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Published in Phys. Rev. E (2012), vol. 85, no. 5, pp. 051916

1

http://dx.doi.org/10.1103/PhysRevE.85.051916


Abstract

Phase singularity analysis provides a quantitative description of spiral wave patterns observed in

chemical or biological excitable media. The configuration of phase singularities (locations and di-

rections of rotation) is easily derived from phase maps in two-dimensional manifolds. The question

arises whether one can construct a phase map with a given configuration of phase singularities.

The existence of such phase map is guaranteed provided that the phase singularity configuration

satisfies a certain constraint associated with the topology of the supporting medium. This paper

presents a constructive mathematical approach to numerically solve this problem in the plane, on

the sphere as well as in more general geometries relevant to atrial anatomy including holes and a

septal wall. This tool can notably be used to create initial conditions with controllable spiral wave

configuration for cardiac propagation models and thus help in the design of computer experiments

in atrial electrophysiology.

I. INTRODUCTION

Formation of complex patterns such as multiple spiral waves has been observed in chemical

and biological excitable media [1]. These phenomena can be reproduced in mathematical

models governed by a reaction-diffusion system [2]. When local excitation is cyclic (though

not necessarily periodic), a phase (between 0 and 2π, modulo 2π) can be defined to represent

the position within the cycle [3, 4]. A phase map describes the state of the system over space

at a given instant in time. There may be points called phase singularities at which the phase

cannot be well-defined (the phase map is discontinuous at these points). In two-dimensional

systems, phase singularities are located near the tip of spiral waves. Phase singularity

identification and tracking provide a tool for characterizing the spatio-temporal complexity

of the dynamics in excitable media [4]. Applications include cardiac propagation models in

which the presence of spiral waves is associated with arrhythmia.

The topology of the medium constrains the type of wave patterns that can be observed [1,

3]. In the atria, the anatomical substrate consists in a thin-walled three-dimensional medium

(that can be considered two-dimensional in first approximation) with holes corresponding

to the insertion of veins and valves, thus creating a complicated topological space. Neces-

sary conditions for the existence of a spiral wave pattern with given distribution of phase

singularities have been identified [5–7]. These constraints depend on the topology of the
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medium. A more difficult problem is to find sufficient conditions for the existence of a spiral

wave pattern (is it possible to connect phase singularities with wave fronts and reconstruct

a phase map?). Cruz-White demonstrated that the necessary conditions were indeed suffi-

cient. Her theoretical arguments, however, gave little information about how to practically

perform the task of phase map reconstruction.

In this paper, the problem of exhibiting a phase map with given configuration of phase

singularities (locations and directions of rotation) is considered. An algorithm is developed

to numerically solve this problem in different two-dimensional geometries/topologies relevant

to heart anatomy. A dedicated phase map filtering method is used to highlight the structure

of the spiral wave pattern. The approach is illustrated in two different surface models of the

human atria. This computational framework forms a sound mathematical basis to create

initial conditions for reaction-diffusion systems, while eliminating the limitations of previous

approaches [8, 9].

II. PROBLEM STATEMENT

A phase field θ(x) in a two-dimensional orientable connected manifold S (including h

holes with boundaries H1, . . . , Hh) is defined here as a real function with values modulo 2π

that is smooth everywhere in S except at a finite number (n) of points x1, . . . ,xn. The

topological charge qk of the discontinuity xk is defined as the contour integral [5]

qk =
1

2π

∮
Γk

∇θ · dℓ , (1)

where Γk is a closed curve encircling the point xk but none of the other discontinuity points

and none of the holes. The orientation of the curve Γk follows the orientation of the surface

S. The value of qk is an integer that does not depend on the curve Γk as long as Γk

satisfies these constraints. When qk is nonzero, xk is called a phase singularity. Similarly,

the topological charge of the hole Hk, denoted by Qk, is defined as the integral (1) over the

closed contour Hk. Notations are illustrated in Fig. 1.

