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Montréal (QC) H4J 1C5, Canada
phone: +1 514-338-2222 ext. 2522
vincent.jacquemet@umontreal.ca

Published in: Comput. Methods Programs Biomed. 2012, vol. 108, no. 2, pp. 548-558

Abstract

Electrical propagation of the cardiac impulse in the myocardium can be described by the

eikonal-diffusion equation. This equation governs the field of activation times in a domain

where conduction properties are specified. This approach has been applied to knowledge-

based interpolation of sparse measurements of activation times and to the creation of initial

conditions for detailed ionic models of cardiac propagation. This paper presents the math-

ematical basis, matrix formulation, and compact Matlab implementation of an iterative

finite-element solver (triangular meshes) for the eikonal-diffusion equation extended to reen-

trant activations, which automatically identifies the period of reentry and computes the

resulting isochrones. An iterative algorithm is designed to perform Laplacian interpolation

of reentrant activation maps to be used as initial estimate for the eikonal-diffusion solver.

The performance of the algorithm is analyzed in test-case geometries (ventricular slice and

simplified atrial surface model).
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1. Introduction

Atrial arrhythmias are rhythm disorders frequently encountered in clinical practice. Cur-

rent therapies include pharmacological control of the ventricular rate, electrical cardiover-

sion (defibrillation) and catheter ablation (creation of lesions in the atrial tissue using radio

frequency or cryo catheter electrodes). Catheter ablation involves exploration of atrial endo-

cardium with intracardiac electrodes recording electrical signal (electroanatomical mapping).

Local activation time can usually be extracted from these intracardiac electric signals. In

combination with cardiac imaging data, this procedure can provide a description of the dy-

namics of the arrhythmia through activation maps. Spatial resolution is, however, often

limited.

To investigate the basic mechanisms of atrial arrhythmias and guide the development

of diagnostic and therapeutic tools, computer models of atrial electrophysiology have been

developed [1–6]. In these models, propagation of the electrical impulse in the myocardium

is governed by a reaction-diffusion equation [7]. To improve the clinical relevance of model

results, patient-specific information needs to be incorporated. This information can be

local (cell electrophysiology, cell-to-cell coupling) or global (dynamics of the arrhythmia,

pathways of reentry). Local, microscale data are natural parameters in the bottom-up

approach typically used in cardiac modeling. Global, macroscale data such as activation

maps are often easier to obtain but more difficult to integrate in the model.

Lines et al. proposed to add a non-local forcing term to the reaction-diffusion equation

to synchronize a reentrant activity with experimental or synthetic signals recorded at sparse

locations during atrial flutter [8]. More recently, we developed a method for creating an

initial condition for the reaction-diffusion system from a reentrant pathway [9]. This method

was based on the eikonal-diffusion equation [10–12], a partial differential equation for the

activation time. Activation maps computed using this approach showed good correspondence

with those simulated using the reaction-diffusion system, at a much lower computational

cost. In addition, the initial condition created from an activation map enabled the simulation

of reentries along prescribed anatomical or functional reentrant pathways in the reaction-
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diffusion model [9].

In this paper, an efficient iterative solver for the eikonal-diffusion equation applied to

reentrant activity is described. Numerical methods from [9] are reformulated to facilitate

and optimize Matlab implementation. An alternative, more robust algorithm for the inter-

polation of activation times (used as initial estimate for the iterative solver) is proposed.

Compact Matlab code is provided and explained. A theoretical analysis of the algorithm is

presented that enables automatic computation of the period of the reentry, thus reducing

the number of required input parameters. Performance and accuracy is assessed using test

case problems.

2. Background

2.1. Problem statement

Activation time is the time ta(x) at which an electrical impulse (cardiac wave front)

passes through the point x. The field ta(x) forms an activation map. Stable reentry consists

in single or multiple self-sustained activation waves propagating periodically in the cardiac

tissue. To emphasize the periodic nature of a reentrant activity and exhibit its topological

features, the scaled activation time τ is defined as

τ(x) = 2π ta(x)/T mod 2π, (1)

where T is the period of the reentry. For the moment, T is assumed to be known. Later,

methods will be presented to derive its value from conduction properties (Subsects. 2.3

and 4.5).

Two problems will be considered in this paper:

1. Interpolation: From a set of known scaled activation times τ(xi), xi ∈ Γ, interpolate

an activation map τ(x) while taking into account its periodic nature. The set Γ can

be a discrete set of points (interpolation from a finite number of measurements, for

example catheter electrodes) or closed curves describing observed pathways of reentry.
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2. Simulation: Reconstruct activation maps using a priori knowledge about wave front

propagation (local curvature-dependent conduction velocity). Adjust activation maps

obtained from problem 1 to satisfy hypothesized conduction properties of the tissue

substrate.

Both problems will be solved using a partial differential equation based on the eikonal-

diffusion equation for the field τ .

