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Abstrat

The majority of models of wavefront propagation in ardia tissue have assumed relatively simple ge-

ometries. Extensions to ompliated three{dimensional representations are omputationally hallenging due

to issues related to both problem size and the orret implementation of ux onservation. In this paper,

we present a generalized �nite di�erene sheme (GDFS) to simulate the reation{di�usion system on a 3D

monolayer of arbitrary shape. GDFS is a vertex{entered variant of the �nite{volume method that ensures

loal ux onservation. Owing to an e�etively lower dimensionality, the overall omputation time is re-

dued ompared to full 3D models at the same spatial resolution. We present the theoretial bakground

to ompute both the wavefront ondution and loal eletrograms using a matrix formulation. The same

matrix is used for both these quantities. We then give some results of simulation for simple monolayers and

omplex monolayers resembling a human atria.
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I. Introdution

M

OST models of wavefront propagation in ardia tissue have assumed relatively simple

one and two{dimensional geometries, suh as lines or retangular sheets. Full three{

dimensional representations are beoming more ommon [14℄, using numerial methods suh as �nite

element methods (FEM) or �nite volume methods (FVM). Although a more realisti representation

of ardia musle, three{dimensional models are omputationally hallenging. A hybrid approah

is to simulate the reation{di�usion system on a 3D monolayer or shell [2℄, [17℄. The advantage of a

redued three{dimensional geometry is that it is possible to simulate omplex dynamis with higher

spatial resolutions given the redued number of nodes needed to represent a surfae ompared to a

volume.

Computing salar �elds in omplex disrete strutures is of ourse not a new topi. FEM and

FVM have been developed to eÆiently solve these problems in a wide range of engineering appli-

ations. Both methods have been used in ardia modeling [13℄, [16℄, [23℄, [25℄. Reently, Zemlin
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et al. used a modi�ed FVM for an extended monolayer atrial model [29℄, although sparse details of

the method and implementation were provided. Shao et al. used a vertex{entered FVM on two{

dimensional sheets of simulated ardia tissue [24℄. Alternative formulations of the FVM relying on

very simple geometrial onepts have been proposed for heat transfer omputations in isotropi

2D materials in unstrutured triangular meshes under the name of Diret Finite Di�erene Method

(DFDM) [20℄, [22℄.

In this paper, we present a Generalized Finite Di�erene Sheme (GFDS) for triangular elements

that form a 3D shell. The method is a vertex{entered variant of the FVM that ensures loal

and global ux onservations and allows for spatial variations in tissue properties. We present the

theoretial bakground for the method and an approah for pratial implementations for both

wavefront ondution and the omputation of seondary quantities suh as loal eletrograms.

II. Model of eletrial propagation

Cardia tissue an be represented as a ontinuous bidomain where properties an be indepen-

dently assigned to the intraellular (int) and interstitial (ext) spaes [15℄. The bidomain model an

be written as
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where V

int

is the intraellular potential, V

ext

is the interstitial potential, D

int

and D

ext

are the intra

and extra ellular ondutivity tensors, respetively, S

v

is the surfae to volume ratio, and I

m

is the

membrane urrent per unit area that is a funtion of the transmembrane potential V

m

= V

int

�V

ext

.

he tissue is assumed to be immersed in a soure-free, volume ondutor or onduting bath. With

the appliation of the appropriate boundary onditions at the tissue/bath interfae, the potential

in the bath is assumed to satisfy Laplae's equation. To redue the omputational ost of solving

both the bidomain equations (1) and the �eld potential in the bath, we assume that

� the tissue is thin and lies in an extensive bath,
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� the extraellular potential is suÆiently small suh that intraellular potential is approximately

equal to the transmembrane potential,

� the e�et of the extraellular potential on the transmembrane urrent soures is small suh that

the bidomain equations an be deoupled.