From a given phase field θ, the list of phase singularities and their topological charge

can be determined [4]. Two questions arise: (1) whether there exists a phase field with a

given configuration of phase singularities {(xk, qk), k = 1 . . . n} and topological charges of

holes {(Hk, Qk), k = 1 . . . h}, and (2) how to construct one. Conditions for the existence of
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a solution are given in Sect. III. An algorithm to construct such a solution is developed in

Sect. IV.

III. EXISTENCE OF A SOLUTION

Using topological arguments based on homotopy and homology theories, Cruz-White

demonstrated the following theorem [6]: if S is a two-dimensional orientable compact con-

nected manifold with h holes, there exists a phase field θ with n phase singularities at xk

with topological charges qk, k = 1 . . . n, and with topological charge Qk at hole k, k = 1 . . . h,

if and only if the constraint
n∑

k=1

qk =
h∑

k=1

Qk (2)

is satisfied. Proof is given in [6].

Clearly, if θ is a solution, θ + χ mod 2π is also a solution if χ is smooth everywhere in

S, including all the xk. Consequently, there is either no solution or an infinite number of

solutions.

IV. CONSTRUCTION OF A SOLUTION

The existence of a solution depends on the topology of the domain S. In this section, a

solution is constructed for different geometries of increasing complexity.

A. Solution in the plane

In the plane (unbounded, no hole, see Fig. 1A), a point x can be represented by a complex

number z(x), and the locations xk of the phase singularities by zk = z(xk). The function

θplane(z) = arg
n∏

m=1

(z − zm)
qm (3)

is a solution to the problem (‘arg’ denotes the argument/phase of a complex number). The

only singularities are found at z = zk, k = 1 . . . n, where the product vanishes. If Γk is a

4



circle of (small enough) radius r centered at xk, the topological charge q around xk reads:

q =
1

2π

∮
Γk

∇θplane · dℓ (4)

=
1

2π

∮
Γk

∇ arg (z − zk)
qk · dℓ+

∑
m ̸=k

1

2π

∮
Γk

∇ arg (z − zm)
qm · dℓ . (5)

The second term is zero since the argument of (z − zm)
qm is smooth in the vicinity of xk.

If Γk is parametrized by z(t) = zk + reit for t ∈ [0, 2π] and r small enough, the topological

charge q is expressed as

q =
1

2π

∫ 2π

0

d

dt

(
arg eiqkt

)
dt = qk , (6)

which demonstrates that θ has a phase singularity at xk with topological charge qk. There

is no constraint on the sum of topological charges. This is not a contradiction with the

theorem of Sect. III since the domain is not compact.

B. Solution in a planar domain with holes

If an infinite planar domain S has holes (see Fig. 1B), new points xn+1, . . . ,xn+h are

defined such that xn+k is located inside the hole Hk (outside S, see Fig. 1). The orientation

of the closed curves Hk (boundary of S) derives from the orientation of the surface in such a

way that the Stokes’ theorem may naturally be applied. The orientation of Γn+k (k = 1 . . . h)

is, however, kept the same as that of Γk (k = 1 . . . n) so that the singularities may be referred

to as clockwise or counterclockwise. The method of Subsect. IVA is then applied to the

phase singularity configuration {(xk, qk), k = 1 . . . n} ∪ {(xn+k,−Qk), k = 1 . . . h}. The

restriction of θplane to S provides the desired solution. Since xn+k is placed outside S, only

n phase singularities are created. Moreover, the hole k holds a topological charge of

1

2π

∮
Hk

∇θplane · dℓ = − 1

2π

∮
Γn+k

∇θplane · dℓ = Qk , (7)

as expected (see Fig. 1B). There is again no constraint on qk and Qk.

