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ABSTRACT:

Gap junctions exhibit nonlinear electrical properties that have been hypothesized to

be relevant to arrhythmogenicity in structurally remodeled tissue. Large-scale imple-

mentation of gap junction dynamics in 3D propagation models remains challenging.

We aim to quantify the impact of nonlinear diffusion during episodes of arrhythmias

simulated in a left atrial model. Homogenization of conduction properties in the pres-

ence of nonlinear gap junctions was performed by generalizing a previously developed

mathematical framework. A monodomain model was solved in which conductivities

were time-varying and depended on transjunctional potentials. Gap junction conduc-

tances were derived from a simplified Vogel-Weingart model with first-order gating

and adjustable time constant. A bilayer interconnected cable model of the left atrium

with 100 µm resolution was used. The diffusion matrix was recomputed at each time

step according to the state of the gap junctions. Sinus rhythm and atrial fibrillation

episodes were simulated in remodeled tissue substrates. Slow conduction was induced

by reduced coupling and by diffuse or stringy fibrosis. Simulations starting from the

same initial conditions were repeated with linear and nonlinear gap junctions. The

discrepancy in activation times between the linear and nonlinear diffusion models

was quantified. The results largely validated the linear approximation for conduction

velocities > 20 cm/s. In very slow conduction substrates, the discrepancy accumu-

lated over time during atrial fibrillation, eventually leading to qualitative differences

in propagation patterns, while keeping the descriptive statistics such as cycle lengths

unchanged. The discrepancy growth rate was increased by impaired conduction, fi-

brosis, conduction heterogeneity, lateral uncoupling, fast gap junction time constant,

and steeper action potential duration restitution.

a)Electronic mail: vincent.jacquemet@umontreal.ca
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Propagation of the electrical impulse in cardiac tissue is often modeled by

reaction–diffusion equations. The rationale behind the linear diffusion model is

that current flow between cardiac cells passes through intercellular connections

called gap junctions that act approximately as passive resistors. Experimental

electrophysiological recordings have demonstrated that gap junctions exhibit

nonlinear time-dependent dynamics when the transjunctional potential is large.

This criterion is met in tissues with very slow conduction, which typically occurs

in pathological, arrhythmogenic conditions. This raises the question of whether

nonlinear diffusion plays a role during an arrhythmia. In this paper, linear and

nonlinear diffusion are compared to assess the validity of the linear gap junction

hypothesis in the context of atrial fibrillation.

I. INTRODUCTION

Myocardial cells are connected to their neighbors through small channels called gap junc-

tions. The diffusion of ions through these gap junctions generates a current that couples the

electrical activity of neighboring myocytes.1 A gap junction is composed of two hemi-channels

formed from the assembly of six proteins (connexins, abbreviated Cx). These channels open

or close in response to factors including voltage and calcium ion concentration.2

In the atria, propagation of the electrical impulse is predominantly mediated by Cx40

and Cx43 gap junctions.3–5 The majority of gap junctions are located along the longitudi-

nal axis of the cells.6 Propagation is then faster in the longitudinal direction than in the

transverse direction. Furthermore, gap junctions present a larger resistance than the cy-

toplasm, thus slowing propagation and causing a non-uniform, discontinuous propagation

and a stair-step shaped spatial profile of membrane potential.5,7,8 During atrial fibrillation,

this non-uniform propagation may ultimately cause conduction blocks4 which may originate

from the remodeling of gap junctions.9,10 There is considerable evidence that cardiac injury

results in gap junction remodeling, marked by loss or lateralization of gap junctions, which

in turn is associated with decreases in conduction velocity and increased susceptibility to

arrhythmias.11–15

In first approximation, the gap junction current-voltage relationship is linear. After
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homogenization, the propagation equation becomes the widely-used monodomain reaction-

diffusion equation.16–19 When the potential across the gap junction is large, however, its

behavior becomes nonlinear and the kinetics of opening and closing of the channel enters in

action.5,20 This happens when conduction is very slow and the cell-to-cell activation delay

is long. The first approach for simulating nonlinear diffusion is phenomenological. For in-

stance, fractional,21–23 porous-medium,24 deformable-medium,25 electro-mechanical26,27 and

thermo-electric coupled28–30 diffusion have been proposed to generalize the monodomain

equation. An alternative is the bottom-up approach. Dynamical models of the kinetics

of the gap junction20,31–33 including its calcium-dependent gating34 have been developed.

Microstructural propagation models with subcellular discretization were built upon these

gap junction models to study the influence of nonlinear gap junctions on propagation.8,35,36

The discretization in these models is sufficient to investigate intracellular ion flow and the

role of intercalated discs.26,37 Ephaptic coupling can be introduced in a conduction model to

provide an extracellular pathway that may compensate for low gap junction expression.38,39

Finally, another approach is to reconstruct the geometry of the intracellular medium includ-

ing the pores (gap junctions) that connect neighboring cells.16,19,40,41 This requires extremely

fine discretization at the scale of a single gap junction. New simulation techniques may be

needed to help alleviate the computational load.42,43

Physiologists have postulated that gap junction nonlinear dynamics might contribute to

conduction slowing and to the maintenance of reentrant arrhythmia.33,44 Testing this hy-

pothesis in silico necessitates an organ-scale model in two or three dimensions and therefore

some form of homogenization to limit computational requirements (e.g., 100 µm instead

of 5 µm discretization). Hurtado et al.36 paved the way in that direction by deriving a

one-dimensional mathematical formulation of non-ohmic conduction that incorporates the

nonlinear current-voltage relationship of gap junctions.

In this paper, the Hurtado formalism is extended to two/three dimensions to simulate

atrial fibrillation in models with and without gap junction nonlinearity. This extension

will be facilitated by the use of an interconnected cable model of the left atrium, whose

mesh structure reflects the arrangement of fibers. Longitudinal and transverse coupling will

therefore be easily identified and separated. Our approach is top-down in the sense that it

starts from a given macroscopic linear diffusion model and creates nonlinear models that

are equivalent to the linear one in the small transjunctional potential limit. In addition,
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a simplified first-order kinetics model of gap junction gating is proposed to investigate the

effect of time constants.

