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RÉSUMÉ

Le groupe de difféomorphismes hamiltoniens à support compact d’une va-
riété symplectique admet une distance naturelle bi-invariante, d’après les
travaux de Viterbo, Schwarz, Oh, Frauenfelder et Schlenk, construite à par-
tir des invariants spectraux en homologie de Floer Hamiltonienne. Cette
distance, appelée la norme spectrale, s’est révélée être un outil fort utile en
topologie symplectique. Par contre, son diamètre reste inconnu en général.
En fait, pour les variétés symplectiques fermées, il n’existe même pas de
critère pour déterminer si la norme spectrale a un diamètre fini ou infini.
Il a été conjecturé que, pour les variétés symplectiquement asphériques, le
diamètre de la norme spectrale est infini.

Dans cette thèse, nous démontrons que pour tout domaine de Liouville, la
norme spectrale a un diamètre infini si et seulement si la cohomologie sym-
plectique du domaine de Liouville en question est non nulle. Ceci généralise
un résultat de Monzner-Vichery-Zapolsky et admet plusieurs applications
dans le cadre des variétés symplectiques fermées. En particulier, nous dé-
montrons que le produit de deux variétés symplectiquement asphériques a
un diamètre spectral infini. Plus généralement, nous démontrons que toute
variété symplectiquement asphérique contenant un domaine de Liouville in-
compressible de codimension zéro avec cohomologie symplectique non nulle
doit avoir un diamètre spectral infini.

Mots clés : Topologie symplectique, topologie de contact, domaines de
Liouville, groupe de difféomorphismes hamiltoniens, cohomologie symplec-
tique, norme spectrale, topologie symplectique C0.
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ABSTRACT

The group of compactly supported Hamiltonian diffeomorphisms of a sym-
plectic manifold is endowed with a natural bi-invariant distance, due to
Viterbo, Schwarz, Oh, Frauenfelder and Schlenk, coming from spectral in-
variants in Hamiltonian Floer homology. This distance, called the spectral
norm, has found numerous applications in symplectic topology. However,
its diameter is still unknown in general. In fact, for closed symplectic man-
ifolds there is no unifying criterion for the diameter to be finite or infinite.
It has been conjectured that for closed symplectically aspherical manifolds,
the spectral norm has infinite diameter.

In this thesis, we prove that for any Liouville domain the spectral norm has
infinite diameter if and only if its symplectic cohomology does not vanish.
This generalizes a result of Monzner-Vichery-Zapolsky and has applications
in the setting of closed symplectic manifolds. For instance, we show that the
product of two closed symplectically aspherical manifold has an infinite spec-
tral diameter . More generally, we prove that any symplectically aspherical
manifold which contains an incompressible Liouville domain of codimension
zero with non-vanishing symplectic cohomology must have infinite spectral
diameter.

Key words : Symplectic topology, contact topology, Liouville domains,
group of Hamiltonian diffeomorphisms, symplectic cohomology, spectral
norm, C0 symplectic topology.
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Chapter 1

INTRODUCTION

1.1. Symplectic geometry
Symplectic geometry is concerned with studying manifoldsM equipped with
an area form, i.e. a non-degenerate closed 2-form ωM ∈ Ω2(M). The natural
symmetries, called symplectomorphisms, which one studies on these spaces
are those that preserve the symplectic form ωM . It follows from an elemen-
tary cohomological argument that symplectic manifolds can only be of even
dimension. More surprisingly perhaps, is the fact that symplectic geometry
is inherently a global theory. Indeed, in virtue of Darboux’s theorem, all
symplectic manifolds of a given dimension are locally symplectomorphic.

Examples of symplectic manifolds appear naturally in classical mechanics
[Arn89]. To entirely describe the behaviour of a free particle moving inside
a closed n-manifold Q, one needs to specify an initial state for the particle
and an energy function. A state corresponds to a point (position) q ∈ Q and
a covector p (momentum) in the fibre T∗

qQ ⊂ T∗Q over q. The energy of the
particle, which might depend on time, is given by a function H : R×T∗Q→
R, which we call a Hamiltonian. On T∗Q there exists a canonical symplectic
form ωstd which, in local coordinates, can be written as

ωstd =
n∑
i=1

dpi ∧ dqi.



Globally, ωstd = dλstd where the form λstd, called the Liouville 1-form, can
be locally written as λstd = ∑n

i=1 pidqi. A particular class of symplectomor-
phisms also appears naturally in classical mechanics. According to Hamil-
ton’s equations, the evolution of the free particle through time is given by
the flow ϕtXH : T∗Q → T∗Q of the Hamiltonian vector field XH associated
to H defined by

XHt ⌟ ωstd = −dHt.

Liouville’s theorem then assures us that ϕtXH preserves ωstd. Given a function
H : R × M → M on a general symplectic manifold, such a construction
can be carried out verbatim and the time 1 map of the resulting family of
symplectomorphisms is called a Hamiltonian diffeomorphism. The set of all
such tansformations forms a group which is denoted by Ham(M,ωM).

1.1.1. Contact manifolds

There exists an odd-dimensional analogue of symplectic manifolds which
are called contact manifolds. Such a (2k − 1)-manifold N is, by definition,
endowed with a contact 1-form αN ∈ Ω1(N) defined by the fact that it
is non-degenerate. Namely, its associated volume form αN ∧ (dαN)∧(k−1)

does not vanish. The natural symmetries of contact manifolds are called
contactomorphisms and they preserve, by definition, the contact form.

In the context of classical mechanics addressed above, contact manifolds
arise naturally as energy levels

NE
H = {(q,p) ∈ T∗Q | H(p,q) = E}

of Hamiltonians H : T∗Q → R of the form H(q,p) = 1
2∥p∥

2 + V (q) [HZ94].
Another example is given by the space consisting of states (q,p) = T∗Q with
fixed momentum ∥p∥ = r ∈ R. This space corresponds to the cotangent
sphere bundle S∗

rQ of radius r over Q. These two examples, are special
cases of an important class of co-dimension 1 submanifolds of symplectic
manifolds. An hypersurface S ⊂ M is said to be of contact type if there
exists a vector field Y transverse to S and defined in a neighbourhood of S
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such that LY ω = ω. As the name suggests, contact type surfaces are contact
manifolds with contact 1-form given by αS = Y ⌟ ω.

There is always a way to construct a symplectic manifold from a given
contact manifold N . The manifold Symp(N) = N × (0,∞), when equipped
with the exact 2-form d(etαN), where t is the coordinate on (0,∞), is sym-
plectic. We call (Symp(N), d(etαN)) the symplectization of N . Looking at
the vector field Y = ∂t, we see that any contact manifold can be realized as
a surface of contact type in its symplectization.

1.1.2. Orbits

One of the simplest dynamical question one may ask is if a given system
admits periodic orbits and if so, how many. On a symplectic manifold M ,
and in physics in general, an important class of periodic orbits are those of
Hamiltonian diffeomorphisms of period 1: curves γ : S1 → M that can be
written as γ(t) = ϕtH(x0) for some fixed point x0 ∈M of ϕ1

H and Hamiltonian
H. One of the main conjecture regarding these fixed points was posed by
V.I. Arnol’d in the 60’s:

Conjecture 1.1 • [Arn65]

For a compact symplectic manifold M the time 1 map of a non-
degenerate Hamiltonian diffeomorphism possesses at least as many
fixed points as a Morse function on M .

To this day, Conjecture 1.1 is still open. It was proven to hold for the 2n-
torus by Conley and Zehnder [CZ83] and for surfaces of genus at least 2 and
for certain classes of Kähler manifolds by Floer [Flo86]. A weaker version
of Conjecture 1.1, called the Homological Arnol’d Conjecture, is known to
hold in general:
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Theorem 1.2
Let (M,ω) be a closed symplectic manifold and H a nondegenerate
time periodic Hamiltonian on M . Then,

#
∣∣∣Fix(ϕ1

H)
∣∣∣ ≥ dimM∑

i=0
dimHi(M ;Q).

Some of the first steps made towards a proof Theorem 1.2 were initiated by
Floer in his revolutionary paper [Flo89]. There, he combined the variational
approach of the symplectic action functional developed by Conley-Zehnder
[CZ83] with Gromov’s pseudo holomorphic curves [Gro85] to construct
a chain complex (CF•(H),∂), now called the Floer complex, generated by
Fix(ϕ1

H). The differential ∂ counts pseudo holomorphic cylinders between
the one periodic orbits of ϕ•

H . These cylinders are interpreted as negative
gradient flow lines of the symplectic action functional thus yielding an infi-
nite dimensional Morse-type theory. In particular, Floer showed that for a
C2-small Hamiltonian h, the Floer homology HF•(h) = H•(CF•(H),∂) is iso-
morphic to the Morse homology of h. Using this approach, Floer gave a proof
Theorem 1.2 for closed monotone symplectic manifolds ([ωM ] = λc1(M) for
some λ ∈ R). Theorem 1.2 was then established in full generality by later
work of Fukaya-Ono [FO99a, FO99b], Ruan [Rua99], Liu-Tian [LT98]
and Pardon [Par16]. Floer theory is now a cornerstone of contemporary
symplectic geometry and has far reaching applications in other fields such
as the theory of 3-dimensional manifolds [Man15].

From a physical perspective, one might be interested in the existence of
orbits that sit in a given energy level. Using a symplectic language, we
ask , given a Hamiltonian H, if any regular level set N ⊂ M of contact
type of H contains at least one periodic orbit of ϕ•

H . This question can be
reformulated entirely in terms of the contact structure on N . Indeed, it can
be shown that Hamiltonian orbits on N are determined by N . Only their
parametrization depends on H. In fact, Hamiltonian trajectories correspond
to the Reeb trajectories of αN . By definition, the latter are trajectories of
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the Reeb vector field Rα which is defined by

RαN
⌟ αN = 1, RαN

⌟ dαN = 0

and only depends on αN . Recall that any contact manifold can be realized
as a contact type hypersurface. This leads us to the Weinstein Conjecture.

Conjecture 1.3 • [Wei79]

Any compact contact manifold carries at least one periodic Reeb orbit.

Conjecture 1.3 is still open in general. Many of the settings where it holds
depend on which class of symplectic manifolds M the contact manifold N
can be embedded in as a contact hypersurface. The Weinstein conjecture
was first established for M = R2n by Viterbo [Vit87]. It was then extended
to M = T∗Q by Hofer-Viterbo [HV88] and for products M = P × C,
where P is symplectically aspherical, by Floer-Hofer-Viterbo [FHV90]. In
dimension 3 one does not need to rely on an embedding of N in a symplectic
manifold to prove the conjecture. Taubes [Tau07] proved that any closed
contact 3-manifold admits a Reeb orbit using a variant of Seiberg-Witten
Floer Homology.

1.1.3. Liouville domains

Liouville domains, a special class of symplectic manifolds with boundary,
offer a more general setting than symplectizations where one can study pro-
perties of contact manifolds from the symplectic point of view. They are
characterized by their exact symplectic form ω = dλ and their boundary
of contact type. Liouville domains regroup under a common theoretical
framework many important classes of symplectic manifolds. Examples of
such manifolds include cotangent disk bundles over closed manifolds, com-
plements of Donaldson divisors [Gir17], preimages of some intervals under
exhausting functions of Stein manifolds [CE12], positive regions of convex
hypersurfaces in contact manifolds [Gir91] and total spaces of Lefschetz
fibrations.
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To better control the behaviour of objects defined near the boundary of ∂D,
one considers the extension (D̂, dλ̂) of D̂. To construct this extension, first
glue the cylinder [1,∞)× ∂D to ∂D using the flow of the Liouville vector Y
near ∂D. Then, equip the resulting manifold D̂ with the Liouville 1-form λ̂

which coincides with λ on D and is given by tλ|∂D on the cylindrical part
of D̂.

A key invariant of a Liouville domainD is its symplectic cohomology SH•(D)
which beautifully combines the dynamics of Reeb orbits on ∂D with the
Floer cohomology of D. It was first defined by Cielieback, Floer and Ho-
fer [FH94, CFH95] and later developed by Viterbo [Vit99]. Symplectic
cohomology is built from a class of Hamiltonians H : D̂ → R, called admis-
sible, which are affine in the radial coordinate on the cylindrical part of D̂.
Floer cohomology groups HF•(H) of such Hamiltonians are well defined and
only depend on the slope τH of H on [1,∞) × ∂D. Contrary to the closed
case, we do not have, in general, an isomorphism between the singular co-
homology of D and HF•(H). However, when the slope τF of an admissible
Hamiltonian F is less than the minimal period of a Reeb orbit on ∂D, we
have H•(D) ∼= HF•(F ). Taking an increasing sequence of admissible Hamil-
tonians {Hi}i with corresponding slopes {τi}i satisfying τi → +∞, one can
define the symplectic cohomology SH•(D) of D as

SH•(D) = lim−→
Hi

HF•(Hi).

In [Vit99], Viterbo showed that the symplectic cohomology of D comes
equipped with a map

v• : H•(D) SH•(D).

The failure of v• to be an isomorphism signals the presence of Reeb orbits
on the boundary of D. Thus, SH•(D) is a useful tool to study the Wein-
stein conjecture. Using this strategy, Viterbo [Vit99] proved the Weinstein
conjecture for the boundary of subcritical Stein manifolds.
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One reason to work with symplectic cohomology instead of its homological
counterpart is that SH•(D) inherits a product with unit 1D from the pair
of pants product on the Floer cohomology groups used to define it [Rit13].
The algebraic convenience of this approach will be made clear in section 1.2.

1.1.4. Topology of Ham(M,ωM)

Another central topic in symplectic geometry, which is strongly related to
periodic orbits, is the topology of the group of Hamiltonian diffeomorphisms
Ham(M,ωM). This group admits many different metrics two of which are of
interest here: the Hofer metric and the spectral metric.

The Hofer norm ∥H∥ of a compactly supported Hamiltonian H is defined
as the integral of its oscillation over time :

∥H∥ = E+(H)− E−(H)

E− = −
∫ 1

0
max
p∈M

H(t,p) dt, E+ = −
∫ 1

0
min
p∈M

H(t,p) dt

Following the work of Hofer [Hof90] and Lalonde-McDuff [LM95], a bi-
invariant metric dH on Ham(M,ωM), called the Hofer metric, can be defined
by

dH(ϕ,ψ) = dH(ϕψ−1,id), dH(ϕ,id) = inf{∥H∥ | ϕ = ϕ1
H}.

To illustrate the link between the Hofer geometry of Ham(M,ωM) and perio-
dic orbits of Hamiltonian diffeomorphisms, it is worthwhile to take a look at
the action functional which appears, among other things, in the construction
of Floer homology.

Denote by Fix0(ϕ1
H) the set of fixed point x0 of ϕ1

H for which the associated
1-periodic orbit ϕtH(x0) is contractible. For any x0 ∈ Fix0(ϕ1

H), choose a
2-disk Σ bounded by the image of ϕtH(x0). The symplectic action AH(x0) of
H at x0 is given by

AH(x0) =
∫
Σ
ωM −

∫ 1

0
H(t, ϕtH(x0)) dt.
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Note that when ωM is exact or π2(M) = 0, AH(x0) is independent of the
choice of Σ. We call the image Spec(H) of the symplectic action functio-
nal applied to Fix0(ϕ1

H) the action spectrum. When two Hamiltonians are
equivalent, i.e. there exists an Hamiltonian homotopy {Gs}s∈[0,1] such that
each Gs generates the same Hamiltonian diffeomorphism ϕH = ϕ1

Gs
= ϕK ,

their action spectrum are equal [Oh15, 18.3]. This allows one to define the
action spectrum on the level of Ham(M,ωM) as

Spec(ϕ) = Spec(H) for any H such that ϕ = ϕH .

The action spectrum can be studied from the point of view of Floer theory
using spectral invariants which are functions that associate to any pair
(α,H) ∈ H•(M) × C∞

c (S1 × M) a real number c(α,H), that belongs to
Spec(H)1. These incredibly useful functions were first defined on R2n from
the point of view of generating functions by Viterbo in [Vit92]. They were
then constructed on general closed symplectic manifolds by Oh in [Oh05]
(see also [Ush13]). Following the work of Schwartz [Sch00] on symplec-
tically aspherical manifolds and the work of Frauenfelder-Schlenk [FS07]
on Liouville domains, spectral invariants can be defined in both these set-
tings. To construct c(·, H), first notice that the Hamiltonian action func-
tional AH induces a filtration on Floer cohomology thus allowing us to
work with the filtered Floer cohomology groups HF•

(a,b)(H). Then we de-
fine c(α,H) as the minimal action at which the cohomology class α appears
in HF•(H) := HF•

(−∞,+∞)(H). More precisely,

c(α,H) = inf {c ∈ R | π>c(ΦH(α)) = 0} .

Here, ΦH : H•(M) → HF•(M) is the PSS isomorphism and π>c : HF•(H) →
HF∗

(c,+∞)(H) is the natural map induced by the projection of subcomplexes.
Some of the most basic properties of spectral invariants are the following

◦ Spectrality. c(α,H) ∈ Spec(H)

1at least if the Hamiltonian satisfies certain technical conditions.
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◦ Continuity.

E−(H −K) ≤ c(α,H)− c(α,K) ≤ E+(H −K)

◦ Homotopy invariance. If H and K are equivalent,

c(α,H) = c(α,K).

In particular, homotopy invariance allows us to define spectral invariance on
the level of Ham(M,ωM) as

c(α,ϕ) = c(α,H) for any H such that ϕ = ϕH .

In general, these three properties of spectral invariants can be used to study
the relationship between the topology of Ham(M,ωM) and the action spec-
trum all under the setting of Floer theory. A direct application is a lo-
wer bound for dH proved by Schwarz [Sch00]. By spectrality, we have
min Spec(ϕ) ≤ |c(α,H)| for any H such that ϕ1

H = ϕ. Moreover, continuity
implies that |c(α,H)| ≤ ∥H∥. Picking a sequence of Hamiltonians with Ho-
fer norm converging to dH(ϕ,id) and using homotopy invariance yields the
following result.

Theorem 1.4 • [Sch00]

Let (M,ωM) be a closed symplectic manifold with π2(M) = 0. Then,
for every ϕ ∈ Ham(M,ωM)

min Spec(ϕ) ≤ dH(id, ϕ)

Using Theorem 1.4 Ostrover constructed a path {ϕt}t∈R≥0
⊂ Ham(M,ωM)

with infinite Hofer norm while its graph in (M ×M,−ωM ⊕ ωM) stays at a
fixed Hofer distance ρ(graph(id), graph(ϕt)) (see [Che00]) from the graph
of the identity.
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Theorem 1.5 • [Ost03]

Suppose M is closed and π2(M) = 0. Then there exist a family
{ϕt}t∈R≥0

⊂ Ham(M,ωM) and a constant c such that:
◦ dH(id, ϕt) → +∞ as t→ +∞,
◦ ρ(graph(id), graph(ϕt)) = c for all t ∈ [0,+∞).

The second metric of interest announced at the beginning of this section
section can be constructed from spectral invariants taken with respect to
the unit 1 in H•(M). The spectral norm of ϕ ∈ Ham(M,ωM) is defined
[FS07, Section 7] as

γ(ϕ) = c(1,H) + c(1, H)

where H and H generate ϕ and ϕ−1 respectively. The spectral metric dγ is
then given by

dγ(ϕ,ψ) = γ(ϕ ◦ ψ−1).

A key property, in the spirit of Theorem 1.4, for the spectral norm is the fact
that it bounds the Hofer norm from below. The boundedness (or unboun-
dedness) of these norms have far reaching implications on the topology of
Hamc(M,ωM). For instance Kawamoto [Kaw22b] proved that, on rational
symplectic manifolds (⟨ωM , π2(M)⟩ = c0Z for some constant c0 > 0), when
the values of spectral norms are bounded by a number strictly smaller than
the rationality constant c0, then γ is C0-continuous on Ham(M,ωM). Al-
ternatively, the unboundedness of the spectral norm has applications to the
study of open balls in Ham(M,ωM). It can be used to study the following
question posed by Le Roux:

Question 1.6 • [LR10]

For any A > 0, let

EA(M,ω) := {ϕ ∈ Ham(M,ω) | dH(Id,ϕ) > A}

be the complement of the closed ball of radius A in Hofer’s metric. For
all A > 0, does EA(M,ω) have non-empty C0-interior?
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In the case of closed symplectically aspherical manifolds with infinite spec-
tral diameter, a positive answer to Question 1.6 was given by Buhovsky,
Humilière and Seyfaddini (see also [Kaw22a, Kaw22b] for the positive
and negative monotone cases).

Theorem 1.7 • [BHS21]

Let (M,ω) be a closed, connected and symplectically aspherical mani-
fold. If the spectral norm is unbounded, then EA(M,ω) has non-empty
C0-interior for all A > 0.

In view of these results, it is therefore natural to study the finiteness of the
spectral diameter

diamγ(M) = sup {γ(ϕ) | ϕ ∈ Hamc(M)} .

1.1.5. Finiteness of the spectral diameter

It has been known for some time now [EP03] that for (CP n,ωFS),

diamγ(CP n) ≤
∫
CP 1

ωFS.

The above upper bound was latter optimized by Kislev and Shelukhin in
[KS21, Theorem G] to

diamγ(CP n) = n

n+ 1

∫
CP 1

ωFS.

However, for a surfaces of strictly positive genus, the spectral diameter is
infinite.

Proposition 1.8

Let Σg be a surface of genus g. Then,

g ≥ 1 =⇒ diamγ(Σg) = +∞.

There exists multiple proofs of this property which stem from much more
general results. In particular, Proposition 1.8 is covered by the following
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theorem of Kislev and Shelukhin [KS21, Theorem D] which is a sharpening
of a result of Usher [Ush13, Theorem 1.1].