Under these assumptions, ardia tissue an be desribed by a monodomain equation given by
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where the membrane urrent I

m

= C

m

�V

m

�t

+ I

ion

� I

stim

is the sum of the urrent due to the

membrane apaitane C

m

, the sum of the ioni urrents I

ion

(depending on the ioni model [1℄,

[3℄, [4℄, [5℄, [18℄, [19℄), and I

stim

is the stimulus urrent. The ondutivity tensor D is equal to

D

int

, with the sub-index being disarded for readability purposes. The monodomain equation an

alo be viewed as a speial ase of the bidomain under the onditions when the anisotropy in the

intraellular spae and interstitial spae is equal.

In ontrast to the bidomain equations, the monodomain equation (2) does not expliitly om-

pute the intraellular and extraellular potentials, but rather their di�erene, the transmembrane

potential. The potential in the surrounding bath an be estimated, however, by omputing the

transmembrane urrent density at eah point in the tissue and summing the potential �elds gen-

erated by eah urrent soure. Despite the limitations of the monodomain formulation [15℄, this

estimate should be similar for thin tissue to that obtained with a full bidomain model [8℄.

III. Cardia Tissue as a Monolayer

Bidomain and monodomain models an be onstruted in one, two and three dimensions. In

this paper, we assume that the part of the ardia anatomy we are modeling is thin enough to be

onsidered as monolayer but not neessarily planar (i.e. an be a surfae). The tissue thikness is

also assumed to be onstant over the whole surfae. The surfae mesh is onstruted as a set of

triangles. The extension of the monolayer model to represent three-dimensional objets helps to

remove the restritions imposed by no ux boundaries on the outer edges of planar sheet models,
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and thus allows the investigation of the dynamis of interating wavefronts on a losed surfae with

internal obstales. The method also ould be useful for studying propagation in thin walled hearts

(e.g., the mouse). While not presented here, the GFDS an be extended into full three-dimensions

using tetrahedral elements to model thiker tissue.

Using a mesh of triangles, eah vertex node orresponds to a ell that reats through urrent

uxes aross the membrane and di�uses urrents to its neighbors. The use of the vertex{entered,

rather than a element{entered approah simpli�es the assignment of neighbors of a given node

and ensures ux onservation even if some nodes are at a no{ux boundary (e.g. an internal hole).

A. Generalized Finite Di�erene Sheme

A.1 Divergene theorem

Using the mesh of triangles, a Generalized Finite Di�erene Sheme (GFDS) an be applied to

solve the reation{di�usion system numerially [6℄. To reate the disretized form of Equation (2),

the divergene theorem is applied. Let I denote the node at whih the potential V

i

(t) is omputed at

the time t, where i is the index of node I (in the following, index m is omitted for sake of simpliity).

Consider a losed ontour C

i

, on the surfae that de�nes a piee of surfae 


i

that inludes node I

(see Figure 1A). For a given vetor �eld x, the divergene theorem yields
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t

n is the salar produt between x and n). Using the divergene

theorem of Equation (2) yields
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for any node I. Assuming

�V

�t

, I

ion

and I

stim

are onstant on surfae 


i

(valid if the surfae area is

small) then Equation (3) beomes
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Replaing the ontinuous{time derivative of the potential by a �nite time{di�erene

�V

i

�t

�

V

i

(t+Æt)�V

i

(t)

Æt

and assuming I

ion;i

(and I

stim;i

) and the ux (integral term) onstant during a time
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step we �nally obtain the equation
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A.2 Choie of the ontour

To obtain a solution of Equation (5), we must de�ne the ontour C

i

. Let J (index j) denote a

neighboring node of node I and let N

i

denote the ensemble of indies forming the neighborhood

of node I. Let K (index k) denote a neighboring node of node I that is also onneted to J (i.e.

k is in N

i

\ N

j

; and N

i

\ N

j

usually ontains two points, see Figure 1). Let G

i;j;k

denote the

enter of gravity of the triplet (I; J;K) and let M

i;j

denote the midpoint of the doublet (I; J).

Using this geometry, the ontour an be de�ned to be formed by the segments [G

i;j;k

;M

i;j

℄ for all

j 2 N

i

and k 2 N

i

\ N

j

as shown in Figure 1B{D. This hoie of the ontour has the advantage

that is always ontained in the meshed surfae and provides a omplete tessellation of the domain.

