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Abstract

Fibroblasts are non-excitable cells that are sometimes coupled with excitable cells (cardiomy-

ocytes). Due to a higher resting potential, these cells may act as a current source or sink and

therefore disturb the electrical activity of the surrounding excitable cells. The possible occurrence

of spontaneous pacemaker activity resulting from these electrotonic interactions was investigated

in a theoretical model of two coupled cells as well as in a multicellular fiber model based on the

Courtemanche kinetics. The results indicate that repeated spontaneous activations can be observed

after an alteration in the activation and recovery properties of the sodium current (changes in ex-

citability properties), provided that the difference in the resting potential as well as the coupling

between the excitable and non-excitable cells is sufficiently high. This may constitute a mechanism

of focal sources triggering arrhythmias such as atrial fibrillation.

PACS numbers: 87.10.+e, 87.19.Hh, 87.16.Ac, 87.19.Nn

I. INTRODUCTION

Atrial fibrillation (AF) is the most frequent rhythm disorder observed in the human heart.

Typically, AF is characterized by multiple spinning electrical wavelets traveling over both

atria, causing these upper chambers to quiver at a rate of 300 to 600 times per minute.

Invasive, electrophysiological studies have identified one sub-form of AF having its origin

located in the pulmonary veins [1]. The conceptual description underlying this type of AF

postulates that AF is triggered and perpetuated by one or several sources of ectopic beats

(focal activity). The mechanism of spontaneous firing in the pulmonary vein region so far

has remained unclear.

The increase of AF prevalence with age [2] has prompted the investigation of the effects

of structural and functional changes associated with aging, such as fibrosis [3–5]. Cardiac

fibrosis is marked by the formation of fibrous tissue in the lining and the muscle of the heart

[6]. This fibrous tissue is composed of non-excitable cells, the fibroblasts, characterized by

a higher resting potential than that of the myocytes [7]. Since fibroblasts can be coupled

through gap junctions with other fibroblasts as well as to myocytes [8], they may act as
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a current sink or source for the electrical activity in the latter and therefore disturb the

propagation of the cardiac impulse.

Dissections of human autopsy hearts demonstrated myocardial sleeves extending the left

atrial myocardium along the pulmonary veins [9]. The distal zones of these sleeves showed

increased fibrous tissue, presumably providing a substrate for microreentries and ectopic

foci [9]. Inspired by the work of Fenton et al. analyzing the occurrence of spontaneous

activations produced by differences in resting potentials [10], we hypothesized that, under

specific pathological conditions, pacemaker activity can occur if a group of atrial cells is

coupled with non-excitable cells (fibrous tissue) characterized by a higher resting potential.

A similar mechanism was proposed by Keener to describe the onset of ventricular fibrillation

following coronary artery occlusion [11]. This might constitute a mechanism of focal sources

triggering AF.

In this paper, the basic mechanisms describing the occurrence of a spontaneous pacemaker

activity are first investigated in a simplified model of two coupled cells enabling an analytical

study of its dynamics and the identification of the most important parameters affecting its

qualitative behavior. Then, numerical simulations are performed to extend the results to a

one-dimensional tissue model with more realistic membrane properties.

II. BASIC MECHANISMS

We first consider two coupled cells (one excitable cell and one non-excitable cell) with

transmembrane potentials u1 and u2. Assuming a linear coupling due to the presence of gap

junctions, their evolution is governed by the equations [12]

C1
du1

dt
= −I1(u1,w1)− g̃ · (u1 − u2) (1)

C2
du2

dt
= −I2(u2,w2)− g̃ · (u2 − u1) , (2)

where, for i = 1, 2, Ci is the membrane capacitance (in µF), Ii is the (outward) ionic current

through the cell membrane (in µA), wi describes the membrane state (i.e., internal variables

such as the probability for an ion channel to be open), and g̃ is the coupling conductance

(in µS). The membrane current of the first cell is specified by the FitzHugh–Nagumo model

[13–16]

I1(u1, w1)/C1 = −ku1(u1 − a)(1− u1) + w1 , (3)
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where k and a are positive parameters. This model includes a single internal variable w1

whose dynamics is governed by the equation

dw1

dt
= ϵ · (u1 − γw1) , (4)

where ϵ and γ are two positive parameters. Since the second cell is taken to be non-excitable,

I2 can be modeled as

I2(u2) = gm · (u2 − u0) , (5)

where u0 is its equilibrium potential and gm is the membrane conductance.

