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Abstract

The extracellular domain of the heart is anisotropic, which affects volume conduction

and therefore body surface potentials. This paper tests the hypothesis that when wall

thickness is sufficiently small (such as in the atria), the effect of extracellular anisotropy

can be estimated by modifying local dipole current sources. A formula based on the

Gabor-Nelson equivalent dipole and on the reciprocity theorem is derived to compute

a linear transformation of the dipole sources that approximates in an isotropic volume

conductor the far-field of the actual sources in an anisotropic volume conductor. It

involves solving three Poisson equation (once for all). The results obtained in an atrial
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model embedded in a boundary-element torso model suggest that when wall thickness is

< 3 mm, simulated P waves are weakly altered by extracellular anisotropy during sinus

rhythm: an anisotropy ratio of 4:1 typically reduced the longitudinal component of the

dipole sources by < 3%, increased the transverse component by < 5%, and increased

the transmural component by ≈ 25% (which may be relevant in case of epicardial-

endocardial dissociation). Due to uncertainty on experimental conductivity values, it

is proposed that atrial extracellular anisotropy may be neglected when computing P

waves.

Keywords: electrocardiogram; P wave; atrial electrophysiology; equivalent dipole;

Gabor-Nelson theorem; boundary element method.

1. Introduction

The forward problem of electrocardiography consists in computing the electric po-

tential on the torso from the bioelectric current sources located within the myocardium.

These potentials are affected by the volume conduction properties of the torso. Com-

puter models have been developed to estimate the effects of the conduction inhomo-

geneities created by the heart, the blood and organs such as the lungs [1–10]. Most

of these studies focused on the ventricles or neglected extracellular anisotropy in the

atria.

The boundary element method [11] has been proposed and validated for computing

the atrial contribution to the ECG [7, 12, 13]. This method can incorporate intracellular

anisotropy but is not well adapted for taking into account extracellular anisotropy, so its

applicability to the cardiac forward problem relies on the hypothesis that extracellular

atrial anisotropy has a limited effect. The same question arises when computing atrial

electrograms generated by an anisotropic tissue [14].
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Due to the thinness of the atria, the effect of extracellular atrial myocardial anisotropy

is expected to be small. The rationale is that, in the Henriquez et al. [15] theoretical

model of plane wave propagation in a uniform slab of tissue (see also the subsequent

paper by Tranquillo et al. [16]), the influence of myocardial extracellular properties on

the potential in the surrounding bath disappears when tissue thickness tends to zero. In

a more recent and more realistic simulation study by Keller et al. [10], the influence of

cardiac extracellular properties on P wave morphology was found to be less important

than that of blood, lungs, and skeletal muscles.

In this paper, we propose an approach for assessing not only the global influence

of atrial extracellular anisotropy on the P wave as in previous works, but also for

determining the type and location of bioelectric sources that may lead to increased

errors, and how the sources could be modified to improve accuracy. The approach

is inspired from Potse et al. [9] who adjusted the local dipole current sources in the

ventricles in an attempt to reproduce cardiac anisotropy in a boundary-element torso

model. Here a theoretical formula is provided to perform the local dipole optimization.

The technique is studied as a function of tissue thickness in simplified and more realistic

volume conduction models.

2. Methods

2.1. Problem statement

Consider a current-dipole source d0 located at x0 within a region Ω (the my-

ocardium) with inhomogeneous and anisotropic conductivity tensor σ(x). The rest

of the space is assumed to be a uniform and isotropic volume conduction medium with

conductivity σ0. The potential field generated by this dipole at y in the unbounded

(∞) inhomogeneous (i) medium is denoted by ϕi,∞(y;d0). Note that through the appli-

cation of a transfer matrix to this potential field, body surface potentials in a bounded,
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inhomogeneous volume conductor (for instance including lungs and blood cavities) can

be derived [11]. Since the volume conduction problem is linear, the field ϕi,∞ can be

expressed as L(y,x0) ·d0. We are seeking a simple, approximate formula for the matrix

L.

The problem is to estimate the dipolar moment of an equivalent dipole d located at

the same position x0 in a uniform (u) isotropic medium with conductivity σ0 that would

generate a potential field, denoted by ϕu,∞(y;d), asymptotically similar to ϕi,∞(y;d0)

at large distances ∥y − x0∥. The objective is to derive a formula to compute d as a

function of d0, the geometry and volume conduction properties.

