same manner as the rate of change should one wish.

Before we plot let us create our two ‘masked layers’. For all direction values for which

there is a corresponding rate of change greater than zero we can use rate as a masking

layer but first replace all zero values with ‘nothing’. For the candidate boundary cells we can

simply mask direction with b as we did for the rate of change.

direction_all = mask(replace(rate, 0 => nothing), direction)

direction_candidate = mask(b, direction)

Because stephist() requires a vector of radians for plotting we must first collect the cells

and convert them from degrees to radians. Then we can start by plotting the direction of

change of all cells (C in Figure 2).

Plots.stephist(

deg2rad.(values(direction_all));

proj=:polar,

lab="",

c=:teal,

nbins = 36,

yshowaxis=false,

normalize = false,
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dpi=600)

Followed by plotting the direction of change only for cells that are considered as candidate

boundary cells (D in Figure 2).

Plots.stephist(

deg2rad.(values(direction_candidate));

proj=:polar,

lab="",

c=:red,

nbins = 36,

yshowaxis=false,

normalize = false,

dpi=600)

5.4. Summary

Edge and boundary detection (as well as their delineation) is an important and valuable

concept in spatial ecology (Cadenasso et al., 2003) of which wombling serves as an approach

that is flexible in its execution (owing to the non-lattice or triangulation capacity of the

function) (Fortin, 1994; Fortin and Dale, 2005) as well as it’s capacity to detect more nu-

anced landscape changes as opposed to being limited to more abrupt discontinuities such as

cliffs/ridges by reducing noise in the landscape (Matchev et al., 2020). Wombling sets us up

to answer two questions about the geographic area of interest: at what rate and in which

direction does the variable of interest change? This of course has value when it comes to

evaluating the variation (or uniformity for that matter) of a suite of ecological variables as

well as how they may vary with relation to each other.

SpatialBoundaries.jl provides the toolset with which to implement both lattice and

triangulation wombling using the wombling function - multiple dispatch means that the struc-

ture of the input dataset will determine exactly which algorithm is implemented. This will

simultaneously calculate both the rate and direction of change and if desired multiple sets of
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different layers of the same geographic area but defined by different z-variables/surfaces can

be aggregated and averaged to calculate the overall mean wombling value. Both wombling

and mean will return objects of the type Womble of either the sub-type LatticeWomble or

TriangulationWomble depending on which method was used. An object of any sub-type

Womble can be input into the boundaries function so as to identify cells that can be consid-

ered as candidate boundaries based on a user specified threshold.
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Chapter 6

General Conclusion

As species interaction networks are determined by ecological and evolutionary mechanisms

that have played out across spatial and temporal scales the measures that define their struc-

ture (properties) are also capturing information about the processes that have played a role

in structuring them. Thus the properties of a network are not only representative of its

structure but also a measure of how different processes have played a role in determining

it, meaning that when we are measuring the property of a network we are also capturing

information about the network. This information is something that can be used for making

predictions about network structure, e.g., it has been shown that it is possible to to make

network-level inferences with very low-level data (e.g., Banville et al., 2023; MacDonald

et al., 2020), or to help make within network predictions to find missing links (e.g., Poisot

et al., 2023; Stock, 2021). The ability to use a ’simple’ measure of the species community

for a given location (such as species richness) and to have an estimate of the structure of

the potential network (such as connectance) is truly amazing and speaks to how much in-

formation we are able to extract either from species networks, or alternatively use to make

network predictions. This is something is echoed throughout this thesis.



