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Abstract

The majority of models of wavefront propagation in cardiac tissue have assumed relatively simple ge-
ometries. Extensions to complicated three—dimensional representations are computationally challenging due
to issues related to both problem size and the correct implementation of flux conservation. In this paper,
we present a generalized finite difference scheme (GDFS) to simulate the reaction-diffusion system on a 3D
monolayer of arbitrary shape. GDFS is a vertex—centered variant of the finite-volume method that ensures
local flux conservation. Owing to an effectively lower dimensionality, the overall computation time is re-
duced compared to full 3D models at the same spatial resolution. We present the theoretical background
to compute both the wavefront conduction and local electrograms using a matrix formulation. The same
matrix is used for both these quantities. We then give some results of simulation for simple monolayers and

complex monolayers resembling a human atria.
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I. INTRODUCTION

OST models of wavefront propagation in cardiac tissue have assumed relatively simple
one and two-dimensional geometries, such as lines or rectangular sheets. Full three-
dimensional representations are becoming more common [14], using numerical methods such as finite
element methods (FEM) or finite volume methods (FVM). Although a more realistic representation
of cardiac muscle, three—-dimensional models are computationally challenging. A hybrid approach
is to simulate the reaction—diffusion system on a 3D monolayer or shell [2], [17]. The advantage of a
reduced three-dimensional geometry is that it is possible to simulate complex dynamics with higher
spatial resolutions given the reduced number of nodes needed to represent a surface compared to a
volume.
Computing scalar fields in complex discrete structures is of course not a new topic. FEM and
FVM have been developed to efficiently solve these problems in a wide range of engineering appli-

cations. Both methods have been used in cardiac modeling [13], [16], [23], [25]. Recently, Zemlin
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et al. used a modified FVM for an extended monolayer atrial model [29], although sparse details of
the method and implementation were provided. Shao et al. used a vertex—centered FVM on two—
dimensional sheets of simulated cardiac tissue [24]. Alternative formulations of the FVM relying on
very simple geometrical concepts have been proposed for heat transfer computations in isotropic
2D materials in unstructured triangular meshes under the name of Direct Finite Difference Method
(DFDM) [20], [22].

In this paper, we present a Generalized Finite Difference Scheme (GFDS) for triangular elements
that form a 3D shell. The method is a vertex—centered variant of the FVM that ensures local
and global flux conservations and allows for spatial variations in tissue properties. We present the
theoretical background for the method and an approach for practical implementations for both

wavefront conduction and the computation of secondary quantities such as local electrograms.

II. MODEL OF ELECTRICAL PROPAGATION

Cardiac tissue can be represented as a continuous bidomain where properties can be indepen-
dently assigned to the intracellular (int) and interstitial (ext) spaces [15]. The bidomain model can

be written as

1
S_v ' (Dint V‘/int) = Irn
(1)
! V - (Dext VV. = 1,
L S_v . ( ext ext) — T 1im

where Vi, is the intracellular potential, Ve is the interstitial potential, Dyt and Deyt are the intra
and extra cellular conductivity tensors, respectively, S, is the surface to volume ratio, and Iy, is the
membrane current per unit area that is a function of the transmembrane potential Vi, = Vint — Vext-
he tissue is assumed to be immersed in a source-free, volume conductor or conducting bath. With
the application of the appropriate boundary conditions at the tissue/bath interface, the potential
in the bath is assumed to satisfy Laplace’s equation. To reduce the computational cost of solving
both the bidomain equations (1) and the field potential in the bath, we assume that

o the tissue is thin and lies in an extensive bath,
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« the extracellular potential is sufficiently small such that intracellular potential is approximately
equal to the transmembrane potential,

« the effect of the extracellular potential on the transmembrane current sources is small such that
the bidomain equations can be decoupled.

Under these assumptions, cardiac tissue can be described by a monodomain equation given by

1 OV
e - (D m) — Um—(7,—
V- (D VW) = Gl

S, + (Lion — Istim) (2)

where the membrane current I, = Cp, ag;“ + Lion — Istim is the sum of the current due to the
membrane capacitance Cp,, the sum of the ionic currents [ion, (depending on the ionic model [1],
(3], [4], [5], [18], [19]), and Iim is the stimulus current. The conductivity tensor D is equal to
Djys, with the sub-index being discarded for readability purposes. The monodomain equation can
alo be viewed as a special case of the bidomain under the conditions when the anisotropy in the
intracellular space and interstitial space is equal.

