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Abstract— Microscale electrical propagation in the heart can
be modeled by a reaction-diffusion system describing cell and
tissue electrophysiology. Macroscale features of wavefront prop-
agation can be reproduced by an eikonal model, a reduced
formulation involving only wavefront shape. In this paper, these
two approaches are combined to incorporate global information
about reentrant pathways into a reaction-diffusion model. The
eikonal-diffusion formulation is generalized to handle reentrant
activation patterns and wavefront collisions. Boundary conditions
are used to specify pathways of reentry. Finite-element-based
numerical methods are presented to solve this non-linear equation
on a coarse triangular mesh. The macroscale eikonal model serves
to construct an initial condition for the microscale reaction-
diffusion model. Electrical propagation simulated from this
initial condition is then compared to the isochrones predicted
by the eikonal model. Results in 2D and thin 3D test-case
geometries demonstrate the ability of this technique to initiate
anatomical and functional reentries along prescribed pathways,
thus facilitating the development of dedicated models aimed at
better understanding clinical case reports.

I. INTRODUCTION

Computer models of the heart have been developed to
describe the propagation of electrical excitation waves in
the heart muscle using nonlinear partial differential equa-
tions of the reaction-diffusion type [1]. The construction of
these models is based on a bottom-up approach, integrating
biological data from ion channels to heart anatomy. Most
available patient data (ECG, electrograms, electroanatomical
mapping), however, provide a global, macroscale information
with limited spatial resolution. In order to advance toward
patient-specific modeling and improve the clinical relevance
of simulation results, a top-down, multi-resolution approach
is needed to incorporate patient-specific global information
about the geometry and the dynamics of the arrhythmia [2].
A bottom-up approach would be used to develop a baseline
model from single cell and tissue measurements, histological
data and medical imaging [3], [4], while a top-down approach
would be applied to adjust the baseline model to a patient and
define an initial condition (i.e. the initial state of the cardiac
cells) from global information about the dynamics of reentries
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such as pathways or activation times, based for instance on
intracardiac electrograms.

Previous simulation studies in atrial models used pro-
grammed stimulation protocols to initiate reentries [5]–[8].
Narrow vulnerability windows often made the initiation pro-
tocols time-consuming. Forcing the wave fronts to follow
reentrant circuits reported in clinical case studies was intricate.
Repeating the simulations in another geometry usually re-
quired restarting the protocols from scratch. To facilitate these
procedures, we aim to develop a computational framework for
automatically initiating episodes of arrhythmia corresponding
to reentrant dynamics with controllable preferential pathways.
An original two-level approach will be used. At the coarse-
grained level, a macroscopic propagation model (based on
the eikonal equation) extrapolates measured or synthetic data
(e.g. macroreentrant pathways) to reconstruct the activation
sequence using a priori knowledge. At the fine-grained level,
the full reaction-diffusion system is simulated. The coarse-
grained model serves to define the initial condition for the
fine-grained model.

In this paper, the mathematical framework and the compu-
tational methods of this approach are presented, as well as a
numerical validation for 2D and 3D-surface test-case geome-
tries. The results demonstrate that the initial guess obtained
from the eikonal equation is sufficiently accurate to provide
a simple and efficient way to initiate a reentry following a
prescribed pathway in the reaction-diffusion model.

II. METHODS

A. Monodomain Model of Cardiac Propagation

The propagation of the cardiac impulse in the myocardium
can be described by the evolution of the membrane potential
field Vm(x, t). According to the monodomain theory, this
evolution is governed by a reaction-diffusion equation [1]:

Cm
∂Vm

∂t
= β−1 ∇ · σ∇Vm − Iion + Istim (1)

where Cm is the membrane capacitance per unit area of
membrane, β is the area of membrane per unit volume, and
σ is the (effective) conductivity tensor. An externally driven
stimulation current Istim(t) may be introduced. The ionic cur-
rent flowing through the membrane (by convention, outward-
oriented if positive), Iion, depends not only on the voltage Vm

but also on internal variables q (such as intracellular ionic
concentrations or channel gate states) that satisfy a system of
ordinary differential equations dq/dt = Fq(Vm,q). No-flux
boundary condition is assumed, i.e. n · σ∇Vm = 0 where n
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is the unit vector normal to the boundary. An initial condition
Vm(x, 0) = V0(x) and q(x, 0) = q0(x) is also needed.

In the next subsections, a method will be presented to design
an initial condition leading to reentrant propagation along a
predefined pathway. This initial condition will be constructed
based on an approximation of cardiac activation provided by
the eikonal-diffusion approach.

B. Eikonal-Diffusion Equation for Reentrant Activation

The eikonal-diffusion equation is an approximation of the
monodomain propagation equation derived using singular per-
turbation techniques [9]–[11]. In this formulation, the activa-
tion map τ(x), i.e. the time τ at which the wave front passes
through the point x, is governed by an elliptic equation in the
domain Ω where propagation occurs [10]:

c0
√
∇τ · σrm∇τ −∇ · σrm∇τ = τm (2)

The parameters rm and τm come from the linearization of
the propagation equation around the resting potential: r−1

m =
β dIion/dVm is the membrane conductance per unit volume
at rest and τm = rmβCm is the membrane time constant. The
dimensionless propagation speed c0 is such that the conduction
velocity of a planar wavefront is c0

√
σrm/τm [10]. No-flux

boundary conditions will be used (wave fronts propagate along
the walls as a consequence of the boundary condition on Vm):

n · σ∇τ(x) = 0 , x ∈ ∂Ω, (3)

where ∂Ω is the domain boundary and n the unit vector normal
to the boundary.