6.1. What we have learnt

6.1.1. Prediction is attainable and feasible

Chapter 3 showcases that with very little ’real world’ information we can make accurate

predictions by using the information that is ’encoded’ in existing interaction networks. This is

also echoed in Chapter 4, where we can see the immense amount of information that networks

contain and that it is a case of finding ways to access and use this information and, in this

instance, using it to make network predictions. It is also clear that this information can go a

long way, the metaweb for Canada shared only 4% of species with its European counterpart,

yet we were able to recover 91% of the interactions. From an ecological perspective this

highlights how the laws governing interactions (sensu common backbones from Bramon

Mora et al., 2018) are being conserved phylogenetically (Davies, 2021; Elmasri et al., 2020;

Gómez et al., 2010). From a more practical perspective we show that this transfer learning

framework is primed to be adopted as a ’gap-filling’ tool as it does not require extensive

data or computational resources. It is worth noting that in order to predict the Canadian

metaweb one only needs to access three different data sources (the species community for

Canada, the European metaweb, and a well resolved phylogeny) and that it is possible to

execute the required code on a standard laptop, underscoring the lightweight nature of the

framework. Finally, the transfer learning framework itself has a lot of scope to be modified

should the transfer task have a different set of e.g., data requirements (this is discussed

extensively in chapter 2).

As highlighted by the broad, scoping, discussion in Chapter 1 transfer learning is not the

only way to approach transfer learning and there are a variety of methodological approaches

and data sources that we can tap into when wanting to make network predictions (Figure 2.

Having a body of work that explicitly addresses the idea of machine learning for network

prediction will be particularly valuable as the popularity and interest in alternative ’non-

statistical’ methods continues to grow within the field of ecology and evolution (Cuff et al.,

2023; Pichler and Hartig, 2023). This chapter also highlights that as our access to the
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’auxiliary data’ and the computational power we need for network prediction grows we are

methodologically and computationally in a prime position to start making feasible network

predictions. Hopefully the ideas discussed in these chapters will also allow us to develop even

more ”unreasonably effective” methods for network prediction, thereby providing us with an

even more diverse set of approaches we can use for the different scenarios we will inevitably

be faced with in the quest to fill in the global gaps.

6.1.2. Tools for cross-regional comparison

Chapter 4 highlights that we need to be critical of the ’tools’ we are using when are trying

to make cross-region comparisons, and that quantifying the complexity of networks remains,

well, complex (Riva et al., 2023). Taken at face value it appears that (at least bipartite

networks) are extremely complex. All of the 226 networks that we looked at are near maximal

’physical complexity’, with all networks being near maximal rank and having an SVD entropy

greater than 0.8. However, it is the comparison of SVD entropy with the other (structural)

measures of complexity (nestedness, connectance, and spectral radius), that highlights the

need for us to be critical of the tools we are using. It is clear that structural measures

of ’complexity’ are in fact capturing a different facet of network complexity than when we

are using SVD entropy (Figure 3), this is due to fundamental differences in what aspect

of network ’complexity’ these measures are trying to capture. One could argue that SVD

entropy provides a more fundamentally “correct” measure of complexity as it is quantifying

the information within a network as opposed to the number of components/parts a network

has and thus should have a place in the toolkit of network descriptors. In addition we show

in subsection 4.3.6 that despite their high complexity networks are still not reaching their

highest potential complexity. Although we suggest that the assembly dynamics of networks

may play a role, it still raises the question as to why larger networks are not maintaining their

complexity and opens the door to questions about how assembly (time) shapes ecological

networks (Barbier et al., 2018; Saravia et al., 2018).
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One of the biggest challenges we will be faced with as network ecology moves from

trying to fill in the global gaps to grappling with global scale questions is that we need to

be able to delimit them. The software developed in Chapter 5 is primed for this specific

challenge once we begin to leverage global-scale data to understand the spatial structure

of networks, especially with regards to being able to discretise them. In this sense this

chapter is perhaps the most open-ended component of this thesis, but as such it has a great

deal of potential applications, particularly addressing a very simple question - where do

networks stop? This is particularly meaningful even in the context of network prediction

- at what scale should we be making our network predictions? Although there may be

methodological constraints that determine how large the (for example) taxonomic scope of

the task of network prediction should be (see subsection 2.5.1) there is also the question

as to what constitutes the correct biogeographic (and socio-political) extent for prediction.

