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Abstract 30 
 31 

Correction of the QT interval in the ECG for changes in heart rate (RR interval) is 32 

needed to compare groups of patients and assess the risk of sudden cardiac death. The 33 

QTc represents the QT interval at 60 bpm, although most patients typically have a faster 34 

heart rate, thus requiring extrapolation of the QT-RR relationship.  35 

This paper investigates the ability of QT-RR models with increasing number of 36 

parameters to fit beat-to-beat variations in the QT interval and provide a reliable estimate 37 

of the QTc. One-, two- and three-parameter functions generalising the Bazett and 38 

Fridericia formulas were used in combination with hysteresis reduction (memory) 39 

obtained by time-averaging the history of RR intervals with exponentially-decaying 40 

weights. In normal men and women datasets of Holter recordings in normal subjects (24h 41 

monitoring), two measures were computed for each model: the root mean square error 42 

(RMSE) of fitting and the difference between the estimated QTc and a reference QTc 43 

obtained by collecting data points around RR = 1000 ms. 44 

The two- and three-parameter functions all gave similar low RMSE with 45 

uncorrelated residues. An optimal memory parameter was found that still minimized the 46 

RMSE and could be used for all functions and subjects. This reduction in RMSE resulted 47 

from changes in the parameters linked to the increased steepness of the QT-RR relation 48 

after hysteresis reduction. At optimal memory, the two and three-parameter models 49 

provided poorer prediction of the QTc as compared to the Fridericia's model in subjects 50 

with fast heart rates, since accurate representation of the steeper QT-RR relation 51 

worsened the extrapolation that was then needed to determine the QTc.  As a result, 52 
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among all models investigated, the Fridericia formulation offered the best trade-off for 53 

QTc prediction robust to memory and fast heart rates. 54 

 55 

56 
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  57 

 58 

 59 

Abbreviations  60 

B, F, P  : QT model; Bazett, Fridericia, power optimized 61 

Bo, Fo, Po : Bazett, Fridericia, power optimized  with offset 62 

QT  : QT interval 63 

JT  : JT interval 64 

QTX   : predicted QT for model X (X = B, F, P, Bo, Fo, Po, BJT, PJT)  65 

QTXc   : corrected QT for model X (X = B, F, P, Bo, Fo, Po, BJT, PJT) 66 

τ  : memory time constant (in beats) of the autoregressive filter 67 

m  : exponent of QT model 68 

K1, K2  : regression coefficient of QT model 69 

RR, RR  : RR interval, raw and with memory 70 
1
refQT    : QT reference at RR = 1000 ms=1 sec  71 

1QTX   : predicted QT at RR = 1000 ms by model X (X = B, F, P…) 72 

M  : Men 24-hour Holter group 73 

W   : Women 24-hour Holter group 74 

 75 

  76 
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1. Introduction 77 
 78 

Numerous studies have been devoted to the analysis of the QT vs. RR relationship 79 

in time series extracted from ECG recordings (Molnar et al., 1996; Malik et al., 2002; 80 

Pueyo et al., 2004; Malik et al., 2008a; Malik et al., 2008b; Halamek et al., 2010; 81 

Jacquemet et al., 2011; Cabasson et al., 2012; Pickham et al., 2012). Their aim was either 82 

to typify the QT dependency to RR among subjects and conditions, or to obtain a reliable 83 

estimate of the QTc  (QT at RR = 1 sec.) to be used for clinical or regulatory purpose 84 

(Isbister & Page, 2013; Rabkin & Cheng, 2015). Different functional representations and 85 

fitting criteria were considered (Pueyo et al., 2004).  In many instances, a set of QT vs. 86 

RR functions were fitted, the most performing being retained for each individual 87 

recording (Jacquemet et al., 2011). Since QT changes also display hysteresis upon RR 88 

variations, weighted time average of the RR has been used to account for the so-called 89 

memory effect (Malik et al., 2008a; Malik, 2014).   90 

 91 

Our goal is to further investigate the links between memory, the choice of the QT-92 

RR functions, the goodness-of-fit and the accuracy of QTc prediction. The paper covers 93 

the following topics: 1) Analysis of the ability of selected QT-RR functions, 94 

incorporating one to three adjustable parameters and weighted average RR corresponding 95 

to progressively decaying memory effects (a procedure referred to as hysteresis 96 

reduction), to reproduce the beat-to-beat dynamics of the QT intervals; 2) Comparison of 97 

the proportional and linear approaches to compute  QTc  from these QT-RR functions; 3)  98 

Evaluation the accuracy of QTc prediction by comparison with a benchmark obtained 99 

from QT values measured from episodes where the  RR was stable around 1000 ms.  100 
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 101 

The first section of the paper obtains, through the comparison of two alternative 102 

methods, a set of reference QT values that will be compared to the QTc predicted by the 103 

different models. Then, we examine whether optimal memory providing minimal QT vs. 104 

RR fitting errors should be subject- and/or model-specific. We also investigate whether 105 

the improvement of the fitting brought by memory results from specific changes in the 106 

values of the parameters and how these are related to the sex of the subjects and  the 107 

number of adjustable parameters in the models. Finally, two methods to estimate the  QTc 108 

are assessed. All these issues are studied in clinical recordings obtained from 24 hours 109 

monitoring. 110 

 111 

2. Methods 112 

2.1. ECG recordings  113 

ECG signals of a thorough QT study with crossover design (database “Thorough 114 

QT Study #2,” E-HOL-12-0140-008) were obtained from the Telemetric and Holter ECG 115 

Warehouse (THEW, Rochester, NY). 24-hour standard 12-lead Holter ECGs (1000 116 

samples per second) were recorded in 68 normal subjects during placebo delivery (27 117 

women, age: 47.1±7.8, 41 men, age: 39.8±10.8, T-test, p=0.004 ). The recordings were 118 

first resampled at 500 Hz and leads VR, V2 and V5 were selected to form an equivalent 119 

three-lead system.  120 

 121 

2.2. Preprocessing and time series extraction 122 

 123 
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ECG signals were band-pass filtered (0.01–100 Hz). An ECG fiducial point 124 

detector (Dubé et al., 1988) was applied to the magnitude of the signal (RMS of the three 125 

ECG leads) to identify the markers Q, R, S and T. The beginning (Q) and end (S) of the 126 

QRS were defined as the position corresponding to 2% of the maximum of the R wave 127 

before and after the peak value respectively. The marker R was set at the center of gravity 128 

of the QRS complex (median of the area between Q and S). The marker T (i.e. end of 129 

repolarization) was placed at the intersection of the baseline and the tangent at the 130 

steepest negative slope of the lowpass-filtered T wave (15 Hz cutoff frequency) (Xue & 131 

Reddy, 1998). QRS, QT and JT intervals were defined as S-Q, T-Q and QT-QRS 132 

respectively, and RR as the period between successive R markers.  In the sequel, QT(n), 133 

QRS(n) and JT(n) refer to the intervals within the n-th beat, and  RR(n) to the RR interval 134 

from the preceding beat.Markers were validated by examination of the QT and RR time 135 

series using a combination of ECG analysis software (Dubé et al., 1988) and Burdick 136 

