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The complexity of cardiac fibrillation dynamics can be assessed by analyzing the dis-

tribution of phase singularities (PS) observed using mapping systems. Interelectrode

distance, however, limits the accuracy of PS detection. To investigate in a theoretical

framework the PS false negative and false positive rates in relation to the characteris-

tics of the mapping system and fibrillation dynamics, we propose a statistical model

of phase maps with controllable number and locations of PS. In this model, phase

maps are generated from randomly distributed PS with physiologically-plausible di-

rections of rotation. Noise and distortion of the phase are added. PS are detected

using topological charge contour integrals on regular grids of varying resolutions.

Over 100 millions realizations of the random field process are used to estimate aver-

age false negative and false positive rates using a Monte-Carlo approach. The false

detection rates are shown to depend on the average distance between neighboring PS

expressed in units of interelectrode distance, following approximately a power law

with exponents in the range 1.14 to 2 for false negatives and around 2.8 for false

positives. In the presence of noise or distortion of phase, false detection rates at high

resolution tend to a non-zero noise-dependent lower bound. This model provides an

easy-to-implement tool for benchmarking PS detection algorithms over a broad range

configurations with multiple PS.

1

http://dx.doi.org/10.1063/1.4999939


The spatio-temporal dynamics of cardiac fibrillation is characterized by

anatomical and functional reentries that contribute to perpetuate the arrhyth-

mia. Phase mapping is a technique to assess the complexity of the dynamics

and identify the location of reentries. This approach is applicable to computer

simulations, optical mapping experiments as well as electrical recordings. Phase

singularities are points where all values of phase converge. They correspond

to the core of spiral waves and they represent potential targets for therapeutic

catheter ablation. Localization of phase singularities from a limited set of elec-

trodes is challenging. The lack of spatial resolution may result in false positive

or false negative detections. This paper investigates the theoretical basis of false

detection of phase singularities in a square mapping grid. A statistical model of

randomly generated phase maps with controllable number of phase singularities

is proposed. In this model, false positive and false negative rates are shown to

be a function of the average distance between neighboring phase singularities

expressed in units of interelectrode distance.

I. INTRODUCTION

Atrial fibrillation is a common arrhythmia observed as multiple electrical wavelets prop-

agating over the atrial surface. These wavelets may be self-sustained or generated by one

or a few stable rotors or by the automatic activity of ectopic foci.1,2 Phase mapping3–5 is

often used as dimension reduction technique for monitoring atrial activity from a wide-field

of view in computer simulations and clinical electrical mapping. The fibrillation dynamics

is analyzed by tracking phase singularities (PS).6–8 Clinical relevance of PS localization has

recently been established in clinical trials targeting rotors for catheter ablation of atrial

fibrillation.9,10

PS analysis is performed in three steps. First, phase maps are computed from recorded

or simulated signals.11 In simulations, the time course of the membrane potential can be

used to define the phase through time-delayed embedding12,13 or Hilbert transform.14 These

methods can be extended to estimate the phase in unipolar and bipolar electrograms.15–17

The second step concentrates on one phase map at a time and identifies PS. The algorithm

depends on the geometrical structure of the mapping system. Methods have been developed
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for square grids,8 triangular meshes18 and mapping catheters.16 This paper will focus on this

problem. The last step consists in tracking PS trajectories to determine their stability and

life span.19 Very short-lived PS may be tagged as false positive and discarded.

Application to human atrial mapping necessarily involves a trade-off between the num-

ber of signals recorded by the mapping catheter and PS detection accuracy. The spatial

resolution (inter-electrode distance) required for detecting a rotor using a multi-electrode

catheter has been investigated in computer simulations, synthetic and clinical signals.20,21

Spatial wavelength, measured as the distance between consecutive wave fronts, appeared

to be the major constraint for accurate rotor detection,21 confirming previous theoretical

predictions.22 The focus of these studies was the clinical problem of identifying a single

rotor or focal activation.

In this paper, a statistical model of phase maps with multiple randomly-located PS is

proposed. The model incorporates the effect of noise and distortion of the phase. Phase maps

are regularly discretized using a large range of resolutions. Then, PS detection is performed

and the number of false positives and false negatives is exactly determined. Monte-Carlo

simulations are run to determine the false detection rates as a function of PS density and

electrode density. The simplicity of this theoretical approach enables averaging over the large

number of realizations needed to derive the scaling laws that give the mapping resolution

required to keep false detection rates below a tolerance.

II. METHODS

A. Phase singularities in continuous phase maps

A phase map θ(x) is a continuous, smooth, angle-valued function defined on the plane,

except at a finite number of points {xk}, k = 1, . . . n, called phase singularities (PS).6,11 The

value of θ(x) is in [−π, π). The topological charge of the PS at xk is defined as12

qk =
1

2π

∮
Γ

∇θ · dℓ , (1)

where the contour integral follows a closed non-intersecting counter-clockwise oriented curve

Γ surrounding xk but no other PS.

This integral is calculated by parametrizing the curve Γ with the function r(t), t ∈ [0, 1],
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such that r(0) = r(1), which gives

qk =
1

2π

∫ 1

0

d

dt
θ(r(t)) dt . (2)

The angle-valued function θ(r(t)) is not continuous as a real function and will be “un-

wrapped” to form a continuous real function equivalent to θ(r(t)) modulo 2π.