If the planar domain is bounded (and thus compact; see Fig. 1C), the outer boundary

is assumed to be Hh. The same method is applied to the phase singularity configuration

{(xk, qk), k = 1 . . . n} ∪ {(xn+k,−Qk), k = 1 . . . h − 1}, i.e., the outer boundary is ignored.
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The topological charge of the boundary Hh is

1

2π

∮
Hh

∇θplane · dℓ = −
h−1∑
k=1

1

2π

∮
Hk

∇θplane · dℓ+
n∑

k=1

1

2π

∮
Γk

∇θplane · dℓ (8)

= −
h−1∑
k=1

Qk +
n∑

k=1

qk , (9)

which is equal to Qh if and only if the constraint (2) is satisfied. If Qh is not specified and

can take any value, there is always a solution.

C. Solution on the sphere

The solution on the unit sphere (∥x∥ = 1) can be expressed in terms of the solution

in a plane through the stereographic transformation. The north pole is placed on a phase

singularity, for instance xn. Unit vectors u and v are chosen such that (u,v,xn) forms a

positively-oriented orthonormal basis. Using the stereographic mapping

zstereo(x) =
(u+ i v) · x
1− xn · x

, (10)

the phase singularities x1 . . .xn−1 are projected on the complex plane and xn is sent to

infinity. Because this mapping is a diffeomorphism, it preserves phase singularities and

topological charges. The phase field on the sphere is given by

θsphere(x) = θplane(zstereo(x)) (11)

where θplane is computed in an infinite planar domain using Eq. (3) with n − 1 phase sin-

gularities at zk = zstereo(xk) for k = 1 . . . n − 1. The value of θsphere(xn) is not defined and

can be assigned any value since θsphere is by construction discontinuous at xn. By the same

argument as in Subsect. IVB, qn = −
∑n−1

k=1 qk, i.e., the sum of all topological charges must

be zero [5].

If the sphere includes holes, the north pole can be placed in one of the holes. In this case,

the stereographic transformation maps the punctured sphere onto a planar bounded domain

with holes. The formula (11) combined with the method from Subsect. IVB therefore

provides the solution. As a result, the constraint (2) also applies.
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D. Solution in a manifold with spherical topology

If the manifold S is homeomorphic to a sphere, there exists a continuous invertible map-

ping F (x) from S to the unit sphere (invertible implies that there is no folding), so that the

phase field θS(x) on S can be written as

θS(x) = θsphere(F (x)) (12)

where θsphere is computed using n phase singularities at F (xk) for k = 1 . . . n. If S is

described by a triangulated surface, specific algorithms have been developed to numerically

construct a mapping F that projects the surface onto the unit sphere [10], which makes

Eq. (12) relevant for practical applications.

If holes are present, they are filled first by adding a node at the center of gravity of the

hole and by creating the triangles that connect that new node to the boundary of the hole.

Provided that this new closed surface is homeomorphic to a sphere, F is computed for this

new surface, formula (12) is applied, and the new node and triangles are discarded.

E. Extension to non-manifold topology

Non-manifold topology notably arises when two surfaces intersect along a curve. As an

example relevant to atrial anatomy, consider a surface S1 with spherical topology (right and

left atrial epicardium) and a surface S2 with the topology of a disc (septum) such that their

intersection is a closed curve Γ (S = S1 ∪ S2, Γ = S1 ∩ S2), as illustrated in Fig. 2. If

there are holes, these holes can be filled as in the previous subsection. Γ divides S1 into

two manifolds Sr
1 (right) and Sl

1 (left). Orientation of S2 is chosen such that S2 ∪ Sr
1 , which

also has spherical topology, is consistently oriented. The problem is to find a phase field θ

defined on S with phase singularities at x1,k with topological charge q1,k, k = 1 . . . n1, in S1

and at x2,k with topological charge q2,k, k = 1 . . . n2, in S2. In S1, this list consists of phase

singularities in the right part (qr1,k at xr
1,k, k = 1 . . . nr

1) and in the left part (ql1,k at xl
1,k,

k = 1 . . . nl
1) where of course n1 = nr

1 + nl
1.

