
Université de Montréal

Beyond the Horizon: Improved Long-range Sequence
Modeling, from Dynamical Systems to Language

par

Mahan Fathi

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

January 25, 2024

© Mahan Fathi, Année de la thèse

Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Beyond the Horizon: Improved Long-range Sequence
Modeling, from Dynamical Systems to Language

présenté par

Mahan Fathi

a été évalué par un jury composé des personnes suivantes :

Guillaume Rabusseau
(président-rapporteur)

Pierre-Luc Bacon
(directeur de recherche)

Guillaume Lajoie
(membre du jury)

Résumé

Cette thèse est ancrée dans deux aspirations principales: (i) l’extension des longueurs de
séquence pour une fidélité de prédiction supérieure pendant les phases d’entraînement et de
test, et (ii) l’amélioration de l’efficacité computationnelle des modèles de séquence. Le défi
fondamental de la modélisation de séquences réside dans la prédiction ou la génération précise
sur de longs horizons. Les modèles traditionnels, tels que les Réseaux Neuronaux Récurrents
(RNN), possèdent des capacités intrinsèques pour la gestion de séquences, mais présentent des
lacunes sur de longues séquences. Le premier article, “Correction de Cours des Représentations
de Koopman,” introduit le Réencodage Périodique pour les Autoencodeurs de Koopman,
offrant une solution à la dérive dans les prédictions à long horizon, assurant la stabilité du
modèle sur de longues séquences. Les défis subséquents des RNN ont orienté l’attention
vers les Transformateurs, avec une longueur de contexte bornée et un temps d’exécution
quadratique. Des innovations récentes dans les Modèles d’Espace d’État (SSM) soulignent leur
potentiel pour la modélisation de séquences. Notre second article, “Transformateurs d’État-
Block,” exploite les puissantes capacités de contextualisation des SSM, fusionnant les forces des
Transformateurs avec les avantages des SSM. Cette fusion renforce la modélisation linguistique,
surtout dans les contextes exigeant une large inference et contexte. En essence, cette thèse se
concentre sur l’avancement de l’inférence de séquence à longue portée, chaque article offrant
des approches distinctes pour améliorer la portée et la précision de la modélisation prédictive
dans les séquences, incarnées par le titre “Au-delà de l’Horizon.”

Mots-clés: Koopman, Systèmes Dynamiques, Algorithmes en Temps d’Inférence, Infé-
rence à Longue Portée, Grand Modélisation Linguistique, Transformers, Modèles d’Espace
d’État, Modélisation Linguistique à Longue Portée

v

Abstract

This thesis is anchored in two principal aspirations: (i) the extension of sequence lengths for
superior prediction fidelity during both training and test phases, and (ii) the enhancement of
computational efficiency in sequence models. The fundamental challenge in sequence modeling
lies in accurate prediction or generation across extended horizons. Traditional models, like
Recurrent Neural Networks (RNNs), possess inherent capacities for sequence management,
but exhibit shortcomings over extended sequences. The first article, “Course Correcting
Koopman Representations,” introduces Periodic Reencoding for Koopman Autoencoders,
offering a solution to the drift in long-horizon predictions, ensuring model stability across
lengthy sequences. Subsequent challenges in RNNs have shifted focus to Transformers,
with a bounded context length and quadratic runtime. Recent innovations in State-Space
Models (SSMs) underscore their potential for sequence modeling. Our second article, “Block-
State Transformers,” exploits the potent contextualization capabilities of SSMs, melding
Transformer strengths with SSM benefits. This fusion augments language modeling, especially
in contexts demanding extensive range inference and context. In essence, this thesis revolves
around advancing long-range sequence inference, with each article providing distinctive
approaches to enhance the reach and accuracy of predictive modeling in sequences, epitomized
by the title “Beyond the Horizon.”

Keywords: Koopman, Dynamical Systems, Inference-time Algorithms, Long-range
Inference, Large Language Modeling, Transformers, State-Space Models, Long-range Language
Modeling

vii

Contents

Résumé . v

Abstract . vii

List of tables . xiii

List of figures . xv

List of Abbreviations . xix

Acknowledgements . xxiii

Introduction . 1

Background . 1
Koopman Theory Overview. 2
Koopman Autoencoders . 2
State-Space Models . 4
Block Transformers . 6

Motivation. 7

Thesis Structure . 8

Contributions . 8

References . 9

Chapter 1. First article. Course Correcting Koopman Representations 11

1.1. Introduction . 14

1.2. Deep Koopman Autoencoders . 15

1.3. Method . 16
1.3.1. Training Sequence . 16
1.3.2. Trajectory Generation. 18

ix

1.4. Results . 20
1.4.1. Dynamical Systems . 20
1.4.2. D4RL: State Prediction . 22
1.4.3. D4RL: Semi-Open-Loop Control . 26

1.5. Conclusion . 27

Acknowledgments . 28

References . 29

First Article Appendices . 31
Koopman Theory Overview . 31
Implementation Details . 32

State Prediction Tasks . 32
D4RL: Semi-Open-Loop Control. 33

Switching Dynamics . 33
Efficiency. 34
Additional Results . 35
Connection to RNNs . 39

Chapter 2. Second article. Block-State Transformers . 41

2.1. Introduction . 43

2.2. Related Work . 44

2.3. Method . 46
2.3.1. State Space Preliminaries . 46
2.3.2. Block-State Transformer (BST) Layer . 48
2.3.3. Context States . 49
2.3.4. Implementation Details . 51

2.4. Results . 52
2.4.1. Comparing our Baselines and Models . 53
2.4.2. Evaluating Length Generalization capabilities . 56
2.4.3. Ablation Studies . 56
2.4.4. Language Modeling at Scale. 58
2.4.5. Long Range Arena (LRA). 58

x

2.4.6. Efficiency . 58

2.5. Limitations . 60

2.6. Conclusion . 61

Acknowledgments . 61

References . 62

Second Article Appendices . 65
More detailed comparisons with existing baselines. 65

Comparison with Block Recurrent Transformer (BRecT) . 65
Comparison with the Transformer GSS-Hybrid . 65

JAX Implementation of BST . 66

Conclusion . 71

References . 72

xi

List of tables

1.1 Mean Squared Error of state prediction for a number of dynamical systems. The entries
in the table are scaled up by a factor of 100×, except for Lorenz system. Evaluation is
done via sampling unseen initial points from the dynamical system. The cross marks
and check marks in the Periodic Reenc. rows indicate, respectively, absence and
presence of periodic reencoding mechanism during inference time. When enabled, the
errors are reported by searching over reencoding periods of (1, 10, 25, 50, 100). The cross
marks in place of table entries indicate exploded values. Underlined values denote best
performance for Koopman-based models, where bold numbers represent best performance
across all models. We exclude the Parabolic Attractor environment when reporting
errors over the 1000-step horizon since trajectories would almost perfectly merge onto
the parabolic manifold and reach the origin in less time. 23

1.2 Mean Squared Error of state prediction for D4RL robotic locomotion tasks. Evaluation
is done under a held-out set of trajectories. The cross marks in place of table entries
indicate exploded or almost exploded values (large errors). 26

1.3 Semi-open-loop reward achieved. The total rewards are normalized according to D4RL
random and expert scores. The Koopman Autoencoder uses a nonlinear decoder. 27

1.4 Mean Squared Error of state prediction for D4RL locomotion tasks when nonlinear latent
dynamics are allowed. The results show further improvements over the linear case when
periodic reencoding is employed. 40

2.1 Perplexity of each model. The results for XL:2048, Slide:12L and
BRecT:fixed:skip are from [Hutchins et al., 2022] by converting log2

of perplexity to raw perplexity. GSS-Hybrid-L performance was taken from
[Mehta et al., 2023]. Results with ± are average scores and error bars of runs
with three different random seeds. For a smaller computational budget, BST
provides a small perplexity improvement compared to BRecT on PG19 and
GitHub. For the same computational budget, BST outperforms GSS-Hybrid-L
across datasets by 1.5% to 4%. 53

xiii

2.2 A single BST at various layer index. 57

2.3 Multiple BST layers at various locations. 57

2.4 Increasing BST’s S4 model state size D. 57

2.5 Performance on Long Range Arena (LRA). For a fair comparison, we adjust the number
of layers and model dimensions on each task so that BST and BRecT have similar
number of parameters with S4 and Mega-chunk. BRecT results are from our own
runs and all other baselines are from published results. 59

xiv

List of figures

0.1 S4 layer, adopted from [Smith et al., 2023]. S4 model is a stack of multiple S4
layer. The outputs of the convolutions are mixed using feed-forward networks at
every layer. 4

0.2 Block-Recurrent Transformer layer, adopted from [Hutchins et al., 2022]. 6

1.1 Course Correcting Koopman Autoencoder Unrolls via Periodic Reencoding. Unrolls are
generated by first encoding the initial condition, then linearly advancing the dynamics
in latent space, and finally decoding the trajectory back to the original space. Values
enclosed within squares represent ground truth, while those enclosed within circles are
inferred by the model. The objective consists of an alignment loss (shown in green),
a reconstruction loss (in yellow), a prediction loss (in blue). We propose Periodic
Reencoding; at every k steps in the figure. The latent state, ẑt+k, is decoded and
subsequently reencoded. Because the encoder/decoder are not exact inverses, the
reencoded feature vector is different from the original. Control inputs are omitted for
simplicity. 17

1.2 Periodic Reencoding in continuous time for trajectories in latent space. In this figure,
the unrolled latent before and after reencoding are denoted as ẑi and ẑi, respectively. . 19

1.3 Parabolic Attractor. Phase plots are generated by unrolling the model both with and
without Periodic Reencoding. The phase plots are not noticeably different and this
is as expected, due to the existence of closed-from Koopman codes for this particular
environment. 22

1.4 Phase portraits of the trained Koopman Autoencoders (w/linear decoder) for unrolls of
1000 steps. We use different different reencoding schemes for unrolling the same model,
namely (a) w/o reencoding, (b) reencoding at every step, and (c) periodic reencoding
(our proposed approach). The grey lines in the background represent ground truth phase
portraits. 24

1.5 Mean Squared Error (MSE) over the unrolling horizon, under varying reencoding schemes.
We use 100 freshly sampled (unseen) initial points for evaluation. `reencode @ 0`

xv

legend indicates unrolling without ever reencoding. We observe that Periodic Reencoding
robustly improves the quality of long-range modeling of dynamics. 25

1.6 Mean Squared Error (MSE) for Hopper-v2 environment over the unrolling horizon of 300
steps, under varying reencoding schemes. Periodic Reencoding generates more accurate
trajectories compared to no reencoding and every-step reencoding schemes. 25

1.7 Mean Squared Error (MSE) for HalfCheetahv2 and Walker2dv2 environments over the
unrolling horizon of 300 steps, under varying reencoding schemes. The results are for
Koopman Autoencoder models. 36

1.8 Mean Squared Error (MSE) for Hopper-v2 D4RL environment over the unrolling horizon
of 300 steps, under varying reencoding schemes. The plots belong to models that
DO NOT make use of reencoding during training. The errors reported in Table 1.2,
under Periodic Reencoding: (✗), corresponds to the blue lines. 37

1.9 Mean Squared Error (MSE) for D4RL HalfCheetah-v2 environment over the unrolling
horizon of 300 steps, under varying reencoding schemes, trained w/o reencoding. 38

1.10 Mean Squared Error (MSE) for D4RL Walker2d-v2 environment over the unrolling
horizon of 300 steps, under varying reencoding schemes, trained w/o reencoding. 39

2.1 Block-State Transformer layer. The BST-SH layer is illustrated on the left, and
includes a state space model (SSM, in green) and Block Transformers (in red). For
demonstration purposes the sequence is divided into 3 blocks in the picture. The
details of the Block Transformer sublayer are on the right. *TRF = Transformer. 45

2.2 Summarizing our approaches. The left side shows the cases where the SSM
is required to output Multi-Head (MH) contexts. On the right Multi-Filter
(MF) approach is depicted where the last entries from the previous window are
concatenated into a set of context states of size S. Dashed lines represent the
current block. 49

2.3 Length Generalization for sequence lengths {512, 16k, 65k} on PG19 (left), arXiv
(middle) and GitHub (right). BST:SH:S4-L generalizes better than any other baseli
nes, including GSS-Hybrid-L that uses GSS, a structured SSM. GSS-Hybrid-L
numbers are from [Mehta et al., 2023]. 57

2.4 Scaling properties, BST vs BRecT vs Trsf-XL on PG-19. Red: 12-layer Block-
Recurrent Transformer (Rec:fixed:skip), Yellow: 12-layer Block-State Transformer
(BST:SH:unstruct), and Blue: 13-layer Transformer-XL (Trsf-XL-2048). 58

xvi

2.5 Left: The forward-pass computation time of a BST layer is compared against a
layer of BRecT and Slide:12L. These experiments were executed on GPU, to
demonstrate and exploit the parallelizability of BST layers. BST:SH is 6-11×
faster than BRecT while BST:MH is 3-4× faster. Right: Perplexity of the trained
models using different window lengths. The figure shows that increasing the
training window length results, as expected, in better perplexity scores. We find
however that both BST:MF:Hyena and BRecT:fixed:skip are the least impacted
by decreasing window lengths. 60

xvii

List of Abbreviations

BRecT Block-Recurrent Transformer

BRT Block-Recurrent Transformer

BST Block-State Transformer

CPU Central Processing Unit

DMD Dynamic Mode Decomposition

eDMD extended Dynamic Mode Decomposition

EMA Exponentially Moving Average

FFT Fast Fourier Transformer

GAU Gated Attention Unit

GPU Graphics Processing Unit

xix

GRU Gated Recurrent Unit

GSS Gated State-Space Models

IFFT Inverse Fast Fourier Transformer

LLM Large Language Modeling

LM Language Modeling

LRA Long Range Arena

LSTM Long Short-Term Memory

LDS Linear Dynamical System

LTI Linear Time Invariant

MF Multi Filter

MH Multi Head

MLP Multilayer Perceptron

MPC Model Predictive Control

xx

MSE Mean Square Error

MuJoCo Multi-Joint dynamics with Contact

NLDS Nonlinear Dynamical System

NLP Natural Language Processing

PG Project Gutenberg

RL Reinforcement Learning

RNN Recurrent Neural Network

S4 Structured State-Space Sequence Model

SH Single Head

SSM State-Space Model

TPU Tensor Processing Unit

TRF Transformer

xxi

Acknowledgements

Doing my Master’s at Mila and Google has been a pivotal period, not only greatly impacting
my academic life, but also shaping my perspective and personal growth. I am deeply grateful
to all who made this possible.

First and foremost, I express my deepest appreciation to my supervisors, Pierre-Luc Bacon
and Ross Goroshin. Their care and guidance mirrored the supportive presence of elder
brothers I never had. In moments when disappointment threatened to overwhelm me, the
drive to make you proud compelled me to rise and persevere. You have been role models to
whom I will forever be indebted and continue to admire throughout my life.

Beyond the academic sphere, I am deeply appreciative of the unwavering support from friends
and family. Nima, my brother, having family nearby is a blessing, but having a friend in that
family is a treasure. To me, you are both and so much more, beyond what words can capture.
Iman, Arash, and Ali, I say with a light heart that my love for you comes close to that which
I hold for Nima.

To my parents, the recipients of my deepest gratitude, this final sentiment belongs to you.
Mom and Dad, my love for you transcends all else. Your upbringing and unconditional
love are gifts I carry with me always. Mom, in the sanctuary of my heart, your love shines
brightest. Dad, your influence has sculpted my character with love’s own hand. Boundlessly
and eternally, my love for you both endures.

Thank you all for being the foundation upon which I build this milestone.

Mahan.

xxiii

Introduction

Background
Sequence modeling, a pivotal task in machine learning, finds applications across diverse

domains such as natural language processing, time-series forecasting, and dynamical system
analysis. Central to this task is the ability to understand, generate, and predict data points
sequentially.

Traditional models like RNNs and their variants (LSTMs, GRUs) have been the mainstay
due to their capacity to maintain state across sequences. However, their known limitations in
handling long-term dependencies due to issues like vanishing and exploding gradients have
necessitated the exploration of alternative architectures. Moreover, unrolling a nonlinear RNN
can only be carried out sequentially, as opposed Transformers that offer high parallelizability.

On the other hand, from an expressivity standpoint, linear Recurrent Neural Networks
(RNNs) have demonstrated promising results in modeling extensive-range dependencies
[Orvieto et al., 2023], provided specific initialization criteria are met. Moreover, recent
advancements leverage hardware parallelism to enhance the computational efficiency of linear
RNNs. Driven by these observations, we aim to closely study and integrate linear RNNs into
challenging tasks such as long-range language modeling.

In this segment, we will address the foundational aspects of the following model categories:
• Koopman Theory establishes a one-to-one correspondence between the latent space

linear dynamics and that of the original space – possibly nonlinear. This is an existence
theorem, and does not guide as to how the linear dynamics can be deduced.

• Koopman Autoencoders can be characterized as RNNs with a singular linear
recurrent layer. The field of dynamical systems, has offered intriguing insights into
the linear representation of nonlinear dynamical systems, thus we intend to examine
Koopman Autoencoders in this context, anticipating that these insights will pertain
to more broader RNN contexts.

• State-Space Models (SSMs) can be viewed as linear Recurrent Neural Networks
(RNNs), and achieve remarkable performance on tasks that require long-range mod-
eling, e.g. Long Range Arena (LRA) [Tay et al., 2020]. The success of SSMs in
information retention can be attributed to their specific initialization, provided by
HiPPO framework [Gu et al., 2020].

• Transformers [Vaswani et al., 2023] marked a paradigm shift, particularly in
language modeling, due to their ability to process sequences in parallel. However,
the fixed-length context window in practice limits its capacity to infer over extended
horizons.

This thesis builds on these foundational concepts, introducing innovative techniques and
hybrid models that aim to push the boundaries of long-range sequence modeling further than
previously achievable.

Koopman Theory Overview

The Koopman operator [Koopman, 1931] provides a distinctive approach to examining
nonlinear dynamical systems through linear methodologies. This is achieved by projecting
the dynamical system’s state into an infinite-dimensional functional space. Consider a
discrete-time nonlinear dynamical system described as:

xt+1 = F (xt), (0.0.1)

where xt ∈ Rd represents the state at time t and F : Rd → Rd denotes the state transition
function. The Koopman operator, represented by K, operates on functions g : Rd → C
(referred to as observables of the system), such that:

Kg(xt) := g ◦ F (xt) = g(xt+1) (0.0.2)

This implies that the Koopman operator propels the function g one temporal step by the
evolution of the dynamical system. A salient observation is that, while the dynamical
system might manifest nonlinear characteristics in its inherent state space, the evolution of
observables under the influence of the Koopman operator remains linear. Such linearization
offers the advantage of employing linear methodologies to investigate the attributes and
behavior of the primal nonlinear system. The Koopman theory is revisited with mathematical
rigor in the appendices of the first article.

Koopman Autoencoders

A Koopman Autoencoder is a neural network architecture that seeks to integrate the
principles of the Koopman operator theory into the framework of autoencoders to learn
representations of dynamical systems. Koopman Autoencoders consist of three trainable

2

constituent parts: (1) The Encoder ϕ; this component takes in a state (or observation) of
the system and encodes it into a lower-dimensional latent space representation. This latent
representation ideally captures the key features or dynamics of the system. (2) The Koopman
transition matrix K; Within the latent space, the dynamics are modeled. Typically, the
dynamics are represented as a linear transformation, consistent with the Koopman operator’s
notion of linearly evolving observables. (3) The Decoder ψ; The latent representation is
then decoded back into the original state space. This step ensures that the latent space
representation maintains the crucial features necessary to recreate the state.

