Title:	Eikonal Equation: Computation
Name:	Vincent Jacquemet
Affil./Addr. 1:	Hôpital du Sacré-Coeur de Montréal, Centre de Recherche
	5400 boul. Gouin Ouest, Montréal (Québec) Canada H4 J $1\mathrm{C5}$
	Phone: +1 514 338-2222 ext. 2522
	Fax: +1 514 338-2694
	Email: vincent.jacquemet@umontreal.ca
Affil./Addr. 2:	Université de Montréal, Department of Physiology, Institut de
	Génie Biomédical & Groupe de Recherche en Sciences et Tech-
	nologies Biomédicales (GRSTB), Montréal, Canada
	Published in: Encyclopedia of Applied and Computational Math-
	ematics (Björn Engquist, ed.), pp. 394-397, Springer-Verlag, Hei-
	delberg (2015) .

Eikonal Equation: Computation

Synonyms

Eikonal equation; eikonal-diffusion equation

Mathematics Subject Classification

35J60; 65N30

Short Definition

The eikonal equation is a nonlinear partial differential equation that describes wave propagation in terms of arrival times and wave front velocity. Applications include modeling seismic waves, combustion, computational geometry, image processing and cardiac electrophysiology.

Description

Problem Statement

A wave propagation process may be meaningfully represented by its arrival time $\tau(\mathbf{x})$ at every point \mathbf{x} in space (e.g., shock wave, seismic wave, sound propagation). The local propagation velocity, which can be computed as $\|\nabla \tau\|^{-1}$, is often determined by the physical properties of the medium and therefore may be assumed to be a known positive scalar field $c(\mathbf{x})$. This relation leads to the so-called eikonal equation (Sethian, 1999; Keener and Sneyd, 2001)

$$c \|\nabla \tau\| = 1 \tag{1}$$

whose purpose is to compute arrival times from local propagation velocity. The zero of arrival time is defined on a curve Γ_0 as Dirichlet boundary condition $\tau = 0$ (the wave front originates from the source Γ_0). The eikonal equation may also be derived from the (hyperbolic) wave equation (Landau and Lifshitz, 1975).

The eikonal-diffusion equation is a generalization that involves an additional diffusive term (Tomlinson et al, 2002):

$$\|\mathbf{c}\nabla\tau\| = 1 + \nabla\cdot(\mathbf{D}\nabla\tau) \quad . \tag{2}$$

To account for possible anisotropic material properties, the propagation velocity \mathbf{c} and the diffusion coefficient \mathbf{D} are symmetric positive definite tensor fields. The boundary condition is $\tau = 0$ on Γ_0 and $\mathbf{n} \cdot \mathbf{D} \nabla \tau = 0$ on other boundaries (\mathbf{n} is normal to the boundary). The diffusive term creates wave front curvature-dependent propagation velocity, smoothens the solution and enforces numerical stability. In the context of wave propagation in nonlinear reaction-diffusion systems (e.g. electrical impulse propagation in the heart), the eikonal-diffusion equation may also be derived from the reactiondiffusion equation using singular perturbation theory (Franzone et al, 1990).

The objective is to compute the arrival time field (τ) knowing the material properties (**c** and **D**) and the location of the source (Γ_0) .

Fast Marching Method for the Eikonal Equation

The fast marching method (Sethian, 1999) is an efficient algorithm to solve Eq. (1) in a single pass. Its principle, based on Dijkstra's shortest path algorithm, exploits the causality of wave front propagation. In a structured grid with space steps Δx and Δy (the value of a field F at coordinate $(i\Delta x, j\Delta y)$ is denoted by $F_{i,j}$), Eq. (1) is discretized as (Sethian and Vladimirsky, 2011)

$$\max\left(D_{i,j}^{-x}\tau, \ -D_{i,j}^{+x}\tau, \ 0\right)^2 + \max(D_{i,j}^{-y}\tau, \ -D_{i,j}^{+y}\tau, \ 0)^2 = 1/c_{i,j}^2 \tag{3}$$

where the finite difference operators are defined as $D_{i,j}^{-x}\tau = (\tau_{i,j} - \tau_{i-1,j})/\Delta x$, $D_{i,j}^{+x}\tau = (\tau_{i+1,j} - \tau_{i,j})/\Delta x$, and similarly for $D_{i,j}^{-y}$ and $D_{i,j}^{+y}$. The algorithm maintains three lists of nodes: *accepted* nodes (for which τ has been determined), *considered* nodes (for which τ is being computed, one grid point away from an accepted node) and *far* nodes (for which τ is set to $+\infty$). The quadratic equation (3) is used to determine the values of τ in increasing order. At each step, τ is computed at *considered* nodes from known values at *accepted* nodes and the smallest value of τ among those *considered* becomes *accepted*. The lists are then updated and another step is performed until all nodes are *accepted*. The efficiency of the method relies on the implementation of list data structures and sorting algorithms. The fast marching method can be extended to triangulated surface (Sethian and Vladimirsky, 2011; Qian et al, 2007) by adapting Eq. (3). A Matlab/C implementation (used here) has been made available by Gabriel Peyr for both structured and unstructured meshes.