Equation (2) is still valid for a reentrant activation. In this
case, τ will be normalized by the cycle length T (period) so
that the scaled activation time τ̂ = 2πτ/T ranges from 0 to
2π. To solve the phase unwrapping problem, the transform
ϕ = exp(iτ̂) is applied, leading to the equation:

∥c∇ϕ∥ = 1 + Im∇ · (ϕ∗D∇ϕ) , (4)

where the symmetric positive definite tensors c and D are
defined by the relations:

c∗c =
T 2

4π2

rmc20
τ2m

σ and D =
T

2πβCm
σ . (5)

The symbol ‘Im’ denotes the imaginary part, ∥ · ∥ is the
euclidean norm and the star (∗) means the conjugate (when ap-
plicable) transposed tensor. The boundary condition becomes
n · D∇ϕ(x) = 0 for x ∈ ∂Ω. In addition, the constraint
|ϕ(x)| = 1 must hold for x ∈ Ω.

The tensor c represents the normalized, possibly anisotropic,
baseline propagation velocity (in cm/rad) and D (in cm2) de-
scribes the diffusion process that creates curvature-dependent
propagation velocity. The diffusion term also improves numer-
ical stability and avoids non-uniqueness of the solution [10].
Despite the relation c∗c = (c20T/2πτm)D, the parameters c
and D will be kept formally independent in the next subsection
to facilitate generalizations involving the limits D → 0
(Subsect. III-A) and D → ∞ (Subsect. III-C) with c fixed.

To simulate a reentry along a pathway of length L with a
cardiac cell model with an effective refractory period ERP ,

a target cycle length T > ERP is selected and the target
conduction velocity CV is computed as CV = L/T . The
period T should be adjusted (based on previous knowledge
about the cell model) to result in a realistic excitable gap (T −
ERP ) and avoid unstable behavior. Equivalently, CV could be
chosen within physiological range and T computed as L/CV
provided that T > ERP . Then, the value of σ is adjusted
to reproduce the target CV in the monodomain model. The
scaled conduction velocity c is set to L/2π and the diffusion
coefficient to D = Tσ/2πβCm. Further adjustments of D may
be needed to correct inaccuracies in the estimation of T and
to account for discretization errors in the monodomain model
leading to a nonlinear relationship between CV and

√
σ.

C. Discretized Linearized Eikonal-Diffusion Equation

The periodic nature of the solution prevents the use of
fast-marching method [11]–[13] to numerically solve Eq. (4).
Newton’s root finding method (a natural extension of the
linearized eikonal method [14]) will be applied at the PDE
level [15, chap. 4] to the nonlinear functional equation

F [ϕ(x)] = ∥c∇ϕ∥ − Im∇ · (ϕ∗D∇ϕ)− 1 = 0 . (6)

Assuming that ϕ0 = exp(iτ̂0) is an initial estimate of the
solution (respecting the boundary condition), the estimate
ϕs+1 = exp(iτ̂s+1) at step s+ 1 is obtained by computing a
correction θs = τ̂s+1 − τ̂s that satisfies the equation

F [exp(iτ̂s)] +
d

dϵ
F [exp(iτ̂s + iϵθs)]

∣∣∣∣
ϵ=0

= 0 . (7)

The second term is the first variation of F [16], generalizing
the usual Newton update formula. Analytical calculations lead
to the following linear equation for θ:

∥c∇ϕ∥ − Im∇ · (ϕ∗D∇ϕ)− 1 =

∥c∇ϕ∥−1 Im (ϕ∇ϕ∗c∗c∇θ) +∇ · (D∇θ) (8)

where the indices s were dropped for the sake of simplicity.
The boundary condition remains n ·D∇θ = 0.

Equation (8) is a steady-state convection-diffusion equation
of the form:

∇ · (D∇θ) + b · ∇θ = f +∇ · F (9)

where the fields b, F and f are known:

b = ∥c∇ϕ∥−1 Im (ϕ∇ϕ∗c∗c) ,

F = −Im (ϕ∗D∇ϕ) and f = ∥c∇ϕ∥ − 1 . (10)

The two-dimensional domain Ω is discretized using a triangu-
lar mesh composed of nt triangles and nv vertices. The set of
triangles is denoted by T and the set of vertices by V . Vertex
i ∈ V is located at position xi. The triangle (ijk) ∈ T is
denoted by Tijk and its area by Ωijk. Linear shape functions
Ni are used to reconstruct the fields ϕ and θ by interpolation
(Ni(xj) = δij , the Kronecker symbol):

ϕ =
∑
i∈V

ϕiNi and θ =
∑
i∈V

θiNi (11)

Following a Galerkin finite element approach, Eq. (9) is
multiplied by each of the shape function Nm, integrated over
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the domain Ω and the divergence theorem is applied. For each
m ∈ V , we have:∑

n∈V

∫
Ω

dΩ
(
−∇Nm · (D∇Nn) + bNm · ∇Nn

)
θn

=

∫
Ω

(fNm − F · ∇Nm)dΩ (12)

This set of equations forms a linear system Aθ = f whose
components are assembled element-wise. In the triangle Tijk,
the tensors c and D are assumed to have a constant value cijk
and Dijk. Because linear shape functions are used, gradients
are constant in each triangle. The operator ∇ijk will denote
the gradient evaluated in Tijk [17]. After the fields b, F and
f have been expressed in terms of the shape functions Np,
application of the formulas (valid when m, p ∈ {i, j, k})∫

Tijk

dΩ Nm =
Ωijk

3
and (13)∫

Tijk

dΩ NmNp =
Ωijk

12
(1 + δmp) (14)

leads to explicit expressions for the matrix A and the right
hand side f :

Amn(ϕ) = −
∑

(ijk)∈T

Ωijk∇ijkNm ·Dijk∇ijkNn

+
∑

(ijk)∈T

Ωijk

3
∥cijk∇ijkϕ∥−1 Im

ϕi + ϕj + ϕk + ϕm

4

× (cijk∇ijkϕ)
∗ · (cijk∇ijkNn) (15)

fm(ϕ) =
∑

(ijk)∈T
m∈{ijk}

Ωijk

3

(
∥cijk∇ijkϕ∥ − 1

+ 3∇ijkNm · Im
ϕ∗
i + ϕ∗

j + ϕ∗
k

3
Dijk∇ijkϕ

)
. (16)

This matrix and this vector have to be reevaluated at each
iteration.