Furthermore, the gradient is de�ned on the triangle (I; J;K) at the enter of gravity. For eah

segment [G

i;j;k

;M

i;j

℄ the normal is denoted by n

i;j;k

as shown in Figure 1C.

Using the above de�nition of the ontour, Equation (5) an be expressed as
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When de�ning the ontours, two speial ases an arise. The �rst ase involves the treatment

of holes in the surfae, where nodes are de�ned at the boundary (i.e. the ontour is not losed,

Figure 2A). The seond ase involves geometries where several surfaes are onneted (e.g. the

septum{like struture formed by two adjoined surfaes, see Figure 2B). In the GFDS, holes are

equivalent to boundaries suh that no urrent ows from the node into the hole (i.e. no ux). In

this ase, only one neighbor K 2 N

i

\ N

j

is onneted to the neighbor J 2 N

i

, as illustrated in

Figure 2. In the ase of N onneted surfaes 


1

i

to 


N

i

, it is neessary to onsider the uxes at

the union of these surfaes. As shown in Figure 2, there an be three neighbors K

1

, K

2

and K

3

in

N

i

\ N

j

onneted to the neighbor J 2 N

i

. Note that using an element{entered approah, these
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ases would require either the inlusion of �titious nodes or some manipulation of the governing

equation to ensure the ux onservation.

A.3 Creation of the Weight Matrix

Using Equation (6), where the gradient is evaluated (appendix A), the ux normal to all the

ontour pathes an be determined for a given point I as a weighted sum. Equation (6) an be

written ompatly as
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and where the surfae 


i

is the sum of all the sub{surfaes 


i;j;k

de�ned by (I; J;K) (see Figure 1),

surrounding the point I, namely
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^ denotes the ross produt, v

i;j

denotes the vetor omposed by the points I and J (see Figure 1C).

Note that k 2 N

i

\N

j

denotes the nodes onneted to node J .

The relationship with the lassial �nite{di�erene method appears through the �nite{di�erene

expression (V

j

(t)� V

i

(t)) of Equation (7).

In the ase where D is not the same at eah point, the same equation an be applied exept that

the tensor D is replaed by the tensors D

i;j;k

, de�ned for a triangle.

The weights w

i;j

for j 2 N

i

form a sparse matrix W, heretofore referred to as the \weight
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matrix". Let P be given by

P = I +

Æt

S

v

C

m

(W � diag(W1)) (11)

where I is the identity matrix, 1 the vetor having 1's for entries and where diag(x) is the diagonal

matrix having the entries x

i

of vetor x on the diagonal. Matrix P is heretofore referred to as the

\propagation matrix". Using P, Equation (7) an be written simply in matrix form

V(t+ Æt) = PV(t) �

Æt

C

m

(I

ion

(t)� I

stim

(t)) (12)

where V, I

ion

(t) and I

stim

(t) are all vetors.

In this form, the term orresponding to di�usion is replaed by a simple matrix{vetor produt.

Sine matrix P is ompletely time{independent, it only needs to be alulated one. Note that

the weight matrix W only depends on the di�usion tensor and the geometry. It is lear that the

eigenvalues �

l

of the propagation matrix are linked to the eigenvalues �

(w)

l

of matrixW�diag(W1)

as follows
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Sine (W � diag(W1))1 = 0, then � = 1 is an eigenvalue of P that ensures the steady state rest

potential on the whole tissue is a solution of the disretized propagation equation. This fat is an

obvious onsequene of the ux onservation property.

In the ase of homogeneous and isotropi di�usion, D =

1

�

I, the resistivity � an be extrated

from the weights (appendix F) and the disrete equation is given by

V

i

(t+ Æt) = V

i

(t) +

Æt

�S

v

C

m

X

j2N

i

z

i;j

(V

j

(t)� V

i

(t)) �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t)) (14)
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where #

i;j;k

is the geometri angle between vetors v

k;i

and v

k;j

(see Figure 1D) and where the

surfaes 


i

are still de�ned by (10). Inluding the weights in matrix Z, the propagation matrix for
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the isotropi ase is

P = I +

Æt
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(Z� diag(Z1)) (16)