Thus being able to ’draw boundaries’ around networks has both theoretical as well as applied

significance.

6.1.3. Putting it all together

Arguably the potential applicability of the potential applications of chapter 5 represents

a culmination of the bulk of the work presented in this thesis. Although Chapters one

through three showcase the ’attainability’ of network prediction one core aspect that we are

still missing is knowing exactly how to delimit the scope (specifically spatial area) of our

predictions. In chapter 3 we use ’Canada’ as the area for prediction, however Canada is a

geopolitical unit and there is no strong ecological reason to have omitted the other parts of the

North American landmass from the scope of prediction, as there is no strong environmental

boundary on the Canada-US border. There is of course also the inverse argument that then

questions what would be the optimal ’area’ to have made the predictions for chapter 3 at - it

is not feasible, nor ecologically pertinent, to want to construct a metaweb for The Americas

in their entirety. There is thus a need, from a practical perspective, to be able to discretise

the area (or species community) that we wish to make a network prediction for, and in order
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to do that we need to build a theoretical understanding of the boundaries between networks.

These ideas are discussed in more depth in subsection 6.2.2, however it is the functionality

of SpatialBoundaries.jl that can facilitate the advancement and development of theory

and ideas related to boundaries between networks and help to guide us when choosing the

scale at we should be making our predictions at.

6.2. The direction moving forward

6.2.1. Scrutinising our methods

Although chapters 1 and 2 discuss predictive methods (and chapter 3 provides a tangible

example thereof) the job isn’t done when it comes to evaluating the data we are using for

prediction. More recent work is showing that the imbalances in current data might be a large

problem (especially the false negative rate, i.e., interactions that do occur but are missed

in the field, and thus viewed as being ’absent’ from the system). When reading the work

from Brimacombe et al., 2023, Catchen, Poisot, et al., 2023, and Poisot, 2023 one can’t help

but to be a bit hesitant to adopt a purely predictive framework, however, as we show in

subsection A.1.3 the transfer learning model does do quite well, even when we bring ”false

interactions” into the dataset. Of course this does highlight the need to be critical (or at

least cautious) when it comes to using datasets for learning, and highlights the need for

identifying priority sampling locations and (maybe) even priority interactions, (e.g., some of

the work coming out of the GeoBon group focusing on locating priority sampling locations,

“BiodiversityObservationNetworks.Jl”, 2021/2022) to help create a ’best subset’ of datasets

that can be used for additional data curation.

Even the work presented in chapter 3 has room for expansion, and we can (and should)

try and push the limits further to see where this transfer learning framework ‘breaks’. One

tempting challenge would be to try and construct a metaweb for Australian mammals —

One is inclined to think that if one were to use the framework from chapter 3 ‘out of the box’

the predictions would have a large degree of uncertainty around them due to the taxonomic

relationships between Europe and Australian mammals. But this does make for a case study
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to experiment with other transfer mediums (such as traits). An additional ‘testing ground’

that could prove interesting is to look at rewilding as well as species invasions. Within the

context of rewilding one can test how well the predictions are able to ’forecast’ the potential

impacts of a re-introduced species a priori (which one could validate using existing rewilding

projects), as well as assess the utility of different candidate ecological surrogates that may be

earmarked for introduction in a specific area. The latter point may be particularly useful as

one of the main goals is to target the trophic complexity of the area to be rewilded (Perino

et al., 2019). For invasions, this can be used to prioritise species that are expected to have

a disproportionate impact on the community and flag them in advance as potential threats

(David et al., 2017).

