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Résumé

Cette thèse s’intéresse au problème classique de tournées de véhicules avec contraintes
de capacité (CVRP pour Capacitated Vehicle Routing Problem) ainsi qu’une variante
beaucoup plus complexe, soit le problème de tournées de véhicules dépendant du temps
avec fenêtres de temps et points de transfert défini sur un réseau routier (TDVRPTWTPRN

pour Time-Dependent Vehicle Routing Problem with Time Windows and Transfer Points
on a Road Network). Dans le premier article, le TDVRPTWTPRN est résolu en adaptant
une métaheuristique qui représente l’état de l’art pour le CVRP, appelé Slack Induction
for String Removals (SISR). Cette métaheuristique fait appel au principe “détruire et
reconstruire” en retirant des séquences de clients consécutifs dans les routes de la solution
courante et en réinsérant ensuite ces clients de façon à créer une nouvelle solution. Le
problème est défini sur un réseau routier où différents chemins alternatifs peuvent être
utilisés pour se déplacer d’un client à l’autre. De plus, le temps de parcours sur chacun des
arcs du réseau n’est pas fixe, mais dépend du moment où le véhicule quitte le sommet origine.
S’inspirant de problèmes rencontrés en logistique urbaine, nous considérons également deux
types de véhicules, de petite et grande capacité, où les grands véhicules sont interdits de
passage au centre-ville. Ainsi, les clients du centre-ville ne peuvent être servis que suite
au transfert de leur demande d’un grand à un petit véhicule à un point de transfert.
Comme un point de transfert n’a pas de capacité, une problématique de synchronisation
apparaît quand un grand véhicule doit y rencontrer un ou plusieurs petits véhicules pour
leur transférer une partie de son contenu. Contrairement aux problèmes stricts de tournées
de véhicules à deux échelons, les grands véhicules peuvent aussi servir des clients localisés
à l’extérieur du centre-ville. Comme le problème abordé est beaucoup plus complexe que
le CVRP, des modifications importantes ont dû être apportées à la métaheuristique SISR
originale. Pour évaluer la performance de notre algorithme, un ensemble d’instances tests
a été généré à partir d’instances existantes pour le TDVRPTWRN . Les réseaux omt été
divisés en trois régions : centre-ville, frontière et extérieur. Le centre-ville et l’extérieur
sont respectivemnt les royaumes des petits et grands véhicules, tandis que la frontière (où
l’on retrouve les points de transfert) peut être visité par les deux types de véhicules. Les
résultats numériques montrent que la métaheuristique proposée exploite les opportunités
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d’optimiser une solution en déplaçant autant que possible les clients neutres, soit ceux qui
peuvent être servis indifféremment par un petit ou un grand véhicule, des routes des petits
véhicules vers les routes des grands véhicules, réduisant ainsi les coûteuses visites aux points
de transfert.

Les deuxième et troisième article s’intéressent à des concepts plus fondamentaux et
font appel au problème plus simple du CVRP pour les évaluer. Dans le second article, un
étude expérimentale est conçue afin d’examiner l’impact de données (distances) imprécises
sur la performance de différents types d’heuristiques, ainsi qu’une méthode exacte, pour le
CVRP. À cette fin, différents niveaux d’imprécision ont été introduits dans des instances
tests classiques pour le CVRP avec 100 à 1 000 clients. Nous avons observé que les
meilleures métaheuristiques demeurent les meilleures, même en présence de hauts niveaux
d’imprécision, et qu’elles ne sont pas affectées autant par les imprécisions qu’une heuristique
simple. Des expériences avec des instances réelles ont mené aux mêmes conclusions.

Le troisième article s’intéresse à l’intégration de l’apprentissage automatique dans
la métaheuristique SISR qui représente l’état de l’art pour le CVRP. Dans ce travail,
le principe “détruire et reconstruire” au coeur de SISR est hybridé avec une méthode
d’apprentissage par renforcement qui s’inspire des systèmes de colonies de fourmis. L’ap-
prentissage automatique a pour but d’identifier les arêtes les plus intéressantes, soit celles
qui se retrouvent le plus fréquemment dans les solutions de grande qualité précédemment
rencontrées au cours de la recherche. L’inclusion de telles arêtes est alors favorisé lors de la
réinsertion des clients ayant été retirés de la solution par le mécanisme de destruction. Les
instances utilisées pour tester notre approche hybride sont les mêmes que celles du second
article. Nous avons observé que notre algorithme ne peut produire que des solutions lé-
gèrement meilleures que la métaheuristique SISR originale, celle-ci étant déjà quasi-optimale.

Mots clés : Problème de tournées de véhicules avec contraintes de capacité, temps de
parcours dépendants du temps, fenêtres de temps, points de transfert, données inexactes,
apprentissage par renforcement, métaheuristique.
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Abstract

This thesis is concerned both with the classical Capacitated Vehicle Routing Problem
(CVRP) and a much more complex variant called the Time-Dependent Vehicle Routing
Problem with Time Windows and Transfer Points on a Road Network (TDVRPTWTPRN ).
In the first paper, the TDVRPTWTPRN is solved by adapting a state-of-the-art metaheuris-
tic for the CVRP, called Slack Induction for String Removals (SISR). This metaheuristic
is based on the ruin and recreate principle and removes strings of consecutive customers
in the routes of the current solution and then reinserts the removed customers to create a
new solution. The problem is formulated in a full road network where different alternative
paths can be used to go from one customer to the next. Also, the travel time on each arc
of the road network is not fixed, but depends on the departure time from the origin node.
Motivated from city logistics applications, we also consider two types of vehicles, large
and small, with large vehicles being forbidden from the downtown area. Thus, downtown
customers can only be served through a transfer of their goods from large to small vehicles
at designated transfer points. Since transfer points have no capacity, synchronization issues
arise when a large vehicle must meet one or more small vehicles to transfer goods. As
opposed to strict two-echelon VRPs, large vehicles can also directly serve customers that
are outside of the downtown area. Given that the TDVRPTWTPRN is much more complex
than the CVRP, important modifications to the original SISR metaheuristic were required.
To evaluate the performance of our algorithm, we generated a set of test instances by
extending existing instances of the TDVRPTWRN . The road networks are divided into
three regions: downtown, boundary and outside. The downtown and outside areas are
the realm of small and large vehicles, respectively, while the boundary area that contains
the transfer points can be visited by both small and large vehicles. The results show
that the proposed metaheuristic exploits optimization opportunities by moving as much as
possible neutral customers (which can be served by either small or large vehicles) from the
routes of small vehicles to those of large vehicles, thus avoiding costly visits to transfer points.

The second and third papers examine more fundamental issues, using the classical
CVRP as a testbed. In the second paper, an experimental study is designed to examine the
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impact of inaccurate data (distances) on the performance of different types of heuristics,
as well as one exact method, for the CVRP. For this purpose, different levels of distance
inaccuracies were introduced into well-known benchmark instances for the CVRP with 100
to 1,000 customers. We observed that the best state-of-the-art metaheuristics remain the
best, even in the presence of high inaccuracy levels, and that they are not as much affected
by inaccuracies when compared to a simple heuristic. Some experiments performed on
real-world instances led to the same conclusions.

The third paper focuses on the integration of learning into the state-of-the-art SISR for
the CVRP. In this work, the ruin and recreate mechanism at the core of SISR is enhanced
by a reinforcement learning technique inspired from ant colony systems. The learning
component is aimed at identifying promising edges, namely those that are often found in
previously encountered high-quality solutions. The inclusion of these promising edges is
then favored during the reinsertion of removed customers. The benchmark instances of
the second paper were also used here to test the new hybrid algorithm. We observed that
the latter can produce only slightly better solutions than the original SISR, due to the
quasi-optimality of the original solutions.

Keywords: Capacitated vehicle routing problem, time-dependent travel times, time
windows, transfer points, inaccurate data, reinforcement learning, metaheuristic.
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Chapter 1

Introduction

In the last decades, vehicle routing problems (VRPs) have attracted the attention of
researchers due to their numerous applications in distribution systems. At the beginning
of the century, Toth and Vigo argued in [80] that the development of new and efficient
methods for transportation problems had produced savings between 5% and 20% in global
transportation costs. Recently, with the considerable increase in online purchases and the
need to reduce greenhouse gas emissions, there is an even stronger incentive to develop
better algorithms and strategies to solve VRPs. Although multiple problem-solving methods
have been proposed over the years, it is still difficult to optimally solve instances of realistic
sizes and the recourse to heuristic approaches, in particular metaheuristics, is very common.
The complexity of VRPs lies in their combinatorial nature and associated complexity, which
increases exponentially with problem size.

In the following, we briefly introduce VRPs and the particular problems that we address
in this thesis.

1.1. Vehicle routing problems
The VRP was originally introduced and mathematically formulated in 1959 by Dantzig

and Ramser [21]. In this work, the authors extend the classical Traveling Salesman Problem
(TSP) by adding capacity constraints to the trucks used to deliver gas to gas stations
(customers). The objective is then to create routes that start and end at a terminal and
serve each customer exactly once, while minimizing the total distance traveled by the
vehicles. This problem is now known as the capacitated VRP (CVRP).

Both exact and heuristic approaches have been proposed to solve VRPs. In [52], the
author classifies the main formulations (e.g., vehicle flow and commodity flow formulations)
and exact methods for solving it (e.g., branch-and-bound, dynamic programming). In [53],



the authors propose a classification of the multiple heuristics, including metaheuristics, that
have been reported through the years. According to [53], the first attempts to solve the
VRP started in the 60’s, when some relatively simple heuristics were proposed, like nearest
neighbor, insertion and savings heuristics [16]. The development of exact algorithms started
in the 80’s, followed by the advent of metaheuristics in the 90’s. Although exact algorithms
guarantee optimality, they can hardly solve instances with more than 200 customers.
Conversely, heuristics and metaheuristics do not guarantee optimality, but state-of-the-art
metaheuristics can now produce high-quality solutions on instances of large size in a
reasonable amount of time. This trade off between optimality and computation time is
particularly relevant in large-scale real-world problems that involve thousands of nodes. A
complete description and classification of exact algorithms, heuristics and metaheuristics
for VRPs can also be found in [30, 68, 80].

The CVRP is the simplest and more studied problem, with only a capacity constraint
imposed on the vehicles. However, many more complex variants have been proposed over the
years by considering additional attributes and constraints aimed at modeling more closely
different real-world applications. A detailed description of the best known variants of the
VRP can be found in [68, 80], for example the VRP with time windows (VRPTW ) that
introduces scheduling issues by associating a time window for service with each customer.

In this thesis, we address a very complex variant of the VRP, which extends the time-
dependent vehicle routing problem (TDVRP). In the latter, the travel time between each
pair of nodes is not fixed but depends on the departure time from the origin node. To the best
of our knowledge, the first paper about a TDVRP is found in [5], where an adapted version
of the savings heuristic is presented. A little bit later, the TDVRP with time windows was
addressed in [44, 58]. However, the First-In-First-Out (FIFO) property was not satisfied in
these previous works. This property establishes that if two vehicles travel along the same
arc, the vehicle that departs earlier from the origin node must arrive first at the destination
node (which is common sense). Almost ten years later, the authors in [45] finally formulated
a model satisfying the FIFO property by considering time-dependent travel speeds. The
TDVRP has attracted the interest of researchers in recent years, due to the more realistic
time-dependent travel times that can model congestion, but the authors in [30] note that
the time-dependent attribute is present in only 3.6% of VRP papers published between 2009
to 2017.
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1.2. Ruin and Recreate metaheuristic
As mentioned before, multiple heuristics and metaheuristics have been developed for

solving VRPs [52, 68, 80]. In [80], the authors identify six different types of metaheuristics:
simulated annealing, deterministic annealing, tabu search, genetic algorithms, ant systems
and neural networks. Since then, many new metaheuristics have appeared, one of them
being the Ruin and Recreate metaheuristic, originally introduced in [72]. In this work,
three Ruin methods that remove customers from the current solution in different ways are
proposed. The removed customers are then reinserted (so as to produce a new solution)
by a Recreate method. In [70], the ruin and recreate principle is exploited to solve a
pickup and delivery problem with time windows. The proposed methodology, where
several operators are used, is called the Adaptive Large Neighborhood Search (ALNS).
Here, the choice of the ruin and recreate operators at each iteration is not random,
but depends on their previous performance, using a dynamic weighting scheme. Also,
a simulated annealing criterion is used to accept or reject any new solution produced
through the ruin and recreate process. A very recent variant is proposed in [15], known
as Slack Induction of String Removals (SISR), where strings of consecutive customers are
removed from the routes. This metaheuristic has proven to be state-of-the art for the CVRP.

1.3. Papers of the thesis
The three next chapters correspond to the three papers produced from my thesis work.

In the first paper, a very challenging problem called the time-dependent vehicle routing
problem with time windows and transfer points on a road network (TDV RPTWTPRN)
is addressed by adapting a state-of-the-art metaheuristic for the classical CVRP. This
metaheuristic, known as Slack Induction for String Removals (SISR), is based on the
ruin-and-recreate principle where strings of consecutive customers are first removed from
routes in the current solution. The removed customers are then reinserted to obtain a
different, hopefully better, solution.

The second and third papers use the classical CVRP as a testbed. The second paper is
an empirical computational study aimed at evaluating the impact of inaccurate data on the
performance of different problem-solving methods for the CVRP, including SISR. The third
paper explores the integration of reinforcement learning into SISR. Inspired from ant colony
systems, the idea is to favor edges frequently found in good solutions when reinserting
customers during the recreate phase.
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Thus, the intention at the core of this thesis is to explore cutting-edge techniques and
problems in the context of vehicle routing: in the first paper, the handling of a complex
problem inspired from city logistics, involving the consideration of congestion in downtown
areas and synchronization of vehicles at transfer points, leading to the development of the
first metaheuristic to address this problem; in the second paper, the handling of inaccurate
data by different optimization methods, an intriguing subject that has been mostly ignored
in operations research; and, in the third paper, the combination of machine learning and
optimization methods, considered through the integration of an ant-based reinforcement
learning mechanism into a state-of-the art metaheuristic for the CVRP.
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This article was submitted to the journal Computers & Operations Research.

The main contributions of Fernando Obed Guillen Reyes for this articles are presented. He
designed, with the help of his advisors, a new version of a state-of-the-art metaheuristic to
solve the time-dependent vehicle routing problem with time windows and transfer points for-
mulated in a road network. Then, he designed with the help of his advisors, a computational
study based on test instances derived from benchmark instances for the time-dependent
vehicle routing problem with time windows. He also wrote the first draft of the paper.

Résumé. Dans cet article, nous considérons une extension du problème de tournées de vé-
hicules sur un réseau routier avec fenêtres de temps et temps de parcours qui dépendent du
moment de la journée, en introduisant deux types de véhicules de petite et grande dimension
pour servir les clients. En s’inspirant des problématiques rencontrées en logistique urbaine,
les véhicules de grande dimension sont interdits au centre-ville. Ainsi, les marchandises
doivent être transférées des grands aux petits véhicules pour desservir les clients situés au
centre-ville. Ceci mène à des considérations de synchronisation aux points de transfert qui
sont des points bien identifiés dans le réseau, mais dépourvus de capacité. Par ailleurs, le
problème n’est pas un problème pur à deux échelons, étant donné que les clients situés à
l’extérieur du centre-ville peuvent être desservis directement par les grands véhicules. Le
problème se complique encore davantage lorsque l’on doit tenir compte des temps de par-
cours sur les arcs du réseau routier qui dépendent du moment de la journée et qui servent à
modéliser les périodes de congestion. Pour résoudre ce problème complexe, nous proposons
une adaptation de la métaheuristique Slack Induction by String Removals, qui représente
l’état de l’art pour le problème de tournées de véhicules avec contraintes de capacité. Des
résultats expérimentaux sur des instances tests présentant différentes caractéristiques dé-
montrent empiriquement la capacité d’optimisation de cette nouvelle métaheuristique pour
un problème qui est beaucoup plus complexe que le problème canonique de tournées de
véhicules avec contraintes de capacité.
Mots clés : Problème de tournées de véhicules, réseau routier, temps de parcours dépen-
dants du temps, fenêtres de temps, points de transfert, synchronisation, metaheuristique,
slack induction by string removals
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Abstract. In this work, we extend the time-dependent vehicle routing problem with time
windows on a road network by considering two types of vehicles, large and small, to serve
customers. Motivated from city logistics applications, large vehicles are forbidden from the
downtown area. Accordingly, goods must be transferred from large to small vehicles to
serve downtown customers. This leads to synchronization issues at transfer points, which
are special locations without storage capacity. The problem is not a pure two-echelon vehicle
routing problem, since customers outside of the downtown area can be served directly by
large vehicles. The problem is further compounded by the presence of time-dependent travel
times that are defined on the arcs of the road network and are used to model congestion
periods. To solve this complex problem, we propose an adaptation of the Slack Induction by
String Removals metaheuristic, which is state-of-the-art for the classical capacitated vehicle
routing problem. Computational results on a set of test instances with different character-
istics empirically demonstrate the optimization capabilities of this new metaheuristic on a
problem which is much more complex than the capacitated vehicle routing problem.
Keywords: Vehicle Routing Problem, Road Network, Time-dependent, Time Windows,
Transfer Points, Synchronization, Metaheuristic, Slack Induction by String Removals.

1. Introduction
Although the vehicle routing problem (VRP) has been widely studied for a long time,

time-dependent variants have spurred the interest of researchers only recently. Time-
dependency is an important issue, since the time to travel from one point to another in
a network often depends on the departure time (c.f., rush hours). Furthermore, not only
does the time to travel along a path between two customers may change depending on the
departure time, but even the best path to use may also change. Thus, recent studies have
exploited the additional information available in a road network to account for multiple
possible paths between two customers, which is often referred to as the time-dependent
vehicle routing problem with time windows on a road network (TDVRPTWRN). In this
paper, we consider an extension of this problem where both large (black) and small (green)
vehicles are involved and where some parts of the road network are forbidden to one type
of vehicles or the other. For example, the downtown area is not accessible to large vehicles,
whereas areas far from downtown are not accessible to small vehicles (e.g., bicycles). Since
the goods to be delivered are initially loaded in large vehicles, a customer located in an area
not accessible to them can only be served through a transfer of its demand from a large to a
small vehicle. This transfer takes place at special locations with no storage capacity, known
as transfer points (TPs). This also leads to synchronization issues between the two types of
vehicles at transfer points. In the following, this complex delivery problem will be referred
to as the TDVRPTWRN with transfer points or TDVRPTWTPRN .

Our problem needs to be distinguished from problems with intermediate facilities, with
or without storage capacity, since there is no facility as such to transfer goods. It must also
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be distinguished from two- or multi-echelon VRPs where vehicles are organized into a strict
hierarchical structure to deliver goods to customers. In our problem, black vehicles can
very well serve customers directly, as long as they do not belong to forbidden areas. Our
contribution lies in the adaptation of a state-of-the-art metaheuristic for the capacitated
VRP (CVRP) for a much more complex problem that involves two types of vehicles, three
types of customers, time-dependent travel times and synchronization issues between the two
types of vehicles to transfer loads at transfer points. As far as we know, this problem has
never been addressed in the literature.

In the following, Section 2 first reviews problems related to ours, namely time-dependent
VRPs and VRPs with intermediate facilities. Section 3 then precisely describes our problem.
The original implementation of the metaheuristic Slack Induction by String Removals (SISR)
for solving the CVRP is described in Section 4. Then, Section 5 introduces time issues that
arise in the TDVRPTWTPRN , in particular calculation of time bounds to check insertion
feasibility in constant time and synchronization between black and green vehicles at trans-
fer points. Specific modifications to the original SISR implementation that are required to
address the much more complex TDVRPTWTPRN are reported in Section 6. Then, compu-
tational results obtained on test instances derived from a benchmark for the TDVRPTWRN

are reported. Finally, a conclusion follows.

2. Literature review
Two main features of our problem are time-dependent travel times and the presence of

intermediate points to transfer loads from one type of vehicles to another. Problems with
these characteristics are briefly reviewed in the following.

2.1. Time-dependent VRPs

In the first studies about time-dependent VRPs, a customer-based graph was used,
where nodes correspond to customers plus the depot and arcs stand for a particular path
between two customers in the underlying road network (e.g., shortest path in distance).
Since a fixed path is used to travel between two customers, it is only possible to account
for different travel times at different departure times along that path. However, it is not
possible to consider different paths between two customers at different departure times.
To the best of our knowledge, the first work that addressed time-dependency (although
without time windows at customers) on a customer-based graph is found in [5]. In this
work, the time horizon is divided into periods with a different travel time matrix for each
period. This is equivalent to defining a step function to model the travel time at different
periods between any given pair of nodes. A similar approach is proposed in [58], although
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for a problem with time windows. Since the travel time is constant within a period, but
may abruptly change from one period to the next, the two previous models do not satisfy
the First-In-First-Out (FIFO) property, where it is required that a vehicle traveling earlier
on an arc must arrive at the destination node earlier than any other vehicle traveling later
on the same arc. A different model is proposed in [44], where each node is assigned a
speed at a given period of time, which can be interpreted as the average speed around the
node. Then, the travel time on a given arc between two nodes is based on the average
speed around these two nodes. Once again, since the travel time on a given arc is constant
within a period, the FIFO property is not satisfied neither. A model that satisfies the FIFO
property was finally proposed in [45]. Here, the authors use a step function to model speed
(rather than travel time) at different time periods. That is, the speed is constant within
a given time period, but may change from one period to the next. The travel time along
an arc is then computed by taking into account the new speed when the time boundary
between two periods is crossed. Thus, every vehicle that travels along the same arc within
the same period has the same speed and the speed of every vehicle changes similarly when
the boundary between two given periods is crossed. This way to model time-dependency
has been largely adopted in the following years to solve TDVRPTWs using exact methods
and metaheuristics [25, 20, 62, 63]. In a few cases, continuous functions with special
characteristics to satisfy the FIFO property have also been used to model time-dependent
travel times [42, 4]. For a detailed literature review on time-dependent VRPs using
customer-based graphs (up to 2015), the reader is referred to [35].

Realistic objective functions are often based on travel times and the fastest path
between two customers may well change depending on the departure time. To account for
this, multi-graph representations have been proposed [33, 7, 8]. In these graphs, parallel
arcs between any given pair of customer nodes stand for different least-cost paths in the
underlying road network associated with different departure times from the origin customer
node (or, more generally, for different non-dominated paths in multi-objective optimization).
In [7, 8], the authors empirically demonstrate, using a branch-and-price algorithm and
an adaptive large neighborhood search (ALNS), that a multigraph representation for a
bi-objective VRP with time windows (VRPTW) that accounts for both travel time and
travel cost leads to considerably better solutions when compared to a standard customer-
based graph with a single arc (path) between two customers. However, the authors note
the considerable computation times needed to compute the multigraph. Accordingly, the
authors in [55], propose to work directly on the road network. In [9], a comparison between
a branch-and-price algorithm applied to a road network and to a multigraph representation
for a bi-objective VRPTW (travel time, travel cost) shows that both approaches are
competitive, but with a slight advantage for multigraphs on the more realistic instances.
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On the other hand, working directly on a road network is more natural and straightforward.
Thus, recent works that addressed TDVRPTWs typically use road networks [10, 38].

