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The dynamics of cardiac fibrillation can be described by the number, the trajec-

tory, the stability and the lifespan of phase singularities (PS). Accurate PS tracking

is straightforward in simple uniform tissues but becomes more challenging as fibro-

sis, structural heterogeneity and strong anisotropy are combined. In this paper,

we derive a mathematical formulation for PS tracking in two-dimensional reaction-

diffusion models. The method simultaneously tracks wavefronts and PS based on

activation maps at full spatio-temporal resolution. PS tracking is formulated as a

linear assignment problem solved by the Hungarian algorithm. The cost matrix incor-

porates information about distances between PS, chirality and wavefronts. A graph

of PS trajectories is generated to represent the creations and annihilations of PS

pairs. Structure-preserving graph transformations are applied to provide a simpli-

fied description at longer observation time scales. The approach is validated in 180

simulations of fibrillation in four different types of substrates featuring respectively

wavebreaks, ionic heterogeneities, fibrosis and breakthrough patterns. The time step

of PS tracking is studied in the range from 0.1 to 10 ms. The results show the bene-

fits of improving time resolution from 1 to 0.1 ms. The tracking error rate decreases

by an order of magnitude because the occurrence of simultaneous events become

less likely. As observed on PS survival curves, the graph-based analysis facilitates

the identification of macroscopically stable rotors despite wavefront fragmentation by

fibrosis.
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Nonlinear reaction–diffusion equations arising in cardiac electrophysiology can

have complex non-stationary solutions taking the form of spiral-like patterns.

The centers of these spirals are phase singularities (PS). In a heterogeneous

medium, and even more so in the presence of discontinuities in medium prop-

erties, these PS may move arbitrarily fast and abruptly change direction. In

addition, propagating waves may get fragmented, leading to the creation of a

multitude of PS. The question arises of the time and space resolution needed to

correctly track the trajectory of these PS. In the context of cardiac propagation

modeling, this paper proposes and validates a PS tracking algorithm with an

emphasis on micro-scale events and investigates how time resolution affects PS

tracking accuracy.

I. INTRODUCTION

Cardiac fibrillation is observed as complex dynamics of depolarization waves that can be

described by a reaction-diffusion equation.1 Structural and functional reentries appear to

play a central role in the perpetuation of arrhythmia.2 The tip of a spiral-wave functional

reentry is identified as a phase singularity (PS). The neighborhood of a PS includes cells

in all phases of the cardiac cycle.3 The number and the spatial and temporal stability of

these PS provide measures of the dynamical complexity of fibrillation.4 Their preferential

locations highlight regions that are potentially critical for the maintenance of the arrhythmia

and might be targeted for therapy.5,6 The technique of phase mapping is used in the clinic

to monitor atrial activity through catheters during ablation procedures.7,8

PS trajectories can be reconstructed by tracking the position of PS over time. The

shape of meandering PS trajectories in a uniform substrate characterizes the properties

of membrane kinetics,9 and is notably associated with its restitution of action potential

duration.10 The stability of reentries can be quantified as the lifespan of its associated PS to

reveal the presence of stable rotors.11 The existence of such rotors is the cornerstone of the

“mother rotor hypothesis”12 and may indicate a reentrant circuit within fibrotic regions.13

Failure to adequately track a PS may result in a wide underestimation of its lifespan, leading

to potentially inaccurate clinical interpretation.
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While many PS detection approaches have been proposed,14–26 few methodologies for

PS tracking have been published in details and carefully validated. Most PS tracking meth-

ods are based on the distance between matching PS and the comparison of directions of

rotation,15,27 on particle tracking,26,28 or are unspecified in the article. Rogers proposed an

algorithm that combines PS and wavefront tracking to increase the accuracy of PS tracking.14

More advanced methods have been proposed to improve robustness of PS detection against

signal noise in uniform continuous tissues.21,26 As these methods rely on spatial filtering

(moving average21 or Gaussian26), their extension to heterogeneous, fibrotic structures with

discrete uncoupling (e.g. collagen septa) is not straightforward and may blur or eliminate

micro-scale propagation such as micro-reentries.

PS analysis is often used to compare computer modeling and experiments. In this paper,

the focus is on simulations of reaction-diffusion models. The specificity of simulated data is

that high spatial and temporal resolution is available and that full-scale analysis is desired.

Since the membrane potential is accessible, activation times can be accurately determined.

Deng et al. acknowledged the difficulty of tracking PS in atrial models with severe fibrosis

and suggested that activation maps are more effective than phase maps for identifying sta-

ble rotors.29 Several features of fibrillatory substrate models give rise to false positive PS

detection and incorrect PS tracking despite the absence of noise. In addition to dynamical

instability caused by beat-to-beat variation in refractoriness, heterogeneity in membrane

properties induces wavebreaks and fast PS movement when hitting a refractory region. In

contrast to wavefront velocity, the speed of PS trajectory is unbounded. Structural het-

erogeneity and fibrosis create a discrete substrate, while the theory of PS is continuous by

essence.30 These disconnections also fractionate wavefronts, which gives rise to many PS with

close locations, making PS tracking more challenging. Finally, three-dimensional structures

may lead to breakthrough activation patterns as well as curved scroll wave filaments.31–34

In this paper, we propose a mathematical formulation of PS tracking as an optimiza-

tion problem. The main focus is placed on the tracking part rather than on PS detection.

Extending Rogers’ algorithm14 to the analysis of activation maps at high spatio-temporal

resolution, wavefront and PS tracking are performed simultaneously. A distance optimiza-

tion criterion not present in Rogers’ algorithm is integrated to handle cases where multiple

events (wave breaks or collisions) occur in the same wavefront during the same time step.

The time resolution needed for PS tracking is determined and tracking accuracy is studied
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during fibrillation in a large range of simulated substrates. Although results are presented

for planar sheets of tissue, special attention is devoted to generalizability to a wider range of

microstructure models with discrete connections. Finally, after the graph of PS trajectories

is constructed, graph manipulation tools are proposed to change the observation scale and

coarsen the representation of the dynamics to extract the main macroscopic rotors, even

in fibrotic tissue. These graph transforms are also essential for comparing PS tracking at

different time resolutions.

II. METHODS

A. Discrete cell network

The cardiac tissue is described here as a discrete network of cells in two dimensions.