6.2.2. Defining ecotrophic zones

Networks are dynamic, and they can vary across space (Golubski et al., 2016; Vázquez

et al., 2007) or time (Poisot et al., 2015; Trøjelsgaard and Olesen, 2016) as a function of

the environmental conditions. Naturally, we expect network properties to also be dynamic

and vary over - in this instance - space. Spatial wombling can be used as a starting point

for understanding how networks vary across a landscape, particularly if we were to combine

this with information on environmental change. Appendix C shows some initial (and by

no means well resolved) ideas of how we can use the SpatialBoundaries.jl along with

the metacommunity model developed by Thompson and Gonzalez, 2017 to look at how the

environmental, species community, and network communities boundaries compare within a

landscape.

With regards to environmental change it might be interesting to compare species turnover

and network changes across the landscape, specifically if we see similar patterns of rates of

change at the species or community level and with regards to network structure. This is

interesting because there area a myriad of ways we might expect networks to change (or

not change) along environmental gradients. Firstly, we might expect network structure to

be constant along gradients due to energetic or evolutionary constraints that force networks
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to take on a specific shape, sensu lato conserved backbones (Bramon Mora et al., 2018).

Alternatively network structure does indeed change along a gradient. This could be due

to intraspecific variation that causes the re-wiring of interactions (Bolnick et al., 2011) or

changes in species composition are also driving changes in the resulting network (Martins

et al., 2022).

6.2.2.1. How do the structures within networks vary. There is also the scope to

develop a more nuanced understanding of how the landscape structures networks, specifically

how the different nodes (i.e. species) of the network will perceive the landscape differently.

When looking at other fields of ecology e.g., productivity-diversity studies it is clear that

the nature of the relationship between productivity and diversity is scale-dependent (Chase

and Leibold, 2002; Gillman and Wright, 2006). It stands to reason that this will also be the

case when looking at interaction networks, specifically how ’boundaries’ may be dependent

on the node (species). Which means that we might expect within network changes e.g.,

motifs (specific patterns of linkages in a network) to vary across the landscape even if the

larger, regional network structure may remain stable. That being said, there is a compelling

argument for the need to ‘combine’ these smaller functional units with larger spatial networks

(Fortin et al., 2021) and that we should also start thinking about the interplay of time

and space (Estay et al., 2023). Although deciding exactly what measure might actually

be driving differences between local networks and the regional metaweb might not be that

simple (Saravia et al., 2022).

6.2.2.2. Boundaries for policy or management. Although this section argues for a

more theoretical approach to understanding boundaries in the context of potential assembly

patterns/constraints there is also a strong argument for being able to draw lines around

communities in the context of having a network (or, more realistically, a metaweb) as an

’object’ that can be used in a policy or management context. In section 2.5 and section 2.6

we briefly mention that the scale of prediction should be ecologically relevant, but should also

take into consideration the social aspect of why (and how) we are making predictions. To

me, there is an argument that this is also the case when thinking about network boundaries.
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Given that policy and legislation are enacted at various levels of government or other ruling

bodies, being able to identify the boundaries between networks may in fact be a powerful

tool at the governance level. Being able to delimit interacting communities (i.e., identify a

metaweb) is surely more meaningful than looking solely at species inventories or community

composition, particularly if one is truly concerned with conserving ecosystem functions or

processes (Thuiller et al., 2023; Wood et al., 2022). However, I feel it is important to

stress that the idea of trying to draw boundaries should be approached with caution and

sensitivity, especially within in the context of ’doing no harm’ (sensu Box 2 of section 2.6)

and understanding that ecological and socio-political ’boundaries’ may in fact have different

’goals’ or contexts.

6.2.3. The future collaborative toolbox

On a more contemplative note, I want to discuss the value of thinking about the devel-

opment of further tools for the toolbox analogy used in this thesis. A significant amount of

work in this thesis was only possible with the support and intellectual contribution of many

collaborators and there is an argument for continuing this strong network of collaboration

for the development of future such tools. From a purely practical perspective the contin-

ued push for developing biology-centric packages within the Julia language (Roesch et al.,

2023) requires that we maintain interoperability between packages and build a collection of

tools that build on and fit in amongst each other. Looking at the science/theoretical side of

the toolbox, a unified idea or goal for moving the macroecological network ’agenda’ forward

means that we can build on ideas and thoughts in a more cohesive manner. For example

(Banville et al., 2023; Catchen, Lin, et al., 2023; Dansereau et al., 2023) have all already used

the work presented in this thesis to take the ideas discussed in new and further directions.