Theorem 1.9
Let (M,ω) be a closed symplectic manifold that admits an autonomous
Hamiltonian H ∈ C∞(M,R) such that

[U1] all the contractible periodic orbits of XH are constant.
Then diamγ(M) = +∞.

Theorem 1.9 allows one to prove that the spectral diameter is infinite in many
more cases. A list of examples in which condition [U1] holds can be found in
[Ush13, Section 1]. As mentioned above, surfaces of positive genus satisfy
[U1]. Also, if (N,ωN) satisfies [U1] then so does (M ×N,ωM ⊕ωN) for any
other closed symplectic manifold (M,ωM). In [Kaw22b], Kawamoto proves
that the spectral diameter of the quadrics Q2 and Q4 (of real dimension 4
and 8 respectively) and certain stabilizations of them is infinite.

1.2. Main results
Let us now give a brief overview of the main results of this Thesis. They
concern the links that exist between the topology of a Liouville domain,
in particular its symplectic cohomology, and the metric properties of its
group of Hamiltonian diffeomorphisms. Application are found to the spectral
diameter of symplectically aspherical manifolds.

1.2.1. Boundedness of γ on Liouville domains

The main result of this thesis gives a characterization of the finiteness of
diamγ(D) for a Liouville domain (D,dλ) in terms of its symplectic cohomo-
logy.

Theorem A
Let (D,dλ) be a Liouville domain. Then,

diamγ(D) = +∞ ⇐⇒ SH•(D) ̸= 0.
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It was already shown by Benedetti-Kang [BK22], that the spectral diameter
of a Liouville domain is finite whenever its symplectic cohomology vanishes.
All that was missing to prove Theorem A was to show that if SH•(D) ̸= 0
then diamγ(D) = +∞. To prove this we work on the level of the spectral
invariants from which γ is build. In particular, we compute, for a suitable
class of Hamiltonians, spectral invariants that can be made arbitrarily large.

Let us delve a little deeper into the proof of Theorem A to see how the
non-vanishing of SH•(D) comes into play. We first consider, following an
approach of Cieliebak-Frauenfelder-Oancea [CFO10] used to compute filte-
red symplectic cohomology, the family of Hamiltonians Hδ,A, illustrated in
Figure 1, where δ ∈ (0,1) and A > 0 is not a period of a Reeb orbit on ∂D.

A(δ − 1)

δ 1
r0

r

Hδ,A

Fig. 1. The special admissible Hamiltonian Hδ,A used in the proof of Theo-
rem A. The constant r0 > 0 is fixed.

We distinguish 4 types of 1-periodic orbits for Hδ,A:

I. critical points in D̂ \ [δ,∞)× ∂D;

II. non-constant 1-periodic orbits near {δ} × ∂D;

III. non-constant 1-periodic orbits near {1} × ∂D;

IV. critical points in Dr0 \D;

The trajectories of orbits of type II and III correspond to trajectories of
Reeb orbits on ∂D. This classification of orbits is motived by the fact that,
their image under the symplectic action functional, form disjoint intervals.
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Indeed, we can choose δ ∈ (0,1) and ε > 0 small enough so that, in terms of
action, we have the series of inequalities

IV < III < A− ε < I < II.

In the case where SH•(D) ̸= 0, the natural map Ψ : HF•(Hδ,A) → SH•(D),
given to us by the direct limit construction of symplectic cohomology, carries
the unit 1Hδ,A

= ΦH(1) in HF•(Hδ,A) to a unit 1D in SH•(D). We then
construct a map ΨI,II from the cohomology H•(C∗

I,II) of the quotient complex
generated by orbits of type I and II. Such that Diagram (1.2.1) commutes.

HF•(Hδ,A) H•(C∗
I,II)

SH•(D)

[π>A−ε]

Ψ
ΨI,II (1.2.1)

Therefore, since Ψ(1Hδ,A
) = 1D ∈ SH•(D), [π>A−ε](1Hδ,A

) ̸= 0 and the defi-
nition of spectral invariant yields the inequality

c(1, Hδ,A) ≥ A− ε

as desired. Notice that we still need to deal with the term c(1,Hδ,A) in
γ(Hδ,A). This is done by adapting a result of Ganor-Tanny [GT23] to the
setting of Floer cohomology on Liouville domains.

Lemma B
Let H be a compactly supported Hamiltonian on a Liouville domain
(D,dλ). Then,

c(1, H) ≥ 0.

Theorem A thus follows from the computation of c(1,Hδ,A) and the applica-
tion of Lemma B to c(1,Hδ,A).
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1.2.2. An isometric embedding result

From a continuity argument involving the symplectic contraction principle
of Polterovich [Pol14], we can pull Hδ,A towards D. This allows us, when
the symplectic cohomology of D does not vanish, to exactly compute the
spectral invariant of negative compactly supported Hamiltonians which are
constant on the skeleton Sk(D) of D. This special subset can be seen as the
result of pulling ∂D towards the interior of D with the flow of the Liouville
vector field Y .

Lemma C
Suppose (D,λ) is a Liouville domain such that SH•(D) ̸= 0. Let H be
a compactly supported autonomous Hamiltonian on D such that

H
∣∣∣
Sk(D)

= −A and − A ≤ H
∣∣∣
D
≤ 0

for a constant A > 0. Then

c(1,H) = A.

Lemma C allows us to construct an explicit isometric group embedding of
R equipped with the standard Euclidian metric dstd in (Hamc(D),dγ).

Theorem D
Let (D,λ) be a Liouville domain such that SH•(D) ̸= 0. Consider a
compactly supported Hamiltonian H on D such that

H
∣∣∣
Sk(D)

= −1 and − 1 ≤ H
∣∣∣
D
≤ 0

Then, the map ι : (R, dstd) → (Hamc(D),dγ) defined by

ι(s) = ϕ1
sH

is an isometric group embedding.

Notice that Theorem D is a refinement of Theorem A. The proof of the
former can be seen as an extension of the proof of the latter.
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1.2.3. Symplectically aspherical manifolds

We can use Theorem A to compute the spectral diameter of certain sym-
plectically aspherical manifolds. This approach relies on finding a certain
type of embedded Liouville D with SH•(D) ̸= 0 inside a symplectically as-
pherical M . Namely, we need the map π1(D) → π1(M) induced by the
inclusion of D inside M to be injective. These kind of submanifolds are
called incompressible.

Proposition E

Let (M,ω) be a closed symplectically aspherical manifold of dimen-
sion 2n. Suppose there exists an incompressible Liouville domain
D of codimension 0 embedded inside M with SH•(D) ̸= 0. Then,
diamγ(M) = +∞.

The proof of Proposition E is an almost direct application of Theorem A.

The first ingredient is a translation of a result of Ganor-Tanny [GT23] to
cohomology. If M is a symplectically aspherical manifold M which contains
an embedded incompressible Liouville of codimension 0, we can express spec-
tral invariants of compactly supported Hamiltonian in D in terms of spectral
invariants on M as a whole. Namely, we get

cD(β,H) = max
α∈H•(M)
ι•(α)=β

cM(α,H).

For this formula to hold, incompressibility of D is indispensable. The result
still holds even if SH•(D) = 0.

The second ingredient is an implicit definition of spectral invariants taken
with respect to the unit. For every compactly supported Hamiltonian H in
M , c(1,H) can be expressed, using properties of spectral invariants of cup
products in cohomology, as the maximum over all spectral invariants of H
with respect to any cohomology class. Using this computation in conjunction
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with the equality of the previous step, we get

cD(1D,H) = cM(1M ,H).

In particular γD(H) = γM(H).

The third and final ingredient simply consists in using the non-vanishing of
SH•(D) and Theorem A on γD(H).

1.2.4. Products of symplectically aspherical manifolds

In general, not a lot of examples of symplectically aspherical manifolds sa-
tisfying the conditions of Proposition E are known. The simplest example
we can give of such a manifold is the symplectic product (M ′,ω′) =
(M ×M,ωM ⊕−ωM) of a symplectically aspherical manifold M with itself.
By a classical result of Weinstein, the diagonal ∆ ⊂ M ′ admits a tubu-
lar neighbourhood W symplectomorphic to the cotangent unit disk bundle
D∗∆. Thus, W is a codimension 0 Liouville submanifoild of M ′. Also, W is
incompressible inM ′ since ∆ is a deformation retract ofW and the diagonal
itself is incompressible in M ′. From the work of Monzner-Vichery-Zapolsky
[MVZ12], we know that D∗N has infinite spectral diameter for closed N .
Combining this with Proposition E we obtain the following corollary.

Corollary F

Let (M,ω) be a closed symplectically aspherical manifold. Then,

diamγ(Ham(M ×M,ωM ⊕−ωM)) = +∞.

This gives a brand new, and quite general, example of symplectically asphe-
rical manifold with infinite spectral diameter.

1.2.5. Hofer geometry

Using Theorem 1.7 in conjunction with Corollary F, we directly obtain the
following answer to Question 1 of Section 1.1.4 in the specific setting of
Corollary F.
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Corollary G

Let (M,ω) be a closed symplectically aspherical manifold. Then,
EA(M ×M,ω ⊕−ω) has a non-empty C0-interior for all A > 0.

1.3. Organisation of the thesis
In Chapter 2 we recall the definition of Liouville domains. We then discuss
the classes Hamiltonians and almost complex structures, called admissible,
that we will consider on these manifolds. The chapter ends with a no-escape
Lemma which guarantees that the Floer trajectories for admissible pairs
(H,J) do not escape at infinity.

Chapter 3 contains a review of Floer cohomology of admissible Hamiltonians.
We define the τ -extension of time-dependent Hamiltonians C(D) which are
supported inside a Liouville domain D. This allows us to define the Floer co-
homology of any H ∈ C(D) by proving that the resulting cohomology group
is independent of the chosen extension. We define symplectic cohomology
using the class of admissible Hamiltonians defined in the previous chapter.

Chapter 4 has two main objectives. First, we adapt a method of Ritter
[Rit13] to Hamiltonians in C(D) in order to build a filtered product between
the Floer cohomologies of such Hamiltonians. Second, we explain, following
the work of Ritter, how the operations on Floer cohomology induce a unital
ring strcuture on symplectic cohomology.

In Chapter 5 we construct spectral invariants for Hamiltonians compactly
supported in Liouville domains. In particular, we prove the triangle inequa-
lity property using the product from the previous chapter. This allows us
to define the spectral norm.

Chapter 6 contains an adaptation of the Ganor-Tanny barricade construc-
tion [GT23] to the Floer cohomology of certain admissible Hamiltonians on
Liouville domains.

Finally, in Chapter 7 we give complete proofs of the main results.
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Chapter 2

LIOUVILLE DOMAINS

In this chapter we recall the definition of Liouville domains, specify the class
of Hamiltonians we will restrict our attention to and describe how their Floer
trajectories behave at infinity.

2.1. Completion of Liouville domains
A Liouville domain (D,dλ,Y ) is an exact symplectic manifold with boundary
on which the vector field Y , defined by Y ⌟ dλ = λ and called the Liouville
vector field, points outwards along ∂D. Denote by D̂ = D∪ [1,∞)×∂D the
completion of D and (r,x) the coordinates on [1,∞) × ∂D. Here, we glue
∂D and {1}×∂D with respect to the reparametrization ψln r

Y of the Liouville
flow generated by Y . Given δ > 0, let

Dδ = ψln δ
Y (D) = D̂ \ (δ,∞)× ∂D.

We extend the Liouville form λ to D̂ by defining λ̂ : TD̂ → R as

λ̂ |D= λ and λ̂ |D̂\D= rα

where α = λ|∂D. The cylindrical portion [1,∞)× ∂D of D̂ is thus equipped
with the symplectic form ω = d(rα).



ω = dλ

∂D

ω = d(rα)

[1,∞)× ∂D

D

(D̂, ω)

Fig. 1. A Liouville domain with its completion.

The skeleton Sk(D) of (D,dλ,Y ) is defined by

Sk(D) =
⋂

0<r<1
ψln r
Y (D).

Denote by Rα the Reeb vector field on ∂D associated to α, meaning

Rα ⌟ dα = 0, α(R) = 1.

We define Spec(∂D,α) to be the set of periods of closed characteristics, the
periodic orbits generated by Rα, on ∂D and put

T0 = min Spec(∂D,λ).

As a subset of R, Spec(∂D,α) is known to be closed and nowhere dense. For
any A ∈ R, let ηA denote the distance between A and Spec(∂D,λ).

Cotangent disk bundles. A class of Liouville domains which will be of
interest here are unit cotangent disk bundles over closed manifolds. Let
(N,g) be a closed manifold of dimension n equipped with a Riemannian
metric g. The unit cotangent disk bundle D∗N over N is defined as

D∗N =
{
(q,p) ∈ N × T ∗

qN | ∥p∥g < 1
}
⊂ T∗N.
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We endow D∗N with the standard symplectic structure ωstd which it inherits
from T∗N . Notice that ωstd = dλstd for λstd = ∑n

i=1 pidqi Consider the vector
field Y defined by

Y =
n∑
i=1

pi∂pi .

Then, we compute

Y ⌟ ωstd =
n∑
i=1

dpi(Y ) · dqi =
n∑
i=1

pidqi = λstd.

Therefore, Y is a Liouville vector field. This implies, by definition, that
D∗N is a Liouville domain.

2.2. Admissible Hamiltonians and almost com-
plex structures

2.2.1. Periodic orbits and action functional

Given a Hamiltonian H : S1 × D̂ → R, one defines its time-dependent
Hamiltonian vector field X t

H : D̂ → TD̂ by

X t
H ⌟ ω = −dHt

where Ht(p) = H(t,p). We denote by ϕtH : D̂ → D̂ the flow generated by
X t
H . The set of all contractible 1-periodic orbits of ϕtH is denoted by P(H).

An orbit x ∈ P(H) is said to be non-degenerate if

det
(
id− dx(0)ϕ

1
H

)
̸= 0

and transversally non-degenerate if the eigenspace associated to the eigen-
value 1 of the map dx(0)ϕ1 is of dimension 1.

Let LD̂ be the space of contractible loops in D̂. For a Hamiltonian H :
S1 × D̂ → R , the Hamiltonian action functional AH : LD̂ → R associated
to H is defined as

AH(x) =
∫ 1

0
x∗λ̂−

∫ 1

0
Ht(x(t)) dt.
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It is well known that the elements of P(H) correspond to the critical points
of AH , see [AD14, section 6]. The image of P(H) under the Hamilto-
nian action functional is called the action spectrum of H and is denoted by
Spec(H). For an open set U ⊂ D̂ we define

PU(H) = {x ∈ P(H) | im x ⊂ U} .

2.2.2. Admissible Hamiltonians

The completion of a Liouville domain is obviously non-compact. We thus
need to control the behavior at infinity of Hamiltonians we use in order for
them to have finitely many 1-periodic contractible orbits.

Definition 2.1 • Admissible Hamiltonians
Let r0 > 1. A Hamiltonian H is r0-admissible if ∃ρ0 ∈ (0,r0) such that

◦ H(t,x,r) = h(r) on D̂ \Dρ0 ,
◦ h(r) = τHr + ηH on (r0,+∞) for τH ∈ (0,∞) \ Spec(∂D, α),
◦ H is regular: every element of PDρ(H) is non-degenerate and
every element of PD̂\Dρ(H) is transversally non-degenerate.

We denote the set of such Hamiltonians Hr0 . The function h is called
the profile function of H. We will also consider the set H0

r0 ⊂ Hr0 of
r0-admissible Hamiltonians which are negative on D. In some cases,
it is not necessary to specify r0 as long as it is greater than 1. For
that purpose, we define

H =
⋃
r0>1

Hr0 , H0 =
⋃
r0>1

H0
r0 .

Remark 2.2: Suppose H ∈ H. If x ∈ PD̂\Dρ0 (H) is non constant,
then it is necessarily transversally non-degenerate. Indeed, since H is
time-independent there by definition, for any c ∈ R, x(t− c) is also a
1-periodic orbit of H.
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h(r)

1 r0

ρ0
r

Fig. 2. the profile function h of an r0-admissible Hamiltonian H.

Lemma 2.3
If H ∈ H, then |PDρ0 (H)| is finite and PD̂\Dρ0 (H) consists of a finite
number S1 families of periodic orbits.

Proof. Since Dρ0 is compact and elements of PDρ0 (H) are non-degenerate,
there is a finite number of 1-periodic orbits of H inside it.

Next, we look at the elements of PD̂\Dρ0 (H). On D̂ \ Dρ0 , we know that
H = h(r) and ω = dλ̂. Therefore, on D̂ \Dρ0

XH ⌟ ω = XH ⌟ (dr ∧ α + rdα)

= dr(XH)α− α(XH)dr + rXH ⌟ dα

and dH = h′(r)dr. Hamilton’s equation thus yields

dr(XH) = 0 = XH ⌟ dα, α(XH) = h′(r).

The three equations above imply the following two facts,

◦ on D̂ \Dρ0 , XH = h′(r)Rα;

◦ if x ∈ P(H) is such that x∩ D̂ \Dρ0 ̸= ∅, then im x ⊂ {r}× ∂D for
some r > ρ0.

We conclude that a 1-periodic orbit x of H which lies inside {r} × ∂D

corresponds to a Reeb orbit of period h′(r). Notice that since τH /∈ (0, +
∞)∩ Spec(∂D,α), PD̂\Dρ0 (H) = PDr0\Dρ0 (H). Therefore, since Dr0 \Dρ0 is
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compact and every element of PDr0\Dρ0 (H) is transversally non-degenerate
by definition, PDr0\Dρ0 (H) is finite. □

Remark 2.4: The fact that admissible Hamiltonians are radial on the
cylindrical part of D̂ allows us to express the action of the 1-periodic
orbits inside D̂ \D in terms of that radial function. To see this, we fix
H ∈ H and compute the action of a non constant orbit x ∈ P(H) ∩
(D̂ \D) which we suppose lies inside {r} × ∂D for r > 1:

AH(x) =
∫ 1

0
x∗λ̂−

∫ 1

0
H ◦ x dt

=
∫ 1

0
rα(XH)dt−

∫ 1

0
h(r)dt = rh′(r)− h(r).

The function AH(r) = rh′(r)−h(r) on the right hand side of the above
equation has a nice geometric interpretation. Looking at the graph of
h , we notice that AH(r′) corresponds to minus the y-coordinate of the
intersection of the tangent at the point (r′,h(r′)) and the y-axis.

−AH(r′)

AH(r′)

h(r)

r
r′

Fig. 3. Action value of a periodic orbit contained in {r′} × ∂D.

2.2.3. Monotone homotopies

We will need to also restrict the types of Hamiltonian homotopies we consider
to the following class.

38



Definition 2.5
Let Hs = {Hs}s∈R be a smooth homotopy from H+ ∈ Hr0 to H− ∈ Hr′0

We say thatHs is amonotone homotopy if the following conditions hold

◦ ∃S > 0 such that Hs′ = H− for s′ < −S and Hs′ = H+ for
s′ > S,

◦ Hs = hs(r) on D̂ \Dρ for ρ = max {ρ0,ρ′0},
◦ for R = max{r0,r′0}, hs(r) = τsr + ηs on (R, +∞) for smooth
functions τs, ηs of s,

◦ ∂sHs(t,p) ≤ 0 for (t,p,s) ∈ S1 × D̂ × R

For H+ ∈ Hr0 and H− ∈ Hr′0
such that H+ ≤ H− pointwise everywhere on

D̂, we can explicitly construct a monotone homotopy in the following way.
Fix a positive constant S > 0. Let b : R → [0,1] be a smooth function
such that b(s) = 0 for s ≤ −S, b(s) = 1 for s ≥ S and b′(s) > 0 for all
s ∈ (−S,S). Define

Hs = H− + b(s)(H+ −H−).

Notice that, since b′(s) ≥ 0 and H+ ≤ H−, we have

∂sHs = b′(s)(H+ −H−) ≤ 0

For R = max {r0,r′0} we have, on D̂ \DR,

Hs(t,r,p) = (b(s)(τ+ − τ−) + τ−)r + b(s)(η+ − η−) + η− = hs(r)

as desired and
∂s∂rhs(r) = b′(s)(τ+ − τ−) ≤ 0. (2.2.1)

This inequality will be needed for the maximum principle of Section 2.3.2.

2.2.4. Admissible almost complex structures

Let J be an almost complex structure on D̂. Recall that J is ω-compatible
if the map gJ : TM ⊗ TM → R defined by

gJ(v,w) = ω(v,Jw)
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is a Riemannian metric. To control the behavior of ω-compatible almost
complex structures at infinity, we make the following definition.

Definition 2.6

Let J be an ω-compatible almost complex structure on D̂. We say
that J is admissible if J1 = J |D̂\D is of contact type. Namely, we ask
that

J∗
1 λ̂ = dr.

We denote the set of such almost complex structures by J . A pair
(H,J) where H ∈ Hr0 and J ∈ J is called an r0-admissible pair.

2.3. Floer trajectories and maximum principle.
In this subsection, we recall some analytical aspects of Floer theory on Liou-
ville domains. Issues regarding transversality will be dealt with in the next
section.

2.3.1. Floer trajectories

Consider a Hamiltonian H : S1 × D̂ → R and two 1-periodic orbits x± ∈
P(H). Let J be an ω-compatible almost complex structure on D̂. A Floer
trajectory between x− and x+ is a solution u : R × S1 → D̂ to the Floer
equation

∂su+ J(∂tu−XH) = 0

that converges uniformly in t to x− and x+ as s→ ±∞:

lim
s→±∞

u(s,t) = x±(t).

We denote the moduli space of such trajectories M′(x−,x+;H). We may
reparametrize a solution u ∈ M′(x−,x+;H) in the R-coordinate by adding a
constant. Thus, Floer trajectories occur in R-families. The space of unpara-
metrized solutions is denoted by M(x−,x+;H) = M′(x−,x+;H)/R. When
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the context is clear, we will drop H from the notation and simply write
M(x−,x+).