II. METHODS

A. Nonlinear conductances in series

First, consider longitudinal propagation in a one-dimensional strand of cells. Each cell

has length Lcell and cross-section area Scell. The conductivity within the cell (cytoplasmic)

is denoted by σc. The conductance of the intracellular medium for longitudinal current flow

is written as

Gc =
σcScell

Lcell

. (1)

The potential difference between both ends of the interior of the cell is denoted by Vc.

The longitudinal current I flowing through the cell is therefore I = GcVc. Notations are

illustrated in Fig. 1.

gap 
junction 

Gc Gj Gc

Vc
Vj

~ 4 nm ~ 100 µm

V

myocyte 

FIG. 1. Model of a strand of cells. Illustration of the notations for the conductances and the

potential differences.

Assume that there is a density ρgap of gap junctions at the extremities of the cell and that

each gap junction has a non-linear conductance gj(Vj), where Vj is the junctional potential

(potential difference between the two sides of the gap junction). The total gap junction

conductance between two consecutive cells is

Gj(Vj) = ρgapScell gj(Vj) (2)

and the current flowing through the gap junctions is I = Gj(Vj) · Vj.
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The equivalent conductance is defined as the non-linear conductance function G(V ) de-

pending on V = Vc + Vj such that G(V ) · V = I. Because I = Gc · (V − Vj), we have:

Vj =

(
1− G(V )

Gc

)
V . (3)

Substituting this relation in G(V ) · V = Gj(Vj) · Vj = I, we obtain the formula for conduc-

tances in series

G(V )−1 = G−1c +Gj(Vj)
−1 , (4)

where Vj is a function of V given by (3). This is a nonlinear implicit definition of G(V ),

assuming that the function Gj(Vj) is known.

B. Equivalent conductivity with nonlinear gap junctions

The equivalent conductivity σ(V ) of the cell strand is defined by the relation

G(V ) =
σ(V )Scell

Lcell

(5)

which allows rescaling the equations:

G(V )

Gc

=
σ(V )

σc
and

Gj(Vj)

Gc

= ρgapLcell
gj(Vj)

σc
. (6)

Equation (4) becomes:

σ(V )−1 = σ−1c + (ρgapLcell gj(Vj))
−1 . (7)

Since ρgapLcell is not known, it may be more convenient to express the equivalent conductivity

in terms of σ0 = σ(0) which corresponds to the conductivity of the tissue when gradients

are small (V → 0) and current flows follow Ohm’s law:

ρgapLcell =
1

gj(0) · (σ−10 − σ−1c )
. (8)

Then, after defining the normalized conductance ĝj(Vj) = gj(Vj)/gj(0), Eq. (7) becomes:

σ(V )

σc
=

ĝj
σc
σ0
− 1 + ĝj

where ĝj = ĝj

((
1− σ(V )

σc

)
V

)
. (9)
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Practically, σ0 comes from a previously developed continuous ohmic model; σc is taken from

experimental data (σc > σ0); ĝj is derived from a gap junction model (see next Subsection).

Since ĝj(0) = 1, we have σ(0) = σ0 as expected. When V 6= 0, σ(V ) is first approximated

by σ0 and fixed-point iterations are used to solve the nonlinear equation.

C. Gap junction model

Vogel and Weingart proposed a nonlinear gap junction model with four-state Markov

model of channel gating.20 We developed a simplified model based on the instantaneous gap

junction conductance ginst(Vj), the steady-state conductance gss(Vj), and a first-order gate

popen with a fixed time constant τgap:

ĝj(Vj) = ginst(Vj) popen(t) (10)

dpopen
dt

=
gss(Vj)/ginst(Vj)− popen

τgap
(11)

The functions ginst(Vj) and gss(Vj) can be measured experimentally, as well as τgap. We used

the functions derived from the Vogel-Weingart model with the parameters from Brown et

al.8 The gates were assumed to be open at initial time: popen(0) = 1.

In the limit τgap → 0, the gate is always at steady-state popen = gss/ginst, so that ĝj(Vj) =

gss(Vj). In the limit τgap → ∞, we always have popen(t) = 1 and ĝj(Vj) = ginst(Vj). These

limit cases correspond to the Hurtado et al. model.36

D. Anatomical model of the left atrium

The one-dimensional Hurtado et al. model36 was extended to three dimensions by ex-

ploiting the structure of our bilayer interconnected cable model of the left atrium.45–47 The

general modeling approach is illustrated in Fig. 2. The geometrical model is composed of

a set of longitudinal, transverse and transmural cables intertwined like fabric threads, with

a spatial resolution of 100 µm. A computational node is typically part of three orthogonal

cables. Each cable is handled like a strand of cells following the approach of the preceding

subsections. A segment of a cable denotes the connection between two neighboring compu-

tational nodes and is associated with a gap junction state (a variable popen). Overall, the
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atrial myocardium is represented as a network of nonlinear resistors, each of which is either

longitudinal or transverse.
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FIG. 2. Modeling approach: (a) geometric model of the left atrium with the fiber orientation of the

epicardial layer; (b) illustration of the longitudinal and transverse cables; (c) diffuse fibrosis intro-

duced by random uncoupling; (d) stringy fibrosis generated by removal of consecutive transverse

gap junctions along longitudinal cables; (e) equivalent resistance between computational nodes; (f)

discrete formula [Eq. (12)] for computing the cell-to-cell potential difference; (g) rescaled formula

[Eq. (13)]; (h) gap junction model with two-state gate.

A possibly nonuniform conductivity value σ0 is assigned to each segment of the cables

in order to form a baseline propagation model with linear diffusion. Anisotropy is specified

by assigning a larger σ0 to longitudinal cables. Nonlinear diffusion is simulated by allowing

conductivities to change over time according to the current state of the gap junctions.

Finally, the monodomain equation is solved using the numerical methods presented in Saliani

et al.46 The solver outputs the membrane potential Vm(x, t) along each cable at time t, with

x being the curvilinear coordinate along the cable.

E. Algorithm for updating conductivities

The simulation of nonlinear diffusion requires to update the conductivity σ of cable

segments (initially set to σ0) and to recompute the finite-difference diffusion matrix. This
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update is performed every ∆t = 0.1 ms according to the following steps:

1. The cell-to-cell potential difference V is computed in each cable segment. The discrete

formula consists in calculating V as the difference in membrane potential Vm between

two consecutive nodes i and i+ 1 of the cable:

V ≈ V (i+1)
m − V (i)

m (12)

The monodomain assumption that the gradient of the intracellular and the trans-

membrane potentials are approximately the same is implied. If cable discretization

does not correspond to cell size, V could be rescaled:

V ≈
(
V (i+1)
m − V (i)

m

)
· Lcell

di, i+1

, (13)

where di, i+1 is the distance between nodes i and i + 1, i.e., the length of the cable

segment. Because of cell shape, the parameter Lcell may take a different value in

longitudinal and transverse cables. The application of Eq. (13) will be referred to as

scaling. Simulations will be performed with scaling or using the discrete formula.