D. Initial Estimate of the Activation Map

The solution to the eikonal-diffusion equation (4) with
no-flux boundary condition is not necessarily unique. Many
reentrant patterns may be possible in a given substrate, for
instance clockwise or counterclockwise rotation. On the other
hand, if the propagation velocity c has a value incompatible
with pathway length, periodic reentrant activity may not be
possible. Our proposed approach to address this issue con-
sists in constructing by interpolation an initial estimate of
the activation map that is compatible with the constraints
and follows the desired pathways (denoted by Γ). Isochrone
shape will be progressively corrected by successive iterations.
Topological features (phase singularities or winding numbers)
will be preserved throughout these iterations as long as the
correction θ(x) does not include any phase singularity or non-
zero winding number. A sufficient condition is that θ(x) is a
smooth function with |θ| < π.

The initial estimate ϕ0 used to start Newton iterations will
be constructed by solving the diffusion equation

∇ ·D∇ϕ0 = 0 (17)

with boundary condition ϕ0 = ϕ0 on Γ and n · D∇ϕ0 = 0
on the remaining part of the boundary ∂Ω \ Γ. Typically, Γ
will be a closed curve (a boundary or an obstacle) and ϕ0 =
exp(2πiℓ/L) where ℓ is the curvilinear coordinate along Γ
and L is the length of Γ. This specification will determine
the choice for (normalized) propagation velocity c = L/2π.
The initial estimate is a Laplacian interpolation [18] based on
geometrical data (and possibly fiber orientation). Subsequent
corrections (Newton iterations) will use a priori information
about wavefront propagation.

Equation (17) is discretized using the first term in Eq. (15).
To account for the Dirichlet boundary condition, the i-th row
of the matrix equation is replaced for each i ∈ Γ by the
equation ϕ0

i = ϕ0(xi). The normalization constraint |ϕ0| = 1
is finally restored by dividing the solution ϕ0 by its module.

E. Implementation of the Eikonal-Diffusion Solver

The eikonal-diffusion solver is described by the following
algorithm:

1) Inputs: geometry (set of vertices V and triangles T );
conductive and diffusive properties (c and D defined on
the set of triangles); specification of the initial estimate:
Γ (subset of vertices) and the initial values ϕ0 on Γ.

2) Initialization: compute and normalize ϕ0 by solving
Eq. (17)

3) Iterate for s = 0, 1, 2, . . . until ∥θ∥ < tol

a) Compute the matrix A(ϕs) [Eq. (15)] and the
vector f(ϕs) [Eq. (16)]

b) Solve the system
(
A− 1

nv
e e∗

)
θ = f using the

biconjugate stabilized gradient method (BiCGstab)
with incomplete LU preconditioner on A; e is the
nv-by-1 vector containing 1 in each entry

c) Underrelaxation: θ := θ ·min
(
1, θmax/max(|θ|)

)
,

where θmax is a fixed parameter
d) Set ϕs+1 := ϕs exp(iθ)

4) Output: τ̂ := arg ϕs+1

Note that the matrix A is singular since the sum of its
columns is zero (Ae = 0). As consequence, the reference
of θ (location at which θ = 0) has to be specified. A
deflation method [19] was preferred (step 3b) in order to
spread numerical error over the domain, notably in case of an
inaccurate choice of propagation velocity parameter. Under-
relaxation was necessary during the first iterations to prevent
too large changes that would invalidate the assumption θ ≪ 1.
The tolerance tol was set to 10−10 and the underrelaxation
threshold θmax to 0.1. Convergence was typically reached after
15 to 30 iterations. Implementation was performed in MATLAB
using sparse matrix operations. At step 3b, although the matrix
is fully populated, the linear solver only requires the ability to
compute

(
A− n−1

v e e∗
)
θ as a function of θ, which can be

implemented as Aθ −mean(θ) · e.
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F. Initial Condition for the Monodomain Model

Once the scaled activation pattern τ̂(x) has been computed,
an initial condition for the monodomain model can be con-
structed. The period T of the reentry is first estimated based on
refractory period and wavelength considerations (Subsect. II-
B). Cardiac propagation is then simulated in a one-dimensional
cable (length: 1 cm; space step: 0.1 mm) with the same
conduction (average longitudinal conductivity) and membrane
properties as the complete monodomain model. A stimulus
current is injected at an extremity of the cable to elicit a
train of electrical waves at a basic cycle length of T . Once
steady state is reached, the evolution of the state of the
midpoint of the cable is recorded and is denoted by Vpaced(t)
and qpaced(t). Baring alternans or dynamical instability, these
functions are expected to be periodic of period T . The initial
condition associated with an activation map τ̂(x) is defined
as V0(x) = Vpaced(t(x)) and q0(x) = qpaced(t(x)), where
t(x) = T ·(1−τ̂(x)/2π). Implementing this operation requires
both space and time interpolation. Linear time interpolation
and nearest-neighbor spatial interpolation were applied.