The relationship between the original and latent states is then established as follows:

zt = ϕ(xt), zt+1 = Kzt, xt = ψ(zt), (0.0.3)

where z ∈ Rn represents the latent states. Moreover, Koopman autoencoders can be naturally
extended to accommodate controlled dynamical systems. When control inputs are present,
the original dynamics can be expressed as:

xt+1 = F (xt, ut). (0.0.4)

To incorporate control within the Koopman perspective, we expand the observable function
to integrate the control inputs. Formally, we define:

ξt =
[
xt

ut

]
.

Hence, our objective within the Koopman framework becomes finding an operator K such
that:

ϕ(ξt+1) = Kϕ(ξt),

where ϕ denotes the observable function on the joint state-control vector ξt.
When the Koopman Autoencoder’s observable function and the linear operator are distilled

to their core functionality, the Koopman Autoencoder can be perceived as an RNN with a
singular linear recurrent layer. The linearity of the Koopman operator mirrors the linear
transformation of an RNN’s recurrent layer, albeit with the theoretical underpinning of
Koopman theory in dynamical systems.

3

Fig. 0.1. S4 layer, adopted from [Smith et al., 2023]. S4 model is a stack of multiple S4 layer.
The outputs of the convolutions are mixed using feed-forward networks at every layer.

State-Space Models

State-Space Models employ a structured convolutional kernel initialization, derived from
the unrolling of a linear time-invariant (LTI) dynamical system presented as:

xk = Axk−1 + Buk ,

yk = Cxk + Duk .
(0.0.5)

This system is defined by its state matrix A ∈ RN×N , and vectors B ∈ RN×1, C ∈ R1×N ,
and D ∈ R1×1. Within this context, the SSM transforms a 1-D input signal uk into a 1-D
output signal yk. The SSM first elevates the input to an internal N -D representation, denoted
as xk, and subsequently projects it to a scalar via the C matrix. The component Duk acts
like a direct path or bypass and will not be considered in the ensuing discussions.

By examining the recurrent relation, the output yk can be depicted as a discrete convolution
by explicitly unrolling the sequence:

Set x−1 := 0⃗ ,

yk =
k∑
j=0

CAjB · uk−j .
(0.0.6)

4

To construct the SSM filter K ∈ RL, we gather entries from CAkB. The convolution can
then be articulated as:

K = (CB,CAB, . . . ,CAL−1B) ,

yk =
k∑
j=0

Kj · uk−j ,

y = K ∗ u .

(0.0.7)

The time complexity of directly computing the convolution is O(L2), where L is the
length of the signals. The Convolution Theorem asserts that convolution in the time domain
is equivalent to multiplication in the frequency domain, mathematically represented as:

F{K ∗ u} = F{K} · F{u}

Utilizing this theorem, the convolution can be computed through the following procedure:
(1) Compute the Fast Fourier Transform (FFT) of signals K and u to transition to the

frequency domain. This operation exhibits a time complexity of O(L logL).
(2) Perform element-wise multiplication of the resulting frequency representations, an

O(L) operation.
(3) Use the inverse FFT (IFFT) to revert the result to the time domain, also an O(L logL)

operation.
This results in an overall time complexity of O(L logL), offering a potential computational
advantage over direct convolution for large L.

The FFT algorithm can be executed in parallel, particularly when implemented
via a divide-and-conquer strategy (similar to the Cooley-Tukey radix-2 algorithm
[Cooley and Tukey, 1965]). Each stage of the FFT is amenable to parallel computation,
making it apt for execution on architectures like multi-core processors, GPUs, and TPUs.
Moreover, the element-wise multiplication in the frequency domain can also be parallelized
as each product computation is independent.

The remaining computational bottleneck at this point is the rematerialization of the
convolutional kernel from its constituent parts, i.e. A, B, and C. Naive computation of the
kernel involves L successive multiplication by A, resulting in O(N2L) operations. A key
contribution of S4 features a specific way to overcome this bottleneck, which is beyond the
scope of this introductory section.

Until now, we have not addressed the underlying principles that empower SSMs to excel
in memorization tasks. The memorization aspect is ensured through the use of specific param-
eterizations for A and B matrices, based on the HiPPO framework [Gu et al., 2020]. The
progression of the states, denoted by xk in the State-Space Model, as dictated by the provided
matrices, aligns with real-time modifications to the coefficients of a particular polynomial set.

5

Fig. 0.2. Block-Recurrent Transformer layer, adopted from [Hutchins et al., 2022].

The inputs can then be reconstructed under an importance measure function by expanding
the polynomial bases using their corresponding coefficients; hence, the coefficients can be
considered a representation of the “memory.” We direct readers seeking a comprehensive
grasp on the topic to [Gu et al., 2020].

Block Transformers

For brevity, we presuppose the reader’s familiarity with the attention mechanism and focus
exclusively on the architectural nuances of Block Transformers, as presented by citein-
tro:hutchins2022block (see Figure 0.2). Block-Recurrent Transformer (BRT) was proposed
as an efficient way to extend the context length of the Transformer architecture. Naively
feeding a sequence of tokens of length L, into a Transformer would incur O(L2) operations.
By chunking the sequence of inputs into smaller windows of length W , Block-Recurrent
Transformers render the computational requirement linear with respect to L, O(L · W).
This results directly from the execution of Transformer blocks across the segments, with a
complexity of O(W 2), iterated L/W times, i.e. the number of chunks existing in the sequence.

Block-Recurrent Transformers employ recurrence to facilitate communication between
Transformer blocks (see Figure 0.2). Executing a Transformer block yields a collection of
output tokens, which are subsequently supplied to the subsequent layer–vertical direction, in
conjunction with a set of ensuing hidden states. These states are then inputted to the next
Transformer that processes the succeeding token chunk–horizontal direction.

6

Motivation
This thesis is driven by two core motivations: (i) extending the sequence lengths both

at training and test time for improved prediction fidelity and accuracy, (ii) improving the
computational efficiency of sequence models.

In sequence modeling, accurately predicting or generating sequences over extended horizons
is a fundamental challenge. Traditional models, particularly Recurrent Neural Networks
(RNNs), have shown promise in their capacity to handle sequences, owing to their recursive
nature and theoretically unbounded context length. However, when these models are unrolled
beyond the horizons they were trained for, they tend to exhibit diverging behaviors, leading
to significant degradation in prediction quality or even complete loss of coherent structure
[Fathi et al., 2023].

The first article in this thesis, “Course Correcting Koopman Representations,” addresses
this precise challenge. We introduce “Periodic Reencoding,” a novel technique designed for
Koopman Autoencoders [Brunton et al., 2021]—a specialized instance of RNNs charac-
terized by a single linear recurrent layer. This method significantly mitigates the inherent
drift issue in long-horizon predictions by strategically reencoding the hidden states at peri-
odic intervals, thereby preserving the model’s stability and prediction fidelity over extended
sequences.

On the other hand, while RNNs possess theoretical advantages for long-range sequence
modeling due to their recursive nature, in practice, they often suffer from issues such as
vanishing/exploding gradients. These challenges have prompted a shift to Transformers
as other general-purpose alternatives for sequence modeling. Transformers have bounded
context length and quadratic runtime with respect to the context length. Thus the efforts
have been concentrated on expanding the context length by enhancing the efficiency of
the attention mechanism, either via hardware-aware implementations or approximation
[Wang et al., 2020]. Recent advancements in State-Space Models (SSMs), particularly the
S4 model [Gu et al., 2021], have reinvigorated interest in RNNs, highlighting their potential
for effective sequence modeling through improved state representation. State-Space Models
handle long-range dependencies, excel at memorization tasks, and can be run in parallel in
subquadratic time. Our second article, “Block-State Transformers,” heavily uses the powerful
contextualization abilities of State-Space Models, proposing a hybrid model that integrates
the strengths of Transformers with those of SSMs. This synergy enhances language modeling
capabilities, particularly in scenarios requiring long-range inference.

Both articles presented in this thesis share a common objective: significantly enhancing
long-range sequence inference—hence the title “Beyond the Horizon”. The first achieves this
by introducing stability to the inference mechanisms of fully-observable dynamical systems

7

through Periodic Reencoding. In contrast, the second demonstrates that our hybrid model
can generalize effectively beyond the training sequence length, a critical milestone in language
modeling.

Thesis Structure
This thesis is articulated around two primary research articles, each addressing unique

challenges in long-range sequence modeling:
• The first article, “Course Correcting Koopman Representations,” focuses on enhanc-

ing the stability of long-range predictions in dynamical systems. By introducing the
concept of "Periodic Reencoding" within the framework of Koopman Autoencoders, we
demonstrate marked improvements in the model’s ability to infer extended sequences
without the characteristic divergence observed in traditional latent dynamics layers.

• Our second article, “Block-State Transformers,” pivots towards the domain of lan-
guage modeling. Here, we propose a novel hybrid model that combines the strengths
of State-Space Models and Transformers. This model, characterized by its enhanced
ability to handle long-range dependencies, not only excels in standard language mod-
eling benchmarks but also shows remarkable generalization capabilities beyond the
sequence lengths observed during training.

Each article is presented as a self-contained chapter with its own introduction, methodology,
experiments, results, and conclusion, allowing for a focused exploration of the respective
topics.

Contributions
In the first article, we highlight the occurrence of “drift” in models that employ latent

dynamics modeling. To address this, we introduce “Periodic Reencoding,” a proficient
inference-time technique devised to rectify such drift while capitalizing on the computational
advantages of linear operations between reencoding stages. While our primary inspiration
stemmed from models with linear latent dynamic components, i.e., Koopman Autoencoders,
we also demonstrate the method’s applicability to nonlinear scenarios and the presence of
drift in those cases. Moreover, we show that integrating Periodic Reencoding during training
can further enhance model performance.

In the second article, we integrate Transformers and State-Space Models in novel ways
to enhance language modeling quality while achieving 10× speed-up compared to Block-
Recurrent Transformers layers. We present evidence that the model can generalize well
beyond the lengths of sequences used during training. Furthermore, we demonstrate that the
BST layers are favorable when scaling the model, up to over a billion parameters.

8

References
[Brunton et al., 2021] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N. (2021). Modern koopman
theory for dynamical systems. arXiv preprint arXiv:2102.12086.

[Cooley and Tukey, 1965] Cooley, J. and Tukey, J. (1965). An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):297–301.

[Fathi et al., 2023] Fathi, M., Gehring, C., Pilault, J., Kanaa, D., Bacon, P.-L., and Goroshin, R. (2023).
Course correcting koopman representations.

[Gu et al., 2020] Gu, A., Dao, T., Ermon, S., Rudra, A., and Re, C. (2020). Hippo: Recurrent memory with
optimal polynomial projections.

[Gu et al., 2021] Gu, A., Goel, K., and Ré, C. (2021). Efficiently modeling long sequences with structured
state spaces. CoRR, abs/2111.00396.

[Hutchins et al., 2022] Hutchins, D., Schlag, I., Wu, Y., Dyer, E., and Neyshabur, B. (2022). Block-recurrent
transformers. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural Information
Processing Systems.

[Koopman, 1931] Koopman, B. O. (1931). Hamiltonian systems and transformation in hilbert space. Proceed-
ings of the National Academy of Sciences, 17(5):315–318.

[Orvieto et al., 2023] Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., and De, S.
(2023). Resurrecting recurrent neural networks for long sequences.

[Smith et al., 2023] Smith, J. T. H., Warrington, A., and Linderman, S. W. (2023). Simplified state space
layers for sequence modeling.

[Tay et al., 2020] Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder,
S., and Metzler, D. (2020). Long range arena: A benchmark for efficient transformers.

[Vaswani et al., 2023] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L., and Polosukhin, I. (2023). Attention is all you need.

[Wang et al., 2020] Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention
with linear complexity.

9

Chapter 1 First article

Course Correcting Koopman Representations

by

Mahan Fathi1, Clement Gehring2, Jonathan Pilault3,
David Kanaa4, Pierre-Luc Bacon5, and Ross Goroshin6

(1) Google DeepMind, Mila, Université de Montréal
(2) Mila, Université de Montréal
(3) Mila, Polytechnique Montréal
(4) Mila
(5) CIFAR AI Chair, Mila, Université de Montréal
(6) Google DeepMind

This article was submitted in International Conference on Learning Representations 2024 –
(ICLR’24).

The main contributions of Mahan Fathi for this articles are presented.
I, Mahan Fathi, led the project, encompassing the conception of the primary idea, writing
the code, conducting experiments, overseeing the majority of the manuscript composition
and logistical operations, such as submission, publication, and presentation.

Ross and Pierre-Luc collaboratively supervised this research endeavor. It was Ross who
guided the overarching focus towards Koopman Autoencoders and studied the related works

thoroughly. Clement participated in pivotal meetings that culminated in the paper’s key
discovery and offered valuable feedback on the manuscript. Jonathan and David helped with
writing parts of the appendices.

12

Résumé. Les représentations de Koopman visent à apprendre les caractéristiques des
systèmes dynamiques non linéaires (SDNL) qui conduisent à une dynamique linéaire dans
l’espace latent. Théoriquement, de telles caractéristiques peuvent être utilisées pour simplifier
de nombreux problèmes liés à la modélisation et à la commande des SDNL. Dans ce travail,
nous étudions les formulations d’autoencodeurs de ce problème, ainsi que les différentes
manières dont elles peuvent être utilisées pour modéliser la dynamique, notamment en
ce qui concerne la prédiction des états futurs sur de longues périodes. Nous découvrons
plusieurs limitations liées à la prédiction des états futurs dans l’espace latent et proposons
un mécanisme d’inférence que nous appelons Réencodage Périodique, conçu pour capturer
fidèlement la dynamique à long terme. Nous justifions cette méthode à la fois sur le plan
analytique et empirique grâce à des expérimentations menées dans des SDNL de faible et de
haute dimension.
Mots clés : Koopman, Systèmes Dynamiques, Algorithmes en Temps d’Inférence, Inférence
à Longue Portée

Abstract. Koopman representations aim to learn features of nonlinear dynamical systems
(NLDS) which lead to linear dynamics in the latent space. Theoretically, such features can
be used to simplify many problems in modeling and control of NLDS. In this work we study
autoencoder formulations of this problem, and different ways they can be used to model
dynamics, specifically for future state prediction over long horizons. We discover several
limitations of predicting future states in the latent space and propose an inference-time
mechanism, which we refer to as Periodic Reencoding, for faithfully capturing long term
dynamics. We justify this method both analytically and empirically via experiments in low
and high dimensional NLDS.
Keywords: Koopman, Dynamical Systems, Inference-time Algorithms, Long-range Inference

13

1.1. Introduction
Recent research has shown a growing interest in learning representations of nonlinear

dynamical systems (NLDS) in which the dynamics become linear in the latent space. Linear
dynamics in the latent space offer distinct advantages, including the capability to derive closed-
form solutions to optimal control problems using LQR solvers [Kalman, 1960]. System
identification and interpretability are also greatly simplified for linear dynamical systems.
From a computational standpoint, advancing a linear system forward can be executed more
efficiently by leveraging parallelism [Gu et al., 2021a, Smith et al., 2023]. An example
of this approach is presented in S4 [Gu et al., 2021a], a carefully designed deep state-space
model (SSM) that takes advantage of the parallelism offered by discrete linear dynamics.

Given the advantages of linear systems, a challenge in the study of dynamics and data-
driven modelling resides in extracting global linear representations of nonlinear systems.
In this regard, Koopman Theory [Koopman, 1931, Koopman and v. Neumann, 1932]
provides a framework in which nonlinear dynamics can be cast into linear ones in a space of
measurements, spanned by a basis of characteristic functions, which are the eigenfunctions
of Koopman’s composition operator. However, identifying such characteristic functions as
well as the structure of the linear transition operator can prove very difficult, in general,
as they depend heavily on the qualitative dynamical properties of the system under study,
necessitating the need to resort to approximate methods.

Recently, several studies have explored the integration of deep learning architectures with
Koopman operator theory, primarily in the context of small scale well-behaved problems.
[Azencot et al., 2020] train a backward-compatible Koopman matrix in conjunction with
its original forward counterpart, by assuming reversible dynamics, ensuring stability during
training by driving the eigenvalues of the operators to be close to one. [Frion et al., 2023]
adopt a similar strategy by promoting orthogonality of the Koopman matrix through an
auxiliary loss. [Lusch et al., 2018] learn generalized Koopman representations for systems
including those exhibiting continuous spectra. [Mondal et al., 2023] employ a Koopman-
based model in the context of Model-based Reinforcement Learning as a short-horizon
(20-step) planner.

In this work, we further explore the use of principles outlined by Koopman theory
[Brunton et al., 2021], as a guiding framework to obtain linear representations of NLDS
within an autoencoder framework. We observe that unrolling the linear dynamics in latent
space leads to long term drift in trajectories when mapped back to the space of observables
(state space). Prior works achieved stable unrolls at inference time by restricting the
eigenvalues of the Koopman/linear operator, and training on long sequences. We posit that
such requirements, i.e. long training sequences, are unnecessary, especially when modelling a

14

fully observable dynamical system. In this work we uncover two limitations of generating
trajectories in the latent space: (i) long horizon trajectories cross, violating uniqueness of
solutions of dynamical systems, and (ii) latent space trajectory generation is unable to capture
switching dynamics between fixed points [Lan and Mezić, 2013]. To overcome these issues,
we introduce a simple inference method called Periodic Reencoding that produces high
accuracy predictions over long horizons. We derive analytic expressions and present a special
case example (Appendix 1.5) that provides intuition about why this method better captures
long-term dynamics. Finally, we empirically validate our approach on a set of established
NLDSs, and also demonstrate these findings on offline reinforcement learning datasets in
more complex environments within D4RL [Fu et al., 2020].

1.2. Deep Koopman Autoencoders
Given a nonlinear dynamical system, Koopman theory attempts to approximate or

“explain” nonlinear transitions with a linear dynamical system. For example, Dynamic Mode
Decomposition (DMD) [Brunton et al., 2021] tries to approximate the infinite dimensional
Koopman operator by fitting discrete transition data collected from a nonlinear dynamical
system. More specifically, using an integration scheme in time a discrete nonlinear dynamical
system can be obtained from its continuous time counterpart, xt+1 = F(xt). DMD then solves
the following optimization problem over the dataset of all transition pairs, D = {(xt, xt+1) |
xt, xt+1 ∈ Rd}:

KDMD = arg min
K̂

∑
D

∥xt+1 − K̂xt∥2, (1.2.1)

where the KDMD ∈ Rd×d matrix is the finite-dimensional approximation to the linear
Koopman operator. Thus DMD treats the state itself as the features, by simply fitting
the Koopman matrix directly. Extensions to this approach include “extended” DMD,
eDMD [Williams et al., 2015a, Williams et al., 2015b, Schütte et al., 2016], which
augments the state with fixed nonlinear transformations of the state. In the spirit of end-to-
end learning, we are interested in data driven approaches that learn nonlinear transformations
of the state. Koopman features can be learned in an autoencoder setting by minimizing:

min
K̂,ϕ,ψ

∑
D

∥xt − ψ(ϕ(xt))∥2 + λ · ∥ϕ(xt+1) − K̂ϕ(xt)∥2 (1.2.2)

where the encoder ϕ : Rd → Rn, decoder ψ : Rn → Rd are parameterized function
approximators, and λ > 0 is a scalar. The feature vector zt ∈ Rn, representing the Koopman
embedding for which the dynamics are linear, obeys the following relations:

zt ≈ ϕ(xt), zt+1 ≈ Kzt, xt ≈ ψ(zt) (1.2.3)

15

These relations are approximate because, for example, reconstructed states are approximations
of the corresponding true states. Once trained, the encoder, decoder, and K ∈ Rn×n comprise
a complete model of the dynamical system, potentially capable of performing long-range
state prediction over arbitrarily long time horizons.