Vision Premier Holter (Cardiac Science, Bothell, WA, USA) operated by experienced 137 

operators. After a preliminary automatic analysis, all individual RR and QT time series, 138 

as well as the ECG, were examined to remove ectopic beats,   compensatory pauses, 139 

episodes of arrhythmia and unreliable beats that may have been missed, as well as 140 

abnormal QT coming from noisy stretches of recordings. All analyses were performed 141 

using the validated time series consisting of normal sinus beats with reliable QT intervals. 142 

 143 

2.3. Memory 144 

The response of the QT interval to abrupt changes in heart rate is characterized by 145 

a slow adaptation, by which the change of QT lags behind the change of RR. Upon 146 
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successive increase and decrease of the RR,  the QT variation depends on the RR time 147 

course and displays hysteresis.  This is usually be taken into account by introducing an 148 

effective RR interval, denoted by RR and computed from the past RR intervals, which is 149 

then used to predict the QT. This is equivalent to filtering the RR time series. This filter 150 

may be chosen to be a moving average (Ehlert et al., 1992), a one- or two-parameter 151 

transfer function (Halamek et al., 2010; Jacquemet et al., 2011), be subject-specific 152 

(Pueyo et al., 2004; Malik et al., 2008a), or QT-RR hysteresis may be simply neglected 153 

(Molnar et al., 1996; Rautaharju & Zhang, 2002). We used an autoregressive filter 154 

approach that has been extensively validated (Jacquemet et al., 2014; Malik, 2014; Malik 155 

et al., 2016) and is defined by the formula: 156 

    1)-(nRR  c)(1RR(n) c(n)RR -+=   ,               (1) 157 

where 0 < c ≤  1 is the memory parameter. This is equivalent to exponentially decaying 158 

weights: 159 

 i)-RR(nwi)-RR(nc)(1 c(n)RR
0i

i
0i

i ∑∑
∞

=

∞

=

=-=   (2) 160 

 c)(11w 1k
k

0i
i

+

=

--=∑       (3) 161 

The model therefore discards the instantaneous effect of action potential duration 162 

restitution (Franz et al., 1983) on the QT interval in normal subjects during sinus rhythm. 163 

Some attention to this additional effect may be needed in the context of arrhythmia, 164 

exercise or tilt table test (Cabasson et al., 2012). 165 

The number of preceding beats needed to reach 95% of the total cumulative 166 

weight, denoted by τ = max(1, log(0.05)/log(1-c) - 1) was used to quantify the memory 167 

(Malik, 2014).  The memory parameter τ was varied from 1 beat (no memory, c = 1) to 168 
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500 beats (long memory, c ≅   0.006). For the sake of convenience, RR  was divided by 169 

1000 ms to provide non-dimensional normalized time series. 170 

 171 

2.4. QT models 172 

The Bazett’s and Fridericia’s formulas are the standard clinical representation of 173 

the QT vs RR relationship: 174 

3
1

2

2
1

2

(n)RR    KQTF(n):F) (modelFredericia
(n)RR    KQTB(n):B) (modelBazett 

⋅=

⋅=     , 175 

in which QTB(n) and QTF(n) refer to the beat-to-beat predicted QT by each function.  In 176 

this article, we chose to include the simplest extensions of these functions by allowing the 177 

exponent of the RR to vary and/or by adding an offset. In the sequel, we referred to these 178 

functions as models. The most general model, denoted by PO (adaptive power (P) with 179 

offset (o)) is expressed as: 180 

   m(n)RR    K  K(n)QTP:   Pmodel 21
OO ⋅+=   (4) 181 

where K1, K2 and m are parameters to be adapted to each subject. 182 

 183 

Additional models were created by applying the functions to the JT interval 184 

instead of the QT interval (Tsai et al., 2014). Since QRS duration only depends weakly 185 

on heart rate (5 to 8 ms variation for full RR range (Malik et al., 2008b)) and its beat-to-186 

beat determination is commonly less accurate than the QT, the JT time series was defined 187 

as QRSQT(n)(n) JT -= , where QRS was the mean QRS duration over the whole 188 

recording. Predicted QT values were then recovered by adding the subject-specific 189 
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QRS  to the predicted JT. This was done for the B and P model (BJT,PJT). The results of 190 

the FJT were the poorest among all models and are not presented. The effect of memory 191 

was also taken into account by fitting the models with RR computed from a large set of c 192 

values 193 

 194 

The BJT and PJT models are equivalent to setting the parameter K1 of the Bo and  195 

Po  model to the subject-specific QRS . There were introduced to test whether the K1 196 

parameter obtained by the fit was close to QRS . The eight different models are 197 

summarized in Table 1. 198 

Model Nb. of Parameters 

2/1
2 (n)RR    KQTB(n):  B ⋅=  1 

3/1
2 (n)RR    KQTF(n):  F ⋅=  1 

2/1
2

JTJT (n)RR    KQRS(n)QTB:  B ⋅+=  1 

m(n)RR    KQTP(n):  P 2 ⋅=  2 

m(n)RR    KQRS(n)QTP:  P 2
JTJT ⋅+=  2 

2/1
21

oo (n)RR    KK(n)QTB:  B ⋅+=  2 

3/1
21

oo (n)RR    KK(n)QTF:  F ⋅+=  2 

m(n)RR    KK1(n)QP:  P 2
oo ⋅+=  3 

Table I: The eight models and their number of parameters. 199 

 200 
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 Fitting was performed for each subject using an iterative least square method 201 

implemented in Matlab (nlinfit). To secure convergence in the three parameters PO 202 

model, the K1 and K2 parameters were first estimated from two-parameter optimization 203 

with m varying from -3 to 3 by step of 0.04. The variant with minimum residue was 204 

picked as initial condition for the final three-parameter optimization. Analysis was 205 

restricted to these models generalizing Bazett’s and Fridericia’s formula to allow for a 206 

comprehensive comparison of the parameters values between models as well as with 207 

respect to memory.  208 

 209 

The quality of the fits was assessed by the root mean square error (RMSE). Fitting 210 

does not necessarily reduce the dispersion of the QT around each RR value. A dispersion 211 

index was obtained for each subject by computing the QT standard deviation in 212 

successive RR bins of 40 ms width, ranging from 460 to 1400 ms. The dispersion index 213 

was calculated for each bin containing at least 40 beats. 214 

 215 

2.5. QT correction 216 

A single value for the QTc can be obtained by evaluating the fitted QT-RR 217 

relation at RR = 1. The resulting value was noted as 1XQT for the model X, X standing 218 

for P, PO, B, F, etc. However, when QTc has to be monitored over time, its beat-to-beat 219 

evaluation is needed. It can be obtained through two types of formulations, referred to as 220 

proportional and linear scaling by Rautaharju and Zhang (2002). The proportional 221 

evaluation (index p) is computed as 222 
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-⋅+= m1m

RR(n)

11K
RR(n)

