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RÉSUMÉ 

Cette thèse examine deux modèles alternatifs de prises de décision motrice à travers des données 

comportementales humaines et des données électrophysiologiques de singes obtenues lors d'une 

tâche de décision multi-attributs. 

Les théories psychologiques classiques suggèrent que la prise de décision soit une fonction de 

l'exécutif central (EC). En accord avec cela, de nombreuses études ont montré des modulations 

neuronales concernant les décisions dans le cortex préfrontal (PFC), renforçant la notion que les 

décisions sont prises à un niveau abstrait dans l'exécutif central du cerveau : le PFC. Cependant, 

de telles corrélations neuronales se trouvent également dans les régions sensorimotrices, qui étaient 

traditionnellement considérées externes à l’EC. Cela a conduit à un modèle alternatif de prise de 

décision dans un EC, impliquant plusieurs zones cérébrales, y compris les zones exécutives et 

sensorimotrices. Ce second modèle suggère qu'une décision est prise lorsque les compétitions au 

sein et entre les aires cérébrales arrivent à une résolution, ce qui permet d'atteindre un consensus 

distribué (CD). 

L'objectif principal de cette thèse est de tester les prédictions faites par ces deux modèles. Pour ce 

faire, nous avons conçu une tâche d'atteinte basée sur la valeur d'attributs multiples et créé une 

situation dans laquelle les deux modèles font des prédictions neuronales distinctes. Dans cette 

tâche, deux attributs visuels indépendants indiquaient le montant de la récompense associé à 

chaque cible. L'un était un degré de luminosité, information ascendante (BU pour "bottom-up"), 

ciblant le réseau de saillance par le biais de la voie visuelle dorsale. L'autre était un indice 

d'orientation de ligne, information descendante (TD pour "top-down"), ciblant le réseau de 

catégorisation basé sur la connaissance par le biais de la voie visuelle ventrale. Nous avons effectué 

des enregistrements dans la région d’atteinte pariétale (PRR) et le cortex pré-moteur dorsal (PMd) 

du singe, dont les activités neuronales ont été précédemment impliquées comme étant modulées 

par des attributs BU et TD similaires. Dans la plupart des essais, les deux attributs étaient 

congruents – tous les deux favorisant la même cible. Cependant, un sous-ensemble d'essais avait 

des cibles avec la même valeur de récompense totale, mais où les deux attributs étaient en conflit 

(les caractéristiques BU et TD favorisant des cibles opposées). Le modèle de l'EC prédit que dans 

ce cas, l’activité neuronale la plus précoce doit apparaître dans une région exécutive et que les 
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régions sensorimotrices doivent recevoir la diffusion de cette décision. Ainsi, ce modèle prédit que 

la différence du temps de réaction entre le PRR et le PMd sera constante, quelle que soit la manière 

dont la décision est prise. En revanche, le modèle CD prédit que l’intervalle de décision doit 

refléter le rôle d'une région dans la décision en cours. Plus précisément, si PRR et PMd font tous 

deux parties du réseau de décision distribué et jouent un rôle dans l'évaluation des attributs BU et 

TD, un choix en faveur de l'attribut BU devrait apparaître d'abord dans le PRR et par la suite dans 

le PMd, tandis qu'un choix en faveur de l'attribut TD devrait apparaître dans l'ordre inverse.  

Notre étude démontre que le temps de réaction des participants humains était plus rapide dans les 

essais congruents et lors de l'utilisation de l'information BU par rapport à l'utilisation de 

l'information TD. La distribution ne reflétait pas linéairement la complexité de l'attribut et semblait 

plutôt suggérer une intégration incomplète des informations disponibles. Ainsi, le résultat n'était 

pas entièrement explicable par un modèle d'EC pur. Le temps de réaction des participants était 

également plus rapide lorsqu'ils choisissaient entre deux options de grande valeur par rapport aux 

options de faible valeur, ce qui suggère que la loi de Weber ne s'applique pas aux attributs visuels 

indiquant des informations de valeur. La distribution du temps de réaction de notre premier singe 

était similaire à celle des participants humains. Sur le plan neuronal, l’intervalle de décision du 

PMd était presque toujours plus rapide que celle du PRR et le PRR ne précédait jamais le PMd; 

aussi, la différence de l’intervalle de décision entre ces régions n'était pas constante. Le PMd a 

montré un biais de base pré-stimulus dans les essais de choix libre, alors que ce n’était pas le cas 

pour le PRR. La distribution de l’intervalle de décision dans le PMd variait également en fonction 

des conditions d'essai, tandis que celle du PRR ne distinguait que les cibles uniques des cibles 

multiples. Une tendance similaire a été observée dans les analyses préliminaires des potentiels de 

champ locaux (LFP). Enfin, les résultats préliminaires suggèrent des effets plus cohérents de la 

micro-stimulation dans le PMd que dans le PRR. 

Nos résultats soutiennent le rôle causal du PMd, mais pas celui du PRR. Nos résultats sont 

cohérents avec les rapports précédents sur l'activité neuronale liée au choix dans les régions 

pariétales, car l'activité du PRR reflétait le choix du singe dans notre tâche. Nos résultats sont 

également cohérents avec d'autres études montrant l'absence de preuves du rôle causal des régions 

pariétales dans la prise de décision, car l'ordre relatif de l'activité prédictive du choix dans le PRR 

et le PMd ne variait pas entre les différentes conditions. À la lumière de ces deux modèles, nos 
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résultats suggèrent une troisième alternative, qui inclut potentiellement le PMd en tant que partie 

du réseau de décision, mais pas le PRR. 

Mots-clés : prise de décision, multi-attribut, sélection d’action, caractéristique visuelle, libre choix, 

valeur relative, valeur absolue, conflit, cortex pré-moteur, cortex pariétal postérieur, région 

pariétale d’atteinte, PMd, PPC, PRR, électrophysiologie, singe, humain. 
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ABSTRACT 

This thesis examines two alternative models of action decisions through human behavioural and 

monkey electrophysiological data obtained during a multi-attribute decision task. 

Classic psychological theories suggest that decision-making is a function of the Central Executive 

(CE). In line with this, many studies showed neural correlates of decision variables in the prefrontal 

cortex (PFC), strengthening the notion that decisions are made at an abstract level in the brain’s 

central executive: PFC. However, such neural correlates are also found in sensorimotor areas, 

which were traditionally considered outside the CE. This has led to an alternative model to the 

decision making in a CE, involving multiple brain areas including both executive and sensorimotor 

areas. This second model suggests that a decision is made when competitions within and across 

brain areas come to a resolution, thus a Distributed Consensus (DC) is achieved. 

The main objective of this thesis is to test the predictions made by these two models. To do so, we 

designed a multi-attribute value-based reaching task, and created a situation in which the two 

models made distinct neural predictions. In this task, two independent visual attributes indicated 

the amount of reward associated with each reach target. One was a “bottom-up” (BU) brightness, 

targeting the saliency network through the dorsal visual pathway. The other was a “top-down” 

(TD) line orientation cue, targeting the knowledge-based categorization network through the 

ventral visual pathway. We recorded from monkey parietal reach region (PRR) and dorsal 

premotor cortex (PMd), whose activities have previously been implied to be modulated by similar 

BU and TD attributes. In most trials, the two attributes were congruent – both favoring the same 

target. However, a subset of trials consisted of a conflict between the two attributes (BU and TD 

features favoring opposite targets), but the targets had the same total reward values. Here, the CE 

model predicted that the earliest choice-predictive activity should appear in an executive region, 

and sensorimotor regions were expected to be receiving this decision broadcast. Thus, the model 

predicted the latency difference between PRR and PMd to be constant, regardless of how the 

decision is made. In contrast, the DC model predicted choice latency should reflect a region’s role 

in the ongoing decision. Specifically, if both PRR and PMd are part of the distributed decision 

network and play a role in evaluating the BU and TD attributes, a choice in favor of the BU 

attribute should appear first in PRR and then in PMd, whereas a choice in favor of the TD attribute 

should appear in the opposite order.  
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We report that human participants’ reaction time (RT) was faster in congruent trials and when 

using the BU information compared to when using the TD information. The RT distribution did 

not linearly reflect the attribute complexity, and instead suggested an incomplete integration of 

available information. Thus, the result was not fully explainable with a pure CE model. Their RT 

was also faster when choosing between two high-valued options compared to low-valued options, 

suggesting that Weber-Fechner law does not apply to visual attributes that indicate value. Our first 

monkey’s RT distribution was similar to that of human participants. Neurally, choice latency of 

PMd was almost always faster than that of PRR and PRR never preceded PMd, and the latency 

difference between these regions was not consistent. PMd showed a pre-stimulus baseline bias in 

free-choice trials, whereas PRR did not. The distribution of choice latency in PMd also varied with 

trial conditions, whereas that of PRR only discriminated single versus multiple targets. A similar 

trend was seen in preliminary analyses of local field potentials. Finally, preliminary results suggest 

more consistent effects of microstimulation in PMd than in PRR. 

Our results support the causal role of PMd, but do not support that of PRR. This is consistent with 

previous reports of choice-related neural activity in the parietal regions, as PRR activity did reflect 

the monkey’s choice in our task. Our results are also consistent with other studies showing the 

absence of evidence for parietal regions’ causal role in decision-making, as the relative order of 

choice-predictive activity in PRR and PMd did not vary between different conditions. In light of 

the two models, our results suggest a third alternative, which potentially includes PMd, but not 

PRR, as part of the decision network. 

Keywords: decision making, multi-attribute, action selection, visual features, free choice, relative 

value, absolute value, conflict, premotor cortex, posterior parietal cortex, parietal reach region, 

PMd, PPC, PRR, electrophysiology, monkey, human. 
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LAY ABSTRACT 

“Why did I do that?” This thesis is an attempt to understand how our brain chooses between 

different actions. 

According to classic theories, we make decisions by converting all available information into a 

single measure of desirability and compare it among different options. This allows us to make 

difficult decisions, such as choosing between a boring job with a high salary versus an exciting job 

with a low salary. This notion has been supported by neurological and neurophysiological studies, 

suggesting that decision-making is an executive function governed by the frontal lobe. 

However, the neural patterns used to imply the frontal lobe’s role as a decision-maker have also 

been reported in other brain regions. This includes sensorimotor regions, which are traditionally 

believed to control movement. Does this mean these areas are also involved in making decisions? 

To address this question, we designed a multi-attribute choice task, and analysed behavioural and 

neural data from human participants and two monkeys. Our results support the causal role of one 

of the two sensorimotor areas, dorsal premotor cortex, but not the other: the parietal reach region. 

We suggest that action decisions can be influenced by activity in a sensorimotor area, and propose 

that the brain’s decision network reaches beyond the traditional executive regions. 
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CHAPTER 1 INTRODUCTION 

One of the most crucial survival abilities for an organism is to make the right decisions, especially 

about actions. For simple organisms in a harsh environment, a wrong move could easily lead to 

death; for more complex species, suboptimal behavioural responses can result in a loss of feeding 

or mating opportunities; and for humans, one wrong action could eliminate a path to the dream 

career or result in developing pathological conditions such as addiction (Borutaite, 2010; Nestler, 

2005; Wong & Candolin, 2015). Importantly, while in the modern world many of our most 

significant decisions are abstract and with long-term consequences, the most significant kind of 

decisions for which our brains have evolved are those dealing with the concrete needs of survival 

and immediate actions (Cisek, 2019). Understanding how such decisions emerge in the brain will 

provide deeper insights into how and why we tend to make certain decisions, and what can be done 

to help ameliorate certain maladaptive behaviour. 

Classically, behaviour is described as a serial process that consists of three separate 

subcomponents: perception, cognition, and action. In this view, 1) perception processes the 

sensory input, 2) cognition creates the mental representations of the available options which will 

be used to make a decision, and then 3) action is planned and executed to realise the decision 

(Hurley, 2001). Therefore, decision-making is considered as a part of the cognition component, 

processing the abstract information in isolation from the perception and the action components. In 

line with this view, numerous neurophysiological studies have reported neural activities reflecting 

the variables relevant to each component. For example, sensory input such as the visual (Jones & 

Palmer, 1987; Ringach, 2004; Supèr et al., 2001), auditory (Mesgarani et al., 2014; Pasley et al., 

2012; Schnupp et al., 2010) and tactile information (Hernández et al., 2000; Shoham & Grinvald, 

2001) is readily decodable from respective sensory cortices in mammals, suggesting neural 



 

2 
 

substrates for the perception component. A plethora of decision-relevant variables, ranging from 

task rules (Goodwin et al., 2012), stimulus information (Constantinidis et al., 2001), current state 

(Critchley & Rolls, 1996), desirability of the available options (Hikosaka & Watanabe, 2000; 

Hosokawa et al., 2007; Padoa-Schioppa, 2009), and the subjective preference (Wallis & Miller, 

2003) modulate the neural activity in the subregions of the frontal cortex, which is believed to 

govern cognition. Once a decision is made, the information is sent to sensorimotor regions such as 

primary motor cortex (C.-S. R. Li et al., 2001; Vargas-Irwin et al., 2010) and superior colliculus 

(Lee et al., 1988; McPeek & Keller, 2002; Munoz & Wurtz, 1993), where the abstract decision is 

converted into actions¸ allowing the agent to realise the decision in the world. This hypothesis on 

decision making will be referred to as the Central Executive model, emphasizing the idea that 

decision processes are a comparison between abstract representations in the frontal, executive 

region in the brain. 

Intriguingly, the neural correlates relevant to each component are not exclusive to the putative 

subcomponent regions, but appear to be distributed across various brain regions. A number of 

studies in monkeys have shown that neural activity in orbitofrontal (OFC) (Padoa-Schioppa, 2009; 

Wallis, 2007; Wallis & Miller, 2003), dorsolateral prefrontal (dlPFC) (Constantinidis et al., 2001), 

ventromedial prefrontal (vmPFC) (Delgado et al., 2016; Kahnt et al., 2011) and anterior cingulate 

(ACC) cortices (Amiez et al., 2006; Hadland, 2002) can be used to predict a subject’s choice before 

the execution of an overt response. Concurrently, such choice-predictive neural modulation is also 

reported in sensorimotor regions, such as superior colliculus (SC) (Basso & Wurtz, 1998), lateral 

intraparietal area (LIP) (Colby et al., 1996; Cui & Andersen, 2007; Louie & Glimcher, 2010), 

parietal reach region (PRR) (Gail & Andersen, 2006; Klaes et al., 2011) and primary motor and 

premotor cortices (Pastor-Bernier & Cisek, 2011; Thura & Cisek, 2014). Traditionally, these 
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regions are believed to be involved in the movement planning and execution, and thus considered 

to be an action component of the Central Executive model (Hurley, 2001; Vargas-Irwin et al., 

2010). If the decision is a cognitive process that happens in an executive region, why should the 

choice variables affect neural activities in the action regions? This has led to an alternative 

hypothesis that, at least when choosing between actions, decisions are not made in a unified central 

executive area, but rather emerge as a distributed consensus across multiple brain regions (Cisek, 

2012). Accordingly, the observed choice-relevant neural modulation in the sensorimotor regions 

is not a mere efflux from the central executive area, but potentially contributes to the ongoing 

decision process. This hypothesis will be referred to as the Distributed Consensus model, 

emphasizing the notion that decision processes are widely distributed across different brain regions, 

and the behavioural response results from the consensus among a pertinent decision network. 

The goal of this thesis is to dissociate the two aforementioned models to understand how value-

based action decisions evolve in the primate brain. Because these models make similar behavioural 

and neural predictions in most situations, we designed a task to create an experimental condition 

in which they make distinct predictions about activity of different brain regions. The outcome of 

this thesis will address whether decisions are always made at the level of abstract representations 

in the central executive, or whether they can be made at different levels in multiple regions 

simultaneously (Baddeley, 2003; Barsalou et al., 2018; Cai & Padoa-Schioppa, 2019; Cisek, 2012; 

Gibson, 1979; Levy & Glimcher, 2012). 

BACKGROUND 

This thesis focuses on two alternative models about action decisions: one that proposes that all 

decisions are made in a Central Executive of the brain, and the other that proposes that decisions 
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about actions are made when a Distributed Consensus is achieved among multiple brain regions 

that comprise a distributed decision network. A brief history of the two models is described below. 

The Origin of the Central Executive 

The concept of the central executive comes from the 

working memory hypothesis, which was developed 

to explain how humans perform complex behaviour 

by temporarily storing and manipulating information 

(Baddeley, 1992; Baddeley & Hitch, 1974). The 

original working memory hypothesis consists of 

three components: the phonological loop, the 

visuospatial sketch pad, and the central executive, 

illustrated in Figure 1 (Baddeley, 1992). The first two 

components are considered the slave systems, whose roles are to hold and process the sound- and 

language- related information and the visuospatial manipulations, respectively (Baddeley, 2003). 

The central executive overlooks these slave systems and manages cognitive resources. 

The distinction between the three components is supported by results from the dual-task paradigm, 

in which human participants are required to perform two tasks simultaneously. It was shown that 

if the two tasks recruit the same slave systems (e.g., the word span task and the articulation 

inhibition, both utilising the phonological loop), the performance was greatly affected compared 

to when the two tasks recruit different slave systems (e.g., the word span task utilising the 

phonological loop and the tracking task utilising the visuospatial sketch pad) (Baddeley, 1992; 

Baddeley et al., 1997). Thus, it was suggested that, in a healthy brain, the two slave systems 

function separately from one another. The role of the central executive and its distinction comes 

 
Figure 1. Three components of the 
working memory hypothesis 

The central executive controls cognitive 
resources, while the phonological loop and 
the visuospatial sketchpad store language 
and arithmetic information and process 
visuospatial information, respectively. 

Central 
Executive

Phonological 
Loop

Visuospatial
Sketchpad
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from the same task performed by a clinical population. Patients with frontal lobe lesion and 

Alzheimer’s disease, who often show impaired executive functions, display reduced performance 

in the dual-task paradigm compared to their nonclinical counterparts, even though the two tasks 

differ in their characteristics and should therefore recruit different slave systems (Baddeley et al., 

1997; Kaufman et al., 2012). Importantly, their slave systems appear to be intact, because they are 

able to perform individual tasks well in isolation (Baddeley, 1992). Thus, it was proposed that 

frontal lesions and Alzheimer’s disease affect the central executive functions, resulting in an 

observed decline in the dual-task performance (Baddeley, 1992). Other studies also suggested the 

role of the central executive in selective attention, resonating with the notion that the role of the 

central executive is to manage limited resources (Della Sala et al., 1995; Desimone & Duncan, 

1995; Hitch et al., 2018). 

Originally, the working memory hypothesis was proposed as a conceptual framework and 

explicitly admitted its lack of anatomical substrates (Baddeley, 1996). Nonetheless, with the 

subsequent studies in lesion patients and the recent progress in the imaging and 

electrophysiological techniques, there has been a progressive accumulation of evidence suggesting 

the neural substrates for each subcomponent (Baddeley, 2003; de Schotten et al., 2011; Papagno 

et al., 2017). For example, in human imaging studies, it has been shown that spatial memory tasks 

activate the right hemisphere, whereas verbal memory tasks activate the left hemisphere, 

suggesting that the visuospatial sketchpad and the phonological loop reside in separate 

hemispheres (E. E. Smith & Jonides, 1997). Furthermore, retrieval of different elements within the 

phonological loop appears to recruit different brain regions, such that the item retrieval in the digit 

span task was more dependent upon Broca’s area, whereas the order retrieval of the same task was 

more dependent on the supramarginal gyrus (Papagno et al., 2017). Other studies of visuospatial 
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memory suggest similar neuroanatomical segregation based on different types of visual- and 

spatial information (de Schotten et al., 2011; E. E. Smith & Jonides, 1997; Suchan et al., 2002). 

These results strongly supported the argument for the distinction between the two slave systems, 

while also suggesting the within-system fractionation based on more detailed properties of the task. 

In contrast to the slave systems, in which the functional dissociation has been more tractable, the 

central executive has always been a rather loose concept (Baddeley, 2003). Nevertheless, there has 

been an abundance of studies suggesting that the central executive resides in the frontal lobe in 

humans (Curtis & D’Esposito, 2003; Delgado et al., 2016; Hitch et al., 2018; Kaufman et al., 2012; 

Tanji & Hoshi, 2008), monkeys (Goodwin et al., 2012; Tanji & Hoshi, 2008) and rodents (Delgado 

et al., 2016), supporting the initial premise. In fact, the apparent link between the executive 

function and the frontal lobe was dominant enough that some researchers inverted the direction, 

studying the function of the frontal lobe as a means to understand the role of the central executive 

(Desimone & Duncan, 1995; Shallice, 1982; Shallice & Burgess, 1991). Initially, the author who 

proposed the working memory hypothesis was hesitant to draw such strong connections between 

the frontal lobe and the central executive (Baddeley, 1992, 1998; Baddeley et al., 1997). However, 

in a later article, he accepted this notion of the frontal lobe as the putative neural substrate for the 

central executive, agreeing with the notion of the frontal lobe as the executive region (Baddeley, 

2003). 

Throughout the history of the working memory hypothesis, the frontal lobe has always been 

suggested as a candidate brain area for the central executive (Baddeley, 1996, 2003; Hitch et al., 

2018; Tanji & Hoshi, 2008). The central executive was proposed as a resource-managing system 

which, in a broad sense, can be interpreted as various higher-order cognitive functions that are 

disturbed upon a frontal lobe injury. Backed by the growing body of neurophysiological and 
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imaging findings, what was once a fuzzy concept became a category that describes the less tangible 

“higher-order” processes controlled by the frontal lobe (Baddeley, 2003). 

Isolating Cognition 

Much of the progress in understanding working memory was made by subdividing the systems 

based on the properties of the task and exploring the corresponding neural substrates. Undoubtedly, 

early cognitive psychology and neuroscience tremendously benefited from such a fractionation 

method and the bottom-up approach. That is, if there is a complex phenomenon to be investigated, 

researchers deconstruct the phenomenon into simpler elements and attempt to manipulate them in 

a controlled laboratory setting. The collection of such observations is then used to rebuild and 

explain the whole phenomenon. For example, a study of speech may start by subdividing it into 

comprehension and production, and further deconstructing them into sentences to clauses, to words, 

to phonemes, and so on (Harris, 1970). Once we understand how we perceive and produce certain 

phonemes, we can then proceed to investigate what happens when they are put together to form 

words, and then sentences, incrementally adding complexity to finally understand how we carry a 

conversation. The working memory hypothesis utilises this method and dissociates the function of 

the phonological loop and the visuospatial sketch pad, which were then combined to demonstrate 

the function of the higher-order system: the central executive (Baddeley, 1992). The view was 

further strengthened when the neural substrates for the theorised elements were found, providing 

the anatomical support that such elements could exist in the brain. In addition, it also provided a 

convenient framework for explaining the black box nature of brain and behaviour. For example, 

to study how humans process phonemes, researchers can run experiments that utilise auditory 

stimuli with a variety of phonetic manipulations and record the behavioural responses of the 

participants. If the obtained results display a pattern, then it may be used to infer which phonetic 
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characteristics the brain uses to distinguish one phoneme from the other. In other words, because 

the input (sensory information) and the output (behavioural response) are tractable and measurable, 

we only need to come up with some sort of an explanation for what happens in between.  

Conceptually, the beauty of such a fractionation approach lies in its ability to strip away the outer 

layers of a phenomenon to study the core elements without interference from other elements. After 

all, the majority of scientific investigations are designed based on the philosophy of ceteris paribus 

– “all other things being equal” (Schiffer, 1991). To measure the effects of the variable of interest, 

one manipulates the variable while keeping everything else the same. Hence, it is unsurprising that 

a large body of studies about cognition focused on the concept of cognition itself, while other 

disciplines such as perception and action were developed and investigated as separate entities. 

Conveniently, this approach also fits the analogy of the brain as a computer. It allows the intuitive 

conceptualisation of the tangible hardware as our body, consisting of input and output devices, and 

the more intricate, indecipherable software as our brain (Piccinini & Bahar, 2013). Thus, if our 

brain works in the similar manner, perhaps an accumulation of rigorous experimental data shall 

one day reveal how the brain is programmed to respond to different inputs (Piccinini & Bahar, 

2013). (But see also (Jonas & 

Kording, 2017) for the major 

caveat of this approach). Studying 

cognition, therefore, is 

comparable to manipulating the 

input and the output devices and 

looking for changes in neural 

activity, treating the brain as a 

 
Figure 2. The brain as a black box 

In a laboratory, researchers can manipulate the target sensory 
stimulus with high precision, and the behavioural responses can 
be recorded with high resolution. In other words, we know 
exactly what the input and the output parameters are. So, all we 
need to know is what kind of processes happen in the brain that 
converts the stimulus into the observed responses. 
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black box (Figure 2). The underlying assumption here is that cognition is analogous to computation, 

which was later elaborated into the philosophy of computationalism (Piccinini & Bahar, 2013). 

Accordingly, if our brain works like a computer, we should be able to isolate the computation part 

from the other “peripheral” elements and study them independently (Engel et al., 2013). 

Sense-Think-Act framework in Goods Space 

The concepts of input, computation, and output of computationalism is realised as a serial 

algorithm consisting of sense, think, and act in robotics (Hurley, 2001). A robot that executes this 

algorithm will first sense the environment through its input devices, then think by computing the 

relevant information based on the preinstalled rules, and finally act to achieve a programmed goal 

using its output devices. Thus, a robot vacuum cleans a room by detecting debris, applying the 

rules to decide that it is to be removed, and approaches the debris while engaging its sweeping 

brushes. This linear model also provides a fitting framework for our behaviour: when we see 

something on the floor (sense), we may decide that it is a coffee spill and thus needs to be cleaned 

(think), and grab a mop to get to the spillage (act). In both cases, the rule is simple: remove the 

waste. Therefore, what is decided during the think phase is also simple: whether the detected object 

is a waste or not. This Sense-Think-Act framework is also capable of deconstructing a more 

elaborate scenario, such as a career choice. If you are deciding between different career options, 

you will probably first gather the relevant information (sense). Then, you will compare the 

different aspects of the options, such as the duty, salary and benefits, commute distance, and future 

outlook (think). Finally, you will choose one of the offers by signing the contract and declining the 

others (act). In this example, the information at the sense phase likely comes from multiple sensory 

organs such as the eyes and the ears, which is converted into neural signals and processed at 

respective brain regions, such as the visual and auditory cortices (Ferstl et al., 2008; Nassi & 
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Callaway, 2009; Saur et al., 2010). These signals are then fed to the brain area whose role is to 

think, wherein the choice-relevant information is converted into a unified common currency. As a 

result, factors such as the duty, salary, commute distance and future outlook become single values 

representing their respective desirability, and the sum of these values can be used to represent the 

overall desirability of different options (Levy & Glimcher, 2012; Padoa-Schioppa, 2011). The 

comparison between these options happens at an abstract level, also referred to as the goods space, 

and the option with the highest desirability is generally chosen. Finally, once a choice is made, the 

corresponding action plan is generated and executed in the sensorimotor regions, resulting in the 

behaviour of signing a contract. Importantly, the main computation of such economic decision 

happens as the comparison between the abstract common currency in goods space, independently 

from and undisturbed by the sensorimotor information seen in the sense and act components 

(Padoa-Schioppa, 2011; Shizgal, 1997). 