2. The relationship ĝj(Vj) is determined from Eq. (10) based on the current value of popen.

This approximation is valid when ∆t � τgap. If τgap = 0, the function ĝj(Vj) is set

to gss(Vj), and if τgap = ∞, the function ĝj(Vj) is set to ginst(Vj). For computational

efficiency, lookup tables were used for these functions, as in previous works.35

3. For each cable segment, with V from step 1 and ĝj from step 2, Eq, (9) is solved

for σ by fixed-point iterations from σ = σ0. The junctional potential is calculated as

Vj = (1−σ/σc)V . Iterations terminate when the residual is smaller than 10−4 mS/cm.

More iterations were needed when σ0 was smaller and when V was larger (typically 1

to 5 iterations; up to 15 in the worst case). The intracellular conductivity σc was set

to 6.67 mS/cm.36,48

4. Forward Euler integration is applied to update popen using Vj from step 3, unless

τgap = 0 or ∞ in which case this step can be skipped.

5. The finite-difference diffusion matrix is updated for all cables.46
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F. Arrhythmogenic substrates

Two modified versions of the Courtemanche model49 were used for membrane kinetics.

The first parameter set (63% ICaL inhibition, 65% Ito inhibition, 73% increase in IK1) was

based on experimental data by Workman et al.50 and had a relatively flat action potential

duration restitution curve. The second one (30% ICaL inhibition, 80% Ito inhibition, 90%

IKur inhibition, 50% increase in IKr), proposed by Jacquemet et al.,51 reproduced the clinical

restitution curve (with a slope close to 1) measured by Kim et al..52 These models will be

referred to as “Workman” and “Kim” respectively.

The longitudinal conductivity (σ0) was set to 2, 1 or 0.5 mS/cm; the conductivity

anisotropy ratio was 4. Transmural coupling was weak (0.1 mS/cm) to reflect wall thickness

as far as a bilayer model allows.53 Diffuse fibrosis was simulated by randomly uncoupling

longitudinal and transverse cable segments (σ0 was locally set to zero). Fibrosis density was

10%, 20% or 30% in the model with a longitudinal conductivity of 2 mS/cm. This gave a

total of 12 substrates (2 membrane kinetics × 2 types of conduction slowing × 3 levels of

structural remodeling).

In addition, substrates with stringy fibrosis were created. A set of linear obstacles aligned

in the longitudinal direction, with Poisson-distributed length, were randomly generated as

described previously.46 These linear obstacles were formed by removing a set of consecutive

transverse gap junctions along a longitudinal cable (Fig. 2d). The fibrosis distribution was

characterized by the average length of obstacles (0.1, 1, 3 or 5 mm) and the fraction of

decoupled connections (5 values from 10% to 30%), leading to 20 substrates with stringy

fibrosis.

G. Simulation protocols

Sinus rhythm was simulated by injecting intracellular current in the Bachmann’s bundle

region. Atrial fibrillation was initiated by generating 4 fibrillatory initial conditions (each

with 4 phase singularities) using an eikonal-diffusion approach.54,55

For each of the 12 substrates and each of the 4 initial conditions, propagation was sim-

ulated for 1 s using linear gap junctions. Then, from the resulting state (defining the time

origin t = 0), simulations were run for 5.3 s with each of the 7 variants of our simplified
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Code Model Lcell τgap
L linear – –

D0 nonlinear no scaling 0

Siso nonlinear 100 µm 0

Saniso nonlinear 100 µm (long), 15 µm (trans) 0

D2 nonlinear no scaling 2 ms

D5 nonlinear no scaling 5 ms

D∞ nonlinear no scaling ∞

TABLE I. Gap junction models.

gap junction model (see Table I), leading to a total of 12× 4× 7 = 336 simulations. These

models differed by the time constant τgap and by the presence or absence of scaling applied

to the cell-to-cell potential according to Eq. (13). The time interval between t = 0 and

t = 5 s was used for the analysis. Exclusion of the preceding 1 s and the succeeding 0.3 s

(> 1 cycle length) eliminated boundary effects. The same protocol was applied to the 20

stringy fibrosis substrates, but only with the Workman model and the Saniso gap junction

model, which gave 20× 4 = 80 additional simulations.

H. Comparison of activation maps

In each simulation, activation time series were identified at 10,135 nodes evenly spread

over the epicardial surface using a threshold at −70 mV on the membrane potential. Ac-

tivation time series were compared to those simulated from the same initial condition with

the linear gap junction model (used as a reference). To quantify the time evolution of

the difference between two time series t0, t1, . . . , tn and tref0 , tref1 , . . . , trefm of possibly different

lengths, the mutual nearest neighbors between the two sets of activation times were identi-

fied (Fig. 3). The time difference ti − trefj between mutual nearest neighbors ti and trefj was

attributed to time trefj . Some activation times were left unpaired. Over all simulations, the

percentage of unpaired activation times was 0.94% (up to 7.6% in very slow substrates with

the Kim model).

These data were accumulated over all nodes, generating a list of pairs (trefj , ti − trefj ).

In order to uniformly sample this new signal, the root mean square of the discrepancies

ti − trefj was computed over a moving time window of duration 500 ms and steps of 10 ms.

This discrepancy curve (which starts at zero by construction) will be used to monitor the
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divergence between the evolution of two simulations.
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FIG. 3. Definition of the discrepancy in activation time between an activation time series (action

potentials in red) and a reference time series (blue). The pairing of activation times through mutual

nearest neighbors are shown in black.

To compare discrepancy curves, a robust measure of their slope was considered. If AUC

is the area under the discrepancy curve in the time interval [0, T ], the discrepancy growth

rate ω is defined as:

ω =
2 · AUC

T 2
. (14)

If the discrepancy curve increases linearly from zero, ω is equal to the slope of the line.

We used T = 2.5 s to avoid the regime where the discrepancy saturates; ω was expressed

in ms/s.

