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Résumé

L’avènement de l’apprentissage profond a permis à l’apprentissage automatique d’ex-
celler dans le traitement d’images et de texte. Donnant lieu à de nombreux succès dans
les domaines d’applications tels que la vision par ordinateur ou le traitement du langage
naturel. Cependant, il demeure un grand nombre de problèmes d’intérêt dont les données
d’entrées ne peuvent être exprimées sous l’un de ces deux formats sans perte d’informations
potentiellement cruciales pour leur résolution. C’est dans l’optique de répondre à ce
besoin qu’a été développée la branche de l’apprentissage profond géométrique (GDL),
qui s’intéresse aux espaces de représentations plus générales, mieux adaptées aux données
dont la structure sous-jacente ne correspond pas au format de chaîne de caractères
unidimensionnel (texte) ou bidimensionnel (images).

Dans cette thèse, nous nous concentrerons plus particulièrement sur les graphes. Les
graphes sont des structures de données omniprésentes, sous-jacentes à pratiquement toutes
les tâches d’intérêt, y compris celles portant sur les données naturelles (par exemple les
molécules), les relations entre entités (par exemple les réseaux de transport et les placements
de puces), ou encore la liaison de concepts dans les processus de raisonnement (par
exemple les algorithmes et autres constructions théoriques).

Alors que les architectures modernes de réseaux de neurones de graphes (GNNs)
dits expressifs peuvent obtenir des résultats impressionnants sur des benchmarks comme
susmentionnés, leur application pratique est toujours en proie à de nombreux problèmes et
lacunes, que cette thèse abordera. Les considérations issues de ces applications préparerons
le terrain pour les chapitres suivants, qui se concentreront sur la résolution des limites des
réseaux de neurones de graphes en proposant de nouveaux algorithmes d’apprentissage
de graphes. Tout d’abord, nous porterons notre attention sur l’amélioration des réseaux de
neurones de graphes pour les données qui nécessitent des interactions à longue portée, en
construisant des modèles généraux pour compléter leur graphe de calcul. Viennent ensuite
les réseaux de neurones de graphes pour les données hétérophiles, où les arêtes ont tendance
à connecter des nœuds de différentes classes ; dans ce cas, nous proposerons une modification
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particulière du graphe de calcul destinée à améliorer l’homophilie atténue le problème.
Dans un troisième temps, nous tirerons parti d’une caractéristique avantageuse des réseaux
de neurones de graphes - leur alignement avec la programmation dynamique. Elle permet
aux réseaux de neurones de graphes d’exécuter des algorithmes, sur la base desquels nous
proposons une nouvelle classe de planificateurs implicites pour la prise de décision. Enfin,
nous capitalisons sur l’utilité de l’apprentissage profond géométrique dans l’apprentissage
par renforcement et l’étendrons au-delà des GNNs, en tirant parti des réseaux de neurones
à rotation équivariante dans les agents basés sur des modèles.

Mots-clés : Apprentissage profond, Apprentissage de la représentation de
graphes, Oversquashing, Hétérophilie, Raisonnement algorithmique, Apprentis-
sage par renforcement, Interactions moléculaires.
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Abstract

Since the deep learning revolution, machine learning has excelled at tasks based on
images and text, many successes being possible under the umbrella of the computer vision
and natural language processing fields. However, much remains that cannot be expressed
in these forms without losing information. For these cases, the field of geometric deep
learning was developed, covering the space of more general representations, for data whose
underlying structure doesn’t match the single-dimensional string of characters (text) or
2-D shape (images) format.

In this thesis, I will particularly focus on graphs. Graphs are ubiquitous data structures
underlying virtually all tasks of interest, including natural inputs such as molecules, entity
relations for example transportation networks and chip placements, or concept linking in
reasoning processes, including algorithms and other theoretical constructs.

While modern expressive graph neural network architectures can achieve impressive
results on benchmarks like these, their practical application is still plagued with many
issues and shortcomings, which this thesis will address. The considerations from these
applications will set the scene for the following chapters, which focus on tackling the
limitations of graph neural networks by proposing new graph learning algorithms. Firstly,
I focus on improving graph neural networks for data that requires long-range interactions
by building general templates to complement their computation graph. This is followed by
graph neural networks for heterophilic data, where the edges tend to connect nodes from
different classes; in this case, a specialised modification of the computation graph meant
to improve homophily alleviates the problem. In the third article, I leverage a strength of
graph neural networks – their alignment with dynamic programming. This enables graph
neural networks to execute algorithms, based on which I propose a new class of implicit
planners for decision making. Lastly, I capitalise on the utility of geometric deep learning in
reinforcement learning and extend it beyond GNNs, leveraging rotation-equivariant neural
networks in model-based agents.
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Introduction