If we replace H with a monotone homotopy H• = {Hs}s∈R, we can instead
consider solutions u : R× S1 → D̂ to the s-dependent Floer equation

∂su+ J(∂tu−XHs) = 0 (2.3.1)

that converge uniformly in t to x± ∈ P(H±) as s→ ±∞. The moduli space
of such trajectories is denoted by M(x−,x+;H•). Unlike the s-independent
case, M(x−,x+;H•) does not admit a free R-action by which we can quo-
tient.

2.3.2. Maximum principle

To define Floer cohomology of D̂, we need to control the behavior of the
Floer trajectories. In particular, we have to make sure they do not escape to
infinity. Admissible Hamiltonians and admissible complex structures allow
us to achieve that requirement. The first result in that direction is the
maximum principle for Floer trajectories. In what follows we say that v is
a local Floer solution of (H,J) in D̂ \D if

v = u
∣∣∣
u−1(imu∩D̂\D)

: u−1(im u ∩ D̂ \D) D̂ \D

for some u ∈ M(x−,x+;H).

Lemma 2.7 • Generalized maximum principle [Vit99]

Let (H,J) be an r0-admissible pair on D̂. Suppose v is a local Floer
solution of (H,J) in D̂ \ Dr0 . Then, the r-coordinate r ◦ v of v does
not admit an interior maximum unless r ◦ v is constant.
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Remark 2.8: The generalized maximum principle still holds if we re-
place H ∈ H by a monotone homotopy Hs between H+ ∈ Hr0 and
H− ∈ Hr′0

and if v is a local solution of the s-dependent Floer equa-
tion

∂sv + J(∂tv −XHs) = 0

inside D̂ \Dr0 . Here it is crucial that ∂s∂rhs(r) ≤ 0 for large enough
r. This always holds for monotone homotopies (see Equation (2.2.1)).

From the maximum principle above, we immediately obtain the following
corollary which guarantees that Floer trajectories do not escape to infinity.

Corollary 2.9 • No escape

Let (H,J) be an r0-admissible pair on D̂ and let x± ∈ P(H). If
u ∈ M(x−,x+), then

im u ⊂ DR, for R = max{r ◦ x−,r ◦ x+,r0}.

If Hs is a monotone homotopy between H− ∈ Hr0 and H+ ∈ Hr′0
and

u is a solution to the s-dependent Floer equation between x− ∈ P(H−)
and x+ ∈ P(H+), then

im u ⊂ DR, for R = max{r ◦ x−,r ◦ x+,r0,r′0}.

2.3.3. Energy

An important quantity which is associated to a Floer trajectory is its energy.
It is defined as

E(u) = 1
2

∫
R×S1

(
|∂su|2J + |∂tu−XH |2J

)
ds ∧ dt

where | · |J is the norm corresponding to gJ . Using the Floer equation, we
can write

|∂tu−XH |2J = ω(J∂su,− ∂su) = ω(∂su,J∂su) = |∂su|2J .
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Thus, the energy can be written more compactly as

E(u) =
∫
R×S1

|∂su|2J ds ∧ dt.

It is often useful to estimate the difference in Hamiltonian action on the
ends of a Floer trajectory in terms of the energy of that trajectory. This can
be achieved using the maximum principle and Stokes Theorem.

Lemma 2.10 • Energy estimate for Floer trajectories

Let (H,J) be an r0-admissible pair and let u ∈ M′(x−,x+;H) for
x± ∈ P(H). Then,

0 ≤ E(u) = AH(x+)−AH(x−).

If Hs is a monotone homotopy between H+ ∈ Hr0 and H− ∈ Hr′0
that

is constant in the s-coordinate for s > |S| then

0 ≤ E(u) ≤ AH+(x+)−AH−(x−) + sup
s∈[−S,S],
t∈S1,p∈Dδ

∂sHs(t,p)

where δ = max{r ◦ x−,r ◦ x+,r0,r′0}.
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Chapter 3

FLOER COHOMOLOGY

We present in this subsection a brief overview of Floer cohomology for com-
pletions of Liouville domains and their symplectic cohomology. For more
details we refer the reader to [CFH95], [CFHW96], [Vit99], [Web06],
[CFO10] and [Rit13].

3.1. Filtered Floer Cohomology
3.1.1. The Floer cochain complex

Let (H,J) be an admissible pair. As mentioned in Remark 2.2, the 1-periodic
orbits ofH on D̂\Dρ0 come in a finite number of S1-families which we denote
by x̂i. To break each x̂i in a finite number of isolated periodic orbits, we
first choose an open neighborhoods Ui of each x̂i such that Ui ∩ Uj = ∅ for
i ̸= j. Then, we define on each x̂i a Morse function fi having exactly two
critical points : one of index 0 and another of index 1. We extend each fi to
its corresponding Ui. When added to H, these perturbations, which can be
chosen as small as we want, break each of the S1-families into two critical
points. In virtue of the action formula derived in Remark 2.4, the actions of
the new critical points are as close as we want to the action of their original
S1-family. We denote by H1 the Hamiltonian resulting from this procedure.
By abuse of notation we will write P(H) for the set of 1-periodic orbits of
H1.



We define the Floer cochain group of H as the Z2-vector space 1

CF•(H) =
⊕

x∈P(H)
Z2 ⟨x⟩ .

As the notation above suggests, CF•(H) is in fact a graded Z2-vector space.
Assuming that the first Chern class c1(ω) ∈ H2(D̂;Z) of (TD̂,J) vanishes on
π2(D̂), the Conley-Zehnder index CZ(x) ∈ Z of a 1-periodic orbit x ∈ P(H)
is well defined [SZ92]. We can therefore equip CF•(H) with the degree

|x| = dim D̂

2 − CZ(x)

and define

CFk(H) =
⊕

x∈P(H)
|x|=k

Z2 ⟨x⟩ .

Here, CZ is normalized such that for a C2-small time-independent admissible
Hamiltonian F ,

CZ(x) = dim D̂

2 − ind(x)

where ind(x) corresponds to the Morse index of x ∈ Crit(F ) = P(F ). In
particular, if x is a local minimum of F , then |x| = 0. This convention
therefore ensures that the cohomological unit has degree zero.

For a generic perturbation of J , the spaceM(x−,x+;H) is a smooth manifold
of dimension

dimM(x−,x+;H) = CZ(x+)− CZ(x−)− 1.

In the case where |x−| = |x+|+1, Corollary 2.9 and Lemma 2.10 allow us to
use the standard compactness arguments, as in [AD14, Chapter 8] to show
that M(x−,x+;H) is a compact manifold of dimension 0. Knowing that, we

1We use Z2 coefficients here for simplicity but the cohomological construction that follows
can be carried out with any coefficient ring.
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define the co-boundary operator ∂ : CFk(H) → CFk+1(H) by

∂x+ =
∑

|x−|=k+1
#2M(x−,x+;H)x−

where #2M(x−,x+;H) is the count modulo 2 of components in
M(x−,x+,H).

x−

∂

s

x+

Fig. 1. The differential in Floer cohomology goes from right to left.

Using once again Corollary Corollary 2.9, ∂ ◦ ∂ = 0 holds by standard
arguments which appear in [AD14, Chapter 9]. The pair (CF•(H),∂) is
thus a graded cochain complex that we call the Floer cochain complex of
H.

3.1.2. Filtered Floer cochain complex

The Hamiltonian action functional induces a filtration on the Floer cochain
complex. For a ∈ (R ∪ {±∞}) \ Spec(H), we define

CFk<a(H) =
⊕

x∈P(H)
|x|=k, AH(x)<a

Z2 ⟨x⟩ .

By definition, we have CF•(H) = CF•
<+∞(H). Lemma 2.10 ensures that

∂ decreases the action. Thus, the restriction ∂<a : CFk<a(H) → CFk+1
<a (H)

of the co-boundary operator is well defined and (CF•
<a(H),∂<a) is a sub-

complex of (CF•(H),∂). Now, for a,b ∈ (R ∪ {±∞}) \ Spec(H) such that
a < b, we can define the Floer cochain complex in the action window (a,b)
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as the quotient

CF•
(a,b)(H) = CF•

<b(H)
CF•

<a(H) ,

on which we denote the projection of the co-boundary operator by

∂(a,b) : CFk(a,b)(H) CFk+1
(a,b)(H).

Therefore, for a,b,c ∈ (R ∪ {±∞}) \ Spec(H) such that a < b < c, we have
an inclusion and a projection

ιb,ca : CF•
(a,b)(H) CF•

(a,c)(H), πca,b : CF•
(a,c)(H) CF•

(b,c)(H)

that produce the short exact sequence

0 CF•
(a,b)(H) CF•

(a,c)(H) CF•
(b,c)(H) 0.ιb,ca

πc
a,b

For simplicity, we define ι<c = ι+∞,c
−∞ and π>b = π+∞

−∞,b.

3.1.3. Filtered Floer cohomology

Let a,b ∈ (R∪{±∞})\Spec(H) such that a < b. The above filtered cochain
complexes allow us to define the Floer cohomology group of H in the action
window (a,b) as

HF•
(a,b)(H) =

ker ∂(a,b)
im ∂(a,b)

.

The full Floer cohomology group of H is defined as HF•(H) =
HF•

(−∞,+∞)(H). For a,b,c ∈ (R∪ {±∞}) \ Spec(H) such that a < b < c, the
short exact sequence on the cochain level induces a long exact sequence in
cohomology:

HF•
(a,c)(H)

HF•
(a,b)(H) HF•

(b,c)(H)

[πc
a,b

][ιb,ca ]

[+1]

(3.1.1)
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For C2-small admissible Hamiltonians on D with small slope at infinity, the
Floer cohomology recovers the standard cohomology of D.

Lemma 3.1 • [Rit13, Section 15.2]

Let H ∈ H be C2-small on D with τH < T0 for T0 = min Spec(∂D,λ).
Then, we have an isomorphism

ΦH : H•(D) HF•(H)

Proof. Since H is C2-small on D, all the element of P(H) which sit in
D are critical points. The condition τH < T0 assures us that H does not
admit any 1-periodic orbits outside D. Multiplying H by a small enough
constant and perturbing J so that H is Morse-Smale for the metric gJ , every
Floer trajectory for (H,J) can be made t-independent. Floer’s equation then
becomes

∂su = JXH = −∇H

and thus, the Floer differential for (H,J) counts negative gJ -gradient trajec-
tories between critical points of H. From the grading convention introduced
in Section 3.1.1, the index of x ∈ P(H) is equal to its Morse index. We thus
obtain an identification between H•(D) and HF•(H). □

3.1.4. Continuation maps

Let K ∈ Hr0 and F ∈ Hr′0
such that F ≤ K. Consider a monotone homo-

topy H• from F to K. Then from Corollary 2.9 and Lemma 2.10 in the case
of homotopies, we can apply the techniques shown in [AD14, Chapter 11] to
show that, for x− ∈ P(K) and x+ ∈ P(F ) with |x−| = |x+|, M(x−,x+;H•)
is a smooth compact manifold of dimension zero. The continuation map
ΦH• : CFk(F ) → CFk(K) induced by Hs on the cochain level is defined as

ΦH•(x+) =
∑

|x−|=k
#2M(x−,x+;H•)x−
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where #2M(x−,x+;H•) counts modulo 2 the number of components in
M(x−,x+;H•). The map

[ΦH• ] : HF•(F ) HF•(K)

is independent of the chosen monotone homotopy and we can denote it by
[ΦK,F ]. Consider the monotone homotopy

Hs = K + b(s)(F −K)

described in Section 2.2.3. We note that ∂sHs ≤ 0 since F ≤ K and b′ ≥ 0.
Thus the action estimate given by Lemma 2.10 for homotopies yields

AK(x−) ≤ AH(x+) + sup
s∈[−S,S],
t∈S1,p∈DR

∂sHs(t,p) ≤ AH(x+)

for x− ∈ P(K) and x+ ∈ P(F ). Therefore, the continuation map decreases
the action and hence induces maps

[ΦK,F
(a,b)] : HF

•
(a,b)(F ) HF•

(a,b)(K)

that commute with the inclusion and restriction maps as follows [Rit13,
Section 8]:

HF∗
(a,b)(F ) HF∗

(a,c)(F ) HF∗
(b,c)(F )

HF∗
(a,b)(K) HF∗

(a,c)(K) HF∗
(b,c)(K)

[ιb,ca ]

[ΦK,F
(a,b)]

[πc
a,b

]

[ΦK,F
(a,c)] [ΦK,F

(b,c)]

[+1]

[ιb,ca ] [πc
a,b

]

[+1]

(3.1.2)
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Suppose we are given another Hamiltonian H ≥ K, then we have the com-
mutative diagram

HF∗
(a,b)(F ) HF∗

(a,b)(K) HF∗
(a,b)(H)

[ΦK,F
(a,b)]

[ΦH,F
a,b

]

[ΦH,K
(a,b)]

As opposed to the closed case, for completion of Liouville domains, conti-
nuation maps do not necessarily yield isomorphisms. One case in which they
do is when both Hamiltonians have the same slope.

Lemma 3.2 • [Rit09, Section 2.12]

Let F,K ∈ H and suppose τF and τK are both contained in an open
interval that does not intersect Spec(∂D,α). Then, if τF ≤ τK

[ΦK,F ] : HF•(F ) HF•(K)

is an isomorphism.

In action windows, we have the following isomorphisms.

Lemma 3.3 • [Vit99, Proposition 1.1]

Let H• be a monotone homotopy between H± ∈ H that is constant
in the s-coordinate for |s| > S > 0. Suppose as,bs : R → R are
functions which are constant outside [−S,S] and as,bs /∈ Spec(Hs) for
all s. Then,

[ΦH−,H+ ] : HF•
(a+,b+)(H+) HF•

(a−,b−)(H−)
∼=

for a± = lims→±∞ as and b± = lims→±∞ bs.

3.1.5. Compactly supported Hamiltonians

We can define the Floer cohomology of compactly supported Hamiltonians
on Liouville domains by first extending to affine functions on the cylindri-
cal portion of D̂. This will allow us to define, in Chapter 5, the spectral
invariants and spectral norm of such Hamiltonians.
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For 0 < ε < 1 and r0 ≥ 1, define the Hamiltonian Kε,r0,τ as follows

◦ Kε,r0,τ is the constant zero function on Dr0 ,

◦ Kε,r0,τ = kε,r0,τ (r) on D̂ \Dr0−ε,

◦ kε,r0,τ (r) is convex for r ∈ [r0 − ε,r0] with k(ℓ)ε,r0,τ (1) = 0 for all ℓ ≥ 0,
k′ε,r0,τ (1 + ε) = τ and k(ℓ)ε,r0,τ (1 + ε) = 0 for all ℓ > 1,

◦ kε,r0,τ (r) = τ(r − (r0 − ε/2)) for r ∈ [r0,+∞).

This allows us to define the τ -extension.

Definition 3.4 • Extension of a compactly supported Hamiltonian

Denote by C(D) the set of Hamiltonians with support in S1×(D\∂D).
Let H ∈ C(D) . Choose ε small enough so that the support of H is
contained inside S1 ×Dr0−ε. We define the τ -extension Hτ ∈ H1 of H
as

Hτ = H +Kε,r0,τ

We perturb Hτ so that it is r0-admissible. The Floer cohomology of
H is defined as

HF•
(a,b)(H) = HF•

(a,b)(Hτ )

where 0 < τ < T0.

H +Kε,r0,τ

1 r0 − ε r0 − ε
2 r0

r

Fig. 2. The τ -extension of a compactly supported Hamiltonian.
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The following Lemma assures us that the filtered Floer cohomology groups
of a compactly supported Hamiltonian does not depend on the chosen τ -
extension. This guarantees that HF•

(a,b)(H) from Definition 3.4 is well defi-
ned.

Lemma 3.5 • Independence of extension

Let H ∈ C(D) be a compactly supported Hamiltonian. Consider two
extensions Hτ1 and Hτ2 of H. Then,

HF•
(a,b)(Hτ1) ∼= HF•

(a,b)(Hτ2)

Proof. The profile function of two extensions Hτ1 and Hτ2 of H might
intersect at some point. However, we can always find a third extension Hτ

with τ < τ1, τ2 such that
Hτ ≤ Hτ1 , Hτ2 .

Thus, there exists monotone homotopies F 1
• from Hτ to Hτ1 and F 2

• from
Hτ to Hτ2 . Note that, by definition of the extension, τ,τ1,τ2 < T0. Moreover,
the action windows stay fixed and their limits do not cross the spectrum of
any of the Hamiltonians under consideration. Lemma 3.3 then implies that
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we have two isomorphisms

HF•
(a,b)(Hτ1) HF•

(a,b)(Hτ ) HF•
(a,b)(Hτ2).[ΦHτ1 ,Hτ ] [ΦHτ2 ,Hτ ]

Taking [ΦHτ1 ,Hτ ]−1 ◦ [ΦHτ2 ,Hτ ] gives us the desired isomorphism. □

3.1.6. Time reparametrization of Hamiltonians

Let G be a compactly supported Hamiltonian and Gτ a τ -extensions of G.
The following procedure is adapted from [Pol14, Section 1.4], [MVZ12,
Remark 2.5] and [Oh15, Section 21.4]. It allows one to replace any com-
pactly supported Hamiltonian on D with one that vanishes for t close to 0
and 1.

Definition 3.6 • Smoothing of Hamiltonians

Let σ : [0,1] [0,1] be a smooth function with σ′(t) ≥ 0 such that
σ(s) = 0 for s near 0 and σ(s) = 1 for s near 1. The σ-smoothing of
G ∈ C(D) is defined as

G̃(t,p) = σ′(t)G(σ(t),p).

The τ -extension of the smoothed Hamiltonian G̃ is denoted by G̃τ .

Remark 3.7: It is important to note here that the smoothing is always
applied to G before the τ -extension. Otherwise, we would end up with
an Hamiltonian which depends on t at infinity and is therefore not
admissible.

Since the slope of the τ -extension is less than the minimal Reeb period T0,
G̃τ only admits 1-periodic orbits inside D. A direct computation shows that,
inside D, the Hamiltonian flow of G̃τ is given by

ϕt
G̃
= ϕ

σ(t)
G

which just corresponds to the σ time reparametrization of the Hamiltonian
flow of G. In particular, G and G̃ both have the same time-1 map. Thus,
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since σ is monotone increasing, there is a bijection between the 1-periodic
orbits PD(G̃τ ) of G̃τ inside D and the 1-periodic orbits P(G) of G given by

PD(G) PD(G̃τ )

x x ◦ σ

This bijection preserves the action. Indeed, from the change of variable
t σ(t) we have, for x ∈ P(G),

A
G̃τ (x ◦ σ) =

∫ 1

0
(x ◦ σ)∗λ−

∫ 1

0
G̃τ (t,x ◦ σ) dt

=
∫ 1

0
(x ◦ σ(t))∗λ−

∫ 1

0
σ′(t)G(σ(t),x ◦ σ(t)) dt

=
∫ 1

0
x∗λ−

∫ 1

0
G(t,x(t)) dt = AG(x). (3.1.3)

From now on, we consider that every compactly supported Hamiltonian is
smoothed. This assumption is useful to compute action estimates for the
pair of pants product of Section 4.2.3.

Another reason why the smoothed assumption is useful concerns the compo-
sition of Hamiltonian flows. Given two smoothed H,K ∈ C(D), the conca-
tenation H#K : [0,1]×D R of H and K is defined by

H#K(t,p) =

2H(2t, p) for t ∈ [0,1/2],
2K(2t− 1, p) for t ∈ [1/2,1].

(3.1.4)

The inverse of a smoothed Hamiltonian is defined by

H(t,p) = −H(t− 1,p). (3.1.5)

The Hamiltonian isotopy generated by the inverse Hamiltonian H(t,p) is
given by

ϕt
H
= ϕ1−t

H ◦ (ϕ1
H)−1.

As the notation suggest H#H is equivalent to the zero function on D in the
sense that there exists an Homotopy F• from 0 to H#H so that ϕ1

Fs
= idD

for all s. In particular, H#H generates the identity on D as its time-1 map.
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3.2. Filtered Symplectic cohomology
Equip the set of admissible Hamiltonians H0 negative on D with the partial
order

H ⪯ K ⇐⇒ H(t,p) ≤ K(t,p) ∀(t,p) ∈ S1 × D̂.

Let {Hi}i∈I ⊂ H0 be a cofinal sequence with respect to ⪯. We define the
symplectic cohomology of D as the direct limit

SH•
(a,b)(D) = lim−→

Hi

HF•
(a,b)(Hi)

taken with respect to the continuation maps

[ΦHj ,Hi

(a,b) ] : HF•
(a,b)(Hi) HF•

(a,b)(Hj)

for i < j. We denote SH•(D) = SH•
(−∞,+∞)(D). The long exact sequence on

Floer cohomology carries through the direct limit and we also have a long
exact sequence on symplectic cohomology

SH∗
(a,c)(D)

SH∗
(a,b)(D) SH∗

(b,c)(D)

[ιb,ca,a][ιb,ca ]

[+1]

3.2.1. The Viterbo map

Let F ∈ H and consider H ∈ H0 with τH = τF . Then, by Lemma 3.2,
we have HF•(F ) ∼= HF•(H) and there exist, by definition of symplectic
cohomology, a map

jF : HF•(F ) ∼= HF•(H) SH•(D) (3.2.1)

sending each element of HF•(H) to its equivalence class. Now, for H ∈ H0

with slope τH < T0 we can define, by Lemma 3.1, the map v• : H•(D) →
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SH•(D) first introduced in [Vit99] by

H•(D) HF•(H) SH•(D)ΦH

v•

jH
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Chapter 4

OPERATIONS ON FLOER COHOMO-
LOGY

The Floer cohomology of an admissible Hamiltonian H is equipped with a
product structure

[ΨH
P ] : HF•(H)⊗ HF•(H) HF•(2H)

called the pair of pants product, hence the P in the notation. On the chain
level, this product is computed by counting punctured spheres with two
positive ends assymptotic to two periodic orbits in P(H) and a negative end
assymptotic to a periodic orbit in P(2H). Composing with continuation
maps, which corresponds to gluing continuation cylinders to the ends of the
pair of pants, we can extend [ΨP] to a product

[Ψ(H,K)
P ] : HF•(H)⊗ HF•(K) HF•(H#K)

for pairs (K,F ) of compactly supported Hamiltonians. An action estimate
for the periodic orbits in the output in terms of the action for the periodic
orbits in the input will allow us to restrict the product [ΨF,K

P ] on action
windows. This product is compatible with the cup product on singular
cohomology. This can be viewed through the scope of Morse theory.