Though other feature learning methods, such as contrastive learning, are possible
[Lyu et al., 2023], we study the autoencoder formulation because it is more pervasive
in the literature. Furthermore, the learned decoders from this formulation allow for solving
the control problems in latent space and mapping control signals back to phase space. This
is non-trivial using contrastive learning which only trains an encoder.

1.3. Method
1.3.1. Training Sequence

In this section we formally outline the training objective for sequential data. We start by
using the continuous parameterization of the Koopman dynamics, for controlled systems. An
autonomous controlled system is described by ẋ = f(x, u), where u is an exogenous control
input. Assuming that a bounded Koopman matrix, K ∈ Rn×n, can be approximated for
measurements z = ϕ(x) ∈ Rn, the linear dynamics are then prescribed by:

d
dtϕ(x) = Kϕ(x) + Lω(u), (1.3.1)

where L ∈ Rn×m represents the controlled latent dynamics for external coded input υ =
ω(u) ∈ Rm. We optimize the objective by taking gradient steps directly over the continuous
parameterization of the Koopman dynamics, i.e. K and L, which we discretize via the bilinear
method [Tustin, 1947], over a timestep of δ:

zt+1 = Kzt + Lυt, (1.3.2)

where K =
(
I − δ

2K
)−1(

I + δ

2K
)

and L =
(
I − δ

2K
)−1

δL. (1.3.3)

We treat δ as a trainable variable as well, and assume that samples are uniformly distributed in
time. The Koopman Autoencoder architecture consists of the following trainable components,
(i) the latent dynamics K , L and δ (ii) the state encoder ϕ (iii) the action encoder ω (iv) and
the state decoder ψ. The training data consists of an initial state, xt, and a sequence of
following actions and states, i.e. (ut, xt+1, · · · , ut+T−1, xt+T) of length T . The model takes in
the initial state and the sequence of actions as input and is tasked to predict the sequence
of future states. To respect the Koopman dynamics, i.e. ensuring that K and L are the
only means for advancing the dynamics, we minimize the “Aligment”, “Reconstruction”, and

16

“Prediction” losses that prevent trivial solutions.

LAlign =
T∑
i=1

∥ẑt+i − ϕ(xt+i)∥2 (1.3.4)

LReconst =
T∑
i=0

∥xt+i − ψ(zt+i)∥2 (1.3.5)

LPred =
T∑
i=1

∥xt+i − ψ(ẑt+i)∥2 (1.3.6)

In the above equations, ẑt denotes the resultant latent code after one or more applications of
Koopman dynamics, while zt represents the resultant latent state immediately after encoding
(see Figure 1.1).

Fig. 1.1. Course Correcting Koopman Autoencoder Unrolls via Periodic Reencoding. Unrolls are
generated by first encoding the initial condition, then linearly advancing the dynamics in latent
space, and finally decoding the trajectory back to the original space. Values enclosed within squares
represent ground truth, while those enclosed within circles are inferred by the model. The objective
consists of an alignment loss (shown in green), a reconstruction loss (in yellow), a prediction loss
(in blue). We propose Periodic Reencoding; at every k steps in the figure. The latent state, ẑt+k,
is decoded and subsequently reencoded. Because the encoder/decoder are not exact inverses, the
reencoded feature vector is different from the original. Control inputs are omitted for simplicity.

17

1.3.2. Trajectory Generation

The quality of a model of a dynamical system can be assessed by generating trajectories
in the state space of the original dynamical system, starting from some initial condition.
There are two methods for generating trajectories.

Without Reencoding. This method generates the entire trajectory in the latent space
and only uses the encoder to obtain the initial condition. The decoder ψ is applied to
every point on generated trajectory to obtain the corresponding curve in state space. More
specifically, given:

ż = Kz|z0=ϕ(x0) and x = ψ(z),

we can write the explicit solution in state space as:

x(t) = ψ(eKtϕ(x0)). (1.3.7)

It is the solution to a linear dynamical system, given by the matrix exponential, in latent
space which is then mapped to the original state space using ψ. Under this setting, the
relationship between z−space and x−space is established by mapping trajectories generated
in the z−space via linear dynamics, to curves in the x−space.

In the standard autoencoder setup, the mappings between the original and latent spaces
are not strictly one-to-one. This characteristic becomes especially significant when the
dimensionality of the latent space is substantially larger than that of the original space, i.e.
n ≫ d, as is typical in Koopman autoencoders – the inverse function theorem requires that
n = d. Because of this, the curves generated without reencoding could potentially intersect
with themselves, and therefore won’t faithfuly capture the characteristics of a trajectory,
generated by a dynamical system. This directly arises from the existence of multiple points
in z−space that lie on the same trajectory generated by the linear system, that are mapped
to the same point in x−space, due to lack of injectivity in the decoder, ψ. This is clearly
illustrated in Figure 1.4 (a) where phase lines intersect. Intersecting phase lines are impossible
to generate with continuous dynamical systems because they imply that multiple solutions
exist corresponding to the unique initial condition given by the cross-over point.

With Reencoding. This method uses the encoder/decoder to iteratively generate a
trajectory in state-space. The encoder, Koopman operator, and decoder effectively define a
dynamical system in the state space, x. More specifically, given:

ż = Kz|z0=ϕ(x0), z = ϕ(x), and x = ψ(z),

we can express the dynamical system that implicitly defines the solution in state space as:

ẋ = JψKϕ(x) (1.3.8)

18

Where Jψ is the Jacobian of ψ. When generating trajectories without reencoding, linearity
in the latent space is assumed to hold for all times, i.e. globally. In contrast, when
generating trajectories with reencoding, the linearity property is assumed to hold only locally.
Equation 1.3.8 gives rise to a dynamical system with feedback, thus the relationship between
z−space and x−space is governed by point-wise mapping of dynamics.

In theory, the trajectories generated using this method can faithfully capture the dynamics
and will not produce invalid trajectories that cross, however, reencoding at every step poses
two significant drawbacks: (i) repeated applications of the encoder can potentially accumulate
errors much faster than repeated applications of K, as seen in Figure 1.4 (b), and (ii) it is not
computationally efficient because unrolling must be performed sequentially due to presence
of nonlinear operations at every step, unlike the parallelizability of linear operations.

We introduce Periodic Reencoding, a technique spanning the middle ground between
trajectory generations with and without reencoding. When generating trajectories with
periodic reencoding, we decode and reencode periodically, in continuous time at ∆t intervals
(Figure 1.2), and in discrete time every k steps (Figure 1.1), treating ∆t or k as hyper-
parameters. Given that the encoder and decoder are not perfect inverses of one another, the
output of the reencoding step is going to be different from the original point. In other terms,
the mapping between the original and latent space lacks bijectivity.

z0 = ϕ(x0) ẑ1 = eK∆tz0

ẑ1 = ϕ ◦ ψ(ẑ1)
ẑ2 = eK∆tẑ1

ẑ2 = ϕ ◦ ψ(ẑ2)
ẑ3 = eK∆tẑ2

reencode
reencode

t

t0 t1 = t0 + ∆t t2 = t0 + 2∆t t3 = t0 + 3∆t

Fig. 1.2. Periodic Reencoding in continuous time for trajectories in latent space. In this figure,
the unrolled latent before and after reencoding are denoted as ẑi and ẑi, respectively.

By Periodic Reencoding, we expand and harness the applicability of local linear Koopman
dynamics around the initial state all the while mitigating the accumulation of encoding errors.
We observe that periodically applying reencoding is an effective way to mitigate the drift
accumulated by generating trajectories in the latent space. We term this property “course
correction.” Using our method, we are able to generate stable, plausible, and accurate
unrolls over extended horizons, while remaining computationally efficient. In Section 1.4,
we empirically establish the effectiveness of periodic reencoding for stable and accurate
long-range predictions, in contrast to unrolls without reencoding or reencoding at every step.

19

Furthermore, we demonstrate that periodic reencoding can be beneficially integrated into
the training process to achieve further improvements. [Lan and Mezić, 2013] showed that
NLDS with multiple fixed points can only be linearized within the basin of attraction of
each fixed point. This reveals another limitation of unrolls without reencoding – they cannot
capture the switching dynamics between multiple fixed points (see the example in Appendix
1.5). It is important to make the distinction between reencoding and “teacher forcing”
[Bengio et al., 2015]. Teacher forcing periodically uses ground truth during training to
avoid error accumulation. Reencoding never uses ground truth data.

1.4. Results
We empirically evaluated our proposed approach on a number of highly nonlinear envi-

ronments with varying dimensionality. We begin by modelling the forward dynamics of well
known, nonlinear, low dimensional dynamical systems. We further extend the results to more
practical, higher dimensional, robotic environments implemented in MuJoCo. We use the
D4RL dataset [Fu et al., 2021] to train our Koopman autoencoder. Lastly we employ our
proposed approach as an open-loop controller for locomotion tasks in D4RL.

1.4.1. Dynamical Systems

We use well-established dynamical systems as benchmarks for forward dynamics modeling.
Despite their low dimensionality, these systems display interesting nonlinear dynamics,
including multiple fixed points. Nonetheless, their low dimensionality enables the generation
of informative visual representations in 2D/3D phase plots. We briefly review the environments
used in this section.

Parabolic Attractor, adopted from [Tu et al., 2014, Brunton et al., 2016], is a
dynamical system with a single fixed point at the origin, known for its closed-form Koopman
embedding solution. Governed by the following equations:

ẋ1 = µx1, ẋ2 = λ(x2 − x2
1), (1.4.1)

the system admits a solution that is asymptotically attracted to the parabolic manifold, given
by x2 = x2

1, for λ < µ < 0. The Koopman embedding, z, that adheres to globally linear
dynamics, can be coded by augmenting the state with the additional nonlinear measurement
of z3 = x2

1:

ż =

ż1

ż2

ż3

 =

µ 0 0
0 λ −λ
0 0 2µ

z1

z2

z3

 for

z1

z2

z3

 =

x1

x2

x2
1

 (1.4.2)

We set λ = −1.0 and µ = −0.1 and we sample initial conditions uniformly from x1,x2 ∈ [−1, 1].

20

Duffing Oscillator follows a nonlinear second order differential equation ẍ = x − x3,
which represents a model for the motion of a damped and force-driven particle. This particular
instance admits two stable fixed points at (x, ẋ) = (±1, 0), and an unstable fixed point at
the origin, (x, ẋ) = (0, 0). Initial conditions are sampled uniformly from x1 ∈ [−2, 2] and
x2 ∈ [−1, 1].

Lotka-Volterra represents the population evolution of biological systems, based on a
predator-prey interactions, by the following equations:

ẋ1 = αx1 − βx1x2, ẋ2 = δx1x2 − γx2. (1.4.3)

The system is known for its abrupt switch in population growth and admits two fixed
points, one at the origin (extinction), and a center point at (x1, x2) = (γ/δ, α/β). We set
α = β = γ = δ = 0.2 and uniformly sample initial conditions from x1, x2 ∈ [0.02, 3.0].

Pendulum represents a freely swinging pole. The initial conditions indicate the states
from which the pole is released, deviating slightly from the inverted position by ±10◦. The
state consists of the angle and the angular velocity and we report errors in radians.

Lorenz System is a chaotic dynamical system [Lorenz, 1963]. It features equilibrium
points, some stable and some unstable, and is renowned for the “butterfly effect” arising from
its sensitivity to initial conditions. The governing equations are as follows:

ẋ1 = σ(x2 − x1), ẋ2 = x1(ρ− x3) − x2, ẋ3 = x1x2 − βx3 (1.4.4)

We use the original parameters from Lorenz’63 system. Initial conditions are generated by
perturbing the point (0, 1, 1.05) with Gaussian-distributed noise having a standard deviation
of 1.

To demonstrate data-efficiency, we applied our proposed Koopman Autoencoder to
modest datasets of trajectories gathered from each of the aforementioned dynamical systems,
comprising 100 trajectories for Lorenz systems and 50 trajectories for non-chaotic ones. For
all dynamical systems except Lorenz’63, the model is trained using the first 500 steps of
the trajectories. Nevertheless, during inference, we unroll the models for up to 1000 steps,
demonstrating the capability of our approach to accurately capture the underlying dynamics
and generalize to unseen regions of the state space. We employed timesteps of 0.01 for forward
integration in all environments, with the exception of Lorenz, for which we used a timestep
of 0.02.

Results are presented in Table 1.1. We conducted experiments involving both linear
and nonlinear decoders, linear and nonlinear latent dynamics, as well as experiments with
and without periodic reencoding. In the nonlinear latent dynamics setting we use an MLP,
instead of K , to drive the latent state forward. We maintain consistent encoder and decoder

21

((a)) Without reencoding. ((b)) With reencoding.

Fig. 1.3. Parabolic Attractor. Phase plots are generated by unrolling the model both with and
without Periodic Reencoding. The phase plots are not noticeably different and this is as expected,
due to the existence of closed-from Koopman codes for this particular environment.

capacities across different models applied to the same environment. We train a standard
MLP for single step dynamics prediction as baseline, with capacity roughly equivalent to that
of the encoders.

Periodic reencoding consistently improves the accuracy of the predictions. These im-
provements also extend to the setting where we permit nonlinear dynamics in the latent
space, even though our method was motivated by learning linear latent dynamics. The only
exception is the Parabolic Attractor environment (see Figure 3(a)). This is expected because
this system admits a simple feature transformation that achieves globally linear dynamics.
The representation can be decoded, with a linear decoder (Equation 1.4.2) by simply selecting
the first two elements, without the need for course correction. Furthermore, it should be
noted that the best prediction results use a linear decoder, rather than a nonlinear one. This
observation holds true, regardless of the type of dynamics assumed in the latent space or the
specific environment. The results also demonstrate that Koopman autoencoders with linear
dynamics and decoders, unrolled using periodic reencoding, consistently outperform widely
used nonlinear dynamics models.

1.4.2. D4RL: State Prediction

In this section, we train our proposed Koopman Autoencoder on continuous control tasks
from D4RL benchmark by [Fu et al., 2021]. Again, the goal is to predict the future states
over long time horizons. We choose a number of locomotion tasks as our main testbed, namely
the Hopper-v2, HalfCheetah-v2, and Walker2d-v2 environments. The curated datasets are
generated by driving the simulated robots forward from a stationary position, using policies
with varying degrees of optimality, i.e. expert, medium-expert, medium, and medium-replay.

22

Model Koopman
(
Linear Latent Dynamics

)
NonLinear Latent Dynamics MLP

Decoder Type Linear NonLinear Linear NonLinear -
Periodic Reenc. (✗, ✓) ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ -

Environment MSE over 100 steps

Parabolic Attractor 0.0205 0.0292 0.1465 0.0758 0.0739 0.0496 0.0727 0.0547 0.2674
Pendulum 0.0512 0.0042 0.0648 0.0181 0.0288 0.0025 0.0242 0.0034 0.7442
Duffing Oscillator 0.1152 0.0112 0.1512 0.0512 0.0450 0.0022 0.0450 0.0112 0.4050
Lotka-Volterra 0.0113 0.0072 0.0145 0.0098 0.0128 0.0040 0.0112 0.0060 1.4450
Lorenz’63 ✗ 11.162 ✗ 12.569 18.985 7.265 19.051 7.110 88.565

Environment MSE over 1000 steps

Pendulum 9.2021 0.1818 14.5800 0.6612 10.7184 0.0841 10.5832 0.2964 55.281
Duffing Oscillator 20.5440 1.0658 15.0701 2.5312 5.7851 0.5725 9.2451 0.93845 22.445
Lotka-Volterra 1.6292 0.3961 1.6203 0.2812 0.7261 0.2888 0.7281 0.4324 83.205
Lorenz’63 ✗ 78.980 ✗ 64.838 ✗ 59.262 ✗ 54.793 133.509

Table 1.1. Mean Squared Error of state prediction for a number of dynamical systems. The
entries in the table are scaled up by a factor of 100×, except for Lorenz system. Evaluation is
done via sampling unseen initial points from the dynamical system. The cross marks and check
marks in the Periodic Reenc. rows indicate, respectively, absence and presence of periodic
reencoding mechanism during inference time. When enabled, the errors are reported by searching
over reencoding periods of (1, 10, 25, 50, 100). The cross marks in place of table entries indicate
exploded values. Underlined values denote best performance for Koopman-based models, where
bold numbers represent best performance across all models. We exclude the Parabolic Attractor
environment when reporting errors over the 1000-step horizon since trajectories would almost
perfectly merge onto the parabolic manifold and reach the origin in less time.

Each individual dataset comprises 1 million transitions, organized as trajectories with a
maximum length of 1,000 steps. We use 80% of the trajectories for training and evaluate on
the remainder 20%, consisting of trajectories of length 300. Table 1.2 provides a breakdown
of the MSE over a 300-step horizon.

The D4RL benchmark differs from the dynamical systems discussed in the previous section
in three fundamental ways: the dynamics are notably more challenging due to the presence of
collisions, the dimensionality is higher, and the systems are subject to control inputs. Here we
use the extended version of the Koopman autoencoder model designed for controlled systems
(see Section 1.3.1). For training, we solely rely on the observations and avoid incorporating
additional training signals, such as rewards.

Similar to the previous section, a multi-step MLP is trained as a baseline. To ensure a
fair comparison, we set the size of the MLP to be equal to the combined size of the Koopman

23

((a)) No Reencoding ((b)) Reencode every step ((c)) Periodic Reencoding

Fig. 1.4. Phase portraits of the trained Koopman Autoencoders (w/linear decoder) for unrolls of
1000 steps. We use different different reencoding schemes for unrolling the same model, namely (a)
w/o reencoding, (b) reencoding at every step, and (c) periodic reencoding (our proposed approach).
The grey lines in the background represent ground truth phase portraits.

encoder and decoder. In our implementation, this equivalent MLP is implemented by setting
the reencoding period to 1 during training and deactivating the loss terms associated with the
Koopman autoencoder, specifically the “alignment” and “reconstruction” losses, optimizing
only the “prediction” loss as the objective (see Figure 1.1). Refer to Appendix 1.5 for details
and specifics.

We utilize training sequences with a length of 100. The results presented in Table 1.2
demonstrate that through periodic reencoding, we can consistently unroll our model over

24

Fig. 1.5. Mean Squared Error (MSE) over the unrolling horizon, under varying reencoding schemes.
We use 100 freshly sampled (unseen) initial points for evaluation. `reencode @ 0` legend indicates
unrolling without ever reencoding. We observe that Periodic Reencoding robustly improves the
quality of long-range modeling of dynamics.

extended horizons, surpassing the training length (in this case, over a 300-step horizon).
Furthermore, the use of a nonlinear decoder proves to be crucial for accurate prediction. In
our experience, training the MLP becomes unstable for horizons longer than 10 steps, and its
performance is significantly inferior. However, it fulfills its role as a baseline.