G. Test Cases

Three test-case geometries were used to validate the ap-
proach: an annulus, a schematic representation of a ventricular
slice and a simplified surface model of the human atria. Two-
dimensional triangular meshes were generated using TRI-
ANGLE by J. R. Shewchuk [20] and surface meshes using
VRMESH (VirtualGrid, Seattle City, WA). For the annulus
(inner radius: 2 cm; outer radius: 5 cm), 6 triangular meshes
were generated with a number of nodes ranging from 563
(∆x = 4 mm) to 10,451 (∆x = 0.9 mm). A coarse (5,050
nodes, ∆x = 0.82 mm) and a fine mesh (32,820 nodes,
∆x = 0.32 mm) of the ventricular slice were created. The
atrial epicardium was represented by a triangular surface mesh
(13,798 nodes, ∆x = 1.2 mm). In order to run reaction–
diffusion simulations in 3D, a cubic mesh (748,741 nodes,
∆x = 0.33 mm, thickness ≈ 1.6 mm) was created to represent
the atrial working myocardium. The coarse atrial surface
model lied within the bulk of the 3D model to enable data
extrapolation from 3D-surface to full 3D.

Monodomain simulations were run from initial conditions
generated by the eikonal-diffusion approach. The tensors c
and D used by the eikonal-diffusion solver were set to
values corresponding to the tissue properties specified in the
monodomain model [Eq. (5)]. The Luo–Rudy [21] (for the
ventricular slice) and the Courtemanche et al. [22] mem-
brane kinetics (for the atrial model) were used. Monodomain
equations were solved using finite volume discretization and
forward Euler numerical scheme implemented in the software
package CARDIOWAVE [23] as well as in a custom software
developed previously [7], [24]. Activation time was identified
as the time at which Vm crosses the threshold −60 mV when
the time derivative of Vm is positive. Activation maps after
4 to 6 periods (turns) of the reentry were compared to the
activation maps predicted by the eikonal-diffusion solver.
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Fig. 1. Clockwise reentry in an annulus computed using the eikonal-diffusion
approach. (A) Isochrones plotted every 1/20 of cycle length. Activation time
is color-coded. (B) Comparison of wavefront shape with an analytical formula
(in polar coordinates).

III. RESULTS

A. Convergence of the Eikonal-Diffusion Solver

The convergence of the algorithm was verified in a geometry
representing an annulus. In this case, the eikonal-diffusion
equation can be solved analytically in the absence of diffusion
(D = 0). The wavefront shape is an involute of a circle
[25], described in polar coordinates (r, ϑ) by the equation (for
clockwise rotation; parametrization from [26]):

ϑ(r) = tan(s)− s where s(r) = arccos
r0
r

. (18)

The parameter r0 is the inner radius of the annulus.
To specify the initial estimate for the eikonal-diffusion prob-

lem, Γ was defined as the inner circle and ϕ0(ϑ) = exp(−iϑ)
on Γ in order to initiate a clockwise rotation (see Subsect.
II-D). As a result, the initial estimate of ϕ was ϕ0(r, ϑ) =
exp(−iϑ) within the entire annulus. The propagation velocity
was set to a uniform isotropic value c = r0 and the diffusion
constant was set to the smallest value D = 0.0011 cm2 that
still ensured numerical stability in the finest mesh (10,451
nodes). The resulting isochrones are plotted in Fig. 1A. In
the eikonal-diffusion equation, diffusion of activation times
operates at a space scale of

√
D. The boundary layer where

the effect of boundary condition is prominent (isochrones
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TABLE I
ROOT MEAN SQUARE ERROR IN WAVEFRONT SHAPE IN AN ANNULUS FOR

DIFFERENT MESH RESOLUTIONS

#nodes ∆x RMS error
563 4.0 mm 1.6 · 10−1 rad
901 3.1 mm 4.0 · 10−2 rad

1801 2.2 mm 2.3 · 10−2 rad
2664 1.8 mm 1.1 · 10−2 rad
5260 1.3 mm 3.4 · 10−3 rad

10451 0.9 mm reference

orthogonal to the boundary) has a thickness of
√
D. Since

here
√
D = 0.37∆x, this effect is not clearly visible on

Fig. 1. Accuracy was assessed by computing the root mean
square (RMS) error of the wavefront shape expressed in polar
coordinates ϑ(r). Both curves (analytical and numerical) are
shown in Fig. 1B. The RMS error was 4.1 · 10−4 rad.

Mesh resolution was varied to estimate the spatial resolution
required by the eikonal-diffusion solver. The diffusion coeffi-
cient was set to D = 0.02 cm2 for all the meshes. Because
this value of D was sufficient to create curvature-dependent
propagation velocity, the results were compared to those of
the finest mesh and not to the analytical formula (only valid
for D = 0). The RMS errors are reported in Table I. Even
for ∆x = 4 mm, the solution is qualitatively correct. Most of
the error is concentrated near the inner circle where wavefront
curvature is maximal (where the radius of curvature becomes
< ∆x). A resolution of ∆x = 1 to 2 mm gave sufficiently
accurate results for most applications.

B. Comparison of Simulated Activation Maps

Activation maps were computed using both the eikonal-
diffusion equation and the reaction-diffusion system in a
geometry representing a ventricular slice with uniform con-
ductive and diffusive properties to illustrate anatomical reen-
tries and handling of wavefront collisions. The parameters
of the monodomain equations were Cm = 1 µF/cm2, β =
2000 cm−1, σ = 1.11 mS/cm and Istim = 0, and Iion followed
the formulation of the Luo–Rudy model.

