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Abstract

The steady states of the Fenton-Karma, the Courtemanche and the Nygren cell models were

studied by determining the fixed points of the dynamical system describing their cell kinetics.

The linear stability of the fixed points was investigated, as well as their response to external

stimuli. Symbolic calculations were carried out as far as possible in order to prove the ex-

istence of these fixed points. In the Fenton–Karma model, a unique stable fixed point was

found, namely the resting state. In contrast, the Courtemanche model had an infinite num-

ber of fixed points. A bifurcation diagram was constructed by classifying these fixed points

according to a conservation law. Initial conditions were identified, for which the dynamical

behavior of the cell was auto-oscillatory. In its original formulation, the Nygren model had

no fixed point. After having restored charge conservation, the system was found to have

an infinite number of fixed points, resulting in a bifurcation diagram similar to that of the

Courtemanche model. The approach proposed in this paper assists in the exploration of the

high-dimensional parameter space of the cell models and the identification of the conditions

leading to spontaneous pacemaker activity.

Keywords: cardiac electrophysiology; cardiac cell model; resting potential; steady state;

ionic concentration.
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1. Introduction

Different mathematical models have been formulated to describe cardiac cell electrophys-

iology [1]. In these models, the evolution of the state of the cell (transmembrane potential,

ionic concentrations, etc.) is governed by a set of coupled non-linear differential equations. In

the framework of dynamical system theory, it is natural to start the analysis of such systems

by identifying the fixed points, that is, the steady-state solutions to the equations. If these

fixed points are stable, they correspond to resting states, whereas unstable fixed points may

potentially induce pacemaker activity. This identification is complicated if the number of

equations involved is high (more than 20–30 in the recent models) and by the complexity of

the mathematical formulation. In this paper, analytical methods are applied to determine the

comprehensive set of fixed points of two recent human atrial cell models, the Courtemanche

model [2] and the Nygren [3] model.

The motivation for this work reflects the multidisciplinary nature of mathematical mod-

eling. First, from the physical viewpoint, we would expect the resting state to be unique

and stable in mathematical models. Although real non-pacemaker cardiac myocytes may not

be able to maintain ionic homeostasis over a long period, the stability of the resting poten-

tial is often postulated in theoretical studies [4, 5]. It is therefore desirable to demonstrate

mathematically the consistency of the models with respect to this empirical expectation. The

so-called second generation ventricular cell models that take into account variations in ionic

concentrations were found to have an infinite number of steady states [6–8]. We will see that

this is also the case for the Courtemanche model, but no resting state exists for the Nygren

model in its original formulation. A complete and accurate description of the fixed points of

the models provides additional information for comparing the existing models in their ability

to reproduce the basic properties of real cells.

Next, from the computer simulation viewpoint, the resting state is often used as initial

condition for the simulations. The resting state is generally computed by letting the system

evolve from an arbitrary initial state until the steady state is reached. This method implicitly
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assumes that the resting state is unique and stable, which is restrictive if no fixed point is

stable, like for pacemaker cells. More generally, it is physiologically questionable to assume

that cardiac cells are able to indefinitely maintain a stable equilibrium when left unstimulated.

Also, slow transient drifts in ionic concentrations make it difficult to establish that the steady

state is indeed reached [8, 9]. These limitations do not affect the method presented in this

paper.

Furthermore, from the biophysical modeling viewpoint, the parameters of the cardiac cell

models often need to be significantly modified in order to reproduce spatial heterogeneity and

pathological or patient-specific properties [10–12]. The resting state can be affected by this

operation. Reciprocally, we sometimes aim at altering the resting potential to incorporate in

computer models its spatial variations, like those reported in the sleeves of the pulmonary

vein [13]. This inverse procedure is facilitated if a fast and reliable method for computing the

resting state is available.

Finally, from the mathematical viewpoint, the formulation of each ion channel can have

an impact on the global properties of the cell model (such as the number of fixed points).

For example, Varghese and Sell showed the importance of the formulation of the Na+/Ca2+

exchanger to avoid a possible divergence in finite time [14]. Here, we will see how a slightly

different mathematical expression for the inward rectifier potassium current IK1 can create

additional fixed points.

In this paper, the generic formulation of the cardiac cell model is first introduced. After

presenting the methodology, it is illustrated by its application to the relatively simple Fenton–

Karma model. The steady-state solutions of the Courtemanche and the Nygren models are

then exhibited and interpreted. The existence of a conservation law plays a central role in

this derivation. Special attention is devoted to ensure that this condition is indeed satisfied.

The differences between the models are discussed. The equations of the Courtemanche and

Nygren models are recalled in the Appendices Appendix A and Appendix B in order to

define the unified notations used in this paper. The reader is referred to the original articles
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[2, 3] for the complete details.

2. Methodology

2.1. Generic formulation

The dynamics of cardiac cell electrophysiology is described by a set of ordinary differential

equations

dx

dt
= f(x) . (1)

The state x of the cell is typically written as

x = (V, c,y) , (2)

where V is the transmembrane potential (the intracellular potential minus the extracellular

potential), y represents the set of gating variables and c the ionic concentration of the dif-

ferent ions present in the intra- or extracellular space, or in internal cell compartments. The

transmembrane potential satisfies the equation

Cm
dV

dt
= −Iion(x) , (3)

where Cm is the cell membrane capacitance and Iion is the outward-oriented membrane cur-

rent. The component of Eq. (1) corresponding to the i-th gating variable is an equation of

the type

dyi
dt

=
yi∞(x)− yi

τyi(x)
. (4)

The steady-state value yi∞ always lies between 0 and 1. The variable τyi is the relaxation

time, which is positive. As a result, 0 ≤ yi(t) ≤ 1, provided that 0 ≤ yi(t = 0) ≤ 1. The

evolution of the ionic concentrations is expressed using the ionic flux Φ

dc

dt
= Φ(x) . (5)
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2.2. Steady-state solutions

A steady state is any fixed point of Eq. (1), that is, a solution x to the equation

f(x) = 0 . (6)

For any function of the state variables X(x), its steady-state value is denoted by X = X(x).

In general, the dynamics of a gating variable is not affected by the other gating variables.

This implies that Eq. (6) is solved easily for the gating variables:

yi = yi∞
(
V , c

)
. (7)

These values can be substituted in Eq. (6) and lead to the following system:

Iion
(
y
(
V , c

)
, V , c

)
= 0 (8)

Φ
(
y
(
V , c

)
, V , c

)
= 0 . (9)

For solving this system, an analytical approach is to be preferred when computing the com-

prehensive list of fixed points in order to avoid root-finding in a high dimensional space. For

the cell models considered in this paper, this system will be reduced to a set of single-variable

equations for which the number of roots can be worked out.

2.3. Conservation law

Suppose that a conservation law exists for the system, i.e., a function Q(V, c) such that

dQ/dt = 0. In this case, Q(V, c) = Q0, where Q0 is computed from the initial condition.

Then, V becomes a function of c, that is, V = V(c;Q0). For each possible value of Q0,

Eq. (9) reduces to an equation for c only

Φ
(
y (V(c;Q0), c) ,V(c;Q0), c

)
= 0 , (10)

and Eq. (8) is only used to check the consistency of the solution. Therefore, as a result of the

existence of a conservation law, continuous sets of fixed points indexed by Q0 may be found.
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2.4. Response to small perturbations

The response to small perturbation is analyzed by linearizing the system around the fixed

point. In particular, the stability of a fixed point x is established by computing the eigenvalues

of the Jacobian matrix Df(x). If the real part of all the eigenvalues of Df is negative, then

the fixed point is stable. Although Df could have been computed analytically (for example by

means of a computer algebra system), the Jacobian matrix of the detailed cell models studied

in this paper was estimated using the centered finite difference approximation:

Df(x)i,j =
∂fi
∂xj

(x) =
fi(x+ hjej)− fi(x− hjej)

2hj
+O(hj) , (11)

where ej = (0, . . . , 0, 1, 0, . . .) with a “1” at the j-th position. The eigenvalues were computed

using Matlab (Mathworks Inc., Natick, MA, USA).