Mathematically, it can be represented as a planar graph. Vertices are cells, edges are elec-

trical connections between two neighboring cells and faces are polygonal domains delimited

by edges. Vertices are indexed by i ∈ V and edges are indexed by (i, j) ∈ E with i, j ∈ V . E

is defined as containing unique edges so only one of (i, j) or (j, i) may be in E . Two edges

are adjacent if they share a common vertex. The adjacency relation will be used to identify

connected sets of edges.

In a M -by-N rectangular grid, there are MN vertices, M(N − 1) +N(M − 1) edges and

(M − 1)(N − 1) square faces. An edge in the bulk of the tissue has 6 adjacent edges, an

edge in the border has 4, and the 8 edges in the corners have 3.

B. Activation maps

When a simulation of electrical propagation is run on a discrete tissue, the time course

of the membrane potential Vi(t) is computed for each i ∈ V . Activation times of cell i

are defined as time instants ta such that Vi(ta) = Vth (threshold crossing) and V ′i (ta) > 0

(positive time derivative). The parameter Vth is referred to as the activation threshold, and

is here set to −40 mV. During the simulation, such pairs (i, ta) are written to a file each

time a cell activation is detected. This hard thresholding approach is usually sufficient for

simulated data but it is not robust. In the presence of noise, signal filtering may be needed.26

Activation map analysis will be based on the following reasonable hypotheses:
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1. Electrical excitation propagates from a cell to one of its neighbor within τd (maximum

propagation delay); otherwise, a conduction block is considered to have occurred. This

assumes that there is a minimum conduction velocity below which propagation is not

possible. Typically, τd is of the order of 5 to 10 ms depending on mesh resolution.

2. Two consecutive activations of the same cell are separated by a time interval of at

least τr. This minimal refractory period is assumed to be longer than the maximum

propagation delay (τr > τd). Generally, τr is at least 30 to 50 ms.

3. The time resolution ∆t of activation map analysis (wavefront tracking in particular)

satisfies ∆t < τr − τd. Otherwise, one may miss an entire wave.

The activation map At
i at time t is the time of the latest activation of each cell i prior to

time t+ τd:

At
i = sup{ta | ta < t+ τd and Vi(ta) = Vth and V ′i (ta) > 0} (1)

with the convention that At
i = −∞ if cell i has never been activated before time t or if no

earlier data are available. Time dependency will be indicated by an exponent t. Activations

up to time t+ τd are included to verify if the wavefronts are still propagating at time t. As

a result, if At
i < t then At

j ≥ At
i if the excitation propagates from i to j.

As time evolves, only a part of the activation map is updated: At+∆t
i = At

i as long as

t+ ∆t < At
i + τr. In particular, our third hypothesis ∆t < τr − τd implies that

At
i ∈ (t− τd, t+ τd) =⇒ At+∆t

i = At
i . (2)

C. Wavefront detection

An edge (i, j) ∈ E is said to cross an isochrone at time t, and we write (i, j) ∈ It, if and

only if (
At

i < t xor At
j < t

)
and |At

j − At
i| < τd , (3)

where xor is the “exclusive or” logical operator. This means that one cell is behind the

wavefront, the other one is in front of the wavefront, and the activation delay is small

enough to assume causality.

A wavefront is a subset of It in which all edges cross the same continuous segment of an

isochrone. The edge-to-edge relation “belongs-to-the-same-wavefront” can be determined in
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each square face using a look-up table shown in Fig. 1. Up to rotational symmetry, there

are 9 distinct cases (panels A to I). As with the marching square algorithms, in cases G to

I, there are two possible choices of isochrone interpolation within the square. Our choice

favors wavefront collisions over breakthroughs, although the global impact is very small.

Also, cases G and H are relatively rare. Note that cases J and K are impossible (notations

are illustrated in panel A). The first one is obvious since it would imply t < t2 ≤ t. In case

K, we have t3 ≤ t < t0 and t1 ≤ t < t2. Moreover, |t0− t3|+ |t2− t1| = t2− t3 + t0− t1 < 2τd.

This means that at least one of the two vertical edges satisfy (3) and we are back to one of

the cases G, H or I.

Partitioning It into wavefronts comes down to determining the equivalence classes of

the relation “belongs-to-the-same-wavefront”. This can be efficiently performed using a

dedicated data structure such as weighted Quick-Union with path compression.35 It starts

with each edge in It being its own wavefront. Then, iterating over the faces, wavefronts are

merged whenever a connection is found according to Fig. 1. The end result is a decomposition

of It into a union of pairwise-disjoint wavefronts

It =
mt⋃
k=1

F t
k , (4)

wheremt is the number of wavefronts at time t and F t
k is the k-th wavefront. By construction,

each edge of F t
k is connected to one or two other edges. The method guarantees that there

are either zero or two edges in F t
k that are connected at exactly one edge: the extremities

of the wavefront. These extremities may be a phase singularity or an anchor point on a

boundary. Note the singular situation where F t
k has a single element, which means that the

wavefront has length zero. In that case, the two extremities are the same edge. It represents

propagation through the thinnest possible isthmus.

D. Wavefront tracking

Assuming that wavefronts are detected every ∆t, the objective is to identify the corre-

spondence between the mt wavefronts F t
k at time t and the mt+∆t wavefronts F t+∆t

l at time

t+ ∆t.

A mt-by-mt+∆t matrix Gt
kl is constructed to encode that correspondence: Gt

kl = 1 when

F t+∆t
l results from the propagation of F t

k and Gt
kl = 0 if these wavefronts are independent.
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FIG. 1. Look-up table for identifying wavefronts. Arrows represent edges that cross an isochrone.

Their direction indicates wavefront propagation. Dotted lines connect edges that belong to the

same wavefront. The plus and minus signs show the presence of a phase singularity. (A) Vertex

numbering and activation times t0 to t3 in a square face. (B)–(C) Wavefront endpoints. (D) Normal

wavefront propagation. (E) Convex wavefront. (F) Concave wavefront. (G)–(H) Two independent

wavefronts. (I) Wavefront collision or breakthrough. (J)–(K) Impossible cases (as emphasized by

the big cross).

If a row of Gt is zero, i.e. Gt
kl = 0 ∀l, the wavefront F t

k disappears. If a column of Gt is

zero, i.e. Gt
kl = 0 ∀k, the wavefront F t+∆t

l is a new wavefront. In the general case, several

wavefronts may simultaneously merge and/or break within ∆t which leads to a many-to-

many relationship.

