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Abstra
t

The majority of models of wavefront propagation in 
ardia
 tissue have assumed relatively simple ge-

ometries. Extensions to 
ompli
ated three{dimensional representations are 
omputationally 
hallenging due

to issues related to both problem size and the 
orre
t implementation of 
ux 
onservation. In this paper,

we present a generalized �nite di�eren
e s
heme (GDFS) to simulate the rea
tion{di�usion system on a 3D

monolayer of arbitrary shape. GDFS is a vertex{
entered variant of the �nite{volume method that ensures

lo
al 
ux 
onservation. Owing to an e�e
tively lower dimensionality, the overall 
omputation time is re-

du
ed 
ompared to full 3D models at the same spatial resolution. We present the theoreti
al ba
kground

to 
ompute both the wavefront 
ondu
tion and lo
al ele
trograms using a matrix formulation. The same

matrix is used for both these quantities. We then give some results of simulation for simple monolayers and


omplex monolayers resembling a human atria.

Keywords

Atrial modeling, 
ardia
 propagation, �nite di�eren
e methods, triangular mesh.

I. Introdu
tion

M

OST models of wavefront propagation in 
ardia
 tissue have assumed relatively simple

one and two{dimensional geometries, su
h as lines or re
tangular sheets. Full three{

dimensional representations are be
oming more 
ommon [14℄, using numeri
al methods su
h as �nite

element methods (FEM) or �nite volume methods (FVM). Although a more realisti
 representation

of 
ardia
 mus
le, three{dimensional models are 
omputationally 
hallenging. A hybrid approa
h

is to simulate the rea
tion{di�usion system on a 3D monolayer or shell [2℄, [17℄. The advantage of a

redu
ed three{dimensional geometry is that it is possible to simulate 
omplex dynami
s with higher

spatial resolutions given the redu
ed number of nodes needed to represent a surfa
e 
ompared to a

volume.

Computing s
alar �elds in 
omplex dis
rete stru
tures is of 
ourse not a new topi
. FEM and

FVM have been developed to eÆ
iently solve these problems in a wide range of engineering appli-


ations. Both methods have been used in 
ardia
 modeling [13℄, [16℄, [23℄, [25℄. Re
ently, Zemlin
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et al. used a modi�ed FVM for an extended monolayer atrial model [29℄, although sparse details of

the method and implementation were provided. Shao et al. used a vertex{
entered FVM on two{

dimensional sheets of simulated 
ardia
 tissue [24℄. Alternative formulations of the FVM relying on

very simple geometri
al 
on
epts have been proposed for heat transfer 
omputations in isotropi


2D materials in unstru
tured triangular meshes under the name of Dire
t Finite Di�eren
e Method

(DFDM) [20℄, [22℄.

In this paper, we present a Generalized Finite Di�eren
e S
heme (GFDS) for triangular elements

that form a 3D shell. The method is a vertex{
entered variant of the FVM that ensures lo
al

and global 
ux 
onservations and allows for spatial variations in tissue properties. We present the

theoreti
al ba
kground for the method and an approa
h for pra
ti
al implementations for both

wavefront 
ondu
tion and the 
omputation of se
ondary quantities su
h as lo
al ele
trograms.

II. Model of ele
tri
al propagation

Cardia
 tissue 
an be represented as a 
ontinuous bidomain where properties 
an be indepen-

dently assigned to the intra
ellular (int) and interstitial (ext) spa
es [15℄. The bidomain model 
an

be written as

8
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where V

int

is the intra
ellular potential, V

ext

is the interstitial potential, D

int

and D

ext

are the intra

and extra 
ellular 
ondu
tivity tensors, respe
tively, S

v

is the surfa
e to volume ratio, and I

m

is the

membrane 
urrent per unit area that is a fun
tion of the transmembrane potential V

m

= V

int

�V

ext

.

he tissue is assumed to be immersed in a sour
e-free, volume 
ondu
tor or 
ondu
ting bath. With

the appli
ation of the appropriate boundary 
onditions at the tissue/bath interfa
e, the potential

in the bath is assumed to satisfy Lapla
e's equation. To redu
e the 
omputational 
ost of solving

both the bidomain equations (1) and the �eld potential in the bath, we assume that

� the tissue is thin and lies in an extensive bath,
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� the extra
ellular potential is suÆ
iently small su
h that intra
ellular potential is approximately

equal to the transmembrane potential,

� the e�e
t of the extra
ellular potential on the transmembrane 
urrent sour
es is small su
h that

the bidomain equations 
an be de
oupled.