Newton-based Method for the Eikonal-Diffusion Equation

When physically relevant (e.g. for cardiac propagation, see Pernod et al (2011)), the eikonal-diffusion equation may be used to refine the solution provided by the fast marching algorithm. In this case, if τ is an approximate solution to (2) satisfying the boundary conditions, a better approximation $\tau + \theta$ can be obtained by substituting $\tau + \theta$ into (2) and finding a solution θ up to second order in θ . This is equivalent to Newton iterations for nonlinear system solving. Taylor expansion of (2) leads to the following steady-state convection-diffusion equation for the correction θ :

$$\|\mathbf{c}\nabla\tau\| - \nabla\cdot(\mathbf{D}\nabla\tau) - 1 = \nabla\cdot(\mathbf{D}\nabla\theta) - \|\mathbf{c}\nabla\tau\|^{-1} \nabla\tau \,\mathbf{c}^*\mathbf{c}\nabla\theta \tag{4}$$

with boundary condition $\mathbf{n} \cdot \mathbf{D} \nabla \theta = 0$ and $\theta = 0$ in Γ_0 .

This linearized equation can be solved using finite elements. The procedure is given here for a triangular mesh composed of a set of nodes $i \in \mathcal{V}$ and a set of triangles $(ijk) \in \mathcal{T}$, of area Ω_{ijk} , with $i, j, k \in \mathcal{V}$. Linear shape functions, denoted by N_i for $i \in \mathcal{V}$, are used to reconstruct the scalar fields $\tau = \sum_{i \in \mathcal{V}} \tau_i N_i$ and $\theta = \sum_{i \in \mathcal{V}} \theta_i N_i$. These functions are linear in each triangle; the gradient operator evaluated in triangle (ijk) is noted ∇_{ijk} . Similarly, the parameters \mathbf{c}_{ijk} and \mathbf{D}_{ijk} denote the values of \mathbf{c} and \mathbf{D} at the center of gravity of the triangle (ijk). The application of the Galerkin finite element approach (Huebner et al, 2001) to (4) leads to the linear system $\mathbf{A}(\tau)\boldsymbol{\theta} = \mathbf{f}(\tau)$, where the matrix and the right hand side are computed as:

$$A_{mn}(\tau) = -\sum_{(ijk)\in\mathcal{T}} \Omega_{ijk} \nabla_{ijk} N_m \cdot \mathbf{D}_{ijk} \nabla_{ijk} N_n$$
$$-\sum_{(ijk)\in\mathcal{T}} \frac{\Omega_{ijk}}{3} \|\mathbf{c}_{ijk} \nabla_{ijk} \tau\|^{-1} (\mathbf{c}_{ijk} \nabla_{ijk} \tau)^* \cdot (\mathbf{c}_{ijk} \nabla_{ijk} N_n)$$
(5)

$$f_m(\tau) = \sum_{\substack{(ijk)\in\mathcal{T}\\m\in\{ijk\}}} \frac{\Omega_{ijk}}{3} \left(\|\mathbf{c}_{ijk}\nabla_{ijk}\tau\| - 1 + 3\,\nabla_{ijk}N_m \cdot \mathbf{D}_{ijk}\nabla_{ijk}\tau \right) \,. \tag{6}$$

For vertices $m \in \Gamma_0$, the boundary condition $\theta = 0$ is applied by setting $A_{mn} = \delta_{mn}$ and $f_m = 0$, which ensures that **A** is not singular. An easy and efficient implementation in Matlab based on sparse matrix manipulation is possible after reformulation (Jacquemet, 2011).

Practically, the first estimate τ^0 is given by the fast marching method (neglecting diffusion). At iteration n+1, the correction θ^{n+1} is obtained by solving the linear system $\mathbf{A}(\tau^n) \boldsymbol{\theta}^{n+1} = \mathbf{f}(\tau^n)$. Then $\tau^{n+1} = \tau^n + \theta^{n+1}$ is updated until the norm of the correction falls below a given tolerance $\|\boldsymbol{\theta}^{n+1}\| < tol$.