2.2. The eikonal-diffusion equation for a reentry

Derived from the monodomain propagation equations [7] using singular perturbation

techniques [12], the eikonal-diffusion equation in the domain Ω (with boundary ∂Ω) governs

the shape of activation wave fronts [9–12]:

∥c∇τ∥ = 1 +∇ · (D∇τ) x ∈ Ω, (2)

n ·D∇τ = 0 x ∈ ∂Ω. (3)

where the tensors c (scaled propagation velocity in cm/rad, which means conduction velocity

in cm/s × T/2π) and D (scaled diffusion tensor in cm2) are symmetric positive definite, ∥ ·∥

is the euclidean norm and n is a unit vector normal to the boundary ∂Ω. In the isotropic

case with D → 0, it reduces to the eikonal equation c ∥∇τ∥ = 1 stating that the propagation

velocity of the wave fronts is constant [13]. Diffusion of activation times introduces wave

front curvature-dependent propagation velocity [10]. In the purely diffusive limit D = λD̂

with λ → +∞, the equation becomes the diffusion equation

∇ · (D̂∇τ) = 0 x ∈ Ω \ Γ, (4)

n · D̂∇τ = 0 x ∈ ∂Ω \ Γ, (5)

τ(x) = τ0(x) x ∈ Γ. (6)

The Dirichlet boundary condition on Γ (6) was added to formulate a Laplacian interpolation

problem [14]. Interpolation of activation times is therefore a limit case of the eikonal-diffusion

problem.
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Note, however, that τ may contain 2π jumps anywhere, which makes it more difficult in

this formulation to numerically compute the gradient [15]. To handle this phase unwrapping

problem, a phase function transform ϕ = exp(iτ) is applied. The transformed eikonal-

diffusion equation reads [9]:

∥c∇ϕ∥ = 1 + Im∇ · (ϕ∗D∇ϕ) x ∈ Ω, (7)

|ϕ| = 1 x ∈ Ω, (8)

n ·D∇ϕ = 0 x ∈ ∂Ω, (9)

where the symbol ‘Im’ denotes the imaginary part and the star (∗) means the conjugate

(when applicable) transposed vector/tensor.

2.3. Parameter identification

The parameters c and D will be selected to reproduce activation patterns that would be

observed in a monodomain model with conductivity tensor σ (mS/cm), membrane surface-

to-volume ratio β (cm−1), and membrane capacitance per unit membrane area Cm (µF/cm2).

The derivation of the eikonal-diffusion equation from the monodomain model [12] establishes

the following relations [9, 10]:

c∗c =
T 2km

4π2βCm

σ and D =
T

2πβCm

σ . (10)

The membrane model-dependent parameter km is such that the conduction velocity (cm/ms)

of a plane wave is CV =
√

kmσ/βCm. At this point, the period T of the reentry is assumed to

be known. Numerical methods will be presented that automatically identify the appropriate

value of T from the solution computed with an arbitrary value T̃ (Subsect. 4.5), for example

T̃ = 1000 ms. In some applications, only the target conduction velocity CV (for plane

wave propagation) is known or is determined experimentally, for example on the basis of

endocardial activation mapping [16, 17]. In such a case, the parameters c and D are set to:

c =
T̃

2π
CV and D =

T̃

2πkm
CV2 , (11)

where the membrane-dependent parameter km can be set to 2.0833 ms−1 [10] or to a value

specifically adjusted to a given membrane model.
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3. Design considerations

The goal is to implement in Matlab an efficient eikonal-diffusion solver for reentrant

activation maps defined on (coarse) triangular meshes of 2D geometries and 3D surfaces.

A previously-developed method [9] will be extended and reformulated to fully use sparse

matrix operation capabilities in Matlab and facilitate its implementation. A faster and

more robust iterative algorithm will be proposed for the diffusive case (D → ∞). This

alternative approach will serve both for the interpolation problem and as initial estimate

for the eikonal-diffusion solver. Another goal is to automatically determine the period T of

the reentry to reduce the number of adjustable parameters needed to generate activation

maps. Computed activation maps will be compared to those simulated in the framework of

the monodomain model [9].

4. Methods

4.1. An iterative eikonal-diffusion solver

To numerically solve Eq. (7), a linearized eikonal approach [18] will be used. This method

is equivalent to the Newton root finding method applied at the level of the partial differential

equation [9, 19]. Assuming that an estimate ϕ0 of the solution to (7) satisfying the constraint

(8) and the boundary condition (9) is available, an iterative scheme is obtained by applying

a space-varying phase shift ϕs+1 = ϕs exp(iθs) at step s, such that ϕs+1 is the solution to

(7) up to first order in ∇θs. This process is then iterated to eventually converge toward the

solution. Analytical calculations using a Taylor expansion of (7) lead to the following linear

equation for the correction θs [9]:

∥c∇ϕs∥ − Im ∇ · (ϕs∗D∇ϕs) − 1 = ∥c∇ϕs∥−1 Im (ϕs∇ϕs∗c∗c∇θs) + ∇ · (D∇θs) (12)

This is a steady-state convection-diffusion equation in θs with coefficients that depend on

the known field ϕs. The correction θs must also verify the boundary condition n ·D∇θs = 0

so that the same boundary condition will hold for ϕs+1.
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The two-dimensional domain Ω is discretized using a triangular mesh composed of nt

triangles and nv vertices. The set of triangles is denoted by T and the set of vertices by