In contrast to the bidomain equations, the monodomain equation (2) does not explicitly com-
pute the intracellular and extracellular potentials, but rather their difference, the transmembrane
potential. The potential in the surrounding bath can be estimated, however, by computing the
transmembrane current density at each point in the tissue and summing the potential fields gen-
erated by each current source. Despite the limitations of the monodomain formulation [15], this

estimate should be similar for thin tissue to that obtained with a full bidomain model [8].

III. CARDIAC TISSUE AS A MONOLAYER

Bidomain and monodomain models can be constructed in one, two and three dimensions. In
this paper, we assume that the part of the cardiac anatomy we are modeling is thin enough to be
considered as monolayer but not necessarily planar (i.e. can be a surface). The tissue thickness is
also assumed to be constant over the whole surface. The surface mesh is constructed as a set of
triangles. The extension of the monolayer model to represent three-dimensional objects helps to

remove the restrictions imposed by no flux boundaries on the outer edges of planar sheet models,
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and thus allows the investigation of the dynamics of interacting wavefronts on a closed surface with
internal obstacles. The method also could be useful for studying propagation in thin walled hearts
(e.g., the mouse). While not presented here, the GFDS can be extended into full three-dimensions
using tetrahedral elements to model thicker tissue.

Using a mesh of triangles, each vertex node corresponds to a cell that reacts through current
fluxes across the membrane and diffuses currents to its neighbors. The use of the vertex—centered,
rather than a element—centered approach simplifies the assignment of neighbors of a given node

and ensures flux conservation even if some nodes are at a no—flux boundary (e.g. an internal hole).

A. Generalized Finite Difference Scheme
A.1 Divergence theorem

Using the mesh of triangles, a Generalized Finite Difference Scheme (GFDS) can be applied to
solve the reaction—diffusion system numerically [6]. To create the discretized form of Equation (2),
the divergence theorem is applied. Let I denote the node at which the potential V;() is computed at
the time ¢, where 7 is the index of node I (in the following, index m is omitted for sake of simplicity).
Consider a closed contour C;, on the surface that defines a piece of surface €2; that includes node 1
(see Figure 1A). For a given vector field x, the divergence theorem yields /Q V.- xdQ = /C x'ndC
where ! denotes the transpose (i.e. x’n is the scalar product between x and n;. Using the di\:ergence

theorem of Equation (2) yields

1
= /C (DVV) ndC = /Q (cmaa—‘z + Lion — Istim> dQ (3)
v i i

for any node I. Assuming %—‘;, Lion and Iy, are constant on surface €; (valid if the surface area is

small) then Equation (3) becomes

1 oV;
A / (DVV)'ndC = Q; (Cma—tz + Lion,i — Istim,i) (4)
v JC;

Replacing the continuous-time derivative of the potential by a finite time-difference aa‘f ~

W and assuming fion; (and Igim,;) and the flux (integral term) constant during a time



step we finally obtain the equation

ot ot

Vi(t + ot) = Vi(t) + m /C (D vvz’(t))t ndC — C—m (Iion,i(t) - Istim,z'(t)) (5)

A.2 Choice of the contour

To obtain a solution of Equation (5), we must define the contour C;. Let J (index j) denote a
neighboring node of node I and let N; denote the ensemble of indices forming the neighborhood
of node I. Let K (index k) denote a neighboring node of node I that is also connected to J (i.e.
k is in N N Nj; and N; NN usually contains two points, see Figure 1). Let G;;; denote the
center of gravity of the triplet (I,J, K) and let M, ; denote the midpoint of the doublet (I, J).
Using this geometry, the contour can be defined to be formed by the segments [G; j i, M; ;] for all
j € Njand k € N; NN as shown in Figure 1B-D. This choice of the contour has the advantage
that is always contained in the meshed surface and provides a complete tessellation of the domain.
Furthermore, the gradient is defined on the triangle (I,J, K) at the center of gravity. For each
segment [G; j , M; ;] the normal is denoted by n; j; as shown in Figure 1C.

Using the above definition of the contour, Equation (5) can be expressed as

Vi(t+dt) = Vi(t)+ % Z Z / o (DVV;(t)' n; jx dC —g—t (Lion,i (t) — Lstim,i(t))
JEN: keNinN; ¥ [GigkMi ] m

(6)
When defining the contours, two special cases can arise. The first case involves the treatment
of holes in the surface, where nodes are defined at the boundary (i.e. the contour is not closed,
Figure 2A). The second case involves geometries where several surfaces are connected (e.g. the
septum-like structure formed by two adjoined surfaces, see Figure 2B). In the GFDS, holes are
equivalent to boundaries such that no current flows from the node into the hole (i.e. no flux). In
this case, only one neighbor K € N; NN is connected to the neighbor J € Nj, as illustrated in

Figure 2. In the case of N connected surfaces 2} to QY it is necessary to consider the fluxes at

7 0

the union of these surfaces. As shown in Figure 2, there can be three neighbors K, Ky and K3 in

N; NN connected to the neighbor J € N;. Note that using an element-centered approach, these



7

cases would require either the inclusion of fictitious nodes or some manipulation of the governing

equation to ensure the flux conservation.

