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Résumé

Le problème de tarification combinatoire (CPP) ou le jeu de tarification de Stackelberg
est une classe de problèmes d’optimisation bi-niveaux comprenant deux décideurs dans un
ordre séquentiel. Le premier décideur, le leader, maximise ses revenus en contrôlant les prix
d’un ensemble de ressources. Le deuxième décideur, le suiveur, réagit aux prix et sélectionne
un sous-ensemble de ressources selon un problème d’optimisation combinatoire. Selon le
problème du suiveur, le CPP peut être très difficile à résoudre. Cette thèse présente trois
articles couvrant plusieurs méthodes de solution exacte pour le CPP. Le premier article
aborde la modélisation et le prétraitement pour une spécialisation du CPP : le problème de
tarification du réseau (NPP), dans lequel le problème du suiveur est un problème du plus
court chemin. Les formulations du NPP sont organisées dans un cadre général qui établit
les liens entre elles. Le deuxième article se concentre sur la version à plusieurs marchandises
du NPP. À partir des résultats de l’analyse convexe, nous dérivons une nouvelle formulation
du NPP et prouvons que le NPP évolue de manière polynomiale par rapport au nombre
de marchandises, étant donné que le nombre d’arcs à péage est fixe. Le troisième article
nous ramène au CPP général, dans lequel les problèmes du suiveur sont NP-difficiles. En
utilisant deux modèles de programmation dynamique différents, les problèmes du suiveur
sont convertis en programmes linéaires, auxquels la dualité forte peut être appliquée. En
raison de la nature NP-difficile de ces problèmes, des schémas de génération dynamique
de contraintes sont proposés. Les méthodes de solution décrites dans chaque article sont
étayées par des résultats expérimentaux, montrant leur efficacité en pratique. Cette thèse
approfondit notre compréhension de la structure du CPP et introduit des méthodologies
innovantes pour y faire face, contribuant ainsi à de nouvelles perspectives pour aborder les
problèmes de tarification et bi-niveau en général

Mots-clés : Problème de tarification combinatoire, Jeu de tarification de Stackelberg,
Problème de tarification du réseau, Analyse convexe, Programmation dynamique.
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Abstract

The combinatorial pricing problem (CPP) or Stackelberg pricing game is a class of bilevel
optimization problems that consist of two decision makers in sequential order. The first
decision maker, the leader, maximizes their revenue by controlling the prices of a set of
resources. The second decision maker, the follower, reacts to the prices and selects a subset
of resources according to a combinatorial optimization problem. Depending on the follower’s
problem, the CPP can be very challenging to solve. This thesis presents three articles
covering several exact solution methods for the CPP. The first article addresses the modeling
and preprocessing for a specialization of the CPP: the network pricing problem (NPP), in
which the follower’s problem is a shortest path problem. The formulations of the NPP are
organized in a general framework which establishes the links between them. The second
article focuses on the multi-commodity version of the NPP. From the results in convex
analysis, we derive a novel formulation of the NPP and with it, we prove that the NPP
scales polynomially with respect to the number of commodities, given that the number
of tolled arcs is fixed. The third article leads us back to the general CPP, in which the
follower’s problems are NP-hard. By utilizing two different dynamic programming models,
the follower’s problems are converted into linear programs, to which strong duality can
be applied. Due to the NP-hard nature of these problems, dynamic constraint generation
schemes are proposed. The solution methods described in each article are backed up with
experimental results, showing that they are effective in practice. This thesis deepens our
comprehension of the CPP structure and introduces innovative methodologies for addressing
it, thereby contributing new perspectives to tackle pricing and bilevel problems in general.

Keywords: Combinatorial pricing problem, Stackelberg pricing game, Network pricing
problem, Convex analysis, Dynamic programming.
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Introduction

Pricing is an important task for any successful business. It is one of the four pillars
in marketing: Product, Place, Promotion, and Price, which were popularized by Edmund
Jerome McCarthy in his 1960 book named Basic Marketing: A Managerial Approach [45].
In the field of operations research, there exist numerous models for pricing, for example the
revenue management model [5], the dynamic posted-price model [25], and the discrete choice
model [32]. In this thesis, we are interested in a bilevel model of pricing, in which the seller
sets fixed prices on a set of items first, then the buyer decides deterministically which items
to purchase by solving a combinatorial optimization problem. According to the terminology
in bilevel optimization, we refer to the seller and the buyer as the leader and the follower
respectively. The objective of the leader is to attract the follower by setting reasonable prices.
If the prices are too low, the leader gains little profit. But if the prices are too high, the
follower will not choose the items and the leader will lose customers. This class of pricing
problems is called combinatorial pricing problems (CPP) or Stackelberg pricing games. We
present three articles focusing on the solution methods of the CPP.

We start the thesis with an investigation on the network pricing problem (NPP), which is
a specialization of the CPP where the follower makes their decision by solving a shortest path
problem. For a realistic scenario, the leader in the NPP is a highway authority who controls
several tolled roads, and the follower is a traveller who wants to pick the most inexpensive
route. In the first article (Chapter 2), we describe a framework to unify all existing single-level
formulations of the NPP. We decompose a formulation of the NPP into four components:
primal representation, dual representation, optimality condition, and linearization method.
Each component has several varieties, which can be mixed and matched to create a wide array
of possible formulations. In the latter half of the article, we propose a new path enumeration
scheme and a path-based preprocessing method that can be applied to all formulations,
which is shown experimentally to be effective compared to an existing alternative.

The second article (Chapter 3) explores the multi-commodity version of the NPP, in
which there are more than one traveller (called commodity) in the network, each has its own
origin and destination nodes. We prove a theorem stating that the NPP scales differently



with respect to the number of commodities and the number of tolled arcs. In simpler terms,
the difficulty of solving the NPP increases far more dramatically with the number of tolled
arcs than with the number of travellers. The proof uses novel tools such as conjugate model
and reaction plot. The mechanism behind this asymmetry is due to strong bilevel feasibility
which is only satisfied by a limited number of combinations of paths. With strong bilevel
feasibility, we derive a multi-commodity preprocessing method. This is in contrast to most
preprocessing methods for the NPP in the literature (including the one in Chapter 2) that
are applied to each commodity separately. Numerical results show that it can reduce the
solution time significantly on small networks with a high number of commodities.

Finally, we return to the general CPP in the third article (Chapter 4), where the follower
solves some combinatorial problem other than the shortest path problem. For the general
case, the literature is sparse on exact solution methods. To obtain a formulation, we utilize
the dynamic programming model of the follower’s problem to convert it into a linear program.
Then we leverage strong duality to rewrite the CPP as a single-level reformulation similar
to the method described in Chapter 2. However, if the given follower’s problem is NP-hard,
the resulting linear program will be exponential in size (unless P = NP). Thus, we also draft
an algorithm to generate its constraints dynamically. Two types of dynamic programming
models are studied: selection diagram and decision diagram, as well as a simpler model
called the value function formulation. Their performances are tested and suggest that the
formulations derived from the two diagrams outperform the value function formulation in
most cases.
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Chapter 1

Background

In this chapter, we outline several key concepts and results that are used later in the
three articles. Linear programming strong duality (Section 1.1) is the main method to
convert a bilevel programming formulation of the CPP to a single-level reformulation. To
take advantage of strong duality, Section 1.2 shows several ways to rewrite an integer program
into an equivalent linear program. An overview on convex analysis is provided in Section 1.3.
This is the primary tool of the second article, used to deepen our understanding between
the leader’s decision and followers’ reactions. Section 1.4 describes bilevel optimization in
general. Finally, Section 1.5 introduces the main topic of this thesis: combinatorial pricing
problems.

The reader who is interested in further details on linear programming, integer program-
ming and convex analysis is referred to the text books of Luenberger [44], Conforti et al.
[19], and Rockafellar [52], respectively.

1.1. Linear Programming
A linear program (LP) is an optimization problem aiming to find a vector x ∈ Rn that

minimizes a linear functional c⊤x and satisfies Ax ≥ b, x ≥ 0 where A ∈ Rm×n, b ∈ Rm, and
c ∈ Rn. An LP is usually written in the form:

min
x

c⊤x (1.1a)

s.t. Ax ≥ b, (1.1b)

x ≥ 0. (1.1c)

LPs are usually solved using the simplex algorithm [21] or the interior-point method [36].
The latter is guaranteed to solve an LP with a polynomial number of variables and constraints
in polynomial time. Thus, if a problem can be formulated as an LP, it is considered an “easy”
problem.



A central result in linear programming is strong duality [44], which states that if Pro-
gram (1.1) has an optimal solution, then it has the same objective value as its dual:

max
y

b⊤y (1.2a)

s.t. A⊤y ≤ c, (1.2b)

y ≥ 0. (1.2c)

In particular, given a pair of points x∗ and y∗ that are feasible to Programs (1.1) and (1.2)
respectively, x∗ and y∗ are optimal to their respective programs if and only if c⊤x∗ = b⊤y∗.
Consequently, we can rewrite Program (1.1) as the following constraint satisfaction problem:

Ax ≥ b, (1.3a)

A⊤y ≤ c, (1.3b)

c⊤x = b⊤y, (1.3c)

x, y ≥ 0. (1.3d)

An equivalent condition to strong duality is complementary slackness, which states that
y⊤(Ax − b) = 0 and x⊤(c − A⊤y) = 0. These constraints can be used to replace Con-
straint (1.3c) and thus, rewrite Program (1.1) as a linear complementarity problem [20].
The resulting set of constraints is usually referred to as the Karush–Kuhn–Tucker (KKT)
conditions [38].

1.2. Integer Programming
An integer linear program (ILP) is an extension of Program (1.1) where x is restricted

to be integral:

min
x

c⊤x (1.4a)

s.t. Ax ≥ b, (1.4b)

x ≥ 0, (1.4c)

x ∈ Zn. (1.4d)

If some elements of x can be continuous, i.e. x ∈ Zp × Rn−p, then the program is a mixed-
integer linear program (MILP). Many NP-hard problems such as the knapsack problem,
the Boolean satisfiability problem, and the travelling saleman problem can be modelled
as ILPs or MILPs [29]. As a result, general integer programs are NP-hard. Despite the
theoretical intractability of ILPs (and MILPs), sophisticated branch-and-cut algorithms have
emerged, implemented within powerful solvers like Gurobi, CPLEX, SCIP and Cbc. These
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solvers significantly enhance our ability to effectively solve MILPs in practice. Nevertheless,
challenges persist within this class of problems.

In this thesis, we are interested in a conversion of Program (1.4) into a set of constraints
similar to Program (1.3). Unfortunately, in general, there is no well-defined dual for an ILP.
However, if we convert an ILP into an LP, then we can leverage the linear programming
duality theory. In particular, if the matrix A in Constraint (1.4b) satisfies a property called
total unimodularity and if b is an integral vector, then Program (1.4) can be converted
directly into an LP by dropping Constraint (1.4d) [19]. A matrix is totally unimodular if
and only if every square submatrix has determinant 0, 1, or −1. A well-known class of totally
unimodular matrices is the class of incidence matrices of directed graphs. Given a directed
graph G = (V ,A), define the incidence matrix A ∈ RV×A such that

Au,a =


−1 if u ∈ V is the source of a ∈ A,

+1 if u ∈ V is the target of a ∈ A,

0 otherwise.

Then, the matrix A is totally unimodular. This technique is commonly used to convert the
shortest path problem to an LP. Some problems such as the knapsack problem possess a
dynamic programming model. A dynamic programming model with a finite number of states
and actions is equivalent to a shortest (or longest) path problem in a directed acyclic graph.
Thus, we can write such problems as shortest path problems, use total unimodularity to
drop the integrality constraint, and take the dual of the resulting LP to compose a set of
constraints as in Program (1.3).

In reality, most matrices A are not totally unimodular. In that case, we consult Meyer’s
theorem [48], which states that the convex hull of S = {x ∈ Zn | Ax ≥ b, x ≥ 0} is a
polyhedron (assuming that A and b are rational). Let P = conv(S) be this convex hull. Op-
timizing a linear function over S is equivalent to optimizing the same function over P . Thus,
Program (1.4) is equivalent to min{c⊤x | x ∈ P}. The polyhedron P has two representations:

— The intersection of half spaces, i.e. P = {x ∈ Rn | Cx ≥ d} where each row in Cx ≥ d

defines a facet of P ;
— The combination of extreme points and extreme rays, i.e. P = conv{v1, . . . ,vp} +

cone{r1, . . . ,rq} where vi are the extreme points and rj are the extreme rays of P .
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Using the first representation, Program (1.4) is equivalent to the LP min{c⊤x | Cx ≥ d}.
For the second representation, we can rewrite Program (1.4) as:

min
p∑

i=1

(c⊤vi)λi +
q∑

j=1

(c⊤rj)µj (1.5a)

s.t.
p∑

i=1

λi = 1, (1.5b)

λ, µ ≥ 0. (1.5c)

In both cases, we can derive a dual of Program (1.4) by taking the dual of the corresponding
LPs. Note that if the original ILP is NP-hard, then both representations are exponential in
size because their LPs cannot be solved in polynomial time (assuming P ̸= NP).

As a final remark, one can also take advantage of strong duality by converting ILPs
to other classes of convex programs. For example, ILPs (or more generally, mixed-binary
quadratic programs) can be reformulated as a completely positive program which has a dual
that is a copositive program [15]. This approach, however, is not explored in this work.

1.3. Convex Conjugate
A function f : Rn → R ∪ {+∞} is convex and lower semicontinuous if and only if

its epigraph epi(f) = {(z, x) ∈ R × Rn | z ≥ f(x)} is a closed convex set, which can
be represented as an intersection of closed half spaces. In other words, a convex lower
semicontinuous function f is the pointwise supremum of all hyperplanes (affine functions) h

such that h ≤ f . If two such hyperplanes have the same slope (i.e. they are parallel), one will
dominate the other. Thus, for each slope y ∈ Rn, only the highest hyperplane hy is required
to describe f . This hyperplane must be a supporting hyperplane, hence hy(x) = y⊤x− g(y)
where g(y) is the highest value such that y⊤x− g(y) = f(x) for some x ∈ Rn. In particular,
we have:

g(y) = sup
x
{y⊤x− f(x)}. (1.6)

Since f is the pointwise supremum of hy, y ∈ Rn, we have:

f(x) = sup
y
{y⊤x− g(y)}. (1.7)

The functions f and g are two different representations of the same convex function.
We call g the convex conjugate (or Legendre transform) of f , denoted as f ∗ [52]. From
Equations (1.6) and (1.7), f is also the convex conjugate of f ∗ = g. This is the content
of the Fenchel–Moreau theorem, which states that (f ∗)∗ = f if and only if f is convex and
lower semicontinuous (the other direction is implied by the fact that the convex conjugate
is always convex and lower semicontinuous).
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It follows from Equation (1.6) that f(x)+f ∗(y) ≥ y⊤x, which is called the Fenchel-Young
inequality. If f(x) + f ∗(y) = y⊤x for some x and y, then hy supports f at x. We call y the
subgradient of f at x. The set of all subgradients of f at x is the subdifferential of f at x,
denoted as ∂f(x). It holds that y ∈ ∂f(x) if and only if x ∈ ∂f ∗(y). The subdifferential
∂f(x) is convex for all x ∈ Rn.

Operations on one representation have dual operations in the other representation. For
example, given a constant λ ∈ R \ {0}, the convex conjugate of f(λx) is f ∗(y/λ). Table 1.1
lists several common operations and their duals. The dual of the last operation (sum of
functions) is the infimal convolution, defined as:

(g1 □ · · ·□ gm)(y) = inf{g1(y1) + · · ·+ gm(ym) | y1 + · · ·+ ym = y}.

Table 1.1 – Common operations and their convex conjugates.

Functions Convex conjugates Conditions

f(λx) f ∗(y/λ) λ ∈ R \ {0}
λf(x) λf ∗(y/λ) λ ∈ R, λ > 0
f(x + a) f ∗(y)− a⊤y a ∈ Rn

f(x) + α f ∗(y)− α α ∈ R
f1 + · · ·+ fm f ∗

1 □ · · ·□ f ∗
m

In the second article (Chapter 3), the representations described in this section will enable
us to explore a novel representation for the standard bilevel program for the NPP.

1.4. Bilevel Optimization
A bilevel optimization problem is a problem with nested structure involving two parties:

a leader and a follower. Both parties have their own sets of variables and by controlling these
variables, they seek to optimize their respective objective functions. However, this is not a
simultaneous game: the leader always decides first, and the follower decides last, knowing
what the leader’s decision was. In return, the leader can assume that the follower will react
rationally, i.e. they always choose the optimal solution. This class of games is also called
Stackelberg games [53].

In this thesis, we consider the optimistic assumption. Under this assumption, given a
specific leader’s decision, if the follower has multiple optimal solutions, we assume that
the follower chooses the solution that benefits the leader the most. Denote x ∈ X the
leader’s decision variable, and y ∈ Y the follower’s decision variable. An optimistic bilevel
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optimization problem has the form:

min
x,y

F (x, y)

s.t. G(x, y) ≥ 0,

x ∈ X ,

y ∈ R(x),

where R(x) is the set of optimal solutions of the follower’s problem given the leader’s deci-
sion x:

R(x) = argmin
y

f(x, y)

s.t. g(x, y) ≥ 0,

y ∈ Y .

Bilevel optimization problems are very challenging to solve. Indeed, linear bilevel prob-
lems have been shown to be NP-hard [35]. Solution techniques for various classes of bilevel
optimization problems can be found in Kleinert et al. [37]. The most popular class in the
literature is the class of mixed-integer bilevel linear programs (MIBLP) which have the form:

min
x,y

c⊤x + d⊤y (1.10a)

s.t. Ax + By ≥ a, (1.10b)

x ∈ X , (1.10c)

y ∈ argmin{e⊤y | Cx + Dy ≥ b, y ∈ Y}, (1.10d)

with integrality constraints imposed within X and Y . A common assumption is that the
linking variables (the entries of x that appear in the follower’s problem) must be discrete
and bounded. By allowing integrality constraints, MIBLPs become Σp

2-hard [42], including
commonly studied min-max special cases [17]. In practice, this means that no MILP refor-
mulation of polynomial size is expected to exist for MIBLPs. Still, general-purpose solution
methods exist, namely, the extension of the branch-and-cut method by Moore and Bard
[49]. This method first considers the high-point relaxation of Program (1.10), which is a
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single-level relaxation by omitting the optimality condition of the follower’s problem:

min
x,y

c⊤x + d⊤y

s.t. Ax + By ≥ a,

Cx + Dy ≥ b,

x ∈ X ,

y ∈ Y .

Then, it gradually cuts off solutions that are not in R(x) (which are called bilevel infeasible),
with the no-good cut [22] and the bilevel intersection cut [26] as examples. By accommodat-
ing the above cuts with improved pruning and branching, Tahernejad et al. [54] published a
solver named MibS for MIBLPs. Recently, there has been some progress in solving general
mixed-integer bilevel non-linear problems [47].

1.5. Combinatorial Pricing Problem
The central topic of this thesis revolves around a class of bilevel optimization problems

called combinatorial pricing problems (CPP). This class is also referred to as Stackelberg
pricing games in the literature. In a CPP, there is a set of items I which is partitioned into
the set of tolled items I1 and the set of toll-free items I2. The leader can control the prices
of the tolled items by setting the toll ti ≥ 0 for i ∈ I1. Thus, the price of a tolled item
i ∈ I1 is ci + ti while the price of a toll-free item i ∈ I2 is ci where c ∈ RI is the vector of
the base costs of the items. Given the tolls set by the leader, the follower selects a subset of
items in I that minimizes the total cost according to some combinatorial problem. Denote
the follower’s decision as x ∈ {0,1}I . The objective of the leader is to maximize the revenue
collected on the tolled items, i.e. the sum of tixi for all i ∈ I1. Mathematically, the CPP
can be formulated as:

max
t,x

t⊤x (1.12a)

s.t. t ∈ T , (1.12b)

x ∈ argmin{(c + t)⊤x | x ∈ X} (1.12c)

where T = RI1
+ × {0}I2 is the set of feasible tolls and X is the feasible set of the follower’s

problem.
The only coupling mechanism between the leader and the follower is the bilinear term t⊤x,

which one side wants to maximize while the other side wants to minimize. This observation
may suggest a connection between the CPP and the class of interdiction problems [17, 22].
In an interdiction problem, the objective functions of the leader and the follower are the

9



same, but they are in opposite directions. In the CPP however, thanks to the base cost c,
the relation between the leader and the follower in the CPP is not totally adversarial like
in an interdiction problem. This relation is closer to the one between a service provider (as
the leader) and its customers (as the follower). As long as the service is not obligatory, the
customers will only use the service if it is better than the alternatives. Thus, the leader
actually seeks to improve of the follower’s objective while making a profit in the process.
In fact, an upper bound of Program (1.12) is the difference of the follower’s objective value
with t→∞ (i.e. no tolled items are available) and the follower’s objective value with t = 0
(i.e. all tolled items are available without markups).

There are several differences between the MIBLP (Program (1.10)) and the CPP (Pro-
gram (1.12)):

— The leader variable t in the CPP is continuous;
— The objective functions of both the leader and the follower in the CPP contain the

bilinear term t⊤x;
— The leader’s decision does not affect the feasible set of the follower’s problem X .

Due to the above dissimilarities, the CPP is not compatible with general solvers for MIBLPs
such as MibS [54].

The most common specialization of the CPP is the network pricing problem (NPP), in
which the items are arcs in a directed graph and the follower’s problem is the shortest path
problem. The single- and multi-commodity versions of NPP were introduced in Labbé et al.
[40] and Brotcorne et al. [10], respectively. The NPP has been proven to be NP-hard [51]. The
preferred method to solve the NPP is to convert Program (1.12) to a single-level reformulation
using the KKT conditions (as described in Section 1.1), either with the original shortest path
LP [10], or with a path-based representation [6, 24]. Preprocessing techniques such as joining
multiple toll-free arcs into one [55] and removing redundant paths [6] can drastically reduce
the size of the NPP and improve the solution time of the final program.

Besides the NPP, other specializations of the CPP have been studied, in which the
follower’s problem is the minimum spanning tree problem [18], the knapsack problem [7, 50],
the stable set problem [16], and the bipartite vertex cover problem [8]. In general, the CPP is
Σp

2-hard [16]. However, existing literature mostly focuses on the computational complexity
and approximation schemes for some specific cases of the CPP rather than the solution
method in the general case.

The concepts described in this section will be put into practice in the subsequent three
articles. Specifically, single-level reformulation using KKT conditions on integer programs
is the method of choice in the first and the third articles, while convex conjugate provides a
theoretical basis for the second work.
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Abstract. We study the network pricing problem where the leader maximizes their rev-
enue by determining the optimal amounts of tolls to charge on a set of arcs, under the
assumption that the followers will react rationally and choose the shortest paths to travel.
Many distinct single-level reformulations of this bilevel optimization program have been pro-
posed, however, their relationship has not been established. In this paper, we aim to build
a connection between those reformulations and explore the combination of the path repre-
sentation with various modeling options, allowing us to generate 12 different reformulations
of the problem. Moreover, we propose a new path enumeration scheme, path-based prepro-
cessing, and hybrid framework to further improve performance and robustness when solving
the final model. We provide numerical results, comparing all the derived reformulations and
confirming the efficiency of the novel dimensionality reduction procedures.
Keywords: Networks, Pricing, Bilevel programming, Multi-commodity transportation

2.1. Introduction
The network pricing problem (NPP) is a bilevel optimization program involving two

parties: a leader and multiple followers. First, the leader sets the prices of several arcs
(called tolled arcs) in a network. Afterward, the followers choose the optimal paths in the
network subject to the prices set by the leader. The leader’s objective is to maximize their
profit, while the goal of the followers is to minimize their own costs of transit by following
the respective shortest paths across the network. High prices do not always mean more profit
for the leader if only a few followers can afford them. Thus, the leader must seek a balance
between the prices and the decisions of the followers reacting to those prices. In practice,
the leader could be a highway authority and the followers could be groups of the population
residing in different neighborhoods or cities.

2.1.1. Related Literature

The NPP was first introduced in Labbé et al. [40] as a single-commodity problem (one fol-
lower), and later extended to the multi-commodity version (multiple followers) by Brotcorne
et al. [10]. The problem is proven to be NP-hard even when there is only one follower [51].
The first mixed integer linear program (MILP) formulation was also introduced in Brot-
corne et al. [10]. Since then, many improvements to their MILP were proposed such as
the shortest-path graph model (SPGM) [55], preprocessing techniques [6], path-based mod-
els [6, 24], valid inequalities, and tight bounds for big-M parameters [23]. Other methods
were also explored, including multipath enumeration [12] and tabu search [13]. Variants of
the network pricing problem include the joint network design and pricing problem [11], the
complete toll NPP (clique pricing problem) [34], and the logit NPP [30].

The NPP has a natural bilevel optimization formulation. There are general-purpose
methods to solve bilevel optimization problems, e.g. , Fischetti et al. [26], Tahernejad et al.
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[54]. However, due to their complexity, they are usually considered per case to exploit
specific problem structures. A common approach to solve a bilevel optimization problem
is to convert it to a single-level reformulation. For the NPP, the follower problems are
linear. Thus, there are three methods generally used for this conversion based on optimality
conditions: strong duality, complementary slackness, and value function. In the first two
methods, the primal and the dual constraints of the follower problems are included in the
single-level reformulation and then accompanied by either strong duality or complementary
slackness constraints. In the third method, only the primal constraints are needed and the
optimality of the follower problems is ensured by the value function constraints.

Strong duality was used in the original formulation proposed in Brotcorne et al. [10].
The discovery of the path representation led to the use of complementary slackness in the
path-based formulations developed in Didi-Biha et al. [24]. Value function formulations
were mentioned in Heilporn et al. [33] and Bouhtou et al. [6]. However, these models were
presented as separate formulations with little connection in between.

2.1.2. Contribution and Paper Organization

In the first part of this work, our aim is to explore the links between all of the previously
mentioned single-level reformulations of the NPP. First, we show that in strong duality and
complementary slackness reformulations, the path representation can be applied not only to
the primal follower problems, but also to the dual problems. This allows us to show that the
value function method is a special case of strong duality when the dual problems are written
in the path representation. Second, we provide a systematic way to formalize a reformulation
by breaking it down into components with different options for each component. This general
method can also be used to categorize all the models mentioned above and explain the
connection between them.

The second part of this work is dedicated to the path enumeration process. This is
important because a well-performed path-based reformulation requires an efficient path enu-
meration algorithm. Existing methods must enumerate either all the paths [6] or a set of
relevant paths but require multiple calls to a linear solver [24]. Based on previous discoveries
on the properties of redundant paths in Bouhtou et al. [6] and Didi-Biha et al. [24], we
develop a new path enumeration process that can enumerate relevant paths without employ-
ing a linear solver. Besides that, based on this set of relevant paths, we also derive a new
preprocessing method that can be applied to arc-based reformulations. This preprocessing
method is crucial for a fair comparison between the reformulations, since path enumeration
is also counted as a preprocessing method for the path-based reformulations.

13



Regardless of the efficiency of the path enumeration process, the potential size of the
set of all relevant paths is exponential, which may require an enormous amount of time to
enumerate them. In the last part of this work, we introduce a method to circumvent this
problem by taking advantage of the multi-commodity nature of the NPP. By deciding which
commodities are worth applying path enumeration and mixing different reformulations into
one, we can save time by spending less time enumerating very large sets of paths and more
time solving the actual optimization model. In this paper, we refer to this solution as the
hybrid framework for multi-commodity problems.

This paper is structured as follows. In Section 2.2, we describe the NPP, namely, its
bilevel optimization program, and explain the general method to formalize a reformulation.
Section 2.3 shows how path enumeration is performed in the novel preprocessing method.
The hybrid framework is introduced in Section 2.4. Section 2.5 presents computational
results, including a comparison of all formulations and several experiments to prove the
efficiency of the new preprocessing method and the hybrid framework.