III. RESULTS

A. Gap junction model

The main characteristics of the simplified gap junction model are presented in Fig. 4.

The instantaneous normalized conductance ginst is close to 1 when the junctional potential

is smaller than 30 mV (panel A). The steady-state normalized conductance gss decreases

significantly for larger junctional potentials. The time dependency of the normalized con-

ductance ĝj is illustrated by voltage clamp protocols (panel B). A step variation in junctional

voltage results in an exponential decrease in normalized conductance with a relaxation time

of τgap. These relationships are similar to experimental measurements by Lin et al.5,33

Both intracellular conductivity and gap junction conductance contribute to the equivalent

tissue conductivity σ. Since only gap junctions exhibit nonlinearity, the effect of nonlinearity

is reduced when a large part of the resistance comes from the intracellular medium (i.e. when

σ0 is large). Figure 4C shows that larger values of σ0 (faster conduction velocity) result in
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FIG. 4. Voltage clamp of the nonlinear gap junction model. (A) Instantaneous and steady-state

normalized conductance function. (B) Normalized conductance ĝj during a voltage clamp protocol

consisting of a step in Vj from 0 to 20, 40, 60, 80 mV at time t = 0 in an isolated gap junction

with τgap = 2 ms. (C) Ratio of conductivity σ/σ0 obtained by solving Eq. (9) where ĝj is the

steady-state normalized conductance gss, for four different color-coded values of σ0. (D) With the

same color code as panel C, simulated voltage clamp with a step of 80 mV (τgap = 2 ms).

an increase of the ratio σ/σ0 (it becomes closer to 1). In case of slow propagation (σ0 → 0)

where gap junction resistance dominates, gap junction nonlinearity fully translates into

equivalent conductivity nonlinearity. The same is observed on the time evolution of σ/σ0

during a voltage clamp protocol (panel D). Note that the apparent time constant of the

exponential decay is prolonged when σ0 is larger.

B. Propagation in one dimension

Conduction velocity (CV) was measured in a uniform cable with different conductivity

values and gap junction models (Fig. 5A for the Kim model) using linear regression of the
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activation times in the middle third of the cable. Spatial resolution was either 100 µm or

15 µm to represent discrete propagation in the longitudinal or transverse direction. The the-

oretical relationship CV∝ √σ0 was verified even for the lowest conductivities (< 0.1 mS/cm)

with the finest discretization (transverse propagation). The effect on gap junction nonlin-

earity was < 0.6% even at the lowest conductivities. Conduction was slower with 100 µm

discretization (longitudinal) relative to 15 µm. Nonlinear gap junctions resulted in further

conduction slowing, particularly in conditions where CV < 10 cm/s. Effect size was about

2.1% when σ0 = 0.5 mS/cm, and increased to 34% when σ0 = 0.1 mS/cm (for τgap = 0).

The larger the time constant τgap, the smaller the effect size.

The origin of conduction slowing caused by gap junction nonlinearity is illustrated in

Fig. 5B, where the time evolution of the conductivity σ is shown for different values of σ0

and τgap. During the depolarization phase of a cell, the junctional potential with respect

to the next cell (still near its resting state) increased, leading to the progressive closure of

the gates and therefore to a decrease of the conductivity σ. The gap junction recovered

quickly after the next cell was depolarized. This gave a time window of < 2 ms during

which conduction was depressed. Larger τgap values resulted in smaller but longer-lasting

effects on σ. Note that at 5 cm/s, the time delay between the activation of consecutive cells

is 2 ms, which explains the location of the peak in the left panel.

C. Sinus rhythm activation

Sinus rhythm was simulated in the 12 substrates with the different linear and nonlinear

gap junction models of Table I. CV was computed by linear interpolation of activation times

within 19,996 triangles obtained from a triangulation of the epicardial surface. The median

CV over the surface was documented, which included both longitudinal and transverse

propagation. Median CV ranged from 16 to 39 cm/s. The relative difference of CV between

linear and nonlinear gap junction models was < 1% when CV > 25 cm/s and was in the

interval from 1 to 5% when CV < 20 cm/s. These small percentages translated into a

maximum delay of 0.5 ms for a total activation time of 202.7 ms when the longitudinal

conductivity was σ0 = 2 mS/cm. Longer delays (> 10 ms) were however observed in slow

substrates where total activation times was up to 400 ms. The delay between the linear

and the nonlinear models tended to be proportional to the length of the pathway from the
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FIG. 5. Propagation in one dimension using the Kim cell model with different gap junction model

parameters. (A) Conduction velocity as a function of tissue conductivity σ0 in a cable with dis-

cretization ∆x = 15 µm (dashed lines) or 100 µm (solid lines). The time constant τgap is color-coded

in different shades of blue. The black curves represent simulations with linear gap junctions. The

black dashed line (100 µm; linear gap junctions) is hidden behind the blue dashed lines (100 µm;

nonlinear gap junctions). (B) Evolution of the conductivity ratio σ/σ0 at the midpoint of the cable

with 100 µm resolution for different values of τgap (color-coded). The baseline conductivity σ0 is

0.1 mS/cm (left panel) and 0.3 mS/cm (right panel). The time t = 0 corresponds to the activation

of the cell adjacent of the cable segment for which σ is reported.

stimulus site, as illustrated in Fig. 6.
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FIG. 6. Activation times during sinus rhythm along a path from the initiation site and the latest

activated site (blue line on the atrial surface). This line follows mostly but not exclusively longi-

tudinal fibers. Activation times in the linear model (blue dots; model L) and in a nonlinear model

(red dots; model D0) are compared. The six substrates with the Kim cell model are represented.

For the sake of clarity, the substrates with fibrosis (density indicated above each curve) are shifted

by 400 ms with respect to the substrates with reduced coupling (longitudinal conductivity indicated

above each curve).

D. Reentry in two dimensions

To study abnormal propagation in a simple setup, a functional reentry was initiated by

creating a spiral-like initial condition55 in a 10 by 10 cm planar sheet of tissue (100 µm reso-

lution) with a uniform isotropic conductivity of 0.3 mS/cm2 using the Kim or the Workman

cellular model, and either a linear or a nonlinear gap junction model (L and D0 models from

Table I). The area of the square tissue was similar to that of the left atrial model.