2.2. VRPs with intermediate facilities

Due to the presence of transfer points in our problem, we provide an overview of the
literature on VRPs with intermediate facilities, which are referred to as satellites, hubs,
transshipment points or cross-docks. They all represent intermediate points where goods
can be transferred while they move from their origin to their destination. In [74], the
authors provide a survey about intermediate facilities in freight transportation, while a
survey dedicated to cross-docking is found in [83]. In [74], the problems are divided
into two classes, that is, two-echelon VRPs (2E-VRPs) and pickup and delivery problems
with cross-docks (PDPCDs). With regard to 2E-VRPs, the intermediate facilities are
called satellites and have some storage capacity. At the first-level or echelon, vehicles
carry goods from a depot to satellites, while at the second-level goods are transported by
other vehicles from satellites to customers. Typically, a strict hierarchy is observed, that
is, direct deliveries from the depot to customers is forbidden. In this survey, no work
requires synchronization between vehicles at satellites. In the case of the surveyed PDPCDs,
however, cross-docks have no or little capacity and synchronization is required. Two works
are worth mentioning, since there is no real intermediate facility, only transfer points (like
in our work). In [11], transfers can take place at arbitrary locations and the vehicle that
arrives first at the transfer point waits as long as necessary to transfer goods to the other
vehicle, although a waiting penalty is incurred. In [60], transshipment points are pre-
determined and synchronization is achieved by setting a time window at these transfer points.

In [19], a 2E-VRP is proposed in the context of city logistics, where it is called a two-tier
city logistics system. City Distribution Centers (CDCs), located at the outskirts of the city,
form the first tier of the system where freight is sorted and consolidated. The second tier
of the system is made of satellites located close to or within the city-center area. Different
vehicle fleets are used to transport freight from CDCs to satellites and from satellites to
customers. In particular, vehicles of the second tier must be adapted for utilization in dense
city zones. Since it is assumed that satellites operate according to a cross-dock transshipment
operational model, vehicle synchronization is required. That is, vehicles of the first and
second tier must meet at satellites at a given time, with very short waiting time permitted.
This work proposes only a modeling framework and no algorithmic solution is developed.
Different exact and heuristic algorithms were later proposed in [18, 64, 65] to solve variants
of the initial model (e.g., no synchronization, storage capacity at satellites). A recent work
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in [46] addresses a two-commodity 2E-VRP with synchronization at satellites. Two types of
vehicles are considered at the first level, one for each commodity, as opposed to the second
level where only one type of vehicles is considered. Synchronization is only established
between the two types of first-level vehicles, which have to meet at satellites to favor efficiency
at the second level. The problem is solved with ALNS where, at each iteration, destroy and a
repair operators are applied to the second-level tours, and a reconstruction procedure is then
applied to the first-level tours in case of infeasibility, followed by an improvement procedure.
The 2E-VRP reported in [2] is particularly interesting because is shares similarities with our
problem. In this work, the first-level vehicles are called vans and the second-level vehicles
are called bicycles. Similarly, there are two classes of customers depending on their location:
customers located at the city center are called bike-customers, while customers outside of the
center are called van-customers. Transfers take place at satellites, with no storage capacity.
These satellites are located at the boundary of the city center (a van can cross the city
center, but a penalty is incurred). In the proposed heuristic methodology based on GRASP
and path-relinking, the second-level tours are constructed before the first level tours. In
this way, information about the arrival times of bikes at satellites can be used to construct
the first-level tours and account for synchronization. The authors in [40] address a similar
problem called the two-echelon multi-trip VRP with satellite synchronization. The proposed
methodology also constructs second-level tours before first-level tours to produce the initial
solution. Then, an ALNS is applied with features aimed at improving synchronization,
like a destroy operator that removes trips with the worst synchronization. In [47], the
authors describe a crowdsourced system for urban parcel deliveries, where truck-carriers visit
intermediate facilities called relay points and where parcels are transferred to pedestrians or
cyclists that are close to the end customers. However, if no pedestrian or cyclist is available,
the truck can perform the deliveries itself. In the proposed system, the delivery tasks, as
well as candidate relay points, are broadcast on-line. Then, pedestrians and cyclists bid for
these delivery tasks. Thus, a bid selection problem must be solved in addition to the routing
problem. This is done in both cases with a tabu search. Another similar crowdsourced
system is described In [71], where goods can be dropped at transfer points to be picked up
later by other vehicles (i.e., transfer points have storage capacity).

3. Problem Definition
This paper addresses the time-dependent vehicle routing problem with time windows

and transfer points on a road network or TDVRPTWTPRN . As previously mentioned, two
types of vehicles with different capacities are considered: black (large) and green (small)
vehicles. The two sets of vehicles are denoted KB and KG, respectively. There are also
three types of customers: black customers that can be served by black vehicles only; green
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customers that can be served by green vehicles only; and neutral customers that can be
served by both types of vehicles.

A road network in this context is a directed graph G = (V,A), where V is the set of nodes
of cardinality n and A the set of arcs or road segments. The set of nodes is then partitioned
as follow:

- D = {db, dg} is the set of depots with db the depot for black vehicles and dg the depot
for green vehicles;

- CB is the set of black customers of cardinality nB ;

- CG is the set of green customers of cardinality nG ;

- CE is the set of neutral customers of cardinality nE;

- TP is the set of transfer points of cardinality nTP ;

- RJ is the set of road junctions (i.e., any node that is not a depot, a customer or a
transfer point).

The TDVRPTWTPRN can be characterized as follow:

— Each customer i has a demand di and a service (or dwell) time sti;

— Each customer i has a time window [αi,βi] to constrain the service start time. If a
vehicle arrives at customer i before αi, then it must wait until αi to start the service.
On the other hand, a vehicle cannot arrive after βi;

— A green vehicle can serve only one customer at a time, while a black vehicle has a
capacity Qb that allows it to serve many customers;

— The demand of all customers is assumed to be loaded into black vehicles at the start;

— Each black vehicle performs a single route that starts and ends at the black depot;
each green vehicle performs a single route that starts and ends at the green depot;

— The black and green depots have a time window [0,T ], where T is the end of the time
horizon; all vehicles must be back at their depot before or at time T ;

— Black and green vehicles have different speeds. Thus, each arc (i,j) ∈ A is associated
with two time-dependent travel speed functions vbi,j(t) and vgi,j(t) for black and green
vehicles, respectively.

— Transfer points are fixed locations without storage capacity, where a black vehicle can
transfer loads to one or more green vehicles. We assume, without loss of generality,
that the time ∆tp to transfer a load is null, since a transfer time different to zero
would just produce a delay ∆tp in the departure times of the vehicles at transfer
points. A black vehicle can visit the same transfer point multiple times along its
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route; the same is true of green vehicles. Each visit to transfer point tp ∈ TP in
a route is represented by a copy which is unambiguously denoted tpkj , where k is a
vehicle and j is the copy (or visit) index. That is, copy tpkj corresponds to the jth

visit of transfer point tp in the route of vehicle k;

— Each black customer is served directly and exactly once by a black vehicle; each
green customer is served exactly once by a green vehicle after its demand has been
transferred from a black vehicle at a transfer point; each neutral customer is served
exactly once, either directly by a black vehicle or by a green vehicle after its demand
has been transferred from a black vehicle at a transfer point;

— The objective is to determine routes of minimal total duration such that all customers
are served and all constraints are satisfied.

Figure 1 shows a typical solution, with one black route starting from the black depot
(square). This route is identified by arcs (1) to (10). At the first transfer point tp1 (triangle),
there is a connection with the green route with arcs identified with broken lines. This route
starts at the green depot (square), gets a load from the black vehicle at tp1, delivers the
load to neutral customer nc1 (gray node), gets another load from the same black vehicle
at the second transfer point tp2, delivers the load to green customer gc1 and returns to the
green depot. The arcs of the second green route are identified with dotted lines. This small
route starts at the green depot, gets a load from the black vehicle at tp2, delivers the load to
green customer gc2 and returns to the green depot. It should be noted that the black vehicle
transfers two loads, one for each green vehicle, at transfer point tp2.

Figure 1. An example of a solution to the TDVRPTWTPRN
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4. SISR for the CVRP
The proposed methodology for solving our problem is the Slack Induction by String

Removals (SISR) metaheuristic [15], which is state-of-the-art for the CVRP. This meta-
heuristic is based on the ruin-and-recreate principle where, at each iteration, a number
of nodes are first removed from the routes of the current solution (ruin) and reinserted
(recreate) to produce a new solution. A simulated annealing-based criterion is then applied
to decide if the new solution should be accepted or not as the current solution. In the
following, we precisely describe the SISR metaheuristic, as initially proposed for the CVRP.

The basic idea of SISR is to remove strings of consecutive customers from a solution,
with at most one string removed from any given route. Algorithm 1 shows the pseudo-code
of SISR for the CVRP. First, two parameter values are set: Lmax , which is used to determine
the maximum length of a string, and c, which corresponds to the average number of
customers to be removed from a solution. By appropriately setting these values, many
strings of small length or only a few strings of large length can be removed. Given that
simulated annealing principles guide the search through an exponential cooling schedule,
the starting temperature τ0, final temperature τf , τ0 > τf > 0, and number of iterations
f are defined, with the current temperature τ initially set to τ0, see statements 2 and 3.
Then, the cooling factor ρ is defined in statement 4 in such a way that f ruin-and-recreate
iterations are performed.

An adjacency list adj(i) is then created for each customer i in statement 5. This list
contains all customers ordered from closest to farthest in distance from i, with i as its
first element. This adjacency list is used to favor the removal of strings that are relatively
close to each other, even if they come from different routes. Before proceeding with the
main loop, an initial solution is created in step 6 in a straightforward way, by creating an
individual route for each customer. This initial solution becomes the current solution s as
well as the best solution known to date sbest.

The main loop corresponds to statements 8 to 18. At each iteration, a ruin operator
and a recreate operator are applied to a copy s of current solution s, see statements 9 and
10. Note that the set A− is used to store the removed customers. The resulting solution
of the ruin-and-recreate process s is accepted as the new current solution s if it satisfies
the simulated annealing-based criterion in statement 11 (see [15]). It also replaces sbest if it
is the best solution found thus far. The current temperature τ is then updated before the
next iteration starts. After f iterations of the main loop, the whole procedure stops and
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returns the best solution found.

Algorithm 1 SISR for CVRP
1: Set Lmax and c
2: Set τ0, τf and f
3: τ ← τ0

4: ρ←
(
τf
τ0

)1/f

5: Generate adjacency list adj(i) for each customer i
6: Generate initial solution s (with set of routes Rs)
7: sbest ← s
8: for f iterations do
9: s,A− ← Ruin(s)
10: s← Recreate(s,A−)
11: if Cost(s) < (Cost(s)− τ ln(U(0,1))) then
12: s← s;
13: end if
14: if Cost(s) < Cost(sbest) then
15: sbest ← s
16: end if
17: τ ← ρτ
18: end for
19: Return sbest

Algorithm 2 Ruin(s)
1: lmax

s ← min{Lmax ,AvgNodesInRoutes(s)}
2: Calculate nmax

s with lmax
s and c

3: ns ← bU(1,nmax
s + 1)c

4: R− ← ∅
5: A− ← ∅
6: s← s Rs ← Rs
7: Select randomly a seed customer iseed in s
8: for i ∈ adj(iseed) and |R−| < ns do
9: r ← route of customer i
10: if i /∈ A− and r /∈ R− then
11: lmax

r ← min{lmax
s , |r|}

12: lr ← bU(1,lmax
r + 1)c

13: RuinOp ← Random(String, Split-String)
14: A− ← A− ∪ RuinOp(s,r, lr, i)
15: R− ← R− ∪ {r}
16: if r is empty then
17: Rs ← Rs\{r}
18: end if
19: end if
20: end for
21: Return s, A−
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Algorithm 3 Recreate(s, A−)
1: Sort(A−) . Recreate
2: for i ∈ A− do
3: pbest ← NULL; CostInsertbest ←∞
4: for r ∈ Rs and r feasible with insertion of i do
5: for pr in r do
6: if U(0,1) < 1− γ then
7: if pbest = NULL or CostInsert(i,pr) < CostInsertbest then
8: pbest ← pr
9: CostInsertbest ← CostInsert(i,pr)
10: end if
11: end if
12: end for
13: end for
14: if pbest = NULL then
15: Rs ← Rs ∪ {new empty route r}
16: pbest ← first position in r
17: end if
18: Insert i in position pbest
19: end for
20: Return s

4.1. Ruin

In the ruin procedure described in Algorithm 2, the maximum length of a string to be
removed lmax

s is first set to the minimum of Lmax and the average number of nodes in a
route of the current solution AvgRouteNodes(s), see statement 1. Then, in statement 2, the
maximum number of removed strings nmax

s is calculated using lmax
s and c, see the exact for-

mula in [15]. The actual number of removed strings ns is chosen from a continuous uniform
distribution defined between 1 and nmax

s + 1, as indicated in statement 3. The set of ruined
routes R− and the set of removed customers A− are then initialized with the empty set.
After creating a copy s of the current solution s, a random seed customer iseed is chosen and
its adjacency list is processed (from closest to farthest customers) until all customers have
been considered or the number of ruined routes is reached, see the main loop in statements
8-20. Note that the number of ruined routes is the same as the number of removed strings ns,
since each string is removed from a different route. If the current customer i in the adjacency
list of iseed has not been previously removed and if the route r that serves i has not been
previously ruined (statement 10) then the ruin operator is applied to route r. In statements
11 and 12, the actual length of the removed string lr is chosen from a continuous uniform
distribution defined between 1 and lmax

r + 1, where lmax
r is the minimum of lmax

s and car-
dinality of r (since the length of the removed string cannot exceed the number of nodes in r).
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Then, a random choice between two ruin operators takes place in statement 13. These
operators are:

— String: A random string of length lr that contains the current customer i in the
adjacency list of iseed is removed from route r. This is illustrated in Figure 2(a) for
a string of length four with the gray node i3 as current customer i;

— Split-String: A random string of length lr+m that contains the current customer i in
the adjacency list of iseed is chosen in route r (where the procedure to select a value
for m is precisely described in [15]). Then, a random substring of m consecutive
customers within the chosen string is kept in the route, so that only lr customers are
removed. The substring of length m cuts the string of length lr + m in two parts,
unless the substring is at the very beginning or very end of the string of length lr+m.
An example is provided in Figure 2(b) for a string of length five with the gray node
i3 as current customer i. In this example, m = 2, so that only three customers are
removed from the route.

The removed customers are then added to A− and the ruined route to R− in statements
14 and 15. If route r becomes empty, then it is deleted from the set of routes in the solution,
as indicated in statements 16 and 17. At the end, the ruined solution s and the set of
removed customers are returned.

4.2. Recreate

A new complete solution is then produced with the recreate operator by reinserting
the removed customers. This operator is described in Algorithm 3. In statement 1, the
removed customers in A− are first sorted using a sorting criterion chosen with a particular
distribution probability among: random, decreasing demand, increasing distance from the
depot, decreasing distance from the depot. Based on the chosen order, the customers in
A− are considered one by one and reinserted in the set of routes Rs of solution s, see the
main loop in statements 2-19. Each insertion place in each route that can accommodate
the demand of customer i is considered and the best encountered insertion place pbest is
identified. It should be noted, however, that the chosen insertion place is not necessarily
the best one among all feasible insertion places, due to blinks that correspond to a small
probability γ of skipping a position, see statement 6. In particular, if the best position is
skipped then only the second best position can be chosen (as long as this position is not
skipped too). Statements 14-17 cover the situation when no feasible insertion place is found
for customer i. In this case, a new route is created for that customer. At the end, the
recreated solution s is returned.
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Figure 2. Examples of the two SISR ruin operators : (a) String (b) Split-String.

5. Time dependency
The SISR metaheuristic for the CVRP, as described in the previous section, needs to be

considerably modified to address the much more complex TDVRPTWTPRN . In particular,
the time dimension must now be taken into account; furthermore, routes are not independent
anymore since they interact through transfer points. In this section, we introduce the basics
of our time-dependent travel time model and explain how time bounds can be derived at
each node along the routes of black and green vehicles.

5.1. Time-dependent travel times

The IGP model proposed in [45] is used to model time dependency. In this model, the
time horizon [0,T ] is partitioned into a number l of time periods [0,t1),[t1,t2),...., [tl−2,tl−1),
[tl−1,T ], where t1, t2,..., tl−1 are time boundaries between two periods. For any given arc,
a travel speed is associated with each period and a speed change occurs when a vehicle
crosses a time boundary. The algorithmic procedure to compute the travel time along an
arc for a given departure time based on this model is provided in [45]. Although speed is
modeled as a step function of time, the corresponding travel time function is a piecewise
linear function. Figure 3 shows an example of a travel speed function on a given arc (i, j)
and the corresponding travel time function, assuming that the arc is of length 4.

5.2. Dominant shortest-path structure

The dominant shortest-path structure (DSPS), as described in [38, 13], is useful to
quickly identify the fastest path between any given pair of nodes (either customers, depots
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Figure 3. (a) Travel speed function of arc (i, j) (b) Corresponding travel time function
assuming that arc (i, j) is of length 4.

or transfer points) in the road network for any given departure time. First, a number of
good paths between two given nodes i and j are identified by applying a time-dependent
Dijkstra’s algorithm [38, 13] using different departure times from i, like time boundaries
between two periods. The travel time function of each one of those paths is obtained by
combining the travel time functions of all arcs along that path (which also produces a
piecewise linear function). Figure 4 shows an example of a DSPS based on three different
fastest paths between two nodes. In this figure, the arrival time is represented as a function
of the departure time, so that the corresponding travel time is simply the difference between
arrival and departure times. Since the IGP model satisfies the FIFO property, this piecewise
linear function is non decreasing. By overlapping the three paths, it is possible to identify
the fastest among the three paths for any given departure time. It is worth noting that the
DSPS is exact only if the time-dependent Dijkstra’s algorithm is applied with a sufficiently
large number of departure times to cover all fastest paths between two nodes, which is
rarely the case in practice. But better accuracy is obtained with more departure times.
In the experimental section, we generated the dominant shortest-path structures with the
implementation described in [13], which was kindly provided to us.

Two different travel time functions are associated with each arc, depending if a black or
a green vehicle follows that arc, because they do not have the same speed. This leads to
two different DSPSs between each pair of nodes made of either customers, depots or transfer
points. Accordingly, the following notation will be used:

— AT b(i,j,dt) is the arrival time at j when a black vehicle departs from i at time dt and
follows the fastest path to reach j, as determined by the DSPS of nodes i and j for
a black vehicle;
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Figure 4. (a) Three different fastest paths between two nodes obtained at different time
points using a time-dependent Dijkstra’s algorithm (b) Corresponding dominant shortest
path structure

— DT b(i,j,at) is the inverse of AT b(i,j,dt) and is the departure time at i that allows a
black vehicle to arrive at j at time at;

— AT g(i,j,dt) is the arrival time at j when a green vehicle departs from i at time dt and
follows the fastest path to reach j, as determined by the DSPS of the pair of nodes
i and j for a green vehicle;

— DT g(i,j,at) is the inverse of AT g(i,j,dt) and is the departure time at i that allows a
green vehicle to arrive at j at time at.

5.3. Synchronization at a transfer point

Let us consider tpkb· a copy of transfer point tp ∈ TP in the route of black vehicle
kb ∈ KB, where the subscript · corresponds to a particular copy (visit) index of transfer
point tp in the route of vehicle kb. Let us also consider tpk

g
1· , tpk

g
2· , ..., tpk

g
h· , h copies of transfer

point tp in the routes of green vehicles kg1 , kg2 , ..., kgh ∈ KG. We assume that black vehicle kb

needs to be synchronized with green vehicles kg1 , kg2 , ..., kgh at these copies of transfer point tp.

We first account for the arrival time of the last green vehicle:

atmax = max
l=1,...,h

{at
tp
k
g
l

·
} (5.1)

Then, the departure time of black vehicle kb from tpkb· is :

dt
tpk

b
·

= max{at
tpk

b
·
, atmax} (5.2)
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That is, if all green vehicles arrive at the transfer point before black vehicle kb, then the
latter can depart immediately (given that the time to transfer loads from the black vehicle
to green vehicles is null) with dt

tpk
b

·
= at

tpk
b

·
. Otherwise, vehicle kb will depart at the arrival

time atmax of the last green vehicle.

The departure of each green vehicle kgl from tpk
g
l· , l = 1, ..., h, is:

dt
tp
k
g
l

·
= max{at

tpk
b

·
,at

tp
k
g
l

·
} l = 1, ..., h (5.3)

That is, if green vehicle kgl arrives at the transfer point before black vehicle kb, it must
wait for the arrival of vehicle kb before it can depart from tpk

g
l· . Otherwise, it can depart

immediately with dt
tp
k
g
l

·
= at

tp
k
g
l

·
.

5.4. Time bounds

In the following, we define earliest and latest time bounds for the arrival at and departure
from each node in the route of a black or green vehicle, where a node can be a customer,
a transfer point or a depot. That is, a vehicle must arrive at (depart from) a node before
its latest arrival (departure) time to guarantee that the rest of the route satisfies the time
constraints. For simplifications purposes, the forward and backward propagation procedures
described below focus on a single black or green route and do not account for possible complex
interactions among routes (see subsection 5.5) .

5.4.1. Green route
Here, we explain how to propagate the earliest and latest arrival and departure times

in a green route. For this purpose, let us consider the route of green vehicle kg ∈ KG

which is made of (1) a copy dg0 of the green depot to start the route, (2) a sequence
of copies of one or more transfer points tpkgl· , l = 1, ..., p, each followed by a green
(or neutral) customer il ∈ CG ∪ CE, l = 1, ..., p and (3) a copy dgp+1 of the green depot
to end the route. That is, the route of green vehicle kg is dg0, tpkg1· , i1, tpkg2· , i2, ..., tpkgp· , ip, d

g
p+1.

Earliest arrival and departure times
First, the earliest departure time from dg0 is set equal to 0. Then, we go forward by first

computing the earliest arrival time eat at transfer point tpkg1· , using function AT g:

eattpkg1·
= AT g(dg0, tpk

g

1· , 0) (5.4)

Now, to determine the earliest departure time edt, we need to account for the corre-
sponding black vehicle kb from which green vehicle kg should receive a load. Accordingly,
if eattpkg1·

< eat
tpk

b
1·
, then edttpkg1·

= eat
tpk

b
1·
, since green vehicle kg cannot depart from the
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transfer point before the earliest arrival time of black vehicle kb. Otherwise, edttpkg1·
= eattpkg1·

,
given that the time to transfer a load is null.

Still going forward, we now consider customer ii and compute its earliest departure time
as :

eati1 = AT g(tpkg1· , i1, edttpkg1·
) (5.5)

Now, if eati1 < αi1 , then the earliest departure time edti1 = αi1 + sti1 , otherwise
edti1 = eati1 + sti1 .

This forward procedure is repeated until the end depot dgp+1 is reached and its earliest
arrival time is determined.

Latest arrival and departure times
We start by setting the latest arrival time lat at the end depot dgp+1 to be the end of

time horizon T , that is latdgp+1
= T . Then, we go backward by first computing the latest

departure time ldt at customer ip that allows vehicle kg to arrive at dgp+1 at time latdgp+1
,

using function DT g:

ldtip = DT g(ip,dgp+1,latdgp+1
) (5.6)

Now, if ldtip > βip + stip , then ldtip is reset to βip + stip , because vehicle kg cannot depart
from ip later than βip + stip without violating the time window constraint (i.e., the arrival
time cannot exceed βip). Then, the latest arrival time at customer ip is simply computed as
latip = ldtip − stip .