A.3 Creation of the Weight Matrix

Using Equation (6), where the gradient is evaluated (appendix A), the flux normal to all the
contour patches can be determined for a given point I as a weighted sum. Equation (6) can be

written compactly as

Sjém Z wi; (Vi(t) = Vi(t)) —
JEN;

ot
Cm

Vit + 6t) = Vi(t) + (Tion,i(t) — Istim,i(t)) (7)

where the weights w; ;, for j € N, are given by

(ke vy = i ¥ ) DY (i = 5ik) Vi + (515 = S1i) Vi)

1

) 2
kENiﬁ/\/’j Ai,j,k

where

2 ) _ . 2
| Sikk = ||Vikll

. — U . R — .
Sly]ak - viijl,k SZ,.]:.] - ||vZa.]

. (9)

2
| Ak = Siggsikk = ik =IVig A Vil

and where the surface €; is the sum of all the sub—surfaces ; ; ;, defined by (I, J, K) (see Figure 1),
surrounding the point I, namely
Q; = Z Z Qi ik where Qijk = 1—12 l[vij A vigll (10)
JEN; kEN;NN;

A denotes the cross product, v; ; denotes the vector composed by the points I and J (see Figure 1C).
Note that & € N; N N; denotes the nodes connected to node J.

The relationship with the classical finite—difference method appears through the finite—difference
expression (V;(t) — V;(t)) of Equation (7).

In the case where D is not the same at each point, the same equation can be applied except that
the tensor D is replaced by the tensors D; ; x, defined for a triangle.

“

The weights w; ; for j € N; form a sparse matrix W, heretofore referred to as the “weight



matrix”. Let P be given by

ot
S,Cm

P=1I+ (W — diag(W1)) (11)

where I is the identity matrix, 1 the vector having 1’s for entries and where diag(x) is the diagonal
matrix having the entries z; of vector x on the diagonal. Matrix P is heretofore referred to as the
“propagation matrix”. Using P, Equation (7) can be written simply in matrix form

ot

V(t+6t) =PV(t) - o

(Iion (t) - Istim(t)) (12)

where V, Ijo, (t) and Iy (t) are all vectors.

In this form, the term corresponding to diffusion is replaced by a simple matrix—vector product.
Since matrix P is completely time-independent, it only needs to be calculated once. Note that
the weight matrix W only depends on the diffusion tensor and the geometry. It is clear that the

(w)

eigenvalues )\; of the propagation matrix are linked to the eigenvalues ;" of matrix W —diag(W1)

as follows

o ) (13)

N =1
=ttt e

Since (W — diag(W1))1 = 0, then A =1 is an eigenvalue of P that ensures the steady state rest
potential on the whole tissue is a solution of the discretized propagation equation. This fact is an

obvious consequence of the flux conservation property.

In the case of homogeneous and isotropic diffusion, D = %I, the resistivity p can be extracted

from the weights (appendix F) and the discrete equation is given by

pS(stC 3 g (V30 = Vi) = 5 (ons®) = Lana®) (1)
UET GeN; "

Vi(t + 6t) = Vi(t) +

where the weights z; j, for j € N, are given by

1
20 Z cotan(d; j 1) (15)
keN;NN;

Zi ’j =

where ¥; ;1 is the geometric angle between vectors v ; and vy ; (see Figure 1D) and where the

surfaces 2; are still defined by (10). Including the weights in matrix Z, the propagation matrix for



the isotropic case is

ot
pSuC

P=1I+ (Z — diag(Z1)) (16)