2.2. Equivalent dipole estimation

In order to estimate the equivalent dipole, the problem in a bounded medium is first

considered. A rectangular parallelepiped P containing Ω is constructed. The volume

conduction properties remain the same inside P . The potential field generated by the

dipole in the bounded (b) uniform medium and in the bounded inhomogeneous medium

are respectively denoted by ϕu,b(y;d) and ϕi,b(y;d0).

The equivalent dipole may be approximated using the Gabor-Nelson theory [17],

according to which the dipole moment is obtained as a surface integral over the outer

surface P

d = σ0

∫
P

ϕi,b(y;d0) n dS(y) , (1)

where n is the normal vector. If the domain Ω was uniform with conductivity σ0,

the integral would give d = d0. This approach has been previously used to derive

vectorcardiographic transfer matrices [18].

The Green’s function Gi,b(y,x) is the potential in the bounded inhomogeneous

medium generated at y by a point source located at x, i.e. ∇y · σ∇yG
i,b(y,x) =

−δ(y− x) with no-flux condition at the boundary of P . Therefore, the field generated
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by the dipole d0 can be written as:

ϕi,b(y;d0) = ∇xG
i,b(y,x0) · d0 , (2)

where by definition the gradient is a row vector. Combining (1) and (2), the equivalent

dipole is estimated as a linear transformation of the real dipole:

d =

(
σ0

∫
P

n · ∇x0G
i,b(y,x0) dS(y)

)
· d0 = M(x0) · d0, (3)

The six faces of P are denoted by P+
k and P−

k for k = 1, 2, 3. Then, the matrix M can

be expressed as

M(x0) = σ0

3∑
k=1

ek · ∇x0

(∫
P+
k

Gi,b(y,x0) dS −
∫
P−
k

Gi,b(y,x0) dS

)
(4)

since n = ±ek on P±
k if {ek} forms the orthonormal basis associated with the paral-

lelepiped P . After application of the theorem of reciprocity Gi,b(y,x) = Gi,b(x,y), the

term in parentheses, denoted by ϕi,b
k , is written as

ϕi,b
k (x0) =

∫
P+
k

Gi,b(x0,y) dS −
∫
P−
k

Gi,b(x0,y) dS (5)

and is the solution to the volume conduction equation in the bounded inhomogeneous

medium with distributed current source of intensity +1 on the face P+
k and intensity

−1 on the face P−
k .

The matrix M(x0) can therefore be computed for every source location x0 in Ω

by solving three Poisson problems to determine the fields ϕi,b
k and by inserting their

gradient in the rows of the matrix M .

Note that if all conductivities are scaled by the same factor κ, then by the definition

of the Green’s function, Gi,b is divided by κ while σ0 is multiplied by κ, which means

that the matrix M is invariant to such scaling (based on Eq. (4)).
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If a sufficiently large parallelepiped P is used, the matrix M does not depend on P

because ϕi,b
k (x) converges in Ω. Also, when P becomes large, ϕi,b → ϕi,∞ and ϕu,b →

ϕu,∞ so that d = M(x0)d0 provides a solution to the unbounded problem. As a

result, an approximation for the far-field generated by a dipole d0 located at x0 in an

inhomogeneous anisotropic medium is obtained as:

ϕi,∞(y;d0) ≈ ϕu,∞(y;M(x0)d0) =
(y − x0)

TM(x0)d0

4πσ0 ∥y − x0∥3
. (6)

The entries of the matrix M are non-dimensional and will be called correction factors.

These components will be expressed in the local coordinate system associated with fiber

orientation.

2.3. Tissue models

The approach was tested in 2D and 3D geometries in which tissue thickness was

varied.

The first geometry was an annulus in 2D with a radius of 16 mm (mean of inner

and outer radii) and a thickness between 1.5 and 10 mm. The annulus was embedded

in a 50 by 50 mm conductive square region (the domain P ). Fiber orientation was

assumed to be tangent to the circles, so there were three extracellular conductivities:

the radial conductivity σr, the tangential conductivity σθ, and the conductivity of the

surrounding bath σ0 (isotropic). Note that the non-dimensional matrix M depends

only on the ratios σr/σ0 and σθ/σ0. To compute far-field potentials, the surrounding

bath was then extended to 100 by 100 mm.