2.2. The Network Pricing Problem
In this section, we provide the bilevel programming formulation for the network pricing

problem in Section 2.2.1 and a systematic way to generate single-level reformulations through
the combination of different components in Section 2.2.2. The conversion from the bilevel
formulation to single-level reformulations produces bilinear terms. The linearization of these
bilinear terms is the topic of discussion in Section 2.2.3.

2.2.1. Problem Formulation

Let us consider a graph G = (V, A) where A is partitioned into a set of tolled arcs A1

and a set of toll-free arcs A2. Each arc a ∈ A has an initial cost ca > 0. Let K be the set
of commodities (O-D pairs) and ok, dk, ηk be the origin, the destination, and the demand of
commodity k ∈ K, respectively. We define the following variables:

— Ta, a ∈ A1: the toll of arc a;
— xk

a, a ∈ A1, k ∈ K: the flow of commodity k on tolled arc a;
— yk

a , a ∈ A2, k ∈ K: the flow of commodity k on toll-free arc a.
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The network pricing problem is then formulated as a bilevel program:

(NPP) max
T ≥0,x,y

∑
k∈K

∑
a∈A1

ηkTaxk
a

s.t. ∀k ∈ K



(xk, yk) ∈ arg min
x̂,ŷ

∑
a∈A1

(ca + Ta)x̂a +
∑

a∈A2

caŷa

s.t.
∑

a∈A+
1 (i)

x̂a +
∑

a∈A+
2 (i)

ŷa −
∑

a∈A−
1 (i)

x̂a −
∑

a∈A−
2 (i)

ŷa = bk
i , i ∈ V,

x̂a ∈ {0, 1}, a ∈ A1,

ŷa ∈ {0, 1}, a ∈ A2,

where bk
i = 1 if i = ok, −1 if i = dk, and 0 otherwise. For a node i, the set of its outgoing

tolled (toll-free) arcs is A+
1 (i) (A+

2 (i)) and the set of its incoming tolled (toll-free) arcs is
A−

1 (i) (A−
2 (i)). The leader controls the toll prices Ta, while each follower k ∈ K decides the

taken paths by setting xk
a and yk

a equal to 1 if the arc belongs to the path, and 0 otherwise.
We consider the optimistic version of this bilevel problem, i.e. , if a follower has multiple
optimal solutions with respect to the prices set by the leader, then they will choose the
solution that benefits the leader the most. For each commodity, we assume that there exists
at least a toll-free path (a path without tolled arcs). Otherwise, the leader could gain infinite
revenue by exploiting that particular O-D pair.

2.2.2. Generalized Single-Level Reformulations

A generalized single-level reformulation of the NPP consists of three components: (i) a
primal representation (arc or path), (ii) a dual representation (arc or path), and (iii) an
optimality condition (strong duality or complementary slackness). In this way, the followers’
optimization problems can be equivalently replaced by constraints in the NPP.

First, the primal and the dual representations of the follower problems need to be chosen.
There are two options for each: the arc representation and the path representation. Consider
the follower problem for commodity k:

(PAk) min
xk,yk

∑
a∈A1

(ca + Ta)xk
a +

∑
a∈A2

cayk
a

s.t.
∑

a∈A+
1 (i)

xk
a +

∑
a∈A+

2 (i)

yk
a −

∑
a∈A−

1 (i)

xk
a −

∑
a∈A−

2 (i)

yk
a = bk

i , i ∈ V, (2.1)

xk
a ∈ {0, 1}, a ∈ A1,

yk
a ∈ {0, 1}, a ∈ A2.

This is called the primal-arc representation of the follower problem. Because the set of
constraints of the follower problem forms a totally unimodular matrix, integrality conditions
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for xk
a and yk

a can be dropped (see Wolsey and Nemhauser [56]). This enables us to write
the follower problem in the dual-arc representation:

(DAk) max
λk

λk
ok − λk

dk

s.t. λk
i − λk

j ≤ ca + Ta, a ≡ (i, j) ∈ A1, (2.2)

λk
i − λk

j ≤ ca, a ≡ (i, j) ∈ A2. (2.3)

In Bouhtou et al. [6] and Didi-Biha et al. [24], instead of writing the follower problem
using arc-flow xk

a, yk
a , the authors replaced these variables with zk

p representing the path-flow
or the selection of paths p in the set P k consisting of all elementary paths, i.e. paths without
cycles, which is a finite set. We will refer this as the primal-path representation:

(PPk) min
zk

∑
p∈P k

(∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa

)
zk

p

s.t.
∑
p∈P k

zk
p = 1, (2.4)

zk
p ∈ {0, 1}, p ∈ P k.

In the above formulation, δp
a = 1 if the path p includes the arc a and δp

a = 0 if not.
Once again, the constraints form a totally unimodular matrix, hence zk

p is not required to
be binary and thus the follower problem also has a dual-path representation:

(DPk) max
Lk

Lk

s.t. Lk ≤
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa, p ∈ P k. (2.5)

In total, there are four combinations of primal-dual representations (arc-arc, arc-path,
path-arc, and path-path). Note that the primal and the dual representations are not required
to match each other, so primal-arc could also be paired with dual-path.

After deciding the representations, we need to connect the primal and the dual representa-
tions by either strong duality or complementary slackness constraints. Strong duality simply
connects the primal and the dual objective functions together. Below are the strong duality
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constraints for the arc-arc, arc-path, path-arc, and path-path combinations, respectively:∑
a∈A1

(ca + Ta)xk
a +

∑
a∈A2

cayk
a = λk

ok − λk
dk , (2.6)

∑
a∈A1

(ca + Ta)xk
a +

∑
a∈A2

cayk
a = Lk, (2.7)

∑
p∈P k

(∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa

)
zk

p = λk
ok − λk

dk , (2.8)

∑
p∈P k

(∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa

)
zk

p = Lk. (2.9)

Complementary slackness matches bounded variables in the primal with inequality con-
straints in the dual. The pairing is simple if the primal and the dual have the same repre-
sentation (either arc-arc or path-path):

(ca + Ta − λk
i + λk

j )xk
a = 0, a ≡ (i, j) ∈ A1, (2.10)

(ca − λk
i + λk

j )yk
a = 0, a ≡ (i, j) ∈ A2, (2.11)(∑

a∈A

δp
aca +

∑
a∈A1

δp
aTa − Lk

)
zk

p = 0, p ∈ P k. (2.12)

However, if the primal and the dual have different representations, variables in the primal
representation must be converted to their dual counterparts. For the path-arc combination,
conversion from z to (x, y) is done by using the identities xk

a =
∑

p∈P k δp
azk

p for a ∈ A1 and
yk

a =
∑

p∈P k δp
azk

p for a ∈ A2:

(ca + Ta − λk
i + λk

j )

∑
p∈P k

δp
azk

p

 = 0, a ≡ (i, j) ∈ A1, (2.13)

(ca − λk
i + λk

j )

∑
p∈P k

δp
azk

p

 = 0, a ≡ (i, j) ∈ A2. (2.14)

For the arc-path combination, the conversion from (x, y) to z is more complicated. We
will use the definition that zk

p = 1 if and only if xk
a = 1 and yk

a = 1 for all arcs a be-
longing to the path p (given that (x, y) produce an elementary path). Mathematically,
zk

p =
∏

a∈A1|δp
a=1 xk

a

∏
a∈A2|δp

a=1 yk
a . The complementary slackness constraint for the arc-path

combination is:(∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa − Lk

) ∏
a∈A1
δp

a=1

xk
a

∏
a∈A2
δp

a=1

yk
a = 0, p ∈ P k. (2.15)
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Table 2.1 – Complete map of all single-level reformulations.

(a) Strong duality

Dual
Primal Arc Path

Arc Standard
(STD)

Path-Arc Standard
(PASTD)

Path Value Function
(VF)

Path Value Function
(PVF)

(b) Complementary slackness

Dual
Primal Arc Path

Arc Complementary
Slackness (CS)

Path-Arc
Complementary

Slackness (PACS)

Path
Value Function
Complementary

Slackness (VFCS)

Path Complementary
Slackness (PCS)

An important rule of the conversion is that it must cover all possible solutions in the
primal representation. Otherwise, the optimality condition can be dodged by choosing the
primal solution that is not covered. If we leave the graph and P k as inputted, this rule is
satisfied. However, in Section 2.3, we will introduce methods that reduce the size of the
graph and P k, thus requiring additional attention. We will discuss this in Section 2.3.2.

For completeness, accordingly with the choice of the primal representation, here are the
objective function of the single-level formulations:∑

k∈K

∑
a∈A1

ηkTaxk
a, (2.16)

∑
k∈K

∑
a∈A1

∑
p∈P k

ηkδp
aTazk

p . (2.17)

Based on the primal, the dual, and the optimality condition, we can categorize all the
single-level formulations as in Table 2.1. The variables, constraints and objective functions
of these formulations are listed in Table 2.2. The variables are bounded implicitly (x, y, z, T

are non-negative; λ, L are unrestricted).

18



Table 2.2 – List of variables, constraints, and objective functions of all single-level refor-
mulations.

Constraints

Label Variables Objective Primal Dual Opt. Cond.

Strong duality
STD T, x, y, λ (2.16) (2.1) (2.2), (2.3) (2.6)
VF T, x, y, L (2.16) (2.1) (2.5) (2.7)
PASTD T, z, λ (2.17) (2.4) (2.2), (2.3) (2.8)
PVF T, z, L (2.17) (2.4) (2.5) (2.9)

Complementary slackness
CS T, x, y, λ (2.16) (2.1) (2.2), (2.3) (2.10), (2.11)
VFCS T, x, y, L (2.16) (2.1) (2.5) (2.15)
PACS T, z, λ (2.17) (2.4) (2.2), (2.3) (2.13), (2.14)
PCS T, z, L (2.17) (2.4) (2.5) (2.12)

There are some notable reformulations in the list. The most canonical way to convert
a bilevel linear program to its single-level version is the standard formulation (STD). See
Appendix 2.A.1 for the explicit formulation. This formulation has been referred to in most
papers in the literature [33, 24, 6, 23], including the first paper on the NPP [10]. It only uses
arc representations, so the need for path enumeration is eliminated. Its linearized version
(Section 2.2.3) only requires x to be integer. Furthermore, the number of arcs is fixed, hence,
it is reliable compared to the path-based formulations whose sizes depend on the number of
paths of each commodity which is unknown. Overall, the standard formulation is the most
straightforward method to solve the NPP.

The second reformulation in which we are interested is the value function formula-
tion (VF). The explicit formulation is shown in Appendix 2.A.2. If we combine the con-
straints (2.5) and (2.7), a new constraint emerges:∑

a∈A1

(ca + Ta)xk
a +

∑
a∈A2

cayk
a ≤

∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa p ∈ P k. (2.18)

The left hand side of Eq. (2.18) is the cost of the current path, while the right hand side
is the cost of path p. Eq. (2.18) means that the cost of the current path must not surpass
the cost of any path in P k, which restricts (x, y) to choose the path with least cost. This is
called the value function constraint and it is also a popular method to generate the single-
level formulation of a bilevel problem. Here, we have shown that the value function method
is just a special case of strong duality when we write the dual representation of the follower
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problems in the solution space (dual-path in the case of the NPP). The value function
formulation for the NPP was previously mentioned in Heilporn et al. [33].

The last formulation in which we focus is the path complementary slackness formulation
(PCS). See Appendix 2.A.3 for the formulation. This formulation is the path-based model
of Didi-Biha et al. [24]. It is the complete opposite of the standard formulation. It only uses
path representations, hence its performance heavily relies on the number of paths in P k.
Methods for reducing the size of P k will be discussed in Section 2.3. In this formulation,
only the selection of p is important and any information on the structure of the graph is
discarded. The advantage of this formulation is its simplicity, especially when the size of P k

is small.

2.2.3. Linearization

In all eight single-level formulations, there are bilinear terms (or in the case of VFCS,
multilinear terms). In order to solve these formulations using MILP solvers, these terms
need to be linearized. We will consider formulations using strong duality and those using
complementary slackness separately.

2.2.3.1. Linearization of strong duality formulations. In the strong duality formu-
lations, the bilinear terms arise from the leader’s revenue, which are either

∑
a∈A1

Taxk
a or∑

a∈A1

∑
p∈P k δp

aTazk
p . Because xk

a and zk
p can only take 0 and 1 as their values, we can force

them to be binary and add new variables tk
a = Taxk

a = Ta

∑
p∈P k δp

azk
p , for a ∈ A1, with the

following constraints:

0 ≤ tk
a ≤Mk

a xk
a, a ∈ A1, (2.19)

0 ≤ Ta − tk
a ≤ Na(1− xk

a), a ∈ A1, (2.20)

for the primal-arc representation and

0 ≤ tk
a ≤Mk

a

∑
p∈P k

δp
azk

p , a ∈ A1, (2.21)

0 ≤ Ta − tk
a ≤ Na

1−
∑
p∈P k

δp
azk

p

 , a ∈ A1, (2.22)

for the primal-path representation. Mk
a and Na are big-M parameters. We refer this method

of linearization as direct linearization. Tight bounds for Mk
a and Na can be found in Dewez

et al. [23]. The leader revenue for each commodity becomes
∑

a∈A1
ηktk

a, which we can use to
replace the bilinear terms. The strong duality constraints of the four linearized formulations
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are as follows: ∑
a∈A1

(caxk
a + tk

a) +
∑
a∈A2

cayk
a = λk

ok − λk
dk , (2.23)

∑
a∈A1

(caxk
a + tk

a) +
∑
a∈A2

cayk
a = Lk, (2.24)

∑
p∈P k

∑
a∈A

δp
acazk

p +
∑
a∈A1

tk
a = λk

ok − λk
dk , (2.25)

∑
p∈P k

∑
a∈A

δp
acazk

p +
∑
a∈A1

tk
a = Lk. (2.26)

The objective function of the linearized formulation is independent from the primal rep-
resentation: ∑

k∈K

∑
a∈A1

ηktk
a. (2.27)

A summary of all linearized strong duality formulations is provided in Table 2.3.

Table 2.3 – List of variables, constraints, and objective functions of all linearized strong
duality formulations.

Constraints

Label Variables Obj. Primal Dual Opt. Cond. Linearization

STD T, t, x∗, y, λ (2.27) (2.1) (2.2), (2.3) (2.23) (2.19), (2.20)
VF T, t, x∗, y, L (2.27) (2.1) (2.5) (2.24) (2.19), (2.20)
PASTD T, t, z∗, λ (2.27) (2.4) (2.2), (2.3) (2.25) (2.21), (2.22)
PVF T, t, z∗, L (2.27) (2.4) (2.5) (2.26) (2.21), (2.22)

The variables with stars are required to be binary.

2.2.3.2. Linearization of complementary slackness formulations. In complementary
slackness formulations, bilinear terms appear in all complementary slackness constraints. In
the arc-arc (CS) and path-path (PCS) combinations, each complementary slackness con-
straint is gated by a primal variable (x, y, or z), which can only take binary values. Thus, we
could use them as branching condition for the constraints. Here are the linearized constraints
of the arc-arc combination (CS):

λk
i − λk

j ≥ ca + Ta −Rk
a(1− xk

a), a ≡ (i, j) ∈ A1, (2.28)

λk
i − λk

j ≥ ca −Rk
a(1− yk

a), a ≡ (i, j) ∈ A2, (2.29)
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and of the path-path combination (PCS):

Lk ≥
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa − Sk

p (1− zk
p ), p ∈ P k, (2.30)

where Rk
a and Sk

p are big-M parameters depending on the dual representation (Rk
a for dual-

arc and Sk
p for dual-path). When x, y or z are equal to 1, the big-M terms are dropped.

Combining with the dual constraints, these complementary slackness constraints force them
to be active. If the primal variables are equal to 0, the big-M terms make the constraints
redundant, essentially removing them from the formulation. To calculate the values of these
big-M parameters, recalling that Na is the upper bound of Ta defined in (2.20), denote:

— λk
i : the minimum cost from i to dk when Ta = 0 for all a ∈ A1;

— λ
k

j : the minimum cost from j to dk when Ta = Na for all a ∈ A1;
— Lk: the minimum cost from ok to dk when Ta = 0 for all a ∈ A1.

Then, the upper bounds for the big-M parameters are:

Rk
a = ca + Na − λk

i + λ
k

j , a ≡ (i, j) ∈ A1,

Rk
a = ca − λk

i + λ
k

j , a ≡ (i, j) ∈ A2,

Sk
p =

∑
a∈A

δp
aca +

∑
a∈A1

δp
aNa − Lk, p ∈ P k.

In the calculation of λ
k

j , excluding all the tolled arcs (set T = ∞) is a valid option, never-
theless, it may disconnect j and dk which may lead to infinite RK

a . Thus, since we aim for
the smallest Rk

a, we do not remove them. A similar technique can be used for the path-arc
combination (PACS):

λk
i − λk

j ≥ ca + Ta −Rk
a

1−
∑
p∈P k

δp
azk

p

 , a ≡ (i, j) ∈ A1, (2.31)

λk
i − λk

j ≥ ca −Rk
a

1−
∑
p∈P k

δp
azk

p

 , a ≡ (i, j) ∈ A2. (2.32)

For the arc-path combination (VFCS), the constraints have multilinear terms. We will
use the expression ∑

a∈A

δp
a −

∑
a∈A1

δp
axk

a −
∑
a∈A2

δp
ayk

a (2.33)

as the branching condition. The number of arcs in path p is
∑

a∈A δp
a. Expression (2.33) is

only equal to 0 if all the arcs along the path p are active, i.e. p is chosen. The linearized
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constraints of the arc-path combination (VFCS) are:

Lk ≥
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa − Sk

p

(∑
a∈A

δp
a −

∑
a∈A1

δp
axk

a −
∑
a∈A2

δp
ayk

a

)
, p ∈ P k. (2.34)

After linearizing all the bilinear terms in the complementary slackness constraints, there
are still bilinear terms in the objective function (for the leader’s revenue). We could use the
direct linearization method as in the strong duality case which adds more big-M constraints
to the formulations. However, we can take advantage of the special structure of the NPP: the
leader’s revenue appears twice, once in the objective function, and once in the strong duality
constraint. Furthermore, since strong duality constraints are not utilized in complementary
slackness formulations, the leader’s revenue can be extracted from these constraints and
then be substituted in the objective function. We will refer to this method as linearization
by substitution [24]. Let τ k =

∑
a∈A1

Taxk
a =

∑
a∈A1

∑
p∈P k δp

aTazk
p be the leader’s revenue

for commodity k per unit of demand. The strong duality constraints are used to extract τ k:∑
a∈A1

caxk
a +

∑
a∈A2

cayk
a + τ k = λk

ok − λk
dk , (2.35)

∑
a∈A1

caxk
a +

∑
a∈A2

cayk
a + τ k = Lk, (2.36)

∑
p∈P k

∑
a∈A

δp
acazk

p + τ k = λk
ok − λk

dk , (2.37)

∑
p∈P k

∑
a∈A

δp
acazk

p + τ k = Lk. (2.38)

The objective function becomes: ∑
k∈K

ηkτ k. (2.39)

Table 2.4 is the summary of all linearized complementary slackness formulations. Since
there are two linearization methods for the bilinear terms in the objective function, a suf-
fix is added to the label, where 1 means direct linearization and 2 means linearization by
substitution. Overall, the linearization of the complementary slackness formulations is more
complicated than that of the strong duality formulations. Complementary slackness formu-
lations usually have more binary variables and more constraints, which may lead to worse
performance.

Combining with the four strong duality formulations, in total, there are 12 different MILP
formulations for the NPP. Some of them are completely new: (PASTD), (CS), and (VFCS),
while others are already mentioned in other works. However, the performance of the new
formulations is generally worse, as we will show later in the computational experiments.
Table 2.5 shows how these reformulations fit in the big picture. In the left and the middle
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Table 2.4 – List of variables, constraints, and objective functions of all linearized comple-
mentary slackness formulations.

Constraints

Label Variables Obj. Primal Dual Opt. Cond. Linearization

Direct linearization
CS1 T, t, x∗, y∗, λ (2.27) (2.1) (2.2), (2.3) (2.28), (2.29) (2.19), (2.20)
VFCS1 T, t, x∗, y∗, L (2.27) (2.1) (2.5) (2.34) (2.19), (2.20)
PACS1 T, t, z∗, λ (2.27) (2.4) (2.2), (2.3) (2.31), (2.32) (2.21), (2.22)
PCS1 T, t, z∗, L (2.27) (2.4) (2.5) (2.30) (2.21), (2.22)

Linearization by substitution
CS2 T, τ, x∗, y∗, λ (2.39) (2.1) (2.2), (2.3) (2.28), (2.29) (2.35)
VFCS2 T, τ, x∗, y∗, L (2.39) (2.1) (2.5) (2.34) (2.36)
PACS2 T, τ, z∗, λ (2.39) (2.4) (2.2), (2.3) (2.31), (2.32) (2.37)
PCS2 T, τ, z∗, L (2.39) (2.4) (2.5) (2.30) (2.38)

The variables with stars are required to be binary.

columns, the names and the labels used in the original works are listed. The corresponding
labels used in this paper are shown in the right column. We remark that in Bouhtou et al. [6],
the path-based formulation (PMIP) is a path value function formulation (PVF) with a minor
modification: the bilinear terms are linearized separately per path by replacing tk

a = Taxk
a

with rk
pa = Taxk

azk
p .

2.3. Path Enumeration and Preprocessing
This section describes a new path enumeration process in detail, combining the main

ingredients previously explored in the literature. Then, we discuss the use of this process
as a preprocessing method for arc-based formulations. The latter will enable us to fairly
compare arc and path-based reformulations, since we make preprocessing available for both.

2.3.1. Path Enumeration

Formulations using path representations require the set P k, and thus, the explicit enu-
meration of all paths from ok to dk. The size of P k can be exponential. However, not all
paths are relevant. We can eliminate many of them by using the dominance rule in Bouhtou
et al. [6].
Definition 2.1. Given a commodity k, a path is bilevel feasible if it is optimal in the follower
problem for some value of T .
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Table 2.5 – The mapping of previous formulations to the general catalog.

Name in original work Original label General label

Brotcorne et al. [10]
Mixed integer formulation CPLEX STD

Heilporn et al. [33]
Mixed integer formulation TP2 STD
New formulation TP3 VF

Didi-Biha et al. [24]
Arc-based formulation MIP I STD
Arc-path formulation MIP II PACS1
Path-based formulation MIP III PCS2

Bouhtou et al. [6]
Arc-based formulation AMIP STD
Path-based formulation PMIP PVF*

Dewez et al. [23]
Arc-based formulation TOP-ARCS STD
Path-based formulation PATH PCS2

Mathematically, if p is bilevel feasible, then there exists T such that for all q ∈ P k:∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa ≤

∑
a∈A

δq
aca +

∑
a∈A1

δq
aTa.

Lemma 2.2 (Bouhtou et al. [6]). Consider any commodity k ∈ K. Let p and q be two
different paths in P k. If for all a ∈ A1, δp

a ≤ δq
a and∑

a∈A

δp
aca <

∑
a∈A

δq
aca,

then q is not bilevel feasible, i.e., q cannot be the optimal path for any value of T .

Proof. Suppose that q is the optimal path for some fixed value of T . The follower’s cost of
q must be minimal:

∑
a∈A δp

aca +
∑

a∈A1
δp

aTa ≥
∑

a∈A δq
aca +

∑
a∈A1

δq
aTa. However, because

δp
a ≤ δq

a, this means
∑

a∈A1
δp

aTa ≤
∑

a∈A1
δq

aTa; and because
∑

a∈A δp
aca <

∑
a∈A δq

aca, this
leads to a contradiction. □

The dominance rule in Lemma 2.2 is the only necessary rule to eliminate all non-bilevel-
feasible paths. Any remaining path is bilevel feasible.
Theorem 2.3. Any path which is not eliminated by the dominance rule in Lemma 2.2 is
bilevel feasible.
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Proof. We will prove that if path p is not eliminated, then it is optimal for the following
value of T :

Ta =

0 if δp
a = 1,

∞ otherwise.

Suppose that p is not optimal for the above value of T and let q be the optimal path.
Consequently, q can only use arcs with δp

a = 1 as all other tolled arcs are disabled. In other
words, δq

a ≤ δp
a. Also because Ta = 0 for δp

a = 1, the costs of p and q in this case are
exactly their initial costs, hence

∑
a∈A δq

aca <
∑

a∈A δp
aca. By Lemma 2.2, p should have

been eliminated which is a contradiction. Thus, p must be optimal for the given value of
T . □

Definition 2.1 alone does not ensure that any bilevel feasible path is relevant to solve the
NPP. Suppose we have two different paths with the same initial cost and the same set of
tolled arcs. Then they can be both bilevel feasible. In such case, however, only one path is
required. Thus, we employ Assumption 2.4 to make the term “bilevel feasible” coincide with
the term “relevant”.
Assumption 2.4. Two different bilevel feasible paths must have different initial costs.

This assumption also implies that two different bilevel feasible paths will have different
sets of tolled arcs. If two different paths have the same set of tolled arcs but different initial
costs (Assumption 2.4), then by Definition 2.1, the shorter path will dominate the longer
one and only the former can be bilevel feasible. Assumption 2.4 can be satisfied by simply
adding a small random perturbation to the cost of each arc so that the total cost of every
path is unique.

Yen’s algorithm [57] is usually used to enumerate the set of paths of a commodity. The
algorithm outputs the shortest path, the second shortest path, etc, up to the K-th shortest
path between two nodes in a graph. In this case, the shortest path is the path with the
minimum initial cost (the cost when T = 0). The algorithm should be stopped when it has
found the first toll-free path as in the following corollary:
Corollary 2.5. Given a commodity k ∈ K, a path p cannot be bilevel feasible if its initial
cost is greater than that of the shortest toll-free path πk.

In Bouhtou et al. [6], the authors reduced the size of the graph by transforming the
original graph to the shortest path graph model (SPGM). In SPGM, all nodes that are not
incident to any tolled arc will be removed and the toll-free arcs connecting to it are replaced
by the outer product of the list of incoming arcs and the list of outgoing arcs. Then, some
elimination rules (which are only applicable on the SPGM) are applied to reduce the number
of arcs. Finally, the set of paths is enumerated using the Yen’s algorithm on the SPGM and
the dominance rule is applied afterward. A drawback of the SPGM is the inflation of the set
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of arcs which is caused by the replacement of nodes by arcs. Besides that, the elimination
rules in SPGM still leave many redundant nodes and arcs. Thus, there is a sizable number
of irrelevant paths generated by the Yen’s algorithm.

In Didi-Biha et al. [24], the authors used a modified version of the Lawler’s procedure [41],
a general form of the Yen’s algorithm, to enumerate the set of bilevel feasible paths directly
without using the SPGM. SPGM is not needed here because it is only a method to reduce
the size of the graph before Yen’s algorithm is applied which is not used by the authors.
Due to Assumption 2.4, only paths with different combinations of tolled arcs are explored,
ignoring most redundant paths. However, the algorithm in Didi-Biha et al. [24] requires
solving a shortest path problem with some arcs fixed to 1 which cannot be accomplished
by the Dijsktra’s algorithm and requires a linear program solver. We propose an improved
version of this algorithm which just needs a shortest path algorithm. Algorithm 2.1 shows
this enumeration process in details. In the algorithm, C is the set of candidate paths, N

is the maximum number of paths we want to enumerate, p(j) is the j-th shortest path. We
also save two extra properties along with each path qi: s(qi) which is called the spur node
of path qi, and R(qi) which is the set of excluded tolled arcs of path qi.