Under these assumptions, 
ardia
 tissue 
an be des
ribed by a monodomain equation given by

1

S

v

r � (DrV

m

) = C

m

�V

m

�t

+ (I

ion

� I

stim

) (2)

where the membrane 
urrent I

m

= C

m

�V

m

�t

+ I

ion

� I

stim

is the sum of the 
urrent due to the

membrane 
apa
itan
e C

m

, the sum of the ioni
 
urrents I

ion

(depending on the ioni
 model [1℄,

[3℄, [4℄, [5℄, [18℄, [19℄), and I

stim

is the stimulus 
urrent. The 
ondu
tivity tensor D is equal to

D

int

, with the sub-index being dis
arded for readability purposes. The monodomain equation 
an

alo be viewed as a spe
ial 
ase of the bidomain under the 
onditions when the anisotropy in the

intra
ellular spa
e and interstitial spa
e is equal.

In 
ontrast to the bidomain equations, the monodomain equation (2) does not expli
itly 
om-

pute the intra
ellular and extra
ellular potentials, but rather their di�eren
e, the transmembrane

potential. The potential in the surrounding bath 
an be estimated, however, by 
omputing the

transmembrane 
urrent density at ea
h point in the tissue and summing the potential �elds gen-

erated by ea
h 
urrent sour
e. Despite the limitations of the monodomain formulation [15℄, this

estimate should be similar for thin tissue to that obtained with a full bidomain model [8℄.

III. Cardia
 Tissue as a Monolayer

Bidomain and monodomain models 
an be 
onstru
ted in one, two and three dimensions. In

this paper, we assume that the part of the 
ardia
 anatomy we are modeling is thin enough to be


onsidered as monolayer but not ne
essarily planar (i.e. 
an be a surfa
e). The tissue thi
kness is

also assumed to be 
onstant over the whole surfa
e. The surfa
e mesh is 
onstru
ted as a set of

triangles. The extension of the monolayer model to represent three-dimensional obje
ts helps to

remove the restri
tions imposed by no 
ux boundaries on the outer edges of planar sheet models,
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and thus allows the investigation of the dynami
s of intera
ting wavefronts on a 
losed surfa
e with

internal obsta
les. The method also 
ould be useful for studying propagation in thin walled hearts

(e.g., the mouse). While not presented here, the GFDS 
an be extended into full three-dimensions

using tetrahedral elements to model thi
ker tissue.

Using a mesh of triangles, ea
h vertex node 
orresponds to a 
ell that rea
ts through 
urrent


uxes a
ross the membrane and di�uses 
urrents to its neighbors. The use of the vertex{
entered,

rather than a element{
entered approa
h simpli�es the assignment of neighbors of a given node

and ensures 
ux 
onservation even if some nodes are at a no{
ux boundary (e.g. an internal hole).

A. Generalized Finite Di�eren
e S
heme

A.1 Divergen
e theorem

Using the mesh of triangles, a Generalized Finite Di�eren
e S
heme (GFDS) 
an be applied to

solve the rea
tion{di�usion system numeri
ally [6℄. To 
reate the dis
retized form of Equation (2),

the divergen
e theorem is applied. Let I denote the node at whi
h the potential V

i

(t) is 
omputed at

the time t, where i is the index of node I (in the following, index m is omitted for sake of simpli
ity).

Consider a 
losed 
ontour C

i

, on the surfa
e that de�nes a pie
e of surfa
e 


i

that in
ludes node I

(see Figure 1A). For a given ve
tor �eld x, the divergen
e theorem yields

Z




i

r � xd
 =

Z

C

i

x

t

ndC

where

t

denotes the transpose (i.e. x

t

n is the s
alar produ
t between x and n). Using the divergen
e

theorem of Equation (2) yields

1

S

v

Z

C

i

(DrV )

t

ndC =

Z




i

�

C

m

�V

�t

+ I

ion

� I

stim

�

d
 (3)

for any node I. Assuming

�V

�t

, I

ion

and I

stim

are 
onstant on surfa
e 


i

(valid if the surfa
e area is

small) then Equation (3) be
omes

1

S

v

Z

C

i

(DrV )

t

ndC = 


i

�

C

m

�V

i

�t

+ I

ion;i

� I

stim;i

�

(4)

Repla
ing the 
ontinuous{time derivative of the potential by a �nite time{di�eren
e

�V

i

�t

�

V

i

(t+Æt)�V

i

(t)

Æt

and assuming I

ion;i

(and I

stim;i

) and the 
ux (integral term) 
onstant during a time
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step we �nally obtain the equation

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m




i

Z

C

i

(DrV

i

(t))

t

ndC �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (5)

A.2 Choi
e of the 
ontour

To obtain a solution of Equation (5), we must de�ne the 
ontour C

i

. Let J (index j) denote a

neighboring node of node I and let N

i

denote the ensemble of indi
es forming the neighborhood

of node I. Let K (index k) denote a neighboring node of node I that is also 
onne
ted to J (i.e.

k is in N

i

\ N

j

; and N

i

\ N

j

usually 
ontains two points, see Figure 1). Let G

i;j;k

denote the


enter of gravity of the triplet (I; J;K) and let M

i;j

denote the midpoint of the doublet (I; J).