We will use the following notations: mod2π(x) ∈ [0, 2π) is the value of x modulo 2π.

The wrapping function W(x) = mod2π(x + π) − π transforms a real value into an angle

in the range [−π, π). Note that W(−x) = −W(x). The unwrapping operator U [f ] adds

appropriate 2π jumps to an angle-valued function f(t) to make it continuous as a real

function. In particular, W(U [f ](t)) = f(t).

As a result, after unwrapping of the phase θ, the integral (2) becomes

qk =
1

2π

∫ 1

0

d

dt
U [θ(r(t))] dt = 1

2π

(
U [θ ◦ r](1)− U [θ ◦ r](0)

)
, (3)

where the circle ◦ denotes the composition of functions. This shows that qk is an integer

and that calculating topological charges comes down to unwrapping the phase along closed

paths.

The case qk = 0 means that the PS is removable by appropriate definition of θ(xk).

Cases with |qk| > 1 have been observed in cell cultures and simulations,23 but they remain

extremely rare. We will assume that qk = ±1 for all PS.

The contour integral (1) can be used to detect PS. If the curve Γ encloses a region that

contains n+ PS with charge +1 and n− PS with charge −1, the integral is q = n+ − n−.

Based only on the knowledge of q, we can predict that inside Γ there are |q| = |n+−n−| PS,

each of them with a charge of sign(q) = sign(n+−n−). Even when the integral is calculated

analytically, matching PS with opposite charges cancel each other. The number of false

negative detections is therefore 2min(n+, n−). On the other hand, false positive detection

never occurs when the continuous phase map is known.

B. Phase singularities in discretized phase maps

In experimental and simulation studies, the phase is known only at a finite number of

points. Here, the mapped area considered will be a L-by-L square. For numerical computa-

tions, we will take L = 1 and reintroduce L at the end through dimensional analysis. The
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mapping system consists of a (K + 1)-by-(K + 1) grid of electrodes with regular interelec-

trode spacing of ∆x = L/K, as illustrated in Fig. 1A. The value of K will be varied from

1 to 100. The resulting spatially sampled phase map is a matrix θi,j = θ(i∆x, j∆x) for

i, j ∈ {0, . . . K}.

PS detection from a discretized phase map is based on an estimate of the integral (1)

through phase unwrapping. The shortest closed path is composed of the grid points (i, j) →

(i+1, j) → (i+1, j+1) → (i, j+1) → (i, j) forming a square element, as shown in Fig. 1A.

The sequence of phases (ϕ0, ϕ1, ϕ2, ϕ3, ϕ4) = (θi,j, θi+1,j, θi+1,j+1, θi,j+1, θi,j) is the discrete

equivalent of the function θ ◦ r.

To transform a sequence of phases (ϕ0, ϕ1, . . .) into an unwrapped sequence (Uϕ0,Uϕ1, . . .),

we first set Uϕ0 = ϕ0 and then each step Uϕk − Uϕk−1 is taken to be the smallest step (in

absolute value) among ϕk − ϕk−1, ϕk − ϕk−1 + 2π and ϕk − ϕk−1 − 2π, thus minimizing the

gradient. This smallest step is equal to W(ϕk − ϕk−1). The cumulative sum of these steps

is then computed. This procedure is implemented in Matlab in the function unwrap and is

widely used in signal processing.

The topological charge qi,j within the square element located at (i, j) can be written by

applying (3) to the unwrapped sequence of phases (ϕ0, . . . , ϕ4):

2π qi,j = Uϕ4 − Uϕ0 = W(θi+1,j − θi,j) +W(θi+1,j+1 − θi+1,j)

+W(θi,j+1 − θi+1,j+1) +W(θi,j − θi,j+1) . (4)

A uniform shift of all phases by−θi,j does not affect the gradient of the phase. This motivates

the following definitions:

αi,j = W(θi+1,j − θi,j) (5)

βi,j = mod2π(θi+1,j+1 − θi,j) (6)

γi,j = W(θi,j+1 − θi,j) (7)

These 3 variables are phase differences that fully characterize the local phase gradient. The

special status of the variable β will soon be apparent. With these definitions we have

2π qi,j = αi,j +W(βi,j − αi,j)− γi,j −W(βi,j − γi,j) . (8)
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The equality (8) is verified because

W(βi,j − αi,j) = W
(
mod2π(θi+1,j+1 − θi,j)−W(θi+1,j − θi,j)

)
(9)

= W(θi+1,j+1 − θi+1,j + k · 2π) = W(θi+1,j+1 − θi+1,j) (10)

where k is an integer. The term W(βi,j − γi,j) is handled similarly, with the help of the

relation W(−x) = −W(x).

Let us define g(x) = x + W(β − x). Since x ∈ [−π, π) and β ∈ [0, 2π), the graphical

representation of W(β−x) shows that g(x) = β if β−x < π and g(x) = β−2π if β−x ≥ π.

An alternative formulation is g(x) = β−2πH(β−x−π) where H(x) is the right-continuous

Heaviside step function. Consequently, (8) becomes

qi,j = H(βi,j − γi,j − π)−H(βi,j − αi,j − π) . (11)

Note that |qi,j| ≤ 1 since H(x) ∈ {0, 1}.