Fig. 1.6. Mean Squared Error (MSE) for Hopper-v2 environment over the unrolling horizon of 300
steps, under varying reencoding schemes. Periodic Reencoding generates more accurate trajectories
compared to no reencoding and every-step reencoding schemes.

25

Model Koopman Autoencoder MLP

Decoder Type Linear NonLinear -

Periodic Reencoding (✗, ✓) ✗ ✓ ✗ ✓ -

Environment Dataset MSE over 300 steps

Hopperv2 expert 0.250 ± 0.05 0.079 ± 0.03 0.353 ± 0.05 0.012 ± 0.00 0.561
medium-expert 0.486 ± 0.07 0.102 ± 0.04 0.719 ± 0.10 0.015 ± 0.00 0.592
medium 0.624 ± 0.05 0.102 ± 0.03 0.889 ± 0.08 0.008 ± 0.00 0.533
full-replay 1.052 ± 0.12 0.570 ± 0.11 2.254 ± 0.14 0.158 ± 0.01 0.815
medium-replay 1.190 ± 0.22 0.776 ± 0.18 ✗ 0.296 ± 0.07 0.936

HalfCheetahv2 expert 0.645 ± 0.05 0.602 ± 0.09 0.622 ± 0.07 0.227 ± 0.03 1.359
medium-expert 1.141 ± 0.05 1.076 ± 0.08 0.813 ± 0.12 0.391 ± 0.07 1.481
medium 1.362 ± 0.04 1.456 ± 0.08 1.816 ± 0.16 0.809 ± 0.09 1.861
full-replay 1.262 ± 0.10 1.252 ± 0.17 1.668 ± 0.17 0.816 ± 0.14 1.994

Walker2dv2 expert 0.364 ± 0.07 0.302 ± 0.08 0.544 ± 0.05 0.072 ± 0.03 0.285
medium-expert 0.755 ± 0.02 0.602 ± 0.08 0.796 ± 0.10 0.198 ± 0.08 1.295
medium 0.825 ± 0.08 0.718 ± 0.11 1.822 ± 0.18 0.404 ± 0.13 0.821
full-replay 1.676 ± 0.19 1.413 ± 0.13 ✗ 0.867 ± 0.15 1.291
medium-replay ✗ 2.379 ± 0.20 ✗ 2.077 ± 0.26 1.917

Table 1.2. Mean Squared Error of state prediction for D4RL robotic locomotion tasks. Evaluation
is done under a held-out set of trajectories. The cross marks in place of table entries indicate
exploded or almost exploded values (large errors).

1.4.3. D4RL: Semi-Open-Loop Control

In this section, we utilize our proposed model as an open-loop controller for locomotion
tasks within the D4RL framework to showcase long-term stability, generalization capability,
and prediction quality. This approach allows us to present another informative metric, the
total reward achieved by a semi-open-loop controller (with sparse feedback). In this context,
the model is trained using transitions generated by an optimally trained policy, specifically
the expert datasets.

The objective is to produce the sequence of states and actions that follow the initial
state which is provided as input to the model. We train a Koopman autoencoder, jointly
with an independent decoder head trained using a behaviour cloning loss to output actions,
which receives the encoded states as input. We assess the quality of the predictions by
evaluating the optimality of the replicated “expert” behavior. This is done by executing the

26

generated sequence of actions in the environments and recording the total reward achieved.
To underscore the stability of our approach, we ensure that the model plans the motion of the
robot for the next 100 steps, by generating a sequence of actions before receiving any sort of
feedback form the environment. By removing feedback at test time, i.e. by providing the
ground truth state as input to the model only every 100 steps, we demonstrate the model’s
capability to generate stable motion plans, particularly when periodic reencoding is utilized.

Model Koopman Autoencoder MLP BC

State Feedback (✗, ✓) ✗ ✗ ✗ ✓

Periodic Reencoding (✗, ✓) ✗ ✓ - -

Environment Dataset total reward until termination

Hopperv2 expert 18.40 ± 6.2 53.5 ± 14.5 18.9 ± 5.9 96.05 ± 4.3
HalfCheetahv2 expert 15.06 ± 5.3 64.2 ± 12.9 19.5 ± 7.9 82.91 ± 5.9
Walker2dv2 expert 18.46 ± 8.1 61.9 ± 14.2 11.4 ± 2.5 98.73 ± 1.5

Table 1.3. Semi-open-loop reward achieved. The total rewards are normalized according to D4RL
random and expert scores. The Koopman Autoencoder uses a nonlinear decoder.

Table 1.3 provides the results for the designed open-loop control problem. As baseline,
we train an MLP that takes the state as input and outputs the next state along with the
optimal action. The MLP can then be unrolled autoregressively at test time similarly in an
open-loop fashion. Furthermore, for comparison, we train a standard behavior cloning (BC)
model that we run without state obfuscation, and allow to observe state at every step. This
is the upper bound of performance of the policy run with state obfuscation.

We demonstrate that our approach is capable of making sufficiently accurate predictions
well into the future when the state is withheld from the model over 100-step horizons. This
is evident from the agent’s ability to sustain its motion without falling, relying solely on
preplanned motion.

1.5. Conclusion
Our study of Koopman autoencoders for modeling nonlinear dynamical systems lead

us to explore various inference schemes for generating predictions over long horizons. We
showed that generating trajectories exclusively in the latent space presents two potential
difficulties: (i) the inability to capture switching behaviour between multiple fixed points, and
(ii) violation of the existence and uniqueness theorem of initial value problems. We showed,
through theory and experiment, that trajectories generated with reencoding do not suffer

27

from these limitations. Finally we introduced periodic reencoding as a method that bridges
the gap between no reencoding and reencoding at every step, and achieves the best results in
practice.

Acknowledgments
We would like to thank Daniel Worrall for their careful review of the manuscript. We

would also thank Peter Battaglia and Hugo Larochelle for their prompt approval of the work.

28

References
[Arjovsky et al., 2015] Arjovsky, M., Shah, A., and Bengio, Y. (2015). Unitary evolution recurrent neural
networks. CoRR, abs/1511.06464.

[Azencot et al., 2020] Azencot, O., Erichson, N. B., Lin, V., and Mahoney, M. W. (2020). Forecasting
sequential data using consistent koopman autoencoders.

[Bengio et al., 2015] Bengio, S., Vinyals, O., Jaitly, N., and Shazeer, N. (2015). Scheduled sampling for
sequence prediction with recurrent neural networks. Advances in neural information processing systems, 28.

[Bradbury et al., 2018] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs.

[Brunton et al., 2016] Brunton, S. L., Brunton, B. W., Proctor, J. L., and Kutz, J. N. (2016). Koopman
invariant subspaces and finite linear representations of nonlinear dynamical systems for control. PLOS ONE,
11(2):e0150171.

[Brunton et al., 2021] Brunton, S. L., Budišić, M., Kaiser, E., and Kutz, J. N. (2021). Modern koopman
theory for dynamical systems. arXiv preprint arXiv:2102.12086.

[Frion et al., 2023] Frion, A., Drumetz, L., Mura, M. D., Tochon, G., and Bey, A. A. E. (2023). Leveraging
neural koopman operators to learn continuous representations of dynamical systems from scarce data.

[Fu et al., 2020] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2020). D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219.

[Fu et al., 2021] Fu, J., Kumar, A., Nachum, O., Tucker, G., and Levine, S. (2021). D4rl: Datasets for deep
data-driven reinforcement learning.

[Gu et al., 2021a] Gu, A., Goel, K., and Ré, C. (2021a). Efficiently modeling long sequences with structured
state spaces. CoRR, abs/2111.00396.

[Gu et al., 2021b] Gu, A., Johnson, I., Goel, K., Saab, K., Dao, T., Rudra, A., and Ré, C. (2021b). Combining
recurrent, convolutional, and continuous-time models with linear state-space layers.

[Kalman, 1960] Kalman, R. (1960). On the general theory of control systems.
[Koopman, 1931] Koopman, B. O. (1931). Hamiltonian systems and transformation in hilbert space. Proceed-
ings of the National Academy of Sciences, 17(5):315–318.

[Koopman and v. Neumann, 1932] Koopman, B. O. and v. Neumann, J. (1932). Dynamical systems of
continuous spectra. Proceedings of the National Academy of Sciences, 18(3):255–263.

[Kutta, 1901] Kutta, M. W. (1901). Beitrag zur näherungsweisen integration totaler differentialgleichungen.
Zeitschrift für Mathematik und Physik, 46(1):435–453.

[Lan and Mezić, 2013] Lan, Y. and Mezić, I. (2013). Linearization in the large of nonlinear systems and
koopman operator spectrum. Physica D: Nonlinear Phenomena, 242(1):42–53.

[Lorenz, 1963] Lorenz, E. N. (1963). Deterministic Nonperiodic Flow. Journal of Atmospheric Sciences,
20(2):130–148.

[Loshchilov and Hutter, 2017] Loshchilov, I. and Hutter, F. (2017). Fixing weight decay regularization in
adam. CoRR, abs/1711.05101.

[Lusch et al., 2018] Lusch, B., Kutz, J. N., and Brunton, S. L. (2018). Deep learning for universal linear
embeddings of nonlinear dynamics. Nature Communications, 9(1).

[Lyu et al., 2023] Lyu, X., Hu, H., Siriya, S., Pu, Y., and Chen, M. (2023). Task-oriented koopman-based
control with contrastive encoder. In 7th Annual Conference on Robot Learning.

29

[Martin and Cundy, 2018] Martin, E. and Cundy, C. (2018). Parallelizing linear recurrent neural nets over
sequence length. In 6th International Conference on Learning Representations, ICLR 2018, Vancouver, BC,
Canada, April 30 - May 3, 2018, Conference Track Proceedings. OpenReview.net.

[Mondal et al., 2023] Mondal, A. K., Panigrahi, S. S., Rajeswar, S., Siddiqi, K., and Ravanbakhsh, S. (2023).
Efficient dynamics modeling in interactive environments with koopman theory.

[Monfared et al., 2021] Monfared, Z., Mikhaeil, J. M., and Durstewitz, D. (2021). How to train rnns on
chaotic data? CoRR, abs/2110.07238.

[Orvieto et al., 2023] Orvieto, A., Smith, S. L., Gu, A., Fernando, A., Gulcehre, C., Pascanu, R., and De, S.
(2023). Resurrecting recurrent neural networks for long sequences.

[Pearlmutter, 1990] Pearlmutter, B. A. (1990). Dynamic recurrent neural networks.
[Runge, 1895] Runge, C. (1895). Über die numerische auflösung von differentialgleichungen. Mathematische
Annalen, 46(2):167–178.

[Schütte et al., 2016] Schütte, C., Koltai, P., and Klus, S. (2016). On the numerical approximation of the
perron-frobenius and koopman operator. Journal of Computational Dynamics, 3(1):1–12.

[Smith et al., 2023] Smith, J. T. H., Warrington, A., and Linderman, S. W. (2023). Simplified state space
layers for sequence modeling.

[Trischler and D’Eleuterio, 2016] Trischler, A. and D’Eleuterio, G. M. (2016). Synthesis of recurrent neural
networks for dynamical system simulation.

[Tu et al., 2014] Tu, J. H., , Rowley, C. W., Luchtenburg, D. M., Brunton, S. L., and and, J. N. K. (2014). On
dynamic mode decomposition: Theory and applications. Journal of Computational Dynamics, 1(2):391–421.

[Tustin, 1947] Tustin, A. (1947). A method of analysing the behaviour of linear systems in terms of time series.
Journal of the Institution of Electrical Engineers - Part IIA: Automatic Regulators and Servo Mechanisms,
94:130–142(12).

[Vlachas et al., 2021] Vlachas, P. R., Arampatzis, G., Uhler, C., and Koumoutsakos, P. (2021). Multiscale
simulations of complex systems by learning their effective dynamics.

[Williams et al., 2015a] Williams, M. O., Kevrekidis, I. G., and Rowley, C. W. (2015a). A data–driven
approximation of the koopman operator: Extending dynamic mode decomposition. Journal of Nonlinear
Science, 25(6):1307–1346.

[Williams et al., 2015b] Williams, M. O., Rowley, C. W., and Kevrekidis, I. G. (2015b). A kernel-based
approach to data-driven koopman spectral analysis.

30

First Article Appendices
Koopman Theory Overview

Let us consider an autonomous dynamical system defined over an open set D of Rn by a
system of first order differential equations:

ẋ = f(x) (1.5.1)

This system induces a flow Φ : D × R × R → D which, for a given time t, an observed value
of the state of the system xt and a duration ∆t, maps to the state of the system evolved by
said duration

Φt→t+∆t(xt) = xt +
∫ t+∆t

t

f(xτ) dτ = xt+∆t (1.5.2)

One of the challenges in modern dynamical system theory revolves around establishing
transformations which maps such nonlinear dynamics into linear ones, as there exist myriad
of tools and frameworks facilitating the study of linear systems, in contrast to their nonlinear
counterparts.

In his seminal work [Koopman, 1931] proposed an alternative perspective of general
nonlinear dynamics in which he considered measurement functions φ : D → R s.t. φ ∈ L2,
the set of square-integrable functions w.r.t. Lebesgue’s measure—which constitutes a Hilbert
space whose metric is determined by the inner product (φ, ψ) 7→

∫
D
φ(x)ψ∗(x)dµ(x). A

measurement function maps the actual state of the system to the measurement or observable
data to which one would have access. He introduced an operator K acting upon the set of
measurement functions and which advances the measurement such that

∀ φ ∈ L2(D), ∀x ∈ D, ∀t, s ∈ R s.t. t > s, Ks→t(φ)(x) = φ (Φs→t(x)) (1.5.3)

It is linear by definition, and the family of operator {K0→t}t∈R constitute a one-parameter
group in Hilbert space, which admits as an infinitesimal generator the Lie derivative operator
T such that

L(φ)(x(t)) = lim
τ→0

Kt→t+τ (φ)(x(t)) − φ(x(t))
τ

= lim
τ→0

φ(x(t+ τ)) − φ(x(t))
τ

= d
dt

{
φ(x(t))

}
= (∇φ) (x(t)) · f(x(t))

(1.5.4)

However, the resulting linear differential equation on measurement functions is of little
use in practical settings, as it is of infinite dimension. To circumvent this, it is customary to
resort to orthogonal decomposition of the Hilbert space of measurement functions L2 into

31

subspaces invariant by application of the Lie (and thus Koopman) operator [?, ?].

L2 =
∞⊕
k=1

Ek (1.5.5)

By truncation, it possible to operate on an invariant subspace H =
⊕q

k=1 Ek, thus providing
a finite-dimensional representation of the operator T (resp. K), restricted to said subspace,
into a matrix T (resp. K) acting on the vector space Rq. The restriction of a measurement
function φH thus fulfils the linear dynamics

d
dt

{
φH(x(t))

}
= T φH(x(t)) (1.5.6)

or equivalently

φH(x(t)) = exp{T (t− t0)} · φH(x(t0)) = K(t−t0) φH(x(t0)) (1.5.7)

Implementation Details

State Prediction Tasks. To minimize the alignment loss, the encoder may generate latent
codes with arbitrarily small values. We regard these solutions as degenerate, and to discourage
this behavior, we normalize the weight columns of the decoder. Moreover, we employ AdamW
optimizer by [Loshchilov and Hutter, 2017] with a slight weight decay of value 1e−4 and
learning rate of 1e−4. We utilize a custom learning rate of 1e−5 for the dynamics components,
which are either the Koopman matrices or 3-layer MLPs. This encourages the encoder to
follow the dynamics prescribed by Koopman and stabilizes training. We use the continuous
Koopman parameterization and apply bilinear descretization [Tustin, 1947] whenever control
inputs are present. In the absence of control inputs, we allow the model to unroll by solving
an initial value problem (IVP), using more sophisticated integrators implemented by JAX
[Bradbury et al., 2018]. During both training and inference, we make heavy use of the
jax.experimental.ode.odeint() which relies on an adaptive stepsize (Dormand-Prince)
Runge-Kutta integrator [Runge, 1895, Kutta, 1901]. We find incorporating the prediction
loss to be detrimental to the overall performance when training on the dynamical systems
listed in Section 1.4.1. Inspired by the model described in Appendix 1.5, we use a small
sparsity inducing L1 loss, 1e−3, applied to the Koopman embeddings to encourage region-
dedicated dynamics, and use ReLU activations for all experiments to ensure sparse activations.
The encoders used for dynamical systems and D4RL are 4-layer and 6-layer standard MLPs,
respectively. We use training sequence lengths of 10 and 100, for the dynamical systems and
D4RL state prediction tasks, respectively. Moreover, we observe that using a reencoding
training scheme of 50 steps is slightly beneficial for D4RL state prediction tasks, compared
to training w/o reencoding. Interestingly, presence of control inputs in D4RL dataset makes

32

the training more stable over longer horizons, compared to the dynamical systems we use as
benchmark. This is because in the absence of control inputs, the latent state can be arbitrarily
scaled up by the eigenvalues of the K matrix. We find that normalizing the observations and
actions as a preprocessing step negatively impacts performance, especially for D4RL tasks.
We choose an embedding size of 128 for all dynamical systems, 512 for D4RL states, and 128
for D4RL action embeddings. The δ stepsize is trained in log space, initialized from that of
the environment.

D4RL: Semi-Open-Loop Control. In this subsection we review the implementation details
that pertain specifically to the open-loop control task. Given that the actions in the expert
datasets are generated via a fixed expert policy, which is a function of the states, denoted as
ut = π(xt), we can transform the dynamics from their original form, xt+1 = F(xt, ut), more
compactly into, xt+1 = F(xt, π(xt)) = Fπ(xt). Therefore, we employ the standard Koopman
formulation, i.e. zt+1 = Kzt, which does not involve exogenous controls (see Section 1.3.1).
Due to the absence of controls as direct inputs to the model, dictated by the nature of this
problem, the training process becomes unstable for long sequences, in comparison to the
D4RL state prediction tasks. We train a separate decoder head for action prediction, which
takes the encoded states as input. We utilize training sequences with a length of 20 steps,
and likewise, employ a periodic reencoding scheme of 20 steps during test time. As previously
mentioned, we restrict ourselves to observing the ground truth state values only at intervals
of 100 steps, hence the designation “Semi-Open-Loop.” Additionally, for improved prediction
accuracy, we utilize precise adaptive-stepsize integrators implemented in JAX, i.e. odeint(),
both during the training and inference stages.

Switching Dynamics

To explore another limitation of trajectories generated without reencoding, it is instructive
to study the special case where dim(z) > dim(x) and ψ(z) = Wz, i.e. the decoder is an
over-complete dictionary, e.g. a linear operator. Therefore the trajectories generated without
reencoding correspond to a linear projection of the solution of a linear dynamical system,
e.g. x(t) = WeKtϕ(x0). Such trajectories exhibit limited expressiveness; for instance, they
cannot capture transitions between multiple distinct fixed points. For example, consider a
scenario where x ∈ R2 is governed by a NLDS with multiple fixed points, such as the Duffing
Oscillator. Let z ∈ R4. It is possible for z to represent multiple, distinct, attractors of x
but not the switching behaviour between them that occurs in the Duffing oscillator for some
initial conditions. Let these attractors be located in two regions of state space, R1 and R2.