Using this geometry, the 
ontour 
an be de�ned to be formed by the segments [G

i;j;k

;M

i;j

℄ for all

j 2 N

i

and k 2 N

i

\ N

j

as shown in Figure 1B{D. This 
hoi
e of the 
ontour has the advantage

that is always 
ontained in the meshed surfa
e and provides a 
omplete tessellation of the domain.

Furthermore, the gradient is de�ned on the triangle (I; J;K) at the 
enter of gravity. For ea
h

segment [G

i;j;k

;M

i;j

℄ the normal is denoted by n

i;j;k

as shown in Figure 1C.

Using the above de�nition of the 
ontour, Equation (5) 
an be expressed as

V

i

(t+Æt) = V

i

(t)+

0

�

Æt

S

v

C

m




i

X

j2N

i

X

k2N

i

\N

j

Z

[G

i;j;k

;M

i;j

℄

(DrV

i

(t))

t

n

i;j;k

dC

1

A

�

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t))

(6)

When de�ning the 
ontours, two spe
ial 
ases 
an arise. The �rst 
ase involves the treatment

of holes in the surfa
e, where nodes are de�ned at the boundary (i.e. the 
ontour is not 
losed,

Figure 2A). The se
ond 
ase involves geometries where several surfa
es are 
onne
ted (e.g. the

septum{like stru
ture formed by two adjoined surfa
es, see Figure 2B). In the GFDS, holes are

equivalent to boundaries su
h that no 
urrent 
ows from the node into the hole (i.e. no 
ux). In

this 
ase, only one neighbor K 2 N

i

\ N

j

is 
onne
ted to the neighbor J 2 N

i

, as illustrated in

Figure 2. In the 
ase of N 
onne
ted surfa
es 


1

i

to 


N

i

, it is ne
essary to 
onsider the 
uxes at

the union of these surfa
es. As shown in Figure 2, there 
an be three neighbors K

1

, K

2

and K

3

in

N

i

\ N

j


onne
ted to the neighbor J 2 N

i

. Note that using an element{
entered approa
h, these
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ases would require either the in
lusion of �
titious nodes or some manipulation of the governing

equation to ensure the 
ux 
onservation.

A.3 Creation of the Weight Matrix

Using Equation (6), where the gradient is evaluated (appendix A), the 
ux normal to all the


ontour pat
hes 
an be determined for a given point I as a weighted sum. Equation (6) 
an be

written 
ompa
tly as

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m

X

j2N

i

w

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (7)

where the weights w

i;j

, for j 2 N

i

, are given by

w

i;j

=

1

2


i

X

k2N

i

\N

j

�

s

i;k;k

v

t

i;j

� s

i;j;k

v

t

i;k

�

D

t

((s

i;k;k

� s

i;j;k

)v

i;j

+ (s

i;j;j

� s

i;j;k

)v

i;k

)

�

3
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(8)

where

8
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(9)

and where the surfa
e 


i

is the sum of all the sub{surfa
es 


i;j;k

de�ned by (I; J;K) (see Figure 1),

surrounding the point I, namely




i

=

X

j2N

i

X

k2N

i

\N

j




i;j;k

where 


i;j;k

=

1

12

jjv

i;j

^ v

i;k

jj (10)

^ denotes the 
ross produ
t, v

i;j

denotes the ve
tor 
omposed by the points I and J (see Figure 1C).

Note that k 2 N

i

\N

j

denotes the nodes 
onne
ted to node J .

The relationship with the 
lassi
al �nite{di�eren
e method appears through the �nite{di�eren
e

expression (V

j

(t)� V

i

(t)) of Equation (7).

In the 
ase where D is not the same at ea
h point, the same equation 
an be applied ex
ept that

the tensor D is repla
ed by the tensors D

i;j;k

, de�ned for a triangle.

The weights w

i;j

for j 2 N

i

form a sparse matrix W, heretofore referred to as the \weight
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matrix". Let P be given by

P = I +

Æt

S

v

C

m

(W � diag(W1)) (11)

where I is the identity matrix, 1 the ve
tor having 1's for entries and where diag(x) is the diagonal

matrix having the entries x

i

of ve
tor x on the diagonal. Matrix P is heretofore referred to as the

\propagation matrix". Using P, Equation (7) 
an be written simply in matrix form

V(t+ Æt) = PV(t) �

Æt

C

m

(I

ion

(t)� I

stim

(t)) (12)

where V, I

ion

(t) and I

stim

(t) are all ve
tors.

In this form, the term 
orresponding to di�usion is repla
ed by a simple matrix{ve
tor produ
t.