QT(n)(n)QT cpX     .            (7)  223 

 224 

In the absence of offset (K1=0), a standard Bazett-like formula is obtained that 225 

still required fitting if m is a free parameter. The offset introduces a rate-dependent 226 

correction factor in the QTc estimation. The linear correction (index L) is formulated as 227 

( ) 2
m

2 K RR(n)  K-QT(n)QT +⋅=(n)XcL      (8) 228 

The mathematical derivation of the expected values of the mean and standard deviation 229 

of  1
cp X-(n)X QTQT    and 1

cL X-(n)X QTQT  are given in Appendix I. 230 

 231 

2.6. Reference value for the QTc 232 

In order to quantify the accuracy of the models at predicting the QTc, a reference 233 

estimate of the QT at RR=1000 ms is desirable. Ideally, it would be the QT interval 234 

measured after a long period at a stable RR of 1000 ms ( 1
refQT ), but such stable episodes 235 

were rarely present in the recordings. Two algorithms were developed to estimate 1
refQT . 236 

 237 

The principle of the first algorithm was to select the QT intervals from time 238 

windows in which the RR remained within a limited range around 1000 ms. The method 239 

had two parameters: (1) ΔRR, the acceptable range (ΔRR = 35 or 50 ms); (2) W, the 240 

duration of the window (W = 10 to 120 s by step of 10 s). For each segment of duration 241 

W, the mean (µRR(ΔRR;W)) and standard deviation (σRR(ΔRR;W)) of RR intervals were 242 

calculated. Windows were kept  if the interval µRR ± σRR and at least 90% of the RR were 243 
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within the interval 1000 ± ΔRR. The whole recording was scanned by steps of W/2, and 244 

the mean QT value (µQT(ΔRR;W)) was calculated for each acceptable window. The 245 

window-based estimated of 1
refQT , denoted by 1

W ref,QT , was computed as the average of the 246 

µQT(ΔRR;W) overall values of ΔRR and W. This method puts more weight on long stable 247 

intervals, since they contribute to multiple windows.   248 

 249 

In the second algorithm, the RR time series was filtered by a series of 250 

autoregressive filters as in Eq. (1) with  c = [1.5, 2, 2.5, 3, 4, 5, 7, 10, 25, 50] × 10-2.  For 251 

each value of c, the QT  of all beats for which the filtered RR was within the [975, 1025] 252 

ms range were averaged, giving an estimate 1
AR ref,QT (c). The final estimate 1

AR ref,QT  was 253 

taken as the average of 1
AR ref,QT (c) over all values of c.   254 

 255 

The two estimates 1
AR ref,QT  and 1

W ref,QT  were compared using pair Student T-test 256 

(equality of mean), F-test (equality of variance), Bradley-Blackwood test (equality of 257 

mean and variance together) and Lin concordance coefficient.  258 

 259 

2.7. Comparison of 1
refQT with QTc 260 

1
refQT  and QTc predicted by the different models were compared through repeated-261 

measure Anova, using Huynh-Feldt correction for significance. 262 

 263 

264 
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3. Results 265 

3.1. Reference QT interval at 1000 ms 266 

As expected (Stramba-Badiale et al., 1997; Malik et al., 2013), 1
AR ref,QT  and267 

1
W ref,QT were both longer in women than in men (p < 0.001 for both, Table 2). For men 268 

(M), there were no significant differences between the two measures. For women (W), 269 

there was a tendency for 1
AR ref,QT  to be slightly longer ( 1

AR ref,QT  - 1
W ref,QT , p=0.01, 95% 270 

confidence interval: 0.28-2.24 ms), but they nevertheless had a very high level of 271 

concordance. A shortcoming of the window method, beside its complexity, was that 272 

1
W ref,QT could not be calculated in one woman who had no acceptable window. Hence, 273 

1
AR ref,QT  was chosen as 1

refQT for further analysis. No 1
refQT  was above the values that have 274 

been proposed as clinical threshold for long QTc (Hofman et al., 2007). 275 

  276 
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 277 
 Men Women 

n 41 26 

)σ(μQT ARAR
1

AR ref, ±  373.0 ± 14.1 ms 401.9 ± 15.7 ms 

)σμ(QT WW
1

W ref, ±  372.9 ± 13.2 ms 400.6 ± 15.7 ms 

1
W ref,

1
AR ref, QT-QT  0.04 ± 3.36 ms 1.26 ± 2.42 ms 

Prob ( WAR σσ = ) 0.67 0.99 

Prob ( WAR μμ = ) 0.94 0.01* 

B-B 1.64 3.37 

Prob (B-B) 0.21 0.05* 

( )wARwAR µµµµρ +- ,  0.29 >-0.001 

Prob 0)(ρ =  0.08 0.99 

ccρ  
0.97 0.98 

 278 

Table 2: Comparison of 1
AR ref,QT  and 1

W ref,QT in each group. Prob: probability of the null 279 
hypothesis for each test. B-B: Bradley-Blackwood test; ρ : correlation between the sum and 280 

difference of the two values; ccρ : Lin’s concordance coefficient. 281 
 282 

3.2. Goodness-of-fit of the QT-RR relation 283 

 This section examines the ability of the different models to reproduce QT vs RR 284 

variations. Two questions are investigated: 285 

1) Using the fitting root-mean-square error (RMSE) as a yardstick, was there an 286 

optimal memory τ providing the best fit, and was this optimal memory specific to 287 

both subjects and models? We conclude that an optimal τ can be used for all 288 

models and all subject. 289 
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2) Was memory associated to a change of the values of the parameters of the 290 

models? We show that the answer depends on the number of parameters of the 291 

models. 292 

 293 

Fig 1. A,B: RMSE  of the models as a function of memory in men (M) and women (W). 294 
Note that the four 2-parameter models P, PJT, Bo and F0 are superimposed. C: Distribution 295 
of the model-subject optimal memory. The yellow lines are the position of the minimum 296 
RMSE   for each model from panels A and B, the dash line the value of  τopt . D: 297 
Distribution of the model-subject optimal memory RMSE. E:  Distribution of the 298 
differences between the model-subject optimal memory RMSE and the RMSE using τopt 299 
for all models and subjects.300 
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Effect of memory 301 
Figs 1 A,B show RMSE , the RMSE of each model averaged among subjects, as a 302 

function of the memory parameter τ for the M and W group respectively. In these, as well 303 

as in the curves for each subject (not shown), there was a minimum located as far as 20 304 

ms below the RMSE without memory. It is also noteworthy that curves of all 2-305 

parameters models are superimposed. 306 

 307 

The details of the subject-model-optimal τ (τ giving minimum RMSE for each 308 

subject and each model) are presented in Fig. 1(c). The B and F models had respectively 309 

the longest and shortest subject-optimal τ for both sexes. Women had shorter mean 310 

values, except for the Po model, in agreement with the results obtained by Malik for the 311 

Fridericia model (Malik et al., 2016). Still, these sex differences did not reached 312 

statistical significance (t-test, p > 0.25 for all models). This was substantiated by a 313 