V . Vertex m ∈ V is located at position xm. The triangle (ijk) ∈ T is denoted by Tijk and

its area by Ωijk. The area associated with node m ∈ V is Ωm = 1
3

∑
(ijk)∋m Ωijk where the

sum runs over the neighboring triangles. The vectors ϕs and θs, both of size nv by 1, are

formed by the values ϕs
i of the field ϕs (respectively the values θsi of the field θs) at vertex

i ∈ V . The fields ϕ and θ are reconstructed by interpolation using linear shape functions Ni

(Ni(xj) = δij, the Kronecker symbol):

ϕs =
∑
i∈V

ϕs
iNi and θs =

∑
i∈V

θsiNi . (13)

The application of the finite element method to the linearized eikonal-diffusion equation (12)

leads to a linear system

A(ϕs) θs = f(ϕs) (14)

Explicit expressions for the matrix A and the right hand side f have been shown to be given

by [9] (here both Amn and fm have been normalized by Ωm):

Amn(ϕ) = −
∑

(ijk)∈T

Ωijk

Ωm

∇ijkNm ·Dijk∇ijkNn

+
∑

(ijk)∈T

Ωijk

3Ωm

∥cijk∇ijkϕ∥−1 Im
ϕi + ϕj + ϕk + ϕm

4
(cijk∇ijkϕ)

∗ · (cijk∇ijkNn) (15)

fm(ϕ) =
∑

(ijk)∈T
m∈{ijk}

Ωijk

3Ωm

(
∥cijk∇ijkϕ∥ − 1 + 3 ∇ijkNm · Im

ϕ∗
i + ϕ∗

j + ϕ∗
k

3
Dijk∇ijkϕ

)
. (16)

The index ijk in cijk, Dijk and ∇ijk indicates that these fields are evaluated at the center of

gravity of the triangle (ijk). The outline of the eikonal-solver is described by the following

algorithm:

1. Generate an initial estimate ϕ0

2. Iterate for s = 0, 1, 2, . . . until ∥θs∥ < tol

(a) Compute A(ϕs) [Eq. (15)] and f(ϕs) [Eq. (16)]
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(b) Solve A(ϕs) θs = f(ϕs)

(c) Mean subtraction: θs := θs −mean(θs)

(d) Under-relaxation: θs := θs · min
(
1, θmax/max(|θs|)

)
, where θmax is a fixed pa-

rameter

(e) Set ϕs+1 := ϕs exp(iθs)

The tolerance tol was set to 10−10 and the under-relaxation threshold θmax to 0.1 [9]. The

reason for step 2(c) will be explained in Subsect. 4.5. The next subsection will cover the

construction of the initial estimate ϕ0. The following subsections will present the derivation

of new expressions for the matrix A and the vector f in terms of sparse matrices. This will

facilitate the implementation of a compact and efficient code in Matlab taking advantage of

sparse matrix operations.

4.2. Generating the initial estimate

The initial estimate ϕ0 is constructed by solving the eikonal-diffusion in the diffusion-

dominant limit (D = λD̂ with λ → +∞). In order to make the initial activation map

estimate follow a prescribed pathway, an additional boundary condition will be defined on

set Γ (typically a curve describing the pathway): ϕ = ϕ0 on Γ. Then, the algorithm of the

previous subsection can be viewed (and can be implemented) as a continuation procedure

[19] in which D is progressively reduced from +∞ to a finite value.

In the diffusion-dominant limit, the system reduces to

∇ · (ϕ∗D̂∇ϕ) = 0 (17)

with the constraint |ϕ| = 1 and the boundary condition ϕ = ϕ0 on Γ and n · D̂∇ϕ = 0 on

∂Ω\Γ. If ϕ = exp(iτ) is substituted to satisfy |ϕ| = 1, the equation becomes ∇·(D̂∇τ) = 0,

that is, it reduces to Laplacian interpolation [14] of an orientation field from values defined

on a set Γ. Note that the ‘Im’ symbol has been dropped since the left hand side is purely

imaginary when |ϕ| = 1.

This nonlinear equation can be solved using a variant of fixed point iterations [19].
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Starting from ϕ0 = 1 on Ω \ Γ, ϕs+1 is computed from

∇ · ϕs∗D̂∇ϕs+1 = 0 (18)

with boundary condition ϕs+1 = ϕ0 on Γ and n · D̂∇ϕs+1 = 0 on the remaining part of the

boundary ∂Ω \Γ. Note that the constraint |ϕ| = 1 is released. As a result, the solution ϕs+1

has to be normalized by dividing it by its module.

Similarly to the previous subsection, this equation can be discretized as a linear system

A∞(ϕs)ϕs+1 = f∞(ϕs). The matrix A∞ [compare with the third term of Eq. (16)] is given

by

A∞
mn(ϕ) = −

∑
(ijk)∈T

Ωijk

Ωm

∇ijkNm ·
ϕ∗
i + ϕ∗

j + ϕ∗
k

3
D̂ijk∇ijkNn . (19)

The boundary condition is introduced by setting f∞ to zero and then replacing the i-th row

of the linear system, for each i ∈ Γ, by the equation ϕs+1
i = ϕs

i = ϕ0,i. The outline of the

algorithm for generating the initial estimate is therefore:

1. Set ϕ0 = 1

2. Iterate for s = 0, 1, 2, . . . until
∥∥ϕs+1 − ϕs

∥∥ < tol

(a) Compute A∞(ϕs) and f∞(ϕs) [Eq. (19)], taking into account the boundary con-

dition

(b) Solve A∞(ϕs) ϕs+1 = f∞(ϕs)

(c) Normalize: ϕs+1 := ϕs+1/
∣∣ϕs+1

∣∣
The first iteration consists in solving the linear diffusion equation ∇·D̂∇ϕ1 = 0, which is the

approach proposed in [9] as initial estimate for the eikonal-diffusion solver. The tolerance

tol was set to 10−10.