Matrix Z depends only on the geometry. Because the eigenvalues of the propagation matrix can

then be expressed from the terms of Z (i.e. Hl(z)) as

N=1+

o (17)

it is clear that the triangular mesh itself impacts the stability of the part of the algorithm related
to diffusion. Notice that matrix Z — diag(Z1) is not symmetric since the elements forming the
surface are not the same. Considering the diagonal matrix Ag = diag(..., §2; ...) of the surfaces,
however, matrix Z — diag(Z1) can be written as the product of A;zl and a symmetric matrix. It
can then be shown that the eigenvalues of the symmetric matrix are the same as that of matrix
Z — diag(Z1). This fact implies that the eigenvalues of Z — diag(Z1) are real. Now, if one of the
Hl(z) is positive over the physiological range of parameters and for all time steps, the part of the
algorithm corresponding to diffusion will not be stable. Furthermore, it is clear that if 6 is an
eigenvalue of Z — diag(Z1) and x its associated eigenvector, then Zzi,j(a;j —x;) = Oz; for any 7. In
J
the non-isotropic case, the diffusion operation is stable if the real part of the eigenvalues Hl(w) are

non-positive. A lot of useful theorem on matrices can be found in [12], [27] to study the stability

of the propagation matrix.

B. Modeling Electrograms

As noted earlier, the monodomain model can be used to estimate the potentials in the bath by
assuming a superposition of potential fields from each of the transmembrane current sources [21].
This approach has been used by Spach et al. [26] to compare simulated and experimental signals
in thin tissue and more recently by Gima and Rudy in an inhomogeneous cable [10]. In our case,
the monopolar transmembrane current sources are assumed to lie at the surface of the tissue.

Let each node I with its associated surface €2; represent a possible source of current —1Iy, ;S, d

with d the thickness of the tissue. Following the approach used by Plonsey [21], the bath potential
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& measured by an electrode located at some point F is given by

1 InS,y d
oy = / 50d 40 (18)
Q

4royg T

where r is the distance from the source to the field point and o9 is the bath conductivity. Note that
the 1/r weighting assumes an infinite homogeneous volume conductor. This approximation is used
for simplification purposes. It is assumed to be valid since we only simulate local electrograms,
where the volume conductor boundary effects and conductor heterogeneities have a reduce impact.
A different weighting could be formulated for an inhomogeneous bounded volume conductor using
lead field theory.

Assume that r remains constant on the small piece of surface ; surrounding I and thus r = ||v; ||
the distance between node I and the electrode E. The integration in a general surface is difficult [21].
This assumption, however, is reasonable if the distance from electrode to the surface is greater than
the size of the surface. Summing over the entire surface, and assuming again a constant thickness,

the potential ®; measured on an electrode at position E is given by

dp 19
47r00 Z ||vz6|| (19)

Defining the vector of the inverse of the distance from the nodes to the electrode as ir, (i.e. the entry

iis HV—lH) and the diagonal matrix of the surfaces associated to each node as A = diag(...,Q;,...),

the potential is given by the scalar product

Dp(t) = Sod ir! AgTy(t) (20)

4roy

Using the discretized form of the reaction—diffusion equation, the membrane current is equal to the

diffusion term. Using the matrix formulation we obtain
p(t) = yirl Ag (W — diag(W1)) V(#) (21)

where

- (22)
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Note that the row vector vir, Ag (W — diag(W1)) is time-independent and hence, only needs to
be calculated once. Several electrograms can also be calculated simultaneously by concatenating
several vector ir,. The formula above is for unipolar signals (i.e. reference at infinity). Bipolar
signals can also be calculated by applying superposition and using the vectors given by the two
position E and F,

Op,p(t) =7 (iry — ire)’ Ao (W — diag(W1))V(?) (23)

C. Results

To demonstrate GFDS for modeling wavefront propagation in cardiac tissue, a two—dimensional
5 cm by 5 cm domain was created. A triangulation was obtained by sub—dividing each square
element of a regular, structured grid into two triangles. The internode spacing, dz = dy = 400 pm.

The domain was anisotropic, where
D=-= , (24)

where p = 80 Q-cm. A surface to volume ratio of S, = 0.24 um~! and a specific membrane

2 were used. A modified Beeler—Reuter model was used to describe

capacitance of Cp, =1 pF-cm™
the ion fluxes. In the Beeler—Reuter model, the maximum calcium conductance was scaled by 0.9.
An explicit Forward Euler time—stepping was used with a time step of 0t = 20 us. Propagation was

2

initiated by injecting a 80 gA-cm ™2 current for 2 ms to a 2 mm? area at the center of the sheet.