If F t
k ∩ F t+∆t

l 6= ∅, then clearly Gt
kl = 1. However, if the wavefront moves too fast,

the intersection may be empty so that the region between the successive fronts needs to be

considered. That region is defined as the wavefronts at time t and t + ∆t plus the set of

edges whose activation times fall entirely in the band from t to t+ ∆t:

Rt,∆t = It ∪ It+∆t ∪
{

(i, j) ∈ E
∣∣ At+∆t

i , At+∆t
j ∈ [t, t+ ∆t)

}
. (5)

As a side note, It is computed from At and It+∆t from At+∆t. According to (2), It would

7



be the same if computed from At+∆t, which ensures consistency.

The region Rt,∆t is decomposed into a disjoint union of connected components Rt,∆t
c . The

edge-to-edge relation “belongs-to-the-same-component” is defined as edges being adjacent

(subsect. II A) or in the same wavefront (in Fig. 1D, wavefront edges are not adjacent).

Connected components are identified using the same Quick-Union data structure as for

wavefronts.

By definition, F t
k ⊂ Rt,∆t. It is also true that F t

k ⊂ Rt,∆t
c for some c by the construction

of the connected components. The same holds for F t+∆t
l . If region(F) is defined as the

unique c for which F ⊂ Rt,∆t
c , a general formula for Gt is obtained:

Gt
kl =

 1 if region(F t
k) = region(F t+∆t

l )

0 otherwise
. (6)

E. Phase singularity tracking

Phase singularities (PS) are identified as the edges that lie at the extremities of wavefronts

based on the look-up table of Fig. 1. By abuse of language, anchor points of wavefronts on a

boundary are considered to be PS. This will make it possible to continuously track PS that

intermittently hit a boundary.

At time t, the number of PS is denoted by nt. Detected PS are indexed by p and

characterized by three attributes. Their location xt
p is the midpoint of the edge at the

extremity of a wavefront. Their chirality stp expresses the direction of rotation (+1 or −1)

and is also obtained from the look-up table of Fig. 1. Finally, they are part of a wavefront

wt
p ∈ {1, . . . ,mt}. The pair (wt

p, s
t
p) uniquely identifies a PS at time t.

PS tracking is an assignment problem between the nt PS at time t and the nt+∆t PS at

time t + ∆t. Special cases nt = 0 or nt+∆t = 0 are straightforward but have to be handled

separately. A mathematical constraint is that when a PS moves, it follows its associated

wavefront and its chirality is preserved. Also, all other things being equal, shorter moves

are more likely.

To specify the optimization problem, the nt by nt+∆t distance matrix is first defined as

Dpq = g
(∥∥xt

p − xt+∆t
q

∥∥) where g(d) =
d2

d+ ε
. (7)

We used ε = 10−6 in units of grid step. Since d− ε < g(d) ≤ d, the matrix D is essentially
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a distance matrix. The cost matrix incorporates a penalty for mismatched wavefronts:

Cpq = Dpq +B
(

1−Gt
wt

p,w
t+∆t
q

)
, (8)

where the “big enough” number B = 1+min(nt, nt+∆t)·maxp,qDpq. The cost will be summed

over the matching pairs of PS.

The rationale for using the distance in the cost comes from the triangle inequality. Assume

that two PS located at P1 and P2 at time t have to be matched with two PS located at Q1

and Q2 at time t+ ∆t. If the segments P1Q2 and P2Q1 intersect at O, then P1Q2 +P2Q1 =

P1O + OQ2 + P2O + OQ1 ≥ P1Q1 + P2Q2. In other words, two PS moving in parallel are

guaranteed to give a lower cost than PS trajectories crossing each other. The inequality is

strict unless the points P1, P2, Q1, Q2 are aligned (since the points are on a grid, this occurs

occasionally). The function g solves this indeterminacy. For instance, if P1, P2, Q1, Q2 are

on a line in that order, P1Q1 + P2Q2 = P1Q2 + P2Q1, but a little bit of algebra shows that

g(P1Q1) + g(P2Q2) < g(P1Q2) + g(P2Q1) unless P1P2 = 0 or Q1Q2 = 0 (which would mean

two superimposed PS). The difference in cost is O(ε2). On the other hand, the function g

has little effect in the general case where the difference is O(1).

An interesting analogy can be drawn with colloidal particle tracking.28 If these particles

undergo Brownian motion with the same diffusion coefficient, the log-likelihood of pair

matching is proportional to the sum of squared distances. Cost minimization is therefore

equivalent to maximum likelihood estimation (in our case with a slightly different statistical

model).

For cost minimization, let us first assume that nt ≤ nt+∆t and ignore chirality. The cost

function attributes a cost to each assignment function f that maps in a one-to-one way any

PS at time t to a PS at time t+ ∆t:

C[f ] =
nt∑
p=1

Cp,f(p) . (9)

The linear assignment problem consists in finding the optimal assignment fopt = argminf C[f ]

that minimizes the cost. It can be efficiently solved in at most O(n3) time using the Hun-

garian algorithm.36 The PS of index fopt(p) is considered to be the evolution of the PS of

index p if Cp,fopt(p) < B. Otherwise, the PS of index p is said to have been annihilated.

Reciprocally, a PS of index q at time t+ ∆t is said to have been created if there is no p such

that fopt(p) = q and Cp,q < B. The justification for the value of B is the following. If the
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assignment f has no wavefront mismatch, i.e. Gt
wt

p,w
t+∆t
f(p)

= 1 ∀p, then C[f ] < B whatever

the configuration and distance matrix. The algorithm will naturally provide the solution

that minimizes the number of wavefront mismatches.

If nt < nt+∆t, the problem is simply solved by applying the algorithm to the transposed

cost matrix. To take into account chirality, the whole optimization procedure is applied

separately to the subset of PS with positive chirality at time t and t + ∆t and then to the

ones with negative chirality.

The outcome of PS tracking in the time interval [t, t + ∆t] is: (1) a list of pairs of PS

(p, q) such that p becomes q at time t+ ∆t, (2) a list of PS pairs that annihilate each other

(see also Subsect. II G), and (3) a list of PS pairs that are created.