4.3. Sparse matrix formulation

Domain geometry is described by the list of vertices V , numbered from m = 1 to nv, and

the list of triangles T , numbered from ijk = 1 to nt. Indices µ and ν will run over the three

spatial components x, y and z of a vector. Building-block matrices are defined as follows.
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To convert a vertex-centered field into an element-centered field, values are averaged over

the 3 vertices of the triangle. This transform defines the matrix Tv→t of size nt by nv:(
Tv→t

)
ijk,m

=
1

3
if m ∈ {i, j, k} (20)

and 0 otherwise. Conversion from an element-centered field to a vertex-centered field is

performed using the matrix Tt→v, of size nv by nt:(
Tt→v

)
m,ijk

=
Ωijk

3Ωm

if m ∈ {i, j, k} (21)

and 0 otherwise. The matrix Gradµ (component µ of the gradient), of size nt by nv, is

defined for each µ = x, y, z by

(Gradµ)ijk,m = ∂µNm if m ∈ {i, j, k} (22)

and 0 otherwise. The partial derivative along the coordinate µ, ∂µNm, can be easily com-

puted using the dual basis of the triangle [20]. The matrix Divµ, of size nv by nt, is defined

for each µ = x, y, z by

(Divµ)m,ijk = −Ωijk

Ωm

∂µNm if m ∈ {i, j, k} (23)

and 0 otherwise.

The multiplication of the gradient by a tensor is obtained by summing over the x, y and

z components. The discretized version of the component µ of the operator D∇ is written as

(DGradµ)ijk,m =
∑

ν=x,y,z

Dµν
ijk ∂νNm if m ∈ {i, j, k} (24)

and 0 otherwise, where Dµν
ijk is the µν component of the 3-by-3 tensor Dijk. If the vector

Dµν , of size nt by 1, is constructed such that its entry at row ijk is given by Dµν
ijk, the matrix

DGradµ can be expressed as

DGradµ =
∑

ν=x,y,z

diag (Dµν)Gradν , (25)

where diag(x) is a diagonal matrix containing the components of x along its diagonal.

CGradµ is defined similarly as a function of cijk. None of these matrices depend on ϕ; they

can be precomputed.
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With all these definitions, the matrix A(ϕ) can be written as

A = Diff +
3

4
Tt→v ·Norm−1 · Im

(
diag

(
Tv→tϕ

)
·B
)

+
1

4
Im
(
diag (ϕ) ·Tt→v ·Norm−1 ·B

)
, (26)

where the nv-by-nv matrices Diff and B are defined as

Diff =
∑

µ=x,y,z

Divµ ·DGradµ (27)

B =
∑

µ=x,y,z

diag (CGradµ · ϕ)∗ ·CGradµ , (28)

and the norm of the gradient is represented as a nt-by-nt diagonal matrix

Norm =

( ∑
µ=x,y,z

diag (CGradµ · ϕ)2
)1/2

, (29)

where the power 1/2 is computed component-wise along the diagonal. The right hand side

f (nv by 1) can be written as

f = Tt→v · (Norm · e − e) − Im
∑

µ=x,y,z

Divµ · diag
(
Tv→tϕ∗) · DGradµ · ϕ (30)

where e is the nt-by-1 vector containing 1 in each entry. Similarly, a comparison between

(16) and (19) shows that

A∞ =
∑

µ=x,y,z

Divµ · diag
(
Tv→tϕ∗) ·DGradµ . (31)

4.4. Matlab implementation

The algorithm sketched at the end of Subsect. 4.1 was implemented in Matlab. The

list of vertices is represented by a nv-by-3 matrix VER, one row for the xyz components of

each vertex, and the list of triangles by a nt-by-3 matrix TRI containing the indices of the

3 vertices of each triangles. Table 1 gives a piece of Matlab code (initialization and input-

output omitted) to compute the building-block matrices Gradµ, Divµ, T
t→v and Tv→t. The

formula for the gradient originates from finite volume or finite element discretization scheme
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for reaction-diffusion equations [5, 20–23]. Note that this code could also be used to compute

the stiffness matrix of reaction-diffusion systems. The function sparse automatically adds

together elements with duplicate values of row/column. The matricesDGradµ andCGradµ

(variables DGrad.µ and CGrad.µ) are then computed using Eq. (25).

Implementation of the algorithm for the case D → ∞ or for generating the initial con-

dition is straightforward. Matlab code for assembling the linear system is given in Table 2.