Figure 3A shows the activation isochrones of the propagating wavefront. The conduction velocity

1 across fibers. The ratio

was computed to be 90 cm-s~! along the fiber direction and 50 cm-s~
of along to across conduction velocities of 1.8 is approximately that predicted by the square root
of the ratio of conductivities, \/% = 1.83. The advantage of GFDS is that the method can be
applied to curved surfaces. Figure 3B shows the activation isochrones of a wavefront propagating

on a sphere. The triangulation was obtained by first representing the sphere as an icosahedron. An

icosahedron is a surface with 20 faces such that each node is at the same distance to the center and
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each face is composed of equilateral triangles. To approximate a sphere, each equilateral triangle is
subdivided into 4 triangles using the center of the edge of the initial triangles. The new nodes are
then moved in the direction given by the node and the center of the icosahedron, such that they lie
on the spherical surface. This process is repeated until the mesh appears sufficiently fine (6 steps
in our example). Using this approach a regular mesh can be obtained [11]. The sphere has a radius
of 3 cm. The elements comprising the sphere have a mean edge length of 570 pm. Propagation is

initiated by injecting a 80 pA-cm~2 stimulus for 2 ms to a 2 mm?

area at the top of the sphere.
The sphere is composed of 41000 nodes (80000 elements). The parameters are the same as those
used for the example above except that the domain is isotropic such that D = %I. As shown, the
wavefront propagates uniformly on the surface with a conduction velocity of 90 cm-s—1.

GFDS can also be applied to general surfaces. Figure 5A shows an atrial geometry obtained from
segmentation of an MRI of a human heart. Using custom tools and semi-automated correction, a
triangulation was obtained [7]. Note that a Delaunay method for triangulating a general surface
does not yet exist. In contrast to the two previous examples, the mesh created for the atria is
unstructured.

As seen, the geometry contains holes corresponding to the insertion points of the vessels and
location of the valves. In addition, intersecting surfaces of the left and right atrial surfaces form
the septum. The mesh has 400’000 nodes (800’000 elements) with a mean size of 200 pm. The

2 area near the

propagation was initiated by injecting 80 pA-cm~2 of current for 2 ms to a 2 mm
anatomical location of sinus node.

Figure 5B shows the activation isochrones, revealing a smooth wavefront propagation with a
conduction velocity of 88 cm-s~'. As noted above, the quality of the mesh is critical to ensure the
stability of the diffusion part of the algorithm. Figure 4 shows the effect of the refinement of the
mesh. The mesh has to be fine enough to insure minimization of the possible unusual behaviors.

Finally, the matrix formed by GFDS can be used to compute the electrograms near the surface.

Because the shape of the electrograms depend in part on the shape of the transmembrane potential,
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the Beeler-Reuter model was replaced with the Courtemanche et al. [3] membrane model developed
for the human atria. Figure 6 shows the simulated unipolar signals during a sinus like beat at sites
E, and E; (see Figure 5A) located at 1 mm and 5 mm from the atrial surface. Most clinical
recordings are bipolar. Figure 7 shows a comparison of simulated bipolar electrograms with 2 mm
spacing with those obtained from a decapolar catheter (7 French, BARD catheter with electrode
spacing of 2 mm, sampling rate 1 kHz) during routine intracardiac mapping of the atria. Because
the properties and conditions in the model and the clinical measurements are not the same, only

the shapes are compared, showing excellent agreement.

IV. CONCLUDING REMARKS

The GFDS using a surface triangular mesh provides a method for studying wavefront conduction
on complicated, closed shell structure with uniform thickness. The numerical methods used in this
paper are based on local flux conservation, that also guarantees global flux conservation. Other
discretization methods like the finite—element formalism, while guaranteeing a global minimization
of errors, do not insure the requested local flux conservation in such a straightforward manner.

Our method does not rely on any particular mesh structure, thus easily enabling local mesh
refinements if required by local tissue properties, or geometry complexity. Its practical implemen-
tation involves the computation of a weight matrix which, for an isotropic homogeneous domain,
can be interpreted in terms of the resistive properties of the simulated tissue. This matrix can be
precomputed since the material parameters and geometry are typically time and voltage indepen-
dent: it takes about 24 seconds on a Pentium-1V, 1.8 GHz, for a mesh of 400’000 nodes where
each node has at most 10 neighborhoods, to evaluate both the ensembles A; for each node I, the
intersections N NN for each j € N; and then the weights. If the properties or geometry (e.g.
due to mechanical contraction) do change, it is possible to compute the matrix as function of time,
with an obvious impact on the overall computation time.