Algorithm 2.1 is a version of the Lawler’s algorithm [41] which is an enumeration scheme
for binary problems such as the shortest path problem. Let S(p(j)) be the set of tolled arcs
of p(j) from ok to s(p(j)). Consider the problem, denoted as (R(p(j)), S(p(j))), where we need
to find the shortest path when the variables associated to the arcs in R(p(j)) are fixed to
0 and to the arcs in S(p(j)) are fixed to 1. It is simple to verify that p(j) is a point in the
feasible region of the problem (R(p(j)), S(p(j))). The path p(j) is not necessarily optimal to
the problem, but this is not required as we show later in this section. The Lawler’s algorithm
tells us that we need to spawn n subproblems where n is the number of non-fixed variables.
We can re-order these non-fixed variables in any order. Hence, the variables with value 1
(xa1 to xam) come first and the variables with value 0 (xam+1 to xan) follow. The former m

variables are the tolled arcs of p(j) from s(p(j)) to dk (all the tolled arcs preceding s(p(j)) are
fixed by assumption). These m variables must also be in order of appearance as mentioned in
Algorithm 2.1 (line 11). According to this order, the n subproblems of the Lawler’s algorithm
are generated by fixing all the previously fixed variables with these additional constraints
(one constraint for each subproblem):

(1) xa1 = 0

(2) xa1 = 1, xa2 = 0
... ...

(m) xa1 = xa2 = . . . = xam−1 = 1, xam = 0
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Algorithm 2.1 Path enumeration
Input: The graph G = (V, A), the O-D pair ok, dk, the initial costs ca, the maximum number of

paths to be enumerated N .
Output: A list of N paths, most of which are bilevel feasible.
1: Find the first shortest path p(1)

2: C ← {p(1)}
3: s(p(1))← ok

4: R(p(1))← ∅
5: j ← 1
6: while j ≤ N do
7: Output the path with minimum cost in C, call it p(j)

8: Remove p(j) from C

9: if p(j) has no tolled arcs then
10: Stop the algorithm
11: Let a1, a2, . . . , am be the ordered tolled arcs of p(j) from s(p(j)) to dk

12: ŝ← s(p(j))
13: for i from 1 to m do
14: qi ← subpath of p(j) from ok to ŝ

15: s(qi)← ŝ

16: R(qi)← R(p(j)) ∪ {ai}
17: Remove nodes in qi (for this loop only)
18: Remove arcs in R(qi) (for this loop only)
19: if ŝ and dk are connected then
20: Append to qi the shortest path from ŝ to dk

21: Add qi to C

22: ŝ← target of ai

23: j ← j + 1

(m + 1) xa1 = . . . = xam = 1; xam+1 = 1

(m + 2) xa1 = . . . = xam = 1; xam+1 = 0, xam+2 = 1
... ...

(n) xa1 = . . . = xam = 1; xam+1 = . . . = xan−1 = 0, xan = 1.

We can verify that the feasible regions of all subproblems are mutually exclusive and their
union is equivalent to the feasible region of the problem (R(p(j)), S(p(j))) except p(j). The
subproblems in the second group have a common constraint xa1 = . . . = xam = 1. However,
because of Lemma 2.2, xa1 = . . . = xam = 1 implies that the resulting paths cannot be bilevel

28



feasible (dominated by p(j)). Therefore, we only need to consider the first m subproblems
(line 13).

Consider the subproblem i. Let qi be the path constructed as in Algorithm 2.1 (lines 14,
20). We call qi a child of p(j). There are two cases (depending on the condition in line 19): we
can construct qi and we cannot (there is no path from ŝ to dk). If we can and qi exists, then
similar to p(j), qi is a feasible point of the problem (R(qi), S(qi)) where R(qi) = R(p(j))∪{ai}
(line 16) and S(qi) = S(p(j)) ∪ {a1, . . . , ai−1} (lines 12, 15, 22). Although we do not assume
that p(j) and qi are optimal in their own subproblems, they satisfy two special properties.
First, the costs of p(j) and its child qi follow the correct enumeration order:
Lemma 2.6. The cost of qi is at least the cost of p(j).

Hereafter, we will use the term part to refer to a subpath of p(j) or qi of which one end is
either the origin ok or the destination dk. The term segment will refer to any other subpath.

Proof of Lemma 2.6. Because p(j) is constructed by Algorithm 2.1, its part from s(p(j)) to
dk is the shortest path excluding arcs in R(p(j)) and all nodes preceding s(p(j)). As a result,
its part from s(qi) to dk is also the shortest path with respect to the same set of constraints.
Now, consider the path qi. Its part from ok to s(qi) is identical to that of p(j). The other part
from s(qi) to dk is the shortest path, while excluding arcs in R(qi) and all nodes preceding
s(qi). Given that R(p(j)) ⊂ R(qi) and s(p(j)) comes before s(qi), the new shortest path
problem is a restriction. Thus, the cost of this part of qi must be at least the cost of the
same part of p(j). □

Lemma 2.6 is fundamental for using Corollary 2.5 as the stopping condition (line 9). If
the enumeration order is not maintained, then we may stop prematurely after encountering
the first toll-free path. The other property is expressed in the lemma below and it will be
used for proving the correctness of another pruning condition.
Lemma 2.7. Any toll-free segment of qi (or any path generated by the algorithm) is the
shortest segment while excluding all arcs in R(qi) and all the preceding nodes of that segment.

Proof. Assume that qi is a child of p(j) and the lemma is true for p(j). The part of p(j) from
ok to s(qi) is reused for qi and does not contain any arc in R(qi), so the lemma is true for
this part. Consider the other part of qi from s(qi) to dk. By construction in Algorithm 2.1,
this part is the shortest path, while excluding arcs in R(qi) and nodes preceding s(qi). As
a result, any subpath of this part is also the shortest subpath with respect to the same
set of constraints. Later, for any toll-free segment in this part, we can extent the set of
excluded nodes from the set of nodes that precedes s(qi) to the set of nodes that precedes
that segment. This means that the lemma is also true for this part of qi. Recall that s(qi)
is the target of some tolled arc, thus there are no toll-free segments containing s(qi) in the
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middle and the lemma is true for qi. To finish the induction proof, we consider the base case
of the first shortest path for which the lemma is also true. □

Now, we consider the other case where we cannot construct qi (condition in line 19 is
false). This means s(qi) and dk are disconnected when we remove arcs in R(qi) and nodes
preceding s(qi). We will prove that there is no bilevel feasible path in the feasible region of
(R(qi), S(qi)):
Lemma 2.8. If qi does not exists, any path in the feasible region of (R(qi), S(qi)) is not
bilevel feasible.

See Appendix 2.B for the proof of Lemma 2.8.
Theorem 2.9. Given a sufficiently large value of N , the output of Algorithm 2.1 includes
all bilevel feasible paths.

Proof. At any step of the algorithm, the subproblems generated by the Lawler’s procedure
do not remove any part of the feasible region of the original problem. The subproblems are
mutually exclusive and there is a finite number of paths, thus the algorithm is guaranteed
to stop in finite time. A subproblem i is pruned if and only if it is in the second group of
subproblems or if qi does not exists. Both cases imply that all paths in the feasible region of
the subproblem are not bilevel feasible (Lemma 2.8). Besides that, the stopping condition in
Corollary 2.5 is ensured by Lemma 2.6. Therefore, no bilevel feasible path is ruled out. □

Although the set of paths enumerated in Algorithm 2.1 is close to the final set of bilevel
feasible paths, there are still redundant paths. To obtain the final set of bilevel feasible
paths, the dominance rule in Lemma 2.2 still needs to be applied once more. For an example
of path enumeration that produces redundant paths, see Appendix 2.C.

2.3.2. Path-based Preprocessing

In Didi-Biha et al. [24], Bouhtou et al. [6], the authors compare their proposed path-
based formulations to an unprocessed or SPGM-processed standard formulation. In these
comparisons, path-based formulations are more advantageous compared to their counter-
parts. Although SPGM can reduce the complexity of a graph to some degree, path-based
formulations essentially bypass all the redundant arcs and nodes in the graph, hence they
have more preprocessing power. However, we could harness this preprocessing power of path
enumeration and apply it to arc-based formulations. We propose a new preprocessing method
which uses the set of enumerated paths to remove all redundant arcs and nodes completely.
The idea is simple: given the set of bilevel feasible paths, any arc or node which does not
appear in any path will be removed. Then, to further reduce the size of the graph, chains of
toll-free arcs (i.e. connected subgraph containing only 1-out-degree nodes) will be replaced
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with a single toll-free arc with cost equal to the sum of the costs of the associated arcs.
This preprocessing method will let the arc-based formulations use the information generated
from the path enumeration process and enable us to compare all the formulations in a fair
manner.

In addition, SPGM can still be applied on top of the processed graph. This does not
remove any additional tolled arcs because the set of tolled arcs obtained from path-based
preprocessing is already minimal. However, SPGM transforms the graph by replacing nodes
with toll-free arcs, which can sometimes reduce both the number of nodes and the number
of toll-free arcs in sparse graphs.

As mentioned in Section 2.2.3, the conversions used in the (PACS) and the (VFCS)
formulations must cover all solutions in the primal representation. When we apply the path-
based preprocessing to the arc representation and use the set of bilevel feasible paths for the
path representation, the (PACS) formulation still satisfies this rule. This is because the set
of primal solutions of (PACS) is the set of bilevel feasible paths, all of them can be converted
to arcs in the processed graph. On the other hand, the (VFCS) formulation does not satisfy
this rule anymore. In the processed graph, there are many paths which are not bilevel
feasible. If these paths are not covered in the (VFCS) formulation, the optimality condition
can be bypassed by selecting these paths as the primal solutions. However, enumerating all
paths (including non-bilevel-feasible) in the processed graph would be too costly. Therefore,
a special treatment is necessary and we propose a cutting-plane method just for (VFCS):
the processed graph and the set of bilevel feasible paths will still be used to generate the
initial set of constraints. Then, when we encounter a solution, we will examine if the path
in that solution is a bilevel feasible path. If it is not, we will use it to generate an additional
complementary slackness constraint to cover the new path and continue solving.

2.4. Hybrid Model for Multi-Commodity Problems
Although path-based formulations and preprocessing can give the MIP solver a boost by

removing redundant variables, they require time to enumerate the paths. Since the number
of paths can be exponential, sometimes, it is faster to just solve the problem without relying
on path enumeration (unprocessed or SPGM-processed STD or CS). However, it is unknown
which option is better until the enumeration process is finished. Instead of a full enumeration,
we could enumerate until a predetermined number of paths and then decide if it is worth
to continue enumerating or to cancel the enumeration process and fallback to a formulation
which does not require path enumeration. Since we have a multi-commodity problem, this
probing method can be applied for each commodity separately. The end result is a hybrid

31



model, assigning different formulations and preprocessing for different commodities depend-
ing on their numbers of paths. This process is shown in Algorithm 2.2. In the algorithm,
N is called the breakpoint, which is a threshold to decide whether the enumeration process
should be continued. The commodities with only one path are redundant, because the only
path must be a toll-free path which does not bring any profit to the leader. Commodities
with less than N paths are assigned to a path-based formulation or an arc-based formula-
tion with path preprocessing, while commodities with more than N paths are assigned to
a fallback formulation which does not need path enumeration. All variables are managed
independently according to their corresponding commodities, except for Ta which is shared.
An example is provided in Appendix 2.A.4.

Algorithm 2.2 Hybrid model
Input: The graph G = (V, A) with costs ca, all commodities (ηk, ok, dk), the breakpoint N .
Output: A hybrid model (obj, constraints).

obj ← 0
constraints← ∅
for k ∈ K do

Enumerate the first N + 1 paths of commodity k

Let P̂ k be the set of enumerated paths
if |P̂ k| > 1 then

if |P̂ k| ≤ N then
Assign a formulation F k which is either path-based or arc-based with path-based pre-
processing

else
Assign an arc-based formulation F k without path-based preprocessing

obj ← obj + obj(F k)
constraints← constraints ∪ constraints(F k)

Solve (obj, constraints)

The hybrid model can be extended to have multiple breakpoints and different assignment
schemes. For example, path-based formulations are less effective for commodities which have
many paths because the more paths a commodity has, the more variables and constraints
are added. In contrast, arc-based formulations with path preprocessing only remove arcs and
nodes which guarantee complexity reduction. We could use the hybrid model to balance be-
tween these two kinds of formulations, by assigning path-based formulations to commodities
with few paths and arc-based formulations for those with many paths.
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2.5. Experiments
We conducted computational experiments to evaluate in practice the reformulations and

preprocessing presented in the previous sections. In Section 2.5.1, the experimental method-
ology is described, including the implementation details, the generation and properties of
the instances used. Section 2.5.2 provides a comparison between the 12 reformulations listed
in Section 2.2. Section 2.5.3 validates the efficiency of the new path-based preprocessing. In
Section 2.5.4 we justify the use of the hybrid model introduced in Section 2.4. All instances,
results and code are publicly available 1.

2.5.1. Methodology

The instances used in the tests are randomly generated. We employ a generation method
similar to the one described in Brotcorne et al. [9] to make the problems challenging. We
recall this generation process in Appendix 2.D.

There are 200 generated problem instances (in short, problems) divided into four sets
which are summarized in Table 2.6. Each set has 50 problems with five different numbers of
commodities: 30, 35, 40, 45, and 50 (10 problems generated for each value). The topologies
are inspired from Brotcorne et al. [11] and are illustrated in Figure 2.1. The set G provides
a dataset similar to the one used in Brotcorne et al. [9, 10], while the three other sets
have more paths and are more challenging to solve. We note that the four sets of random
instances used in our experiments contain a large variety of network topologies: (i) class G
(and H) reproduces the network topologies broadly used in the NPP community, namely, in
the papers on Table 2.5, (ii) class D, proposed in Brotcorne et al. [13], introduces a denser
network, expected to have many paths, (iii) class V, also described in Brotcorne et al. [13],
introduces a less dense network. We remark that these four sets of instances correspond
to various planar graph topologies. Thus, we expect our results to be insightful from a
practical point of view since, for example, road and rail networks are typically planar [2].
The cumulative distribution of the number of bilevel feasible paths of each set is shown in
Figure 2.2. The horizontal axis represents the breakpoint N while the vertical axis shows
the proportion of commodities with no more than N bilevel feasible paths.

Our code is implemented in C++. All test runs are executed single-threaded on the
Béluga cluster from Compute Canada (Intel Xeon 2.4 GHz) under Linux. All tested models
are instantiations of the hybrid model described in Algorithm 2.2. Given a problem, the path
enumeration will be applied first, then a formulation will be assigned to each commodity and
the single-level reformulation is synthesized. Finally, the single-level reformulation is solved

1. https://github.com/minhcly95/netpricing
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Table 2.6 – Properties of the generated instances.

Label Topology Dimensions |V | Avg. |A|

G Grid 5× 12 nodes 60 206
H Grid 12× 12 nodes 144 528
D Delaunay - 144 832
V Voronoi - 144 410

Grid Delaunay Voronoi

Figure 2.1 – Illustration of the three types of topology.
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Figure 2.2 – Cumulative distribution of the number of bilevel feasible paths.

directly by CPLEX 12.9. If a model does not rely on path enumeration, the breakpoint N

is set to 1 and path enumeration is still applied. This will remove the commodities with
only one path and provide basic preprocessing for all models. The main formulation will be
assigned for the commodities with less than N bilevel feasible paths. The default fallback
formulation for commodities with more than N paths is the (STD) with no preprocessing.
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By increasing N , we essentially replace the fallback formulation with the main formulation.
If the main formulation is better, then we should see an improvement in performance when
increasing N and vice versa. Some formulations are only good up to a certain breakpoint,
which can also be observed if there is a change in the direction of their performance over N .

We imposed a time limit of one hour for each problem. The time for path enumeration
is included in the total time of a test run. If the run exceeds one hour, it is stopped and
the optimality gap is recorded. The problems are divided into two groups: easy and hard.
The easy group consists of 108 problems which can be solved by at least one run. All the
remaining 92 problems form the hard group, for which an optimal solution is not available.
When we compare the performance of any two models, we are interested in three criteria:
the number of problems solved by each model, the average time it takes to solve the easy
group, and the average optimality gap of the hard group.

2.5.2. Comparison of all Formulations

In this section, we compare the performance of all 12 formulations. These will be assigned
as the main formulations of the hybrid models. If the main formulation is arc-based, then
path-based preprocessing is applied. If the main formulation is a mixed arc-path or path-arc
formulation, then we use path-based preprocessing on the arc representation. If the main
formulation is a path-based formulation, no further preprocessing is applied. In all cases,
path enumeration is required for the main formulations.

Table 2.7 shows the performance of all models over N . At first look, we can see that
formulations with suffix 1 worsen over N . This means they are even worse than the fallback
formulation. These are the formulations with complementary slackness as optimality con-
dition and direct linearization. The reason may be because both complementary slackness
and direct linearization use big-M constraints. All other formulations perform roughly the
same (except for (VFCS2)), with the (STD) taking the lead in all three criteria.

Figure 2.3 plots the performance over N of four notable formulations: (STD), (VF),
(CS2), and (PCS2). (STD), (VF), and (CS2) represent three basic paradigms to convert a
bilevel linear problem to a single-level reformulation. (PCS2) is a path-based formulation
which is mentioned in Didi-Biha et al. [24] and Dewez et al. [23]. In these papers, their
experiments suggest that (PCS2) outperforms (STD), but this comparison is done when the
(STD) formulation is preprocessed by the SPGM method. Here, we observe the opposite
result: the standard formulation outperformed (PCS2). The key is the new path-based pre-
processing, which theoretically provides arc-based formulations with the same preprocessing
power of the path enumeration, thus it levels the playing field. Figure 2.3 also shows a draw-
back of path-based formulations: the larger N is, the more complex they become. (PCS2)
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Table 2.7 – Performance of all formulations over N .

(a) Number of problems solved

N 10 20 50 100 200 500 1000

STD 61 64 69 72 78 92 94
VF 59 64 68 68 75 90 93
PASTD 56 64 68 71 76 86 85
PVF 59 64 67 69 79 80 81
CS1 47 32 8 1 0 0 0
CS2 58 62 67 67 70 71 73
PACS1 49 33 8 1 0 0 0
PACS2 58 62 63 68 70 76 69
VFCS1 43 10 0 0 0 0 0
VFCS2 56 55 44 36 29 23 21
PCS1 48 33 9 2 0 0 0
PCS2 61 61 72 71 77 80 79

(b) CPU time of the easy group (s)

N 10 20 50 100 200 500 1000

STD 1999 1864 1739 1604 1430 1127 1029
VF 2022 1870 1730 1644 1520 1231 1155
PASTD 2056 1863 1724 1662 1498 1315 1220
PVF 1980 1867 1770 1699 1486 1409 1429
CS1 2396 2915 3495 3585 3601 3601 3601
CS2 2069 1973 1787 1822 1697 1599 1518
PACS1 2566 3368 3601 3601 3601 3601 3601
PACS2 2135 2189 2438 2687 2890 2986 3050
VFCS1 2359 2818 3491 3587 3601 3601 3601
VFCS2 1992 1916 1852 1712 1673 1572 1676
PCS1 2351 2861 3448 3576 3601 3601 3601
PCS2 2012 1903 1696 1599 1544 1529 1607

(c) Gap of the hard group (%)

10 20 50 100 200 500 1000

12.8 12.7 11.9 11.3 10.5 9.3 8.5
13.3 12.6 12.1 11.4 11.2 10.0 9.8
13.2 12.8 11.7 11.7 10.8 9.7 9.2
13.6 12.7 12.1 11.7 11.1 10.1 10.6
16.3 21.8 42.1 70.0 94.2 99.6 100.0
13.3 12.9 12.8 12.2 11.9 10.9 10.9
18.9 34.4 70.3 92.6 99.1 100.0 100.0
13.7 13.4 14.6 15.1 15.5 17.1 19.2
16.3 20.3 36.3 58.2 86.2 97.7 99.5
13.6 13.5 13.5 13.3 12.8 12.1 12.1
15.6 20.3 39.5 63.2 88.4 98.7 99.9
13.2 13.3 12.4 11.8 10.8 10.6 11.1

must add an extra binary variable for every enumerated path, while (STD) and (CS2) use
the set of paths to eliminate arcs and nodes. Thus, the complexity of (PCS2) increases over
N while the complexity of the other two formulations is capped by its unprocessed version.
In the graph, we can see that the performance of (PCS2) starts dropping after N = 500.
The other formulations using primal-path representation ((PASTD), (PVF), (PACS)) also
suffer from this problem. (VF) uses dual-path, so it only adds more constraints instead of
binary variables which allows it to continue improving over N .
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Figure 2.3 – Performance of notable formulations over N .

2.5.3. Path-based Preprocessing

In this section, we compare the new path-based preprocessing with the state-of-the-art
preprocessing method (SPGM). Figure 2.4 shows the reduction ratio between those two
preprocessing methods. Given a breakpoint N (horizontal axis), the reduction ratio is the
quotient of the total number of nodes/arcs/tolled arcs of all commodities with no more
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Table 2.8 – Impact of the reduction ratio criteria.

Criteria Impact

Node • Number of constraints in primal-arc
• Number of variables in dual-arc

Arc • Number of variables in primal-arc (strong duality)
• Number of binary variables in primal-arc
(complementary slackness)
• Number of constraints in dual-arc
• Number of constraints in complementary slackness

Tolled arc • Number of binary variables in primal-arc
• Number of variables and constraints in direct linearization

than N bilevel feasible paths after being processed by the path-based preprocessing over the
same sum in the original graph (absolute ratio) or in the SPGM-processed graph (relative
ratio). Each criterion (node, arc, tolled arc) has a different impact on the final single-
level reformulation, which is summarized in Table 2.8. The tolled arc criterion is the most
important because it is linked with the number of binary variables in the final formulation.
In Figure 2.4, we can see that the path-based preprocessing excels in all three criteria. On
average, graphs processed by the path-based preprocessing have 10% less nodes, 66% less
arcs, and 49% less tolled arcs compare to the SPGM method. Compared to the original
graph, the path-based preprocessing removes 75% of all tolled arcs, which reduces the size
of the problems significantly. The efficiency varies between different instance sets, with the
path-based preprocessing being more favorable in more connected graphs such as in dataset
D and H.

Figure 2.5 shows the real performance of the two preprocessing methods over N . The
main formulation in both models is the (STD), but one is matched with path-based prepro-
cessing, while the other is matched with SPGM preprocessing. Once again, we can observe
that the path-based preprocessing excels in all three criteria. It can solve 30 more problems
(over 200 in total), in half the time and half the gap compared to the SPGM model. Besides
that, the SPGM model hardly improves when N > 1000 while path-based preprocessing
keeps thriving beyond this threshold. In our experiments, applying SPGM on top of the
path-based preprocessing does not produce significantly better results, and sometimes can
even be detrimental. This concludes that path-based preprocessing is the superior prepro-
cessing method.
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Figure 2.4 – Reduction ratio of path-based preprocessing.

2.5.4. Hybrid Model

In this work, we show numerical results to justify the idea of the hybrid model introduced
in Section 2.4 as a way to compromise between the time spent for path enumeration and the
time spent to solve the reformulation. We will use the best reformulation which is the (STD)
for all commodities in this test. Figure 2.6 shows its performance with N varying from 10
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Figure 2.6 – Performance of the standard
model over N .

to 100000 (horizontal axis). If a commodity has no more than N bilevel feasible paths, then
path-based preprocessing is applied. Otherwise, the unprocessed graph is used instead. The
larger N is, the longer it takes to enumerate, but more commodities will be processed. If N

is very large, all commodities will be processed and all paths are enumerated. If N is set to
0, then it is identical to an unprocessed model. From Figure 2.6, we observe that larger N

generally leads to better performance until a certain point around 10000 paths. After that,
the time spent for path enumeration does not have a positive impact on the performance
anymore. The average time of the easy group is not affected by large N because they
do not have many paths to enumerate in the first place. At N = 100000, there are two
unsolved problems in class D which require more than one hour for path enumeration and
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this contributes to the rise at the end in the average optimality gap of the hard group. In
conclusion, for the given instances, stopping the path enumeration at N = 10000 provides a
good balance. Stopping early also improves the robustness of the program, because although
commodities with more than 10000 paths are not common, encountering one could make the
program stuck for a long time.

2.6. Conclusion
In this work, we related many modeling concepts which enrich and unify the general

toolbox to solve bilevel linear problems. Indeed, if the follower problem can be formulated by
different linear programs, then we can mix the primal and the dual of any two formulations to
write the single-level formulation. Remark that this alternative formulation always exists: (i)
if the leader’s variables appear in the objective of the follower, then the follower problem can
be written as a linear combination of the extreme points of the convex hull of the feasible set,
(ii) if the leader’s variables appear in the right-hand-side of the follower’s constraints, then
its dual can be reformulated using the extreme points of the dual feasible region and a new
primal formulation can be obtained. When (i) holds, bilevel feasibility, and its enumeration,
can be used as a preprocessing method. The hybrid framework is applicable in any multi-
commodity problem with multiple reformulations. The network pricing problem is a good
example to demonstrate all these modeling techniques together.

The NPP makes some theoretical assumptions whose relaxation enables a more close
mirroring of reality. From a practical point of view, future work must consider additional
real-life features, including arc construction cost, capacity on arcs and nodes, congestion,
competition, and uncertainty, many of which are highly non-linear and make the problem
significantly harder.
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2.A. Reformulations
2.A.1. Standard Formulation

(STD) max
∑
k∈K

∑
a∈A1

ηkTaxk
a

s.t.
∑

a∈A+
1 (i)

xk
a +

∑
a∈A+

2 (i)

yk
a −

∑
a∈A−

1 (i)

xk
a −

∑
a∈A−

2 (i)

yk
a = bk

i , k ∈ K, i ∈ V,

λk
i − λk

j ≤ ca + Ta, k ∈ K, a ≡ (i, j) ∈ A1,

λk
i − λk

j ≤ ca, k ∈ K, a ≡ (i, j) ∈ A2,∑
a∈A1

(ca + Ta)xk
a +

∑
a∈A2

cayk
a = λk

ok − λk
dk , k ∈ K,

xk
a ≥ 0, k ∈ K, a ∈ A1,

yk
a ≥ 0, k ∈ K, a ∈ A2,

Ta ≥ 0, a ∈ A1.

2.A.2. Value Function Formulation

(VF) max
∑
k∈K

∑
a∈A1

ηkTaxk
a

s.t.
∑

a∈A+
1 (i)

xk
a +

∑
a∈A+

2 (i)

yk
a −

∑
a∈A−

1 (i)

xk
a −

∑
a∈A−

2 (i)

yk
a = bk

i , k ∈ K, i ∈ V,

Lk ≤
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa, k ∈ K, p ∈ P k,

(ca + Ta)xk
a +

∑
a∈A2

cayk
a = Lk, k ∈ K,

xk
a ≥ 0, k ∈ K, a ∈ A1,

yk
a ≥ 0, k ∈ K, a ∈ A2,

Ta ≥ 0, a ∈ A1.
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2.A.3. Path Complementary Slackness Formulation

(PCS) max
∑
k∈K

∑
a∈A1

∑
p∈P k

ηkδp
aTazk

p

s.t.
∑
p∈P k

zk
p = 1, k ∈ K,

Lk ≤
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa, k ∈ K, p ∈ P k,(∑

a∈A

δp
aca +

∑
a∈A1

δp
aTa − Lk

)
zk

p = 0, k ∈ K, p ∈ P k,

zk
p ≥ 0, k ∈ K, p ∈ P k,

Ta ≥ 0, a ∈ A1.

2.A.4. Hybrid Model

Suppose we divide the set of commodities K into three parts based on the number of
paths: K1 for commodities having only one path, K2 for commodities with less than N

paths, and K3 for commodities with more than N paths. If we assign (PCS2) to K2 and
(STD) to K3, then we get the following hybrid model:

max
∑
k∈K2

ηkτ k +
∑
k∈K3

∑
a∈A1

ηktk
a

s.t. (2.4), (2.5), k ∈ K2,

Lk ≥
∑
a∈A

δp
aca +

∑
a∈A1

δp
aTa − Sk

p (1− zk
p ), k ∈ K2, p ∈ P k,

∑
p∈P k

∑
a∈A

δp
acazk

p + τ k = Lk, k ∈ K2,

zk
p ∈ {0, 1}, k ∈ K2, p ∈ P k,

(2.1), (2.2), (2.3), (2.19), (2.20), k ∈ K3,∑
a∈A1

(caxk
a + tk

a) +
∑
a∈A2

cayk
a = λk

ok − λk
dk , k ∈ K3,

xk
a ∈ {0, 1}, k ∈ K3, a ∈ A1.