Computer implementation is straightforward: from a (K + 1) × (K + 1) matrix θ, the

K×K matrices α, β and γ are computed using (5)–(7); then a non-zero qi,j can be identified

with the exclusive-or conditional statement: βi,j − αi,j < π xor βi,j − γi,j < π; the signs

of the detected PS are finally given by (11). The condition for PS detection is therefore

represented by a region delimited by two planes in the (α, γ, β) space.

PS detection can also be performed on larger paths. If M is a small integer (M = 1, 2, 3

here) that dividesK, the grid may be subdivided intoK/M -by-K/M non-overlapping groups

of M -by-M square elements (Fig. 1B–C). Each true PS can be in only one of these K2/M2

square elements, which will facilitate the definition of false negatives and avoid boundary

effects. The integral along the borders of any M -by-M square is equal to the sum of the

integrals over each of these M2 square elements

q
(M)
i,j =

M−1∑
k=0

M−1∑
k′=0

qiM+k,jM+k′ (12)

where i, j ∈ {0, . . . K/M − 1}. Obviously, q
(1)
i,j = qi,j. The decomposition as a sum is not

only exact in the continuous, analytical case, but also in the discretized case as it can be

seen from (4). Note that |q(M)
i,j | ≤ M2, and if M > 1, |q(M)

i,j | may be > 1. Practically, it was

always ≤ 3.
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(i,j) (i+1,j)

(i+1,j+1)(i,j+1)
A

B C

FIG. 1. Mapping grid with K = 6 with interelectrode distance ∆x. (A) Square element (M = 1)

and its associated path of length 4 ∆x to evaluate the contour integral that gives the topological

charge. (B) One of the K2/M2 = 9 non-intersecting paths of length 8∆x when M = 2. (C) Same

for M = 3 with a path of length 12 ∆x.

C. Random generation of phase maps

The objective is to create a large number of continuous phase maps with multiple PS

with random locations and charges. These phase maps will then be sampled at different

spatial resolutions to serve as a benchmark for the evaluation of PS detection methods.

A configuration of PS is determined by the list of PS locations and charges (zk, qk)

for k = 1, . . . n, where the position is defined for convenience by a complex number zk

with real and imaginary parts in [0, L], and where qk = ±1. The number of PS, n, will

be varied between 1 and 16, thus covering the range from few macro-reentrant rotors to

multiple transient wavelet breakups. Scaling laws and asymptotic expansions will enable

extrapolation to even more PS.

PS locations will be independently and uniformly distributed over the L-by-L square.

Note that this is not intended to represent PS distribution over time, which is often observed

to be concentrated in specific regions due to structural or functional heterogeneity.24,25 In-

stead, the uniform distribution is assumed to model the statistics of all PS configurations

measured in all experiments performed using the mapping system, including situations where
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pairs of PS are very close just after creation or before annihilation. In other words, it repre-

sents an ensemble statistics and not a temporal statistics. The outcome will be an assessment

of the mapping system and of the PS detection algorithm.

The selection of the charges uses minimization of electrostatic energy to prevent nearest

neighbor PS from having the same charge. For fixed positions {zk}, the energy is defined as

in Herlin et al.26

E({qk}) =
n∑

k=1

n∑
k′=k+1

qkqk′

|zk − zk′|
. (13)

The charge q1 is randomly set to +1 or −1. Then the energy is minimized over the 2n−1

remaining configurations. This quadratic binary optimization problem is known to be com-

putationally complex,27 but for n ≤ 16 it is easily solved by exhaustive search. The result-

ing charge distribution typically has nearest-neighbor PS with opposite charges and a total

charge
∑

k qk = 0 or ±1. Exceptional (< 0.01%) cases with |
∑

k qk| > 1 were discarded.

A total of Nconfig = 10, 000 configurations were randomly created for each of the NPS = 16

values of n.

For a given configuration {(zk, qk)}, the phase map

θ(z) = arg
n∏

k=1

(z − zk)
qk (14)

has been shown to have n PS located at zk with a charge of qk, k = 1, . . . n.28 From this

analytical form, discretized maps can be generated for each of the Ngrid = 100 values of K.

These Nconfig ×NPS = 160, 000 phase maps will be referred to as control phase maps.

To quantify the effect of noise or uncertainty on the determination of the phase from

electrical or optical recordings, random noise is added to the phase field. We assume that the

noise is distributed as a wrapped normal random variable29 and that noise terms in different

electrodes are statistically independent. The independence hypothesis corresponds to the

worst case scenario since spatially correlated noise at a length scale larger that interelectrode

distance would result in a local uniform shift of the phase with little impact on PS detection.

The wrapped normal distribution has two convenient properties: (1) it can be easily and

efficiently generated as a normal random number modulo 2π; (2) additivity: the sum of two

wrapped normal distributions is a wrapped normal distribution, which is not the case for

the von Mises distribution.29 The perturbed phase map is obtained as

θnoisy(z) = W(θ(z) + σZ(z)) , (15)
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where Z(z) are independent standard normal random variables and σ2 determines noise

variance, which means that θnoisy(z) is a wrapped normal variable with mean θ(z) and

standard deviation parameter σ. When σ ≪ 1, θnoisy is approximately distributed normally.

When σ → +∞, and practically already when σ ≈ 3, θnoisy become uniform on [−π, π).