2.5. Response to large perturbations

When a fixed point is stable, a small perturbation gives rise to a linear response. A larger

perturbation may initiate an action potential [1]. In order to study these non-linear responses,

Eq. (3) is replaced by

Cm
dV

dt
= −Iion(x) + Istim(t) , (12)

where Istim(t) is an external driving force (stimulation current), typically a train of square

pulses. In order to computed action potentials, the differential equations [Eqs. (4), (5) and

(12)] were solved numerically using the forward Euler method, with a time step of 10 µs.

2.6. Example: the Fenton–Karma model

The methodology presented above is applied in this subsection to the Fenton–Karma

model [15]. This simplified cardiac cell model was developed to reproduce the experimentally

observed rate dependence of action potential duration and conduction velocity, while keeping

the computational complexity as low as possible. The model is based on three variables: the
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(dimensionless) transmembrane potential u, and two gating variables v and w. The evolution

of these state variables is governed by the following set of equations [15]:

du

dt
= −Ifi − Iso − Isi (13)

dv

dt
= Θ(uc − u)

1− v

τ−v (u)
−Θ(u− uc)

v

τ+v
(14)

dw

dt
= Θ(uc − u)

1− w

τ−w
−Θ(u− uc)

w

τ+w
(15)

Ifi = − v

τd
Θ(u− uc) (1− u)(u− uc) (16)

Iso =
u

τ0
Θ(uc − u) +

1

τr
Θ(u− uc) (17)

Isi = − w

2τsi

(
1 + tanh

(
k
(
u− usic

)) )
(18)

τ−v (u) = Θ(u− uv) τ
−
v,1 +Θ(uv − u) τ−v,2 (19)

where Θ(x) = 1 if x ≥ 0 and 0 otherwise. This model depends on 13 parameters uc, uv, u
si
c ,

k, τsi, τ
−
v,1, τ

−
v,2, τ

+
v , τ−w , τ+w , τd, τ0, τr, all of which are positive. No conservation law exists

for this model.

The steady state is found by setting the time derivatives to zero in Eqs. (13)–(15). First,

assume that u > uc. Then, v = w = 0 so that Eq. (13) implies 1/τr = 0, which is impossible.

Therefore, we will look for values of u such that u < uc. In this case, v = w = 1 and u is a

root of the equation

2τsi
τ0

u = 1 + tanh
(
k
(
u− usic

))
. (20)

This equation has one, two or three positive solutions, depending on the value of the pa-

rameters. Since tanhx is convex for x ≤ 0, the condition τsiu
si
c > τ0 ensures the uniqueness

of the solution. This condition is satisfied for all sets of parameters fitted to atrial [12] and

ventricular [15] electrophysiological cell properties. Since u < uc and uc ≪ usic for all of these

parameter sets, an approximation for u is found by noting that 1
2(1 + tanhx) ≈ exp(2x)

asymptotically for x → −∞. After some algebraic manipulations, we obtain

0 < u ≈ − 1

2k
W

(
−2kτ0

τsi
exp

(
−2kusic

))
≈ τ0

τsi
exp

(
−2kusic

)
, (21)
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Figure 1: Time course of the variables u, v and w of the atrial variant of the Fenton–Karma model. The range

of the vertical axis is 1 because the variables are dimensionless.

where W is the Lambert’s W function [16], defined for arguments ≥ −1/e as the inverse of the

function x exp(x). The second approximation in Eq. (21) results from the Taylor expansion

W (x) = x+O(x2).

Establishing the stability of the steady-state is facilitated by the fact the involved Jacobian

matrix is upper triangular. Its diagonal entries are:

− 1

τ0
+

k

2τsi

(
1− tanh2

(
k
(
u− usic

)) )
, − 1

τ−v (u)
and − 1

τ−w
. (22)

A sufficient condition for ensuring the stability of the steady state is therefore

1− tanh2
(
k
(
uc − usic

) )
<

2τsi
kτ0

, (23)

since u < uc. This condition is satisfied for the various parameter sets of the Fenton–Karma

model [12, 15].

An action potential was simulated in the Fenton–Karma model with the parameter set

corresponding to atrial cells remodeled during chronic atrial fibrillation [12]. The steady-state

u = 1.18 · 10−8 and v = w = 1 was used as initial condition. A stimulus of strength 0.2 and

duration 2 ms was applied at time t = 100 ms. The time course of the variables is shown on

Fig. 1. After the repolarization phase the action potential, the variables can be seen to return

to their steady-state value.

In conclusion, the Fenton–Karma model can be easily proved to have a unique and stable
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Figure 2: Schematic view of the Courtemanche model, illustrating its membrane currents, pumps and ion

exchangers. The different compartments are indicated: the extracellular (extra) and intracellular (intra)

media, and, in the sarcoplasmic reticulum, the uptake (up) and release (rel) compartment.

steady-state, the resting state, in agreement with our expectations. More complex models

can be treated by the same methodology, as demonstrated in the sequel.

3. Conservation law in atrial cell models

In this section, the Courtemanche and the Nygren models are briefly introduced, with

special emphasis on the derivation of a conservation law. The notations as well as the mathe-

matical formulation of the models are recapitulated in Appendices Appendix A and Appendix

B, cast in a unified notation.

3.1. The Courtemanche model

The Courtemanche model [2] comprises 21 state variables in total: the transmembrane

potential V ; 5 ionic concentrations: [Na+]i, [K
+]i, [Ca

++]i, [Ca
++]up and [Ca++]rel in 3 fluid

compartments: the intracellular compartment (index “i”), and the uptake and release com-

partments of the sarcoplasmic reticulum (indices “up” and “rel” respectively); and 15 gating

variables: m, h, j, oa, oi, ua, ui, xr, xs, d, f , fCa, u, v and w. The ionic currents flowing

between the different compartments are illustrated on Fig. 2. The evolution equations are

listed in Appendix Appendix A.
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These 21 state variables are not independent, because a charge conservation law is involved,

which relates these variables. This conservation principle is associated with ionic charge

balance, as was previously reported for the DiFrancesco–Noble [6, 14] and the Luo–Rudy

dynamic model [8]. It formed the basis for the construction of the Endresen model [17]. Here,

the approach sketched in subsection 2.3 is applied to the Courtemanche model.

The cell membrane acts as a capacitor, which means that CmV = Qi where Qi is the

electric charge in the inner side of the capacitor, that is, within the cell [1]. The charge Qi

is the sum of the charges carried by the Na+, K+ and Ca2+ ions, as well as by other ions,

notably anions. This last term will be called the non-specific charge −Qns. The charge carried

by a specific ion within a compartment can be computed as its valence × its concentration

× the volume of the compartment × the Faraday constant F . The equation of a capacitor

therefore reads

CmV = ViF
(
[Na+]i + [K+]i + 2 [Ca++]i + 2 [Ca++]Trpn + 2 [Ca++]Cmdn

)
+ 2 VupF [Ca++]up + 2 VrelF

(
[Ca++]rel + [Ca++]Csqn

)
−Qns . (24)

This equation expresses the dependence between the transmembrane potential and the ionic

concentrations and is considered to be the definition of Qns for the Courtemanche model. The

time derivative of Qns is derived from Eqs. (A.11)–(A.16) and (A.19)–(A.20), from which it

is established that

dQns

dt
= 0 . (25)

Hence, the charge Qns is conserved. It is positive when the resting potential is negative. It is

convenient to write this constant charge as

Qns = ViF [NS]i , (26)

where the non-specific charge concentration [NS]i is expressed in mM. Typical relevant values

of [NS]i are chosen such that the net charge difference between intra- and extracellular media
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Figure 3: Schematic view of the Nygren model, illustrating its membrane currents, pumps and ion exchangers.