2.B. Proof of Lemma 2.8
If the problem (R(qi), S(qi)) is infeasible, then the above statement is trivially true.

Suppose it has a feasible solution q̂i which is a simple path (path with no loops). We will
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construct another path (not necessarily a solution of (R(qi), S(qi))) which dominates q̂i by
replacing a segment in q̂i by a shorter segment in p(j). First, we need to sort the arcs in
S(qi) by the order of appearance in p(j):

â1, â2, â3, . . . , ân−1, ân

where n = |S(qi)|. We also define â0 as a virtual arc whose target is ok (its source is not
relevant). Next, for 0 ≤ i < n, we will try to replace the segment of q̂i between âi and âi+1

with the same segment of p(j) if âi+1 comes after âi in q̂i and if the latter segment has smaller
cost. If we are able to make such a replacement, due to the definition of S(qi), the segment
connecting âi and âi+1 in p(j) is toll-free; hence, we only remove tolled arcs while building
a better path, and thus the resulting path dominates q̂i. If we cannot replace any segment,
this means that either all segments in q̂i are identical to those in p(j) or there is a segment
in q̂i with smaller cost.

Consider the first case: all segments in q̂i are identical to those in p(j). In this case, the
parts of q̂i and p(j) from ok to s(qi) are identical. The other part of q̂i must be a path from
s(qi) to dk. Because we assume that q̂i is a simple path, we must exclude all nodes preceding
s(qi). However, since we also assume that qi does not exist, this implies s(qi) and dk to be
disconnected if we exclude those nodes. This is a contradiction.

Consider the second case: there is a segment in q̂i with smaller cost. Let âm be the first
arc such that the segment of q̂i from âm to âm+1 is cheaper than its counterpart of p(j). All
segments preceding âm in both q̂i and p(j) must be identical since we assume that we cannot
replace any segment. Consequently, the part from ok to âm of both paths are the same. By
Lemma 2.7, the segment of p(j) from âm to âm+1 is the optimal path while excluding all
preceding nodes. However, the same segment of q̂i is better, which means it must violate
that constraint and must repeat some node preceding âm. This is again a contradiction as
we assumed that q̂i is a simple path.

Since both cases result in a contradiction, we can always replace some segment in q̂i with
a better segment in p(j). Therefore, q̂i cannot be bilevel feasible.

2.C. Example of Path Enumeration Producing Redun-
dant Paths

Consider the graph in Figure 2.7. The number of each arc represents the initial cost
ca. The first shortest path is ok − u − v − dk with the cost of 3. By Algorithm 2.1, three
subproblems are generated, each producing a candidate path. They are the second shortest
path ok − u − dk (cost 4), the third shortest path ok − u − v − w − dk (cost 6), and the
toll-free path ok−dk (cost 10). All four paths will be returned, however, the path ok−u−dk
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dominates ok − u− v − w − dk. The final set of bilevel feasible paths only has three paths:
ok − u− v − dk, ok − u− dk, and ok − dk.

ok u v

w

dk

1 1 1
2 2

10
3

Figure 2.7 – Graph with redundant paths (dashed arcs are tolled arcs).

2.D. Instance Generation by Brotcorne et al.
For a given graph and a set of O-D pairs, first, the shortest path of each commodity

is found. Next, we count the number of paths passing through each arc and sort them in
the descending order according to that count. Following that order, each arc is converted
into a tolled arc until 2/3 of the desired number of tolled arcs is reached. The last 1/3 is
selected randomly among all remaining arcs. An arc is converted only if it does not remove
the last toll-free path for all commodities. To make the generated data more realistic, we
also enforce the properties of the arc to be symmetrical, which means that any arc and its
reversed arc will have the same cost, and both must be either tolled or toll-free. The cost
of 80% of all arcs will be distributed uniformly from 5 to 35, while the remaining 20% will
have the maximum cost of 35. The cost of tolled arcs are halved after the conversion. The
proportion of tolled arcs is 20%.
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Abstract. The network pricing problem (NPP) is a bilevel problem, where the leader
optimizes its revenue by deciding on the prices of certain arcs in a graph, while expecting the
followers (also known as the commodities) to choose a shortest path based on those prices.
In this paper, we investigate the complexity of the NPP with respect to two parameters: the
number of tolled arcs, and the number of commodities. We devise a simple algorithm showing
that if the number of tolled arcs is fixed, then the problem can be solved in polynomial time
with respect to the number of commodities. In contrast, even if there is only one commodity,
once the number of tolled arcs is not fixed, the problem becomes NP-hard. We characterize
this asymmetry in the complexity with a novel property named strong bilevel feasibility.
Finally, we describe an algorithm to generate valid inequalities to the NPP based on this
property, whose numerical results illustrate its potential for effectively solving the NPP with
a high number of commodities.
Keywords: Strong bilevel feasibility, Conjugate model, Network pricing problem, Com-
plexity asymmetry

3.1. Introduction
In the most basic version of the network pricing problem (NPP), we have an optimization

problem involving a graph and two decision makers: the leader and the follower. First, the
leader adjusts the prices of some arcs in the graph (called tolled arcs). Subsequently, the
follower finds the shortest path between its origin and destination according to the prices set
by the leader. The objective of the leader is to maximize the overall revenue which depends
on whether the follower uses the tolled arcs or not. To accomplish this goal, the leader wants
to set the prices as high as possible, but not too high so that the follower is still incentivized
to use the leader’s service. In this work, we are interested in the multi-commodity variant
of the NPP, in which there are multiple followers, each one has its own origin/destination,
and each one chooses its own shortest path across the network.

Motivation. The single-commodity NPP was first introduced by Labbé et al. [40]. Since the
follower’s problem is the shortest path problem, it can be written as a linear program. Using
the Karush-Kuhn-Tucker (KKT) conditions, the NPP and its multi-commodity variant can
be formalized as a mixed-integer linear program (MILP) [10]. Bui et al. [14] summarized and
extended various techniques to derive an MILP for the NPP, which covers path-based formu-
lations [24, 6] and preprocessing [6, 55]. Non-MILP methods include multipath enumeration
[12] and tabu search [13].

The single-commodity NPP has been proven to be NP-hard [51]. The complexity of
the NPP is tied to the number of tolled arcs in the graph. Indeed, if we consider the case
where there is only one tolled arc and multiple commodities, then the NPP can be solved
in polynomial time [39]. Thus, an asymmetry exists in the complexity of the NPP between
the number of tolled arcs (denoted as |A1|) and the number of commodities (denoted as
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|K|). For the case with multiple commodities and multiple tolled arcs, van Hoesel et al. [55]
proved that if |A1| is fixed, then the NPP can be solved in polynomial time with respect to
|K|. Specifically, the NPP can be decomposed into |K|f(|A1|)g(|A1|) linear programs of size
h(|A1|) each, where f(·), g(·), h(·) are functions of exponential order. Even with very small
|A1|, the number of linear programs required to be solved is enormous, thus the algorithm
described in [55] has no practical use.

Contributions and Paper Organization. In this paper, we improve the result regarding
the asymmetry in the complexity with the following theorem:
Theorem 3.1. If the number of tolled arcs |A1| is fixed, then the multi-commodity NPP can
be solved in polynomial time with respect to the number of commodities |K|, specifically by
solving (|K|+ 1)|A1| linear programs, each with size polynomial in |A1|.

Compared to [55], the number of linear programs is much smaller. Proving Theorem 3.1
is the main focus of Section 3.2. In that section, we first revise the complexity of the
single-commodity and the single-tolled-arc cases. Then, we extend the asymmetry in the
complexity to the multi-commodity case in an intuitive way by using reaction plots. Finally,
we provide a rigorous proof of this asymmetry via a new reformulation of the NPP called
the conjugate model.

With the key result proven, we aim to exploit this asymmetry in a practical manner. In
Section 3.3, we introduce and utilize a new concept named strong bilevel feasibility to generate
cuts to existing MILP formulations of the NPP. Strong bilevel feasibility is a property of a
composition of paths across multiple followers. We show that there is always a solution of
the NPP that is strongly bilevel feasible, thus it is sufficient to enumerate only the strongly
bilevel feasible points. This is analogous to the fact that it is sufficient to enumerate only the
extreme points of the feasible set to solve a linear program. We also derive the characteristics
of strong bilevel feasibility with the help of convex conjugates.

Section 3.4 describes a cut generation procedure using strong bilevel feasibility. We
conduct numerical experiments on grid graphs to demonstrate that the asymmetry in the
complexity is relevant in practice and that these cuts hold potential to effectively accelerate
the solution of the problem instances with a very high number of commodities. Section 3.5
concludes the paper.

3.2. Asymmetry in the Complexity
Theorem 3.1 implies that the multi-commodity NPP scales differently with respect to

two parameters: the number of commodities or the number of tolled arcs. To understand
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the difference between these two parameters, it is helpful to build some intuition from sim-
pler cases: the single-commodity case (Section 3.2.1), and the single-tolled-arc case (Sec-
tion 3.2.2). Then, in Section 3.2.3, we introduce an illustration tool called reaction plot,
and expand the intuition to the multi-commodity variant by superimposing these reaction
plots on top of each other. Finally, we materialize this intuition and provide a proof of
Theorem 3.1 in Section 3.2.4.

3.2.1. Single-Commodity Case

First, we need to describe the NPP in its single-commodity form. Let us consider a
directed graph G = (V ,A) where V and A are the set of vertices and the set of arcs,
respectively. The leader controls the costs of a subset of arcs A1 ⊊ A, designated as tolled
arcs. All the other arcs form the set of toll-free arcs A2 = A\A1. The cost of a toll-free arc
a ∈ A2 is always ca ≥ 0, while the cost of a tolled arc a ∈ A1 is ca + ta where ta ≥ 0 is the
price set by the leader (we only consider non-negative toll prices).

The follower wants to travel from an origin node o ∈ V to a destination d ∈ V via the
shortest path across the graph. After the follower has chosen the path, the leader collects
a revenue equal to the sum of ta over the arcs that the follower uses. If there are multiple
shortest paths, the follower chooses the path that produces the highest revenue for the leader
(optimistic assumption). To prevent the leader to extract infinite revenue from the follower,
we assume that there always exists a toll-free path from o to d.

Let x ∈ {0, 1}A represent the selection of arcs corresponding to the shortest path chosen
by the follower, where xa = 1 if arc a ∈ A is in the path and xa = 0 otherwise. The NPP
can be formulated as a bilevel program:

max
t,x
{t⊤x | t ∈ T , x ∈ R(t)}

where R(t) is the reaction set of the follower, defined by:

R(t) = argmin
x
{(c + t)⊤x | Ax = b, x ≥ 0}.

The set T = {t ≥ 0 | ta = 0,∀a ∈ A2} contains all vectors of feasible toll prices. The matrix
A is the incidence matrix of the graph, while b is the source-sink vector of the shortest path
problem: bo = 1, bd = −1, and bi = 0 for all other nodes i ∈ V .
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The canonical way to solve the NPP is to convert the bilevel program into a single-level
reformulation using the KKT conditions (with strong duality) [10]:

max
t,x,y

t⊤x (3.1a)

s.t. t ∈ T , (3.1b)

Ax = b, (3.1c)

A⊤y ≤ c + t, (3.1d)

(c + t)⊤x = b⊤y, (3.1e)

x ≥ 0. (3.1f)

To solve this problem as an MILP, we need to linearize the bilinear term t⊤x appearing
in the objective function (3.1a) and the strong duality constraint (3.1e). Since the optimal
solution of the shortest path problem needs x to be binary, the McCormick envelope [46] can
be applied by replacing taxa with sa and appending for all a ∈ A1:

0 ≤ sa ≤Maxa, 0 ≤ ta − sa ≤Ma(1− xa), xa ∈ {0, 1},

to Program (3.1) [10]. Appropriate values of the big-M parameters Ma can be found in
Dewez et al. [23].

In this form, we can see that the variables xa, a ∈ A1, are the only binary variables in
the MILP. Thus, there is an indication that the difficulty of the NPP relies on the number
of tolled arcs |A1|. We denote this truncated vector xA1 ∈ {0, 1}|A1|. Similarly, we denote
the truncated vector for the toll-free arcs xA2 ∈ {0, 1}|A2|. Once we fix xA1 , then the
remaining program becomes a linear program, which can be solved in polynomial time [36].
As mentioned before, the single-commodity NPP is NP-hard [51], therefore, the number of
values of xA1 that we need to enumerate cannot be polynomial (assuming P ̸= NP).

Note that after xA1 is fixed, we can decompose Program (3.1) into two steps: (i) Filling
x with toll-free arcs xA2 to form the shortest path; (ii) Finding the toll prices t that make
x optimal. If either step is infeasible, then xA1 is infeasible in Program (3.1). In step (i),
the prices t are not required because the costs of the toll-free arcs do not depend on t. The
problem of finding xA2 becomes a minimum-cost flow problem with multiple sources and
sinks, which can be solved by the following linear program:

min
xA2

{(c⊤x)A2 | (Ax)A2 = b− (Ax)A1 , xA2 ≥ 0}.

Thus, once xA1 is chosen, we know xA2 immediately, and a path x emerges without the need
of knowing t. It does not matter if there are multiple xA2 for a single xA1 , since xA2 does
not affect the leader’s revenue. Having x, the toll prices t can be computed in step (ii) with
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Figure 3.1 – Graph for Example 3.2.

another linear program:

max
t,y
{x⊤t | t ∈ T , A⊤y − t ≤ c, b⊤y − x⊤t = c⊤x}.

From this perspective, the single-commodity NPP is a combinatorial problem, which is less
about the choice of the continuous prices, but more about the choice of the discrete paths
(more specifically, the choice of xA1). This observation will become more apparent once we
introduce the conjugate model in Section 3.2.4.
Example 3.2. Consider a single-commodity NPP with the graph shown in Figure 3.1.
Dashed arcs are tolled arcs while solid arcs are toll-free. The numbers in the middle of
the arcs represent their costs (arcs without numbers have no costs). In this graph, there
are only two tolled arcs, hence we can compute the optimal solution by enumerating all four
combinations of xA1 = (x1, x2) (xa corresponds to ta, a ∈ {1, 2}):

— For xA1 = (0, 0), the shortest path is (o− d) with cost 5. The leader receives no revenue.
— For xA1 = (1, 0), the shortest path is (o − u − v − p − d) with cost 4 + t1. Solving for t in

step (ii) gives us t1 = 1, t2 →∞. Thus, the leader’s revenue is 1.
— For xA1 = (0, 1), the shortest path is (o− v−p− q−d) with cost 6 + t2. However, the linear

program in step (ii) is infeasible.
— For xA1 = (1, 1), the shortest path is (o − u − v − p − q − d) with cost 2 + t1 + t2. The

revenue is 3 with t1 = 3, t2 = 0 (there are multiple solutions for t, all of them produce the
same revenue).

Choosing the highest revenue from all four cases, we obtain the optimal value of 3, corre-
sponding to xA1 = (1, 1) and the path (o−u− v− p− q− d). Two remarks are in order from
this example. First, in the case with xA1 = (1, 0), the tolled arc 2 is not selected (x2 = 0).
Thus, this arc can be removed from the graph. We effectively achieved this by setting t2 to
a very large number (basically to infinity). Second, in the case with xA1 = (0, 1), the reason
why step (ii) is infeasible is that the cost of this case (6 + t2) is already larger than the cost
of the first case (which is 5). Hence, no value t2 ≥ 0 can make this path optimal. We call
such a path bilevel infeasible. Bilevel feasibility is the topic of discussion in Section 3.3.1.
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3.2.2. Single-Tolled-Arc Case

We switch the focus on the other extreme case of the NPP, where there is a single tolled
arc. To stay away from triviality, we assume that there are several followers k ∈ K, each
has its own origin ok and destination dk and optimizes its own shortest path xk across the
network. The leader aims to maximize the sum of revenues from all followers. The decision
process of the leader can be thought of as the balancing act between two strategies: sell high
to a few, and sell low to everyone. We consider that every follower has the same demand
ηk = 1. 1

Following the process described in Section 3.2.1, the single-level reformulation of the
single-tolled-arc NPP is:

max
t,xk,yk

∑
k∈K

t⊤xk (3.2a)

s.t. t ∈ T , (3.2b)

Axk = bk, k ∈ K, (3.2c)

A⊤yk ≤ c + t, k ∈ K, (3.2d)

(c + t)⊤xk = (bk)⊤
yk, k ∈ K, (3.2e)

xk ≥ 0, k ∈ K. (3.2f)

If we linearize this program as done in Section 3.2.1, then the number of binary variables
will be equal to the number of commodities |K|, with one binary variable per commodity
corresponding to the tolled arc in xk. We set the index of this tolled arc to 0, and let
x0 = (x1

0, x2
0, . . . , x

|K|
0 ) ∈ {0, 1}|K| be the aggregated vector of the selections of the tolled arc

from all commodities. Since the number of binary variables is proportional to |K|, is the
single-tolled-arc NPP an NP-hard problem as well?

It turns out that the single-tolled-arc NPP can be solved in polynomial time. Understand-
ing the algorithm used to solve this variant is key to comprehend the asymmetry between
|A1| and |K|. It is best to demonstrate this algorithm with an example.
Example 3.3. Consider the single-tolled-arc NPP described in Figure 3.2a. In this example,
we only have one tolled arc which is shared by three different followers, each travels from
ok to dk for k ∈ K = {1, 2, 3}. Each follower can choose to use its own toll-free path with
different cost (10, 4, and 3) or the tolled arc with cost t. In fact, all instances of the single-
tolled-arc NPP can be represented in this form. In Section 3.2.1, we already discussed that if

1. All results presented in this paper can be extended to the non-unit demand case in a straightforward
manner. See Appendix 3.A for details.
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Figure 3.2 – Illustrations for Example 3.3.

xk
A1

is determined, so is xk
A2

, and since |A1| = 1, for each follower, there are only two values
of xk

A1
to consider: xk

0 = 1 and xk
0 = 0.

Therefore, follower k will only use the tolled arc when t ≤ ck and use the toll-free path
when t > ck. Now, we enumerate all eight combinations of x0 = (x1

0, x2
0, x3

0) ∈ {0, 1}3. A
quick observation tells us that we can never have x1

0 = 0 and x2
0 = 1 at the same time,

since this implies t > 10 and t ≤ 4 which is a contradiction. Generally, if ck1 ≥ ck2 for
some k1, k2 ∈ K, then the combination xk1

0 = 0 and xk2
0 = 1 is infeasible. This property

actually eliminates most of the combinations except for exactly |K| + 1 = 4 combinations.
Each combination corresponds to an interval of the price t: [0, 3], (3, 4], (4, 10], and (10,∞).
These intervals are illustrated in the revenue plot in Figure 3.2b. The label of each interval
denotes the set of commodities that use the tolled arc ( e.g. if t ∈ (3, 4], then the tolled arc is
used by followers 1 and 2).

From the revenue plot, we can conclude that the optimal revenue is 10, the optimal solu-
tion is t = 10 and (x1

0, x2
0, x3

0) = (1, 0, 0). A remark regarding the four combinations is the
following: each combination is characterized solely by the number of commodities that use
the tolled arc, which happens to be 3, 2, 1, and 0 in this example (this explains the number
|K|+ 1 above). This is the key difference between the single-commodity case and the single-
tolled-arc case. In the single-commodity NPP, all (or most) combinations of xA1 matter,
whose number is 2|A1| in total. In the single-tolled-arc NPP, only the number of commodities
that use the tolled arc matters, so only |K|+ 1 cases need to be considered.

After having our intuition established, we proceed to formalize this process in Algo-
rithm 3.1. The first part of the algorithm (lines 1-4) calculates the maximum price that
follower k will remain using the tolled arc. If t ≤ ck, then the follower will use the tolled arc
and vice-versa. In some cases, ck = 0 due to ck = ck, then the tolled path is never as good
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as the toll-free path and no values of t ≥ 0 will persuade this follower to use the tolled arc
(another example of bilevel infeasibility). Next, we sort all ck (line 5) so that when t = ck1 ,
then only k1 uses the tolled arc, when t = ck2 , then k1 and k2 use the tolled arc, and so on.
Then, we enumerate all cases (lines 6-9) according to the number of commodities that use
the tolled arc, denoted as w (line 7). The revenue rw of the case w is the product of the
number of commodities w and the maximum price ckw such that w commodities still use the
tolled arc (line 8). Finally, we collect the maximum of all rw (line 9) and return it (line 10).
Note that in Algorithm 3.1, we skip the case w = 0 since it does not produce any revenue,
but theoretically, this case still exists and it will become relevant in the general case.

Algorithm 3.1 Single-tolled-arc NPP in polynomial time [39]
Input: The graph G = (V ,A) with a single tolled arc, set of commodities K with their O-D

pairs ok, dk.
Output: The optimal leader’s revenue.

1: for all k ∈ K do
2: ck ← cost of the shortest path when t→∞
3: ck ← cost of the shortest path when t = 0
4: ck ← ck − ck

5: Sort ck in descending order ck1 , ck2 , . . . , ck|K|

6: R← 0 ▷ Maximum revenue
7: for w ← 1, 2, . . . , |K| do
8: rw = wckw

9: R← max{R, rw}
10: return R

3.2.3. Reaction Plot

In the remaining of Section 3.2, we will consider the general case where there are multiple
commodities and multiple tolled arcs. Because the single-commodity case can be reduced
to the general case, the general case is also an NP-hard problem. Extending Program (3.1)
to the general case results in a number of binary variables equal to |A1||K|, consisting of xk

a

for each a ∈ A1 and k ∈ K. However, as shown in Section 3.2.2, this number is not a good
indicator for the complexity.

To extend the result presented in Section 3.2.2, we employ an illustration tool called
reaction plot. In the reaction plot, the price of each tolled arc is represented by an axis (n
tolled arcs means n axes). Then, for each value of t, we plot and group the reaction of the
followers given t, i.e. the shortest path in the NPP. The result is a partition of the values
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Figure 3.3 – Examples of reaction plots.

of t into separate sections corresponding to different reactions of the followers. The reaction
plot of Example 3.3 is shown in Figure 3.3b. The axis represents the price t of the tolled
arc. The numbers below the axis are the meeting points of the intervals (which are ck),
and the numbers above the axis are the number of commodities that use the tolled arc for
each interval (which is w in Algorithm 3.1). The reaction plot of Example 3.2, displayed
in Figure 3.3a, is a 2-dimensional plot instead, since there are two tolled arcs in this case.
The label of each region is xA1 . Note that there is no region for xA1 = (0, 1) since, as we
remarked in Section 3.2.1, there is no value of t ≥ 0 that makes xA1 = (0, 1) an optimal
follower’s solution (bilevel infeasible).

We have explored the reaction plots of the single-commodity and the single-tolled-arc
case. Now, the question is: How do we draw the reaction plot of the general case? One
could solve the followers’ problems for each value of t, then group the reactions as we did in
Figures 3.3a and 3.3b. Instead, we will compose the reaction plot of the general case from the
plots of multiple single-commodity subproblems, one subproblem per commodity. Consider
the reaction plot in Figure 3.3b. This plot is actually a composition of three individual
reaction plots, superimposed upon each other as described in Figure 3.3c. The reaction plot
of a single commodity k ∈ K in this case contains only two intervals: [0, ck] and (ck,∞)
(corresponding to xk

0 = 1 and xk
0 = 0, respectively). We are allowed to stack up the reaction

plots because once t is set, each follower solves its own follower’s problem separately, thus
their reactions are independent. This principle still applies if we have multiple tolled arcs,
as shown in the next example.
Example 3.4. Consider a multi-commodity NPP with graph in Figure 3.4a. There are two
commodities travelling from ok to dk, k ∈ {1, 2}. There are also two tolled arcs with prices
t1 and t2, shared by both commodities. With respect to each follower, only half the graph is
relevant. Figures 3.4b and 3.4c are the subgraphs in the perspectives of followers 1 and 2,
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Figure 3.4 – Composition of the reaction plot in Example 3.4.

respectively. Irrelevant nodes are drawn with dashes border while irrelevant arcs are hidden.
The reaction plots of individual commodities are displayed in Figures 3.4e and 3.4f. By
stacking Figure 3.4e on top of Figure 3.4f, we have the overall reaction plot in Figure 3.4d.
Although each individual reaction plot has four regions, the composed plot only has eight
regions in total rather than 4× 4 = 16.

The labels of the regions in Figure 3.4d are in the format (w1, w2), where w1 = x1
1 + x2

1 is
the number of commodities that uses the first tolled arc, while w2 = x1

2 + x2
2 is the same but

for the second tolled arc. Similar to the single-tolled-arc case in Section 3.2.2, when stacking
the reaction plots, some combinations are prohibited due to the geometry of the individual
plots. For example, we only have x1

A1
= (1, 1) in combination with x2

A1
= (0, 1), but not

x1
A1

= (0, 1) and x2
A1

= (1, 1). Thus, the label (1, 2) in Figure 3.4d always indicates the
former combination, not the latter. Using this labeling system, intuitively, we can only have
a maximum of (|K| + 1)|A1| different regions in the reaction plot. The maximum number of
regions in this particular example is 32 = 9, but we can have less, e.g. in Figure 3.4d, we only
have eight regions (the label (1, 1) is missing, to which we will come back in Example 3.6).

A side note is that the graph in this example is specifically designed as a showcase of two
different structures in the case of two tolled arcs. The graph in Figure 3.4b has the series
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structure, whose reaction plot (Figure 3.4e) contains a diagonal line from the top-left corner
to the bottom-right. On the other hand, Figure 3.4c represents the parallel structure (remove
the arc v− p for more clarity), whose reaction plot (Figure 3.4f) also has a diagonal line but
in the other direction (bottom-left to top-right). The overall graph demonstrates the complex
nature of the NPP, where a pair of tolled arcs can be in series for one commodity, while in
parallel for another.

3.2.4. Conjugate Model

The labeling system (w1, w2, . . . , w|A1|) from Example 3.4 gives us a hint: the number
of discrete cases that we need to consider is only (|K| + 1)|A1|, rather than 2|A1||K| different
combinations of the binary variables xk

a. The next step is to formalize our intuition and
prove Theorem 3.1. For this task, we developed a new reformulation of the NPP called the
conjugate model.

We start with the bilevel program of the multi-commodity case:

max
t,xk

{∑
k∈K

t⊤xk | t ∈ T , xk ∈ Rk(t) ∀k ∈ K
}

, (3.3)

where Rk(t) is the reaction set of follower k ∈ K:

Rk(t) = argmin
xk

{
(c + t)⊤xk | Axk = bk, xk ≥ 0

}
. (3.4)

Once t is set by the leader, all followers’ problems are independent. Thus, we can combine
all of these problems into a single aggregated problem:

R(t) = argmin
xk

{∑
k∈K

(c + t)⊤xk | Axk = bk ∀k ∈ K, xk ≥ 0 ∀k ∈ K
}

.

The aggregated reaction set R(t) is equivalent to the Cartesian product of all the individual
reaction sets: R(t) =

∏
k∈K Rk(t).