Matrix Z depends only on the geometry. Beause the eigenvalues of the propagation matrix an

then be expressed from the terms of Z (i.e. �
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) as
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it is lear that the triangular mesh itself impats the stability of the part of the algorithm related

to di�usion. Notie that matrix Z � diag(Z1) is not symmetri sine the elements forming the

surfae are not the same. Considering the diagonal matrix �




= diag(: : : ; 


i

: : :) of the surfaes,

however, matrix Z � diag(Z1) an be written as the produt of �

�1




and a symmetri matrix. It

an then be shown that the eigenvalues of the symmetri matrix are the same as that of matrix

Z � diag(Z1). This fat implies that the eigenvalues of Z� diag(Z1) are real. Now, if one of the

�

(z)

l

is positive over the physiologial range of parameters and for all time steps, the part of the

algorithm orresponding to di�usion will not be stable. Furthermore, it is lear that if � is an

eigenvalue of Z�diag(Z1) and x its assoiated eigenvetor, then

X

j

z

i;j

(x

j

�x

i

) = �x

i

for any i. In

the non{isotropi ase, the di�usion operation is stable if the real part of the eigenvalues �

(w)

l

are

non{positive. A lot of useful theorem on matries an be found in [12℄, [27℄ to study the stability

of the propagation matrix.

B. Modeling Eletrograms

As noted earlier, the monodomain model an be used to estimate the potentials in the bath by

assuming a superposition of potential �elds from eah of the transmembrane urrent soures [21℄.

This approah has been used by Spah et al. [26℄ to ompare simulated and experimental signals

in thin tissue and more reently by Gima and Rudy in an inhomogeneous able [10℄. In our ase,

the monopolar transmembrane urrent soures are assumed to lie at the surfae of the tissue.

Let eah node I with its assoiated surfae 


i

represent a possible soure of urrent �I

m;i

S

v

d

with d the thikness of the tissue. Following the approah used by Plonsey [21℄, the bath potential
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where r is the distane from the soure to the �eld point and �

0

is the bath ondutivity. Note that

the 1=r weighting assumes an in�nite homogeneous volume ondutor. This approximation is used

for simpli�ation purposes. It is assumed to be valid sine we only simulate loal eletrograms,

where the volume ondutor boundary e�ets and ondutor heterogeneities have a redue impat.

A di�erent weighting ould be formulated for an inhomogeneous bounded volume ondutor using

lead �eld theory.

Assume that r remains onstant on the small piee of surfae 


i

surrounding I and thus r = jjv

i;e

jj

the distane between node I and the eletrode E. The integration in a general surfae is diÆult [21℄.

This assumption, however, is reasonable if the distane from eletrode to the surfae is greater than

the size of the surfae. Summing over the entire surfae, and assuming again a onstant thikness,

the potential �

E

measured on an eletrode at position E is given by
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De�ning the vetor of the inverse of the distane from the nodes to the eletrode as ir

e

(i.e. the entry

i is

1

jjv
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) and the diagonal matrix of the surfaes assoiated to eah node as�




= diag(: : : ;
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; : : :),

the potential is given by the salar produt
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Using the disretized form of the reation{di�usion equation, the membrane urrent is equal to the

di�usion term. Using the matrix formulation we obtain
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Note that the row vetor  ir

t

e

�




(W � diag(W1)) is time{independent and hene, only needs to

be alulated one. Several eletrograms an also be alulated simultaneously by onatenating

several vetor ir

e

. The formula above is for unipolar signals (i.e. referene at in�nity). Bipolar

signals an also be alulated by applying superposition and using the vetors given by the two

position E and F ,

�

E;F

(t) =  (ir

f

� ir

e

)

t

�




(W � diag(W1))V(t) (23)

C. Results

To demonstrate GFDS for modeling wavefront propagation in ardia tissue, a two{dimensional

5 m by 5 m domain was reated. A triangulation was obtained by sub{dividing eah square

element of a regular, strutured grid into two triangles. The internode spaing, Æx = Æy = 400 �m.