We presented here simulation results of sinus rhythm propagation computed with our method
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on a realistic human atrial anatomy. A relatively coarse spatial discretization has been used in
this example, thus limiting the accuracy of the results. However, further mesh refinements can be
used to enhance the accuracy in the same way as they do in the classical forward Finite-Difference
Scheme, since both methods rely on the same grounds. Finally, while we present here an explicit
formulation in time, the adaptation of this formulation to an implicit scheme is straightforward.
A further interest of the matrix formulation has been illustrated by the computation of secondary
quantities such as local electrograms, thus allowing a fast reconstruction of ECG signals. As
shown in Figure 6, the shapes of the simulated electrograms are consistent with those obtained
experimentally or clinically. The electrograms can be used to further validate models and increase

the relevance of the simulated results to clinical measurements.
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APPENDIX
I. EVALUATION OF THE GRADIENT

From the discrete reaction—diffusion Equation (6)

ot 5t
Vi(t +0t) = Vi) + 7o > X / (DVV;(t))! ndC —  (ion,i(t) = Lsima(®))
met ]ENz kENiﬁNj [Gi,j,k:Mz ]] m

the gradient VV;(t) is evaluated inside the triangle (I, J, K), in the plane defined by the nodes I, J
and K. Because the vectors v; j and v; 1, defined by points I and J and points I and K respectively

(see Figure 1C-D), are linearly independent, the gradient can be written as the combination

VVi(t) = a(t) vij +b(t) vig



15

Using the boundary conditions

r

VVi(t) - vig = Vj(t) = Vi(t)

| Vi) vk = V() - Vi)

a(t) and b(t) can be evaluated, leading to an expression for the gradient

1
VVilt) = ” ((Sikkvig — SijeVik) (Vi) = Vi(t)) + (SijjVik — sigevig) (Ve(t) — Vi(t))) (25)
l7.]’
where
)
Sijk = VijVik
(26)
A _ 2 _ 2
| Digk = SiggSikk = Sk = Vi A Vigl|

Replacing the expression of the gradient in Equation (6) leads to

ot
Sy,Cm

Vit +0t) = Vi(t) + S0 g (Vi) = Vi) + Bk (Ve(t) = Vi(t))

JEN; kEN;NN;

ot
o (Lion,i(t) — Istim,i (1))
m
where
.

ik = oa— (Sikpvii —siixviy) DU (el nijx)
l:])k QiAi,j,k lrkak 1,] l:])k Z,k Zajzk Zajzk
Bigk = arary (iigvie = siavi) D' (il mije)
| Piik Qi A jp \ChDI ik T ik Y 4 k1 B.5.k

where u; ; ;. is the vector defined by points G; ;. and M; ; (see Figure 1C-D). The terms in the two
sums can then be grouped to have terms in V;(t) — V;(), leading to the coefficients

wig= Y (Cjk+Biks) (27)
kENiﬂ/\/’j

where indices j and k are exchanged in the coefficient 3; ; . Making the appropriate substitutions,

we obtain

ot g . ot

Vi(t + 0t) = Vi(t) + S0
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and the weights w; ; are expressed as
1 1

wig=q D o (Siksvig = sigavie) D' (gl mije + llwik,
ke Sk

| D)
(Ajjk = Ai,j and the scalar products verify s; ;1 = S ,5)-

II. EVALUATION OF NORMALS TO THE CONTOUR

The normal vector n to the contour can be expressed as the cross product between the vector
tangent to the curve and the normal to the surface defined by the curve n =t A s (see Figure 1A).
Hence, for the surface defined by (I, G; j x, M; ;) and applied to the segment |G} ; , M; ;| the normal

vector to the curve is
e , o ..
Nk = Yijk Wigk N (85 A mij)

where g; ; ;. and m; ; are the vectors given by points I and G, j ; and points I and M, ; , respectively

(see Figure 1C-D) and where v; ; ; is a (positive) normalization coefficient. Using the double vector

product (i.e. (x Ay) A z=(x'z)y — (y'z) x), the normal to the curve is given by

/ t t
D = Vg (— (80400 My + (M5 ;00 5k) 84 j)

We can then define this vector in terms of the vectors v; ; and v; ;, using the fact that m; ; = % Vi

that g; ;. = Tvij+ 3vip and that u;jp = m;; — g, (see figure 1D). We obtain the simple

expression

0G5k = Yigk ((28ikk — Sijk) Vij + (S5 — 28ijk) Vik)

where the normalization coefficient is expressed as

1

’Yi,j,k = 1
Ai,j,k (Sijg + 4Si ke — 4Sijk)

M

Finally, exchanging the indices j and £ in the equation above, we obtain the expression for n; j ;.
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III. EVALUATION OF LINEAR COMBINATION OF THE NORMALS