Next, we introduce a new variable w =
∑

k∈K xk
A1

. The vector w has the same meaning
as (w1, w2, . . . , w|A1|) used in the labeling system, where wa is the number of commodities
that use the arc a ∈ A1. However, we do not replace

∑
k∈K xk

A1
by w with an equality, but
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rather with an inequality:

min
w,xk

∑
k∈K

(
c⊤xk

)
+ t⊤w (3.5a)

s.t.
∑
k∈K

xk
A1 ≤ w, (3.5b)

Axk = bk, k ∈ K, (3.5c)

w ≥ 0, (3.5d)

xk ≥ 0, k ∈ K. (3.5e)

As an abuse of notation, we used t = tA1 in the objective function (3.5a), which is the
truncated version of the original t (the version of t is implied by the context). Note that
the objective function minimizes t⊤w, hence the inequality (3.5b) is always active whenever
t > 0. The dual of Program (3.5) is:

max
yk

{∑
k∈K

(bk)⊤
yk | A⊤yk ≤ c + t ∀k ∈ K

}
. (3.6)

Given w ≥ 0, we introduce the conjugate follower formulation, defined as:

max
t,yk

{∑
k∈K

(
(bk)⊤

yk
)
− w⊤t | A⊤yk − t ≤ c ∀k ∈ K, t ≥ 0

}
. (3.7)

Program (3.7) is similar to Program (3.6), except for the following changes: (i) Pro-
gram (3.7) is parameterized by w, while Program (3.6) is parameterized by t; (ii) The toll
prices t become variables, and t ≥ 0 is added as a constraint; (iii) The term −w⊤t is added
to the objective function of Program (3.7).

The dual of Program (3.7) is:

min
xk

{∑
k∈K

c⊤xk |
∑
k∈K

xk
A1 ≤ w, Axk = bk ∀k ∈ K, xk ≥ 0 ∀k ∈ K

}
. (3.8)

Let T(w) be the set of t that are optimal to Program (3.7) given w ≥ 0. We define the
conjugate bilevel formulation as:

max
w,t
{w⊤t | w ≥ 0, t ∈ T(w)}. (3.9)

Proposition 3.5. Programs (3.3) and (3.9) are equivalent, in the sense that their optimal
objective values are equal.
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Proof. We use the KKT conditions together with strong duality on Programs (3.5) and (3.6)
to convert Program (3.3) to the following single-level reformulation:

max
t,w,x,y

t⊤w (3.10a)

s.t.
∑
k∈K

xk
A1 ≤ w, (3.10b)

Axk = bk, k ∈ K, (3.10c)

A⊤yk ≤ c + t, k ∈ K, (3.10d)∑
k∈K

(
c⊤xk

)
+ t⊤w =

∑
k∈K

(bk)⊤
yk, (3.10e)

t ≥ 0, (3.10f)

w ≥ 0, (3.10g)

xk ≥ 0, k ∈ K. (3.10h)

Applying the same technique to Programs (3.7) and (3.8) produces the same single-level
reformulation for Program (3.9). Therefore, the optimal objective values of Programs (3.3)
and (3.9) are the same. □

The conjugate model provides a different perspective to NPP, where the leader controls
w in contrast to t in the original model. Looking at Program (3.8), the role of w is that of
the capacities of the tolled arcs. Program (3.8) is similar to the shortest path problem, but
with capacities limited to w. Note that this program is not totally unimodular, thus there
is no guarantee that xk will be binary even if w is integral.

Hereafter, we refer to T(w) as the action set and reserve the term reaction set for R(t).
Similarly, we call t the action, x the reaction, and w the reduced reaction.

Proof of Theorem 3.1. Proposition 3.5 implies that we can use Program (3.9) to find the
optimal revenue of the NPP. For each commodity k ∈ K, we know that there is always an
optimal reaction xk that is binary (since the followers’ problems are shortest path problems),
and since w =

∑
k∈K xk

A1
, it is sufficient to enumerate w in the set {0, 1, . . . , |K|}|A1|. For each

w, we solve Program (3.7) in polynomial time to obtain t, which can be multiplied with w to
compute the revenue. The total number of cases that we need to enumerate is (|K|+ 1)|A1|.
Thus, if the number of tolled arcs |A1| is fixed, this process solves the multi-commodity NPP
in polynomial time with respect to the number of commodities |K|. □

Although we can solve the NPP in polynomial time given that |A1| is fixed, the approach
described in the proof of Theorem 3.1 is not of practical interest. For |A1| = 2, the complexity
of the algorithm is in O(|K|2), for |A1| = 10, it is in O(|K|10), and so on. What Theorem 3.1
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Table 3.1 – Enumeration of all cases in Example 3.4.

Actions Reactions Revenue

w1 w2 t1 t2 x1
1 x1

2 x2
1 x2

2 w⊤t

0 0 ∞ ∞ 0 0 0 0 0
1 0 5 ∞ 0 0 1 0 5
2 0 3 ∞ 1 0 1 0 6
0 1 ∞ 6 0 0 0 1 6
1 1 4 5 0.5 0.5 0.5 0.5 9
2 1 4 5 1 1 1 0 13
0 2 ∞ 4 0 1 0 1 8
1 2 4 5 1 1 0 1 14
2 2 2 3 1 1 1 1 10

emphasizes is that there exists an asymmetry in the complexity, which we can exploit to
tackle problems with a high number of commodities. This will be attempted in the next
section, with the help of the conjugate model.
Example 3.6. In this example, we compute the optimal revenue of the NPP described in
Example 3.4 using the algorithm in the proof of Theorem 3.1. Since |K| = 2 and |A1| = 2,
we have nine possible values for w, which are listed in Table 3.1. The optimal solution
is highlighted in bold. The optimal revenue is 14, corresponding to (w1, w2) = (1, 2) and
(t1, t2) = (4, 5). The case w = (1, 1) is special, since Program (3.8) returns a fractional
xk

a reaction instead of a binary result. Using Figure 3.4d as a reference, this case is not
represented by a full-dimensional region in the reaction plot, but by just a single point at
t = (4, 5). We call this degenerate case weakly bilevel feasible, as opposed to the other eight
cases which are strongly bilevel feasible. Note that weakly bilevel feasible cases still appear
in the reaction plot, but they do not manifest into full-dimensional regions. This contrasts
with bilevel infeasible cases which are completely absent from the reaction plot. Weak and
strong bilevel feasibility are discussed in Section 3.3.3.

3.3. Strong Bilevel Feasibility
Section 3.2 tells us that the number of reduced reactions w that we need to enumerate

is (|K| + 1)|A1|. This number is far smaller than the number of all compositions of integral
values of xk

A1
which is 2|A1||K|. On the one hand, given a composition of xk

A1
, we can associate

a value of w which is w =
∑

k∈K xk
A1

. On the other hand, given a value of w, we may associate
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many compositions of xk
A1

. This raises several questions: How do we map (|K|+1)|A1| values
of w back into 2|A1||K| compositions of xk

A1
? Can all compositions of xk

A1
be mapped from

w, or are there some compositions that we can eliminate? What are the properties that a
composition needs to satisfy to not be eliminated and how do we test them?

To answer these questions, we further explore the notion of the reduced reaction w, discuss
the duality between t and w, from which we derive the concept of strong bilevel feasibility.
Strong bilevel feasibility is the property that will eliminate most of xk

A1
and bring the number

2|A1||K| down to (|K|+1)|A1|. We return to the single-commodity case to define three concepts:
bilevel feasibility (Section 3.3.1), action-reaction duality (Section 3.3.2), and strong bilevel
feasibility (Section 3.3.3). Finally, we extend these concepts to the multi-commodity case
via the composition of individual commodities (Section 3.3.4).

3.3.1. Bilevel Feasibility

In this and the next two sections, we only consider the single-commodity case. Denote
X the feasible set of the follower’s problem. Note that X is independent from t. Let x be
a point in X . For each t ≥ 0, the cost of x is c⊤x + t⊤xA1 . We call g = c⊤x the base
cost, and w = xA1 the reduced reaction; given x, we know directly its mapping into the
variable w and hence, in those contexts, we abuse notation, and we use w equal to xA1 . If
two points in X share the same base cost and reduced reaction, they are equivalent in the
NPP, because they produce the same follower’s cost and leader’s revenue regardless of t. Let
X ∗ = {(c⊤x, xA1) | x ∈ X} be the set of all (g, w) pairs that are feasible. Then, each pair of
(g, w) ∈ X ∗ represents an equivalence class of reactions.

Let f(t) be the function of the follower’s cost, specifically,

f(t) = min
x

{
(c + t)⊤x | Ax = b, x ≥ 0

}
.

We remark that f(t) coincides with the optimal value of Program (3.5) restricted to a single
commodity. For t ≱ 0, assign f(t) = −∞. It is well-known that f is a concave function. For
the ease of analysis, we investigate −f instead of f due to its convexity. For t ≥ 0, −f(t) is
the maximum of −g − t⊤w for all pairs of (g, w) ∈ X ∗. Another perspective is to say that
the epigraph epi(−f) is the intersection of all the closed half-spaces of the form:

H(g, w) = {(t, z) | z ≥ −g − t⊤w} (3.11)

where (g, w) ∈ X ∗. Also denote H=(g, w) the hyperplane corresponding to H(g, w). By
construction, a point x ∈ X is optimal in the follower’s problem for some t if and only if the
hyperplane H=(c⊤x, xA1) supports epi(−f). We call such point bilevel feasible.
Definition 3.7. A reaction x is bilevel feasible when H=(c⊤x, xA1) supports epi(−f). Oth-
erwise, it is bilevel infeasible.
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Figure 3.5 – H=(g(w), w) is the highest hyperplane given w.

Lemma 3.8 (Bui et al. [14]). A reaction x is bilevel feasible if and only if there exists t ≥ 0
such that x is optimal in the follower’s problem, i.e. f(t) = c⊤x + t⊤xA1.

Proof. H=(c⊤x, xA1) supports epi(−f)
⇐⇒ There exists (t, z) such that z = −c⊤x− t⊤xA1 and z = −f(t)
⇐⇒ −f(t) = −c⊤x− t⊤xA1 .

□

Given w, in order for a hyperplane H=(g, w) to support epi(−f), g must be the smallest
possible value such that (g, w) ∈ X ∗, so that H=(g, w) is the highest of all hyperplanes with
slope w. Thus, we can optimize g given w. Define

g(w) = sup
t

{
t⊤w − (−f(−t))

}
= sup

t

{
f(t)− t⊤w

}
. (3.12)

Equation (3.12) tells us that g(w) is the smallest g such that g ≥ f(t) − t⊤w for all t, or
equivalently, −f(t) ≥ −g − t⊤w. Recall from Equation (3.11) that H=(g(w), w) supports
epi(−f) (see Figure 3.5). The function g(w) is called the convex conjugate of −f(−t) [52].
Since −f is lower semi-continuous, by the Fenchel-Moreau theorem [52], the conjugate of
the conjugate is the original function, so we also have:

−f(−t) = sup
w

{
t⊤w − g(w)

}
⇔ f(t) = inf

w

{
t⊤w + g(w)

}
. (3.13)

Comparing Equation (3.12) to Programs (3.6) and (3.7), we can deduce that g(w) is the
optimal value of Program (3.7) restricted to a single commodity. In particular,

g(w) = max
t,y

{
b⊤y − w⊤t | A⊤y − t ≤ c, t ≥ 0

}
.
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Figure 3.6 – Illustrations for Example 3.10.

The same conclusion can be derived from Equation (3.13) and Programs (3.5) and (3.8).
Therefore, the purpose of the conjugate follower model is to find g(w), the smallest base cost
given a reduced reaction. This leads us to a redefinition of bilevel feasibility:
Lemma 3.9. A reaction x is bilevel feasible if and only if c⊤x = g(xA1).

We consider Lemmas 3.8 and 3.9 dual of each other, where one characterizes bilevel
feasibility based on f(t), and the other based on g(w). Using the new definition, to test the
bilevel feasibility of a particular x ∈ X , we solve the Program (3.8) (or Program (3.7)) with
w set to xA1 . If the optimal objective value g(w) is equal to c⊤x, then it is bilevel feasible.
Otherwise, it is bilevel infeasible.
Example 3.10. We revisit Example 3.2 with the reaction plot redrawn in Figure 3.6a. We
mentioned the case xA1 = (0, 1) as an example of bilevel infeasible reaction. Indeed, set
w = (0, 1) and solve Program (3.7), we get g(w) = 5. The shortest path with xA1 = (0, 1)
has a base cost of 6 > g(w), thus it is bilevel infeasible.

In Example 3.2, we only listed four binary values of xA1. It raises the question: Is there
a bilevel feasible x such that xA1 is non-binary? Solving Program (3.7) with w = (0.5, 0.5)
produces g(w) = 3.5. In general, if w = (α, α) where 0 < α < 1, then g(w) = 5(1 −
α) + 2α. Program (3.8) gives us the reaction x described in Figure 3.6b. This is the convex
combination of two simple paths corresponding to xA1 = (1, 1) and xA1 = (0, 0), respectively.
By Lemma 3.8, if this x is bilevel feasible, then it must be optimal for some t. What is this
set of t? Program (3.7) tells us that this reaction is optimal when t is in the intersection
of the 2 regions labeled as (1, 1) and (0, 0) (the thick segment in Figure 3.6a). It seems that
there is a relation between convex combinations of paths and intersections of regions in the
reaction plot, which we will explore in the next two sections.

Bilevel feasibility is useful in the preprocessing step to prune away bilevel infeasible
paths. Bilevel infeasible paths, by definition, are not optimal to the follower’s problem for
any t ≥ 0, thus the follower never considers them regardless of the leader’s decision. This
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process is demonstrated in Bui et al. [14], and we will reuse it in our experiments described
in Section 3.4.

3.3.2. Action-Reaction Duality

The relationship between f(t) and g(w) is more than just finding the smallest base cost.
Because f(t) is a polyhedral function, so is g(w), meaning their epigraphs can be defined
as the intersection of a finite number of closed half-spaces. We will show that there is a
bijection between the set of optimal t of g(w) and the set of optimal w of f(t). Furthermore,
the dimensions of a pair of such sets sum up to |A1|. This relation is better illustrated with
an example.
Example 3.11. We reuse the graph in Figure 3.4b. In Section 3.2.3, we introduced the
reaction plot as a tool to describe the optimal solution of Program (3.5) given t. The reaction
plot of the graph in Figure 3.4b is redrawn in Figure 3.7a Another way to derive the reaction
plot is through the projection of epi(−f) to the space of t (see Figure 3.8). Each full-
dimensional region in the reaction plot corresponds to a facet of epi(−f), and its label is the
(negative) gradient of −f(t) when t is in the interior of the region. We can apply the same
process to epi(g) as well, and the result is called the action plot, shown in Figure 3.7b. The
labels in the action plot are (t1, . . . , t|A1|) which are the gradients of g(w), similar to the labels
in the reaction plot.

There is a correspondence between “features” (defined later) of one plot to those of the
other. Every label representing a full-dimensional region in one plot corresponds to a vertex
of the other plot (the red/green vertices and polygons). Edges separating two polygons in one
plot become edges connecting the corresponding vertices in the other (the blue edges). As a
general rule, the sum of the dimensions of a pair of features is always |A1|, which is 2 in
this example.

As remarked in Example 3.11, the reaction plot is the projection of epi(−f). Thus, the
“features” (polygons, edges, vertices) in the reaction plot correspond to faces of epi(−f).
Conversely, every non-vertical face of epi(−f) corresponds to a feature of the reaction plot
with the same dimension. The same applies to faces of epi(g). In this section, we want to
establish a bijection between faces of epi(−f) and faces of epi(g), along with their dimensional
relation. Hereafter, let n = |A1| be the dimension of the space of t (and of w).
Definition 3.12. An action set 2 is the projection of a non-vertical face of epi(−f) to the
space of t. To put it concretely, a set T ⊆ Rn is an action set when there exists a face F of
epi(−f) such that:

2. In Section 3.2, we call the set of t that are optimal to Program (3.7) action set. The term action set
here has the same meaning as in Section 3.2, despite of their different definitions.
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(i) The direction (t, z) = (0, 1) is not in aff(F ) (F is non-vertical);

(ii) T = {t ∈ Rn | (t, z) ∈ F for some z} (T is the projection of F ).

Condition (i) implies that given t ∈ T , there is only one value of z such that (t, z) ∈ F .
Condition (ii) forces z to be −f(t). Thus, given T , we can derive F = {(t,−f(t)) ∈ Rn×R |
t ∈ T}, making the mapping from F to T bijective. A reaction set 3 W is defined similarly
with epi(g).
Lemma 3.13. Given an action set T , if T ′ is a face of T , then T ′ is an action set.

Proof. Let F = {(t,−f(t)) ∈ Rn × R | t ∈ T} be the face of epi(−f) corresponding to T .
It is easy to verify that t ∈ ri(T ) if and only if (t,−f(t)) ∈ ri(F ), where ri(·) denotes the
relative interior of a set. Since T ′ is a face of T , it is the intersection of T and the half-space
{t | α⊤t ≤ β} for some α ∈ Rn and β ∈ R. Consider F ′ = {(t,−f(t)) ∈ F | α⊤t ≤ β}. Then,
t ∈ T ′ if and only if (t,−f(t)) ∈ F ′, and since T ′∩ ri(T ) = ∅, we have F ′∩ ri(F ) = ∅. Thus,
F ′ is a face of F which in turn is a non-vertical face of epi(−f), meaning F ′ is a non-vertical
face of epi(−f). Also, T ′ is the projection of F ′, making it an action set. □

Given t ≥ 0, let W(t) be the set of w that are optimal to Program (3.5). Recall from
Equation (3.13) that w ∈W(t) if and only if

f(t) = t⊤w + g(w). (3.14)

3. This also has the same meaning as in Section 3.2, but R(t) is for x, while W (and later W(t)) is for
w.
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Recall the definition of T(w) in Section 3.2.4 as the set of t that are optimal to Program (3.7),
we also obtain the equality above. Therefore, w ∈W(t) if and only if t ∈ T(w).

Given t ≥ 0, we rewrite Equation (3.13) as:

f(t) = inf
w,z

{
t⊤w + z | z ≥ g(w)

}
= inf

(w,z)

{
t⊤w + z | (w, z) ∈ epi(g)

}
.

By treating epi(g) as the feasible set of some optimization problem, the set of (w, z) that is
optimal forms a non-vertical face of epi(g). As a result, W(t) is a reaction set. Conversely,
given a reaction set W , there always exist t ≥ 0 such that W = W(t), since every face is
optimal for some objective function (which we can adjust with t). By a similar reasoning,
T(w) is an action set for all w ≥ 0.

Given an action set T ⊆ Rn, define W(T ) =
⋂

t∈T W(t).
Proposition 3.14. If T is an action set, then W(T ) is a reaction set.

Proof. Define G(W ) = {(w, g(w)) ∈ Rn × R | w ∈ W} as the face of epi(g) corresponding
to the reaction set W . Consider G =

⋂
t∈T G(W(t)). Since all points in G(W(t)) are in

the form (w, g(w)) for some w ≥ 0, so are all points in G. Given w, all of the following
statements are equivalent:

w ∈W(T )⇔ w ∈W(t),∀t ∈ T ⇔ (w,g(w)) ∈ G(W(t)),∀t ∈ T ⇔ (w,g(w)) ∈ G.

Thus, W(T ) is the projection of G onto the w-space. Because G(W(t)) are all non-vertical
faces of epi(g), their intersection G is either empty or a non-vertical face of epi(g). Since T

is an action set, there exists w such that T = T(w). This means that for all t ∈ T = T(w),
w ∈ W(t), hence w ∈ W(T ) and W(T ) is non-empty. Therefore, G is non-empty and is a
non-vertical face of epi(g), meaning that its projection W(T ) is a reaction set. □

Given a reaction set W , define T(W ) similarly. Then, T is the inverse mapping of W.
Proposition 3.15. Given an action set T , then T(W(T )) = T .

Proof. For all t ∈ T , w ∈W(T ), since W(T ) ⊆W(t), we have w ∈W(t) implying t ∈ T(w).
Hence, t ∈

⋂
w∈W(T ) T(w) = T(W(T )), meaning T ⊆ T(W(T )).

Conversely, since T is an action set, there exists w ≥ 0 such that T(w) = T , hence
w ∈W(t) for all t ∈ T(w) = T , implying w ∈W(T ). It follows that T(W(T )) ⊆ T(w) = T

(by definition of T). We conclude that T(W(T )) = T . □

Corollary 3.16. Given two action sets T1 and T2, then T1 ⊆ T2 if and only if W(T1) ⊇
W(T2).

Proof. The forward direction is true due to the definition of W. For the reverse direction,
W(T1) ⊇W(T2) implies T(W(T1)) ⊆ T(W(T2)). By Proposition 3.15, T1 ⊆ T2. □
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Together, W and T define a bijection between the action sets and the reaction sets.
Given t ≥ 0, the smallest action set containing t is T(W(t)). The same applies to all w ≥ 0.
This mapping can be extended to a bijection between non-vertical faces of epi(−f) and those
of epi(g). The dimensional property linking them can be expressed as:
Theorem 3.17. Given an action set T , it holds dim T + dim W(T ) = n.

Proof. Since T is an action set, there exists w such that T = T(w), which implies w ∈W(T ).
Let S be the subspace parallel to aff(T ) and S⊥ be the orthogonal subspace of S. Their
dimensional relation is dim S⊥ = n − dim S = n − dim T . Choose a basis of S⊥ so that
S⊥ = span{u1, u2, . . . , um} where m = dim S⊥. For each i = 1, . . . ,m, we will prove that
there exists δi ∈ span{ui}, δi ̸= 0 such that w + δi ∈W(T ).

Suppose that the above statement is false, meaning there exists i such that for all δi ∈
span{ui} \ {0}, w + δi /∈ W(T ). We can build a sequence δ

(j)
i → 0 in span{ui} \ {0} such

that w + δ
(j)
i ≥ 0 so that each w + δ

(j)
i is contained in some reaction set. 4 Since epi(g) is a

polyhedron, it has a finite number of faces, hence a finite number of reaction sets. 5 Thus,
there must be a reaction set W ′ that contains infinitely many terms of w + δ

(j)
i . Reaction

sets are closed (they are projections of faces), hence the limit w = lim(w + δ
(j)
i ) is in W ′ as

well, implying that T(w) = T contains T(W ′).
Because ui ∈ S⊥, ui

⊤(t − t′) = 0 for all t, t′ ∈ T . Choose t ∈ T, t′ ∈ T(W ′), then for all
δi ∈ span{ui} \ {0} (also recall Equation (3.14)):

(w + δi)⊤(t− t′) = w⊤(t− t′) = f(t)− f(t′) (since t, t′ ∈ T(w))

⇔ f(t)− (w + δi)⊤t = f(t′)− (w + δi)⊤t′. (3.15)

Notice that t′ ∈ T(W ′) and w + δ
(j)
i ∈ W ′ for some j, hence t′ ∈ T(w + δ

(j)
i ) and f(t′) −

(w + δ
(j)
i )

⊤
t′ = g(w + δ

(j)
i ) (by Equation (3.14)). Thus, the left-hand side of Equation (3.15)

is also equal to g(w + δ
(j)
i ) which implies that w + δ

(j)
i ∈W(t) for all t ∈ T . It follows that

w + δ
(j)
i ∈W(T ) which is a contradiction.

To conclude the proof, since there exists δi ̸= 0 such that w + δi ∈ W(T ) in every
direction ui ∈ S⊥, w along with all the w + δi form an affinely independent set in W(T ),
thus dim W(T ) ≥ m. For all u /∈ S⊥, there exists t, t′ ∈ T such that u⊤(t − t′) ̸= 0 which
implies w + u /∈W(T ). Therefore, dim W(T ) = m = n− dim T . □

Example 3.18. We consider the NPP described in Example 3.3, restricted to commodity k =
3. The plots of −f(t) and g(w) are shown in Figures 3.9a and 3.9b. Each non-vertical face

4. If w > 0, then the sequence w + δ
(j)
i ≥ 0 is trivial to construct. If wa = 0 for some a ∈ A1, then ta for

some t ∈ T can get arbitrary large. Since δi ∈ S⊥, δi,a = 0 and wa + δi,a = 0 for all i which do not violate
the condition w + δ

(j)
i ≥ 0.

5. As suggested, this dimensional property does not hold when f and g are not polyhedral functions.
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Figure 3.9 – Plots for Example 3.18.

of epi(−f) (encoded as A, b, C, d) has a counterpart in epi(g) (encoded as a, B, c, D) through
the mappings W and T. Consider the 1-dimensional face b of epi(−f) (the red segment
in Figure 3.9a), which is the intersection of epi(−f) and the hyperplane corresponding to
(g, w) = (0, 1). We can verify that g(1) = 0 (the red vertex in Figure 3.9b). Perturbing
w by any small amount changes the optimal face from b into either A or C, hence B is
a 0-dimensional face of epi(g). In contrast, the 0-dimensional face C of epi(−f) (the blue
vertex in Figure 3.9a) corresponds to not only w = 0.5, but also any w in its neighborhood.
Informally, we can “wiggle” the supporting hyperplane (the blue dashed line in Figure 3.9a)
while keeping C as the optimal point, which we cannot do with b. As a consequence, c is a
1-dimensional face of epi(g). In both cases, the sum of the dimensions is |A1| = 1.

3.3.3. Strong Bilevel Feasibility

Example 3.10 shows that fractional reactions x can be bilevel feasible. However, we can
write fractional reactions as convex combinations of simple paths (which are the extreme
points of X ), hence if a fractional reaction is optimal to the leader’s problem, then there
must be an optimal simple path as well. Simple paths always have binary reduced reactions
w = xA1 . Moreover, as remarked before, the labels (w1, . . . , wn) of full-dimensional regions
in the reaction plot are always binary. From the discussion in Section 3.3.2, these regions
are action sets, and full-dimensional action sets correspond to 0-dimensional reaction sets
(Theorem 3.17), which, in turn, correspond to 0-dimensional faces of epi(g). Thus, these
labels are the projections of extreme points of epi(g). In this section, we explore the relations
between simple paths, binary w, and extreme points of X and epi(g).
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Definition 3.19. A reduced reaction w is strongly bilevel feasible when {w} is a reaction
set. Otherwise, it is weakly bilevel feasible.
Lemma 3.20. Given w ≥ 0, the following statements are equivalent:

(a) w is strongly bilevel feasible;

(b) {w} is a reaction set;

(c) W(T(w)) = {w}

(d) (w,g(w)) is an extreme point of epi(g);

(e) dim T(w) = n.

Proof. Direct results of Definitions 3.12 and 3.19 and Theorem 3.17. □

Note that strong bilevel feasibility is a property of w, while bilevel feasibility is a property
of x. It is not incidental that extreme points of X are related to extreme points of epi(g).
Proposition 3.21. If w is strongly bilevel feasible, there exists an extreme point x of X such
that x is bilevel feasible and satisfies xA1 = w.

Proof. First, we prove that there exists a bilevel feasible x such that xA1 = w. We solve
for g(w) using Program (3.8) to obtain x. Suppose that xa < wa for some a ∈ A1. By
complementary slackness, all t ∈ T(w), which are optimal solutions of Program (3.7), must
have ta = 0. Consequently, dim T(w) < n. Thus, by Lemma 3.20, w is weakly bilevel
feasible. Therefore, if w is strongly bilevel feasible, all optimal solutions of Program (3.8)
must satisfy xA1 = w.

Now that we have x that is bilevel feasible and xA1 = w, we will construct an extreme
point x̂ of X that also satisfies these properties. Suppose that x is not an extreme point, we
can write x as a strict combination of extreme points x(i) and extreme rays. 6 Choose any
i, let x̂ = x

(i)
A1

and ŵ = x̂A1 . For all t ∈ T(w), t makes x optimal to the follower’s problem.
Then, t must make all x(i) optimal (since the combination is strict), hence x̂ is bilevel feasible
and t ∈ T(ŵ). Following the same reasoning in the first part of the proof, we conclude that
x̂A1 = ŵ = w. □

As a result, all strongly bilevel feasible w are binary since extreme points of X are simple
paths and they are binary. Similar to the fact that there is an extreme point of X that is
optimal to the follower’s problem, there is an extreme point of epi(g) that is optimal to the
leader’s problem.
Theorem 3.22. There exists a strongly bilevel feasible w that is optimal to the NPP, i.e. it
solves Program (3.9).