The linear system (complex non-symmetric) is solved with the backslash (\) operator. In

the iterations of the eikonal-diffusion solver, the linear system is assembled using the piece

of Matlab code shown in Table 3. Note, however, that the matrix A is singular (Ae = 0,

where e is now a nv-by-1 vector with 1 in each entry). It stems from the fact that Eq. (7) is

invariant to global phase shift ϕ 7→ ϕ exp(iθ̄) where θ̄ is a constant. The solution at step s

is obtained by solving the system (deflation method [24])(
A(ϕs) +

1

nv

e e∗
)

θs = f(ϕs) . (32)

Since A is real non-symmetric, a biconjugate stabilized gradient method (BiCGstab) with

incomplete LU preconditioner was used and implemented in Matlab as

[L,U] = luinc(A,1e-6);

Adefl = @(x)(A*x+mean(x)*ones(nv,1));

theta = bicgstab(Adefl,f,1e-10,100,L,U);

alpha = mean(theta);

theta = theta - alpha;

in order to avoid the allocation of full matrices. The preconditioner served to accelerate

convergence. In the test cases considered (2D meshes and atrial surfaces), no ill-conditioned

system was encountered. The next subsection will explain the meaning of the variable

alpha (α).

4.5. Determination of the period T of the reentry

The eikonal-diffusion problem requires to specify the geometry and the conduction prop-

erties. The definition of c and D also assumes that the period T of the reentry is a priori
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known. For a given reentrant pathway (or initial condition ϕ0), however, there is only one

value of T for which a solution to the eikonal-diffusion equation exists. For example, if a

reentry propagates at a speed CV along a pathway of length L with a period T , the relation

CV · T = L must hold. We are going to show that the algorithm is not affected by an

incorrect choice of T for the definition of c and D. Moreover, the analysis will enable us to

determine the period T once convergence is reached.

Both c and D are proportional to the period T [Eq. (10)]. To analyze the effect of T ,

assume both c and D are scaled by the same factor λ > 0, i.e., c 7→ λc and D 7→ λD. From

the definitions of A [Eq. (26)] and f [Eq. (30)], the linear system (32) becomes :(
λA+

1

nv

e e∗
)

θλ = λf + (λ− 1) e . (33)

If θ1 is the solution for λ = 1, the general solution θλ is given by θ1 + g(λ)e, where

g(λ) = (λ − 1)(mean(θ1) − 1), as shown by direct substitution. Therefore, if the mean is

subtracted from the correction θ at each iteration (as done in the Matlab code in the previous

paragraph), the iterative scheme is invariant by scaling of c and D, i.e., θλ − mean(θλ) =

θ1 − mean(θ1). Note that if the conduction property (σ/βCm) was scaled by λ, we would

have a different transformation, namely c 7→
√
λ c and D 7→ λD.

Since the mean of θs is subtracted after each iteration in our implementation, the algo-

rithm converges if and only if θs tends to a constant field α e. Unless α = 0, f(ϕs) does

not tend to zero, but rather to α e [Eq. (32)]. This means that the equation has no solution

for this parameter set (geometry, c and D) because the estimated period T̃ was inexact.

However, there exists a scaling factor λ such that f(ϕs) tends to zero with the exact same

sequence ϕs. This factor is obtained by setting the right hand side of (33) to zero, leading

to λ = (1 + α)−1. The corrected period of the reentry is therefore

T =
T̃

1 + α
, (34)

and the effective diffusion tensor is (1 + α)−1D.
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5. Status report

5.1. Reentrant activation maps

To illustrate the capabilities of the eikonal-diffusion solver, reentrant activation maps

were computed in a model of ventricular slice (5,050 nodes, ∆x = 0.82 mm) with uniform

isotropic conduction properties. Scaled activation time τ was set to 2πℓ/L along the bound-

ary corresponding to the left ventricle (circuit indicated in Fig. 1A), where L is the circuit

length and ℓ is the curvilinear coordinate along the circuit. Figure 1A shows the activation

map resulting from Laplacian interpolation of known activation times. Activation maps

in Figs. 1B–F were computed using the eikonal-diffusion equation with scaled conduction

velocity c = L/2π and decreasing values of the diffusion coefficient D from 1 cm2 down to

0.15 cm2. With lower diffusion of activation times, local isochrone curvature can be higher

and the space constant of boundary effects is shorter. Previous works [9] have demonstrated

that these reentrant activation maps correspond well to those computed with a monodomain

model when Eq. (10) is used to specify eikonal-diffusion parameters, even in the presence of

anisotropy or in a geometry with more complex topology.

5.2. Period of reentry

The new formula for estimating the period of the reentry was tested by comparing the

eikonal-diffusion model to a monodomain reaction-diffusion model using the Luo-Rudy mem-

brane model [25], a membrane capacitance of Cm = 1 µF/cm2 and a surface-to-volume ratio

of β = 2000 cm−1. A finer mesh (32,820 nodes, ∆x = 0.32 mm) of the ventricular slice

model (Fig. 1) and finite volume discretization [20] were used for monodomain simulations.

Tissue conductivity σ was varied so that plane wave conduction velocity ranged from 34.1 to

54.5 cm/s. In each case, a counter-clockwise reentry was initiated around the left ventricle

[9] (like the activation patterns in Fig. 1) and the period of reentry was reported (after

stabilization of the reentry). Eikonal-diffusion parameters were set according to Eq. (11)

with km = 2.0833 ms−1 and T̃ = 1000 ms. Figure 2 compares the periods obtained in the

monodomain model and in the eikonal-diffusion model [Eq. (34)]. Another estimate is given

by the length L of reentrant pathway divided by plane wave conduction velocity CV . The
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results demonstrate the effect of curvature-dependent conduction velocity (prolonging the

period by about 15 ms) captured by the eikonal-diffusion model. At slow conduction veloc-

ity, estimated period is in agreement with the monodomain model (the error is about 2–3 ms

or 1%). At faster conduction velocity, however, conduction velocity restitution is involved

because of the shorter cycle length. Since the eikonal approach ignores any repolarization

or restitution effect, the period of reentry is underestimated.