Supporting the above notion, a number of studies have reported neural correlates of the economic-

decision variables. For example, A seminal study by Schultz et al. showed that activity in the 

monkey orbitofrontal cortex (OFC) discriminated expected versus unexpected reward, as well as 

the absence of reward despite the monkey’s expectation, and showed that such activity was 

strongly linked to the dopaminergic cells in the striatum (Schultz et al., 2000). Subsequent studies 

showed that monkey OFC activity reflects the expected and the actual outcomes of reward, 

punishment, and the absence of reward (Hosokawa et al., 2007; Schultz et al., 2000; Wallis & 

Miller, 2003), as well as the subjective preference of different reward types (Hikosaka & Watanabe, 

2000; Padoa-Schioppa & Assad, 2006, 2008). In rats and monkeys, studies suggest the role of OFC 

in satiety-induced devaluation (Critchley & Rolls, 1996; Gallagher et al., 1999; Pritchard et al., 

2008). Damage in OFC results in an inability to update the behavioural response when the reward 
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rule changes, such that macaque monkeys, marmosets and human patients with OFC lesions 

continue to choose the stimulus that was previously, but is no-longer, rewarded (Clarke et al., 

2007; Dias et al., 1996; Rolls et al., 1994). Similarly, lesion studies in rats and macaque monkeys 

showed that the anterior cingulate cortex (ACC) plays a role in action-reward contingency learning 

(Kennerley et al., 2006; Schweimer & Hauber, 2005), but not in stimulus-reward contingency 

learning (Rudebeck et al., 2008; Walton et al., 2003). In addition, a monkey electrophysiology 

study showed that neurons in the ACC respond to a visual stimulus only when it predicts upcoming 

reward, suggesting their role in reflecting the monkeys’ reward expectancy (Shidara & Richmond, 

2002). In line with this, a case study showed that ACC lesion leads to deficits in manual but not 

verbal response during attentionally demanding tasks (Turken & Swick, 1999). In ventromedial 

prefrontal cortex (vmPFC), studies showed that neural activity is modulated by the overall value 

of stimulus options in humans (Kahnt et al., 2011; Philiastides et al., 2010). A careful 

electrophysiology study in monkey vmPFC revealed regionally distinct neuronal responses to 

appetitive and aversive stimuli, suggesting that different subregions play distinct roles in 

processing stimulus-outcome contingency (Monosov & Hikosaka, 2012). Other studies suggest 

that activity in monkey dorsolateral prefrontal cortex (dlPFC) is modulated by upcoming reward 

and planned actions (Wallis & Miller, 2003), types of reward (Watanabe, 1996), and working 

memory-like processes (Funahashi et al., 1989; Iba & Sawaguchi, 2003; Miller et al., 1996). 

Human studies suggest that dlPFC is involved in processing the sensory parameters of the visual 

stimuli, the reward predictability of different stimulus attributes (Kahnt et al., 2011), top-down 

information processes (Yan et al., 2016), and suppressing unwanted reflexive responses (Pierrot-

Deseilligny et al., 2005; Pierrot‐Deseilligny et al., 2003). Notably, during these sensory and 

economic decision tasks, decision-related variables are found mainly in the frontal regions. 
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Together with the notion of the central executive and the Sense-Think-Act framework, it was 

therefore proposed that decision-making is one of the executive functions governed by the frontal 

lobe – the central executive, and that decisions are made as abstract comparisons in goods space, 

separate from the sense- and act-related processes (Cai & Padoa-Schioppa, 2019; Levy & 

Glimcher, 2012; Sugrue et al., 2005). 

Affordance Competition Hypothesis in Action Space 

Considering the amount of results showing neural correlates of decision-making, the frontal 

regions undoubtedly contribute to the economic decisions. However, a growing number of monkey 

electrophysiological studies report that other “non-executive” regions, such as sensorimotor 

cortices and the subcortical regions, contain neural activities that reflect decision variables. For 

instance, during a saccade task, neural activity in superior colliculus reflects not just the eventual 

saccade to be executed, but also the other potential saccades and their likelihood of execution 

(Basso & Wurtz, 1998; Glimcher & Sparks, 1992; Lee et al., 1988; Munoz & Wurtz, 1993; Sparks, 

1978). In case of lateral intraparietal area and supplementary eye field, neural activity is modulated 

by the expected reward size upon a given saccade (Coe et al., 2002; Colby et al., 1996; Louie & 

Glimcher, 2010; Platt & Glimcher, 1999; Sugrue et al., 2004). In tasks involving arm movements, 

parietal reach region, dorsal premotor (PMd) and primary motor (M1) cortices have been shown 

to contain neurons representing multiple aspects associated with the potential arm movements, 

including the likelihood of executing a given movement and the expected outcome (Caminiti et al., 

1996; Cisek & Kalaska, 2005; Pastor-Bernier & Cisek, 2011; Snyder et al., 2000; Stoet & Snyder, 

2004; Thura & Cisek, 2014). In the Sense-Think-Act framework discussed above, these regions 

fall into the act category, whose role is to receive the final decision from the central executive and 

formulate the movement plans accordingly. Such lack of functional specificity in neural 
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representations is not unique to the sensorimotor regions; studies have shown that neural activity 

in the putative central executive region is modulated by sensory variables irrelevant to making the 

right decision (Constantinidis et al., 2001). Strictly speaking, these results are incompatible with 

the Sense-Think-Act framework, which treats each category as a distinct process that is separate 

and independent from one another. In other words, if the role of a central executive is to think, it 

only needs to care about the choice variables and not the action to be followed; and if the role of a 

sensorimotor region is to act, its activity should only reflect the final response. Why should their 

activity be modulated by seemingly irrelevant variables? 

One way to approach this question is by taking a step back to think of a more fundamental situation: 

survival decisions. When the ongoing decision is directly linked to one’s survival, the competing 

options often involve different actions. For example, a squirrel being chased by a cat has a few 

options. It can continue running on the ground until the cat is exhausted. It can run into a bush so 

that the cat may lose it. It can run up a tree so that it may outrun the cat. Or, it can turn around and 

bite the cat’s face. The likelihood of each option leading to the squirrel’s successful escape changes 

continuously based on the relative location of the animals, the bushes, the trees and how much 

energy each animal is willing to spend on the chase. Humans living in an industrialised society are 

less likely to be chased by a predator. However, in our daily lives, we still engage in action 

decisions, such as maneuvering against a stream of people to get to a train, veering right or left in 

contact sports, and choosing to steer the wheel and/or step on the brake when facing oncoming 

traffic. 

According to the Sense-Think-Act framework, decisions in the example situations above can be 

described as serial processes. In case of the squirrel, the cost of each action may be computed and 

represented in ACC, whereas the likelihood of successful escape may be represented in dlPFC. 
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These variables may be combined to represent the value of each escaping option in a common 

currency, compared in goods space in OFC, and the winning option executed through premotor 

and primary motor cortices, resulting in the squirrel climbing up the tree (Cai & Padoa-Schioppa, 

2019). In other words, one would expect to see a cascade of the final decision flowing from the 

frontal, central executive regions to the sensorimotor cortices, followed by the squirrel placing its 

paw on the tree. In this view, what may appear as decision-relevant neural modulation in the 

sensorimotor areas are considered irrelevant to the actual decision processes, as decisions are 

always made at an abstract level, in goods space in the central executive regions (Cai & Padoa-

Schioppa, 2019). 

An alternative way of looking at this situation proposes that, rather than creating abstract 

representations of different options for a comparison, the choice between different actions can be 

made in action space in the sensorimotor regions. In this view, the locations such as the bush and 

the tree are perceived as “affordances” by the squirrel, providing a potential shelter from the cat 

(Cisek, 1999; Gibson, 1979). Instead of following the serial order of the Sense-Think-Act 

framework, it proposes that when choosing between actions, the decision process occurs as a 

competition between the affordances (e.g., bush/jump/shelter VS tree/climb/shelter VS 

cat/bite/defense), specified by the sensory information. The advantage of this affordance 

competition hypothesis is in its responsiveness; as the squirrel runs around, the sensory 

information such as the relative distance between the animals and the shelters changes, which is 

reflected in real time as changes in the affordance representations in the squirrel’s sensorimotor 

regions. Once the competition between these affordances is resolved (i.e., a choice is made), the 

corresponding action can be immediately executed, as the candidate actions are already 

represented in the sensorimotor regions and are essentially ready-to-go. This is in contrast to the 
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decisions made in a central executive, which assumes an agent to create abstract representations 

of the available options every time a decision is to be made. This extra step of decision process 

results in an inevitable and suboptimal lag between the arrival of new information (e.g., change in 

the immediate landscape due to the ongoing chase), and the planning and execution of an action. 

The affordance competition hypothesis suggests that the decision-relevant neural modulations in 

the sensorimotor regions are causally involved in the ongoing decision processes (Cisek, 2007). In 

other words, the reason the squirrel climbed up the tree is because it afforded more escapable 

shelter than other options and with the least distance and energy expenditure at that moment, which 

was based on the activity in the sensorimotor areas. The total desirability of the same option may 

have exceeded that of others in the abstract representation in other, non-sensorimotor areas, but 

that is not always the sole reason of the decision. 

Central Executive and Distributed Consensus 

So far, I have discussed two possible theories – the Sense-Think-Act framework and the 

Affordance Competition hypothesis – in which decisions about actions can be made. These two 

theories provide foundations for the following two decision-making models, whose predictions 

will be tested in this thesis. 

The first model proposes that decisions are always made at an abstract level in a Central Executive. 

Following the linearity of the Sense-Think-Act framework, this Central Executive model depicts 

the decision-making processes as a comparison of option representations, which happens in the 

central executive region, presumably the frontal areas (Baddeley, 2003; Hurley, 2001; Padoa-

Schioppa, 2011). This is preceded by the preprocessing of the sensory information and followed 

by the generation and execution of the corresponding action. The advantage of the Central 

Executive model is its versatility. As long as the options can be converted into representations of 
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common currency, virtually anything can join the race, allowing a multi-faceted comparison of 

different options. It is therefore capable of converting any comparisons into economic decisions, 

from a complex decision about life partners to a simple choice of grabbing big versus small apples. 

Furthermore, most classical psychology studies are done in controlled laboratory settings, in which 

participants are asked to react to a certain stimulus through a simple response such as a button 

press. In such cases, details of the available action options are limited, and thus should be ignored 

to increase the efficiency of the current task. The Central Executive model is a straight-forward, 

one-size-fits-all model of decision-making, which generally separates the decision processes from 

the other, sensorimotor processes. 

The second model proposes that a decision is made through a Distributed Consensus (DC). The 

Distributed Consensus model is based on the affordance competition hypothesis, in which multiple 

action options are simultaneously represented in the sensorimotor regions. Note that this model 

does not oppose the presence of the abstract, goods space; rather, it is treated as one of the many 

aspects that influence the affordances of each option. During deliberation, different aspects of the 

available options compete against each other in the respective regions, influencing the competition 

between the candidate actions in the sensorimotor regions. For example, a group of sensorimotor 

neurons representing one action may receive a boost from ACC based on its low action cost 

(Walton et al., 2003), whereas another group of neurons representing a different action may receive 

a boost from vmPFC based on the trial history (Delgado et al., 2016; Juechems et al., 2017). As 

one or more of these within-region competition is resolved, it begins to influence the other regions’ 

competition to “tip the scale” in favour of one option over the other. Once the whole brain comes 

to an agreement through reciprocal connections and the winner-take-all dynamics, a distributed 

consensus is achieved, and the winning action is executed (Cisek, 2012). Importantly, the 
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Distributed Consensus model does not assume that all decisions are made in the sensorimotor 

regions. For example, if the choice is between two job opportunities, the main competition likely 

occurs in regions that represent the economic variables rather than the sensorimotor cortices. By 

contrast, when choosing between different actions, the decision processes could occur as a 

competition between the representations of potential actions in the sensorimotor regions, rather 

than between abstract representations in isolation of sensorimotor information (Cisek, 2012). 

GLOBAL RESEARCH QUESTION 

The global research question of this thesis is the following: Are value-based action decisions made 

in a central executive or through a distributed consensus? In other words, is there a single central 

executive region that broadcasts its final decision to the rest of the brain, or do decisions evolve in 

multiple brain regions simultaneously? To date, a number of studies have shown neural correlates 

of decision variables across brain regions (Basso & Wurtz, 1998; Cai & Padoa-Schioppa, 2019; 

Chang et al., 2013; Chang & Snyder, 2012; Cisek & Kalaska, 2005; Gail & Andersen, 2006; Gold 

& Shadlen, 2007; Hosokawa et al., 2007; Klaes et al., 2011; Pastor-Bernier & Cisek, 2011; Platt 

& Glimcher, 1999; Thura & Cisek, 2014; Wallis & Miller, 2003). To gain further insight into the 

neural mechanisms of decision-making, the next logical step is to verify the causal role of such 

neural activities. 

Neural Latency as a Causality Measure 

In order to determine whether a given decision-related neural modulation is causally involved in 

the ongoing decision, the neural latency of decision variables will be explored. Previous studies 

reported that, in monkey sensorimotor regions, decision-related neural modulation occurs 

somewhere between 74 ms and 150 ms after stimulus onset (Cisek & Kalaska, 2005; Ledberg et 

al., 2007; Pastor-Bernier & Cisek, 2011; Siegel et al., 2015; Thura & Cisek, 2014). Due to the 
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physiological constraints of the cells in the retina and the brain, there exists a delay between the 

stimulus onset and the time neural activities reflect the effect of the stimulus (J. H. R. Maunsell et 

al., 1999; Schmolesky et al., 1998). In addition, activities that are too close to the stimulus onset 

(e.g., within 50 ms) may only reflect the sensory input rather than decision-related variables, while 

activities that are further away (e.g., >300 ms) likely contain information pertinent to the motor 

preparation, especially if the task does not involve a delay period and the subject is allowed to 

respond at their will (Thura & Cisek, 2014). Therefore, this thesis focuses on the activities 

observed between 50 ms to 250 ms from the stimulus onset, treating it as a tentative decision time 

window. 

Once the time window is defined, the time course of decision-related population activities can be 

compared across different brain regions. The logic is as follows: if a region is causally involved in 

the ongoing decision process, its activity should reflect the subject’s choice earlier than regions 

that are not causally involved. Accordingly, the Central Executive model predicts that a central 

executive region will always reflect the subject’s choice first, and the latency in which other 

regions receive decision-related modulations will be consistent regardless of the chosen option. In 

contrast, the Distributed Consensus model predicts that the latency in which a given region reflects 

the subject choice will depend on whether that region was the tipping point of a given decision. 

This means, for example, when the decision is made based on one aspect of an option, such as 

colour, a region that is sensitive to colour will reflect the subject choice before other regions, 

whereas if the decision was based on another aspect, such as spatial remapping, the space-sensitive 

region will reflect the choice before the colour-sensitive region (Westendorff et al., 2010). 
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Bottom-up and Top-down Flow of Information 

One of the major inspirations of this thesis was the results reported by Buschman and Miller 

(Buschman & Miller, 2007). In their study, monkeys performed a match-to-sample task, and 

reported the target stimulus by making saccadic eye movements. In a given trial, the distractor 

stimuli were manipulated in such a way that sometimes the target stimulus was a visual “pop-out,” 

while in other times the monkey needed to engage in a serial search. They reported that during the 

pop-out trials, activities in LIP predicted monkeys’ choice substantially earlier than lateral PFC 

(lPFC) and frontal eye field (FEF). Conversely, lPFC and FEF preceded LIP when the monkeys 

performed a serial search (Buschman & Miller, 2007). Thus, they concluded that information 

based on bottom-up attention such as salience flows in the direction of posterior to anterior, 

whereas information based on top-down attention such as a serial search flows in the opposite 

direction. 

Their conclusion that different types of attentional information are processed along different 

directions is in line with the theory of two visual pathways (Goodale & Milner, 1992). According 

to this theory, information about locations and potential actions (“where” and “how”) is derived 

from visual input and takes a dorsal pathway to be processed in the parietal regions, while 

information about the identity (“what”) takes a ventral pathway, through the temporal lobe and is 

processed in the frontal regions (Goodale & Milner, 1992). It is logical to assume that, due to the 

salience of the target stimulus, the information during the pop-out trials took the dorsal pathway. 

Likewise, the serial search trials likely recruited more memory-related circuits for stimulus 

comparisons, thus the information took the ventral pathway. 

Although attentional information is an important player of many decision-making processes, it 

should not be considered equal to deciding factors. In the task discussed above, it is likely that the 
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pop-out target triggered the LIP activity for its saliency. However, it is also possible that the actual 

decision to choose that salient target was made after the first sweep of saliency-driven flow of 

information. In other words, what Buschman and Miller reported in the LIP activity could be 

interpreted as sensory information reflecting pure salience, and the decision information reflecting 

a saccadic eye movement may have occurred afterwards. Similarly, the lack of LIP activation 

during the serial search may simply reflect the absence of an attention-grabbing stimulus, 

independent from the decision processes that follow. 

The observation of the first sweep of sensory-driven information is compatible with both the 

Central Executive and Distributed Consensus models. The difference lies in how the correct target 

is chosen.  From the perspective of the Central Executive model, the decision to look at the correct 

target is made in a CE, presumably in the frontal regions, and the saliency-driven activity in LIP 

is not a part of the decision processes. From the perspective of the Distributed Consensus model, 

however, LIP could play a causal role in the decision processes. As the competition between 

different saccadic eye movements evolves, the saliency-sensitive LIP can boost the choice for the 

pop-out target, resulting in looking at the salient target. However, it is equally likely that the other 

regions that are sensitive to the visual feature (e.g., colour, orientation, whether it matches the 

sample stimulus) or the value (i.e., one is rewarded whereas the others are not) of the target also 

voted for the same target, making it impossible to decipher where the tipping point was. Therefore, 

the paradigm by Buschman and Miller demonstrates the different directionality of two types of 

information flow, but their results do not allow dissociation of the Central Executive and 

Distributed Consensus models. One approach to dissociate these models is to present subjects with 

a conflict situation, in which there is no correct answer, forcing different regions to “vote” for 

different choices and observing how the conflict is resolved. 
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REGIONS OF INTEREST 

Fronto-parietal Circuit 

In this thesis, the fronto-parietal circuit was chosen as a candidate circuit whose activity pattern 

may allow us to dissociate the two models. The fronto-parietal circuit is generally considered as 

one of the primary neural networks involved in producing eye and arm movements (Borra & 

Luppino, 2017; Chang & Snyder, 2012; Snyder et al., 1997). From the perspective of serial 

processing (e.g., Sense-Think-Act framework), the connection from the parietal to the frontal 

regions allow the integration of the multisensory and motor information, and the frontal to parietal 

connection provides a route for the transformation from cognitive to motor decisions, which is 

executed as behaviour (Borra & Luppino, 2017; Hurley, 2001). From the perspective of parallel 

processing (e.g., affordance competition hypothesis), the interconnectivity allows bidirectional 

communication between different lobules, providing neural substrates for the inter-regional 

interactions (Cisek, 2007). Furthermore, by including the temporal lobe into the frame, the 

temporo-parieto-frontal circuit provides a neural basis for the ventral and dorsal visual pathways, 

which is supported by rigorous anatomical studies (Markov et al., 2014; Schmahmann et al., 2007). 

These notions appear valid in both the saccade and reaching movement selections, two of the main 

behavioural repertoires the circuit is known for. The functional and anatomical details are 

discussed below. 
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Saccade Network 

The fronto-parietal oculomotor network consists of lateral intraparietal area (LIP), frontal eye field 

(FEF), and a subset of caudal prefrontal regions adjacent to the FEF, shown in Figure 3 (Borra & 

Luppino, 2017). LIP resides laterally in the posterior part of the intraparietal sulcus, adjacent to 

but cytoarchitectonically distinct from the neighbouring regions such as anterior intraparietal area 

(AIP), medial intraparietal area (MIP) and ventral intraparietal area (VIP) (Borra & Luppino, 2017; 

Pandya & Seltzer, 

1982; Rizzolatti et al., 

1998; Swaminathan et 

al., 2013). LIP is 

interconnected with 

FEF and the superior 

colliculus (SC), 

receives input from 

extrastriate areas in the 

occipital cortex, and 

projects to dlPFC 

(Andersen, Asanuma, 

et al., 1990; Johnson et 

al., 1996; Lewis & Van 

Essen, 2000). Along 

with SC and FEF, LIP 

neurons are strongly 

 

Figure 3. Saccade Network 

A schematic of projections between the main areas of saccade network in a 
monkey brain. FEF and LIP are interconnected, and both areas receive input 
from SC (dark arrows). Solid and dotted yellow lines indicate the opening 
and the bottom of the intraparietal sulcus to show the areas inside. AIP, 
anterior intraparietal; as, arcuate sulcus; CS, central sulcus; dlPFC, 
dorsolateral prefrontal cortex; FEF, frontal eye field; ips, intraparietal 
sulcus; LIP, lateral intraparietal area; lu, lunate; M1, primary motor cortex; 
MIP, medial intraparietal; OFC, orbitofrontal cortex; pcd, precentral 
dimple; PE, dorsal parietal; PEc, dorsal parietal, caudal area; PEip, dorsal 
parietal,  intraparietal sulcus; ps, principle sulcus; PMd, dorsal premotor 
cortex, SC, superior colliculus; sf, Sylvian fissure; SEF, supplementary eye 
field; SMA, supplementary motor area; sts, superior temporal sulcus; VIP, 
ventral intraparietal area. 8d, 9d, 46d and 46v are subdivisions of PFC. V6A 
is a subdivision of posterior parietal area. Area definition is based on 
Rizzolatti et al. (1998), which is an agglomeration of Matelli et al. (1985) 
and Pandya & Seltzer (1982). 
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modulated by saccade-related properties, and thus known for their implication in controlling eye 

movements (Andersen, Asanuma, et al., 1990; Andersen et al., 1998; Basso & Wurtz, 1998; Borra 

& Luppino, 2017; Caminiti et al., 1996; Colby et al., 1996; Glimcher & Sparks, 1992; Platt & 

Glimcher, 1999; Sugrue et al., 2004) (but see also (Katz et al., 2016)). In addition, based on its 

multisensory integrative nature, LIP has been referred to as part of the “association” cortex, 

suggesting its role as a bridge between sensory, cognitive and motor information (Gottlieb, 2007). 

It has also been shown that LIP neurons represent space in a body-centered reference frame 

(Andersen et al., 1998). FEF is located medially in the precentral gyrus, anterior to the premotor 

cortex and posterior to the Brodmann area 8 (Borra & Luppino, 2017; Matelli et al., 1985; 

Rizzolatti et al., 1998). It receives input from extrastriate areas in the occipital cortex, and is 

interconnected with LIP and dlPFC (Andersen, Asanuma, et al., 1990; Markov et al., 2014). FEF 

is also interconnected with SC with their respective topography preserved, such that the lateral 

FEF neurons project to the anterolateral SC and medial FEF neurons project to the posteromedial 

SC (Komatsu & Suzuki, 1985). Similar to SC and LIP, FEF has been strongly implicated in the 

production of voluntary eye movements (Bruce et al., 1985; Hanes & Schall, 1996; Schall & 

Thompson, 1999). 

Reach Network 

The fronto-parietal reach network consists of two of the agranular frontal regions – dorsal premotor 

cortex (PMd) and primary motor cortex (M1) – and the parietal reach region (PRR), which includes 

area 5 (also known as PE) of posterior parietal cortex (PPC), V6A in the parietal-occipital area, 

and medial intraparietal area (MIP) in the intraparietal sulcus, shown in Figure 4 (Andersen et al., 

1998; Johnson et al., 1996). PMd is located just posterior to the arcuate sulcus and ventrolateral to 

the supplementary motor cortex (SMA) and pre-SMA, corresponding to Brodmann area 6 (Matelli 
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et al., 1985; Rizzolatti & Luppino, 2001). Histological studies suggests a topographic organization 

of PMd, dividing it into rostral (rPMd or F7) and caudal (cPMd or F2) subregions and are shown 

to have representations of different body parts (Rizzolatti & Luppino, 2001). rPMd is 

interconnected with cPMd, M1, area 5, dlPFC, OFC and ACC, whereas cPMd is interconnected 

with rPMd, M1, area 5, OFC and ACC, and projects to, but does not receive input from dlPFC 

(Borra & Luppino, 2017; Markov et al., 2014; Rizzolatti & Luppino, 2001; Tanné-Gariépy et al., 

2002). Given this connectivity, it has been proposed that the rPMd activity may be prefrontal-

dependent, while that of cPMd, due to its high interconnectivity with the area 5, may be parietal-

dependent (Luppino 

& Rizzolatti, 2000). 