The domain was anisotropi, where

D =

1

�

2

6

6

4

1 0

0 0:3

3

7

7

5

; (24)

where � = 80 
�m. A surfae to volume ratio of S

v

= 0:24 �m

�1

and a spei� membrane

apaitane of C

m

= 1 �F�m

�2

were used. A modi�ed Beeler{Reuter model was used to desribe

the ion uxes. In the Beeler{Reuter model, the maximum alium ondutane was saled by 0.9.

An expliit Forward Euler time{stepping was used with a time step of Æt = 20 �s. Propagation was

initiated by injeting a 80 �A�m

�2

urrent for 2 ms to a 2 mm

2

area at the enter of the sheet.

Figure 3A shows the ativation isohrones of the propagating wavefront. The ondution veloity

was omputed to be 90 m�s

�1

along the �ber diretion and 50 m�s

�1

aross �bers. The ratio

of along to aross ondution veloities of 1.8 is approximately that predited by the square root

of the ratio of ondutivities,

q

1

0:3

= 1:83. The advantage of GFDS is that the method an be

applied to urved surfaes. Figure 3B shows the ativation isohrones of a wavefront propagating

on a sphere. The triangulation was obtained by �rst representing the sphere as an iosahedron. An

iosahedron is a surfae with 20 faes suh that eah node is at the same distane to the enter and
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eah fae is omposed of equilateral triangles. To approximate a sphere, eah equilateral triangle is

subdivided into 4 triangles using the enter of the edge of the initial triangles. The new nodes are

then moved in the diretion given by the node and the enter of the iosahedron, suh that they lie

on the spherial surfae. This proess is repeated until the mesh appears suÆiently �ne (6 steps

in our example). Using this approah a regular mesh an be obtained [11℄. The sphere has a radius

of 3 m. The elements omprising the sphere have a mean edge length of 570 �m. Propagation is

initiated by injeting a 80 �A�m

�2

stimulus for 2 ms to a 2 mm

2

area at the top of the sphere.

The sphere is omposed of 41000 nodes (80000 elements). The parameters are the same as those

used for the example above exept that the domain is isotropi suh that D =

1

�

I. As shown, the

wavefront propagates uniformly on the surfae with a ondution veloity of 90 m�s

�1

.

GFDS an also be applied to general surfaes. Figure 5A shows an atrial geometry obtained from

segmentation of an MRI of a human heart. Using ustom tools and semi{automated orretion, a

triangulation was obtained [7℄. Note that a Delaunay method for triangulating a general surfae

does not yet exist. In ontrast to the two previous examples, the mesh reated for the atria is

unstrutured.

As seen, the geometry ontains holes orresponding to the insertion points of the vessels and

loation of the valves. In addition, interseting surfaes of the left and right atrial surfaes form

the septum. The mesh has 400'000 nodes (800'000 elements) with a mean size of 200 �m. The

propagation was initiated by injeting 80 �A�m

�2

of urrent for 2 ms to a 2 mm

2

area near the

anatomial loation of sinus node.

Figure 5B shows the ativation isohrones, revealing a smooth wavefront propagation with a

ondution veloity of 88 m�s

�1

. As noted above, the quality of the mesh is ritial to ensure the

stability of the di�usion part of the algorithm. Figure 4 shows the e�et of the re�nement of the

mesh. The mesh has to be �ne enough to insure minimization of the possible unusual behaviors.

Finally, the matrix formed by GFDS an be used to ompute the eletrograms near the surfae.

Beause the shape of the eletrograms depend in part on the shape of the transmembrane potential,
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the Beeler{Reuter model was replaed with the Courtemanhe et al. [3℄ membrane model developed

for the human atria. Figure 6 shows the simulated unipolar signals during a sinus like beat at sites

E

1

and E

2

(see Figure 5A) loated at 1 mm and 5 mm from the atrial surfae. Most linial

reordings are bipolar. Figure 7 shows a omparison of simulated bipolar eletrograms with 2 mm

spaing with those obtained from a deapolar atheter (7 Frenh, BARD atheter with eletrode

spaing of 2 mm, sampling rate 1 kHz) during routine intraardia mapping of the atria. Beause

the properties and onditions in the model and the linial measurements are not the same, only

the shapes are ompared, showing exellent agreement.