The different compartments are indicated: the extracellular (bulk), cleft, and intracellular (intra) media, the

subsarcolemal domain (sub), and, in the sarcoplasmic reticulum, the uptake (up) and release (rel) compartment.

is close to zero at zero membrane potential [17]. Alternatively, [NS]i can be computed by

substituting in Eq. (24) the initial values for the ionic concentrations [8].

3.2. The Nygren model

The Nygren model comprises 29 state variables in total: the transmembrane potential V ;

9 ionic concentrations: [Na+]c, [K
+]c, [Ca

++]c, [Na
+]i, [K

+]i, [Ca
++]i, [Ca

++]d, [Ca
++]up and

[Ca++]rel in 5 fluid compartments: the cleft compartment (in the extracellular space, index

“c”), the intracellular compartment (index “i”), the restricted subsarcolemal space (index

“d”), and the uptake and release compartments of the sarcoplasmic reticulum (indices “up”

and “rel” respectively); 14 gating variables: m, h1, h2, dL, fL1 , fL2 , r, s, rsus, ssus, n, pa, F1,

F2; 5 buffer concentrations: OC, OTC, OTMgC, OTMgMg, OCalse. The ionic currents flowing

between the different compartments are illustrated in Fig. 3. The evolution equations are

listed in Appendix Appendix B.
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In the Nygren model, by analogy with Eq. (24), the non-specific charge Qns is defined as

Qns = −CmV + ViF
(
[Na+]i + [K+]i + 2 [Ca++]i

+ 2 (0.08OTC + 0.16OTMgC + 0.045OC)
)

+ 2VdF [Ca++]d + 2VupF [Ca++]up + 2VrelF ([Ca++]rel + 31OCalse) . (27)

In contrast with the Courtemanche model, this charge is not conserved, since after differen-

tiating Eq. (27), it is found that

dQns

dt
= −ΦNa,en . (28)

As a result, no fixed point can exist in the original Nygren model unless ΦNa,en = 0, because

Qns remains constant in a steady-state. In the sequel, we will assume ΦNa,en = 0. A motivation

for using this assumption is given in subsection 7.1. Similarly to the Courtemanche model

[Eq. (26)], [NS]i is defined by the relation Qns = ViF [NS]i.

4. Steady-state solutions in the Courtemanche model

In this section, it is shown that, for all V ≤ +65 mV, there exists a unique steady-state

solution to the Courtemanche equations with a transmembrane potential V (t) = V . So let us

fix the value V . The steady state value of all other state variables is determined as a function

of V .

4.1. Steady state equations

The steady state value of the gating variables are obtained from Eq. (7). The values of

m, h, j, oa, oi, ua, ui, xr, xs, d, f and w are functions of V only and can be considered as

constants for the steady state treated in this section. The gating variable fCa is given by

fCa =
1

1 + [Ca++]i

/
3.5 · 10−4

(29)

The variables u and v require a special attention and are treated in subsection 4.3.
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The steady state currents have to satisfy the following relations derived by setting the

time derivatives to zero in Eqs. (A.11)–(A.16):

INa,t = −3 INaCa − 3 INaK (30)

IK,t = 2 INaK (31)

ICa,t = 2 INaCa (32)

Itr = (Iup − I leak)
Vup

Vrel
(33)

Irel = Itr . (34)

In Eq. (32), the contributions of Itr and Irel have been cancelled by a linear combination with

Eqs. (33) and (34). The equation I ion = 0 resulting from Eq. (A.11) is automatically satisfied

since it is equivalent to the sum of Eqs. (30)–(32).

The strategy for solving these equations is as follows. Equations (30) and (32) give two

relations between [Ca++]i and [Na+]i which can be solved by substitution. Then, Eq. (31)

provides an expression relating [K+]i and [Na+]i. Finally, Eqs. (33)–(34) enable us to compute

the variables associated with the sarcoplasmic reticulum.

First, the steady state ionic currents have to be evaluated. If the steady state values

of the gating variables are introduced and the voltage dependent-functions are merged, the

steady-state membrane currents are:

INa,t = gNa,t · (V − ENa) (35)

IK,t = gK,t · (V − EK) (36)

ICa,t =
IpCa,max

1 + 5 · 10−4
/
[Ca++]i

−
ICaL,min

1 + [Ca++]i

/
3.5 · 10−4

+ gbCa ·
(
V − ECa

)
(37)

INaCa = a · [Na+]
3

i − b · [Ca++]i (38)

INaK =
INaK,max

1 +
(
Km,Na

/
[Na+]i

)3/2
, (39)

where gNa,t, gK,t, ICaL,min, INaK,max, a and b are positive functions of V , which do not depend
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on the intracellular ionic concentrations. Note that ICaL,min = gCaL · d · f · (65 − V ) > 0

provided that V < 65 mV.

4.2. Steady-state intracellular ionic concentrations

After insertion of Eqs. (35), (38) and (39) in Eq. (30), the steady state [Ca++]i concentra-

tion is derived from the corresponding [Na+]i concentration

3 b · [Ca++]i = 3 a · [Na+]
3

i + gNa,t · (V − ENa) +
3 INaK,max

1 +
(
Km,Na

/
[Na+]i

)3/2
. (40)

Each term of the right hand side is an increasing function of [Na+]i. When [Na+]i → +∞,

[Ca++]i → +∞, whereas when [Na+]i → 0, [Ca++]i → −∞ because of the logarithmic de-

pendence in ENa. Thus there is a critical intracellular sodium concentration [Na+]i,crit below

which no steady-state solution exists because then [Ca++]i would be negative.

If Eqs. (37) and (38) are substituted in Eq. (32), the following function is assembled

FNa

(
[Na+]i

)
= 2 b · [Ca++]i − 2 a · [Na+]

3

i +
IpCa,max

1 + 5 · 10−4
/
[Ca++]i

−
ICaL,min

1 + [Ca++]i

/
3.5 · 10−4

+ gbCa ·
(
V − ECa

)
, (41)

whose zeros are the steady-state values of [Na+]i. In this expression, [Ca++]i is a function of

[Na+]i, as derived in Eq. (40). This function is also increasing: the sum of the two first terms

is increasing by Eq. (40) and the three last terms are increasing functions of [Ca++]i, which

in turn is an increasing function of [Na+]i. Moreover, when [Na+]i → [Na+]i,crit, FNa → −∞

because of the term involving ECa, while when [Na+]i → +∞, FNa → +∞. Therefore, there

always exists a unique zero [Na+]i of the function FNa.

First, the value of [Na+]i,crit is determined by solving Eq. (40) numerically for [Ca++]i = 0

in the interval (0,+∞). Second, the zero of FNa is found in the interval ([Na+]i,crit,+∞). For

the required root-finding procedure, the false position method (regula falsi) was used.
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The potassium concentration [K+]i is obtained from Eq. (31)

[K+]i = [K+]o exp

[
F

RT

(
2INaK

gK,t

− V

)]
, (42)

where INaK is computed from Eq. (39), using the obtained value of [Na+]i obtained just above.

4.3. Calcium dynamics at steady-state

Once the intracellular ionic concentrations are known, only [Ca++]rel, [Ca++]up, u and

v remain to be determined. Note that, in this case, Iup becomes a constant and I leak =

α · [Ca++]up where α is defined as Iup,max/[Ca
++]up(max).