M1, also known as 

Brodmann area 4 or 

F1, occupies the area 

anterior to the central 

sulcus (Borra & 

Luppino, 2017; 

Rizzolatti et al., 

1998). M1 is 

interconnected to 

cPMd, rPMd and 

area 5, and its strong 

projection to the 

spinal cord is 

 

Figure 4. Reach Network 

A schematic of projections between the main areas of reach network in a 
monkey brain. PMd can be subdivided into a rostral (rPMd) and caudal 
(cPMd) areas, which are interconnected with each other but have slightly 
different connectivity with areas outside of the reach network (not shown). 
Solid and dotted yellow lines indicate the opening and the bottom of the 
intraparietal sulcus to show the areas inside. Dark arrows indicate reciprocal 
connections. A gray arrow from M1 indicates spinal projection. Abbreviations 
are the same as Figure 3. cPMd, dorsal premotor cortex, caudal area; ips, 
Intraparietal sulcus; M1, primary motor cortex; MIP, medial intraparietal 
sulcus; PMd, premotor cortex; PRR, parietal reach region; rPMd, dorsal 
premotor cortex, rostral area. V6A is a subdivision of posterior parietal cortex. 
Area definition is based on Rizzolatti et al., 1998, which is an agglomeration 
of Matelli et al., 1985 and Pandya & Seltzer (1982). 
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considered the foundation for its primary role in movement execution (Dum & Strick, 2002; He et 

al., 1993; Markov et al., 2014; Schmahmann et al., 2007). It also projects weakly to dlPFC, while 

dlPFC does not project back to M1 (Markov et al., 2014). Area 5, also known as PE of the superior 

parietal lobule, is the dorsal cortical surface adjacent to the intraparietal sulcus (IPS) (Pandya & 

Seltzer, 1982). The area 5 is interconnected with cPMd, rPMd and M1, and receives input from, 

but does not project to, dlPFC (Markov et al., 2014). Area V6A is in the posterior edge of the IPS 

under the caudal subregion of area PE and anterior to the occipitoparietal area (PO). V6A receives 

input from prestriate and extrastriate areas, premotor cortex as well as subcortical areas such as 

pulvinar, caudate nucleus and superior colliculus (Shipp et al., 1998). The MIP resides inside the 

IPS, posterior to the anterior intraparietal (AIP) and medial to the lateral intraparietal (LIP) area 

(Pandya & Seltzer, 1982; Seltzer & Pandya, 1986). MIP projects to dlPFC and cPMd, but not to 

rPMd (Johnson et al., 1996; Markov et al., 2014).  

As part of the reach network, PMd, M1, and area 5 and MIP are implied to play distinct roles in 

planning and executing reaching movements. For example, during an instructed delay period, 

activity in PMd and M1 has been reported to reflect parameters of upcoming movement such as 

reaching type, direction, amplitude, speed, the number of targets, and the likelihood that a given 

action may be rewarded (Churchland et al., 2006; Messier & Kalaska, 2000; Pastor-Bernier & 

Cisek, 2011; Song & McPeek, 2010; Thura & Cisek, 2014; Vargas-Irwin et al., 2010). In case of 

area 5 and MIP, studies have shown their role in visuomotor transformation, representing 

information with respect to action-relevant variables such as the current location of hand, head and 

eye (Borra & Luppino, 2017; Buneo et al., 2002; Colby & Goldberg, 1999; Fogassi et al., 2005; 

Gail & Andersen, 2006). 
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The connectivity characteristics and the functional segregations within the reach network are 

compatible with both the Central Executive and Distributed Consensus models. From the 

perspective of the Central Executive model, the non-uniform interconnectivity between the 

aforementioned regions supports the concept of a linear information flow, from the central 

executive regions to the action regions, following the fronto-parietal projection. In contrast, the 

Distributed Consensus model would interpret the distribution of varying projections as the neural 

basis for the within- and between-region competition. Specifically, the fact that the sensorimotor 

regions are interconnected, while different prefrontal regions project to some, but not all, of these 

regions provides an ideal network architecture for a feature-specific biased competition. 

Dorsolateral Prefrontal Cortex 

Dorsolateral prefrontal cortex (dlPFC) includes Brodmann areas 9 and 46d, located dorsally 

adjacent to the principal sulcus (Borra & Luppino, 2017; MacDonald et al., 2000). The more dorsal 

area 9 of dlPFC is interconnected with the more lateral area 46d, rPMd, cPMd, OFC and ACC, 

and receives input from M1 and area 5 (Markov et al., 2014). Area 46d is interconnected with area 

9, rPMd, OFC and ACC, and projects to the area 5 and receives input from M1 and cPMd (Markov 

et al., 2014). 

Along with the OFC, vmPFC and ACC, for which a number of studies propose a role in decision-

making processes, the dlPFC has been suggested to be of particular importance, reflecting 

variability of value prediction, task difficulty, target selection, and sensory information and reward 

size of available options (Delgado et al., 2016; Iba & Sawaguchi, 2003; Kahnt et al., 2011; Kim & 

Shadlen, 1999; Levy & Glimcher, 2012; Rushworth et al., 2012; Wallis & Miller, 2003). In 

particular, Wallis and Miller reported that the dlPFC activity reflected both the decision variables 
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and the subject choice, as opposed to the OFC activity which only reflected decision variables 

(Wallis & Miller, 2003), making dlPFC a candidate region in which decision processes may occur. 

According to the Distributed Consensus model, dlPFC is one of the many regions where the 

competitions occur, and its role may be more strongly implied when the ongoing decision involves 

abstract thinking. In contrast, according to the Central Executive model, dlPFC is one of the 

candidates of central executive regions, in which the options are converted into abstract 

representations and decisions are made. However, it has also been reported that during different 

decision tasks, different prefrontal regions are activated, suggesting the possibility that the central 

executive may not be a single entity (Baker et al., 1996; Rushworth et al., 2012). 

MACAQUE MONKEYS AS THE MODEL OF THE HUMAN BRAIN 

So far, I discussed the two possible theories that can explain how our brain makes decisions, 

focusing mostly on studies with humans and non-human primates. This is not to dismiss studying 

other animals, such as rodents, birds, fish and invertebrates. In fact, depending on the research 

questions, non-primate animal models are more suitable. For example, if the experimental design 

requires precise manipulation of a specific neuronal population, animal models with established 

optogenetic techniques, such as rodents and fish, should be chosen (Bliss-Moreau et al., 2022; 

Boyden et al., 2005; Del Bene & Wyart, 2012). Likewise, if the research question explores certain 

behavioural traits that are converging across different species, such as vocal learning and tool use, 

it makes sense to study animals that are evolutionarily further from humans (Falótico, 2022; I. 

Jacobs & Osvath, 2023; Janik, 2014; Jarvis, 2007; Pal & Sinha, 2022). Depending on the research 

question, one can also conduct human experiments in a purely non-invasive manner using imaging 

techniques. However, current technology such as functional magnetic resonance imaging, 

electroencephalography, positron emission tomography and near-infrared spectroscopy are still 
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limited in spatial or temporal resolution, resulting in the experimental outcome with compromised 

precision. Thus, if one seeks to understand how a human brain works, the best way to date is to 

design a behavioural paradigm that can be performed by both human participants and the animal 

model, draw behavioural parallels, and measure the neurophysiological correlates in the animal 

model. My project took this very approach; human participants and two macaque monkeys 

(macaca mulatta) performed the same task, their behavioural data were compared to ensure there 

were similarities between the species, and the neural correlates in the monkey brains were 

investigated. 

Why monkeys? 

The biggest advantage of macaque monkeys as the animal model for human cognition is that they 

are genetically as well as phenotypically closer to us compared to other laboratory animals. 

Macaque monkeys and humans diverged about 30 million years ago, and have front-facing eyes 

and opposable thumbs. In contrast, rodents, which are the most widely used laboratory animals, 

diverged from us 90 million years ago, whose eyes are laterally placed and lacks opposable thumbs. 

Certain physiological and behavioural characteristics are preserved at the level of the mammalian 

class or even at the vertebrate subphylum, whereas other traits are observed in only a subset of 

species. For example, trichromatic vision is found in humans, great apes, macaque monkeys, cats, 

and toads (Dacey, 2000; Gesemann & Neuhauss, 2023; Kondrashev, 2023; Tan & Li, 1999), but 

not in dogs, most rodents, and our ancestry vertebrate relative: lampreys (Abballe & Asari, 2022; 

Collin et al., 2003; G. H. Jacobs et al., 1993; Neitz et al., 1989; Neitz & Jacobs, 1986). In addition, 

there are often important differences in the fundamental behavioural traits reflecting the animals’ 

adaptation to their physical and social environment. Mice and monkeys are both capable of 

reaching and grasping objects, but they differ in the way they use their digits. When holding onto 
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objects, humans and macaque monkeys grip by placing their opposable thumb facing the 

remaining digits (Yan et al., 2022). Rats do not possess opposable thumbs, and they do not appear 

to have a systematic placement of digits when grasping (Blackwell et al., 2018; Gharbawie et al., 

2005; Metz & Whishaw, 2000). Such behaviour stems from morphological differences between 

primate hands and rodent front paws, reflecting the niche these species evolved to fulfill. Therefore, 

if one wants to understand neural mechanisms of a specific behaviour, it is important to pay 

attention to what the model species evolved to do. 

Comparing Humans and Monkeys 

This thesis investigates neural correlates of value-based action decisions using human participants 

and macaque monkeys. The baseline assumption is that these two primate species share common 

neural substrates giving rise to similar behavioural responses during action decisions. Below, I 

briefly summarise the similarities and differences in the behaviour and brain of humans and 

macaque monkeys. 

Reaction Time of Humans and Macaque Monkeys 

Humans and macaque monkeys exhibit comparable reaction time distributions in simple tasks such 

as perceptual detection. On average, humans make saccadic eye movements as a response to a 

visual stimulus onset 140-250 ms, excluding express saccades (Kingstone & Klein, 1993; Kunita 

& Fujiwara, 2022; Rayner, 1998; Yep et al., 2022), and macaque monkeys do so at 90-250ms 

(Chen et al., 2021; Khan et al., 2016). When they are required to respond by a forelimb reaching 

movement, human average reaction time is 200-300 ms (Contemori et al., 2022) and that of trained 

macaque monkeys ranges between 170 to 220 ms (Cecala et al., 2023). In more complex tasks, 

both humans and monkeys increase their reaction times compared to a simple stimulus-response 

task, suggesting that they are both affected by task demand (Caselli & Chelazzi, 2011). 
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Brains of Humans and Macaque Monkeys 

On average, a human brain weighs 1.3 kg or 2.3 % of the body weight, which is larger than an 

average rhesus macaque brain which weighs 94g and occupies 1.4 % of the body weight (Marino, 

1998). In terms of the number of neurons , an average human brain is estimated to contain 

approximately 86 billion neurons (Azevedo et al., 2009). An average macaque monkey brain 

contains approximately 6.4 billion neurons (Herculano-Houzel et al., 2007). When matched for 

the body size, a human brain is slightly larger, and contains only 7% more neurons than an 

estimated primate brain (Azevedo et al., 2009). The ratio of the cerebral cortex to the rest of the 

brain is also comparable: approximately 75 to 82% in an human brain (Rilling, 2006), and 86 to 

88% in rhesus macaques (Scott et al., 2016). Looking into more detailed anatomical structures, 

studies have mapped the homologous brain areas between humans and macaque monkeys. Some 

features in a human brain are believed to be lacking in that of a macaque brain (e.g., von Economo 

cells (Allman et al., 2011) but see also (Evrard et al., 2012), right and left hemisphere asymmetry 

(Croxson et al., 2018)). However, cytoarchitectonic, electrophysiological, and imaging studies 

showed that many sensory and motor areas, as well as areas that are known to play a role in higher 

cognitive processes such as frontal areas, are found in anatomically similar locations along with 

the sulcus patterns  (Croxson et al., 2005; Hackett et al., 2001; Orban et al., 2004; Petrides et al., 

2012; Petrides & Pandya, 2009; Ramnani et al., 2006; Zilles et al., 1995). This includes the target 

areas of this thesis: PMd and PRR. The combination of tracing studies and DTI techniques also 

showed similarities in the connectivity of these regions between humans and monkeys (Barrett et 

al., 2020; L. Li et al., 2013; Markov et al., 2014; Thiebaut de Schotten et al., 2012). 
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Implication to decision-making 

A number of studies provide support that in simple as well as complex tasks, macaque monkeys 

and humans respond similarly, and the underlying neural substrates are also similar. While there 

may be differences in response patterns, certain differences diminish when the key component of 

the task is carefully matched (Evans & Hawkins, 2019). For the purpose of this thesis, I focused 

on the choice and reaction time of humans and macaques, as their distributions are comparable 

between humans and macaque monkeys. Two target areas in the fronto-parietal circuit, namely 

PMd and PRR, also share cytoarchitectonic, connectivity and functional patterns between species. 

Thus, it is assumed that when the two species are faced with a situation that are designed to activate 

these brain areas, and produce similar behavioural responses, the underlying neural processes are 

also similar. In other words, I expect that if monkeys and humans behave similarly during the 

value-based action decision task, the activity of PMd and PRR will be similar between the two 

species, allowing us to generalise conclusions from electrophysiological data from the monkeys to 

the human brain. 

SUMMARY 

How do we choose what to do? The Central Executive model suggests that decision making is a 

serial process. It postulates a sequential activation of different brain regions in accordance with the 

sense-think-act framework, where all decisions are made in a central executive area at an abstract 

level. In contrast, the Distributed Consensus model suggests that decision making is a parallel 

process involving multiple brain areas, including sensorimotor regions. In this view, certain 

decisions may be made in an executive region at an abstract level, whereas others may be made in 

sensorimotor regions at a stimulus feature or an action level. To investigate the validity of these 

models, we need an experimental situation in which the models make distinct neural predictions, 
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such that the candidate regions’ causal role can be examined. This thesis aims to realise this 

objective by analysing human and monkey behaviour and monkey electrophysiological data 

collected during a multi-attribute decision task, in which different stimulus attributes favor 

different choices and thus offer a situation of conflict.  
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CHAPTER 2 OVERVIEW 

OBJECTIVE 

The objective of this thesis is to test two candidate models of value-based decisions. A major part 

of the project aims to investigate whether decision-related neural modulation in the sensorimotor 

regions has a causal role in the ongoing decision processes. To do so, we attempted to dissociate 

choice-predictive neural activity that merely correlates with choices from activity with causal 

effects. We designed a decision task in which two independent visual attributes indicated the 

reward outcome for a given reaching movement. The attributes were chosen such that they are 

likely to be processed by distinct neural pathways. We performed electrophysiological recordings 

from two candidate brain areas in monkeys to compare the characteristics and timing of choice-

predictive activity.  

SPECIFIC RESEARCH QUESTIONS 

Q1. Do humans always fully integrate information from all sources prior to making action 

decisions? 

Q2. Of the brain areas that show choice-predictive activity, which are causally involved in action 

decisions?  

HYPOTHESES 

This thesis aims to test two contrasting models of action decisions.  

The first hypothesis is that decisions are always made in a Central Executive, where all aspects of 

available options are converted into an abstract representation, such as utility and economic value. 

According to this hypothesis, decisions are made at this abstract level, and the resulting commands 
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are sent to the sensorimotor regions to realise the chosen action. Therefore, decision-related neural 

modulation in the sensorimotor regions is merely a “spill over” from the executive regions, and 

does not contribute to the ongoing decision processes.  

The alternative hypothesis is that when choosing between actions, multiple brain regions, 

including sensorimotor regions, compete for different action options based on different aspects of 

the options (e.g., salience, reward, or action cost). When one or more regions resolve this 

competition, this resolution propagates to other brain regions, affecting their competition. As a 

result, the whole brain achieves a Distributed Consensus when a decision is made. This hypothesis 

suggests that the decision-related neural modulation in the sensorimotor regions may be causally 

involved in the ongoing decision processes, as much as those in the traditional executive regions, 

at least during decisions about concrete actions.  

SPECIFIC PREDICTIONS 

Our premise is as follows: If a given region is causally involved in the decision, the neural latency 

reflecting the choice will appear earlier than regions that contribute less to the choice. Alternatively, 

if a given region is merely receiving the decision input, the neural choice latency will always be 

later than the regions that are causally involved in the decision processes. However, a decision task 

with a “correct” answer would be inadequate to evaluate these predictions, because the stimulus-

driven neural activity may be inherently confounded with the choice-predictive activity. Thus, we 

designed a reach decision task in which the stimulus-driven and choice-predictive activity can be 

separated. We used two independent visual attributes to indicate the reward outcome for each 

reaching choice, which were aimed at activating distinct brain regions at different neural latencies. 

One attribute was based on salience, aimed at activating the “bottom-up” attention network 

through a dorsal occipital-to-parietal pathway. The other was based on an arbitrary mapping of 
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visual cues, aimed at activating the more deliberate, memory-based categorisation in the “top-

down” areas through a ventral temporal-to-prefrontal pathway. In some trials, the correct choice 

is indicated by “bottom-up” information, and in other trials, by the “top-down” cues. In still other 

trials, these attributes are in conflict but both options are equally valued, so there is no “correct” 

choice. It is these conflict cases where the two hypotheses make the most contrasting predictions. 

One prediction is purely behavioral, and concerns the distributions of reaction times in different 

kinds of trials. Because “bottom-up” processing is presumably fast, choices based on that 

information should be quicker than those based on “top-down” cues. However, what happens in 

conflict trials? The Central Executive suggests that both attributes have to be integrated before any 

choice can be made, predicting similar reaction times for choices where conflict was resolved in 

favor of “bottom-up” information and those where it was resolved in favor of “top-down” 

information. In contrast, a Distributed Consensus suggests that sometimes decisions can be made 

before both kinds of information have been processed, predicting the mean reaction time to be 

shorter when the conflict is resolved in favor of “bottom-up” information as compared to when it 

is resolved in favor of “top-down” cues. These predictions were tested in a study with human 

subjects (Chapter 3). 

To truly distinguish the hypotheses at the level of brain circuits, we need to turn to neural 

recordings. Here (Chapter 4), we focused on recordings in the arm region of dorsal premotor cortex 

(PMd) and the parietal reach region (PRR), and examined the latency with which these regions 

predicted the monkey’s choice in the same task studied in humans. 

In particular, if decisions are always made in a Central Executive region upon a full integration of 

all information, then the transmission delay between the Central Executive region and non-

deciding regions will be constant, regardless of the attribute used to pick the final choice. 
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Consequently, choice-predictive activity in the 

sensorimotor areas should always appear at the 

same relative latency. For example, if both PMd 

and PRR lie outside of the Central Executive, then 

choice-predictive activity may arrive in PRR after 

X ms, and in PMd after Y ms, but the difference 

between X and Y should always be constant, even 

when comparing across different situations in 

which decisions take more or less time (Figure 5). 

Note that activity reflecting purely sensory 

information (e.g., stimulus onset) will likely appear in sensorimotor areas, which we attempt to 

dissociate from the choice-predictive activity using the conflict trials. 

In contrast, if decision processes consist of multiple competitions involving multiple brain regions, 

and the final choice is a result of the whole brain achieving a Distributed Consensus, the latency 

of choice-predictive activity is expected to reveal 

the causality of a given region. For example, 

suppose that both PMd and PRR take part in the 

Distributed Consensus, and PRR is the first to 

receive “bottom-up” information while PMd is the 

first to receive “top-down” information. If so, then 

when conflict is resolved in favor of the “bottom-

up” information, PRR should exhibit faster 

choice-predictive activity than PMd, but the 

 

Figure 5. Predictions of the Central 
Executive model 

Bottom-up and top-down information (thin 
arrows) go to the Central Executive, where a 
choice is made, and broadcast to the rest of the 
brain (thick purple arrows). 

 

Figure 6. Predictions of the Distributed 
Consensus model 

Bottom-up information goes to PRR and top-
down information goes to PMd, and the choice 
is made when an inter-areal consensus is 
achieved. 
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opposite should be true when the conflict is resolved in favor of the “top-down” information 

(Figure 6). 

It should be admitted that these predictions are based on rather extreme renderings of the two 

models – a single Central Executive versus a whole brain Distributed Consensus. In reality, 

different types of decision-making processes may fall on a gradient between these extremes. For 

example, it is possible that decisions are made by a Central Executive that does not always 

integrate all sources of information before making a choice. It is also possible that decisions 

involve a Distributed Consensus that does not include activity in PMd or PRR, or both. The present 

work is intended to help narrow down among these options as a step toward understanding 

decision-making in the brain. 
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CHAPTER 3 HUMAN BEHAVIOUR 

SCOPE 

As a first step to examine the two decision theories, we collected behavioural data from human 

participants performing the same multi-attribute decision task performed by the monkeys. This 

human project had two main objectives. First, we wanted to know how our monkey behavioural 

data compare against that of humans. This is discussed in Monkey Behaviour and 

Electrophysiology. In short, their behavioural patterns were comparable, at least prior to the 

inevitable overtraining that comes with electrophysiological experiments. Second, we wanted to 

investigate whether human participants always decide after integrating information from all 

attributes, or if decisions can be made based only on a subset of attributes, and sometimes 

subsequently corrected, resulting in a change of mind. An additional analysis was performed to 

examine whether the Weber-Fechner law, which postulates that perceptual decision difficulty is a 

function of stimulus strength, holds when the stimulus strength is coupled with reward magnitude 

(Fechner, 1948). The following manuscript was published in the Journal of Neurophysiology 

(Nakahashi & Cisek, 2023). 
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Parallel processing of value-related information during multi-attribute decisions 

GRAPHICAL ABSTRACT 

  

 

Figure 0. Graphical abstract 
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ABSTRACT 

When choosing between options with multiple attributes, do we integrate all attributes into a 

unified measure for comparison, or does the comparison also occur at the level of each attribute, 

involving parallel processes that can dynamically influence each other? What happens when 

independent sensory features all carry information about the same decision factor, such as reward 

value? To investigate these questions, we asked human participants to perform a two-alternative 

forced choice reaching task in which the reward value of a target was indicated by two visual 

attributes – its brightness (“bottom-up” feature) and its orientation (“top-down” feature). If 

decisions always occur after integration of both features, there should be no difference in the 

reaction time (RT) regardless of the attribute combinations that drove the choice. Counter to that 

prediction, RT distributions depended on the attribute combinations of given targets and the 

choices made by participants. RTs were shortest when both attributes were congruent or when the 

choice was based on the bottom-up feature, and longer when the attributes were in conflict 

(favoring opposite options). In conflict trials, nearly two-thirds of participants made faster 

decisions when choosing the option favored by the bottom-up feature than when choosing the top-

down-favored option. We also observed mid-reach changes-of-mind in a subset of conflict trials, 

mostly changing from the bottom-up to the top-down-favored target. These data suggest that multi-

attribute value-based decisions are better explained by a distributed process including competition 

among different features than by a competition based on a single, integrated estimate of value. 

KEYWORDS 

Decision-making, multi-attribute, response conflict, change of mind, human 
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NEW & NOTEWORTHY 

We show that during value-based decisions, humans do not always use all reward-related 

information to make their choice, but instead can “jump the gun” using partial information. In 

particular, when different sources of information were in conflict, early decisions were mostly 

based on fast bottom-up information, and sometimes followed by corrective changes-of-mind 

based on slower top-down information. This supports parallel decision processes among different 

information sources, as opposed to a single integrated “common currency”. 

INTRODUCTION 

Many of our decisions are based on multiple sources of information about a wide variety of factors. 

For example, when choosing a house to buy, we consider its cost and size, the property and 

environment, as well as its location relative to workplaces, good schools, public transportation, etc. 

Such multi-attribute decisions also occur in the wild, when for instance, animals need to weigh the 

value of seeking food against the effort required to obtain it and the potential exposure to danger. 

One plausible model suggests that the multiple factors pertinent to each option are integrated 

together into a central representation of subjective value that reflects them all, and each factor is 

weighted by the degree to which it matters for the deciding agent (Cai & Padoa-Schioppa, 2019; 

Kable & Glimcher, 2009; Levy & Glimcher, 2012; Padoa-Schioppa, 2011; Shizgal, 1997). This 

permits comparison between options that may differ in every way, such as when choosing between 

a small apartment that is close to work versus a large house that will require a longer daily commute, 

and permits a rational decision process that optimizes some general measure of global utility. At a 

mechanistic level, such “integrated competition” models predict that only a single comparison is 

made in the brain – a comparison between the integrated values of the options under consideration. 
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Alternatively, “distributed competition” models of multi-attribute decision-making suggest that 

the individual factors can themselves compete against each other prior to integration, and even that 

the weights of the factors can vary over time due to fluctuations in covert or overt attention 

(Busemeyer & Townsend, 1993; Diederich, 2003; Hunt et al., 2014; Krajbich & Rangel, 2011; 

Roe et al., 2001; Trueblood et al., 2014; X. Yang & Krajbich, 2022). For example, Hunt and 

colleagues suggested that during multi-attribute decision-making tasks, human behavior is best 

explained by a hierarchical scheme in which the higher-level competition between choices is 

biased by information from multiple lower-level competitions that each compare the options in 

terms of a given attribute, and that the weighting of each attribute is itself subject to a competition 

based on its relevance and discriminatory efficacy (Hunt et al., 2014). Such models predict that 

even when the total value should favor choice A over B, subjects may sometimes choose B if one 

of its attributes is particularly outstanding. Another prediction of such models is that when 

decisions are made quickly, commitment can be reached even before all of the factors have been 

considered (Diederich, 2003), explaining preference reversals as a function of deliberation time. 

Here, we ask whether the competition can be distributed even among different sources of sensory 

information about a single factor, such as reward value. In particular, we ask how different visual 

features, both of which carry information about value, are integrated into the decision process. 

Importantly, certain kinds of “bottom-up” visual signals are processed very quickly, including 

information about spatial location of stimuli and simple features like brightness. This is believed 

to implicate the dorsal visual stream from occipital cortex to the posterior parietal lobe (Galletti & 

Fattori, 2018; Goodale & Milner, 1992; Mishkin & Ungerleider, 1982; Treisman & Gelade, 1980), 

throughout which sensory responses have been reported in as little as 50ms (Ledberg et al., 2007; 

Schmolesky et al., 1998). Other kinds of visual information require more sophisticated and slower 
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“top-down” processing, including categorization of arbitrary shapes according to task-dependent 

rules, which involves the ventral visual stream and prefrontal cortical regions (DiCarlo et al., 2012; 

Freedman et al., 2002; Goodale & Milner, 1992; Kravitz et al., 2013). 

