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Abstract—The propagation of electric activity inside a
realistically-shaped, thick-walled model of the atria was studied.
The membrane kinetics was based on the formulations of
Courtemanche, Ramirez and Nattel. In spite of the assumed
uniformity of all kinetics parameters, diffusion parameters, the
activation recovery intervals revealed values in a range of about
20 ms, having a clearly distinct spatial distribution, with higher
values close to the site of activation and lower ones at sites
where activation ends. This paper presents an analysis of this
phenomenon based on similar observations made on propagation
along the classic models of cable and disk, as well as along
the surface of a spherical shell and a diabolo-shaped shell.
Propagation in the latter three geometries is treated under axial-
symmetric conditions, for which dedicated analytical expressions
of the diffusion term are described. The results indicate that the
major effects can be directly attributed to step discontinuity in the
conductivity of the medium surrounding the locations of initial
and final depolarization. Overall geometry of the myocardial
wall determines the smooth distribution of activation recovery
intervals in the medium, showing local maxima around the points
of initiation and local minima at locations where depolarization
ends. The points are determined by the location of the stimulation
sites involved and overall tissue geometry.

Index Terms—Activation recovery interval, isotonic load, ve-
locity of repolarization, curvature.
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I. INTRODUCTION

In the past, numerous studies have been performed on the
spatial distribution of the action potential duration (APD) in
the myocardium or, its electro-physiologically more relevant
variant, the functionally refractory period (FRP). The latter
has been shown to be highly correlated with the more directly
related activation recovery interval (ARI) [1]. These studies
involved a variety of animal experiments as well as computer
simulations using a variety of large scale numerical models.
The latter comprised differences in tissue modeling (isotropy,
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inhomogeneity, geometry) as well as the modeling of the ion
kinetics at the membrane level. The issue addressed was the
relationship between these tissue properties, as well as those
of the activation sequence, on the distribution of the parameter
(APD, FRP, ARI) taken to be the marker of the duration of
local recovery, e.g., [2–5].

Our interest in this topic stems from our observations made
on the results from simulated electrocardiographic signals
associated with the normal activity of the healthy atrium [6].
In one of these simulations uniformity was assumed of all the
kinetics parameters as well as of the isotropic conductivity
parameters inside the atrial wall (wall thickness approx. 2
mm). In spite of the assumed uniformity, the ARI values had
a range of about 20 ms, having a distinct spatial distribution,
with longer values close to the site of activation and shorter
ones at sites where activation ends [7]. The simulations were
based the on membrane kinetics formulated by Courtemanche,
Ramirez and Nattel [8], which is referred to in this paper as
the CRN model. This is one of the most complete models
available of the kinetics of human atrial myocytes.

The paper includes the documentation and analysis of
spatial ARI distributions in the classic models of propa-
gation along a cable and disk, as well as on a spherical
shell and a diabolo-shaped shell. These configurations were
selected in order to examine in how far curvature of the
wave front or of tissue geometry might be involved in the
observed distribution of the ARI . Propagation in the latter
three geometries is treated for axial-symmetric stimuli, for
which dedicated analytical expressions for handling the dif-
fusion term are described. This permitted us to solve the
essentially 2-D problems by means of their 1-D equivalents.
The simulations were carried out in homogeneous, isotropic
media, thus excluding the possibility of a confounding effect
of either inhomogeneities and/of anisotropy.

Throughout the paper, the term propagation is used in
reference to the depolarization process and, v denotes the
velocity of propagation of its wave front.
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Fig. 1. TMP wave forms based on the CRN kinetics. Left traces: TMP at the
stimulus site (peaked version) with superimposed, after lining up its timing,
the TMP at some distance from the stimulus site propagating alone a linear
cable at a locally uniform velocity of 0.75 m/s. Right trace: the propagated
TMP at its proper timing; asterisks denote the inflection points, the dotted
line the corresponding ARI value (approx. 200 ms).

II. METHODS

A. Propagation

The propagation of the electric activity following a stimulus
was computed by means of the standard reaction diffusion
expression, the partial differential equation

Cm
∂Vm(~r, t)

∂t
= S−1

v ∇·σ(~r)∇Vm(~r, t)+Istim(~r, t)−Iion(~r, t),
(1)

where Vm(~r, t) denotes the transmembrane potential at loca-
tion ~r at time t, Cm the membrane capacitance (unit: F m−2),
Sv the cell’s membrane-surface-to-volume ratio (unit: m−1),
σ(~r) the electric conductivity of intracellular the medium (unit:
S m−1), and Istim(~r, t) the stimulus current density injected
into the intracellular medium. The function Iion(~r, t) (unit:
A m−2) is the current density generated by the active pro-
cesses (ion-kinetics) at membrane location ~r. In a cylindrically
shaped fiber with radius a, Sv is proportional to 1/a.