Deep learning focuses on learning functions that are high-dimensional in nature, making
it vulnerable to the curse of dimensionality. However, real-world tasks are rarely adversarial:
they usually come with geometric regularities stemming from the underlying low-dimensional
processes and structure of the world. These regularities can then be used to make high-
dimensional problems more tractable. Accordingly, restricting the space of functions of
interest to deep learning to the functions that incorporate the geometric regularities of the
real world can be beneficial to solving downstream tasks. For example, geometric regularities
such as translation equivariance in CNNs [10] and time warping invariance in RNNs [11] for
images and text respectively have been successfully exploited.

For the purpose of this thesis, we will be looking at two types of regularities that have been
quickly increasing in use over the last years: permutation symmetries, in particular within
graph neural networks (GNNs), in Chapters 2, 4, and 6 1, and rotation symmetries in Chapter
8. While there are many instantiations of GNN architectures, we will predominantly be
focusing on the message passing paradigm [13–15], where node representations are updated
based on messages received from their neighbours.

Often, especially in the case of graph representation learning, the graph given as input
data is also used as the computation graph over which messages are passed. Formally, we
can describe this as a framework which Encodes the input, Processes it and the finally
Decodes the predicted solution to the problem under study, and it has proved sufficient in
many cases [16]. In the coming chapters, we consider the cases where the natural input does
not offer the exact computation graph over which the GNN layer should be applied – we
will show how more potential can be found if we consider an extra step, which we will call
Modulating the input before processing it, by directly addressing assumptions about the
input graph. This Encode-Modulate-Process-Decode framework is portrayed in Figure 1.

More precisely, in the first core chapter we study the performance of GNNs on graphs
where labels are assumed to be influenced by interactions between nodes that are far apart.
Long-range interactions, especially when the input graph contains bottlenecks, may require

1. We note that Transformers, the models behind the many successes of Large Language Models, also
belong to this class [12].
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Figure 1 – High-level overview of the proposed framework. The encoder-decoder framework
is a general machine learning paradigm, with encode-process-decode being commonly used
as a way to process graph-structured inputs. Our proposal instead focuses on the graph G
underlying the task. For any task, we need to define the functions of 1) the modulator, whose
purpose is to build the graph G and 2) the processor, which derives the auxiliary measures
to be used by the decoder.

GNN layers to summarise information from an exponentially increasing receptive field, lead-
ing to the problem known as over-squashing [4]. Due to the fact that most GNNs aggregate
information in a radius increasing by one with every stacked message passing layer, the input
graph does not adequately align with the required computation graph, if long-range depen-
dencies are required. To tackle this, we propose using expander graphs to complement the
input graph to form a computation graph without long-range dependencies. This is made
possible by the fact that expander graphs are mathematical objects with low diameter by
definition, allowing global diffusion of information using logarithmically many layers.

In the second core chapter, we tackle GNNs’ low performance on heterophilic data. In
heterophilic graphs, a large proportion of nodes connected by edges do not share the same
label, making it highly challenging to trivially extract the “salient” neighbours for down-
stream prediction tasks. However, unlike in the previous case, there are no known template
graphs that can be composed with input graphs to improve the measure of interest (spectral
gap in the case of bottlenecks, homophily in this case). Therefore, we use weak classifiers to
determine which edges should be added to the input graph to obtain a computation graph
with improved homophily.

For the third core chapter, we demonstrate how GNNs can find useful application beyond
supervised learning tasks on graphs, by deploying them on general-purpose reinforcement
learning (RL) problems. To enable this application, we leverage a strength of GNNs – their
alignment with dynamic programming, which recommends them as a possible class of neural
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networks to learn to imitate algorithms. This becomes particularly relevant in the case of
RL tasks requiring planning—where the network needs to demonstrate capability to reason
about the consequences of taking sequences of actions, before ever acting in the environment.
Planning is an area of RL which is highly amenable to classical algorithms: for example, the
value iteration algorithm provably plans optimally if the underlying RL environment is fixed
and known. However, as in most environments of interest this is not the case, we use self-
supervised transition models to construct relevant environment graphs to provide to a GNN,
which then acts as an implicit planning mechanism. We can equip this GNN with planning
capabilities by pre-training it to follow value iteration execution traces, over large quantities
of synthetically generated environments—for which the dynamics are assumed known.