6. In the context of the shortest path problem, extreme points correspond to simple paths and extreme
rays correspond to loops.
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Proof. Let (w′,t) be an optimal solution of Program (3.9). In order to be an optimal solution,
first, t ∈ T(w′), hence w′ ∈ W(t). If w′ is not an extreme point of W(t), we write w′ as
a strict combination of extreme points w(i) and extreme rays. Since w(i) ∈ W(t), the pairs
(w(i), t) are also feasible to Program (3.9). Because w′⊤t is the highest revenue to the NPP,
so are (w(i))⊤

t for all i, thus w(i) are optimal to Program (3.9). Extreme points of W(t) are 0-
dimensional faces of a reaction set, hence they are 0-dimensional reaction sets (Lemma 3.13).
Therefore, w(i) are strongly bilevel feasible. □

Proposition 3.21 and Theorem 3.22 imply that NPP can be solved by enumerating only
simple paths. When we extend this concept to multi-commodity problems in Section 3.3.4.2,
strong bilevel feasibility proves to be a much more powerful property than just a tool to
eliminate fractional reactions.

3.3.4. Composition

In this section, we return to the multi-commodity case and generalize the concepts intro-
duced in the previous sections via the process of composition. Given a commodity k ∈ K,
we add the superscript k to all notations that are related to this commodity (including
X k, xk, wk, fk, gk, Tk, Wk). The objective function f of the aggregated follower’s problem
(Program (3.5)) is the sum of all fk:

f(t) =
∑
k∈K

fk(t).

The conjugate g(w) is defined as in Equation (3.12). Since the conjugate operator of
summation is infimal convolution [52], we also have:

g(w) = inf
{∑

k∈K

gk(wk)
∣∣∣∣∣ ∑

k∈K

wk = w

}
. (3.16)

Denote X = X 1×· · ·×X |K| the feasible set of Program (3.5) and (xk) = (x1, . . . , x|K|) ∈ X
a feasible point of that program. Hereafter, we call tuples such as (xk) = (x1, . . . , x|K|) and
(wk) = (w1, . . . , w|K|) compositions or composed reactions.

3.3.4.1. Bilevel Feasibility. With the new definitions of f(t) and g(w) for the multi-
commodity case, Lemma 3.9 is straightforward to extend:
Definition 3.23. A composed reaction (xk) ∈ X is bilevel feasible when∑

k∈K

c⊤xk = g

(∑
k∈K

xk
A1

)
. (3.17)

We can still use the conjugate model (Programs (3.7) and (3.8)) to test bilevel feasibility.
The only change is to set w =

∑
k∈K xk

A1
. This will be the common theme of this section.
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Lemma 3.8 is stated similarly. What are more interesting are the conditions that it implies
when we decompose f and g into fk and gk.
Proposition 3.24. Given a composed reaction (xk) ∈ X , the following statements are equiv-
alent:

(a) (xk) is bilevel feasible;

(b) Equation (3.17) is satisfied;

(c) Each xk is bilevel feasible individually, and g
(∑

k∈K xk
A1

)
=
∑

k∈K gk(xk
A1

);

(d) There exists t ≥ 0 such that f(t) =
∑

k∈K
(
c⊤xk + t⊤xk

A1

)
;

(e) There exists t ≥ 0 such that for all k ∈ K, fk(t) = c⊤xk + t⊤xk
A1

.

Proof. (a) ⇔ (b) is Definition 3.23. (a) ⇔ (d) is Lemma 3.8 rewritten with the new f . (d)
⇐ (e) is trivial. Since fk(t) ≤ c⊤xk + t⊤xk

A1
for all k ∈ K, (d) ⇒ (e).

(b) ⇒ (c): Since c⊤xk ≥ gk(xk
A1

), from Equation (3.16),

∑
k∈K

c⊤xk ≥
∑
k∈K

gk(xk
A1) ≥ g

(∑
k∈K

xk
A1

)
. (3.18)

If (b) is true, then the inequalities become equalities, and c⊤xk = gk(xk
A1

) means that xk is
bilevel feasible individually (Lemma 3.9). Thus, (c) is true.

(b) ⇐ (c): Each xk is bilevel feasible individually, hence c⊤xk = gk(xk). Then, all
inequalities in Equation (3.18) are equalities which implies (b). □

Statements (c) and (e) are the decomposed forms of statements (b) and (d), respectively.
Statements (b) and (d) are considered dual of each other, as well as statements (c) and (e).
Statement (e) means that if (xk) is bilevel feasible, then there exists t ≥ 0 such that all xk

are simultaneously optimal to their own followers’ problems. Statement (c) gives us an extra
condition that a bilevel feasible (xk) needs to satisfy even when all xk are bilevel feasible
individually. In what follows, let wk = xk

A1
.

Definition 3.25. A composition (wk) is bilevel feasible when

g

(∑
k∈K

wk

)
=
∑
k∈K

gk(wk). (3.19)

Then, statement (c) of Proposition 3.24 can be rewritten as: each xk is bilevel feasible
individually and the composition (wk) is bilevel feasible where wk = xk

A1
. Note that although,

by convention, each wk is bilevel feasible, their composition may not. In terms of wk,
statement (e) can be restated exactly the same as statement (c) but with an alternative
definition of bilevel feasible (wk).
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Lemma 3.26. A composition (wk) is bilevel feasible if and only if

T

(∑
k∈K

wk

)
=
⋂
k∈K

Tk(wk).

Proof. Given (wk), for all t ≥ 0, we have:∑
k∈K

gk(wk)
(a)
≥ g

(∑
k∈K

wk

)
(b)
≥ f(t)−

∑
k∈K

t⊤wk =
∑
k∈K

(
fk(t)− t⊤wk

)
. (3.20)

(⇒) Assuming Equation (3.19), then the inequality at (a) is an equality. For all t ∈
T
(∑

k∈K wk
)
, the inequality at (b) is satisfied with equality, hence gk(wk) = fk(t) − t⊤wk

and t ∈ Tk(wk) for all k ∈ K. For all t ∈
⋂

k∈K Tk(wk), all inequalities in Equation (3.20)
become equalities and the equality at (b) implies t ∈ T

(∑
k∈K wk

)
.

(⇐) Since T
(∑

k∈K wk
)

is not empty, there exists t ≥ 0 such that t ∈ Tk(wk) for all
k ∈ K, hence gk(wk) = fk(t) − t⊤wk. Then, all inequalities in Equation (3.20) become
equalities and the equality at (a) implies Equation (3.19). □

The interpretation of Lemma 3.26 is that a composition (wk) is bilevel feasible if and only
if all action sets of its components wk in the individual reaction plots intersect. Recall from
Example 3.4 that the compositions w1 = (1, 1) (Figure 3.4e) and w2 = (0, 1) (Figure 3.4f) are
bilevel feasible because their action sets intersect to form the aggregated action set with label
w = (1, 2) (Figure 3.4d). On the other hand, the composition w1 = (0, 1) and w2 = (1, 1) is
bilevel infeasible since their action sets do not intersect despite having the same w.

3.3.4.2. Strong Bilevel Feasibility. All concepts and propositions in Sections 3.3.2
and 3.3.3 are defined based solely on f(t) and g(w), thus they are still valid to the multi-
commodity case (except for Proposition 3.21 where we need to replace w = xA1 with
w =

∑
k∈K xk

A1
). Given w ≥ 0, we call (wk) a decomposition of w if (wk) is a composi-

tion that satisfies:
w =

∑
k∈K

wk.

A bilevel feasible decomposition of w is a decomposition which is also bilevel feasible. By
Equation (3.16), any w ≥ 0 has at least one bilevel feasible decomposition.
Lemma 3.27. Given w ≥ 0, the set of all bilevel feasible decompositions of w is convex.

Proof. Let (ŵk) and (w̌k) be two bilevel feasible decompositions of w and (wk) be a convex
combination of them, i.e. wk = λŵk + (1− λ)w̌k for all k ∈ K and some 0 ≤ λ ≤ 1. Clearly,∑

k∈K wk = w, hence (wk) is a decomposition of w. Since gk are convex,∑
k∈K

gk(wk) ≤
∑
k∈K

(
λgk(ŵk) + (1− λ)gk(w̌k)

)
= λg(w) + (1− λ)g(w) = g(w).
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Because
∑

k∈K gk(wk) ≥ g(w) (by Equation (3.16)), we conclude that
∑

k∈K gk(wk) = g(w)
and (wk) is bilevel feasible. □

Similar to the discussion in Section 3.3.4.1, even when all wk are strongly bilevel feasible
individually, it is not guaranteed that w would be strongly bilevel feasible. Moreover, w has
infinitely many decompositions (wk), and not all of them will satisfy the above property.
Then, under what conditions is w strongly bilevel feasible in relation to its decomposition
(wk)?
Proposition 3.28. A reduced reaction w ≥ 0 is strongly bilevel feasible if and only if for all
bilevel feasible decompositions (wk) of w, each wk is strongly bilevel feasible individually.

Proof. (⇒) For all bilevel feasible decompositions (wk) of w, Lemma 3.26 states that T(w) ⊆
Tk(wk) for all k ∈ K. If w is strongly bilevel feasible, then dim T(w) = n (Lemma 3.20),
hence dim Tk(wk) = n for all k ∈ K. Thus, each wk is strongly bilevel feasible individually.

(⇐) Suppose that w is weakly bilevel feasible, we need to show that there exists some
bilevel feasible decomposition (wk) such that some wk are weakly bilevel feasible individually.
By Lemma 3.20, (w, g(w)) is not an extreme point of epi(g), hence it can be written as a
strict convex combination of two distinct points (ŵ, ĝ) and (w̌, ǧ) of epi(g):

w = λŵ + (1− λ)w̌, (3.21)

g(w) = λĝ + (1− λ)ǧ, (3.22)

for some 0 < λ < 1. Since g(w) is convex, g(w) ≤ λg(ŵ)+(1−λ)g(w̌); and because (ŵ, ĝ) and
(w̌, ǧ) are in epi(g), g(ŵ) ≤ ĝ and g(w̌) ≤ ǧ. It follows that g(ŵ) = ĝ, g(w̌) = ǧ, and ŵ ̸= w̌.
Let (ŵk) and (w̌k) be some bilevel feasible decompositions of ŵ and w̌, respectively. Define
wk = λŵk + (1− λ)w̌k for each k ∈ K. Equation (3.21) implies that (wk) is a decomposition
of w, while Equation (3.22) implies:

g(w) = λg(ŵ) + (1− λ)g(w̌) =
∑
k∈K

[
λgk(ŵk) + (1− λ)gk(w̌k)

]
≥
∑
k∈K

gk(wk). (since gk convex)

Because
∑

k∈K gk(wk) ≥ g(w) (by Equation (3.16)), (wk) is bilevel feasible. Moreover,
λgk(ŵk) + (1 − λ)gk(w̌k) = gk(wk) for all k ∈ K. Since ŵ ̸= w̌, there exists k ∈ K such
that ŵk ̸= w̌k. Thus, (wk, gk(wk)) is a strict convex combination of two distinct points
(ŵk, gk(ŵk)) and (w̌k, gk(w̌k)) of epi(gk). Therefore, (wk, gk(wk)) is not an extreme point of
epi(gk) and wk is weakly bilevel feasible. □

Lemma 3.29. If w ≥ 0 is strongly bilevel feasible, then w has exactly one bilevel feasible
decomposition.
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Proof. Suppose that w is strongly bilevel feasible and it has more than one bilevel feasible
decompositions. Lemma 3.27 implies that there is an infinite number of bilevel feasible
decompositions (wk) of w, hence an infinite number of compositions (wk) such that each
wk is strongly bilevel feasible individually (Proposition 3.28). However, each epi(gk) has a
finite number of extreme points, by Lemma 3.20, the number of strongly bilevel feasible wk

is finite, so is the number of their compositions (wk) which is a contradiction. □

Taking Proposition 3.28 and Lemma 3.29 together, we have:
Theorem 3.30. A reduced reaction w ≥ 0 is strongly bilevel feasible if and only if both of
the following conditions are satisfied:

(i) There exists exactly one bilevel feasible decomposition (wk) of w;

(ii) In the unique decomposition (wk), each wk is strongly bilevel feasible individually.

According to Theorem 3.30, if w is weakly bilevel feasible and (wk) is some bilevel feasible
decomposition of w, it might occur that each wk is strongly bilevel feasible individually. In
this case, however, w must have another bilevel feasible decomposition. Such case usually
happens when many commodities share the same portion of the graph, hence they indirectly
affect each other. We provide two examples to demonstrate this phenomenon.
Example 3.31. Consider the multi-commodity NPP with the graph in Figure 3.10a. Com-
modity 1 can use both tolled arcs in series while commodity 2 can only use the second tolled
arc. Figures 3.10b and 3.10d illustrate the reaction plots of the whole problem and of indi-
vidual commodities. In Figure 3.10b, notice that there are two edges that overlap each other
(highlighted as a thick line). This is due to the structure {u, v, p} being shared by both com-
modities. The label jumps from (1,0) above the edge to (1,2) below the edge, skipping the label
(1,1). The action plot (Figure 3.10c) confirms that w = (1,1) is weakly bilevel feasible, whose
action set T(w) is the thick line in Figure 3.10b. We can decompose w = (1,1) in two (over
infinitely many) different ways: (i) The red decomposition: w1 = (1, 1) and w2 = (0, 0);
(ii) The blue decomposition: w1 = (1, 0) and w2 = (0, 1). Figure 3.10d shows that in both
decompositions, each wk is strongly bilevel feasible individually. However, since there are
two bilevel feasible decompositions, by Theorem 3.30, w = (1, 1) fails to be strongly bilevel
feasible.

The paths corresponding to these decompositions are illustrated in the last two columns
of Figure 3.10d (unused arcs are hidden). In both decompositions, both commodities pass
through nodes u and v but they travel on different subpaths between u and v: one takes the
tolled arc u− v, while the other takes the toll-free segment u− p− v. However, a subpath of
the shortest path is the shortest subpath. Thus, both commodities should use the same subpath
between u and v: either both take the tolled arc, or both take the toll-free segment. Dewez
et al. [23] use this observation to add an inequality ruling this case out. In our framework
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(d) Individual reaction plots and decompositions of w = (1, 1)

Figure 3.10 – Illustrations for Example 3.31.

developed so far, we state that w = (1, 1) is weakly bilevel feasible, and by Theorem 3.22,
we should not consider w = (1, 1) as a solution of the NPP in favor of other strongly bilevel
feasible values of w such as w = (1, 2) (both take the tolled arc) and w = (1, 0) (both take
the toll-free segment).
Example 3.32. Strong bilevel feasibility is not limited to the case described in Example 3.31,
where two commodities passing through a pair of nodes must share the same subpath between
those nodes. We can craft an even more intricate example involving three commodities where
an integral weakly bilevel feasible w only appears when all three are considered. Consider
the NPP with graph in Figure 3.11a. Commodities 1 and 2 can only use tolled arcs 1 and
2 respectively, while commodity 3 can use both in parallel. The reaction plots of the overall
problem and individual commodities are shown in Figures 3.11b and 3.11d. We are interested
in w = (1, 1) which is weakly bilevel feasible according to the action plot in Figure 3.11c.
Its action set T(w) consists of only a single point t = (2, 3). Similar to Example 3.31,
w = (1, 1) has two bilevel feasible decompositions (wk), in which each wk is strongly bilevel
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Figure 3.11 – Illustrations for Example 3.32.

feasible individually: (i) The red decomposition: w1 = (1, 0), w2 = (0, 0), and w3 = (0, 1);
(ii) The blue decomposition: w1 = (0, 0), w2 = (0, 1), and w3 = (1, 0). The paths of the
decompositions are plotted in Figure 3.11e. In contrast to Example 3.31, no pair of nodes is
shared between any pair of commodities, which proves that strong bilevel feasibility is a more
general property than the one described in Example 3.31 (shared pair of nodes). Moreover, if
any commodity is excluded, this case will disappear, which shows that strong bilevel feasibility
involves multiple commodities simultaneously and cannot be considered separately.

Examples 3.31 and 3.32 illustrate the case where a weakly bilevel feasible w has a de-
composition (wk) such that each wk is strongly bilevel feasible individually, which implies
that the decomposition (wk) is not unique. It may also happen that a weakly bilevel feasible
w has a unique bilevel feasible decomposition (wk). In this case, there must be some wk

that is weakly bilevel feasible individually. For instance, w = (1, 1) in Example 3.4 has a
unique decomposition w1 = (0.5, 0.5) and w2 = (0.5, 0.5), making it weakly bilevel feasible.
In Section 3.4.1, we will explain how to use Theorem 3.30 to test strong bilevel feasibility of
a given w.

We return to the discussion at the start of this section. There are at most 2|A1||K| compo-
sitions (wk), among which only some are bilevel feasible. However, bilevel feasibility alone is
not sufficient to reduce this number to (|K| + 1)|A1|, since for a given w, there can be more
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than one bilevel feasible decomposition. Theorem 3.30 tells us that such w is weakly bilevel
feasible and by Theorem 3.22, we can eliminate all decompositions associated with w. As a
result, there are at most (|K| + 1)|A1| compositions (wk) that we need to enumerate, since
there are at most (|K| + 1)|A1| values of w, and each strongly bilevel feasible w has only
one bilevel feasible decomposition (wk). Therefore, strong bilevel feasibility is a complete
description of the asymmetry in the complexity of the NPP.

3.4. Numerical Experiments
In this section, we demonstrate that the asymmetry in the complexity of the NPP can

be exploited to solve instances with a high number of commodities more efficiently. More
specifically, we compare the performance of an MILP solver under two different MILPs:
a control program similar to Program (3.10), and the same program with additional cuts
called strong bilevel feasibility cuts. The programs and the procedure to generate the cuts
are explained in details in Section 3.4.1. Our experimental results are shown in Section 3.4.2.

3.4.1. Strong Bilevel Feasibility Cut

The NPP can be formulated in many different ways as systematized in Bui et al. [14]. In
our experiments, we chose the (PASTD) formulation in [14], which is recalled here for the
sake of completeness:

max
t,z,y

∑
k∈K

∑
pk∈Pk

ηkt⊤x̂pk

zk
pk (3.23a)

s.t.
∑

pk∈Pk

zk
pk = 1, k ∈ K, (3.23b)

A⊤yk ≤ c + t, k ∈ K, (3.23c)∑
pk∈Pk

(c + t)⊤x̂pk

zk
pk = (bk)⊤

yk, k ∈ K, (3.23d)

t ≥ 0, (3.23e)

zk
pk ≥ 0, k ∈ K, pk ∈ Pk. (3.23f)

This program is similar to Program (3.10) except that the arc representation xk
a is replaced by

the path representation zk
pk . In Program (3.23), Pk is the set of bilevel feasible paths, zk

pk is a
binary variable which indicates if the path pk ∈ Pk is chosen, while x̂pk is a constant vector,
whose element x̂pk

a = 1 if arc a ∈ A is in path pk, 0 otherwise. The program also includes
non-unit demand (or volume) ηk for each commodity. For the details on the linearization of
the bilinear terms t⊤x̂pk

zk
pk and the enumeration of paths to produce Pk, refer to Bui et al.

[14].
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The Program (3.23) is the control program, on which we will add strong bilevel feasibility
cuts. The main idea of the cuts is to eliminate compositions of paths (x̂pk) such that (x̂pk)
is bilevel infeasible or w =

∑
k∈K x̂pk

A1
is weakly bilevel feasible, which is undesirable in either

case according to Theorem 3.22. To do so, we need a test for strong bilevel feasibility. To
form Pk, we enumerate bilevel feasible paths x̂pk which, in the NPP, are already extreme
points of X k. Thus, for all k ∈ K, pk ∈ Pk, wk = x̂pk

A1
are, in fact, strongly bilevel feasible

individually. By Theorem 3.30, the aggregated reaction w =
∑

k∈K wk will be strongly bilevel
feasible if and only if w has no other bilevel feasible decomposition besides (wk). Given a
composition of paths (x̂pk), first we calculate w =

∑
k∈K x̂pk

A1
, then we solve the following

program:

max
x

∑
k∈K

∑
a∈A1

(1− x̂pk

a )xk
a (3.24a)

s.t.
∑
k∈K

xk
A1 ≤ w, (3.24b)

Axk = bk, k ∈ K, (3.24c)∑
k∈K

c⊤xk ≤
∑
k∈K

c⊤x̂pk

, (3.24d)

xk ≥ 0, k ∈ K. (3.24e)

If Program (3.24) has an objective value strictly greater than 0, then there are three cases:
— Constraint (3.24d) is strict, then

∑
k∈K c⊤x̂pk is not the smallest sum of base costs,

hence the composition (x̂pk) is bilevel infeasible (Definition 3.23).
— Constraint (3.24d) is an equality but constraint (3.24b) is strict for some a ∈ A1,

then ta = 0 for all t ∈ T(w) (complementary slackness). This means dim T(w) < n

implying that w is weakly bilevel feasible.
— Both constraints (3.24b) and (3.24d) are equalities, then both (x̂pk

A1
) and (xk

A1
) are

bilevel feasible decompositions of w. The objective function (3.24a) implies that (x̂pk

A1
)

and (xk
A1

) are distinct. Thus, w is weakly bilevel feasible.
Therefore, if Program (3.24) has a non-zero objective value, we can add a cut to eliminate
the composition (x̂pk).

Removing one composition at a time is inefficient and results in a large number of cuts.
Besides, the total number of compositions (x̂pk) that we need to test is exponential. Thus,
we limit the test to only pairs of paths. Next, we try to group the pairs of paths that will
be eliminated into blocks so we can produce more efficient cuts. The process is described in
Algorithm 3.2. Line 2 calculates the closeness score dij for each pair of commodities, defined
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as:
dij = |Aki ∩ Akj |

log2(|Pki ||Pkj |)
(3.25)

where Aki ⊆ A is the set of arcs that is used by at least one path in Pki (same for Akj ). The
idea is that the more arcs two commodities share, the more bilevel infeasible (x̂p, x̂q) there
will be. The denominator in Equation (3.25) prioritizes pairs with low number of paths,
since there are less compositions (x̂p, x̂q) to test, hence these pairs are faster to process.
Line 3 limits the generation of cuts to only N pairs. This parameter N is used to adjust the
amount of cuts added to the model. Lower values of N mean fewer cuts and less time spent
on generating cuts (and more time spent on actually solving the program). Lines 5-7 conduct
the strong bilevel feasibility test between all pairs of paths in the given pair of commodities
to build the matrix hpq. Line 8 groups all the compositions (x̂p, x̂q) that will be eliminated,
i.e. hpq = 1, into blocks. These blocks are the bicliques of a bipartite graph whose nodes
correspond to paths of each commodity (Pki ,Pkj ), and edges connect the pairs of paths that
will be eliminated. Thus, within a biclique (P̂ , Q̂), P̂ ⊆ Pki , Q̂ ⊆ Pkj , all (p, q) ∈ P̂ × Q̂ can
be removed. Therefore, in line 9, for each biclique (P̂ , Q̂), we add an inequality constraint
in the form of: ∑

p∈P̂

zki
p +

∑
q∈Q̂

zkj
q ≤ 1. (3.26)

Ideally, we want to add as few cuts as possible, so in line 8, our aim is to find the cover
with the fewest number of bicliques. Unfortunately, the minimum biclique cover problem is
NP-hard [28], so we use a heuristic. Note that the process in Algorithm 3.2 is just one of the
possible ways of generating some strong bilevel feasibility cuts, and serves only as a proof of
concept. In a more general implementation, one can modify the closeness score, test strong
bilevel feasibility for more than two paths at a time, or ignore the cut for some bicliques.

3.4.2. Setup and Results

We tested the performance of the cuts by varying the parameter N in Algorithm 3.2
within the set {0, 10, 20, 50, 100, 200, 500, 1000}. The case with no cuts (N = 0) is the
control case. If the cuts are effective, then we should see better results when N increases.
All cases were tested on 350 randomly generated instances, whose graphs are L×L grid with
L decreasing from 12 to 6 (50 instances for each L). Decreasing L makes the graph smaller,
hence lowers the difficulty. To compensate for this, we increase the number of commodities
|K| so that the product |A1||K| stays constant (which is the number of binary variables of
the MILP, as explained in Section 3.2.3). The particular values of L and |K| are listed in
Table 3.2. The fourth column in Table 3.2 shows the reduction ratios of |A| compared to
the first case (L = 12). As a result, |K| in the last five columns must increase by the same
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Algorithm 3.2 Generation of strong bilevel feasibility cuts
Input: The NPP instance, parameter N .
Output: Program (3.23) with strong bilevel feasibility cuts.

1: For each k ∈ K, enumerate the set of bilevel feasible paths Pk

2: For each (ki, kj) ∈ K2, calculate the closeness score dij

3: Choose N pairs in K2 with the highest dij to form K2
N

4: for all (ki, kj) ∈ K2
N do

5: for all (p, q) ∈ Pki × Pkj do
6: Run Program (3.24) on composition (x̂p, x̂q)
7: hpq ← 1 if the objective value is non-zero, 0 otherwise
8: Find a solution of the biclique cover problem between Pki and Pkj with hpq being

the adjacency matrix
9: Add cuts of the form in Equation (3.26) based on the biclique cover

Table 3.2 – The number of commodities |K| in relation to the grid size L.

L |V| |A| Ratio |K|

12 144 528 1.00 30 35 40 45 50
11 121 440 1.20 36 42 48 54 60
10 100 360 1.47 44 51 59 66 73
9 81 288 1.83 55 64 73 82 92
8 64 224 2.36 71 82 94 106 118
7 49 168 3.14 94 110 126 141 157
6 36 120 4.40 132 154 176 198 220

ratios. Ten instances are generated for each cell in the last five columns. There are five
columns and seven rows, which results in 350 instances in total. Other parameters such as
the distribution of the costs, the proportion of tolled arcs, etc., can be found in Bui et al.
[14].

We conducted 2800 runs in total (8 values of N times 350 instances). At the start of
each run, commodity-wise preprocessing (described in [14]) is applied. Then, strong bilevel
feasibility cuts are generated and added to Program (3.23) based on N . The preprocessing
and cut generation are implemented in Julia. After all cuts are added, we use Gurobi
1.6.1 [31] to solve the final MILP. Every step is done in a single thread (AMD EPYC 7532
2.4GHz CPU, 8GB of RAM). The time limit for each run is one hour, including the time
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for preprocessing, cut generation, and solution. All runs were done on the Narval cluster
provided by Compute Canada.

The runs are grouped by N and L, with 50 runs per group (10 instances for 5 different
values of |K| given L). We evaluate each group using three metrics: the number of instances
solved to optimality within the time limit, the average time, and the average optimality gap.
For the first metric, higher is better, while it is the reverse for the other two. The results are
shown in Table 3.3. Figure 3.12 plots the metrics for N = 0, 100, and 1000. According to
the results, increasing N improves the performance significantly when L is low. Specifically,
at L = 6, the case N = 1000 can solve 15/50 more instances compared to the control case
N = 0. On the contrary, the cuts have a detrimental effect on larger graphs, i.e. when L

is high. Thus, the cuts are more effective in the cases with high |K| and low |A1|. This
demonstrates that there exists an asymmetry in the complexity of the NPP and it is possible
to take advantage of this asymmetry to accelerate the solution of the NPP with a small
graph and a high number of commodities.

3.5. Conclusion
In this paper, we proved that the number of commodities |K| and the number of tolled

arcs |A1| scale the NPP differently. Particularly, if |A1| is fixed, the problem can be solved
in polynomial time with respect to |K|. We explained the logic behind this asymmetry
with the use of convex conjugate, through which we derived the conjugate model, bilevel
feasibility, and strong bilevel feasibility. To the best of our knowledge, this approach is
innovative compared to other applications of the convex conjugate in bilevel programming
such as Fenchel-Lagrange duality [1]. Indeed, these tools can be extended to other pricing
problems as long as the assumption that f is a polyhedral function is kept (as utilized in
Theorem 3.17). Future directions include further algorithmic exploration of the generation
of strong bilevel feasibility cuts and extensions to the case where the follower solves an MILP.
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Table 3.3 – Results of the experiment.