To compare with previous works,15,27 we implemented an alternative strategy for cost

minimization. The smallest entry in the cost matrix, i.e. the closest pair of PS at time t and

t+∆t, is first identified. Then, PS assignment is updated accordingly and the corresponding

row and column are removed from the matrix. This procedure is then applied iteratively

until the matrix is empty. This will be referred to as the “greedy” algorithm. It approximates

the optimal solution. Its time complexity is also O(n3), but may be reduced to O(n2 log n)

by sorting entries of the cost matrix.

F. Ambiguous cases

Ambiguity may arise when multiple events occur within the same wavefront during one

single time step. The assignment algorithm always tries to match as many PS pairs as possi-

ble, which sometimes leads to plausible but unlikely assignment. In the example illustrated

in Fig. 2, two wavefronts 1 and 2 at time t move forward and become wavefronts 3 and 4

at time t+ ∆t (thus Gt
1,3 = Gt

2,4 = 1). The algorithm will predict that the PS at P− moves

to Q− and the PS at P+ moves to Q+ whatever the distance between the two pairs of PS.

Another, equivalently possible scenario would be that P− and P+ annihilate and a pair is

created at Q− and Q+.

Although a PS can move very fast when hitting a refractory or non-propagating region,

it is less likely that two close PS move very fast in parallel. Therefore, the assignment

P− 7→ Q− and P+ 7→ Q+ is turned into an annihilation and a creation when the following

conditions are met: (1) two PS of opposite chirality simultaneously jump to locations further
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FIG. 2. Ambiguous case for the assignment problem involving a pair of phase singularities (PS).

Is it a long distance jump or a wavefront merging followed by a wavebreak? The wavefronts are

numbered from 1 to 4. The thick arrows show the direction of wavefront propagation. At time t,

there are two PS located at P− and P+, and, at time t+ ∆t, two PS at Q− and Q+. The signs +

and − indicate chirality and the dashed arrows a possible PS assignment.

than λjump, i.e. P−Q− > λjump and P+Q+ > λjump, (2) the move would be valid according

to the criteria of the assignment algorithm, (3) the two PS remain close enough along the

way, i.e. (P−P+)2 + (Q−Q+)2 < 2λ2
neighbor.

For a maximum of flexibility these operations are performed in a post-processing stage.

Unless otherwise stated, the values λjump = 4 mm and λneighbor = 2 mm are used. The

conditions are actually rarely met, but this additional step fixes a few transitions that

would appear surprising by visual inspection.

G. Graph of phase singularity trajectories

After PS tracking has been performed every ∆t during the whole simulation, PS tra-

jectories can be reconstructed. Each trajectory starts with PS creation and ends with PS

annihilation. PS are created and annihilated by pairs of opposite chirality (usually not the

same pair). In order to form the pairs of annihilated PS at time t, a squared distance ma-

trix Dpq similar to (7) is computed, where p runs over the list of PS with positive chirality

annihilated at time t and q runs over the list of PS with negative chirality annihilated at

time t. The Hungarian algorithm is applied to match the pairs. The same procedure is used

to find the pairs of created PS at time t+ ∆t.

An undirected (multi)graph of PS trajectories is then generated.4,14,37 Each node of the

graph corresponds to a PS trajectory. Two nodes are linked if they have been created or
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annihilated together, so each node is linked to exactly two nodes. In the practical implemen-

tation, each node contains the creation and annihilation times of the PS and the successive

PS locations for each time instant.

Two methods for simplifying the graph while preserving its structure are proposed: the

first downsamples the time resolution of the trajectories, and the second iteratively elimi-

nates the trajectories with the shortest lifespans. The objective is to automatically provide

representations of PS dynamics at different spatio-temporal scales, either showing the full

details of microstructural propagation or concentrating on the macro-scale, coarse-grained

rotors that sustained the arrhythmia. PS trajectories form a set of continuous curves in

space-time, either closed or having their endpoints at the initial or final time of simulation.

The graph transformations presented below always preserve the continuity of these curves

and do not add new endpoints. It comes down to resampling these curves in space-time.

Downsampling will be used to estimate PS tracking accuracy as a function of time reso-

lution. It is performed as illustrated in Fig. 3. Multiple time steps are reduced to one single

time step. The downsampling process is applied to the PS connectivity graph and does not

depend on actual PS locations. PS trajectories are followed until they reach the beginning

or the end of the downsampled interval. A PS may go through (1 7→ 1′ in Fig. 3) and be

considered as a simple displacement. When the path goes back to the initial time (3 7→ 4)

it is interpreted as an annihilation. The trajectories also have to be followed backward to

identify creations (3′ 7→ 4′). Along the way, the path may need to transiently go back in

time (5 7→ 5′). When downsampling by a larger factor, paths may be longer and include

multiple “time travels”. Then the intermediate layers are removed (Fig. 3B). The preci-

sion of creation and annihilation times is reduced but the structure of the graph remains

consistent.

The second graph simplification approach consists in eliminating the PS trajectory with

the shortest lifespan until all lifespans are longer than a threshold τps, as illustrated in

Fig. 4. The curve segment 3 7→ 2 to be eliminated has by definition a shorter lifespan

than the segments 1 7→ 2 and 3 7→ 4. These three curve segments are merged into a

single chronological trajectory 1 7→ 2′ 7→ 3′ 7→ 4 that includes a jump halfway between the

creation time (3) and the annihilation time (2). In case the segments form a loop (5 7→ 6),

all segments are eliminated.
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FIG. 3. Downsampling of phase singularity (PS) trajectory graph: (A) before and (B) after

downsampling by a factor of two. Time is horizontal and space vertical. PS are displayed along

a line for graphical purpose but trajectories are actually processed in two spatial dimensions. PS

at each time instant t, t + ∆t and t + 2∆t are numbered and represented as circles whose color

indicates chirality. Connecting lines show PS tracking. The little sun symbolizes PS creation and

the moon crescent PS annihilation.
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FIG. 4. Simplification of phase singularity (PS) trajectory graph. The shortest curve segment

3 7→ 2 is replaced by 1 7→ 2′ 7→ 3′ 7→ 4. Short loops such as 5 7→ 6 are simply removed. The little

sun symbolizes PS creation and the moon crescent PS annihilation.
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H. Simulation protocols

PS detection and tracking algorithms are validated and evaluated in a set of complex

episodes of reentrant arrhythmias simulated using the monodomain equation in a 5×10 cm

rectangular sheet of atrial tissue with a spatial resolution of 0.02 cm. Four types of arrhyth-

mogenic substrates (described below) are created. In each of them, a reentry is initiated

by cross-shock stimulation. Simulations are run for 2500 ms with 40 or more different

sets of parameters, providing a database of 180 episodes of arrhythmia. Activation times

are computed by linear interpolation with a temporal resolution of 0.1 ms and a threshold

Vth = −40 mV. The last 2000 ms are used for the analyses.