Still going backward, we now consider the transfer point tpkgp· and compute its latest
departure time as :

ldttpkgp·
= DT g(tpkgp· ,ip,latip) (5.7)

To determine the latest arrival time of the green vehicle kg, we must account for the
corresponding black vehicle kb that transfers a load to vehicle kg. That is, the green vehicle
cannot arrive after the latest departure time of black vehicle kb through the following formula:

lattpkgp·
= min{ldttpkgp·

, ldt
tpk

b
p·
} (5.8)

This backward procedure is applied until the the starting depot dg0 is reached and its
latest departure time is determined. It should be noted that a forward propagation starting
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from the latest departure time at dg0, until dgp+1 is reached, would produce the latest feasible
schedule (i.e., latest possible arrival and departure times at each node along the green route).

5.4.2. Black route
Here, we explain how to propagate the earliest and latest arrival and departure times in

a black route. For this purpose, let us consider the route of black vehicle kb ∈ KB which is
made of (1) a copy db0 of the black depot to start the route, (2) an arbitrary sequence of
length p of black (or neutral) customers and copies of one or more transfer points and (3) a
copy dbp+1 of the black depot to end the route.

Earliest arrival and departure times
The procedure to compute the earliest arrival and departure times in a black route is

similar to the one described for the green route, but two differences are noteworthy: (1) the
function AT b is used to compute the arrival time at a given node from the earliest departure
time of the previous node and (2) the earliest departure time at a copy of a transfer point is
computed differently, because green vehicles that visit the same transfer point to get a load
from the black vehicle must be accounted for.

Considering case (2), let us suppose that black vehicle kb visits copy tpkb· of tranfer point
tp ∈ TP and that h green vehicles kg1 , kg2 , ..., kgh visit copies tpk

g
1· , tpk

g
2· , ..., tp

kg
h· of the same

transfer point and that synchronization is required (i.e., black vehicle kb must transfer a load
to each green vehicle). To compute the earliest departure time of vehicle kb at the transfer
point, we first consider the maximum earliest arrival time over all green vehicles, that is:

eatmax = max
l=1,...,h

{eat
tp
k
g
l

·
} (5.9)

Then, the earliest departure time of vehicle kb at tpkb· can be computed from its earliest
arrival time as follow:

edt
tpk

b
·

= max{eatmax, eat
tpk

b
·
} (5.10)

That is, black vehicle kb cannot depart earlier than the earliest arrival time of the last
green vehicle, otherwise one or more green vehicles will not get their load.

Latest arrival and departure times
The procedure to compute the latest arrival and departure times of a black vehicle is

similar to the one described for a green vehicle, although two differences are noteworthy:
(1) the function DT b is used to compute the departure time from a given node to reach the
next node at its latest arrival time and (2) the latest arrival time at a copy of a transfer
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point is computed differently, because green vehicles that visit the same transfer point to
get a load from the black vehicle must be accounted for.

Considering case (2), let us suppose that black vehicle kb visits copy tpkb· of tranfer point
tp ∈ TP and that h green vehicles kg1 , kg2 , ..., kgh visit copies tpk

g
1· , tpk

g
2· , ..., tp

kg
h· of the same

transfer point and that synchronization is required (i.e., black vehicle kb must transfer a load
to each green vehicle). To compute the latest arrival time of vehicle kb at the transfer point,
we first consider the minimum latest departure time over all green vehicles, that is:

ldtmin = min
l=1,...,h

{ldt
tp
k
g
l

·
} (5.11)

Then, the latest arrival time of vehicle kb at tpkb· can be computed from its latest departure
time as follow:

lat
tpk

b
·

= min{ldtmin, ldt
tpk

b
·
} (5.12)

That is, black vehicle kb cannot arrive at the transfer point later than the minimum latest
departure time over all green vehicles that require synchronization, otherwise one or more
green vehicles will not get their load.

5.5. Interaction among routes

In the previous section, our description of forward and backward propagation procedures
to derive time bounds has focused on a single black or green route. However, complex
interactions may occur when multiple black and green routes are involved.

Figure 5 shows an example where customer i is inserted between nodes prev and next in
black route kb2 (as it occurs during the recreate procedure of SISR). Forward propagation
is illustrated in Figure 5(a). First, the ealiest arrival and departure times of the newly
inserted customer i are calculated from the earliest departure time at transfer point prev.
Then, forward propagation is triggered along the black route. However, a green route that
connects the three black routes is encountered at the transfer point just after customer
next. Thus, another forward propagation is triggered at this transfer point along the green
route which, in turn, leads to a transfer point that connects the green route to black route
kb3, thus triggering another forward propagation along that black route. It should be noted
that this illustration is a worst case, because forward propagation along a route terminates
as soon as the earliest departure time from a node does not change.

Backward propagation is illustrated in Figure 5(b). First, latest arrival and departure
times at the newly inserted customer i are calculated from the latest arrival time at customer
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next. Then, backward propagation is triggered along black route kb2. Since node prev is
a transfer point, it triggers another backward propagation along the corresponding green
route. Still going backward along the black route, another transfer point is met that triggers
backward propagation along another green route. Finally, both green routes connect to
black route kb1 at the same transfer point, thus triggering a backward propagation along that
black route also. Once again, this illustration is a worst case, because backward propagation
along a route stops as soon as the latest arrival time at a node does not change.

To summarize, we had to implement forward and backward propagation procedures that
account for the whole solution.

Figure 5. Example of forward and backward propagations when customer i is inserted in
a route: (a) forward propagation (b) backward propagation.

6. SISR for the TDVRPTWTPRN

The previous section has focused on time issues that arise when the TDVRPTWTPRN is
considered. In the following, we revisit the SISR metaheuristic described in Section 4 given
that our problem is much more complex than the CVRP.

Although the general algorithmic framework of SISR remains quite the same, there are
important differences that can be observed in Algorithm 4. In the initialization phase,
the dominant shortest path structures obtained from the underlying road network must
first be created to account for the time-dependent travel times, see statements 5 and 6.
More precisely, the DSPS of every pair of nodes that involves a black customer, a neutral
customer, a transfer point or the black depot is generated, assuming that a black vehicle is
used to travel between the two nodes. Then, the DSPS of every pair of nodes that involves
a green customer, a neutral customer, a transfer point or the green depot is generated,
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assuming that a green vehicle is used to travel between the two nodes.

Algorithm 4 SISR for TDVRPTWTPRN

1: Set Lmax and c
2: Set τ0, τf and f
3: τ ← τ0

4: ρ←
(
τf
τ0

)1/f

5: Generate DSPSb for every admissible pair of nodes, assuming that a black vehicle is used
6: Generate DSPSg for every admissible pair of nodes, assuming that a green vehicle is used
7: Generate adjb(i) of each black customer i ∈ CB
8: Generate adjg(i) of each green customer i ∈ CG
9: Generate adjb(i) and adjg(i) of each neutral customer i ∈ CE
10: Generate adjtp(i) of each green and neutral customer i ∈ CG ∪ CE
11: s← Initial_Solution(k)
12: for f iterations do
13: Calculate cbs and cgs
14: s,Ab ← RuinBlack(s)
15: s,Ag ← RuinGreen(s)
16: A− ← Ab ∪Ag
17: s← Recreate(s,A−)
18: if Cost(s) < (Cost(s)− τ ln(U(0,1))) then
19: s← s;
20: end if
21: if Cost(s) < Cost(sbest) then
22: sbest ← s
23: end if
24: τ ← ρτ
25: end for
26: Return sbest

In statements 7-10, the adjacency list of each black, green and neutral customer i
is generated. In the adjacency list adjb(i) of a black customer, only black and neutral
customers are considered. In the adjacency list adjg of a green customer, only green and
neutral customers are considered. In the case of a neutral customer, since they can be
visited by both types of vehicles, two adjacency lists adjb(i) and adjg(i) are generated: one
that contains only black and neutral customers (in case the neutral customer is in a black
route) and the other that contains only green and neutral customers (in case the neutral
customer is in a green route). Also, for each green and neutral customer, an adjacency
list adjtp(i) made of all feasible transfer points, from closest to farthest from i, is created.
A transfer point is feasible for a green or neutral customer, if it is possible for a green
vehicle to receive the corresponding load from a black vehicle and serve the customer, while
satisfying all constraints.
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6.1. Initial solution

Another difference with the original SISR implementation is how the initial solution is
generated in statement 11. A solution is constructed with a greedy insertion heuristic where,
at each iteration, a customer is randomly selected and then inserted at its best place in
the current partial solution. This is repeated until all customers are served. This insertion
procedure is the same as the one used in the recreate operator, except that all feasible
insertion places are considered (i.e., there is no blink so that no insertion place is skipped).
Since this is a randomized heuristic, different runs typically produce different solutions.
Accordingly, in the computational results, the greedy insertion heuristic was run 100 times
on each instance and the best solution obtained was chosen as the intial solution (prelim-
inary experiments have shown that no significant improvement is observed beyond 100 runs).

At each iteration of the main loop in statements 12-25, RuinBlack and RuinGreen are
applied in sequence to ruin black and green routes, respectively. In the original algorithm,
parameter c determines the average number of customers that are removed from the current
solution by the ruin operator. Since we have two types of routes, we define cbs and cgs in
statement 13 to control the average number of customers that are removed from the black
and green routes, respectively, of solution s with cbs + cgs = c. The values of cbs and cgs are
dynamically set at each iteration depending on the number of customers in black routes nBRs
and number of customers in green routes nGRs in the current solution, using the formula :

cbs =
⌈ (

nBRs
nBRs + nGRs

)
· c
⌉

(6.1)

with cgs = c − cbs. This dynamic setting is required because the number of customers in
the routes of black and green vehicles cannot be known a priori, due to the presence of
neutral customers that can be served by both types of vehicles. After collecting in set A−

the two sets of removed customers Ab and Ag from the black and green routes, respectively
(see statements 14 and 15), the Recreate operator is called in statement 17 with the ruined
solution and the removed customers. When the new recreated solution s is returned, this
new solution is compared with the current solution s in the same way as in the original
algorithm, see statements 18-23.

In the following, we will now focus on the Ruin and Recreate procedures.

6.2. Ruin

Given that black and green routes do not have the same structure, a different Ruin
operator has been designed for each type of route. It should first be noted that removing
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customers has no impact on solution feasibility (i.e., a feasible solution will remain feasible).
Thus, the earliest and latest arrival and departure times at each node can be recalculated
only once after the two ruin operators for black and green routes have been applied. The
same applies to the solution value, which is of no interest while customers are removed from
the solution.

6.2.1. Ruining black routes
The pseudo-code of RuinBlack is shown in Algorithm 5. The RuinBlack procedure is

very similar to the Ruin procedure, except that the focus is only on black routes. Thus, the
maximum length of a string lmax

s is taken as the minimum between Lmax and the average
number of customers in black routes AvgCustInBlackRoutes(s), see statement 1, while
the maximum number of strings ns is calculated using lmax

s and cbs in statement 2. The
seed customer must also be chosen in a black route, see statement 7. As in the original
implementation, the ruin operator is randomly chosen between Stringb and Split − Stringb,
which are adaptations of String and Split-String, see statement 14. In these two new
operators, the transfer points in a black route are always preserved and only customers are
removed. This is because a transfer point in a black route connects to one or more green
routes, so that the green or neutral customer that follows the removed transfer point in
each green route would have to be removed too.

Figure 6 illustrates operator Stringb, assuming that four customers must be removed.
When two or more consecutive copies of the same transfer point are visited by the black
vehicle after the string removal, then these copies are merged into a single copy. This is
illustrated in the figure where two consecutive copies of the same transfer point tp3 are
merged together. Furthermore, the green routes that were connected to the original copies
are collected and are all connected to the new single copy. The operator Split − Stringb,
works similarly, except that m customers in the string are preserved.

6.2.2. Ruining green routes
Ruining a green route also shares similarity with the original Ruin operator, except that

the focus is on green routes. One particularity of RuinGreen is that the seed customer is the
closest from the seed customer chosen in RuinBlack, over all green and neutral customers in
green routes. The idea is to ruin green routes that are close to the previously ruined black
routes. Another particularity is that each time a green or neutral customer is removed from
a green route, the copy of the transfer point where the load is transferred from a black route
to the green route must also be removed. That is, a pair (tpkg· , i) is removed, where tpkg·

is the copy of transfer point tp ∈ TP in the green route and i is the immediate successor
customer, that is, the one who receives the load. The pseudo-code of RuinGreen is shown
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Algorithm 5 RuinBlack(s)
1: lmax

s ← min{Lmax ,AvgCustInBlackRoutes(s)}
2: Calculate nmax

s with lmax
s and cbs

3: ns ← bU(1,nmax
s + 1)c

4: Rb ← ∅
5: Ab ← ∅
6: s← s Rs ← Rs
7: Select randomly a seed customer ibseed over all black and neutral customers in black routes
8: for i ∈ adjb(ibseed) and |Rb| < ns do
9: if (i ∈ CB) or (i ∈ CE and i is in a black route) then
10: r ← route of customer i
11: if i /∈ Ab and r /∈ Rb then
12: lmax

r ← min{lmax
s , |r|}

13: lr ← bU(1,lmax
r + 1)c

14: RuinOp ← Random(Stringb, Split − Stringb)
15: Ab ← Ab ∪ RuinOp(s,r, lr, i)
16: Rb ← Rb ∪ {r}
17: if r is empty then
18: Rs ← Rs\{r}
19: end if
20: end if
21: end if
22: end for
23: Return s, Ab

Figure 6. Example of Stringb where four customers are removed. First, the transfer points
are set apart, then a string of cardinality four is chosen and the corresponding customers are
removed.

in Algorithm 6.
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Algorithm 6 RuinGreen(s)
1: lmax

s ← min{Lmax ,AvgCustInGreenRoutes(s)}
2: Calculate nmax

s with lmax
s and cgs

3: ns ← bU(1,nmax
s + 1)c

4: Rg ← ∅
5: Ag ← ∅
6: Select igseed the closest customer from ibseed over all green and neutral customers in green routes
7: for i ∈ adjg(igseed) and |Rg| < ns do
8: if (i ∈ CG) or (i ∈ CE and i is in a green route) then
9: r ← route of customer i
10: if i /∈ Ag and r /∈ Rg then
11: lmax

r ← min{lmax
s , |r|}

12: lr ← bU(1,lmax
r + 1)c

13: RuinOp ← Random(Stringg, Split − Stringg)
14: Ag ← Ag ∪ RuinOp(s,r, lr, i)
15: Rg ← Rg ∪ {r}
16: if r is empty then
17: Rs ← Rs\{r}
18: end if
19: end if
20: end if
21: end for
22: Return s, Ag

Figure 7 shows an example of Stringg where two customers are removed. It should be
noted that removing a copy of a transfer point in a green route may have an impact on the
corresponding black route if the green route is the only one that connects to the black route
there. In this case, the corresponding copy of the transfer point in the black route must
also be removed. Also, if this removal leads to the visit of two or more consecutive copies of
another transfer point in the black route, then these copies are merged into a simple copy,
as previously explained in subsection 6.2.1.

Figure 7. Example of Stringg where two customers are removed.
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6.3. Recreate

Given that we have two different types of routes and three different types of customers,
reinserting the removed customers is more complex than in the original implementation of
SISR for the CVRP. As shown in Algorithm 7, the removed customers in set A− are first
sorted randomly or by decreasing demand, with equal probability (the two other sorting
criteria proposed in [15], increasing and decreasing distance from the depot are not consid-
ered due to the ambiguity for neutral customers who can appear in black and green routes).
Then, the customers are considered one by one in the sorted list. If the current customer is
black then the method InsertionBlack for insertion in a black route is called. If the current
customer is green then the method InsertionGreen for insertion in a green route is called.
Finally, if the current customer is neutral then both methods are called and the best of the
two proposed insertions is chosen. The procedure for inserting a customer in black routes
is similar to the one presented in Algorithm 3 for the CVRP, except that the focus is on
black routes only. However, the procedure for inserting a customer in a green route is more
complex, as it is explained below.

It should also be noted that the Recreate method assumes that the vehicles visit nodes as
soon as possible, that is, they follow a schedule based on the earliest arrival and departure
times at each node. This earliest schedule induces slack time (waiting time) in the routes
that can be exploited to feasibly insert new customers. But since we aim at minimizing the
total duration of routes, the latest schedule is then used to get exact solution costs.

Algorithm 7 Recreate(s, A−)
1: Sort(A−)
2: for i ∈ A− do
3: if i is a black customer then
4: s← InsertionBlack(i, s)
5: end if
6: if i is a green customer then
7: s← InsertionGreen(i, s)
8: end if
9: if i is a neutral customer then
10: s← Best of InsertionBlack(i, s) and InsertionGreen(i, s)
11: end if
12: end for
13: Return s

6.3.1. Insertion in black routes
As in the original implementation for the CVRP, InsertionBlack considers all possible

insertions of the current customer i between two consecutive nodes in black routes with
enough residual capacity to accommodate the demand of i, except for blinks (i.e., a position
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may be skipped with a small probability γ).

It is worth noting that the feasibility and (approximate) evaluation of inserting customer
i between two consecutive nodes j and l in a black route are done in constant time. First,
the arrival and departure times at i are calculated from the departure time at j to check if
the time window at i is satisfied. If i is feasible, then the new arrival time at l is calculated
from the departure time at i. If the new arrival time at l does not exceed its latest arrival
time latl, then the insertion is feasible. Assuming feasibility, the additional cost induced by
this insertion is then evaluated. To maintain a constant time evaluation, an approximation
is used. That is, the approximate or local additional cost corresponds to the arrival time
delay at node l due to the insertion of customer i (even if l is the end depot). This delay
corresponds to the difference between the arrival time at l after the insertion of i minus the
arrival time at l before the insertion of i. To get an exact evaluation of the additional cost,
the delay at l would need to be propagated along the route, until either it vanishes (due to
waiting times) or the end depot is reached. It may also lead to forward propagation along
other connecting routes (see Section 5.5). To alleviate the impact of using only approximate
additional costs, the npos best insertion places of customer i, based on the approximation, are
kept. Each one of these npos alternative insertion places are then evaluated exactly through
propagation. The best insertion place, based on the exact evaluation of the additional cost,
is finally chosen. It is worth noting that, after the insertion of customer i, the latest arrival
and departure times need to be recomputed through backward propagation from i to the
starting depot. This may also lead to backpropagation along other connecting routes (see
Section 5.5). If no feasible insertion place is found for customer i then a new route is created
for this customer.

6.3.2. Insertion in green routes
When a customer is inserted in a green route, a copy of a transfer point needs to be

coupled with it. Accordingly, the search for possible insertion places is divided into four
different phases, as it is explained below. It should be noted that the insertion procedure
of each phase accounts for blinks. Furthermore, as for black routes, the feasibility and
(approximate) evaluation of all possible insertion places of the current customer in green
routes are done in constant time.

Phase I. Existing copy of a transfer point in a black route; existing green route.

If i is a green or neutral customer, we consider every black vehicle kb with enough
residual capacity to accommodate the demand of i. Then, we consider the route of every
green vehicle kg and every copy tpk

b

· of a transfer point in the route of black vehicle kb
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that satisfy the two following conditions: (1) the route of black vehicle kb does not already
connect with the route of green vehicle kg through tpkb· and (2) the transfer point is in set
adjtp(i). Then, we create a corresponding copy tpkg· for the green vehicle kg and we try to
insert the pair (tpkg· , i) after every customer in the green route. An example is provided
in Figure 8 where the two corresponding copies of a transfer point in the black and green
routes are represented as a single node tp. A further refinement allows a reduction in the
number of insertion places to be considered. Let us denote t̃pL the last transfer point
before tp that connects vehicles kb and kg (if any) and t̃pR the first transfer point after tp
that connects vehicles kb and kg (if any), see Figure 8. Then, there is no need to consider
insertion places in the green route after customers that are visited before t̃pL. In such a
case, t̃pL would be visited before tp in the black route while t̃pL would be visited after
tp in the green route, thus no synchronization of the black and green vehicles is possible.
Similarly, insertion places in the green route after customers that are visited after t̃pR are
discarded, since in such case t̃pR would be visited after tp in the black route, but tp would
be visited before t̃pR in the green route.

It is important to note that the insertion of customer i impacts both the black and green
routes. With regard to feasibility of the black route, the departure time of vehicle kb at tp
may be delayed since a load must now be transferred to green vehicle kg (vehicle kb may
have to wait for vehicle kg). However, it the new departure time does not exceed the latest
departure time of kb at tp, then the insertion is feasible in the black route. With regard to
feasibility of the green route, we start with customer jg after which the transfer point and
customer i are inserted. That is, time is forward propagated from the latest arrival time at
jg to the transfer point, customer i and the following transfer point (or end depot), denoted
lg in the figure. If the time constraints are satisfied at the transfer point and at customer
i, and if the new arrival time of the green vehicle at lg does not exceed its latest arrival
time then the insertion is feasible in the green route. The approximate or local cost of this
insertion corresponds to the arrival time delay of black vehicle kb at lb plus the arrival time
delay of green vehicle kb at lg.

Phase II. Existing copy of a transfer point in a black route; new green route.

This is similar to Phase I, except that a new green route for the current green or
neutral customer i is created. This is illustrated in Figure 9. Feasibility can be checked
similarly to Phase I. The approximate or local cost corresponds here to the duration of the
new green route plus the arrival time delay of black vehicle kb at lb, given the new green route.
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Phase III. New copy of a transfer point in a black route; existing green route.

Due to the additional computational complexity of this phase, we only consider the
most interesting insertion places through a subset of adjtp(i) that contains the nftp nearest
feasible transfer points of current customer i. For each such transfer point, we insert a copy
of the transfer point at each possible insertion place in the route of each black vehicle with
enough residual capacity to accommodate the demand of i. Then, for each such insertion
place of this copy in a black route, we insert a corresponding copy of the transfer point
followed by customer i after each green customer in each green route. This is illustrated in
Figure 10 where the copies of the transfer point in the black and green routes are represented
as a single node denoted tp. The transfer points denoted as t̃pL and t̃pR have the same
meaning than in Phase I and are also used to reduce the number of insertion places that
must be considered. In addition, there is no need to consider the insertion of the new copy
before or after a copy of the same transfer point in the black route. These two consecutive
copies of the same transfer point could then be merged, which would lead to a case already
considered in Phase I (c.f., existing copy of a transfer point in a black route). Feasibility
is checked as in Phase I and the approximate cost is obtained by summing the arrival
time delay of the black vehicle at customer lb and arrival time delay of the green vehicle at lg.

Phase IV. New copy of a transfer point in a black route; new green route.

This is similar to Phase III, except that a new green route for the current green or
neutral customer i is created, as illustrated in Figure 11. The approximate cost is obtained
here by summing the duration of the new green route, plus the arrival time delay of the
black vehicle at lb, given the new green route.

The npos best insertion places according to the approximate cost, as identified during
Phases I to IV, are then evaluated exactly through propagation. For evaluation purposes,
the latest schedule is used to reduce as much as possible the waiting time. The best
insertion place, based on the exact evaluation of the additional cost, is finally chosen. After
the insertion of customer i at the chosen place, the latest arrival and departure times must
be recomputed through backward propagation from customer i.

If no feasible insertion place is found for customer i, then two new routes are created to
serve this customer, one for a black vehicle and one for a green vehicle. This is shown in
Figure 12, where the nearest feasible transfer point from i is used to connect the two routes.
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Figure 8. Phase I : a transfer point tp (already present in the black route) followed by
customer i are inserted after customer jg in the green route; (a) and (b) show the black and
green routes before and after the insertion, respectively.

Figure 9. Phase II: a transfer point tp (already present in the black route) followed by
customer i are inserted in a new green route; (a) and (b) show the black and green routes
before and after the insertion, respectively.