In this study, we presented human participants with a two-alternative forced choice task in which 

the reward value associated with each choice was determined by two different visual features – a 

bottom-up brightness cue and a top-down orientation rule – and asked whether the timing of their 

responses revealed how these features interact. Of particular interest were situations in which the 

two features were in conflict, such that the total reward value of each choice was identical, so it 

did not matter which was chosen but a choice still had to be made. In those trials, was the choice 

random or did it depend on the relative timing with which each feature was processed with respect 

to the time of commitment? Importantly, these trials were interleaved among a variety of other 

trials in which one choice was clearly better than the other. Consequently, because value could 

only be evaluated after both features were processed, participants were motivated to take the time 

to integrate both kinds of information prior to committing to either choice, especially since there 

was no time pressure to respond quickly. Therefore, “integrated competition” models would 

predict that participants should always take the time to evaluate the options fully, so decision 

timing should be similar across all choices, whether or not they are easy (both features favor the 

same target) or ambiguous (different features favor different targets). By contrast, “distributed 

competition” models would predict preference changes as a function of time, with initial choices 

more biased by bottom-up stimulus features and later ones increasingly based on top-down 

information. 

The design of our task also allowed us to examine whether the effect of reward size on reaction 

times and choice accuracy follow predictions from the Weber-Fechner law, which states that the 
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“just noticeable difference” (JND) between stimuli increases with stimulus amplitude (Fechner, 

1948) [see also the more general Stevens’ law (Stevens, 1957)]. The prediction is that participants 

will take longer to make decisions and will commit more errors when the JND is small as compared 

to when it is large. Indeed, discrimination of physical properties such as size, length, weight, as 

well as more subjective properties such as value, are reported to become slower and more 

inconsistent when the scale of the discriminated property is increased but the difference is held 

constant (Busemeyer et al., 2019; Killeen et al., 1993; Marks & Algom, 1998). At the neural level, 

divisive normalization between neurons has been proposed as a plausible mechanism that can 

explain such behavioral and neuronal responses to different stimulus strengths (Carandini & 

Heeger, 2012). However, it has also been shown that certain stimulus properties do not follow the 

Weber-Fechner law. For example, properties that lack an absolute zero, such as estimates of 

positions in space, have been reported to show a lack of increase in the deviation as the size of the 

target object increases (Ganel et al., 2008; Smeets & Brenner, 2008) but see also (Utz et al., 2015). 

Other studies showed that human reaction time decreased as the overall value of choice options 

increased (Shevlin et al., 2022). This is the opposite of what one would predict if increasing values 

made their differences less salient, and thus harder to distinguish. In our task, participants made 

binary choices based on two independent visual attributes, allowing us to investigate whether the 

response varied as a function of the range of the offered value and attribute types. 

MATERIALS & METHODS 

Participants 

Fourteen participants (13 right-handed, 6 females, mean age: 27; range 20-35) participated in the 

study. Participants 1-3 were colleagues of the authors who volunteered during the pilot study and 

were not offered monetary compensation. They were aware of the project design but uninformed 
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of the specific predictions. Participants 4-14 signed a consent form prior to the study, and were 

offered monetary compensation of $20 plus an additional $5-9 based on their final score. All 

participants had no known neurological conditions and had normal or corrected to normal vision. 

At the beginning of the session, participants were given verbal instructions describing the task and 

performed a practice session to familiarize themselves with the task. The practice session lasted 

until they made 10 consecutive correct choices (i.e., choosing the target with a higher score), and 

verbally reported that they felt ready. The experimental paradigm was approved by the Comité 

d’éthique de la recherche en santé of the Université de Montréal. 

Experimental setup 

Participants 1-2 performed the task using a standard computer mouse to control a cursor on a 

screen. The remaining participants performed the task as follows: They were comfortably seated 

at a planar digitizing tablet (CalComp Drawing Board IV) on which they performed horizontal 

arm movements by moving a vertically oriented cylindrical handle with their right hand (Figure 

1A). The handle contained a wireless digitizing stylus which sent its location to the tablet at 125 

Hz. An LCD computer monitor was suspended above the tablet and half-way between them, a 

semi-silvered mirror that reflected the stimuli displayed on the monitor. The handle with the stylus 

was placed between the mirror and a digitizing tablet. The monitor, the mirror and the digitizing 

tablet were equally spaced, creating an illusion that the visual stimuli on the monitor floated at the 

height of the tablet. During the task, a cross cursor was displayed over the handle to provide 

continuous feedback about its location. 

At the beginning of each trial, a circular target (3 cm diameter) appeared in the center of the 

workspace (Figure 1B). Participants initiated a trial by moving the cursor into this center circle. 

After a variable delay (600±200 ms, uniform distribution), two circular targets appeared at 0- and 
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240-degree positions with respect to the center circle, 7.5 cm away, center to center. This choice 

of targets was used in order to reduce the difference in the biomechanical costs of the associated 

reaching movements (Cos et al., 2011; Hogan, 1985). Participants then moved the cursor into their 

target of choice, earning the value of that target toward their total score for the session. The value 

of each target was indicated by two visual features (Figure 1C). The bottom-up (BU) feature 

consisted of three possible levels of brightness, such that the brightest target was worth 5 points, a 

dim target was worth 3 points, and the darkest target was worth 1 point. The top-down (TD) feature 

consisted of three possible orientations of an overlaid line, such that a line pointing at eight o’clock 

was worth 5 points, twelve o’clock was worth 3 points, and four o’clock was worth 1 point. The 

sum of the BU and TD points was earned upon a successful reach to a given target, which was 

converted into a monetary amount at the end of the session. Once the cursor hit one of the targets, 

the non-reached target disappeared as feedback confirming the choice. At the end of each trial, the 

points obtained from the chosen target were added to the total points accumulated, and displayed 

for 700 ms. The maximum reaction time allowed was 2000 ms, and the maximum movement time 

was 1000 ms. The inter-trial interval was 800 ms. On average, participants completed 913 trials 

over the course of 60.4 minutes (range: 684-1085 trials, 41.8-85.5 minutes). 

At the end of the session, participants 4-14 received $20 for their participation, plus an additional 

$5-9 based on the points earned (mean $27.27). The additional amount was determined based on 

the deviation from the estimated average score, such that the first tercile above the estimated 

average score would yield an additional $7.00, and the second tercile $8, etc. 

Trial Conditions 

Each trial was classified as one of 9 conditions based on the features of each target and the 

participant’s choice (Figure 1D). When the targets varied in brightness (i.e., BU feature) but not 
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in their line orientation, the trial was labelled Easy-BU, because the choice was easy (one target 

is better than the other) and the better target was indicated by the BU feature. When the targets 

varied in line orientation (i.e., TD feature) but not in their brightness, the trial was labelled Easy-

TD, as the better target was indicated by the TD feature. When the targets varied in both BU and 

TD features and both favored the same target, the trial was labelled Easy-Both. When the targets 

were identical, the trial was labelled Twin. When the targets varied in both features, but the 

features favored opposite targets (i.e., one target had better BU feature while the other target had 

better TD feature), the trial was considered a Conflict trial. These were further categorized as 

follows: In Conflict-Mirror (ConM) trials, the targets’ total scores were equal and the distribution 

of the feature scores were inverted (e.g., one target had 3 BU points and 1 TD point, while the 

other had 1 BU point and 3 TD points). In Conflict-Same (ConS) trials, the targets’ scores were 

equal and the distribution of the feature scores were not inverted (e.g., one target had 5 BU points 

and 1 TD point, while the other had 3 BU points and 3 TD points). In Conflict-Different (ConD) 

trials, the features were in conflict but the target scores were not equal. Furthermore, we 

subcategorized the Conflict trials based on the choice made: if the participant chose the target with 

the better BU feature, the trial was marked with the suffix BU (i.e., ConM-BU, ConS-BU, ConD-

BU), and if the target with the better TD feature was chosen, it was marked with the suffix TD 

(i.e., ConM-TD, ConS-TD, ConD-TD). As explained below, this was motivated by interest in 

comparing the timing of choices driven by BU versus TD features. 

An average session consisted of 15.7% EasyBU, 15.8% EasyTD, 15.6% EasyBoth, 8% Twin, 

14.9% ConM, 10.1% ConS, and 20% ConD trials, all randomly interleaved. 
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Figure 1. Dual Feature Task 
(A) Experimental setup, with the participant sitting at the tablet and holding the cursor. (B) Progression of the task. After an 
inter-trial interval, a trial was initiated by moving the cursor (orange cross) into the center target in the middle of the screen. 
After a variable delay, one or two targets appeared on the right and left bottom of the screen and the center target disappeared. 
Once the participant chose a target by moving the cursor into it, the unchosen target disappeared and the obtained points were 
displayed. (C) Target Features. The bottom-up (BU) feature was based on three levels of brightness of the target. Targets were 
given 1, 3 or 5 points if they were dim, medium-bright and bright, respectively. The top-down (TD) feature was based on the 
orientation of an overlaid line. Targets were given 1, 3 or 5 points if the line was at 4:00, 12:00 and 8:00, respectively. (D) 
Trial conditions and example target combinations. Boxes with a thicker line indicate the chosen target. Top, from left to right. 
Easy-BU (example in orange): targets vary only in BU features. Easy-TD (example in cyan): targets vary only in TD features. 
Easy-Both (example in violet): targets vary in both features, and both features favor the same target. Bottom, from left to right. 
Conflict: targets vary in both features, but the BU and TD features favor opposite targets. Two of the conflict conditions, ConM 
and ConS, consisted of equivalued targets, while ConD consisted of targets with different values. In all conflict conditions, 
trials were subdivided with a suffix of -BU and -TD based on which feature of the target chosen by the participant had the 
higher score (these are indicated by a colored frame). ConM (Conflict-Mirror, examples in salmon and pale blue): Conflict 
trials in which one target’s BU point is the same as the other target’s TD point and vice versa. ConS (Conflict-Same, examples 
in dark red and dark blue): Conflict trials in which the targets are equivalued, but the BU and TD points did not mirror each 
other. ConD (Conflict-Different, examples in vivid red and vivid blue): Conflict trials in which the targets had different values. 
Twin: two identical targets (not shown). 
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Behavioural Analysis 

Reaction time (RT) was defined as the duration between the stimulus onset and the movement 

onset. Raw movement velocity was filtered using a 6th order Butterworth low-pass filter with a 

cut-off frequency at 10 Hz. Movement onset was detected when the filtered velocity exceeded 1.5 

cm/second and reached the velocity peak of the trial. Based on the reaching trajectory, each trial 

was assigned an “Initial Choice” and a “Final Choice”. The Initial Choice was assigned to a target 

when the cursor moved toward it during the first 100 ms after leaving the center and the linear 

trajectory estimate fell within 0.6 cm from that target. When a trial did not meet these criteria, the 

experimenter assigned the Initial Choice via visual inspection. The Final Choice was assigned 

based on the target which the cursor eventually reached. In a subset of trials, there was a clear 

change in the reaching trajectory, indicating that the participants changed their mind mid-reach. 

Such “Change-of-Mind” (CoM) trials were assigned a secondary RT (CoM RT), either at the time 

when the filtered velocity fell below half of the peak velocity of the initial movement, or when the 

velocity was at its lowest value before it started to increase again as the participant started reaching 

toward the final target. 

Trials were considered outliers when the RT was more than 3 standard deviations away from the 

median and were excluded from further analysis. For most analyses, only trials in which 

participants chose the target with a higher score were included, resulting in an exclusion of 1449 

or 11.5% of trials (mean per participant: 11.9%, range: 5.2-25%). The excluded trials mainly 

consisted of ConD trials (61%), followed by Easy-TD trials (21.9%), Easy-BU trials (9.2%) and 

Easy-Both trials (6.4%). Error trials were analysed separately, and focused primarily on the ConD 

trials. 
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Statistical Tests 

To analyze the difference in the reaction time (RT) distributions across conditions at the individual 

level, we performed one-way ANOVAs with condition and target positions as factors. Because 

our task contained free-choice trials (e.g., Twin and Conflict), the number of trials per condition 

varied across participants. To account for this, we fitted a linear mixed-effects model prior to 

ANOVA. Target position was included to verify if participants had any directional bias. To analyze 

the effects of condition at the population level, we took the logarithm of each RT (since RTs tend 

to follow a lognormal distribution) and converted it into a z-score by subtracting each participant’s 

mean log RT across all conditions and dividing by the standard deviation across all conditions. 

This allowed us to combine data from participants with different mean RTs to analyse the order in 

which different conditions were completed, as we were interested in the relative rather than the 

absolute values of the RTs across conditions. We then averaged the z-scored log RTs across 

participants to obtain a single mean log RT per condition and performed univariate repeated 

measures ANOVA using a custom MATLAB function (Caplette, 2023). The p-values were 

adjusted with Greenhouse-Geisser to account for the distortion due to the violation of sphericity 

(Mauchly’s test c2(9) = 40.05, p < .001). For planned comparisons between specific conditions 

(e.g. Easy-BU vs. Easy-TD), we ran post hoc pairwise t-tests. Results were considered significant 

at p < 0.05. All data were processed in MATLAB R2014b. 

RESULTS 

Accuracy and reaction times varied across conditions. 

First, we examined how accuracy and reaction time varied as a function of the difference in the 

evidence favoring each target, as in previous work on perceptual (Gold & Shadlen, 2007) and 

value-based decisions (Krajbich & Rangel, 2011; Milosavljevic et al., 2010). Figure 2A shows that 
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participants almost never chose the lower-valued target when the difference was large, but they 

made more errors as the value difference decreased, especially when the features were in conflict 

(ConD trials). Figure 2B shows that reaction times were shorter when the value difference was 

large and increased when it was small (e.g. zero in Twin, ConM and ConS trials). These results 

are congruent with previous studies, but also show that beyond the effects of the difference of total 

evidence, there are large effects of trial types: RTs were in general shorter in Easy than Conflict 

trials, and in trials in which the choice was driven by the BU as opposed to the TD feature. Below, 

we examine these effects in detail at both the level of individual participants as well as at the level 

of group data.  

 

First, we show the within-participant effects by focusing on three example participants whose RTs 

were short (median RT<500 ms), medium (median RT between 500 and 1000 ms), and long 

(median RT>1000 ms). To analyze the effects of conditions and target positions on the individual 

 

Figure 2. Effect of target value difference on the (A) accuracy and (B) z-scored log RT 

Different colors indicate different trial conditions. Vertical lines indicate standard error of the mean. 
Twin, ConS and ConM trials do not appear in the accuracy plot because in those trials there is no 
error choice. Target 1 appeared at 0° and target 2 appeared at 240°. 
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participants’ RT distributions, we fitted a linear mixed-effect model and performed a one-way 

ANOVA with condition and target position as factors. The example participant with short RTs 

(participant 1, median RT: 316 ms, (Figure 3A) had different RTs for different trial conditions 

(F(9, 560) = 3.27, p < .001). There was also an effect of target position (F(1, 560) = 8.32, p = .004). 

There was no interaction between the condition and position (F(9, 560) = 0.72, p = .69). The 

example participant with medium RTs (participant 14, median RT: 663 ms, Figure 3B) had 

different RTs for different trial conditions (F(9, 913) = 10.51, p < .001). There was no effect of 

position (F(1, 913) = 0.04, p = .85) nor interaction between condition and position (F(9, 913) = 

1.59, p = .11). The effect of condition was observed in all other participants with medium RTs. 

The example participant with long RTs (participant 5, median RT: 1257 ms, Figure 3C) had 

different RTs for different conditions (F(9, 889) = 20.80, p < .001). There was no effect of position 

(F(1, 889) = 2.84, p = .09), but there was an interaction between condition and position (F(9, 889) 

= 5.16, p < .001). This participant was the only one whose RTs were longer than 1000 ms. Three 

participants were excluded from within-subject analysis due to the lack of trials in certain 

conditions (participant 8 made no rightward choices in ConS-TD, participant 9 made no leftward 

ConS-TD choices, and participant 12 made no ConS-BU choices). In summary, 10 out of 11 

participants showed an effect of condition and 3 out of 11 participants showed an effect of position 

(data not shown). 
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To analyze the effects at the population level, we z-scored individual participant’s RTs after taking 

the logarithm and calculated one mean log RT per condition per participant (see cumulative 

distributions in Figure 4A). To simplify the comparisons, we collapsed equivalued Conflict trials 

based on the chosen attributes. As a result, Conflict-BU condition consisted of ConS-BU and 

ConM-BU conditions, and Conflict-TD condition consisted of ConS-TD and ConM-TD 

conditions. Our planned comparisons focused on the attribute-based combinations (i.e., Easy-BU 

vs Easy-TD, Conflict-BU vs Conflict-TD) and the presence of a conflict (i.e., Easy-BU vs 

Conflict-BU, Easy-TD vs Conflict-TD), and comparisons against Easy-Both condition (e.g., Easy-

 

Figure 3. Cumulative distributions of RTs 

(A) Example participant whose median RTs were short (<500 ms). (B) Example participant whose 
median RTs were medium (between 500 and 1000 ms). (C) Example participant whose median RTs 
were long (>1000 ms). Line colors indicate different conditions. The number of trials of each condition 
is indicated in parentheses. Each time bin is 50 ms. 
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Both vs Easy-BU, Easy-Both vs Easy-TD and so on). A univariate repeated measures ANOVA 

showed an effect of condition (F(4, 52) = 15.30, p < .001). Post hoc pairwise t-tests on planned 

comparisons (see Statistical Tests for details) revealed a significant difference between Easy-BU 

(z-scored mean M = -0.296, SD = 0.281) and Easy-TD (M = 0.144, SD = 0.214) conditions (p 

< .001), and Conflict-BU (M = 0.118, SD = 0.396) and Conflict-TD (M = 0.5, SD = 0.331) 

conditions (p = .036); Easy-BU and Conflict-BU conditions (p = .022); Easy-TD and Conflict-TD 

conditions (p < .001); Easy-Both (M = -0.29, SD = 0.164) and Easy-TD conditions (p < .001); 

Easy-Both and Conflict-BU conditions (p < .001); and Easy-Both and Conflict-TD conditions (p 

< .001). There was no difference between Easy-Both and Easy-BU conditions (p = .907) In 

summary, at the population level there were significant RT differences between BU- and TD-based 

decisions within Easy trials and within Conflict trials, as well as between Easy and Conflict 

conditions that were based on the same attributes. 

Not all participants exhibited the same trends as the average shown in Figure 4A. In particular, 

eight participants’ RTs were significantly shorter for ConS-BU compared to ConS-TD trials 

(Wilcoxon rank sum test, p < 0.05), but this difference was not significant for five others. We thus 

subdivided the participants into two groups. For the first group (Figure 4B), a univariate repeated 

measures ANOVA showed an effect of condition (F(4, 28) = 21.2, p < .001). Post hoc pairwise t-

tests on planned comparisons revealed a significant difference between Easy-BU (M = -0.309, SD 

= 0.22) and Easy-TD (M = 0.226, SD = 0.251) conditions (p = .002); Conflict-BU (M = -0.107, 

SD = 0.229) and Conflict-TD (M = 0.673, SD = 0.289) conditions (p < .001); Easy-TD and 

Conflict-TD conditions (p = .002); Easy-Both (M = -0.29, SD = 0.179) and Easy-TD conditions 

(p < .001); and Easy-Both and Conflict-TD conditions (p < .001). There was no difference between 

Easy-BU and Conflict-BU conditions (p = .227); Easy-Both and Easy-BU conditions (p = .833); 
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and Easy-Both and Conflict-BU conditions (p = .233). In summary, this subgroup exhibited 

significant differences similar to the trends observed in the overall population. For the group that 

did not show RT differences between ConS-BU and ConS-TD trials (Figure 4C), a univariate 

repeated measures ANOVA also showed an effect of condition (F(4, 16) = 5.75, p = .005). Post 

hoc pairwise t-tests on planned comparisons revealed significant difference between Easy-TD (M 

= 0.037, SD = 0.061) and Conflict-TD (M = 0.321, SD = 0.211) conditions (p = .04); Easy-Both 

(M = -0.301, SD = 0.144) and Conflict-BU (M = 0.425, SD = 0.407) conditions (p = .019); and 

Easy-Both and Conflict-TD conditions (p = .016). There was no difference between Easy-BU (M 

= -0.336, SD = 0.352) and Easy-TD conditions (p = .1); Conflict-BU and Conflict-TD conditions 

(p = .66); Easy-BU and Conflict-BU conditions (p = .091); and Easy-Both and Easy-BU conditions 

(p = .846). This subgroup did not exhibit the same trend as the overall population. 

In conclusion, when participants had shorter RTs for ConS-BU than ConS-TD, their RT 

distributions varied across different conditions, suggesting that they were processing BU and TD 

features with different latencies. In contrast, participants with similar RTs for ConS-BU and ConS-

TD conditions completed most of the conflict conditions with a similar latency, which was 

nevertheless significantly longer than during the Easy-Both trials. Figure 4D-F show the 

normalized RT distributions of BU- and TD-favored choices during equivalued Conflict trials as 

a function of z-scored log RTs. The histograms show how on average, the early (i.e., left tail) 

choices were dominated by BU-favored choices (red), while later choices become more balanced. 

This effect was not seen for the second group of participants (Figure 4F) 
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To compare the effect of the attributes and the total integrated value on the overall RT, we ran a 

three-way ANOVA with the BU and TD attributes and the target value as independent variables. 

There was a statistically significant effect of the BU attribute (F(1, 9489) = 83.87, p < .001), the 

TD attribute (F(1, 9489) = 11.73, p < .001), and the target value (F(4, 9489) = 43.8, p < .001). 

There was also a significant interaction of TD attribute and value (F(2, 9484) = 3.29, p = .037). 

Finally, to visualize the global trend, we generated a scatterplot of each participant’s mean RT in 

different trial conditions (Figure 5). Within Easy trials, 10/14 participants were faster in Easy-BU 

than Easy-TD (two sample t-test at p < .05, Figure 5A). During ConS trials, 6/13 participants were 

significantly faster when choosing BU-favored targets while 1/13 was faster when choosing TD-

 

Figure 4. Cumulative distributions of z-scored log RTs of all participants. 

(A) Z-scored average log RTs of all participants. (B) Z-scored average log RTs of participants whose 
RT for ConS-BU was shorter than that of ConS-TD (N=8). (C) Z-scored log RTs of participants whose 
RT for ConS-BU was equal or longer than that of ConS-TD (N=5). In all groups, Easy-BU (orange) 
and Easy-Both (dashed purple) had the shortest RT. (D-F) Normalized frequency of BU and TD choices 
during ConS (top) and ConM (bottom) trials, plotted as a function of z-scored log RT. Participant 
subgroups are the same as in plots A-C. 
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favored targets (Figure 5B). This comparison could not be performed for participant #12 because 

that person never chose the BU target in ConS trials. During ConM trials, 5/14 participants were 

faster when choosing BU-favored targets while 1/14 was faster when choosing TD-favored targets 

(Figure 5C). During ConD trials, 8/14 were faster when choosing BU-favored targets, while 1/14 

was faster when choosing TD-favored targets (Figure 5D). When all Easy trials and all equivalued 

Conflict trials are collapsed together, 8/14 participants were faster in Easy trials (Figure 5E). 

Similarly, 12/14 participants were faster in Easy trials than Twin trials (Figure 5I). Between Twin 

and all equivalued Conflict trials, 3/14 participants were faster in Twin whereas 6/14 were faster 

in Conflict trials (Figure 5J). There was no systematic clustering observed in the RT distributions. 
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Figure 5. Scatter plot of mean RT across trial conditions 

Circles and triangles indicate the mean reaction time of each participant (identified as shown in the legend at 
bottom right). The standard error of the mean is indicated by the overlaid lines along the respective 
dimensions. (A-D) Comparison of RT between BU and TD features for Easy, ConS, ConM and ConD trials. 
(E-H) Comparison of Easy and Conflict trials. (I-J) Comparison of Twin trials against Easy and Conflict 
trials. Triangles indicate the participants whose data are further described on Figure 3. Symbol edge color 
indicate the result of Wilcoxon rank sum test between the plotted conditions (black: p < .05, gray: p > .05). 
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Errors in conflict trials had shorter reaction times when choosing a BU-favored target. 

In ConD trials, one target is less valuable than the other, so choosing it can be considered an error. 

Of 1072 ConD-BU trials, 715 were correct and 357 were error trials, in which the participant chose 

the BU-favored target even though its total value was lower than the other target. Thus the accuracy 

was 66.7% (Figure 6A, top). Of 1205 ConD-TD trials, 783 were correct and 422 were error trials, 

thus the accuracy was 65% (Figure 6A, bottom). We predicted that error trials favoring the BU 

attribute would have shorter RTs than error trials favoring the TD attribute. Confirming this 

prediction, a two-sample t-test on the z-scored log RT revealed a significant difference between 

ConD-BU (z-scored log RT mean M = -0.155, SD = 1.015) and ConD-TD (M = 0.119, SD = .913) 

error trials (t(777) = -3.96, p < .001). We focused on ConD conditions because Easy-BU, Easy-

TD and Easy-Both conditions all had very few error trials (data not shown). 

 

 

Figure 6. Z-scored log RT distributions of correct and error trials during Conflict trials 
with unequal targets (ConD) 

of (A) all participants, (B) participants whose RT for ConS-BU was shorter than that of ConS-TD, and 
(C) participants whose RT for ConS-BU was not significantly different from that of ConS-TD. Filled 
areas represent correct trials. Striped areas represent error trials. 
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Participants made faster choices when choosing between two high-valued targets.  

The Dual Feature task was designed as a value-based decision task. However, due to the nature of 

the stimuli we used, one could also treat it as a perceptual discrimination task. Importantly, while 

the BU feature has a linear component (dark to bright), the TD feature was more arbitrary, and the 

discrimination between different line orientations was not comparable to the discrimination 

between different brightness levels. This allowed us to test whether the Weber-Fechner law, which 

postulates that perceptual discrimination becomes more difficult (and therefore slower) as the 

amplitude of the discriminated stimuli increases, applies when the discriminated stimuli are 

associated with reward magnitude. Specifically, we analyzed the reaction time of choices between 

two high-valued targets versus two low-valued targets by comparing the reaction times when the 

choice was based on the attribute whose stimulus strength was linearly correlated with the reward 

magnitude (i.e., Easy-BU) or not (i.e., Easy-TD). 