The substrates used are meant to reproduce a variety of difficulties typically encountered

in PS tracking, including situations where weak coupling might create discrete propagation

effects. The four substrates are associated with different hypothesized forms of atrial fibril-

lation and are referred to as “wavebreaks,” “cholinergic,” “fibrosis,” and “breakthroughs.”

The first substrate (“Wavebreaks”), based on a modified Luo-Rudy model, has a steep

repolarization restitution that causes spontaneous wavebreaks,38 thus providing highly com-

plex activation patterns despite homogeneous properties. Two parameters are changed

across the simulation set: the conductance of the slow inward current (Gsi: 8 values be-

tween 0.05 and 0.075 mS/cm2) and the anisotropy ratio (5 conductivity values from 0.5 to

4 mS/cm in the longitudinal direction and 0.5 mS/cm in the transverse direction).

The second substrate (“Cholinergic”) reproduces the Kneller et al. canine model of atrial

fibrillation.39 A two-dimensional sinusoidal distribution of acethylcholine (ACh) concentra-

tion is introduced to create repolarization gradients that lead to both transient and stable

rotors. Longitudinal/transverse conductivities are 5.8 and 1 mS/cm. The peak-to-peak

length scale of the spatial distribution is 2.5 cm. The mean ACh concentration is either 0.3

or 3 µM and the amplitude of the sine wave is varied between 0 and 100% of mean value.

The third substrate (“Fibrosis”) uses the Courtemanche model as modified by Gharaviri

et al.32 with a random distribution of non-conductive obstacles. Longitudinal/transverse

conductivities are 4 and 1 mS/cm. The distribution is defined by a Markov random field

with controllable spatial correlation (parameter α in the code by Bruno Sciolla that can

be downloaded at github.com/bsciolla) and percentage of non-conductive tissue (prc).

Sixty realizations are generated to represent diffuse (α = 1, prc = 50%), patchy (α = 3,
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prc = 20%) or intermediate fibrosis (α = 2, prc = 7.5%).

The fourth substrate (“Breakthroughs”) reproduces the Gharaviri et al. bilayer model

of atrial fibrillation.32,40 In contrast with the previous substrates, two layers (epicardium

and endocardium) are simulated, but only the dynamics in the epicardial layer is analyzed

to facilitate direct comparison with other substrates. Within-layer conduction is isotropic

with a conductivity of 0.5 mS/cm. The two layers are coupled by 6, 12, 24, 48 or 96

discrete connections randomly distributed throughout the tissue.32 As in the original study,

a reentry is first initiated in the isolated epicardial layer. Then, at 8 different time points,

the connections are reintroduced to provide pathways for breakthroughs.

I. Analysis of simulations

The tracking algorithm is applied to each of the 180 simulations with a tracking time

step of ∆t = 0.1, 0.2, 0.5, 1, 2, 5 and 10 ms and τd = 10 ms. The assignment constraints

include chirality conservation, wavefront conservation, or both. The assignment method is

either the Hungarian or the greedy algorithm. In total, there are 180 × 7 × 3 × 2 = 7560

cases.

The reference for quantifying tracking accuracy is the Hungarian algorithm with chirality

and wavefront conservation and ∆t = 0.1 ms. To compare with a tracking result at larger ∆t

values, the reference PS trajectories are down-sampled (e.g. 0.1 vs 2 ms: down-sampling by

a factor of 20) following the method of Subsect. II G. Note that PS detection is not affected

at all by ∆t; only PS tracking is.

III. RESULTS

A. Simulated episodes of fibrillation

The fibrillation episodes simulated in the four substrates differ by the number and the

frequency of their reentries. Table I reports these values averaged over all simulations. The

number of PS includes very short lived ones as well as wavefront extremities on a boundary.

It is always smaller than twice the number of wavefronts. The relative discrepancy is largest

in the “Breakthroughs” substrate because more wavefronts are shaped as closed curves

(breakthrough patterns). The larger number of PS in the “Fibrosis” substrate stems from
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wavefront fractionation caused by non-propagating obstacles. Figure 5 shows examples of

membrane potential maps along with detected PS trajectories computed using our algorithm

with ∆t = 0.1 ms, τd = 10 ms and τps = 10 ms.

TABLE I. Characteristics of simulated fibrillation episodes (mean ± standard deviation).

Substrate Wavebreaks Cholinergic Fibrosis Breakthroughs

Number of cases 40 40 60 40

Cycle length (ms) 96 ± 46 99 ± 17 205 ± 33 189 ± 18

1st percentile (ms) 38 72 164 160

Number of wavefronts 14.6 ± 8.1 2.9 ± 2.0 38 ± 35 5.1 ± 2.9

Number of PS 29 ± 16 5.8 ± 4.1 74 ± 68 8.9 ± 5.4

B. Parameter selection

Besides the post-processing parameters (λjump and λneighbor), the PS tracking algorithm

mainly depends on two parameters: ∆t and τd. The tracking time step ∆t will be varied

from 0.1 to 10 ms. The maximum propagation delay τd is set to 10 ms.

Histograms of inter-cellular activation delays are shown in Fig. 6. Most data points are

below 2 ms which corresponds to a velocity of 10 cm/s. The value τd = 10 ms is well

above that threshold while being well below the first percentile of cycle length (Table I)

which may provide an (over)estimate of τr. Another argument is that the average number of

detected PS in the substrate with shortest cycle length is minimal near τd = 10 ms (Table II),

presumably due to fewer false positives. PS detection is however not very sensitive to τd

over a wide range from 5 to 20 ms.