33

Now, let z = [z1, z2, z3, z4] and:

ϕ(x) = {[z1, z2, 0, 0] if x ∈ R1, [0, 0, z3, z4] if x ∈ R2} . (1.5.8)

These can be interpreted as sparse codes with distinct supports corresponding to R1 and R2,
inferred using ϕ. Furthermore, if we let K be block diagonal then:

ż =
[
K1 0
0 K2

]
z. (1.5.9)

Phase space trajectories are synthesized by linearly combining the trajectories in the latent
space.

x =

z1

 |
w1

|

 + z2

 |
w2

|

 if x ∈ R1, z3

 |
w3

|

 + z4

 |
w4

|

 if x ∈ R2

 (1.5.10)

The dynamics of x can be approximated by two distinct linear systems. Furthermore, the
columns of W can shift the origin to represent two distinct fixed points. Note that, without
reencoding (Equation 1.3.7), the dynamics of x are restricted to follow the same linear system,
determine by the initial condition z0 = ϕ(x0), for all time. In other words, this scheme
does not allow for switching between linear systems, represented by K1 and K2, after t = 0.
Indeed this is what is observed in Figure 1.4 (a), the dynamics captured without reencoding
resemble the phase diagram of the superposition of several LDS. In contrast, trajectories
generated with reencoding, have the capacity to switch between supports (non-zero elements
of z) and therefore switch between the dynamics defined by K1 and K2. Indeed it was shown
that non-linear systems can only be linearized within a basin of attraction of a fixed point
[Lan and Mezić, 2013], implying that the best we can hope to achieve is to partition the
phase space into regions each of which can be well approximated by LDS, as illustrated in
the example above.

Efficiency

Producing full trajectories for T discrete points in a nonlinear dynamical system of the
form xt+1 = F(xt) requires the repeated recurrent application of the nonlinear transformation
F. For the Koopman Autoencoder, trajectories for T discrete points are first generated in
the Koopman linear space zt+1 = Kzt + Lυt and followed by a time-agnostic decoding step
x = ψ(z). The linear recurrence in the latent space allows for a highly parallelizable unrolling
of the predicted sequence ẑ using parallel scans [Martin and Cundy, 2018]. Compared
to nonlinear recurrences, training time is greatly improved. Periodic reencoding does add
a nonlinear step to the Koopman autoencoder recurrence. However, since we decode and
reencode periodically every k steps, we can parallelize the predicted trajectories for k discrete

34

points and still obtain much improved training efficiencies. Furthermore, considering that our
method can provide accurate predictions over short horizons (where reencoding is not needed),
it is valuable in situations requiring fast look-ahead capabilities, such as model predictive
control (MPC) or n−step value function bootstrapping in Reeinforcement Learning.

Additional Results

Figure 1.7 show the error plots for HalfCheetah-v2 and Walker2d-v2 environements –
Hopper-v2 error plots can be found in the main text. For all D4RL experiments, during
training time, we either do not use reencoding at all, or we use reencoding periods of 20 or
50 steps. The plots correspond to the best performing trained models reported in Table 1.2.
Periodic Reencoding consistently achieves the best results and is robust to the reencoding
period.

Figure 1.8, 1.9, and 1.10 shows the error plots of the Koopman Autoencoder models that
DO NOT employ reencoding (periodic reencoding) during training time. We still observe
drift in latent space despite the absence of periodic reencoding at training time. Employ-
ing periodic reencoding at test time can still mitigate the drift and generate stable, long unrolls.

Nonlinear Latent Dynamics for D4RL. Table 1.4 presents the results for a latent
dynamics model which employs nonlinear transition functions. This model maps the current
latent state and encoded action to the next latent state, denoted as (zt, νt) → zt+1, by
processing the concatenated vector of encoded states and control inputs through a wide
3-layer MLP. The observations made in the linear scenario, i.e. the Koopman framework, are
found to be extensible to nonlinear instances as well – periodic reencoding greatly improves the
prediction quality over long horizons. Table 1.4 also reports the effect of periodic reencoding
during training time in isolation – compare the columns which do and do not use periodic
reencoding during training.

Experiments with Structured Koopman Matrix. Additionally, we attempted
experiments with a diagonal Koopman transition matrix but were unsuccessful. We suspect
that this lack of success may be due to additional requirements imposed by the Koopman
linear space. Achieving complete disentanglement of features in this context might necessitate
an exponentially larger latent state dimension. In an effort to attain training stability
and mitigate the issue of scaling up and down the outputs in linear dynamics steps, we
conducted experiments using a skew-symmetric matrix, denoted as K . Skew-symmetric
transition matrices perform rotations without scaling the space. The experiments with
the skew-symmetric matrix yielded unsuccessful results, similar to those with the diagonal

35

Fig. 1.7. Mean Squared Error (MSE) for HalfCheetahv2 and Walker2dv2 environments over the
unrolling horizon of 300 steps, under varying reencoding schemes. The results are for Koopman
Autoencoder models.

36

Fig. 1.8. Mean Squared Error (MSE) for Hopper-v2 D4RL environment over the unrolling horizon
of 300 steps, under varying reencoding schemes. The plots belong to models that DO NOT make
use of reencoding during training. The errors reported in Table 1.2, under Periodic Reencoding:
(✗), corresponds to the blue lines.

matrix. We speculate that this lack of success may be attributed to a lack of expressivity.

Low Dimensional Latents and Deep Latent-to-Latent Mappings. So far, we have
assumed a high-dimensional latent space, where dim(z) ≫ dim(x), as in theory, Koopman
operator is an infinite-dimensional operator. This enables us to learn rich representations of
the dynamics, with the information bottleneck being the linearity requirement by Koopman.
We conducted experiments using lower dimensional state embeddings, dim(x) > dim(z),
and deep latent-to-latent transition networks. In this context, the information bottle-
neck more closely resembles that found in tranditional, “static” autoencoders, where
the projection into the latent space represents a form of compression. We observed
extreme instability when unrolling over long horizons, resulting in poor prediction qual-
ity. We also discovered that Periodic Reencoding fails to improve the stability of these models.

Single Step Koopman Objective. Rather than training the Koopman objective over
multiple steps, we focused on minimizing the losses as defined in Equation 1.3.4 at individual

37

Fig. 1.9. Mean Squared Error (MSE) for D4RL HalfCheetah-v2 environment over the unrolling
horizon of 300 steps, under varying reencoding schemes, trained w/o reencoding.

timesteps. We implemented this approach with the aim of perfectly aligning the training
objective with the inference time scenario, where reencoding occurs at every step. However,
this resulted in high inference-time instability and subpar performance, even worse than the
MLP baseline, regardless of the utilized inference mechanism, e.g. with or without reencoding.
This suggests that the Koopman objective is indeed leveraging its extensibility within basins
of attraction, as indicated by [Lan and Mezić, 2013].

38

Fig. 1.10. Mean Squared Error (MSE) for D4RL Walker2d-v2 environment over the unrolling
horizon of 300 steps, under varying reencoding schemes, trained w/o reencoding.

Connection to RNNs

There exists an extensive body of literature on training RNNs on nonlinear dynamical
systems [Pearlmutter, 1990, Trischler and D’Eleuterio, 2016, Vlachas et al., 2021].
Koopman autoencoders can be regarded as RNN models with a single linear recurrent layer.
From an efficiency perspective, linear recurrent units are more advantageous as they can be
executed in parallel rather than sequentially. Furthermore, from a representation learning
perspective, one could argue that linearly evolving features extracted from a NLDS would
result in a more meaningful and interpretable representation of the system in question. State-
space Models (SSMs) [Gu et al., 2021a, Gu et al., 2021b] can also be regarded as linear
RNNs, achieving impressive performance in modeling long-range dependencies. A recent
finding by [Orvieto et al., 2023] highlights that linear RNN layers surpass tuned nonlinear
RNN variants in performance. This result is also partially attributable to the fact that
the behavior of linear layers can be designed and engineered more effectively, thanks to the
well-studied nature of this problem. This enables effective regulation of linear layers, ensuring
the stability of the training process over long sequences. A similar approach was previously
adopted by [Arjovsky et al., 2015], wherein the eigenvalues of the RNN transition matrix
were constrained to lie on the unit circle. The drawback of imposing structure and constraints

39

Model NonLinear Latent Dynamics

Decoder Type Linear NonLinear

Periodic Reencoding

Training (✗, ✓) ✗ ✗ ✓ ✗ ✗ ✓

Inference (✗, ✓) ✗ ✓ ✓ ✗ ✓ ✓

Environment Dataset MSE over 300 steps

Hopperv2 expert 0.190 0.165 0.054 0.172 0.011 0.009
medium-expert 0.533 0.287 0.093 0.607 0.031 0.013
medium 0.668 0.349 0.085 0.428 0.027 0.009
full-replay 1.043 0.698 0.425 2.178 0.262 0.118
medium-replay 2.787 0.785 0.785 3.163 0.412 0.328

HalfCheetahv2 expert 0.621 0.600 0.503 0.374 0.265 0.142
medium-expert 1.189 1.141 1.061 0.809 0.569 0.394
medium 1.538 1.412 1.380 1.213 0.798 0.641
full-replay 1.457 1.177 1.494 1.376 0.655 0.616

Walker2dv2 expert 0.388 0.322 0.307 0.377 0.115 0.099
medium-expert 0.739 0.669 0.563 0.794 0.230 0.191
medium 0.796 0.920 0.782 1.202 0.419 0.162
full-replay 1.500 1.509 1.415 ✗ 0.767 0.507
medium-replay ✗ 2.479 2.519 ✗ 2.163 2.202

Table 1.4. Mean Squared Error of state prediction for D4RL locomotion tasks when nonlinear
latent dynamics are allowed. The results show further improvements over the linear case when
periodic reencoding is employed.

on the transition matrices is that it results in a loss of expressivity [Monfared et al., 2021].
By introducing periodic reencoding, we eliminate the necessity of training on extended
sequences altogether (for fully-observable systems) and avoid the requirement to impose any
form of structure onto the transition matrices. An interesting follow-up work could involve
reformulating periodic reencoding for RNNs with multiple recurrent layers.

40

Chapter 2 Second article

Block-State Transformers

by

Mahan Fathi*1, Jonathan Pilault*2, Orhan Firat3,
Christopher Pal4, Pierre-Luc Bacon5, and Ross Goroshin6

(1) Google DeepMind, Mila, Université de Montréal
(2) Google DeepMind, Mila, Polytechnique Montréal
(3) Google DeepMind
(4) Mila, Polytechnique Montréal, CIFAR
(5) Mila, Université de Montréal, CIFAR
(6) Google DeepMind

This article was submitted in Conference on Neural Information Processing Systems 2023 –
(NeurIPS’23).

The main contributions of Mahan Fathi for this articles are presented. Jonathan and I,
Mahan Fathi, shared equal responsibilities and contributions to this endeavor. We jointly led
the project, partaking in coding, overseeing experiments, and handling logistics. To delineate
further, I predominantly took charge of coding and manuscript composition, while Jonathan
led the majority of the experimental runs. Ross and Pierre-Luc provided supervision for the
research. Ross contributed greatly to manuscript refinement.

Résumé. Les modèles d’espace d’état (State Space Models, SSM) ont montré des résultats
impressionnants sur des tâches nécessitant la modélisation de dépendances à longue portée
et s’échelonnent efficacement sur de longues séquences grâce à leur complexité temporelle
sous-quadratique. À l’origine conçus pour les signaux continus, les SSM ont affiché des
performances supérieures sur une multitude de tâches en vision et en audio ; cependant, les
SSM accusent encore un retard par rapport aux performances des Transformers dans les
tâches de modélisation linguistique. Dans ce travail, nous proposons une couche hybride
nommée “Block-State Transformer” (BST), qui combine internement une sous-couche SSM
pour la contextualisation à longue portée et une sous-couche Transformer par bloc pour
la représentation à court terme des séquences. Nous étudions trois variantes différentes,
totalement parallélisables, intégrant des SSM et une attention par bloc. Nous montrons que
notre modèle surpasse des architectures similaires basées sur les Transformers en termes de
perplexité en modélisation linguistique et généralise à des séquences plus longues. De plus,
le Block-State Transformer présente une augmentation de vitesse au niveau de la couche de
plus de dix fois par rapport au Block-Recurrent Transformer lorsque la parallélisation du
modèle est utilisée.
Mots clés : Grand Modélisation Linguistique, Transformers, Modèles d’Espace d’État,
Modélisation Linguistique à Longue Portée

Abstract. State space models (SSMs) have shown impressive results on tasks that require
modeling long-range dependencies and efficiently scale to long sequences owing to their
subquadratic runtime complexity. Originally designed for continuous signals, SSMs have
shown superior performance on a plethora of tasks, in vision and audio; however, SSMs still
lag Transformer performance in Language Modeling tasks. In this work, we propose a hybrid
layer named “Block-State Transformer” (BST), that internally combines an SSM sublayer for
long-range contextualization, and a Block Transformer sublayer for short-term representation
of sequences. We study three different, and completely parallelizable, variants that integrate
SSMs and block-wise attention. We show that our model outperforms similar Transformer-
based architectures on language modeling perplexity and generalizes to longer sequences. In
addition, the Block-State Transformer demonstrates more than tenfold increase in speed at
the layer level compared to the Block-Recurrent Transformer when model parallelization is
employed.
Keywords: Large Language Modeling, Transformers, State-Space Models, Long-range
Language Modeling

42

2.1. Introduction
Transformers have shown impressive performance on a wide range of natural language

processing (NLP) tasks. While they have been primarily used for language modeling the
Transformer architecture [Vaswani et al., 2017] has also been successfully applied to other
tasks outside of the NLP and have mostly replaced Recurrent Neural Networks (RNNs).
Several factors contribute to this success, including computational efficiency and architectural
inductive biases that are well-suited for training on natural language tasks at scale. On the
computational upside, Transformers are able to process tokens of a given input sequence
in parallel, making the most of modern accelerator hardware. Moreover, the attention
mechanism enables Transformers to find relationships in longer sequences by providing ready
access to all the extracted information from past tokens when inferring the next token.
Compared to RNNs and LSTMs [Hochreiter and Schmidhuber, 1997], the benefits of
self-attention are two-fold: (i) the capacity of what could be stored and directly accessible
as context is drastically increased, and (ii) training on longer sequences is more stable
[Hochreiter, 1998, Khandelwal et al., 2018].

Given the remarkable achievements of Transformers in language modeling tasks, and their
improved performance at scale on hard NLP tasks such as reasoning and question answering
[Brown et al., 2020, Thoppilan et al., 2022, Chowdhery et al., 2022], the demand
for deploying even deeper and larger networks is greater than ever before. An orthogonal
scaling dimension, which could be potentially even more consequential, is the size of the
input sequence. Despite the several advantages of Transformers over RNNs, it is still
problematic to scale the input sequence length, again for both computational performance
and quality reasons. Further, the Transformer’s runtime is quadratic with respect to the input
sequence length, which makes training these models increasingly expensive. Furthermore,
Transformers with attention, that is local [Dai et al., 2019], sparse [Child et al., 2019,
Zaheer et al., 2020, Tay et al., 2020a], low-rank approximated [Wang et al., 2020] or
linearlized via kernel methods [Choromanski et al., 2020, Katharopoulos et al., 2020],
notoriously struggle on long-input classification tasks [Tay et al., 2020b] and are highly
unstable when trained on long sequences [Zhang et al., 2022].

A emerging body of research suggests that State Space Models (SSMs) can serve
as an alternative to Transformers because they are able to capture dependencies in ex-
tremely long sequences, while being more computationally efficient and parallelizable
[Gu et al., 2022a]. While still falling into the category of autoregressive sequence mod-
els, the underlying linear time-invariant dynamical system of SSMs allows the efficient
processing of sequences using parallelizable convolution operators with the Fast Fourier
Transform (FFT) [Cooley and Tukey, 1965], with O(L logL) complexity, where L is the

43

length of the sequence. Moreover, retention of past information over long sequences, up
to thousands of steps, can be ensured by deriving recurrent update rules by borrowing
ideas from online function approximation [Chihara, 2011, Gu et al., 2020]. SSMs have
recently outperformed Transformers on long-range dependency benchmarks by a large margin
[Tay et al., 2020b]. Despite their success on long-range classification tasks, SSMs have not
yet completely matched Transformers as an off-the-shelf sequence model for general language
modeling tasks [Fu et al., 2023a].

Recent findings suggest that Transformers and SSMs are complementary models for
the purpose of language modeling [Mehta et al., 2023]. In this work, we propose an
architecture that integrates a strong local attention-based inductive bias with the long-term
context modeling abilities of SSMs into a single layer, that we call Block-State Transformer
(BST). Our model is able to process long input sequences, while still incorporating an
attention mechanism to predict next tokens. BST is fully parallelizable, scales to much longer
sequences, and offers a 10× speedup compared to comparable Transformer-based layers.

In every BST layer, an SSM takes the entire sequence as input and maps it into a
“context” sequence of the same length. The SSM sublayer takes advantage of FFT-based
convolutions. This sequence of context is then divided into blocks of equal size, i.e. window
length (W), and each context block is then fed to a Block Transformer layer, that attends
to the subsequences of size W as defined in [Hutchins et al., 2022]. The block of input
token embeddings are then cross-attended to the corresponding block of context states; see
Figure 2.1. Note that by introducing SSMs as a means of contextualization, we completely
remove the need for sequential recurrences and we are able to run our hybrid SSM-Transformer
layer fully in parallel. The resulting runtime complexity can be expressed as the sum of
O(W 2) + O(L logL), where the first term represents the time complexity of the Transformer
sublayer, while the second term represents the time complexity of the SSM sublayer. This is
a major improvement over O(LW) of Block-Recurrent Transformer, so long as hardware to
support parallel computation is available. Moreover, due to hardware imposed restrictions, the
runtime complexity of the SSM on a full sequence is comparable to that of Block Transformer
on a block of tokens, which further implies the absence of a speed bottleneck in the BST
layer, empirically validated for sequences containing hundreds of thousand of tokens. This
is evident by observing that the bottom-most two lines on the left of Figure 2.5 are almost
overlapping.

2.2. Related Work
This work is primarily related to two branches of recent research: (i) combining local

attention with recurrent networks in order to extend their capacity to capture long-range

44

Fig. 2.1. Block-State Transformer layer. The BST-SH layer is illustrated on the left, and includes
a state space model (SSM, in green) and Block Transformers (in red). For demonstration purposes
the sequence is divided into 3 blocks in the picture. The details of the Block Transformer sublayer
are on the right. *TRF = Transformer.

dependencies, beyond the length of the attention window size, and (ii) State Space Models
(SSMs) which describe sequences via linear dynamical systems whose outputs can be computed
in parallel. Block-Recurrent Transformer (BRecT) [Hutchins et al., 2022] uses a recurrent
memory mechanism to extend the theoretical context length of the Transformer. In the
recurrent unit of the BRecT cell, the updates made to the “recurrent state vectors,” are
extracted by employing a cross-attention mechanism over a block/window of input token
embeddings. Different from their work, we use linear state space models instead of recurrent
cells to maintain context states. We also conduct a more extensive exploration of maintaining
and updating context states. Earlier works augment transformers with a non-differentiable
external memory include the Memorizing Transformer [Wu et al., 2022]. Transformer-XL
[Dai et al., 2019] was an early work that combined recurrent memory with Transformers.
Our work can be seen as a continued evolution of those models incorporating state-of-the-art
recurrent memory models inspired by SSMs.

State space models can be considered as linear RNNs [Gu et al., 2020]. This simplicity
facilitates their analysis and even enables analytical derivation of recurrent weights for opti-
mally representing arbitrarily long sequences. The linear property also allows the recurrence
to be unrolled and parallelized during training and inference [Gu et al., 2022a]. Our work
combines these state-of-the art models, enabling Transformers to leverage theoretically infinite
context.