7. Computational experiments
In the following sections, we first describe how the test instances were designed. Then,

we explain the parameter tuning process of our SISR. This is followed by the results obtained
on our test instances. Finally, we analyze the synchronization efficiency at transfer points
and study the impact of customer distributions, scenarios, time windows and number of
transfer points on the solutions obtained. We note that the results reported in this section
were obtained with a processor Intel Gold 6148 Skylake 2.4 GHz, with 6GB of RAM.
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Figure 10. Phase III: a new transfer point tp is inserted in the black route; this transfer
point followed by customer i are inserted after customer jg in the green route; (a) and (b)
show the black and green routes before and after the insertion, respectively.

Figure 11. Phase IV: a new transfer point tp is inserted in the black route; this transfer
point followed by customer i are inserted in a new green route; (a) and (b) show the black
and green routes before and after the insertion, respectively.

Figure 12. A new black and a new green route are created for a single green or neutral
customer
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7.1. Test instances

Our benchmark was produced by extending the well-known NEWLET instances for the
TDVRPTWRN [6]. These Euclidean instances are defined on road networks generated by
a procedure reported in [55]. Node coordinates in these networks are randomly generated
in the interval [−10

√
n,10
√
n], where n is the number of nodes. The arc set E is obtained

by considering all possible arcs and by adding an arc to set E when two conditions are
satisfied: (1) the new arc does not cross any arc already included in E and (2) if the new
arc has in common one endpoint with an arc already included in E, then the angle between
these two arcs must be greater than or equal to 60 degrees.

In the NEWLET instances, there are different networks of different sizes. For each
road network of each size, three different ways to set the fixed or nominal travel time on
every arc, depending on the correlation level with its length, are proposed through the
formula tij = ν · dij + µ · γij · d̄, where tij and dij are the travel time and length of arc (i,j),
respectively. In the formula, d̄ denotes the maximum arc length in the road network, ν and µ
are correlation parameters selected in interval [0,1] and γij is a randomly generated number
in interval [0,1] for each arc (i,j). Thus, for each road network of each size, three different
instances are obtained, which are denoted NC (i.e., no correlation, with ν = 0 and µ = 1),
WC (i.e., weak correlation, with ν = 0.5 and µ = 0.5) and SC (i.e., strong correlation,
with ν = 0.9 and µ = 0.1). The nominal travel times are then used to derive nominal
travel speeds. Then, each one of these instances is duplicated by considering instances with
narrow time windows (NTW) and wide time windows (WTW), where the length of narrow
time windows is randomly selected from {3, 4}, and the length of wide time windows is
randomly selected from {10, ..., 15}. To account for time-dependency, the time horizon
[0,100] is partitioned into five periods τ1 = [0, 20), τ2 = [20, 30), τ3 = [30, 70), τ4 = [70, 80)
and τ5 = [80, 100]. Based on this partition, one of three different time-dependent speed
profiles is randomly associated with each arc, where a profile corresponds to a set of five
speed multipliers, one for each time period. Finally, a service time is randomly selected
from {1, 2} for each customer.

For the computational tests, we used four SC road networks with 500 nodes, which is the
largest network size. They are called RN1, RN2, RN3 and RN4 in the following. Since there
is only one type of vehicles and one type of customers in the NEWLET instances, we had
to extend these instances to fit our purposes. The new characteristics of our test instances
with regard to the original NEWLET instances are the following:

— A number of nc = 50, 100 and 200 customers are randomly selected from the 500
nodes of a given network.
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— For a given road network and nc value, four customer distributions are considered:

— D1: 60% black customers, 20% green customers and 20% neutral customers.

— D2: 20% black customers, 60% green customers and 20% neutral customers.

— D3: 20% black customers, 20% green customers and 60% neutral customers.

— D4: 40% black customers, 40% green customers and 20% neutral customers.

— Each road network is divided into three regions: downtown, boundary (or frontier)
and outside, as illustrated in Figure 13. In this figure, the light gray area represents
downtown, while the dark gray area represents the boundary region. Orange triangles
are transfer points, while the black and green squares are the black and green depot,
respectively. Also, the black, green and gray nodes stand for black, green and neutral
customers, respectively. The downtown area is defined by expanding a central and
rectangular area until it can contain 80% of the maximum possible number of green
customers (see distributionD2), the green depot and additional road junctions. Then,
the surrounding boundary or frontier region is expanded until it can contain the
maximum possible number of neutral customers (see distribution D3), 20% of the
maximum possible number of black and green customers (see distributions D1 and
D2), 10 transfer points and additional road junctions. The outside region contains
the rest of the nodes.

— For all instances derived from a given road network, the three regions are the same
as well as the location of the depots and transfer points.

— Black vehicles can perform deliveries to customers in the outside and boundary re-
gions only. That is, downtown is forbidden to them. Conversely, the smaller green
vehicles can perform deliveries to customers in the downtown and boundary regions
only. For this reason, black customers are located in the outside and boundary re-
gions, while green customers are located in the downtown and boundary regions.
Neutral customers and transfer points are only found in the boundary region, since
they can be visited by both black and green vehicles.

— The black depot is randomly located in the outside region, while the green depot is
randomly located in the downtown region. There are also 10 transfer points that are
randomly located in the boundary region.

— Arcs are characterized by the regions where they are found. Let (i,j) be an arc in
the network. If both i and j are in the boundary (or frontier) region, then the arc
is of type F (and is accessible to both black and green vehicles). If both i and j

are in the downtown region, or one is in the downtown region and the other in the
boundary region, then the arc is of type D (and is accessible only to green vehicles).
If both i and j are in the outside region, or if one is in the outside region and the
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other is in the boundary region, then the arc is of type O (and is accessible only to
black vehicles). It should be noted that no arcs connect the downtown and outside
regions. Given that the regions are the same for a given network, then the arc type
also stays the same for all instances generated from a given road network.

— The test instances are duplicated by considering two different sets of travel speed
multipliers (scenarios), where a speed multiplier depends on the time period, vehicle
(black or green) and arc type (D, F, O), see Tables 1 and 2. In the two scenarios
SI and SII , the second and fourth periods correspond to rush hours. The speed
multipliers of green vehicles are fixed at 1 everywhere, which means that they are not
affected by congestion since they are small (e.g., bicycles). Black vehicles are faster
than green vehicles when there is no congestion. However, they are slower than green
vehicles in the boundary region during rush hours in scenario SI while they have
the same speed than green vehicles in scenario SII . The second scenario is aimed
at evaluating the impact of increasing the speed of black vehicles when compared to
green vehicles.

— The capacity of black vehicles is set to 40.

— The demand of each customer is randomly selected from {1, ..., 5}.

Figure 13. Example of an instance generated with road network RN3; .

Overall, there are 4 road networks × 3 numbers of customers (nc) × 4 customer
distributions × 2 types of time windows × 2 scenarios for a total of 192 instances, that is,
96 instances for each scenario.
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Time period

Arc type τ1 = [0,20) τ2 = [20,30) τ3 = [30,70) τ4 = [70,80) τ5 = [80,100)

Type F 1.2 0.8 1.2 0.8 1.2
Type O 1.5 1.0 1.5 1.0 1.5

(a) Black vehicles

Time period

Arc type τ1 = [0,20) τ2 = [20,30) τ3 = [30,70) τ4 = [70,80) τ5 = [80,100)

Type D 1.0 1.0 1.0 1.0 1.0
Type F 1.0 1.0 1.0 1.0 1.0

(b) Green vehicles

Table 1. Speed multipliers for (a) black vehicles and (b) green vehicles under scenario SI

Time period

Arc type τ1 = [0,20) τ2 = [20,30) τ3 = [30,70) τ4 = [70,80) τ5 = [80,100)

Type F 1.5 1.0 1.5 1.0 1.5
Type O 2.0 1.5 2.0 1.5 2.0

(a) Black vehicles

Time period

Arc type τ1 = [0,20) τ2 = [20,30) τ3 = [30,70) τ4 = [70,80) τ5 = [80,100)

Type D 1.0 1.0 1.0 1.0 1.0
Type F 1.0 1.0 1.0 1.0 1.0

(b) Green vehicles

Table 2. Speed multipliers for (a) black vehicles and (b) green vehicles under scenario SII

7.2. Parameter tuning

Four parameters have a significant impact on the performance of our SISR, namely, c
(average number of removed customers), npos (number of best insertion positions, based on
the approximation), nftp (number of nearest feasible transfer points) and Lmax (maximum
length of removed strings). To adjust their values, we selected a subset of 16 tuning
instances with 100 customers by randomly selecting only one of the four networks, for each
possible configuration of customer distribution (D1, D2, D3, D4), time window (NTW,
WTW) and scenario (S1, S2). Given that solution quality tends to improve with increasing
values of npos and nftp, at the expense of computation time, these two parameters were first
set to high values, that is, npos = 7 and nftp = 10 (the latter value cannot be larger, since

60



there are only 10 transfer points in each instance). In other words, we did not care at this
point about computation time. Then, we focused on parameters c and Lmax and tuned
them with the IRACE software [57], using c = {5, ..., 17} and Lmax = {3, ..., 13}. The best
values returned by IRACE were c = 15 and Lmax = 8. Based on the default configuration
c = 15, npos = 7, nftp = 10 and Lmax = 8, we then modified the value of one parameter
at a time, keeping the other parameters at their default value. The values considered for
each parameter were: c = {9, 11, 13, 15, 17, 19}, npos = {1, ..., 10}, nftp = {1, ..., 10} and
Lmax = {1, ..., 10}. Since our algorithm is non deterministic, we show the average results
(solution quality, computation time in hours) obtained over 10 runs on each tuning instance
in Table 3.

As expected, increasing the values of parameters npos and nftp leads to an increase in
computation time, although the impact is more significant in the case of nftp, since it increases
the number of possible insertions of green and neutral customers in Phase III and Phase
IV of the Recreate method (these insertions are quite complex). The computation times
increase even more with increasing values of parameter c because more removed customers
simply mean more customers to be reinserted. On the other hand, parameter Lmax has no
impact on computation time. With regard to solution quality, we observe an improvement
in solution quality for the first values of each parameter, but then some kind of stagnation
is observed. Accordingly, the parameter setting c =15, npos = 3, nftp = 4 and Lmax = 4
was chosen for the experiments reported in the following sections. We also checked that this
particular combination of parameter values led to good solutions on the tuning instances,
which turned to be true with an average solution cost of 2522.2 and average computation
time of 1.47 hours.

Some experiments were also performed with regard to the number of iterations. We ob-
served that convergence is obtained, even on the largest instances with 200 customers, after
a maximum of 300,000 iterations. That is, a plateau is reached and no further significant
improvement in solution quality is observed. Figure 14 shows an example of convergence
curves for the best solutions found on instances with 200 customers generated with road
network RN4, using the four customer distributions, and both narrow and wide time win-
dows, under scenario SI . In this figure, black, green, gray and blue curves are associated
with customer distributions D1, D2, D3 and D4, respectively, while full lines and broken
lines are associated with instances with narrow and wide time windows, respectively. Based
on the results obtained, the number of iterations was set to 300,000 for all instances (which
is admittedly too much for instances with 50 and 100 customers).
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Parameter values

c = 9 11 13 15 17 19

Avg. cost 2552.1 2532.7 2523.3 2520.3 2520.1 2520.0
Avg. time 1.29 1.54 1.81 2.10 2.36 2.56

npos = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2537.9 2524.6 2521.4 2521.9 2520.3 2521.0 2520.3 2520.2 2519.6 2520.6
Avg. time 1.76 1.92 1.93 1.99 2.00 2.05 2.1 2.16 2.16 2.21

nftp = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2531.2 2525.5 2522.0 2520.2 2520.6 2518.9 2520.1 2520.3 2520.4 2520.3
Avg. time 0.83 1.15 1.41 1.61 1.75 1.88 1.97 2.02 2.06 2.10

Lmax = 1 2 3 4 5 6 7 8 9 10

Avg. cost 2542.9 2522.1 2520.2 2519.7 2520.4 2520.0 2520.1 2520.3 2519.8 2520.5
Avg. time 2.02 2.14 2.09 2.09 2.08 2.10 2.11 2.10 2.08 2.08

Table 3. Impact of parameter values on solution quality and computation times (in hours)

Figure 14. Convergence curves observed for instances with 200 customers generated with
road network RN4 under scenario SI .

7.3. Results on test intances

We report in this section the results produced by our algorithm on the whole set of test
instances, based on 10 different runs on each instance. Tables 8 and 9 in the Appendix
reports the best and average costs, as well as the average computation times in hours for
each instance. Each line of this table corresponds to a particular type of instance using the
notation RNx_ny_Dz, where x is the road network index, y is the number of customers
and z is the customer distribution index. For each type, we show the results obtained on
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instances associated with narrow time windows (NTW) and wide time windows (WTW)
under scenarios SI and SII . Table 4 in this section is a reduced version, where averages are
taken over the four road networks. That is, ny_Dz in Table 4 encompasses RN1_ny_Dz,
RN2_ny_Dz, RN3_ny_Dz and RN4_ny_Dz, so that the numbers in Table 4 correspond
to the bold Avg. lines in the full table in the Appendix.

NTW WTW

Instances Avg. Best Cost Avg. Cost Avg. Time Avg. Best Cost Avg. Cost Avg. Time

SI SII SI SII SI SII SI SII SI SII SI SII

n50_D1 1397.8 1125.3 1398.9 1126.6 0.27 0.28 1219.0 929.5 1220.5 930.0 0.26 0.26
n50_D2 2002.5 1841.0 2004.5 1844.5 0.77 0.87 1801.4 1608.4 1805.2 1615.5 0.76 0.81
n50_D3 1368.4 1112.9 1374.8 1118.0 0.66 0.69 1117.0 899.2 1117.0 901.8 0.59 0.54
n50_D4 1748.9 1517.1 1752.0 1520.4 0.53 0.56 1542.4 1279.1 1543.8 1280.3 0.51 0.51

n100_D1 2498.1 2030.9 2505.7 2034.1 0.64 0.70 2128.9 1702.6 2140.4 1710.0 0.64 0.65
n100_D2 3684.7 3298.5 3696.0 3308.6 2.18 2.37 3314.9 2909.0 3326.5 2922.0 2.06 2.13
n100_D3 2368.0 1976.9 2372.9 1979.9 1.86 1.92 1916.3 1564.2 1921.6 1572.9 1.42 1.39
n100_D4 3138.3 2734.4 3148.2 2756.3 1.34 1.55 2743.1 2303.3 2754.8 2316.5 1.35 1.34

n200_D1 4186.9 3461.1 4221.5 3489.7 1.71 1.88 3582.6 2822.7 3610.5 2855.8 1.42 1.57
n200_D2 6980.9 6356.7 7028.4 6408.2 5.76 6.47 6321.5 5691.5 6380.1 5758.7 5.47 5.69
n200_D3 4399.9 3638.8 4439.4 3672.7 4.54 5.03 3636.4 2918.6 3663.4 2941.5 3.44 3.52
n200_D4 5613.9 4894.5 5642.2 4930.7 3.70 4.21 4927.8 4255.0 4967.9 4294.4 3.41 3.57

Overall Avg. 3282.4 2832.3 3298.7 2849.1 2.00 2.21 2854.3 2407.0 2871.0 2425.0 1.78 1.83

Table 4. Solution cost and computation time in hours for each subset of instances

Since there are no similar instances in the literature that we could refer to for comparison
purposes, Table 5 reports both the average best improvements and average improvements
provided by our algorithm over the initial solutions, to measure its optimization power.
Denoting si and sf the initial and final solutions produced by our algorithm on a given
instance, with cost(si) and cost(sf ) their respective cost, the percentage of improvement of
the final solution over the initial one is calculated as follow:

Impr = 100
(
cost(si)− cost(sf )

cost(si)

)
(7.1)

Tables 4 and 5 will be referred to in the following sections when we analyze in more
detail the behavior of our algorithm for different characteristics of the test instances. For
now, we can observe the obvious increase in solution cost and computation time with
instance size in Table 4. We also note the overall average improvements over the initial
solutions in Table 5 that stand between 20% and 30%, which is substantial. It is clear that
the greedy insertion heuristic is limited with regard to solution quality on such a complex
problem, but still, these percentages of improvement show that our algorithm can take
advantage of optimization opportunities.

63



NTW WTW

Instances Avg. Best Impr. Avg. Impr. Avg. Best Impr. Avg. Impr.

SI SII SI SII SI SII SI SII

n50_D1 13.02 14.14 10.48 11.19 16.03 18.38 13.48 15.03
n50_D2 13.28 15.33 11.21 13.15 16.75 19.36 14.28 16.51
n50_D3 33.53 41.27 30.95 38.51 35.42 43.14 32.02 39.05
n50_D4 11.20 14.87 9.49 11.64 15.06 18.21 12.62 15.52

n100_D1 17.59 20.28 15.96 18.46 22.32 24.56 20.33 22.70
n100_D2 17.55 19.68 15.34 17.67 19.48 22.70 17.63 20.68
n100_D3 41.76 46.49 39.68 44.93 44.31 48.55 42.14 45.87
n100_D4 14.67 17.62 13.27 15.28 20.16 22.18 17.98 20.56

n200_D1 25.57 27.73 24.00 25.46 29.57 31.24 27.73 29.54
n200_D2 18.76 22.39 17.32 21.05 21.01 23.97 19.50 22.20
n200_D3 46.53 52.75 45.27 51.05 48.17 54.24 46.51 52.07
n200_D4 19.75 22.61 18.46 20.89 23.95 25.71 21.95 23.81

Overall Avg. 22.77 26.26 20.95 24.11 26.02 29.35 23.85 26.96
Table 5. Average best improvements and average improvements for each subset of instances.

7.4. Synchronization

In this section, we examine if synchronization between black and green vehicles at transfer
points is efficient. For this purpose, we define the percentage of solution cost (duration) that
corresponds to the total time that black and green vehicles spend at transfer points. For
a given solution s, this percentage is denoted as ρs. In Equation (7.2), this percentage is
defined using ∆TP b

s and ∆TP g
s , which are the total time spent at transfer points by black

and green vehicles, respectively.

ρs = 100
(

∆TP b
s + ∆TP g

s

cost(s)

)
(7.2)

Table 6 reports the minimum, maximum and average values of ρs on different subsets
of instances. The format of this table is reduced when compared to Tables 4 and 5 by
also averaging over the two types of time windows and the two scenarios. We observe that
the ρs values are smaller for customer distributions D1 and D3. In fact, if we compute
the average ρs values for D1, D2, D3 and D4, we obtain 0.97%, 1.97%, 0.94% and 1.57%,
respectively. The fact that D1 and D3 lead to better synchronization than D2 and D4 can
be explained ty their small percentage of green customers (20%), since they are the only
ones for which synchronization at a transfer point is mandatory. In any case, the differences
observed are small in absolute terms. The fact is that only 1.36% (overall average) of
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solution cost is due to synchronization, which indicates that synchronization is well achieved.

Instances Min Max Avg.

n50_D1 0.12 2.18 0.77
n50_D2 1.05 3.71 2.08
n50_D3 0.03 2.55 1.02
n50_D4 0.18 3.23 1.60

Avg. 0.34 2.92 1.37

n100_D1 0.01 3.03 0.90
n100_D2 0.82 3.11 1.91
n100_D3 0.19 1.97 0.95
n100_D4 0.45 3.13 1.48

Avg. 0.37 2.81 1.31

n200_D1 0.45 2.45 1.25
n200_D2 0.84 3.37 1.91
n200_D3 0.25 2.20 0.86
n200_D4 0.53 2.85 1.63

Avg. 0.52 2.71 1.41

Overall Avg. 0.01 3.71 1.36
Table 6. Minimum, maximum and average values of ρs for each subset of instances

7.5. Customer distributions

Table 4 shows that customer distributions D1 and D3 are the best for solution cost, while
D1 outperforms the three other distributions for computation time. Both D1 and D3 have
only 20% of green customers, which is beneficial for solution cost because these customers
require a detour at a transfer point for both a black and a green vehicle. Furthermore, D1

has a large percentage of 60% of black customers (versus only 20% of neutral customers),
which is helpful for computation time because only simple insertions in black routes need
to be considered for black customers. Although D3 is competitive with D1 for solution cost,
this is not the case for computation time. Distribution D3 has 60% of neutral customers
(versus only 20% of black customers) and their potential insertion in both black and green
routes need to be considered. As opposed to black routes, insertion in green routes is
quite complex and computationally expensive. With the largest percentage of 60% of green
customers, distribution D2 is consequently the worst for solution cost and computation time.

When considering improvements over initial solutions in Table 5, the largest improve-
ments are associated with distribution D3. This distribution has the largest percentage of
neutral customers (60%) and these customers offer more flexibility for optimization because
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they can be inserted either in black or green routes. In this case, the average percentage of
neutral customers belonging to black routes in the initial solutions ranges between 51.1% and
54.4%. However, in the final solutions, these percentages drastically increase between 94.6%
and 98.6%. That is, the optimization algorithm finds ways to move a large proportion of
neutral customers in black routes, which decreases solution cost. Accordingly, more neutral
customers means more opportunities for improvement.

7.6. Time windows

Tables 4 and 5 show that better solution costs and larger improvements over initial
solutions are associated with instances with wide time windows. Clearly, these time windows
offer more feasible insertion places for customers and, consequently, greater flexibility for
the optimization procedure to move them around. For example, the percentage of neutral
customers in black routes for the instances with wide time windows is 98.3%, as compared
with 92.8% for instances with narrow time windows. We also observed a reduced number of
routes in the solutions obtained on instances with wide time windows, when compared with
narrow time windows, namely 25.2% less black routes and 15.1% less green routes. Finally,
black vehicles visit 2% more transfer points on average in the presence of wide time windows.

7.7. Scenarios

Better solution costs are observed in Table 4 under scenario SII , when compared with
scenario SI . Since black vehicles now travel faster, the time windows at black and neutral
customers become easier to satisfy. We also observed that, on average, a larger percentage
of neutral customers is served by black vehicles in the final solutions under scenario SII

(97.4%) when compared to scenario SI (93.7%). It is generally less costly to serve neutral
customers with black vehicles and the latter can get a larger share of neutral customers
when their speed increases. In other words, they win more often the “battle” for neutral
customers against green vehicles in the boundary region. We also observed a reduction of
14.7% and 6.2% in the number of black and green routes, respectively, under scenario SII ,
with corresponding increases of 20.5% and 3.5% in the average number of customers in black
and green routes, respectively. Finaly, black vehicles visit 4.4% more transfer points on
average, when compared to scenario SI .

7.8. Number of transfer points

We propose here an experiment where we gradually reduce the number of transfer
points to see the impact on the solutions obtained. To this end, some transfer points are
randomly selected and transformed into simple nodes (road junctions). In some cases,
infeasible instances may be created (e.g., it may not be possible for any green vehicle to
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visit a transfer point and serve a green customer before the upper bound of its time window).

Here, we focus on the test instances with 100 customers. First, two transfer points are
randomly chosen and removed from the 10 original ones to obtain instances with 8 transfer
points. From these 8 transfer points, the procedure is repeated to get instances with 6
transfer points. Finally, two additional transfer points are removed to get instances with 4
transfer points. Ten runs were performed on each feasible instance with a reduced number
of transfer points. Table 7 shows the average gaps between the average cost of solutions
obtained with 10 transfer points and with k = 8, 6, 4 transfer points, based on Equation
(7.3). Each line in this table is the average over four instances, considering that there are
two types of time windows and two scenarios.