Repeated Measures Anova (model*sex), which diagnosed a significant differences only 314 

between the models (model, p < 0.001), which vanished when the B and F models were 315 

discarded (p = 0.31). This suggested that the same subject-optimal τ can be used for all 316 

models, except possibly for the B and F models. 317 

 318 

Besides, the variation of RMSE  and of the individual RMSE vs τ were very 319 

shallow around their minimum.  To quantify RMSE sensitivity to τ, we calculated for 320 

each model and subject, the interval ( ) { }minmax ττModelSubj, -=∆τ  over which RMSE ≤  321 

min(RMSE(Subj,Model))+0.25ms. All ( )ModelSubj,τ∆  were over 75 beats, the mean 322 

values lying around 200 beats for each model, being even larger for the B model. There 323 
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were no ( )ModelSubj,τ∆  differences between M and W (Anova Sex*model, Sex: 324 

p=0.66, Sex*Model: p=0.42). Such a large gap enabled to select a single optimal τ for all 325 

subjects and models. In order to remain close to a minimum for all models taken together, 326 

we chose optτ  = 241 beats, close to the median of all model-optimal τ obtained from Fig. 327 

1A,B.  328 

 329 

Fig 1E displays the distribution of RMSE(Subj,Model)-RMSE( optτ ), which 330 

remained much below 0.25 ms except for a few subjects  with the B and F models  (max: 331 

model B: 0.64 ms; F=0.42 ms).  The robustness of the F model was conspicuous since the 332 

changes of RMSE from subject-optimal τ  to optτ  were minimal even if the former was in 333 

general shorter than τopt. 334 

 335 

In summary, it is possible to use a single τopt for all subjects and model, with large 336 

latitude in the exact choice. This reconciles our results with those of Malik et al. (2013) 337 

who reported an average QT/RR hysteresis of 113±16 sec (or 150±21beats for heart rate 338 

at 80 bpm) for 14 hour recordings in a large population of healthy subjects. 339 

 340 

 341 

 342 

 343 

 344 

 345 

 346 
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 347 

Model B F BJT P BO FO PJT P0 

 ( )RMSERMSE σ±  ms, No memory (τ=1) , 

M σ±µ 15.7± 3.8 11.6± 2.2 12.7.±

2.7 

10.9± 1.7 10.8± 1.7 10.9± 1.7 10.8± 1.7 10.6± 1.6 

W σ±µ 14.2± 2.5 12.3± 2.2 12.6± 2.2 11.9± 2.2 11.9± 2.2 11.9± 2.2 11.9± 2.2 11.8± 2.2 

Pr(M=W) 0.14 0.11 0.67 0.03 0.03 0.03 0.03 0.01 

optτ ,  

M σ±µ 8.6± 2.2 8.1± 1.6 7.5± 1.5 7.1± 1.4 7.1± 1.4 7.1± 1.4 7.1± 1.4 6.8± 1.3 

W σ±µ 8.8± 1.6 10.0± 2.1 8.7± 1.5 8.1± 1.5 8.1± 1.5 8.2± 1.5 8.1± 1.5 7.9± 1.4 

Pr(M=W) 0.25 <0.001 0.002 0.001 0.001 0.001 0.001 0.001 

RMSE(τ=1)-RMSE( optτ ) 

M σ±µ 7.1± 2.5 3.4± 1.5 5.2± 1.9 3.7± 1.3 3.7± 1.2 3.7± 1.2 3.8± .1.3 3.8± 1.2 

W σ±µ 5.4± 1.7 2.3± 0.9 4.0± 1.4 3.7± 1.3 3.7± 1.2 3.7± 1.2 3.8± 1.3 3.8± 1.4 

Pr(M=W) 0.002 <0.001 0.002 0.94 0.92 0.92 0.92 0.96 

 348 

Table 3: Mean and standard deviation of RMSE without memory and at τopt. Probability of 349 
Kruskal-Wallis test for equality RMSE in the two groups. The last line is the probability that 350 

RMSE(τ=1)- RMSE( optτ ) was the same in the two groups 351 
 352 

Fitting accuracy 353 

            The performance of the models could be ranked by their RMSE (Fig. 1D, Table 354 

3). The error was larger for the B, BJT and F model, which was expected since they had 355 

only one parameter. A striking feature is the quasi equivalence of all the two and three-356 

parameter models:  357 

• Their RMSE, both without memory and with optτ ,  differed only at or beyond  the 358 

first decimal within each group; 359 
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• Their decrease of RMSE at optτ  was the same, and identical in the two groups. 360 

 361 

 Finally it is also noteworthy that for all models except B, at optτ , women’s RMSE 362 

were up to 2 ms larger than men (p ≤  0.002). This difference can be explained by the QT 363 

vs RR Dispersion Index (Fig. 2), whose mean value remains systematically higher for 364 

women.  365 

 366 

Fig. 2 QT vs RR dispersion without memory (top) and with optτ  (bottom), Women (Red), 367 
Men (Blue). 368 
 369 

 370 

 371 

 372 

 373 
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.  374 

 W M Prob(M=W) 
μ(RR)  882± 113 891± 79 0.733 

( )( )1RR =τσ  125± 27 139± 27 0.032 
( )( )1RR =τσ /μ(RR)  0.14± 0.02 0.16± 0.03 0.028 
( )( )optRR τσ  106± 25 113± 25 0.155 
( )( )optRR τσ /μ(RR)  0.12± 0.02 0.13± 0.03 0.226 

( )( )optRR τσ / ( )( )1RR =τσ  0.85± 0.05 0.81± 0.07 0.066 
μ(QT)  384± 22 358± 19 <0.001 
( )QTσ  21.7± 4.9 19.5± 4.4 0.038 
( ) ( )1)RR(QT =τσσ  0.18± 0.03 0.14± 0.03 <0.001 
( ) ( ))RR(QT optτσσ  0.21± 0.03 0.17± 0.03 <0.001 

Table 4: Distribution of Mean μ(RR)) (QT),(µ   and standard deviation (RR)) (QT),( σσ  375 
of QT and RR, the later calculated without memory ( )1=τ  and at optτ . Means were 376 

compared using T-Test, and the other indices with Kruskal-Wallis Test 377 
 378 

Effect of Memory on RR distribution 379 

To grasp the effect of memory, we compared the standard deviations (σ) of the 380 

RR intervals without memory and at τopt. There was a wide variation of µ(RR) and 381 

))1(( =τσ RR  in both groups, with µσ  ranging from 0.10 to 0.18 (W) or .24 (M) (Table 382 

4). ))1(( =τσ RR  and µ  were positively correlated only in women (W: ρ  = 0.75, 383 

p < 0.001; M: ρ  = 0.19, p = 0.24). Memory unmistakably reduced σ(RR), on average 384 