The concentration [Ca++]up is expressed as a function of [Ca++]rel using Eqs. (33) and (A.9)

[Ca++]up =
τtrβIup + [Ca++]rel

1 + αβτtr
, (43)

where β is defined as the ratio Vup/Vrel. As a result, from Eq. (34), we have

Itr =
βIup − αβ [Ca++]rel

1 + αβτtr
= Irel = krel u

2v w
(
[Ca++]rel − [Ca++]i

)
. (44)

This equation can be written as

Iup − α [Ca++]rel
[Ca++]rel − [Ca++]i

= A u2v , (45)

where A = krel w(1 + αβτtr)/β depends only on V . For the right hand side to be positive,

[Ca++]rel has to lie within the interval bounded by [Ca++]i and Iup/α. In this interval, the

left hand side is a monotonic function of [Ca++]rel, denoted by Frel([Ca
++]rel), whose range is

[0,+∞), and whose derivative (in absolute value) is bounded from below:∣∣∣F ′
rel([Ca

++]rel)
∣∣∣ ≥

∣∣F ′
rel(Iup/α)

∣∣ =
α2∣∣∣Iup − α[Ca++]i

∣∣∣ ≥ α2

Iup,max + α[Ca++]i
. (46)

Since A u2v ≥ 0, Eq. (45) has at least one solution. In order to prove the uniqueness of this

solution, we will show that Frel([Ca
++]rel)− A u2v is a monotonic function of [Ca++]rel. For
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this purpose, the slope of A u2v (in absolute value) will be shown to be always much smaller

than that of Frel. Note that u2v is implicitly a function of [Ca++]rel. More precisely,

u = u∞
(
Fn

)
=

[
1 + exp

(
−Fn − 0.34175

∆Fn

)]−1

(47)

v = v∞
(
Fn

)
=

[
1 + exp

(
+
Fn − 0.06835

∆Fn

)]−1

, (48)

where ∆Fn = 1.367 · 10−3 and the Fn is given by [2]

Fn = VrelIrel −
1

2F

(
1

2
ICaL − 1

5
INaCa

)
. (49)

By Eq. (44), Fn is an affine function of [Ca++]rel.

The right hand side of Eq. (45) has a derivative (in absolute value) that can be bounded

from above:∣∣∣∣d(Au2v)

dFn

∣∣∣∣ ≤ 3A u2v

∆Fn
and hence

∣∣∣∣∣ d(Au2v)

d[Ca++]rel

∣∣∣∣∣ ≤ 3αkrelVrel u
2vw

∆Fn
(50)

using Eqs. (44), (49), and the relation du/dFn = −u(1 − u)/∆Fn. This upper bound is

actually very small because

u2v ≤ u v ≤ max
Fn

u∞(Fn)v∞(Fn) ≈ 1.4 · 10−87 , (51)

where the maximum is reached at Fn = (0.34175 + 0.06835)/2. For the physiological values

of the model parameters given in [2], the ratio of the maximum slope of Au2v [Eqs. (50)-(51)]

and the minimum slope of Frel [Eq. (46)] is bounded by a small (dimensionless) quantity

3krelVrel u
2v w

(
Iup,max + α[Ca++]i

)
α∆Fn

< 10−77 , (52)

assuming [Ca++]i < 1000 mM. Therefore, Frel([Ca
++]rel)−Au2v is a monotonic function and

Eq. (45) has exactly one solution. This solution [Ca++]rel can be determined by solving nu-

merically Eq. (45), in which u2v is obtained from Eqs. (47)–(49) and (44). The concentration

[Ca++]up is then obtained from Eq. (43), and the steady-state flux Fn from Eq. (49). Finally,

Eqs. (47)–(48) are used to evaluate u and v.
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A very accurate approximation can be derived by neglecting u2v in Eq. (45). Under this

assumption,

[Ca++]rel ≈ [Ca++]up ≈ Iup
α

=
[Ca++]up,max

1 +Kup

/
[Ca++]i

, (53)

where the error is O(u2v).

4.4. Graphical representation of the steady states

Using the formulas given in the previous subsections, the steady states were computed for

values of V ranging from −90 to 0 mV. The accuracy of the results was checked by testing if

∥f(x)∥ was sufficiently small [Eq. (6)]. The stability of the steady states was established using

Eq. (11). The main state variables were represented as a function of the non-specific charge

concentration [NS]i. The value of [NS]i remains constant over time and is therefore associated

with the choice of an initial condition. The initial condition proposed for the original model

corresponds to that computed for V = −81.2 mV and is associated with the physiological

value [NS]i = 150.2 mM.

For all fixed points, the steady-state transmembrane potential as well as the main intra-

cellular ionic concentrations are displayed in Fig. 4, solid lines corresponding to stable fixed

points and dashed lines to unstable ones. Four regimes were observed: there was a single sta-

ble fixed point for [NS]i < 53 mM, an unstable fixed point in the interval 53 < [NS]i < 93 mM,

one stable and two unstable fixed points in the interval 93 < [NS]i < 117 mM, and a single sta-

ble fixed point for [NS]i > 117 mM. The unstable fixed points were found for transmembrane

potentials V between −54.7 and −24.5 mV.

5. Dynamical Regimes in the Courtemanche model

Since [NS]i is an invariant of the dynamics, the system evolves toward a stable fixed point

(attractor) with a value of [NS]i corresponding to that of the initial condition. In the absence

of any stable fixed point, the system is expected to tend toward a stable limit cycle (pacemaker
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Figure 4: Steady-state transmembrane potential and intracellular ionic concentrations for all fixed points of

the Courtemanche model, represented as a function of the non-specific charge concentration [NS]i. Solid lines

mean stable fixed points and dashed lines unstable fixed points. The vertical dotted lines denote the transitions

between different dynamical regimes.
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activity). In order to study the far-from-equilibrium dynamics, the effect of large perturbation

was studied by applying external stimulation.

5.1. System with external stimulation

When a stimulation current is applied, Eq. (A.11) is replaced by [1]

Cm
dV

dt
= −INa,t − IK,t − ICa,t − INaCa − INaK + Istim(t) , (54)

where Istim is the stimulation current (Istim > 0 induces a depolarization). In this case,

Eq. (25) is not valid anymore and the current Istim contributes to changes in the non-specific

charge concentration [18]

[NS]i(t) = [NS]i(0)−
1

ViF

∫ t

0
dτ Istim(τ) . (55)

The drift expressed by the integral is not desirable since the qualitative behavior of the

cell dynamics can be altered when the value of [NS]i is changed. In order to restore the

conservation of [NS]i, a charge carrier has to be chosen for the stimulation current. Following

Hund et al. [8], the potassium was considered to be the only ion whose concentration is affected

by the stimuli, so that Eq. (A.13) is replaced by

d[K+]i
dt

=
2INaK − IK,t + Istim(t)

FVi
. (56)

This equation is used when simulating the action potentials documented in the next subsec-

tion.

5.2. Response to large perturbations

A simulation was performed for a representative selection of fixed points, starting from

the fixed point as initial condition. After 250 ms of free evolution, a stimulus of amplitude

2 nA was applied for 2 ms. This current was carried by the potassium ions [Eq. (56)]. To

ensure the exact conservation of [NS]i, [K
+]i was computed at each time step using Eq. (24),

following an approach similar to the algebraic integration scheme described in Hund et al. [8].
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Figure 5 illustrates the four regimes observed. During the first 250 ms of free evolution,

the transmembrane potential seems to be stable even around an unstable fixed point. This is

due to the fact that the fixed point was accurately computed and the Lyapunov exponent was

small. The exponential divergence of the trajectory follows ∥x(t)− x∥ ≈ ∥x(0)− x∥ exp(λt),

where λ is the Lyapunov exponent, whose value was found to be around 0.01 ms−1. With

an accurate estimate of the fixed point, for instance, ∥x(0)− x∥ ≈ 10−8 ∥x∥, the state of the

system is still very close to the fixed point after 250 ms of free evolution. For [NS]i < 53 mM,

a stable fixed point exists with a high resting potential, but the system is not excitable (the

electrical response of the cell is similar to a passive cell). In the interval 53 < [NS]i < 93 mM,

there is only an unstable fixed point and the dynamics is auto-oscillatory with a cycle length

ranging between 520 and 1200 ms (the larger [NS]i, the slower the firing rate). In the interval

93 < [NS]i < 117 mM, three fixed points exist, one of which is stable. For [NS]i > 117 mM,

these is a single stable fixed point. A superthreshold stimulation generates an action potential

with a duration between 230 and 350 ms measured at 90% repolarization For decreasing values

of [NS]i, the resting potential becomes elevated, the action potential duration prolongs and

the notch progressively disappears.