This is not to say that we should not also work on developing ’competing’ methods (although

I would argue ’competing’ here is used in the context for finding alternative approaches to

solving a similar problem e.g., Caron et al., 2022 takes a more trait-based approach to net-

work prediction), but there is strong evidence that in working together we can get where we
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want to be sooner. The ’toolbox’ that this thesis represents is but a small step in thinking

about interaction networks at a global scale, but it is nevertheless an important step, as it

will hopefully lay the groundwork for even more innovation and creation.
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Appendix A

Supplementary material for chapter 3

A.1. SVD does not overfit on the European network

In order to ensure that the creation of the RDPG on the European network does not lead

to overfitting, we performed two numerical experiments.

First, we estimated the threshold that separates interactions from non-interactions based

on a decreasing amount of species; this highlights that removing up to 50% of the total

species in the network does not change the estimate of the threshold, suggesting that there

is an important amount of information contained in the first 12 ranks of the network.

Second, we extracted L and R, the left and right subspace of the entire network, at rank

12. Then, for every number n of interactions between 10 and links(M) − 1 (where M is

the European metaweb), we define m as a network in which n interactions have either been

randomly removed, randomly added, or both. We then define ↕ and ∇ as the left and right

subspaces coming from the rank-12 RDPG applied to this network, and compare the original

network M to the one that was reconstructed after thresholding ↕∇ by picking the cutoff

that maximizes Youden’s J measure (Youden, 1950).

This last experiment allows measuring the response of various measures of fit of the

binary classifier to incomplete sampling. We are specifically interested in (i) the ability of

RDPG to identify modified interactions, (ii) the ability of RDPG to function as a performant



classifier in the presence of uncertainty in the original data, and (iii) the ability of RDPG to

reconstruct biologically realistic data when interactions are withheld.

A.1.1. Threshold estimation is robust to species sub-sampling

In the initial experiment, we withheld an increasing number of species from the European

metaweb, ranging from 20% for training and 80% for validation, to 90% for training and 10%

for validation. Surprisingly, the estimation of the threshold, here presented as the mean and

standard deviation of 50 folds for validation, is remarkably robust (and matches the value

obtained using the entire network, as a dashed line). Specifically, even using 60% of species

to estimate the threshold gave on average the same threshold as would be estimated based

on the entire network; therefore, this establishes that the decision in the main text to use

the entire European metaweb to set the threshold is correct.
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More strikingly, looking at the rates of true/false positive/negative, as illustrated below,

it is clear that RDPG can be thresholded in a way that yields an almost perfect classifier:
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These results may be surprising, given that ecological models usually do not reach this

degree of accuracy. That being said, we use the first 12 ranks of the network to approximate

it, and this contains a lot of information; in short, the minute discrepancies between the

predictions and the actual data can be attributed to leftover noise in the original dataset.

A.1.2. RDPG recovers withheld interactions

RDPG is able to correct almost all added interactions (added interactions were not orig-

inally present in the European metaweb and could be seen as introducing false positives to
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the data), which is very strong evidence that the metaweb produced using it are not going to

contain too much spurious interactions. When removing interactions (i.e. introducing false

negatives to the data), even when half are missing, RDPG was able to accurately reconstruct

about 75 to 80% of them. Predictably, the performance when both adding and removing

interactions is in between the two scenarios.

The stochasticity in the proportion of recovered interactions is larger when a small number

of interactions are withheld, which makes sense as the number of interactions is far smaller

(compared to the overall network size).