Formulation (1) represents the mono-domain approximation
of the bi-domain formulation governing the propagation of the
cardiac impulse in the myocardium, with σ(~r) assumed to be
isotropic [9]. By convention, the voltage difference Vm(~r, t)
is taken to be positive if the interior of the cardiac myocyte
is positive with respect to its exterior;

The term S−1
v ∇·σ(~r)∇Vm(~r, t) in Eq. 1 expresses the flow

of current Im(~r, t) (unit: A m−2) toward any membrane patch
in the intracellular domain resulting from the interaction with
the transmembrane potential at neighboring patches, generally
referred to as representing isotonic interaction, or as the

diffusion term. In the absence of external stimuli, Im(~r, t)
is also the outward current density entering the extracellular
domain (conservation of charge). By applying the divergence
operator we have at any moment t

Im(~r) = S−1
v ∇ · σ(~r)∇Vm(~r)

= S−1
v

(∇σ(~r) · ∇Vm(~r) + σ(~r)∇2Vm(~r)
)
. (2)

If σ is uniform, ∇σ(~r) = 0, leaving just the term involving
the Laplacian.

In a homogeneous medium Eq. 2 generally applies. Prop-
agation may be set up in the medium by the application
of a stimulus Istim(~r, t). The propagation may be sustained,
depending on the stimulus strength and the nature of the
membrane’s ion kinetics. As is well known (see, e.g. [10]),
if sustained, the uniform propagation velocity involved needs
to satisfy

v2 ∝ D =
σ

CmSv
, (3)

in which D denotes the effective diffusion coefficient [11].
When using realistic values σ = 4 10−4 S/mm, S−1

v =
5 103 mm and Cm = 10−8 F/mm2, one finds D = 0.2
mm2/ms, for which the CRN kinetics generated a propagation
velocity in the order of v = 1 m/s. Other values of v
were implemented by scaling D. For S−1

v and Cm remaining
constant, this implied a scaling of the σ only, reflecting, e.g.,
differences in intercellular coupling.

B. Boundary effects

In a bounded tissue, as is the myocardium, the conductivity
of the intercellular space is obviously bounded. The intracel-
lular medium may then be considered as an infinite space in
which the conductivity of its region beyond the boundary is
zero (the so-called sealed-end condition) and the intracellular
domain can no longer be considered as homogeneous. For
some stimulus/tissue configurations the identification of the
location of the discontinuity in conductivity is evident, e.g. at
both ends of a finite linear cable. Wave front collisions may be
treated by introducing similar, virtual discontinuities. In regard
to the cable this has been described previously (e.g., [12, 13]).
The finite cable is included in the treatment presented below
in order to serve as the reference for the interpretation of the
results related to the more complex configurations. For three of
these, dedicated analytical expressions for the diffusion term
are described for axial symmetric source/model configurations,
which use specific variants of the surface gradient operator ∇S

and the surface Laplacian operator ∇2
S, expressed in locally

orthogonal surface coordinates [14].
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1) finite linear cable: We consider a cable segment of
length L placed along the x-axis, with its end points at
x = 0 and x = L. The step-like discontinuities in the
conductivity at these points give rise to contributions of
the gradient term in Eq. 2 equal to δ(x, 0)σ~1x · ∇Vm(x)
and − δ(x, L)σ~1x · ∇Vm(x), respectively. The notation ~1x

expresses a dimensionless unit variable directed along the
variate x. Below, a similar notation is used for some other
variates. The delta functions force conditions ∇Vm(x) = 0 at
both x = 0 and x = L.

2) disk: Next, we consider a (flat) disk with radius R. Most
papers dealing with this configuration have expressed the basic
elements of the diffusion term, the gradient and the Laplacian
of this 2-D problem, in Cartesian coordinates. A more appro-
priate coordinate system is the one using the axial coordinates
r and φ, defined by r =

√
x2 + y2 and φ = arctan(y/x).

