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Abstract

Background: Mathematical models of electrical propagation in the atria necessitate the spec-

ification of fiber orientation, often visualized over the epicardial and endocardial surfaces.

Clear graphical representation of an orientation field over a surface remain challenging, which

hinders the comparison between published models.

Method: A method for the placement of evenly-spaced streamlines over a triangulated

surface is proposed. Streamlines tangent to an orientation field are integrated, starting from

a set of seed points. Distribution of seed points can be either uniformly random or located in

the vicinity of existing streamlines. Stopping conditions are designed to prevent streamlines

from getting closer than a threshold referred to as the separation distance. At each iteration,

the longest among candidate streamlines is kept. Streamlines are finally rendered on the

surface as tubes. The outcome is assessed subjectively by visual inspection and objectively

by measuring average streamline length and average lateral distance between streamlines.

Results: Fiber orientation fields are conveniently created by angle-based interpolation

from fiber tracts manually drawn based on literature review. The zebra-like representation

of evenly-spaced streamlines enables clear identification of local fiber orientation. The results

show that streamline density can be controlled since the lateral distance between streamlines
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is guaranteed to vary between 1 and 2 times the separation distance. Average streamline

length can be increased by using more seed points, which offers a trade-off between quality

and speed.

Conclusion: Evenly-spaced streamline visualization of fiber orientation facilitates the de-

scription and the comparison of fiber structure in computer models of the atria.

Keywords: orientation field interpolation; streamline integration; anisotropy; atrial fiber

structure; cardiac modeling
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1. Introduction

Computer models of electrical propagation in the atria have been developed to investi-

gate the triggers, the perpetuation mechanisms, the complex dynamics, the diagnosis and the

treatments of atrial arrhythmias [1]. Since the conduction properties of the cardiac muscle are

anisotropic, these models require knowledge about fiber structure. Specification of local fiber

orientation is typically based on anatomical description of major fiber tracts and gross fiber

structure or constructed from image-derived atlases [2–6]. This information can be mapped

onto a geometrical model of the atria using landmark points [7, 8], anatomically-driven co-

ordinate systems [9] or non-rigid registration [10]. Then, combined with the specification of

longitudinal and transverse conductivity including possible local alterations caused by fibro-

sis [11], electrical propagation can be simulated [1].

Comparison of fiber orientation between published models from the articles alone remains

difficult. A potential issue is inter-individual variability in anatomy and fiber structure [5].

Another one is visualization. Among different available graphical representations, the in-

terpretation of color-coded fiber angles [2] requires significant mental effort, quiver plots

on unstructured meshes are often constrained to have irregularly-spaced and too small ar-

rows [9, 12–14], line integral convolution representations [8] look nice but noisy and are only

locally coherent, and 3D tractography [5, 15, 16] works at its best when displaying an indi-

vidual bundle of fibers. Despite their qualities, these methods hardly match the clarity of

old-style manual drawings of gross fiber structure by anatomists [17].

Similar conclusions have been reached in the field of fluid velocity flow visualization [18].

This led to the development of computer graphics techniques for evenly-spaced placement of

streamlines in 2D geometries [19, 20]. Several improvements [21, 22], extension to 3D [23] and

projection on a 3D surface [24, 25] have been proposed. These approaches seem to be well

adapted for the visualization of fiber orientation fields. Note that orientation fields differ from

velocity flow fields in that they are static, have no magnitude and no direction of propagation,

which has an impact on streamline integration and stopping criteria.
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Several recent models of atrial fiber orientation are constructed from three surfaces [7, 9]:

the left atrial epicardial surface, the left endocardial surface and the right epicardial surface.

The right atrial trabeculated structure and the inter-atrial connections are handled separately,

like in previous models [26]. Then, either two layers are simulated [9] or fiber orientation is

interpolated within the thickness [8]. In the continuity of these works, the aim of our paper is

to develop and validate an algorithm for evenly-spaced streamline placement on a triangulated

surface with an orientation field. Our method is inspired by the 2D algorithm of Jobard et

al. [20] and differs from it by the choice of data structures more suited to our specific problem

on a 3D surface. Instead of focusing on the non-hidden faces of the mesh like the image-based

approach by Spencer et al. [24], streamlines will be generated over the whole surface. Test

cases will be generated by a new method for fiber orientation interpolation from major fiber

tracts on a surface.