The second geometry was based on a 3D atrial model [13] in which atrial wall

thickness δ was uniform and varied between 1.5 and 4 mm. For that purpose, the mid-

atrial surface was extracted from the original model and the nodes within a distance

of δ/2 from the surface were included in the new geometry. Fast conducting bundles
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(including the pectinate muscles) were kept intact. The atria were embedded in a

parallelepiped P that left at least 5 mm space between the epicardial surface and the

boundary. To check convergence, the volume was extended by 5 mm on all six sides.

Fiber orientation was assumed to be the same across atrial wall thickness. There were

three extracellular conductivities: longitudinal (σl) and transverse (σt) conductivity,

and that of the surrounding bath (σ0).

The Poisson equation was discretized using a finite differences method [19] on a

regular grid with 0.33-mm inter-node spacing. The linear systems were solved using a

biconjugate gradient stabilized method with an incomplete LU preconditioner.

2.4. ECG computation

To evaluate the influence of atrial extracellular anisotropy on body surface poten-

tials, P waves were computed. Sinus rhythm was simulated in the monodomain frame-

work using the original atrial model [20] which has a thickness of about 1.6–1.8 mm.

The parameters were exactly the same as in [13]. Briefly, the membrane kinetics was

described by the Courtemanche model with the conductance of the L-type calcium cur-

rent gCaL reduced by 50%. The baseline intracellular tissue conductivity was set to 9

mS/cm (longitudinal) and 3 mS/cm (transverse) in the working myocardium. The lon-

gitudinal conductivity was increased to 12 mS/cm in the fast conducting system [13].

Normal propagation was initiated by injecting intracellular current in the region of the

sino-atrial node.

For the simulation of atrial fibrillation, gCaL was further reduced to 20% of its

original value in the left atrium, thus creating a left-right gradient in refractoriness.

Longitudinal and transverse intracellular conductivities were reduced to 4 mS/cm and

1 mS/cm. Fibrillatory activity was induced by creating a customized initial condition

with two functional reentries, one in the pulmonary vein region and one in the right
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atrium free wall [13].

The current sources for the volume conduction problem were given by d0(x, t) =

−σm(x)∇Vm(x, t) where Vm is the membrane potential and σm is the equivalent con-

ductivity tensor used in the monodomain equation [11]. From the field ϕi,∞ generated

by the atria in an unbounded medium (Eq. (6)), body surface potentials in an inho-

mogeneous torso including lungs and blood cavities were computed using the boundary

element method [13].

3. Results

3.1. Two-dimensional test case

The volume conduction problem was first solved in the anisotropic annulus. The

extracellular conductivity within the annulus was σθ = 2 mS/cm (tangent to the

annulus) and σr = 0.5 mS/cm (in the radial direction). The surrounding bath was

isotropic with a conductivity of σ0 = 1 mS/cm. The results only depend on the ratios

σθ/σ0 = σ0/σr = 2, which were voluntarily slightly more anisotropic than in [9] and

within the broad experimental ranges reported in [10].

The matrix M(x0), for any x0 in the annulus, was computed in the local polar

coordinate system (r, θ) for a radius of 16 mm and a thickness of 8 and 3 mm. Figure 1

shows the map of the components Mθθ and Mrr. The mixed components Mθr and Mrθ

were close to zero (mean < 10−12 and standard deviation < 0.02). This means that

in order to best reproduce the field of a tangent dipole in an inhomogeneous medium

using the field generated by a dipole in a uniform medium, the dipolar moment had to

be multiplied by a correction factor of 0.916± 0.028 (3-mm thickness) or 0.812± 0.096

(8-mm thickness).

The correction factor was relatively uniform in the thin-walled annulus (Fig. 1A).

In the thicker-walled version (Fig. 1B), the correction factor was smaller in the inner
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Figure 1: Correction factors Mrr (left panels) and Mθθ (right panels) for an annulus with a thickness

of 3 mm (A) and 8 mm (B).

side (endocardium). To study the effect of wall thickness, the correction factors for

tangential and radial dipole was computed as a function of annulus thickness (Fig. 2).

As the thickness tends to zero, the correction factors are more uniform throughout the

tissue and Mθθ tends to 1 and Mrr to 2. This means that in very thin layers of tissue,

local extracellular anisotropy has little effect on tangential dipole. For radial dipoles,

however, the dipolar moment has to be multiplied by σ0/σr = 2.