C. Consistency checks

After each tracking procedure, the consistency of the resulting PS trajectory graph is

checked to validate that mathematically true assertions are also true in the output of the

algorithm. Checks include conservation of chirality and wavefront, the number of PS per

wavefront being 0 or 2, and the connectivity between PS trajectories through PS creation

and annihilation. When chirality or wavefront conservation is not strictly enforced by the
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FIG. 5. Left panels: Examples of color-coded membrane potential maps for each substrate. Phase

singularities (PS) are displayed as white or black circles according to their chirality. Right panels:

Trajectory of the PS present at the time of the snapshot of the left panel.

algorithm, at least one inconsistency is found in 97% of the simulations. In contrast, the

algorithm that accounts for chirality and wavefront tracking passes all the tests in all 180

cases.

PS trajectories (∆t = 0.1 ms) and appropriate automatic handling of ambiguous cases

(Subsect. II F) were validated by visual inspection, with particular attention devoted to
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FIG. 6. Normalized histograms of delays in activation time between neighboring cell units. Each

histogram is accumulated over all simulations for each substrate.

TABLE II. Effect of the maximum propagation delay τd on the number of phase singularities (PS)

detected in the “Wavebreaks” substrate (∆t = 0.1 ms).

τd Number of PS

2 ms 42 ± 25

3 ms 31 ± 17

5 ms 30 ± 17

10 ms 29 ± 16

15 ms 29 ± 16

20 ms 30 ± 16

fast-moving PS. When ∆t = 0.1 ms, ambiguous cases are present in <0.06% of the time

steps. This percentage increases along with ∆t and reaches about 4% in the substrate

“Fibrosis” when ∆t = 1 ms, but remains <0.06% in the other substrates. Changing λjump

from 4 mm to 6 mm only slightly reduced the percentages. The heuristic approach to

ambiguous cases appears satisfactory by visual inspection, as attested by the absence of

unexplained discontinuity (i.e. not the result of post-processing as in Fig. 4) in PS trajectory.
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D. Computational requirements

For a model with 125,000 nodes and 249,250 edges, the complete analysis takes about

9.3 s per second of simulation for a resolution of ∆t = 1 ms (single-core computations),

although limited effort has been devoted to code optimization. About 30–35% of the com-

putational time is for PS detection and tracking, 50–60% for wavefront detection, and 5%

for wavefront tracking. The remaining time includes inputs/outputs and overheads. The

Hungarian algorithm takes about 5–10% of the total computational time (the lower end oc-

curs at high time resolution). Computational time is roughly proportional to ∆t−1. At high

time resolution, it is a bit faster than this linear formula since the file of activation times is

processed entirely at any resolutions (e.g. 81 s per second of simulation for ∆t = 0.1 ms).

E. Wavefront tracking

A one-to-many wavefront transition is defined as a wavefront k at time t such that∑mt+∆t

l=1 Gt
kl > 1, i.e., a wavefront that breaks into two or more parts within a time step. The

fraction of wavefronts that undergo a one-to-many transition (Fig. 7) reflects the difficulty of

PS tracking since one-to-one wavefront transitions lead to exact PS tracking. This fraction

varies from 0.9–3% with a time step of ∆t = 0.1 ms to 6–18% when ∆t = 1 ms, which

illustrates the advantage of reducing ∆t.

F. Phase singularity tracking

Figure 8 shows the error rates of PS tracking as a function of ∆t. The complete method

with the Hungarian algorithm at ∆t = 0.1 ms is used as a reference. The error rate expresses

the fraction of PS assignments that differ from reference calculations. Comparison involving

different time steps uses the down-sampling technique of Subsect. II G.

Error rates at ∆t = 1 ms are around 0.05% (“Cholinergic” substrate), 0.3% (“Break-

throughs”), 0.5% (“Wavebreaks”) and 4.5% (“Fibrosis”). Differences in error rates between

substrates reflect the complexity of the dynamics and the number of PS. Reducing ∆t from

1 to 0.2 ms improves error rates by an order of magnitude, except in the “Cholinergic” sub-

strate where the absolute number of errors is already small at 1 ms. Releasing the wavefront

constraint significantly increases error rates, more so than releasing the chirality constraint.
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FIG. 7. Fraction of one-to-many wavefront transitions (wavefront that breaks into two or more

parts within a time step) as a function of the tracking time step. The means over all wavefronts

and all simulations are shown for each substrate.

Membership to wavefront sets F t
k indeed encodes more bits of information than chirality.

The Hungarian algorithm used for PS pair assignment consists of at most n iterations,

each of which runs in O(n2) time, where n is the number of PS. If taking the closest

admissible PS is an optimal solution, the loop halts after one iteration. Figure 9A shows the

average number of iterations as a function of the tracking time step ∆t. When ∆t = 0.1 ms,

only one iteration is needed 87% of the time. With larger time steps, the use of the Hungarian

algorithm is necessary, particularly when the dynamics is complex (“Fibrosis” substrate).

When PS tracking is compared at the same ∆t between the Hungarian and the greedy

assignment algorithm, the difference in terms of PS assignment is negligible or even zero

at ∆t = 0.1 ms. This near-perfect correspondence may be seen as an indication that ∆t is

small enough. The difference increases to 0.1–2% when ∆t = 1 ms.

G. Lifespan of phase singularities

The lifespan of a PS is the time interval between its creation and annihilation. The

time scale at which a reentry is observed influences lifespans. The PS graph simplification

method of Subsect. II G enables discarding short-lived PS (lifespan < τps) and reconnect
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FIG. 8. Error rate of phase singularity (PS) assignment in the tracking procedure as a function of

the tracking time step for the four substrates. Error bars represent inter-quartile intervals. Solid

lines: PS tracking with the Hungarian algorithm taking into account chirality and wavefronts. Its

outcome at ∆t = 0.1 ms is used as a reference for computing error rates, so that data point is

absent on the graph. Dashed lines: PS tracking without taking into account chirality. Dash-dotted

lines: PS tracking without taking into account wavefronts.

PS trajectories, thus prolonging the lifespan of remaining PS. An example is shown in

Fig. 10. Micro-conduction blocks and micro-scale non-propagating obstacles fragment the

wavefronts and create a multitude of PS (panels A and B). Through an increase of the

observation time scale τps (panels C to F), PS trajectories are recombined, revealing a

reentry that appears stable at the macroscopic level and that lasts the entire simulation

(pink meandering trajectory), even if at the micro-scale, wave breaks occur in the vicinity of

the spiral tip. This provides a reduced, macro-scale description of the dynamics comprising
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FIG. 9. (A) Mean number of iterations needed by the Hungarian algorithm for the phase sin-

gularity (PS) assignment problem. Each curve corresponds to a different substrate. The dotted

horizontal line has an ordinate of 1. (B) Mean relative differences (error rates) in PS tracking

using the Hungarian algorithm vs the greedy algorithm. Color code is the same as panel A. Error

bars represent first and third quartiles. Some data points at ∆t = 0.1 ms are not visible since the

difference is zero.

much fewer PS trajectories. Note that if only PS hot spots are sought, statistics on PS

location41 or processing of local signals25 may provide the desired information.