Sin
e matrix P is 
ompletely time{independent, it only needs to be 
al
ulated on
e. Note that

the weight matrix W only depends on the di�usion tensor and the geometry. It is 
lear that the

eigenvalues �

l

of the propagation matrix are linked to the eigenvalues �

(w)

l

of matrixW�diag(W1)

as follows

�

l

= 1 +

Æt

S

v

C

m

�

(w)

l

(13)

Sin
e (W � diag(W1))1 = 0, then � = 1 is an eigenvalue of P that ensures the steady state rest

potential on the whole tissue is a solution of the dis
retized propagation equation. This fa
t is an

obvious 
onsequen
e of the 
ux 
onservation property.

In the 
ase of homogeneous and isotropi
 di�usion, D =

1

�

I, the resistivity � 
an be extra
ted

from the weights (appendix F) and the dis
rete equation is given by

V

i

(t+ Æt) = V

i

(t) +

Æt

�S

v

C

m

X

j2N

i

z

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (14)

where the weights z

i;j

, for j 2 N

i

, are given by

z

i;j

=

1

2


i

X

k2N

i

\N

j


otan(#

i;j;k

) (15)

where #

i;j;k

is the geometri
 angle between ve
tors v

k;i

and v

k;j

(see Figure 1D) and where the

surfa
es 


i

are still de�ned by (10). In
luding the weights in matrix Z, the propagation matrix for
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the isotropi
 
ase is

P = I +

Æt

�S

v

C

m

(Z� diag(Z1)) (16)

Matrix Z depends only on the geometry. Be
ause the eigenvalues of the propagation matrix 
an

then be expressed from the terms of Z (i.e. �

(z)

l

) as

�

l

= 1 +

Æt

�S

v

C

m

�

(z)

l

(17)

it is 
lear that the triangular mesh itself impa
ts the stability of the part of the algorithm related

to di�usion. Noti
e that matrix Z � diag(Z1) is not symmetri
 sin
e the elements forming the

surfa
e are not the same. Considering the diagonal matrix �




= diag(: : : ; 


i

: : :) of the surfa
es,

however, matrix Z � diag(Z1) 
an be written as the produ
t of �

�1




and a symmetri
 matrix. It


an then be shown that the eigenvalues of the symmetri
 matrix are the same as that of matrix

Z � diag(Z1). This fa
t implies that the eigenvalues of Z� diag(Z1) are real. Now, if one of the

�

(z)

l

is positive over the physiologi
al range of parameters and for all time steps, the part of the

algorithm 
orresponding to di�usion will not be stable. Furthermore, it is 
lear that if � is an

eigenvalue of Z�diag(Z1) and x its asso
iated eigenve
tor, then

X

j

z

i;j

(x

j

�x

i

) = �x

i

for any i. In

the non{isotropi
 
ase, the di�usion operation is stable if the real part of the eigenvalues �

(w)

l

are

non{positive. A lot of useful theorem on matri
es 
an be found in [12℄, [27℄ to study the stability

of the propagation matrix.

B. Modeling Ele
trograms

As noted earlier, the monodomain model 
an be used to estimate the potentials in the bath by

assuming a superposition of potential �elds from ea
h of the transmembrane 
urrent sour
es [21℄.

This approa
h has been used by Spa
h et al. [26℄ to 
ompare simulated and experimental signals

in thin tissue and more re
ently by Gima and Rudy in an inhomogeneous 
able [10℄. In our 
ase,

the monopolar transmembrane 
urrent sour
es are assumed to lie at the surfa
e of the tissue.

Let ea
h node I with its asso
iated surfa
e 


i

represent a possible sour
e of 
urrent �I

m;i

S

v

d

with d the thi
kness of the tissue. Following the approa
h used by Plonsey [21℄, the bath potential
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�

E

measured by an ele
trode lo
ated at some point E is given by

�

E

=

1

4��

0

Z




I

m

S

v

d

r

d
 (18)

where r is the distan
e from the sour
e to the �eld point and �

0

is the bath 
ondu
tivity. Note that

the 1=r weighting assumes an in�nite homogeneous volume 
ondu
tor. This approximation is used

for simpli�
ation purposes. It is assumed to be valid sin
e we only simulate lo
al ele
trograms,

where the volume 
ondu
tor boundary e�e
ts and 
ondu
tor heterogeneities have a redu
e impa
t.

A di�erent weighting 
ould be formulated for an inhomogeneous bounded volume 
ondu
tor using

lead �eld theory.

Assume that r remains 
onstant on the small pie
e of surfa
e 


i

surrounding I and thus r = jjv

i;e

jj

the distan
e between node I and the ele
trode E. The integration in a general surfa
e is diÆ
ult [21℄.

