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Eikonal Equation: Computation

Synonyms

Eikonal equation; eikonal-diffusion equation

Mathematics Subject Classification

35J60; 65N30

Short Definition

The eikonal equation is a nonlinear partial differential equation that describes wave

propagation in terms of arrival times and wave front velocity. Applications include
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modeling seismic waves, combustion, computational geometry, image processing and

cardiac electrophysiology.

Description

Problem Statement

A wave propagation process may be meaningfully represented by its arrival time τ(x)

at every point x in space (e.g., shock wave, seismic wave, sound propagation). The

local propagation velocity, which can be computed as ∥∇τ∥−1, is often determined by

the physical properties of the medium and therefore may be assumed to be a known

positive scalar field c(x). This relation leads to the so-called eikonal equation (Sethian,

1999; Keener and Sneyd, 2001)

c ∥∇τ∥ = 1 (1)

whose purpose is to compute arrival times from local propagation velocity. The zero of

arrival time is defined on a curve Γ0 as Dirichlet boundary condition τ = 0 (the wave

front originates from the source Γ0). The eikonal equation may also be derived from

the (hyperbolic) wave equation (Landau and Lifshitz, 1975).

The eikonal-diffusion equation is a generalization that involves an additional

diffusive term (Tomlinson et al, 2002):

∥c∇τ∥ = 1 +∇ · (D∇τ) . (2)

To account for possible anisotropic material properties, the propagation velocity c and

the diffusion coefficient D are symmetric positive definite tensor fields. The boundary

condition is τ = 0 on Γ0 and n · D∇τ = 0 on other boundaries (n is normal to

the boundary). The diffusive term creates wave front curvature-dependent propagation

velocity, smoothens the solution and enforces numerical stability. In the context of wave
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propagation in nonlinear reaction-diffusion systems (e.g. electrical impulse propagation

in the heart), the eikonal-diffusion equation may also be derived from the reaction-

diffusion equation using singular perturbation theory (Franzone et al, 1990).

The objective is to compute the arrival time field (τ) knowing the material

properties (c and D) and the location of the source (Γ0).

Fast Marching Method for the Eikonal Equation

The fast marching method (Sethian, 1999) is an efficient algorithm to solve Eq. (1) in

a single pass. Its principle, based on Dijkstra’s shortest path algorithm, exploits the

causality of wave front propagation. In a structured grid with space steps ∆x and ∆y

(the value of a field F at coordinate (i∆x, j∆y) is denoted by Fi,j), Eq. (1) is discretized

as (Sethian and Vladimirsky, 2011)

max
(
D−x

i,j τ, −D+x
i,j τ, 0

)2
+max(D−y

i,j τ, −D+y
i,j τ, 0)2 = 1/c2i,j (3)

where the finite difference operators are defined as D−x
i,j τ = (τi,j − τi−1,j)/∆x, D+x

i,j τ =

(τi+1,j − τi,j)/∆x, and similarly for D−y
i,j and D+y

i,j . The algorithm maintains three lists

of nodes: accepted nodes (for which τ has been determined), considered nodes (for

which τ is being computed, one grid point away from an accepted node) and far nodes

(for which τ is set to +∞). The quadratic equation (3) is used to determine the

values of τ in increasing order. At each step, τ is computed at considered nodes from

known values at accepted nodes and the smallest value of τ among those considered

becomes accepted. The lists are then updated and another step is performed until all

nodes are accepted. The efficiency of the method relies on the implementation of list

data structures and sorting algorithms. The fast marching method can be extended

to triangulated surface (Sethian and Vladimirsky, 2011; Qian et al, 2007) by adapting

Eq. (3). A Matlab/C implementation (used here) has been made available by Gabriel

Peyr for both structured and unstructured meshes.
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Newton-based Method for the Eikonal-Diffusion Equation