IV. Conluding remarks

The GFDS using a surfae triangular mesh provides a method for studying wavefront ondution

on ompliated, losed shell struture with uniform thikness. The numerial methods used in this

paper are based on loal ux onservation, that also guarantees global ux onservation. Other

disretization methods like the �nite{element formalism, while guaranteeing a global minimization

of errors, do not insure the requested loal ux onservation in suh a straightforward manner.

Our method does not rely on any partiular mesh struture, thus easily enabling loal mesh

re�nements if required by loal tissue properties, or geometry omplexity. Its pratial implemen-

tation involves the omputation of a weight matrix whih, for an isotropi homogeneous domain,

an be interpreted in terms of the resistive properties of the simulated tissue. This matrix an be

preomputed sine the material parameters and geometry are typially time and voltage indepen-

dent: it takes about 24 seonds on a Pentium{IV, 1.8 GHz, for a mesh of 400'000 nodes where

eah node has at most 10 neighborhoods, to evaluate both the ensembles N

i

for eah node I, the

intersetions N

i

\ N

j

for eah j 2 N

i

and then the weights. If the properties or geometry (e.g.

due to mehanial ontration) do hange, it is possible to ompute the matrix as funtion of time,

with an obvious impat on the overall omputation time.

We presented here simulation results of sinus rhythm propagation omputed with our method
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on a realisti human atrial anatomy. A relatively oarse spatial disretization has been used in

this example, thus limiting the auray of the results. However, further mesh re�nements an be

used to enhane the auray in the same way as they do in the lassial forward Finite{Di�erene

Sheme, sine both methods rely on the same grounds. Finally, while we present here an expliit

formulation in time, the adaptation of this formulation to an impliit sheme is straightforward.

A further interest of the matrix formulation has been illustrated by the omputation of seondary

quantities suh as loal eletrograms, thus allowing a fast reonstrution of ECG signals. As

shown in Figure 6, the shapes of the simulated eletrograms are onsistent with those obtained

experimentally or linially. The eletrograms an be used to further validate models and inrease

the relevane of the simulated results to linial measurements.
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Appendix

I. Evaluation of the gradient

From the disrete reation{di�usion Equation (6)

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m




i

X

j2N

i

X

k2N

i

\N

j

Z

[G

i;j;k

;M

i;j

℄

(DrV

i

(t))

t

ndC �

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t))

the gradient rV

i

(t) is evaluated inside the triangle (I; J;K), in the plane de�ned by the nodes I, J

andK. Beause the vetors v

i;j

and v

i;k

, de�ned by points I and J and points I andK respetively

(see Figure 1C{D), are linearly independent, the gradient an be written as the ombination

rV

i

(t) = a(t)v

i;j

+ b(t)v

i;k
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Using the boundary onditions
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a(t) and b(t) an be evaluated, leading to an expression for the gradient
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where
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(26)

Replaing the expression of the gradient in Equation (6) leads to

V

i

(t+ Æt) = V

i

(t) +

Æt

S

v

C

m

X

j2N

i

X

k2N

i

\N

j

�

i;j;k

(V

j

(t)� V

i

(t)) + �

i;j;k

(V

k

(t)� V

i

(t))

�

Æt

C

m

(I

ion;i

(t)� I

stim;i

(t))

where
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where u

i;j;k

is the vetor de�ned by points G

i;j;k

and M

i;j

(see Figure 1C{D). The terms in the two

sums an then be grouped to have terms in V

j

(t)� V

i

(t), leading to the oeÆients

w

i;j

=

X

k2N

i

\N

j

(�

i;j;k

+ �

i;k;j

) (27)

where indies j and k are exhanged in the oeÆient �

i;j;k

. Making the appropriate substitutions,

we obtain

V

i
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S
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C
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and the weights w

i;j

are expressed as

w

i;j

=

1




i

X

k2N

i
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j
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= s
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II. Evaluation of normals to the ontour

The normal vetor n to the ontour an be expressed as the ross produt between the vetor

tangent to the urve and the normal to the surfae de�ned by the urve n = t ^ s (see Figure 1A).