15% in women and 19% in men. 385 

 386 

Effects of Memory on fitting parameters and residues 387 

Memory can reduce the RMSE by lessening the dispersion of the QT around an 388 

invariant QT vs RR relations. Larger σ(RR)σ(QT) , as seen in women relative to men 389 

and optτ  compared with 1=τ , also hints toward steeper QT vs RR slopes and a change of 390 
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parameters. The correlations of the residues ( ε(n) =QT(n) – QTX(n)) with m
RR , which 391 

provide an additional measure of the accuracy, are also considered to assess the quality of 392 

the models.  393 

 394 

One-parameter models (B, F, BJT)  395 

K2 B, 1=τ  B, optτ  F, 1=τ  F, optτ  BJT, 1=τ  BJT, optτ  

W 407.3± 15.1 408.5± 15.1 399.9± 13.6 400.5± 13.6 341.6± 13.0 342.6± 13.1 

M 377.1± 14.3 378.3± 14.4 371.3± 14.4 371.8± 14.5 306.7± 13.3 307.6± 13.4 

Prob B-F 

   BJT 

s <0.001,    Model: <0.001,    Memory: <0.001,  Model*Sex: 0.37    Memory*Sex:0.66 

     s <0.001                                   Memory: <0.001   Model*Sex: 0.68 

Table 5, Value of K2 for the B, F and BJT model, without memory ( 1=τ ) and at optτ .  396 
Prob are the probability of the different effect in the Sex*Model*Menory repeated 397 

measure Anova for B and F model, and Sex*Menory for the BJT model 398 
 399 
 400 

As seen in table 5, K2, the only free parameter of these models, was higher in 401 

women, which contributes their larger QT dispersion. However, it remained virtually 402 

invariant as a function of memory: ( ) ms 3 1)(K-)(Kmax0 22 ≤=< ττ opt  for the three 403 

models among all subjects. Nevertheless, since 1)(K)(K 22 => ττopt  in all cases, there 404 

was a similar small but systematic increase of the slope for both sexes. Therefore, RMSE 405 

reduction by memory relied essentially on the lessening of the RR dispersion. This is 406 

comforting regarding the clinical use of these models, since K2 was insensitive to the use 407 

of raw or weighted RR. The behavior of the BJT model highlighted the shortcoming of the 408 

models with fixed exponent without offset. The JT is the QT shifted by a constant, such 409 

that the slope of JT vs RR and QT vs RR should by the same. K2, which corresponds the 410 
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value of the JT at RR=1, was obviously lower but also brought a systematic reduction of 411 

the slope at all RR values. 412 

As seen in Fig. 3, there was a wide dispersion of residue ( ε ) vs RRm correlations 413 

( )( )mRR,ερ  that was not reduced by memory, although correlations were shifted 414 

upwards. As shown in Appendix I, this is a consequence of the absence of the parameter 415 

K1 that does not guarantee a null mean value of ε . Hence, the no-correlation criterion of 416 

fitting accuracy was not fulfilled in most subjects. 417 

 418 

Figure 3: Distribution of the correlation between the residues and RRm for the different 419 
models without memory (top) and τopt  (bottom) for M (blue) and W (red) group. The 420 
boxes cover the entire range of correlation, and the yellow lines show the median and 421 
first and third quartiles. 422 
 423 

The B model had negative correlations, indicating a systematic tendency to overestimate 424 

the QT at high RR values both without and at optimal memory (since ε(n) =QT(n) – 425 

QTB(n)). The BJT model had a similar trend at low memory, but the center of the 426 
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distribution was shifted toward 0 at optimal memory. It is noteworthy that even if the BJT 427 

model gave low RMSE (Fig. 1), its ε  vs. RR1/2 correlations were often substantial. The F 428 

model with optimal memory had rather the inverse trend to underestimate the QT at high 429 

RR. 430 

  431 

In summary, memory did not influence the value of the parameter of these 432 

models, but changed the distribution of the residues. For the three models, there were 433 

many instances of large ε  vs. RRm correlations in the W and M groups, impacting the 434 

quality of the prediction at either low or high RR values. This was also the case of BJT, 435 

even if it gave low RMSE. 436 

  437 
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 438 

The power models without offset (P and PJT) 439 

Since the two models gave similar results, only the P model is presented. Table 6 440 

summarizes the results for τ=1  and optτ .  441 

 m K2 (ms) ( )mRR,ερ  RMSE(ms) 

1=τ         W 

                 M 

0.35± 0.06 401.7± 16.3  0.001± 0.003 11.89± 2.18 

0.30± 0.06 370.8± 15.4  0.003± 0.007 10.86± 1.71 

optτ           W 

                 M 

0.45± 0.06 407.2± 17.0 0.001± 0.002 8.15± 1.47 

0.40± 0.06 375.4± 14.9  0.002± 0.004 7.11± 1.37 

Prob          S 
                 τ  
               S*τ  

<0.001 
<0.001 

0.53 

<0.001 
<0.001 

0.41 

0.88 
0.29 
0.95 

0.03, <0.001 
 
0.95 

Table 6. P model: Distribution of exponents (m) , K2,  ( )mRR,ερ , RMSE for the P and PJT 442 
models without memory (τ=1) and at optimal memory ( optτ ). The last row gives the significance 443 
of the sex (S), memory (τ ) and interaction (S*τ ). For m, K2 and ρ : S*τ  repeated 444 
measure Anova.  For ρ , the transformed variable ( ) ( )( )ρρ -+ 11ln5.0  was used for the 445 
test.  RMSE were compared using  Kruskall-Wallis test.  First line: S effect for each 446 
memory ( optττ ,1= ), last line: ( ) ( )optτRMSE1τRMSE -= . 447 
 448 

 449 

The parameters m and K2 were higher in W than M (p < .001), but memory 450 

brought similar increase in both groups (p ≥0.41), as well as equivalent RMSE reduction 451 

(p=0.95). The rise of these parameters increases the range of predicted QT and the mean 452 

slope of the QT vs RR function. Hence mean slope was larger in women. It was 453 

heightened by memory since it shifts the RR values toward the mean for short runs of 454 

low and high RR. As also seen in Fig 3,  ( )mRR,ερ  was suppressed in these models, 455 

even if the parameter K1 was absent.  456 
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Figure 4 shows the behavior of the P model as a function of m. Each subject had 457 

an exponent giving a minimum RMSE that was also recovered by fitting directly the two 458 

parameters. Hence, for the best exponent, the result is equivalent to a standard least-459 

square fit of QT vs bestm
RR .  These optimal exponents were distributed over an interval of 460 

~0.25, as broadly scattered in both groups (Fig. 4, M: green line, W: red line,). However, 461 

for each subject, there was an interval of about ± 0.1 around its optimal m over which the 462 

variation of RMSE was less than 0.5 ms. Considering only RMSE, this would suggest 463 

that the same exponent could be used for all subjects without much consequence. For 464 

τ=1, the exponent would be close to the 1/3 Fridericia’s value for both models, while at 465 

τopt, it would be near the 1/2 Bazett’s exponent for the PJT model (not shown). 466 

 467 

However, as seen in the middle column panels of Fig. 4, the variation of the ε  vs 468 