These facilitate the treatment of the major boundary condition
at r = R (zero normal gradient, implementing the assumption
of zero current flow between the passive intracellular domain
and the extracellular domain at the tissue boundary. In these
coordinates the surface gradient reads:

∇S = ~1r
∂

∂r
+~1φ

1
r

∂

∂φ
(4)

and the surface Laplacian:

∇2
S =

1
r

∂

∂r
+

∂2

∂r2
+

1
r2

∂2

∂2φ
. (5)

If the stimulus involved has axial symmetry as well, as holds
true for the cases reported on in this paper, the final terms in
(4) and (5) vanish. The full expression for the diffusion term
reads

Im(r, t) = S−1
v σ

(
1
r

∂

∂r
Vm(r, t) +

∂2

∂r2
Vm(r, t)

)
. (6)

Note the appearance of the first derivative in this expression,
in spite of the homogeneous conductivity.

The boundary conditions of a zero gradient of Vm now have
to be satisfied at r = 0, the center of the disk, and r = R, its
rim.

3) spherical shell: For a spherical shell with radius R, hav-
ing homogeneous (surface) conductivity, we base the surface
coordinates on the spherical coordinates φ and θ.

For axial symmetric stimulus configurations this yields

Im(s, t) = S−1
v σ

(
1
R

cot(s/R)
∂

∂s
Vm(s, t) +

∂2

∂s2
Vm(s, t)

)
,

(7)
with s = R θ.

ρ  

s  ↑

z  →−a
0

a
0

0 Ls  →

Fig. 2. Diabolo. Upper contour: the function ρ(z) specifying the diabolo as a
surface revolution about the z-axis. Below: dash-dot trace: the function ∂ρ(s)

∂s
as in Eq. 9 along its trajectory s, the straightened contour of the diabolo. The
solid line depicts the same function scaled by 1/ρ(s), truncated at the level
of the unit vertical scale indicated on the left;

4) diabolo-shaped shell: A diabolo-shaped shell was de-
fined, with its contour expressed in the cylindrical coordinates
ρ, z and φ (ρ =

√
x2 + y2, φ = arctan(y/x)). The length of

the radius vector ~r was specified by

r(z) = a0 + a3 cos(3/2 π z/a0). (8)

This type of geometry permits the study of the relationship of
wall curvature on the variable of interest (ARI). Its shape has
axial symmetry; for a3 = 0 it reduces to a sphere with radius
a0.

The axial symmetry of the diabolo permits the use of the
same surface coordinates as used for the sphere: s and φ, with
s the distance over the surface between its “North Pole” (at
z = a0 and ρ = 0) and any point ~r while traveling along a
“meridian”.

Since the stimulus configuration too has axial symmetry, the
diffusion term reads

Im(s, t) = S−1
v σ

(
1

ρ(s)
∂ρ(s)
∂s

∂

∂s
Vm(s, t) +

∂2

∂s2
Vm(s, t)

)
.

(9)
By interpreting ρ as proportional to the length of a propa-

gating wave front, and s as the variate along which it travels,
Eq. 9 comprises all three other expressions for the diffusion
term discussed above. To show this for the cable we use
ρ = constant and s = x, for the disk (6) we take ρ = 2πr
and s = r, and for the sphere (7) we take ρ = 2πR sin(s/R)
and s = s.
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C. Ion kinetics

The CRN ion kinetics model takes into account the instanta-
neous conductance of 12 different types of ionic channels, the
variations in Ca2+, Na+ and K+ intracellular concentrations,
and the calcium dynamics in the sarcoplasmic reticulum.

The parameter setting used in our work complied for the
greater part with the specifications in the original publication
[8]. The application to the problem in hand relied on the
availability of fully stationary solutions. The existence of
stable solutions for the CRN kinetics model has recently
been demonstrated [15]. The stable solutions employed were
realized by determining, for each of the individual pacing
intervals studied, the corresponding initial conditions of all
state variables. These were tuned to the value used for the
calcium conductance gCaL = 0.0619 nS/pF, which is 50 % of
the value specified in the CRN paper. In this way the resulting
wave forms (Fig. 1) of the simulated transmembrane potentials
(TMPs) resemble more closely the literature data related to
atrial myocytes [16].

D. Numerical methods

The numerical handling of the diffusion part of the reaction
diffusion equations was based on the Crank-Nicholson method
[17], with a uniform space step of 0.15 mm. Most of the results
presented below involved N = 601 nodes. The stimulus was
applied to the first node, all activations terminated at node
601. Note that for the disk, because of the 1-D handling of
the problem, a single node represented its edge. The time step
used in the forward Euler procedure was 10 µs.