4.1. Operations for one Hamiltonian
The methods used to construct the product ΨH

P arise from a more general
framework developed by Schwarz in the mid 90’s for closed symplectically
aspherical manifolds (M,ω). Indeed, in [Sch95], Schwarz constructs a func-
tor Z which associates to any surface Σg

p,q of genus g with p negative ends
and q positive ends an operation on Floer cohomology.

We give a brief overview of the construction of Z. Negative and positive
ends correspond to connected components Z−

k and Z+
ℓ of the complement

of a compact subset of Σg
p,q which are parameterized by (−∞,0) × S1 and

(0,+∞)× S1 respectively. On Σg
p,q a complex structure j is chosen so that,

on the ends, it agrees with the standard complex structure on R × S1. To
each negative end Z−

k , associate a Z−
k ×M dependent regular pair (H−

k , J
−
k )

which is independent of s for large enough s and such that H−
k vanishes for

small enough s. To each positive end Z+
ℓ , associate a regular pair (H+

ℓ , J
+
ℓ )

with the same properties. On Σg
p,q × M fix an almost complex structure

J that agrees with the ones chosen on the ends. Then, given 1-periodic
contractible orbits x−k ∈ P(H−

k ) and x+ℓ ∈ P(H+
ℓ ), one considers the space

of maps u : Σg
p,q → M which are J-holomorphic away from the ends and

restrict, on the ends, to maps u±i : Z±
i →M satisfying the Floer equation

∂su
±
i + J±

i (s,t,u±i )(∂tu±i −XH±
i
(s,t,u±i )) = 0

and the asymptotics
lim

s→±∞
u±i (s) = x±i .

Schwarz showed that these spaces of solutions are compact smooth manifolds
and that counting the number of components of the zero dimensional ones
yields an operation in Floer cohomology

Z(Σp,q
g ) :

q⊗
ℓ=1

HF•(H+
ℓ )

p⊗
k=1

HF•(H−
k ).
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This operation is independent of the choices we made for J , j, the cylindrical
coordinates and the order in which we labelled the ends.

In his influential survey [Sei08, Section 8a], Seidel proposed an extension
of the construction of Schwarz to symplectic cohomology. The product was
explored further by McLean in [McL09, Section 10]. The full details of that
extension were latter carried by Ritter in [Rit13]. We now delve into that
more recent work highlighting the main differences and similarities with the
case of closed manifolds along the way.

4.1.1. The setting

Start with a single admissible pair (H,J) where H is autonomous and C2

small on D. The goal here is to associate to any surface Σg
p,q an operation

[ΨH
p,q,g] between the Floer cohomologies of multiples of H

[ΨH
p,q,g] :

q⊗
ℓ=1

HF•(BℓH)
p⊗

k=1
HF•(AkH).

and not arbitrary admissible Hamiltonians akin to the product Z(Σg
p,q) des-

cribed above. Here is all the data we need to define [ΨH
p,q,g] in addition to

the pair (H,J).

◦ Let (Σg
p,q, j) be a surface of genus g with q positive ends (inputs) and p

negative ends (outputs). Denote by U−
k cylindrical neighbourhoods

of the negative ends and by U+
ℓ cylindrical neighbourhoods of the

positive ends. We choose these neighbourhoods so that they do not
intersect pairwise. Fix parametrizations

(−∞,0)× S1 U−
k , U+

ℓ (0,+∞)× S1ϕ−
k

ϕ+
ℓ

Chose the complex structure j so that, near the punctures j∂s = ∂t.

◦ Fix a set of weights {A1, . . . ,Ap, B1, . . . , Bq} with Ak, Bℓ > 0 so that
p∑

k=1
Ak ≥

q∑
ℓ=1

Bℓ. (4.1.1)
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◦ Fix a 1-form β ∈ Ω1(Σg
p,q) such that dβ ≤ 0 and it’s restrictions to

the negative and positive ends are respectively given by

(ϕ−
k )∗β = Akdt, (ϕ+

ℓ )∗β = Bℓdt. (4.1.2)

for large enough s.

The triple (Σg
p,q,β,j) is called a model surface. We consider disjoint unions

of model surfaces to be model surfaces themselves. Depending on the form
β we choose, we need to make assumptions on the sign of H (see Section
4.1.4). The assumptions are as follows:

◦ If dβ ≤ 0, we impose H ≥ 0.

◦ If dβ = 0, there are no further restrictions on H.

The form β, which always exists by Lemma 4.1, is needed here because a
global form dt does not exist on Σg

p,q for p,q > 1. We will use β to interpolate
between the Floer equations for the Hamiltonians AkH and BℓH at the ends.
Integrating the differential of β, which is negative, on Σg

p,q using Stokes’
Theorem yields
∫

Σg
p,q

dβ =
q∑
ℓ=1

 ∫
{+∞}×S1

(ϕ+
ℓ )∗β

−
p∑

k=1

 ∫
{−∞}×S1

(ϕ−
k )∗β

 =
q∑
ℓ=1

Bℓ −
p∑

k=1
Ak.

Since dβ ≤ 0, this motivates condition (4.1.1) imposed on the weights. In
particular, it forces Σg

p,q to have at least one negative end (p > 0).

Lemma 4.1 • Existence of β [Rit13]

Let C = ∑p
k=1Ak − ∑q

ℓ=1Bℓ. There exists a 1-form β ∈ Ω1(Σg
p,q)

satisfying Equation 4.1.2 such that
◦ if C = 0, dβ = 0,
◦ if C > 0, dβ ≤ 0.

Proof. To make the proof readable, let Σ = Σg
p,q. First, we relate the De

Rham cohomology of Σ with the one for its boundary. We have the exact
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Fig. 1. The surface Σg
p,q with its negative and positive ends parameterized

by (−∞,0) × S1 and (0, +∞) × S1 respectively. Near each end, the value
of β is written.

sequence in cohomology

H1(Σ) H1(∂Σ) H2(Σ, ∂Σ) 0.f g

The map f corresponds to the pullback by the inclusion of ∂Σ in Σ: f [λ] =
[λ|∂Σ]. To construct g, take a representative of a class [η] ∈ H1(∂Σ), extend
it to a 1-form η̃ on Σ and consider the class of its differential which sits
naturally in H2(Σ,∂Σ): g[η] = [dη̃]. Recall that H2(Σ, ∂Σ) is identified with
R under integration:

H2(Σ, ∂Σ) R

[ν]
∫
S

ν
(4.1.3)

We construct β in the case where ∑p
k=1Ak =

∑q
ℓ=1Bℓ. Let [η] ∈ H1(∂Σ) be

such that, on the negative ends(
ϕ−
k |{−∞}×S1

)∗
η = Akdt
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and on the positive ends (
ϕ+
ℓ |{+∞}×S1

)∗
η = Bℓdt.

It follows from the identification H2(Σ, ∂Σ) ∼= R and from Stokes’ Theorem
that

g[η] =
∫
Σ
dη̃ =

q∑
ℓ=1

(∫
{+∞}×S1

(ϕ+
ℓ )∗η

)
−

p∑
k=1

(∫
{−∞}×S1

(ϕ−
k )∗η

)

=
q∑
ℓ=1

(∫
S1
Bℓdt

)
−

p∑
k=1

( ∫
S1
Akdt

)
= 0.

By exactness of the sequence 4.1.3, there exists a closed β ∈ Ω1(P ) such
that [β|∂S] = [η]. By construction of η, β has the desired behaviour on the
positive and negative ends of Σ modulo an exact 1-form supported near the
ends.

Now we construct β in the case where ∑p
k=1Ak ≥

∑q
ℓ=1Bℓ. Define

C =
p∑

k=1
Ak −

q∑
ℓ=1

Bℓ.

From our hypothesis on the weights, C > 0. Consider the surface Σ+ ob-
tained from Σ by adding one additional positive end labelled q + 1 with
weight C. Applying the previous method, we can build an exact 1-form
β+ ∈ Ω1(Σ+) with

(ϕ−
k )∗β+ = Akdt, (ϕ+

ℓ )∗β+ = Bℓdt, (ϕ+
q+1)∗β+ = Cdt
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for large enough s. Extend β+ to a one form β on Σ by progressively
changing the value of β+ on the q + 1-th positive end to 0:

(ϕ+
q+1)∗β = h(s)(ϕ+

q+1)∗β+ = h(s)Cdt.

Then, dβ = 0 except on ϕ+
q+1((1,2)× S1) where h′(s) ̸= 0. There,

(ϕ+
q+1)∗dβ = h′(s)ds ∧ dt ≤ 0.

This completes the construction of β. □

4.1.2. The moduli spaces

Fix p+q contractible 1-periodic orbits xk ∈ P(AkH), yℓ ∈ P(BℓH) for all k ∈
{1, . . . ,p} and ℓ ∈ {1, . . . ,p}. Consider the moduli pace M(xk, yℓ; Σg

p,q, β) of
curves u : Σg

p,q → D̂ satisfying the β-purturbed Floer’s equation

(du−XH ⊗ β)0,1 = 0 (4.1.4)

and which converge uniformely in t on the positive ends to inputs yℓ and on
the negative ends to outputs xℓ:

lim
s→+∞

u ◦ ϕ+
ℓ (s,t) = yℓ(t), lim

s→−∞
u ◦ ϕ−

k (s,t) = xk(t). (4.1.5)
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Fig. 2. The image of an element u ∈ M(x,y1,y2; Σ0
1,2, β) in D̂. We indicate

the image of both positive ends with + and the image of the negative end
with −.

When working with multiple Hamiltonians, we will indicate for which one
the moduli space is built by writing M(xk, yℓ; Σg

p,q, β,H).

It is shown in [Rit13, Appendix A] that, after taking small generic Σg
p,q-

dependent perturbation of J , M(xk, yℓ; Σg
p,q, β) is a smooth manifold of di-

mension

dimM(xk, yℓ; Σg
p,q, β) =

p∑
k=1

|xk| −
q∑
ℓ=1

|yℓ|+ 2n(1− g − p).

To show that M(xk, yℓ; Σg
p,q, β) admits a compactification, one can use the

same methods employed in [Sch95] (see [Rit13, Appendix A]). The boun-
dary of such a compactification consists of curves that break at only one end
to a new 1-periodic orbit z for the Hamiltonian on that end. See Figure 3.
As in the closed case, we need to show an a priori upper bound on the energy
of any u ∈ M(xk, yℓ; Σg

p,q, β). This bound should depend on the action of
the orbits at the ends of u. Moreover, since we are working on a Liouville
domain and hence not a closed symplectic manifold, another technical de-
tail needs to be addressed. The image of any curve u must stay within a
compact set inside D̂. We show that these two conditions hold in Section
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Fig. 3. Two curves in the boundary of the compactification of
M(xk, yℓ; Σ1

2,2, β). The curve on the left is given by v−2 #u ∈
M(y2, z−2 ;A2H) × M(y1,z−2 ,x1,x2; Σ1

2,2,β) and the one on the right by
u′#v+1 ∈ M(y1,y2,z+1 ,x2; Σ1

2,2,β)×M(z+1 , x1;B1H)

4.1.4. Note that, since ω = dλ is exact, no bubbling can occur. Therefore,
both conditions enumerated above are sufficient to prove compactification.

4.1.3. Defining the operations

Restricting ourselves to p+q tuples of orbits {x1, . . . ,xp,y1, . . . ,yq} satisfying
p∑

k=1
|xk| =

q∑
ℓ=1

|yℓ| − 2n(1− g − p),

M(xk,yℓ; Σg
p,q, β) will be of dimension 0 and, since it is compact, will consist

of a finite number of points. Counting these points modulo 2 yields an
operation on the chain level

ΨH
p,q,g :

( q⊗
ℓ=1

CF(BℓH)
)d ( p⊗

k=1
CF(AkH)

)d−2n(1−g−p)

yℓ
∑

|xk|=d−2n(1−g−p)
#2M(xk, yℓ; Σg

p,q, β)xk

(4.1.6)
and extend it linearly. Here, yℓ and xk denote elementary tensors y1⊗· · ·⊗yq
and x1⊗· · ·⊗xp respectively. The degree |·| of an elementary tensor is given
by the sum of the degrees of its elements.

For ΨH
p,q,g to descend on cohomology, it needs to be a chain map. Let us

see what differentials we are wroking with here. Denote by ∂+ℓ the Floer
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differential on CF•(BℓH) and by ∂−k the differential on CF•(AkH). The
tensor products( p⊗

k=1
CF(AkH)

)d
=

⊕
d=d1+···+dp

( p⊗
k=1

CFdk(AkH)
)

( q⊗
ℓ=1

CF(BℓH)
)d

=
⊕

d=d1+···+dp

( q⊗
ℓ=1

CFdℓ(BℓH)
)

are respectively equipped with the differentials ∂− and ∂+ defined by

∂+(yℓ) = ∂+1 y1 ⊗ y2 ⊗ · · · ⊗ yq

+ (−1)|y1| y1 ⊗ ∂+2 y2 ⊗ y3 ⊗ · · · ⊗ yq + · · ·

· · ·+ (−1)|y1|+···+|yq−1| y1 ⊗ · · · ⊗ yq−1 ⊗ ∂+q yq

∂−(xk) = ∂−1 x1 ⊗ x2 ⊗ · · · ⊗ xp

+ (−1)|x1| x1 ⊗ ∂−2 x2 ⊗ x3 ⊗ · · · ⊗ xp + · · ·

· · ·+ (−1)|x1|+···+|xp−1| x1 ⊗ · · · ⊗ xp−1 ⊗ ∂−p yp.

The sign corrections, derived from the Koszul sign convention, are needed
to ensure ∂+ ◦ ∂+ = 0 = ∂− ◦ ∂−. With respect to these differentials, ΨH

Σg
p,q

is a chain map, i.e. the following diagram commutes( p⊗
k=1

CF(AkH)
)d−2n(1−g−p)+1 ( q⊗

ℓ=1
CF(BℓH)

)d+1

( p⊗
k=1

CF(AkH)
)d−2n(1−g−p) ( q⊗

ℓ=1
CF(BℓH)

)d

ΨH
p,q,g

∂−

ΨH
p,q,g

∂+
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Since all chain complexes here are over Z2, a field, the Künneth formula
yields the isomorphisms

Hd

( p⊗
k=1

CF(AkH)
)
∼=

⊕
d=d1+···+dp

( p⊗
k=1

HFdk(AkH)
)
,

Hd

( q⊗
ℓ=1

CF(BℓH)
)
∼=

⊕
d=d1+···+dq

( q⊗
ℓ=1

HFdℓ(BℓH)
)
.

Using these equivalences and the fact that ΨH
Σg

p,q
=: ΨH

p,q,g is a chain map,
the latter descends to cohomology:

[ΨH
p,q,g] :

q⊗
ℓ=1

HFdℓ(BℓH)
( p⊗
k=1

HF(AkH)
)∑

ℓ
dℓ−2n(1−g−p)

Moreover, [ΨH
p,q,g] does not depend on the choice of data (β, j, J) relative to

ends.

4.1.4. Energy estimate and No-escape Lemma

As mentioned in Section 4.1, to ensure compactness of the moduli spaces
M(xk,yℓ; Σg

p,q), we need to make sure that, just as in the closed case, the
energy1

E(u) = 1
2

∫
Σ

∥du−XH ⊗ β∥2 volΣ

of curves u in these spaces of solutions have bounded energy. Another key
technical detail which is particular to the case of Liouville domains is that
such curves can’t escape to infinity.

The fact that any curve u ∈ M(xk,yℓ; Σg
p,q) stays within a compact subset of

D̂ is ensured by the integrated maximum principle of Abouzaid and Seidel
in [AS10, Section 7]. Note that, when β is exact, we can achieve a better
bound on the size of the compact set in which u is contained.

1Also called geometric energy.
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Lemma 4.2 • Integrated maximum principle

Suppose the images of the orbits xk and yℓ all lie inside Dδ for some
ρ0 < δ < r0. Let u ∈ M(xk,yℓ; Σ, β).

◦ If dβ = 0, then
im u ⊂ Dδ.

◦ If dβ ≤ 0, suppose H ≥ 0. Then,

im u ⊂ Dr0 .

The a priori energy estimate on u also gives us an action estimate. That
estimate relates the action of the orbits in the output of u to the action of
the orbits in the input.

Lemma 4.3 • Energy estimates for operations

Let u ∈ M(xk, yℓ; Σ, β).
◦ If dβ = 0, then

E(u) =
q∑
ℓ=1

ABℓH(yℓ)−
p∑

k=1
AAkH(xk).

◦ If dβ ≤ 0, suppose H ≥ 0. Then,

E(u) ≤
q∑
ℓ=1

ABℓH(yℓ)−
p∑

k=1
AAkH(xk).

In both cases, since E(u) ≥ 0, we have the action estimate
p∑

k=1
AAkH(xk) ≤

q∑
ℓ=1

ABℓH(yℓ).

Before proving Lemma 4.2 and Lemma 4.3, we need some preliminary com-
putations.

Suppose H is an r0-admissible Hamiltonian. We denote by ρ0 > 0 the
radius at which H become radial (see Definition 2.1). Let Σ = Σg

p,q. For
local holomorphic coordinates s+it on (Σ,j), the volume form can be written
as volΣ = ds∧dt. In these coordinates, any one 1-form ζ on TΣ with values
in u∗TD̂ can be written as ζ = ζsds+ ζtdt where ζs = ζ(∂s) and ζt = ζ(∂t).
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We then define
∥ζ∥2 = |ζs|2J + |ζt|2J

for |·|J the norm corresponding to the Riemannian metric gJ (see Sec-
tion 2.3.3).

It is useful to rewrite the energy so that H appears explicitly in the case
where u is a Floer solution in M(xk,yℓ; Σ, β). Consider the u∗TD̂-valued
1-form on TΣ given by ζ = du − XH ⊗ β. Locally, du = ∂su ds + ∂tu dt,
β = βs ds+ βt dt and

ζ = (∂su−XH(u)βs)ds+ (∂tu−XH(u)βt)dt = ζs ds+ ζt dt. (4.1.7)

From Floer’s equation (4.1.4), 0 = ζ0,1 = 1
2(ζ + J ◦ ζ ◦ j) which implies

ζ ◦ j = J ◦ ζ. Locally, since j∂s = ∂t, the previous equality can be written
as ζt = Jζs. Therefore,

∥ζ∥2 = ω(ζs, Jζs) + ω(ζt, Jζt) = ω(ζs, ζt)− ω(ζt, ζs) = 2ω(ζs, ζt). (4.1.8)

Combining Equations (4.1.7) and (4.1.8), we can write the 2-form appearing
in the definition of the energy as

1
2∥ζ∥

2 volΣ = ω(ζs, ζt) ds ∧ dt

= (ω(∂su, ∂tu) + βtω(XH , ∂su)− βsω(XH , ∂tu)) ds ∧ dt

= ω(∂su, ∂tu) ds ∧ dt+ (βsdH(∂tu)− βtdH(∂su)) ds ∧ dt

= u∗ω − u∗(dH) ∧ β.

where the third equality is a consequence of Hamilton’s equation. This
allows us to make the following definitions.

Definition 4.4 • The geometric and topological energy

Let u : (Σ, β, j) → D̂. The geometric energy of u is given by

E(u) =
∫
Σ
(u∗ω − u∗dH ∧ β). (4.1.9)
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The topological energy of u is defined as

Etop(u) =
∫
Σ
(u∗ω − d(u∗H · β)) = E(u)−

∫
Σ
u∗H · dβ. (4.1.10)

We denote by

KH(u) = E(u)− Etop(u) =
∫
Σ
u∗H · dβ

the H-curvature of u.

The topological energy only depends on the ends of Σ and is therefore an
homotopy invariant, hence the name. In fact, if u ∈ M(xk,yℓ; Σ,β), the
topological energy only depends on the action of the orbits to which u is
asymptotic to. Indeed, since ω = dλ, Stokes’s theorem guarantees that

Etop(u) =
∫
∂Σ
(u∗λ− u∗H · β) (4.1.11)

=
∫
S1

( q∑
ℓ=1

y∗ℓλ−
p∑

k=1
x∗kλ

)
−
∫
S1

( q∑
ℓ=1

BℓH ◦ yℓ −
p∑

k=1
AkH ◦ xk

)
dt

=
q∑
ℓ=1

ABℓH(yℓ)−
p∑

k=1
AAkH(xk). (4.1.12)

Therefore, if we want to have a chance to compute energy estimates for
curves in M(xk,yℓ; Σ, β), we need to control the curvature term KH . It’s
here that the two sets of conditions on dβ and H introduced in Section 4.1.1
become important. Let us see what can be done in both case.