When physically relevant (e.g. for cardiac propagation, see Pernod et al (2011)), the

eikonal-diffusion equation may be used to refine the solution provided by the fast

marching algorithm. In this case, if τ is an approximate solution to (2) satisfying the

boundary conditions, a better approximation τ + θ can be obtained by substituting

τ + θ into (2) and finding a solution θ up to second order in θ. This is equivalent to

Newton iterations for nonlinear system solving. Taylor expansion of (2) leads to the

following steady-state convection-diffusion equation for the correction θ:

∥c∇τ∥ − ∇ · (D∇τ)− 1 = ∇ · (D∇θ)− ∥c∇τ∥−1 ∇τ c∗c∇θ (4)

with boundary condition n ·D∇θ = 0 and θ = 0 in Γ0.

This linearized equation can be solved using finite elements. The procedure is

given here for a triangular mesh composed of a set of nodes i ∈ V and a set of triangles

(ijk) ∈ T , of area Ωijk, with i, j, k ∈ V . Linear shape functions, denoted by Ni for

i ∈ V , are used to reconstruct the scalar fields τ =
∑

i∈V τiNi and θ =
∑

i∈V θiNi.

These functions are linear in each triangle; the gradient operator evaluated in triangle

(ijk) is noted ∇ijk. Similarly, the parameters cijk and Dijk denote the values of c and

D at the center of gravity of the triangle (ijk). The application of the Galerkin finite

element approach (Huebner et al, 2001) to (4) leads to the linear system A(τ)θ = f(τ),

where the matrix and the right hand side are computed as:

Amn(τ) = −
∑

(ijk)∈T

Ωijk∇ijkNm ·Dijk∇ijkNn

−
∑

(ijk)∈T

Ωijk

3
∥cijk∇ijkτ∥−1 (cijk∇ijkτ)

∗ · (cijk∇ijkNn) (5)

fm(τ) =
∑

(ijk)∈T
m∈{ijk}

Ωijk

3

(
∥cijk∇ijkτ∥ − 1 + 3∇ijkNm ·Dijk∇ijkτ

)
. (6)
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For vertices m ∈ Γ0, the boundary condition θ = 0 is applied by setting Amn = δmn

and fm = 0, which ensures that A is not singular. An easy and efficient implemen-

tation in Matlab based on sparse matrix manipulation is possible after reformulation

(Jacquemet, 2011).

Practically, the first estimate τ 0 is given by the fast marching method (neglecting

diffusion). At iteration n+1, the correction θn+1 is obtained by solving the linear system

A(τn)θn+1 = f(τn). Then τn+1 = τn+θn+1 is updated until the norm of the correction

falls below a given tolerance ∥θn+1∥ < tol.

Extension to Reentrant Waves

The eikonal-diffusion equation, due to its local nature, is also valid for reentrant wave

propagation. In this case, the wave does not originate from a focal source but instead

is self-maintained by following a closed circuit. To account for the periodicity of the

propagation pattern and avoid phase unwrapping issue, a phase transformation ϕ =

exp(iτ) is applied, where τ is now normalized between 0 and 2π. The transformed

eikonal-diffusion equation reads (Jacquemet, 2010):

∥c∇ϕ∥ = 1 + Im∇ · (ϕ∗D∇ϕ) (7)

The boundary condition n · D∇ϕ = 0 still holds and the constraint |ϕ| = 1 must be

preserved. The star (*) denotes the complex conjugate and ‘Im’ the imaginary part.

The same Newton-based method as in the previous subsection can be used. If

ϕ approximates the solution to (7), ϕ exp(iθ) is substituted in (7) and the linearized

equation is solved for θ:

∥c∇ϕ∥ − Im∇ · (ϕ∗D∇ϕ)− 1 = ∇ · (D∇θ) + ∥c∇ϕ∥−1 Im (ϕ∇ϕ∗c∗c∇θ) (8)

This equation has the same steady-state convection-diffusion form as (4). The same

Galerkin approach can therefore be applied, leading to a linear system A(ϕ) θ = f(ϕ)
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whose matrix elements are defined as (Jacquemet, 2010):