45

Other works have attempted to replace Transformers, and their attention mechanism
with SSMs [Mehta et al., 2023, Ma et al., 2023, Fu et al., 2023a, Poli et al., 2023],
however despite recent progress, the performance achieved by the Transformer architecture
remains unparalleled in language. Nevertheless, SSMs are able to capture longer range
dependencies than Transformers in both theory and practice, while also being highly par-
allelizable [Cooley and Tukey, 1965, Fu et al., 2023b]. We therefore elect to combine
the best aspects of SSMs and Transformers into a single model. The idea of communica-
tion across blocks, similar to GSS [Mehta et al., 2023], was later implemented by MEGA
[Ma et al., 2023], through an Exponentially Moving Average (EMA) update rule instead
of SSMs1. However, both GSS and MEGA use a single-head Gated Attention Unit (GAU)
[Hua et al., 2022]. MEGA further mixes layer inputs, GAU outputs and EMA outputs via
two gating mechanisms. Our method uses a simpler architecture to mix signals from local
attention and SSM outputs via cross-attention, allowing us to plug any out-of-the-box SSMs
or attention layers. Further, we investigate three ways to mix SSM signals with attention as
outlined in Section 2.3.3.

2.3. Method
We consider the problem of next token prediction via a decoder-only language model.

This seemingly simple pretext task has led to spectacular progress in language understanding
[Devlin et al., 2018, Brown et al., 2020, OpenAI, 2023]. During training, the decoder
takes in a sequence of length L of tokens embeddings and is tasked to generate the next token
at every step in the sequence.

We start by a brief review of SSMs that are essential for understanding the Block-State
Transformer layer (2.3.1). Our full Block-State Transformer architecture is outlined in
Section 2.3.2. Section 2.3.3 describes three approaches for integrating SSM states into the
attention mechanism. Important implementation details are described in Section 2.3.4.

2.3.1. State Space Preliminaries

State space models can be divided into two categories:
State Spaces: Structured Kernels. S4 [Gu et al., 2022a], S5 [Smith et al., 2023], S4D
[Gu et al., 2022b], DSS [Gupta et al., 2022], follow a structured initialization of the
convolutional kernel by unrolling a linear time-invariant (LTI) dynamical system of the

1The authors in [Ma et al., 2023] show a mathematical form of EMA that has a state transition and
also derive a convolution kernel to efficiently compute EMA similarly to S4.

46

following form:

xk = Axk−1 + Buk ,

yk = Cxk + Duk .
(2.3.1)

The system is parameterized by a state matrix A ∈ RN×N , vectors B ∈ RN×1, C ∈ R1×N ,
and D ∈ R1×1, the SSM maps a 1-D input signal uk, to a 1-D output signal yk. Internally,
the SSM projects the input signal to an N -D representation state xk, before mapping it
down to a scalar using the C matrix. The term Duk can be thought of as a skip connection
and will be omitted for the remainder of the discussion for convenience. The output of the
above recurrent equation, yk, can be computed as a discrete convolution, by realizing that
the recurrence can be explicitly unrolled:

Let x−1 := 0⃗ ,

yk =
k∑
j=0

CAjB · uk−j .
(2.3.2)

The CAkB entries are collected to create the SSM kernel K ∈ RL, and the convolution could
be expressed as:

K = (CB,CAB, . . . ,CAL−1B) ,

yk =
k∑
j=0

Kj · uk−j , y = K ∗ u .
(2.3.3)

Given an input sequence u ∈ RL, it is possible to compute the output y ∈ RL sequentially
through the recurrence in Equation (2.3.1). While this property is useful for autoregressive
decoding, sequential computation is prohibitively slow to train with long inputs and, instead,
the convolution from the Equation (2.3.3) can be used to compute all elements of y in parallel.
This is done via Fast Fourier Transform (FFT) [Cooley and Tukey, 1965], provided we
have already computed K.

Additional inductive biases have been imposed on SSMs by analytically deriving closed-
form expressions for the matrices A and B using the HiPPO framework [Gu et al., 2020].
In this framework, the state xt represents the coefficients of polynomials that approximate
the sequence ut.
Explicitly Parameterized Filters. In contrast to structured kernels, one can parameterize
the convolution kernel, as trainable weights and optimize them, K̄ ∈ RL. However, this would
result in poor performance unless certain types of regularization are applied to the kernel.
[Fu et al., 2023b] simply makes use of squashing the kernel weights, and subsequently
applying a smoothing technique. Trainable kernels are also used in attention-free alternative

47

models to Transformers, such as Hyena [Poli et al., 2023], which involves exponentially
decaying the weights along the kernel:

K̄t = e−αt ·
(
FFN ◦ PositionalEncoding

)
(t) , (2.3.4)

where K̄t is an entry in the filter at location t, and FFN is a feed-forward network used for
decoupling the parameter count from the seuqnece length.

2.3.2. Block-State Transformer (BST) Layer

We now introduce the Block-State Transformer layer, which combines SSMs with Block
Transformers. At each training iteration, a sequence of L tokens, is sampled from a longer
document. The tokens are then embedded and fed to the model. Our model consists of a
stack of Block-State Transformer layers. Each BST layer optionally includes an SSM sublayer
that is responsible for providing long-range context to the Block Transformer layer, which
operate similarly to a Block-Recurrent Transformer (BRecT) cell. The SSM sublayer takes
the sequence of token embeddings from the previous layer as input, and produces a sequence
of the same length L as the output.

The output of the SSM is contextually encoded, meaning that entries at every time-step,
potentially include information about all the time steps preceding elements in the sequence.
We collect a number of “context states,” S, from the context sequence, and we set S ≪ L.
In order to prevent the model from accessing future information, we only allow the model to
access context states that precede the current token. Various ways to gather context states
from the context sequence are discussed in section 2.3.3 in detail.

The context states are fed to the Block Transformer, in place of what was referred to
as “recurrent state vectors” in Block-Recurrent Transformer [Hutchins et al., 2022]. The
subsequent operations, shown on the right side of Figure 2.1, are kept unaltered, except that
we no longer need to run the recurrent unit of the BRecT cell since we are maintaining the
context via an SSM. In addition to the context states, the Block Transformer also receives a
block/window of length W of token embeddings as input, which are cross-attended to the
context states. The output of the cross-attention operation is then concatenated with that of
self-attention over the input embeddings, followed by a simple projection.

In addition to the ability of SSMs to retain information over longer time horizons compared
to Transformers and RNNs, using the SSM to maintain context states as a replacement
for recurrent cells makes for a more computationally efficient layer. Removing recurrence
by integrating SSMs into Transformer layers, allows the Block-State Transformer layer to
be fully parallelizable, whereas the Block-Recurrent architecture processes blocks of tokens
sequentially using a for-loop.

48

Fig. 2.2. Summarizing our approaches. The left side shows the cases where the SSM is required to
output Multi-Head (MH) contexts. On the right Multi-Filter (MF) approach is depicted where
the last entries from the previous window are concatenated into a set of context states of size S.
Dashed lines represent the current block.

2.3.3. Context States

Although the latest SSM output technically contains information about the entire sequence,
retrieving individual tokens from only the final state may not be feasible. To compensate,
we concatenate a sequence of states, corresponding to the latest block of tokens. This is
also analogous to the approach taken by BRecT. This representation ensures retrievability
and ease of access, through redundancy. It is redundant because adjacent states are highly
correlated, however this also makes it possible to easily recover the current block of tokens, if
necessary.

In our approach, the context states are constructed from the output of the SSM and fed
to the attention heads of the Transformer. These context states can be constructed in various
ways. To guide these design decisions we consider each of the below proposed schemes as
introducing retrievability at the cost of redundancy. The shape of the output of a single SSM
layer is (B × L × D), where B is the batch size, L is the number of the tokens processed,
and D is the embedding dimension. When doing cross-attention in the Transformer cell
with H different heads, this tensor needs to be transformed into a context tensor of shape
(B×S ×D×H), where S is the number of context states; we usually set S ≪ L and S = W

similar to Block-Recurrent Transformers (BRecT).
We now discuss the three different approaches that we evaluate to generate a context

tensor for each block sequence:

49

SH: Single-Head. The first approach constructs the context tensor by sequentially
concatenating the S states from the SSM with a single filter (each of size D). Note that
because the SSM captures information from preceding blocks, the context state also captures
information about blocks that preceded the current block. The resulting context vector
is highly retrievable and redundant, as defined above. As in typical Transformers, fully
connected layers are used to project each context vector to H different heads of size D. Note
that in the cross-attention operation, context states that correspond to future tokens from
the current block need to be causally masked out. In this case we set S = W , and we pick
the window of SSM outputs that correspond to the current block, and a triangular mask is
used to implement causal masking of context states. This approach is shown in Figure 2.1.

MH: Multi-Head. This approach differs from Single-Head (SH) in that here the SSM is
tasked to generate a separate output for different heads. We use separate [C1,C2, ...,CH]
matrices, to produce context states that are fed to the attention heads. This enables the SSM
to extract complementary features from the summarized history. The conceptual difference is
that the C matrix, from Equation (2.3.1), has direct access to the full memory state of the
SSM (xk), that in theory could be thought of as a compact representation of the history,
before it gets mapped down to a scalar. The Multi-Head (MH) approach is illustrated on
the left side of Figure 2.2. Because the H different C matrices may extract complementary
information, the context vector constructed by this method is theoretically less redundant
compared to the single-head method described above.

MF: Multi-Filter. In this approach the SSM sublayer produces S context states, which
we set to be independent from W . This is done by convolving the sequence of embeddings
with S different kernels/filters. The output of each convolution operation, corresponding
to a specific filter, is a tensor of shape (B × L × D). After convolving the input with all
the filters, the context states of size D that correspond to the last token from the previous
window are stacked together to make a (B × S ×D) tensor. Feed forward networks are then
used to lift this tensor to different heads, (B × S ×D ×H). Different from the previous two
approaches, the context is formed by taking only the last S context states, from the previous
window, outputted by the S SSMs. The context is less redundant because it no longer
consists of adjacent SSM states. Since the context is taken from the entries of the previ-
ous window, cross-attention masking is no longer required, as shown on the right of Figure 2.2.

The memory states of the Multi-Filter (MF) approach is least redundant, while Multi-
Head (MH) strikes a middle ground, and Single-Head (SH) has the most redundancy. The

50

incorporation of redundancy in these approaches aims to facilitate retrievability of the most
recent context captured by the SSM, albeit at the expense of potentially inefficient utilization
of the network capacity. The last approach attains highest utilization, as the cross-attention
is done in the space of unique features extracted by specialized filters.

2.3.4. Implementation Details

Context IDs & Positional Embedding. To allow distinction between the entries supplied
to the attention mechanism, a positional embedding is commonly added to the inputs. When
using the Multi-Filter (MF) approach, the collected context states correspond to different
features extracted from the sequence, hence we add a set of unique learned “context IDs” to
the context states, before using them as input to cross-attention. However, in the cases where
the context states correspond to different time-steps along the sequence, namely Single-Head
(SH) and Multi-Head (MH) approaches, inherent positional encoding is incorporated into the
context states, due to the incremental nature of convolutions; as such, we find the addition of
context IDs to be unnecessary. We also realize that we do not need to add global positional
bias to the token embeddings, and use a T5-style relative position bias [Raffel et al., 2019]
instead, as the SSM does also encode positional information into the context.

Down-sampling. Consistent with findings in [Mehta et al., 2023], we find FFT operations
to be the main source of bottleneck when training SSMs on TPUs. We project the input
embeddings to a lower-dimensional space, that is a quarter of embedding size in our
experiments, this reduces the required total number of FFTs by a factor of 4. The output of
the SSM, i.e. the context states, are later lifted to the original embedding size before being
passed to the Block Transformer.

Caching. In addition to the current block of token embeddings, the Block Trans-
former layer also process keys and values from the previous window stored in a
differentiable cache. This is implemented similarly to the sliding window attention pattern
suggested in [Hutchins et al., 2022] and was originally introduced by Transformer-XL
[Dai et al., 2019]. Using a causal mask, at every token inference step, we only attend to W
most recent tokens, which partially extend to the cached keys and values from the previous
block. The cache becomes non-differentiable when it is carried from one sequence to the
next. Additionally, we do not use a cache for context states, since to compute the output of
the convolution, we need access to the whole sequence. In [Hutchins et al., 2022] the last
recurrent states of a sequence are stored in a non-differentiable cache and fed to the next
training step on the following sequence in the document as a warm-start. We do not find the

51

improvements we report to be attributable to dependencies captured over longer horizons
than the training sequence length, mainly due to the nature of the target datasets.

2.4. Results
Our results are presented in Table 2.1. We conduct experiments with BST on three

different datasets, PG19, arXiv and GitHub, allowing us to test our method on a suite of
varying documents lengths composed of English texts, latex scientific articles and source
code.

PG19 dataset is from a large collection of full-length books from Project Gutenberg
[Rae et al., 2020]. All extracted 28,602 books were published prior to 1919 and contain
6,966,499 English language words. When tokenized, each PG19 book has between 50k-100k
tokens. PG19 has become a popular benchmark for measuring progress on long-range language
modeling performance. We report the “test” split evaluation performance.

arXiv dataset is a corpus containing scientific and technical articles on the subject of
Mathematics [Wu et al., 2022]. The arXiv dataset contains latex source code as well as
items such as theorems, citations, definitions that are referenced and discussed over long ranges
of text. Using the same vocabulary as in [Wu et al., 2022] and [Hutchins et al., 2022]
for a fair comparison, many special characters are broken up into small subwords. As a result,
the number of tokens per paper in the arXiv dataset is approximately equal to the number of
tokens per book in PG19. We report perplexity on “test” split.

GitHub dataset [Wu et al., 2022] is the largest of the three datasets and was assembled
by extracting GitHub code repositories with open-source licences. Files were filtered to only
contain the following programming languages: C, C++, Java, Python, Go and Typescript.
While code files are relatively small, there are many import dependencies between each file.
By traversing the directory tree and concatenating all code files along the path, a single
document that preserves a repository’s structure and dependencies is created. We report
performance on the “validation” split.

For a fair comparison with the baselines, we keep the vocabularies consistent as used by
[Hutchins et al., 2022] and [Mehta et al., 2023]. Specifically, we used a pretrained T5
vocab with 32k tokens for PG19 [Raffel et al., 2020] and LaMDA vocab with 32k tokens
[Thoppilan et al., 2022] for both arXiv and GitHub datasets. Due to the long training
times and large number of experiments, we only provide error bars for the PG19 ∼200M pa-
rameter models by running our models with three different random seeds. BRecT:fixed:skip
error bars are from [Hutchins et al., 2022].

52

Model
eval seq. window number TPUv4 hours (k) PG19 arXiv GitHub
length length params PG19/arXiv/GitHub

Slide:12L 4096 512 190M 0.5 / 0.5 / 1.8 12.12 2.69 2.28
Trsf-XL:2048 2048 2048 190M 0.8 / 0.8 / 3.0 11.96 2.48 2.01

BRecT:fixed:skip 4096 512 196M 0.8 / 0.8 / 3.0 11.55 ±1.1 2.36 2.04
BST:SH:S4 202M 0.5 / 0.5 / 1.8 11.57 ±1.1 2.51 2.14
BST:MH:S4 218M 0.8 / 0.8 / 1.8 11.60 ±1.1 2.52 2.15
BST:MF:S4 217M 0.5 / 0.5 / 1.8 11.63 ±1.2 2.48 2.07
BST:SH:unstruct 206M 0.5 / 0.5 / 1.8 11.52 ±1.1 2.49 2.09
BST:MF:unstruct 221M 0.5 / 0.5 / 1.8 11.56 ±1.2 2.44 2.03

GSS-Hybrid-L 4096 512 373M 0.8 / 0.8 / 1.8 10.52 2.51 1.88
BST:SH:S4-L 366M 0.8 / 0.8 / 1.8 10.47 2.49 1.86
BST:MF:S4-L 383M 0.8 / 0.8 / 1.8 10.52 2.46 1.84
BST:SH:unstruct-L 371M 0.8 / 0.8 / 1.8 10.37 2.46 1.85
BST:MF:unstruct-L 388M 0.8 / 0.8 / 1.8 10.42 2.41 1.83

Table 2.1. Perplexity of each model. The results for XL:2048, Slide:12L and
BRecT:fixed:skip are from [Hutchins et al., 2022] by converting log2 of perplexity to raw
perplexity. GSS-Hybrid-L performance was taken from [Mehta et al., 2023]. Results with
± are average scores and error bars of runs with three different random seeds. For a smaller
computational budget, BST provides a small perplexity improvement compared to BRecT on
PG19 and GitHub. For the same computational budget, BST outperforms GSS-Hybrid-L
across datasets by 1.5% to 4%.

2.4.1. Comparing our Baselines and Models

We experiment three different types Block-State Transformer (BST) models: BST-SH,
BST-MH and BST-MF as described in Section 2.3.3. Our models do not use global learned
positional embeddings but encode positional awareness with an SSM at the first layer, right
after the word embedding layer. We organize models into two groups: (i) fixed window size
have either a 512 or a 2048 token training window size; and (ii) fixed parameter count have
either a ∼200M or ∼400M total parameters. We run experiments with two types of SSMs:
BST:{SH,MH,MF}:S4: encode long context using a Structured State Space Model (S4)
[Gupta et al., 2022]. As described in Equation (2.3.3), S4 kernel matrix K is compiled
from matrices A, B and C and is independent of the length of the input evaluation sequence
length. We show that the structured parameterization of K allows our BST models to
generalize to longer lengths. We refer the reader to section 2.4.2 for results on length

53

generalization. We only run one BST:MH using S4 since the model requires 8% more
parameters while performing on par with the faster BST:SH variant. BST:MF also has 8%
more parameters but performs better on arXiv and GitHub compared to SH. Interestingly,
SH performs better than MF on the PG19, a dataset where local context is more important
to predict the next token compared to arXiv and GitHub. We posit that this is likely due to
the ability of the SH model to retrieve the most recent context captured by the SSM.

BST:{SH,MF}:unstruct: are based of unstructured parameterized convolution filters, in-
spired by the Hyena Hierarchies [Poli et al., 2023] convolutional kernel. We exclude the
utilization of the multiplicative gating mechanism employed in Hyena Hierarchies and solely
apply the regularizations implemented on the parameterized kernel, denoted as K̄ in Equa-
tion (2.3.4). This formulation has two important advantages over S4: (1) the K̄ kernel
does not need to be recompiled, allowing speedups when using multiple filters; (2) K̄ has
more free parameters because it is no longer restricted by A, B matrices in equation 2.3.3,
potentially providing richer representations that can explain the improved perplexity scores
over S4 variants. Nonetheless, unstruct kernel K̄ relies on learned positional encoding
which makes the method less extendable to larger length sequences at inference..

We compare the Block-State Transformer to four different baselines:
Trsf-XL:2048: [Dai et al., 2019] is a Transformer with a training window size of 2048.
As expected, increasing the window size improves perplexity, especially on the arXiv and
GitHub datasets. However, this model performs worse than BST:SH:Hyena on PG19 and is
much slower, bottlenecked by the attention layer on higher sequence lengths.

Slide:12L: [Hutchins et al., 2022] This model is almost identical to Trsf-XL:2048. It
uses however a sliding window of size 512 over a segment of 4096 tokens. The sliding window
is differentiable over two blocks, while Trsf-XL does not backpropagate through the cached
keys and values from the previous window. This simple baseline is closest in terms of training
speed to BST:SH. The perplexity scores show that integrating a representation of the past,
as with BRecT and BST, positively impacts LM performance.