In the sequel of this section, we assume that gm is large (gm → ∞). By reducing by one

the number of dynamical variables as well as the number of parameters, this assumption

enables us to determine analytically the exact dynamical behavior of a simplified system that

qualitatively captures some of the features of the complete coupled system. In this situation,

u2 ≈ u0 and the system (1)–(5) is approximated by two coupled differential equations in u1

and w1. With the indices 1 skipped for the sake of clarity, this system reads

du

dt
= p(u)− w (6)

dw

dt
= ϵ · (u− γw) . (7)

The function p(u) is a third-order polynomial (with negative leading coefficient) defined as:

p(u) = ku(u− a)(1− u) − g · (u− u0) , (8)

where g = g̃/C1. Note that introducing a coupling g between the cells only results in a

change of the coefficients of the polynomial.

The resting potential u∗ of the coupled system is one of the stable fixed points of Eqs. (6)-

(7). A fixed point (u∗, w∗) is a solution of

p(u∗)− u∗/γ = 0 and w∗ = u∗/γ . (9)

Solving Eq. (9) requires extracting the real root(s) of a third-degree polynomial. At least one

real root exists. In order to avoid non-physiological conditions, the parameters k, a, γ, g and

u0 were chosen such that indeed a unique simple real root exists. If this fixed point becomes

unstable, a limit cycle is generally observed for asymptotically long times, since only these

two types of attractor can exist in two dimensions (according to the Poincaré–Bendixon

theorem) [16].
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The stability of the fixed point is governed by the eigenvalues of the Jacobian matrix

J(u∗) =

 α −1

ϵ −ϵγ

 , (10)

where α is defined as the derivative of the polynomial at u∗, i.e., α = p′(u∗). The fixed point

is linearly stable if the real part Re λ± of the eigenvalues λ± of J(u∗) is negative. These

eigenvalues are given by

2λ± = α− ϵγ ±
√
∆ (11)

∆ = (ϵγ − α)2 − 4ϵ(1− αγ) . (12)

If α− ϵγ ≥ 0, then Reλ+ ≥ 0 and the fixed point is unstable. So we assume that α− ϵγ < 0.

If ∆ < 0, the eigenvalues are complex with a negative real part, so that the fixed point is

stable and the transient dynamics is characterized by damped oscillations. This happens

when

−ϵγ − 2
√
ϵ < α < −ϵγ + 2

√
ϵ . (13)

If ∆ ≥ 0, we have to check whether λ+ (which is real) can be positive. This occurs when

α > γ−1. When α ≤ γ−1, the fixed point is stable.

Thus, the stability of the fixed point (u∗, u∗/γ) only depends on the parameter α(u∗). A

phase transition can occur at α = ϵγ, α = γ−1 and α = −ϵγ±2
√
ϵ. We need to arrange these

values in ascending order to determine the qualitative behavior of the system as a function of

α. For this purpose, we will assume that ϵ < γ−2. The rationale for this assumption is that a

small ϵ leads to a stiffer system, characterized by a steep depolarization followed by a slower

repolarization. This is what we would expect for cardiac cells. Under this assumption, we

have

−ϵγ − 2
√
ϵ < ϵγ < −ϵγ + 2

√
ϵ < 1/γ , (14)

and the fixed point (u∗, u∗/γ) is unstable when α(u∗) ≥ ϵγ, stable when α(u∗) < ϵγ, and

stable with damped oscillations (complex eigenvalues) when −ϵγ − 2
√
ϵ < α(u∗) < ϵγ.