5.3. Interpolation of Activation times

Lines et al. stated the problem of synchronizing a simulation with signals recorded at

sparse measurement sites [8]. The eikonal-diffusion equation provides another approach to

tackle this problem. A computer model of macroreentrant atrial arrhythmia will serve as

test case to demonstrate the potential of the eikonal approach for this application.

A stable reentry was simulated in a simplified 3D computer model (800,000 cubic el-

ements) of the human atria [6, 9] using the Courtemanche et al. membrane model [26].

Conduction properties were isotropic and uniform. The epicardium was meshed with coarse

triangular elements (13,798 nodes, ∆x = 1.2 mm). Activation times (defined with a thresh-

old at −60 mV) were extracted at each node of the triangular mesh. The resulting activation

map served as reference. The problem will be to recover this activation map with activation

times known at a limited number (Ne) of locations.

In a first step, Ne = 60 electrodes were uniformly distributed over the atrial surface.

Activation times were interpolated using Eq. (17) where Γ is the set of Ne electrode posi-

tions (Laplacian interpolation). Figure 3A displays both the interpolated and the reference

activation map. The reconstructed map was qualitatively correct and the 2π jump due to

the periodic nature of the reentry was appropriately handled. The root mean square (RMS)

error in activation time was 6.8 ms (the period was T = 197 ms). This map served as initial

condition for the eikonal-diffusion solver, assuming that conduction properties are known.

Eikonal-diffusion parameters were set according to Eq. (10). The resulting activation map

is shown in Fig. 3B. Eikonal-diffusion isochrones (dashed lines) match those obtained in the

monodomain model (solid lines), even close to sites of wavefront collisions. RMS error in
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activation time was 0.72 ms.

To estimate the number of electrodes necessary to reach a sufficient level of accuracy

in the reconstructed map, Ne electrodes were randomly distributed throughout the atrial

surface, with Ne varying from 10 to 200. For each number of electrodes Ne, 100 random elec-

trode configurations were generated. In each case, activation maps were interpolated from

those Ne values using both Laplacian interpolation and the eikonal-diffusion solver. Quali-

tative correspondence between reconstructed and reference activation maps was assessed by

comparing the winding numbers, defined as (2π)−1
∮
∇τ · ds (= integer), where the contour

integral is calculated around each anatomical obstacle. Qualitative correspondence was

said to be correct when the winding number around each of the 8 anatomical obstacles

matched those of the reference activation map. Quantitative correspondence was measured

using RMS error in activation time. The percentage of qualitatively incorrect reconstructed

maps was 85%, 34% and 18% for Ne = 10, 20 and 30, and was ≤ 3% for Ne > 35. Recon-

struction was qualitatively incorrect when the location of the electrodes was too far from the

anatomical reentrant pathway (here the valves) to enable its identification. For example, if

no electrode is located between the tricuspid valve and the inferior vena cava, it may not be

possible to differentiate between a reentry around the tricuspid valve and a reentry around

the inferior vena cava. These cases were excluded from subsequent quantitative analysis.

For qualitatively correct cases of Laplacian interpolation, RMS error decreased when more

electrodes were used, following approximately a power law with an exponent of −0.6, as

shown in Fig. 4. By using a priori information about conduction properties, the eikonal-

diffusion approach was able to make all (qualitatively correct) interpolated maps converge

to exactly the same activation map, in fact also the same as that of Fig. 3B. The RMS error

was always 0.72 ms (0.37% of the period).

5.4. Performance of the algorithm and its implementation

To measure the computational cost of the proposed algorithms, test cases were run and

profiled using Matlab 7.9 on a Linux computer with Intel Core i7-950 CPU (3.07 GHz).

Finite element matrices (Matlab code in Table 1) were constructed in about 0.65 s for
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100,000 triangles. Because the eikonal approach does not require a fine mesh (typically

10,000 nodes are sufficient), preprocessing time is essentially negligible (0.08 s for the atrial

mesh).

Interpolation with fixed point iterations (Subsect. 4.2) was tested on the atrial acti-

vation time interpolation problem of the previous subsection (13,798 nodes). The number

of iterations needed and the CPU time depended on the number of measurement sites Ne.

The more data available, the faster the convergence (34±22 iter./5.4±3.5 s CPU time for

Ne = 20; 15±3 iter./2.5±0.5 s for Ne = 60; 11±1 iter./2.2±0.2 s for Ne = 100). More than

75% of CPU time was spent solving complex linear systems (intrinsic Matlab operator).

Iterations of the eikonal-diffusion solver are more computational expensive since the

BiCGstab algorithm has been implemented in Matlab. One iteration on the 13,798-nodes

atrial mesh took 1.3±0.1 s, depending on the number of sub-iterations in the linear solver.