6. Steady-state solutions in the Nygren model

In this section, it is shown that, in case ΦNa,en = 0, for all V ≥ −150 mV, one, two or three

steady-state solutions to the Nygren equations exist for a transmembrane potential V (t) = V .

The steady state value of all the other state variables is determined as a function of V .

6.1. Steady-state equations

First of all, the steady state value of the gating variables are obtained from Eq. (7). The

values of m, h1, h2, dL, fL1 , fL2 , r, s, rsus, ssus, n and pa are functions of V and can therefore

be considered as constants within this section [3]. The gating variables fCa, F1 and F2 are

considered later because they depend on [Ca++]i and [Ca++]d (see [3]). By setting the time
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Figure 5: Steady states of the Courtemanche model. Left panel: transmembrane potential of the fixed points

as a function of the non-specific charge concentration [NS]i. The display correspond to that of Fig. 4. Right

panel: time course of the transmembrane potential starting from the initial condition indicated by the horizontal

dotted line.

derivatives in Eqs. (B.15)–(B.21) to zero, the steady state currents can be shown to satisfy

the following relations:

3INaCa = −3INaK − INa,t (57)

2INaK = IK,t (58)

Idi = −ICaL (59)

ICa,t = 2INaCa + Idi (60)

Iup = Itr = Irel . (61)

Equations (57) and (60) yield two relations between [Na+]i and [Ca++]i, Eq. (58) a relation

between [K+]i and [Na+]i, and Eq. (59) a relation between [Ca++]d and [Ca++]i. Equation (61)

enables us to determine the variables associated with the sarcoplasmic reticulum.
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6.2. Steady-state ionic concentrations

After having introduced Eqs. (57)–(61) in Eqs. (B.22)–(B.24), the steady-state cleft con-

centrations are found to be equal to the bulk concentrations:

[K+]c = [K+]b , [Na+]c = [Na+]b , and [Ca++]c = [Ca++]b . (62)

Note that since fL1 = fL2 (see [3]), ICaL is a function of V only because the dependency in

fCa disappears at steady-state. Therefore, from the definition of Idi [Eq. (B.9)], we have

[Ca++]d = [Ca++]i −
τdi ICaL

2FVd
. (63)

In order to determine [Na+]i and [Ca++]i, we combine Eqs. (57) and (60). First, the current

INaCa has the following form at steady state [Eq. (B.11)]:

INaCa =
a [Na+]

3

i − b [Ca++]i

1 + c [Na+]
3

i + d [Ca++]i

(64)

where a, b, c and d are positive and depend only on V and on the cleft concentrations, which

have already been determined. Next, we define FNa = 3INaK + INa,t and FCa = ICa,t + ICaL,

the former depending only on [Na+]i and the latter on [Ca++]i. These functions are given by

FNa

(
[Na+]i

)
= gNa

(
eFV/RT [Na+]i − [Na+]b

)
+ gbNa · (V − ENa)

+ 3INaK,max
[Na+]

3/2
i

[Na+]
3/2
i + k

3/2
NaK,Na

(65)

FCa

(
[Ca++]i

)
= ICaL +

IpCa,max

1 + 5 · 10−4
/
[Ca++]i

+ gbCa · (V − ECa) , (66)

where gNa = gNa(V ) · (0.9 h1 + 0.1 h2) and INaK,max = INaK,max · [K+]b/(kNaK,K + [K+]b) ·

(V + 150)/(V + 200) ≥ 0 when V ≥ −150 mV. These functions are both increasing and tend

toward −∞ (resp. +∞) when the argument tends toward 0 (resp. +∞). From the relation

FNa = −3INaCa [Eq. (57)], the steady-state concentration [Ca++]i can be identified

[Ca++]i =
a [Na+]

3

i +
1
3 FNa

(
[Na+]i

)
·
(
1 + c [Na+]

3

i

)
b− d

3 FNa

(
[Na+]i

) . (67)
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The value of [Ca++]i must be positive. This condition is verified if

−
3a [Na+]

3

i

1 + c [Na+]
3

i

< FNa

(
[Na+]i

)
<

3b

d
. (68)

Since the lower bound is a decreasing function of [Na+]i and FNa is an increasing bijection

from (0,+∞) to (−∞,+∞), this condition can be written as

[Na+]i,crit− < [Na+]i < [Na+]i,crit+ , (69)

where the bounds are well defined and can be easily computed numerically. Within this

interval, [Ca++]i is the ratio between a positive increasing and a positive decreasing function.

It is therefore an increasing function of [Na+]i.

Then, using the relation INaCa = 1
2FCa = −1

3FNa [Eq. (57) and (60)], we find that [Na+]i

is a solution to the equation

3 FCa

(
[Ca++]i

)
+ 2 FNa

(
[Na+]i

)
= 0 , (70)

where [Ca++]i is the function of [Na+]i given by Eq. (67). The left hand side is an increasing

function of [Na+]i. It tends to −∞ when [Na+]i → [Na+]i,crit− because [Ca++]i → 0, and it

tends to +∞ when [Na+]i → [Na+]i,crit+ because the denominator in Eq. (67) becomes zero.

Thus, the solution [Na+]i to Eq. (70) exists, is unique and can be easily computed using a

numerical root-finding algorithm in the open interval between [Na+]i,crit− and [Na+]i,crit+. The

value of [Ca++]i is finally derived from Eq. (67) and the value of [Ca++]d from Eq. (63).

The next step is to determine [K+]i. This is done by solving Eq. (58). After having

substituted the formula of gK1(V ) (see [3]), this equation becomes

gK1[K
+]0.4457b

V − EK

1 + exp
(
1.5(V − EK + 3.6)F/RT

) + gK,tot · (V − EK) = 2INaK , (71)

where the equivalent conductance gK,tot is defined as gtr s+ gsusrsus ssus + gKrpa + gKsn, and

where the current INaK is computed with the value of [Na+]i determined previously. This is
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an equation for x = V − EK, which has one, two or three solutions, as is shown in the next

subsection. For each possible value of x, the potassium concentration is then computed as

[K+]i = [K+]b exp

(
(x− V )F

RT

)
. (72)

Once the intracellular concentrations are known, this leaves us the variables of the sarcoplas-

mic reticulum and the buffer concentrations to be found, as is done in subsections 6.4 and 6.5.

6.3. Solving the potassium equation

The equation for computing [K+]i is of the form (see Eq. (71) and Fig. 6)

f(x) =
x

1 + exp(ax+ b)
= c− rx (73)

where the first equality is a definition and x = V − EK. The parameters a, b, c and r are all

positive. We will see that under this assumption this equation has 1, 2 or 3 roots and sketch

how to compute all of them numerically. Since the roots are clearly in the interval (0, c/r),

we assume that x ≥ 0. The function f and its derivative f ′ are plotted in Fig. 6.

The function f has a unique local maximum (xm such that f ′(xm) = 0) at

xm =
1 +W

(
exp(−b− 1)

)
a

(74)

where W is the Lambert’s W function [16]. An inflexion point xi of f is a solution to

f ′′(xi) = 0, which is equivalent to

exp(ax+ b) =
ax+ 2

ax− 2
. (75)

The right hand side is negative for |x| < 2/a, positive and decreasing for x > 2/a, while the

left hand side is positive and increasing. Therefore there exists a unique inflexion point xi

lying in the interval (2/a,+∞).