We compared the RT and choice accuracy of Easy trials that offered two of the highest and two of 

the lowest possible values (Figure 7). In high reward trials, the choice is between two high-value 

targets, one worth 10 points (5 BU + 5 TD points) and another worth 8 points (Easy-BU: 5 BU 

and 3 TD, or Easy-TD: 3 BU and 5 TD). In low reward trials, the choice is between a target worth 

4 points (Easy-BU: 3 BU and 1 TD, or Easy-TD: 1 BU and 3 TD) and another worth 2 points (1 

BU and 1 TD). In Easy-BU trials, there was no significant difference in RT between low (M = 

594.6, SD = 251.3) and high (M = 566.2, SD = 252.1) reward offers (p = .15, two-sample 

Kolmogorov-Smirnov test). The accuracy was better for low (M = 0.95, SD = 0.09) than high (M 

= 0.86, SD = 0.11) trials (t(26) = -2.27, p = .031, two-sample t-test) offers. By contrast, in Easy-

TD trials, RT was shorter when the offered rewards were higher (M = 777.94, SD = 334.95) than 
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lower (M = 604.29, SD = 290.09, p < .001). The accuracy was not significantly different between 

low (M = 0.78, SD = 0.22) and high (M = 0.87, SD = 0.12) offers (t(26) = 1.38, p = .17). 

 

The mean RT of Easy-BU trials did not vary between high and low offers, though participants 

made more mistakes when the offers were higher. In fact, the accuracy for low offer Easy-BU 

trials were almost at the ceiling. The mean RT for Easy-TD trials was shorter for higher offers and 

the accuracy was comparable. 

In Easy-BU trials, the observed decrease in the accuracy for high offers may be due to the Weber-

Fechner law in brightness discrimination, although there was no difference in the RTs between 

high and low offers. In Easy-TD trials, the presence of the highest BU features reduced the latency 

of the TD-based choices, although the accuracy was unaffected. Overall, our results are not 

 

Figure 7. Mean RTs grouped by offered reward magnitude. 

RT did not increase when the offered reward was larger. Different colours correspond to different 
participants. The triangles represent the example participants from Figure 3, whose mean RTs were short 
(<500 ms, light gray), medium (between 500 and 1000 ms, dark blue) and long (>1000 ms, red). Black 
open circle with black overlaid lines indicates the mean RT of all participants with standard errors of the 
mean. 
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compatible with Weber-Fechner law, which predicts both reduction in the accuracy and increased 

latency for higher offers. The reduction in the latency in high offer Easy-TD trials is similar to 

what has been reported in previous studies (Shevlin et al., 2022).  

Changes of mind were mostly a switch from the BU-favored to the TD-favored target. 

All participants showed some changes-of-mind (CoM), particularly during conflict trials, indicated 

by an abrupt change in the movement trajectory (see examples in Figure 8A). Participant 12 had 

no ConS-BU trials because they changed their mind in all of those trials, making them ultimately 

end up as ConS-TD trials. Out of 3467 equivalued conflict trials, 174 trials (5%) contained a 

change-of-mind (68 in ConS trials, 106 in ConM trials). In ConS, 57/68 (84%) changes were from 

the BU-favored to the TD-favored target (Figure 8B, left). In ConM, 83/106 (78%) were from the 

BU- to the TD-favored target (Figure 8B, right). Thus, most changes of mind happened as a switch 

from BU to TD. 

We tested whether the CoM was a result of participants correcting their premature decisions. If 

CoM was a corrective maneuver, we predicted that the initial RT prior to the CoM would be shorter 

than the RT of the same condition without the CoM. We thus compared the RTs of Conflict trials 

with and without CoM (Figure 8C). The initial RT of BU-to-TD CoM trials (M = 563.66, SD = 

327.28) and the RT of non-CoM Conflict-BU trials (M = 588.92, SD = 392.73) were not 

significantly different (t(1880) = 0.75, p = .4, two-sample t-test, compare red distributions in the 

two top rows of Figure 8C). The initial RT of TD-to-BU CoM trials (M = 608, SD = 521.13) was 

shorter than the RT of non-CoM Conflict-TD trials (M = 744.15, SD = 364.8, t(1576) = 2.1, p 

= .036, compare blue distributions in two bottom rows of Figure 8C). There was no statistical 

difference between the initial RTs of the BU-to-TD and TD-to-BU CoM trials (t(176) = -0.62, p 

= .54). As shown in Figure 8D, the timing of the CoM was not constant with respect to target onset, 
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but instead followed the initial RT by approximately 266 ms (regression slope = 1.04, R2 = 0.91, 

p < .001). 

The majority of changes of mind were from the BU-favored to the TD-favored target, and there 

was no significant difference between the initial RTs of these trials versus non-CoM trials (see 

above). Changes from TD to BU were much more rare, so while their initial RTs were shorter than 

in non-CoM trials, it is precarious to make any strong conclusions on this basis. Furthermore, 

across CoM trials the time between the initial RT and the CoM was almost constant. This does not 

support the idea that CoM trials result from correcting a premature decision, but instead, suggests 

they are better interpreted as a real change-of-mind process that occurs with a constant delay 

following the initial movement onset. 
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DISCUSSION 

We investigated whether humans make value-based decisions by fully integrating all available 

information into a unified measure of subjective value, or whether such decisions involve a more 

distributed process whereby separate sources of information can themselves compete. Participants 

 

Figure 8. Change of Mind (CoM) trials 

(A) Sample trajectories of change-of-mind trials. Black and brown lines are trajectories to bottom left 
and right targets, respectively. Stars indicate the point in which CoM was assigned for two example 
trials (thick lines). (B) In ConS trials, 84% of CoM were from BU to TD. In ConM trials, 78% of CoM 
were from BU to TD. (C) Reaction time distributions of conflict trials with and without CoM. TOP to 
BOTTOM: Conflict-BU trials without CoM (i.e., straight trajectory). Conflict trials in which the initial 
trajectory was toward the BU-favored target (red RT), but finally reached the TD-favored target (blue 
CoM RT). Conflict-TD trials without CoM. Conflict trials in which the initial trajectory was toward 
the TD-favored target (blue RT), but finally reached the BU-favored target (red CoM RT). (D) Scatter 
plot of initial and CoM RT of individual trials. Different colors correspond to different participants. 
Circles and triangles: CoM trials changing from BU to TD. Diamonds: CoM trials changing from TD 
to BU. Blue line: Linear regression, p < .001, R2 = 0.91. 
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chose one of two reachable targets whose value was based on two visual attributes, the brightness 

of the target (a bottom-up cue, BU), and an oriented line overlaid on the target circle (a top-down 

cue, TD). We predicted that, if the BU and TD attributes in our task are always converted into 

representation of reward value and decisions are made by comparing the total value of each target, 

decisions would be faster when only one feature is different (Easy-BU and Easy-TD trials) and 

slower in more complex conditions where both features differ (Easy-Both and Conflict trials), but 

there would be no difference between Easy-Both, Conflict-BU, and Conflict-TD trials. Under this 

“integrated competition” hypothesis, the differences in RTs between different trial conditions 

would be determined by the time it takes to process both the BU and TD features. If we assume 

that the comparison process is bypassed when a feature is identical across the targets, then we 

would predict that RTs in Easy-BU trials would be the shortest, followed by Easy-TD, then 

followed by Easy-Both and Conflict conditions. In this view, Conflict trials might be expected to 

be slower than Easy-Both trials, as a decision may require recruiting an additional process that 

resolves the conflict, but Easy-Both trials should not be faster than Easy-TD. Most importantly, 

identifying Conflict trials could only be done after both features were processed, so there should 

be no difference between the RT distribution of Conflict-BU versus Conflict-TD trials. 

Alternatively, if the BU and TD attributes in our task are processed in different neural substrates, 

and the decision could be made prior to a complete integration at the level of total reward value, 

then differences in the RTs should reflect which attribute was used to decide, especially during 

trials with equally valued targets. That is, a “distributed competition” hypothesis predicts that 

decisions based on the BU attribute would be faster than those based on TD attributes in both Easy 

and Conflict trials, and choices in favor of the BU attribute (Conflict-BU) would be more frequent 
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in early decisions whereas those in favor of the TD attribute (Conflict-TD) would be more frequent 

in later decisions. 

We found that RTs varied across trial types and that the order of the conditions was not strictly 

congruent with the complexity of the features. Notably, all participants were fastest in Easy-BU 

and Easy-Both trials, and slower in Easy-TD trials. This suggests that the BU feature was 

processed more quickly than the TD feature, as expected. Importantly, if all information was 

integrated before making the decision, one would expect that the latency for Easy-Both to have 

been similar to that of Easy-TD, as solving Easy-Both trials should take at least as long as 

processing the TD feature in Easy-TD trials. In fact, when some participants chose the BU-favored 

target in ConS and ConM trials, they did so faster on average than in Easy-TD trials. This suggests 

that during these types of Conflict trials, participants often chose the BU-favored target before 

taking the TD feature into account. In this group of participants, the slowest condition was ConS-

TD and ConM-TD, suggesting that choosing in favor of the TD feature in Conflict trials takes 

longer than choosing a left or right target when the two targets are identical (Twin trials). For the 

other group of participants, Easy-TD and Twin were the second fastest conditions, and ConS-BU, 

ConM-BU, ConS-TD and ConM-TD conditions were all similar and the slowest. In other words, 

these participants were faster when solving Easy trials and slower when the choice was ambiguous 

(i.e., the targets were equal-valued), especially when the features were in conflict. This suggests 

the possibility that Conflict trials potentially involved an additional conflict-resolution process that 

took more time.  However, the overlap between the RT distributions of Easy-Both and Easy-BU 

trials and the fact these subjects took longer to solve Easy-TD than Easy-Both are incompatible 

with decision timing being simply determined by trial complexity. Instead, these results are 
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compatible with the proposal that BU and TD features are processed in parallel by different neural 

mechanisms and the decision can sometimes be made before both processes are complete. 

Furthermore, we saw that changes-of-mind in Conflict trials were mostly from the BU-favored 

target to the TD-favored target. The timing of the change of mind was not constant with respect to 

target onset, but instead followed the initial RT by approximately 266 ms. Importantly, changes 

from the TD-favored to a BU-favored target occurred most often when the initial RT was very 

short, again suggesting that subjects sometimes make choices before integrating all sources of 

information about value. 

Finally, we investigated whether the BU and TD features in our task follow predictions of the 

Weber-Fechner Law, a psychophysical theory that posits an increase in the just-noticeable-

difference proportional to the magnitude of the stimuli. We subdivided Easy-BU and Easy-TD 

trials based on the magnitude of offered reward, and compared the RTs to see if deciding between 

two large offers took longer than deciding between two small offers, as would be expected if the 

just-noticeable-difference was smaller and thus took longer to discriminate. We found that the 

magnitude of the reward offered did not influence RT in Easy-BU trials, but higher offers 

negatively affected choice accuracy. During Easy-TD trials, participants were faster when 

choosing between two high reward options than when they were choosing between two low reward 

options, whereas the choice accuracy was similar between the two. This was partially in line with 

previous results that argued against diminishing value sensitivity in value-based decisions (Shevlin 

et al., 2022). 

Taken together, our results suggest that despite indicating the same type of information (i.e., the 

reward value of a target), the two visual features used in our task were not simply integrated into 

a “common currency” before entering into a decision process. Instead, our data are consistent with 
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the premise that BU and TD features are treated in parallel, possibly by different neural substrates. 

The finding that a subset of participants had shorter RT in ConS-BU and ConM-BU trials than in 

Easy-TD trials suggests that the decision processes that favor BU features can sometimes bypass 

the processing of the TD feature. That is, a decision-making area in the brain that has received 

information about the BU feature has the capability to trigger the choice without waiting for the 

complete integration of information about the TD feature. In summary, our results suggest that 

action decisions can be made before all information is integrated, supporting the proposal that a 

hierarchy of within- and between-attribute competitions influences the higher-order choice-level 

competition (Hunt et al., 2014). 

There are many possibilities of where in the brain such competitive processes might unfold. For 

example, based on functional magnetic resonance imaging (fMRI) data in humans performing 

multi-attribute multi-alternative choice task, Hunt and colleagues suggested that cells in the 

intraparietal sulcus signal the between-attribute competition, whereas medial prefrontal cortex 

signals the between-option competition at the ‘integrated’ value level (Hunt et al., 2014). Other 

human fMRI studies suggested that the orbitofrontal and ventromedial prefrontal cortex reflect 

subjective value comparison across categories such as food, money, consumable products and pain 

(FitzGerald et al., 2009; Kable & Glimcher, 2007; D. V. Smith et al., 2010; Talmi et al., 2009). 

When tasks require incorporation of negative values such as effort, monetary loss, pain or 

satiation-induced devaluation, ventromedial prefrontal cortex, anterior cingulate cortex, 

supplementary motor area, amygdala and nucleus accumbens have been suggested to provide the 

devaluation signal  (Basten et al., 2010; Croxson et al., 2009; Gottfried et al., 2003; Klein-Flügge 

et al., 2016; Talmi et al., 2009). In a seminal study, Buschman & Miller (Buschman & Miller, 

2007) showed that when monkeys perform a visual pop-out task in which the correct target can be 



 

69 
 

easily discriminated from among distractors in a bottom-up fashion, choice-related activity appears 

in posterior parietal cortex before frontal regions, but when the task requires a slower serial visual 

search the opposite pattern of latencies is observed. This suggests that bottom-up decision tasks 

may be solved by the fast dorsal visual stream (Ledberg et al., 2007; Schmolesky et al., 1998), 

while more complex tasks require slower processes that combine distinct visual features, 

implicating the ventral visual stream and its projections to prefrontal regions (Donner et al., 2002; 

Yan et al., 2016) In our experiment, both of these kinds of processes may be taking place within 

the context of a single task, even during individual trials. This could make it possible to identify 

where in the brain the two kinds of relevant cues – bottom-up and top-down – are processed, and 

whether they compete in a distributed manner or only after being integrated into a unified estimate 

of subjective value within a single “central executive”. Such studies are underway (Nakahashi et 

al., 2018; Nakahashi & Cisek, 2016, 2020), but their results are beyond the scope of the current 

paper. 
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CHAPTER 4 MONKEY BEHAVIOUR AND ELECTROPHYSIOLOGY 

INTRODUCTION 

Behavioural data from humans suggest that participants treated two visual attributes differently 

despite the fact that both attributes provided information about the same thing: the absolute reward 

magnitude. Furthermore, reaction time distributions suggest that action decisions can occur before 

all information is considered. During equivalued conflict trials, more than half of the participants 

made decisions in favour of the “bottom-up” feature faster than when their decisions were based 

on the “top-down” feature. Are these features preferentially processed in different brain regions, 

such that activities in bottom-up and top-down regions can simultaneously and independently 

reflect subject choice? We drew inspiration from a study by Buschman and Miller, which reported 

that the order in which activity predicting saccades appeared in different brain regions was 

dependent on whether the choice involved bottom-up or top-down processes. In their study, 

monkeys performed a delayed match-to sample task, either with a pop-out target or with a target 

requiring serial visual search. With a pop-out target, activities in the lateral intraparietal (LIP) area 

predicted saccadic eye movements faster than those in the frontal eye field (FEF), whereas the 

order was reversed when the target was not a pop-out and a serial search was necessary (Buschman 

& Miller, 2007). Our aim was first to replicate these findings in the equivalent regions for arm 

movements, and second, to investigate the neural activity during a free-choice situation to tease 

apart the neural latency related to stimulus information from that of choice. We recorded neural 

activity from two sensorimotor areas related to arm movements, dorsal premotor cortex (PMd) (a 

frontal arm region, a surrogate to FEF for saccades) and the caudal part of area 5 of posterior 

parietal cortex (PPC), also known as the parietal reach region (PRR) (an arm region analogous to 
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LIP), and compared the latency of neural activities that predicted the monkey’s choice 

(Christopoulos et al., 2015). We predicted that, if decisions are always made in a Central Executive 

that lies outside of these sensorimotor areas, the differences in latency of choice predictive activity 

in PMd and PRR will not vary as a function of what kind of decision is made (e.g. value-based 

choice in easy trials versus free choice in conflict trials) or as a function of the feature that drives 

the choice (e.g. bottom-up versus top-down). If that is the case, the latency difference reported by 

Buschman and Miller may be interpreted as a representation of stimulus parameters and not of the 

choice itself. In contrast, if decisions are made through a Distributed Consensus, and both PMd 

and PRR are part of that process, then we predict that PMd and PRR will predict choice at different 

latency depending on the specific feature that drives a particular choice. Specifically, if our top-

down and bottom-up stimuli are preferentially processed in PMd and PRR, respectively, this would 

predict that neural correlates of decisions based on our top-down feature would appear earlier in 

PMd than in PRR, while neural correlates of decisions based on our bottom-up feature would 

appear earlier in PRR than in PMd. 

In the subsequent sections, behavioural and electrophysiological procedures performed on two 

monkeys will be described, but only the first monkey’s data will be presented. At the time of 

writing, electrophysiological recording with the second monkey is still in progress. 

MATERIALS AND METHODS 

Subjects and Project Timeline 

Two male macaque monkeys (macaca mulatta) were used in this project. The electrophysiological 

recording was performed on monkey Y starting at 5 years of age for 5 years, and on monkey K 

starting at 9 years of age for 2.5 years. During this time, they weighed approximately 10 kg and 
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12.5 kg, respectively. After the monkeys learned the features in the Dual Feature task, a titanium 

head fixation post was implanted on the skull under general anesthesia. The monkeys were then 

trained on an eye fixation task, followed by combining the eye fixation and the Dual Feature task 

so that they were performing the reaching movement without moving their eyes. Initially, Monkey 

Y was implanted with custom chambers over the same regions and neural recording was performed 

using NAN microdrives (NAN Instruments, Israel) and AlphaLab data acquisition system 

(AlphaOmega, Israel). During this time, 2-4 microelectrodes (FHC or AlphaOmega) were 

advanced daily until task-related single units were isolated. At the end of the daily session, 

electrodes and the microdrives were removed and the chambers were closed with hermetically 

sealed caps. After 195 sessions of recording, we modified our approach to improve yield. This 

involved chronically implanting GrayMatter microdrives (Monkey Y: 17.5 mm diameter, Monkey 

K: 23.37 mm and 17.5 mm diameter) over the dorsal part of the arcuate sulcus and intraparietal 

sulcus. Microstimulation sessions were conducted after a sufficient number of well isolated 

neurons were recorded.  

All procedures were in accordance with the ethics protocol of the Université de Montréal. 
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Task Apparatus 

Behavioural task and data collection were done with LabVIEW 8.2 on a Windows 10 computer. 

Reaching kinematics were recorded using a digitizing tablet (CalComp, 120 Hz). Eye movement 

was recorded at 120 Hz using an infrared oculometer (Applied Science Laboratory), and a hot 

mirror was placed in front of the monkey’s face to reflect the pupil. Visual stimuli were displayed 

at 144 Hz on a horizontally positioned LCD monitor 

(EIZO), which was reflected on a mirror placed at 

equidistance from the monitor and the digitizing tablet. 

This created a visual illusion that the cursor and the 

targets were floating at the height of the reaching 

workspace. 

To detect the true stimulus onset, we used photocells to 

record when the LCD monitor displayed the key stimuli 

(Wang & Nikolic, 2011). Two photocells were placed 

on the edge of the monitor at the same height as where the targets were drawn, and a small white 

square was drawn at the same time as the targets. The analog signal from the photocell was 

recorded via LabVIEW and analyzed in MATLAB, and event onsets were assigned when the 

signal crossed a threshold.  

All data were stored in MSSQL database using custom software. 

 

Figure 1. Task Setup 

A macaque monkey sitting at the tablet. 
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Dual Feature Task 

Each trial was initiated by eye 

fixation at the small red circle at the 

center of the workspace. After a 

variable fixation delay (500 ±400 

ms), a circular reach target (1.4cm 

diameter) appeared in the center of 

the workspace, and subject had to 

move the cross cursor (depicted in 

orange in Figure 2) inside to 

continue the trial. After a variable 

center-hold time (700 ±400 ms), 

two circular reach targets (2.7cm diameter) appeared on the left and right of the center circle, 

3.3cm away, center to center. Just like the human version of the task, each target contained two 

independent visual features, indicating the amount of reward given upon a successful reach. The 

brightness of the target served as the “bottom-up” (BU) feature, with three different levels of 

desirability score (dark gray = 1 point, medium gray = 3 points, and white = 5 points). The angle 

of an overlaid line served as the “top-down” (TD) feature, also with three different levels (4:00 = 

1 point, 12:00 = 3 points, 8:00 = 5 points, see Figure 3). The sum of these scores divided by 2 

translated into the amount of reward (i.e., the number of water or juice drops), which ranged from 

1-5. During the recording, we restricted the range of trial conditions to keep the maximum reward 

size at 3 to encourage the monkey to complete more trials.  

 

Figure 2. Dual Feature Task Timeline 

The cross cursor is depicted in orange for visual clarity, which 
was light gray during the actual experiment. 

Inter-trial interval (1200 ± 300 ms)

Eye fixation (500 ± 400 ms)

Center-hold time (700 ± 400 ms)

Targets appear + delay period (1000 ± 350 ms)

GO signal

Reach (≦1000 ms)

Eye fixation release and reward
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There was a variable delay period (1000 ±350 ms) before a GO signal (disappearance of the central 

circle) was given, at which point the subject can report his choice by moving the cross cursor into 

one of the two targets. A subset of sessions was a reaction-time version of the same task, in which 

the reach targets and the GO signal appeared simultaneously and the monkey could start moving 

towards his choice as soon as he was ready. Subject had to exit the central circle within 700 ms 

from the GO signal (i.e., maximum Reaction Time (RT) was 700 ms) and enter a target within 

1000 ms after exiting the central circle (i.e., maximum Movement Time was 1000 ms). The subject 

was required to maintain eye fixation until the target was reached, and breaking the fixation caused 

 

Figure 3. Target Features, Points and Trial Conditions 

(A) Target features with three levels of bottom-up (BU) brightness feature and top-down (TD) line 
orientation feature, (B) an example trial showing the combination of BU and TD features that yields an 
Easy-Both trial, and (C) Trial conditions used for the monkey project, which did not contain the ConD 
trials. Target features were identical to those used in the human project (see chapter 3 Human 
Behaviour). 

C. Trial Conditions
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the trial to abort. In addition to two-target trials of different types, the experiment also included 

trials with just one target (1T trials), whose reward value was also determined by the two features 

according to the same rules. Since we were most interested in ConS trials, which would only occur 

10% of the time, we artificially increased the number by randomly inserting ConS trials. As a 

result, an average session consisted of 15% 1T, 17% Easy-BU, 17% Easy-TD, 4% Easy-Both, 

23% ConS, 8% ConM, and 13% Twin trials, all of which were randomly interleaved. 

Training Timeline 

Both monkeys were trained in steps. First, they were trained in a single-target, center-out reaching 

task with an instructed delay until they were successfully reaching the target at least 80% of the 

trials. Second, they were given two identical targets (i.e., Twin trials) until they were successfully 

reaching to one of two targets in at least 90% of the trials. Then, the BU feature was introduced 

and performance was observed until it reached a plateau. Subsequently, the TD feature was 

introduced, and performance was again observed until it reached a plateau. Finally, equivalued 

Conflict trials (ConS and ConM) were introduced. Non-equivalued Conflict trials (i.e., ConD) 

were not presented to monkeys in order to maximize the number of equivalued Conflict trials, 

which was the focus of this project. By the time we performed electrophysiological recordings, 

monkeys were choosing the “better” target at least 90% of the time during Easy trials. 
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On the first day when Monkey Y was presented with the BU feature, he chose the brighter target 

during the first 130 trials (Figure 4A, red arrow). This was followed by some exploration for two 

days, after which his performance started to stabilize. His performance plateaued 7 days after the 

introduction of the BU feature. He was then presented with the TD feature while the BU feature 

was held identical between the two targets. On the first day, he appeared to ignore the TD feature.  

On the second day, he began exploring, and on the third day, he started choosing the “correct” 

 

Figure 4. Monkey Y’s performance while he learned the BU and TD features 

Percentage of correct choices, averaged using a sliding window of 50 trials, during the feature learning 
period. (A) Easy-BU training sessions spanning 8 days until performance plateaued. Red arrow 
indicates the moment Monkey Y abandoned the initial brightness bias and started exploring. (B) Easy-
TD training sessions spanning 9 days until performance plateaued. Gray dotted lines indicate separation 
of different days and the resetting point of the running mean. 

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8

Day 1 Day 2 Day 3 Day 4 Day 5 Day 6 Day 7 Day 8 Day 9

A

B
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target. Despite some variability (e.g., day 7, see Figure 4B), his performance plateaued 9 days after 

the introduction of the TD feature. 

Directional Bias 

Monkey Y developed a directional bias during the course of training, and it persisted into the 

electrophysiological recording period. In most sessions, when presented with equivalued options, 

he would choose the target on the left almost exclusively. In order to discourage this bias, so that 

we can obtain a more balanced data both behaviourally and neurally, we introduced a pre-reward 

delay that increased as a function of the magnitude of the bias. The delay occurred between the 

time the monkey successfully reached a target and the delivery of reward, only during the trials 

with equivalued options (i.e., Twin, ConS and ConM trials), starting at 4 consecutive biased 

choices. The delay started at 133 ms and increased by 133 ms every time the biased target was 

chosen, up to 1166 ms. When the target on the opposite side was chosen, the reward was delivered 

without a delay and the bias count was reduced by one. This manipulation successfully discouraged 

monkey Y’s directional bias and provided sufficient trials in which the target on the right was 

chosen when options were equivalued. We chose the delay instead of manipulating the reward size 

to avoid altering the meaning of the attributes used to indicate the reward size. 