The distribution of lifespans can be represented by a histogram.39 To improve resolution,

PS lifespans are here accumulated over all simulations of each substrate to build survival

curves showing the fraction of PS whose lifespan is longer than a given time. Without PS

graph simplification, most PS are short-lived. The larger the value of τps, the longer the

lifespans. When τps > 5 ms in the “Cholinergic” and “Fibrosis” substrates, survival curve
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analysis successfully identifies rotors that appear stable at the macroscopic scale (lifespan as

large as the time window of analysis) whose existence is easily checked by visual inspection.

In contrast, the two other substrates do not feature macroscopically stable reentries, as

known from previous works.32,38

A B

C D

E F

FIG. 10. Effect of phase singularity (PS) trajectory graph simplification with different values of

τps and ∆t = 0.1 ms. (A) Membrane potential map in a tissue with islands of non-conducting

tissue. (B) Trajectories of PS present at time t = 2045 ms with no graph simplification. (C) Same

PS trajectories after graph simplification with τps = 2 ms, (D) τps = 4 ms, (E) τps = 10 ms, (F)

τps = 20 ms.
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FIG. 11. Phase singularity (PS) survival probability for the four substrates analyzed with ∆t =

0.1 ms. The six curves from light to dark color in each graph correspond to increasing values of

the PS trajectory graph simplification parameter τps, namely 0, 1, 2, 5, 8 and 12 ms.

H. Impact of noise

Inaccuracy in the determination of activation times may result in incorrect PS detection,

particularly false positives.42 In experimental data, noise would have a similar effect. To

estimate the robustness of PS tracking with respect to a small jitter in activation times,

white noise uniformly distributed between ±τjitter is added to the activation maps of a

representative simulation of each of the four substrates. For 7 values of τjitter between 0

and 3 ms and 4 realizations of the white noise process, PS tracking is performed with

∆t = 1 ms. The graph of PS trajectories is then simplified to eliminate trajectories with

a lifespan shorter than τps = 10 ms. Figure 12 shows the mean number of PS obtained

before and after graph simplification as a function of τjitter. Additive noise on activation
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times generates false positives. These PS are however short-lived. After simplification of

the PS trajectory graph, the mean number of PS becomes robust to noise at least up to

τjitter = 1 ms. The maximum difference in mean number of PS is 5–10% for τjitter < 3 ms,

except in the “Fibrosis” substrate. Note that the maximum jitter used here creates an

additional delay between neighboring nodes up to 6 ms (to be compared with Fig. 6), which

would correspond to a conduction velocity of 3.3 cm/s. In the presence of such noise level,

spatial filtering or more robust detection methods would be recommended.21,26
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FIG. 12. Effect of noise on the mean number of detected phase singularities (PS). The dots

represents the mean number of PS (averaged over time) as a function of the noise level (τjitter),

computed before (dashed lines) and after (solid lines) simplification of the PS trajectory graph

(elimination of PS with a lifespan < 10 ms). The results are averaged over four realizations of the

noise. Standard deviations, displayed as error bars, are smaller than the size of the dots.
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I. Comparison with common methods

Fenton et al.43 proposed a PS detection technique based on the intersection between the

curves dV/dt = 0 and V = Vth. The wavefronts in our approach are isopotential lines where

the time derivative is positive. The endpoints of the wavefronts, i.e. the phase singularities,

therefore match those of Fenton et al. A comparison between that method and the classical

phase map method by Iyer et al.16 is provided in Gong et al.44 Further comparison of similar

methods can be found in Li et al.21

As a basis for comparison, an implementation42 of the Iyer-Gray method16 is used. Phase

maps are reconstructed from membrane potential maps using an embedding delay of 5 ms.

It is worth noting that while the file containing the activation times is about 30 MB, the

membrane potential maps for ∆t = 1 ms require 1.2 GB of storage for each simulation. In

the absence of wavefront tracking, PS tracking is based on the shortest distance (greedy

assignment algorithm) and matching chirality. Only pairs within a distance shorter than

5 mm are matched. This PS tracking algorithm is similar to Zou et al.45 The maximal

distance is reduced to 2 mm in the “Fibrosis” and ”Wavebreaks” substrates because of the

larger density of PS.

Figure 13 compares the mean number of PS over time in our edge-based isopotential line

method and in the Iyer-Gray approach. Unlike in Table I, wavefront endpoints on the border

of the tissue are not counted as PS. When the conductive medium is uniform (“Cholinergic”

and ’Wavebreaks” substrates), the two methods are consistent. When discrete coupling with

an endocardial layer is included (“Breakthrough”), small differences are observed in the

most complex cases with a large number of discrete connections. In the presence of discrete

uncoupling and fibrosis, the mean numbers of PS are correlated but significant discrepancies

are found when PS density is large. This illustrates the difficulty of PS tracking in discrete

propagation models. It remains unclear what should be considered the gold standard of PS

detection at the micro-scale in discrete models.

The Jacobian-determinant method has been shown to give better PS detection accuracy

than most methods in a FitzHugh-Nagumo-based uniform tissue model.21 This method

requires to identify the local extrema of a function that depends on membrane potential

gradients. Our simulations, in contrast, are characterized by faster upstroke velocity and

conduction heterogeneity, which means that the finite difference formula for the Jacobian
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FIG. 13. Comparison between our phase singularity (PS) detection approach and that of Iyer and

Gray.16 Mean number of PS lasting more than 10 ms in simulations from the four substrates (each

colored point is a simulation). Error bars represent standard deviations over time.

sometimes involves nodes that are electrically uncoupled. The structural complexity of the

substrate therefore hampers reliable peak identification. A similar conclusion is reached for

the Gurevich et al. method,26 which is more robust and well-suited to tissue with smooth

conductivity (e.g. “Wavebreaks” substrate). In the “Fibrosis” substrate, however, the use of

a Gaussian filter of the size of micro-heterogeneities prevents the ability to track PS around

these obstacles. On the other hand, such filtering might be used to remove these micro-scale

propagation effects if they are deemed inconsequential.