Simulated wave dynamics are illustrated in Fig. 7 A–B. With the Workman model (panel

A), a single stable spiral wave was observed. Nonlinear gap junctions only resulted in a

small time shift of the activation pattern because of the slightly slower conduction velocity

measured in the previous subsection. In contrast, the Kim model generated meandering

waves and wave breaks. After about 1 s of simulation, a qualitative difference between the

linear and the nonlinear gap junction models appeared when a conduction block occurred

with the nonlinear model only (panel B). Wave dynamics progressively diverged after that
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FIG. 7. 2 (A)–(B) Membrane potential maps at different time instants in a 2D model with linear

(L; first row) and nonlinear gap junctions (D0 model; second row) using the Workman model

(panel A) or the Kim model (panel B). Membrane potential is color-coded (blue = rest; yellow

= depolarized). The red arrow indicates the location of a conduction block not present in the

linear gap junction model. (C)–(D) Trajectories of phase singularities during the first 1800 ms of

the simulations of reentries of panels (A) and (B) with linear (green curves) and nonlinear (red

curves) gap junction models, using the Workman model (panel C) and the Kim model (panel D).

The lightness of the color is associated with time evolution. The star denotes the initial phase

singularity location. Note the differences in space scales. (E)–(F) Discrepancy in phase singularity

location (PS error) between the linear and the nonlinear models with the Workman model (panel

E) and the Kim model (panel F). The curve in panel F stops when the reentry self-terminates in

the linear model.

event (t = 1500 ms).
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To better describe the phenomena near the core of the reentries, phase singularities were

identified and their trajectories were reconstructed,56 as shown in Fig. 7 C–D. With the

Workman model, phase singularity trajectory was flower-like (panel C), the petals being

time- or phase-shifted between the linear and nonlinear gap junction models. The Kim

model led to more significant differences in trajectories. The fibrillation in the linear model

self-terminated after about 5 s while reentries were still present in the nonlinear model after

10 s. Random time to self-termination is indeed a common feature in multiple meandering

reentrant wave models of fibrillation.

The discrepancy in phase singularity positions between the linear and nonlinear models

was quantified as the root mean square distance between each phase singularity in either

model and the nearest one from the other model. When there was only one spiral (Fig. 7 C),

this simplified to the distance between the corresponding phase singularities in the two

models. The time evolution of that discrepancy is plotted in Fig. 7 E–F. The discrepancy

slowly increased with the Workman model (panel E) and eventually became of the order of

the size of a petal of the flower-like trajectory (> 2 mm). With the Kim model, after about

1 s of regular increase, the discrepancy jumped to larger values (2–4 cm), demonstrating

that the evolution became radically different. On the other hand, the mean number of phase

singularities was only slightly larger in the nonlinear model as compared to the linear model

(5.46 vs 5.34).

E. Simulated atrial fibrillation

Examples of AF simulations with linear (L model from Table I) or nonlinear gap junctions

(D0 model) are presented in Fig. 8. The L and D0 simulations started from the same initial

condition (first column of Fig. 8). Because of the slightly slower conduction velocity in the

D0 model, a delay progressively built up (panel A). Ultimately, the delay became sufficient to

alter refractoriness and wavefront propagation (panel B, t = 2400, 3200 ms). With the Kim

cell model featuring steeper restitution, small changes evolved into qualitative differences

such as the appearance (panel C, t = 1610 ms) or the suppression (panel D, t = 1670 ms) of

a conduction block, eventually resulting in an apparently uncorrelated wavefront dynamics

(t > 2000 ms).

Out of 336 AF simulations, 18 self-terminated before 5 s, all with the Kim cellular model
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FIG. 8. Membrane potential maps at 5 time instants in models with linear (L; first row of each

panel) and nonlinear gap junctions (D0 model; second row). Membrane potential is color-coded

(blue = rest; yellow = depolarized). Red arrows indicate the location of conduction blocks. (A)

Workman model with uniform longitudinal conductivity σ0 = 0.5 mS/cm; (B) Workman model

with 30% fibrosis; (C) Kim model with σ0 = 1 mS/cm; (D) Kim model with 20% fibrosis.

and faster CV. Due to the random nature of self-termination, AF duration in models with

nonlinear gap junctions were sometimes longer and sometimes shorter than the correspond-
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Model Cycle length (ms) #Wavelets

Workman model

Linear 142.2 ± 3.8 2.57 ± 0.63

Nonlinear 142.4 ± 3.9 2.59 ± 0.65

Difference p = 0.65 p = 0.88

Kim model

Linear 254.2 ± 6.67 1.96 ± 0.31

Nonlinear 254.5 ± 5.63 1.96 ± 0.30

Difference p = 0.82 p = 0.90

TABLE II. Characteristics of atrial fibrillation dynamics, linear (n = 24) vs nonlinear (n = 144)

gap junction models; p -values from paired t-test between matching simulations.

ing AF episodes in a model with linear gap junctions.

The mean cycle length and the mean number of wavelets (defined as connected regions

with membrane potential > −70 mV) were computed in all simulations. These quantities

are documented in Table II for the two cell models. The results demonstrate that although

the evolution was sometimes diverging in models with linear vs nonlinear gap junctions (e.g.,

Figs. 8C–D), the statistics of wavefront dynamics remained essentially the same.

F. Discrepancy in activation time

Figure 9 shows the evolution of the discrepancy in activation time between linear and

nonlinear gap junction models. The discrepancy curves were averaged over four AF episodes

starting from different initial conditions. The discrepancy increased faster when conduction

was slower (third vs first column), whether it was caused by conductivity reduction or by

diffuse fibrosis, and was higher with the Kim model (panels G–L) as compared to the Work-

man model (panels A–F). In the cases with most impaired conduction (panels F, I, L), the

discrepancy tended to saturate after 2.5 to 3 s. To get a sense of how much the discrep-

ancy can be expected to grow, the average discrepancy between simulations starting from

different, independent initial conditions was computed. The resulting value, displayed as a

horizontal dashed line in the figure, was approximately 1/4 of a cycle length. This is ex-

plained by the fact that the time delay between mutual nearest neighbors (local discrepancy

|ti − trefj | in Subsect. II H) cannot exceed half a cycle length. This argument indicates that

in the substrates of panels I and L, the discrepancy became essentially as high as possible.
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FIG. 9. Time evolution of the discrepancy in activation time between linear and nonlinear gap

junction models. Each panel corresponds to a different substrate, described in the title of the panel:

(A)–(C) Workman model with reduced conductivity; (D)–(F) Workman model with increasing

fibrosis density; (G)–(I) Kim model with reduced conductivity; (J)–(L) Kim model with increasing

fibrosis density. Line color represents gap junction models (D0, Siso and Saniso from Table I). Shaded

regions show standard deviations over 4 initial conditions. The dashed horizontal line is the mean

discrepancy between two simulations from uncorrelated initial conditions. The gray stars in panel

J indicate the time of self-termination of some simulations, which explains the discontinuities in

the curves.