A phase field θ1 is first constructed in S1 using the method of Subsect. IVD. This assumes∑n1

k=1 q1,k = 0. A phase field θ2 is obtained the same way in S2 or using the method of

Subsect. IVB if S2 can be conveniently projected on a plane. Then, θ is set to θ1 in S1 and

θ2+χ (mod 2π) in S2, where χ(x) is a correction field applied to θ2 to ensure the continuity
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of θ on Γ. To determine χ, the value of χ on the boundary Γ is set to the phase-unwrapped

version of θ1−θ2 (not necessarily restricted to the interval from 0 to 2π). Its value inside S2 is

obtained by Laplacian interpolation (∆χ = 0 in S2). If the condition
∮
Γ
∇θ1 ·dℓ =

∮
Γ
∇θ2 ·dℓ

is verified, χ has no 2π-jump on Γ and is therefore also continuous in S2. In this case, the

number and location of phase singularities are preserved by the correction χ. This constraint

can be written as

nr
1∑

k=1

qr1,k = −
nl
1∑

k=1

ql1,k = −
n2∑
k=1

q2,k (13)

which indicates that the sum of topological charges must be zero both in S1 and Sr
1 ∪ S2.

V. PHASE MAP POSTPROCESSING

Once a solution θ is found, any phase field of the form θ + χ mod 2π provides another

solution if χ is smooth everywhere. The function χ will be chosen so as to reduce the

distortions caused by the different transformations (e.g. from the plane to the sphere and

from the sphere to an arbitrary surface) and to highlight the presence and the direction of

rotation of phase singularities, based on methods presented in [11].

The complex phase field ϕ is defined as exp(iθ). This field is iteratively transformed

through the mapping ϕ 7→ ϕ exp(iχ), where χ is the solution to an equation F [χ, ϕ] = 0.

The postprocessing procedure is performed in two steps, each one using a specific operator F .

A. Phase map smoothing

To regularize the phase map, the idea is to force the Laplacian to be zero in the domain,

i.e., ∆(θ+χ) = 0. To evaluate ∆θ without numerical issues related to 2π-jumps, the relation

∆θ = Im ∇ · (ϕ∗∇ϕ) is used (‘Im’ is the imaginary part and the star (*) is the complex

conjugate), leading to the following definition for F :

F [χ, ϕ] = ∆χ+ Im ∇ · (ϕ∗∇ϕ) . (14)

No-flux boundary condition is used, except on the small circuits Γk around the phase singu-

larities, where χ is set to zero. This equation is solved for χ using dedicated finite element

methods on a triangulated mesh [11].
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B. Enhancement of spiral-like patterns

To reconstruct spiral-like patterns rotating around each phase singularity in the direction

associated with the topological charge, the eikonal-diffusion equation is iteratively solved, as

proposed in [9]. This equation reads c∥∇θ∥ = 1+D∆θ, where c is the normalized wavefront

propagation velocity and D is a diffusion coefficient [8, 12], and establishes that wavefront

propagation velocity is essentially uniform. As demonstrated in [8], the generalized Newton

zero-finding method applied to this nonlinear equation consists in solving F [χ, ϕ] = 0 where

F is defined as:

F [χ, ϕ] = c
Im ϕ∇ϕ∗

∥∇ϕ∥
∇χ+D∆χ+ 1− c ∥∇ϕ∥+D Im ∇ · (ϕ∗∇ϕ) . (15)

Again, no-flux boundary condition is used, except on the small circuits Γk around the phase

singularities, where χ is set to zero. Dedicated finite element methods for this equation can

be found in [11]. Iterations are run until wavefront velocity ∥∇ϕ∥−1 is sufficiently uniform [9].