Gap = 100
ave|TP |=kcost − ave|TP |=10

cost

ave
|TP |=10
cost

 (7.3)

We observed no infeasible instance with k = 8 transfer points, one infeasible instance
with k = 6 transfer points and 19 infeasible instances (out of 64 instances) with k = 4. Thus,
some averages are computed with less than four gaps. When there is no value, the four
instances are infeasible. A few small negative values appear in the table, which means that
slightly better solutions are obtained with fewer transfer points. This situation can occur,
due to the randomized nature of our algorithm, when the removed transfer points are not
or seldom used in the original instances, thus producing no or little impact on solution quality.

Obviously, removing transfer points generally lead to worse solutions and this trend is
more pronounced when more transfer points are removed. Customer distribution D2 is more
affected than the other distributions due to its large percentage of green customers (which
must use transfer points). We also see that instances associated with road network RN1 are
greatly affected when 4 or 6 transfer points are removed. In the solutions obtained with 10
transfer points, we observed that some transfer points are much more exploited than others.
Clearly, such critical transfer points are more likely to disappear when more transfer points
are removed, which in turn greatly impact solution quality.

8. Conclusion
In this work, we have proposed a new SISR metaheuristic for the TDVRPTWTPRN . To

the best of our knowledge, this challenging problem where customers can be served either
directly by black vehicles or indirectly by green vehicles through transfer points has not
been previously addressed in the literature. Computational results on test instances with
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Instances Avg. Gap

k = 8 k = 6 k = 4
RN1_n100_D1 -0.04 6.02 − − −
RN2_n100_D1 -0.10 -0.11 0.47
RN3_n100_D1 -0.02 -0.04 0.51
RN4_n100_D1 0.51 1.74 1.76

RN1_n100_D2 2.06 10.95 27.45
RN2_n100_D2 1.56 1.58 5.86
RN3_n100_D2 0.62 1.56 9.08
RN4_n100_D2 1.81 7.09 7.30

RN1_n100_D3 0.48 7.32 16.08
RN2_n100_D3 -0.05 -0.09 0.48
RN3_n100_D3 1.12 2.34 6.55
RN4_n100_D3 1.24 1.79 1.82

RN1_n100_D4 1.00 9.72 − − −
RN2_n100_D4 -0.86 -0.75 -0.02
RN3_n100_D4 0.19 1.21 4.45
RN4_n100_D4 0.86 1.47 1.68

Table 7. Average gaps between average solution costs with 10 transfer points and k = 8, 6,
4 transfer points

different characteristics show that our algorithm performs well, in particular by finding
ways to transfer more neutral customers into black routes, which lead to solutions of better
quality. Furthermore, we observed that the time spent by vehicles at transfer points is very
low, thus indicating that good synchronization is achieved.

For the future, new ruin operators could be developed to enhance the performance of our
algorithm and solve other complex variants of vehicle routing problems. It would also be
interesting to consider the integration of learning into our algorithm, for example to identify
the most promising transfer points, based on the topology of the network and distribution
of customers.
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Appendix
Best Cost Avg. Cost Avg. Time

Instances (10 runs) (10 runs) (hours)

SI SII SI SII SI SII

RN1_n50_D1 1563.47 1217.90 1563.91 1217.90 0.30 0.29
RN2_n50_D1 1365.48 1096.91 1365.48 1096.91 0.25 0.23
RN3_n50_D1 1430.09 1159.05 1432.17 1159.65 0.25 0.27
RN4_n50_D1 1232.26 1027.51 1233.85 1031.95 0.28 0.34

Avg. 1397.83 1125.34 1398.85 1126.60 0.27 0.28
RN1_n50_D2 2295.75 2067.62 2295.83 2069.44 0.81 0.90
RN2_n50_D2 1929.28 1752.89 1932.68 1753.13 0.74 0.81
RN3_n50_D2 1996.08 1864.24 1996.14 1875.20 0.69 0.71
RN4_n50_D2 1788.88 1679.38 1793.19 1680.13 0.83 1.06

Avg. 2002.50 1841.03 2004.46 1844.48 0.77 0.87
RN1_n50_D3 1440.17 1183.37 1449.07 1184.69 0.65 0.68
RN2_n50_D3 1365.98 1087.79 1378.58 1105.24 0.72 0.66
RN3_n50_D3 1353.17 1120.44 1356.42 1121.83 0.57 0.61
RN4_n50_D3 1314.31 1059.94 1314.97 1060.22 0.70 0.78

Avg. 1368.41 1112.88 1374.76 1118.00 0.66 0.69
RN1_n50_D4 1786.66 1587.00 1786.66 1587.00 0.49 0.53
RN2_n50_D4 1944.47 1629.15 1947.70 1630.98 0.54 0.51
RN3_n50_D4 1535.58 1376.85 1537.07 1386.52 0.48 0.47
RN4_n50_D4 1728.69 1475.37 1736.48 1477.26 0.61 0.72

Avg. 1748.85 1517.09 1751.98 1520.44 0.53 0.56

RN1_n100_D1 2526.91 2085.89 2528.87 2088.53 0.64 0.70
RN2_n100_D1 2559.89 2067.83 2570.32 2071.26 0.53 0.65
RN3_n100_D1 2540.37 2113.93 2540.48 2115.17 0.64 0.65
RN4_n100_D1 2365.21 1856.08 2383.25 1861.46 0.73 0.81

Avg. 2498.09 2030.93 2505.73 2034.11 0.64 0.70
RN1_n100_D2 3804.11 3452.62 3812.33 3461.66 2.07 2.22
RN2_n100_D2 3537.95 3237.98 3543.50 3246.02 1.84 2.37
RN3_n100_D2 3919.34 3520.71 3936.62 3534.99 2.12 2.18
RN4_n100_D2 3477.32 2982.62 3491.33 2991.65 2.69 2.72

Avg. 3684.68 3298.48 3695.95 3308.58 2.18 2.37
RN1_n100_D3 2480.34 1996.41 2488.51 1997.98 1.83 1.70
RN2_n100_D3 2315.24 1990.81 2319.78 1996.14 1.70 1.71
RN3_n100_D3 2435.62 2051.60 2440.28 2054.78 2.09 2.03
RN4_n100_D3 2240.82 1868.86 2243.17 1870.65 1.82 2.23

Avg. 2368.00 1976.92 2372.94 1979.89 1.86 1.92
RN1_n100_D4 3534.04 2929.31 3538.32 2940.50 1.56 1.65
RN2_n100_D4 2807.13 2505.56 2827.05 2573.06 1.09 1.27
RN3_n100_D4 3161.54 2876.90 3168.41 2882.75 1.28 1.64
RN4_n100_D4 3050.61 2625.61 3058.81 2628.78 1.43 1.65

Avg. 3138.33 2734.35 3148.15 2756.27 1.34 1.55

RN1_n200_D1 4586.99 3673.59 4607.01 3698.37 1.97 1.84
RN2_n200_D1 4006.30 3338.27 4037.61 3380.21 1.41 1.76
RN3_n200_D1 4235.06 3605.87 4287.61 3632.18 1.83 1.97
RN4_n200_D1 3919.20 3226.55 3953.88 3247.98 1.62 1.95

Avg. 4186.89 3461.07 4221.53 3489.68 1.71 1.88
RN1_n200_D2 7428.48 6656.70 7468.67 6667.52 5.64 6.09
RN2_n200_D2 6883.99 6320.66 6938.59 6428.07 5.29 6.62
RN3_n200_D2 7143.03 6595.11 7201.80 6636.35 6.35 6.69
RN4_n200_D2 6468.03 5854.25 6504.63 5900.71 5.76 6.48

Avg. 6980.88 6356.68 7028.42 6408.16 5.76 6.47
RN1_n200_D3 4333.66 3631.80 4385.00 3671.93 4.12 4.57
RN2_n200_D3 4336.39 3638.83 4385.59 3681.60 4.46 5.27
RN3_n200_D3 4600.69 3735.66 4628.11 3767.51 4.49 4.84
RN4_n200_D3 4328.94 3548.88 4358.82 3569.77 5.06 5.45

Avg. 4399.92 3638.79 4439.38 3672.70 4.54 5.03
RN1_n200_D4 5863.31 5023.25 5872.71 5048.40 4.19 4.35
RN2_n200_D4 5302.13 4717.90 5314.75 4770.30 2.82 3.42
RN3_n200_D4 5842.90 5220.16 5902.48 5258.46 4.38 4.93
RN4_n200_D4 5447.38 4616.55 5478.77 4645.50 3.42 4.17

Avg. 5613.93 4894.47 5642.18 4930.67 3.70 4.21

Overall avg. 3282.36 2832.34 3298.69 2849.13 2.00 2.21

Table 8. Solution cost and computation time in hours for each instance with narrow time
windows.
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Best Cost Avg. Cost Avg. Time
Instances (10 runs) (10 runs) (hours)

SI SII SI SII SI SII

RN1_n50_D1 1331.90 1030.23 1332.03 1030.23 0.26 0.29
RN2_n50_D1 1159.71 898.09 1165.04 898.09 0.26 0.24
RN3_n50_D1 1292.61 950.84 1292.81 950.85 0.25 0.24
RN4_n50_D1 1091.71 839.01 1092.13 840.98 0.27 0.28

Avg. 1218.98 929.54 1220.50 930.04 0.26 0.26
RN1_n50_D2 2018.20 1737.63 2018.72 1742.08 0.82 0.89
RN2_n50_D2 1664.44 1476.99 1664.84 1478.37 0.71 0.77
RN3_n50_D2 1843.62 1696.06 1855.69 1713.47 0.63 0.71
RN4_n50_D2 1679.18 1523.08 1681.66 1527.97 0.88 0.88

Avg. 1801.36 1608.44 1805.23 1615.47 0.76 0.81
RN1_n50_D3 1234.84 983.12 1234.86 985.14 0.61 0.53
RN2_n50_D3 1059.19 845.14 1059.19 853.41 0.57 0.53
RN3_n50_D3 1094.61 931.62 1094.61 931.62 0.59 0.53
RN4_n50_D3 1079.52 836.87 1079.52 837.14 0.60 0.58

Avg. 1117.04 899.19 1117.05 901.83 0.59 0.54
RN1_n50_D4 1679.56 1365.57 1679.56 1365.71 0.56 0.47
RN2_n50_D4 1622.76 1328.29 1622.76 1330.34 0.57 0.61
RN3_n50_D4 1355.06 1195.54 1355.06 1197.90 0.41 0.45
RN4_n50_D4 1512.20 1227.06 1517.89 1227.06 0.49 0.51

Avg. 1542.39 1279.12 1543.82 1280.25 0.51 0.51

RN1_n100_D1 2189.86 1662.22 2198.75 1675.03 0.65 0.56
RN2_n100_D1 2161.96 1726.10 2177.80 1727.87 0.56 0.59
RN3_n100_D1 2200.53 1889.07 2202.66 1891.56 0.70 0.78
RN4_n100_D1 1963.41 1533.17 1982.42 1545.58 0.63 0.69

Avg. 2128.94 1702.64 2140.41 1710.01 0.64 0.65
RN1_n100_D2 3426.28 2988.77 3434.23 3006.73 2.03 1.99
RN2_n100_D2 3256.69 2866.68 3265.31 2873.14 2.05 2.03
RN3_n100_D2 3538.40 3158.21 3551.07 3168.52 1.79 1.98
RN4_n100_D2 3038.18 2622.38 3055.51 2639.41 2.36 2.53

Avg. 3314.89 2909.01 3326.53 2921.95 2.06 2.13
RN1_n100_D3 2124.82 1635.38 2127.03 1645.98 1.58 1.29
RN2_n100_D3 1923.52 1612.65 1930.14 1618.16 1.37 1.44
RN3_n100_D3 1851.77 1569.09 1856.39 1573.41 1.32 1.36
RN4_n100_D3 1764.91 1439.53 1772.65 1454.09 1.40 1.47

Avg. 1916.26 1564.16 1921.55 1572.91 1.42 1.39
RN1_n100_D4 3044.64 2398.28 3048.74 2415.50 1.43 1.31
RN2_n100_D4 2444.41 2141.93 2456.91 2151.48 1.07 1.16
RN3_n100_D4 2742.29 2428.80 2765.12 2448.75 1.48 1.50
RN4_n100_D4 2741.18 2244.28 2748.61 2250.31 1.41 1.38

Avg. 2743.13 2303.32 2754.84 2316.51 1.35 1.34

RN1_n200_D1 3890.26 2964.06 3911.65 3002.76 1.59 1.63
RN2_n200_D1 3420.59 2774.14 3444.88 2805.14 1.32 1.62
RN3_n200_D1 3632.22 3011.05 3649.54 3032.49 1.27 1.43
RN4_n200_D1 3387.47 2541.72 3436.05 2582.96 1.52 1.59

Avg. 3582.63 2822.74 3610.53 2855.84 1.42 1.57
RN1_n200_D2 6650.45 5893.97 6692.08 5936.45 5.23 5.60
RN2_n200_D2 6220.31 5650.36 6267.01 5712.54 5.40 5.85
RN3_n200_D2 6615.83 6020.32 6681.27 6079.96 5.38 5.24
RN4_n200_D2 5799.34 5201.53 5879.89 5306.00 5.86 6.07

Avg. 6321.48 5691.54 6380.06 5758.74 5.47 5.69
RN1_n200_D3 3647.47 2941.04 3684.66 2960.16 2.97 2.99
RN2_n200_D3 3622.43 2916.56 3644.45 2943.40 3.56 4.12
RN3_n200_D3 3818.68 3096.20 3835.78 3112.43 3.53 3.35
RN4_n200_D3 3457.12 2720.75 3488.66 2749.87 3.69 3.63

Avg. 3636.43 2918.64 3663.39 2941.46 3.44 3.52
RN1_n200_D4 5056.61 4284.61 5081.22 4323.29 3.37 3.26
RN2_n200_D4 4661.26 4074.33 4685.65 4125.05 2.93 3.15
RN3_n200_D4 5141.24 4588.17 5213.82 4629.61 3.86 3.95
RN4_n200_D4 4851.89 4073.05 4890.97 4099.56 3.50 3.93

Avg. 4927.75 4255.04 4967.92 4294.38 3.41 3.57

Overall avg. 2854.27 2406.95 2870.99 2424.95 1.78 1.83

Table 9. Solution cost and computation time in hours for each instance with wide time
windows.
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This article was submitted to the Journal of the Operational Research Society.

The main contributions of Fernando Obed Guillen Reyes for this articles are presented. He
designed the empirical study with the help of his advisors. He generated different levels
of inaccuracies in the distances of classical benchmark instances. Then, he had to adapt
previous implementations of the selected problem-solving methods to make them operational
within the experimental setting. He ran the experiments and analyzed the results with the
help of his advisors. He also wrote the first draft of the paper.

Résumé. Cet article s’intéresse à l’impact d’inexactitudes dans les distances sur la per-
formance de différentes méthodes pour résoudre le problème de tournées de véhicules avec
contraintes de capacité. Il s’agit d’une étude expérimentale qui inclut une heuristique simple,
des métaheuristiques qui représentent l’état de l’art et un algorithme exact. Nous voulons
répondre aux questions suivantes: i) vaut-il la peine de faire appel à des algorithmes sophisti-
qués quand les inexactitudes dans les données sont plus grandes ou similaires aux écarts d’op-
timalité typiquement produits par de tels algorithmes; ii) les meilleurs algorithmes seront-ils
attirés davantage par des distances inexactes (e.g., erronément trop courtes) et seront-ils
dès lors disproportionnellement affectés par ces distances inexactes? À cet effet, nous me-
nons une étude expérimentale pour le problème de tournées de véhicules avec contraintes de
capacité en faisant appel à des instances tests contenant de 100 à 1 000 clients en introdui-
sant différents niveaux d’inexactitude dans les distances. Suite à cette étude, nous pouvons
répondre affirmativement à la première question et négativement à la seconde: les erreurs
dans les données et les algorithmes s’influencent mutuellement, si bien que les meilleurs algo-
rithmes demeurent les meilleurs dans tous les cas. De plus, l’impact des distances inexactes
sur la performance est assez semblable d’un algorithme à l’autre, sauf pour l’heuristique de
construction simple de Clarke et Wright qui semble disproportionnellement affectée par ces
inexactitudes.
Mots clés : Étude expérimentale, distances inexactes, heuristiques, métaheuristiques, al-
gorithme exact, problème de tournées de véhicules avec contraintes de capacité

72



Abstract.
This paper studies the impact of distance data inaccuracies on different methods for

solving the capacitated vehicle routing problem. It is an experimental study examining how
simple heuristics, state-of-the-art metaheuristics and an exact algorithm behave under such
inaccuracies. We investigate the two following questions: i) is it worth using sophisticated
state-of-the-art algorithms when data inaccuracies are greater or similar in their scale to
algorithmic error gaps; ii) would the best algorithms tend to select arcs with inaccurate
(e.g., erroneously shorter) distances and be disproportionally affected by inaccurate data?
We conduct extensive experiments on the capacitated vehicle routing problem, considering
instances ranging from 100 to 1,000 customers with different distance-estimation inaccura-
cies. Interestingly, we respond to the first question in the affirmative and the second one in
the negative: errors from data and algorithms tend to compound, such that state-of-the-art
algorithms remain the better choice in all cases. Moreover, the impact of inaccurate data is
fairly uniform over the algorithms, except for a simpler construction heuristic (Clarke and
Wright algorithm) which seems disproportionally impacted by inaccurate data.
Keywords: Experimental study, inaccurate distances, heuristics, metaheuristics, exact al-
gorithm, capacitated vehicle routing problem

1. Introduction
The Capacitated Vehicle Routing Problem (CVRP) seeks to find efficient routes to

transport goods from a depot to several customers using a fleet of vehicles limited by their
capacity. This problem is of significant interest to researchers because any improvement in
the methods developed for it can result in significant savings for transportation companies.
Although many complex variants of the CVRP have been studied in the last decades, the
canonical CVRP remains challenging for large-scale instances. In this case, one must often
resort to heuristics and metaheuristics to produce solutions of good quality in a reasonable
amount of computation time.

Formally, the CVRP can be stated as follows. We consider a complete graph G = (V,A),
where V is the set of nodes and A is the set of arcs. The set V contains the customers plus
the depot. Each customer i ∈ V has a demand qi that must be served exactly once by a
vehicle. Each arc (i,j) ∈ A between node i and node j is associated with a distance dij. A
fleet of homogeneous vehicles of capacity Q is located at the depot. Each vehicle performs
one closed route that starts at the depot, delivers the demand to a subset of customers, and
returns to the depot at the end. The goal is to assign all customers to vehicles and sequence
the customers assigned to each vehicle to minimize the total distance (or travel time) while
not exceeding the capacity of any vehicle.

In most practical cases, data (e.g., travel times) can be inaccurate due to the devices
and methods used to collect them, as well as possible human errors. In view of this, though
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the development of more and more accurate heuristics is interesting from a methodological
standpoint, many practitioners would argue that sophisticated heuristics capable of approx-
imating the exact solutions within a fraction of percent errors do not pay off, given that
the magnitude of the errors in the data is likely larger than that of nowadays heuristics.
Going even further, in a similar fashion as learning algorithms, some could suspect that
state-of-the-art optimization algorithms applied to inaccurate data may “overfit” and
deliberately use arcs whose distances are most underestimated.

In this paper, we conduct extensive experimental analyses to examine these common
beliefs. To this end, we design a controlled experiment considering four CVRP heuristics
and an exact method tested on instances ranging from 100 to 1,000 customers with different
distance-estimation inaccuracies. We show that the two aforementioned beliefs are incorrect
and that state-of-the-art methods consistently produce solutions of better quality even when
considering the largest level of inaccuracy in the data. Moreover, the impact of inaccurate
data is fairly consistent over the algorithms, except for the Clarke-and-Wright construction
algorithm, which seems disproportionally impacted by inaccurate data.

The rest of this paper is organized as follows. Section 2 reviews related works, mostly from
the machine learning literature, in which the impact of inaccurate data on algorithmic per-
formance is studied. Section 3 presents our experimental setting, the heuristics considered,
and the generation of test instances with inaccurate distances from the datasets presented
in [82] and the 2021 DIMACS implementation challenge on vehicle routing problems [24].
Section 4 discusses our computational results and Section 5 concludes.

2. Related works
Extensive research has been conducted on the CVRP, but no paper has, to our

knowledge, analyzed the impact of data inaccuracies on the results of classical heuristics,
metaheuristics, and exact methods. The closest related analyses come from the machine
learning and data mining literature where the impact of noise has been studied. Given that
noise is unavoidable in real-world problems, several methods in machine learning have been
aimed at identifying different types of noise and ways to handle them. For example, the
work reported in [43] reviews uncertainty and big data analytics and discusses the impact
of different sources of errors in the data and their consequences. Methods to deal with
noise and to measure it are also reported. The authors in [41] additionally survey studies
published between 1993 and 2018 about noise identification and mitigation.
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Outside of the optimization and vehicle routing domain, many papers in machine
learning study the impact of inaccurate data on solutions produced by different algorithms.
The following papers share a common approach by comparing the sensitivity of different
algorithms to different types and levels of noise in the data. In [3, 61, 75, 77], simple
learning algorithms like decision trees, naive Bayesian classifiers, Support Vector Machines
(SVM), k-Nearest Neighbors (k-NN), and logistic regression are considered. In [77], a new
metric called Equalized Loss of Accuracy (ELA) is proposed to evaluate different algorithms
based on their overall performance and their robustness to noise. Moreover, the work in [17]
reports an extensive comparison of different Bayesian network structure learning algorithms
under noise.

Multiple classifier systems (MCSs) that combine different learning algorithms have also
attracted the attention of researchers. MCSs are obtained by combining different learning
algorithms. Although MCSs are totally different from the algorithms used to solve the
CVRP, it is also quite common to combine different heuristics in problem-solving methods
for the CVRP. In [76], the authors study the behavior of MCSs under noise by combining the
decision tree algorithm C4.5, SVM and k-NN. Similar studies are reported in [23, 59, 50]
using MCSs based on AdaBoost, boosting, randomization, and bagging techniques.

In the data mining field, statistical analyses on the impact of noise (and unbalanced
datasets) on the performance of 11 learning algorithms have been reported in [84]. In this
work, the authors added noise to seven datasets while controlling the overall amount of
corrupted data. Through an analysis of variance (ANOVA) they determine which factors,
like the level of noise or the percentage of noisy data in a given class, impact the most the
considered learning algorithms.

Overall, those studies indicate that noise is almost always present in real-world applica-
tions and has a considerable impact on the performance of learning algorithms. Also, it is
observed that different types of noise might impact a particular algorithm differently. Thus,
accuracy is not the only desirable feature of a learning algorithm, but also its robustness to
noise.

3. Experimental setting
In this section, we describe the experimental setting designed to evaluate the impact of

noise on different problem-solving methods for the CVRP. First, the tested heuristics and
metaheuristics are introduced. Then, the benchmark instances are described. Finally, we
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explain how perturbations to these instances were generated to include different levels of
noise in the distances.

3.1. Solution Algorithms

A large variety of heuristics have been proposed to solve the CVRP, from simple heuristics
to sophisticated metaheuristics. To analyze the impact of noise on different types of methods,
we considered the following approaches:

(a) The Clarke & Wright savings heuristic (CW) [16] starts with an initial solution in
which an individual route serves each customer. Then, it evaluates for each existing
route the “distance savings” due to merging each route pair. These savings are then
sorted from largest to smallest. Starting at the top of the list of savings, the two
routes associated with the current saving are merged to form a single route. This
process is then repeated until no pair of routes can be merged without violating the
capacity constraints.