Comparison of gap junction models D0, Siso and Saniso (color-coded in Fig. 9) illustrates
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FIG. 10. Time evolution of the discrepancy in activation time between linear and nonlinear gap

junction models for the four simulations of Fig. 8 extended to 20 s of fibrillation. The color of the

curve refers to the cellular model and the line style to the type of conduction slowing. The star

indicates that a fibrillation episode self-terminated.

the effect of scaling the junctional potential. Isotropic scaling to 100 µm (Siso) generally

slightly reduced the discrepancy, suggesting that heterogeneity in cell size tended to enhance

the nonlinear behavior of gap junctions. Scaling transverse cell size to 15 µm (Saniso) signif-

icantly reduced nonlinear diffusion effects. In agreement with Fig. 5, it annihilated almost

all transverse effects of gap junction nonlinearity.

To give some insights into the long term behavior of the discrepancy, longer simulations

were run for the four substrates of Fig. 8. Figure 10 shows that after a transient phase

characterized by a steep increase, the discrepancy fluctuated around its stationary value.

With the Workman model, more than 10 s were needed to reach that stationary value.

G. Growth rate of discrepancy

The rate at which the discrepancy increases as a function of time in Fig. 9 was quantified

using the growth rate ω. Measured growth rates ranged from 0.06 to 24.1 ms/s. The

discrepancy growth rate averaged over all initial conditions and substrates for each cell model

was used to compare the gap junction models. Figure 11A confirms that the discrepancy

grows faster with the Kim cell model. The effect of scaling the junctional potential appeared

to reduce the discrepancy (Siso vs D0), even more so when the transverse Lcell was set

to 15 µm (Saniso vs D0). The time constant τgap also acted to diminish nonlinear effects

(D0 > D2 > D5 > D∞). However, even when τgap = ∞, a residual effect was still present
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due to the nonlinearity of the ginst(Vj) function.

Figure 11B summarizes the differences in discrepancy growth rate among substrates with

increasing levels of structural remodeling. The three ranges of CV correspond to the three

columns of Fig. 9 in reversed order. Slow conduction substrates were associated with higher

discrepancy growth rates.
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FIG. 11. (A) Discrepancy growth rate for the different gap junction models (code names from

Table I) and cell models (color-coded). Bars show mean ± standard deviation over all simulations

(n = 24). (B) Mean discrepancy growth rate grouped by cell model and conduction velocity during

sinus rhythm (n = 48 in each of the six groups).

Transverse propagation did not contribute much to the discrepancy in the Saniso gap

junction model. We hypothesized that stringy fibrosis would force zigzag propagation and

therefore involve longitudinal connections during transverse propagation, which should in-

crease the discrepancy. To test that hypothesis, the simulations using the Saniso model of

Fig. 9C (blue curve) served as control (CTL). Stringy fibrosis with average obstacle length

of 0.1, 1, 3 and 5 mm and density between 10% and 30% was added and the evolution of the

discrepancy was computed for these substrates. Figure 12 shows the resulting discrepancy

growth rates. Longer fibrosis obstacles were associated with increased discrepancy growth

rates (ANOVA, p < 0.001; n = 20 per group; excluding CTL). No statistically significant

effect of fibrosis density on the discrepancy between linear and nonlinear gap junction mod-

els was observed (p = 0.17; n = 12 per group; excluding CTL). Stringy fibrosis density

appeared to affect propagation in linear and nonlinear diffusion models in the same way
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FIG. 12. Discrepancy growth rate in substrates with stringy fibrosis using the Workman cellular

model and the Saniso gap junction model. Simulations in substrates with 5 different fibrosis densities

are grouped by the average length of the longitudinal obstacles forming the stringy fibrosis model.

The control cases (CTL) are substrates without fibrosis. Bars show mean ± standard deviation

over all simulations (n = 20).

because only transverse connections were uncoupled.

IV. DISCUSSION

A. Impact of nonlinear gap junctions on propagation

Previous studies have demonstrated that gap junction nonlinearity and gating kinetics

cause further conduction slowing, with possible consequences in diseased tissue with im-

paired conduction.35,36 We extended the analysis to a 3D model of atrial fibrillation to

investigate how these effects can accumulate over time. We created a simplified dynamical

model of gap junction based on the Vogel-Weingart model. It enabled us to control the

time constant independently from the conductance-voltage relationships. We developed a

method to quantify and monitor the discrepancy between simulations with and without gap

junction nonlinearity. This method was appropriate when the discrepancy was small and

saturated once the difference in activation time became of the order of a quarter the cycle

length. To analyze the evolution over longer periods, data assimilation techniques could be

explored.57–59

The results in sinus rhythm were consistent with one-dimensional models. The effect

became measurable when CV was below 20 cm/s. This translated into at most a few

milliseconds of delay in the total activation time of the left atrium. This order of magnitude
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is similar or smaller than the errors in CV typically made by numerical discretization in

large-scale models. Moreover, each new beat resets the delay to zero unless the cycle length

is close to the refractory period.

During atrial fibrillation, the discrepancy in activation time slowly accumulated, some-

times resulting in qualitative differences between models with linear and nonlinear gap junc-

tions, e.g. presence or absence of a conduction block. The dynamics eventually became

uncorrelated after a few seconds of simulation. However, the average quantities that de-

scribe AF dynamics such as cycle length and number of wavelets or phase singularities

remained essentially the same (Table II). These quantities matter because they are often

used for validation or comparison to clinical data.

B. Factors modulating non-ohmic effects

The magnitude of the effect of gap junction nonlinearity was quantified using the discrep-

ancy growth rate ω. This measure expresses the average accumulation of delay in activation

time per second of simulation. The time required to significantly alter the dynamics is of the

order of CL/ω, where CL is the cycle length. In our simulations, this time interval varied

between a few seconds and tens of seconds.