Figure 1 displays examples of bifurcation diagrams, with the model parameters set to:

k = 10, a = 0.15, ϵ = 0.2, 0.1 ≤ γ ≤ 0.5. These parameters were selected so that ϵ < γ−2 and

no spontaneous activation occurs in the absence of coupling. For each pair of parameters

(g, u0) in the range 0 ≤ g ≤ 4 and 0 ≤ u0 ≤ 1, the asymptotic behavior of the system is

either periodic (limit cycle) or constant (stable fixed point). The gray region corresponds
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to a limit cycle and the white region to a stable fixed point. The dashed line determines

the region with transient oscillations (complex eigenvalues with negative real part). The

black region in the right bottom panel of Fig. 1 corresponds to 3 fixed points, a clearly

non-physiological situation. From this figure, it appears that: (1) if the coupling is very

weak (if g is small), the dynamics is similar to that of an isolated excitable cell; (2) if the

coupling is very strong (if g is large), the cell remains at a constant potential close to that

of the non-excitable cell; (3) for intermediate coupling coefficients, a periodic activity will

appear spontaneously; (4) a critical, sufficiently high resting potential u0 is required for this

periodic activity; (5) this critical resting potential depends on the recovery properties of the

cell (the parameter γ).

III. A MULTICELLULAR FIBER MODEL

The simplified model of two coupled cells described in the previous section provided

a qualitative understanding of the possible changes in the dynamics (bifurcations) of an

excitable system arising as a consequence of its coupling with a non-excitable system. In

order to study the electrophysiological conditions for which similar phenomena could be

observed in the pulmonary veins in the presence of fibrosis, a unidimensional multicellular

fiber model is considered. The high number of parameters involved in this more detailed

model prevents a comprehensive systematical scanning of their values and their impact.

The ones selected for further analysis (resting potential and coupling) in this section were

inspired by the results of the preceding simpler model.

The multicellular fiber model consists of 110 cells connected through gap junctions. The

first 100 cells represent cardiac myocytes and the last 10 cells represent non-excitable cells.

The transmembrane potential ui of the i-th cell satisfies the following cable equation gener-

alizing (1):

Ci
dui

dt
= −Ii(ui)− gi−1(ui − ui−1)− gi(ui − ui+1) (15)

where Ci is the membrane capacitance of cell i, Ii is the ionic current through the cell

membrane, and gi is the coupling conductance between cell i and i + 1 (see Fig. 2). A no-

flux boundary condition was assumed at the extremities of the fiber. This setup is similar

to heterogeneous cell culture models with strands of cardiomyocytes [17]. In order to limit

the number of adjustable parameters, the coupling constants gi/Ci were given a uniform
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value 25 nS/pF, for which the cardiac impulse propagates at a velocity of about 80 cm/s (if

the cells are 100 µm long). The coupling constant g100, denoted hereafter by gc, describes

the coupling between the myocytes and the non-excitable cells; it was set to different values

within the range from 0 to 15 nS/pF.

The dynamics of the cardiac cells is described by the Courtemanche et al. [18] atrial

cell model which takes into account 12 membrane currents (Na+ currents: INa, INa, b; K
+

currents: IK1, Ito, IKs, IKr, IKur; Ca
2+ currents: ICa,L, Ip,Ca, ICa, b; pumps and ion exchangers:

INaK, INaCa), variations in ionic concentration (Na+, K+ and Ca2+) and the intracellular Ca2+

dynamics related to its store in the sarcoplasmic reticulum. This resulted in a system of 21

differential equations. The aggregate current Ii/Ci is the sum of the 12 membrane currents

mentioned above (in the reference [18], those currents are given in pA/pF). In order to adapt

the Courtemanche et al. model to the electrophysiological properties of the pulmonary vein

myocytes, the currents Ito and IK1 were reduced by 25% and 40% respectively, and the

delayed rectifier currents IKs, IKr and IKur were increased by 60%, 50% and 50%, in agreement

with patch-clamp measurements of canine pulmonary vein cardiomyocytes [19]. The L-type

Ca2+ current was reduced by 70% so that the effective refractory period was about 180 ms,

a value within physiological range (177±43 ms measured using a catheter in the pulmonary

veins of patients with paroxysmal AF [20]).