Lastly, in the fourth core chapter, we broaden the usage of geometric deep learning models
in reinforcement learning. Specifically, while in the third chapter we leveraged GNNs—a
permutation-equivariant model, which is among the most permissive geometries to optimise
for—in RL tasks, here we focus on RL environments that exhibit additional symmetries,
specifically, environments requiring rotational equivariance. Informally, an RL environment is
rotationally equivariant if taking a particular action in the original environment is equivalent
to taking a rotated action in the equally-rotated environment. To leverage these rotational
symmetries in both the state and action space, we modulate the input by applying relevant
elements of the rotation group to the input. Equivariant models constructed in this way can
then be used as a backbone for state-of-the-art RL agents; in this case we focused on the
popular MuZero agent. This leads to improving the empirical data efficiency of MuZero, as
well as being able to provide theoretical guarantees that, as long as all the neural networks
used by MuZero are equivariant, all of the computations and outputs of the MuZero algorithm
will also be equivariant.

Before presenting the individual articles of the core chapters, we will present the necessary
background knowledge in Chapter 1. This will span foundational material on diverse areas
of deep learning: graph representation learning [17], geometric deep learning [18], neural
algorithmic reasoning [19], reinforcement learning [20] and model-based planning [21]—all
of which are required for easier comprehension of the core content in the main chapters
of the thesis. Further, the Background chapter will also illuminate the need for modulat-
ing input structures, by presenting several case studies on GNNs on real-world biochemical
tasks, which I have collaborated on before and during the period of my PhD. Even though
such tasks are defined over molecular graphs—a “gold-standard” structure, known and given
upfront—we illustrate that careful modulation of their computation graph can yield measur-
able improvements to downstream model performance. Perhaps, with hindsight, this comes
as no surprise: chemical structures are often merely an approximation to the underlying
physics, wherein all pairs of atoms can interact—not only ones linked by a chemical bond.
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Once the foundations and motivations are ascertained, the core contributions of the thesis
are presented in pairs of chapters. Namely, each of the core articles is accompanied by a “pro-
logue” chapter, contextualising the article’s contributions in past and present related work,
and describing the specific mechanism of computation graph modulation employed within
the article. Chapters 2–3 cover Expander Graph Propagation [22, EGP], a method for ame-
liorating long-range dependencies in computational graphs by leveraging expander graphs
as propagation templates. Chapters 4–5 cover Evolving Computation Graphs [23, ECG],
an approach of reducing the heterophily in computational graphs by leveraging embeddings
from weak classifiers. Chapters 6–7 cover eXecuted Latent Value Iteration Networks [24,
XLVIN], a mechanism for deploying algorithmically-aligned GNNs in reinforcement learn-
ing tasks, using self-supervised transition models to modulate the computation graphs used
by the GNN. Lastly, Chapters 8–9 cover Equivariant MuZero [25, EqMuZero], a frame-
work for model-based planning that explicitly incorporates environment symmetries into the
computational graph of the MuZero algorithm, for provable and empirical improvements to
low-data efficiency.

Finally, Chapter 10 offers concluding remarks, and identifies fruitful avenues for further
work, which I am aiming to pursue in the future.
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Chapter 1

Background and Motivation

This chapter introduces the necessary background for tackling the problems presented in
the rest of the thesis and understanding the solutions proposed, as well as the motivation
behind them. We will start by describing graph representation learning, focusing on graph
neural networks and a few of their most popular variants, which often constitute the baselines
in my articles. This will be followed by a discussion of the expressive power of GNNs and
the cases where they struggle, including under-reaching and over-smoothing, but also over-
squashing, tackled in Chapter 2, and heterophilic data, the focus of Chapter 4, followed
by a use case of GNNs’ advantages: learning to execute algorithms, a paradigm known
as Neural Algorithmic Reasoning, the basis of Chapter 6. To better contextualise GNNs
and to prepare the background necessary for the last chapter, Chapter 8, we introduce
geometric deep learning, focusing on symmetry groups relevant to the articles (permutation
and rotation groups), and the notion of equivariance. As the last two articles move from the
area of supervised learning to reinforcement learning, we introduce RL and Markov Decision
Processes, together with the relevant background of model-free and model-based agents.
This chapter concludes with a few motivational tasks – examples of GNNs for real-world
applications, giving practical examples of some of the theoretical insights described above.