The factors mitigating non-ohmic effects were:

1. Normal conduction velocity: With CV in the range 30 to 40 cm/s or above, the

discrepancy growth rate was typically below 5 ms/s (Fig. 11B). Discrepancy was only

observed in slow conduction substrates, in agreement with one-dimensional models.35,36

2. Conductivity of the intracellular medium: Unless propagation was very slow,

the intracellular medium contributed to a significant part of the tissue resistivity

while exhibiting a linear behavior. As a result, higher cell-to-cell potential differences

were needed to create a gap junction-driven dynamic reduction in tissue conductivity

(Figs. 4C–D). It could be argued that the linear extracellular conductivity may play

a similar role if a bidomain formulation was used.

3. Small cell size: The effects were negligible for transverse propagation as shown by

the comparison of the Siso vs Saniso model. It was indeed difficult to generate a large
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potential difference over a distance of 15 µm or shorter. This could also have an impact

on models of neonatal cell culture with more spherical, smaller cells.

4. Time constant of gap junctions: Once a high junctional potential is established,

gates gradually close with a time constant τgap. When that time delay was larger

than the duration of the upstroke phase of the action potential, the non-ohmic effects

were limited. However, even when τgap → ∞, a residual effect remained because of

the instantaneous conductance-voltage relationship (Fig. 4A). Experimental data from

Lin et al.5 demonstrated the existence of two time constants, a fast one (5 ms, which

corresponds to our D5 model) and a slow one (69 ms, which was practically equivalent

to D∞).

Reciprocally, factors enhancing the non-ohmic effects were:

1. Conduction heterogeneity: The discrepancy growth rate tended to be lower in

more uniform substrates. This was noticeable in diffuse fibrosis vs uniform reduction

in σ0 (Fig. 9) and in D0 vs Siso gap junction models (Fig. 11A).

2. Lateral uncoupling: Stringy fibrosis forced the involvement of longitudinal gap

junctions in transverse propagation due to zigzag pathways (Fig. 12), particularly

when obstacle length was larger than the tissue passive space constant. This partly

compensated the weakness of non-ohmic effects in transverse gap junctions.

3. Action potential duration restitution: The Kim model features a restitution

slope close to 1, which increases the sensitivity to the initial condition and creates

meandering waves. A small deviation can therefore have a significant impact after a

few seconds of fibrillation (Fig. 8). In contrast, relatively stable rotors were observed

in the Workman model. Gap junction nonlinearity only caused delayed activation,

as illustrated by the linear increase in discrepancy in Figs. 9A–C. Consequently, the

discrepancy growth rate is partly caused by the chaotic behavior of the Kim membrane

kinetics and not only by the inherent nonlinearity of gap junctions.
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C. Implications for cardiac propagation modeling

Our results show that gap junction nonlinearity becomes relevant when CV is of the order

of 10 cm/s or slower. Interestingly, this validity limit for the linear diffusion model approxi-

mately coincides with the CV below which discrete propagation effects are observed.60 Such

slow conduction has been studied experimentally and numerically in cell strands. Rohr et

al. reported a reduced conduction velocity from 36.7 to 0.3 cm/s in a cell strand with severe

gap junctional uncoupling.7 Jousset et al. simulated in a microstructure model propagation

slowing below 10 cm/s caused by myofibroblasts.61 Bruce et al. quantified discrete propaga-

tion effects in a numerical model by computing the discrepancy in CV between continuous

and discrete models.19 From 3% at physiologically coupling values, the discrepancy increased

to 44% in pathological conditions.

Recent human mapping data suggest that CV is generally > 40 cm/s in patients with

atrial fibrillation,62 although the minimal CV can be as low as 15 to 22 cm/s regionally.63

In light of these measurements, it does not appear necessary to incorporate dynamic gap

junctions in most macroscopic models of atrial fibrillation, even when fibrosis patterns are

simulated with locally reduced CV (for instance, 35 to 44 cm/s in Zahid et al.64 and 40 to

62 in Morgan et al.65). Note that despite transverse CV being even slower, the effect of

transverse gap junction nonlinearity may be negligible due to cell width.

At a regional level, however, gap junction nonlinearity might play a role. Micro-reentries

have been hypothesized to be a mechanism of arrhythmia perpetuation.66–68 Microstructure

models of reentry in very slow conduction zones69 might benefit from dynamic gap junction

models. This would be particularly true in the presence of long activation delays, for instance

when propagating though a insert of electrotonically-coupled myofibroblasts.61

D. Limitations

A bilayer interconnected cable model was used for several reasons: (1) sustained anatom-

ical and functional reentries can be simulated; (2) longitudinal and transverse connections

(and therefore gap junction properties) can be easily identified and labeled; (3) stringy and

diffuse fibrosis can be naturally modeled; (4) near-cellular spatial resolution (100 µm) can be

reached while keeping computational load reasonable; (5) numerical methods are sufficiently
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stable for simulating very slow propagation in a large-scale model; (6) recomputing the whole

diffusion matrix is fast enough (it increased computational time by about 45%). Neverthe-

less, discretization in the transverse direction did not match cell width and variability in cell

length (produced by mesh generation46) may not be exactly physiological. Scaling potential

gradients was therefore needed. The Hurtado et al. homogenization process36 proved to

be a powerful tool for extending the analysis to three dimensions without creating a fully

discrete model at cellular resolution.

The diffusion matrix was recomputed every 0.1 ms, which corresponded to the operator-

splitting time step.46 While this time step was certainly appropriate for τgap ≥ 1 ms, the

effects of discretization was visible on Fig. 5B when τgap = 0 ms. This limit case is in

itself an approximation since experimental values of τgap tend to be of the order of at least

5 ms.5 Note that the conductance is a direct function of the membrane potentials (when

τgap = 0 ms). Since the instantaneous feedback effect of that conductance on membrane

potentials is expected to be very small, the accumulation of errors over one cycle remains

limited.

Very low coupling between adjacent anatomical structures such as fiber bundles (not

present in our model) might enhance non-ohmic effects, notably in the right atrium and

the appendages. Despite the lack of full three-dimensional structures, the two layers still

allowed between-layer pathways. This topological property is critical in the presence of

stringy fibrosis (propagation below or above an obstacle). Changes in inter-layer coupling

were not investigated; endo-epicardial delays were very small. This could be another avenue

for gap junction nonlinearity to affect propagation.