The effects of the alteration of the myocyte excitability properties were studied by modify-

ing the fast inward Na+ current. This current was formulated as INa(u) = gNam
3hj(u−ENa),

where gNa is the ion channel conductance, ENa is the reversal potential and m, h and j are

three gating variables [18]. Each gating variable satisfies an equation of the form

dy

dt
= −y − y∞(u)

τy(u)
(16)

describing the process of opening and closing of ion channel gates, in which y stands for m, h

and j. The voltage dependence of the functions y∞(u) and τy(u) was shifted. More precisely,

the original functions m∞(u) and τm(u) were replaced by m∞(u−∆Vexc) and τm(u−∆Vexc)

respectively. A negative shift (∆Vexc < 0) resulted in a decrease of the excitation threshold.

Similarly, h∞(u), τh(u), j∞(u) and τj(u) were shifted by ∆Vrec. This operation altered the

recovery of the Na+ current. Values for the parameters ∆Vexc and ∆Vrec were selected in

the range −8.5 to 0 mV and −1 to 3 mV respectively.

The membrane current in non-excitable cells was modeled by Ii(ui) = gm(ui − u0) as
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in (5). Passive electrophysiological properties of cardiac fibroblasts have been documented

in the literature, mainly for the rat heart. The membrane resistance values of fibroblasts

were found to lie in the gigaohm range (0.51–3.8 GΩ in rat atrium [7], and 5.5±0.6 GΩ

in rat ventricles [21]). Shibukawa et al. reported a membrane capacitance of 4.5±0.4 pF

for ventricular fibroblasts [21]. In the model, gm/Ci = 0.1 nS/pF was chosen as a baseline

value. The resting potential can vary significantly from cell to cell: values in the range of

−70 to 0 mV have been reported [7, 21]. In the model, the resting potential u0 of all the

non-excitable cells was set to the same value, selected from the interval −55 to −30 mV.

The system of ordinary differential equations (15) was solved numerically using a Crank–

Nicholson scheme with a time step of 10 µs.

IV. BIFURCATION DIAGRAMS

For each selection of the parameters ∆Vexc and ∆Vrec, a bifurcation diagram was computed

according to the following protocol. The coupling coefficient (gc) and the resting potential

of the non-excitable cells (u0) were considered as control parameters and were successively

given a value from 0 to 15 nS/pF (step: 0.6 nS/pF) and from −60 to −30 mV (step: 1 mV)

in order to scan the parameter space. For each pair of parameters (gc, u0), the evolution of

the multicellular fiber model was simulated for 5 s, starting with all cells at their resting

state. The activations of cell 1 (located at the extremity of the fiber, see Fig. 2), if any,

were detected. The dynamical behavior was classified into 3 categories: (1) no spontaneous

activation, (2) one single spontaneous activation, and (3) repeated spontaneous activations

(pacemaker activity). When repeated activations were observed for at least 5 s, the mean

cycle length was computed.

Figure 3 displays the resulting bifurcation diagrams. No activation was observed in the

absence of coupling (gc = 0). This confirms the stability of the resting potential for the

isolated atrial cell model, even with an altered Na+ current. In the presence of coupling

(gc > 0), but without alteration of the excitability properties of the atrial cells (last row

of Fig. 3), a stable profile of resting potential was created by electrotonic effects after the

steady-state was reached. Figure 4 shows this profile for different values of the coupling

parameter gc and the resting potential u0 of the non-excitable cells. Note that the resting

potential of the non-excitable cells can be significantly lower than the resting potential u0
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of the same cells when isolated.

When the excitation threshold was decreased (∆Vexc < −3 mV), a single activation

having its origin at the junction between the excitable and non-excitable cells occurred for

sufficiently high values of the resting potential u0 (row 5 of Fig. 3). This happened because

the steady-state resting potential became higher than the excitation threshold. However,

after the depolarization, the transmembrane potential did not return to a sufficiently low

level to reopen the Na+ inactivation gates, so that activations were no longer possible [10].

A further decrease of the excitation threshold (∆Vexc < −7.5 mV, see row 2 of Fig. 3)

enabled pacemaker activity to appear, with cycle lengths around 300–400 ms, because the

lack of open inactivation gates was compensated by a higher excitability. When the recovery

threshold for the Na+ inactivation gates was increased (∆Vrec > 0), pacemaker activity was

observed at a lower resting potential u0 (column 3 and 4 vs column 2 of Fig. 3). The resulting

cycle length was found to be shorter (140 to 300 ms). In contrast, no repeated activation

was observed when the recovery threshold was reduced (∆Vrec < 0).