This assumption, however, is reasonable if the distan
e from ele
trode to the surfa
e is greater than

the size of the surfa
e. Summing over the entire surfa
e, and assuming again a 
onstant thi
kness,

the potential �

E

measured on an ele
trode at position E is given by

�

E

(t) =

S

v

d

4��

0

X

i

I

m;i

(t)

jjv

i;e

jj




i

(19)

De�ning the ve
tor of the inverse of the distan
e from the nodes to the ele
trode as ir

e

(i.e. the entry

i is

1

jjv

i;e

jj

) and the diagonal matrix of the surfa
es asso
iated to ea
h node as�




= diag(: : : ;


i

; : : :),

the potential is given by the s
alar produ
t

�

E

(t) =

S

v

d

4��

0

ir

t

e

�




I

m

(t) (20)

Using the dis
retized form of the rea
tion{di�usion equation, the membrane 
urrent is equal to the

di�usion term. Using the matrix formulation we obtain

�

E

(t) = 
 ir

t

e

�




(W � diag(W1))V(t) (21)

where


 =

S

v

d

4��

0

(22)
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Note that the row ve
tor 
 ir

t

e

�




(W � diag(W1)) is time{independent and hen
e, only needs to

be 
al
ulated on
e. Several ele
trograms 
an also be 
al
ulated simultaneously by 
on
atenating

several ve
tor ir

e

. The formula above is for unipolar signals (i.e. referen
e at in�nity). Bipolar

signals 
an also be 
al
ulated by applying superposition and using the ve
tors given by the two

position E and F ,

�

E;F

(t) = 
 (ir

f

� ir

e

)

t

�




(W � diag(W1))V(t) (23)

C. Results

To demonstrate GFDS for modeling wavefront propagation in 
ardia
 tissue, a two{dimensional

5 
m by 5 
m domain was 
reated. A triangulation was obtained by sub{dividing ea
h square

element of a regular, stru
tured grid into two triangles. The internode spa
ing, Æx = Æy = 400 �m.

The domain was anisotropi
, where

D =

1

�

2

6

6

4

1 0

0 0:3

3

7

7

5

; (24)

where � = 80 
�
m. A surfa
e to volume ratio of S

v

= 0:24 �m

�1

and a spe
i�
 membrane


apa
itan
e of C

m

= 1 �F�
m

�2

were used. A modi�ed Beeler{Reuter model was used to des
ribe

the ion 
uxes. In the Beeler{Reuter model, the maximum 
al
ium 
ondu
tan
e was s
aled by 0.9.

An expli
it Forward Euler time{stepping was used with a time step of Æt = 20 �s. Propagation was

initiated by inje
ting a 80 �A�
m

�2


urrent for 2 ms to a 2 mm

2

area at the 
enter of the sheet.

Figure 3A shows the a
tivation iso
hrones of the propagating wavefront. The 
ondu
tion velo
ity

was 
omputed to be 90 
m�s

�1

along the �ber dire
tion and 50 
m�s

�1

a
ross �bers. The ratio

of along to a
ross 
ondu
tion velo
ities of 1.8 is approximately that predi
ted by the square root

of the ratio of 
ondu
tivities,

q

1

0:3

= 1:83. The advantage of GFDS is that the method 
an be

applied to 
urved surfa
es. Figure 3B shows the a
tivation iso
hrones of a wavefront propagating

on a sphere. The triangulation was obtained by �rst representing the sphere as an i
osahedron. An

i
osahedron is a surfa
e with 20 fa
es su
h that ea
h node is at the same distan
e to the 
enter and
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ea
h fa
e is 
omposed of equilateral triangles. To approximate a sphere, ea
h equilateral triangle is

subdivided into 4 triangles using the 
enter of the edge of the initial triangles. The new nodes are

then moved in the dire
tion given by the node and the 
enter of the i
osahedron, su
h that they lie

on the spheri
al surfa
e. This pro
ess is repeated until the mesh appears suÆ
iently �ne (6 steps

in our example). Using this approa
h a regular mesh 
an be obtained [11℄. The sphere has a radius

of 3 
m. The elements 
omprising the sphere have a mean edge length of 570 �m. Propagation is

initiated by inje
ting a 80 �A�
m

�2

stimulus for 2 ms to a 2 mm

2

area at the top of the sphere.

The sphere is 
omposed of 41000 nodes (80000 elements). The parameters are the same as those

used for the example above ex
ept that the domain is isotropi
 su
h that D =

1

�

I. As shown, the

wavefront propagates uniformly on the surfa
e with a 
ondu
tion velo
ity of 90 
m�s

�1

.

GFDS 
an also be applied to general surfa
es. Figure 5A shows an atrial geometry obtained from

segmentation of an MRI of a human heart. Using 
ustom tools and semi{automated 
orre
tion, a

triangulation was obtained [7℄. Note that a Delaunay method for triangulating a general surfa
e

does not yet exist. In 
ontrast to the two previous examples, the mesh 
reated for the atria is

unstru
tured.