The initial estimate for the eikonal-diffusion solver was
computed using a Dirichlet boundary condition on the inner
boundary (Γ) corresponding to the left ventricle: ϕ0(ℓ) =
exp(2πiℓ/L) where ℓ is the curvilinear coordinate along
Γ in the clockwise direction and L = 9.34 cm is the
length of Γ. To initiate a counterclockwise reentry, ϕ0(ℓ) =
exp(−2πiℓ/L) was used instead. The baseline conduction
velocity in the monodomain model was CV = 34.6 cm/s
for σ = 1.11 mS/cm. The estimated period was therefore
T = L/CV = 274 ms, which is sufficiently long to ensure the
stability of the reentry. The normalized propagation velocity
was set to c = L/2π and the diffusion coefficient to D =
Tσ/2πβCm = 0.024 cm2. The coarse mesh (5,050 nodes) was
used. The resulting isochrones are shown as thick dashed lines
in Fig. 2A (clockwise rotation) and Fig. 2B (counterclockwise
rotation).

The activation map obtained through the eikonal-diffusion
approach was used to create an initial condition for the

reaction-diffusion model (Subsect. II-F). The fine mesh
(32,820 nodes) was used in these monodomain simulations.
Observed cycle lengths for the first 4 rotations was 270 ms,
269 ms, 268 ms and 268 ms for clockwise rotations and
272 ms, 270 ms, 269 ms and 269 ms for counterclockwise
rotations. In successive rotations, activation patterns were
almost identical, demonstrating that the initial condition was
close to steady state. The resulting isochrones are shown as
solid lines in Fig. 2. These isochrones coincide with those
computed using the eikonal-diffusion equation on a coarse
mesh, suggesting that this simplified approach reproduces
realistic reentrant activations in the case of low curvature
wavefronts in a uniform medium.

Fig. 2. Activation maps computed using the eikonal-diffusion approach (thick
dashed lines) and the full reaction-diffusion system after four periods (solid
lines). Isochrones are plotted every 1/20 of cycle length. Activation time is
color-coded. (A) clockwise rotation; (B) counterclockwise rotation.
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C. Interpolation of Angle Fields

Fiber orientation will be introduced in the ventricular slice
model to test the ability of the eikonal-diffusion method to
account for anisotropic conduction (Subsect. III-D). Instead
of integrating experimental fiber orientation, we will demon-
strate how the eikonal-diffusion solver can be adapted for the
interpolation of angle-valued fields.

Fiber angle α(x) in two-dimensional domain is defined
modulo π. At the boundaries, α will be assumed to be parallel
to the wall. This defines a Dirichlet boundary condition.
Interpolation within the domain can be performed by solving
the Laplacian equation ∆α = 0. This equation is equivalent
to the isotropic eikonal-diffusion equation (2) for τ̂ = 2α and
D → ∞. Practically, D is set to 1, c is set to 0, only the first
term is kept in A [Eq. (15)] and the first term in the definition
of f [Eq. (16)] is dropped. In addition, in the algorithm
(Subsect. II-E) at step 4b, the Dirichlet boundary condition is
enforced by replacing the equation of each row corresponding
to a boundary node i by θi = 0 (θ is the correction term).
Once the solution τ̂ is obtained, α is set to τ̂ /2. The resulting
fiber angle field, displayed in Fig. 3A, demonstrates the ability
to handle the angle unwrapping problem.

D. Anisotropic Conduction

In the 2D anisotropic case, the tensor fields c and D can
be defined (in the x-y coordinate system) as a function of the
fiber angle α using the function

T(α, κ) =

(
cos2 α+ κ−1 sin2 α (1− κ−1) sinα cosα
(1− κ−1) sinα cosα sin2 α+ κ−1 cos2 α

)
.

The parameter κ ≥ 1 is the anisotropy ratio (ratio be-
tween the largest and the smallest eigenvalue). Note that
T(α, κ1)T(α, κ2) = T(α, κ1κ2). More specifically, we can
write D(x) = Dl T(α(x), κD) and c(x) = cl T(α(x), κc)
where Dl and cl are the longitudinal diffusion coefficient and
propagation velocity. Similarly, the conductivity tensor for the
monodomain equation is written as σ(x) = σl T(α(x), κσ).

Following the same approach and using the same param-
eters as in Subsect. III-B, a clockwise reentry was initiated
around the right ventricle in both the eikonal-diffusion and
the reaction-diffusion models. Conduction properties were
anisotropic with σl = 2.23 mS/cm, κσ = 4 and the fiber
orientation shown in Fig. 3A. Pathway length (L = 14.6 cm)
and (longitudinal) conduction velocity were both roughly 50%
larger than in Subsect. III-B, so the same estimate for the
period T = 274 ms was used. The normalized longitudinal
propagation velocity was set to cl = L/2π and its anisotropy
ratio to κc =

√
κσ = 2. The longitudinal diffusion coefficient

was set to Dl = Tσl/2πβCm = 0.049 cm2 and its anisotropy
ratio to κD = κσ = 4.