Amn(ϕ) = −
∑

(ijk)∈T

Ωijk∇ijkNm ·Dijk∇ijkNn

+
∑

(ijk)∈T

Ωijk

3
∥cijk∇ijkϕ∥−1 Im

ϕi + ϕj + ϕk + ϕm

4
(cijk∇ijkϕ)

∗ · (cijk∇ijkNn) (9)

fm(ϕ) =
∑

(ijk)∈T
m∈{ijk}

Ωijk

3

(
∥cijk∇ijkϕ∥ − 1 + 3∇ijkNm · Im

ϕ∗
i + ϕ∗

j + ϕ∗
k

3
Dijk∇ijkϕ

)
. (10)

The matrixA is singular due to the symmetry ϕ 7→ ϕ exp(iθ0) with spatially-uniform θ0.

This issue is solved by replacing the systemA(ϕ)θ = f(ϕ) by the non-singular (deflated)

system (A(ϕ)− n−1
v e e∗) θ = f(ϕ) where e is a nv-vector whose all elements are 1 and

nv is the dimension of A.

Practically, the first estimate ϕ0 is obtained from a supposedly known circuit

Γ (closed curve) by interpolating ϕ0 in the entire surface from the values exp(2πiℓ/L)

along the curve Γ using Laplacian interpolation (ℓ is the curvilinear coordinate and L

the length of the curve). At iteration n+1, the correction θn+1 is computed by solving

the linear system (A(ϕn)−n−1
v ee∗)θn+1 = f(ϕn). To avoid the use of a fully-populated

matrix, the system can be solved iteratively (e.g. BiCGstab with incomplete LU pre-

conditioner) with matrix-vector multiply being implemented as Aθ −mean(θ) e. The

uniform phase shift is suppressed by subtracting the mean: θ̃n+1 = θn+1 −mean(θn+1).

Then τn+1 = τn + θ̃n+1 is updated until the norm of the correction falls below a

given tolerance ∥θ̃n+1∥ < tol. Jacquemet (2011) showed that the period of reentry

compatible with the propagation velocity specified in the eikonal-diffusion equation is

approximately T = 2π/(1 + mean(θn+1)).

Examples in cardiac electrophysiology

The eikonal approach is illustrated here in a triangular mesh (about 5,000 nodes) rep-

resenting the atrial epicardium derived from magnetic resonance images of a patient.
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Fig. 1. Propagation of the electrical impulse in an anisotropic surface model of the human atria

computed using the eikonal-diffusion equation. (A) Normal propagation from the sino-atrial node

region. Activation time is color-coded. Isochrones are displayed every 10 ms. White arrows illustrate

propagation pathways. (B) Reentrant propagation similar to typical atrial flutter in a model with

slower propagation velocity. The line of block is represented as a thick black line. TV: tricuspid valve;

MV: mitral valve; LAA: left atrial appendage; RAA: right atrial appendage; PVs: pulmonary veins;

IVC: inferior vena cava; SVC: superior vena cava; SAN: sino-atrial node.

Fiber orientation (anisotropic properties) was obtained from anatomical and histolog-

ical data. Propagation velocity was set to 100 cm/s (along fiber) and 50 cm/s (across

fiber). Γ0 was placed near the anatomical location of the sino-atrial node. The diffusion

coefficient D was set to 10 cm2. The activation map (arrival times) computed using

the eikonal-diffusion solver (iteration from the solution provided by the fast marching

algorithm) is displayed in Fig. 1A. With tol = 10−10, 16 iterations were needed.

Figure 1B shows a reentrant activation map corresponding to an arrhythmia

called typical atrial flutter, simulated using the eikonal-diffusion solver extended for

reentrant propagation. The reentrant pathway Γ was formed by a closed circuit con-



8

necting the two vena cava. Propagation velocity was reduced by 40%. With tol = 10−10,

50 iterations were needed. The resulting period of reentry was 240 ms, a value within

physiological range.
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