(b) The open source software Google OR-Tools (GORT) [66] is a generic tool designed
to solve various operations research problems, including VRPs. Here, the user must
define the data (instance) and write a high-level algorithm that calls the required
predefined functions to solve a problem. For example, the user defines the method
to compute the initial solution, the local search method, the stopping criterion, etc.
In our case, we chose PATH_CHEAPEST_ARC to generate the initial solution and
GUIDED_LOCAL_SEARCH to perform the local search, as recommended in the
user manual for VRPs.

(c) The Slack Induction by String Removal (SISR) [15] is a recent metaheuristic based
on the ruin-and-recreate paradigm where, at each iteration, a part of the current
solution is partially destroyed by removing several customers from the routes and
by creating a new solution through a reinsertion procedure. A simulated annealing
criterion is used to determine whether the new solution should be accepted as the
current solution. In the computational results, the parameter settings suggested in
[15] were used.

(d) The Hybrid Genetic Search (HGS) [85] is the current state-of-the-art metaheuristic
for the CVRP. It is a hybrid genetic algorithm that combines crossover operations
for solution generation with a neighborhood search for solution improvement.
Additionally, the population is maintained to ensure a diversified search, and
infeasible solutions are allowed with adaptive penalties. For this algorithm, we rely
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on parameter settings suggested in [85].

Regarding the stopping criterion, it should be noted that CW naturally stops when it
is impossible to merge two routes without violating the capacity constraints. For GORT,
SISR, and HGS, the stopping criterion is set to a time limit that depends linearly on the
instance size, as in [85]. More precisely, we use:

T (n) = 2.4 · n seconds (3.1)

per instance, where n is the number of customers. With this, the time limit ranges from
four minutes on an instance with 100 customers to 40 minutes for 1000 customers.

As previously mentioned, we also include experiments with an exact branch-cut-and-price
algorithm [67]. However, since this algorithm is limited in the size of problems that it can
solve, our experiments with this approach are applied only to a subset of smaller instances.
This is covered in a dedicated section (Section 4.2).

3.2. Test Instances

We conducted our experiments on the 100 classical synthetic CVRP instances from
Uchoa et al. [82] with Euclidean distances, as well as 12 real-world instances provided by
the companies Loggi and ORTEC for the 2021 DIMACS implementation challenge.

The six instances from Loggi contain 400 to 1,000 customers and come from urban
delivery services in some of the largest cities in Brazil. The distances provided in these
instances were calculated from the urban networks. The six instances from ORTEC contain
between 241 and 700 customers and were derived from the activities of a US-based grocery
delivery service. In this latter case, the distances correspond to real driving times.

The Euclidean instances from Uchoa et al. [82] (usually called “Set X”) have a size
ranging from 100 to 1,000 customers. These instances were generated to reflect a variety of
possible factors and situations. Their generation has been driven by six main factors:

— n: number of customers (i.e., instance size)
— Dep: location of the depot, either C (center of the grid), E (corner of the grid), or R

(random);
— Cust: location of the customers, either R (random), C (clustered), or RC(k) (mixed)

with k ∈ {3, . . . ,8} clusters
— Dem: customer demand, which can be:

U : all demands equal to 1
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1-10: demand from UD[1-10] (where UD[a,b] denotes a uniform discrete distri-
bution over interval [a, b])
5-10: demand from UD[5-10]
1-100: demand from UD[1-100]
50-100: demand from UD[50-100]
Q: demand from UD[1-50] or UD[51-100] depending if the customer is located
in an even or odd quadrant of the grid, respectively
SL: many Small values, few Large values, that is, 70% to 95% of demands are
from UD[1-10], while the remaining demands are from UD[50-100]

— r : approximation of the average number of customers per route (see [82]).

3.3. Distance Inaccuracies

It is common to observe data inaccuracies due, for example, to the use of geolocalization
devices to collect data. To account for these inaccuracies, we introduce perturbations to the
distances (or travel times) between each pair of nodes. For a given distance dij, a value εij
is generated by truncating a normal distribution of mean 1 and standard deviation σ. Thus,
the distribution is defined within the interval [1− σ,1 + σ]. With this, a “noisy” distance d∗ij
is obtained by multiplying dij by εij, that is:

d∗ij = εij · dij. (3.2)

Larger standard deviations σ lead to larger perturbations to the original distances. To
analyze the impact of noise, six levels were considered in our computational study: σ = 0.00
(no noise), and then σ = 0.01, 0.02, 0.05, 0.10, and 0.15.

Let us denote the 100 instances of Set X as P1 to P100, where P1 is the smallest instance
and P100 is the largest one. For each original instance Pi with i ∈ {1, . . . , 100} and noise
level σ ∈ {0.01,0.02,0.05,0.10,0.15}, we generated ten noisy instances j ∈ {1, . . . , 10}. In
the following, each noisy instance is denoted P σ

i,j. This leads to 100 × 5 × 10 = 5000 noisy
instances. Finally, in the case of σ = 0.00 (no noise), ten runs of SISR and HGS were
performed on each instance with different random seeds to obtain averages, as in the other
cases. For GORT, instead of random seeds, different orders of customers were used because
this algorithm is sensitive to the order of the data.

Let sσij be the solution obtained with a given method on a noisy instance P σ
i,j. We can

evaluate the quality of this solution using the true distances (ground truth) in the original
instance Pi to obtain the true total distance (cost) traveled by the vehicles, denoted as
c(sσij). Then, considering si the best-known solution of the original instance Pi and the
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corresponding cost c(si) (see the Appendix), the percentage gap between the true cost of
solution sσij and the cost of the best-known solution si can be computed as:

Gapσij = 100
(
c(sσij)− c(si)

c(si)

)
. (3.3)

For an original instance Pi and a given noise level σ, the average percentage gap over the
ten corresponding noisy instances is calculated as:

Avgσi = 1
10

 10∑
j=1

Gapσij

 . (3.4)

Finally, for a given noise level σ, the global average percentage gap over the 100 instances is
calculated as:

Avgσ = 1
1000

100∑
i=1

10∑
j=1
Gapσij

 . (3.5)

The noisy instances based on the 12 real-world instances of Loggi and ORTEC were
generated in the same way, leading to 12 × 5 × 10 = 600 noisy instances overall.

4. Experimental Study
Our experiments are divided into three parts. First, Section 4.1 examines the impact

of noise on the average gap of the four heuristics presented before, using the set of 5,000
noisy test instances derived from Set X. Next, Section 4.2 conducts the same experiment for
the exact method, using a subset of small instances from Set X, and compares the results
obtained with our heuristic methods. Finally, Section 4.3 examines the impact of noise on
real-world instances using a set of 600 noisy instances derived from Loggi’s and ORTEC’s
applications. All algorithms have been run on an Intel Gold 6148 Skylake 2.4GHz processor
with 40GB of RAM under CentOS 7.8.2003 (one thread).

4.1. Performance of the heuristics on set X instances with inaccu-
rate distances

We start our analysis by examining the average gaps Avgσi of each heuristic on the ten
noisy instances associated with each original instance Pi, i = 1, ..., 100, and each noise level
σ, as defined in Equation (3.4). These results are reported in Figure 15.

Clearly, the simplest constructive heuristic (CW) has the worst performance. The
solution quality achieved by GORT is better than that of CW but still far below the solution
quality of the two other metaheuristics SISR and HGS. The performance of GORT seems to
degrade as the instance size increases, as indicated by the upward trend from left to right
in the figure. SISR and HGS are the best heuristics and produce similar results. Also, the
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Figure 15. Average gaps obtained on each original instance for each noise level

average gaps increase with the level of noise σ, which was expected, given that the noisy
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instances differ more significantly from the original instances when there is more noise.

The figure also shows regular patterns that are a consequence of the design of the Set-X
instances in [82]. More precisely, the benchmark is organized into groups of five consecutive
instances, such that the average number of customers per route in a solution, as represented
by attribute r, increases from the first instance in a group to the fifth instance. Figure 15
thus indicates that the average gap with the best-known solution increases with the average
number of customers per route in a solution, with a peak for instances P5, P10, P15, etc.
This behavior is more apparent for CW. We made an exhautive examination to determine
possible relations between the gaps shown in Figure 15 and the other Set-X instances
attributes (n, Dep, Cust and Dem), however, we did not find a strong relation.

An insightful view on the impact of noise is obtained when we consider Avgσ, as defined
in Equation (3.5), which is the global average gap with the best-known solution over
the 1,000 noisy instances, generated from the 100 original instances, for any given noise
level. This is shown in Figure 16, where each dot in the figure corresponds to the global
average gap Avgσ for a given heuristic and noise level σ. In this figure, we can observe
that, on average, the noise level has a greater impact on CW, compared with the three
other heuristics. To distinguish between HGS and SISR, a different scale is used for the
graph on the right. This graph indicates that HGS is slightly more robust to noise than SISR.

The poor performance of CW is not much of a surprise. This is a pure construction
heuristic whose behavior is totally dependent on the ordering of the savings (from largest
to smallest) to merge routes. With inaccurate distances, the ordering of the savings is very
likely to change, thus leading to bad decisions. And, as opposed to the three competing
metaheuristics, this construction heuristic has no way to recover later when bad decisions
are taken.

Figure 16. Global average gaps with increasing values of σ for each heuristic.
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Figure 17. Standard deviation of global average gaps (large dots) with increasing values of
σ for each heuristic.

While Figure 16 shows the global average gaps Avgσ for each heuristic and noise level
σ, Figure 17 shows the standard deviations Stdσ of the corresponding global gaps which,
obviously, increase with the noise level σ. As in Figure 16, another scale is used in the graph
shown on the right to distinguish between SISR and HGS. We can see that the standard
deviations of SISR are substantially larger than HGS on the original instances (no noise).
It means that the solutions produced via multiple executions of SISR (with different seeds)
on the same instance vary more widely from one execution to the next. This difference
gradually decreases as the level of noise increases and both SISR and HGS meet at σ =
0.05, where the noise due to distance inaccuracies start to dominate.

Table 10 shows the explicit global average gap values Avgσ for each heuristic and noise
level, which correspond to the dots in Figure 16, as well as the corresponding standard
deviation values Stdσ, which correspond to the dots in Figure 17.

CW GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 5.83 2.39 3.94 1.96 0.11 0.15 0.22 0.23
σ = 0.01 5.99 2.41 4.00 1.92 0.17 0.17 0.27 0.24
σ = 0.02 6.24 2.38 4.07 1.93 0.28 0.21 0.38 0.24
σ = 0.05 7.84 2.90 4.49 2.00 0.71 0.30 0.79 0.29
σ = 0.10 11.08 4.30 5.23 2.08 1.44 0.43 1.53 0.43
σ = 0.15 14.22 5.72 6.10 2.23 2.20 0.56 2.28 0.58

Table 10. Global average gaps and standard deviations for each method and each noise
level

It is worth noting that a Wilcoxon signed-rank test, applied to every pair of methods,
showed a statistically significant difference in solution quality in every case with a level of
confidence of 95%.
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4.2. Performance of an exact algorithm on set X with inaccurate
distances

In this section, we additionally consider the results of an exact branch-cut-and-price
(BCP) algorithm introduced in [67]. We analyze its sensitivity to noise compared to that of
the heuristics (except CW which was largely outperformed by the other methods). For this
analysis, we focus on the 13 instances for which it was possible to obtain optimal solutions
within 12 hours of computation time for all seeds and noise levels (instances with index i
= 1, 2, 3, 4, 6, 7, 12, 13, 16, 17, 18, 21, and 22). This subset of instances is denoted P̂ in
the following. We also consider two additional noise levels (σ = 0.20, 0.25) to have a better
sense of the behavior of SISR and HGS in the presence of very large noise.

Figure 18 shows the global average gaps with the optimum over the 13 × 10 = 130
instances for each level of noise σ and each method, including BCP. The methods SISR,
HGS and BCP are so close on these relatively small instances, with at most 200 customers,
that they are difficult to distinguish even by looking at the graph on the right, which uses
a different scale. Accordingly, Table 11 reports explicit global average gap values, which
correspond to the dots in Figure 18. In addition, the standard deviations of the corresponding
global gaps are shown. Obviously, the gap of BCP is null for σ = 0.00 (no noise) since the
original instances with true distances are solved optimally.

Figure 18. Global average gaps with the optimum for each method with increasing values
of σ. On the left, GORT, HGS and SISR are compared with BCP; on the right, using a
different scale, only HGS and SISR are compared with BCP.

We observe that the difference between SISR and HGS stays approximately the same
with increasing values of σ. Considering Table 11, the difference between the global average
gap values Avgσ of SISR and HGS remains in the range of 0.03% to 0.05%, except for σ =
0.15 where it is equal to 1.84% - 1.83% = 0.01%. While the difference between the global
average gaps of SISR and HGS stays about the same, both methods get closer to BCP with
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BCP GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 0.00 0.00 2.18 0.87 0.01 0.01 0.05 0.06
σ = 0.01 0.04 0.03 2.24 1.00 0.05 0.04 0.09 0.11
σ = 0.02 0.13 0.08 2.31 1.04 0.13 0.09 0.17 0.11
σ = 0.05 0.47 0.22 2.66 1.08 0.48 0.23 0.53 0.26
σ = 0.10 1.11 0.38 3.29 1.15 1.13 0.40 1.16 0.41
σ = 0.15 1.84 0.48 3.99 1.24 1.83 0.47 1.84 0.46
σ = 0.20 2.53 0.67 4.81 1.21 2.52 0.70 2.56 0.68
σ = 0.25 3.40 0.88 5.61 1.29 3.38 0.90 3.42 0.91

Table 11. Global average gaps and corresponding standard deviations for each method and
each noise level

increasing values of σ, to the point where HGS becomes in fact better than BCP on average
for σ = 0.15, 0.20, 0.25.

To evaluate the statistical significance of these results, we performed multiple pairwise
Wilcoxon signed-rank tests, where the null hypothesis states that solution quality is the
same for the two methods involved in the test. The p-values obtained are shown in Table 12.
Basically, when a p-value is less than or equal to 0.05, the null hypothesis is rejected and a
statistically significant difference is observed with a 95% confidence level. Although SISR,
HGS, and BCP are very close, statistically significant differences are observed with a low
level of noise (see the gray cells, where HGS outperforms SISR and BCP outperforms both
SISR and HGS). This is not the case for a high level of noise. Even if the difference between
the global average gaps Avgσ of HGS and SISR stays about the same over the different σ
values, no statistically significant difference is observed between the two methods for σ values
greater than or equal to 0.10, according to the Wilcoxon test. This is the same when SISR
and HGS are compared with BCP. Thus, when two methods are very close with regard to
solution quality, the superiority of one method over the other gets blurred when a sufficiently
high level of noise is present (i.e., σ = 0.10 or more in our experiments).

4.3. Performance of heuristics on real-world instances with inaccu-
rate distances

Here, we examine the performance of our four heuristics over real data. For this purpose,
we tested these heuristics on the real-world instances of Loggi and ORTEC. The best-known
solutions for these instances can be found in the Appendix. Noise was introduced into the
distance data in the same way as in the instances of Set X. Thus, the analysis is similar to
that of Section 4.1.
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SISR vs HGS SISR vs BCP HGS vs BCP

σ = 0.00 6.03× 10−16 7.76× 10−16 7.41× 10−5

σ = 0.01 2.48× 10−8 4.21× 10−11 0.03
σ = 0.02 1.60× 10−5 2.76× 10−7 0.02
σ = 0.05 1.90× 10−5 3.03× 10−6 0.21
σ = 0.10 0.05 0.01 0.24
σ = 0.15 0.60 0.96 0.23
σ = 0.20 0.33 0.37 0.69
σ = 0.25 0.13 0.27 0.35

Table 12. p-values of Wilcoxon signed-rank test

Figure 19 is similar to Figure 16 and shows the global average gaps Avgσ for each
heuristic and noise level σ over the 120 noisy instances, generated from the 12 real-world
instances. As in the previous experiments, CW is much more affected by noise than the
other heuristics. Also, GORT remains far from SISR and HGS, whatever the level of noise.
SISR and HGS are again quite close and by changing the scale (see the graph on the right),
we observe that SISR is more affected by noise than HGS. Table 13 explicitly reports the
global average gaps Avgσ, in addition to the corresponding standard deviations Stdσ, for
each heuristic and each noise level. We observe that the difference between the global
average gaps of the two methods increases from 0.29% with σ = 0.01 to 0.56% with σ = 0.15
(no such increase was observed on Set-X instances, see Table 10). In fact, HGS outperforms
SISR by a wider margin on the original (no noise) real-world instances when compared to
the original Set-X instances. The differences between the global average gaps of HGS and
SISR are equal to 0.28% and 0.11%, respectively.

As in Section 4.1, a Wilcoxon signed-rank test, applied to every pair of methods, showed
a statistically significant difference in solution quality in every case with a level of confidence
of 95%.

CW GORT HGS SISR
Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ Avgσ Stdσ

σ = 0.00 6.10 1.65 4.25 1.71 0.14 0.17 0.43 0.34
σ = 0.01 6.31 1.89 4.86 1.92 0.19 0.18 0.47 0.31
σ = 0.02 6.93 1.77 4.91 1.93 0.30 0.22 0.59 0.37
σ = 0.05 8.93 1.94 5.50 2.17 0.70 0.27 1.04 0.39
σ = 0.10 12.75 3.04 6.55 2.30 1.51 0.36 1.95 0.59
σ = 0.15 16.72 3.71 7.65 2.16 2.43 0.47 2.99 0.65

Table 13. Global average gaps and corresponding standard deviations on real instances for
each heuristic and noise level
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Figure 19. Global average gaps obtained on real instances with increasing values of σ for
each heuristic.

5. Conclusions
This work has studied the performance of four heuristics and one exact method for the

CVRP over two sets of instances using different levels of noise. The study first shows that
not all methods are similarly impacted by noisy distances. In particular, the CW heuristic is
much more sensitive to noise than the three other metaheuristics. Second, our results indicate
that better methods generally lead to better solutions, even in the presence of noise, which is
true for both the synthetic and real-world instances in our test set. Accordingly, sophisticated
state-of-the-art methods are still preferable when data are inaccurate. We also observed that
when two methods exhibit a sufficiently small, although statistically significant, difference
in performance on true data, this statistically significant difference vanishes with high levels
of noise. This situation occurred when we compared the two state-of-the-art metaheuristics
SISR and HGS with an exact method on a subset of small instances from Set X with at most
200 customers. For future work, it would be interesting to conduct similar studies for other,
more complex, variants of the CVRP, for example the VRP with time windows for which
many standard benchmark instances are available in the literature.
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Appendix
Table 14 shows the number of customers n and best known solution values c(si), i =

1, ..., 100, for the Set-X instances from [82]. Table 15 shows the number of customers n
and best-known solution values c(si), i = 1, ..., 12, for the real-world instances provided by
Loggi and ORTEC for the 2021 DIMACS implementation challenge.

Instance i n c(si) Instance i n c(si) Instance i n c(si)

X-n101-k25 1 101 27591 X-n261-k13 35 261 26558 X-n502-k39 69 502 69226
X-n106-k14 2 106 26362 X-n266-k58 36 266 75478 X-n513-k21 70 513 24201
X-n110-k13 3 110 14971 X-n270-k35 37 270 35291 X-n524-k137 71 524 154593
X-n115-k10 4 115 12747 X-n275-k28 38 275 21245 X-n536-k96 72 536 94868
X-n120-k6 5 120 13332 X-n280-k17 39 280 33503 X-n548-k50 73 548 86700
X-n125-k30 6 125 55539 X-n284-k15 40 284 20215 X-n561-k42 74 561 42717
X-n129-k18 7 129 28940 X-n289-k60 41 289 95151 X-n573-k30 75 573 50673
X-n134-k13 8 134 10916 X-n294-k50 42 294 47161 X-n586-k159 76 586 190316
X-n139-k10 9 139 13590 X-n298-k31 43 298 34231 X-n599-k92 77 599 108451
X-n143-k7 10 143 15700 X-n303-k21 44 303 21736 X-n613-k62 78 613 59535
X-n148-k46 11 148 43448 X-n308-k13 45 308 25859 X-n627-k43 79 627 62164
X-n153-k22 12 153 21220 X-n313-k71 46 313 94043 X-n641-k35 80 641 63694
X-n157-k13 13 157 16876 X-n317-k53 47 317 78355 X-n655-k131 81 655 106780
X-n162-k11 14 162 14138 X-n322-k28 48 322 29834 X-n670-k126 82 670 146332
X-n167-k10 15 167 20557 X-n327-k20 49 327 27532 X-n685-k75 83 685 68205
X-n172-k51 16 172 45607 X-n331-k15 50 331 31102 X-n701-k44 84 701 81923
X-n176-k26 17 176 47812 X-n336-k84 51 336 139111 X-n716-k35 85 716 43387
X-n181-k23 18 181 25569 X-n344-k43 52 344 42050 X-n733-k159 86 733 136190
X-n186-k15 19 186 24145 X-n351-k40 53 351 25896 X-n749-k98 87 749 77314
X-n190-k8 20 190 16980 X-n359-k29 54 359 51505 X-n766-k71 88 766 114454
X-n195-k51 21 195 44225 X-n367-k17 55 367 22814 X-n783-k48 89 783 72394
X-n200-k36 22 200 58578 X-n376-k94 56 376 147713 X-n801-k40 90 801 73305
X-n204-k19 23 204 19565 X-n384-k52 57 384 65940 X-n819-k171 91 819 158121
X-n209-k16 24 209 30656 X-n393-k38 58 393 38260 X-n837-k142 92 837 193737
X-n214-k11 25 214 10856 X-n401-k29 59 401 66163 X-n856-k95 93 856 88965
X-n219-k73 26 219 117595 X-n411-k19 60 411 19712 X-n876-k59 94 876 99299
X-n223-k34 27 223 40437 X-n420-k130 61 420 107798 X-n895-k37 95 895 53860
X-n228-k23 28 228 25742 X-n429-k61 62 429 65449 X-n916-k207 96 916 329179
X-n233-k16 29 233 19230 X-n439-k37 63 439 36391 X-n936-k151 97 936 132725
X-n237-k14 30 237 27042 X-n449-k29 64 449 55233 X-n957-k87 98 957 85465
X-n242-k48 31 242 82751 X-n459-k26 65 459 24139 X-n979-k58 99 979 118987
X-n247-k47 32 247 37274 X-n469-k138 66 469 221824 X-n1001-k43 100 1001 72359
X-n251-k28 33 251 38684 X-n480-k70 67 480 89449
X-n256-k16 34 256 18839 X-n491-k59 68 491 66487

Table 14. Best-known solutions on Set-X instances
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Loggi ORTEC
Instance i n c(si) Instance i n c(si)

Loggi-n401-k23 1 400 336903 ORTEC-n242-k12 7 241 123750
Loggi-n501-k24 2 500 177176 ORTEC-n323-k21 8 322 214071
Loggi-n601-k19 3 600 113155 ORTEC-n405-k18 9 404 200986
Loggi-n601-k42 4 600 347059 ORTEC-n455-k41 10 454 292485
Loggi-n901-k42 5 900 246301 ORTEC-n510-k23 11 509 184529
Loggi-n1001-k31 6 1000 284356 ORTEC-n701-k64 12 700 445543

Table 15. Best-known solutions on real-world instances
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The jounal to submit this article will be determined.

The main contributions of Fernando Obed Guillen Reyes for this articles are presented. He
designed, with the help of his advisors, the hybrid algorithm based on the integration of a
reinforcement learning mechanism into a state-of-the-art ruin-and-recreate metaheuristic for
the capacitated vehicle routing problem. Then, he implemented the algorithm and performed
the computational experiments. He also wrote the first draft of the paper.