2. Methods

The structure of this section is illustrated by the algorithm workflow shown in Fig. 1.

2.1. Parameterization of fiber orientation

Due to the thinness of the atria, fiber orientation is generally visualized on a surface.

Mathematically, this surface is a manifold S that has one or more boundaries. In this work,

it will be assumed that fiber orientation on that surface is defined by fiber tracts described

by a set of curves lying on the surface. These fiber tracts may be drawn manually on the

surface based on published anatomical data or mapped onto it using an atlas or a rule-based

approach.

Fiber orientation may be represented by a vector field v(x), x ∈ S, tangent to the fiber

tracts. Note that the orientation vector is defined up to a negative sign, i.e. v(x) and s(x)v(x)

define the same orientation for any (possibly discontinuous) function s such that s(x) = ±1.

The vector field v(x) may not be continuous. In fact, it may be impossible to create a
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Figure 1: Overview of the algorithm workflow: (A) orientation field interpolation on a triangulated surface;

(B) generation of evenly-spaced streamlines on a surface. References to the relevant subsections are indicated

below the boxes. The asterisk highlights human intervention.

smooth vector field that represents an orientation field, as shown by the counter-example of

an orientation rotating by half a turn along a closed curve, similarly to a Moebius stripe. This

is another difference between flow velocity fields and orientation fields.

These remarks suggest to define local orientation using an angle θ in the range (−π/2, π/2].

If there is a local orthonormal basis (el(x), et(x)) for x ∈ S, varying smoothly as a function of

x and without singularity, then the local transforms between angle and vector can be defined

as:

θ = sign(v · el) arcsin
v · et
∥v∥

(1)

v = cos(θ) · el + sin(θ) · et . (2)

Clearly, θ ∈ (−π/2, π/2] and θ(−v) = θ(v), with the (unusual) convention that sign(0) = 1. A

vector parallel to el (longitudinal) is mapped to θ = 0 and a vector parallel to et (transverse)

is mapped to θ = π/2. Reduction in dimension from 3 (vector v) to 1 (scalar θ) will facilitate

interpolation. However, it requires θ(x), and consequently el(x) and et(x) to be all smooth
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functions of x.

2.2. Reference orientation field

The reference orientation field needed for the interpolation procedure will be any smooth

vector field v0(x) such that v0(x) ̸= 0, ∀x ∈ S. It is important to note that this field does not

need to have any physiological relevance; it will only be used for interpolation. The local basis

will be reconstructed as el = v0/∥v0∥ and et = n × el, where n(x) is the outward-oriented

normal to the surface.

The smoothness condition prevents the use of coordinate systems with a singularity such as

the north pole of spherical coordinates or near the left atrial appendage in the universal atrial

coordinate system [9]. Singular coordinate systems can be used for specifying the location of

fiber tracts, but another system needs to be constructed for orientation field interpolation.

A simple approach is to derive v0 from the gradient of a coordinate variable u, i.e. v0 =

∇u, where ∇2u = 0 with u = 1 on a boundary (e.g. a valve) and u = 0 on another boundary

(e.g. the fossa ovalis or septum) [9]. By the maximum principle, u cannot have a global

maximum within the interior of the domain, but u might have a critical point, which would

create a singularity v0 = 0. To eliminate any risk of singularity, a solution is to map the

surface onto a planar domain using a surface parameterization technique. For triangulated

surfaces, one of the options is the Floater et al. mean value parameterization that maps a

surface with a border (e.g. a valve) onto a disk [27]. The resulting map pD(x) is guaranteed

to be bijective when the border of the surface is convex. The computational geometry package

CGAL provides an implementation of that method [28].

After the surface is mapped onto the disk, the Laplace equation ∇2uD = 0 for the coor-

dinate variable uD defined on the disk D is solved with uD = 1 on the outer border (circle)

and uD = 0 on an inner boundary such as the fossa ovalis. To reduce distortions around

other boundaries, notably the pulmonary veins, these boundaries are ignored (i.e. the holes

are filled). Under these assumptions, it can be shown that ∇uD cannot vanish [29]. The

solution uD is then mapped back onto the surface using u(x) = p−1
D (uD(x)), and the reference
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coordinate system (el(x), et(x)) is derived from the gradient of u. This procedure only has to

be performed once to generate a reference vector field v0 for the surface S.