For the implementation, the phase is computed using (14)–(15) in all the grids together,

avoiding duplicate computations at nodes present in multiple grids. This saves about 18% of

computing requirements and, more importantly, it ensures that the same sample of random

noise is used at each location, e.g. at the corner nodes present in all grids. For Nσ = 13

values of σ ranging from 0.03 to 2, Nrealiz = 50 realizations of the noise field are used, giving

a total of NPS × Nconfig × Nσ × Nrealiz = 102 million phase maps sampled at Ngrid = 100

different resolutions.

In these randomly generated phase maps, the norm of the phase gradient is essentially

uncorrelated to the value of phase. This may not be the case in simulations or experimental

studies where variations of phase may be slower during the excitable gap or faster during

depolarization, depending on the method used for calculating the phase. In order to assess

the effect of increased spatial variations in phase gradient, a phase distortion function is

applied point-by-point to the phase map. This distortion function h(θ) must be bijective in

the domain [−π, π) and is chosen to be

h(θ) = θ + c sin(θ) (16)

where 0 ≤ c < 1 to ensure that h′(θ) > 0. With increasing values of c, the phase gradient

becomes steeper near the isophase line θ = 0 and flatter near θ = ±π. For Nc = 10 values of

c ranging from 0.05 to 0.9, the distortion functions are applied to all generated phase maps

without noise, leading to another NPS ×Nconfig ×Nc = 1.6 million maps.

Figure 2 shows examples of generated phase maps with different numbers of PS. Auto-

matic determination of PS charges appears to assign opposite charges to nearest-neighbor

PS. The absence of a characteristic length scale creates a form of self-similarity that will be

exploited later to derive scaling laws. The effect of noise is obvious on the second column of

panels in Fig. 2. The third column of panels illustrates how the distortion function creates

regions of steeper phase gradients.
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FIG. 2. Examples of randomly generated phase maps with 3, 4, 8, 12 and 16 phase singularities

(PS) computed on a 101-by-101 grid. The phase is color-coded and 12 isophase lines regularly

distributed over [−π, π) are displayed. PS are represented as black or white circles depending on

their sign (clockwise or counter-clockwise). First column: Control phase maps. Second column:

Noisy phase maps with σ = 0.05. Third column: Distorted phase maps with c = 0.8.

D. False positive and false negative rates

Randomly generated phase maps will be used to test PS detection methods. Since exact

locations and charges of PS are known, false positive and false negative detection can be

defined exactly. Consider a closed curve Γ with n+ PS with charge +1 and n− PS with
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charge −1 in its interior. If an approximation of the contour integral (1) over the path Γ

gives an integer q, we predict that the region enclosed in Γ has |q| PS, each one with charge

sign(q). This is the choice that minimizes the number of PS detected.

Each detected PS is either a true positive (TP) or a false positive (FP)

TP + FP = |q| . (17)

Each actual PS is classified as either a true positive (TP) or a false negative (FN) depending

on whether it is detected or not

TP + FN = n+ + n− . (18)

Thus, we have

FN = FP + n+ + n− − |q| . (19)

If no PS is detected, there is no false positive, i.e. q = 0 implies FP = 0. If not, each

detected PS in excess of nsign(q) is a false positive

FP = max
(
|q| − nsign(q), 0

)
(20)

where nsign(q) = n+ if q > 0 and n− if q < 0. Combined with (19), this gives the number of

false positives and false negatives as a function of detection outcome (q) and ground truth

(n+ and n−). Note that if the integral is exactly evaluated, q = n+ − n− and then FP = 0

and FN = 2min(n+, n−) as in the analytical case (section IIA).

When PS detection is performed on a set of K2/M2 square paths indexed by i, j ∈

{0, . . . K/M − 1} like at the end of section II B, each path is associated with a number of

false positives FPi,j and false negatives FNi,j. The false positive rate (FPR) is defined as

the average number of false positives per square path tested

FPR =
M2

K2

K/M−1∑
i=0

K/M−1∑
j=0

FPi,j . (21)

The false negative rate (FNR) is defined as the fraction of the n PS that have not been

detected

FNR =
1

n

K/M−1∑
i=0

K/M−1∑
j=0

FNi,j , (22)

so that 0 ≤ FNR ≤ 1.
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For each value of PS number (n), noise amplitude (σ) and grid resolution (∆x), statistics

of FPR and FNR (mean and standard deviation) are calculated over Nconfig × Nrealiz =

500, 000 phase maps. In control cases and after application of the distortion function, the

statistics is over Nconfig = 10, 000 phase maps.

E. Scaling law for false negatives

To better understand how the false negative rate depends on the number of PS (n) and the

spatial resolution of the mapping system (∆x = L/K), a simplified situation was considered:

n PS are randomly, uniformly and independently distributed in K2 squares, and the charges

are assigned such that the sum of the charges in each square is −1, 0 or +1. Assuming that

the integral (1) is calculated exactly, this means that if m PS are in a square, the number

of true positives is 0 if m is even and 1 if m is odd.