The lack of an extracellular domain prevented the estimation of three effects. First,

the linearity of extracellular diffusion might reduce the nonlinearity of conduction. Sec-

ond, the interstitial space may also play a role in conduction70,71 and affect the accuracy of

the homogenization process [Eq. (13)]. Third, both gap junction nonlinearity and ephap-

tic conduction38,39 become significant when electrical coupling is weak. There may be an

interplay between the two.

Two Courtemanche-based cellular models were used, one with a steep and one with

a flat restitution to generate both stable and meandering reentries. More sophisticated

Markov models of the Na+ current, channel mutation or sodium blockade might influence

the results, as well as calcium-based depolarization like in cardiac nodal cells. Our simplified

28



gap junction model was based on connexin 40 data.8 Models of different types of connexins,

heterotypic junctions36 or connexin mutation72 may further decrease conduction velocity,

although we would expect the discrepancy growth rates to be of the same order of magnitude.

Uniform fibrosis or slow conduction was specified in the entire atrial surface to reduce the

number of parameters. More realistic models of arrhythmogenic substrates would include

heterogeneous fibrosis distribution, where regions of slow conduction and lesions delimit

critical pathways for the maintenance of the reentries.73,74 This might lead to stronger, but

more localized non-ohmic effects.

V. CONCLUSION

Our simulation results shed light on the validity range and potential limitations of the

linear approximation for the current-voltage relationship of gap junctions for its use in

large-scale anatomical models. During sinus rhythm in a substrate with moderate struc-

tural remodeling, the discrepancy in activation time remained within the margin of error of

the numerical methods. During atrial fibrillation, the discrepancy slowly accumulated and

eventually reached the point where linear and nonlinear gap junction models led to two dif-

ferent episodes of the same arrhythmia. Significant non-ohmic effects were observed in very

slow conduction regions (< 10 cm/s), with potential impact on the simulation of microreen-

tries and critical pathways in heterogeneous fibrotic substrates. The time scales involved

(5–10 s) motivate the simulation of longer episodes with statistical analysis of spatiotem-

poral complexity indices.75,76 Moreover, accumulation of small nonlinearities over time may

generate complex patterns of action potential alternans and contribute to the occurrence of

conduction blocks and wavebreaks.23,77 This advocates for further development of nonlinear,

multiscale, multiphysics, non-local approaches to simulate the complex route to arrhythmia.
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41P.-E. Bécue, M. Potse, and Y. Coudière, “Microscopic simulation of the cardiac electro-

physiology: A study of the influence of different gap junctions models,” in 2018 Computing

in Cardiology Conference, vol. 45, pp. 022–271, 2018.

42L. M. Treml, E. Bartocci, and A. Gizzi, “Modeling and Analysis of Cardiac Hybrid Cellular

Automata via GPU-Accelerated Monte Carlo Simulation,” Mathematics, vol. 9, p. 164,

Jan. 2021.

43A. Kaboudian, E. M. Cherry, and F. H. Fenton, “Real-time interactive simulations of

large-scale systems on personal computers and cell phones: Toward patient-specific heart

modeling and other applications,” Science Advances, vol. 5, p. eaav6019, Mar. 2019.

44X. Lin, C. Zemlin, J. K. Hennan, J. S. Petersen, and R. D. Veenstra, “Enhancement

of ventricular gap-junction coupling by rotigaptide,” Cardiovascular Research, vol. 79,

pp. 416–426, Aug. 2008.

45A. Saliani, A. Tsikhanovich, and V. Jacquemet, “Visualization of interpolated atrial fiber

orientation using evenly-spaced streamlines,” Comput Biol Med, vol. 111, p. 103349, 2019.

46A. Saliani and V. Jacquemet, “Diffuse and stringy fibrosis in a bilayer interconnected cable

model of the left atrium,” Computing in Cardiology, vol. 47, 2020.

47A. Saliani, E. Irakoze, and V. Jacquemet, “Simulation of diffuse and stringy fibrosis in a

bilayer interconnected cable model of the left atrium,” EP Europace, vol. 23, pp. i169–i177,

Mar. 2021.

48J. P. Kucera, S. Rohr, and Y. Rudy, “Localization of sodium channels in intercalated disks

modulates cardiac conduction,” Circulation Research, vol. 91, pp. 1176–1182, Dec. 2002.

49M. Courtemanche, R. J. Ramirez, and S. Nattel, “Ionic targets for drug therapy and

atrial fibrillation-induced electrical remodeling: insights from a mathematical model,”

Cardiovascular Research, vol. 42, pp. 477–489, May 1999.

50A. J. Workman, K. A. Kane, and A. C. Rankin, “The contribution of ionic currents to

changes in refractoriness of human atrial myocytes associated with chronic atrial fibrilla-

tion,” Cardiovascular Research, vol. 52, pp. 226–235, Nov. 2001.

51V. Jacquemet, N. Virag, Z. Ihara, L. Dang, O. Blanc, S. Zozor, J.-M. Vesin, L. Kappen-

berger, and C. Henriquez, “Study of unipolar electrogram morphology in a computer model

of atrial fibrillation,” Journal of Cardiovascular Electrophysiology, vol. 14, pp. S172–179,

Oct. 2003.

34



52B.-S. Kim, Y.-H. Kim, G.-S. Hwang, H.-N. Pak, S. C. Lee, W. J. Shim, D. J. Oh, and

Y. M. Ro, “Action potential duration restitution kinetics in human atrial fibrillation,”

Journal of the American College of Cardiology, vol. 39, pp. 1329–1336, Apr. 2002.

53S. Labarthe, J. Bayer, Y. Coudière, J. Henry, H. Cochet, P. Jäıs, and E. Vigmond, “A

bilayer model of human atria: Mathematical background, construction, and assessment,”

EP Europace, vol. 16 Suppl 4, pp. iv21–iv29, 2014.

54A. Herlin and V. Jacquemet, “Eikonal-based initiation of fibrillatory activity in thin-walled

cardiac propagation models,” Chaos (Woodbury, N.Y.), vol. 21, p. 043136, Dec. 2011.

55A. Herlin and V. Jacquemet, “Reconstruction of phase maps from the configuration of

phase singularities in two-dimensional manifolds,” Physical Review. E, Statistical, Nonlin-

ear, and Soft Matter Physics, vol. 85, p. 051916, May 2012.
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