RRm correlations around the individual optimum m value was much steeper. The 469 

correlations at optimal m were low both at τ=1 and τopt (Fig. 3, Table 3), but varied 470 

steeply from positive to negative values as m increased. Exponents lower or higher than 471 

the optimal value tended respectively to under- or overestimate the QT at high RR. This 472 

also explains the distribution of the correlations for the B, F and BJT models shown in Fig. 473 

2. In conclusion, finding the individual best exponent was needed to reduce the residues, 474 

but above all to minimize their correlations with
m

RR . 475 
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figure 4:  P  models, without memory (upper panels) and at  τopt (lower panels). In each 476 
panel, men (M) are the bottom and women (W)  at the top. Subjects were ranked in each 477 
group by the value of m giving the minimum of RMSE. Left column panels: Δ(RMSE)478 
= RMSE(m)-min(RMSE). The green and red line indicated, for each subject the best 479 
value of m for M and W respectively contour curves correspond to the levels indicated on 480 
the ordinate of the colorbar at the right. Middle panels: correlation of the residue  ( ε ) 481 
and RRm. Contour curves are from -0.8 to 0.8 by steps of 0.1. Righ panels: Δ(K2) = 482 
K2(m)- K2(best m). Contour curves are from -10 to 10 by steps of 1.  483 
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 484 

Two-parameter models with offset (Bo and Fo) 485 

As seen in Fig. 1, the RMSE of these models were as low as the other two or three 486 

parameter models, the offset ensuring no correlation between residues and RR1/2,1/3. For 487 

all subjects, there was a perfect -1 correlation between K1(τ) et K2(τ), K1 and K2 488 

respectively decreasing and increasing with τ. As aforementioned, memory tends to 489 

increase the slope of the QT vs RR relation. In the B, BJT and F models lacking offset, K2 490 

was the only parameter to increase the slope, but its rise would also shift upward all 491 

predicted QT. The decrease of the RMSE that could be obtained through an increase of 492 

K2 was less than the increase associated with the upward shift, in such a way that the fit 493 

was always converging toward the same value of K2, irrespective of memory. In the Bo 494 

and Fo models, the K2-driven upward shift was corrected by a decrease in K1. However as 495 

seen in Table 7, memory brought a huge change of the parameter values. Besides, K1 was 496 

in general far from the mean QRS (M: 41.5± 55.4 ms, W: 33.6± 42.2 ms), such that the 497 

B0 and Fo model were not equivalent to the BJT and FJT 498 

 499 

Despite the huge variations of K1 and K2 upon memory, the increase of K1+ K2, 500 

which is the predicted QT at RR=1, was small but highly significant (p < 0.001), being 501 

similar for the two groups and the two models (Sex*τ : p=0.50,  Model*Sex*τ : 0.16).  502 

 503 

 504 

 505 

 506 
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 W M 

(ms) K1 K2 K1+K2 QRSK1 -

 
K1 K2 K1+K2 QRSK1 -

 

Bo 1=τ  112.1± 46.6 289.8± 56.9 401.8± 16.2 57.5± 36.5 145.9± 48.5 225.0± 51.3 370.8± 15.4 79.5± 45.9 

Bo optτ  35.6± 47.1 371.5± 59.9 407.1± 16.9 42.2± 32.7 70.4± 43.1 305.0± 47.2 375.4± 14.9 33.6± 25.3 

Fo 1=τ  -21.2± 69.1 422.8± 80.1 401.6± 16.2 90.4± 59.6 42.2± 69.5 328.6± 73.3 370.8± 15.4 61.3± 38.0 

Fo optτ  -135.0± 71.4 541.6± 84.1 406.7± 16.7 197.1± 71.4 -70.6± 62.4 445.8± 67.3 375.2± 14.9 137.7± 61.5 

P Sex:   <0.001 , Model : <0.001, Model*Sex: 0.02, τ : <0.001, Sex*τ =0.50, Model*Sex*τ : 0.16 

Table 7. Distribution of K1 and K2 parameters, and of the absolute value of K1 minus the 507 
mean QRS for the Bo  at Fo  model at  1=τ  and optτ . The last line is the significance of 508 
the effects of the Sex*Model*Memory Anova on K1+ K2 509 
 510 

  511 
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The three-parameter model (P0) 512 

The three-parameter P0 model barely decreased the RMSE as compared to two-513 

parameter models (P0 vs Bo, F0 and P models, RMSE difference < 1 ms across all 514 

subjects, memory and models). It thus appears superfluous to introduce an extra 515 

parameter to get such a tiny improvement of the fit at any value of τ.  516 

 517 

 518 
 519 
 520 
Figure 5: Po model without memory (left panel) and with  τopt (right panel). 521 

RMSE-min(RMSE) (ms) as a function of m  for each subject. In each panel, men (M) are 522 
at the bottom and women (W) at the top. Subjects were ranked in each group by the value 523 
of m giving the minimum of RMSE.  Contour curves correspond to the levels indicated 524 
on the ordinate of the colorbar at the left of each panel. Green and red line: position of 525 
min(ERMS) for M and W subjects respectively.  526 
 527 

 528 
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 529 

The variations of the parameters were very large. Fig. 5 shows, for each subject, 530 

the evolution of the RMSE as a function of the exponent, as well as the position of the 531 

exponent giving the minimum RMSE. The optimal exponents were distributed from ~ -532 

1.5 to 4.5 (M, τ=1: 1.17± 1.1;  τopt: 1.57± 1.12, W, τ=1: 0.94± 0.88;  τopt: 1.59± 0.92). 533 

However, each minimum was surrounded by an m interval with a width at least of 1 in 534 

which the RMSE varied by less than 0.1 ms.  Within these intervals, K1(m) and  K2(m) 535 

often varied a hundred fold or more, due to the change of sign of m and of the convexity 536 

of the function (m > or < 1).  537 

 538 

Besides minimizing the residue and the correlation, we also want the models to 539 

correctly predict the QTc, which is analyzed in the next sections. A quick test to gauge if 540 

the three-parameter model should still be considered is to analyze its K1+K2 values, the 541 

predicted QT at RR=1000 ms. For some patients, the difference between the P0 and the 542 

two-parameter models B0, F0 and P reached 15 to 20 ms, which indicated that the P0 543 

should be kept for QTc analysis. 544 

 545 

3.3. Comparison with the reference QT at 1000 ms 546 

Comparison using cQTX or 1 QTX  547 

As mentioned in the methods section, 1
refQT  can be compared either to 1 QTX548 

(model X evaluated at 1RR = ) or to cQTX , the mean of the beat to beat evaluation of the 549 

QTc. The latter can be computed using either the proportional (QTXcp(n), Eq. (7)) or 550 
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linear scaling (QTXcL(n). It is shown in Appendix I that, if 0ε =  and ( ) 0(n)RRε(n),ρ
m

= , 551 

which is always fulfilled for the models with offset  and was also found the P and PJT 552 

model (c.f. Appendix II): 553 

• 1
cpcL QTXQTXQTX ==    554 

• 
m

QTXQTX RRσσ
cLcp

≈   555 

Since 1> m > 0  for the all 2-parameters models as for most subjects for the Po model, 556 

and 
m

RR  most often < 1,  
cLcp QTXQTX σσ > for almost all subjects, and always close to 557 