2.3. Orientation field specification and interpolation

Among different ways to input surface curves, we chose an image-based approach. The 3D

triangulated surface is displayed on the screen and saved as an image. The transform from

3D coordinates to image pixels is stored (based on the model-view matrix in OpenGL [30]).

Curves are drawn manually on the image using the pencil tool of a paint program (GIMP/GNU

Image Manipulation Program) to provide maximum flexibility. Then, bitmap curves are seg-

mented (connected components) and vectorized (‘autotrace’ package in Linux distributions).

The triangulated surface is projected on the image using the 3D-to-pixels transform. Intersec-

tion between a vectorized curve and the projected triangular mesh gives a sequence of points

on mesh edges that defines a curve on the 3D surface.

On each triangle intersecting a surface curve, the orientation vector is set to the tangent

vector and the angle θ is computed from (1). As in phase map interpolation [31, 32], a

complex phase transform is applied to avoid phase wrapping issues. Because θ only covers a

range of length π, the complex phase ϕ is defined as ϕ = exp(2iθ). When fiber orientation is

assumed to be following the border of a boundary, the complex phase is specified accordingly

on the boundary vertices. Otherwise, von Neumann boundary condition is assumed. The

complex phase is then interpolated using Laplacian interpolation, and the vector field v is

reconstructed from (2) with θ = 1
2 arg ϕ. There may be points where ϕ is zero. Around

these singularities, fiber orientation changes abruptly. These situations may be topologically

unavoidable.

2.4. Integration of streamlines

Unlike in fluid dynamics, our streamlines are not oriented since the sign of the vector

is irrelevant. In a triangular mesh where the vector field is assumed to be constant in each

triangle, streamlines are polygonal lines with vertices lying on edges. Streamlines are therefore
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encoded as a sequence of edge identifiers and relative positions along the edge (coordinate

s ∈ [0, 1], s = 0 and s = 1 corresponding to the endpoints of the edge). They start at

a so-called seed point on an edge and propagate in both directions, jumping from edge to

edge [33]. These successive points are called the sample points of the streamline. This process

is illustrated in Fig. 2.
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Figure 2: Streamline integration and occupancy mask. The orientation vector v in each triangle of the surface

S is displayed as an arrow. The sample points of the streamline (light gray circles) are numbered from 0 to

4 and run in both direction starting from the seed point (number 0) until it hits a boundary or is stopped

by another criterion. The light blue area represents the set of points at a distance smaller than dsep from the

streamline. The dark blue edge segments indicate where the occupancy mask is set to 1. The dark gray dots

marked by an ‘a’ denote possible seed point candidates for the ‘random’ streamline placement method. The

dots ‘b’ are seed point candidates for the ‘neighborhood’ method. The dots ’c’ are at a distance dseed from the

baseline as delimited by the light gray area extending the occupied region, and correspond to the ‘distance’

method.

In a triangle P0P1P2, the edge vectors P0P1 and P0P2 are denoted respectively by x1

and x2. Without restriction to the generality, the seed point is assumed to be located on
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the P1P2 edge at P0 + (1 − s) x1 + s x2. The orientation vector is expressed in the local

basis as v = α1x1 + α2x2. The critical coordinate sc is defined as sc = α2/(α1 + α2). Note

that sc(−v) = sc(v). Algebraic calculations show that the next point of the streamline is

determined entirely by s and sc. If 0 < s/sc < 1, the next point is P0 + (1 − s/sc) x1.

Otherwise, the next point is P0 + (s − sc)/(1 − sc) · x2. This rule is applied iteratively

to reconstruct a streamline until one of the stopping criteria described in subsection 2.6 is

satisfied. Since sc depends only on the geometry and vector field, it can be precomputed

for the three edges of each triangles. Degenerate cases sc = 0, 1 or ∞ and s = 0 or 1 can

be handled by infinitesimal change in orientation vector or streamline sample point position

unless very high accuracy is needed.

2.5. Occupancy mask

In order to prevent streamlines from becoming closer than a separation distance dsep from

each other, it is necessary to create a data structure that keeps track of previously inserted

streamlines [20]. Grid data structures may be used to search in the list of all streamline

points, as done with vector fields on 2D and 3D regular grids [20, 23]. Because streamline

sample points are restricted to be on edges of the triangular mesh (see previous subsection),

we opted for an occupancy mask instead. This data structure stores for each edge of the

mesh a 64-bit mask describing whether each of 64 sub-segments of the edge are at a distance

smaller than dsep from another streamline (Fig. 2). Testing if a point on an edge is too close

to a streamline is therefore straightforward.