Neural Recording 

Using structural MRI data processed with BrainSight (Rogue Research, Montréal, Québec), 

recording chambers were placed over the arcuate sulcus and the intraparietal sulcus, respectively 

(Figure 5). A majority of recordings were performed using two chronically implanted microdrives 

(GrayMatter Research, Bozeman, MT), with data acquisition using Synapse (Tucker-Davis 

Technologies, Alachua, FL). All data came from the left hemisphere, and the monkeys used their 

right arm to perform the task. 
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The recording microdrives were implanted in two steps under general anesthesia. The initial step 

was chamber implantation. First, a trephine was made at the placement of the chamber. Second, 

12-18 bone screws were securely placed on the skull and anchored with C&B-Metabond (Parkell, 

Edgewood, NY). Third, durotomy was performed inside the trephine. Fourth, a chamber was 

  

Figure 5. GrayMatter drive electrode placements on Monkey Y 

A 4x8 electrode grid was placed between the precentral dimple and arcuate sulcus to aim at PMd (A), 
and over the intraparietal sulcus to aim at the arm region of PPC (B). Dashed white outlines show the 
footprint of the Microdrive where it meets the skull. PMd electrodes were 1.2 mm apart medial to lateral 
(in 4 rows) and 1 mm apart rostral to caudal (in 8 columns). PPC electrodes were 1.0 mm apart in both 
directions. Electrode numbers in bold were inserted into the brain. Black electrodes remained intact 
during the recording period, whereas those in gray (3, 23, 28, and 34) broke during descent. Bottom: an 
MR image of Monkey Y’s brain, sagittal view. The blue region indicates a 3D reconstruction of PMd 
and the orange indicates parietal areas near the intraparietal sulcus. PCD: precentral dimple, AS: arcuate 
sulcus, IPS: intraparietal sulcus. 
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placed over the trephine and the location was verified with BrainSight, and cranioplastic was used 

to anchor the chamber to the bone screws. Chambers for the 32-channel microdrives were installed 

with the Silastic membrane insert within at the time of placement. On the second monkey, the 

chamber for the 96-channel Microdrive was installed with DuraGen (Integra Life, Princeton, NJ) 

on the surface of the cortex, and then sealed with a dummy plug. The animals then recovered under 

veterinary monitoring. The second step was the microdrive installation. Upon disinfecting the 

implant areas, sterile microdrives were inserted in the chambers. Bone wax was applied to the gap 

between the chamber and the microdrives, and cranioplastic was used to anchor the microdrives. 

At the beginning of recordings, a given electrode was descended until it touched the surface of the 

animal and its impedance dropped. The electrode was then further descended by 0.5 mm. After 

that, before each session, a subset of electrodes was moved by a maximum of 0.5 mm or until 

neural action potentials were audibly and visually identified. Once cell activity was observed, we 

reduced the maximum daily distance of travel to 0.25 mm, or until we observed sufficient change 

in the signal. In order to reduce the risk of dimpling the brain surface, we avoided moving adjacent 

electrodes on a given day. 
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The neural signal was collected at 

approximately 24 kHz and bandpass filtered at 

300-3000 Hz in Synapse software (Tucker-

Davis Technologies, FL). Single units were 

isolated offline either in Plexon Offline Sorter 

(Plexon, Dallas, TX), or where possible, with 

Full Binary Pursuit (FBP), an automatic spike 

sorting algorithm (Hall et al., 2021). Local field 

potentials (LFPs) were collected at 

approximately 1017 Hz, bandpass filtered at 3-

300 Hz, and stored using custom MATLAB 

codes provided by Tucker-Davis Technologies. 

The flow of data acquisition is illustrated in 

Figure 6. 

Beyond yielding data from a larger number of 

neurons simultaneously, this approach had two 

other advantages. First, because we advanced 

electrodes prior to running the task and stopped 

whenever an isolatable neuron was found, our 

sampling of the neural population was not biased toward obviously task-related neurons like 

previous approaches, including our own. While it still favors larger neurons that are easier to find 

and hold, this approach gives us a more unbiased picture of what percentage of those cells are task 

related and those that are not, all of which are recorded for at least one session. Second, because 

 

Figure 6. Neural Data Collection Flow 

Most neural data were recorded from GrayMatter 
microdrives implanted over the target areas, 
which were planned and verified using 3D 
reconstruction applications (BrainSight and 
3DSlicer). Data were preprocessed and stored by 
Synapse software. Single units were isolated using 
Plexon Offline Sorter or Full Binary Pursuit 
(FBP), then stored to MSSQL using custom 
MATLAB codes. Local field potential (LFP) data 
were also stored using custom MATLAB codes. 

MSSQL

FBP

Single units LFP
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the microdrives were chronically implanted and very stable, we could often find the same neuron 

on the next day of recording (Figure 7). To maximize these cases, each day’s strategy for advancing 

electrodes was based on the data from neurons recorded in the previous session, facilitating the 

recording of particularly task-related neurons for more than one session. 

Neural Data Analysis 

To decide whether a given cell should be treated as the same one recorded in a previous session, 

we compared each pair of potentially identical cells based on the waveforms and their firing pattern. 

Cells were considered identical when  

1) The Pearson’s r of the cells’ normalised waveforms is equal to or above 0.9, 

2) the electrode was not moved between the sessions, 

3) the experimenter concluded that their firing pattern during different trial types were not 

visibly different between sessions. 

 

Figure 7. Example neuron recorded over 5 sessions 

(A) Normalised waveforms of neuron #1140 showing high overlap of pre-trough, trough, peak 
and post-peak shapes. Solid line and shading indicate the mean and 95% confidence interval in 
a given session, each shown in a different color. (B) Raster of spiking activity aligned to target 
onset (black vertical line). The characteristic increase in the firing rate at 100 ms after target 
onset is visible in all 5 sessions.  
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Each cell’s firing rate was represented as a partial spike interval calculated based on the sum of 

fractional inter-spike intervals contained during each of the 10 ms time bins (Sergio et al., 2005; 

Taira et al., 1996). 

Population analyses 

Distributions of decision latency 

To compare the speed with which decisions emerge across the cortical regions we recorded, we 

performed an analysis of the latency distribution across the different populations. Because this 

relies primarily on early events, we applied additional criteria for focusing on just the fastest 

neurons. Thus, for a cell to be included in the population latency analysis, the following criteria 

needed to be met:  

1) During 1T trials, its mean firing rate for left versus right choice became more than 5 standard 

deviations (SD) apart and remained a minimum difference of 2SD apart for 50 ms within 250 ms 

from target onset (modified criterion from (T. R. Sato & Schall, 2003)), 

2) The neuron’s directional preference (e.g., higher firing rate for right than left target) was the 

same in both TWIN and 1T trials. 

This resulted in 292 PMd cells and 71 PRR cells to be included in the population analysis. To 

account for the difference in the number of cells included from each region, we bootstrapped over 

individual cells to obtain a resampled population of 100,000 cells, with replacement, per region. 

The mean firing rate was calculated using a 10 ms sliding window with a step size of 5 ms. Each 

area’s population average was obtained by first calculating an individual neuron’s average firing 

rate across the session(s) in which it was recorded, before averaging these across the population. 
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Pre-stimulus baseline bias 

A neuron or a group of neurons are considered to display a pre-stimulus baseline bias when the 

baseline firing rate was predicting the monkey’s choice prior to the target onset. The Wilcoxon 

rank sum test was used to detect the difference in the mean firing rate between preferred target 

(PT) and opposite target (OT) trials during the 300 ms pre-stimulus time period (Coe et al., 2002). 

Neural space analyses 

To investigate the dynamical nature of the entire population of neurons, we applied a 

dimensionality reduction on a hyperspace constructed by each neuron’s firing rate (Cunningham 

& Yu, 2014; Thura et al., 2022). For this analysis, regardless of their response properties, all well-

isolated neurons recorded during the delay version of the Dual Feature task were included, which 

consisted of 776 PMd and 487 PRR neurons. First, each neuron’s spiking activity was aligned to 

the target onset and firing rate was computed using partial spike intervals in 10 ms bins, between 

200 ms before and 500 ms after target onset. Second, the firing rate was square root transformed 

and temporally smoothed using a 10 ms Gaussian kernel. Third, we forced symmetry on the data 

by creating a population of “anti-neurons”, duplicating the original population and inverting the 

directional tuning of each neuron. This was based on an assumption that for every left-preferring 

neuron we recorded, there exists a right-preferring neuron with similar properties which we did 

not record, and vice-versa (Thura et al., 2022). We repeated this procedure to build, for each of 12 

conditions of interest (1T, Easy-BU, Easy-TD, Twin, ConS-BU, and ConS-TD, for the leftward 

and the rightward choices), a 2678-by-51 matrix whose rows consisted of individual neurons 

(776×2 neurons representing the PMd population and 487×2 neurons representing the PRR 

population with a forced directional symmetry) and columns consisted of time bins (10 ms bins, 

100 ms before to 400 ms after target onset). These matrices were horizontally concatenated to 
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build a 2678×204 matrix, and the pca function (MATLAB 2014b) was applied. This yielded a 

matrix of loading coefficients between the neurons and principal components (PCs) and the 

variance explained by each PC.  

Microstimulation 

In a subset of sessions, electrical microstimulation 

was performed on one of the electrodes with audible, 

visible or isolatable neural activity. The stimulation 

train consisted of 19 biphasic square pulses with 0.2 

ms per phase, rising edge first (Figure 8). Each set 

of pulse was 0.4 ms during the 3.0 ms total duration 

and delivered at 333 Hz, 70 µA in amplitude. The 

pulses were configured with 50% temporal jitter, 

thus half of the pulses were delivered with a 

randomized timepoint within the 3.0 ms bound. This 

resulted in a total stimulation train duration of 57 ms. The stimulations were delivered in 50% of 

trials, either 100 ms or 150 ms after the target onset, detected online based on the photocell signal. 

Trials without stimulation on the same day were used as a control. We collected a minimum of 

2000 trials per stimulation site, which took typically 3 to 4 sessions. During the microstimulation 

session, the monkey was allowed to report his decision as soon as the reach targets were presented 

(i.e., there was no instructed delay period). We analyzed the effects of stimulation by comparing 

the RTs of stimulation and control trials within the same trial conditions. In most cases, 

microstimulated electrodes continued to have a similar, recognizable neural activity and the 

impedance remained unaffected. 

 

Figure 8. Microstimulation schematic 

A train consisted of 19 of this biphasic 
stimulation, jittered at 50%.   
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RESULTS – BEHAVIOUR 

Monkey RT varied with trial types, but the difference disappeared over time 

To visualise whether Monkey Y completed different trial conditions with different reaction times, 

we plotted the cumulative histogram of 

his RT. Figure 9 shows the first two 

days when Y was presented with 

Conflict trials during the Dual Feature 

Task without the instructed delay. On 

the first day (Figure 9A), his RT for 

ConM-BU (median RT: 391 ms) was 

faster than all the other conditions 

(p<0.03 across all comparisons). The 

longest RT was for ConM-TD (median 

RT: 431 ms). The rest of the trials had 

similar RTs (Easy-BU: 415 ms, Easy-

TD: 410 ms, Twin: 426 ms, p>0.05 

across all comparisons). On the second 

day, most of these RT differences 

disappeared as the RT distributions 

collapsed (Figure 9B). ConM-BU was 

no longer the fastest (median RT: 434 

ms). Most trial types slowed down 

(Easy-BU: 431 ms, Easy-TD: 435 ms, 

 

Figure 9. Cumulative histograms of RT 
distribution of Monkey Y 

(A) RT distribution of the first day Y was presented with 
Conflict trials. ConM-BU is faster than the rest. (B) Same 
plot of the second day after Y was presented with Conflict 
trials. RTs slowed down in general and most of the 
differences disappeared. Different colours represent 
different trial types. The numbers in the parentheses 
indicate the number of trials per trial type. 

A

B

RT Distribution (Monkey Y, day 1)

RT Distribution (Monkey Y, day 2)
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Twin: 450 ms), except ConM-TD (median RT: 425 ms), which remained relatively the same as on 

day 1. Twin trials were slower than most other trial types except for ConM-BU (p<0.03 across 

comparisons). This trend of Twin trials being slower than other types continued for 6 sessions, and 

disappeared on the 7th session when all RTs collapsed and the median RT was 437 ms. The analysis 

of Monkey K’s behavioural data during the RT version of the task is currently underway. 

When there was a variable delay between the target onset and the GO signal, both monkeys’ RT 

distributions collapsed and there was no difference between trial types. 

Monkey RT was similar to human RT 

To compare the RT distributions between human participants and Monkey Y, we generated a 

scatter plot of mean RT in 

different trial types. In 

Figure 10, gray circles 

represent the RT of 

human participants from 

Chapter 3 and the red 

square indicates the RT of 

Monkey Y on the first day 

when he was presented 

with Conflict trials. 

Monkey Y’s RT was 

shorter than most human 

subjects, but still fell 

 

Figure 10. Scatter plot of mean RT across trial conditions, 
primates 

Gray circles represent the mean RT of human participants, and orange 
squares represent mean RT of Monkey Y on the first day when he was 
presented with Conflict trials. 

A. Easy-BU x Easy-TD

D. Twin x EasyB. ConM-BU x ConM-TD

C. Easy x ConM
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within the cluster of distributions in all trial types compared. 

RESULTS – ELECTROPHYSIOLOGY 

Recorded Neurons 

We recorded neural activity of a total of 1207 PMd and 871 PRR neurons from Monkey Y, and so 

far from 157 PMd and 54 PRR neurons from Monkey K. Table 1 shows the overview of neurons 

recorded from two monkeys. In Monkey Y, directional tuning was observed in 65% (N=780) of 

PMd and 50% (N=438) of PRR neurons during the delay period. Of these, 28% (N=332) of PMd 

and 17% (N=148) of PRR neurons were tuned within 250 ms from target onset during Twin trials.  

In Monkey K, tuning was observed in 60% (N=94) of PMd and 74% (N=40) of PRR neurons. Of 

these, 7% (N=11) of PMd neurons were tuned within 250 ms during Twin trials. We have not yet 

recorded PRR cells with early tuning. We also recorded other frontal areas in Monkey K; 39% 

(N=135) of dACC, 34% (N=25) of dlPFC (area 46/9) and 50% (N=16) of dmPFC (area 8B) neurons 

displayed directional tuning during the delay period. Of these, 7% (N=23) of dACC and 3% (N=2) 

of dlPFC neurons were tuned within 250 ms during Twin trials. Note that because recordings and 

analysis of data from Monkey K is still ongoing, this thesis primarily reports neural results from 

Monkey Y. 
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Area Category Monkey Y Monkey K 

  All neurons 2182   1010   

PMd 

All PMd 1207   157   

Tuned pre-GO 780 65% 94 60% 

Tuned within 500 ms in Twin 458 38% 13 8% 

Tuned within 250 ms in Twin 332 28% 11 7% 
Met population latency analysis criteria 292 24% 7 4% 

PRR 

All PRR 871   54   

Tuned pre-GO 438 50% 40 74% 

Tuned within 500 ms in Twin 222 25% 0 0% 

Tuned within 250 ms in Twin 148 17% 0 0% 

Met population latency analysis criteria 71 8% 0 0% 

LIP 

All LIP 97  109   

Tuned pre-GO 70 72% 73 67% 

Tuned within 500 ms in Twin 31 32% 3 3% 

Tuned within 250 ms in Twin 22 23% 0 0% 

dACC 

All dACC -   350   

Tuned pre-GO -   135 39% 

Tuned within 500 ms in Twin -   33 9% 

Tuned within 250 ms in Twin -   23 7% 

dlPFC 

All dlPFC -   73   

Tuned pre-GO -   25 34% 

Tuned within 500 ms in Twin -   6 8% 

Tuned within 250 ms in Twin -   2 3% 

dmPFC 

All dmPFC -   32   

Tuned pre-GO -   16 50% 

Tuned within 500 ms in Twin -   0 0% 

Tuned within 250 ms in Twin -   0 0% 
Table 1. Number of recorded neurons from each brain region. 

A cell was considered tuned when its mean firing rate difference between left and right target choice 
became 5SD apart and remained at least 2SD apart for a minimum of 15 ms. Cells not clearly 
assignable to a given region are not included except in the grand total. 
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Example neuron from PMd 

Figure 11 shows a histogram of the mean firing rate and a raster of an example neuron from PMd, 

aligned to the target onset and 

movement onset during 1T trials. This 

neuron’s firing rate increased shortly 

after a target appeared on the left of 

the center circle (dark line). We 

describe these trials as having the 

neurons’ preferred target (PT). The 

same neuron’s firing rate decreased 

when a target appeared on the right of 

the center circle (broken gray line). 

These trials are labelled as having the 

opposite target (OT). This divergence 

of firing rate for PT vs OT was interpreted as the time in which the neuron discriminated the 

location of the target, and thus predicted the monkey’s decision to reach to the left or the right. In 

order to determine the time the neuron predicted the monkey’s reach direction, we looked for the 

first moment when the difference in the firing rates exceeded 5 standard deviations of the baseline 

period (300 to 0 ms prior to the stimulus onset) and remained 2SD apart for a minimum of 50 ms 

(T. R. Sato & Schall, 2003). During 1T trials, this neuron predicted the monkey’s choice 80 ms 

after target onset. The separation in the firing rate for PT and OT trials persisted during the delay 

period. Towards the movement onset, the firing rate for PT decreased while that for OT gradually 

 

Figure 11. Example neuron during 1T trials 

Peristimulus firing rate histogram with 20 ms sliding 
window and raster plot of an example PMd cell during 
single target (1T) trials. Dark lines represent the cell’s 
response to its preferred target (PT), whereas the broken 
gray lines represent the cells’ response to the non-preferred, 
opposite target (OT). Shaded area indicates 95% 
confidence interval. 
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increased, and their order was reversed following the movement onset. Although this neuron 

exhibited significant variability in its background firing rate in different recording sessions, its 

tuning and peak burst were consistent 

from day to day. 

Figure 12 shows the same neuron’s 

response during Easy-BU, Easy-TD 

and Easy-Both trials. In these trials, the 

time at which the neuron predicts the 

monkey’s choice can differ from the 

initial response to target appearance. 

During Easy-BU trials, this neuron 

predicted the monkey’s choice 90 ms 

after target onset. During Easy-TD 

trials, it predicted the monkey’s choice 

95 ms after target onset. During Easy-

Both trials, it predicted the monkey’s 

choice 90 ms after target onset. Similar 

to the 1T trials (Figure 11), the 

difference in the firing rates between 

PT and OT trials remained throughout 

the delay period and into the movement 

onset. In addition, there was a subtle 

increase at around 80 ms in both PT and 

  

Figure 12. Example neuron during Easy trials 

The same cell as Figure 11, during Easy trials. (A) Easy-
BU, (B) Easy-TD, and (C) Easy-Both trials, with an 
example combination highlighted on the 3x3 target chart 
on the left. Colour and broken gray lines represent its 
response to PT and OT, respectively. 
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OT trials, which is the time this neuron discriminated PT and OT in 1T trials. This suggests that 

the neuron initially responded to the onset of two targets, which was followed by the decision 

based on the BU and/or TD features. 

Figure 13A shows the same neuron’s response during Twin trials. During Twin trials, this neuron’s 

average firing rate was higher for PT 

than OT trials even before the target 

onset. This pre-stimulus baseline 

bias was not unique to this neuron. 

For this reason, we took the 

difference in the baseline firing rate 

into account when deciding on the 

latency of choice-related neural 

activity. By subtracting the 

difference between PT and OT trials 

during the pre-stimulus baseline 

period, we can see the neuron’s 

response to the stimulus onset 

(Figure 13B). Based on this baseline 

subtraction procedure, during Twin 

trials, this neuron predicted the 

monkey’s choice 100 ms after target 

onset (Figure 13B, dotted pink line). 

 

Figure 13. Example neuron during Twin trials 

The same cell as Figure 11 during Twin trials. (A) Raw firing 
rate. (B) Firing rate adjusted by subtracting the mean during 
the baseline period (300 ms prior to target onset). Solid dark 
and broken gray lines represent its response to PT and OT, 
respectively. Dotted pink like indicates the choice latency. 
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Figure 14 shows the same neuron’s 

response during two types of 

equivalued Conflict trials, ConS and 

ConM. Similar to the Twin trials 

(Figure 13), there was a separation in 

the baseline firing rate between the PT 

and OT trials, especially in ConS-BU 

(Figure 14A, PT trials had 10.25Hz 

higher baseline firing rate compared 

to OT trials). After subtracting the 

baseline mean, according to our 

choice latency criteria, this neuron’s 

choice latency was 100 ms for ConS-

BU (Figure 14A). For ConS-TD trials, 

our criteria initially detected the 

reversal in PT and OT firing rate at 

120 ms after target onset (Figure 

14B). For ConM-BU trials, the 

difference between PT and OT did not 

meet our choice criteria for the 500 ms 

time window we tested (Figure 14C). 

For ConM-TD trials, the choice 

latency was 125 ms (Figure 14D).  

  

Figure 14. Example neuron during Conflict trials 

The same cell as Figure 11 during (A) ConS-BU, (B) ConS-
TD, (C) ConM-BU, and (D) ConM-TD trials. Solid colour 
and broken gray lines represent its response to PT and OT, 
respectively. An example combination of target appearances 
is highlighted on the 3x3 target chart on the left of each plot. 
The chosen target is highlighted with a thicker line. 
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One possible interpretation of the pre-stimulus baseline bias is that prior to the target onset, the 

monkey was already biased toward moving right or left, and this neuron’s firing rate was already 

modulated by that bias. Such a bias will not be observed in 1T and Easy trials because these 

conditions come with a “correct” option that can appear on the left or the right with equal 

probability, averaging out any pre-stimulus activity for PT and OT trials. It was only revealed 

during the free choice conditions, such as Twin and equivalued Conflict trials, in which there is no 

“correct” option and the monkey could let the baseline bias drive his decision to choose the target 

he was predisposed to choose. In other words, this pre-stimulus baseline bias in PMd may reflect 

the underlying cause for when one “feels like” doing something without an externally motivated 

reason. 

Population Latency Analysis 

To investigate the choice latency at the population level, we focused on neurons that met the 

inclusion criteria described in the Neural Data Analysis section. In brief, we analysed only those 

cells that displayed the choice-related activity within 250 ms from target onset in 1T trials. This 

resulted in 24% of PMd (N=292) and 8% (N=71) of PRR neurons to be included in the population 

latency analysis. To determine the choice latency, we applied the same latency detection algorithm 

we used for individual cells. Thus, each population activity was divided based on the trial 

conditions (e.g., 1T, Easy-BU etc.) and the monkey’s choice (PT and OT) trials. Choice latency 

was calculated by subtracting the mean baseline firing rate of each trial condition to remove the 

pre-stimulus baseline bias. 
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PMd Population Activity 

Figure 15 shows the PMd population’s 

average firing rate during 1T, Easy-BU, 

Easy-TD, and Easy-Both trials, aligned to 

the target and movement onset. During 1T 

trials, PMd population activity sharply 

increased for PT while it decreased below 

baseline for OT after target onset, 

predicting monkey’s choice at 60 ms 

(Figure 15A). The peak for PT appeared to 

occur at around the same time as the drop 

to the lowest point for OT trials. During 

Easy-BU trials, it predicted the monkey’s 

choice 60 ms after target onset (Figure 

15B). During Easy-TD trials, the PMd 

population predicted the monkey’s choice 

80 ms after target onset (Figure 15C). 

During Easy-Both trials, the PMd 

population predicted the monkey’s choice 

60 ms after target onset (Figure 15D). In all 

of these conditions, the PMd population 

maintained its firing rate higher for PT and 

below baseline for OT trials during the 

 

Figure 15. PMd population activity during 1T 
and Easy trials 

Average firing rate of 292 PMd cells during (A) 1T, 
(B) Easy-BU, (C) Easy-TD, and (D) Easy-Both trials, 
aligned to target onset (left column) and movement 
onset (right column). Darker colour lines indicate trials 
in which the monkey chose the cell’s preferred target 
(PT), and gray lines indicate trials in which the monkey 
chose the opposite target (OT). 
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delay period and past the onset of 

movement. The firing rate for PT had an 

additional peak just before the movement 

onset, which was followed by a slow 

decrease as the movement was executed. 

This may imply that the PMd population 

was maintaining the action plan during the 

delay period, and upon the GO signal, 

executed the movement via the 

downstream motor areas and let go of the 

plan.  

Figure 16 shows the average activity of the 

same PMd population during Twin, ConS 

and ConM trials, aligned to the target onset 

and movement onset. During Twin trials, 

the PMd population predicted the 

monkey’s choice 100 ms after target onset 

(Figure 16A). Note that as mentioned 

above, this calculation was performed after 

subtracting the baseline bias. During ConS 

trials, when the monkey chose the target 

favoured by the BU feature (ConS-BU), the 

PMd population predicted the monkey’s 

 

Figure 16. PMd population activity during 
Twin, ConS and ConM trials 

Same population as Figure 15 during (A) Twin, (B) 
ConS-BU, (C) ConS-TD, (D) ConM-BU, and (E) 
ConM-TD trials, aligned to target onset (left column) 
and movement onset (right column). 
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choice 90 ms after target onset (Figure 16B). When the monkey chose the target favoured by the 

TD feature (ConS-TD) it predicted the monkey’s choice 100 ms after target onset (Figure 16C). 

During ConM-BU trials, PMd predicted the monkey’s choice 105 ms after target onset (Figure 

16D). During ConM-TD trials, PMd predicted the monkey’s choice 110 ms after target onset 

(Figure 16E).  

During Twin, ConS and ConM trials, PMd activity separated for PT and OT prior to the target 

onset, reflecting the monkey’s choice. This 

presence of the pre-stimulus baseline bias in 

PMd population suggests that, when a 

situation allows, random pre-stimulus 

fluctuation in PMd activity may play a 

causal role in making the monkey decide to 

choose a cell’s preferred target.  

During 1T and potentially Easy-TD trials 

(Figure 15A and C), the divergence of PT 

versus OT was observed at the moment of 

the target onset (i.e., t=0), which precedes 

the fastest stimulus onset responses and 

thus cannot be caused by the stimulus 

(Ledberg et al., 2007). This is likely an 

artefact due to our selection criteria, which 

strongly favour cells with early responses 

during 1T trials, increasing the likelihood of 

 

Figure 17. Activity of PMd Population 
without early cells during 1T and ConS trials 

Average firing rate of 152 PMd cells tuned between 
100-250 ms from target onset during (A) 1T, (B) 
ConS-BU, and (C) ConS-TD trials, aligned to target 
(left column) and movement onset (right column). 
Same colour coding as Figure 15 and Figure 16. 
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including cells whose pre-stimulus firing pattern happen to correlate with the target of choice. 