The number of PS in a given square is a binomial random variable. Calculations based

on the binomial distribution show that the probability that a square is empty is

Pempty =

(
1− 1

K2

)n

, (23)

which will be used later, and the probability that the number of PS in a square is odd is

Podd =
1

2
− 1

2

(
1− 2

K2

)n

. (24)

The number of true positives (TP) is the expected number of squares that include an odd

number of PS

TP = K2 Podd , (25)

and the number of false negatives is FN = n− TP, so the false negative rate (FNR) is

FNR = 1− K2

2n

(
1−

(
1− 2

K2

)n)
=

n− 1

K2
+O(K−4) (26)

where the approximation is valid when interelectrode spacing is small.

To interpret that formula, consider n points uniformly randomly distributed in a L-by-L

square. The natural distance in a square grid is derived from the max norm

∥(x, y)∥∞ = max(|x|, |y|) (27)
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since the distance between two points becomes the size of the smallest square that contains

both points, which is a situation that leads to false negatives. Empirically, the average

max-norm distance between nearest-neighbor PS is approximately equal to

λn =
L

2
√
n− 1

(28)

where for 2 < n ≤ 16 the error is < 3% when the average is taken over our 10,000 configu-

rations for each value of n. The asymptotic square root behavior can be demonstrated in a

more general context.30 As a result,

FNR =
1

4

(
∆x

λn

)2

+O(∆x4) . (29)

This theoretical argument suggests that the relevant parameter for false negative occurrence

is the nearest-neighbor distance between PS expressed in units of interelectrode spacing and

that a power-law behavior should be expected. The advantage is that it reduces the number

of independent variables from two (n and K) to one (∆x/λn).

F. Scaling law for false positives

In order to get a false positive, q must be incorrectly estimated (see section IID), which

may occur when ∇θ is so steep that the difference in unwrapped phase is larger than π in a

segment of length ∆x. For a horizontally-aligned short segment (∆x ≪ L), this means that∣∣∣∣∂θ∂x
∣∣∣∣ > π

∆x
. (30)

When the phase map is given by (14), the gradient is stronger near phase singularities.

For a point z in the vicinity of zk, the phase field is

θ(z) = (−1)qk arg(z − zk) + arg
∏
k′ ̸=k

(z − zk′)
qk′ (31)

where the equality holds modulo 2π. The second term is nearly constant around z = zk

so its contribution to the gradient is neglected. Writing the real and imaginary parts as

z− zk = x+ iy, we have arg(z− zk) = atan2(y, x), where atan2 is the four-quadrant inverse

tangent. The gradient can be explicitly expressed as∣∣∣∣∂θ∂x
∣∣∣∣ ≈ |x|

x2 + y2
. (32)
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The region defined by (30) is therefore composed of two disjoint disks of radius ∆x/2π for

each of the n PS. Its total area is n∆x2/2π if ∆x is sufficiently small so that the disks

corresponding to different PS do not intersect.

The fraction of ∆x-long horizontal segments in high gradient regions is of the order of

(n∆x2)/(2πL2), so we may argue that the false positive rate should behave like

FPR ∝
(

∆x

λn+1

)2

. (33)

We however expect the asymptotic decrease in FPR for small ∆x to be steeper than that

for two reasons: (1) along the four sides of a square element, two 2π jumps in opposite

directions may cancel each other; and (2) by being so close to the PS, the square element

may actually include the PS, which would make it a true positive. Despite these limitations,

it appears plausible that in this model the false positives are mostly found in the vicinity of

actual PS and that ∆x/λn+1 is a relevant parameter to determine FPR.

III. RESULTS

A. Separating planes for PS detection

In each square element, the variables α, β and γ are computed using (5)–(7). Recall that

α and γ represent the phase difference along the sides of the square, while β represents the

phase difference along the diagonal of the square. The condition (11) for PS detection is

based on the position in the (α, γ, β) space relative to the planes β − γ = π and β − α = π.

Figure 3 shows the distribution of (α, γ, β) built as a 3D histogram from all the control

phase maps at a given resolution (K = 16, 24 and 64). The two separating planes create

four regions, two of which (the right and the left ones on Fig. 3) trigger PS detection. The

distributions corresponding to true positives or false negatives (first row of Fig. 3) and true

negatives or false positives (second row) are displayed separately. Owing to the symmetry

(α, γ, β) 7→ (−α,−γ, 2π − β) associated with the change in the direction of spiral rotation,

only the bottom half of the space is shown. The distributions have to be understood as

modulo 2π, which means for example that in Figs. 3A–C, the small piece (false negatives)

in the front near (−π, 0, 2) is actually connected to the larger piece (true positives) in the

back near (π, 0, 2).
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FIG. 3. Distribution of (α, γ, β) over all control phase maps with increasing spatial resolution

K = 16 (A,D), K = 24 (B,E) and K = 64 (C,F). Panels A, B and C represent true positives

and false negatives (i.e. square elements with a single PS in it) while panels D, E and F show the

distribution of true negatives and false positives (where there is no PS in the square elements).

The red surface contains 75% of the data points and the blue surface 95%. The separating planes

β − γ = π and β − α = π used for PS detection are displayed in gray.

The distribution of true positives and false negatives (panels A, B, C) is approximately

centered around (π/2,−2, π) and (−2, π/2, π) in the region where formula (11) predicts the

presence of a PS. When a higher-resolution grid of electrodes is used (panel C), the spread

of the distribution is reduced and the number of false negatives decreases. The spread of

the distribution however does not tend to zero at high resolution because the phase maps

are scale-invariant in the vicinity of a PS.