VI. RESULTS

A. Phase map generation in a surface with holes

The phase map generation procedure is illustrated here in a triangular mesh (about

5,000 nodes) representing the atrial epicardium derived from magnetic resonance images

of a patient (Fig. 3C). Three phase singularities are introduced: one clockwise (q1 = −1)

and one counterclockwise (q2 = +1) in the left atrium near the pulmonary veins, and one

clockwise (q3 = −1) in the right atrium. The tricuspid valve (TV) has a topological charge of

Q1 = −1 (counterclockwise rotation), while the other holes have a topological charge of zero.

The relation q1 + q2 + q3 = Q1 is satisfied; therefore a solution exists. The atrial geometry

(Fig. 3C) is mapped onto a sphere (without folding) using the Control of Area and Length

Distortion (CALD) algorithm [10] implemented in the SPHARM-MAT Matlab toolbox (Li

Shen, Indiana University School of Medicine). The resulting spherical geometry is shown in

Fig. 3B. The sphere is projected on the plane using the stereographic projection (Eq. (10)),

the north pole being placed at the center of gravity of the tricuspid valve (Fig. 3A). Lines

of constant phase will be called isochrones because of their interpretation in the context of

wavefront propagation [9].
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The phase map is first computed in the plane (Eq. (3); Fig. 3A), then projected on the

sphere (Eq. (11); Fig. 3B), and finally mapped onto the atrial surface (Eq. (12); Fig. 3C).

Although isochrones are smooth in the plane and on the sphere (an analytical formula

for the phase is used), the nonlinear transform mapping the atrial surface onto the sphere

introduces severe distortions. The application of the smoothing filter (Subsect. VA) clearly

regularizes the isochrones (Fig. 3D). Since the direction of rotation is not obvious in Fig. 3D,

the eikonal-based filter (Subsect. VB) is applied to enhance spiral-like patterns and make

the distance between isochrones more uniform (Fig. 3E).

B. Phase map generation in a nonmanifold geometry

The case of nonmanifold geometry (Subsect. IVE) is illustrated in another triangular

mesh of the atria including a septal wall. The surface S1 is the left and right epicardium

and the surface S2 is the septum (Fig. 4A). Three phase singularities are introduced: one

counterclockwise in the right atrium (nr
1 = 1, qr1,1 = +1), one clockwise in the left atrium

(nl
1 = 1, ql1,1 = −1) and one clockwise in the septum (n2 = 1, q2,1 = −1). Note that,

by convention, the orientation of the septum is the same as that of the right atrium, so

when seen from the right (as in Fig. 4) the orientation of the septum appears inverted.

The necessary and sufficient conditions for the existence of the solution (Eq. (13)) are both

verified: qr1,1 + ql1,1 = 0 and qr1,1 + q2,1 = 0.

The phase map is first computed independently in the epicardium and in the septum

(Fig. 4A) using the same steps as in the previous subsection. A correction field is then

applied to the septum to ensure the continuity of the solution (Fig. 4B). The final solution

after filtering is displayed in Fig. 4C.

VII. DISCUSSION AND CONCLUSION

This paper provides a mathematical and computational framework for the construction of

phase maps with given number and location of phase singularities, as long as the topological

constraint (2) is satisfied. A first application of this tool is the initiation of spiral wave

dynamics with controllable degree of complexity in a reaction-diffusion system, for instance

a cardiac propagation model [9]. In this case, the phase map is used to construct an initial
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condition for the partial differential equation governing wave propagation. The proposed

formulas are notably applicable to atrial geometries incorporating major anatomical features,

as demonstrated in the examples of Sect. VI. Combined with a random distribution of phase

singularities [9], many independent realizations of the same dynamics can be easily simulated,

which opens the way to statistical analysis of the evolution. The two-dimensional nature of

the method, however, limits its use to thin-walled geometries (such as the atria). Although

an extension to three dimensions of the theorem of Sect. III has been proved [6], its numerical

implementation remains challenging.