Next, it is interesting to note that the threshold “adapts” to the amount of missing

information - the dashed line corresponds to the threshold we used in the manuscript. Adding

interactions specifically did not result in an increase in the threshold, further suggesting that

RDPG is extremely good at removing spurious interactions.
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The important consequence of this result is that training the RDPG on a sub-sample

of the network (i.e. one missing interactions) would result in a lower threshold, thereby

potentially creating more false positives when applied to novel data; this further justifies our

decision to use the entire evidence to estimate the threshold.

A.1.3. RDPG yields an accurate classifier

More important than the recovery of removed interaction is the fact that the classifier

should have a good global performance. One measure to assess this is the area under the

receiving operator characteristic curve, or ROC-AUC. By this measure, the RDPG remains

an excellent classifier even if 50% of interactions are withheld, and no matter what the

amount of changes are made by adding or both adding and removing interactions.
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The overall agreement between a classifier and the actual data can be measured by

Cohen’s κ, which gives a similar result.
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These two diagnostic figures reveal that, although we used a probably exhaustive list of

interactions to do the initial RDPG, there are chances that the approach would work on less

complete datasets.

A.1.4. RDPG recreates ecologically realistic networks

In this section, we present the relationship between the empirical measure of the network

structure (dashed line) and the reconstructed estimate based on RDPG after the optimal

threshold has been applied. We focus on connectance (for its broad relevant to food web

structure) first:
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Connectance increases slightly when initial information is incomplete, but saturates at a

value of around 0.12 – this is still within the bounds of connectances expected for food webs.

Next, we look at the ratio between direct competition (a → (b,c)) and apparent compe-

tition ((a,b) → c) motifs, as motifs are known to be conserved blocks in food webs:
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This ratio remains close to the real one up until 75% of initial interactions are modified.

A.1.5. Consequences

Based on these results, applying RDPG on the entire European network is reasonable,

especially since (i) the threshold is insensitive to the number of withheld species, and (ii)

removing interactions would artificially lower the threshold. Interestingly, the RDPG remains

an excellent binary classifier even in the face of strong data modifications, which suggests

that our framework can be used even in the absence of a complete metaweb. Even more

importantly, the addition of wrong interactions to the original dataset was never an issue for

the RDPG classifier, which was almost always able to remove them.
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A.2. The Normal model of latent variable evolution

over-predicts

In this appendix, we compare the raw predictions made by the Normal and Uniform

models of latent variable evolution. The Normal model was created by (i) getting the average

µ of the simulated values for each species/variable combination, and (ii) estimating the

standard deviation as (µ + c − µ − c)/3.92, where c is one half of the 95% confidence interval

around µ divided by 3.92

As can be seen on the following figure, the Normal model tends to assign high probabilities

(up to p ≈ 0.4) for interactions that the Uniform model essentially rules out:
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This can lead to severe over-estimation of the number of interactions. In fact, the conse-

quences of using a Normal model are obvious from looking at the adjacency matrices below:

most of the interactions are predicted between species that occupy the lower trophic level,

and are ecologically unrealistic.
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This can be further revealed by looking at the connectance of the networks under different

thresholds:
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Although the Uniform model predicts a lot of interactions with extremely low probability,

that are removed at a low threshold, the distribution of probabilities under the Normal model

leads to extremely (abnormally) high connectances even for thresholds that are over twice

as large as the optimal threshold determined in main text and Supp. Mat. 1.

This has consequences for the overall network structure: specifically, the Normal model

predicts a lot more top predators than we expect under the uniform model; rather than there

being a progressive change in top-intermediate-bottom proportions as the threshold changes,
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there is an abrupt shift at a threshold of about 0.6, which suggests that the Normal model

is biased towards over-predicting most interactions with probabilities in the range [0,0.6].

The same “jump” can be observed when looking at the distribution of food chain lengths:
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For these reasons, we only use predictions from the Uniform model in the main text.