Résumé. Dans cet article, nous présentons un algorithme hybride qui combine une ap-
proche “détruire et reconstruire” avec une méthode d’apprentissage par renforcement afin
de résoudre le problème classique de tournées de véhicules avec contraintes de capacité.
Dans un tel contexte, “détruire et reconstruire” consiste à retirer des clients dans les routes
de la solution courante (“détruire”) et de réinsérer ces clients d’une façon différente (“re-
construire”) dans l’espoir d’obtenir une solution de meilleure qualité. À cette fin, nous
exploitons la métaheuristique appelée Slack Induction for String Removals (SISR), propo-
sée par Christiaens and Van den Berghe, qui s’est montrée compétitive avec l’état de l’art
sur des instances tests classiques pour le problème de tournées de véhicules avec contraintes
de capacité. Nous enrichissons cet algorithme à l’aide d’un apprentissage par renforcement
qui s’inspire des systèmes de colonies de fourmis, où l’apprentissage provient de l’addition
de traces de phéromone. Plus précisément, une quantité de phéromone est ajoutée sur les
arêtes prometteuses, soit celles que l’on retrouve fréquemment dans les bonnes solutions
rencontrées au cours de la recherche, ceci afin de guider l’algorithme vers des solutions de
meilleure qualité. L’addition d’un mécanisme d’apprentissage à l’algorithme SISR original
montre que de meilleures solutions peuvent être obtenues sur les instances tests classiques
mentionnées précédemment, même si les solutions originales étaient déjà de très grande
qualité.
Mots clés : Détruire et reconstruire, apprentissage par renforcement, systèmes de colonies
de fourmis, problème de tournées de véhicules avec contraintes de capacité
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Abstract. In this paper, we present a hybrid algorithm that combines a ruin-and-recreate
heuristic search strategy with a reinforcement learning component to solve the classical ca-
pacitated vehicle routing problem. In a vehicle routing context, ruin-and-recreate consists in
removing a number of customers from the current vehicle routes (ruin) and reinserting those
customers into the routes (recreate) in another way to obtain a different, hopefully better,
solution. For this purpose, we exploit the recent SISR metaheuristic proposed by Christiaens
and Van den Berghe that proved to be highly competitive on standard benchmark instances
for the capacitated vehicle routing problem. We enrich this algorithm with reinforcement
learning ideas taken from ant colony systems, where learning takes place through the ad-
dition of pheromone traces. Basically, pheromone is added to promising edges (i.e., those
that are frequently found in good solutions encountered during the search) to guide the
algorithm towards even better solutions. Through the addition of this learning component
to the original SISR algorithm, we show that better solutions can be obtained, even if the
original solutions were already of very high quality.
Keywords: Ruin and recreate, reinforcement learning, ant colony systems, capacitated
vehicle routing problem

1. Introduction
Vehicle routing problems (VRPs) have been a topic of interest for researchers for many

years due to their combinatorial complexity and their multiple applications. Although
there are many variants of these problems, exact algorithms can only solve relatively small
instances of the simplest variants, like the capacitated VRP (CVRP) or the VRP with
time windows (VRPTW). Accordingly, researchers have developed sophisticated heuristic
search methods, called metaheuristics, to generate near-optimal solutions for difficult
problems in relatively small amount of computation times. Along with metaheuristics,
machine learning has also become very popular among researchers by providing significant
contributions in many different areas. Thus, our goal here is to integrate a learning compo-
nent into a state-of-the-art metaheuristic for the CVRP to produce an even better algorithm.

The CVRP is NP-Hard and is defined on a graph G = (V,E), where V = {0, 1, 2,...., nc}
is the set of vertices and E = {(i,j) : i, j ∈ V } is the set of edges. Vertex 0 stands for
the depot where a homogeneous fleet of vehicles is located and where the route of each
vehicle starts and ends. The other vertices are customers, where each customer i ∈ V \ {0}
has a demand di that must be served by a single vehicle. It is important to note that
the total customer demand served by a vehicle cannot exceed its capacity Q. The goal is
to construct a set of minimum cost routes, one for each vehicle, that serve all customers
while satisfying the capacity constraints. The cost to be minimized corresponds to the total
distance traveled by all vehicles.
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The basic metaheuristic that we use for solving the CVRP is called SISR (for Slack
Induction by String Removal) and is reported by Christiaens and Vanden Berghe in [14].
This metaheuristic employs a particular ruin-and-recreate strategy to produce highly
competitive results on well-known CVRP benchmark instances. We implemented this
algorithm based on its description in the original paper and we were able to produce
solutions that are, statistically, of the same quality. Then, we integrated into this algorithm
some concepts borrowed from a variant of Ant Colony Optimization (ACO), called Ant
Colony System (ACS), to improve the recreate phase of SISR by allowing the algorithm to
better recognize edges that belong to good routes.

The rest of the paper is organized as follows. We first provide in Section 2 a brief
literature review of different classes of machine learning methods, including ACO, that have
been applied to vehicle routing problems. Then, Section 3 describes the SISR metaheuristic.
Some fundamental concepts of ACS are then introduced in Section 4, followed by a complete
description of our hybrid algorithm in Section 5. Computational results on well known
benchmark instances for the CVRP are reported in Section 6. Finally, we conclude with
some remarks and future research avenues in Section 7.

2. Literature review
In this section, we briefly review different classes of learning methods that have been

exploited to address vehicle routing problems.

2.1. Neural Networks

Neural networks were among the first machine learning methods applied to VRPs, mostly
in the 1980’s and 1990’s. For example, self-organizing maps and elastic neural networks were
used to find solutions of VRPs with a geometric structure [36, 37]. Basically, chains of
neurons are progressively stretched until they form the contours of routes. Other types of
neural networks were also used to identify customers that should be served by the same
vehicle to facilitate the construction of good routes by another algorithm. Multi-layer neural
networks were also exploited in other ways, for example, as a prediction tool to decide about
the best algorithm (among a set of possible algorithms) to solve a given VRP instance, based
on its characteristics [49, 81]. Solutions produced by different metaheuristics on different
types of instances are first collected in this case to form a training sample for the neural
network. Overall, attempts at addressing VRPs with neural network approaches did not
prove to be very successful and were limited to relatively small instances.
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2.2. Clustering

Clustering can be seen as the grouping of elements in sets based on some similarity
measure. Clustering is the most widely used learning-based approach for VRPs, since it
allows to implement an intuitive divide-and-conquer approach. The most popular clustering
algorithms for this purpose are k-means and density-based clustering (one advantage of the
latter is that the number of clusters does not need to be a priori determined). Most works
in this category have in common that the clustering algorithm is used as a first step to
transform a VRP variant into a simpler variant, for example a multiple-depot VRP into a
number of single-depot VRPs [34], or to partition the set of customers into subsets [51],
thus producing a form of aggregation that reduces the problem size. In a second step,
an optimization algorithm is then applied to each subproblem produced by the clustering
method [22, 39].

2.3. Support Vector Machines and Learning Automata

The literature is scarce with regard to support vector machines (SVM) [87] and learning
automata (LA) in the context of vehicle routing, although they have both been used to guide
metaheuristics. For example, a LA is reported in [79] to determine which neighborhood of
the current solution (among a set of possible neighborhoods) is the most promising for a local
search-based metaheuristic. A probability of success, associated with each neighborhood, is
updated by the learning component as the algorithm unfolds. A distributed LA, where a
network of LAs cooperate on a given problem, has also been reported to address the CVRP
[1]. Here, each customer is a learning automaton that determines the next customer that
should be visited to produce a good route.

2.4. Reinforcement Learning

One difficulty when applying reinforcement learning (RL) to a combinatorial optimiza-
tion problem like the VRP is to model the environment that provides feedback signals,
because the number of states can quickly become prohibitive. However, a particular form of
RL, called Q-learning, does not require such an explicit model, which may explain its wide
use. In [56], the authors employ Q-learning to design an operator that creates a solution
by iteratively choosing the next customer to be visited, based on the current customer and
the current Q-values. If the new solution obtained at the end is better than the current one,
then it becomes the new current solution. In [73], no VRP variant is specifically addressed,
but the authors describe an algorithm where Q-learning is employed to model an agent
capable of determining the optimal itinerary between two customer locations. The agent
has access to different information from the environment, like traffic density. However, this
framework seems promising for only small problem instances. Another interesting approach
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is found in [61], where a RL-based component, integrated within a recurrent neural network
framework, is proposed for the CVRP. In this case, the final solution is viewed as the
product of a sequence of decisions and the RL component increases the probability that a
desirable sequence of decisions is produced by the neural network.

2.5. Ant Colony Optimization

ACO is a metaheuristic that artificially reproduces the communication scheme of ants,
which is based on pheromone traces laid on the ground. Ants are attracted by pheromone
and, over time, it tends to accumulate on the shortest paths between food sources and the
nest. Accordingly, ACO has been used to solve problems where shortest paths or shortest
routes are looked for. The fundamentals of ACO, including the particular ACS variant, are
described in [26, 27, 28, 29]. Basically, each ant constructs a route in an incremental
fashion by deciding at each iteration about the next customer to be added to the current
route. The choice of this next customer is based on a probabilistic rule where the probability
of selecting a given customer depends on the distance between that customer and the last
customer in the current route, as well as the amount of pheromone on the corresponding
edge. While constructing a solution, each ant lays pheromone on the visited edges (local
pheromone update rule). Also, when all ants have constructed their solution, an additional
amount of pheromone is laid on the edges of the best solution found (global pheromone
update rule). This procedure is then repeated until a stopping criterion is met.

While ant systems have initially been applied to the Traveling Salesman Problem (TSP)
where a single (unconstrained) tour of minimum distance is constructed over all vertices in
a graph, a number of extensions dealing with different types of vehicle routing problems
have since been reported in the literature. Quite often, these ant systems are combined
with local search-based improvement procedures to produce more competitive results. One
of the first application for the CVRP is found in [12], where each ant constructs as many
routes as necessary to visit all customers. That is, an ant returns to the depot to construct
another route when no customer can be added to the current route without exceeding vehicle
capacity. In [69], the authors depart from the traditional strategy, where a route is extended
by adding a new customer at its end, and rather propose to use a savings-based heuristic
where the pheromone on each edge is taken into account in the computation of the savings. In
[48], pheromone is added to the edges of the best solutions found by a variable neighborhood
search (VNS). This pheromone is then exploited by a perturbation operator within the VNS
that constructs a new solution with an ant system. The authors applied this problem-solving
approach to a VRP with simultaneous pickup and delivery.
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An extension of ACS where multiple ant colonies are involved (MACS) is presented in
[32]. Under this scheme, each colony optimizes its own objective. For example, in the case
of the VRPTW, one colony minimizes the number of vehicles, while the second colony takes
the solutions produced by the first colony and minimizes the total travel time. Both colony
interacts through the pheromone update process. Similar approaches for the time-dependent
VRP are reported in [25, 32]. In [31], a MACS is applied to the vehicle routing problem
with backhauls. In this case, one colony assigns customers to vehicles, while the other colony
constructs routes for customers assigned to the same vehicle.

2.6. Others

Some works reported in the literature do not necessarily apply classical machine learning
methods but still, accumulate knowledge about structures found in good solutions and
exploit this knowledge to guide the search process. In [78], an algorithm called BoneRoute
is applied to the CVRP. Here, new solutions are constructed while using good components
of previously constructed solutions. These components (bones) consist of sequences of
consecutive customers in a route. The rationale is that bones that appear in a large number
of good solutions should be combined to form even better solutions. A pool of solutions,
made of the best visited solutions, is exploited in the process. That is, at each iteration,
a finite number of bones are extracted from the pool based on two parameters: number of
customers in a bone (bone-length) and number of routes in the pool that contain the bone
(bone-frequency). Then, these bones are used by a variant of the savings heuristic to create
a new solution. Tabu search is applied to the constructed solution for a final improvement
before the solution is considered for inclusion in the pool (in which case, the routes associ-
ated with the solution of lowest quality in the pool are replaced by those of the new solution).

Another example of knowledge extraction is found in [54] for the VRPTW. Here,
several independent processes (threads) cooperate to define and update a pool of solutions.
These threads can perform different tasks, like constructing new solutions, applying an
improvement metaheuristic or performing population-based metaheuristics. The knowledge
extraction consists in identifying useful patterns in the pool of solutions. To this end,
solutions in the pool are partitioned into three subsets: elite, average and worst, depending
on their quality. The patterns extracted are subsets of edges along with their frequency.
Two different kinds of patterns are looked for: promising and unpromising ones. If the
pattern’s frequency decreases from the elite subset to the worst subset, then the pattern
is promising, but if the pattern’s frequency increases, then it is considered unpromising.
Components from unpromising patterns are prohibited during the search, while components
from promising patterns are fixed in the solution, to intensify the search in good regions
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of the solution space. Another interesting pattern identification procedure is described
in [86], where a genetic algorithm is used to solve large-scale instances of the VRPTW.
In particular, an education phase is applied to the offspring using two local search-based
improvement procedures. One of these is called pattern improvement, where the best
re-insertion combinations are identified.

3. Ruin&Recreate metaheuristic
The ruin-and-recreate (RR) problem-solving strategy was originally proposed in [72]. In

this work, three ruin functions were proposed: the first one randomly selects the customers
to be removed, the second one selects a random customer and then removes it along with a
number of closest customers and the last one removes a string of customers (a sequence of
consecutive customers in a route). Then, the recreate function repeatedly selects a removed
customer and inserts it at the best feasible insertion place in the current partial solution until
all removed customers are back into the solution. The algorithm proposed in [70] applies
this idea within the Adaptive Large Neighborhood Search (ALNS) framework, where both
removal and reinsertion heuristics are available. Each heuristic has a weight and, at each
iteration, a removal heuristic and then a reinsertion heuristic are probabilistically selected
based on their weight. There are two distinct probability distributions for the removal and
reinsertion heuristics that are updated at each iteration depending on the performance of
the selected heuristics. This is done so that heuristics with the best performance in each
category are more likely to be selected. It is worth noting that a simulated annealing (SA)
criterion is employed during the search to decide if the new solution obtained through the
removal/reinsertion process should be kept or not. Basically, if the new solution is better
than the current one, it is accepted and becomes the new current solution. Otherwise, there
is still some probability to accept the new solution, but this probability decreases with the
increase to the total distance of the current solution and a parameter, called the temperature.

A recent approach based on ruin-and-recreate is the Slack Induction by String Removal
(SISR) metaheuristic reported in [14]. This is a state-of-the-art algorithm for solving the
CVRP and is the basic algorithm used in our work. It is described in the following, based
on the pseudo-code shown in Algorithm 8.

Initialization.
First, the number of iterations n is set to a multiple m of the number of customers

nc, with m equal to 300 000 in [14]. SISR starts with an initial solution s0 made of
individual routes that each contain a single customer. Thus, there are as many routes as
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there are customers at the beginning. The current solution s and best known solution
thus far sbest are also set to s0. Then, the value of some parameters related to the
simulated annealing acceptance criterion are defined, namely the initial temperature,
final temperature and cooling factor. That is, the temperature is progressively reduced
from its initial value to its final value according to an exponential cooling scheme where
the temperature at iteration iter + 1 is obtained by multiplying the temperature at
iteration iter by a cooling factor k close to 1. This factor is such that it allows the tempera-
ture to decrease from its initial value to its final value within the desired number of iterations.

Main loop. At each iteration of the main loop, the current solution s is ruined and recreated
to generate a new solution snew, which can be accepted or not, depending on the simulated
annealing criterion. That is, better solutions are always accepted and worse solutions
are less and less likely to be accepted as the algorithm unfolds, due to the decreasing
temperature value, to allow the algorithm to converge to a (hopefully good) local minimum.
If solution snew is accepted, then it replaces the current solution s. Furthermore, if solution
snew is better than sbest, then sbest is also set to snew. Then, the temperature is decreased
before the next iteration starts. The algorithm returns the best solution found at the end.

The originality of SISR comes from the two proposed ruin methods called String and
Split-String, where strings of consecutive customers are removed from the routes. Although
a full description of these ruin methods and their rationale can be found in [14], we will briefly
describe the ruin algorithm of SISR based on the pseudo-code of Algorithm 9. It should first
be noted that the number of strings to be removed nr (which is equal to the number of routes
that are ruined, since at most one string can be removed from a route), as well as the length
of those strings, are carefully determined through appropriate parameter settings. At the
beginning, the set of removed customers L and the set of ruined routes R− are empty. These
two sets are augmented each time a ruin method is applied. A first seed customer cseed is
randomly chosen among the whole set of customers, then at each iteration a customer i is
selected from the adjacency list adj(cseed), which contains all customers sorted in increasing
order, with respect to the Euclidean distance to cseed, and where the first customer is cseed.
Let i the current seed customer at a given iteration, and let r the tour that belongs to, if
customer i has not been removed yet and its route r has not been ruined yet, then a ruin
operator RuinOp is selected randomly and taking into account the characteristics of tour r,
in order to ruin tour r. The two ruin operators are the following:

— String. , then a string of consecutive customers of cardinality lr, that must include
i, is randomly selected and removed from route r.
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— Split-String. This ruin method is slightly different from String. More precisely, when
a string is randomly selected in a route, a certain number of consecutive customers
in this string are kept in the route. Consequently, these customers split the string
into two substrings (one substring on each side of the customers that are kept in the
route). Then, the two substrings are removed from the route.

A single recreate method is available in SISR to reinsert the removed customers into the
solution. These removed customers are stored in L and are first sorted using a four possible
strategies. A probability is associated with each strategy to select the one to be used at a
given iteration. These sorting strategies are :

— Sort randomly (probability 4/11).

— Sort based on the customers’ demands, with customers with larger demands first
(probability 4/11).

— Sort based on the distance between customers and the depot, with the farthest cus-
tomers first (probability 2/11).

— Sort based on the distance between customers and the depot, with the closest cus-
tomers first (probability 1/11).

Once the order of reinsertion of the removed customers has been determined, a greedy
insertion heuristic with blinks is applied, where all feasible insertion places of the current
customer c in the partial solution are considered. The goal is to identify the best possible
insertion place, that is, the one that leads to the smallest additional distance. Denoting
d(i,j) the distance or length of edge (i,j), the additional distance when customer c is inserted
between consecutive customers i and j in a route corresponds to the detour d(i,c) + d(c,j)
- d(i,j), since edges (i, c) and (c, j) are added to the solution, while edge (i, j) is removed.
To introduce a form of diversification, a parameter β0 defines a small probability for an
insertion place to be overlooked, which is called a blink. Thus, a customer is inserted in its
best feasible insertion place with probability 1 − β0, its second best place with probability
(1 − β0)β0, etc. In general, a customer is inserted at its i-best place with probability
(1 − β0)βi−1

0 . The value β0 = 0.01 is suggested in [14], so that the probability associated
with the best insertion place is 0.99, the second best insertion place 0.0099, etc. Once the
current customer is inserted, the next customer in L is considered and the procedure is
repeated until all customers in L are done. It should be noted that if there is no feasible
insertion place for a customer, then a new route is created for that customer.
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Algorithm 8 SISR metaheuristic
1: Initialization:
2: n← m · nc
3: s0 ← Create_initial_solution (one individual route for each customer)
4: s← s0
5: sbest ← s0
6: t0 ← initial temperature
7: tf ← final temperature
8: k ←

(
tf
t0

)1/n

9: t← t0
10: for i = 1 to n do
11: w ← random number in (0,1)
12: snew ← Recreate(Ruin(s))
13: if w < e−(dist(snew)−dist(s))/t then
14: s← snew
15: if dist(snew) < dist(sbest) then
16: sbest ← snew
17: end if
18: end if
19: t← k · t
20: end for
21: Return sbest

Algorithm 9 SISR Ruin
1: Let R the set of routes of solution s
2:
3: Initialization:
4: nr ← number of routes to be ruined
5: L← ∅
6: R− ← ∅
7: Select randomly a seed customer cseed
8: Let adj(cseed) the adjacency list associated to cseed
9:
10: for each i ∈ adj(cseed) and |R−| < nr do
11: Let r ∈ R be the route that contains customer i
12: lr ← length of string to be removed
13: if r /∈ R− and i /∈ L then
14: RuinOp← Random(String,Split− String)
15: A← Remove(i,r,lr,RuinOp)
16: L← L ∪ A
17: R− ← R− ∪ {r}
18: end if
19: end for
20: return s, L
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4. Ant Colony System
In this section, we present some fundamentals about ACS, which is the variant of ACO

used in this work. In general, these ant systems can be viewed as a form of reinforcement
learning algorithm, where the pheromone added on the edges of a graph plays the role of
reinforcement (or reward). At the beginning of ACS, an initial amount of pheromone is
put on each edge. This value is typically the same for each edge and is denoted τ0. These
initial pheromone values are then progressively modified, through pheromone addition
and evaporation. In the standard ACS framework, a fixed number of ants is used, where
each ant constructs a solution by sequentially adding a new customer at the end of the
current route. Selection of the next customer is based on the pheromone value as well as
the length of the edges leading from the current customer (i.e., the last customer in the
current route) to customers not yet included in the solution. The following transition rule is
typically applied to select the next customer j, assuming that ant k is currently at customer i:

j =

argmaxj′∈Jk{τ(i,j′)αh(i,j′)β} if w ≤ q0

y otherwise
(4.1)

where:

— Jk is the set of customers not yet visited by ant k.
— τ(i,j) is the pheromone value on edge (i,j)
— h(i,j) is the heuristic component, often defined as the inverse of the length of edge

(i,j) (i.e., inverse of the distance between customers i and j).
— α and β are the pheromone and heuristic exponents, respectively.
— w is a random number in [0,1] and q0 ∈ [0,1] is a threshold parameter.
— y is a random variable with the following probability distribution

pkj =


τ(i,j)αh(i,j)β∑

j′∈Jk
τ(i,j′)αh(i,j′)β if j ∈ Jk

0 otherwise
(4.2)

Thus, the selection of the next customer j is deterministic when w < q0 , otherwise j is
selected according to the probability distribution defined in Equation (4.2), where pkj should
be understood as the probability that ant k selects customer j as the next customer in the
current route. Once all ants have constructed their solution, the pheromone values on the
edges are updated. Thus, there is no local pheromone update rule, only a global one, which
is shown in Equation (4.3).

τ(i,j) = (1− ρ)τ(i,j) + ρ∆ (4.3)
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In this equation, ρ ∈ (0,1) is the pheromone evaporation rate. If edge (i,j) is in the best
solution s∗iter produced by the ants at the current iteration, parameter ∆ is set to the inverse
of the total distance of this solution, otherwise ∆ is set to 0. Thus, pheromone on edges
that are not in s∗iter decreases. In the next section, we explain how these ACS ideas were
integrated into the SISR algorithm.

5. Hybrid RR-ACS algorithm
In our hybrid algorithm, we expect that the addition of pheromone on the edges will

allow SISR to better identify the most promising edges during the recreate process. It
should be noted that, in this case, a complete solution is recreated from a partial solution,
not from scratch, as it is usually the case in ACS. A pseudo-code of our hybrid algorithm is
shown in Algorithm 10. As we can see, it is strongly based on SISR, except that pheromone
is exploited when a complete solution must be recreated after being ruined. The new
features of our hybrid algorithm are described in the following.

Initialization. There is only one additional step in the initialization phase, which is to put
an initial amount of pheromone τ0 on every edge. In our implementation, τ0 is set to 0.