Another application is Laplacian interpolation of angular data on a surface [13] based on

its values on the boundaries (holes), i.e., solving ∆θ = 0 in S with θ = θ0 on the boundary ∂S

where θ and θ0 are defined modulo 2π. From the topological charges of the holes computed

from θ0, a phase field θ̃ compatible with these topological constraints is created in S. The

existence of a continuous solution depends again on the constraint (2). Then, the problem

∆(θ− θ̃) = 0 in S with θ = θ0 − θ̃ on ∂S can be solved using standard methods since θ0 − θ̃

has no phase singularity and no 2π-jump. This is essentially what was done in Subsect. VA.

Since the methods presented here explicitly take advantage of the topology of the do-

main, they are not applicable in the case of an arbitrary topology. A major computational

problem remains the construction of a diffeomorphism to transform an arbitrary geometry

into a reference geometry with the same topology (e.g., a torus), for which the problem can

be solved. If phase singularities are allowed to be created in addition to the desired ones,

however, a simple solution can be obtained by Laplacian interpolation of the complex phase

field ϕ = exp(iθ) as proposed in [9]. In this case, the constraint (2) does not have to be ver-

ified; additional phase singularities will be automatically created to satisfy the appropriate

topological constraints.

The proposed method is both computationally efficient and easy to implement. It provides

a solution to a sufficiently wide range of topologies to be used in practical applications,

notably in atrial electrophysiology simulations. With the help of this new tool, the concept

of phase singularity becomes not only useful for data analysis, but also as a way to design

in silico experiments.

11



ACKNOWLEDGMENTS
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FIG. 1. Notations for (A) an unbounded planar domain, (B) an unbounded planar domain with

holes, and (C) a bounded planar domain with holes. In the domain S, n phase singularities are

located at x1, . . . ,xn and encircled by closed contours Γ1, . . . ,Γn; h holes/boundaries H1, . . . ,Hh

are present, the last one being the exterior boundary (if any); arrows show the orientation of the

contours Γk and Hk; inside each hole Hk, a “virtual” phase singularity is placed at xn+k and is

encircled by the closed contour Γn+k.
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FIG. 2. Notations for a nonmanifold geometry schematically representing the atria. (A) outer

surface S1 with spherical topology composed of a right part Sr
1 and a left part Sl

1 separated by

the curve Γ; (B) the right part is removed to make the S2 surface (“septum”) visible. In the outer

surface S1, n
r
1 phase singularities are placed in the right part and nl

1 on the left part. The surface

S2 contains n2 phase singularities. The curve Γ makes the connection between S1 and S2.
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FIG. 3. (Color online) Successive steps for the generation of a phase map with 3 phase singularities

in a surface model of the atria. (A) phase map computed on the plane; a zoom of the central

rectangular region is displayed on the right; (B) the same phase map projected on the sphere

using the inverse stereographic projection; (C) the same phase map projected on the atrial surface

(posterior view on the left, anterior view on the right); (D) phase map after smoothing; (E) phase

map after spiral-like pattern enhancement. Phase is color coded (graylevel coded); 16 isochrones

are shown as black solid lines. Arrows represents direction of propagation (phase gradient). TV:

tricuspid valve; MV: mitral valve; PVs: pulmonary veins; IVC: inferior vena cava; SVC: superior

vena cava; CS: coronary sinus; Sept: septum. 15
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FIG. 4. (Color online) Generation of a phase map in a nonmanifold with 3 phase singularities

in a surface model of the atria including a septal wall (front view). (A) Phase map constructed

independently in the epicardium and in the septum; (B) phase map after correction for continuity;

(C) phase map after smoothing and spiral-like pattern enhancement. Phase is color coded (graylevel

coded); 16 isochrones are shown as black solid lines. Arrows represents direction of propagation

(phase gradient). RAA: right atrium appendage; LAA: left atrium appendage; TV: tricuspid valve;

MV: mitral valve; IVC: inferior vena cava; PVs: pulmonary veins; Sept: septum; FO: fossa ovalis.
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