A.3. RDPG reconstructed networks have diverse struc-

tures

In this appendix, we check that the networks reconstructed from the RDPG do keep a

variety of structural components, especially when selecting a small species pools from within

them. In order to do so, we induced 400 random subgraphs containing between 30 and 70

species, both from the Canadian and European metawebs. For each of these subgraphs, we

measured eight variables: the mean and standard deviation of trophic levels, the standard

deviation of degree (total, in, and out), and the proportion of top, intermediate, and basal

species. We selected a random subset of 300 rows from the network-property matrix to fit

a Principal Component Analysis projection matrix (W ), which we then used to project all

networks into the space formed by the first two principal components.
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The first axis (explaining most variance) was strongly correlated to the standard deviation

of the number of preys (-0.71), and the second axis to the standard deviation in the number

of predators (-0.95). These results match the conclusions in main text, namely that the first

dimensions of network embedding capture the degree distribution.

Two things are important to note on this representation; each point is an induced sub-

graph, and the ellipses are the 95% confidence interval around the points. First, there is some

variations within a group (Europe v. Canada); second, the two groups do not fully overlap.

This suggests that not only the sub-samples of the Canadian metaweb are not equivalent to
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the sub-samples of the European metaweb (i.e. the two networks have structural differences),

realizations (here in the form of random local species pools) of the Canadian metaweb also

show some variability; in short, reconstructing a metaweb using a RDPG will not result in

homogeneous local networks, and may therefore be suitable for lower-scale predictions.
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Appendix B

Supplementary material for chapter 2

The associated materials for this appendix is in the form of a Jupyter notebook file (a web-

based interactive computing platform). At the time of writing the published article was not

yet available online and thus this appendix will point to the notebook file that was associated

with the GitHub repository associated with this chapter. The .ipynb file can be found here.

Note it is also possible to download this file and open it in a Jupyter application should you

wish for a more interactive experience.

https://github.com/PoisotLab/ms_metaweb_perspectives/blob/main/notebooks/SupplementaryMaterial.ipynb


Appendix C

Understanding where networks stop

C.1. Why boundaries are interesting

As discussed in both Chapters 2 and 5 there is value in thinking about the existence of

boundaries between networks, either from a prediction perspective (e.g., knowing at what

scale to make predictions at) or from a more theoretical question of where do networks

stop? Although this is discussed in more detail in subsection 6.2.2 there is one question

regarding network boundaries that might be a good starting point and that is looking at how

environmental and network boundaries relate, more specifically do environmental changes

drive changes in networks. Here I present what is more of a methodological framework (as

opposed to an actual answer, hence why it has been relegated as an Appendix) that we can

use to try and answer this question.

C.2. A metacommunity model for boundary detection

The metacommunity model developed by Thompson and Gonzalez, 2017 is a good start-

ing point to use for this ’case study’ as it allows us some flexibility with how we want to pa-

rameterise the system. The model (C.2.1) itself is based on a tritrophic community (’plants’,

’herbivores’, and ’carnivores’) and is a collection of modified Lotka–Volterra equations and

(broadly) models species abundance as a function of interaction strength, environmental



effect, immigration, and emigration. The metacommunity consists of S species with M

environmental patches and looks as follows:

Xij(t + 1) = Xij(t)exp

[
Ci +

S∑
k=1

BikXkj(t) + Aij(t)
]

+ Iij(t) − Xij(t)ai (C.2.1)

Where Xij(t) is the abundance of species i in patch j at time t. Ci is its intrinsic rate

of increase (which we have set to 0.1 for ’plants’ and -0.01 for ’herbivores’ and ’carnivores’).

Bik is the per capita effect of species k on species i. The exact interaction strength for each

species pair is drawn from a uniform distribution with the parameters for the interaction

pairs listed in Table 1, the values drawn from the uniform distribution are scaled by dividing

by 0.33S to yield the final interaction strength for each interacting pair.