The length of the segment [G; ; i, M; ;] is given by

1
(Si,j,j + 4Sikk — 4Si5,k)°

| =

[ .kl =

The linear combination is given by

1
wijnll mijr + [[Wiggll nig; = ——5— ((Sigk — Sigk) Vig + (sijj — sijk) Vie)  (29)

2
240705k

IV. EVALUATION OF THE SURFACE {);

The surface is the sum of sets of triangles (Figure 1B-D)

Qizz Z Qi ik

jENi kENiﬁ/\/’j

where each set Q; ;1 defined by (I, G; j, M; ;) is given by
1 1
ik =5 l8iw A migl| = 75 llvie A vigll
V. DISCRETIZED REACTION—DIFFUSION EQUATION: GENERAL CASE

Using the expression (29) the reaction—diffusion Equation (28) is given by

0t 0t
Vit +dt) = Vi(t) + > wig (Vi(t) = Vi(t)) — = (Tioni(t) — Lstim,i(t)) (30)
SyCy - Cnm
JEN;
where the weights can be compactly expressed as
| 1 > (S Vi = Sigk Vi) DY ((ikk = i k) Vi + (85 = Sijk) Vi)
wi,j = ) 3
ot _ 2 . 2
Sijk = VijVik Sigi = Vil Sk = || Vikll
{
A _ 2 _ 2
gk = SiggSikk — Sijk = lVij A Vigll
1
Q = Z > Qigk where Qijw = 15 [Vig A vigll
jeEN; kENiﬂ/\fj
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VI. DISCRETIZED REACTION—DIFFUSION EQUATION: ISOTROPIC CASE

In the case where the diffusion tensor is proportional to the identity D = %I where p is the

resistivity, Equation (30) can be written as

ot ot
Vi(t + 6t) = Vi(t) + ——— Z zij (Vi(t) = Vi(t)) — == (Tion,i(t) — Istim,i(2)) (32)
pSyC, N Cm
. . 1 Sikk — Sijk .. B
where the weight are given by z;; = — ————. Recognizing that s, — sijr =
, 2 Qi 5 vy W
kGNiﬂ/\fj Ai,j,k
v};,jvkﬂ- and that ||v;; A vig|| = ||Vk; A Vis|| we obtain
( 1
Zij = Z—Qz Z cotan(ﬁi,jyk)
kENiﬁNj
(33)
1
Q, = Z Z Qz’,j,k where Qi,j,k = E ||Vi,j A Vi,k”
L JENGKEN;NN;

where ©J; ;1. is the angle between vy, ; and vy ; (since this angle is in |0, «[ its sinus is strictly

positive, see Figure 1D)).
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LisT OF FIGURES

(A): for a fixed point I, C; denotes a contour surrounding I, €; denotes the surface
defined by the contour, the normal vector to the surface is then denoted s, the tangent
vector is denoted t and the “normal-tangent” vector to the contour is denoted n. (B):
schematic description of the contour around node I for a triangular mesh and the as-
sociated surface €2;; The contour is the union of the segment defined by the midpoint
of each vertex and the gravity center of each triangle; The surface if then the union of
each sub-surface. (C) and (D): definition of the piece of the contour in each triangle
sharing node I. Vectors v;j, v;; and v;j are the vectors defined through points I
and J, I and K, J and K respectively; G; j ; denotes the gravity center of the triangle
(I,J,K); M;; and M; denote the midpoints of segments [I,.J] and [I, K] respec-
tively; Hence, the normal vectors to segment [G ; i, M; ;] and segment [G; j ., M; ;] are
respectively n; ;. and n;; ;; The sub-surfaces defined by triangle (I, G; j i, M; ;) and
triangle (I, G; jx, M; ) are respectively €); ;, and €2;; ;. The intermediate vector we
use in appendix are m; ; and m,j defined using I and M; ;, I and M;j respectively;
Vectors u; j r and u;  ; are given by G; j x and M; ;, G; ;. and M; j respectively; Vector
i,j % is defined by points I and Gj ; ;; At last the angle ¥; ;  denotes the angle between
vectors v and Vi . .. ..o
Schematics of the special cases of (A) holes and (B) connection of two surfaces.
Isochrones for elementary surfaces; (A) case of the anisotropic square sheet of tissue
(5 cm by 5 cm) for the described simulation; (B) case of isotropic the sphere of radius
of 3 cm for the described simulation. . . . . . . . .. ... oo o oo
Average conduction velocity (CV) measured during an impulse propagation on the
atrial surface meshed with different spatial resolutions: 17’000, 50’000, 100’000,
200’000, 400’000 nodes with a mean distance between nearest neighbors of approxi-