The distribution of true negatives and false positives (panels D, E, F) is centered around

(0, 0, 0) and has arms pointing toward the cores of the distribution of true positives and

corresponding to square elements located close to a PS. These locations are therefore more

prone to false positives. As resolution increases, a larger proportion of square elements are

further from PS so that the distribution becomes concentrated around the origin (panel F)

and its spread tends to zero.
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B. Scaling laws for false negatives and false positives

Figure 4A shows the mean false negative rate (FNR) as a function of interelectrode

distance (M = 1) and number of PS. Each point is the average over Nconfig = 10, 000 control

phase maps. For n = 1 PS, there is no false negative. FNR increases with the number of PS

and when mapping resolution is coarser. Motivated by the theoretical results of subsections

II E and II F, non-dimensional length scales are introduced:

ξ =
∆x

λn

=
2
√
n− 1

K
and ξc =

√
n

n− 1
ξ . (34)

When n is large, ξ ≈ ξc. These length scales conceptually represent how small interelectrode

distance is as compared to the distances between PS. In a cardiac simulation context where

the phase is computed at every computational node, we may have K = 200 and n = 10,

leading to ξ = 0.03, which is the lower end of our range. On the other hand, a 4-by-4 array

mapping catheter might sense the activity of n = 1 to 2 PS, giving a ξ value of the order

of 1, the high end of our range. When FNR is expressed as a function of ξ instead of ∆x,

the curves for different values of the number of PS are superimposed (Fig. 4B).

The mean false positive rate (FPR) is displayed in Fig. 4C. Like FNR, FPR increases

with the number of PS, but is a biphasic function of ∆x. The decrease at low resolution is

due to the fact that no false positive can be found in a square element that actually contains

a PS. When K is small, there are fewer square elements empty of PS. This can be taken

into account by defining a corrected false positive rate (FPRc)

FPRc =
FPR

Pempty

= FPR ·
(
1− 1

K2

)−n

≈ FPR ·
(
1 +

1

4
ξ2c

)
. (35)

where Pempty, the probability of a square element to be empty, comes from (23). When ξc

is small or if K is large, FPRc ≈ FPR. The resulting curves are shown in Fig. 4D. In both

Figs. 4B and D, a few points associated with very small values of n and K are off the main

trend. In the next subsections, only points with n > 2 and K > 2 will be displayed for

the sake of clarity. The logarithmic scale will be used for false detection rates to highlight

asymptotic behavior.

Since the probability of false detection can become very small, the relative standard error

on the mean (RSEM) is estimated to verify whether the number of configurations generated

is appropriate. The RSEM is defined as the standard deviation of the Nconfig = 10, 000

16



FIG. 4. Mean false positive and false negative rates over the control phase maps. (A) Mean

false negative rate (FNR) as a function of interelectrode distance and number of PS (color-coded).

(B) Same data as in panel A but expressed as a function of the scale ξ. (C) Mean false positive

rate (FPR) as a function of interelectrode distance and number of PS (color-coded). (D) Mean

corrected false positive rate (FPRc) as a function of the scale ξc.

values, divided by
√
Nconfig and by the mean value. The RSEM of both FNR and FPRc

appears to be proportional to n−1/2, as shown in Fig. 5. The RSEM is higher at small length

scale ξ but remains below 0.12 n−1/2, which translates into a few percents in most cases.

C. Length of integration path and power laws

The statistical model of phase maps enables the evaluation of the advantages and dis-

advantages of detecting PS in M -by-M square elements (Fig. 1). This discretization of the

integration path can be seen from two different perspectives.
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FIG. 5. Relative standard error on the mean (RSEM) of false positive rate (FNR; panel A) and

corrected false negative rate (FPRc; panel B), scaled by
√
n and expressed as a function of the

length scale ξ or ξc. Each data point represents the RSEM estimated from 10,000 control phase

maps at different resolutions and number of PS (color coded).

The first viewpoint is to consider a square path whose side of length ∆x is subdivided

into M segments to improve the accuracy of estimating the contour integral. Figure 6A

shows the mean FNR as a function of Mξ so the curves for M = 1, 2, 3 as compared at

the same value of M∆x representing the side of the square. When M → ∞, the integral

is calculated exactly and is equal to the expectation of 2min(n+, n−)/n in the notations of

subsection IID. This curve, displayed in black in Fig. 6A (M = ∞), almost coincides with

the theoretical formula (29): FNR = ξ2/4.

For increasing values of M , PS detection is more accurate and FNR decreases. The FNR

curves follow approximately power laws with exponents 1.14, 1.43 and 1.63 for M = 1, 2, 3
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FIG. 6. False negative rates (FNR) and corrected false positive rates (FPRc) in control phase

maps for different integration path lengths (M = 1 to 3). The case M = ∞ in (A) corresponds to

exact integration. In (A) and (C), the scales ξ or ξx multiplied by M are associated with the side

of the square element over which the phase gradient is integrated, while in (B) and (D) the scales

ξ and ξc are associated with interelectrode distance (this is why the case M = ∞ is not present in

panel B). Power law fits are drawn as black lines. The white line in (A) follows theoretical formula

(29): FNR = ξ2/4.

respectively. The standard errors on the exponents are < 0.01. The results for FPRc are

similar, except that the exponents of the fitted power laws are steeper and of the same

order of magnitude: 2.82, 2.79 and 2.77 for M = 1, 2, 3, with a standard error < 0.015. As

anticipated, the exponent is larger than the theoretical value (33). When M → ∞, FPRc is

always zero so the curve is not shown.