(dβ = 0) : The H-curvature KH(u) vanishes and we have

0 ≤ E(u) = Etop(u). (4.1.13)

(dβ ≤ 0 and H ≥ 0) : Here, KH(u) ≤ 0. Therefore,

0 ≤ E(u) ≤ Etop(u). (4.1.14)

With these preliminary computations in hand, we are ready to prove Lemma
4.2 and Lemma 4.3.
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Proof of Lemma 4.3. Suppose dβ = 0. Combining Equation (4.1.12) and
Equation (4.1.13), we get

E(u) =
q∑
ℓ=1

ABℓH(yℓ)−
p∑

k=1
AAkH(xk)

as desired.

Now, suppose dβ ≤ 0 and H ≥ 0. From Equation (4.1.12) and Equa-
tion (4.1.14) we have,

E(u) ≤
q∑
ℓ=1

ABℓH(yℓ)−
p∑

k=1
AAkH(xk).

This completes the proof. □

Proof of Lemma 4.2. Choose δ > 0 so that

δ = max {r ◦ x1, . . . ,xp, r ◦ y1, . . . , r ◦ yq, ρ0} .

Let u ∈ M(xk,yℓ; Σ, β) and suppose, in view of a contradiction, that u leaves
Dδ. If needed, slightly increase δ while keeping it under r0 to ensure that u
intersects ∂Dδ transversely. Denote by

S = u−1(D̂ \ intDδ) ⊂ Σ

the subsurface of Σ which is sent outside of Dδ (see Figure 4). Note that S
is nor necessarily connected and write it, and its boundary, as disjoint union
of connected components

S =
m⊔
i=1

Si, ∂S =
m⊔
i=1

∂Si.

Following the integrated maximum method introduced by Abouzaid and
Seidel in [AS10, Section 7], we prove a more precise statement than what
appears in Lemma 4.2. First, we show that the energy

E(u|S) =
∫
S
∥du−XH(u)⊗ β∥2 volS
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Fig. 4. The preimage S of the part of u(Σ) which escapes Dδ. To simplify
the figure, we took Σ = Σ0

1,2.

of u restricted to S is negative and thus E(u|S) = 0. By definition of the
energy, this implies that

du = XH(u)⊗ β

and thus each connected component of u|S is contained in an XH-orbit.
From Section 2.2.2 we know that XH-orbits in (ρ0,r0) × ∂D lie entirely in
subsets of the form {r} × ∂D, thus u(S) ⊂ ∂Dδ. This contradicts the fact
that u leaves Dδ.

Now, suppose dβ = 0. We show that E(u|S) is negative. From Equa-
tion (4.1.13) and Equation (4.1.11) the energy of u|S is given by its topolo-
gical energy

E(u|S) = Etop(u|S) =
∫
∂S
(λ ◦ du−H(u) · β) (4.1.15)
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We want to factor λ in the previous equation. To do that, we prove
∫
∂S H(u)·

β =
∫
∂S λ(XH(u)) · β. Indeed, since u(∂S) ⊂ ∂Dδ, λ(XH(u)) = δh′(δ) and∫

∂S
(λ(XH(u))−H(u)) · β =

∫
∂S
(δh′(δ)− h(δ))β

=
∫
∂S
Ah(δ)β (4.1.16)

=
∫
S
Ah(δ)dβ = 0.

The third equation follows from Stokes’ theorem, the fourth equation holds
because Ah(δ) is constant and the last equation follows from the fact β is
closed. Equation 4.1.15 can now be written as

E(u|S) =
∫
∂S
(λ ◦ du− λ(XH(u)) · β)

=
∫
∂S
λ(du−XH(u)⊗ β) =

∫
∂S
λ(J ◦ (du−XH(u)⊗ β) ◦ (−j))

since (du−XH(u)⊗ β)0,1 = 0. Recall that, since J is cylindrical near ∂Dδ,
λ ◦ J = dr along ∂Dδ. Moreover, since XH(u) ⊂ T∂Dδ, dr(XH(u)) = 0
along ∂S. Thus,

E(u|S) =
∫
∂S
λ(J ◦ (du−XH(u)⊗ β) ◦ (−j))

=
∫
∂S
(dr ◦ du− dr(XH(u))⊗ β) ◦ (−j))

=
∫
∂S

dr ◦ du ◦ (−j).

It suffices now to prove that the expression on the right of the last equality
is negative. On each ∂Si choose a normal vector ni pointing outwards.
Then, ∂Si is oriented by jn. Let Yi be a tangent vector to ∂Si pointing
in the direction induced by jni. Then, jYi points inside Si. See Figure 5.
Therefore, since u(Si) is outside Dδ by definition, du(jYi) points outwards
along ∂Dδ and dr(du(jY )) ≥ 0. We conclude that

E(u|S) =
∫
∂S

dr ◦ du ◦ (−j) ≤ 0.
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Fig. 5. The image under du of tangent vector to ∂Si points inwards along
∂Dδ

Now let us take care of the case where dβ ≤ 0 and H ≥ 0. Since H is
r0-admissible, H|D̂\Dr0 = h(r0). Further suppose that

Ah(r0) = r0h
′(r0)− h(r0) ≥ 0. (4.1.17)

This is true for r0-admissible Hamiltonians with ηH ≤ 0. We mimic the
proof for the previous case with δ = r0. From Equation (4.1.14) and Equa-
tion (4.1.11) the energy of u|S is bounded from above by its topological
energy and thus

E(u|S) ≤ Etop(u|S) =
∫
∂S
(λ ◦ du−H(u) · β)

Just like in the case dβ = 0, we want to factor λ. To do this, we first prove
that −

∫
∂S H(u)β ≤ −

∫
∂S λ(XH(u))β. Indeed, from Equation (4.1.16), we

have ∫
∂S
(λ(XH(u))−H(u)) · β =

∫
∂S
Ah(r0)β = Ah(r0)

∫
S
dβ ≤ 0

since we assumed dβ ≤ 0 and Ah(r0) ≥ 0. Then,

E(u|S) ≤
∫
∂S
λ(du−XH(u)⊗ β)

The rest of the proof is the same as the case dβ = 0. □
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4.2. Operations, action
and compactly supported Hamiltonians

We now study how the operations induced by model surfaces act on the
filtered Floer cohomology groups. We do this for the three operations of
interest to us: the capping C = Σ0

1,0, the continuation cylinder Z = Σ0
1,1

and the pair of pants product P = Σ0
1,2.

Fig. 6. Form left to right: the capping operation, the continuation cylinder
and the pair of pants product.

Throughout this section, we consider compactly supported Hamiltonians and
their τ -extension (see Definition 3.4) for τ strictly smaller than the minimum
Reeb period T0 and the same Kε,r0,τ . Note that, since the Hamiltonians
under consideration here depend on time and are not necessarily C2-small
on D, we need to adapt the construction from the previous section. We will
also see how to relax the condition H ≥ 0 when β is not closed.

Hamiltonian 1-forms. Let (Σ,β,j) be a model surface of genus 0 with p = 1.
We adapt the methods of [KS21, Section 2] to Ritter’s approach to deal with
the arbitrary nature of the Hamiltonians on D. We consider Hamiltonian
1-forms F ∈ Ω1(Σ, C∞(D̂,R)) that are written as

F = F r0 +Kε,r0,τ ⊗ β

where F r0 ∈ Ω1(Σ,C∞
c (D,R)). For such Hamiltonian 1-forms, Floer’s equa-

tion takes the more general form

(du−XF (u))(0,1) = 0 (4.2.1)
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where XF is defined such that for any ξ ∈ TzΣ, XF (ξ) corresponds to the
Hamiltonian vector field of F (ξ). On the ends, we require F to be of the form
H± ⊗ dt on Dr0 for H ∈ C(D) and Kε,r0,τ ⊗Wdt on D̂ \ Dr0 for a weight
W > 0. The operations are then build by counting the zero dimensional
components of the moduli space M(x1,yℓ; Σg

p,q,XF ) of curves u : Σ → D̂

satisfying Equation (4.2.1) and converging, for s → ±∞, to orbits of the
Hamiltonians on the ends. Once again, to prove that these moduli spaces
are smooth compact manifolds of finite dimension, we need to compute a
priori energy estimates and show that their curves do not escape at infinity.
The energy of a curve u ∈ M(x1,yℓ; Σg

p,q,XF ) can be written as (see [KS21,
Section 2.5])

E(u) =
q∑
ℓ=1

A(H+
ℓ
)τ (yℓ)−A(H−)τ (x1)︸ ︷︷ ︸

Etop(u)

+KF (u). (4.2.2)

The curvature term is given by

KF (u) =
∫
Σ
(dF (u)− {F ,F } (u))

where, in local coordinates (s,t) on Σ, the curvature two-form can be written
as

(dF − {F ,F })(∂s,∂t) = ∂sF (∂t)− ∂tF (∂s)− {F (∂s),F (∂t)} .

4.2.1. The capping operation

For C we choose Σ0
1,0 = C. The negative end, which is chosen to be a

neighbourhood of the point at ∞, is parameterized by

ϕ−
1 : (−∞,0]× S1 C

(s,t) e−2π(s+it)

To construct β, first pick a function b(s) : (−∞,0] → [0,1] such that b′(s) ≤
0, b|(−∞,−2] ≡ 1 and b|[−1,0] ≡ 0. Then, on the negative end define β so that

(ϕ−
1 )∗β = b(s)dt
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and extend β to 0 everywhere else on C. We have only one positive weight
here given by A1 = 1. Note that dβ ≤ 0. Let H be compactly supported
and consider its τ -extension Hτ by the Hamiltonian Kε,r0,τ . We define our
Hamiltonian 1-form F such that

F = F r0 +Kε,r0,τ ⊗ β.

where
(ϕ−

1 )∗F r0 = Ht ⊗ b(s)dt

and is extended to zero everywhere else on C. We will see that we do not
need to only consider positive Hamiltonians for Lemma 4.2 to work. Doing
so, we will be able to compute an a priori energy bound for u which only
depends on H. This allows us to define an operation

[ΨHτ

C ] : Z2 HF0(Hτ ) = HF0(H)

which is independent of the chosen τ -extension.

No escape. Let u ∈ M(x1;C,F ) and suppose that im u leaves Dr0 . Denote
S = u−1(D̂ \Dr0) ⊂ C. From Equation (4.2.2) we have

E(u|S) = Etop(u|S) +KF (u|S).

The F -curvature is given here by

KF (u) =
∫
(−∞,0]×S1

(ϕ−
1 )∗(dF (u)− {F − F } (u)) (4.2.3)

=
∫
(−∞,0]×S1

b′(s)(ϕ−
1 )∗(Hτ

t (u))ds ∧ dt. (4.2.4)

Since u(S) ⊂ D̂ \ Dr0 , (u|S)∗Hτ
t = kε,r0,τ (r) ≥ 0 by definition of the

τ -extension. Thus, taking into account that b′(s) ≤ 0 by construction,
E(u|S) ≤ Etop(u|S). The proof of Lemma 4.2 in the case dβ ≤ 0 can then
be carried out. Therefore, im u ⊂ Dr0 .

Energy estimate. Let us now compute the energy of u. Equation (4.2.2)
allows us to write

0 ≤ E(u) = −AHτ (x1) +KF (u)
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Since the image of u stays within Dr0 by the previous paragraph and since
Ht has support in D, (ϕ−

1 )∗u∗Hτ
t ≥ minDHt. Therefore, taking into account

that b′(s) ≤ 0,

KF (u) ≤
∫
S1

∫
(−∞,0]

min
D

(H) · b′(s) dsdt ≤ −
∫
S1

min
D

(H) dt = E+(H).

This yields the energy estimate

0 ≤ E(u) ≤ −AHτ (x1) + E+(H)

which only depends on H and possibly its τ -extension Hτ .

We gather the results we obtained in this the section in the following Lemma.

Lemma 4.5 • Filtered capping operation

Let H ∈ C(D) and let Hτ be a τ -extension of H. For any u ∈
M(x1;C,F ), im u ⊂ Dr0 . Moreover, by the energy estimate of such
curves,

AHτ (x1) ≤ E+(H).

In action windows, we thus have an operation

[ΨH
C ] : Z2 HF∗

<E+(H)(H).

Remark 4.6: Even though the energy estimate seems to depend on
the extension of H, the image of [ΨH

C ] in the previous Lemma does
not. Indeed, from Lemma 3.5, we know that, for any two exten-
sions Hτ1 and Hτ2 of H there is an isomorphism HF∗

(−∞,E+(H)](Hτ1) ∼=
HF∗

(−∞,E+(H)](Hτ2) which preserves the action windows.

4.2.2. Continuation cylinders revisited

For Z we choose Σ0
1,1 = R × S1. On Z we can pick the global β = dt

1-form. Let F± ∈ C(D) and consider their τ -extension F τ
− and F τ

+ with
the same Kε,r0,τ . Let f : R → [0,1] be a smooth function with f ′(s) ≤ 0
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interpolating between 1 and 0 which is constant outside (−1,1) ⊂ R. Let F•

be the homotopy between (F τ
−)t and (F τ

+)t:

(Fs)t = (F τ
+)t + f(s)((F τ

−)t − (F τ ′

+ )t). (4.2.5)

Consider the Hamiltonian 1-form

F = (Fs)t ⊗ dt = ((F+)t + f(s)((F−)t − (F+)t))⊗ dt+Kε,r0,τ ⊗ dt

No escape. Let u ∈ M(x1, y1;Z,F ) and suppose that im u leaves Dr0 .
Denote S = u−1(D̂ \Dr0) ⊂ Z. The curvature term here is given by

KF (u) =
∫
S1

∫
R
f ′(s)((F−)t(u)− (F+)t(u))dsdt (4.2.6)

Restricting u to S ⊂ Z, we have u|∗S((F−)t − (F+)t) = 0 since (F±)t have
support in S1 ×Dr0 , and Equation (4.2.6) yields

KF (u|S) = 0.

and thus E(u|S) = Etop(u|S). The proof of the no escape lemma 4.2 in the
case dβ = 0 can then be carried out with very little modifications. Therefore,
im u ⊂ Dr′0 .

Energy estimate. Let us now compute the energy of u. Equation (4.1.11)
and Equation (4.2.6) allows us to write

AF τ
−
(x1) ≤ AF τ

+
(y1) +

∫
Z
f ′(s)u∗((F−)t − (F+)t) ds ∧ dt

From the previous paragraph, we know the curve u does not escape Dr′0 .
Therefore,

u∗((F τ
−)t − (F τ ′

+ )t) ≥ min
D

((F−)t − (F+)t).

and since f ′(s) ≤ 0,∫
Z
f ′(s)u∗((F−)t − (F+)t) ds ∧ dt ≤

∫
C
f ′(s)min

D
((F−)t − (F+)t) ds ∧ dt

= −
∫
S1

min
D

((F−)t − (F+)t) dt

= E+(F− − F+).
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The two previous paragraphs are summarized in the following lemma.

Lemma 4.7 • Filtered continuation cylinder

Let F−,F+ ∈ C(D) and let F τ
− and F τ

+ be τ -extensions. For any u ∈
M(x1, y1;Z,F ), im u ⊂ Dr′0 . Moreover, by the energy estimate of such
curves,

AF τ
−
(x1) ≤ AF τ ′

+
(y1) + E+(F− − F+).

In action windows, we thus have an operation

[ΨF−,F+
Z ] = [ΦF−,F+ ] : HF•

<a(F+) HF•
<a+E+(F−−F+)(F−).

4.2.3. Pair of pants product for two different Hamiltonians

To prove some properties of spectral invariants, like the triangle inequality
(see Proposition 5.1), we need a product defined between the extension of
two compactly supported Hamiltonians H and K. This operation should
have as output classes in the Floer cohomology of the concatenation H#K
of H and K:

HF•(H)⊗ HF•(K) HF•(H#K)

To construct this operation, we use a P dependent Hamiltonian 1-form F ∈
Ω1(P,C∞(S1×D̂,R)) which interpolates betweenH,K andH#K on disjoint
strips in P with disjoint image. This technique can be generalized, for
instance, to any number of inputs (see [KS21, Section 2.5] for a detailed
treatment). To carry out this approach, it is crucial that H and K are
smoothed in the sense of Definition 3.6.

In this section, we suppose for simplicity that all τ -extensions have r0 = 1.

The model surface and Hamiltonians We consider the pair of pants model
surface (P,β,j) with weights A1 = 2, B1 = 1 = B2. By our choice of weights,
Section 4.1.1 assures us that β can be chosen so that dβ = 0. We are given
smoothed Hamiltonians H and K with compact support inside Dδ for some
0 < δ < 1. We consider their τ -extensions with respect to the Hamiltonian
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Kε,1,τ so that 2τ < T0. The concatenation H#K defined by

H#K(t,p) =

2H(2t, p) for t ∈ [0,1/2],
2K(2t− 1, p) for t ∈ [1/2,1].

is also smoothed and has compact support in Dδ.

Strips and Hamiltonian 1-form. Denote by (ρ,t) the natural coordinates on
R× (0,1). We consider two strips φ−,+

1 ,φ−,+
2 : R× (0,1) P which are

smooth proper embeddings that satisfy the following compatibility condi-
tions with respect to the cylindrical ends on P . Let ρ± ∈ R>0 be two
sufficiently large constants.

◦ For all ρ ≥ ρ+,

φ−,+
ℓ (ρ,t) = ϕ+

ℓ (ρ− ρ+, t) . (4.2.7)

where ℓ ∈ {1,2}.

◦ For all ρ ≤ −ρ−,

φ−,+
1 (ρ,t) = ϕ−

1

(
ρ+ ρ−,

t

2

)
, (4.2.8)

φ−,+
2 (ρ,t) = ϕ−

1

(
ρ+ ρ−,

t

2 + 1
2

)
.

We now build our Hamiltonian 1-form F ∈ Ω1(P,C∞(S1 × D̂,R)). On the
strips, F is given by

(φ−,+
1 )∗F = Ht ⊗ dt+Kε,1,τ ⊗ (φ−,+

1 )∗β

(φ−,+
2 )∗F = Kt ⊗ dt+Kε,1,τ ⊗ (φ−,+

2 )∗β

and we extend F to Kε,1,τ ⊗β everywhere else on P . From Equation (4.2.7)
and Equation (4.2.8), the definition of F on the strips and the value of β on
the cylindrical ends of P , we can recover the value of F on these ends. On
the positive ends, we have

(ϕ+
1 )∗(F ) = Hτ

t ⊗ dt, (ϕ+
2 )∗(F ) = Kτ

t ⊗ dt,

81



and on the negative end, we have, for t ∈ [0,1/2]

(ϕ−
1 )∗F = (φ−,+

1 (ρ− ρ−,2t))∗F r0 + (ϕ−
1 )∗(Kε,1,τ ⊗ β)

= H2t ⊗ 2dt+Kε,1,τ ⊗ 2dt

and for t ∈ [1/2,1] we obtain

(ϕ−
1 )∗F = (φ−,+

2 (ρ− ρ−,2t− 1))∗F r0 + (ϕ−
1 )∗(Kε,1,τ ⊗ β)

= K2t−1 ⊗ 2dt+Kε,1,τ ⊗ 2dt.

Thus, by definition of H#K, we have

(ϕ−
1 )∗F = (H#K)2τ ⊗ dt.

Therefore, on the strips, F interpolates from H and K on the positive ends,
to H#K on the negative end.

No-escape. Consider a curve u ∈ M(x1, y1, y2;P,F ). The F -curvature is
given by

KF (u) =
2∑
ℓ=1

∫
R×(0,1)

(ϕ+
ℓ )∗(dF (u)− {F ,F } (u)).

Since the Hamiltonian terms in F depend only on t on the strips and since
dβ = 0 on P , a direct computation shows that KF (u) = 0. Thus, E(u) =
Etop(u) and the proof of Lemma 4.2 in the case dβ = 0 can be carried out.
Therefore by our choice of r0 = 1, the image of u stays inside D.

Energy estimate. Since E(u) = Etop(u) for any u ∈ M(x1, y1, y2;Z, β, FP ),
we have a sharp energy estimate

AH#K(x1) ≤ AH(y1) +AK(y2).

The two previous paragraphs prove the following Lemma.

Lemma 4.8
Let H,K ∈ C(D). For a slope τ > 0 such that 2τ < T0 choose ex-
tensions Hτ , Kτ and H#K2τ with r0 = 1. Then, we have the pair of
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pants product

[ΨH,K
P ] : HF•

<a(H)⊗ HF•
<b(K) HF•

<a+b(H#K).

4.3. Gluing, composition and naturality of the
operations

Consider two model surfaces Σ1 = (Σg
p1,q1 , β1, j1) and Σ2 = (Σg

p2,q2 , β2, j2).
We say that Σ1 and Σ2 match if

◦ Σ1 has as many positive ends as Σ2 has negative ends: q1 = p2,

◦ the positive weights of Σ1 are the same as the negative weights of
Σ2: B1,i = A2,i for all i ∈ {1, . . . ,q1}.

◦ the restriction of j2 on the i-th negative end of Σ2 agrees with the
restriction of j1 on the i-th positive end of Σ1 for large enough s.

If Σ1 and Σ2 match, then we can obtain a third model surface Σ = Σ1#Σ2

with

p = p1, q = q2, g = g1 + g2 + (q1 − 1) = g1 + g2 + (p2 − 1)2

by gluing, along the positive ends of Σ1 and negative ends of Σ2, Σ1 to Σ2,
β1 to β2 and j1 to j2. We call Σ1#Σ2 the gluing of Σ1 to Σ2.

If two surfaces do not match, we can add constant continuation cylinders
ZA (see Section 4.2.2) to either one of the surfaces:

◦ If q1 = p2 + q′ with extra weights B1,q1 ,B1,q1+1,. . .,B1,q1+q′ then

Σ1 and Σ2

q1+q′⊔
m=q1+1

ZB1,q1
match.