This approach involves two approximations. First, dsep must be larger than edge length

divided by 64. The resolution of our mesh is 1 mm which gives 15 µm accuracy for the

occupancy mask. The bit-length of the bitmask could be extended if needed. Second, the

masked region is assumed to have a polygonal shape since the occupancy mask only stores the

intersection between the masked region and the edges (Fig. 2). This is only an approximation

(see below). Nevertheless, the occupancy mask remains accurate on the edges, where the

sample points of the streamline lay. This means that our streamlines might be longer than
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what they should, but not shorter.

Updating the occupancy mask is more involved. The set of points located at a Euclidean

distance smaller than dsep from a streamline is the union of spheres centered on the sample

points of the streamline and cylinders aligned with streamline segments, all of them with a

radius of dsep. The intersections between the spheres/cylinders and the edges of the mesh are

computed, the bits corresponding to edge sub-segments located inside the spheres/cylinders

are set to 1 and these sub-segments are said to be occupied (Fig. 2). To accelerate com-

putations, the list of edges located at a distance smaller than dsep from each triangle is

precomputed. An advantage of these precomputations is that since the edges are looped over

using breadth-first search, edges that are close to the triangle in terms of Euclidean distance

but belong to another branch of the surface can be excluded, i.e. the list of neighboring edges

is guaranteed to be connected. This mitigates possible discrepancies between Euclidean and

geodesic distance. This issue would be more difficult to deal with if kd-tree search was used.

On the other hand, a disadvantage of the occupancy mask approach is that one cannot remove

a streamline from it.

2.6. Stopping criteria

Streamline integration is stopped when one of the five following conditions occurs: (1) the

maximum number of iterations (typically 1024, which sets buffer size) is reached; (2) the

streamline hits a boundary; (3) the streamline becomes too close to another streamline as

indicated by the occupancy mask; (4) the streamline undergoes an abrupt change in direction

or a U-turn; (5) a segment of the streamline becomes too close to another part of that same

streamline.

Criteria 1 to 3 have been described in previous subsections. The maximum number of

iterations can be set to an upper bound of plausible streamline length (e.g. 1 meter) divided

by the spatial resolution ∆x. Criterion 4 occurs when the angle between the orientation

vectors of two adjacent triangles is larger than a threshold value (π/2 by default; a threshold

of π disables the criterion). Interestingly, this condition does not depend on where on the
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common edge the streamline arrives and in which direction it propagates. This means that

criterion 4 can be precomputed for all edges.

Criterion 5 refers to nearly periodic streamlines [20]. This occasionally occurs when fibers

are winding around a vein. It is conveniently implemented as clean-up step after streamline

integration. The streamline is then shortened in order to satisfy the requirement. First, a kd-

tree of the streamline sample points is constructed and the list of pairs of points with distance

smaller than dsep is extracted (cKDTree.query_pairs from scipy.spatial in python). Some

of the pairs may be consecutive sample points along the streamline. To tackle this problem,

the curvilinear coordinate (from 0 to L where L is the length of the streamline) is computed

and only the pairs such that the difference in curvilinear coordinate is larger than 2 dsep are

kept. Scanning the streamline from an extremity, the streamline is cut when the second point

of any pair is reached. The remaining of the streamline is discarded.

2.7. Streamline placement

Streamline placement consists in selecting seed point candidates for streamline integra-

tion. The target is to achieve maximal coverage, larger streamline length and higher streamline

density. Coverage is defined as the percentage of the surface covered by streamlines and is

estimated from the occupancy mask. Streamline placement stops when coverage is 100%

which means that no more streamline can be inserted. Average streamline length Lavg is re-

ported. Streamline density is assessed using an approximation of the average spacing between

streamline computed as davg = A/(nLavg) where n is the number of streamlines and A is the

total area of the surface. In principle, davg > dsep. We will test the hypothesis that the ratio

davg/dsep is independent from dsep.