The second viewpoint concentrates on finding the best method given a fixed number of

electrodes. The false detection rates are displayed as a function of ξ (Fig. 6B,D). A square
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element with M = 3 has an area 9 times bigger than a square element with M = 1. When

ξ is large, the significant probability of having multiple PS in the square element makes the

method withM = 3 less effective. When ξ is small, the exponent of the power law takes over.

As a result, FNR is minimal for M = 1 when ξ > 0.17, for M = 2 when 0.03 < ξ < 0.17,

and for M = 3 when ξ < 0.03. According to subsection II F, false positives are more likely

to occur near a PS. With large square elements, a larger proportion of these false positives

(even if it is the same absolute number) are located in the vicinity of a PS. In agreement

with this hand-waving argument, FPRc tends to be larger when M > 1.

The spatial extent of that vicinity is estimated in subsection III F. In the range ξc < 0.5,

FPRc is on average 1.8 times larger when M = 2 and 2.4 times larger when M = 3 as

compared to M = 1. This result is mitigated by the pre-factor M2/K2 in (21). Even if the

FPRc is larger, the absolute number of false positives is still smaller by a factorM2/1.8 = 2.2

for M = 2 and M2/2.4 = 3.8 for M = 3.

D. Effect of noise

In the control phase maps, the value of the phase is known exactly from an analytical

formula. Real-life scenarios include noise and uncertainty that will certainly affect false

detection rates. Figure 7 shows the increase in false detection rates observed after addition

of noise of different variances. In the presence of noise, false detection rates do not behave as

power law but instead saturate at short length scale ξ. The best method among M = 1, 2, 3

remains M = 1 at high ξ, M = 2 at mid-range ξ and M = 3 at low ξ. As compared to the

control cases, the intervals of ξ for whichM = 2 is the best method are shifted to the right by

noise. For example, at σ = 0.1, M = 2 is the best for 0.08 < ξ < 0.23, and at σ = 0.5, M = 2

is the best for 0.2 < ξ < 0.5. Consequently, the benefits of longer integration path lengths

(increasing M) in terms of FNR increase with noise variance. Noise also increases FPRc,

moderately up to σ = 0.5, and then by a large amount. This corresponds to false positive

detection not only near PS but also anywhere else, randomly caused by local fluctuation of

phase (see subsection III F). As with control phase maps, larger integration paths (M > 1)

slightly increase FPRc.
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FIG. 7. Effect of noise on false negative rate (FNR) and corrected false positive rate (FPRc) as a

function of length scale for values of σ ranging from 0 to 1 radian (color coded): σ = 0, 0.03, 0.06,

0.1, 0.15, and 0.2 to 1 by step of 0.1. (A)–(D) M = 1; (B)–(E) M = 2; (C)–(F) M = 3.

E. Effect of phase distortion

The ideal phase map for PS detection has a smooth phase gradient that is as uniform as

possible. The application of the distortion function (16) creates regions of steeper gradients

and regions of almost constant phase. The consequence is an increase in false detections

(Fig. 8). Even a small distortion (c = 0.05) has a significant impact on FNR at high

resolution (small ξ on panels A–C). Larger integration paths (M > 1) are more robust

against that distortion. FPRc, on the other hand, seems less affected than FNR (panels

D–F). The effect on FPRc appears also to be smaller than that of noise. Note, however,

that an increase of FPRc by a factor of almost 100 is possible at low ξ.
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FIG. 8. Effect of phase distortion on false negative rate (FNR) and corrected false positive rate

(FPRc) as a function of length scale for values of c ranging from 0 to 0.9 (color coded): c = 0,

0.05, and 0.1 to 0.9 by step of 0.1. (A)–(D) M = 1; (B)–(E) M = 2; (C)–(F) M = 3.

F. Location of false positives

The argument of subsection II F suggests that false positives are more likely to be found

near PS. To validate this proposition, each detected false positive is placed at the center

of the corresponding square element and its max-norm distance (27) to the nearest PS is

calculated. This distance must be larger than ∆x/2 otherwise it would be a true positive

by definition. If that distance is smaller than 3∆x/2, it means that a false positive is

detected in a square element adjacent to the one containing a PS. The histogram of these

distances for all false positives from 160,000 phase maps are calculated and displayed in

Fig. 9. The histograms are normalized by their maximum count to emphasize the decay

with the distance.

The results demonstrate that, in this model, false positives are mostly located in the

vicinity of PS (Fig. 9). The average distance increases with noise (panel A) and distortion
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FIG. 9. Normalized histograms of the max-norm distance between a false positive and the nearest

PS. The distance is expressed in units of interelectrode distance ∆x. (A) Effect of noise variance σ.

(B) Effect of distortion parameter c.

(panel B), but generally remains within the nearest neighbor square elements. An excep-

tion is when noise is sufficiently large (σ > 0.5) to create false positives in the absence of

phase gradient, causing a background density of false positives throughout the mapping area

(Fig. 9A, σ = 0.7).