In order to determine the number of roots, we need to find the points such that f ′(x) = −r

(see Fig. 6). This equation has no solution if f ′(xi) > −r. In this case, Eq. (73) has a unique

root in the interval (0, c/r). If f ′(xi) < −r, then f ′(x) = −r has two solutions x1 and
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Figure 6: The function f (top panel) and its derivative f ′ (bottom panel) are represented for a = 0.6, b = 0.2,

c = 0.4 and r = 0.04. The points xm, xi, x1 and x2 are indicated on both graphs. On the top panel, the

dashed line represents the equation y = c− rx. The circles indicate the solutions to Eq. (73). On the bottom

panel, the horizontal dashed line y = −r is also displayed.

x2, the former being in the interval (xm, xi) and the latter in (xi,+∞). Next, we define

c1 = f(x1) + rx1 and c2 = f(x2) + rx2. Equation (73) has a unique solution in (0, c/r) if

c > c2 or c < c1, two solutions if c = c1 (one is x1 and the other one is in (x1, c/r)), two

solutions if c = c2 (one is x2 and the other one is in (0, x2)), three solutions if c1 < c < c2 (one

in (0, x1), in (x1, x2) and in (x2, c/r)). In the degenerate case f ′(xi) = −r, Eq. (73) always

has a unique root in (0, c/r).
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6.4. Steady-state calcium dynamics

First, the steady-state values of F1 and F2 are derived from Eqs. (B.31)–(B.32):

F 1 =
1

1 + ract/rinact + ract/rrecov
, F 2 =

ract
rinact

F 1 , (76)

where ract, rinact, and rrecov are computed from [Ca++]i and [Ca++]d. From Itr = Irel

[Eqs. (61), (B.13) and (B.14)], an affine relation can be extracted between [Ca++]up and

[Ca++]rel:

[Ca++]rel = a · [Ca++]up + b where

a =

[
1 +

αrelτtr
2FVrel

(
F 2

F 2 + 1/4

)2
]−1

and b = (1− a) · [Ca++]i . (77)

Then, the current Iup can be written as a function of [Ca++]up,

Iup =
a1 − b1 [Ca

++]up

a2 + b2 [Ca
++]up

, (78)

where a1 = Iup,max[Ca
++]i/kcyca, a2 = 1 + [Ca++]i/kcyca + k2xcs/ksrca, b1 = Iup,maxk

2
xcs/kcyca

and b2 = kxcs/ksrca are positive constants. From Itr = Iup [Eqs. (B.13), (77) and (78)], we

have

c(1− a)b2 [Ca
++]

2

up +
[
b1 +

(
(1− a)a2 − b2b

)]
[Ca++]up − a2bc− a2 = 0 , (79)

where c = 2FVrel/τtr. Since the leading coefficient is positive (a < 1 by its definition) and the

constant term is negative, this quadratic equation has exactly one positive solution. Finally,

[Ca++]rel is computed from [Ca++]up using Eq. (77).
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6.5. Steady-state buffers

The equations for the calcium buffer concentration [Eqs. (B.25)–(B.29)] are similar to

those of the gating variables. The steady state values of these variables read:

OC =
1

1 + 2.38 · 10−3
/
[Ca++]i

, OTC =
1

1 + 5 · 10−3
/
[Ca++]i

(80)

OTMgMg =
11 [Mg++]i

1.11 · 105 [Ca++]i + 11 [Mg++]i + 3.663
(81)

OTMgC =
103 [Ca++]i
[Mg++]i

OTMgMg (82)

OCalse =
6

6 + 5
/
[Ca++]i

. (83)

6.6. Graphical representation of the steady states

Using the formulas given in the previous subsections, the steady states were computed for

values of V ranging from −90 to 0 mV and ΦNa,en = 0. A single fixed was found for each

value of V such that V > −25.6 mV, and three fixed points otherwise. The accuracy of the

results was checked by testing if ∥f(x)∥ was sufficient small. The stability of the steady states

was established using Eq. (11).

For all fixed points, the steady-state transmembrane potential as well as the main intra-

cellular ionic concentrations are displayed in Fig. 7 as a function of the non-specific charge

concentration [NS]i. Five regimes can be observed: there is a single stable fixed point for

[NS]i < 37.7 mM, an unstable fixed point in the interval 37.7 < [NS]i < 56 mM, again a single

stable fixed point for 56 < [NS]i < 129.5 mM, one stable and two unstable fixed points for

129.5 < [NS]i < 149 mM, and two stable and one unstable fixed point for [NS]i > 149 mM.

The original initial condition proposed for the Nygren model corresponds to the physiological

value [NS]i = 154 mM and is significantly different from the steady state at the same value

of [NS]i computed with ΦNa,en = 0 (Vm = −74.25 vs −72.3 mV, [Na+]i = 8.55 vs 6.39 mM,

[K+]i = 129.4 vs 131.7 mM and [Ca++]i = 0.067 vs 0.039 µM).
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7. Dynamical Regimes in the Nygren model

7.1. System with external stimulation

When a stimulation current is applied, Eq. (B.15) is replaced by Eq. (54), exactly like for

the Courtemanche model. In this case, Eq. (28) is not valid anymore and the current Istim(t)

contributes to change the non-specific charge concentration

[NS]i(t) = [NS]i(0)−
1

ViF

(
ΦNa,en · t+

∫ t

0
dτ Istim(τ)

)
. (84)

The parameter ΦNa,en can be selected so that the second term vanishes. For example, in the

Nygren et al. paper [3], the value ΦNa,en = −1.68 pA compensates a train of stimuli with an

amplitude of 1.68 nA and a duration of 1 ms delivered at 1 Hz. However, in this paper, we

will rather set ΦNa,en to zero and consider that the stimulation current acts as a potassium

current, so that Eq. (B.17) is replaced by Eq. (56) as in the Courtemanche model. Note that

the equation for the cleft potassium concentration remains unchanged. As a consequence,

[NS]i is constant for any stimulation protocol.

7.2. Response to large perturbations

A simulation was performed for each of the fixed points, starting from the fixed point as

initial condition. After 250 ms of free evolution, a stimulus of amplitude 1 nA was applied for

2 ms. This current was carried by the potassium ions [Eq. (56)], whose concentration [K+]i

was updated at each time step using Eq. (27).

Figure 8 illustrates the 3 regimes observed in the inferior branch of Fig. 7. For [NS]i <

37.7 mM, a stable fixed point exists for a high resting potential, but the system is not excitable.

In the interval 37.7 < [NS]i < 56 mM, there exists only an unstable fixed point and the

dynamics is auto-oscillatory with a cycle length at steady-state ranging from 580 to 1900 ms

(the larger [NS]i, the slower the firing rate). For [NS]i > 56 mM, the fixed point with the lowest

resting potential is stable. A superthreshold stimulation generates an action potential with a

duration between 210 and 420 ms measured at 90% repolarization With decreasing values of

[NS]i, the resting potential becomes elevated and the action potential duration shortens.
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Figure 9 illustrates the 3 regimes observed in the superior branch of Fig. 7. The response

to stimuli with a duration of 2 ms and an amplitude of Istim = ±0.1 nA and ±1 nA was

studied. For 129.5 < [NS]i < 149 mM, the two fixed points of the superior branch are

unstable. After the stimulation, the system tends toward the fixed point of the inferior

branch. For [NS]i > 149 mM, there is a stable and an unstable fixed point in the superior

branch. When the system starts from the unstable fixed point, it tends toward the stable fixed

point of the superior (resp. inferior) branch if the stimulus induces a depolarization (resp.

hyperpolarization). When the system starts from the stable fixed point, damped oscillations

are observed for low amplitude stimuli (such as 0.1 nA). However, when higher stimulus

strengths are used (1 nA) and [NS]i < 197 mM, the system eventually tends to the stable

fixed point of the inferior branch, after a few action potentials are spontaneously generated.