The diffusion term (Eq. 9) was represented by the sum of
two tri-diagonal matrices of size N × N : D = D1 + D2.
Matrix D2, approximating the second order spatial derivatives,
was set up in the usual manner: it had elements -2 at its
main diagonal and elements 1 at the sub-diagonals (first order
numerical approximation to the second derivative). Matrix D1,
represented the gradient term (excluded for the cable). The
main diagonal of D1 was taken to be zero, the upper sub-
diagonal contained values 0.5 only; for the lower these value
were -0.5 (second order approximation to the first derivative).
Both matrices were scaled as specified in Eqs. 6, 7 and 9,
respectively. Matrix D, scaled by a factor setting the desired
velocity (Eq. 3). The boundary condition was handled by
replacing the first two elements of row 1 and the final two
elements of row N by appropriately scaled variants of [-1 1]
and [1 -1], respectively. This also overruled the singularities
at these end points cropping up in D1.

The code (implemented in Matlab) was validated by com-
paring its output with that produced by using a dense triangu-
lation of the respective surfaces, implemented in C++.
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Fig. 3. ARI(s) plotted as a function of dep(s) for the cable (heavy solid
line), the disk (upper dash-dot line), the sphere (lower dash-dot line)) and the
diabolo profile (thin solid line).

E. Data analysis

1) Determining the ARI: At any node of the discretized
geometries, the marker for the local activation time was taken
to be that of the inflection point of the TMP, denoted as
dep(s). Similarly, the marker for the timing of repolarization
used, rep(s), was the inflection point of the final part of the
downslope of the TMP. The interval between these markers is
the activation recovery interval: ARI(s) = rep(s) − dep(s)
(Fig. 1). This interval has been shown to be closely correlated
to the refractory interval, the interval of direct interest in any
propagation study [1, 18]. The timing of rep(s) corresponds
to the timing of the maximum of |IC | = Cm|∂Vm(t)

∂t |, and
corresponds generally to the maximum magnitude of the total
ion current during repolarization, as well as to the starting
point of the upslope of the gating variables h and j that open
the gates of the channel conductance for the sodium current
INa in the CRN kinetics.

2) Geometry scaling: The respective geometries were
scaled such that the length of the trajectory attained a desired
value L. The trajectory of the diabolo specified in Sect. II-B4,
Eq. 9, with a0=15.8867 mm and a3 = 0.6a0, resulted in a path
length of L = 90 mm. The shape of this contour is depicted
on the upper panel of Fig. 2. For the disk we have simply:
L = R, the radius of the disk, and for the spherical shell:
L = πR, with R its radius.

3) Parameter settings: The simulations were carried out
for a wide range of the parameters involved. Unless specified
otherwise, the results presented in Sect. III relate to periodic
pacing at intervals P= 500 ms by square current impulses of 2
ms duration (1 ms for the cable), having strengths of 1.2 times
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the respective stimulus thresholds; moreover L = 90 mm and
v = 0.75 m/s.

III. RESULTS

The basic TMP wave form of a paced, single unit (cell)
based on the CRN formulation with the reduced gCaL value
is shown in Fig. 1. The solutions were stable for values of the
pacing interval P over a range of [273-3000] ms. The function
ARI(P ) could be described accurately by

ARI(P ) = 222.4− 51 exp((275− P )/303) (10)

ms; the maximum absolute value of the observed difference
was 0.78 ms.

The wave form of a TMP propagating along an infinite
uniform cable at a location far from the stimulus site is also
shown in Fig. 1. This solution is referred to as V m(s, t).
The figure includes its version lined up with the timing
of the (stimulated) single unit. During the major part of
repolarization, the wave forms of single unit and propagating
TMPs were almost identical; the ARI value (199.45 ms) of
the propagating TMP was about 0.4 ms smaller than that of
the single unit.

In single cells, IC = Cm
∂Vm(t)

∂t = −Iion(t) (Eq. 1),
since the diffusion term is absent. The observed similarity
indicates that during uniform propagation, the polarizing part
of IC = Im − Iion must have been nearly the same as in the
single unit. The monitoring of these individual currents re-
vealed that throughout repolarization, the magnitude of Im(s)
was about 10% of that of Iion. In the bounded geometries,
throughout repolarization, Im(t) was positive near the stimulus
site and negative near the end point; mid-cable it was biphasic
(negative first), having amplitudes that were about 20 % of the
endpoint values.