Different strategies have been proposed for streamline placement in regular grids [19, 20,

23]. The most successful approach has been to select seed points in the vicinity of already

placed streamlines [18]. Adapting these previous works to triangulated surfaces, streamlines

are placed one by one in successive steps. At each step, nseeds seed point candidates are

randomly drawn from a list of admissible locations.
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These admissible locations, some of which are shown in Fig. 2, are chosen using one of the

three following approaches: (1) In the ‘random’ method, all points outside the occupancy mask

are admissible. (2) In the ‘neighborhood’ method, admissible points are in the unoccupied

part of partially occupied edges. This guarantees that seed points are within a distance

ranging from dsep to dsep +∆x from an existing streamline, where ∆x is the edge length. (3)

In the ‘distance’ method, admissible points are at a distance of dseed = cseed ·dsep (where cseed

is equal to 1.3 [20]) of already placed streamlines. These points are identified by intersecting

cylinders constructed along the streamline with the surface in a way similar to occupancy

mask update. Points located in occupied sub-segments are discarded. If no admissible point

can be found (for example in the first step), seed points are randomly drawn within completely

unoccupied edges.

Streamlines are constructed for each seed point candidate without updating the occupancy

mask. Following a greedy algorithm design, only the longest candidate streamline is kept and

the occupancy mask is updated accordingly. This is expected to increase Lavg. When the

occupancy mask is fully covered, the iterations stop. By construction, at the end of the

procedure, the distance between a streamline and its nearest neighbor is at least dsep and at

most 2 dsep. Otherwise, another streamline would have been inserted between the two.

2.8. Streamline rendering

Streamlines are displayed as tubes. For this purpose, a regular polygon (4 to 8 sides) is

extruded along the streamline. The normal to the (atrial) surface helps keeping the alignment

between the vertices of successive polygons. The resulting tube is triangulated. Tapering

consists in making the extremities of each streamline look thinner. Tapering is often performed

by image post-processing [19], but is here implemented as a variation of the tube radius ρ

along the streamline:

ρ(s) = ρ0
(
1− e−s/λ

) (
1− e−(L−s)/λ

)
, (3)

where s is the curvilinear coordinate along the streamline, L is the streamline length, ρ0 is

the nominal tube radius and λ is the tapering length scale. We used ρ0 = 0.18 mm and
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λ = 2 mm.

2.9. Implementation and validation

The code has been mostly written in python with some critical parts such as streamline

integration and occupancy mask operations written in C++ interfaced using cython. The

visualization code, built upon pyopengl, is separated from the streamline placement software.

There has been no attempt to achieve real-time streamline computation. With some minimal

optimizations, the execution times range from 0.5 s to a few seconds (unless nseeds ≫ 100 or if

dsep ≪ 1 mm). The final geometry with the streamlines, though, can be rotated in real time.

The test case is a model of the left and right atria [34]. Its triangular mesh represents the

midmyocardium surface and is composed of 43,679 triangles with a resolution of about 1 mm.

The part of the septum wall that is common to both atria, referred to as the fossa ovalis in

the methods, is not included since it is intended to be handled separately, like the inter-atrial

connection bundles. The fossa ovalis therefore creates a hole in both atrial surfaces in this

model.

3. Results

3.1. Local basis vectors

The procedure for determining the local basis vectors (el(x), et(x)) is illustrated in Fig. 3.

Panel A shows how the atrial geometry is unfolded to define a planar parameterization of the

surface. The gradient of the field u(x), color-coded in panel A, is represented as streamlines

on panel B and C. Its orthogonal field, computed as the cross product with the vector normal

to the surface, is also displayed. This illustrates the local basis vectors (right side of panel

B). The streamlines appear to be separated by a distance ranging from dsep to 2 dsep. This is

particularly clear where streamlines are slowly converging or diverging.
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Figure 3: Generation of the reference orientation for interpolation. (A) Planar surface parameterization. The

field uD is color-coded. The boundaries are shown: pulmonary veins (PVs), fossa ovalis (FO), superior and

inferior vena cavae (SVC and IVC), coronary sinus (CS) and the mitral and tricuspid valves (MV and TV, the

exterior borders). The relative sizes of the holes are not physiological because the mapping pD(x) does not

preserve area. (B) Posterior view of the atrial geometry. Streamlines along and orthogonal to the orientation

field v0(x) are displayed. An example of local basis vectors (el, et) is shown. (C) Anterior view.
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3.2. Orientation field interpolation

A simple step-by-step example of fiber orientation interpolation in the left atrium is shown

in Fig. 4. Boundary conditions (fibers parallel to the boundaries) are sufficient to generate a

reasonable, but not physiologically-accurate orientation field (panel A). The addition of fiber

tracts corresponding to (part of) the Bachmann’s and septopulmonary bundles improves the

anterior left atrial wall (panel B). T-shaped lines enable the design of abrupt transition of

fiber orientation (panel C). Short lines in the appendage illustrate the ability to fine tune

local orientation (panel D). Gross fiber orientation can therefore be specified using a limited

number of lines.