Hene, for the surfae de�ned by (I;G

i;j;k

;M

i;j

) and applied to the segment [G

i;j;k

;M

i;j

℄ the normal

vetor to the urve is

n

i;j;k

= 

0

i;j;k

u
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^

�

g

i;j;k

^ m
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�

where g

i;j;k

andm

i;j

are the vetors given by points I and G

i;j;k

and points I andM

i;j

, respetively

(see Figure 1C{D) and where 

0

i;j;k

is a (positive) normalization oeÆient. Using the double vetor

produt (i.e. (x ^ y) ^ z = (x

t

z)y � (y

t

z)x), the normal to the urve is given by

n
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We an then de�ne this vetor in terms of the vetors v

i;j

and v

i;k

using the fat thatm
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=

1

2

v

i;j

,

that g

i;j;k
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1

3

v

i;j

+

1

3

v
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i;j;k
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� g
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(see �gure 1D). We obtain the simple

expression

n
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where the normalization oeÆient is expressed as
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� 4s

i;j;k

)

1

2

Finally, exhanging the indies j and k in the equation above, we obtain the expression for n

i;k;j

.
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III. Evaluation of linear ombination of the normals

The length of the segment [G

i;j;k

;M

i;j

℄ is given by

jju
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IV. Evaluation of the surfae 


i

The surfae is the sum of sets of triangles (Figure 1B{D)




i

=

X

j2N

i

X

k2N

i

\N

j




i;j;k

where eah set 


i;j;k

de�ned by (I;G

i;j;k

;M

i;j

) is given by




i;j;k

=

1

2

�

�

�

�

g

i;j;k

^ m

i;j

�

�

�

�

=

1

12

jjv

i;k

^ v

i;j

jj

V. Disretized Reation{Diffusion Equation: General Case

Using the expression (29) the reation{di�usion Equation (28) is given by
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where the weights an be ompatly expressed as
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VI. Disretized Reation{Diffusion Equation: Isotropi Case

In the ase where the di�usion tensor is proportional to the identity D =

1

�

I where � is the

resistivity, Equation (30) an be written as
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where #

i;j;k

is the angle between v

k;j

and v

k;i

(sine this angle is in ℄0 ; �[ its sinus is stritly

positive, see Figure 1D)).

Referenes

[1℄ G. W. Beeler and H. Reuter, Reonstrution of the ation potential of ventriular myoardial �bers, J. Physiol.,

vol. 268, pp. 177{210, 1977

[2℄ O. Blan, N. Virag, J.-M. Vesin and L. Kappenberger, A omputer model of human atria with reasonable ompu-

tation load and realisti anatomial properties, IEEE Trans. on Biomedial Engineering, vol. 48, no. 11, pp. 1229{

1237, November 2001

[3℄ M. Courtemanhe, R. J. Ramirez and S. Nattel, Ioni mehanism underlying human atrial ation potential

properties: insights from a mathematial model, AJP Heart and Cir. Physiol., vol. 44, no. 1, pp. H301{H321,

July 1998

[4℄ D. DiFraneso and D. Noble, A model of ardia eletrial ativity inorporating ioni pumps and onentration

hanges, Phil. Trans. Roy. So. London B, vol. 307, pp. 353{398, 1985

[5℄ R. A. FitzHugh, Impulses and physiologial states in theoretial models of nerve membrane, Biophysis Journal,

vol. 1, pp. 445{466, 1961

[6℄ J. Garrigues, La m�ethode des �el�ements �nis, Cours de l'�eole sup�erieure de m�eanique de Marseille, Janvier 2001

[7℄ P.L. George and H. Borouhaki, Delaunay triangulation and meshing: appliation to �nite elements, Herm�es,

Paris, 1998



19

[8℄ D. B. Geselowitz, R. C. Barr, M. S. Spah and W. T. Miller 3rd, The impat of adjaent isotropi uids on

eletrograms from anisotropi ardia musle. A modeling study, Cirulation Researh, vol. 51, no. 5, pp. 602{613,