Metrics N
L

12 11 10 9 8 7 6

Number of
solved

instances

0 20 12 15 11 13 14 19
10 19 11 13 11 14 15 19
20 19 11 15 11 14 14 21
50 19 13 13 11 13 16 20
100 17 12 14 12 16 16 22
200 17 12 14 10 14 21 25
500 17 11 12 9 16 27 31
1000 17 11 11 7 15 25 34

Average
time

(minutes)

0 42 50 49 51 49 50 44
10 42 50 49 52 49 50 44
20 43 51 50 51 49 50 45
50 44 51 50 51 49 50 43
100 47 52 50 51 48 49 43
200 49 53 52 52 48 48 40
500 51 55 54 54 48 42 36
1000 51 55 56 55 51 43 31

Average
gap
(%)

0 4.5 4.7 4.7 5.0 5.2 4.2 3.6
10 4.5 4.9 4.6 5.3 5.1 4.2 3.6
20 4.8 4.8 4.6 4.9 5.1 4.3 3.4
50 4.6 4.9 4.7 5.1 5.0 4.2 3.5
100 4.8 5.3 5.0 5.4 4.9 4.0 3.3
200 5.2 5.7 5.5 5.9 5.0 3.7 3.1
500 5.7 6.6 6.2 6.4 5.0 3.1 2.4
1000 5.9 7.6 8.3 7.7 6.3 3.3 2.0

3.A. Extension to the non-unit demand case
Let ηk be the demand of commodity k ∈ K. The bilevel formulation of the non-unit

demand case is:
max
t,xk

{∑
k∈K

ηkt⊤xk | t ∈ T , xk ∈ Rk(t) ∀k ∈ K
}

,

where Rk(t) is the reaction set of follower k ∈ K, defined in Equation (3.4).
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Figure 3.12 – Plots of the results for selected values of N .

To derive the conjugate model for the non-unit demand case, we aggregate the followers’
problems with weights ηk. In particular, the conjugate bilevel formulation of the non-unit
demand case is still:

max
w,t
{w⊤t | w ≥ 0, t ∈ T(w)}
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where T(w) is the set of t that are optimal to the modified conjugate follower formulation:

max
t,yk

{∑
k∈K

(
ηk(bk)⊤

yk
)
− w⊤t | A⊤yk − t ≤ c ∀k ∈ K, t ≥ 0

}
.

In this case, we have w =
∑

k∈K ηkxk
A1

which may not be integral. However, Theorem 3.1
still applies since the reaction plot is invariant to ηk, hence there are still at most (|K|+1)|A1|

regions in the composed reaction plot. In fact, with fixed |A1|, one can solve the non-unit
demand case in polynomial time as follows:

(1) Assume ηk = 1 and enumerate w̃ in {0, 1, . . . , |K|}|A1|;

(2) Solve for t given w̃ as in the unit demand case;

(3) Solve for xk given t and compute the final revenue
∑

k∈K ηkt⊤xk.
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Abstract. The combinatorial pricing problem (CPP) is a bilevel problem in which the
leader maximizes their revenue by imposing tolls on certain items that they can control.
Based on the tolls set by the leader, the follower selects a subset of items corresponding to
an optimal solution of a combinatorial optimization problem. To accomplish the leader’s
goal, the tolls need to be sufficiently low to discourage the follower from choosing the items
offered by the competitors. In this paper, we derive a single-level reformulation for the CPP
by rewriting the follower’s problem as a longest path problem using a dynamic programming
model, and then taking its dual and applying strong duality. We proceed to solve the
reformulation in a dynamic fashion with a cutting plane method. We apply this methodology
to two distinct dynamic programming models, namely, a novel formulation designated as
selection diagram and the well-known decision diagram. We also produce numerical results
to evaluate their performances across three different specializations of the CPP. Our results
showcase the advantage of the two proposed reformulations over the natural value function
approach, expanding the tools to solve combinatorial bilevel programs.
Keywords: Combinatorial pricing problem, Stackelberg pricing game, Selection diagram,
Decision diagram

4.1. Introduction
Consider a bilevel problem with two decision makers where one agent, the leader, sets

the tolls (i.e. markups) of certain items, then the other agent, the follower, selects a subset
of items according to another optimization problem (also known as the follower’s problem).
The follower has a choice between the items that the leader controls (called tolled items),
and other items offered by the leader’s competitors, whose prices, we assume, are fixed. The
goal of the leader is to maximize the sum of tolls of the selected tolled items. Although the
leader naturally wants to set the tolls high, such tolls cannot be excessive since the leader
still needs the follower to choose their items in order to gain a profit. Thus, the objectives of
the two agents are neither adversarial nor cooperative. In this paper, we investigate the case
where the follower’s problem is a combinatorial optimization problem which can be expressed
as a binary linear program. We refer to the overall bilevel problem as combinatorial pricing
problem (CPP). In the literature, the CPP is also called the Stackelberg pricing game.

Motivation. The CPP is inspired by the network pricing problem (NPP) introduced by
Labbé et al. [40]. The NPP is a specific case of the CPP where the follower’s problem
is a shortest path problem. In the CPP, the shortest path problem is replaced by other
combinatorial problems such as the minimum spanning tree problem [18], the knapsack
problem [7, 50], the stable set problem [16], and the bipartite vertex cover problem [8]. This
class of problems is usually proven to be NP-hard [18, 51] or Σp

2-hard [16].
Except for the NPP, most papers in the literature focus on the problems computational

complexity classification and approximation schemes. Regarding the exact solution methods,
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general bilevel solvers like MibS [54] or the one by Fischetti et al. [26] are not applicable due to
the leader’s variables (the tolls in this case) being continuous and appearing in the follower’s
constraints. A popular method to solve the NPP is to find a dual of the follower’s problem
and then use the Karush-Kuhn-Tucker conditions to convert the bilevel problem to a single-
level reformulation [6, 14, 24, 33]. This method, referred to as dualize-and-combine, is not
trivial to generalize to the CPP because a dual of a binary linear program is not generally
defined and even if it exists, it is often computationally untractable. A relatively novel
technique to formulate a dual is described in Lozano et al. [43], in which the authors use
decision diagrams [3] to derive single-level reformulations for interdiction problems.

Contributions. Our first contribution is the application of the technique in Lozano et al.
[43] to the CPP. We convert the follower’s problem into an equivalent longest path problem
corresponding to a dynamic programming model. The longest path problem has a linear
programming formulation, hence we can dualize this linear program and combine it with the
original primal follower’s program to create a valid single-level reformulation for the CPP.
Besides decision diagrams, we also experiment with a new dynamic programming model
called selection diagrams.

Even with the reformulation well-defined, the computational untractability issue still
remains due to the very likely large size of the reformulation. Thus, we propose a dynamic
constraint generation scheme similar to the cutting plane method. We provide numerical
results to compare the performance of these formulations in the context of 3 specializations
of the CPP, in which the follower’s problems are the knapsack problem, the maximum stable
set problem, and the minimum set cover problem, respectively. These results support a
promising direction to scale the solving of the CPP.

Paper Organization. In Section 4.2, we describe the bilevel formulation of the CPP and
its value function reformulation, which serves as an introduction to the dualize-and-combine
methodology. We define two different dynamic programming models: selection diagram and
decision diagram in Section 4.3, as well as the dynamic constraint generation algorithms
corresponding to each model. Section 4.4 presents the experiment setups and numerical
results. Finally, Section 2.6 concludes the paper.

4.2. Combinatorial Pricing Problem
4.2.1. Problem Description

Consider a combinatorial optimization problem with decision variables x ∈ X ⊆ {0, 1}I

indexed by the set of items I. Each item i ∈ I has an associated base value vi ∈ R. The set
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I is partitioned into the set of tolled items I1 and the set of toll-free items I2. The leader
wishes to impose a toll ti ≥ 0 for each tolled item i ∈ I1. For the toll-free items i ∈ I2, we
set ti = 0. Let T = RI1

+ × {0}I2 be the set of feasible tolls. The overall CPP is formulated
as a bilevel program:

max
t,x
{t⊤x | t ∈ T , x ∈ R(t)}

where R(t) ⊆ X is the set of optimal solutions of the follower’s problem given the toll t,
defined by:

R(t) = arg max
x
{(v − t)⊤x | x ∈ X}. (4.1)

Note that if R(t) is not a singleton, i.e. there are multiple optimal solutions of the
follower’s problem, then the follower will choose a solution x that yields the most revenue
t⊤x for the leader. This is commonly referred to as the optimistic assumption.
Example 4.1. The knapsack pricing problem (KPP) is a case of the CPP where the under-
lying optimization problem is a knapsack problem. Let w ∈ RI

+ and C > 0 be the knapsack
weights and capacity, respectively. Then, the follower’s problem of the KPP becomes:

R(t) = arg max
x
{(v − t)⊤x | w⊤x ≤ C, x ∈ {0, 1}I}.

We make several remarks regarding the KPP:
Remark 4.2. The leader has no incentive to set ti > vi. Indeed, in the perspective of the
follower, vi− ti < 0 is the same as vi− ti = 0, and neither case gives the leader any revenue,
so the leader may as well set ti = vi. Thus, we can assume that ti ≤ vi for all i ∈ I.
Remark 4.3. There always exists an optimal solution x∗ of the KPP that is maximal. This
follows Remark 4.2, since including any new item produces a profit for both the follower and
the leader. This property is referred to as monotonicity [27].

4.2.2. Value Function Formulation

One method to solve the CPP is to convert the bilevel program into a single-level refor-
mulation. Such formulation requires a dual representation of the follower’s problem (4.1).
The follower’s problems that we are interested in are binary programs, hence the dual rep-
resentation is not trivial to derive. Despite that, next we show how such dual representation
could be determined and used within a cutting plane method.

Define a new binary variable zx̂ ∈ {0, 1} that indicates if a particular solution x̂ ∈ X is
selected or not. We reformulate Program (4.1) as follows:

max
z

{∑
x̂∈X

((v − t)⊤x̂)zx̂

∣∣∣ ∑
x̂∈X

zx̂ = 1, z ∈ {0, 1}X
}

. (4.2)
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Program (4.2) is totally unimodular, hence we can relax z ∈ {0, 1}X to z ≥ 0. The dual
of its linear relaxation is:

min
L
{L | L ≥ (v − t)⊤x̂, x̂ ∈ X}. (4.3)

Combining Program (4.1) and Program (4.3) with the strong duality condition, we derive
the single-level reformulation:

max
t,x,L

t⊤x (4.4a)

s.t. x ∈ X , (4.4b)

L ≥ (v − t)⊤x̂, x̂ ∈ X , (4.4c)

(v − t)⊤x = L, (4.4d)

t ∈ T . (4.4e)

Observe that Constraints (4.4c) and (4.4d) imply:

(v − t)⊤x ≥ (v − t)⊤x̂, x̂ ∈ X . (4.5)

This is usually referred as the (optimal) value function constraint. Thus, we refer to
Program (4.4) as the value function formulation.
Example 4.4. Consider a KPP instance of four items I = {1,2,3,4}. The first three items
are tolled, i.e. I1 = {1,2,3} and I2 = {4}. The base values are v = (1,1,1,1). The knapsack
weights and capacity are w = (1,1,1,2) and C = 3 respectively. Thus, we have

X = {x ∈ {0, 1}4 | x1 + x2 + x3 + 2x4 ≤ 3}.

By Remark 4.3, we only need to keep track of the maximal solutions. There are four
maximal solutions in X : (1,1,1,0), (1,0,0,1), (0,1,0,1), and (0,0,1,1). It is more convenient
to refer to them as the sets they represent: {1,2,3}, {1,4}, {2,4}, and {3,4}. The value
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function formulation corresponding to this KPP instance is:

max
t,x,L

t1x1 + t2x2 + t3x3

s.t. x1 + x2 + x3 + 2x4 ≤ 3,

L ≥ 3− t1 − t2 − t3,

L ≥ 2− t1,

L ≥ 2− t2,

L ≥ 2− t3,

(1− t1)x1 + (1− t2)x2 + (1− t3)x3 + x4 = L,

x ∈ {0, 1}4,

t ≥ 0.

To solve Program (4.4) as an MILP, we need to linearize the bilinear term t⊤x. This
can be done using the McCormick envelope [46] by replacing tixi for each i ∈ I1 with si,
accompanied by the following constraints:

0 ≤ si ≤Mixi, 0 ≤ ti − si ≤Mi(1− xi),

where Mi is a sufficiently large bound of tixi. For instance, a valid bound for the KPP is
Mi = vi due to Remark 4.2.

Typically, the size of X is exponential, so in practice, we generate Constraint (4.4c)
dynamically in a cutting plane fashion as described in Algorithm 4.1.

4.3. Embedded Dynamic Programming Model
The value function formulation in Program (4.4) is simple and general. However, the

structure of the follower’s problem is oblivious to the dual representation. We aim to intro-
duce some structural information back to the dual in the form of a dynamic programming
(DP) model. It is well-known that any DP model with a finite number of states and actions
can be represented as a directed multigraph [4]. Thus, for our convenience, we define all DP
models by their graph representations. Suppose that the follower’s problem possesses a DP
model whose definition includes:

— A set of nodes V (corresponding to the states);
— A set of arcs A (corresponding to the actions);
— Two functions u, w : A → V that return the source node u(a) and the target node

w(a) of arc a, respectively;
— An item function I : A → 2I which is later used to define the length of the arcs;
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Algorithm 4.1 Solution of Program (4.4) with dynamically generated constraints
Input: The CPP instance.
Output: The optimal solution (t∗, x∗) of the CPP instance.

1: Create the master problem from Program (4.4) without Constraint (4.4c).
2: loop
3: Solve the master problem and let (t̃, x̃) be the current optimal solution.
4: Solve Program (4.1) with t = t̃ for x̂. ▷ i.e. choose any x̂ ∈ R(t̃)
5: if (v − t̃)⊤

x̃ < (v − t̃)⊤
x̂ then

6: ▷ (t̃,x̃) is not bilevel feasible. Add new constraint. ◁

7: Add the constraint L ≥ (v − t)⊤x̂ to the master program.
8: else
9: ▷ (t̃,x̃) is bilevel feasible. Stop. ◁

10: (t∗, x∗)← (t̃, x̃)
11: break
12: return (t∗, x∗)

— An initial node p ∈ V and a terminal node q ∈ V .
The directed multigraph (V ,A, u, w) must be acyclic. We define the length F (a; t) of arc

a ∈ A given toll t ∈ T as the sum of the tolled values of all the items in I(a):

F (a; t) =
∑

i∈I(a)

(vi − ti).

The objective of the DP model is to find the longest path from p to q. Henceforth, when
we refer to paths, we mean paths from p to q. This optimization problem can be expressed
by the following formulation (which is the dual of a typical linear formulation for the longest
path problem):

min
y

yp (4.6a)

s.t. yu(a) ≥ F (a; t) + yw(a), a ∈ A, (4.6b)

yq = 0. (4.6c)

Because the DP model is equivalent to the follower’s problem (i.e. they return the same
optimal objective value), we can use Program (4.6) as a dual representation in a similar way
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to Program (4.3). The result is a new single-level reformulation:

max
t,x,y

t⊤x (4.7a)

s.t. x ∈ X , (4.7b)

yu(a) ≥ F (a; t) + yw(a), a ∈ A, (4.7c)

yq = 0, (4.7d)

(v − t)⊤x = yp, (4.7e)

t ∈ T . (4.7f)

p q

x̂1

x̂2

x̂3

x̂4

x̂5

Figure 4.1 – Value function formulation as a DP model.

Example 4.5. The value function formulation Program (4.4) can be thought as a special
case of Program (4.7). Indeed, consider a DP model consisting of only two nodes p and q.
Each solution x̂ ∈ X corresponds to an arc ax̂ ∈ A. The item function is defined to be the
set of items selected in x̂:

I(ax̂) = {i ∈ I | x̂i = 1}.

Then, the variable L in Program (4.4) is identical to yp in Program (4.7). The DP graph of
the value function formulation is shown in Figure 4.1. In all graphs illustrated in this paper,
the arcs are always directed from left to right.

In this section, we explore the application of Program (4.7) to two types of DP models:
selection diagrams (Section 4.3.1) and decision diagrams (Section 4.3.2). The former defines
the actions based on the items to be selected, while the latter defines the actions as decisions
to include or exclude a specific item. For each type of model, we also describe the proce-
dure to solve Program (4.7) dynamically as in Algorithm 4.1 alongside any other technical
improvement.

4.3.1. Selection Diagram

The first family of dynamic programming models that we investigate is called selection
diagram. In a selection diagram, at each step, the follower either selects an item to be
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included into the current partial solution, or decides to stop and returns the solution. In
particular, let I(x̂) = {i ∈ I | x̂i = 1} be the set of items selected in x̂ ∈ X . The set of
nodes in a selection diagram is the family of subsets of I that are contained in some feasible
solution in X , adjoined with a special terminal node q:

V = {J ⊆ I | J ⊆ I(x̂) for some x̂ ∈ X} ∪ {q}.

The initial node in this case is the node ∅.
For every pair of nonterminal nodes J , K ∈ V \ {q} such that J ⊆ K and |K| − |J | = 1,

we add an arc aJK from J to K such that I(aJK) = K \ J . Evidently, I(aJK) is a singleton.
Moreover, given a nonterminal node J , if J = I(x̂) for some x̂ ∈ X , then we connect J

directly to q with a terminal arc āJ with I(āJ) = ∅.
With this construction, the nodes on a path from ∅ to q form a sequence of nested subsets

of I:

∅ , {i1} , {i1, i2} , . . . , {i1, . . . ,in} , q

such that {i1, . . . ,in} = I(x̂) for some x̂ ∈ X . The length of such a path is exactly (v − t)⊤x̂.
Thus, finding the longest path in a selection diagram is equivalent to finding the solution
x̂ ∈ X that yields the highest objective value for the follower.
Example 4.6. The selection diagram for the KPP instance in Example 4.4 is illustrated
in Figure 4.2. Once again, we only keep track of four maximal solutions: {1,2,3}, {1,4},
{2,4}, {3,4}. Note that for a given solution x̂ ∈ X , there can be multiple paths from ∅ to q.
Applying Program (4.7) to Figure 4.2, Constraints (4.7c) and (4.7d) become:

y∅ ≥ 1− t1 + y1, y∅ ≥ 1− t2 + y2, y∅ ≥ 1− t3 + y3, y∅ ≥ 1 + y4,

y1 ≥ 1− t2 + y12, y2 ≥ 1− t1 + y12, y3 ≥ 1− t1 + y13, y4 ≥ 1− t1 + y14,

y1 ≥ 1− t3 + y13, y2 ≥ 1− t3 + y23, y3 ≥ 1− t2 + y23, y4 ≥ 1− t2 + y24,

y1 ≥ 1 + y14, y2 ≥ 1 + y24, y3 ≥ 1 + y34, y4 ≥ 1− t3 + y34,

y12 ≥ 1− t3 + y123, y13 ≥ 1− t2 + y123, y23 ≥ 1− t1 + y123,

y14 ≥ 0, y24 ≥ 0, y34 ≥ 0, y123 ≥ 0.

4.3.1.1. Dynamic Generation. The number of subsets of I is exponential with respect to
|I|, so in practice, enumerating the full set of Constraints (4.7c) and (4.7d), as in Example 4.6,
is untractable. Thus, a method to generate the variables and constraints dynamically is
required. Furthermore, some popular MILP solvers do not support column generation, so
the dynamic generation of the variables yJ is usually not feasible. In this section, we describe
an algorithm to solve Program (4.7) using a selection diagram which is updated dynamically
only with new constraints (which are often referred to as lazy constraints).

95



∅

{1}

{2}

{3}

{4}

{1,2}

{1,3}

{2,3}

{1,4}

{2,4}

{3,4}

{1,2,3}

q

Note: Dashed arcs represent the terminal arcs.

Figure 4.2 – Selection diagram of Example 4.6.

The first step is to choose a set of nodes V̂ that will be used throughout the procedure.
This set of nodes is final, since we do not opt for column generation. Evidently, the initial
node ∅ and the terminal node q must be in V̂ . For the remaining nodes, we limit our options
to only singletons and pairs, i.e. we only consider the nodes J where |J | ∈ {1, 2}. Even so,
some pairs may not belong to a feasible solution, and the number of all pairs is often too
large, hence not every pair should be present in the selection diagram. We propose a sampling
algorithm described in Algorithm 4.2. The algorithm iteratively samples a solution x̂ ∈ X ,
then it randomly selects a pair within I(x̂). After reaching the desired number of pairs,
it builds the connections within the first two layers. The end result is an initial selection
diagram to be used in Program (4.7).

The single-level reformulation (Program (4.7)) derived from the initial selection diagram
is a relaxation of the one derived from the full selection diagram. Indeed, we did not connect
any node to the terminal node q. As a result, the value of y∅ is not “grounded” and the
dual representation has no effect at the beginning. Over the course of the procedure, we
introduce new paths by connecting nonterminal nodes J to q using a modified terminal arc
âJ . As long as the paths that we add to the diagram correspond to feasible solutions in
X , the reformulation remains valid. Such solutions are obtained by solving the follower’s
problem similarly to Algorithm 4.1. The whole process is described in Algorithm 4.3.
Example 4.7. Consider the KPP instance introduced in Example 4.4. At line 4 in Al-
gorithm 4.2, instead of sampling a random solution, we once again exploit monotonicity
(Remark 4.3) and sample only maximal solutions in X . Suppose that we sample the two
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Algorithm 4.2 Generation of the initial selection diagram
Input: The CPP instance, the desired number of pairs N .
Output: The set of nodes V̂ and the set of initial arcs Â.

1: ▷ Initial nodes ◁

2: V̂0 ← {∅}, V̂1 ← ∅, V̂2 ← ∅
3: for n = 1, . . . ,N do
4: Sample x̂ ∈ X
5: Sample a random pair {i, j} within I(x̂)
6: V̂1 ← V̂1 ∪ {i, j} ▷ Set of singletons
7: V̂2 ← V̂2 ∪ {{i, j}} ▷ Set of pairs
8: V̂ ← V̂0 ∪ V̂1 ∪ V̂2 ∪ {q}
9: ▷ Initial arcs ◁

10: Â ← ∅
11: for k = 1,2 do
12: for all J ∈ V̂k−1, K ∈ V̂k do
13: if J ⊆ K then
14: Create an arc aJK from J to K

15: I(aJK)← K \ J

16: Â ← Â ∪ {aJK}
17: return (V̂ , Â)

pairs {1,2} and {2,4} in line 5. The initial selection diagram returned by Algorithm 4.2 is
drawn in Figure 4.3 (consider only the solid arcs).

The dashed arcs in Figure 4.3 represent the modified terminal arcs added by Algorithm 4.3
corresponding to the four maximal solutions. The two solutions {1,2,3} and {2,4} contain
some pairs in the initial diagram, hence we can connect those pairs to q (which is the best
case). There is no pair contained in the other two solutions {1,4} and {3,4}, so we fall back
to singletons. Note that some solutions like {1,4} can be introduced in multiple ways (from
either state {1} or {4}). In that case, we choose a random node by iterating V̂k in a random
order (line 9 in Algorithm 4.3). In the worst case, we can add an arc from ∅ directly to
q, which is equivalent to a value function constraint. Thus, we can always introduce any
feasible solution into the diagram.

4.3.2. Decision Diagram

A family of dynamic programming models that is commonly used in the literature is
decision diagrams [3, 43]. In a decision diagram, each step represents the decision to include
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Algorithm 4.3 Solution of Program (4.7) using selection diagram with dynamically gener-
ated constraints
Input: The CPP instance, the initial selection diagram (V̂ , Â).
Output: The optimal solution (t∗, x∗) of the CPP instance.

1: Create the master problem from Program (4.7) using the diagram (V̂ , Â).
2: loop
3: Solve the master problem and let (t̃, x̃) be the current optimal solution.
4: Solve Program (4.1) with t = t̃ for x̂. ▷ i.e. choose any x̂ ∈ R(t̃)
5: if (v − t̃)⊤

x̃ < (v − t̃)⊤
x̂ then

6: ▷ (t̃,x̃) is not bilevel feasible. Add new constraint. ◁

7: added← false
8: for k = 2,1,0 do
9: for all J ∈ V̂k do ▷ Iterate in a random order

10: if J ⊆ I(x̂) then
11: Create an arc âJ from J to q

12: I(âJ)← I(x̂) \ J

13: Â ← Â ∪ {âJ}
14: Add yJ ≥

∑
i∈I(âJ )(vi − ti) to the master program.

15: added← true
16: break
17: if added then
18: break ▷ Break the for loop, go back to the outer loop
19: else
20: ▷ (t̃,x̃) is bilevel feasible. Stop. ◁

21: (t∗, x∗)← (t̃, x̃)
22: break
23: return (t∗, x∗)

or exclude a specific item. Let n = |I| and let (i1, i2, . . . , in) be an ordering of the items
in I. A proper node (neither p nor q) in a decision diagram is a tuple (k, sk) of a step
k ∈ {1, . . . ,n − 1} and a state sk. The definition of the states sk is problem-specific. We
partition V into n + 1 layers: V0 which contains only p; Vk which contains all nodes (k, sk)
for k = 1, . . . ,n− 1; and Vn which contains only q.

For k = 0, . . . ,n − 1, a node uk ∈ Vk has at most two outgoing arcs a0
uk

and a1
uk

,
corresponding to the decisions xik+1 = 0 and xik+1 = 1. The targets of these arcs are in the
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Note: Solid arcs are the initial arcs, while dashed arcs represent the modified terminal arcs added
during Algorithm 4.3. The labels of the dashed arcs are I(âJ ).

Figure 4.3 – Dynamically generated selection diagram of Example 4.7.

next layer Vk+1. The item function is defined as follows:

I(a0
uk

) = ∅, I(a1
uk

) = {ik+1}.

A path in a decision diagram represents a series of decisions (xi1 , . . . , xin), fixing the
choice of one item at every step. At the end of the path, all entries in x have been fixed and
the value of x should correspond to a feasible solution x̂ ∈ X given a suitable description
of the nodes. In this paper, we provide the descriptions of the decision diagrams for three
specific problems: the knapsack problem (Example 4.8), the maximum stable set problem
(Section 4.3.2.3), and the minimum set cover problem (Section 4.3.2.4). The descriptions of
the decision diagrams for several other problems can be found in [3].
Example 4.8. In the decision diagram of the knapsack problem, we define the state sk at
step k as the remaining capacity after xi1 , . . . ,xik

have been decided. Furthermore, we express
the initial node p as (0, C) and the terminal node q as (n, 0). The arc a0

uk
is always available

and it sends (k,sk) to (k + 1,sk). The arc a1
uk

only exists if sk ≥ wik+1, i.e. there is enough
remaining capacity to fit the item ik+1. In that case, it connects (k,sk) to (k + 1,sk −wik+1).
An exception is that all arcs from the second-to-last layer Vn−1 end at the terminal node
instead.

The decision diagram for the KPP instance in Example 4.4 is illustrated in Figure 4.4a.
We can use Remark 4.3 to simplify the graph. At step k, if the state sk satisfies sk ≥∑n

j=k+1 wij
, then we must set xij

= 1 for all j > k in order to have a maximal solution.
Thus, for each k, we can merge all states sk such that sk ≥

∑n
j=k+1 wij

. Furthermore,
if a0

uk
and a1

uk
end at the same node, we can eliminate a0

uk
since including the item ik is

prioritized. The final result is shown in Figure 4.4b. Applying Program (4.7) to Figure 4.4b,
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Constraints (4.7c) and (4.7d) become (note that yp = y0,3):

y0,3 ≥ y1,3, y0,3 ≥ 1− t1 + y1,2, y2,1 ≥ y3,1, y2,1 ≥ 1− t3 + y3,0,

y1,2 ≥ y2,2, y1,2 ≥ 1− t2 + y2,1, y2,2 ≥ y3,2, y2,2 ≥ 1− t3 + y3,1,

y1,3 ≥ y2,3, y1,3 ≥ 1− t2 + y2,2, y3,0 ≥ 0, y2,3 ≥ 1− t3 + y3,2,

y3,1 ≥ 0, y3,2 ≥ 1.
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(a) Full

3
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3

1
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0

1

2

0

(b) Simplified

Note: The labels of the nodes are the states sk. The steps of the nodes are implied from left to right
as k = 0, . . . ,4. Solid arcs and dashed arcs represent the decisions xk = 1 and xk = 0, respectively.