BRecT:fixed:skip: [Hutchins et al., 2022] is the strongest performing and fastest Block-
Recurrent Transformer architecture in [Hutchins et al., 2022]. This architecture is very
similar to Slide:12L. There is however a sequential recurrent “skip” configuration, a simple
linear layer gating mechanism that combines current block hidden representation with past
information from the previous blocks.

GSS-Hybrid-L: [Mehta et al., 2023] is the closest SSM-Transformer hybrid model that
was tested on long-range language modeling tasks. GSS-Hybrid-L is based on the Diag-
onal State Space (DSS) [Gupta et al., 2022]. DSS and S4 are similar in performance
and architecture, only differing on the initialization of the kernel K [Gu et al., 2022b].

54

[Gupta et al., 2022] further improves on DSS for LM tasks by introducing a Gated State
Space version called GSS, which performs better on PG19, arXiv and GitHub. Unlike
our method, GSS-Hybrid-L does not directly integrate SSMs states into the attention
mechanism but only interleaves 32 GSS layers with Transformer layers. It must be noted
that the GSS-Hybrid-L scores were obtained after grid searching over four learning rates
{6.4,3.2,1.6,0.8}×10−3 and used a different learning rate and weight decay for the SSM layer
and the Transformer layer to avoid training instabilities. In our experiment, we did not
use grid search and used the same learning rate for all layers. BST results demonstrate
that integrating SSM states into the Transformer attention provides larger benefits than
interleaving SSM and attention layers as in GSS-Hybrid-L.

Fixed compute budget. As seen in Table 2.1, we track the exact amount of com-
pute in TPUv4 hours that was spent training each model. The training TPUv4 hours
for Slide:12L, Trsf-XL:2048, BRecT:fixed:skip and GSS-Hybrid-L were taken from
[Mehta et al., 2023]. The TPUv4 hours metric measures the compute cost of training
models. For our experiments, we align our training times with GSS-Hybrid-L for a fair
comparison. Smaller parameter models all have 12 layers, 8 heads of size 128, embedding
vectors of size 1024, an MLP with a hidden layer size of 4096 with ReLU activation functions.
For larger BST models, we double the intermediate layer size from 4096 to 8192 and increase
the number of attention heads to 12.
Training details. We use the same training setup as [Hutchins et al., 2022] and we
perform our experiments using the Meliad library2 in JAX/Flax [Bradbury et al., 2018,
Heek et al., 2023]. We use the Adam optimizer [Kingma and Ba, 2015] and a batch
size of 32 and a sequence length L of 4k for training. Using a structured SSM’s recurrence
(such as S4) in the first layer allows us to extend the positional encoding to various lengths at
inference. Smaller BST models have Block-State layer integrated in Transformer layers {1, 7,
9} and larger BST models at layers {1, 5, 7, 9}. Since our datasets contain long documents, it
is possible to train on larger sequence lengths L. Training on 4k sequence lengths allows us to
test length generalization since the convolution kernel K in Equation (2.3.3) can be extended
to any sequence length L. However, since we show in Section 2.4.2 that our model works well
when extended to unseen lengths, we did not find it necessary to run expensive experiments
with higher sequence lengths. For the MF model variants, we lower the SSM state dimension
D by an additional factor of two to improve FFT efficiency. The state dimension reduction
has negligible impact to perplexity. The MF models have S = 32 filters while the larger MF
models have S = 64 filters.

2https://github.com/google-research/meliad

55

2.4.2. Evaluating Length Generalization capabilities

We present our length generalization analysis and report perplexity in Figure 2.3. Our
models and baselines all have ∼400M parameters, are trained on a sequence length of 4k and
tested on sequences with lower and higher sequence lengths of {512, 16k, 65k}.

We notice that all models have similar perplexity for sequence lengths of 512. Both
BST:SH:S4-L and GSS-Hybrid-L generalize well on 16k and 65k sequence lengths for
PG19 and GitHub. For arXiv, GSS-Hybrid-L and BST:MF:unstruct-L perplexities increase
drastically, potentially due to noise in the arXiv dataset (as indicated by variation in perplexity
metric over time). [Mehta et al., 2023] also reported that larger GSS models had difficulty
generalizing to higher lengths. Interestingly, for arXiv again, BRecT:fixed:skip-L performs
very well at higher sequence lengths. We hypothesize that the Block-Recurrent model’s access
to the entire past during training, via a non-differentiable cache of representations across
sequences, helps retain a “memory” of dependencies between key items in an arXiv article
allowing the model to access past symbols, definitions, theorems or equations beyond the 4k
training sequence length. We also note that BST:MF:unstruct-L and BRecT:fixed:skip-L
outperform other methods on PG19 up to a sequence length of 16K. Perplexity performance
on PG19 is perhaps less reliant on long term relationships between tokens, which can explain
the performance of models that have no explicit built-in mechanisms for length generalization.

The analysis also allows us to draw a clear distinction between structured and unstructured
SSMs integrated in hybrid architectures. As previously mentioned in Section 2.3.1, SSMs such
as DSS and S4 use a structured kernel K, built from learned matrices A, B and C for any
sequence length L in Equation 2.3.3. Since K is extendable to any arbitrary sequence length
L, both BST:SH:S4-L and GSS-Hybrid-L have a build-in mechanism for length generalization
that the unstructured BST:MF:unstruct-L model does not. BST:MF:unstruct-L performs
best on the training sequence of 4K and is on-par for 512 with perplexity increasing for
unseen 16K and 65K sequence lengths. BST:SH:S4-L has by far the best perplexity for
65K sequence lengths on PG19, GitHub and arXiv.

2.4.3. Ablation Studies

In the following section, we perform ablations to investigate (1) the placement of a single
SSM layer in Table 2.2 in the overall architecture, (2) the effects of the number of SSM layers
added in Table 2.3, and (3) the size D of the SSM state in Table 2.4. For the ablations,
we use the ∼200M parameter BST:SH:S4, since it is the fastest model, and assess various
configurations on PG19.

In Table 2.2, we experiment adding a single BST layer at layer indices 3, 6, 9, 12. We
notice that a single BST layer with state size D = 16 located closer to the middle of the

56

Fig. 2.3. Length Generalization for sequence lengths {512, 16k, 65k} on PG19 (left), arXiv
(middle) and GitHub (right). BST:SH:S4-L generalizes better than any other baseli nes, in-
cluding GSS-Hybrid-L that uses GSS, a structured SSM. GSS-Hybrid-L numbers are from
[Mehta et al., 2023].

Table 2.2. A single BST at
various layer index.

Layer index Perplexity

3 12.41
7 11.92
9 11.88
12 12.03

Table 2.3. Multiple BST
layers at various locations.

Num layers Perplexity

2 11.69
3 11.57
4 11.21
5 11.20

Table 2.4. Increasing BST’s
S4 model state size D.

State Size Perplexity Step Time

8 11.95 ×0.7
16 11.57 ×1.0
32 11.55 ×1.8
64 11.54 ×3.2

whole Block Transformer stack, at index = 9, has the greatest effect on perplexity. This
finding is inline with findings in prior work [Wu et al., 2022, Hutchins et al., 2022].

In Table 2.3, we test if adding multiple BST layers yields improvements on performance.
We start with BST layers with state size D = 16 at indices 0, 9. We follow by adding another
BST layer at index 7 for a total of three BST layers and then another at index 5, followed by
another at index 12. Adding more BST layers lowers perplexity. However, the results seem
to plateau at 5 BST layers. We note also that there is a 3.5% training step time increase for
each added layer.

In Table 2.4, we train our models with different state sizes D. For the state size ablation,
we use three BST layers at indices 0, 7, 9. We find that increasing D improves perplexity to
the detriment of training speed (step time). For this reason, we chose D = 16 for Table 2.1
BST results.

57

Fig. 2.4. Scaling properties, BST vs BRecT vs Trsf-XL on PG-19. Red: 12-layer
Block-Recurrent Transformer (Rec:fixed:skip), Yellow: 12-layer Block-State Transformer
(BST:SH:unstruct), and Blue: 13-layer Transformer-XL (Trsf-XL-2048).

2.4.4. Language Modeling at Scale

In this section, we compare how BST scales compared to Transformer-XL with 4× the
window size and BRecT. In Figure 2.4, we see that at lower scales, from 80M to 200M,
BRecT and BST have very similar performances. Beyond 200M, the perplexity performance
percentage gap between BRecT and BST increases from 2.5% at 200M paramaters to 4.0% at
1.3B parameters. The perplexity performance percentage gap between BRecT and Trsf-XL
is even more pronounced as it starts at 7.6% at 200M parameters to 10.6% at 1.3B parameters.

2.4.5. Long Range Arena (LRA)

While the main focus of our research was to demonstrate that hybrid Transformer-SSM
models are efficient and perform well on long context autoregressive LM, we also evaluate
our method on standard classification task where long range dependencies in a sequence are
important to capture. In Table 2.5, we present our results on the Long Range Arena (LRA)
benchmark [Tay et al., 2020b] which incorporates three different modalities including text,
images, and mathematical expressions. The LRA dataset also tests models on various sequence
lengths from 1K to 16K.

2.4.6. Efficiency

The improvement over Block-Recurrent Transformers, with time complexity of O((W 2 +
S2 + 2SW) · L/W) ≈ O(L ·W), follows from the ability to run the Block Transformer’s cells
in parallel. The time complexity of the Block-State Transformer layer is comprised of the

58

Model ListOpts Text Retrieval Image Pathfinder Path-X Avg

Transformer 36.37 64.27 57.46 42.44 71.40 ✗ 53.66
Linear Transformer 16.13 65.90 53.09 42.34 75.30 ✗ 50.46
Reformer 37.27 56.10 53.40 38.07 68.50 ✗ 50.56
Performer 18.01 65.40 53.82 42.77 77.05 ✗ 51.18
BigBird 36.05 64.02 59.29 40.83 74.87 ✗ 54.17

Mega 63.14 90.43 91.25 90.44 96.01 97.98 88.21

S4D 60.47 86.18 89.46 88.19 93.06 91.95 84.89
S4 59.60 86.82 90.90 88.65 94.20 96.35 86.09
S5 62.15 89.32 91.40 88.00 95.33 98.58 87.46

Methods with chunked input sequences
BRecT:fixed:skip 37.29 66.14 58.76 50.41 76.33 75.89 60.80
Mega-chunk 58.76 90.19 90.97 85.80 94.41 93.81 85.66
BST:SH:S4 (ours) 61.49 87.63 90.51 91.07 95.75 95.28 86.96

Table 2.5. Performance on Long Range Arena (LRA). For a fair comparison, we adjust the
number of layers and model dimensions on each task so that BST and BRecT have similar number
of parameters with S4 and Mega-chunk. BRecT results are from our own runs and all other
baselines are from published results.

time complexity of the state space model sublayer, O(D · L logL), in addition to the time
complexity required to execute the Transformer over the given context chunks (blocks) in
parallel, O(W 2).

In spite of the superlinear growth of the SSM sublayer, our experiments indicate that
significant performance improvements, up to a factor of 6, remain evident for sequences as
long as 65k tokens, the point at which hardware saturation began to occur. When using
a structured SSM, the computational complexity is closely tied to the internal memory
state size of the SSM, N – specifics may vary depending on the exact type of the SSM.
We set N = 16 when reporting performance. Left side of Figure 2.5 shows the results of
benchmarking the forward-pass of a Block-State Transformer layer on GPU. Our proposed
layer runs almost 6-11× faster than Block-Recurrent Transformers (including recurrent units),
and yields comparable performance to a Slide:12L layer, i.e. BRecT without the recurrence.
At 4k sequence length, which is mostly used during training, BRecT layer runs almost 15×
slower than Slide:12L with the same window size. We manage to reduce this gap to less
than 2× with BST layer. To reflect a realistic model, for these experiments we use a fixed
window length of 128, an internal state size of 16 for the SSM, and 16 heads. Moreover,
to highlight the performance gains that are only due to parallelization made possible by

59

Fig. 2.5. Left: The forward-pass computation time of a BST layer is compared against a layer of
BRecT and Slide:12L. These experiments were executed on GPU, to demonstrate and exploit
the parallelizability of BST layers. BST:SH is 6-11× faster than BRecT while BST:MH is 3-4×
faster. Right: Perplexity of the trained models using different window lengths. The figure shows
that increasing the training window length results, as expected, in better perplexity scores. We find
however that both BST:MF:Hyena and BRecT:fixed:skip are the least impacted by decreasing
window lengths.

our framework, we use same embedding size as input to the SSM, which is 512. Note that
we use the vanilla implementation of FFT and inverse FFT operations provided by JAX
[Bradbury et al., 2018]. However, we believe that the speed of our method can be further
improved with recent and faster hardware-specific I/O-aware implementations introduced in
other auto-diff frameworks.

2.5. Limitations
While BST’s SSM layer allows the model to unroll and parallelize the recurrence that

models long-term context between blocks of tokens, the SSM variants are reliant on efficient
FFT operations. We have found that the FFT operation is an important speed bottleneck
on TPUs that needs to be resolved to better scale BST to many layers and larger models.
While we are still investigating the reasons, we found that JAX FFT was 4× faster on GPUs.
Further, new SSM variants such as S5 [Smith et al., 2023] bypass FFT operations using
a binary associative operator3. Our implementation is modular enough that we can simply
plug in S5 or use other FFT implementations.

One of our assumptions is that BST’s SSM layer is able to capture the right long-term
dependencies for each block. The SSM recurrence at step T = t provides a summarized
representation of previous steps for T = 0 to T = t. However, a single vector representation
may not be powerful enough to support all important long-term dependencies. Despite the
perplexity improvements on long-range language modeling tasks, this assumption needs to be

3In JAX, this is equivalent to using jax.lax.associative_scan.

60

tested on other long-range classification tasks such as Long Range Arena [Tay et al., 2020b]
as well. It is possible that our model can perform better if we feed to the attention layer
k = W SSM representations that are chosen by a top-k retrieval operation, similar to the one
in Memorizing Transformer [Wu et al., 2022].

2.6. Conclusion
We have introduced a model that combines the attention mechanism of Transformers

with the long-range memory mechanism, and parallelism afforded by State Space Models.
We explored several memory state variants that make different trade-offs between redundancy
and retrievability. Experiments show that our model can minimize perplexity on par with
and often improves upon recent competing baselines, while achieving up to more than 10×
speedups at the layer level, provided there is hardware support to fully take advantage of
parallelism. This is an appealing property for scaling up BST which makes the addition of
SSMs into Transformers computationally appealing. We show that integrating SSM states
into the Transformer attention provides larger benefits than simply interleaving SSM and
attention layers. Finally, we show that the model generalizes to longer sequences than it was
trained.

Acknowledgments
We would like to thank Caglar Gulcehre and Albert Gu for helpful discussions and support

with the S4 codebase. We would also like to express our gratitude to Delesley Hutchins for
providing valuable guidance throughout the project, as well as Xavier Garcia and Courtney
Paquette for their careful review of the manuscript, where they identified and rectified several
errors.

61

References
[Bradbury et al., 2018] Bradbury, J., Frostig, R., Hawkins, P., Johnson, M. J., Leary, C., Maclaurin, D.,
Necula, G., Paszke, A., VanderPlas, J., Wanderman-Milne, S., and Zhang, Q. (2018). JAX: composable
transformations of Python+NumPy programs.

[Brown et al., 2020] Brown, T. B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhariwal, P., Neelakantan,
A., Shyam, P., Sastry, G., Askell, A., Agarwal, S., Herbert-Voss, A., Krueger, G., Henighan, T., Child, R.,
Ramesh, A., Ziegler, D. M., Wu, J., Winter, C., Hesse, C., Chen, M., Sigler, E., Litwin, M., Gray, S., Chess,
B., Clark, J., Berner, C., McCandlish, S., Radford, A., Sutskever, I., and Amodei, D. (2020). Language
models are few-shot learners. CoRR, abs/2005.14165.

[Chihara, 2011] Chihara, T. (2011). An Introduction to Orthogonal Polynomials. Dover Books on Mathematics.
Dover Publications.

[Child et al., 2019] Child, R., Gray, S., Radford, A., and Sutskever, I. (2019). Generating long sequences
with sparse transformers. CoRR, abs/1904.10509.

[Choromanski et al., 2020] Choromanski, K., Likhosherstov, V., Dohan, D., Song, X., Gane, A., Sarlós, T.,
Hawkins, P., Davis, J., Mohiuddin, A., Kaiser, L., Belanger, D., Colwell, L. J., and Weller, A. (2020).
Rethinking attention with performers. CoRR, abs/2009.14794.

[Chowdhery et al., 2022] Chowdhery, A., Narang, S., Devlin, J., Bosma, M., Mishra, G., Roberts, A., Barham,
P., Chung, H. W., Sutton, C., Gehrmann, S., Schuh, P., Shi, K., Tsvyashchenko, S., Maynez, J., Rao, A.,
Barnes, P., Tay, Y., Shazeer, N., Prabhakaran, V., Reif, E., Du, N., Hutchinson, B., Pope, R., Bradbury, J.,
Austin, J., Isard, M., Gur-Ari, G., Yin, P., Duke, T., Levskaya, A., Ghemawat, S., Dev, S., Michalewski,
H., Garcia, X., Misra, V., Robinson, K., Fedus, L., Zhou, D., Ippolito, D., Luan, D., Lim, H., Zoph, B.,
Spiridonov, A., Sepassi, R., Dohan, D., Agrawal, S., Omernick, M., Dai, A. M., Pillai, T. S., Pellat, M.,
Lewkowycz, A., Moreira, E., Child, R., Polozov, O., Lee, K., Zhou, Z., Wang, X., Saeta, B., Diaz, M., Firat,
O., Catasta, M., Wei, J., Meier-Hellstern, K., Eck, D., Dean, J., Petrov, S., and Fiedel, N. (2022). Palm:
Scaling language modeling with pathways.

[Cooley and Tukey, 1965] Cooley, J. and Tukey, J. (1965). An algorithm for the machine calculation of
complex fourier series. Mathematics of Computation, 19(90):297–301.

[Dai et al., 2019] Dai, Z., Yang, Z., Yang, Y., Carbonell, J., Le, Q. V., and Salakhutdinov, R. (2019).
Transformer-xl: Attentive language models beyond a fixed-length context. arXiv preprint arXiv:1901.02860.

[Devlin et al., 2018] Devlin, J., Chang, M., Lee, K., and Toutanova, K. (2018). BERT: pre-training of deep
bidirectional transformers for language understanding. CoRR, abs/1810.04805.

[Fu et al., 2023a] Fu, D. Y., Dao, T., Saab, K. K., Thomas, A. W., Rudra, A., and Ré, C. (2023a). Hungry
hungry hippos: Towards language modeling with state space models.

[Fu et al., 2023b] Fu, D. Y., Epstein, E. L., Nguyen, E., Thomas, A. W., Zhang, M., Dao, T., Rudra, A., and
Ré, C. (2023b). Simple hardware-efficient long convolutions for sequence modeling.

[Gu et al., 2020] Gu, A., Dao, T., Ermon, S., Rudra, A., and Re, C. (2020). Hippo: Recurrent memory with
optimal polynomial projections.

[Gu et al., 2022a] Gu, A., Goel, K., and Ré, C. (2022a). Efficiently modeling long sequences with structured
state spaces.