1.1. Graph Representation Learning
In this section, we introduce the generic setup of learning representations on graphs. We

denote graphs by G = (V,E), where V is the set of nodes and E is the set of edges, and we
denote by (u,v) ∈ E an edge that connects nodes u and v. For the datasets considered in this
thesis, we can assume that the input graphs are provided to the GNNs via two inputs: the
node feature matrix, X ∈ R|V |×k (such that xu ∈ Rk are the input features of node u ∈ V ),
and the adjacency matrix, A ∈ {0, 1}|V |×|V |, such that auv indicates whether nodes u and v

are connected by an edge. We further assume the graph is undirected; that is, A = A⊤. We



Table 1 – Summary of notation introduced in this section.

Symbol Definition

GNNs

G the graph
V the set of nodes/vertices
E the set of edges
A the adjacency matrix
X the node feature matrix
Nk(u) the k-hop neighbourhood of node u

RL

S the state space
A the action space
P the transition function
R the reward function
π the policy function
γ the discount factor
Gt the return at time t
τ trajectory of the form (s0, a0, r1, s1, a1, r2, ...)

also use du = ∑
v∈V auv (= ∑

v∈V avu) to denote the degree of node u and Nk(u) to refer to
the k-hop neighbourhood of node u.

1.1.1. Graph neural networks

We will describe GNNs using the Encode-Process-Decode pipeline [16].
Encode. The input node features X are initially transformed using an encoder to obtain
the inputs to the GNN layer. This is usually denoted as h(0)

u = enc(xu), with h(l)
u being the

representation of the node u after applying l GNN layers. The encoder, enc, can be any
kind of neural network, such as a multi-layer perceptron.
Process. The GNN layers following the encoder are often referred to as the “processor
network”. Each of these layers performs a round of message passing [13]: propagating the
information over the graph’s edges. Under this framework, we can divide computing node
representations after layer l in two stages – computing the messages using a function M and
aggregating them in a permutation invariant manner, using an aggregation function ⊕ (such
as sum, max or average):

m(l)
u =

⊕
v∈N1(u)

M (l)(h(l)
u ,h(l)

v , e(l)
uv) (1.1.1)

and using the computed messages to update the node representations using a function U :

h(l+1)
u = U (l)(h(l)

u ,m(l)
u ) (1.1.2)

Equivalently, taking ψ = M and ϕ = U , one step layer of a GNN can be summarised as
follows, as popularised by [18]:
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h(l)
u = ϕ(l)

h(l−1)
u ,

⊕
(u,v)∈E

ψ(l)
(
h(l−1)

u ,h(l−1)
v

) (1.1.3)

where, by definition, we set h(0)
u = xu. Leveraging different (potentially learnable) functions

for ϕ(l) : Rk × Rm → Rk′ , ⊕ : bag(Rm) → Rm and ψ(l) : Rk × Rk → Rm then recovers
well-known GNN architectures.

Examples, where ψ(l) has a specialised form, include:
◦ GCN [14]: ψ(l)(xu,xv) = βuvω

(l)(xv), with βuv ∈ R being a constant based on A
◦ Chebyshev Networks [26]: ψ(l)(xu,xv) = βuvω

(l)(xv), with βuv ∈ R being a constant
based on the Chebyshev polynomials of the Laplacian of A
◦ GAT [15]: ψ(l)(xu,xv) = α(l)(xu,xv)ω(l)(xv) with α(l) : Rk×Rk → R being a (softmax-

normalised) self-attention mechanism.
◦ GatedGCN [27]: ψ(l)(xu,xv) = η(l)(xu,xv) ⊙ ω(l)(xv), where η(l) : Rk × Rk → Rk′

+

is an edge gating mechanism, and ⊙ is the Hadamard product. Later iterations of
GatedGCN [28, 29] also maintain the gating vectors as edge features, and incorporate
an explicit residual connection [30] between them.
◦ GIN [1]: ψ(l)(xu,xv) = xv. GINs have been deliberately designed as maximally-

expressive GNNs with the simplest possible message function, delegating all compu-
tations to ϕ(l). We will study GINs’ expressiveness in more detail in the next section.