In contrast, if [NS]i > 197 mM, the fixed point is robust against stimulation (at least for

Istim < 2 nA). Note that the transmembrane potential reaches its maximum steady-state

value in the superior branch at the transition point [NS]i = 197 mM.

8. Discussion

In this paper, the steady states of atrial cell models were studied, as well as their stability,

by determining and analyzing the fixed points of the dynamical system describing the cell

kinetics. Analytical tools were used as far as possible in order to compute the comprehensive

set of fixed points. In the Fenton–Karma model, a unique stable fixed point was found, which

was interpreted as the resting state of the cell. In contrast, the Courtemanche model was

shown to have an infinite number of fixed points. These fixed points were classified using a

conservation law associated with the capacitor equation relating the transmembrane potential

to the ionic concentrations. As a result, at most one of the stable fixed points can be reached,

given an initial condition. When no stable fixed point was reachable, simulations showed

that the dynamical behavior of the cell is auto-oscillatory. In its original formulation [3], the

Nygren model has no fixed point, which means no resting state. Charge conservation was
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Figure 7: Steady-state transmembrane potential and intracellular ionic concentrations for all fixed points of

the Nygren model, represented as a function of the non-specific charge concentration [NS]i. Solid line means

stable fixed point and dashed line unstable fixed point. The vertical dotted lines denote the transition between

different dynamical regimes.
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Figure 8: Steady states of the Nygren model. Left panel: transmembrane potential of the fixed points belonging

to the inferior branch as a function of the non-specific charge concentration [NS]i. The superior branch is shown

in light gray. The display correspond to that of Fig. 4. Right panel: time course of the transmembrane potential

starting from the initial condition indicated by the horizontal dotted line.

restored by setting one of its parameters (ΦNa,en) to zero. Under this assumption, an infinite

number of fixed points and a conservation law were found, resulting in a diagram qualitatively

similar to that of the Courtemanche model. However, due to a different formulation of the

current IK1 [compare Eq. (B.4) with (A.3)], an additional line of fixed points was generated

(the superior branch in Fig. 9). As a result, two different stable fixed points are sometimes

reachable from one and the same initial condition. The simulations revealed that the fixed

point with the lowest transmembrane potential was more robust against the application of

impulse stimulation, suggesting that it should be interpreted as the resting state.

The methodology presented here provides a useful guide to a better understanding of the

different mathematical models of cell electrophysiology and the impact of their mathemati-

cal structure on the resulting dynamical behavior. Although in many of the steady-states

the values of some variables are far from physiological conditions (e.g. very low intracellu-

lar potassium concentration), the extended view provided by the bifurcation diagram helps
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Figure 9: Steady states of the Nygren model. Left panel: transmembrane potential of the fixed points belonging

to the superior branch as a function of the non-specific charge concentration [NS]i. The inferior branch is

shown in light gray. The display corresponds to that of Fig. 4. Right panel: time course of the transmembrane

potential starting from the initial condition indicated by the horizontal dotted line. The stimulus amplitude

Istim is 0.1 nA (signals on the left) or 1 nA (signals on the right) with a positive (solid lines) or negative sign

(dashed lines)

to visualize and predict the dynamical changes induced by the variation of a parameter of

the model studied. After the comprehensive set of steady states has been exhibited, those

corresponding to physiological values of [NS]i (typically 150–155 mM) can be extracted for

subsequent analysis. For the sake of illustration, the fixed points of the Courtemanche model

associated with [NS]i = 150.2 mM (physiological value computed from the initial condition,

see section 3) are shown in Fig. 10 for decreasing values of the channel conductance gK1. When

the original initial condition of the Courtemanche model is used, a reduction of gK1 leads to

a pacemaker activity. This phenomenon appears on Fig. 10 as a widening of the window

of auto-oscillatory dynamics. These plots can be combined to build a bifurcation diagram

representing the steady-states and their stability as a function of the control parameter gK1

(Fig. 11). This diagram shows that the resting state is unstable for gK1 < 0.043 nS/pF when

the evolution starts from the original initial condition of the Courtemanche model. Other
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Figure 10: Steady-state transmembrane potential for all fixed points of the Courtemanche model, represented

as a function of the non-specific charge concentration [NS]i, like in Fig. 4. From the left to the right panel,

the value of the channel conductance gK1 is reduced from 0.09 to 0.04 nS/pF. The shaded region indicates

an auto-oscillatory dynamics. The vertical dotted line the value of [NS]i corresponding to the original initial

condition of the Courtemanche model.

applications of this methodology include the analysis of the effect of introducing a continuous

ionic flux or a leakage current in the cell. This sometimes leads to a pacemaker activity [19].

The approach proposed in this paper is aimed at the exploration of the high-dimensional

parameter space of the cell models. Its application may help to identify the conditions leading

to spontaneous pacemaker activity.
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Figure 11: Bifurcation diagram of the Courtemanche model with [NS]i = 150.2 mM when gK1 is considered as

the control parameter. The steady-state potential is represented as a function of gK1. Solid line means stable

resting state and dashed line unstable resting state. Bifurcations occur at gK1 = 0.043 and 0.068 nS/pF.

Appendix A. The Courtemanche model formulation

Appendix A.1. Ionic currents

The total current of the sodium-, potassium- and calcium-specific ionic channels are for-

mulated by

INa,t = INa + Ib,Na = (gbNa + gNa m
3hj) · (V − ENa) (A.1)

IK,t = IK1 + Ito + IKr + IKur + IKs (A.2)

=
(
gK1(V ) + gtoo

3
aoi + gKr(V )xr + gKsx

2
s + gtou

3
aui

)
· (V − EK) (A.3)

ICa,t = Ip,Ca + ICaL + Ib,Ca (A.4)

=
IpCa,max

1 + 5 · 10−4 /[Ca++]i
+ gCaL · d · f · fCa · (V − 65) + gbCa · (V − ECa) , (A.5)

where gbNa, gNa, gto, gKs, gto, gCaL, gbCa, IpCa,max are positive parameters, and gK1 and gKr

are positive functions of V . The Nernst potentials ENa and ECa are defined by

ENa =
RT

F
log

[Na+]o
[Na+]i

, EK =
RT

F
log

[K+]o
[K+]i

and ECa =
RT

2F
log

[Ca++]o
[Ca++]i

, (A.6)
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where R, T and F are the gas constant, the temperature and the Faraday constant, respec-

tively. The index “o” corresponds to extracellular concentrations. In addition, a Na+/Ca2+

ion exchanger current INaCa and a Na+–K+ pump current INaK are involved:

INaCa = a(V ) · [Na+]3i − b(V ) · [Ca++]i , (A.7)

INaK =
INaK,max(V )

1 + (Km,Na/[Na
+]i)3/2

, (A.8)

where a, b and INaK,max are positive functions of V . The parameters gbNa, gNa, Km,Na,

IpCa,max, gCaL and gbCa are also positive. The calcium dynamics in the sarcoplasmic reticulum

is specified by the currents:

Iup =
Iup,max

1 +Kup/[Ca
++]i

, Itr =
[Ca++]up − [Ca++]rel

τtr
, (A.9)

Irel = krel u
2v w ([Ca++]rel − [Ca++]i) , Ileak =

[Ca++]up
[Ca++]up(max)

Iup,max , (A.10)

where Iup,max, Kup, τtr, krel and [Ca++]up(max) are positive parameters.