The results are valid in the limit where the surrounding medium (P ) is a box of

sufficiently large size. To determine what size is necessary to compute the correction
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Figure 2: Correction factors Mrr (radial) and Mθθ (tangent) for annuli of varying thicknesses. The

mean and standard deviation of the correction factors over the whole annulus are shown as error bars.

factors, the closest distance between the boundary and the tissue was varied between

1 mm and 50 mm for an annulus of radius 16 mm and thickness 2, 3 and 8 mm. The

side length of the square therefore ranged from 36 to 140 mm. The largest square was

taken as reference. The relative error was defined as the norm of the difference of all

correction factors within the annulus divided by the norm of all reference correction

factors. Figure 3 shows that that the box does not need to be large. Simply adding

5 mm around the tissue in all dimensions led to an error < 0.2%. Note that the solution

to our Poisson problems is a linear current flow, from one side of the box to the opposite

side, that is moderately affected by the presence of a conduction heterogeneity.

Figure 4 shows examples of fields generated in the inhomogeneous (left panels)
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Figure 3: Effect of the size of the surrounding medium (the box P ) on the accuracy of the results.

The relative error on the correction factors is displayed as a function of the minimum distance between

the boundary of the box and the annulus (radius: 16 mm; thickness: 2, 3 and 8 mm).

and in the uniform medium (right panels). When the annulus was thick (8 mm, top

panels), the local field (inside the annulus) was significantly different, but the far field

was reasonably reproduced by the equivalent dipole (correlation coefficient for values

on the boundary: 0.998; relative error on the norm: 9.9%). When the annulus was thin

(2 mm, bottom panels), the fields were very similar after application of the correction

factor (correlation coefficient: 0.9999; relative error: 1.6%).

The extracellular conductivity within the cardiac muscle may itself be inhomoge-

neous. An annulus with a thickness of 3 mm was created (Fig. 5A). The annulus was

divided into two equal parts. The conductivity was σθ = 1.5 mS/cm and σr = 0.375

mS/cm in the upper half, and σθ = 2 mS/cm and σr = 0.5 mS/cm in the lower half.

The radial correction factors were 2.26 ± 0.26 in the upper half and 1.76 ± 0.17 in the

lower half (Fig. 5A). The tangent correction factors were slightly below 1, as in Fig. 2.

The field generated by a radial dipole in each of the halves in the inhomogeneous volume
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Dipole field
(inhomogeneous medium)

A

Equivalent dipole
(uniform medium)

B

Dipole field
(inhomogeneous medium)

C

Equivalent dipole
(uniform medium)

D

Figure 4: Potential field generated in a 10-by-10 cm volume conductor by a tangent dipole located

within an anisotropic annulus with a thickness of 8 mm (A, B) and 2 mm (C, D). The dipole field in

the inhomogeneous volume conductor (A, C) is compared to the equivalent dipole in a uniform volume

conductor (B, D).

conductor (Fig. 5B,D) was calculated, as well as the field of the corresponding equiv-

alent dipole in a uniform medium (Fig. 5C,E). The results suggest that the equivalent

dipole approach is still valid in a thin (3 mm) inhomogeneous tissue.

3.2. Atrial model

The volume conduction problem was solved in a simplified model of the atria in

which wall thickness can be controlled. As in the annulus case, the extracellular con-

ductivity within the atrial myocardium was σl = 2 mS/cm (longitudinal, i.e. along
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σθ /σo = 1.5

σθ  /σo = 2

σr  /σo = 0.375

σr  /σo = 0.5

A Tangent dipoleRadial dipole

B C

D E

2.5

Figure 5: (A) Correction factors Mrr (radial) and Mθθ (tangent) for annulus with inhomogeneous

extracellular conductivity. (B)–(E) Potential field generated in a 10-by-10 cm volume conductor by a

radial dipole located within an anisotropic annulus in the lower (B, C) and higher conductivity region

(D, E). The dipole field in the inhomogeneous volume conductor (B, D) is compared to the equivalent

dipole in a uniform volume conductor (C, E).
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Figure 6: Correction factors Mll (longitudinal), Mtt (transverse) and Mnn (normal) for atrial ge-

ometries of varying wall thicknesses. The mean and standard deviation of the correction factors over

the entire atria are shown as error bars (panel A). The spatial distribution of the correction factors

is displayed (panel B: normal; C: transverse; D: longitudinal) on a slice of the atria with a thickness

set to 3 mm. The color code corresponds to the color bar of panel A. The right atrium is on the

bottom-left and the left atrium (including 3 pulmonary veins) on the top.

fiber orientation) and σt = σn = 0.5 mS/cm (in the transverse direction and that nor-

mal to the epicardium). The surrounding bath was isotropic with a conductivity of

σ0 = 1 mS/cm.