November 1982

[9℄ D. B. Geselowitz, On the theory of eletroardiogram, Proeedings of the IEEE, vol. 77, no. 6, pp. 857{875, June

1989

[10℄ K. Gima and Y. Rudy, Ioni Current Basis of Eletroardiographi Waveforms: A Model Study, Cirulation

Researh, vol. 90, no. 8, pp. 889{896, May 2002

[11℄ F. X. Giraldo, Lagrange{Galerkin methods on spherial geodesi grids, Journal of Computational Physis,

vol. 136, no. 1, pp. 197{217, September 1997

[12℄ G. H. Golub and C. F. Van Loan, Matrix omputations, The John Hopkins University Press, Baltimore, 1987

[13℄ D. M. Harrild, C. S. Henriquez, A �nite volume model of ardia propagation, Annals of Biomedial Engineering,

vol. 28, no. 2, pp. 315{334, Marh{April 1997

[14℄ D. M. Harrild, C. S. Henriquez, A omputer model of normal ondution in the human atria, Cirulation Researh,

vol. 87, pp. 25e{36e, September 2000

[15℄ C. S. Henriquez and A. A. Papazoglou, Using omputer models to understand the roles of tissue struture and

membrane dynamis in arrhythmogenesis, Pro. of the IEEE, vol. 84, no. 3, pp. 334{354, Marh 1996

[16℄ I. J. Le Grie, B. H. Smail and P. J. Hunter, Myoardial ativation by threshold modeling with an anatomially

aurate �nite element model, Pro. of the Biomedial Engineering Soiety, 1992

[17℄ P. Levran, Simulation de ellules ardiaques par automates ellulaires, rapport de diplôme, d�epartement
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denotes the surfae de�ned by
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\normal{tangent" vetor to the ontour is denoted n. (B): shemati desription of the ontour around node

I for a triangular mesh and the assoiated surfae 
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; The ontour is the union of the segment de�ned by

the midpoint of eah vertex and the gravity enter of eah triangle; The surfae if then the union of eah

sub{surfae. (C) and (D): de�nition of the piee of the ontour in eah triangle sharing node I . Vetors
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i;k

and v
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and M
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Fig. 2. Shematis of the speial ases of (A) holes and (B) onnetion of two surfaes.
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Fig. 3. Isohrones for elementary surfaes; (A) ase of the anisotropi square sheet of tissue (5 m by 5 m)

for the desribed simulation; (B) ase of isotropi the sphere of radius of 3 m for the desribed simulation.
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Fig. 4. Average ondution veloity (CV) measured during an impulse propagation on the atrial surfae

meshed with di�erent spatial resolutions: 17'000, 50'000, 100'000, 200'000, 400'000 nodes with a mean

distane between nearest neighbors of approximately 1000, 600, 400, 300, 200 �m respetively.
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Fig. 5. (A): Mesh of the atrium. The holes orresponding to the insertion sites of the vessels and valves (4

pulmonary veins, superior and inferior venas ava, triuspid and mitral valves, sinus oronary) are shown.

In addition, the septum (juntions of several surfaes) and the fossea ovalis (that an be modeled as a hole

if it does not di�use) are represented separately. The blak dot indiates the loation of the sinus node. E

1

and E

2

indiate the loation of the simulated reording eletrodes. (B): Sinus node stimulation: propagation

isohrones.
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500 ms

(A) (B) 

(C) (D) 

Fig. 6. Simulated unipolar eletrograms during normal sinus rythm. (A) and (C) Eletrode loated at

position E

1

(see Figure 5A), respetively at 1 mm and 5 mm from the surfae; (B) and (D) Eletrode

loated at position E

2

(see Figure 5A), respetively at 1 mm and 5 mm from the surfae.

50 ms (A)  (B)

Fig. 7. (A) Simulated bipolar eletrogram (normalized amplitude) measured at position E

1

(see Figure 5A),

at 1 mm from the surfae. (B) Clinial bipolar eletrogram (normalized amplitude) reorded in a right

human atrium during routine intraardia mapping. In both ases the distane between the eletrodes is

2 mm.