Appendix A.2. Evolution equations

The evolution of the system is governed by the following differential equations:

Cm
dV

dt
= −INa,t − IK,t − ICa,t − INaCa − INaK (A.11)

d[Na+]i
dt

=
−3INaK − 3INaCa − INa,t

FVi
(A.12)

d[K+]i
dt

=
2INaK − IK,t

FVi
(A.13)

Bi
d[Ca++]i

dt
=

2INaCa − ICa,t

2FVi
+

Vup(Ileak − Iup) + IrelVrel

Vi
(A.14)

d[Ca++]up
dt

= Iup − Ileak − Itr
Vrel

Vup
(A.15)

Brel
d[Ca++]rel

dt
= Itr − Irel , (A.16)

where Vi, Vup and Vrel are the volume of the intracellular, uptake and release compartments.

In addition, 15 equations of the form of Eq. (4) determine the evolution of the 15 gating vari-

ables. The function Bi and Brel are associated with the calcium storage in Troponin (Trpn),
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Calmodulin (Cmdn) buffers in the intracellular compartment and Calsequestrin (Csqn) buffers

in the release compartment:

[Ca++]Trpn =
[Trpn]max

1 +Km,Trpn /[Ca
++]i

, [Ca++]Cmdn =
[Cmdn]max

1 +Km,Cmdn /[Ca
++]i

,(A.17)

[Ca++]Csqn =
[Csqn]max

1 +Km,Csqn /[Ca
++]rel

, (A.18)

where [Buffer]max and Km,Buffer are positive constants (“Buffer” stands for Trpn, Cmdn and

Csqn). The functions Bi and Brel depend on [Ca++]i and [Ca++]rel respectively, and are defined

according to their property:

Bi
d[Ca++]i

dt
=

d

dt

(
[Ca++]i + [Ca++]Trpn + [Ca++]Cmdn

)
(A.19)

Brel
d[Ca++]rel

dt
=

d

dt

(
[Ca++]rel + [Ca++]Csqn

)
. (A.20)

Appendix B. The Nygren model formulation

Appendix B.1. Ionic currents

Here, the notations are as far as possible made consistent with those used for the Courte-

manche model. The total current of the sodium-, potassium- and calcium-specific ionic chan-

nels are

INa,t = INa + Ib,Na (B.1)

= gNa(V ) · (0.9 h1 + 0.1 h2)
(
eFV/RT [Na+]i − [Na+]c

)
+ gbNa · (V − ENa) (B.2)

IK,t = IK1 + It + Isus + IKr + IKs (B.3)

= (gK1(V − EK) + gtr s+ gsusrsusssus + gKr(V )pa + gKsn) · (V − EK) (B.4)

ICa,t = Ip,Ca + Ib,Ca (B.5)

=
IpCa,max

1 + 5 · 10−4 /[Ca++]i
+ gbCa · (V − ECa) (B.6)

where gbNa, gt, gsus, gKs, IpCa,max and gbCa are positive parameters, and gNa(V ), gK1(·) and

gKr(V ) are positive functions. The Nernst potentials are computed with respect to the cleft
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concentrations:

ENa =
RT

F
log

[Na+]c
[Na+]i

, EK =
RT

F
log

[K+]c
[K+]i

and ECa =
RT

2F
log

[Ca++]c
[Ca++]i

. (B.7)

The calcium current flow in the subsarcolemal space (see Fig. 3) is governed by

ICaL = gCaL · dL ·
(
fCafL1 + (1− fCa)fL1

)
· (V − ECa,app) (B.8)

Idi =
2FVd

τd
([Ca++]d − [Ca++]i) , (B.9)

where gCaL, ECa,app and τd are positive constants and Vd is the volume of the subsarcolemal

space. The Na+/Ca2+ ion exchanger current INaCa and the Na+–K+ pump current INaK are

formulated as:

INaK = INaK,max ·
[K+]c

[K+]c + kNaK,K
·

[Na+]
3/2
i

[Na+]
3/2
i + k

3/2
NaK,Na

· V + 150

V + 200
(B.10)

INaCa = kNaCa
[Na+]3i [Ca

++]c e
γV F/RT − [Na+]3c [Ca

++]i e
(1−γ)V F/RT

1 + dNaCa

(
[Na+]3c [Ca

++]i + [Na+]3i [Ca
++]c

) , (B.11)

where INaK,max, kNaK,K, kNaK,Na, kNaCa, γ, and dNaCa are positive parameters. The calcium

dynamics in the sarcoplasmic reticulum is described by the following currents (see Fig. 3):

Iup = Iup,max
[Ca++]i/kcyca − k2xcs[Ca

++]up/ksrca
([Ca++]i + kcyca)/kcyca + kxcs([Ca

++]up + ksrca)/ksrca
(B.12)

Itr =
2FVrel

τtr

(
[Ca++]up − [Ca++]rel

)
(B.13)

Irel = αrel

(
F2

F2 + 1/4

)2 (
[Ca++]rel − [Ca++]i

)
, (B.14)

where Iup,max, kcyca, kxcs, ksrca, τtr and αrel are positive parameters, Vrel is the volume of the

release compartment and F2 is a gating variable.
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Appendix B.2. Evolution equations

The evolution equations for the transmembrane potential and for the ionic concentrations

(including the calcium buffers) read:

Cm
dV

dt
= −INa,t − IK,t − ICa,t − ICaL − INaCa − INaK (B.15)

d[Na+]i
dt

=
−3INaK − 3INaCa − INa,t − ΦNa,en

FVi
(B.16)

d[K+]i
dt

=
2INaK − IK,t

FVi
(B.17)

d[Ca++]i
dt

=
2INaCa + Idi − ICa,t + Irel − Iup

2FVi
− dO

dt
(B.18)

d[Ca++]d
dt

=
−Idi − ICaL

2FVd
(B.19)

d[Ca++]up
dt

=
Iup − Itr
2FVup

(B.20)

d[Ca++]rel
dt

=
Itr − Irel
2FVrel

− dOCalse

dt
(B.21)

d[Na+]c
dt

=
[Na+]b − [Na+]c

τNa
+

3INaK + 3INaCa + INa,t +ΦNa,en

FVc
(B.22)

d[K+]c
dt

=
[K+]b − [K+]c

τK
+

−2INaK + IK,t

FVc
(B.23)

d[Ca++]c
dt

=
[Ca++]b − [Ca++]c

τCa
+

ICaL + ICa,t − 2INaCa

2FVc
(B.24)

dOC

dt
= 2 · 105 [Ca++]i (1−OC)− 476OC (B.25)

dOTC

dt
= 7.84 · 104 [Ca++]i (1−OTC)− 392OTC (B.26)

dOTMgC

dt
= 2 · 105 [Ca++]i (1−OTMgC −OTMgMg)− 6.6OTMgC (B.27)

dOTMgMg

dt
= 2 · 103 [Mg++]i (1−OTMgC −OTMgMg)− 666OTMgMg (B.28)

dOCalse

dt
= 480 [Ca++]rel (1−OCalse)− 400OCalse (B.29)

where Vi, Vd, Vc, Vup, Vrel are the volume of the compartments, ΦNa,en is a constant, the

index “b” denotes (constant) bulk concentrations, the intracellular magnesium concentration
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[Mg++]i is a constant, and O is defined as

O = 0.08 OTC + 0.16 OTMgC + 0.045 OC . (B.30)

In addition, 12 equations of the form of Eq. (4) determine the evolution of the gating variables.

m, h1, h2, dL, fL1 , fL2 , r, s, rsus, ssus, n, pa. The gating variables F1 and F2 are coupled and

are governed by the equations:

dF1

dt
= rrecov(1− F1 − F2)− ractF1 (B.31)

dF2

dt
= ractF1 − rinactF2 , (B.32)

where rrecov, ract and rinact are positive functions of [Ca++]i and [Ca++]d.
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