1 for the others. The same result was found for the one parameter models. (Table A2, Fig 558 

A2 C). 559 

 560 

Since beat-to-beat variations of the QTc can inform us about the effect of different 561 

conditions on cardiac repolarization, the QTc(n) time series is relevant. The 562 

aforementioned conclusion (
cLcp QTQT σσ > ,otherwise 

cLcp QTQT σσ ≈ ) favored the choice 563 

(n)QTcL  for comparison with 1
refQT  and extraction of potential meaningful beat-to-beat 564 

fluctuations, as proposed by Rautaharju and Zhang (2002).  As shown in Appendix I, 565 

linear scaling has also an additional advantage. The correlations of QTcL(n) and the 566 

residues with RRm are the same such that, as a consequence of Fig. 3, the time series 567 

QTcL(n) from the 2- and 3-parameter models were not correlated with RRm. Furthermore,  568 

( ) ( )
( ) ( )cL

1
cL

2
0

22
0

2
ocL

QTXσQTXQTXσ

εRMSEεεε-εσQTXσ

=-

-=-==  569 
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Hence, once  1
cL QTXQTX -  is known, the variances can be obtained directly from the 570 

results of the fitting. For all models, including the one-parameter models, the linear 571 

formulation requires the data to be fitted.  It is not burdensome if enough data are already 572 

available to compute optimal RR. However, the only models that could be used for brief 573 

time series would be the B, F or BJT models with proportional scaling. In the next section, 574 

we compare (n)QTcL  to 1
refQT . To alleviate the notation, it is referred to simply as (n)QTc . 575 

 576 

Comparison of QTXc and 1
refQT  577 

Details of the QTXc vs 1
refQT  comparison are presented in Table 8  578 

 579 

Model B F BJT P PJT BO FO PO 

1
refcL QTQT -  

M ,τ=1 5.0± 6.0 -1.6± 4.9 1.2± 4.5 -2.1± 4.8 -2.1± 4.8 -2.1± 4.7 -2.2± 4.8 -2.0± 4.2 

M optτ  5.6± 6.0 -1.3± 4.9 1.7± 4.5 2.4± 4.6 2.5± 4.7 2.4± 4.6 2.3± 4.5 3.1± 5.4 

W, τ=1 7.7± 11. -0.3± 7.8 3.8± 8.6 1.6± 6.5 1.8± 6.6 1.8± 6.7 1.5± 6.5 2.3± .5.8 

W optτ  8.5± 11 0.2± 7.8 4.5± 8.5 7.1± 8.9 7.3± 9.2 7.1± 9.0 6.7± 8.5 9.6± 11.2 

 580 
Table 8:  cLQT -

1
refQT without memory and at optτ .  581 

 582 

2- and 3-parameter models 583 

The behavior of all 2 and 3 parameters models was identical and is illustrated by 584 

the P model in figure 6 A-D). For both men and women with mean RR < ~ 800 ms,  585 

cQTX  were overestimated for both men and women with mean RR < ~ 800 ms,  the 586 

difference being amplified to reach 20 to 30 ms at optτ . The effect was larger for the Po 587 



34 
 

model and for women. This can also be clearly seen following the position of the upper 588 

decile in fig. 7E. For subjects with mean RR > ~ 800 ms , 1
refc QTQTX -  varied from -10  589 

to 10 ms, with a positive correlation to mean RR without memory. This range was 590 

lessened and the correlation suppressed at optτ . 591 

 592 

B, BJT models 593 

The B, BJT models were similar to the aforementioned models, except that the 594 

results were not changed by memory. This was expected, since their parameter K2 has 595 

been shown to be invariant with respect to memory.  For subjects with mean RR > ~ 800 596 

ms, varied between -10  to 10 ms, with no correlation to mean RR, for subjects with mean 597 

RR > ~ 800 ms, the overestimation could reach 40 ms for women. 598 

 599 

F model 600 

The F model brought the more interesting results. It was invariant with respect to 601 

memory due to the memory invariance of K2. The width of the distribution of the  602 

1
refc QTQTX -  was similar to that of the  2 and 3 parameters models, but much more 603 

symmetrically spread  with a median close to 0, without systematic bias for subject with 604 

low mean RR. 605 

  606 
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Fig 6.  A-D) 1
refc QTQTX - = 1

refc QTQTX -  as a function of the mean RR values for the P 607 
model. Without memory: A) M, B) W; optτ : C) M , D) W . E): Distribution of 1

refc QTQTX -608 
: Men, without memory (black) and with optτ (blue), Women without memory (red) and 609 
with optτ (green). The yellow lines indicate the position of the median, first and third 610 
quartile, the brown lines, the first and ninth decile.  611 
  612 
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 613 
4. Discussion 614 
 615 

Memory reduced the RMSE of all models, thereby improving beat-to-beat QT 616 

forecast. The same optimal value could be used for all models, as well as for Men and 617 

Women. We have chosen optτ =241 beats, but the increase of RMSE was less than 0.25 ms in a 618 

range of at least 100 around optτ . Memory reduced the dispersion of the RR and increased 619 

the steepness of the QT vs. RR variation by pulling in the value of brief runs of long or 620 

short RR.   621 

 622 

The lone parameter of the standard B and F and related BJT models was invariant 623 

with respect to memory, such that improved RMSE (Fig. 1 A, B; Table 3) relied wholly 624 

on the reduction of RR dispersion. Although this stability could be clinically relevant, 625 

these models were less appropriate for fitting since they resulted in higher RMSE with a 626 

large distribution of residue vs. RR correlations (Fig. 3). However, the Fridericia model 627 

had interesting properties regarding QTc prediction. Its CQT were evenly spread around628 

1
refQT , and their scattering insensitive to memory due to the invariance of its parameter 629 

(Table 6). The dispersion of  its  1
refcL QTQT -  (Fig. 6), ranging from -15 to +15 ms and 630 

evenly spread around 0, was only slightly larger than those of the two and three-631 

parameter models without memory.  632 

 633 

All two-parameter models (Bo, Fo, P, PJT) offered proper and equivalent 634 

alternatives for fitting, reducing both the RMSE and the correlations of the residue with 635 
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RRm (Fig. 1, 3; Tables  3). As illustrated for the P model in Fig. 4, the fitted optimal 636 

parameters were robust, meaning that any deviation from these values induced a 637 

substantial change especially for ( )m
RR,ερ  and that they had to be specific to each 638 

subject. However, they were all providing overestimated QTc for subjects with  mean RR 639 

< ~ 800 ms, their  1
refcL QTQT -   becoming worse at optτ  and being larger for women (Fig. 640 