Interacting pair Range of uniform distribution
Plant-plant -1 – 0

Plant-herbivore 0 – 0.1
Plant-carnivore 0
Herbivore-plant -0.3 – 0

Herbivore-herbivore -0.2– -0.15
Herbivore-carnivore 0 – 0.08

Carnivore-plant 0
Carnivore-herbivore -0.1 – 0
Carnivore-carnivore -0.2– -0.15

Table 1. Intervals used for the uniform distribution from which interaction strengths values
are drawn from for the different types of species pair interactions. Note this is represent the
effect of species type 1 on species type 2 i.e., herbivore-plant represents the effect of a
herbivore species on a plant species

Aij(t) is the effect of the environment in patch j on species i at time t and can be further

expanded as follows:

Aij(t) = h

(
exp − (Ej(t) − Hi)2

2σ2 − 1
)

(C.2.2)

Species environmental optima (Hi) are evenly distributed across the entire range of en-

vironmental conditions for each trophic level, meaning that species from different trophic

levels will be at, or near the same environmental optima. h is a scaling parameter (set to
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300), Ej(t) is the environment in patch j at time t and σ is the standard deviation (set to

50).

Iij(t)is the abundance of species i immigrating to patch j at time t and can be expanded

as follows:

Iij(t) =
M∑
l=j

aiXil(t)exp(−Ldjl) (C.2.3)

Where ai is the proportion of the population of species i that disperses at each time step,

the dispersal rate is drawn from a normal distribution (µ = 0.1, σ = 0.025) for each species.

The abundance of immigrants to patch j from all other patches is governed by where djl

is the geographic distance between patches j and l, and L (the strength of the exponential

decrease in dispersal with distance), which is also drawn from a normal distribution for each

species. The parameters used for L are trophic level dependant and are show in Table 2

Trophic level µ σ

Plant 0.3 0.075
Herbivore 0.2 0.05
Carnivore 0.1 0.025

Table 2. Parameters for the normal distributions used to determine the dispersal decay (L)
for each species depending on its trophic level.

C.3. A toy example of boundary detection

The associated code for these simulations was carried out in Julia 1.8 (Bezanson et al.,

2017) using Makie.jl (Danisch and Krumbiegel, 2021) and SimpleSDMLayers (Dansereau

and Poisot, 2021), this can be found in a GitHub repo here. Note that the results presented

here are supposed to represent a hypothetical result and it is not so much that there is

ecological knowledge to be gleaned from the figure below but rather to showcase how we

can approach the idea of boundary detection across landscapes. For the initial modelling

exercise presented below I have used 80 species (S = 80) within a 20 by 20 landscape (i.e., M

= 400). This landscape is generated using NeutralLandscapes.jl (“Neutral Landscapes”,
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2021/2023), which allows the user to specify different landscape types e.g., one with a clear

boundary, the landscape values are used to represent the environmental value for the specific

patch.

The top row represents the ’raw’ values for the landscape after 500 generations. Note

here I have included species richness as it might be interesting to see if species richness is

related to network structure, in this instance I have used connectance as that measure of

network structure since it is one of the more common network metrics to use.

The second row show the rates of change for the respective metrics, but only limited to

the top 90% rate of change values for a cleaner visual. Here the colour intensity indicates

the magnitude of the rate of change. The final row is showing the direction of change for

the respective metrics and each colour can be thought of as indicating a cardinal point.

What is interesting about this simulation is that the rate of change for environmental,

species richness, and connectance do not ’line-up’ and that the species community and the
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way they interact are responding differently to changes in the environment - although the

direction of change seems quite similar for species richness and connectance. This is also

interesting since it might suggest that although the exact ’location’ of changes might be

different the way the change is propagated across the landscape is the same. Overall I would

argue that there is evidence that indicates that the idea of ’ecotrophic boundaries’ is one

worth exploring further.
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