Following a periodic stimulation at a single site, the re-
ported data for all four cases studied are: dep(s), rep(s) and
ARI(s) = rep(s) − dep(s). In all of the simulations, the
velocity of the propagation of the excitation along all geometry
variants was found to be uniform at the space and velocity
scales studied. Minor deviations were observed at a sub-mm
scale near both end points of s. Note that for the sphere and
the diabolo these relate to the virtual end points at their “South
Pole”, for the disk it relates to its rim. These deviations were
discarded in the subsequent analysis, and hence, for all values
of the parameters L and v, we will take dep(s) as increasing
linearly with s.

The ARI(dep(s)) functions observed for L=90 mm are
shown in Fig. 3. Because of the uniform value of v the
abscissa, dep(s), used in this figure is directly proportional to

case ARI(0) ARI(45) ARI(90) range
cable 207.25 199.46 193.11 14.14
disk 211.71 200.17 193.27 18.44
sphere 212.01 199.49 190.68 21.33
diabolo 211.80 199.28 190.64 21.17

TABLE I
FOR EACH OF THE FOUR FUNCTIONS DEPICTED IN FIG. 3 THE VALUES OF

ARI IN MS AT s = 0, (STIMULUS SITE), s = L/2 (HALF WAY), s = L
(TERMINATION OF THE DEPOLARIZATION) AND THE RANGE; L=90 MM,

v=0.75 M/S.

s. The respective ARI values at the stimulus site, mid point
and end point of the trajectory are listed in Table. I.

The ARI(s) function observed for the finite cable was
fitted by the sum of two exponential functions, shifted to the
ARI(45) level. The initial and final time constants τ1 and τ2,
found were 6.9 and 6.1 ms, respectively. At the propagation
velocity v=0.75 m/s specified, these values correspond to space
constants of 5.18 and 4.58 mm, respectively.

IV. ANALYSIS

A. End effects on repolarization

Throughout repolarization, the ion kinetics of a membrane
patch passes through an active phase, during which Iion is
positive. The character of the patch can be likened to a
current source since the magnitude of the current generated
is relatively independent of Vm.

During the repolarization phase in a fiber or a conglomerate
of coupled cells, for any membrane patch P at any location,
neighboring membrane patches that repolarize (slightly) later
will have a higher TMP. Consequently, these will pass a (pos-
itive) current toward patch P, yielding a positive contribution
to the local value of Im at P. Since IC = Im − Iion, the
local repolarizing effect of Iion is reduced. As long as the
contribution to Im is positive, the local repolarization process
will be retarded relative to that in the infinite uniform cable,
thus yielding higher values of rep(s) and, hence, yielding
longer values of ARI(s) = rep(s)−dep(s). If patch P is one
of the last ones depolarized, most neighboring patches may
have attained a lower TMP and, hence, Im will be negative.
Here the local repolarization process will be accelerated, thus
yielding lower values of rep(s) and, hence, shorter values of
ARI(s) = rep(s)− dep(s).

Below, this qualitative description is backed up by a quan-
titative one, based on the appropriate expressions for Im, such
as Eqs. 2, 6, 7 and 9. This requires the function Vm(s, t) to
be known.

For an infinite cable, with activation propagating at uniform
velocity v in the positive direction along the x-axis, we have
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90 mm

0 mV

0

t=5 ms t=60 ms t=115 ms t=170 ms

s  →

−80 mV

Fig. 4. Potential profiles along a linear cable at selected time intervals.
Dashed lines: passage along infinitely long cable. Solid lines: stimulus applied
at t = 0 at s = 0 of a finite cable; length 90 mm; propagation velocity 0.75
m/s. Note the zero gradient of the profiles near both ends of the finite cable.

V m(x, t) = V m(x − vt). Hence the instantaneous potential
profiles, propagating along the s axis, are identical to the
wave form shown in Fig. 1, but for a reversed direction of
the abscissa as well as its nature (distance versus time). Such
profiles, at selected time instants, are depicted by the dashed
lines in Fig. 4.

The corresponding values of Im(x) at any moment in time
are proportional to the second spatial derivatives of these
profiles (Eq. 2). Wherever these profiles curve upward for
increasing s values, the second derivative is positive (hence
also Im), else it is zero (straight part of the profile) or negative.

As discussed in Sect. II-B1, the boundaries of a finite
cable demand the inclusion of the constraint ∇Vm|x=0 = 0.
The involved reaction diffusion equation was solved while
including the constraint. The results are included in Fig. 4
(solid lines). As can be seen, the effect on the profiles is
small, the most prominent differences showing up at the two
end points, where the local gradients of the bounded solutions
are indeed zero. Note that the effect of the boundary at s=0
increases the local upward curvature of the profile and that
at s = L the downward curvature of the profile is increased,
both relative to the infinite cable profiles.