Typically 15 to 30 eikonal-diffusion iterations were needed (20 to 40 s CPU time). About

95% of this CPU time was spent in the preconditioner and in the linear solver. An optimized,

parallelized compiled code might enhance the performance in this case since the bottleneck

is clearly linear system solving.

6. Lessons learned

In a previous paper, the eikonal-diffusion equation was generalized to reentrant activation

patterns in two-dimensional domains or three-dimensional surfaces [9]. The resulting acti-

vation maps were shown to reproduce those obtained in the framework of the monodomain

model. These eikonal-based activation maps were also used to generate initial conditions for

the monodomain model. This provided a new approach for creating a library of simulated

arrhythmias with different pathways of reentry and for running simulations reproducing

sparse experimental measurements of activation times.

Here, the finite-element-based numerical methods presented in [9] were reformulated in

order to improve and facilitate computer implementation in a compact and efficient Matlab

code. The crucial importance of deflation for solving the singular linear system (a method

chosen empirically in [9]) was revealed by a theoretical argument. Thank to a scaling
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property, the eikonal-diffusion solver is now able to automatically identify the period of

the reentry for which a reentrant solution exists. This also reduces the number of input

parameters needed to generate reentrant activation maps. Another way to look at it is

to consider that the period is fixed and that the solver finds the appropriate conduction

velocity.

Convergence of the eikonal-solver depends on the quality of the initial estimate. This

paper uses Laplacian interpolation of known activation times as initial estimate, generalizing

previous works [9]. This form of interpolation is a special case of the eikonal-diffusion

equation with the diffusion coefficient D → ∞. Instead of applying the eikonal-diffusion

solver in this case, another, more robust, algorithm based on fixed point iterations was

developed. These iterations converge from a wider range of initial estimates, even white

noise or a constant field. In contrast, Newton iterations tend to preserve phase singularities

since corrections are small and smooth [9]. This property is desirable for final adjustment of

the activation map, but possibly incorrect phase singularities present at the initial stage may

not be eliminated. Convergence of fixed point iterations is asymptotically slower since the

method is of first order as compared to the second order Newton method. However, CPU

time per iteration was found to be shorter. If necessary, it could be possible to switch from

fixed point to Newton iterations once close enough to the solution. Note that the Laplacian

interpolation algorithm applies to any type of orientation field or angular data (phase, fiber

angle, electric/magnetic dipole orientation).

The problem of reconstructing an activation map based on sparse measurements of ac-

tivation times was considered. A large number (> 100) of measurements was necessary to

accurately interpolate an activation map, in agreement with Lines et al. [8]. When tissue

conduction properties are known, however, the activation pattern can be accurately repro-

duced from a limited number of electrodes using the eikonal-diffusion approach. Then the

resulting activation map can serve as initial condition for simulating the reentry in a mon-

odomain model [9] or in a bidomain model after a straightforward extension. Note that

this could form the basis for solving the inverse problem of extracting conduction properties

from reentrant activation maps.
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A fundamental limitation of the eikonal approach is that repolarization is ignored. This

has several consequences. First, the period of reentry is underestimated when it is close

to the effective refractory period due to conduction velocity restitution. Second, reentrant

circuits may not be stable when simulated in a monodomain model due to action potential

duration restitution. They may even self-terminate by conduction blocks if action potential

durations are too long. On the other hand, these limitations may be used as features

to initiate different types of arrhythmias with various pathways of reentry and dynamical

regimes.

7. Future plans

The eikonal-diffusion equation provides at low computational cost an accurate represen-

tation of the isochrones of a reentry. Since today’s computer power enables us to simulate

reentries in large scale reaction-diffusion models with detailed description of membrane ki-

netics, the goal is not to reduce the complexity of the system but rather to develop new

tools for initiating clinically relevant arrhythmias in computer models. Moreover, activation

maps computed in a coarse eikonal-diffusion model can be used as initial condition [9] in

more structurally-realistic volumetric models incorporating anisotropic fiber bundles and

anatomical structures [27, 28]. This will facilitate the creation of a database of simulated

episodes of arrhythmias including activation maps and electrical signals (electrograms, elec-

trocardiograms) that could be used to evaluate signal processing or diagnostic tools and

guide therapeutic interventions. During a clinical intervention, full propagation map may

be inferred from a set of sparse measurements to guide toward critical points in the circuits.
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Table 1: Matlab code for computing the building-block matrices Gradµ (Grad.µ), Divµ (Div.µ), Tt→v

(Tt2v) and Tv→t (Tv2t) for a triangular mesh defined by its nv vertices (VER) and nt triangles (TRI)

u = VER(TRI(:,2),:)-VER(TRI(:,1),:); % (u,v) is the basis of the triangle
v = VER(TRI(:,3),:)-VER(TRI(:,1),:);

u2 = sum(u.^2,2); v2 = sum(v.^2,2); uv = sum(u.*v,2); % compute scalar products
delta = u2.*v2 - uv.^2; % determinant
e = [1 1 1];

us = (v2./delta)*e .* u - (uv./delta)*e .* v; % (us,vs) is the dual basis of (u,v)
vs = (u2./delta)*e .* v - (uv./delta)*e .* u;

Gx = [-us(:,1)-vs(:,1) us(:,1) vs(:,1)]; % components of the gradient matrix
Gy = [-us(:,2)-vs(:,2) us(:,2) vs(:,2)];