As seen, the geometry 
ontains holes 
orresponding to the insertion points of the vessels and

lo
ation of the valves. In addition, interse
ting surfa
es of the left and right atrial surfa
es form

the septum. The mesh has 400'000 nodes (800'000 elements) with a mean size of 200 �m. The

propagation was initiated by inje
ting 80 �A�
m

�2

of 
urrent for 2 ms to a 2 mm

2

area near the

anatomi
al lo
ation of sinus node.

Figure 5B shows the a
tivation iso
hrones, revealing a smooth wavefront propagation with a


ondu
tion velo
ity of 88 
m�s

�1

. As noted above, the quality of the mesh is 
riti
al to ensure the

stability of the di�usion part of the algorithm. Figure 4 shows the e�e
t of the re�nement of the

mesh. The mesh has to be �ne enough to insure minimization of the possible unusual behaviors.

Finally, the matrix formed by GFDS 
an be used to 
ompute the ele
trograms near the surfa
e.

Be
ause the shape of the ele
trograms depend in part on the shape of the transmembrane potential,
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the Beeler{Reuter model was repla
ed with the Courteman
he et al. [3℄ membrane model developed

for the human atria. Figure 6 shows the simulated unipolar signals during a sinus like beat at sites

E

1

and E

2

(see Figure 5A) lo
ated at 1 mm and 5 mm from the atrial surfa
e. Most 
lini
al

re
ordings are bipolar. Figure 7 shows a 
omparison of simulated bipolar ele
trograms with 2 mm

spa
ing with those obtained from a de
apolar 
atheter (7 Fren
h, BARD 
atheter with ele
trode

spa
ing of 2 mm, sampling rate 1 kHz) during routine intra
ardia
 mapping of the atria. Be
ause

the properties and 
onditions in the model and the 
lini
al measurements are not the same, only

the shapes are 
ompared, showing ex
ellent agreement.

IV. Con
luding remarks

The GFDS using a surfa
e triangular mesh provides a method for studying wavefront 
ondu
tion

on 
ompli
ated, 
losed shell stru
ture with uniform thi
kness. The numeri
al methods used in this

paper are based on lo
al 
ux 
onservation, that also guarantees global 
ux 
onservation. Other

dis
retization methods like the �nite{element formalism, while guaranteeing a global minimization

of errors, do not insure the requested lo
al 
ux 
onservation in su
h a straightforward manner.

Our method does not rely on any parti
ular mesh stru
ture, thus easily enabling lo
al mesh

re�nements if required by lo
al tissue properties, or geometry 
omplexity. Its pra
ti
al implemen-

tation involves the 
omputation of a weight matrix whi
h, for an isotropi
 homogeneous domain,


an be interpreted in terms of the resistive properties of the simulated tissue. This matrix 
an be

pre
omputed sin
e the material parameters and geometry are typi
ally time and voltage indepen-

dent: it takes about 24 se
onds on a Pentium{IV, 1.8 GHz, for a mesh of 400'000 nodes where

ea
h node has at most 10 neighborhoods, to evaluate both the ensembles N

i

for ea
h node I, the

interse
tions N

i

\ N

j

for ea
h j 2 N

i

and then the weights. If the properties or geometry (e.g.

due to me
hani
al 
ontra
tion) do 
hange, it is possible to 
ompute the matrix as fun
tion of time,

with an obvious impa
t on the overall 
omputation time.

We presented here simulation results of sinus rhythm propagation 
omputed with our method
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on a realisti
 human atrial anatomy. A relatively 
oarse spatial dis
retization has been used in

this example, thus limiting the a

ura
y of the results. However, further mesh re�nements 
an be

used to enhan
e the a

ura
y in the same way as they do in the 
lassi
al forward Finite{Di�eren
e

S
heme, sin
e both methods rely on the same grounds. Finally, while we present here an expli
it

formulation in time, the adaptation of this formulation to an impli
it s
heme is straightforward.

A further interest of the matrix formulation has been illustrated by the 
omputation of se
ondary

quantities su
h as lo
al ele
trograms, thus allowing a fast re
onstru
tion of ECG signals. As

shown in Figure 6, the shapes of the simulated ele
trograms are 
onsistent with those obtained

experimentally or 
lini
ally. The ele
trograms 
an be used to further validate models and in
rease

the relevan
e of the simulated results to 
lini
al measurements.
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Appendix

I. Evaluation of the gradient

From the dis
rete rea
tion{di�usion Equation (6)