Based on this observation, as well as on the observed
exponential nature of the decay in the ARI(dep) functions,
the following analysis can be justified. It is included here in
an attempt to evaluate the influence of v and L.

We consider the application of a stimulus at location x = 0,
being the end of a semi-infinite cable extending along the
positive x-axis. The solution to Eq. 1 for this configuration is
written as

Vm(x, t) = V m(x, t) + Φ(x, t). (11)

The first term on the right-hand side denotes the solution to
Eq. 1 for an activity propagating uniformly along an infinite
cable, initiated at x = −∞ and t = −∞. We denote the
corresponding membrane current as Im(x, t).

The function Φ(x, t) denotes a perturbation, taken to express
the effect of the boundary conditions. The latter may be
expected to be small (Fig. 4). Following the passage of the
wave front Istim = 0 and substitution of Eq. 11 into Eq. 1
demands that Φ(x, t) should satisfy

Cm
∂Φ(x, t)

∂t
= S−1

v σ
∂2Φ(x, t)

∂x2
. (12)

The small values of the differences between Vm(x, t) and
V m(x, t) as observed in Fig. 4, as well as their spatial profiles,
indicate that the solution to Eq. 12 may be approximated by
the one based on the method of separation of variables, which
leads to an approximate solution of the type

Φ(x, t) = Φ0(t) exp(−x/λ), (13)

with λ ∝ √
σ, as is shown in Sect. 7.3.2 of [10].

Since, for t > 0, the boundary condition at x = 0 demands
that ∇Vm(x, t) is zero, we must have, at x = 0, ∇Φ(x, t) =
−∇V m(x, t). This leads to the identification of Φ0(t), on the
basis of which we find

Φ(x, t) = λ∇V m(x− vt)|x=0 exp(−x/λ), (14)

By substitution this solution in Eq. 12 we see that for t > 0
and x > 0 the right-hand side may be identified as a virtual
current source (a surface density)

Ivir(x, t) =
σ

Svλ
∇V m(x− vt)|x=0 exp(−x/λ), (15)

whose strength is added to Im(x, t).
As a final step the total charge (surface density) Q(x)

generated by Ivir(x, t) at any location x during repolarizarion
is found by integration of Ivir(x, t) over time. Based on
the uniform propagation of V m(x, t) we may exchange the
spatial gradient by the temporal derivative ( ∂

∂xV m(x, t) =
− 1

v
∂
∂tV m(x, t)) and so we find

Q(x) =
σ

vSvλ
VD exp(−x/λ), (16)

with VD denoting the absolute value of the total excursion of
the downslope of the TMP, say, | − 80| mV (Fig. 1).

The same type of exponential decay can be expected at the
end point of a finite cable segment, but for an opposite sign and
a decay in the reverse direction. Positive values of Q(x) cause
a local retardation of the repolarization process relative to that
in the infinite cable, negative values its acceleration. Although
the local effects may be small, their cumulation along the cable
may cause a substantial difference in the ARI values, as is
illustrated by the heavy solid line in Fig. 3.
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B. Effects of shape

The ARI(dep) results documented in Fig. 3 exhibit distinct
differences with those observed for the cable. Recall that the
trajectories involved were of equal length and that the veloc-
ities along the paths were tuned to be equal. All deviations
from the results found for the cable can be explained on the
basis of additional contributions stemming from the gradient
of the local TMP as expressed in Eqs. 6, 7 and 9. The effect
can be explained in a way similar to the one described for the
cable.

As an example we consider the case of the disk, Eq. 6. Here
the total contribution during repolarization at site r is a locally
weighted gradient of the local TMP. After exchanging spatial
and temporal differentiation (uniform propagation), integration
over time of the additional current yields

Q(r) =
σ

vSvr
VD. (17)

An inspection of the upper dash-dot line in Fig. 3 exhibits
indeed an additional delay of the repolarization moment, and
correspondingly, an additional increase of the ARI values at
the stimulus site (of 4.5 ms), which decays as 1/r.