2This formula for the glued model surface only holds if Σ1 and Σ2 are connected.
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Fig. 7. The gluing Σ0
3,2#Σ1

2,1 of two matching model surfaces Σ1 = Σ0
3,2

and Σ2 = Σ1
2,1.

◦ If p2 = q1 + p′ with extra weights A2,p2 , A2,p2+1, . . . A2,p2+p′ then

Σ1

p1+p′⊔
m=p2+2

ZA2,p2
and Σ2 match.

This procedures is well defined because the operation induced by each
constant continuation cylinder is the identity.

Any model surface can be expressed as the gluing of elements in a finite set
of model surfaces. This finite set is composed of the model surfaces studied
in Section 4.2 and the inversed pair of pants P ′ ∼= Σ0

2,1.

Lemma 4.9
Let (Σ,β,j) be a connected model surface. Then, there exists model
surfaces {(Σi,βi,j)}mi=1 such that

Σ = Σ1# · · ·#Σm

and Σi ∈ {C,Z,P,P ′} for all i ∈ {1, . . . ,m}.

The gluing of two matching model surfaces Σ1 and Σ2 is compatible with
the composition of operations in the following sense.
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Lemma 4.10 • Gluing = composition [Rit13, Appendix A.10]

Let Σ1 and Σ2 be two matching model surfaces. Then, the following
diagram commutes

q1⊗
m=1

HF•(B1,mH)

q2⊗
ℓ=1

HF•(B2,ℓH)
p2⊗
m=1

HF•(A2,mH)
p1⊗
k=1

HF•(A1,kH)

ΨH
Σ1

ΨH
Σ2

ΨH
Σ1#Σ2

Lemma 4.10 is the key ingredient to prove that the operationsΨH
Σ are natural

with respect to continuation maps. This property, which basically states that
the operations induced by model surfaces commute with continuation maps,
is the object of the following theorem.

Theorem 4.11 • [Rit13, Theorem A.14]

Let (Σ1, β1, j) and (Σ2, β2, j) be model surfaces with sets of weights
{A1,k, B1,ℓ} and {A2,k, B2,ℓ} such that Σ1 ∼= Σg

p,q
∼= Σ2. Let H1 and H2

be admissible Hamiltonians satisfying the conditions of Section 4.1.1
such that for every k and ℓ there exists monotone homotopies which
induce the continuation maps

HF•(A1,kH1) HF•(A2,kH2),

HF•(B1,ℓH1) HF•(B2,ℓH2).

[Φ1,2
Ak

]

[Φ1,2
Bℓ

]
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Then, the following diagram commutes.

⊗
HF•(A1,kH1)

⊗
HF•(B1,ℓH1)

⊗
HF•(A2,kH2)

⊗
HF•(B2,ℓH2)

[ΨH1
Σ1

]

[Φ1,2
A1

]⊗···⊗[Φ1,2
Ap

]

[ΨH2
Σ2

]

[Φ1,2
B1

]⊗···⊗[Φ1,2
Bq

]

4.4. Operations and Morse cohomology
In Lemma 3.1, we saw that when an admissible Hamiltonian F with
small slope τF < T0 is C2-small on D, then there is an isomorphism
[ΦF ] : H∗(D) → HF∗(F ). One could then use Lemma 3.2 to show that
any admissible Hamiltonian H with small slope has Floer cohomology iso-
morphic to H∗(D). However, when dealing with operations in Morse and
Floer cohomology, it is useful to have a direct isomorphism between H∗(D)
and HF∗(H) that does not rely on an auxiliary small Hamiltonian. Such
a map, called the PSS isomorphism, was developed by Piunikhin, Salamon
and Schwarz in [PSS96] for closed symplectic manifolds. In this section
we review operations in Morse cohomology [BC94, Fuk97] and the exten-
sion of the PSS isomorphism to Liouville domains carried out by Ritter in
[Rit13]. This allows us to relate operations in Morse cohomology to the
ones in Floer cohomology.

4.4.1. Morse cohomology

Let us recall the definition of Morse cohomology. Start with a Morse function
f : D R on the closure D of D and suppose its negative gradient −∇f
points inwards along a neighbourhood of ∂D.
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Let z± ∈ Crit(f) be critical points. Denote by Ñ (z−,z+; f) the moduli space
negative gradient lines u : R D joining z to w, i.e.

du
ds = −∇f (4.4.1)

lim
s→−∞

u = z−, lim
s→+∞

u = z+.

There is a natural R-action on Ñ by which we quotient to obtain
N (z,w; f) = Ñ / ∼, where u(s) ∼ v(s) if and only if u(s) = v(s + s′) for
some s′ ∈ R. For a generic choice of f , N (z,w; f) is a smooth compact
manifold of dimension indf (z−) − indf (z+) − 1 for indf the Morse index of
f . Moreover, N (z−,z+; f) admits a compactification by broken trajectories.
The d-th Morse-Witten complex of f correspond to the Z2 vector space

CMd(f) =
⊕

indf (z)=d
Z2 ⟨z⟩ .

The differential on CMd(f) is defined as

∂f : CMk(f) CMk+1(f)

z+
∑

indf (z−)=indf (z+)+1
#2N (z−,z+; f)z−

For a generic choice of f , ∂f ◦ ∂f = 0, making (CM•(f),∂f ) a co-chain
complex. We denote the cohomology of that complex HM•(f) and call it
the Morse cohomology of f . It is now well known that Morse cohomology
computes the singular cohomology H•(D) of D.

Theorem 4.12

Let f be a Morse function on D such that −∇f points inwards along
∂D. Then,

[ϕf ] : H•(D) ∼= HM•(f).
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4.4.2. Operations in Morse cohomology

Operations can be defined in Morse cohomology in a similar fashion as to
how we defined operations in Floer cohomology. In the Morse framework
however, operations are built from graphs with positive and negative ends
instead of surfaces [BC94, Fuk97]. Since our goal is to relate operations in
both cohomology theories, we will build graph from the surfaces Σg

p,q.

Associated graphs. An oriented parameterized graph Γ with p negative ends
and q positive ends is a finite oriented graph with

◦ p ≥ 0 edges e−k parameterized by (−∞,0],

◦ q > 0 edges e+k parameterized by [0,+∞),

◦ and all other edges ei parameterized by [0,1].

These edges are called negative, positive and internal respectively. When we
draw such graphs, the vertices at the infinite ends will be denoted by empty
circles ◦ and the vertices at the ends of internal edges will be represented by
a circle bullet •.

Fig. 8. An oriented parameterized graph with 3 negative edges and 1 posi-
tive edge.

From any surface Σg
p,q we build a oriented parameterized graph Γ(Σg

p,q),
called the associated graph of Σg

p,q, in the following way. For the basic model
surfaces C, Z, P and P ′, we have one negative edge per negative end and
one positive edge per positive end. We then connect the finite vertex of
these edges together. Now, by Lemma 4.9, we can express Σg

p,q as a gluing
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Fig. 9. Associated graphs to the basic model surfaces C, Z, P and P ′.

of Σi ∈ {C,Z,P,P ′}:
Σg
p,q = Σ1# · · ·#Σm.

We replace each Σi in the decomposition of Σg
p,p by their associated graph

Γ(Σi) and glue their ends together to obtain the associated graph Γ(Σg
p,q) of

Σg
p,q:

Γ(Σg
p,q) = Γ(Σ1)# · · ·#Γ(Σm).

Model graphs. A model graph is a quintuple (Γgp,q,Li,fk,fi,fℓ) consisting of

◦ the associated graph Γgp,q of a surface Σg
p,q,

◦ a set of lengths {Li} for each internal edge,

◦ Morse functions fk on D associated to each of the p negative edges
of Γgp,q,

◦ Morse functions fi on D associated to each of the internal edges Γgp,q,

◦ and Morse functions fℓ on D associated to each of the positive edges
Γgp,q.

We will often abbreviate the notation for a model graph to (Γqp,q,fe) where
{fe} is the list of all Morse functions associated to the edges of Γqp,q.

The moduli spaces. Let (Γgp,q,Li,fe) be a model graph. Let wk ∈ Crit(fe−
k
)

and zℓ ∈ Crit(fe+
ℓ
). A continuous curve u : Γgp,q D lies in the moduli

space M(wk,zℓ; Γgp,q,Li,fe) associated to the given model graph if and only
if

d
dsu|e = −∇fe
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for any edge e of Γgp,q and

lim
s→−∞

u|e−
k
= wk, lim

s→+∞
u|e+

ℓ
= zℓ

for all k and ℓ. The value of an interior vertex under u corresponds to
the intersection of the stable and unstable manifolds for the Morse func-
tions associated to the edges meeting at that vertex. The ensure that
M(wk,zℓ; Γgp,q,Li,fe) is a smooth manifolds, these intersections need to be
transverse. This can be achieved by choosing the Morse functions fe generi-
cally [BC94, Theorem 1]. Moreover, the dimension of M(wk,zℓ; Γgp,q,Li,fe)
is given by

dimM(wk,zℓ; Γgp,q,Li,fe) =
p∑

k=1
indfk(wk)−

q∑
ℓ=1

indfℓ(zℓ)

− 2n(1− p− b1(Γgp,q)) (4.4.2)

where b1(Γgp,q) is the first Betti number of Γgp,q. By construction of the
associated graph,

b1(Γgp,q) = g.

The moduli space M(wk,zℓ; Γgp,q,Li,fe) also admits a compactification by
broken trajectories [BC94, Theorem 3].

The operations. Recall the notation introduced in Section 4.1.3 regarding
tensor product of co-chain complexes. Using the properties of the moduli
space M(wk,zℓ; Γgp,q,Li,fe) defined above we can define operations

ψΓg
p,q

:
( q⊗
ℓ=1

CM•(fℓ)
)d ( p⊗

k=1
CM•(fk)

)d−2n(1−p−g)

w
∑

ind(z)=d−2n(1−p−g)
#2M(wk,zℓ; Γgp,q,Li,fe)z

where ind(z) = ∑q
ℓ=1 indfℓ(wℓ). The map ψΓg

p,q
is a chain map and does

not depend on the choice of graph associated to Σg
p,q and the choices of Li,

fk and fℓ. This can be proven using gluing and continuation results as in
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Section 4.3. Thus ψgp,q descends on cohomology to a map

[ψΓg
p,q
] :

q⊗
ℓ=1

HMdℓ(fℓ)
( p⊗
k=1

HM(fk)
)∑

ℓ
dℓ−2n(1−g−p)

Composing with the isomorphisms of Theorem 4.12 for each of the Morse
functions, we get operations on the singular cohomology H•(D):

p⊗
k=1

[ϕfk ]−1 ◦ [ψΓg
p,q
] ◦

q⊗
ℓ=1

[ϕfℓ ] :
q⊗
ℓ=1

H•(D)
p⊗

k=1
H•(D).

A particular operation of interest to us in the Morse setting is the product
[ψ0

Γ1,2
]. As one expects, it coincides with the cup product ⌣ in singular

cohomology.

Lemma 4.13 • [BC94, Example 3], [Fuk97, Proposition 1.11]

Let β1,β2 ∈ H•(D). Then, for a model graph (Γ0
1,2,Li,f

−
1 ,f

+
1 ,f

+
2 ) the

following diagram commutes

H•(D)⊗ H•(D) HM•(f+
1 )⊗ HM•(f+

2 )

H•(D) HM•(f+
1 )

[ϕ
f+1

]⊗[ϕ
f+2

]

·⌣· [ψΓ0
1,2

]

[ϕ
f−1

]

4.4.3. The PSS isomorphism

Let H be an admissible Hamiltonian and f a generic Morse function on D.
Consider an homotopy Hs interpolating between H and 0. On the chain
level, the PSS map is defined as

ΦPSS
H : CMd(f) CFd(H)

z
∑

|x|=indf (z)
#2N (x,z;H,f)x
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The moduli space N (x,z;H,f) consists of spiked disk between x and z.
These curves consist of a map u : C → D̂ such that u(e2π(s+it)) satisfies
Floer’s continuation equation for Hs. For the asymptotics, we impose that
lims→−∞ u = x and that lims→+∞ u = u(0) sits inside the unstable manifold
of z. The spike refers to the negative gradient flow line connecting z to u(0).
The PSS map is a chain map and descends on cohomology

[ΦPSS
H ] : HMk(f) HFd(H)

When considering admissible Hamiltonians with small slopes, the PSS map
induces an isomorphism on Floer cohomology just as in the closed case.

Theorem 4.14 • [Rit13, Section 15.2]

Let H be an admissible Hamiltonian and suppose τH < T0. Then, we
have an isomorphism

[ΦPSS
H ] : Hd(D) HFd(H)

∼=

Moreover, when H is C2 small on D,

[ΦPSS
H ] = [ΦH ]

where [ΦH ] is the isomorphism defined in Lemma 3.1.

We now have all the tools to express how operations in Floer cohomology
are compatible with operations in Morse cohomology.

Theorem 4.15 • [Rit13, Section 15.5]

Let H be as in Section 4.1.3 and suppose τH < T0. Consider a mo-
del surface (Σg

p,q,β,j) such that AkτH ,BℓτH < T0 and a model graph
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(Γgp,q,f−
k ,f

+
ℓ ). Then, the following diagram commutes

p⊗
k=1

HF•(AkH)
q⊗
ℓ=1

HF•(BℓH)

p⊗
k=1

HM•(f−
k )

q⊗
ℓ=1

HM•(f+
ℓ )

[ΨH
p,q,g ]

[ΦPSS
A1H

]⊗···⊗[ΦPSS
AℓH

]

[ψΓg
p,q

]

[ΦPSS
B1H

]⊗···⊗[ΦPSS
BkH

]

We can adapt Theorem 4.15 for the pair of pants product [ΨH,K
P ] between

two Hamiltonians H,K ∈ C(D). For a model graph (Γ0
1,2,f

−
1 ,f

+
1 ,f

+
2 ), this

adaptation yields the following diagram:

HF•((H#K)2τ ) HF•(Hτ )⊗ HF•(Kτ )

HM•(f−
1 ) HM•(f+

1 )⊗ HM•(f+
2 )

[ΨH,K
P

]

[ΦPSS
(H#K)2τ

]

[ψΓ0
1,2

]

[ΦPSS
Hτ ]⊗[ΦPSS

Kτ ]

4.5. The symplectic cohomology TQFT
From Theorem 4.11, we know that operations in Floer cohomology commute
with continuation maps. These operations thus carry through the direct
limit used to define symplectic cohomology. Therefore, for a model surface
Σg
p,q, we have operations in symplectic cohomology

[Ψp,q,g] :
q⊗
ℓ=1

SH•(D)
p⊗

k=1
SH•(D)
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Of course, passing through the direct limit removes any dependence on H.
The induced operation is also independent on the choice of weights. Thus,
[Ψp,q,g] only depends on the topology (completely described by p, q and g) of
the model surface used to define it. In fact the operations just defined satisfy
the topological quantum field theory (TQFT) axioms defined by Atiyah in
[Ati88]. In particular, the pair of pants product [Ψ1,2,0] induces a unital ring
structure on SH•(M). The unit 1D for this product is given by the image
of 1 ∈ Z2 under the map [Ψ1,0,0] : Z2 SH0(D) induced by the capping
operation.The Viterbo map of Section 3.2.1 is a unital ring map.

Theorem 4.16 • [Rit13]

The Viterbo map v• : H•(D) → SH•(D) is a unital ring map with
respect to the cup product ⌣ on H•(D) and the pair of pants product
[Ψ1,2,0] on SH•(D). In particular, the unit on SH•(D) is given by the
image of the unit eD ∈ H•(D). In terms of action,

v•(eD) ∈ im
(

[ιε,∞−∞,∞] : SH∗
(−∞,ε)(D) SH•(D)

)
.
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Chapter 5

SPECTRAL INVARIANTS
AND THE SPECTRAL NORM

5.1. Spectral invariants
Denote by Hamc(D,dλ) the group of compactly supported Hamiltonian dif-
feomorphisms of (D,dλ) and by Sympc(D,dλ) the group of compactly sup-
ported symplectomorphisms of (D,dλ). The Hofer norm of a compactly
supported Hamiltonian H ∈ C(D) is defined as

∥H∥ = E+(H)− E−(H)

E− = −
∫ 1

0
max
p∈D

H(t,p) dt, E+ = −
∫ 1

0
min
p∈D

H(t,p) dt (5.1.1)

Using the Hofer norm, we can define a bi-invariant metric [Hof90, LM95]
on Hamc(D,dλ) by

dH(ϕ,ψ) = dH(ϕψ−1,id), dH(ϕ,id) = inf{∥H∥ | ϕ = ϕH}.

Recall that, since we assumed every element of C(D) to be smoothed (see
Section 3.1.6), the concatenation of H,K ∈ C(D) is given by

H#K(t,p) =

2H(2t, p) for t ∈ [0,1/2],
2K(2t− 1, p) for t ∈ [1/2,1].

(5.1.2)



with the inverse of some H ∈ C(D) given by H(t,p) = −H(1− t,p).

From Lemma 3.1 and by definition of HF•(H) for H ∈ C(D), we know that
HF•(H) ∼= H•(D). For α ∈ H•(D), we define, following [Sch00], the spectral
invariant of H relative to α as

c(α,H) = inf
{
ℓ ∈ R | ΦH(α) ∈ im

(
[ιℓ,∞−∞,−∞] : HF∗

(−∞,ℓ)(H) → HF•(H)
)}

which is, by exactness of the long exact sequence (3.1.1), equivalent to

c(α,H) = inf
{
ℓ ∈ R | [π∞,∞

−∞,ℓ] ◦ ΦH(α) = 0
}
.

The following proposition gathers all the properties of spectral invariants we
need for the rest of the text. Proofs of these properties can be found1 in
[FS07, Section 5].

Proposition 5.1 • Properties of spectral invariants

Let α,η ∈ H•(D) and let H,K ∈ C(D). Then,
◦ Continuity.

E−(H −K) ≤ c(α,H)− c(α,K) ≤ E+(H −K)

◦ Spectrality. c(α,H) ∈ Spec(H).
◦ Triangle inequality. c(α ⌣ η,H#K) ≤ c(α,H) + c(η,K).
◦ Monotonicity. If H(t,x) ≤ K(t,x) for all (t,x) ∈ [0,1] × D,
then c(α,H) ≥ c(α,K).

Remark 5.2: The continuity property of Proposition 5.1 allows us to
define spectral invariants of compactly supported continuous Hamilto-
nians H ∈ C0

c ([0,1]×D). They satisfy continuity, the triangle inequa-
lity and monotonicity.

1Note that the signs for continuity and monoticity differ from [FS07, Section 5] because
of differences in sign conventions.
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5.1.1. Proving the properties of spectral invariants

In this section we prove all the properties appearing in Proposition 5.1 except
for spectrality which follows from exactly the same arguments as in [Sch00,
Section 2.2]. We adapt the proofs of [Sch00] and [FS07] for the setting of
compactly supported Hamiltonians on Liouville domains. In what follows,
α ∈ Hd(D), η ∈ Hd′(D) and H,K ∈ C(D).

5.1.1.1. Continuity. Consider two τ -extensions Hτ and Kτ . Choose an
homotopy F• from Hτ to Kτ which is monotone at infinity. Define e+ =
E+(H−K) and c = c(α,K). In order to relate c(α,H) and c(α,K), consider
the following diagram.

HFd(K) HFd>c(K)

Hd(D)

HFd(H) HFd>c+e+(H)

[πK
>c]

[ΦH,K ]∼= [ΦH,K ]

[ΦPSS
K

]

[ΦPSS
H

]

[πH
>c+e+

]

(5.1.3)

We notice the following:

◦ Theorem 4.14 assures us that the PSS isomorphisms [ΦPSS
K ] and

[ΦPSS
H ] preserve the grading. Therefore, we only consider the Floer

and singular cohomologies in degree d which corresponds to the de-
gree of the class α. Moreover, the triangle on the left of diagram
5.1.3 commutes.

◦ Since the homotopy F• is not monotone on D, the restriction of its
associated rectriction map [ΦH,K ] on action windows shifts the upper
bound by e+. This is a direct application of Lemma 4.7. The vertical
arrow on the far left of the diagram take this into account.
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◦ By Lemma 3.2, the vertical arrow given by the continuation map
between the full Floer cohomologies of H and K is an isomorphism.

◦ Recall that continuation maps commute with the projection π>c.
Thus, the square in 5.1.3 commutes.

By definition of c(α,K), we have

[πK>c] ◦ [ΦPSS
K ](α) = 0 ∈ HFd>c(K) (5.1.4)

By the above points, we can compute an upper bound for c(α,H). Indeed,
form Equation (5.1.4), we have

[πH>c+e+ ] ◦ [Φ
PSS
K ](α) = [ΦPSS

K ] ◦ [πK>c] ◦ [ΦPSS
K ](α) = [ΦPSS

K ](0) = 0.

Thus, from the definition of spectral invariants

c(α,H) ≤ c+ e+ = c(α,K) + E+(H −K)

from which we deduce the right hand side of the continuity property.

To prove the left hand side, repeat the same argument with an homotopy
from K to H. Doing so yields

−E+(K −H) ≤ c(α,H)− c(α,K). (5.1.5)

Notice that, by definition of E+ and E−,

−E+(K −H) =
∫ 1

0
min
D

(K −H)dt = −
∫ 1

0
max
D

(H −K)dt = E−(H −K).

Combining the two previous equations yields the left hand side of the conti-
nuity property.

5.1.1.2. Monotonicity. The proof of monotonicity follows from the proof
of continuity. Suppose H ≤ K on S1 ×D. Then,

−E+(K −H) =
∫ 1

0
min
D

(K −H)dt ≥ 0.