3.3. Visualization parameters

Figure 5 shows how visualization parameters affect the output image. The placement

method (panel A) does not appear to have a major impact although the ‘distance’ method

(last on the right) seems to have slightly longer streamlines. A larger number of seed points

improves the maximization of streamline length, which can be seen in panel B. The minimal

separation distance dsep controls the distance between streamlines (panel C).

These observations are quantified and summarized in Fig. 6 using the average streamline

length (Lavg) and the (approximate) lateral distance between streamline (davg). Average

length Lavg is larger when more seed points are considered and when the separation distance

dsep is increased (panel A). Although the ‘distance’ method performs better for very few seed

points, the methods become similar for large nseeds. Little improvement is observed beyond

nseeds = 1000. As shown in panel B, there is a linear relation between davg and dsep, which

gives a way to specify dsep based on the desired value of davg.

Streamline length is further analyzed in Fig. 7 that shows a typical distribution of lengths.

Short streamlines (< 1 cm) are most common as they are needed to fill the holes and achieve

full coverage. On the other side of the spectrum, very long streamlines (> 20 cm) are also

generated that possibly wind several times around the geometry. The error bars on that figure
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Figure 4: Step-wise specification of gross fiber orientation by successive addition of fiber tracts. The manually-

drawn fiber tracts are shown on the left panels and the resulting fiber orientation on the right panels. (A)

Boundary conditions only; (B) anterior view; (C) posterior view; (D) small fiber tracts in the appendage.

Visualization parameters: dsep = 0.8 mm and nseeds = 1000 with the ‘neighborhood’ placement method.

16



A

B

C

Figure 5: Examples of visualization of the fiber orientation of Fig. 4D using different sets of parameters. (A)

Placement methods ‘random’, ‘neighborhood’ and ‘distance’ respectively from left to right, with nseeds = 1

and dsep = 1.5 mm; (B) ‘neighborhood’ placement with dsep = 2 mm and nseeds = 1, 10 and 1000 from left to

right; (C) ‘random’ placement with nseeds = 1000 and dsep = 1, 2 and 3 mm from left to right.
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Figure 6: (A) Average length of streamlines (Lavg) for 5 logarithmically-spaced values of the number of seed

points (nseeds). The minimum separation distance (dsep = 0.8, 1.6 and 3.2 mm) is color-coded. Marker

shape denotes the streamline placement method. Error bars are standard deviations over 16 realizations of the

streamline representation of the four fiber orientation fields of Fig. 4. (B) Average distance between streamlines

(davg) as a function of dsep for the three placement methods. The number of seed points (nseeds) is color-coded.

Error bars show standard deviation as in panel A. The regression line is davg = 1.376 dsep based on 540 data

points.
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provide a measure of variability between realizations of the (random) streamline generation

process.
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Figure 7: Histogram of streamline lengths for the orientation field of Fig. 4D using the ‘neighborhood’ placement

method with dsep = 0.08 mm and nseeds = 1000. Error bars are standard deviations over 16 realizations of

streamline generation.

3.4. Examples of fiber orientation field

Figure 8 gives an example of visualization of fiber orientation in an atrial model (left and

right atria; epicardial and endocardial surfaces). The fiber tracts used for orientation field

interpolation are displayed in Fig. 9. Our aim was to display on our atrial geometry a fiber

structure based on published models. We only attempted to reproduce the major features

that were present in these models (as far as our eyes could guess from published figures) and

suited to a surface representation. The choices involved in fiber orientation specification in

the vicinity of the circled numbers on Fig. 8 are described in Tables 1 and 2.

Realistic atrial fiber orientation is more complex and less smooth than typical rule-based

orientation. Experimentally-derived datasets may include spurious fibers, noise and artifacts.