Extension to Reentrant Waves

The eikonal-diffusion equation, due to its local nature, is also valid for reentrant wave propagation. In this case, the wave does not originate from a focal source but instead is self-maintained by following a closed circuit. To account for the periodicity of the propagation pattern and avoid phase unwrapping issue, a phase transformation $\phi =$ $\exp(i\tau)$ is applied, where τ is now normalized between 0 and 2π . The transformed eikonal-diffusion equation reads (Jacquemet, 2010):

$$\|\mathbf{c}\nabla\phi\| = 1 + \operatorname{Im}\nabla\cdot(\phi^*\mathbf{D}\nabla\phi) \tag{7}$$

The boundary condition $\mathbf{n} \cdot \mathbf{D} \nabla \phi = 0$ still holds and the constraint $|\phi| = 1$ must be preserved. The star (*) denotes the complex conjugate and 'Im' the imaginary part.

The same Newton-based method as in the previous subsection can be used. If ϕ approximates the solution to (7), $\phi \exp(i\theta)$ is substituted in (7) and the linearized equation is solved for θ :

$$\|\mathbf{c}\nabla\phi\| - \operatorname{Im}\nabla\cdot(\phi^*\mathbf{D}\nabla\phi) - 1 = \nabla\cdot(\mathbf{D}\nabla\theta) + \|\mathbf{c}\nabla\phi\|^{-1}\operatorname{Im}(\phi\nabla\phi^*\mathbf{c}^*\mathbf{c}\nabla\theta)$$
(8)

This equation has the same steady-state convection-diffusion form as (4). The same Galerkin approach can therefore be applied, leading to a linear system $\mathbf{A}(\phi) \boldsymbol{\theta} = \mathbf{f}(\phi)$ whose matrix elements are defined as (Jacquemet, 2010):

$$A_{mn}(\phi) = -\sum_{(ijk)\in\mathcal{T}} \Omega_{ijk} \nabla_{ijk} N_m \cdot \mathbf{D}_{ijk} \nabla_{ijk} N_n$$
$$+ \sum_{(ijk)\in\mathcal{T}} \frac{\Omega_{ijk}}{3} \|\mathbf{c}_{ijk} \nabla_{ijk} \phi\|^{-1} \operatorname{Im} \frac{\phi_i + \phi_j + \phi_k + \phi_m}{4} \left(\mathbf{c}_{ijk} \nabla_{ijk} \phi\right)^* \cdot \left(\mathbf{c}_{ijk} \nabla_{ijk} N_n\right) \quad (9)$$

$$f_m(\phi) = \sum_{\substack{(ijk)\in\tau\\m\in\{ijk\}}} \frac{\Omega_{ijk}}{3} \left(\|\mathbf{c}_{ijk}\nabla_{ijk}\phi\| - 1 + 3\nabla_{ijk}N_m \cdot \operatorname{Im}\frac{\phi_i^* + \phi_j^* + \phi_k^*}{3} \mathbf{D}_{ijk}\nabla_{ijk}\phi \right) .$$
(10)

The matrix **A** is singular due to the symmetry $\phi \mapsto \phi \exp(i\theta_0)$ with spatially-uniform θ_0 . This issue is solved by replacing the system $\mathbf{A}(\phi)\boldsymbol{\theta} = \mathbf{f}(\phi)$ by the non-singular (deflated) system $(\mathbf{A}(\phi) - n_v^{-1}\mathbf{e} \mathbf{e}^*) \boldsymbol{\theta} = \mathbf{f}(\phi)$ where **e** is a n_v -vector whose all elements are 1 and n_v is the dimension of **A**.