When the earliest cells (response within 100 ms from the target onset) were excluded from the 

population, the separation at time zero during 1T (Figure 17A) and Easy (data not shown) trials 

was not observed. Notably, in this subset of cells, the pre-stimulus baseline bias in Conflict trials 

was reduced but still present (Figure 17B-

C). 

PRR Population Activity 

Figure 18 shows the average firing rate of 

the PRR population during 1T, Easy-BU, 

Easy-TD, and Easy-Both trials, aligned to 

the target and movement onset. During 1T 

trials, PRR population activity sharply 

increased for PT, whereas it remained 

around the baseline level for OT, predicting 

the monkey’s reach direction 80 ms after 

the target appeared (Figure 18A). This was 

as fast as the PMd population. During Easy-

BU trials, PRR population activity 

predicted the monkey’s choice 100 ms after 

target onset (Figure 18B). During Easy-TD 

trials, PRR predicted the monkey’s choice 

75 ms after target onset (Figure 18C). 

During Easy-Both trials, PRR predicted the 

 

Figure 18. PRR Population activity during 
1T, Easy-BU, Easy-TD and Twin trials 

Average firing rate of 71 PRR cells during (A) 1T, (B) 
Easy-BU, (C) Easy-TD, and (D) Easy-Both trials, 
aligned to target (left column) and movement onset 
(right column). Same colour coding as Figure 15. 
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monkey’s choice 115 ms after target onset 

(Figure 18D). When two targets were 

presented, PRR activity briefly increased for 

both PT and OT until 80 ms, followed a 

further increase for PT, leading to a 

divergence. Compared to PMd, whose firing 

rate during OT trials sharply decreased below 

its baseline, PRR activity for OT lingered 

around the same level as the initial increase, 

slightly dipping but never going below the 

baseline. During 1T, Easy-BU, Easy-TD and 

Easy-Both trials, PRR activity for OT 

displayed a secondary increase in the firing 

rate at around 300 ms, which appear to 

coincide with the peak for PT, followed by a 

decrease in the firing rate. In all these four 

conditions, PRR population activity displayed 

a pre-movement ramp-up which appeared to 

peak past the movement onset, after which the 

activity for OT caught up with PT and 

converged, approximately 200 ms after 

movement onset. 

 

Figure 19. PRR Population activity during 
Twin, ConS and ConM trials 

Same population as Figure 18 during (A) Twin, (B) 
ConS-BU, (C) ConS-TD, (D) ConM-BU, and (E) 
ConM-TD trials, aligned to target onset (left 
column) and movement onset (right column). Same 
colour coding as Figure 16. 
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Figure 19 shows the average activity of the same PRR population during Twin, ConS and ConM 

trials, aligned to the target onset and movement onset. During Twin trials, the PRR population 

predicted the monkey’s choice 160 ms after target onset (Figure 19A). During ConS-BU, the PRR 

population predicted the monkey’s choice 195 ms after target onset (Figure 19B). During ConS-

TD trials, PRR predicted the monkey’s choice 150 ms after target onset (Figure 19C). During 

ConM-BU trials, PRR predicted the monkey’s choice 235 ms after target onset (Figure 19D). 

During ConM-TD trials, PRR predicted the monkey’s choice 105 ms after target onset (Figure 

19E). In all Twin and equivalued Conflict trials, the baseline firing rate for PT and OT overlapped. 

That is, unlike PMd, PRR activity did not display a pre-stimulus baseline bias. While the absence 

of evidence is not the evidence of absence, the apparent predictive activity in PMd in contrast to 

PRR suggests the possibility that the fluctuation of PMd activity has a more causal role in the 

monkey’s choice than that of PRR activity. 

The tuning latency of the PMd and PRR populations are summarised in Table 2. When one target 

was better than the other and the features were congruent (i.e., “easy” conditions), PMd predicted 

the monkey’s choice in 60-80 ms. In the same situations, PRR predicted the monkey’s choice in 

75-115 ms, and the difference was particularly large during Easy-BU and Easy-Both trials. When 

Condition PMd PRR  Condition PMd PRR 
1T 60 ms 80 ms  Twin 100 ms 160 ms 
Easy-BU 60 ms 100 ms  ConS-BU 90 ms 195 ms 
Easy-TD 80 ms 75 ms  ConS-TD 100 ms 150 ms 
Easy-Both 60 ms 115 ms  ConM-BU 105 ms 235 ms 
Mean “easy” 65 ms 92.5 ms  ConM-TD 110 ms 105 ms 
    Mean equal value 101 ms 169 ms 

 
Table 2. Summary of Population Tuning Latency 

Tuning latencies of the PMd and PRR populations for different conditions and the mean of “easy” and 
equal value groups in millisecond. 
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the target values were equal and features were incongruent, PMd predicted the monkey’s choice 

in approximately 100 ms, whereas PRR predicted the choice in 105-235 ms. 

Frequency of Pre-stimulus Baseline Bias 

Were PMd cells more likely to show the pre-stimulus baseline bias than PRR cells? To quantify 

the frequency of cells with the pre-stimulus baseline bias, we compared the difference in the 

baseline firing rate between PT and OT during a 300 ms pre-stimulus window of equivalued trials. 

Neurons were considered to show the bias at p<0.05 (Wilcoxon rank sum test). According to this 

criterion, in the PMd population, 23% of cells (280/1207) had the bias, and in the PRR population, 

11% (99/871) had the bias. These frequencies were comparable to those reported in other studies 

in the analogous areas for eye movements; for example, Coe and colleagues reported that 49.1% 

(27/55) of SEF, 22.5% (25/111) of FEF, and 31.3% (10/32) of LIP neurons displayed a pre-

stimulus anticipatory bias in a saccade task with variable reward rate (Coe et al., 2002).  

PMd choice latency varied across trial conditions, whereas PRR did not. 

Figure 20 shows the cumulative histogram of choice latency of PMd and PRR neurons that 

appeared within 500 ms from target onset when all trial types are considered. In the PMd 

population (N=529), the distribution of choice latency varied across conditions. 1T trials had the 

shortest latency, with more than 50% of the population reflecting the monkey’s choice 120 ms 

after target onset. This was followed by Easy-TD at 140 ms, Easy-BU and Easy-Both at 150 ms, 

ConS-TD and ConM-TD at 170 ms, Twin at 180 ms, and ConS-BU at 190 ms finally ConM-BU 

trials at 200 ms after target onset. 1T trials were significantly different from all other trials 

(Wilcoxon rank sum test, 1T vs Easy-TD at p=2.6x10-5, vs Easy-BU at p=7.4x10-5, vs Easy-Both 

at p=2.3x10-5, vs ConS-TD at p=1.2x10-12, vs ConM-TD at p=5.2x10-12, vs Twin at p=1.7x10-13, 

vs ConS-BU at p=1.9x10-13, vs ConM-BU at p=3.4x10-7). Decision latencies in Easy-BU, Easy-
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TD and Easy-Both trials were not significantly different from each other (p>0.05), but they were 

faster than all equivalued conditions (Twin, ConS-BU, ConS-TD, ConM-BU, and ConM-TD, all 

at p<0.01, p<0.01, and p=0.01, respectively). ConS-BU, ConS-TD, ConM-BU, ConM-TD and 

Twin trials were not significantly different from each other (p>0.05). In the PRR population 

(N=194), 1T trials were significantly faster than Easy-TD, ConS-BU and Twin trials (1T vs Easy-

TD at p=4.2x10-3, vs ConS-BU at p=0.01, vs Twin at p=5.0x10-5). Easy-Both, ConM-TD, Easy-

BU and ConS-TD were faster than Twin trials (Twin vs Easy-Both at p=4.1x10-3, vs ConM-TD at 

p=1.9x10-2, vs Easy-BU at p=2.6x10-2, vs ConS-TD at p=3.5x10-2). The 1T, Easy-Both, ConM-

TD, Easy-BU, ConS-TD, and ConM-BU were not significantly different from each other (p>0.05). 

Easy-TD, ConS-BU and Twin were not different from each other (p>0.05).  

 

Figure 20. Cumulative Choice Latency 

Cumulative histogram of choice latency for (A) PMd (N=529) and (B) PRR population (N=194). 
Conditions are depicted with the same colour coding as Figure 15. Asterisks indicate statistical 
significance at p<0.05. 
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PMd was faster than PRR at predicting the monkey’s choice 

Figure 21 is the same data as 

Figure 20, separated by 

conditions to better visualise the 

comparison between PMd (lines 

with triangles) and PRR (lines 

with dots). The PMd population 

was faster than PRR at predicting 

the monkey’s choice during 1T, 

Easy-BU, Easy-TD and Twin 

trials (Wilcoxon rank sum test, 

1T at p=5.5x10-5, Easy-BU at 

3.7x10-5, Easy-TD at p=9.5x10-7 

and Twin at p=8.9x10-5). There 

was no difference between PMd 

and PRR in Easy-Both, ConS-

BU, ConS-TD, ConM-BU and 

ConM-TD trials (p>0.05). In 

most of the conditions, at the time 

when 50% of PMd population 

predicted the monkey’s choice, 

less than 45% of PRR population 

did so (1T: 32%, Easy-BU: 36%, 

 

Figure 21. Cumulative Choice Latency by conditions 

Cumulative histogram of choice latency of (A) 1T, (B) Easy-BU, 
(C) Easy-TD, (D) Easy-Both, (E) Twin, (F) ConS-BU, (G) 
ConS-TD, (H) ConM-BU, and (I) ConM-TD trials. Lines with 
triangles and dots represent PMd and PRR populations, 
respectively. Asterisks indicate statistical significance at p<0.05. 
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Easy-TD: 26%, Easy-Both: 40%, Twin: 27%, ConS-BU: 43%, ConS-TD: 43%, ConM-BU: 46%, 

ConM-TD: 45%). 

Microstimulation 

We used microstimulation to further investigate the causal roles of PMd and PPC in the ongoing 

reaching decision. We hypothesised that if an area is causally involved in ongoing decision 

processes, disrupting its neural activity would result in changes in the behavioural patterns, such 

as slowing or speeding of the decision process (Thura & Cisek, 2020). We stimulated (57 ms, 333 

Hz, 70 µA) in 6 PMd and 6 PRR sites, chosen based on the presence of audibly or visually 

observable neural activity at the beginning of each session. 

Microstimulation effects were location- and time-dependent 

Figure 22 summarizes the effects of microstimulation. Out of 6 PMd sites, 2 sites had effects that 

were statistically significant, 3 sites had a trend of effects that did not meet statistical significance, 

and one site had no effects. 

Of these, 3 sites made the 

RTs longer and 2 sites had a 

mixed result (i.e., both longer 

and shorter RTs). Out of 6 

PRR sites, 2 had effects that 

were statistically significant, 

1 had a trend of effects that 

did not meet statistical 

significance, and 3 had no 

effects. Of these, 2 sites made 

 
Figure 22. Microstimulation location 

Penetration location of microstimulation on (A) PMd and (B) PRR. 
Different shapes indicate different effects on behavioural latency 
when stimulating the site. Red triangle: longer RT. Blue square: 
shorter RT. Yellow circle: longer and shorter RT depending on trial 
conditions, thus mixed effects. Larger shapes represent statistically 
significant changes. Smaller shapes represent a trend that did not meet 
statistical significance. A: anterior. P: posterior. M: medial. L: lateral. 
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the RTs longer, and one site made it shorter. In total, 5/6 PMd and 3/6 PRR sites had some effects 

on the behavioural latency. 

Figure 23 shows the effects of an example site in PMd (indicated by the large yellow circle in 

Figure 22A), which had a 

mixed result. Microstimulation 

of this site at 150 ms after 

target onset made the RT 

shorter during 1T trials 

(Wilcoxon rank sum test, 

p<0.01), but did not have an 

effect in other trials. In 

contrast, microstimulation at 

100 ms made the RT longer in 

several trial types (significant 

at p<0.01 in Easy-BU, Twin, 

and ConS-TD, and nearly 

significant at p=0.051 in 

ConS-BU).  

Table 3 shows the effects of all 

microstimulation sites. In most 

conditions, there was no effect of microstimulation regardless of the timing. When there was an 

effect, stimulation at 100 ms after target onset mostly increased the RTs, whereas stimulation at 

150 ms had more mixed effects. All but one of the PMd sites had some stimulation effects, whereas 

 

Figure 23. Example microstimulation effects 

Cumulative histogram of RTs of different conditions with and 
without microstimulation on a PMd site. (A) 1T, (B) Easy-BU, (C) 
Easy-TD, (D) Easy-Both, (E) Twin, (F) ConS-BU, (G) ConS-TD, 
(H) ConM-BU, and (I) ConM-TD. Dotted and dashed lines 
represent RT of trials with microstimulation at 100 ms and 150 ms 
after target onset, respectively. Solid lines represent control trials 
(i.e., no stimulation). This site had mixed effects. 
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half of the PRR sites had no effects. This again points towards the possibility that PMd has a 

stronger causal role on ongoing decisions compared to that of PRR. 

 

Neural Space Analysis 

To explore how the firing rate of the whole neuronal population varied during the task, we created 

a hyperdimensional space using each neuron’s firing rate as one dimension and performed 

dimensionality reduction using Principal Component Analysis (PCA). Figure 24 shows the first 9 

principal components (PCs) of all isolated neurons, which together account for 76.44% of the 

variance explained. PC1 explains almost 30% of the variance in the firing rate, capturing the 

transition between deliberation (which we estimated as being until approximately 110 ms after 

target onset) and commitment. PC2 explains approximately 17% of the variance, and it reflects the 

direction of the upcoming choice movement (i.e., left vs right) and differs for different trial 

 PMd PRR 
Condition 12 17 7 4 26 6 49 60 38 55 40 50 
1T ¯* - - - - - - - - - - - 
Twin ­* - - - - - - ­ - - - - 
Easy-BU ­ - - - - - - - - - - - 
Easy-TD - - - - ­ - ­ - - - - - 
Easy-Both - ­* ­ - - - - - - - - - 
ConS-BU ­ - - - - - - - - - - - 
ConS-TD ­* - - - ­¯ ­ - - - - - - 
ConM-BU - - - - - - - ­ ¯*¯* - - - 
ConM-TD - - ¯ - - - - - - - - - 

 

Table 3. Microstimulation effect details 

Top 6 sites are in PMd, and bottom 6 sites are in PRR. Upward arrows indicate increase in RT (i.e., 
slower). Downward arrows indicate decrease in RT (i.e., faster). Arrows with an asterisk mean the effect 
met statistical significance at p=0.05 in Wilcoxon ranksum test. Red and blue arrows represent effects 
of stimulations delivered at 100 ms and 150 ms after target onset, respectively. 



 

107 
 

conditions. Specifically, the divergence reflecting the directional choice appears the earliest in 1T 

(black), second earliest in Easy-BU (orange) and Easy-TD (light blue), and the latest in ConS-BU 

(dark red), ConS-TD (dark blue), and Twin (gray) trials. PC3 explains approximately 13% of the 

variance, and it reflects the trial types and the elapsing time. The distinction of trial types varied 

from PC2, such that ConS-BU had the highest amplitude, separating itself from ConS-TD and 

Twin. PC4 explains less than 4% of the variance, yet it appears to reflect the baseline bias that was 

the most prominent in ConS-BU trials, diverging prior to target onset. 

 

Figure 24. Principal Components of Neural Space Analysis, all neurons 

Trajectories of the principal components plotted against time, aligned to target onset. Different colours 
represent different trial conditions. Black: 1T, orange: Easy-BU, light blue: Easy-TD, dark red: ConS-
BU, dark blue: ConS-TD, gray: Twin. 
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Figure 25 shows the activity of PMd (Figure 25A) and PRR (Figure 25B) separately projected on 

the same PC spaces. At a glance, the trajectories of both PMd and PRR population appear similar 

to that of the whole population. However, PC1 of the PMd population appears to distinguish 

different trial types clearly within 50 ms, while PRR does not do so until much later, approximately 

300 ms after target 

onset. Furthermore, 

PC1 of the PRR 

population lacks the 

initial increase seen 

in PMd that reflects 

the presence of a 

second target. PC2 of 

the PRR population 

also diverges in a 

different order than 

that of PMd. In 

particular, while both 

areas distinguished 

1T from the rest of 

the trial types, PMd 

trajectory had the 

Easy trials followed 

by the Conflict and 

 

Figure 25. Neural Space Analysis, Monkey Y 

The first 9 principal components of (A) PMd and (B) PRR neurons. Colour 
coding is the same as in Figure 24. 

A. PMd

B. PRR
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Twin trials, whereas PRR trajectory had ConS-BU as the second earliest with the baseline bias, 

followed by Easy trials and finally ConS-TD and Twin. While activity in both regions reflect key 

aspects of the task, their differences were not uniformly explained by the different components. In 

other words, PMd and PRR seem to be affected by different trial conditions at different timepoints 

during the task.  

Interestingly, if we focus only on PC2, the divergence of activity during ConS-BU trials appears 

earlier in PRR than in PMd, while the opposite is the case in ConS-TD trials. This is in agreement 

with the prediction of the hypothesis that both regions are part of a Distributed Consensus. 

However, the statistical significance of this observation remains to be established and as such, 

must be considered with caution.  

Local Field Potential (LFP) Analysis 

In addition to the spiking data, we collected local field potentials (LFPs), which are believed to be 

a proxy of a summation of synaptic activities around the recording electrode (Pesaran et al., 2008; 

Sanes & Donoghue, 1993; Scherberger et al., 2005). The preliminary results are described 

elsewhere (Lusignan, 2022). In brief, the LFP signal was recorded at approximately 1017 Hz from 

electrodes that had audible, visible or isolatable neural activities. The analyses focused on data 

from 8 PMd and 10 PPC electrodes in which the largest number of consecutive sessions were 

recorded, which were averaged across each region for spectrogram and frequency band analyses. 

The main findings were discussed around three bandwidths. First, the alpha band (15-22 Hz) 

displayed a rapid and transient burst following target onset, which was present in all but single 

target trials. Second, the low gamma band (40-55 Hz) showed suppression following target onset 

and rebound into the delay period. Finally, high gamma band (70-90 Hz) activity discriminated 

right versus left choices in a subset of trial conditions. In both PMd and PPC, alpha, low gamma 
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and high gamma bands were all modulated by the choice directions. In PMd, low gamma and high 

gamma bands additionally discriminated different trial types, particularly between the Easy and 

Conflict trials. Future work will include a more detailed analyses on a larger dataset, including the 

LFPs from the second monkey, to obtain a more complete picture. 

CONCLUSION 

This chapter showed the results from the Dual Feature task performed by a monkey while we 

recorded electrophysiological data from the dorsal premotor cortex and parietal reach region. 

Behaviourally, the reaction time distributions between the human participants and one of the 

monkeys showed very similar trends. Neurally, both PMd and PRR population activity reflected 

the monkey’s directional choice shortly after target onset. In 1T, Easy-BU, Easy-Both, Twin, 

ConS-BU, ConS-TD and ConM-BU trials, the earliest choice-related activities appeared in PMd 

at least 20 ms faster than that of PRR. In the Easy-TD and ConM-TD trials, PRR was faster than 

PMd, but only by 5 ms. The analysis of the latency distributions showed that this choice-related 

activity appeared earlier in PMd than in PRR in 1T, Easy-BU, Easy-TD and Twin trails. In Easy-

Both, ConS-BU, ConS-TD, ConM-BU and ConM-TD trials, PMd and PRR latencies were similar. 

Furthermore, there was a significant pre-stimulus bias in the PMd baseline activity, which was 

absent in the PRR baseline activity. The analysis of cumulative histograms of choice latency 

showed that while the latency distribution in PMd discriminated different trial conditions, that of 

PRR reflected essentially only the difference between 1T trials and the rest (trials with two targets). 

The microstimulation section showed that, while the effects are not straightforward, stimulation of 

PMd appear to affect the monkey’s reaction time more often than stimulation of PRR. Neural space 

analysis on the larger populations including cells with later tuning property showed that despite 

the strong reciprocal connections, the components that explained the variance of PMd activities 
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were not equally present in PRR activities. Preliminary LFP analyses suggest that while directional 

information is present in both PMd and PPC, additional information such as trial conditions were 

seen in PMd but not in PPC. 

One of our original aims was to investigate whether separate neural substrates exist for processing 

bottom-up and top-down information, and how conflicts between these are resolved. We drew 

inspiration from previous studies and chose two specific attributes: the target brightness as BU and 

the angle of an overlaid line as TD, and recorded from two sensorimotor regions, PMd and PRR. 

We expected that during BU-based decisions, neural activity predicting the monkey’s choice 

would appear first in PRR and then in PMd. In contrast, we expected that during TD-based 

decisions, choice-related activity would appear first in PMd and then in PRR. In other words, we 

aimed to replicate what Buschman and Miller reported, that LIP preceded FEF when bottom-up 

information was dominant, and FEF preceded LIP when top-down information was dominant 

(Buschman & Miller, 2007), even when both kinds of information were present simultaneously. 

So far, our results point towards a different story. Instead of the attribute-based latency reversal, 

we found that PMd almost always preceded PRR in predicting the monkey’s choice. If the latency 

difference existed in Easy but not in Conflict trials, the results could have been interpreted as 

reflecting the visual attribute without necessarily contributing to the decision processes. However, 

the latency order was consistent not only in the Twin and Conflict trials, but also during decisions 

based on both BU and TD attributes. Thus, our results are more in line with studies that argue 

against PRR having a causal role, at least in our task (Katz et al., 2016; Westendorff et al., 2010). 

In contrast to PRR, our results suggests that PMd does have a causal role in the decision process 

we investigated. One notable finding from our results was the speed in which the PMd population 

predicted the monkey’s choice. In all conditions we analysed, the PMd population showed 
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directional tuning within 110 ms from target onset. When the choice was “easy”, this tuning 

appeared within 60-80 ms from target onset. Not only is this comparative to the FEF latency 

reported by Buschman and Miller, it is almost as fast as the latency of the event-related potential 

locked to stimulus onset (but not response predictive, which was typically at or later than 150 ms 

from stimulus onset) by Ledberg and colleagues (Buschman & Miller, 2007; Ledberg et al., 2007). 

Furthermore, the difference in latency between PMd and PRR was not constant across trials, as 

would be predicted if both regions lie outside a Central Executive from which they receive 

decision-related information. Instead, PMd activity showed choice-predictive latencies that 

differed for decisions made on the basis of different kinds of information, while PRR latencies 

were similar in all 2-target trials. This is consistent with the proposal that PMd lies within the 

decision-making circuit even if PRR does not. 

Finally, the baseline activity of the PMd population was predictive of the upcoming choice in Twin 

and Conflict trials, that is, when the trial condition contained no “correct” answer. Because the 

trial conditions were randomized in our task, it is unlikely that the monkey was anticipating any 

specific condition in a given trial. This is in line with the fact that there is no clear difference in 

the pre-stimulus baseline activity in 1T and Easy trials, as any fluctuation prior to the stimulus 

onset will be overwritten once information arrives about the “correct” option, which can appear 

on the left or on the right with equal likelihood. It other words, this bias was revealed only when 

the trials were classified on the basis of direction in trials when the monkey was given an 

opportunity to freely choose, in which the baseline fluctuation could influence the upcoming 

choice. The lack of such pre-stimulus baseline bias in the PRR population additionally suggests 

that PRR does not have a causal role in this decision paradigm. 
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Taken together, our results provide support for the hypothesis that PMd plays a causal role in the 

decision process, but do not support a causal role of PRR, at least in the task we studied.  

Strictly speaking, our findings do not conclusively reject either the Central Executive or 

Distributed Consensus theories, and instead simply argue against their most extreme variations. 

For example, the classical Central Executive theory does not include sensorimotor areas as part of 

the decision-making network, yet our results suggest a causal role of PMd in action decisions and 

thus argue against the classical notion of a Central Executive. Notably, the possibility that the 

Central Executive may not be a single brain area, and could instead be comprised of multiple 

neural substrates, has been proposed previously (Baddeley, 1996). Conversely, a Distributed 

Consensus theory that implicates the entire sensorimotor circuit in decision-making would also 

include PRR (Cisek, 2012), yet our results argue against a causal role for PRR in our task. Instead, 

our results are best interpreted as support for a third alternative: a decision network that includes 

PMd, but not PRR (at least not for the attribute we chose), when making value-based action choices. 

This third alternative will be examined in more depth in the final chapter of this thesis: General 

Discussion. 
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CHAPTER 5 GENERAL DISCUSSION 

SUMMARY 

The goal of this thesis was to examine how the brain makes action decisions. To do so, we focused 

on two alternative hypotheses:  

1. All decisions are made in a Central Executive 

2. Decisions about actions are made through a Distributed Consensus 

The crucial difference between these hypotheses lies in their implication for neural substrates of 

decision making. If all decisions are made in a Central Executive, one would expect that the brain 

region or regions included in the Central Executive would reflect decision-related variables during 

deliberation, be causally involved in determining a choice, and would broadcast that choice to 

regions outside the Central Executive, including the sensorimotor areas responsible for 

implementing the selected actions. Numerous studies provided data supporting this view, and 

suggested the prefrontal cortex as the Central Executive area (Goodwin et al., 2012; Juechems et 

al., 2017; Kim & Shadlen, 1999; Padoa-Schioppa, 2011; Tanji & Hoshi, 2008; Wallis & Miller, 

2003). In contrast, if some decisions are made through a Distributed Consensus that involves many 

regions, including those outside of the prefrontal cortex, then one would expect those regions to 

also be involved in ongoing decision processes. This notion has been supported by other studies, 

which have proposed that sensorimotor areas such as superior colliculus, lateral intra parietal area, 

parietal reach area, primary motor cortex and premotor cortex are included in the distributed 

decision network (Basso & Wurtz, 1998; Gail & Andersen, 2006; Pastor-Bernier & Cisek, 2011; 

Platt & Glimcher, 1999; Shadlen & Newsome, 2001; Thura & Cisek, 2014). These two hypotheses 

suggest different roles for different brain areas, and combined with the notion of dorsal and ventral 
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streams, predict different sequences in which decision-related information can flow in the brain. 