The same explanation can be given for the results observed
on the sphere (lower dash-dot line in Fig. 3). Here the spatial
weighting function is 1

R cot(s/R), yielding an additional in-
crease of the ARI(s) values at the stimulus site of 4.75 ms,
and a similar reduction at the terminal point of the activation.
Halfway, at s = Rπ/2, the weighting function is zero; the
local slope of the curve is proportional to the gradient of
cot(s/R)/R, viz, proportional to −1/R2.

For the diabolo shape, no simple analytical expression could
be found for the weighting function in Eq. 9 on the basis of the
definition of its contour (Eq. 8). Instead, a numerical procedure
was used, the result of which is depicted in the lower panel
of Fig. 2. The solid line represents the weighting function

1
ρ(s)

∂ρ(s)
∂s , the dashed line, the variant leaving out the scaling

factor 1/ρ(s). The effect of the weighting function is clearly
expressed in the thin solid line shown in Fig. 3. Once again,
the additional effect of the weighted version of VD is greatest
at s = 0 and s = L. The positions of the zero crossings of the
traces shown in the lower panel of Fig. 3 coincide with those of
the peaks and valleys of the contour shown in the upper panel
of Fig. 2. The ARI(dep) values at these locations coincide
with those of the cable. This clarifies the intriguing nature of
the function ARI(dep) for this case.

The singularities involved in the weighting functions are of
the same type: 1/r. Their impact is neutralized by the zero
gradient boundary condition.
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Fig. 5. Normalized ARI(dep) curves of the finite cable, based on the the
difference of two exponentials (Eq. 24). The labels of the traces (k) also
denote powers of two specifying µ = 2k/18.2; ∆α = 0.05

C. Effects of velocity and size

Several simulations were run, each involving different set-
tings of the parameters L and v, while keeping all others
constant. Below we use s as the distance along the trajectories.

1) Velocity: In all simulations, at all values of the propa-
gation velocity v tested, the ARI values half-way along the
trajectory were identical. In the following analysis we use the
fact that, since λ2 ∝ σ (passive diffusion) and v2 ∝ σ (Eq. 3),
we must have

λ = τv, (18)

with τ a proportionality constant. Moreover, we take the shape
of Q(s) as discussed in the previous sections as describing
∆ARI(dep) = ARI(dep) − ARIi, with ARIi denoting the
ARI value in the infinite uniform cable.

Applied to the semi-infinite cable, Eq. 16, we have

∆ARI(dep) ∝ σ

vλ
exp(−s/λ), (19)

and by inserting the proportionalities listed above,

∆ARI(dep) ∝ exp(−dep/τ), (20)

which indicates that ∆ARI(0) is independent of velocity, as
is the time constant of the exponential decay (Eq. 18). On
the basis of Eq. 20, the τ , introduced as just a proportionality
constant, may now be likened to the parameters τ1 and τ2

introduced in Sec. III for describing the experimental results
for the cable (Fig. 4).
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In a similar application, now to the sphere (Eq. 7), we find
after inserting the proportionalities,

∆ARI(dep) ∝ σ

vR
cot(

v dep

R
). (21)

It may seem as if here ∆ARI(0) might depend on v. How-
ever, all simulation results showed essentially identical values.
The explanation is found by using the series expansion of
cot(v dep

R ) for small values of dep. Inserting just the first term,
we see that

∆ARI(dep) ∝ σ

v R

R

v dep
=

σ

v2 dep
, (22)

which is independent of v, since v2 ∝ σ (Eq. 3). As before,
the remaining singularity, 1/dep, is absorbed by the zero
gradient of the local transmembrane potential of the “real
world” solution.

2) Size: For each of the three geometries studied, and for all
values of v and L, taken here as a measure of the total length
of the depolarization trajectory, it was observed that the shapes
of their respective ARI(dep) curves could be expressed by a
single parameter. Below, this is explained and illustrated on
the basis of the results pertaining to the cable.

Let x denote the normalized variable x = dep/depL

(depL = L/v). By inserting x into Eq. 20 we have

∆ARI(x) ∝ exp(− x

τ depL
). (23)

Since τ as introduced in Eq. 20 is a constant, we see that the
shape of ∆ARI(x) depends on a single parameter, which we
define as µ = τL/v: all shapes of ∆ARI(x) are proportional
to the ratio L/v = depL only.