To give some insights into the impact of these difficulties, a less coherent set of fiber tracts

was designed (Fig. 10A). The resulting streamlines feature abrupt changes in orientation but
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Figure 8: Example of fiber orientation field in the epicardial (left panels) and endocardial surfaces (right

panels). Three views of the same fiber structure are provided (top, middle and bottom rows). The circled

numbers refer to the rows of Tables 1 and 2.
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Figure 9: Example of fiber orientation specification in the epicardium (anterior and posterior views). The fiber

tracts manually drawn for constructing the orientation field by interpolation (Fig. 8, left panels) are shown as

black lines.
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Table 1: Description of fiber orientation in the epicardium of the model displayed on Fig. 8. These statements

may not be generally true in all patients.

Comment and references

1 The Bachmann’s bundle is represented as a separate surface for visualization. [35,

Fig. 1], [36, Fig. 2a]

2 Fiber orientation in the left atrial roof follows the septopulmonary bundle. [35,

Fig. 2b], [5, Fig. 5E]

3 Circumferential fibers run around the mitral and tricuspid valves. [14, Fig. 2], [9,

Figs. 1,7], [10, Fig. 2], [8, Fig. 2], [16, Fig. 3]

4 Fibers in the superior vena cava sleeve run longitudinally in the epicardium. [9, Fig. 7]

5 In the anterior part of the right atrium, fibers are interpolated between the Bach-

mann’s bundle and the circumferential fibers around the tricuspid valve. [13, Fig. 1C],

[14, Fig. 2], [36, Fig. 2a]

6 The right appendage has a complex fiber structure. Here the fibers run towards the

extremities of the appendage. [5, Fig. 1F]

7 The sleeves of the pulmonary veins are composed of circular bundles. [36, Fig. 2d],

[10, Fig. 2], [37, Fig. 2.3b], [38, Fig. 7C]

8 Between the pulmonary veins, fibers run towards the posterior wall. [36, Fig. 2c], [9,

Figs. 1,7], [10, Fig. 2], [36, Fig. 6b], [39, Fig. 4B], [38, Fig. 6A,7C]

9 Near the right inferior pulmonary vein, fibers rotate towards the right atrium. [5,

Fig. 5C]

10 There is an abrupt change of fiber orientation in the posterior wall of the left atrium.

[36, Fig. 2c], [9, Figs. 1,7], [36, Fig. 6b], [38, Fig. 6A]

11 In the region of the crista terminalis, fibers are longitudinally oriented in the direction

from superior to inferior vena cava. [9, Figs. 1,7], [10, Fig. 2]

12 Fibers coming from the intercaval bundle of the posterior right atrium wall run per-

pendicularly to the crista terminalis. [7, Fig. 2.4], [17, Fig. 4], [9, Figs. 1,7D]

13 In the epicardium of the right atrium free wall, fibers run parallel to the crista ter-

minalis towards the right appendage. [9, Fig. 7D], [16, Fig. 3]

14 Fibers in the inferior vena cava run circularly. [9, Fig. 7D]
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Table 2: Description of fiber orientation in the endocardium of the model displayed on Fig. 8. These statements

may not be generally true in all patients.

Comment and references

15 In the left appendage, fiber orientation differs in the epicardium and the endocardium

and combines both longitudinal and circular fibers. [14, Fig. 2], [10, Fig. 2], [9, Fig. 8],

[13, Fig. 1C], [38, Fig. 7C]

16 The endocardial sleeves of the superior vena cava are composed of circularly orientated

bundles. [5, Fig. 5B]

17 In pulmonary veins, fibers can be oblique and longitudinal. [15, Fig. 2], [9, Fig. 1E],

[40, Fig. S2], [41, Fig. 2]

18 Endocardial fibers run from the pulmonary vein region to the mitral valve. [5,

Fig. 5B], [39, Fig. 4B]

19 Pectinate muscles run perpendicularly to the crista terminalis. [9, Fig. 7C], [10,

Fig. 2], [5, Fig. 7]. These endocardial fibers are only intended to represent the smaller

bundles of the pectinates muscles. Thicker bundles require separate geometrical struc-

tures [13, 26].
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remain smooth (panel B). When uncorrelated random normal noise (standard deviation of

5 degrees) is added to the local orientation angles, streamlines tend to be shorter and less

smooth (panel C). With a noise standard deviation increased to 10 degrees (panel D), some

streamlines seem to propagate like cracks.