However, in most decision experiments, the tasks are not designed to completely dissociate the 

two. This is because in most studies there is almost always a correct answer, a situation in which 

the predictions of the two hypotheses are difficult to distinguish. Therefore, we designed a decision 

task with two independent attributes, which allows us to create a situation of conflict, in which the 

two hypotheses predict different patterns and latencies of neural responses.  

We used “bottom-up” (BU) brightness and “top-down” (TD) line orientation features to jointly 

indicate the reward value in a two-alternative forced-choice reaching task. The BU feature was 

aimed to activate the saliency network through the dorsal occipital-to-parietal pathway, whereas 

the TD feature was aimed to activate a more knowledge-based categorization network through the 

ventral temporal-to-prefrontal pathway (Buschman & Miller, 2007). The two hypotheses made the 

most distinct predictions when the features were in conflict, but the total reward values of the 

choices were equal. In this incongruent free-choice condition, a pure Central Executive model 

predicted that behavioural and neural latency will reflect the serial flow of decision-related activity 

in the brain. That is, the shortest choice latency should be in the prefrontal cortex, where the 

decision happens, and slower responses should be found in sensorimotor areas, where the final 

decision is converted into behavioural outputs – but with a constant latency difference between 

different regions regardless of how the decision is made (Figure 1A). For the same situation, the 

Distributed Consensus model predicted that, if a region is part of the distributed decision network, 

its choice latency will vary as a function of its role in the ongoing decision. That is, shorter latencies 

are expected when a region is faster to receive the information on which the choice is based, 

whereas longer latencies are expected when a decision was made in a different region on the basis 
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of other kinds of information. (Figure 1B) We collected behavioural data from human participants, 

and behavioural and neural data from two macaque monkeys. 

The human project was purely behavioural, which means it cannot directly address the distinction 

between the two main hypotheses. However, it was informative for comparing the behavioural 

 

Figure 1. Schematics of the predictions of the two theories during conflict trials 

 (A) Central Executive model, which predicts a constant choice latency difference between the central 
executive area and the sensorimotor areas regardless of the choice. (B) Distributed Consensus model, 
which predicts a latency reversal between the two sensorimotor areas based on the information that 
drove the choice. 
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patterns of monkeys to that of humans. Furthermore, it allowed us to address a question relevant 

to the Central Executive hypothesis: do we always integrate everything before making a decision, 

or can we sometimes jump the gun? Here, we report that human participants made decisions with 

different latencies depending on conditions, and the order of the latencies suggested that decisions 

were sometimes made before all of the attributes were integrated. Importantly, all of the trial types 

were randomly interleaved, making it impossible for participants to simply choose different 

policies for “Easy” versus “Conflict” trials because one could not know whether a given trial 

involved conflict until both kinds of information (BU and TD) were received. Thus, our findings 

were inconsistent with the “integrate-and-compare” model, which postulates that decision 

processes are a comparison between singular, integral units of desirability (FitzGerald et al., 2009; 

Lim et al., 2013). Instead, our findings were more in line with other studies, supporting the theory 

that decision-making is a hierarchical process in which multiple aspects can influence each other 

beyond their conceptual boundaries (Diederich, 2003; Hunt et al., 2014).  

If decisions can be made without fully integrating all the information, what are the neural substrates 

of the relevant processes? Does everything happen in a single Central Executive area, such as the 

prefrontal cortex, or can other areas trigger choices, especially when made on partial information? 

Given that decisions can be made without full integration of all information, we anticipated to 

observe differential neural activations in regions that play a causal role in ongoing action decisions. 

The core of this thesis was the monkey project, and its objective was to find patterns of neural 

activity that dissociate the two hypotheses. Here, we report that choice-predictive activity was 

present in both sensorimotor areas we recorded, PMd and PRR, but many of our findings suggest 

that PMd, but not PRR, has a causal role in the current decision task. First, the choice-predictive 

activity of the PMd population preceded that of PRR in 1T, Easy-BU, Easy-Both, Twin, ConS-
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BU, ConS-TD, and ConM-BU trials by a minimum of 20 ms, whereas PRR preceded PMd in Easy-

TD and ConM-TD but only by 5 ms. Second, PMd displayed a pre-stimulus baseline bias in Twin 

and Conflict trials, whereas PRR did not. Third, the latency of choice-predictive activities in PMd 

varied with trial conditions, whereas that of PRR only discriminated whether the trial contained 

single versus multiple targets. Fourth, preliminary microstimulation results showed more 

consistent effects when microstimulating PMd, compared to PRR where effects were found in only 

50% of stimulation sites. Fifth, preliminary LFP analyses suggest that different bandwidths in PMd 

reflect different trial conditions, whereas that of PPC (i.e., PRR and LIP combined) did not. 

Together, our results suggest that PMd activity, especially during free-choice conditions, plays a 

causal role in the upcoming decisions. In comparison, our results did not support a causal role for 

PRR in our multi-attribute action decision task. As for the two hypotheses, our results argue against 

both of them, at least in their more extreme versions, and instead favor an alternative model that 

lies somewhere in-between. 

ON “PREMOTOR, BUT NOT PARIETAL” 

How do our results compare with previous findings? We interpreted our results to indicate that 

PMd, but not PRR, has a causal role in our multi-attribute decision task. However, our initial 

prediction was that both PMd and PRR will have a causal role, based on a plethora of studies 

demonstrating that both LIP and PRR activities reflect decision variables (Buschman & Miller, 

2007; Kubanek & Snyder, 2015; Pesaran et al., 2008, 2008; Platt & Glimcher, 1999; Shadlen & 

Newsome, 2001; Snyder et al., 1997; T. Yang & Shadlen, 2007). Before we refer to this apparent 

inconsistency as such, it is important to note that previous studies were reporting neural correlates 

of decision variables, such as the change in the neuronal activity with respect to experimentally 

manipulated parameters. With those kinds of correlations, it is difficult to distinguish whether the 
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observed effects imply that a region is causally related to a choice versus simply receiving a 

reflection of decision processes happening elsewhere. In this regard, our results are consistent with 

previous studies, as we did observe choice-related neural modulation in both PMd and PRR 

activity, albeit almost always slower in the latter region. 

To address the gap between the correlation and causation of neural correlates of decision-making, 

some studies used stimulation techniques to probe the causal role of a target brain area. For 

example, Hanks and colleagues showed that microstimulation of LIP affected the saccade choice 

ratio, arguing that LIP is one of the regions playing a causal role when choosing between multiple 

options (Hanks et al., 2006). However, Katz and colleagues showed that pharmacological 

inactivation of monkey LIP did not affect the performance of a random dot motion task, thus 

suggesting that an intact LIP is not necessary for choosing where to look based on perceptual input 

(Katz et al., 2016). Mooshagian and Snyder also showed that during bimanual reaching, neither 

LIP nor PRR activity reflected the order of targets the monkeys looked at (Mooshagian & Snyder, 

2018). These findings, albeit about saccades and not arm reaches, suggest that while PPC activity 

reflects variables pertinent to the ongoing processes, and may even have some influence on certain 

decision processes, its presence may not be indispensable. While the issue of whether parietal 

cortex is or is not causally involved in decisions is far from resolved, our results can be seen as 

favoring the latter view. 

INTERPRETING THE PRE-STIMULUS BASELINE BIAS 

What does the pre-stimulus baseline bias mean? One of the most puzzling of our results was the 

difference in the firing rate between when the monkey was to choose the cell’s preferred target 

(PT) versus the opposite target (OT) prior to target onset, observed clearly in the PMd population 
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during the conditions in which both targets were equally valued. We interpreted this phenomenon 

as indicative of PMd activity having a causal role.  

Here is a colloquial analogy that may help understand our conjecture: Imagine that you happen to 

feel like having some vanilla ice cream. You walk into an ice cream parlour but on that day, they 

happen to only have mango ice cream. So, you take the mango. This is analogous to 1T trials, in 

which there are no options to choose from. On a different day, you walk into the ice cream parlour 

and may initially be dazzled as you see the variety of flavours. This is potentially what is happening 

as the firing rate briefly increases for both PT and OT when there is more than one target, and 

converges in case of Twin trials, as the neural activity is modulated by the presence of two options. 

After that, if you notice that the mango flavour is on a special promo and sold at 2 scoops for 1, 

you will probably choose the mango ice-cream. This is analogous to the Easy trials, in which one 

option is clearly better than the other, and whatever you were “feeling like” is overwritten by 

information about the presence of the better option. In contrast, if all flavours are at the same price, 

you are more likely to choose vanilla based on your original gut feeling. This is analogous to Twin 

and equi-valued conflict trials. These trials contain no persuasive information to choose one target 

over the other, so the neural activity is less influenced by external information and may continue 

to reflect its original state. This allows the baseline fluctuation to affect the decision process to 

choose the neuron’s preferred target. That is, when all options are equally valued, we can act based 

on what we “felt like” and choose the vanilla ice cream. 

Other studies have reported similar pre-stimulus biases in superior colliculus, caudate nucleus, and 

substantia niagra pars reticulara, which can be experimentally manipulated and predictably 

influence behavioural outcome (Basso & Wurtz, 1998; Ikeda & Hikosaka, 2003; Lauwereyns et 

al., 2002; Platt & Glimcher, 1999; M. Sato & Hikosaka, 2002; Takikawa et al., 2002). For example, 
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Shadlen and Newsome showed that during a random dot motion task, LIP activity prior to the 

stimulus onset already predicts the monkey’s choice when the motion coherence is low (Shadlen 

& Newsome, 2001). In another example, Coe and colleagues showed that during a free choice 

saccade task, a subset of neurons in monkey supplementary eye field, LIP and FEF displayed 

anticipatory activities that predicted the choice prior to target presentation (Coe et al., 2002). In 

our task, trials were interleaved, thus any spatial reward contingency the monkey perceived was 

coincidental. Nonetheless, it is possible that the monkey decided to favour one direction over the 

other, due to the biased input from cortical and subcortical regions to the sensorimotor neurons 

representing respective directions (Hikosaka & Watanabe, 2000; Kawagoe et al., 1998; Mogenson 

et al., 1980; Samejima et al., 2005). 

LATENCY AND CAUSALITY 

We observed that PMd population activity predicted the monkey’s choice as early as 60 ms from 

target onset, even in the presence of multiple targets, if the targets varied in the BU feature. 

According to a study by Maunsell and Gibson in awake and behaving monkeys, the lateral 

geniculate nucleus cells respond within 30 to 50 ms from the visual stimulus onset, with the 

shortest latency ranging from 20 to 31 ms (J. H. Maunsell & Gibson, 1992). In a comment to the 

study by Buschman and Miller, Schall and colleagues noted that the conventional pop-out search 

task evoked choice-predictive activities within 140 ms from stimulus onset in FEF, lateral PFC, 

LIP and SC (Schall et al., 2007). Accordingly, one may consider that our PMd population’s choice 

latency is too early to be taken as a neural correlate of choice. However, in another study on event 

related potentials, Ledberg and colleagues reported that premotor, primary motor and prefrontal 

areas showed early, stimulus-nonspecific activation comparative to that of V1, suggesting that 

these areas need not wait for the whole occipital lobe to complete visual processing before they 
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receive stimulus input (Ledberg et al., 2007). Our PMd results are in line with their claim that 

decision processes involve multiple brain areas, ranging from sensorimotor to the executive 

regions.  

What was striking was the long latency of our PRR cells, not only because Ledberg and colleagues 

reported consistently earlier activations in parietal regions, but because it is known that PRR is 

heavily interconnected with PMd (Johnson et al., 1996; Markov et al., 2014; Morecraft et al., 2012). 

However, a study using a memory-guided anti-reach task showed that the order of activation 

during anti-reach trials was always PMd before PRR, with a difference of 27 ms between the two 

areas (Westendorff et al., 2010). While the latency difference between the two areas is not the 

same, our results are in line with that of Westendorff and colleagues, further supporting the 

implication of PMd having more of a causal role in decision processes compared to PRR.  

BETWEEN A CENTRAL EXECUTIVE AND A DISTRIBUTED 

CONSENSUS 

In our experiment, PRR activities did predict the monkey’s choice, sometimes as quickly as that 

of PMd. However, it preceded PMd in doing so in only one condition: Easy-TD, and only by 5 ms. 

These results fit neither of our original predictions. However, it must be acknowledged that those 

original neural predictions were based on somewhat “extreme” versions of the Central Executive 

and Distributed Consensus models, and that our results are best interpreted as pointing toward an 

alternative that falls on the gradient between the two theories. 

We predicted that, if decisions are made in a Central Executive, choice-predictive activity in PMd 

and PRR will appear at a constant latency difference across different trial conditions. First, the 
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visual input arrives at the occipital cortex, 

and the information is distributed throughout 

the brain, including the canonical dorsal and 

ventral visual pathways, creating the bottom-

up and top-down flows of information 

(Figure 2A). The bottom-up information 

refers to the saliency-based features, such as 

the stimulus onset, and in our experiment’s 

case, also the brightness of the target in 

addition to the visual onset. This information 

is expected to arrive at the parietal areas for 

attention-related processes as well as to the 

central executive areas for the decision 

processes (Figure 2A, red arrow). The top-

down information refers to features that are 

not inherently salient, such as a learnt 

mapping of arbitrary cues, which is expected 

to go through the temporal lobe to trigger 

memory-related processes and arrive at the 

executive areas (Figure 2A, blue arrow). 

Eventually, all information is gathered in the 

central executive area, converted into a 

unified “common currency”, integrated, and 

 

Figure 2. Schematics of the three theories 

Two original theories, (A) Central Executive and 
(B) Distributed Consensus, and (C) Alternative third 
theory based on our results. Thin lines indicate 
information pathways. Thick lines indicate decision 
pathways. The dotted gray line is a hypothesized 
frontal-to-parietal decision pathway. 
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compared at an abstract level to make decisions. The resulting choice is then realised via activating 

the sensorimotor regions (Figure 2A, purple arrows). This prediction was based on an assumption 

that these sensorimotor areas are not part of the Central Executive network, which traditionally 

implies prefrontal cortex (Tanji & Hoshi, 2008). Thus, however the Central Executive arrives at 

its choice, that choice will be broadcast to other regions with constant delays (e.g., X ms for PRR, 

Y ms for PMd), such that the relative latency difference between PMd and PRR remains constant. 

In other words, while the decisions may be faster in Easy-BU trials than Easy-TD trials, and faster 

in Easy than Conflict trials, the time when PMd and PRR predict the monkey’s choice will be 

always the same duration apart. In contrast, if decisions are made through a Distributed Consensus 

which includes both PMd and PRR, we predicted that the choice-predictive activity in PMd and 

PRR will have a latency reversal as a function of chosen target attributes (Figure 2B). This was 

based on the assumption that PRR receives “bottom-up” information before PMd, while PMd 

receives “top-down” information before PRR. In a conflict trial, for example, once PRR decides 

based on its bottom-up information, this resolution of a within-region competition influences the 

ongoing competition elsewhere in favour of its decision, such that the competition in PMd gets an 

additional boost to the option whose bottom-up feature is favourable. Our results had neither a 

constant temporal difference between the two regions, nor a temporal reversal in the order of 

choice-predictive activity. The variable latency differences between PMd and PRR argue against 

the idea that both are simply receiving the final decision. Instead, they suggest that PRR may be 

receiving a multitude of inputs from different regions, and its activity only reflects the final 

decision when other regions broadcast the resolution of competition between options. For example, 

Figure 2C depicts a possible alternative model in which PMd, dlPFC and OFC, all of which receive 

both BU and TD input, comprise parts of a distributed decision network. Projections from dlPFC 
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and OFC to PRR are suggested as a potential pathway for the delayed decision input, although not 

all tracing studies support these connections (Bakola et al., 2013; Markov et al., 2014; Shipp et al., 

1998).  

Another question is whether PMd is part of the decision circuit, or whether it simply happens to 

receive a preview of the ongoing decision processes occurring elsewhere. According to Baddeley, 

a Central Executive is just a theoretical concept and not to be taken to imply a unitary neural 

substrate, much like the functional implications of prefrontal areas are far from unitary (Baddeley, 

1998). In this view, the distinction between the Central Executive and Distributed Consensus 

models becomes a continuum, and PMd may fall somewhere in the middle as a non-traditionally 

“executive” sensorimotor area with a causal influence. If so, one would expect to see other neural 

substrates with comparative latency, predicting the monkey’s choice equally or more quickly in 

certain conditions. Likewise, it is possible that PMd is simply receiving and reflecting the final 

output from executive regions, such as prefrontal areas. In this view, one would expect to find 

neural substrates with consistently shorter latency than that of PMd. In fact, our second monkey’s 

recording chamber includes prefrontal areas for this very reason. Our aim is to investigate the 

neural correlates of several other candidate executive regions, such as dlPFC and dACC during 

the same task, to see if the activity in these areas precedes PMd in predicting the monkey’s choice. 

A potentially interesting case is if some frontal regions consistently reflect the information 

pertinent to the decisions but not sensitive to the choice made, which implies their role in providing 

decision variables without the causal role. 
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LIMITATIONS 

“There is nothing wrong with not knowing, but there is something wrong with not learning.” 

- Sara A. Solla, at the Montreal AI & Neuroscience meeting (MAIN), December 2020 

Below are some of the limitations of this thesis, what they may imply, and possible ways of 

mitigation for future. 

Sample Sizes 

Both human and monkey experiments consist of small sample sizes. The human behavioural data 

come from 14 participants. Their median RT distribution did not systematically cluster, but their 

cumulative RT distributions for ConS-BU and ConS-TD trials suggest that there are two subgroups 

within the sampled population, one with 8 and the other with 5 participants (Chapter 3, Figure 4).  

Furthermore, one participant did not provide us with any trials in one of the trial conditions: ConS-

BU, as all the initially ConS-BU trials eventually became ConS-TD trials (i.e., started to reach for 

BU-favoured target, but course-corrected for TD-favoured target). This was not completely 

unexpected, as the Dual Feature task is a free choice task that does not penalise such one-sided 

choice behaviour. According to a power analysis on our data (alpha: 0.5, desired power: 0.8), 

future replication attempts require a minimum of 12 participants if we are to focus on the subgroup 

with an RT difference between ConS-BU and ConS-TD, but for a full assessment of individual 

differences, one would require a minimum of 68 participants. 

The electrophysiological data presented here come from one monkey and the second monkey’s 

data are only mentioned in Table 1. This was due to the low yield in task-related cells in the second 

monkey, which did not merit population analysis. One may ponder that, if the percentage of task-

related neurons in monkey Y was a representative of neuronal population, then we should have 
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collected approximately 38 PMd and 4 PRR neurons that are task-related in monkey K. However, 

we only collected 7 PMd and 0 PRR neurons to date. One possible explanation for this difference 

is that the two monkeys are performing the task with different heuristics, which affected the firing 

patterns of neurons in monkey K. Another possible explanation stems from the technical difference 

in the recording techniques between the two monkeys. We implemented a different approach to 

finding neurons in monkey K, in which we descended the electrodes first into deeper layers and 

then attempted to find isolatable units as we pulled up. This approach did not yield as many task-

related isolatable neurons as we did with monkey Y, in which we slowly descended the electrodes 

to isolate units from shallow layers. In fact, a preliminary analysis showed that cells recorded in 

shallow layers in monkey Y had shorter choice latency compared to those recorded in deep layers, 

and all PMd cells from monkey K to date were recorded in deep layers. Nevertheless, we are 

currently analysing more data from the second monkey, and hope to replicate the finding from the 

first monkey. 

The premise and corresponding predictions assumed extreme cases 

The second limitation is in the fundamental assumptions that led to the original prediction of the 

Distributed Consensus theory. Based on previous literature, we designed the experiment 

assuming that the outcome would support either 1) neither PMd nor PRR has a causal role, or 2) 

both PMd and PRR have a causal role. The data from the first monkey suggested a third 

alternative, that is, 3) one of the two sensorimotor areas (i.e., PMd) has a causal role, but not the 

other (i.e., PRR). While this is itself interesting and important, it makes it impossible to use 

latency differences to conclusively establish a causal role for PMd without comparing it to other 

regions that are putatively causally involved. 
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Consequently, we extended our recording regions in the second monkey. In addition to 

replicating the data from the first monkey, our aim is to investigate the choice latency of other 

frontal regions, including dorsolateral prefrontal cortex and dorsal anterior cingulate cortex. We 

predict that if the Central Executive theory holds, the prefrontal regions will always precede 

PMd with their choice latency. Alternatively, if PMd is part of the frontal decision-making 

network, its choice latency will be comparable to that of the prefrontal regions.  

Limited Attributes 

A simple explanation for the absence of an effect is that the experimental manipulation did not 

yield appropriate conditions for comparison. In case of this project, it is possible that the attributes 

we chose, particularly the “bottom-up” brightness feature of the targets, may have been an 

inadequate attribute for effectively engaging PRR neurons to play a causal role in ongoing 

decisions. In other words, perhaps PRR can be causally involved in decisions, but not in decisions 

based on attributes such as stimulus brightness. In fact, a study has shown that monkey PRR is 

capable of “ignoring” salience-driven response, when the task demands so (Kubanek et al., 2013). 

What are the other attributes that could allow PRR to play a causal role? One possibility is that 

PRR is instead more concerned with spatial attributes, such as location. Damage in the parietal 

cortex, as well as pharmacological inactivation of the same area, can lead to hemi-spatial neglect, 

a symptom characterised by reduced or lack of awareness on one side of space (Kubanek et al., 

2015; Parton et al., 2004). In that regard, one could consider replacing the target brightness with a 

spatial feature, so that certain parts of space or limbs are associated with high or low reward 

magnitude (Larry Snyder, personal communication), to see if such information leads PRR to play 

a causal role in decisions. In fact, Mooshagian and Snyder showed that LIP activity is sensitive to 

response modality condition, such that the classically observed saccade-predictive activity during 
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saccade tasks (Andersen, Bracewell, et al., 1990) were abolished when the monkeys made natural 

saccades prior to reaching with both arms (Mooshagian & Snyder, 2018). 

Overtraining 

An inherent limitation of monkey electrophysiology is that in most cases, monkeys are extremely 

overtrained by the time the recordings are performed. This project was no exception, as both 

monkeys have been performing the same task for over a year before we implanted the recording 

chambers. In the result section of chapter 4, we reported that initially, monkey Y’s reaction time 

distribution was comparable to that of humans. However, the observed difference between 

different trials conditions collapsed and disappeared following a few more sessions, likely due to 

overtraining. This raises concerns about the interpretation of the neural results. For example, if the 

monkey stopped treating the features as independent and instead memorised all of the 

combinations, the neural data would reflect the fact that each target is treated as one of 9 different 

categories (e.g., dim target with line at 4 o’clock = 1 drop, bright target with line at 8 o’clock = 3 

drops, and so on). If the monkeys were performing the task with perfect categorisation, one would 

predict that there will be no difference in the choice latency between trial conditions, since a 

comparison of any pair of target categories should take the same duration regardless of the 

particular combination of features that define each category. It is also possible that their response 

times would vary as a function of the difficulty of the comparison, in which case we predict longer 

choice latency in conflict trials. The fact the reaction time distributions collapsed makes it difficult 

to test these possibilities, albeit the observed differences in the neural latencies suggest that trial 

conditions had an impact, at least in PMd. 
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FUTURE DIRECTIONS 

Reversible Inactivation 

Based on our results, we predict that reversible inactivation of PMd and PRR to have distinct 

effects on the behavioural responses. For example, pharmacological inactivation of PRR may 

reduce the likelihood of choosing the target in its receptive field during equivalued trials without 

affecting “easy” trials, similar to what has been reported by Katz and colleagues (Katz et al., 2016). 

In contrast, inactivation of PMd may reduce the likelihood of choosing targets based on “top-down” 

information. 

Additional Attributes 

In our project, the brightness attribute did not influence the PRR activity as much as we expected. 

An obvious mitigation strategy is to choose a different attribute that is likely to be processed in 

PRR, such as spatial attribute mentioned above. Another way to expand the project is to record 

from additional brain regions and introduce additional attributes. For example, studies have shown 

that neurons in dACC reflect action effort (Walton et al., 2003). Accordingly, we can predict that 

effort attribute may affect dACC more than other areas. Other possible attributes include target 

size, effector (e.g., arm vs eye), reward probability, reward palatability and reward delivery delay. 

It is also possible that a simultaneous presentation of all the attributes may result in the neural 

activity being dominated by salient features, thus one may consider sequentially revealing each 

attribute to investigate the influence of each attribute on different brain areas. Careful manipulation 

of the timing of stimulus presentation and the GO signal could reveal how different attributes are 

integrated, and may allow well-trained monkeys to change their mind mid-reach. 
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Closing the Loop 

Similar to previous studies, our results revealed an internal anticipatory activity in a form of pre-

stimulus baseline bias (Basso & Wurtz, 1998; Coe et al., 2002; Shadlen & Newsome, 2001). This 

suggests an opportunity to create a closed loop, such that the baseline fluctuation of multiple 

regions is monitored online, and a GO signal is given when one region is clearly leaning toward 

one option versus the other. If this manipulation affects choice ratio as a function of the fluctuation 

and bias magnitude, and if experimentally silencing this region reduces the decision in favour of 

its bias, one can interpret them as evidence supporting the role of baseline fluctuation in a particular 

region as causally affecting a subsequent decision. 

The Rich Club 

The concept of a “rich club” suggests that, in a recurrent network, certain hubs can be heavily 

connected to other nodes, resulting in a small subset of nodes having larger than expected influence 

on the network (Zamora-López et al., 2010). One curious question is whether those neurons with 

pre-stimulus baseline bias belong to the cortical rich club. A simple and feasible approach would 

be to analyse their spike-field coherency, to see if they have stronger connection within and 

between regions. A more ambitious approach involves techniques such as high-density probes, to 

see if the rich club has preferred connectivity depths and projection patterns. 

CONCLUSION 

We designed a task with the goal to dissociate two models explaining how decisions are made. 

Our results were incompatible with both models and pointed towards a third alternative that can 

be seen as lying in-between the two proposed models. Our behavioral results suggest that action 

decisions can sometimes occur before all available information is integrated. Our neural results 

suggest that PMd activity plays a causal role in decisions about actions, whereas PRR activity 
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reflects the ongoing decision but does not appear to play a causal role. Our rich results raise more 

questions than they answer, many of which are worth pursuing in future studies.  
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