The existence and the spread of the region of pacemaker activity in the bifurcation di-

agrams can be explained as follows in terms of steady-state inward sodium current (the

so-called “window current”) [11]. This current is given by

INa = gNa ·m3
∞(u−∆Vexc) · h∞(u−∆Vrec) · j∞(u−∆Vrec) · (u− ENa) , (17)

and determines the cell excitability as a function of the resting potential [11]. The window

current is important because the resting potential spans a range of transmembrane potential

in the transition zone (see Fig. 4). In order to enable a re-excitation of the cell, there must

exist an interval of resting potential for which the window current is non-negligible. Figure 5

displays the peak window current (in absolute value) as a function of the parameters ∆Vexc

and ∆Vrec. Comparison with Fig. 3 shows that higher values of the peak window current

are associated with the occurrence of pacemaker activity.

Figure 6 displays some examples of the transmembrane potential time-course of cell 10

(atrial cell) and 101 (non-excitable cell). The different dynamical regimes are illustrated. It

appears that the electrical activity of the non-excitable cells tends to resemble that of the

excitable cells present in their neighborhood, but with a smaller amplitude and slope, in

agreement with in vitro recordings [6].

In order to evaluate the importance of the boundary and the finite size effects, simulations
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were performed on fiber models with different lengths. Figure 7 shows bifurcation diagrams

obtained with 100 excitable cells and 5, 10 and 20 non-excitable cells respectively. A larger

network of connected non-excitable cells appears to facilitate the occurrence of spontaneous

activations. This situation can be interpreted as a set of excitable cells connected to a more

powerful battery.

Figure 8 presents bifurcation diagrams obtained with M = 5 non-excitable cells and a

number of excitable cells N ranging from 4 to 200. Increasing the number of excitable cells

from 100 to 200 did not produce significantly different results, as is suggested by cell 1

being very close to its resting potential in the steady-state membrane potential profiles

in Fig. 4. By decreasing the number of excitable cells N , finite-size effects were studied,

which enabled a comparison with the results of the two-cell model of section II. First, when

N was decreased (N < 50 in Fig. 8), the pacemaker activity disappeared at high values

of the equilibrium potential u0 because the restoring force [Eq. (5)] was strong enough to

prevent the transmembrane potential from falling down significantly below u0 after an action

potential is triggered. Second, pacemaker activity was observed for lower values of u0 since

less electrotonic current is needed to make the electrical impulse propagate in a very short

fiber (see Fig. 4). Third, when M and N were both small (N = 4 in Fig. 8), the system did

not show any pacemaker activity when gc became high. The transmembrane potential of

the excitable cells tended to a resting value near u0. This situation is close to the dynamics

of the simplified two-cell model. Note that in no case was there pacemaker activity for

gc = 0 nS/pF. Moreover, in the vicinity of the transition in the bifurcation diagram, damped

oscillations similar to those of the two-cell model were observed. However, in longer fibers,

the electrical impulse propagated far from the non-excitable cells in a all-or-none fashion.

V. DISCUSSION

Several mechanisms have been proposed to explain the occurrence of ectopic foci, such

as microreentries [22, 23], groups of cells with auto-oscillatory dynamics [24–26], electro-

mechanical coupling [27] and activations induced by electrotonicity [10]. Here, in order to

evaluate the last hypothesis mentioned, we investigated the electrophysiological conditions

in a biophysical model for which electrotonic effects induced by the coupling with fibrous

tissue can lead to spontaneous repetitive activations.
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The results obtained in a multicellular fiber model suggest that coupling with fibrob-

lasts facilitates the formation of focal sources triggering or perpetuating AF. However, an

alteration of the excitation properties of the cells was found to be necessary for pacemaker

activity to occur while keeping the values of the parameters within physiological range. This

is due to the fact that the original Courtemanche model does not have a sufficiently high

window current to enable repetitive firing. Whether there exists a significant sodium win-

dow current in normal or pathological cardiac cells remains an open question, because of the

difficulty to directly measure this current in real cells. However, indirect evidences suggest

its presence, as discussed in Keener [11].