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m




i

X

j2N

i

X

k2N

i

\N

j

Z

[G

i;j;k

;M

i;j

℄

(DrV

i

(t))

t

ndC �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t))

the gradient rV

i

(t) is evaluated inside the triangle (I; J;K), in the plane de�ned by the nodes I, J

andK. Be
ause the ve
tors v

i;j

and v

i;k

, de�ned by points I and J and points I andK respe
tively

(see Figure 1C{D), are linearly independent, the gradient 
an be written as the 
ombination

rV

i

(t) = a(t)v

i;j

+ b(t)v

i;k



15

Using the boundary 
onditions

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

rV

i

(t) � v

i;j

= V

j

(t)� V

i

(t)

rV

i

(t) � v

i;k

= V

k

(t)� V

i

(t)

a(t) and b(t) 
an be evaluated, leading to an expression for the gradient

rV

i

(t) =

1

�

i;j;k

((s

i;k;k

v

i;j

� s

i;j;k

v

i;k

) (V

j

(t)� V

i

(t)) + (s

i;j;j

v

i;k

� s

i;j;k

v

i;j

) (V

k

(t)� V

i

(t))) (25)

where

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

s

i;j;k

= v

t

i;j

v

i;k

�

i;j;k

= s

i;j;j

s

i;k;k

� s

2

i;j;k

= jjv

i;j

^ v

i;k

jj

2

(26)

Repla
ing the expression of the gradient in Equation (6) leads to

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m

X

j2N

i

X

k2N

i

\N

j

�

i;j;k

(V

j

(t)� V

i

(t)) + �

i;j;k

(V

k

(t)� V

i

(t))

�

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t))

where

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

�

i;j;k

=

1




i

�

i;j;k

(s

i;k;k

v

t

i;j

� s

i;j;k

v

t

i;k

)D

t

(jju

i;j;k

jj n

i;j;k

)

�

i;j;k

=

1




i

�

i;j;k

(s

i;j;j

v

t

i;k

� s

i;j;k

v

t

i;j

)D

t

(jju

i;j;k

jj n

i;j;k

)

where u

i;j;k

is the ve
tor de�ned by points G

i;j;k

and M

i;j

(see Figure 1C{D). The terms in the two

sums 
an then be grouped to have terms in V

j

(t)� V

i

(t), leading to the 
oeÆ
ients

w

i;j

=

X

k2N

i

\N

j

(�

i;j;k

+ �

i;k;j

) (27)

where indi
es j and k are ex
hanged in the 
oeÆ
ient �

i;j;k

. Making the appropriate substitutions,

we obtain

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m

X

j2N

i

w

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (28)
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and the weights w

i;j

are expressed as

w

i;j

=

1




i

X

k2N

i

\N

j

1

�

i;j;k

�

s

i;k;k

v

t

i;j

� s

i;j;k

v

t

i;k

�

D

t

(jju

i;j;k

jj n

i;j;k

+ jju

i;k;j

jj n

i;k;j

)

(�

i;j;k

= �

i;k;j

and the s
alar produ
ts verify s

i;j;k

= s

i;k;j

).

II. Evaluation of normals to the 
ontour

The normal ve
tor n to the 
ontour 
an be expressed as the 
ross produ
t between the ve
tor

tangent to the 
urve and the normal to the surfa
e de�ned by the 
urve n = t ^ s (see Figure 1A).

Hen
e, for the surfa
e de�ned by (I;G

i;j;k

;M

i;j

) and applied to the segment [G

i;j;k

;M

i;j

℄ the normal

ve
tor to the 
urve is

n

i;j;k

= 


0

i;j;k

u

i;j;k

^

�

g

i;j;k

^ m

i;j

�

where g

i;j;k

andm

i;j

are the ve
tors given by points I and G

i;j;k

and points I andM

i;j

, respe
tively

(see Figure 1C{D) and where 


0

i;j;k

is a (positive) normalization 
oeÆ
ient. Using the double ve
tor

produ
t (i.e. (x ^ y) ^ z = (x

t

z)y � (y

t

z)x), the normal to the 
urve is given by

n

i;j;k

= 


0

i;j;k

�

�(g

t

i;j;k

u

i;j;k

)m

i;j

+ (m

t

i;j

u

i;j;k

)g

i;j;k

�

We 
an then de�ne this ve
tor in terms of the ve
tors v

i;j

and v

i;k

using the fa
t thatm

i;j

=

1

2

v

i;j

,

that g

i;j;k

=

1

3

v

i;j

+

1

3

v

i;k

and that u

i;j;k

= m

i;j

� g

i;j;k

(see �gure 1D). We obtain the simple

expression

n

i;j;k

= 


i;j;k

((2s

i;k;k

� s

i;j;k

)v

i;j

+ (s

i;j;j

� 2s

i;j;k

)v

i;k

)

where the normalization 
oeÆ
ient is expressed as




i;j;k

=

1

�

1

2

i;j;k

(s

i;j;j

+ 4s

i;k;k

� 4s

i;j;k

)

1

2

Finally, ex
hanging the indi
es j and k in the equation above, we obtain the expression for n

i;k;j

.
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III. Evaluation of linear 
ombination of the normals