Below, we apply this result to both ends of the cable and
introduce α(x) = ARI(dep)/ARI(dep(L/2)). Based on the
preceding analysis we express the ARI(dep) data by a family
of the curves (Fig. 5) specified by

α(x) = 1 + ∆α(exp(−x/µ)− exp((x− 1)/µ)), (24)

with ∆α = α(0)−1, and µ the parameter defining their shape.
The individual traces shown relate to multiples of 6.6/120,
based on the value of 6.6 identified in the result of the fitting
procedure applied to the cable data shown in Fig. 3. By
decreasing depL the shape parameter µ increases. Initially,
the two exponentials shown in Fig. 3 can be recognized
separately; for higher values of µ the initial, the linear part
of the exponentials are expressed more and more clearly and
their combinations tend to become linear. Significantly, for
these smaller values of depL, as is to be expected if L (overall
heart size) is reduced [19], the total range of the ARI values
tends to zero, with all ARI values equal to that of the single
unit value (L = 0).

V. DISCUSSION

The simulations of propagated activity and its subsequent
recovery provided a qualitative explanation for the observed
spatial distribution of ARI values. All simulations performed
in this study were also carried out while using an entirely
different kinetics mode: the original, classic model of Beeler
and Reuter [20]. Quantitative differences were found: for
the cable (BR): higher mid-cable ARI values (250 ms), a
smaller range ∆(ARI) (8.5 ms), and a smaller value of τ
(4 ms), compared to the CRN-based results: ARI= 199 ms,
∆(ARI)=14 ms and τ=4.9 ms (mean of τ1 and τ2 shown
in the results section). However, all qualitative results were
the same, permitting the same interpretation as described in
Sect. IV. The method used for analyzing the end effects
(Sect. IV-B) is similar to the one used by Steinhaus et al.
[13] in their interpretation of electrophysiological data. In
their numerical evaluations applied to the cable, they used the
kinetics model proposed for Purkinje fibers by MacAllister et
al.[21]for which they reported end effects of the order of 5
ms.

Along the trajectories, at the spatial scale studied, the
velocity of the propagating wave front was almost uniform,
unaffected by differences wave front or geometry curvature.
The minor deviations observed were located at a sub-mm scale
near both end points of s, as could be expected [22].

The major deviations from the observed ARI values relative
to their mid-interval ARI values were invariably located at
points where depolarization started and ended (Table. I). Recall
that the conductivity along the trajectory of depolarization was
uniform, as were the intrinsic parameters of the ion kinetics
model. This was also observed in our simulations in thick-
walled variants of the same 2-D geometries as well as in
a realistic atrial geometry, in which multiple simultaneous
stimuli were applied and, consequently, multiple end points
of depolarization [7]. These observations stress the dominant
effect of the depolarization sequence on the spatial distribution
of the subsequent time course of local repolarization, as has
been previously reported [23].

With their lower ARI values, regions around such end
points of depolarization are likely to play a role in instabilities
observed in atrial electric activity.

The range of the major deviations did not depend on
propagation velocity, type of geometry, and overall scale of
the geometry. The latter indicates that, whatever measure
of curvature is used for characterizing either wave front or
geometry of the tissue boundary, the influence of curvature on
these deviations is secondary.

The shapes of the ARI(dep) functions were specific for
“tissue” geometry (Fig. 3). These were reflecting the nature of
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the factor 1
ρ(s)

∂ρ(s)
∂s weighting the gradient related contribution

to the diffusion term (Eqn. 9). For overall size L greater than
that of the diffusion based length (λ) the mid-interval ARI
values were close to the value observed for the uniform infinite
cable.

The gradient related term used in Eq. 9 expresses the
effects of geometry. It is mathematically equivalent to those
used in various early studies in which the effects of local
inhomogeneities in electric conductivity or in membrane ki-
netics were evaluated [12, 24]. Discussions on the effects of
inhomogeneous electric conductivity along a cable are usually
phrased in terms of mismatch in electric loading. The analysis
presented at the end of Sect. II-B4 suggests that discussions on
geometric effects may also be cast in the same terminology. An
alternative interpretation follows from noting that, for uniform
propagation, the factor 1

ρ(s)
∂ρ(s)

∂s is proportional to the velocity
of relative change of the length of the wave front.

In the application to the CRN kinetics, the use of the method
of separation of variables in approximating the solution to
the diffusion equation Eq. 12 were justified by the high
correspondence between the ARI features observed and those
of the analysis presented. Our work extends previous studies
by including an analysis of the contribution of geometry-
related factors. Their maximum contribution is shown to be
an increase of 7 ms to 12 ms.

The results and their analysis presented here aim at provid-
ing a background for the interpretation of details in the spatial
distribution of ARI values observed in electrophysiological
measurements. Without a background such details may easily
be attributed to other factors.
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