Recreate. The main modification to the original SISR algorithm is the procedure to recreate
a new complete solution after ruining the current solution, which is called Recreate_ACS.
This procedure is described in Algorithm 11. The first step consists in sorting the removed
customers stored in L as SISR does, that is, with the same four possible sorting strategies
and the same probabilities associated with each strategy. Then, the customers are reinserted
one by one into the solution based on this ordering. Let c be the customer to be inserted
in the current partial solution. As in SISR, we consider all feasible insertion places for c,
but we keep at the end the z best insertion places, that is, those leading to the smallest
detours (after some experimentation, parameter z was set to 3). This is the role of function
Keep_z_Best_Positions() in the pseudo-code. It should be noted that each one of those
insertion places is identified by the corresponding edge (i, j) in the solution, which is added
to set P . To define the transition rule where both the detour and the pheromone on the
edges are taken into account, we need to calculate the heuristic and pheromone components
of each insertion place in P . First, the heuristic component h(i,c,j) shown in Equation
(5.1) corresponds to the inverse of the detour, or additional distance, induced by inserting
customer c between i and j. It should be noted that a value of 1 is added to the detour, in
case the detour is 0. Then, the pheromone component τ(i,c,j) in Equation (5.2) corresponds
to the maximum amount of pheromone taken over the two edges (i,c) and (c,j) that are
added to the solution when c is inserted between i and j. Again, a value of 1 is added to

101



Algorithm 10 RR-ACS algorithm
1: Initialization:
2: n← m · nc (number of iterations)
3: s0 ← Create_initial_solution (one individual route for each customer)
4: s← s0
5: sbest ← s0
6: t0 ← initial temperature
7: tf ← final temperature
8: k ←

(
tf
t0

)1/n
(cooling factor)

9: t← t0
10: for (i,j) ∈ E do
11: τij ← τ0
12: end for
13: for i = 1 to n do
14: w ← random number in interval (0,1)
15: snew ← Recreate_ACS(Ruin(s))
16: if w < e−(dist(snew)−dist(s))/t then
17: s← snew
18: if dist(snew) < dist(sbest) then
19: sbest ← snew
20: end if
21: τ ← Update_Accepted(τ, s,∆,ep)
22: else
23: τ ← Update_Rejected(τ,ep)
24: end if
25: t← k · t
26: end for
27: Return sbest

guarantee a non null contribution of the pheromone component. To avoid recreating the
same solution, the pheromone on the edges that were removed from the solution in the
previous ruin process are temporarily reset to 0 (this set of edges is identified by S in the
equation). In this way, the introduction of new edges in the solution is favored during the
recreate process. This can be seen as a form of diversification.

h(i,c,j) =
(

1
d(i,c) + d(c,j)− d(i,j) + 1

)
(5.1)

τ(i,c,j) = (1 +max{τ ′(i,c), τ ′(j,c)}) (5.2)

τ ′(i,j) =

τ(i,j) if (i,j) /∈ S

0 otherwise
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The final transition rule, as shown in Equation (5.3), is similar to the one used in ACS,
where w is a random number in [0,1] and q0 ∈ [0,1] is the threshold parameter. This rule is
aimed at selecting the final insertion place (ibest, jbest) for customer c among those stored in
P . If w is less than or equal to the threshold, a deterministic choice is made, otherwise y is
a random variable that returns an insertion place according to the probability distribution
in Equation (5.4). When P is empty, that is, when there is no feasible insertion place for
customer c, a new route is created for this customer.

(ibest, jbest) =

argmax(i,j)∈P{τ(i,c,j)αh(i,c,j)β} if w ≤ q0

y otherwise
(5.3)

pi,j =


τ(i,c,j)αh(i,c,j)β∑

(i′,j′)∈P τ(i′,c,j′)αh(i′,c,j′)β if (i,j) ∈ P

0 otherwise
(5.4)

Algorithm 11 Recreate_ACS(s,L)
1: Let s the ruined solution and L the set of removed customers
2: Initialization:
3: L← sort(L)
4: while L 6= ∅ do
5: c← first customer in L
6: for all routes r ∈ R that are feasible for customer c do
7: for all edges (i,j) ∈ R do
8: detour(i,j)← d(i,c) + d(c,j)− d(i,j)
9: P ← Keep_z_Best_Positions(P,z,detour(i,j), (i,j))
10: end for
11: end for
12: if P 6= ∅ then
13: (ibest, jbest)← Transition_rule(P )
14: Insert(c, (ibest, jbest))
15: else
16: r0 ← create a route for customer c
17: R← R ∪ r0
18: end if
19: L← L \ {c}
20: end while
21: Return s

Pheromone update. In Algorithm 10, the pheromone values are updated each time a new
solution snew is produced through the ruin-and-recreate process. When snew is accepted
under the simulated annealing criterion, the update is performed through function Up-
date_Accepted in the pseudo-code. The latter applies Equation (5.5) where some amount
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of pheromone evaporates through its multiplication by (1 - ρ), with ρ ∈ (0,1). Then, a
fixed amount of pheromone ∆ is added on the edges of snew. This is to be opposed to the
standard ACS scheme, where ∆ is not constant and is multiplied by ρ. We decided to use
a fixed ∆ here for efficiency purposes, given that there is typically not much difference
between the ∆ values in the standard ACS framework (i.e., the inverse of the total distance
of a solution is typically very small and there is very little difference between two different
solutions). When snew is rejected, the update is performed by the function Update_Rejected.
The latter applies Equation (5.6) where only evaporation takes place on every edge.

τ(i,j) =

(1− ρ)τ(i,j) + ∆ if (i,j) ∈ snew
(1− ρ)τ(i,j) otherwise

(5.5)

τ(i,j) = (1− ρ)τ(i,j), for all (i,j) (5.6)

6. Computational results
In this section, we report results obtained with our RR-ACS algorithm on the standard

euclidean CVRP benchmark instances of Uchoa et al. [82]. This set is made of 100 instances
made of small, medium and large instances ranging from 100 to 1000 customers. More
precisely, small instances have between 100 and 250 customers, medium instances between
250 and 500 customers and large instances between 500 and 1000 customers. It should
also be noted that the Euclidean distances are integer and obtained by rounding the real
distances. In the following, we forget about the small instances because they are easy to
solve and keep only the 36 medium instances and 32 large instances, for a total of 68 instances.

In this section, we first describe the search for the best parameter settings for our algo-
rithm. Then, we compare the results reported for SISR in [14] with those obtained with our
own implementation of this algorithm, called RR. Finally, we report the results produced by
our hybrid RR-ACS algorithm. All tests were run on a 2.4 GHz Xeon Gold 6148 processor
with 10G of memory.

6.1. RR Results

The first step was to compare RR with the original implementation of SISR. To this end,
we ran RR 50 times on each one of the 68 test instances. The average solution values are
show in Appendix A, along with those reported in [14] for SISR, also over 50 runs. Note
that the average solution produced by RR is better when the corresponding entry is shaded.
Then, we computed on each instance the gap between the two average solution values RRavg

and SISRavg, using the formula :
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Gap = 100× (RRavg − SISRavg)
SISRavg

(6.1)

The mean of these gaps over all benchmark instances was −0.0031. Although RR was
slightly better on average, a p-value of 0.35 was obtained when we applied the signed-
rank Wilcoxon test. This value is well above the standard significance level of 0.05. Thus,
we cannot reject the null hypothesis, which states that the solutions produced by the two
implementations are of the same quality. With regard to computation times, the ratio of
RR over SISR (using the numbers in [14] based on a 2.6 GHz Xeon E5-2650 v2 processor)
is 0.445, which means a reduction of about 55.4%, on average. But this observation must
be mitigated because our processor and computer environment are not the same than those
in [14]. According to the single thread rating found in www.cpubenchmark.net, the processor
in [14] is about 23% slower than ours.

6.2. RR-ACS Parameter Settings

Before testing our hybrid RR-ACS algorithm, we had to calibrate the parameters α,
β, ρ, ∆ and q0 that are introduced by the new ACS component. For this purpose, we
randomly chose half of the medium size instances from the benchmark. Since parame-
ters α and β closely interact in the transition rule (5.3), we considered every combina-
tion of values α = {1, 2, 3, 4, 5} and β = {1, 2, 3, 4, 5}. The best combination turned
out to be α = 1 and β = 5. We optimized in the same way (1 − ρ) and ∆, since
they closely interact in the pheromone update equation (5.5). We considered the combi-
nation of values ∆ = {0.1,0.01,0.001,0.0001,0.00001,0.000001, 0.0000001} with (1 − ρ) =
0.999999827, 0.999999846, 0.999999861, 0.999999880, 0.9999999, 0.999999920. The values for
(1 − ρ) were chosen around 0.999999861 which is such that half of the pheromone would
evaporate on an edge after 5 000 000 iterations, assuming that this edge is never part of an
accepted solution. We found that the best values for ∆ and (1− ρ) were equal to 0.000001
and 0.9999999, respectively. The last parameter is the threshold q0 in Equation (5.3). We
tested the values q0 = {0.82,0.85,0.87,0.90,0.92,0.95} and the best results were obtained with
q0 = 0.90

6.3. RR-ACS Results

Our hybrid RR-ACS algorithm was tested by running it 50 times on each of the 68
medium and large instances, using the best parameter setting, as identified in the previous
subsection. The average solution values are shown in Appendix B. We computed the average
gap between RR-ACS and SISR on each instance, simply by replacing RR by RR-ACS in
Equation (6.1). The mean of these gaps over all test instances is −0.0055 . The negative
value indicates that RR-ACS provides solutions of better quality than SISR. Furthermore,
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even if the difference is small, the signed-rank Wilcoxon test returned a p-value of 0.041,
which is below 0.05. Thus, there is a significant statistical difference in solution quality
between the results produced by RR-ACS and those reported in [14] for SISR. Also, the
ratio of computation times is 0.7086 (using the numbers in [14], based on a 2.6 GHz Xeon
E5-2650 v2 processor), which means a reduction of 29.2%, on average. But, again, this
observation must be mitigated because our processor and computer environment are not
the same than those in [14].

The bad news is that the average gap between RR and RR-ACS over all test instances is
only −0.0022. Although the integration of a learning component into our implementation of
SISR has produced slightly better solutions on average, this improvement is not statistically
significant. In addition, RR-ACS is 56% more computationally expensive than RR.

7. Conclusions
This paper has introduced a hybrid RR-ACS algorithm. After extensive computational

experiments, this hybrid algorithm has produced slightly better solutions than the original
algorithm. But the learning component leads to increased computation times. As future
work, we would like to make our algorithm more efficient through parallel implementation,
which would allow a larger number of ants to be used. We think that this is likely to lead
to further improvements in solution quality.
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Appendix A

Instance Ave. cost Ave. time
(50 runs) (minutes)

SISR RR SISR RR

X-n251-k28 38791.0 38772.16 9.8 7.64
X-n256-k16 18888.9 18883.20 11.5 11.17
X-n261-k13 26642.3 26598.38 11.8 9.37
X-n266-k58 75617.8 75627.70 10.8 7.69
X-n270-k35 35362.2 35369.84 11.4 6.57
X-n275-k28 21268.6 21259.36 13.3 6.14
X-n280-k17 33628.1 33640.14 17.7 11.12
X-n284-k15 20286.6 20276.78 15.3 8.41
X-n289-k60 95352.2 95347.02 14.3 9.33
X-n294-k50 47274.5 47277.54 14.7 9.73
X-n298-k31 34276.0 34277.94 14.5 8.16
X-n303-k21 21776.5 21772.74 17.3 10.64
X-n308-k13 26207.7 26270.30 25.7 16.18
X-n313-k71 94182.4 94248.14 18.9 11.86
X-n317-k53 78392.4 78378.58 22.0 7.55
X-n322-k28 29927.6 29935.44 16.9 8.50
X-n327-k20 27631.4 27635.08 21.6 12.29
X-n331-k15 31128.2 31130.22 20.4 9.99
X-n336-k84 139373.4 139352.68 22.8 14.80
X-n344-k43 42158.5 42142.42 21.5 8.81
X-n351-k40 25982.1 25979.38 26.5 14.76
X-n359-k29 51577.8 51570.86 23.1 11.10
X-n367-k17 22833.4 22832.84 36.1 18.84
X-n376-k94 147783.6 147775.16 32.0 12.43
X-n384-k52 66107.4 66094.18 25.9 10.38
X-n393-k38 38394.1 38376.46 30.4 11.52
X-n401-k29 66248.5 66242.88 38.0 19.44
X-n411-k19 19768.5 19773.26 58.4 29.47
X-n420-k130 107879.2 107887.20 47.9 21.90
X-n429-k61 65593.6 65591.62 35.0 13.58
X-n439-k37 36473.8 36447.22 42.1 16.85
X-n449-k29 55411.2 55402.86 38.0 16.89
X-n459-k26 24242.2 24207.72 56.5 22.54
X-n469-k138 222227.1 222234.54 48.0 25.16
X-n480-k70 89559.2 89546.18 50.5 17.46
X-n491-k59 66645.5 66653.58 51.4 22.89

Table 16. Average costs and times obtained with RR and SISR, for medium-size Uchoa
instances.
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Instance Ave. cost Ave. time
(50 runs) (minutes)

SISR RR SISR RR

X-n502-k39 69274.7 69270.08 60.9 17.16
X-n513-k21 24292.1 24284.26 77.1 40.29
X-n524-k153 154807.2 154891.22 151.4 74.83
X-n536-k96 95173.2 95146.18 74.7 25.86
X-n548-k50 86798.0 86797.58 64.5 17.28
X-n561-k42 42868.1 42866.92 73.8 29.67
X-n573-k30 50804.6 50832.46 113.0 44.45
X-n586-k159 190600.7 190653.88 86.3 34.63
X-n599-k92 108688.6 108663.82 75.4 24.47
X-n613-k62 59731.3 59691.14 88.1 32.19
X-n627-k43 62317.1 62286.26 89.3 22.69
X-n641-k35 63850.3 63861.14 92.5 26.49
X-n655-k131 106844.6 106848.64 109.6 30.10
X-n670-k130 146720.4 147001.58 198.9 81.70
X-n685-k75 68369.0 68384.22 135.1 45.99
X-n701-k44 82065.4 82049.98 122.5 36.24
X-n716-k35 43483.8 43489.56 158.3 53.54
X-n733-k159 136389.3 136414.90 143.2 55.78
X-n749-k98 77509.2 77494.02 146.3 48.14
X-n766-k71 114761.1 114810.48 174.4 55.08
X-n783-k48 72660.7 72624.98 170.2 65.54
X-n801-k40 73436.7 73421.56 137.1 32.15
X-n819-k171 158423.0 158412.78 172.5 54.69
X-n837-k142 193976.9 193970.86 166.8 46.10
X-n856-k95 89131.3 89093.50 160.0 38.27
X-n876-k59 99483.2 99468.14 217.4 77.09
X-n895-k37 54085.8 54073.62 212.5 81.27
X-n916-k207 329509.5 329508.72 215.3 80.39
X-n936-k151 133117.3 133258.40 412.7 166.94
X-n957-k87 85620.0 85577.98 202.4 47.70
X-n979-k58 119120.4 119096.98 276.6 88.46
X-n1001-k43 72528.1 72532.34 284.3 107.06

Table 17. Average costs and times obtained with RR and SISR, for large-size Uchoa in-
stances.
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Appendix B

Instance Ave. cost Ave. time
(50 runs) (minutes)

SISR RR-ACS SISR RR-ACS

X-n251-k28 38791.0 38771.30 9.8 10.97
X-n256-k16 18888.9 18885.72 11.5 15.07
X-n261-k13 26642.3 26596.46 11.8 13.30
X-n266-k58 75617.8 75617.74 10.8 10.91
X-n270-k35 35362.2 35357.66 11.4 10.25
X-n275-k28 21268.6 21255.80 13.3 9.78
X-n280-k17 33628.1 33636.16 17.7 15.57
X-n284-k15 20286.6 20271.78 15.3 12.92
X-n289-k60 95352.2 95346.70 14.3 13.10
X-n294-k50 47274.5 47276.54 14.7 13.89
X-n298-k31 34276.0 34273.98 14.5 12.78
X-n303-k21 21776.5 21774.72 17.3 16.13
X-n308-k13 26207.7 26274.26 25.7 23.27
X-n313-k71 94182.4 94208.92 18.9 16.21
X-n317-k53 78392.4 78390.92 22.0 12.12
X-n322-k28 29927.6 29921.30 16.9 13.78
X-n327-k20 27631.4 27636.38 21.6 19.23
X-n331-k15 31128.2 31136.72 20.4 16.56
X-n336-k84 139373.4 139348.62 22.8 20.04
X-n344-k43 42158.5 42148.02 21.5 14.69
X-n351-k40 25982.1 25980.88 26.5 22.57
X-n359-k29 51577.8 51556.42 23.1 18.55
X-n367-k17 22833.4 22837.74 36.1 29.73
X-n376-k94 147783.6 147772.12 32.0 19.00
X-n384-k52 66107.4 66099.68 25.9 17.39
X-n393-k38 38394.1 38362.10 30.4 20.75
X-n401-k29 66248.5 66243.02 38.0 30.75
X-n411-k19 19768.5 19774.54 58.4 44.52
X-n420-k130 107879.2 107889.82 47.9 30.77
X-n429-k61 65593.6 65569.42 35.0 23.14
X-n439-k37 36473.8 36460.92 42.1 27.89
X-n449-k29 55411.2 55396.38 38.0 29.94
X-n459-k26 24242.2 24207.90 56.5 37.87
X-n469-k138 222227.1 222222.18 48.0 35.40
X-n480-k70 89559.2 89568.06 50.5 29.92
X-n491-k59 66645.5 66644.50 51.4 37.63

Table 18. Average costs and times obtained with RR-ACS and SISR, for medium-size Uchoa
instances.
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Instance Ave. cost Ave. time
(50 runs) (minutes)

SISR RR-ACS SISR RR-ACS

X-n502-k39 69274.7 69265.50 60.9 32.86
X-n513-k21 24292.1 24277.36 77.1 65.16
X-n524-k153 154807.2 154877.62 151.4 99.20
X-n536-k96 95173.2 95132.14 74.7 41.54
X-n548-k50 86798.0 86795.88 64.5 33.23
X-n561-k42 42868.1 42863.00 73.8 52.21
X-n573-k30 50804.6 50837.32 113.0 76.53
X-n586-k159 190600.7 190653.82 86.3 49.76
X-n599-k92 108688.6 108651.24 75.4 42.51
X-n613-k62 59731.3 59699.68 88.1 54.84
X-n627-k43 62317.1 62285.86 89.3 46.30
X-n641-k35 63850.3 63852.52 92.5 52.97
X-n655-k131 106844.6 106839.90 109.6 53.18
X-n670-k130 146720.4 147032.22 198.9 116.92
X-n685-k75 68369.0 68377.74 135.1 79.09
X-n701-k44 82065.4 82023.00 122.5 70.85
X-n716-k35 43483.8 43489.00 158.3 100.83
X-n733-k159 136389.3 136401.34 143.2 83.23
X-n749-k98 77509.2 77515.00 146.3 82.80
X-n766-k71 114761.1 114789.52 174.4 102.25
X-n783-k48 72660.7 72652.18 170.2 113.70
X-n801-k40 73436.7 73431.16 137.1 70.09
X-n819-k171 158423.0 158437.68 172.5 82.75
X-n837-k142 193976.9 193983.62 166.8 76.97
X-n856-k95 89131.3 89096.48 160.0 76.63
X-n876-k59 99483.2 99456.82 217.4 137.80
X-n895-k37 54085.8 54076.70 212.5 145.95
X-n916-k207 329509.5 329499.16 215.3 112.17
X-n936-k151 133117.3 133321.32 412.7 244.70
X-n957-k87 85620.0 85587.98 202.4 97.60
X-n979-k58 119120.4 119096.08 276.6 158.39
X-n1001-k43 72528.1 72505.80 284.3 188.55

Table 19. Average costs and times obtained with RR-ACS and SISR, for large-size Uchoa
instances.
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Conclusions

In this thesis, we have developed two algorithms based on SISR to solve the CVRP
through the integration of a learning component and the much more complex variant
TDVRPTWTPRN , which is defined on a road network. We have also performed a computa-
tional study on the impact of inaccurate distances on solution quality for the CVRP, using
different heuristics and metaheuristics (including SISR), as well as an exact solver.

With regard to the TDVRPTWTPRN , we had to extensively modify the original SISR
metaheuristic, in particular by developing specific ruin and recreate operators that take into
account the presence of transfer points when handling the routes of small and large vehicles.
The multi-attribute nature of this problem was challenging, since it led to complicating
factors associated with time-dependency, synchronization of the two types of vehicles at
transfer points, etc. We also developed different techniques to make the algorithm more
efficient, like assessing infeasibility and (approximately) evaluating insertion places in
constant time. The results obtained on a set of test instances derived from a benchmark
for the TDVRPTWRN showed good synchronization at transfer points, as well as good
optimization capabilities. We also observed that some transfer points are more heavily
used than others and that their removal from the road network had a significant impact
on solution quality. Accordingly, it could be interesting to identify a priori those transfer
points to help focus the search in particular regions of the solution space. This could be
done, for example, through a learning component that would account for the topology of
the road network, location of transfer points, location and distribution of customers, etc.

Next, the empirical analysis on the impact of data inaccuracies for the CVRP led to
the observation that state-of-the-art metaheuristics are more robust to data inaccuracies
when compared to a simple savings heuristic. Overall, the best metaheuristics remain the
best, even in the presence of high levels of inaccuracies, because they have the ability to fix
previous bad decisions induced by those inaccuracies. A simple construction heuristic like
the savings heuristic does not have this ability. We also observed that when two methods
exhibit a sufficiently small, although statistically significant, difference in performance



on true data, this statistically significant difference vanishes with increasing levels of
inaccuracies. Overall, our conclusion is that sophisticated problem-solving methods are still
indicated, even when data inaccuracies are of larger magnitude than the optimality gap
of these methods. This is an important observation because such inaccuracies cannot be
avoided in the real-world. Other well-known variants of the CVRP, like the VRPTW could
also be the topic of similar computational studies.

The integration of learning components into metaheuristics to guide the search in the
solution space has become very popular lately. The third paper presents a hybrid algorithm,
based on the state-of-the-art SISR metaheuristic, that incorporates a reinforcement learning
component inspired from ant colony systems to solve the CVRP. Accordingly, learning
applies to the edges of the graph by reinforcing the most promising ones (i.e., those found
frequently in previously encountered good solutions). Given that SISR requires a large
number of iterations and given that the learning component induces additional computa-
tional costs, we had to find a compromise between computation time and solution quality
(e.g., number of ants). Although the hybrid algorithm could find improved solutions on a
standard benchmark over already quasi-optimal solutions, based on our own implementation
of SISR, this improvement did not prove to be statistically significant. We now envision
a parallel implementation of our hybrid algorithm that would allow more ants to be used,
thus potentially leading to further improvements.

The combination of machine learning and optimization methods is a very active and
promising area. However, a lesson learned from this thesis is that the problem to be solved
must be chosen with care, as well as the problem-solving method. In our study on the VRP,
using a metaheuristic that is already quasi-optimal prevented us to produce statistically
significant improvements. Also, the learning component needs to be as simple as possible,
to limit the additional computational burden imposed on the original metaheuristic. Other
types of problems and methods could have provided a more fertile ground. For example, in
vehicle routing problem with loading constraints, the loading aspect of the problem is often
addressed with simple heuristics. Learning techniques could certainly be useful to enhance
those heuristics. Such learning techniques could even be inspired from the way real people
load vehicles in real applications. The same opportunities are present in other well chosen
applications, like vehicle dispatching, where a real dispatcher must handle mutiple variables
(some of which can hardly be integrated in a standard optimization method) before taking
a decision.
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