In the reaction-diffusion model, 6 rotations were simulated
from the initial condition provided by the eikonal diffusion
model. The resulting activation map is shown in Fig. 3B (solid
lines). The cycle length of reentry was 267 ms at steady state
and varied by less than 1 ms between the first to the sixth
rotation. As commonly observed in monodomain simulations
due to discretization errors, the propagation velocity was not

Fig. 3. (A) Example of fiber angle interpolation displayed as a texture
generated by line integral convolution (using a custom code based on an
implementation by W. Martin, Univ. of Utah). Fiber angle is color-coded in
the range 0 to π. (B) Activation maps in an anisotropic medium computed
using the eikonal-diffusion approach (thick dashed lines) and the full reaction-
diffusion system after six periods (solid lines). Isochrones are plotted every
1/20 of cycle length. Activation time is color-coded.

exactly proportional to the square root or the conductivity.
To account for this discrepancy, the activation map from the
eikonal model was recomputed with the updated parameters
T = 267 ms, κc = 2.15 and κD = κ2

c , and displayed in
Fig. 3B (thick dashed lines).

E. Anatomical and Functional Reentries

A simplified atrial geometry was used to investigate the
initiation of reentries in a more complex topology. Activation
maps were computed using both the eikonal-diffusion equation
(3D-surface model) and the reaction-diffusion system (3D
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A

B

MV

TV

LARA

LA

RA

SVC

Fig. 4. Activation maps representing a figure-of-eight reentry in a simplified
atrial model computed using the eikonal-diffusion approach in a surface mesh
(thick dashed lines) and the full reaction-diffusion system in 3D after five
periods (solid lines). Isochrones are plotted every 1/20 of cycle length.
Activation time is color-coded (and also displayed in the endocardium). White
arrows illustrate wave front propagation and black arrows indicate the circuits
that served as boundary condition Γ for the eikonal problem. (A) anterior
view; (B) right-posterior view. RA: right atrium; LA: left atrium; TV: tricuspid
valve; MV: mitral valve; SVC: superior vena cava.

model) with uniform conductive and diffusive properties.
1) Anatomical reentry: A figure-of-eight reentry was de-

signed using the eikonal-diffusion approach: Γ was the bound-
ary of the mitral valve (MV; length: LMV ) and the tricuspid
valve (TV; length: LTV ), and ϕ0 was set to exp(2πiℓ/LMV )
and exp(−2πiℓ/LTV ) respectively on the mitral and tricuspid
boundary. The propagation velocity was set to c = LMV /2π
and the diffusion coefficient to D = 0.08 cm2 computed from
the parameters T = 240 ms, Cm = 1 µF/cm2, β = 2000 cm−1

and σ = 4.2 mS/cm. The resulting activation map, displayed
as thick dashed lines in Fig. 4, served to define the initial
condition for a simulation in a 3D reaction-diffusion system.
The L-type calcium current in the Courtemanche model was
inhibited by 75% to reduce action potential duration and rate
adaptation and thus stabilize reentries [27]. The simulated
reentrant patterns were stable from the first beats (with a period
of 198 ms). Small differences in activation time (2–3 ms)
between the eikonal-diffusion and reaction-diffusion results
were observed, mostly at a collision site near the anatomical
location of the septum (Fig. 4).

2) Functional reentry: In order to initiate a functional
reentry at a predefined location, a line was drawn manually on
the right atrium free wall using an interactive tool developed in
MATLAB. Its length is aimed to be half of the wavelength. The

A

B

LA

RA

SVC

Fig. 5. (A) Reentry around an obstacle (solid line) computed using the
eikonal-diffusion approach. Isochrones (dashed lines) are plotted every 1/20
of cycle length. Activation time is color-coded. (B) Trajectory of the phase
singularity of the reentry (solid line) simulated in the reaction-diffusion model
when the obstacle (dashed line) is removed. RA: right atrium; LA: left atrium;
SVC: superior vena cava.

triangles along the line were removed to create a new boundary
Γ on which ϕ0 was specified as previously. The activation
map computed using the eikonal-diffusion equation is shown
in Fig. 5A. The reentry simulated in the reaction-diffusion
system evolving from this initial condition was not periodic
but quasiperiodic. After a first cycle following the pattern
predicted by the eikonal approach, the wave front meandered
(the line introduced as obstacle was not present in the reaction-
diffusion model). Wave front 3D propagation (scroll wave)
can be described by a filament (tip of the spiral). Since the
3D model was thin, the filament was always short and was
projected on the epicardium and called phase singularity. The
trajectory of the phase singularity is represented in Fig. 5B.
The phase singularity stayed in the vicinity of the desired
location.

IV. DISCUSSION

In previous works, eikonal equations have been successfully
applied to predict paced or normal macroscopic propagation
in the ventricles [9]–[11] and in the atria (in the form of the
shortest path algorithm) [28]. The rationale of this simplified
approach was the limited number of parameters involved and
the very small computational requirements. Today’s technol-
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ogy enables the simulation of large-scale bidomain models
at micro-resolution [3]. Despite these advances, reproducing
in a cardiac propagation model an arrhythmia on the basis
of the description of reentrant pathways from a clinical case
report remains challenging. Chronic arrhythmias such as atrial
fibrillation evolve over weeks or months and there is little
hope to simulate all the process from the initial trigger to the
chronic form of the arrhythmia. Instead our objective would
be to capture the major features of wave front dynamics in a
patient and integrate these data to create an initiation condition
for the computer model.

This paper addresses this issue by extending the eikonal
approach to reentrant activations and by creating a link be-
tween macroscopic propagation obtained on a coarse mesh
and ionic model-based propagation in a detailed (possibly
micro-scale) model. Lines et al. [2] proposed an alternative
approach to synchronize a reentrant activity with experimental
or synthetic signals recorded at sparse locations during flutter.
Their reaction-diffusion model was run with an additional non-
local forcing term resulting in the desired synchronization. In
contrast, our method involves only activation times computed
on a coarse mesh in the first step, and enables the initiation
of quasiperiodic or unstable reentries (Fig. 5). When the cell
model used features slow adaptation to sudden rhythm change
(such as slow variations in ionic concentrations), another
advantage is that the initial condition is already close to steady
state. If a S1–S2 stimulation protocol was used instead, the
premature stimulus might lead to a long transient period,
possibly unstable (transient wave breaks).