The components of the matrix M was expressed in the local coordinate system

(l, t, n) associated with the local fiber orientation. The resulting matrices were nearly

diagonal: the off-diagonal components (e.g. Mlt, Mln,. . . ) were distributed around zero
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with a standard deviation of 0.03. The diagonal components are shown in Fig. 6 for

a series of models with increasing wall thicknesses. The longitudinal and transverse

correction factors Mll and Mtt were mostly between 0.95 and 1.05 and tended to 1 as

the wall became thinner. The normal correction factors was a bit larger around 1.25.

As demonstrated by the standard deviations around 0.05 to 0.1, the correction factors

were relatively uniform throughout the atria, as illustrated on Figs. 6B–D, although

inhomogeneities in correction factors were still observed, notably in the pulmonary

veins. When the size of surrounding bath was extended by 5 mm on all six faces, the

difference in terms of correction factors remained very small (of the order of 0.1%), as

in the 2D case (Fig. 3).

To evaluate the robustness of the correction factors against changes in geometry

and fiber orientation, six left atrial models with a thickness of 2 mm obtained from a

former study [21] were used. Figure 7 shows that the resulting correction factors were

quantitatively very similar to each other and to the atrial model of Fig. 6 with a 2-mm

thickness. The standard deviation of the six mean correction factors of Fig. 7 were

0.0021 (normal), 0.0013 (transverse) and 0.0019 (longitudinal).

3.3. Influence on P waves and F waves

P waves were computed using different sets of correction factors to estimate the

effect of that correction on P wave morphology.

First, the same correction factors were applied to the whole tissue. Figure 8 shows

that the longitudinal correction factors (Mll from 0.9 to 1.1, Mtt = Mnn = 1) have

the largest effect on the P wave. This reflects the fact that current sources are often

aligned with fiber direction during sinus rhythm. Note, however, that the estimated

values of Mll are around 0.95–1 (Fig. 6), so the actual effect is at least twice smaller.

The influence of Mtt and Mnn were minimal during sinus rhythm.

15



Figure 7: Correction factors Mll (longitudinal), Mtt (transverse) and Mnn (normal) for different left

atrial geometries with a thickness of 2 mm. The mean and standard deviation of the correction factors

over the entire atria are shown as error bars for each of the 6 cases.

Then, when all corrections factors were locally optimized using Eq. (4), P wave

morphology (black curve in the last row of Fig. 8) remained essentially the same as in

the uncorrected case. Global optimization of the correction factors, assuming that they

were constant over the whole tissue as in [9], led to the values Mll = 0.975, Mtt = 1.045

and Mnn = 1.273. The resulting P waves (dashed red curve) were superimposed on the

locally-optimized one.

The same procedure was repeated during an episode of simulated atrial fibrillation

to assess the influence of varying the activation pattern. The effect of extracellular

anisotropy was slightly smaller than during sinus rhythm and was most visible on lead

V1, shown on Fig. 9 using the same display format as Fig. 8. Globally-optimized
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Figure 8: P waves on lead V1, V2 and V3 (from left to right) computed using different sets of correction

factors. First row : only longitudinal correction factors are applied. The black line corresponds to the

non-corrected case Mll = Mtt = Mnn = 1. The red region represents the changes in the P waves when

Mll varies from 0.9 to 1.1. Second row : Mtt is varied from 0.9 to 1.1. Third row : Mnn is varied from

0.9 to 1.5 (based on Fig. 6, Mnn is typically about 1.25). Fourth row : P waves computed using locally

(black curve) and globally optimized (red curve) correction factors.

correction factors were Mll = 0.987, Mtt = 1.033 and Mnn = 1.181, within ≈ 1% of

those during sinus rhythm, except in the normal direction (≈ 7% difference).

4. Discussion and conclusion

This study suggests that extracellular myocardial anisotropy in thin-walled tissue

(< 3 mm such as in the atria) may be neglected in first approximation when solving

the forward problem. In a second approximation, precomputed linear correction factors

can be applied to the current sources to improve far-field accuracy (Fig. 4), while using

the same boundary element torso model. Small wall thickness was found to be a critical

factor to control the effect of extracellular anisotropy. In the thicker-walled ventricles,

though, our method would still be applicable [9].