[Gu et al., 2022b] Gu, A., Gupta, A., Goel, K., and Ré, C. (2022b). On the parameterization and initialization
of diagonal state space models.

62

[Gupta et al., 2022] Gupta, A., Gu, A., and Berant, J. (2022). Diagonal state spaces are as effective as
structured state spaces.

[Heek et al., 2023] Heek, J., Levskaya, A., Oliver, A., Ritter, M., Rondepierre, B., Steiner, A., and van Zee,
M. (2023). Flax: A neural network library and ecosystem for JAX.

[Hochreiter, 1998] Hochreiter, S. (1998). The vanishing gradient problem during learning recurrent neural
nets and problem solutions. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
6(2):107–116.

[Hochreiter and Schmidhuber, 1997] Hochreiter, S. and Schmidhuber, J. (1997). Long short-term memory.
Neural Computation, 9(8):1735–1780.

[Hua et al., 2022] Hua, W., Dai, Z., Liu, H., and Le, Q. (2022). Transformer quality in linear time. In
Chaudhuri, K., Jegelka, S., Song, L., Szepesvari, C., Niu, G., and Sabato, S., editors, Proceedings of the 39th
International Conference on Machine Learning, volume 162 of Proceedings of Machine Learning Research,
pages 9099–9117. PMLR.

[Hutchins et al., 2022] Hutchins, D., Schlag, I., Wu, Y., Dyer, E., and Neyshabur, B. (2022). Block-recurrent
transformers. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho, K., editors, Advances in Neural Information
Processing Systems.

[Katharopoulos et al., 2020] Katharopoulos, A., Vyas, A., Pappas, N., and Fleuret, F. (2020). Transformers
are RNNs: Fast autoregressive transformers with linear attention. In III, H. D. and Singh, A., editors,
Proceedings of the 37th International Conference on Machine Learning, volume 119 of Proceedings of Machine
Learning Research, pages 5156–5165. PMLR.

[Khandelwal et al., 2018] Khandelwal, U., He, H., Qi, P., and Jurafsky, D. (2018). Sharp nearby, fuzzy far
away: How neural language models use context. CoRR, abs/1805.04623.

[Kingma and Ba, 2015] Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In
Bengio, Y. and LeCun, Y., editors, ICLR (Poster).

[Ma et al., 2023] Ma, X., Zhou, C., Kong, X., He, J., Gui, L., Neubig, G., May, J., and Zettlemoyer, L. (2023).
Mega: Moving average equipped gated attention.

[Mehta et al., 2023] Mehta, H., Gupta, A., Cutkosky, A., and Neyshabur, B. (2023). Long range language
modeling via gated state spaces. In The Eleventh International Conference on Learning Representations.

[OpenAI, 2023] OpenAI (2023). Gpt-4 technical report.
[Poli et al., 2023] Poli, M., Massaroli, S., Nguyen, E., Fu, D. Y., Dao, T., Baccus, S., Bengio, Y., Ermon, S.,
and Ré, C. (2023). Hyena hierarchy: Towards larger convolutional language models.

[Rae et al., 2020] Rae, J. W., Potapenko, A., Jayakumar, S. M., Hillier, C., and Lillicrap, T. P. (2020).
Compressive transformers for long-range sequence modelling. In 8th International Conference on Learning
Representations, ICLR 2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net.

[Raffel et al., 2019] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2019). Exploring the limits of transfer learning with a unified text-to-text transformer. CoRR,
abs/1910.10683.

[Raffel et al., 2020] Raffel, C., Shazeer, N., Roberts, A., Lee, K., Narang, S., Matena, M., Zhou, Y., Li, W.,
and Liu, P. J. (2020). Exploring the limits of transfer learning with a unified text-to-text transformer. J.
Mach. Learn. Res., 21:140:1–140:67.

[Smith et al., 2023] Smith, J. T. H., Warrington, A., and Linderman, S. W. (2023). Simplified state space
layers for sequence modeling.

63

[Tay et al., 2020a] Tay, Y., Bahri, D., Yang, L., Metzler, D., and Juan, D.-C. (2020a). Sparse Sinkhorn
attention. In III, H. D. and Singh, A., editors, Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pages 9438–9447. PMLR.

[Tay et al., 2020b] Tay, Y., Dehghani, M., Abnar, S., Shen, Y., Bahri, D., Pham, P., Rao, J., Yang, L., Ruder,
S., and Metzler, D. (2020b). Long range arena: A benchmark for efficient transformers.

[Thoppilan et al., 2022] Thoppilan, R., Freitas, D. D., Hall, J., Shazeer, N., Kulshreshtha, A., Cheng, H.,
Jin, A., Bos, T., Baker, L., Du, Y., Li, Y., Lee, H., Zheng, H. S., Ghafouri, A., Menegali, M., Huang, Y.,
Krikun, M., Lepikhin, D., Qin, J., Chen, D., Xu, Y., Chen, Z., Roberts, A., Bosma, M., Zhou, Y., Chang,
C., Krivokon, I., Rusch, W., Pickett, M., Meier-Hellstern, K. S., Morris, M. R., Doshi, T., Santos, R. D.,
Duke, T., Soraker, J., Zevenbergen, B., Prabhakaran, V., Diaz, M., Hutchinson, B., Olson, K., Molina, A.,
Hoffman-John, E., Lee, J., Aroyo, L., Rajakumar, R., Butryna, A., Lamm, M., Kuzmina, V., Fenton, J.,
Cohen, A., Bernstein, R., Kurzweil, R., Aguera-Arcas, B., Cui, C., Croak, M., Chi, E. H., and Le, Q. (2022).
Lamda: Language models for dialog applications. CoRR, abs/2201.08239.

[Vaswani et al., 2017] Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser,
L. u., and Polosukhin, I. (2017). Attention is all you need. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach,
H., Fergus, R., Vishwanathan, S., and Garnett, R., editors, Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc.

[Wang et al., 2020] Wang, S., Li, B. Z., Khabsa, M., Fang, H., and Ma, H. (2020). Linformer: Self-attention
with linear complexity. CoRR, abs/2006.04768.

[Wu et al., 2022] Wu, Y., Rabe, M. N., Hutchins, D., and Szegedy, C. (2022). Memorizing transformers. In
International Conference on Learning Representations.

[Zaheer et al., 2020] Zaheer, M., Guruganesh, G., Dubey, K. A., Ainslie, J., Alberti, C., Ontanon, S., Pham,
P., Ravula, A., Wang, Q., Yang, L., et al. (2020). Big bird: Transformers for longer sequences. Advances in
Neural Information Processing Systems, 33.

[Zhang et al., 2022] Zhang, S., Roller, S., Goyal, N., Artetxe, M., Chen, M., Chen, S., Dewan, C., Diab, M.,
Li, X., Lin, X. V., Mihaylov, T., Ott, M., Shleifer, S., Shuster, K., Simig, D., Koura, P. S., Sridhar, A.,
Wang, T., and Zettlemoyer, L. (2022). Opt: Open pre-trained transformer language models.

64

Second Article Appendices
More detailed comparisons with existing baselines

This section provides the reader with a more in-depth comparison with similar ar-
chitectures. We cover BRecT [Hutchins et al., 2022] in Section 2.6 and GSS-Hybrid
[Mehta et al., 2023] in Section 2.6.

Comparison with Block Recurrent Transformer (BRecT). The Block Transformer
sublayer (i.e Slide:12L) processes keys and values from the previous window stored in a
differentiable cache. This is implemented similarly to the sliding window attention pattern
suggested in [Hutchins et al., 2022] and was originally introduced by Transformer-XL
[Dai et al., 2019]. Using a causal mask, at every token inference step, the attention
mechanism is applied to blocks of tokens of size W and is partially extended to the cached
keys and values from the previous block with the sliding window. BRecT, as explained in
[Hutchins et al., 2022], uses a non-differentiable cache that is carried from one sequence of
size L to the next4. The last recurrent states of a sequence are stored in a non-differentiable
cache and fed to the next training step on the following sequence in the document as a
warm-start. We do not pass such a representation, since to compute the output of the
convolution, we need access to the whole sequence. We believe that this is one advantage
that BRecT has over our method, especially for very long examples that split into ordered
sequences of length L, since the cache carried from one sequence to the next can provide very
useful long-range information and (weak) access to the whole past. Since we need the whole
sequence to compute SSM states, history beyond L may be lost in the process. We believe
that BST can further be improved by adding non-differentiable sequence cache for very long
documents.

While in other architectures, the history between blocks of tokens is not modeled, both
BST and BRecT use a mechanism to model previous block context. The authors of BRecT
experiment with various sequential gating mechanisms to condense the information from past
blocks. With BST, we use SSM to provide context from previous blocks to the current block
as explained in Section 2.3.2.

Comparison with the Transformer GSS-Hybrid. GSS-Hybrid [Mehta et al., 2023] is a
SSM-Transformer hybrid architecture that we first describe in Section 2.4.1. The architecture
is significantly different from BST. GSS-Hybrid is primarily composed of Gated State Space
(GSS) layers and has a few interleaved Transformer layers at every 4th layer starting with

4In our work and in [Hutchins et al., 2022], a document is split into multiple sequences of size L and
each sequence is split into multiple blocks of size W

65

the 2nd layer. BST on the other hand is mainly composed of Block Transformer layers
and has Block-State Transformer layers at positions {1, 7, 9} for the ∼200M model and
{1, 5, 7, 9} for the ∼400M model. Our hybrid does not stack SSM and Transformer layers
like the GSS-Hybrid but rather replaces the recurrence in BRecT with an SSM such as
S4. In BST, the SSM generates states for each Block Transformer representations and we
then use cross-attention to mix the states and the self-attention outputs. The authors in
[Mehta et al., 2023] initially built GSS, a gated version of DSS [Gupta et al., 2022], to
(1) reduce SSM parameter dimensions, (2) stabilize training of the SSM and (3) allow better
length generalization. However, when experimenting with SSMs such as S4 or DSS, we found
that the gating was not necessary to achieve all three objectives stated above. We decided
that using GSS’s Gated Attention Unit [Hua et al., 2022] was therefore not needed when
integrating SSM states into the attention mechanism. We also reiterate that the authors in
[Mehta et al., 2023] used hyperparameter search to get the best performance while we did
not.

JAX Implementation of BST

Pseudocode 2.1 contains a function that implements convolution of multiple filters over
the same input sequence using FFT and inverse FFT operations. Pseudocodes 2.2, 2.3 and 2.4
respectively implement context state collection of BST variants: Single-Head (SH), Multi-Head
(MH) and Multi-Filter (MF). Finally, Pseudocode 2.5 runs the Block Transformer sublayer in
parallel by feeding the context states to their corresponding block.

""" Unstructured filters and convolutions ."""

import jax

from jax import numpy as jnp

from einops import rearrange

win_ length = 512 # (w)

seq_ length = 4096 # (l)

def get_ filters _ unstruct (channels):

""" Returns trainable filters and biases .

Args:

channels : number of filters .

Returns :

66

h: filter of shape (seq_length , channels , dim)

b: bias of shape (channels , dim)

"""

t = jnp. linspace (0.0 , 1.0, seq_ length)

h = jnp.exp(- alpha * t) * dense(positional _emb(t))

b = get_bias ()

return h, b

def multichannel _ convolution (u, h, b):

""" Multichannel convolution function .

Args:

u: input of shape (seq_length , dim)

h: filters of shape (seq_length , channels , dim)

b: bias of shape (channels , dim)

"""

h = rearrange (h, "l c d -> c d l")

fft_size = seq_ length * 2

u_f = jnp.fft.rfft(x, n=fft_size)

h_f = jnp.fft.rfft(h, n=fft_size)

y = jnp.fft.irfft(h_f * x_f, n=fft_size , norm=" forward ")[

..., :seq_ length] # (c, d, l)

y = y + x * b[... , None] # (c, d, l)

y = rearrange (y, "c d l -> l d c")

return y

Pseudocode 2.1. Unstructured filters and convolutions.

""" Context state collection for BST -SH variant ."""

num_heads = 8 # (h)

num_ states = 32 # (s)

(SH): Single -Head

def SH_ context _ states (u):

""" Single -Head Context Collection ."""

h, b = get_ filters _[unstruct /s4](channels =1)

y_1 = multichannel _ convolution (u, h, b) # y_1: (l, d, 1)

67

lift to multiple heads

y_h = dense(y_1) # y_h: (l, d, h)

context _ states = jnp.split(

y_h, seq_ length // win_length , axis =0)

return context _ states # (l/w, w, d, h)

Pseudocode 2.2. Context state collection for BST-SH variants.

""" Context state collection for BST -MH variant ."""

(MH): Multi -Head

def MH_ context _ states (u):

""" Multi -Head Context Collection ."""

h, b = get_ filters _[unstruct /s4](channels =num_heads)

y_h = multichannel _ convolution (u, h, b) # y_h: (l, d, h)

context _ states = jnp.split(

y_h, seq_ length // win_length , axis =0)

return context _ states # (l/w, w, d, h)

Pseudocode 2.3. Context state collection for BST-MH variants.

""" Context state collection for BST -MF variant ."""

(MF): Multi - Filter

def MF_ context _ states (u):

""" Multi - Filter Context Collection ."""

h, b = get_ filters _[unstruct /s4](channels =num_ states)

y_s = multichannel _ convolution (u, h, b) # y_s: (l, d, s)

context _ states = jnp.split(

y_s, seq_ length // win_length , axis =0)

context _ states : (l/w, w, d, s)

collect the last context states

context _ states = context _ states [:, -1, ...] # (l/w, d, s)

context _ states = rearrange (

context _states , "lw d s -> lw s d")

68

shift context states corresponding to windows

context _ states = jnp.roll(context _states , 1, axis =1)

replace the initial window with trainable weights

init_ context = get_init_ context (num_ states) # (d, s)

context _ states [0] = init_ context

lift to multiple heads

context _ states = dense(context _ states)

return context _ states # (l/w, s, d, h)

Pseudocode 2.4. Context state collection for BST-MF variants.

""" Block -State Transformer Layer."""

Block Transformers are non - recurrent and parallelizable .

block_ transformer = jax.vmap(BRecT. nonrecurrent _cell)

def BST(u):

""" Block -State Transformer Layer."""

global MF # True if Multi -Filter , False otherwise (SH/MH)

split inputs into windows (l/w, w, d)

u = jnp.split(u, seq_ length // win_length , axis =0)

collect context states from SSM outputs

context _ states = [SH/MH/MF]_ context _ states (u)

pass the contexts in place of recurrent states

y = block_ transformer (

token_ embeddings =u,

recurrent _state= context _states ,

use_cross_attn_ causal _mask=not MF ,

use_cross_ positional _emb=MF , # context IDs

)

return rearrange (y, "lw w d -> (lw w) d") # (l, d)

Pseudocode 2.5. Block-State Transformer Layer.

69

Conclusion

This thesis, mainly structured in two articles, tackles the challenge of extending sequence
modeling lengths during both training and inference phases.

In the first article, Course Correcting Koopman Representations [Fathi et al., 2023a],
we explore fully-observable, deterministic dynamical systems where the “hidden” state in
recurrence directly corresponds to the system’s state. We identify the issue of drift in latent
dynamics models and establish the necessity of a reencoding mechanism during inference. To
address this issue, we propose periodic reencoding as a simple yet effective solution. Periodic
reencoding is necessary at inference time, however, training time usage also enhances the
prediction quality. We also show that the findings in the linear case translate to scenarios in
which a wide MLP is used as the latent dynamics component. Through periodic reencoding, we
enable the unrolling of latent dynamics models over indefinitely extended horizons, effectively
circumventing the problem of drift. Although our focus was on Koopman autoencoders, we
highlight their architectural equivalence to single-layer linear recurrent models. These models
can be considered as fundamental components of State-Space Models.

In the second article, Block-State Transformers [Fathi et al., 2023b], we combine State-
Space Models (SSMs) and Transformers. This combination aims to harness the strengths of
both, resulting in a model that surpasses other baselines in tasks involving long-range language
modeling and the Long Range Arena benchmark. BST can be viewed as an evolution of
“Block-Recurrent Transformers” [Hutchins et al., 2022]. In BRT, the interaction between
transformer blocks occurs in a slow, sequential manner through recurrence. A notable
limitation of this approach is the delayed processing of information by subsequent blocks.
BST rectifies this limitation, offering a more efficient information processing methodology
(10× speedup), through contextualizing the sequence via SSMs. We show that SSMs, when
combined with transformers, can be unrolled over horizons much longer than those used
during training. This property, which we term “length generalization capability,” is lacking
in both Block-Recurrent Transformers (BRT) and standalone SSMs.

In summary, this thesis bridges theory and practice in extending sequence modeling lengths,
articulated through two main articles. The first article adopts a theoretical perspective,
focusing on identifying the fundamental issues in latent dynamics sequence models. In contrast,
the second article takes a more practical, hardware-aware approach, concentrating specifically
on large language models. Both articles in this thesis are closely linked to State-Space
Models (SSMs), increasingly recognized for surpassing Transformers in various benchmarks
– including language, progressively challenging their dominance. The contributions of this
thesis underscore the increasing importance of State-Space Models (SSMs), while shedding
light on the core challenges associated with these models. This work not only advances our
understanding of SSMs but also paves the way for further exploration and refinement in the
field.

References
[Fathi et al., 2023a] Fathi, M., Gehring, C., Pilault, J., Kanaa, D., Bacon, P.-L., and Goroshin, R. (2023a).
Course correcting koopman representations.

[Fathi et al., 2023b] Fathi, M., Pilault, J., Firat, O., Pal, C., Bacon, P.-L., and Goroshin, R. (2023b).
Block-state transformers.

72

	Couverture
	Résumé
	Abstract
	Contents
	List of tables
	List of figures
	List of Abbreviations
	Acknowledgements
	Introduction
	Background
	Koopman Theory Overview
	Koopman Autoencoders
	State-Space Models
	Block Transformers

	Motivation
	Thesis Structure
	Contributions
	References

	Chapter 1. First article. Course Correcting Koopman Representations
	1.1. Introduction
	1.2. Deep Koopman Autoencoders
	1.3. Method
	1.3.1. Training Sequence
	1.3.2. Trajectory Generation

	1.4. Results
	1.4.1. Dynamical Systems
	1.4.2. D4RL: State Prediction
	1.4.3. D4RL: Semi-Open-Loop Control

	1.5. Conclusion
	Acknowledgments
	References
	First Article Appendices
	Koopman Theory Overview
	Implementation Details
	State Prediction Tasks
	D4RL: Semi-Open-Loop Control

	Switching Dynamics
	Efficiency
	Additional Results
	Connection to RNNs

	Chapter 2. Second article. Block-State Transformers
	2.1. Introduction
	2.2. Related Work
	2.3. Method
	2.3.1. State Space Preliminaries
	2.3.2. Block-State Transformer (BST) Layer
	2.3.3. Context States
	2.3.4. Implementation Details

	2.4. Results
	2.4.1. Comparing our Baselines and Models
	2.4.2. Evaluating Length Generalization capabilities
	2.4.3. Ablation Studies
	2.4.4. Language Modeling at Scale
	2.4.5. Long Range Arena (LRA)
	2.4.6. Efficiency

	2.5. Limitations
	2.6. Conclusion
	Acknowledgments
	References
	Second Article Appendices
	More detailed comparisons with existing baselines
	Comparison with Block Recurrent Transformer (BRecT)
	Comparison with the Transformer GSS-Hybrid

	JAX Implementation of BST

	Conclusion
	References