IV. DISCUSSION

A. Tracking algorithms

We have developed a PS tracking algorithm that extends Rogers’ method to address the

challenges of analyzing at high resolution the fibrillation dynamics in heterogeneous math-

ematical models of arrhythmogenic substrates. While most PS detection methods rely on

phase signals in order to apply the same methodology to both simulated and experimental

signals, our approach uses activation times derived from membrane potentials, deliberately
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focusing our attention on simulations. The computational advantage is that by calculating

activation times during the simulation, the reduced output size (by a factor 40 or more)

enables high spatial and temporal resolution (0.2 mm and 0.1 ms) which may be needed

to track complex reentries in fibrotic tissue. The disadvantage is that activation times are

sensitive to noise and therefore the PS detection method is not appropriate for experimental

data. The PS tracking optimization (Hungarian algorithm) and graph simplification meth-

ods, on the other hand, might be incorporated in existing PS analysis techniques aimed at

experimental or clinical mapping.

The mathematical formulation is edge-based rather than vertex-based. This approach is

required to guarantee that each wavefront has exactly 0 or 2 extremities or PS. The edges

of two distinct wavefronts F t
k and F t

l may indeed share a common vertex (at the exact time

when two wavefronts collide), which would make it difficult to differentiate the wavefronts

using a vertex-based strategy. Moreover, an isochrone (wavefront) intersects each edge at

most once. Wavefronts are indeed represented as curves and not as regions covering an area

in the front and in the back of the front.46,47 This enables the analysis of micro-reentries.

The proposed wavefront tracking procedure is applicable to any discrete tissue (unstruc-

tured mesh, 3D mesh) as long as edge-to-edge neighborhood can be defined. The specificity

of rectangular grid is only exploited for PS detection. The look-up table would actually be

valid for any quadrilateral structured grid as the look-up table does not depend on edge

lengths. Its adaptation to a triangular mesh would be straightforward since only 5 triangle

cases are possible (the equivalent of cases A, B, C, E, F in Fig. 1). Generalization to the

detection of filament in 3D would require additional work, notably for defining the distance

between filaments.

The PS tracking algorithm is designed to use the distance between PS in successive time

steps only as a last resort. In contrast to Zou et al.15, no maximal distance constraint is

imposed on PS assignment. Wavefront identification and chirality matching ensures that

PS in isolated wavefronts are always correctly tracked.14 However, multiple wavebreaks and

merging occurring within a single time step necessitate additional distance-based criteria

for PS tracking. This is particularly true when a wavefront is near conduction block over

a significant extent, leading to fractionation of the wavefront into many short ones. Our

strategy in this case is to keep all detected PS and simplify the graph of PS trajectories at

the post-processing stage.
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The formulation of PS assignment as an optimization problem facilitates the integration

of knowledge-based terms in the cost function. The details of the cost function are motivated

by the necessity to avoid ties (PS move by discrete steps on a grid). The Hungarian algorithm

provides a computationally efficient solver that is not, in practical situations, significantly

more complex than the greedy algorithm (which is similar to previous works15,27) since only

a few iterations are performed. The problem is of course alleviated by reducing the time

step. At ∆t = 0.1 ms, the outputs of the Hungarian and greedy assignment algorithms

become the same (Fig. 9), which may be used as criterion to determine whether ∆t is small

enough.

Despite their rarity in practical situations, ambiguous cases (Subsect. II F) are unavoid-

able. Heuristic criteria have to be used to differentiate between a parallel fast move of two PS

and the simultaneous creation and annihilation of two pairs of PS. Our approach is to keep

the continuity of PS trajectories and possibly break them afterwards in a post-processing

stage if jumps are deemed not physiologically plausible.

B. Time resolution

Using high temporal resolution (∆t < 1 ms) for PS tracking has several benefits. It re-

duces the likelihood of seemingly simultaneous events. One-to-many relationships in wave-

front tracking are less frequent (Fig. 7), so exact PS tracking (relying only on wavefront and

chirality) is more likely. This is particularly helpful in the “Fibrosis” substrate, where a

wavefront may collide with multiple distinct obstacles at the same time. The distance trav-

elled by PS in a single time step is also shorter which facilitates PS tracking and decreases

the number of iterations needed by the Hungarian algorithm. As a result, error rates are

significantly lower at higher time resolutions in complex fibrillation dynamics (Fig. 8).

The cost of higher temporal resolution is some additional computational load, roughly

inversely proportional to ∆t. The main contributor to computations is wavefront tracking

(notably, connected component identification) as its complexity is of the order of the number

of cell units in the tissue. On the other hand, the output file size of activation times does

not depend on ∆t. Instead, the algorithm makes better use of available information.
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C. Graph-based analysis

The analysis of PS trajectories through graphs14,22 provides a compact synthetic descrip-

tion of the dynamics. An appealing feature of this approach is the ability to apply transfor-

mations that preserve the integrity of the structure, e.g., the connectivity to two other PS

trajectories through the creation and annihilation events. We propose three such transfor-

mations. The first fixes the ambiguous cases. The second is the temporal down-sampling

that is critical for comparing PS tracking at different ∆t. The third is the simplification

procedure that iteratively eliminates PS trajectories with very short lifespan, resulting in

the identification of stable reentries despite wavefront fragmentation and fibrosis.

Other graph-based transformations may be defined. For example, functional and struc-

tural reentries could be differentiated by testing if PS location belongs to the list of edges

located on the boundaries or on anatomical obstacles (e.g. fibrotic islands). Another ap-

plication could be to coarsen the spatial resolution of the PS distribution by merging or

discarding pairs of PS that are too close to each other.42,48,49

V. CONCLUSION

Although straightforward PS tracking methods typically work well on most simple fibril-

lation models, analyzing dynamics in more complex tissue substrates incorporating strong

anisotropy, ionic and structural heterogeneities and fibrosis remains challenging. Instead of

filtering or down-sampling the data in an attempt to reduce false positives, we used acti-

vation maps with high spatio-temporal resolution to enable tracking micro-scale wavefront

propagation during simulated fibrillation. The results show that decreasing tracking time

steps below 1 ms has clear benefits in terms of PS tracking accuracy.
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