Practically, the first estimate ϕ^0 is obtained from a supposedly known circuit Γ (closed curve) by interpolating ϕ^0 in the entire surface from the values $\exp(2\pi i \ell/L)$ along the curve Γ using Laplacian interpolation (ℓ is the curvilinear coordinate and L the length of the curve). At iteration n + 1, the correction θ^{n+1} is computed by solving the linear system $(\mathbf{A}(\phi^n) - n_v^{-1}\mathbf{e}\mathbf{e}^*)\boldsymbol{\theta}^{n+1} = \mathbf{f}(\phi^n)$. To avoid the use of a fully-populated matrix, the system can be solved iteratively (e.g. BiCGstab with incomplete LU preconditioner) with matrix-vector multiply being implemented as $\mathbf{A}\boldsymbol{\theta} - \text{mean}(\boldsymbol{\theta})\mathbf{e}$. The uniform phase shift is suppressed by subtracting the mean: $\tilde{\theta}^{n+1} = \theta^{n+1} - \text{mean}(\theta^{n+1})$. Then $\tau^{n+1} = \tau^n + \tilde{\theta}^{n+1}$ is updated until the norm of the correction falls below a given tolerance $\|\tilde{\theta}^{n+1}\| < tol.$ Jacquemet (2011) showed that the period of reentry compatible with the propagation velocity specified in the eikonal-diffusion equation is approximately $T = 2\pi/(1 + \text{mean}(\theta^{n+1}))$.

Examples in cardiac electrophysiology

The eikonal approach is illustrated here in a triangular mesh (about 5,000 nodes) representing the atrial epicardium derived from magnetic resonance images of a patient.

Fig. 1. Propagation of the electrical impulse in an anisotropic surface model of the human atria computed using the eikonal-diffusion equation. (A) Normal propagation from the sino-atrial node region. Activation time is color-coded. Isochrones are displayed every 10 ms. White arrows illustrate propagation pathways. (B) Reentrant propagation similar to typical atrial flutter in a model with slower propagation velocity. The line of block is represented as a thick black line. TV: tricuspid valve; MV: mitral valve; LAA: left atrial appendage; RAA: right atrial appendage; PVs: pulmonary veins; IVC: inferior vena cava; SVC: superior vena cava; SAN: sino-atrial node.

Fiber orientation (anisotropic properties) was obtained from anatomical and histological data. Propagation velocity was set to 100 cm/s (along fiber) and 50 cm/s (across fiber). Γ_0 was placed near the anatomical location of the sino-atrial node. The diffusion coefficient D was set to 10 cm². The activation map (arrival times) computed using the eikonal-diffusion solver (iteration from the solution provided by the fast marching algorithm) is displayed in Fig. 1A. With $tol = 10^{-10}$, 16 iterations were needed.

Figure 1B shows a reentrant activation map corresponding to an arrhythmia called typical atrial flutter, simulated using the eikonal-diffusion solver extended for reentrant propagation. The reentrant pathway Γ was formed by a closed circuit con-

necting the two vena cava. Propagation velocity was reduced by 40%. With $tol = 10^{-10}$, 50 iterations were needed. The resulting period of reentry was 240 ms, a value within physiological range.

References

- Franzone PC, Guerri L, Rovida S (1990) Wave-front propagation in an activation model of the anisotropic cardiac tissue - asymptotic analysis and numerical simulations. J Math Biol 28(2):121–176
- Huebner KHH, Dewhirst DL, Smith DE, Byrom TG (2001) Finite Element Method. J. Wiley & Sons, New York
- Jacquemet V (2010) An eikonal approach for the initiation of reentrant cardiac propagation in reactiondiffusion models. IEEE Trans Biomed Eng 57(9):2090–2098
- Jacquemet V (2011) An eikonal-diffusion solver and its application to the interpolation and the simulation of reentrant cardiac activations. Comput Methods Programs Biomed (DOI: 10.1016/j.cmpb.2011.05.003)
- Keener JP, Sneyd J (2001) Mathematical Physiology, 2nd edn. Interdisciplinary applied mathematics ; v. 8, Springer, New York
- Landau LD, Lifshitz EM (1975) The Classical Theory of Fields, 4th edn. Butterworth-Heinemann, Oxford, UK
- Pernod E, Sermesant M, Konukoglu E, Relan J, Delingette H, Ayache N (2011) A multi-front eikonal model of cardiac electrophysiology for interactive simulation of radio-frequency ablation. Computers & Graphics 35(2):431–440
- Qian J, Zhang YT, Zhao HK (2007) Fast sweeping methods for eikonal equations on triangular meshes. SIAM J Numer Anal 45(1):83–107
- Sethian JA (1999) Level Set Methods and Fast Marching Methods. Cambridge University Press, Cambridge, UK
- Sethian JA, Vladimirsky A (2011) Fast methods for the eikonal and related Hamilton- Jacobi equations on unstructured meshes. Proc Natl Acad Sci 97(11):5699–5703

Tomlinson KA, Hunter PJ, Pullan AJ (2002) A finite element method for an eikonal equation model of myocardial excitation wavefront propagation. SIAM J Appl Math 63(1):324–350