Two different eikonal formulations have been derived
in the literature: the eikonal-diffusion and the eikonal-
curvature equations [9], [10], [29]. Their wavefront curvature-
dependence of propagation velocity coincides up to first order
in wavefront curvature [10]. At large wavefront curvature, only
the eikonal-curvature equation correctly predicts propagation
failure. On the other hand, only the eikonal-diffusion model
accounts for boundary and collision effects on propagation.
To avoid non-existence of the activation time in high-curvature
regions and better handle boundary and collisions, the eikonal-
diffusion formulation was selected. Figure 2 demonstrates
that low-curvature wavefronts are almost identical in the
eikonal-diffusion and in the reaction-diffusion systems. High
wavefront curvature due to anisotropy and sharp angles in
the boundary resulted in small inaccuracies in the isochrones
(Fig. 3). Another source of error is the obvious inability
to handle radius of curvature smaller than (coarse) mesh
resolution. In its current implementation, the method is limited
to 2D geometries or thin 3D models (like the atria). A 3D
extension is however possible, as it was the case for paced
propagation [10].

A method was presented to initiate a functional reentry at
a prescribed location (Fig. 5). In this case, the assumption of
a periodic reentrant activity is clearly wrong, but only serves
to generate an appropriate initial condition. Indeed the eikonal
model does not include any information about repolarization.
Tissue parameters (conduction velocity, action potential dura-
tion, restitution) will determine the dynamical regime and the
persistence or stability of the reentry [27]. Although spirals can

also be initiated using cross-shock stimulation, our approach
can be extended to multiple spirals (fibrillation) or to multiarm
spiral [30], allow to easily control the location of the other
extremity of the wavefront, and do not require simulating
the first activation in the reaction-diffusion model (before the
second stimulus is delivered).

The same methodology can be applied to Laplacian inter-
polation of angular data or any variable defined modulo some
constant (Fig. 3A), with a scope that extends well beyond
fiber orientation. Another application of the eikonal-diffusion
approach is direct computation of ECG based on activation
maps [31]. This would provide a near-real-time research and
educational tool similar to ECGSIM [32], extended for flutter-
like reentries.

V. CONCLUSION

Along with the development of detailed microstructure
models of cardiac electrophysiology, multiscale approaches
become increasingly valuable. This paper presents a reliable,
multiscale, computationally efficient and reasonably accurate
tool for facilitating the initiation of reentry in ionic-based
propagation models. This tool would help in the creation of a
library of different types of simulated arrhythmias.

REFERENCES

[1] R. Plonsey and R. C. Barr, Bioelectricity: A Quantitative Approach.
Kluwer Academic Plenum Publishers, 2000.

[2] G. T. Lines, M. C. MacLachlan, S. Linge, and A. Tveito, “Synchronizing
computer simulations with measurement data for a case of atrial flutter,”
Ann Biomed Eng, vol. 37, no. 7, pp. 1287–93, 2009.

[3] G. Plank, R. A. B. Burton, P. Hales, M. Bishop, T. Mansoori, M. O.
Bernabeu, A. Garny, A. J. Prassl, C. Bollensdorff, F. Mason, F. Mah-
mood, B. Rodriguez, V. Grau, J. E. Schneider, D. Gavaghan, and
P. Kohl, “Generation of histo-anatomically representative models of the
individual heart: tools and application,” Philos Transact A Math Phys
Eng Sci, vol. 367, no. 1896, pp. 2257–92, 2009.

[4] V. Jacquemet, L. Kappenberger, and C. S. Henriquez, “Modeling atrial
arrhythmias: Impact on clinical diagnosis and therapies,” IEEE Rev
Biomed Eng, vol. 1, pp. 94–114, 2008.

[5] Y. Gong, F. Xie, K. M. Stein, A. Garfinkel, C. A. Culianu, B. B. Lerman,
and D. J. Christini, “Mechanism underlying initiation of paroxysmal
atrial flutter/atrial fibrillation by ectopic foci: a simulation study,”
Circulation, vol. 115, no. 16, pp. 2094–102, 2007.

[6] E. J. Vigmond, R. Ruckdeschel, and N. Trayanova, “Reentry in a
morphologically realistic atrial model,” J Cardiovasc Electrophysiol,
vol. 12, no. 9, pp. 1046–54, 2001.

[7] N. Virag, V. Jacquemet, C. S. Henriquez, S. Zozor, O. Blanc, J. M.
Vesin, E. Pruvot, and L. Kappenberger, “Study of atrial arrhythmias in
a computer model based on magnetic resonance images of human atria,”
Chaos, vol. 12, no. 3, pp. 754–763, 2002.

[8] M. Reumann, J. Bohnert, G. Seemann, B. Osswald, and O. Dossel,
“Preventive ablation strategies in a biophysical model of atrial fibrillation
based on realistic anatomical data,” IEEE Trans Biomed Eng, vol. 55,
no. 2 Pt 1, pp. 399–406, 2008.

[9] P. C. Franzone, L. Guerri, and S. Rovida, “Wave-front propagation in an
activation model of the anisotropic cardiac tissue - asymptotic analysis
and numerical simulations,” J Math Biol, vol. 28, no. 2, pp. 121–176,
1990.

[10] K. A. Tomlinson, P. J. Hunter, and A. J. Pullan, “A finite element method
for an eikonal equation model of myocardial excitation wavefront
propagation,” SIAM J Appl Math, vol. 63, no. 1, pp. 324–350, 2002.