Therefore, Equation (5.1.5) implies

c(α,H) ≥ c(α,K)− E+(K −H) ≥ c(α,K).
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5.1.1.3. Triangle inequality. Let H,K be two smoothed Hamiltonians com-
pactly supported on D. Suppose c(α,H) = a and c(η,K) = b. Consider the
following diagram:

H•(D)⊗ H•(D) H•(D)

HF•(H)⊗ HF•(K) HF•(H#K)

HF•
<a(H)⊗ HF•

<b(K) HF•
<a+b(H#K)

[ΦPSS
H

]⊗[ΦPSS
K

]

·⌣ ·

[ΦPSS
H#K

]

[ΨH,K
P

]

[ι<a]⊗[ι<b]

[ΨH,K
P

]

[ι<a+b]

(5.1.6)

In virtue of Lemma 4.8, the bottom rectangle in Diagram (5.1.6) commutes.
Moreover, by Theorem 4.15 and Lemma 4.13 the top rectangle in Diagram
Equation (5.1.6) also commutes.

By definition of the constants a,b and of spectral invariants, there exists
[y1] ∈ HF•(H) and [y2] ∈ HF•(K) such that

[ΦPSS
H ]⊗ [ΦPSS

K ](α⊗ η) = [ι<a]⊗ [ι<b]([y1]⊗ [y2]).

Then, by commutativity of Diagram (5.1.6), we have

[ΦPSS
H#K ](α ⌣ η) = [ι<a+b] ◦ [ΨH,K

P ]([y1]⊗ [y2]).

Therefore, by definition of spectral invariants

c(α ⌣ η,H#K) ≤ a+ b = c(α,H) + c(η,K).

This completes the proof of the triangle inequality.

5.1.2. Additional properties of spectral invariants

The following lemma assures us that spectral invariants are well defined on
Hamc(D,dλ). The proof relies on the spectrality and the triangle inequality.
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Lemma 5.3
Let H,K ∈ C(D) such that ϕH = ϕK and let α ∈ H•(D). Then,

c(α,H) = c(α,K)

Proof. We have ϕH#K = ϕ0 = id and in that case Spec(H#K) = {0}.
Now, by spectrality of spectral invariants, c(α,H#K) = 0. Thus, the tri-
angle inequality yields

c(α,H) = c(α,H#K#K) ≤ c(α,H#K) + c(α,K) = c(α,K).

Repeating the same argument with K#H instead of H#K, we obtain
c(α,K) ≤ c(α,H) which concludes the proof. □

The spectral invariant with respect to the cohomological unit admits an
implicit definition which depends on the spectral invariants with respect
to all other cohomology classes in H•(D). This follows directly from the
triangle inequality.

Lemma 5.4
Let H ∈ C(D). Then,

c(1,H) = max
α∈H•(D)

c(α,H).

Proof. Let α ∈ H•(D). By definition of the unit and the concatenation of
Hamiltonians, we have

c(α,H) = c(α ⌣ 1,H) = c(α ⌣ 1,0#H).

Then, since c(α,0) = 0, the triangle inequality guaranties that

c(α,H) = c(α ⌣ 1,0#H) ≤ c(α,0) + c(1,H) = c(1,H).

The choice of α being arbitrary, this concludes the proof. □
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5.1.3. The symplectic contraction principle

We conclude this section by recalling the symplectic contraction technique
introduced by Polterovich [Pol14, Section 5.4]. This principle allows one to
describe the effect of the Liouville flow {ψlog r

Y }0<r<1 on spectral invariants.

First, we need to describe how the Liouville flow acts on the symplectic form
ω of D and on compactly supported Hamiltonians on D. Since LY ω = ω,
we have that the Liouville flow contracts the symplectic form :(

ψlog r
Y

)∗
ω = rω

Now, consider a Hamiltonian H ∈ C(D) supported in U ⊂ D. For fixed
0 < r < 1 define the Hamiltonian

Hr(t,x) =


rH

(
t,
(
ψlog r
Y

)−1
(x)
)

if x ∈ ψlog r
Y (U),

0 if x /∈ ψlog r
Y (U).

(5.1.7)

It then follows from the two previous equations that Spec(Hr) = r Spec(H).
This allows one to prove

Lemma 5.5 • Symplectic contraction principle [Pol14]

Suppose H ∈ C(D) and let Hr ∈ C(D) be as in Equation 5.1.7. Then,

c(1,Hr) = rc(1,H).

5.2. Spectral norm
We define the spectral norm γ(H) of H ∈ C(D) as

γ(H) = c(1,H) + c(1,H).

For ϕ ∈ Hamc(D,dλ) such that ϕ = ϕH , define

γ(ϕ) = γ(H)

In virtue of Lemma 5.3, this is well defined.
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From [FS07, Section 7], we have the following theorem which justifies
calling γ a norm.

Theorem 5.6
Let ϕ,ψ ∈ Hamc(D,dλ) and let χ ∈ Sympc(D,dλ). Then,

◦ Non-degeneracy. γ(id) = 0 and γ(ϕ) > 0 if γ ̸= id,
◦ Triangle inequality. γ(ϕψ) ≤ γ(ϕ) + γ(ψ),
◦ Symplectic invariance. γ(χ ◦ ϕ ◦ χ−1) = γ(ϕ),
◦ Symmetry. γ(ϕ) = γ(ϕ−1),
◦ Hofer bound. γ(ϕ) ≤ dH(ϕ,id).
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Chapter 6

COHOMOLOGICAL
GANOR-TANNY BARRICADES

In [GT23] Ganor and Tanny introduced a particular perturbation of Ha-
miltonians compactly supported inside contact incompressible boundary do-
mains (CIB) of closed aspherical symplectic manifolds. For instance, if
U ⊂ M is an incompressible open set which is a Liouville domain, then
U is a CIB. In Floer homology, the aforementioned Hamiltonian perturba-
tion, which is called a barricade, prohibits the existence of Floer trajectories
exiting and entering the CIB. We consider barricades in the particular case
of Liouville domains and adapt them to Floer cohomology.

In the present setting, we define barricades for a special class of admissible
Hamiltonians.

Definition 6.1 • Barricade admissible Hamiltonians
A Hamiltonian H is said to be r0-barricade-admissible if H ∈ Hr0 and
the following conditions hold:

◦ H(t,x,r) = h(r) on D̂ \Dρ0 for some ρ0 ∈ (0,1),
◦ h(r) is C2-small on (1,r0 − ε),
◦ h(r) is strictly convex on (r0 − ε,r0).

Here ε > 0 is small enough so that 1 < r0 − ε. We denote the set of
r0-barricade-admissible Hamiltonians by Hr0 .



We say that (F•, J) is an r0-barricade-admissible pair if F• is a mo-
notone homotopy such that Fs ∈ Hr0 for all s and J is an admissible
almost complex structure.

h(r)

1 r0

ρ0 ε
r

Fig. 1. An r0-barricade-admissible Hamiltonian.

Remark 6.2: By Definition 3.4, the τ -extension Hτ of any Hamiltonian
H compactly supported in D can be chosen so that it is r0-barricade-
admissible.

Definition 6.3 • Barricade
Let r0 > 1 and 0 < ε < r0 − 1. Define Br0,ε = Dr0−ε \ D where, for
ρ > 0, Dρ = Ψlog ρ

Y (D). Suppose (F•,J) is an r0-barricade-admissible
pair from F+ to F−. We say that (F•,J) admits a barricade on Br0,ε

if for every x± ∈ P(F±) and every Floer trajectory u : R × S1 → D̂

connecting x±, we have, for Db := Dr0−ε = D ∪Br0,ε

(1) If x− ∈ D, then im(u) ⊂ D,
(2) If x+ ∈ Db, then im(u) ⊂ Db.

Remark 6.4: In the language of [GT23], a barricade on Br0,ε as des-
cribed above would be called a barricade in Dr0−ε around D.
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D̂ \ (Br0,ε ∪D) D̂ \ (Br0,ε ∪D)

Br0,ε Br0,ε

D D

allowed Floer trajectories forbidden Floer trajectories

Fig. 2. Floer cylinders in a barricade. The arrows follow the direction of
the Floer differential and the continuation map: from x+ to x−.

6.1. How to construct barricades
To construct barricades, we need to consider special classes of pairs of Hamil-
tonians and almost complex structures. These are defined using a refinement
of Definition 3.5 in [GT23].

Definition 6.5 • Cylindrical bumps

Let r0 > 1, σ ∈ (0, + ∞) \ Spec(∂D,λ) and 0 < ε < r0 − 1. An
r0-barricade-admissible pair (F•,J) admits a cylindrical bump of slope
σ on Br0,ε if

(1) F = 0 on ∂Br0,ε × S1 × R,
(2) JY = Rα, for Y the Liouville vector field on D, on a neighbo-

rhood of ∂Br0,ε, i.e. J is cylindrical near ∂Br0,ε = ∂D ⊔ ({r0 −
ε} × ∂D).

(3) ∇JF = σY near ({1} × ∂D) × S1 × R and ∇JF = −σY near
({r0−ε}×∂D)×S1×R. Here, ∇J denotes the gradient induced
by the metric gJ .
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(4) All 1-periodic orbits of F± contained in Br0,ε are critical points
with values in the interval (−σ,σ). (In particular, σ < T0.)

A cohomological adaptation of Lemma 3.3 in [GT23] yields the following
action estimates for pairs with cylindrical bumps.

Lemma 6.6
Suppose that the r0-barricade-admissible pair (F,J) admits a cylin-
drical bump of slope σ on Br0,ε. For every finite energy solution u

connecting x± ∈ P(F±), then
(1) im x− ⊂ D and im x+ ⊂ D̂ \D =⇒ AF+(x+) > σ,
(2) im x+ ⊂ Db and im x− ⊂ D̂ \Db =⇒ AF−(x−) < −σ.

Lemma 6.6 and the maximum principle are all we need to prove that every
pair with a cylindrical bump admits a barricade. More precisely, we have
the following proposition.

Proposition 6.7

Let (F,J) be a r0-barricade-admissible pair with a cylindrical bump of
slope σ on Br0,ε. Then, (F,J) admits a barricade on Br0,ε.

Proof. Suppose u : R×S1 → D̂ is a Floer trajectory between x± ∈ P(F±).
We only need to study the case where im x− ⊂ D and the case where im x+ ⊂
Db.

Suppose that im x− ⊂ D. We first establish that x+ must lie inside D.
Indeed, if im x+ ⊂ D̂\D, part (1) of Lemma 6.6 assures us thatAF+(x+) > σ

which contradicts the fact that orbits on D̂ \ D must have action in the
interval (−σ,σ) by the construction of the cylindrical bump. Therefore,
im x+ ⊂ D as desired. Now, since im x± ⊂ D, the maximum principle
guarantees that im u ⊂ D.

To finish the proof, we look at the case where im x+ ⊂ Db. Similarly to
the previous case, we prove that x− also lies inside Db. If im x− ⊂ D̂ \Db,
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part 2 of Lemma 6.6 imposes AF−(x−) < −σ, which is again impossible
by construction of the cylindrical bump. Therefore, im x− ⊂ Db and the
maximum principle implies im u ⊂ Db. □

Given a pair (F,J) and σ > 0 small, we can add to F a C∞-small radial bump
function χ with support inside Br0,ε such that (F + χ,J) has a cylindrical
bump of slope σ on Br0,ε. By Proposition 6.7, the perturbed pair will also
admit a barricade on Br0,ε. A second perturbation of the Hamiltonian term
at its ends, under which the barricade survives, allows us to achieve Floer
regularity for the pair. This procedure is carried out carefully in [GT23,
section 9] and yields the following.

Theorem 6.8 • [GT23]

Let F• be a monotone homotopy. Then, there exists a C∞-small per-
turbation F b

• of F• and an almost complex structure J such that the
pairs (F b

• ,J) and (F b
±,J) are Floer-regular and have a barricade on

Br0,ε.

6.2. Decomposition of the Floer cochain complex
Let us investigate what structure barricades impose on the Floer co-chain
complex. Let H ∈ Hr0 and suppose the pair (H,J) admits a barricade on
Br0,ε. For an open subset U ⊂ D̂, denote by C•(U,H) the set of 1-periodic
orbits of H in U . By definition of the differential ∂ on Floer cohomology,
C•(Db,H) is closed under ∂ and it therefore forms a sub-complex of CF•(H).
Moreover, for Dc = D̂ \Db, we also have that

C•(Dc,H) = CF•(H)
C•(Db,H)

is a well defined cochain complex. In terms of vector spaces, we have the
decomposition

CF•(H) ∼= C•(Db,H)⊕ C•(Dc,H).

107



The direct product gives us injections ιHb , ιHc and projections πHb , πHc for
which the diagram

C•(Db, H)

C•(Db,H) CF•(H) C•(Dc,H)

C•(Dc,H)

ιHb

id

0

πH
b

πH
c

0

id

ιHc

commutes and the equation

ιHb ◦ πHb (q) + ιHc ◦ πHc (q) = q

holds for any q ∈ CF•(H). Here, the projection πHc coincides with the
canonical projection

CF•(H) CF•(H)
C•(Db,H)

The differential ∂b on C•(Db) is simply the restriction of the differential ∂ of
CF•(H) on C•(Db). The differential ∂c on C•(Dc) is the quotient complex
differential defined by

∂cπ
H
c (p) = πHc (∂p).

6.2.1. Continuation maps

Let (F•,J) be an r0-barricade-admissible pair that admits a barricade on
Br0,ε. Then, since the continuation map ΦF• : CF•(F+) → CF•(F−) counts
Floer trajectories of F connecting 1-periodic orbits of F+ to 1-periodic orbits
of F−, it restricts, due to the barricade, to a chain map

Φb
F : C•(Db,F+) C•(Db,F−)
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Moreover, in virtue of Lemma 6.10 below, ΦF projects to a chain map

Φc
F : C•(Dc,F+) C•(Dc,F−)

such that the following diagram commutes

CF•(F+) CF•(F−)

C•(Dc, F+) C•(Dc, F−)

ΦF•

π+
b π−

b

Φc
F•

where we write π+
b = πF+

b and π−
b = πF−

b .

6.2.2. Chain homotopies

Let (F±,J) be r0-barricade-admissible pairs that admit cylindrical bumps
of slope σ on Br0,ε such that F+ and F− have the same slope τ+ = τ− at
infinity. Consider the linear homotopy

Fs = F− + b(s)(F+ − F−)

where b : R → [0,1] is a smooth function such that b(s) = 0 for s ≤ −1,
b(s) = 1 for s ≥ 1 and b′(s) > 0 for all s ∈ (−1,1). Denote by F • the
inverse homotopy defined by F s = F−s . For ρ > 1 large, we define the
concatenation F#F • as

(F#F )s =

Fs+ρ for s ≤ 0
F s−ρ for s ≥ 0

.

Using the definition of F• and F •, we can simply write

(F#F )s = F− + bρ(s)(F+ − F−)

for bρ(s) = b(−|s|+ ρ). The homotopy F#F • generates the composition of
continuation homomorphisms ΦF ◦ΦF : CF•(F−) → CF•(F−) which is chain
homotopic to the identity on CF•(F−),

ΦF• ◦ ΦF •
− id− = ∂− ◦Ψ− −Ψ− ◦ ∂−
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for Ψ− : CF•(F−) → CF•−1(F−) and ∂− the differential on CF•(F−). The
chain homotopy Ψ− is built by counting Floer solutions of the homotopy
{Γκ}κ∈[0,1] between F#F • and the constant homotopy F− which is defined
by

Γκs = F− + κbρ(s)(F+ − F−).

For x ∈ P(F−) and y ∈ P(F+), define

MΓ(x,y) =
{
(κ,u) | κ ∈ [0,1], u ∈ M(x,y; Γk•)

}
.

We can perturb Γ with a C∞-small function in order to make it regular
[AD14, Chapter 11]. Now, since the pairs (F±,J) admit cylindrical bumps
of slope σ on Br0,ε, and thus have barricades on Br0,ε, solutions to the
parametric Floer equation for Γκ also admit cylindrical bumps of slope σ on
Br0,ε and have barricades on Br0,ε . To see this, first fix κ ∈ [0,1], We need
to show that Γκ satisfies conditions (1) through (4) of Definition 6.5. For
(1), we have, on ∂Br0,ε × S1 × R,

Γκ = F− + καρ(s)(F+ − F−) = 0 + κbρ(s)(0− 0) = 0.

Condition (2) is automatically satisfied since J is fixed. For condition (3),
we have on ({1} × ∂D)× S1 × R,

∇JΓκ = ∇JF− + καρ(s)(∇JF+ −∇JF−) = σY + καρ(s)(σY − σY ) = σY

and, by the same computation, ∇JΓκ = −σY on ({r0 − ε}× ∂D)×S1 ×R.
Condition (4) is also satisfied since Γκ±∞ = F−. All of this still holds with
regular perturbations of Γ.

Lemma 6.9

Let F−,F+ ∈ Hr0 with same slope at infinity and suppose they both
admit barricades on Br0,ε. Furthermore, suppose that solutions to the
parametric Floer equation for Γκ also admit barricades on Br0,ε. Then,
for any C∞-small perturbation Γ′ of Γ which satisfies P(F ′

±) = P(F±),
Floer trajectories in MΓ′ follow the rules of the barricade on Br0,ε.
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Proof. The proof follows the same ideas as the proof of Proposition 9.21 in
[GT23]. By Gromov compactness, any sequence (κn,un) ∈ MΓ(x−,y+)
of solutions to the parametric Floer equation converges, up to taking a
subsequence, to a broken trajectory (κ,v̄) where v̄ = (v1, . . . ,vk,w,v′1, . . . ,v′ℓ)
connects two orbits x± ∈ P(F±) . The fact that F± both admit a barricade
on Br0,ε assures us that

◦ x− ∈ D =⇒ v̄ ⊂ D

◦ x+ ∈ D =⇒ v̄ ⊂ Db.

Now, consider a sequence of regular homotopies {Γn}n with ends
lims→±∞ Γs,n = Fn± converging to Γ such that P(Fn±) = P(F±) for all n.
Then, the above two implications regarding broken trajectories imply that
every trajectory (κn,u′n) ∈ MΓ′(x−,x+), for x± ∈ P(F±), obey the rules of
the barricade. □

Thus, Ψ− restricts to a map Ψb
− : C•(Db,F−) → C•−1(Db,F−) and by Lemma

6.11 below, we can define its projection Ψc
− : C•(Dc,F−) → C•−1(Dc,F−).

6.2.3. Some technical lemmas

When adapting computations from homology to cohomology, we often have
to rely on quotient complexes instead of sub-complexes. Here are a few
simple results from homological algebra which will be useful in that regard.
Let (A,dA) and (C,dC) be cochain complexes and let B ⊂ A and D ⊂ C be
sub-complexes.

Lemma 6.10
Suppose f : (A,B) → (C,D) is a chain map. Then, there exists a
unique chain map f̄ : A/B → C/D such that the following diagram
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commutes
A C

A/B C/D

f

πB πD

f̄

for πB and πD the canonical projections. It follows that, on cohomo-
logy, we have the following commutative diagram.

H•(A) H•(C)

H•(A/B) H•(C/D)

[f ]

[πB ] [πD]

[f̄ ]

Proof. Define, for all x ∈ A,

f̄(πB(x)) = πD(f(x)).

We first need to show that f̄ is well defined. Suppose x′ = x + b for x ∈ A

and b ∈ B. Then, since f restricts to a map from B to D, there exists d ∈ D

such that f(b) = d and we have

f̄(πB(x′)) = πD(f(x+ b)) = πD(f(x) + d) = πD(f(x)).

Thus, f̄ is well defined.

To prove uniqueness, we simply use the definition of f̄ . Suppose we have
another map ḡ : A/B → C/D which makes the above diagram commute as
well. Then, for all x ∈ A,

f̄(πB(x))− ḡ(πB(x)) = πD(f(x))− πD(f(x)) = 0.

□
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Lemma 6.11
Suppose f : (A,B) → (C,D) and g : (C,D) → (A,B) are chain maps
such that f ◦ g is chain homotopic to the identity

f ◦ g − idC = dC ◦ ψ − ψ ◦ dC

where the chain homotopy is a map ψ : (C,D) → (C,D). Then, f̄ ◦ ḡ :
C/D → C/D is also chain homotopic to the identity.

Proof. Since the chain homotopy ψ : (C,D) → (C,D) is a chain map of
pairs, Lemma 6.10 allows us to define its projection ψ̄ : C/D → C/D.
Thus, for all y ∈ C,

f̄ ◦ ḡ(πD(y))− idC/D(πD(y)) = f̄ ◦ πB(g(y))− πD(idC(y))

= πD(f ◦ g(y))− πD(idC(y))

= πD((dC ◦ ψ − ψ ◦ dC)(y))

= (dC/D ◦ πD ◦ ψ − πD ◦ ψ ◦ dC)(y)

= dC/D ◦ ψ̄(πD(y))− ψ̄ ◦ dC/D(πD(y))

which proves that f̄ ◦ ḡ is chain homotopic to the identity on C/D since any
z ∈ C/D is of the form z = πD(y). □
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Chapter 7

SPECTRAL DIAMETER
AND SYMPLECTIC COHOMOLOGY

7.1. Infinite spectral diameter
In this section we give a proof of Theorem A announced in the introduction.

Theorem A
Let (D,dλ) be a Liouville domain. Then,

diamγ(D) = +∞ ⇐⇒ SH•(D) ̸= 0.

Fix A ∈ (0,∞) \ Spec(∂D,λ). The idea of the proof is to construct a special
admissible Hamiltonian Hδ,A for which c(1,·) is bounded from below by A−ε
for ε a small constant which depends on A. The construction of Hδ,A is
inspired by [CFO10, Proposition 2.5]. Then, we use the fact that c(1,·) ≥ 0
to conclude.