mately 1000, 600, 400, 300, 200 pm respectively. . . . . . . . . ... ...
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(A): Mesh of the atrium. The holes corresponding to the insertion sites of the vessels
and valves (4 pulmonary veins, superior and inferior venas cava, tricuspid and mitral
valves, sinus coronary) are shown. In addition, the septum (junctions of several sur-
faces) and the fossea ovalis (that can be modeled as a hole if it does not diffuse) are
represented separately. The black dot indicates the location of the sinus node. FEj
and Fs indicate the location of the simulated recording electrodes. (B): Sinus node
stimulation: propagation isochrones. . . . . . . ... ... ... o oL,
Simulated unipolar electrograms during normal sinus rythm. (A) and (C) Electrode
located at position F; (see Figure 5A), respectively at 1 mm and 5 mm from the
surface; (B) and (D) Electrode located at position Fs (see Figure 5A), respectively at
1 mm and 5 mm from the surface. . . . . . . ... ... oo
(A) Simulated bipolar electrogram (normalized amplitude) measured at position F;
(see Figure 5A), at 1 mm from the surface. (B) Clinical bipolar electrogram (normalized
amplitude) recorded in a right human atrium during routine intracardiac mapping. In

both cases the distance between the electrodes is 2 mm. . . . . . ... ... ... ...
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Fig. 1. (A): for a fixed point I, C; denotes a contour surrounding I, €; denotes the surface defined by
the contour, the normal vector to the surface is then denoted s, the tangent vector is denoted t and the
“normal-tangent” vector to the contour is denoted n. (B): schematic description of the contour around node
I for a triangular mesh and the associated surface €2;; The contour is the union of the segment defined by
the midpoint of each vertex and the gravity center of each triangle; The surface if then the union of each
sub-surface. (C) and (D): definition of the piece of the contour in each triangle sharing node I. Vectors
Vi,j, Vie and vj are the vectors defined through points I and J, I and K, J and K respectively; G j
denotes the gravity center of the triangle (I, J, K); M; ; and M, denote the midpoints of segments [, J]
and [I, K] respectively; Hence, the normal vectors to segment [G; j i, M; ;] and segment [G; jx, M; ] are
respectively n; ; ;, and n;  j; The sub—surfaces defined by triangle (I, G; j x, M; ;) and triangle (I, G; j x, M; 1)
are respectively €2; ;1 and ;1 ;. The intermediate vector we use in appendix are m;; and m;; defined
using I and M; j, I and M, respectively; Vectors u; ; and u;y ; are given by G, and M; ;, G; ;5 and
M; 1, respectively; Vector g; ; r is defined by points I and G jr; At last the angle ¥; ;1 denotes the angle

between vectors v ; and vy, ;.
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Fig. 2. Schematics of the special cases of (A) holes and (B) connection of two surfaces.
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Fig. 3. Isochrones for elementary surfaces; (A) case of the anisotropic square sheet of tissue (5 cm by 5 cm)

for the described simulation; (B) case of isotropic the sphere of radius of 3 cm for the described simulation.
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Fig. 4. Average conduction velocity (CV) measured during an impulse propagation on the atrial surface
meshed with different spatial resolutions: 17°000, 50’000, 100’000, 200’000, 400’000 nodes with a mean

distance between nearest neighbors of approximately 1000, 600, 400, 300, 200 um respectively.
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Fig. 5. (A): Mesh of the atrium. The holes corresponding to the insertion sites of the vessels and valves (4

pulmonary veins, superior and inferior venas cava, tricuspid and mitral valves, sinus coronary) are shown.
In addition, the septum (junctions of several surfaces) and the fossea ovalis (that can be modeled as a hole
if it does not diffuse) are represented separately. The black dot indicates the location of the sinus node. E;
and E, indicate the location of the simulated recording electrodes. (B): Sinus node stimulation: propagation

isochrones.
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Fig. 6. Simulated unipolar electrograms during normal sinus rythm. (A) and (C) Electrode located at
position E; (see Figure 5A), respectively at 1 mm and 5 mm from the surface; (B) and (D) Electrode

located at position E» (see Figure 5A), respectively at 1 mm and 5 mm from the surface.

(A) B  50ms

Fig. 7. (A) Simulated bipolar electrogram (normalized amplitude) measured at position E; (see Figure 5A),
at 1 mm from the surface. (B) Clinical bipolar electrogram (normalized amplitude) recorded in a right
human atrium during routine intracardiac mapping. In both cases the distance between the electrodes is

2 mm.