[11] M. Sermesant, Y. Coudiere, V. Moreau-Villeger, K. S. Rhode, D. L. G.
Hill, and R. S. Razavi, “A fast-marching approach to cardiac electro-
physiology simulation for XMR interventional imaging,” Proc. MICCAI,
vol. 3750, pp. 607–615, 2005.

[12] T. J. Barth and J. A. Sethian, “Numerical schemes for the Hamilton-
Jacobi and level set equations on triangulated domains,” J Comput Phys,
vol. 145, no. 1, pp. 1–40, 1998.



9

[13] J. Qian, Y.-T. Zhang, and H.-K. Zhao, “Fast sweeping methods for
eikonal equations on triangular meshes,” SIAM J. Numer. Anal., vol. 45,
no. 1, pp. 83–107, 2007.

[14] T. Alkhalifah, “Traveltime computation with the linearized eikonal
equation for anisotropic media,” Geophys Prospect, vol. 50, no. 4, pp.
373–382, 2002.

[15] H. P. Langtangen, Computational Partial Differential Equations – Nu-
merical Methods and Diffpack Programming, ser. Texts in Computa-
tional Science and Engineering. Springer, 2003, vol. 1.

[16] H. Sagan, Introduction to the calculus of variations. New York:
McGraw Hill, 1969.

[17] V. Jacquemet and C. S. Henriquez, “Finite volume stiffness matrix for
solving anisotropic cardiac propagation in 2-D and 3-D unstructured
meshes,” IEEE Trans Biomed Eng, vol. 52, no. 8, pp. 1490–2, 2005.

[18] T. Oostendorp, A. van Oosterom, and G. Huiskamp, “Interpolation on a
triangulated 3D surface,” J Comput Phys, vol. 80, no. 2, pp. 331–343,
1989.

[19] M. S. Lynn and W. P. Timlake, “The use of multiple deflations in the
numerical solution of singular systems of equations to potential theory,”
SIAM. J. Numer. Anal., vol. 5, pp. 303–322, 1968.

[20] J. R. Shewchuk, “Triangle: Engineering a 2D quality mesh generator and
Delaunay triangulator,” in Applied Computational Geometry: Towards
Geometric Engineering, ser. Lecture Notes in Computer Science, M. C.
Lin and D. Manocha, Eds. Springer-Verlag, May 1996, vol. 1148,
pp. 203–222, from the First ACM Workshop on Applied Computational
Geometry.

[21] C.-H. Luo and Y. Rudy, “A model of the ventricular cardiac action
potential,” Circ. Res., vol. 68, no. 6, pp. 1501–1526, June 1991.

[22] M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic mechanisms
underlying human atrial action potential properties: insights from a
mathematical model,” Am J Physiol, vol. 275, no. 1 Pt 2, pp. H301–
21, 1998.

[23] J. B. Pormann, “A modular simulation system for the bidomain equa-
tions,” Ph.D. dissertation, Duke University, Durham, NC, 1999.

[24] V. Jacquemet, A. van Oosterom, J. M. Vesin, and L. Kappenberger,
“Analysis of electrocardiograms during atrial fibrillation. a biophysical
model approach,” IEEE Eng Med Biol Mag, vol. 25, no. 6, pp. 79–88,
2006.

[25] J. P. Keener and J. Sneyd, Mathematical Physiology, 2nd ed., ser.
Interdisciplinary applied mathematics ; v. 8. New York: Springer, 2001.

[26] H. Josephs and R. L. Huston, Dynamics of mechanical systems. Boca
Raton, FL: CRC Press, 2002.

[27] F. Xie, Z. Qu, A. Garfinkel, and J. N. Weiss, “Electrical refractory period
restitution and spiral wave reentry in simulated cardiac tissue,” Am J
Physiol Heart Circ Physiol, vol. 283, no. 1, pp. H448–60, 2002.

[28] P. M. van Dam and A. van Oosterom, “Atrial excitation assuming
uniform propagation,” J Cardiovasc Electrophysiol, vol. 14, no. 10
Suppl, pp. S166–71, 2003.

[29] J. P. Keener, “An eikonal-curvature equation for action potential propa-
gation in myocardium,” J Math Biol, vol. 29, no. 7, pp. 629–51, 1991.

[30] N. Bursac, F. Aguel, and L. Tung, “Multiarm spirals in a two-
dimensional cardiac substrate,” Proc Natl Acad Sci U S A, vol. 101,
no. 43, pp. 15 530–4, 2004.

[31] A. van Oosterom and V. Jacquemet, “Genesis of the P wave: atrial
signals as generated by the equivalent double layer source model,”
Europace, vol. 7 Suppl 2, pp. 21–9, 2005.

[32] A. van Oosterom and T. F. Oostendorp, “ECGSIM: an interactive tool
for studying the genesis of QRST waveforms,” Heart, vol. 90, no. 2,
pp. 165–8, 2004.

Vincent Jacquemet received the M.S. degree in
physics in 2000 from the Swiss Federal Institute
of Technology, Lausanne (EPFL), Switzerland, and
the Ph.D. degree in biomedical engineering in 2004
from the Signal Processing Institute of EPFL. The
topic of his thesis was the development of biophys-
ical models of atrial fibrillation. Then he worked
as a postdoc researcher in the Lausanne Heart
Group at EPFL. Between 2007 and 2009, he was
with the Department of Biomedical Engineering at
Duke University with a “fellowship for advanced

researcher” awarded by the Swiss National Science Foundation. Since 2009,
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