The length of the segment [G

i;j;k

;M

i;j

℄ is given by

jju

i;j;k

jj =

1

6

(s

i;j;j

+ 4s

i;k;k

� 4s

i;j;k

)

1

2

The linear 
ombination is given by

jju

i;j;k

jj n

i;j;k

+ jju

i;k;j

jj n

i;k;j

=

1

2�

1

2

i;j;k

((s

i;k;k

� s

i;j;k

)v

i;j

+ (s

i;j;j

� s

i;j;k

)v

i;k

) (29)

IV. Evaluation of the surfa
e 


i

The surfa
e is the sum of sets of triangles (Figure 1B{D)




i

=

X

j2N

i

X

k2N

i

\N

j




i;j;k

where ea
h set 


i;j;k

de�ned by (I;G

i;j;k

;M

i;j

) is given by




i;j;k

=

1

2

�

�

�

�

g

i;j;k

^ m

i;j

�

�

�

�

=

1

12

jjv

i;k

^ v

i;j

jj

V. Dis
retized Rea
tion{Diffusion Equation: General Case

Using the expression (29) the rea
tion{di�usion Equation (28) is given by

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m

X

j2N

i

w

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (30)

where the weights 
an be 
ompa
tly expressed as

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

w

i;j

=

1

2


i

X

k2N

i

\N

j

(s

i;k;k

v

t

i;j

� s

i;j;k

v

t

i;k

)D

t

((s

i;k;k

� s

i;j;k

)v

i;j

+ (s

i;j;j

� s

i;j;k

)v

i;k

)

�

3

2

i;j;k

s

i;j;k

= v

t

i;j

v

i;k

s

i;j;j

= jjv

i;j

jj

2

s

i;k;k

= jjv

i;k

jj

2

�

i;j;k

= s

i;j;j

s

i;k;k

� s

2

i;j;k

= jjv

i;j

^ v

i;k

jj

2




i

=

X

j2N

i

X

k2N

i

\N

j




i;j;k

where 


i;j;k

=

1

12

jjv

i;j

^ v

i;k

jj

(31)
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VI. Dis
retized Rea
tion{Diffusion Equation: Isotropi
 Case

In the 
ase where the di�usion tensor is proportional to the identity D =

1

�

I where � is the

resistivity, Equation (30) 
an be written as

V

i

(t+ Æt) = V

i

(t) +

Æt

�S

v

C

m

X

j2N

i

z

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (32)

where the weight are given by z

i;j

=

1

2


i

X

k2N

i

\N

j

s

i;k;k

� s

i;j;k

�

1

2

i;j;k

. Re
ognizing that s

i;k;k

� s

i;j;k

=

v

t

k;j

v

k;i

and that jjv

i;j

^ v

i;k

jj = jjv

k;j

^ v

k;i

jj we obtain
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>
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>
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>
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>

>

>

>

>

>

:

z

i;j

=

1

2


i

X

k2N

i

\N

j


otan(#

i;j;k
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i

=

X

j2N

i

X

k2N

i

\N

j




i;j;k

where 


i;j;k

=

1

12

jjv

i;j

^ v

i;k

jj

(33)

where #

i;j;k

is the angle between v

k;j

and v

k;i

(sin
e this angle is in ℄0 ; �[ its sinus is stri
tly

positive, see Figure 1D)).
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Fig. 5. (A): Mesh of the atrium. The holes 
orresponding to the insertion sites of the vessels and valves (4

pulmonary veins, superior and inferior venas 
ava, tri
uspid and mitral valves, sinus 
oronary) are shown.

In addition, the septum (jun
tions of several surfa
es) and the fossea ovalis (that 
an be modeled as a hole

if it does not di�use) are represented separately. The bla
k dot indi
ates the lo
ation of the sinus node. E

1

and E

2

indi
ate the lo
ation of the simulated re
ording ele
trodes. (B): Sinus node stimulation: propagation

iso
hrones.
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(A) (B) 

(C) (D) 

Fig. 6. Simulated unipolar ele
trograms during normal sinus rythm. (A) and (C) Ele
trode lo
ated at

position E

1

(see Figure 5A), respe
tively at 1 mm and 5 mm from the surfa
e; (B) and (D) Ele
trode

lo
ated at position E

2

(see Figure 5A), respe
tively at 1 mm and 5 mm from the surfa
e.

50 ms (A)  (B)

Fig. 7. (A) Simulated bipolar ele
trogram (normalized amplitude) measured at position E

1

(see Figure 5A),

at 1 mm from the surfa
e. (B) Clini
al bipolar ele
trogram (normalized amplitude) re
orded in a right

human atrium during routine intra
ardia
 mapping. In both 
ases the distan
e between the ele
trodes is

2 mm.