7.1.1. Construction of the Hamiltonian

Fix some r0 > 1. For any δ ∈ (0,1) and σ ∈ (0,T0), we define the Hamiltonian
Hδ,A as follows :

◦ Hδ,A is the constant function A(δ − 1) on Dδ,

◦ Hδ,A(r,x) = A(r − 1) on D \Dδ,



◦ Hδ,A(r,x) = 0 on Dr0 \D

◦ Hδ,A(r,x) = σ(r − r0) on D̂ \Dr0 .

A(δ − 1)

δ 1
r0

r

Hδ,A

Fig. 1. Radial portion of the Hamiltonian Hδ,A.

We add a small perturbation to Hδ,A so that it lies in Hr0 . Denote by hδ,A
the function of one variable for which Hδ,A = hδ,A ◦ r on Dc. If γ is a 1-
periodic orbit of hδ,A inside the level set {r}× ∂D, its action can be written
as

AHδ,A
(γ) = AHδ,A

(r) = rh′δ,A(r)− hδ,A(r).

The 1-periodic orbits of Hδ,A can be classified in three different categories.
Recall that ηA denotes the distance between A and Spec(∂D,α).

(I) Critical points in Dδ with action close to rI := (1− δ)A

(II) Non-constant 1-periodic orbits near {δ}× ∂D with action in a small
neighborhood of the interval

III = [δT0 + (1− δ)A,A− δηA].
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(III) Non-constant 1-periodic orbits near {1}× ∂D with action in a small
neighborhood of the interval

IIII = [T0, A− ηA].

(IV) Critical points in Dr0 \D with action close to rIV := 0 .

Note that there are no non-constant 1-periodic orbits near {r0}× ∂D, since
the slope of the Hamiltonian there ranges from 0 to σ which is less than T0
by assumption.

We now want to construct a Floer complex C•
I,II which will contain the orbits

of type (I) and (II) and another complex C•
III,IV containing orbits of type (III)

and (IV). To that end, pick 0 < δ < 1 small enough so that δA < ηA. Now
choose ε > 0 such that

δA < ε < ηA.

Then, we have the following inequalities :

rIV < IIII < A− ε < rI < I II.

rIV IIII rI III

0 A− ε

T0 ηA − εε− δA δT0

Fig. 2. Distances that separate the action windows under consideration.

As shown in Figure 2, rI, III, IIII and rIV are all separated by distances which
depend only on T0, A, ηA, δ and ε. Thus, we can choose the perturbation
we add to Hδ,A to be small enough so that, in terms of action, we have

(IV) < (III) < A− ε < (I) < (II).
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Therefore, since the Floer differential decreases the action, we can define the
Floer co-chain complexes as

C•
III,IV = CF•

(−∞,A−ε)(Hδ,A), C•
I,II =

CF•(Hδ,A)
C•

III,IV
= CF•

(A−ε,∞)(Hδ,A)

and they yield the Floer cohomology groups

H•(C•
III,IV) = HF•

(−∞,A−ε)(Hδ,A), H•(C•
I,II) = HF•

(A−ε,∞)(Hδ,A).

A quick look at the action windows under consideration informs us that the
above complexes fit into the following short exact sequence

0 C•
III,IV CF•(Hδ,A) C•

I, II 0.
ιA−ε,+∞
−∞ π+∞

−∞,A−ε

which in turn yields an exact triangle in cohomology

HF•(Hδ,A)

H•(C•
III,IV) H•(C•

I,II)

[π+∞
−∞,A−ε

][ιA−ε,+∞
−∞ ]

[+1]

7.1.2. Factoring a map to SH•(D)

We now build maps Ψ and ΨI,II such that the diagram

HF•(Hδ,A) H•(C∗
I,II)

SH•(D)

[π+∞
−∞,A−ε

]

Ψ
ΨI,II (7.1.1)

commutes. We need to construct Ψ so that it coincides with the map jHδ,A
:

HF•(Hδ,A) → SH•(D) (see Equation 3.2.1). In virtue of Theorem 4.16, this
assures us that Ψ is a map of unital algebras.

First, we construct ΨI,II in three steps.
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STEP 1. [Φ1] : H•(C•
I,II) ∼= HF•

(δA−ε,∞)(Hδ,A + A(1− δ)). This isomorphism
follows from a simple shift of A(1− δ) in the Hamiltonian term which trans-
lates to a shift of A(δ − 1) in action (see Figure 3). In what follows, we
denote Ĥδ,A := Hδ,A + A(1− δ).

A(δ − 1) Hδ,A

δ

Ĥδ,A

1 r0
r

Fig. 3. Homotopy from Hδ,A to Ĥδ,A.

For the next steps, we need to define another special family of Hamiltonians.
Given r1 ∈ (0, +∞) and τ ∈ (0,∞) \ Spec(∂D,λ), recall that we define the
Hamiltonian Kr1,τ as follows (see Figure 4).

◦ Kr1,τ is the constant zero function on Dr1 ,

◦ Kr1,τ (x,r) = τ(r − r1) on D̂ \Dr1 .

We add a small perturbation toKr1,τ so that it r1-admissible. The 1-periodic
orbits of Kr1,τ fall in two categories.

(I’) Critical points in Dr1 with action near zero,

(II’) Non-constant 1-periodic orbits near {r1}×∂D with action in a small
neighborhood of the interval

[r1T0, r1τ − r1ητ ].

By the same argument used for Hδ,A, the action windows (I′) and (II′) are
separated if we choose a small enough perturbation.
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Kr1,τ (r)

r1

τ(r − r1)

r

Fig. 4. Radial portion of the Hamiltonian Kr1,τ .

STEP 2. [Φ2] : HF•
(δA−ε,∞)(Ĥδ,A) ∼= HF•(Kδ,A). Consider the homotopy

Fs = (1− b(s))Kδ,A + b(s)Ĥδ,A,

where b : R → [0,1] is a smooth function such that b(s) = 0 for s ≤ −1,
b(s) = 1 for s ≥ 1 and b′(s) > 0 for all s ∈ (−1,1) (see Figure 5). Denote by

ΦF• : CF•(Ĥδ,A) CF•(Kδ,A)

the continuation map generated by F•.

δ 1 r0

Kδ,A

Ĥδ,A

r

Fig. 5. Homotopy from Ĥδ,A to Kδ,A.

Notice that since Hδ,A ⪯ Kδ,A we can restrict the continuation map on the
action window (δA− ε,∞). Thus,

[ΦF• ] : HF•
(δA−ε,∞)(Ĥδ,A) HF•

(δA−ε,∞)(Kδ,A)
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is well defined. Moreover, since δA − ε < 0, Kδ,A has no orbits outside the
action window (δA− ε,∞) and thus

[ι−∞,∞
δA−ε,∞] : HF•

(δA−ε,∞)(Kδ,A) HF•(Kδ,A)

is an isomorphism. We define [Φ2] to be the composition [ι−∞,∞
δA−ε,∞] ◦ [ΦF• ].

STEP 3. Recall from Equation 3.2.1, that we have a natural map

jKδ,A
: HF•(Kδ,A) SH•(D)

We define ΨI,II : H•(C•
I,II) → SH•(D) to be the composition

ΨI,II = jKδ,A
◦ [Φ2] ◦ [Φ1].

The morphism Ψ is built in a similar fashion. We define it as the composition
of the maps

HF•(Hδ,A) HF•(Ĥδ,A)

HF•(Kδ,A) SH•(D)

∼=[Φ′
1]

[Φ′
2]

jKδ,A

Here, the isomorphism [Φ′
1] follows from the fact that both Hδ,A and Ĥδ,A

have the same slope at infinity. We defined [Φ′
2] to be the continuation

map [ΦKδ,AĤδ,A ] . The last map is given, just as in STEP 3, by jKδ,A
:

HF•(Kδ,A) → SH•(D) . By construction, we therefore have

Ψ = jKδ,A
◦ [Φ′

2] ◦ [Φ′
1] = jKδ,A

◦ [ΦKδ,AĤδ,A
] ◦ [Φ′

1] = jHδ,A

as desired.
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Now, we need to prove that Diagram (7.1.1) commutes. Writing the maps
Ψ and ΨI,II explicitly, we have the following diagram:

HF•(Hδ,A) H•(C•
I,II)

HF•(Ĥδ,A) HF∗
(δA−ε,+∞)(Ĥδ,A)

HF•(Kδ,A) HF•(Kδ,A)

SH•(D)

[π+∞,+∞
−∞,A−ε

]

[Φ′
1] [Φ1]

[ΦKδ,AĤδ,A
]

[π+∞,+∞
−∞,δA−ε

]

[Φ2]

id

jKδ,A

(7.1.2)

The top square in Diagram (7.1.2) commutes because, given that Ĥδ,A ≥
Hδ,A, there exists a continuation map from HF•(Hδ,A) ∼= HF∗

(δA−ε,∞)(Hδ,A)
to HF•

(δA−ε,+∞)(Ĥδ,A) where the isomorphism follows from the fact that Hδ,A

has no orbits outside the action window (δA− ε,∞). Now, since the pro-
jection [π+∞,+∞

−∞,δA−ε] commutes with continuation maps (see Diagram (3.1.2)),
the bottom square in Diagram (7.1.2) also commutes. Therefore, we can
conclude that Diagram (7.1.1) commutes.

7.1.3. Spectral invariant and spectral norm of Hδ,A

Recall that, by definition,

c(1,Hδ,A) = inf{ℓ ∈ R | [π+∞,+∞
−∞,ℓ ] ◦ [ιℓ,+∞

−∞,−∞](1Hδ,A
) = 0}

Since Ψ is a morphism of unital algebras, the commutative diagram (7.1.1)
assures us that [π+∞,+∞

−∞,A−ε](1Hδ,A
) ̸= 0 since we assume that SH•(D) ̸= 0.

Thus, from the exact triangle in cohomology induced by [ιA−ε,+∞
−∞,−∞ ] and
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[π+∞,+∞
−∞,A−ε], we have 1Hδ,A

/∈ im[ιA−ε,+∞
−∞,−∞ ] and therefore,

c(1,Hδ,A) ≥ A− ε.

Now, we turn our attention to the spectral norm γ(Hδ,A). We know from
Lemma B that c(1,Hδ,A),c(1,Hδ,A) ≥ 0. It thus follows from the previous
inequality that

γ(Hδ,A) = c(1,Hδ,A) + c(1,Hδ,A) ≥ A− ε

as desired. This completes the proof.

7.2. Positive spectral invariants
We give a proof of Lemma B.

Lemma B
Let H be a compactly supported Hamiltonian on a Liouville domain
(D,dλ). Then,

c(1, H) ≥ 0.

This result relies on the decomposition of the Floer complex induced by the
Ganor-Tanny barricade discussed in Chapter 6. We expect that Lemma B
could also be proven using Poincaré duality between filtered Floer cohomo-
logy and filtered Floer homology (as in [CO18, Section 3]) and Lemma 4.1
of [GT23].

Let H ∈ Hr0 with slope 0 < τH < T0. Consider an homotopy F• from
F+ = Kr0,τH (see Figure 4) to F− = H . There exists a small perturbation
f• of F• and an almost complex structure J such that the pairs (f•,J) and
(f±,J) admit a barricade on Br0,ε for ε > 0 small enough. Fix δ > 0. The
construction of Theorem 6.1 allows us to choose J time independent [GT23,
Remark 3.7] and f such that

−δ ≤
∫ 1

0
min

D̂\(r0,+∞)×∂D
(f− −H)dt ≤ δ.
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We may assume further that f+ has a local minimum point p ∈ Dc =
D̂ \ Db, since f+ is C2-small there. It follows from Lemma 3.1 that 1f+ =
[p] ∈ HF•(f+) is the image of the unit eD ∈ H•(D) under the isomorphism
Φf+ : H•(D) → HF•(f+). Moreover, since f+ and f− have the same slope
at infinity, Lemma 3.2 assures us that the isomorphism [Φf• ] : HF•(f+) →
HF•(f−) induced by the continuation morphism Φf• : CF•(f+) → CF•(f−)
preserves the unit. To summarize, we have

Φf+(eD) = [p] = 1f+ and [Φf•(p)] = [Φf• ](1f+) = 1f− .

By the continuity of spectral invariants, we know that

c(1,H)− c(1,f−) ≥
∫ 1

0
min
Dr0

(f− −H)dt.

Therefore, since f− is chosen to be arbitrarily close to H, we have

c(1,H) ≥ −δ + c(1,f−).

To complete the proof, it suffices to show that c(1,f−) ≥ −kδ for k>0 inde-
pendent of f−. However, the definition of spectral invariants guarantees the
existence of q ∈ CF•(f−) cohomologous to 1 for which c(1,f−) ≥ Af−(q)− δ.
We thus only need to prove that Af−(q) ≥ −δ. In the case where q is a
combination q1 + · · ·+ qk of orbits, the action of q is defined as

Af−(q) = max
i

Af−(qi).

Recall from Section 6.2 that the barricade construction assures that we have,
in terms of vector spaces, the decomposition

CF•(f±) ∼= C•(Db,f±)⊕ C•(Dc, f±)

with inclusions and projections respectively given by

ι±♥ : C•(D♥,f±) → CF•(f±) and π±
♥ : CF•(f±) → C•(D♥,f±)

for ♥ ∈ {b, c}. Moreover, Floer trajectories starting in Db must have ends
in Db and Floer trajectories starting in Dc can have ends in Db and Dc.
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Thus,

Φf•(p) = pb + pc and q = pb + pc + ∂(rb + rc)

for pb,rb ∈ im i−b and pc,rc ∈ im ι−c . Furthermore,

∂(rb) = rbb and ∂(rc) = rcb + rcc

where rbb,rcb ∈ im ι−b and rcc ∈ im ι−c . See Figure 6 for an illustration of the
Floer trajectories under consideration here.

Db Dc

rbb

∂

rb
rc

∂
rcb

∂

rcc

p

Φf•

pc

pb
Φf•

Fig. 6. The possible trajectories for the differential of rb, rc and the conti-
nuation map applied to p according to the rules of the barricade.

Notice that since f− is C2-small onDc, Af−(pc+rcc) ≥ −δ. Thus, if pc+rcc ̸=
0, we have

Af−(q) = Af−(pb + pc + rbb + rcb + rcc) ≥ Af−(pc + rcc) ≥ −δ.

We now prove that pc + rcc ̸= 0. This is equivalent to showing that the
class [π−

c (pc)] in H•(Dc,f−) is nonzero. Indeed, if pc + rcc = 0, we have by
definition of rcc, pc = −∂rc and thus

[π−
c (pc)] = [π−

c (−∂rc)] = [−∂cπ−
c (rc)] = 0.

Denote by Φf̄• : CF•(f−) → CF•(f+) the continuation map generated by
the inverse homotopy f s = f−s. We know that both Φf̄• ◦Φf• and Φf• ◦Φf̄•
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are chain homotopic to the identity :

Φf̄• ◦ Φf• − id+ = ∂+ ◦Ψ+ −Ψ+ ◦ ∂+
Φf• ◦ Φf̄• − id− = ∂− ◦Ψ− −Ψ− ◦ ∂−

for the differentials ∂± : CF•(f±) → CF•+1(f±) and chain homotopies Ψ± :
CF•(f±) → CF•−1(f±). (In fact, for our purpose here, we only need the
first homotopy relation.) Since Ψ± also obey the rules of the barricade by
Lemma 6.9, the composition of the projections Φc

f•
: C•(Dc,f+) → C•(Dc,f−)

and Φc
f̄•

: C•(Dc,f−) → C•(Dc,f+) are chain homotopic to the identity on
C•(Dc,f+) by Lemma 6.11. Therefore, on cohomology, the morphism

[Φc
f̄•
◦ Φc

f• ] : H
•(Dc,f+) → H•(Dc,f+)

is given by the identity. Moreover, recall that by definition, p ∈ Dc which
guarantees that, as a cycle, p ∈ im ι+c and since [p] = 1f+ , we have [π+

c (p)] ̸= 0
. Therefore,

[π−
c (pc)] = [Φc

f• ◦ π
+
c (p)] = [Φc

f• ]([π
+
c (p)]) ̸= 0.

This concludes the proof.

7.3. Computing spectral invariants.
Lemma C allows one to compute spectral invariants of negative Hamiltonians
which are constant on the skeleton of a Liouville domain with non-vanishing
symplectic cohomology.

Lemma C
Suppose (D,λ) is a Liouville domain such that SH•(D) ̸= 0. Let H be
a compactly supported autonomous Hamiltonian on D such that

H
∣∣∣
Sk(D)

= −A and − A ≤ H
∣∣∣
D
≤ 0

for a constant A > 0. Then

c(1,H) = A.
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The proof of Lemma C has three main steps.

STEP 1: We show, using the continuity of spectral invariants, that
when δ → 0, the spectral invariant with respect to the unit of the
Hamiltonian Hδ,A is given the value A of Hδ,A on Sk(D).

STEP 2: Using step 1, the monotonicity of spectral invariants and the
symplectic contraction principle of Lemma 5.5, we prove Lemma C
for negative Hamiltonians H which are constant in a neighborhood
of Sk(D).

STEP 3: We construct an homotopy from H to H0,δ and prove
Lemma 5.5 in full generality using the continuity of spectral
invariants.

STEP 1. Let 0 < δ < 1 be small enough so that

δA < δA+ δηA < ηA.

Then, following the proof of Theorem A with ε = δ(A+ ηA) , we have that

c(1,Hδ,A) ≥ A− δ(A+ ηA).

Notice that Hδ,A converges uniformly as δ → 0 to the continuous function
H0,A (see Figure 7). Then, by continuity of spectral invariants and the
previous equation, we have

c(1,H0,A) = lim
δ→0

c(1,Hδ,A) ≥ lim
δ→0

(A− δ(A+ ηA)) = A.

Moreover, since H0,A ≥ −A, continuity of spectral invariants yields

c(1,H0,A) ≤ max
x∈D

−H0,A = A

which allows us to conclude that c(1,H0,A) = A.

STEP 2. We prove the Lemma for Hamiltonians which are constant on
an open neighborhood of the Skeleton of D. Consider an autonomous Ha-
miltonian H ∈ C(D) such that H

∣∣∣
V
= −A and −A ≤ H ≤ 0 for an open
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−A

A(δ − 1)

H0,A

1δ

r0
r

Fig. 7. The continuous Hamiltonian H0,A.

neighborhood V of Sk(D) and a constant A > 0. The last condition on H
allows us to use continuity of spectral invariance to conclude that

c(1,H) ≤ A. (7.3.1)

All we need to do now is prove that A bounds c(1,H) from below.

Define F ∈ C(D) to be the continuous autonomous Hamiltonian that agrees
with H0,A/r′ on D for some 0 < r′ < 1. Since H

∣∣∣
V
= −A , we can choose

r′ so that the r′-contraction Fr′ of F under the Liouville flow (see Equation
5.1.7 and Figure 8), has support in V and −A ≤ Fr′ ≤ 0. Therefore,

Fr′(x) ≥ H(x), ∀x ∈ D. (7.3.2)

From the contraction principle stated in Lemma 5.5 and the computation of
c(1,H0,A) above, we have

c(1,Fr′) = r′c(1,F ) = r′c(1,H0,A/r′) = A.

This computation and Equation 7.3.2 yield, by virtue of the monoticity of
spectral invariants, the lower bound A = c(1,Fr′) ≤ c(1,H) as desired. In
conjunction with Equation 7.3.1, we conclude that c(1,H) = A.
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V Vr′ r′

Fr′ Fr′

F
H

r r

−A −A

−A/r′

Fig. 8. The Hamiltonians F , Fr′ and H.

STEP 3. Now, we prove the Lemma in general. Suppose H
∣∣∣
Sk(D)

= −A
and −A ≤ H ≤ 0. For any ε ∈ (0,1), there exists a compactly supported
HamiltonianHε such thatHε

∣∣∣
Vε

= −A for an open neighborhood Vε of Sk(D)
and Hε ≤ H everywhere. Indeed, define Hε as follows : Hε

∣∣∣
Sk(D)

= −A,

Hε

∣∣∣
Dε\Sk(D)

= bε(r)H + (1− bε(r))(−A)

where bε : (0,1) → R is such that

◦ bε
∣∣∣
(0,ε]

≡ 0,

◦ b′ε
∣∣∣
(ε,2ε/3)

> 0,

◦ bε
∣∣∣
(2ε/3,1)

≡ 1.

Then, Hε satisfies the required conditions and converges uniformly to H

as ε → 0. We have c(1,Hε) = A by the previous computation and by
continuity of spectral invariants, we can conclude that

c(1,H) = c(1,Hε) = A.

This completes the proof.
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7.4. An isometric group embedding
The computation of spectral invariants carried out in Section 7.3 can be used
to construct an explicit isometric group embedding of R into Hamc(D).

Theorem D
Suppose SH•(D) ̸= 0. There exists an isometric group embedding of R
equipped with the standard Euclidean metric dstd into (Hamc(D),dγ).

Let H ∈ C(D) be an autonomous Hamiltonian such that H
∣∣∣
V

= −1 and
−1 ≤ H ≤ 0 everywhere for an open neighborhood V of Sk(D).

Define ι : R → Hamc(D) as

ι(s) = ϕsH ,

where ϕsH ∈ Hamc(D) is the time-one map associated to sH. We claim
that ι is the desired embedding.

We first bound dγ(ι(s),ι(s′)) from above. If F ∈ C(D), then γ(ϕF ) ≤ ∥F∥.
Moreover, since H is autonomous, sH#s′H = (s− s′)H. Therefore,

dγ(ι(s),ι(s′)) = γ(ι(s)ι(s′)−1) ≤ ∥(s− s′)H∥ = |s− s′|.

Now, we bound dγ(ι(s),ι(s′)) from below. Since dγ is symmetric, we can
assume that s ≥ s′. Then, by Lemma B and Lemma C, we have

dγ(ι(s),ι(s′)) ≥ c(1,(s− s′)H) = s− s′,

which completes the proof.
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