Gz = [-us(:,3)-vs(:,3) us(:,3) vs(:,3)];

I = TRI; J = repmat(1:nt,1,3); % indices in the sparse matrices
Grad.x = sparse(J,I,Gx,nt,nv); % create the sparse matrices
Grad.y = sparse(J,I,Gy,nt,nv);

Grad.z = sparse(J,I,Gz,nt,nv);

St = repmat(sqrt(delta)/2,1,3); % area of the triangles
Tt2v = sparse(I,J,St,nv,nt); % temporary matrix
Sv = sum(Tt2v,2)/3; % area associated with each vertex
invS = spdiags(1./Sv,0,nv,nv); % inverse of vertex area
Tt2v = invS/3 * Tt2v; % interpolation triangle to vertex
Tv2t = sparse(J,I,1/3,nt,nv); % interpolation vertex to triangle

Div.x = invS*sparse(I,J,-St.*Gx,nv,nt); % create the sparse matrices
Div.y = invS*sparse(I,J,-St.*Gy,nv,nt);

Div.z = invS*sparse(I,J,-St.*Gz,nv,nt);
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Table 2: Matlab code for computing the linear system A∞ (Ainf) and f∞(finf) as a function of ϕ (phi)

for Dirichlet boundary condition on Γ (Gamma)

phit = spdiags(Tv2t*conj(phi),0,nt,nt); % value of phi on the triangles
Ainf = Div.x * phit * DGrad.x ... % matrix A inf

+ Div.y * phit * DGrad.y ...

+ Div.z * phit * DGrad.z;

Ainf(Gamma,:) = 0; % replace row i with row i of the identity matrix
Ainf(sub2ind([nv nv],Gamma,Gamma)) = 1;

finf = zeros(nv,1); finf(Gamma) = phi(Gamma); % right hand side f inf
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Table 3: Matlab code for computing the linear system A (A) and f (f) as a function of ϕ (phi)

Diff = Div.x * DGrad.x + Div.y * DGrad.y + Div.z * DGrad.z; % diffusion operator
phis = conj(phi); phit = Tv2t*phis;

Norm = sqrt( abs(CGrad.x * phi).^2 + abs(CGrad.y * phi).^2... % norm of the gradient
+ abs(CGrad.z * phi).^2 );

cv = 1./Norm; % propagation velocity
B = spdiags(CGrad.x*phis,0,nt,nt) * CGrad.x ... % matrix B
+ spdiags(CGrad.y*phis,0,nt,nt) * CGrad.y ...

+ spdiags(CGrad.z*phis,0,nt,nt) * CGrad.z;

A = Diff + 3/4 * Tt2v * (spdiags(cv,0,nt,nt) * ... % matrix A
imag(spdiags(Tv2t*phi,0,nt,nt) * B )) ...

+ 1/4 * imag(spdiags(phi,0,nv,nv) * ...

Tt2v * (spdiags(cv,0,nt,nt) * B) );

f = Tt2v * (Norm - 1) ... % right hand side f
- Div.x * imag( phit .* (DGrad.x * phi) ) ...

- Div.y * imag( phit .* (DGrad.y * phi) ) ...

- Div.z * imag( phit .* (DGrad.z * phi) );
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Figure 1: Activation maps computed using the eikonal-diffusion equation in a model of ventricular slice.

Activation time is color-coded. Isochrones (black curves) are displayed every T/20 where T is the period.

(A) Laplacian interpolation (D = ∞). The circuit serving as boundary condition is shown as a thick oriented

curve; (B)–(F) Solution to the eikonal-diffusion equation with D = 1, 0.5, 0.4, 0.3 and 0.15 cm2 from (B)

to (F) respectively.

25



35 40 45 50 55
160

180

200

220

240

260

280

300

Baseline conduction velocity [cm/s]

P
er

io
d 

of
 r

ee
nt

ry
 [m

s]

 

 
Reaction−diffusion
Eikonal−diffusion
L / CV

Figure 2: Period of reentry as a function of plane wave (baseline) conduction velocity in a ventricular slice

model. Circles: period of reentry simulated in a monodomain model (reference value); Upward triangles:

estimate of the period based on the eikonal-diffusion equation [Eq. (34)]; Downward triangles: estimate of

the period obtained by dividing the pathway length (L) by the plane wave conduction velocity (CV).
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Figure 3: Reconstruction of activation maps from sparse measurement data in geometry of the atria. Activa-

tion time is color-coded. Isochrones (solid lines: reference; dashed lines: reconstructed) are displayed every

T/20 where T is the period. Arrows indicate the direction of wavefront propagation. White circles denote

the position of the Ne = 60 electrodes. (A) Laplacian interpolation. (B) Solution to the eikonal-diffusion.

RA: right atrium; LA: left atrium; TV: tricuspid valve; MV: mitral valve; SVC: superior vena cava.
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Figure 4: Root mean square (RMS) error between reconstructed (Circles: Laplacian interpolation; Dia-

monds: eikonal-diffusion approach) and reference activation maps (monodomain simulations) in percentage

of the period T = 197 ms, as a function of the number Ne of measurement electrodes. RMS error is averaged

over 100 electrodes configurations (mean±standard deviation is shown as error bars). The dashed line is a

power law function fitted to data points.
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