These correction factors tend to slightly reduce dipole source amplitude along fiber
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Figure 9: Fibrillatory (F) waves on lead V1 computed using different sets of correction factors during

an episode of simulated atrial fibrillation. First row : only longitudinal correction factors are applied.

The black line corresponds to the non-corrected case Mll = Mtt = Mnn = 1. The red region represents

the changes in the F waves when Mll varies from 0.9 to 1.1. Second row : Mtt is varied from 0.9 to 1.1.

Third row : Mnn is varied from 0.9 to 1.5. Fourth row : F waves computed using locally (black curve)

and globally optimized (red curve) correction factors.
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and slightly increase it in the transverse direction, in agreement with [9]. The correction

is stronger in the normal direction corresponding to transmural propagation. Rare in

sinus rhythm, breakthroughs may occur (locally) during atrial arrhythmias [22], which

advocates for the use of correction factors in these conditions. Nevertheless, transmural

correction factors are larger than one only if there is a significant discontinuity in

extracellular conductivity when crossing the atrial wall (σ0 ̸= σt). The wide range of

reported experimental conductivity values [10] makes that statement disputable.

There are several effects of extracellular anisotropy that remain unaffected by the

conclusion of our study. First, the conductivity tensor of the monodomain model implic-

itly or explicitly incorporates information about extracellular anisotropy [11]. Second,

extracellular anisotropy in the skeletal muscle or in the ventricular myocardium may

be non-negligible [10]. Third, endocardial electrograms may be affected by extracellu-

lar anisotropy as well as by blood conductivity. In this latter case, the application of

correction factors may help estimate the accuracy of electrogram computation.

Our approach is similar to the lead field theory since it is based on the reciprocity

theorem. A difference is that our correction factors do not depend on the lead and

not even on the torso volume conductor (e.g. lungs). Another approach would be to

compare P waves computed in high-resolution finite element models of the torso with

and without atrial extracellular anisotropy, but this would not tell us which components

of the dipole sources are most affected.

Despite its lack of flexibility to handle anisotropy directly, the boundary element

method has several advantages in terms of mesh creation, computational complexity,

solving the inverse problem [23], and computing the contribution of a part of the atria

to the ECG (e.g. left and right atria [13]), largely because the body surface potential

can be expressed as a transfer matrix applied to the potential in an unbounded uniform

medium, a property that was explicitly used in our derivation.
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A relatively simple atrial model was used here to make it possible to control atrial

wall thickness (outside fast conducting bundles). The same approach can be extended in

tissue models with variable thickness and multiple layers with different fiber orientation

[24, 25]. However, since the local coordinate system (l, t, n) would vary rapidly in space,

the projections of the correction factors (e.g. Mll) would fluctuate so that global scaling

of all longitudinal dipole components may not be appropriate. In this case, Eq. (4)

would need to be solved at high resolution, but only once, and only in the neighborhood

of the atria, not in the full torso. In contrast, the finite element method may require a

3D mesh of the full torso with high resolution within the atrial myocardium, which may

be more computationally expensive, although methods have been proposed to provide

a good approximation at reduced computational cost [26].

Fully-coupled heart-torso bidomain models have been developed and implemented

[27, 28]. When compared to the full bidomain model, the equivalent monodomain model

combined with a forward solver proved to be accurate during sinus rhythm both in terms

of electrograms [16] and ECG [27]. These results may have to be revisited in models of

pathological tissue with strongly unequal anisotropy ratio or when microstructure makes

continuous models questionable. In cases where the bioelectric current sources are not

accurately described by the monodomain model with an effective conductivity tensor,

the equivalent dipole approach proposed here might only be a good approximation to

an inappropriate model. This paper only argues that in thin cardiac tissue models,

extracellular anisotropy may be neglected or corrected for when solving the Poisson

equation for the far-field extracellular potential. The question of whether its feedback

on the current sources (i.e. the effect on the propagation equation) can be ignored

cannot be answered without a fully-coupled bidomain simulation.

In conclusion, the equivalent dipole approach enables the determination of correction

factors that indicate where and how dipole current sources are affected by extracellular
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anisotropy. In the thin-walled atria, this effect is shown to have a minor impact on the

P wave and thus may be neglected in first approximation.
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