Figure 4.4 – Decision diagrams of Example 4.8.

4.3.2.1. Dynamic Generation. Similar to selection diagrams, the number of nodes in a
decision diagram is exponential on |I|. Thus, we also wish to solve Program (4.7) using a
dynamically generated decision diagram. Algorithm 4.4 describes a sampling algorithm that
returns an initial decision diagram. The size of the initial decision diagram is controlled by a
parameter W which is called the width of the diagram. As the name suggests, it holds that
|V̂k| ≤ W for all k = 1, . . . ,n − 1. The algorithm samples exactly W solutions x̂ ∈ X (line
4), finds a path in the full diagram for each x̂ (line 5), then incorporates those paths into
the initial diagram (lines 6 and 7). The path-finding step is problem-specific, but usually, it
can be done quite efficiently without explicitly enumerating the full diagram.

Updating a decision diagram is more complex than updating a selection diagram. We
propose a method to append a path corresponding to a new solution x̂ ∈ X using as many
nodes in V̂ as possible. Let B be a superset of A consisting of all valid transitions of the
decision diagram, which is problem-specific. The longest path in (V ,B) must have the same
length as the longest path in (V ,A). Unlike A, for b ∈ B, u(b) and w(b) need not be in
consecutive layers, and I(b) can have more than one item. For instance, B can include, but
is not limited to, the aggregations of path segments in A. The testing of membership in B
should be fast and should not require the enumeration of B.
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Algorithm 4.4 Generation of the initial decision diagram
Input: The CPP instance, the desired width W .
Output: The set of nodes V̂ and the set of initial arcs Â.

1: V̂ ← ∅ ▷ Initial nodes
2: Â ← ∅ ▷ Initial arcs
3: for ω = 1, . . . ,W do
4: Sample x̂ ∈ X
5: Find a path π corresponding to x̂ in the full decision diagram
6: V̂ ← V̂ ∪ V(π) ▷ V(π) is the set of nodes in π

7: Â ← Â ∪ A(π) ▷ A(π) is the set of arcs in π

8: return (V̂ , Â)

We partition V̂ into layers V̂0, . . . ,V̂n such that V̂k ⊆ Vk for all k = 0, . . . ,n. Given a
solution x̂ ∈ X that we wish to introduce into the diagram, consider the subset:

B̂(x̂) = {b ∈ B | u(b) ∈ V̂j, w(b) ∈ V̂k, I(b) = Ijk(x̂) for some j < k}

where

Ijk(x̂) = I(x̂) ∩ {ij+1, . . . ,ik}.

Enumerating B̂(x̂) takesO(|V̂|2)-time assuming that the testing of membership in B takes
constant time (a loop for u(b) ∈ V̂j and an inner loop for w(b) ∈ V̂k). By construction, every
path in the graph (V̂ , B̂(x̂)) corresponds to x̂. We then find the longest path in (V̂ , B̂(x̂))
where the length of all arcs is exactly 1. Finally, we introduce this path as a set of new
constraints. The whole process is outlined in Algorithm 4.5.
Example 4.9. In the KPP, we can derive a path corresponding to a given x̂ ∈ X in the
full diagram (line 5 in Algorithm 4.4) by keeping track of the remaining capacity at step k,
defined by the following recursive equations:

s0 = C,

sk =

sk−1 − wik
if ik ∈ I(x̂),

sk−1 if ik /∈ I(x̂),
for k = 1, . . . ,n− 1.

The nodes on the path are p,(1,s1), . . . ,(n − 1,sn−1),q. Applying Algorithm 4.4 to the KPP
instance in Example 4.4 with two sampled solutions {1,2,3} and {3,4}, we have the initial
decision diagram drawn in Figure 4.5 (consider only solid and dashed arcs).
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Algorithm 4.5 Solution of Program (4.7) using decision diagram with dynamically gener-
ated constraints
Input: The CPP instance, the initial decision diagram (V̂ , Â).
Output: The optimal solution (t∗, x∗) of the CPP instance.

1: Create the master problem from Program (4.7) using the diagram (V̂ , Â).
2: loop
3: Solve the master problem and let (t̃, x̃) be the current optimal solution.
4: Solve Program (4.1) with t = t̃ for x̂. ▷ i.e. choose any x̂ ∈ R(t̃)
5: if (v − t̃)⊤

x̃ < (v − t̃)⊤
x̂ then

6: ▷ (t̃,x̃) is not bilevel feasible. Add new constraint. ◁

7: Enumerate B̂(x̂).
8: Find the longest path π in (V̂ , B̂(x̂)) where all arcs have length 1.
9: Â ← Â ∪ A(π) ▷ A(π) is the set of arcs in π

10: for a ∈ A(π) do
11: Add yu(a) ≥

∑
i∈I(a)(vi − ti) + yw(a) to the master program.

12: else
13: ▷ (t̃,x̃) is bilevel feasible. Stop. ◁

14: (t∗, x∗)← (t̃, x̃)
15: break
16: return (t∗, x∗)

We define the set of valid transitions B for the KPP to be:

B =

b

∣∣∣∣∣∣∣
u(b) = (j, sj) ∈ Vj, j = 0, . . . ,n− 1;
w(b) = (k, sk) ∈ Vk, k = j + 1, . . . ,n;
sj −

∑
i∈I(b) wi ≥ sk

 .

In other words, a transition b from (j,sj) to (k,sk) is valid if and only if all items in I(b) can
be fit in a knapsack with capacity sj − sk. Recall that p and q can be expressed as (0, C) and
(n, 0). It is evident that given u(b), w(b), and I(b), this condition can be tested efficiently. If
we follow Algorithm 4.5 and add the paths corresponding to {1,4} and {2,4}, we will obtain
the dotted arcs in Figure 4.5.

4.3.2.2. Item Grouping. A major disadvantage of decision diagrams compared to selec-
tion diagrams is the lack of scalability. For every new item, we need to add a whole new
layer to the decision diagram, while the number of layers in a selection diagram stays at 4.
Furthermore, many nodes just repeat the states of some nodes in the previous layers (see
Figure 4.4a). In this section, we describe a technique to reduce the number of nodes in a
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Note: Solid and dashed arcs are the initial arcs obtained from Figure 4.4b, while dotted arcs are
valid transitions added during Algorithm 4.5. The labels of the nodes are the states sk. The labels of
the arcs are I(a).

Figure 4.5 – Dynamically generated decision diagram of Example 4.9.

decision diagram by grouping multiple items into one layer, instead of keeping the item-layer
ratio at 1:1.

Let (J1, . . . ,Jm) be a list of disjoint subsets of I such that J1 ∪ · · · ∪ Jm = I. We group
all items in each part Jk together into one layer, so overall, the grouped decision diagram
has m + 1 layers V0,V1, . . . ,Vm. For k = 0, . . . ,m − 1, each node uk ∈ Vk can have up to
2|Jk+1| outgoing arcs towards the next layer Vk+1. Each arc aK

uk
corresponds to a subset K

of Jk+1 with the item function simply defined as I(aK
uk

) = K. Such an arc represents the
decision of fixing xi = 1 for all i ∈ K, and fixing xi = 0 for all i ∈ Jk+1 \K. A path in the
grouped diagram still represents a solution x̂ ∈ X because {J1, . . . ,Jm} forms a partition of
I. Hence, all entries in x are fixed and no entry is fixed twice. Algorithms 4.4 and 4.5 are
extended accordingly.
Example 4.10. Consider the decision diagram in Figure 4.4b. We group the first two layers
into one group J1 = {1,2} and the last two layers into another group J2 = {3,4}. The result
is shown in Figure 4.6a. The grouped version of Figure 4.5 is illustrated in Figure 4.6b.
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∅

{1}
{2}
{1,2}

{3,4}
{4}
{3}
{3}

(a) Full diagram

3
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3

0
∅

{1,2}

{3,4}

{3}

{1,4}
{2,4}

(b) Dynamically generated

Note: Solid and dashed arcs are arcs in the initial diagram, dotted arcs are generated valid transitions.
The labels of the nodes are the states sk. The labels of the arcs are I(a).

Figure 4.6 – Grouped decision diagrams of Example 4.10.
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In our experiments, we keep the number of layers m fixed and we partition the items
randomly into groups of size ⌈n/m⌉. This strategy allows us to maintain a constant number
of nodes |V̂| in the initial decision diagram as n increases. We remark that this technique
should be interpreted as a general framework, and one can develop new strategies depending
on the situation, including groups with different sizes, subgroups inside a group, separate
groups for tolled items and toll-free items, etc.

4.3.2.3. Maximum Stable Set Pricing Problem. We consider the case when the fol-
lower’s problem is a maximum stable set problem. The overall pricing problem is called the
maximum stable set pricing problem (MaxSSPP). Let G = (I, E) be an undirected simple
graph. In this case, the set of items I is the set of nodes of G. The objective of the follower is
to find a stable set (i.e. a subset of I in which no pair of nodes are adjacent) that maximizes
the sum of tolled values. If A ∈ {0, 1}I×E is the node-edge incidence matrix of G, then the
follower’s problem of the MaxSSPP is formulated as follows:

R(t) = arg max
x
{(v − t)⊤x | A⊤x ≤ 1, x ∈ {0, 1}I}

where 1 is the vector of all ones.
In the decision diagram for the MaxSSPP, the state sk at step k is the set of all items

in {ik+1, . . . ,in} that are still available, i.e. they are not adjacent to any already-selected
item. The arc a0

uk
is always available and it sends (k, sk) to (k + 1, sk \ {ik+1}). The arc a1

uk

only exists if ik+1 ∈ sk (meaning the item ik+1 is available). In that case, it sends (k, sk) to
(k + 1, sk \ N [ik+1]) where N [i] is the closed neighborhood of i (i.e. the set that includes i

and all nodes adjacent to i). We express p as (0, I) and q as (n,∅).
In regard to Algorithm 4.4, given x̂ ∈ X , we can generate a path corresponding to x̂ by

the following recursive system:

s0 = I,

sk =

sk−1 \N [ik] if ik ∈ I(x̂),

sk−1 \ {ik} if ik /∈ I(x̂),
for k = 1, . . . ,n.

The last piece is the definition of B used in Algorithm 4.5. A transition b from (j, sj) to
(k, sk) is valid if and only if I(b) is a stable set, I(b) ⊆ sj, and sk ⊆ sj \N [I(b)].
Example 4.11. Consider a MaxSSPP instance of five items whose graph is shown in Fig-
ure 4.7. Assuming that the item ordering is (1,2,3,4,5), the initial decision diagram obtained
from Algorithm 4.4 with two sampled solutions {1,3} and {2,5} is drawn in Figure 4.8 (con-
sider only solid and dashed arcs). The dotted arcs in Figure 4.8 represent the valid transitions
generated by Algorithm 4.5 corresponding to the two solutions {1,4} and {3,5}.
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Figure 4.7 – The graph G of the MaxSSPP instance in Example 4.11.
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Note: Solid and dashed arcs are the initial arcs a1
uk

and a0
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respectively, while dotted arcs are
generated valid transitions b. The labels of the nodes are the states sk. The labels of the arcs are I(a).

Figure 4.8 – Dynamically generated decision diagram of Example 4.11.

4.3.2.4. Minimum Set Cover Pricing Problem. The last pricing problem that we in-
vestigate is the minimum set cover pricing problem (MinSCPP), in which the follower solves
a minimum set cover problem. Let E be the set of elements that we wish to cover and let I
be a family of subsets of E that covers E (i.e. the union of all sets in I is equal to E). For
the sake of consistency, we refer to subsets in I as items. The follower aims to find a subset
of I that minimizes the sum of tolled values while still covering E :

R(t) = arg min
x
{(v − t)⊤x | Ax ≥ 1, x ∈ {0, 1}I}

where A ∈ {0, 1}E×I is the incidence matrix between E and I. We make an assumption that
the set of toll-free items I2 must cover E , otherwise the leader can impose an infinite toll on
all tolled items and the pricing problem is unbounded.

The state sk in the MinSCPP is defined to be the set of uncovered elements of E . In
contrast to the first two problems, both arcs a0

uk
and a1

uk
are always available. The former

sends (k, sk) to (k + 1, sk), and the latter sends (k, sk) to (k + 1, sk \ ik+1) (recall that ik+1

is a subset of E). An exception exists in the next-to-last layer Vn−1 to check if the selected
items form a cover: if sn−1 ̸= ∅ (resp. sn−1 \ in ̸= ∅), then the arc u0

un−1 (resp. u1
un−1) is not

available. The nodes p and q are expressed as (0, E) and (n,∅).
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Given x̂ ∈ X , a path corresponding to x̂ is generated using the recursive system:

s0 = E ,

sk =

sk−1 \ ik if ik ∈ I(x̂),

sk−1 if ik /∈ I(x̂),
for k = 1, . . . ,n.

Finally, a transition b from (j, sj) to (k, sk) is valid if and only if

sj \
( ⋃

i∈I(b)

i
)
⊆ sk.

Example 4.12. Consider a MinSCPP instance where E = {a,b,c,d} and I consists of 5
sets i1 = {a,b}, i2 = {a,c}, i3 = {a,d}, i4 = {b,c,d}, and i5 = {c}. We order the items
according to (i1,i2,i3,i4,i5). If we sample the solutions {i1,i3,i5} and {i2,i4} for Algorithm 4.4
and then generate valid transitions for {i1,i2,i3} and {i3,i4} in Algorithm 4.5, we will obtain
the decision diagram illustrated in Figure 4.9.
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c,d

}
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∅

∅
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∅

∅
∅

{i2,i3}
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Note: Solid and dashed arcs are the initial arcs a1
uk

and a0
uk

respectively, while dotted arcs are
generated valid transitions b. The labels of the nodes are the states sk. The labels of the arcs are I(a).

Figure 4.9 – Dynamically generated decision diagram of Example 4.12.

4.4. Experiments
We conducted numerical experiments to compare the performance of the three dynamic

programming models: the value function reformulation (VF), the selection diagram (SD), and
the decision diagram (DD). All three models were tested on a family of randomly generated
instances belonging to three pricing problems: the knapsack pricing problem (KPP), the
maximum stable set pricing problem (MaxSSPP), and the minimum set cover pricing problem
(MinSCPP).

To evaluate the gradual impact of the selection diagram and the decision diagram com-
pared to the control case (which is the value function reformulation), we vary the parameters
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N in Algorithm 4.2 and W in Algorithm 4.4. Note that if N = 0 and W = 0, then the pro-
grams corresponding to both diagrams become the value function reformulation. To reduce
the variance when comparing the results with different values of N and W , we use the same
random seed for all sampling procedures (lines 4, 5 in Algorithm 4.2, line 9 in Algorithm 4.5,
and line 4 in Algorithm 4.4). For the decision diagram, we also apply item grouping (Sec-
tion 4.3.2.2) so that the number of layers is at most 20, except for the runs on the KPP
where we group every two items together.

Every run was executed on a single thread (AMD EPYC 7532 2.4GHz CPU, 8GB of
RAM 1) with the time limit of one hour. Mixed-integer programs are solved using Gurobi 9.5
[31] while the remaining code (formulation and constraint generation) are written in Julia
1.8.5. The dynamically generated constraints in Algorithms 4.1, 4.3 and 4.5 are implemented
as lazy constraints in Gurobi. We reuse the bilevel feasible solutions (t̃, x̂) obtained during
constraint generation as feasible solutions of the overall pricing problem. We supplement the
solver with these solutions via a custom heuristic.

The result of each pricing problem is presented in Sections 4.4.1 to 4.4.3 respectively.
Finally, we provide a summary and our observations in Section 4.4.4.

4.4.1. Knapsack Pricing Problem

We generated random KPP instances that satisfy the following properties:
— The number of items |I| ranges from 40 to 60.
— The weights wi are uniformly sampled in the range [1,100].
— The densities vi/wi are sampled uniformly in the range [0.75, 1.25]. The values vi are

then calculated by multiplying with the random weights.
— The proportion of tolled items |I1|/|I| is equal to the ratio between the capacity and

the sum of weights, i.e. C/
∑

i∈I wi. We denote this proportion as r. Desirable values
for r are from 0.5 to 0.6. The difficulty of the generated instances decreases sharply
when r is outside of this range.

— The values vi of the tolled items are multiplied by 2.0 afterward to encourage the use
of tolled items. This technique is adopted from [9].

The parameters listed above are tuned using an evolutionary algorithm to maximize the dif-
ficulty of the instances. In total, 330 KPP instances were generated according to 33 different
configurations (10 instances per configuration). These 33 configurations are the combinations
of 11 values of |I| ∈ {40, 42, . . . , 58, 60}, and three values of r ∈ {0.50, 0.55, 0.60}.

1. The experiment was run on the Narval computing cluster provided by the Digital Research Alliance
of Canada.
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Table 4.1: Numerical results for the KPP.

DP
Model

N/W

Num. of
instances

solved

Timea (s)
Gapb

(%)Total Callback

VF 134 1301 6 6.5

SD 100 118 1316 10 7.6

SD 200 121 1263 10 7.7

SD 300 124 1263 10 7.6

SD 500 120 1333 9 7.7

SD 700 117 1379 10 7.8

SD 1000 113 1402 10 8.1

SD 1500 118 1465 10 8.0

SD 2000 116 1431 10 7.9

SD 2500 113 1452 10 8.0

SD 3000 114 1487 11 8.2

DD 10 147 973 5 5.7

DD 20 157 994 5 5.5

DD 30 158 980 6 5.4

DD 50 150 1082 10 5.6

DD 70 144 1155 14 5.6

DD 100 135 1327 19 6.0

DD 150 124 1540 30 6.6

DD 200 113 1735 42 7.1

DD 250 106 1923 53 7.5

DD 300 100 2070 64 7.9
a Geometric average.
b Arithmetic average.

The best configuration of each model is highlighted
in bold.
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(a) KPP - Time (s) (b) KPP - Optimality gap (%)

(c) MaxSSPP - Time (s) (d) MinSCPP - Time (s)

Note: The time is depicted in logarithmic scale, while a linear scale is used for the gap.

Figure 4.10 – Cumulative number of instances (y-axis) with respect to solution time and
optimality gap (x-axis).

Table 4.1 shows the number of instances solved, the average time, and the average opti-
mality gap of the three DP models with various values of N and W . The results of the best
configurations of each model are plotted in Figures 4.10a and 4.10b. According to Table 4.1,
the selection diagram does not improve the performance of the solution compared to the
value function model, while the decision diagram does improve it slightly but only at low
W (under 100). The knapsack problem is a relatively simple problem, containing only one
constraint, so the time to solve the subproblem (included in the callback time) is negligible.
The callback time increases when we increase the width W of the decision diagram, reflecting
the fact that Algorithm 4.5 scales quadratically with respect to |V̂|.
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4.4.2. Maximum Stable Set Pricing Problem

Random MaxSSPP instances were generated on top of random graphs based on the
Erdös-Rényi model. The parameters for the generation are as follows:

— The number of items |I| ranges from 120 to 180.
— The graph density, denoted as d, is from 0.12 to 0.24.
— The proportion of tolled items |I1|/|I| is 0.4.
— The values vi are uniformly sampled in the range [50, 150], then those of the tolled

items are multiplied by 1.3.
We generated 280 instances in total with respect to 28 configurations: 7 values of |I| ∈
{120,130, . . . ,180} combined with 4 values of d ∈ {0.12, 0.16, 0.20, 0.24}.

Table 4.2 and Figure 4.10c show the results of the experiments on the MaxSSPP. The
decision diagram still produces a slight improvement and its performance is less sensitive to
W . In contrast to the KPP, the selection diagram at high N surpasses the decision diagram.
At N = 2000, the selection diagram model can solve 50 more instances and is more than
1.5 times faster compared to the value function model. Unlike the KPP, the callback time
(which includes the time to solve the subproblem) dominates the total solution time. Thus,
both diagrams benefit from the decreases in the number of callback calls and the time per
callback call.

4.4.3. Minimum Set Cover Pricing Problem

The generation of MinSCPP instances is more complex compared to the other two prob-
lems. First, every element e ∈ E is given its own value we sampled uniformly in [50, 85].
Then, we synthesize the sets i ∈ I by including each element in E with probability 0.23.
Special care is required to ensure I covers E . The value vi is calculated as the sum of we for
all e ∈ i, then it is perturbed by a factor sampled within [0.9, 1.1]. Next, we find a subcover
of I to form the set of toll-free items I2 (recall that I2 must cover E otherwise the leader
can impose an infinite toll). The proportion of tolled items is 0.3. Finally, the values of the
tolled items are multiplied by 2.3.

We experimented with six values of |I| ∈ {70,80, . . . ,120} and five values of |I|/|E| ∈
{0.8, 1.0, 1.2, 1.4, 1.6}, combined to create 30 configurations, hence 300 random MinSCPP
instances.

The results for the MinSCPP are displayed in Table 4.3 and Figure 4.10d. Similar to
the MaxSSPP, the callback time plays a major role in the total solution time. The selection
diagram greatly outperforms the other two models. At N = 1500, it can solve almost all
instances and is 3.5 times faster than the value function model. The main contribution is
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Table 4.2: Numerical results for the MaxSSPP.

DP
Model

N/W

Num. of
instances

solved

Timea (s)
Gapb

(%)

Num. of
callback

callsa

Time per
callback
calla (s)Total Callback

VF 216 654 650 15.0 202 3.22

SD 100 230 655 650 10.0 201 3.24

SD 200 228 611 606 10.8 194 3.12

SD 300 234 610 604 10.6 202 3.00

SD 500 252 500 493 4.9 191 2.58

SD 700 250 457 449 3.8 185 2.42

SD 1000 257 415 407 3.7 181 2.25

SD 1500 254 393 384 4.3 174 2.20

SD 2000 265 389 379 2.0 172 2.21

SD 2500 261 381 371 2.6 168 2.20

SD 3000 259 387 375 2.9 167 2.25

DD 10 251 543 537 4.9 192 2.80

DD 20 247 496 489 4.4 184 2.65

DD 30 250 493 486 4.2 188 2.58

DD 50 252 502 493 4.0 189 2.61

DD 70 255 483 474 4.2 181 2.62

DD 100 253 484 473 4.1 186 2.54

DD 150 257 487 473 3.4 181 2.61

DD 200 254 499 481 5.1 176 2.73

DD 250 258 509 487 3.7 175 2.78

DD 300 254 478 456 4.9 169 2.70
a Geometric average.
b Arithmetic average.

The best configuration of each model is highlighted in bold.
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Table 4.3: Numerical results for the MinSCPP.

DP
Model

N/W

Num. of
instances

solved

Timea (s)
Gapb

(%)

Num. of
callback

callsa

Time per
callback
calla (s)Total Callback

VF 267 313 302 10.1 305 0.99

SD 100 282 259 248 7.3 282 0.88

SD 200 283 251 240 6.5 273 0.88

SD 300 283 210 199 5.8 238 0.84

SD 500 283 130 120 3.8 145 0.83

SD 700 292 94 84 1.0 107 0.79

SD 1000 294 88 79 0.4 99 0.80

SD 1500 296 89 80 0.4 100 0.80

SD 2000 293 99 89 0.3 110 0.80

SD 2500 292 110 99 0.5 120 0.82

SD 3000 295 129 116 0.3 141 0.82

DD 50 282 244 231 7.1 264 0.88

DD 100 283 232 216 5.3 255 0.85

DD 150 280 227 208 5.7 244 0.85

DD 200 284 228 205 5.4 241 0.85

DD 250 284 221 196 5.0 226 0.87

DD 300 288 230 203 3.5 224 0.91
a Geometric average.
b Arithmetic average.

The best configuration of each model is highlighted in bold.

the drop in the number of callback calls by three times. It also reduces the time spent per
callback call by 20%.

4.4.4. Discussions

The experiments on three different problems give us a well-rounded view on the effective-
ness of the diagram models. The decision diagram is robust and can provide a small boost
in any circumstance compared to the value function reformulation. The selection diagram,
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however, only performs well in the MaxSSPP and the MinSCPP. The central mechanism of
the improvement is due to the reductions in the number of callback calls and the time spent
per call. In particular, most of the solution time is spent to solve the subproblem in the
MaxSSPP and MinSCPP, while for the KPP, that time is spent mainly on branch-and-bound.

We remark the dissimilarities in the structures of the three problems. In the KPP, any
pair of items can appear in a feasible solution (as long as C is large enough). This is not the
case for the MaxSSPP, whose main constraint is the exclusion of certain pairs of items. In
the MinSCPP, although any pair can also appear in a feasible solution, the minimality of a
cover discourages the selection of pair of items that have many overlaps in E . Furthermore,
a maximal solution of the KPP contains around 50% of all items. This number is smaller in
the other two problems: 20% for the MaxSSPP and 10% for the MinSCPP. The disparity in
the distribution of pairs in feasible solutions may explain the unevenness in the performance
of the selection diagram across the three problems.

4.5. Conclusion
In this paper, we derived a single-level reformulation of the CPP by taking the dual of

a linear program corresponding to a dynamic programming model of the follower’s problem,
and combining it with the original primal problem using strong duality. We investigated two
dynamic programming models: selection diagram and decision diagram, and provided the al-
gorithms to solve them dynamically. Then, we tested these models in three specializations of
the CPP: KPP, MaxSSPP, and MinSCPP. We observed that the decision diagram model can
consistently lead to performance improvements over the value function reformulation, while
the selection diagram formulation only brings (significant) speedups for two specialization of
the CPP.

Future research directions include the exploration of other dynamic programming models
and the application of this technique to other problems in bilevel optimization.
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Conclusion

In this thesis, we presented a number of exact solution methods designed to solve the NPP
and the CPP, ranging from the formulations and preprocessing algorithms, to the treatment
of the multi-commodity variant. The main modeling technique relies on the KKT conditions
even in the general case where no trivial dual exists. Meanwhile, preprocessing is done with
the help of path enumeration and (strong) bilevel feasibility testing/pruning. Although these
methods are novel in theory, they are proven experimentally to be effective in practice.

We enumerate several future research directions spurred from the results of the thesis:
— Preprocessing based on partial enumeration: the path-based preprocessing in

Section 2.3.2 requires the full set of paths, which may not be available if the NPP
scales up in size. Instead of enumerating the full set, we should focus the enumeration
effort on eliminating some specific arcs. Then, in the case that the set of all paths is
too large, the time spent on enumeration is not wasted.

— Existence of the complexity asymmetry in other problems: there may exist
other problems similar to the multi-commodity NPP, in which the changes in the
followers’ reactions follow a certain order, implying an asymmetry in complexity. The
identification of these asymmetries, as we saw in Chapter 3, can lead to preprocessing
procedures that reduce the solution search space.

— Extension of the dimensional result in Theorem 3.17: the theory in Sec-
tion 3.3.2 is not limited to the NPP and can be applied to any convex polyhedron
function.

— Experiment with different kinds of dynamic programming models: the for-
mulation in Chapter 4 provides a great level of flexibility in terms of choosing the
DP model. Thus, one can design some DP model focusing on a specific property of a
given problem, or combine different kinds of diagrams together.

— Application to general bilinear programs: the CPP is a special case of general
bilinear programs where bilinear terms only exist for each pair of ti and xi. Some



concepts such as the conjugate model may be transferable to general bilinear pro-
grams. Another idea is to rewrite a bilinear program in a form close to the CPP by
decoupling the bilinear terms.
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