IV. DISCUSSION

Our statistical model provides a theoretical framework for studying and comparing PS

detection methods. Despite its simplifications, this model involves ubiquitous mechanisms of

false positives and false negatives caused by PS distribution and steepness of phase gradient

that are expected to be present in any model of cardiac reentry. It essentially gives a minimal

baseline model on top of which perturbations such as noise or distortion can be added.
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The advantage of this approach is the ability to simulate hundreds of millions of inde-

pendent configurations as required to achieve accurate prediction of false detection rates,

particularly when these rates are low and theoretical relations are sought. Indeed, the dis-

tribution of false detection number is discrete and the probability of non-zero false detection

may be small. The standard error on the mean (Fig. 5) quantifies this requirement. A

second advantage is the exact knowledge of PS number and location to unambiguously iden-

tify false positives and false negatives. Even in high resolution simulations where phase

maps can be derived from the time course of the membrane potential, there are still false

detections,19 making it difficult to define an objective gold standard. A third advantage is

its independence from the method to compute the phase map. The results depend solely on

the nature of the phase map at a time instant. This may provide guidelines on how to best

design phase calculation algorithms. For instance, since distortion increases false detection,

it is desirable to define the phase such that the phase distribution is as uniform as possible.

The use of Hilbert transform is a step in this direction.15,17

The main result of this paper is the set of curves presenting the mean number of false

detections (Figs. 6, 7, 8). In this model, the ratio (ξ) between interelectrode distance and

mean distance between neighboring PS is shown to be the parameter determining false

positive and false negative rates. The square of this parameter corresponds to PS density

over the mapping system. Asymptotic power laws for false detection facilitate interpolation

or extrapolation. The mapping resolution needed to detect PS with predefined false positive

and false negative rates can be read on these figures. As expected, the presence of noise and

distortion limits the ability to reduce false detection by increasing mapping resolution.

The constraint on ξ can be linked to tissue wavelength (WL) defined as the spatial

separation between successive wave fronts. Rappel et al.22 argued that ∆x should be smaller

than WL/4 to detect a single rotor or a focal activation. This was further validated by Roney

et al.16 using simulations in an atrial model. In the context of the leading circle theory,2

each spiral rotating around a PS occupies a circular region of radius WL/2π, which implies

that the distance between neighboring PS is of the order of λn = WL/π. After substitution

in the condition ∆x < WL/4, we would estimate ξ < π/4 ≈ 0.785. This constraint for

perfect PS detection is less restrictive than ours but relies on the absence of noise and on

the assumption that the rotor is unique.

Our phase map generation model can be easily implemented and may be used to test
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PS detection algorithms at the proof-of-concept phase. As illustrative example, we assessed

the gain obtained by computing the integral over a larger square (M > 1). Significant

reduction in false negative rate was observed at high resolution and in the presence of noise

or distortion (Figs. 7, 8). False positive rate did not decrease with M > 1, but the absolute

number of false positives did. When isolated false positives are found away from any true PS

as in Roney et al.,16 the benefits of using M > 1 might be even more significant. Combining

the detection outcome from multiple paths20 may also be a solution to improve robustness

and reduce false positive rate.

Few simulation studies report separately false negatives and false positives. In general,

assessment of PS detection algorithm is based on the average number of detected PS or on

the ability to track the core of spirals. Roney et al.31 simulated an average of n = 9.6 PS

in a tissue with L = 10 cm and ∆x from 2 to 10 mm, resulting in a ξ value between 0.12

and 0.59. With ∆x = 10 mm, an average of 11.6 PS were detected. If those additional 2

PS were false positives, our curves (Fig. 8) would suggest that the distortion parameter is

c = 0.7 (assuming no noise), which is plausible since their phase tend to accumulate around

±π. However, the same statistical model would overestimate the false negative rate. Our

model was not designed to reproduce the PS distribution of a particular set of simulations

in which PS location (and therefore the distance between neighboring PS) may be driven

by simulation-specific repolarization heterogeneities.

Among the limitations of the statistical model, the generated phase maps (Fig. 2) do

not look like spirals around PS. Instead, these maps are designed to minimize the gradients

in order to cause the least number of false detection. In particular, they do not include

conduction heterogeneities, which can be a source of false positives. An eikonal approach

could be used to generate more realistic maps.26,28,32,33 This would require to introduce

another discretization resolution for the eikonal solver and would result in a much higher

computational load. Since the main effect would be an increase of the phase gradient far

from the PS, this may lead to additional false positives.

The time evolution of phase maps was purposely ignored in the present paper to explore

a wider range of independent configurations. In contrast, Kuklik et al.20 created synthetic

phase distributions on a mapping catheter using random variations of a time series of cycle

lengths. PS tracking, and notably studying the life span of PS as a post-processing step,

enables the reduction of false detection. The assumed uniform distribution of PS often
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generates pairs of neighboring PS with opposite signs that might not be considered relevant

if they have a short life span. Failure to detect these pairs contributes to false negative rate,

but may not be significant in practical applications. Consequently, our idealized statistical

model tends to overestimate false negative rate and underestimate false positive rate.

Benchmarking of PS detection algorithms may be designed in three stages: synthetic

maps, simulated maps and experimental maps. Despite its limitations, our model of random

phase maps provides an easy-to-implement tool for a first stage of benchmarking over a broad

range of configurations with multiple PS, as well as a theoretical framework to study the

relations between PS distribution and false detections.
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