A B

C D

Figure 10: More complex example of fiber orientation specification in the anterior left atrium. (A) Manually

drawn fiber tracts; (B) interpolated orientation field; (C) random normal noise (standard deviation of 5 degrees)

added to the fiber angles of panel B; (D) noise standard deviation increased to 10 degrees.
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4. Discussion

We have extended and implemented an evenly-spaced streamline placement algorithm for

visualization of orientation fields on a triangulated surface. The approach was found to be

appropriate for displaying fiber orientation on an atrial geometry. Its clarity was somewhat

reminiscent of manual drawings by anatomists. The visualization can be enriched by superim-

posing a color-coded scalar field on the surface. Longitudinal or transverse conductivity, the

anisotropy ratio, or an activation map may be displayed on top of fiber orientation. Colorful

fluid dynamics examples can be found in [18].

Two main parameters controlling the graphical representation were involved: the minimal

inter-streamline distance dsep and the number of seed points nseeds per iteration. The number

of streamlines drawn is of the order of the spatial extent of the surface divided by dsep. The

number of seed points enables a trade-off between visual quality and speed. In addition, the

angle threshold for U-turn detection (stopping criterion 4) could be adjusted if needed but the

value π/2 was found to be adequate in all cases tested. Finally, for the ‘distance’ placement

method, the parameter cseed was set to 1.3 following the recommendation for 2D grids [20].

The outcome was not found to be sensitive to the choice of cseed. As in the 2D case [20], the

choice of placement method relies on subjective assessment of aesthetics. As a rule of thumb,

if nseeds is very small, the ‘distance’ method provides a good guess for seed points, and, in

contrast, when nseeds is very large, the ‘random’ approach explores a broader region of seed

point locations.

The implementation was intended for use with dsep of the order of ∆x. When dsep ≪ ∆x,

the edge bit-mask may have to be extended and the assumption of constant vector field within

each triangle may not be valid at that resolution. When dsep ≫ ∆x, the approximation of

geodesic distance by Euclidean distance may eventually become poor. The precalculation

of edge neighborhood over a radius of dsep also becomes more computationally expensive.

Computational speed was however not our main focus since fiber orientation is not dynamic

in simulations (unlike flow velocity fields). Streamlines were calculated and visualized in
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separate programs.

Among the limitations of the streamline approach, the orientation field is assumed to

be relatively smooth, with the possible exception of some discontinuities (singularities). If

the concept of local fiber orientation does not accurately represent the nature of tissue mi-

crostructure or when no fiber tract can be identified, our method may not outperform vector

field quiver plots. Isotropic regions and fiber crossing cannot be described by a single vector

field (two layers might be a solution in that case). Also, the surface must be a manifold.

Inter-atrial connections and the inter-atrial septum need to be displayed as separate surfaces.

Finally, the vector field is assumed to be tangent to the surface. The normal component is

simply ignored, but could be color-coded if present.

Figure 3 suggests applications of streamline placement beyond visualization, including

anisotropic surface remeshing, subdivision and parameterization, and distribution of points

over a surface.

5. Conclusion

Translation of fluid dynamics visualization techniques to orientation fields on a surface

enabled us to produce clear representations of fiber orientation on the atrial surface. The

distance between streamlines can be controlled and parameters can be adjusted to provide

a trade-off between quality and speed. This evenly-spaced streamline visualization approach

would facilitate the description and the comparison of fiber structure in computer models of

the atria.
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Janse, M. Häıssaguerre, J. M. T. De Bakker, Electrical conduction in canine pulmonary

veins: Electrophysiological and anatomic correlation, Circulation 105 (20) (2002) 2442–

2448.

32

http://dx.doi.org/10.1371/journal.pone.0141573
http://dx.doi.org/10.1371/journal.pone.0141573
http://dx.doi.org/10.1161/JAHA.117.005922
http://dx.doi.org/10.1161/CIRCEP.115.003064
http://dx.doi.org/10.1371/journal.pcbi.1006166
http://dx.doi.org/10.1371/journal.pcbi.1006166

	Introduction
	Methods
	Parameterization of fiber orientation
	Reference orientation field
	Orientation field specification and interpolation
	Integration of streamlines
	Occupancy mask
	Stopping criteria
	Streamline placement
	Streamline rendering
	Implementation and validation

	Results
	Local basis vectors
	Orientation field interpolation
	Visualization parameters
	Examples of fiber orientation field

	Discussion
	Conclusion