6). This could be explained by the slope of the QT vs RR relation, which was steeper for 641 

women and increased by memory, whereby improving the fit for data clustered at low RR 642 

led to overestimated QT at RR=1000 ms. This is further illustrated in Fig. 7, in which the 643 

data of each subject were selected over different range of RR,  smaller than 900 or 800 ,   644 

and then fitted to get the QTc. Moving the RR upper limit farther from 1000 ms led to 645 

greater   1
refcL QTQT - . 646 

 647 

  648 

 649 

 650 

 651 

 652 

 653 

 654 

 655 

Fig. 7 Distribution of 1
refc QTQTX - = 1

refc QTQTX -  at optτ for Men (top) and Women (Bottom) 656 
for each model. Fitting was done using all RR  (Black), or RR < 900 (Blue), < 800 (Red). 657 
< 700 (Green) ms. The yellow lines indicate the position of the median, first and third 658 
quartile, the brown lines, the first and ninth decile. Ordinate was restricted from -30 to 50 659 
ms, and some data of PO were beyond this interval. 660 
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 661 

Finally, the improvement of the fitting brought by three-parameter models was 662 

marginal. As shown in Fig. 5, the final optimal parameters were very sensitive since they 663 

could vary in a large range with negligible effect on RMSE and correlations. It also led to 664 

even or worse prediction of QTc than the two-parameter models, especially at optτ . 665 

 666 

It is noteworthy that all the characteristics of the above discussion applied to both 667 

the M and W groups. Besides, especially at optτ ,  the two and three-parameters models 668 

could enhance false long-QT diagnosis for subjects with low mean RR.   669 

 670 
 671 
5. Conclusion 672 
 673 

In term of QTc determination, Fridericia’s model was the best among the class of 674 

models that we examined and appears to be best suited for extrapolation. Its parameter 675 

was stable with respect to memory and there was no systematic trend in the difference 676 

between the predicted QTc and the reference values.  Regarding the beat-to-beat QTc 677 

fluctuations, all two-parameter models were equivalent and appropriate, except for their 678 

capacity to correctly extrapolate the value of the QTc for subjects with fast heart rate.  679 

 680 

 681 
 682 
 683 
 684 
 685 
 686 
 687 
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Appendix I 
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Least square fitting of     
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 826 
For model without the offset b, oε  can be 0≠ , and xx 0),( εερ -∝  827 
 828 
 829 
 830 
Consider the model: 831 
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 832 

where QTpr(n) and QT(n) are the predicted and measured values respectively, ε(n) the 833 

residues of the fit, RR (n) the normalized and possibly autoregressive-filtered beat-to-834 

beat interval, and 1
prQT  the predicted value at RR =1 that is also an evaluation of the 835 

QTc.  Using the procedure referred to as proportional scaling by Rautaharju et al. (2002), 836 

the beat-to-beat evaluation of the QTc is: 837 
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1
cp +=+=            (AI.1) 838 

The fluctuations of QTcp are an amplified with regard to ε(n)  if either m >0 and RR <1, 839 

or m<0 and RR  >1. 840 
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The mean value and standard deviation are  842 
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If   ε and 
m

RR are normally distributed, with  εε o= and ARR
m

=  with 845 

correlation coefficient ρ , they can be approximated as (Elandt-Johnson & L, 1980; 846 

Stuart & Ord, 1998) : 847 
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Hence, if  ε unbiased   0)ε (i.e. o = and 0=ρ , as in models with offset, 849 
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 852 

An alternative approach to calculate QTc(n), termed linear scaling by Rautaharju 853 

et al. (2002), is:  854 
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Then, by AI.3, AI.7: 858 
 859 
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which, by AI.5, can be approximated by 862 
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If  ε unbiased and 0=ρ ,  QT QT cLcp ≈  865 
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 By AI.4 and AI.10, 867 
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which, by AI.6, can be approximated by 870 
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If the mean of RRm < 1, without bias )0( o →ε  and correlation )0( →ρ ,   σσ

cLcp QTQT >  875 



46 
 

Appendix II 876 
 877 
 878 
II.1 Comparison of   cLQTX and cpQTX  879 
 880 
By definition 881 
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 888 
According to approximation AI.12, 0RRε

m
→ if oε and ( ) 0RRε, →

m
ρ , whereby 889 

1
prcLcp QTXQTX QTX ≈≈ . By construction, these two conditions are always fulfilled by 890 

models with offset. Both conditions were also found to be realized for the P and PJT 891 

models ( ( ) 0RRε, ≈
m

ρ  Fig, 3, Table 5, 0εo ≈ , Fig. A2 A and B). 892 

 893 

  For B and BJT models without memory,  oε could be up to 3 ms and 894 

0QTX QTX cLcp >- , but both quantities were reduced at optτ .  They were smaller for the F 895 

model, the median being always close to 0 for the two groups and two memories.  These 896 

small differences did not provide a convincing argument to select either QTcL or  QTcp.  897 

 898 
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  However,   for most subjects ( ) QTXσ cP  was larger than ( ) QTXσ cL (Fig. A2 C, 899 

Table A2). The few cases where ( ) QTXσ cP < ( ) QTXσ cL had 1RR
m

> , a result 900 

consistent with eq. A1.12. The P0 model had the largest ( ) ( )cLcP QTσQTσ  spread, 901 

resulting from its wide range exponents (Fig. 5) since ( ) ( ) m
cL

o
cP

o RR1/QTPσQTPσ ≈902 

in this model 903 

 904 
( )
( )cL

cP

QTσ
QTσ  B F BJT P BO FO PJT P0 

τ=1, M 1.11± 0.05 1.06± 0.03 1.10± 0.05 1.05± 0.03 1.06± 0.04 1.09± 0.05 1.06± 0.03 1.31± 0.41 

τ=1 ,W  1.10± 0.07 1.05± 0.04 1.09± 0.07 1.06± 0.05 1.08± 0.06 1.09± 0.07 1.06± 0.05 1.22± 0.29 

% >1     M 

               W 

98 

89 

98 

89 

98 

89 

98 

89 

98 

89 

98 

89 

98 

89 

83 

70 

optτ ,M 1.10± 0.05 1.04± 0.03 1.08± 0.05 1.06± 0.04 1.08± 0.05 1.08± 0.05 1.05± 0.03 1.40± 0.45 

optτ ,W  1.09± 0.07 1.05± 0.05 1.08± 0.07 1.08± 0.07 1.10± 0.08 1.08± 0.07 1.05± 0.05 1.36± 0.42 

% >1     M 

               W 
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85 
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85 
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85 

Table AII.1. Distribution of ( ) ( )cLcP QTσQTσ  without memory and at optτ in both groups. The 905 
third and sixth lines give the % of subjects for which ( ) ( )cLcP QTσQTσ > 1. 906 
 907 
 908 

 909 
 910 
 911 
 912 
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 913 

Fig. A2.  Men, without memory (black) and with optτ (blue), Women without memory 914 
(red) and with optτ (green). The yellow lines indicate the position of the median, first and 915 
ninth decile. For each model, distribution of A: oε (ms) ; B: 

o
m

εRRε - ; C: 916 

( ) ( )εRRε
m

σσ . In this last panel, the ordinate left scale applies to all models except Po, 917 
whose scale appears on the right.  918 
 919 