Fibrosis seems to contribute to the creation of an arrhythmogenic substrate, but other

complementary mechanisms have to be involved. This is consistent with the clinical obser-

vation that although a large proportion of the elderly have fibrosis, only a fraction of them

suffer from AF. Also, in the normal heart, the density of connective tissue (fibroblasts) is

higher in the sinoatrial node, the natural pacemaker, than in the rest of the atria [6, 28].

This study was limited to the one-dimensional monodomain case in order to enable a

sufficiently wide scanning of the parameter space. In a more realistic three-dimensional

structure representing the pulmonary vein region, wave front curvature, the extracellular

domain, the possible active properties of the non-excitable cells, the complex geometry and

fiber structure, possible loss of coupling or heterogeneity in tissue conductivity, and the

three-dimensional distribution of fibrous tissue may induce other electrotonic effects which

have to be taken into account. However, we predict that the qualitative behavior of the

phenomena described in this paper will also be found in such a detailed model [10].

VI. CONCLUSION

Pacemaker activity can arise from electrotonic effects when excitable, but non-pacemaker

cells are coupled to non-excitable cells characterized by a higher resting potential. An alter-

ation of the activation and recovery properties of the sodium channel was needed to increase

the steady-state sodium current, so that these spontaneous activations can occur. This phe-

nomenon is strengthened by a larger coupling between the excitable and non-excitable cells,

or by a higher difference in resting potential. This model may serve as a building block to

develop a biophysical model of focal AF.
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FIG. 1. Bifurcation diagrams for different values of the recovery parameter γ. The gray region cor-

responds to pacemaker activity, the white region to a stable resting potential, and the black region

to non-physiological conditions. The dashed line determines the region with transient oscillations.

FIG. 2. Schematic representation of the multicellular fiber model.
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FIG. 3. Bifurcation diagrams of the spontaneous activity of the multicellular fiber model. Each

column corresponds to a value of ∆Vrec and each row to a value of ∆Vexc. In the bifurcation dia-

grams, the region above the continuous line is characterized by at least one spontaneous activation.

When pacemaker activity was detected, the mean cycle length is displayed using gray level coding.
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FIG. 4. Steady-state profiles of transmembrane potential along the fiber. The resting potential of

the non-excitable cells (when isolated) is u0 = −60 mV (panel A) and u0 = −30 mV (panel B).

The vertical dotted line represents the transition between atrial cells (on the left) and non-excitable

cells (on the right). Profiles are shown for different values of the coupling conductance: gc = 0,

0.3, 0.6, 1.25, 15 nS/pF, respectively in the order indicated by the arrows.

FIG. 5. Peak window current INa gray level-coded as a function of the excitability parameters

∆Vexc and ∆Vrec according to Eq. (17). The baseline value of this current (that is, when ∆Vexc =

∆Vrec = 0) is 0.016 pA/pF.
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FIG. 6. Time course of the transmembrane potential of cell 10 (gray line) and cell 101 (black

line) over a time interval of 3 seconds. The parameters are as follows: (A) ∆Vexc = −7 mV,

∆Vrec = 1 mV, u0 = −55 mV; (B) ∆Vexc = −7 mV, ∆Vrec = 1 mV, u0 = −45 mV; (C) ∆Vexc =

−8 mV, ∆Vrec = 1 mV, u0 = −40 mV; (D) ∆Vexc = −8 mV, ∆Vrec = 3 mV, u0 = −40 mV; and

gc = 9 nS/pF in all cases.

FIG. 7. Bifurcation diagrams of the spontaneous activity of the multicellular fiber model. The

same presentation and gray level code as Fig. 3 is used. The number M of non-excitable cells

included in the fiber model is 5, 10 and 20 (from left to right). In all the three cases, ∆Vrec = 1 mV

and ∆Vexc = −7.5 mV.
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FIG. 8. Bifurcation diagrams of the spontaneous activity of the multicellular fiber model. The

same presentation and gray level code as Fig. 3 is used. The number N of excitable cells included

in the fiber model is 4, 5, 20, 40, 50, 100 and 200 (from left to right), and the number M of

non-excitable cells is 5. In all the three cases, ∆Vrec = 1 mV and ∆Vexc = −7.5 mV.
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