Decode. Once the processor has been iterated for a desirable number of steps, T , we require
appropriate decoder networks to obtain final model predictions. Assuming we only updated
node features to h(T )

u , we can obtain node-, edge-, or graph-level predictions as follows:

yu = decnode
(
h(T )

u

)
(1.1.4)

yuv = decedge
(
h(T )

u ,h(T )
v , e(T )

uv

)
(1.1.5)

yG = decgraph

(⊕
u∈V

h(T )
u

)
(1.1.6)

These will then be compared with the ground-truth labels, computing a loss function whose
gradients are used to optimise the GNN parameters. The decoder networks, dec, can be
any kind of neural network, such as a multi-layer perceptron. Section 1.5 discusses in more
depth the form of the decoder, depending on the given task.

1.1.2. Expressive power of graph neural networks

Expressive power of graph neural networks has been increasingly studied in recent years,
from various angles. For example, one can establish GNNs’ capacity for distinguishing
non-isomorphic graphs, often relative to the Weisfeiler-Leman graph isomorphism test
[31]. Alternately, one can quantify the extent to which various GNNs are vulnerable to
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pathological effects, such as over-smoothing [32], under-reaching [33] and over-squashing [4].
Lastly, GNNs have often been studied under an algorithmic alignment lens [1], quantifying
their level of correspondence to classical algorithms. We will briefly describe each of these
approaches in the following sections.

Weisfeiler-Leman (WL) test. WL tests if two graphs can be mapped to each other, while
preserving their structure – a property named graph isomorphism, for which the following

two graphs can provide an example: . While there is currently no known
solution for the graph isomorphism problem in polynomial time, the WL test is a compu-
tationally efficient way of testing it. WL provides a necessary but insufficient condition for
isomorphism – if the outcome of the WL test is that the graphs are non-isomorphic, then
that is the correct answer, while if the test succeeds, it could be that the pair is isomorphic,
but not necessarily. The test perform iterative node coloring, starting by initialising each
node u with the same color c(0)

u = C, followed by repeatedly aggregating the labels of the
node c(l)

u and of its neighbors’ labels c(l)
v for v ∈ N1(u) and injectively hashing this multiset

of labels to obtain its new label c(l+1)
u .

The WL test provides a way to characterize the power of GNNs – specifically, a GNN
is equally powerful to the WL test if it can distinguish between the same pairs of graphs
that the WL test can distinguish. In Xu et al. [1], it is shown that aggregators such as

mean and max cannot distinguish between simple graphs such as u u′

and, consequently, that GNNs such as GCN and GraphSAGE are not as powerful as WL.
Xu et al. then propose the Graph Isomorphism Network (GIN), which is equally expressive
to the WL test, and provably also the most expressive GNN over featureless graphs:

h(l)
u = ϕl

(1 + ϵ(l))h(l−1)
u +

∑
v∈N1(u)

h(l−1)
v

 (1.1.7)

where ϵ is a learnt or fixed scalar. The GIN is also the main baseline in Chapter 2.
Under-reaching. The number of GNN layers dictates what is the maximum distance across
which nodes can communicate – for a GNN with k layers, node u will send and receive infor-
mation to/from nodes that are at most k hops away. When the task depends on interaction
that are across larger distances than the number of GNN layers, the GNN will suffer from
under-reaching [33], and will be unable to complete the task.
Over-smoothing. While having too few layers is a problem as the GNN doesn’t model
the long range interactions the task depends on, increasing the number of layers can also be
problematic for GNN learning. With more layers, due to repeated aggregation, the nodes can
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Figure 2 – Diagram of a homophilic graph (left) and a heterophilic graph (right). Node
colours represent classes, and edges are coloured blue if they connect nodes of the same class,
and red otherwise. Homophily (edges mostly blue) often arises in the presence of community
structures; for example, when classifying documents in a citation network, documents with
similar topics will tend to cite one another more frequently than documents with different
topics. Heterophily (edges mostly red), instead, can arise if the graph is misaligned to the
task, or if the network has adversarial actors; for example, in a fraud detection setting,
the fraudulent actors are very rare, and will focus on creating many more connections with
legitimate nodes than with other fraudsters, to avoid detection.

obtain indistinguishable representations leading to decreasing performance, a phenomenon
called over-smoothing [32, 34]. For example, if we consider blue and green to be the labels of

the nodes in

u v

, mixing the features of a node and its neighbours can initially
lead to all blue/green nodes being classified correctly, but once the number of GNN layers
increases, nodes across clusters will exchange information, leading to nodes having the same
representations regardless of which cluster they belong to. Over-smoothing is the main
limiting factor towards building very deep GNNs.
Bottlenecks and Over-squashing. Another possible limitation of GNNs is their inability
to learn long-range interactions when the graph has bottlenecks, as the one we portray in

Chapter 2: . In this case, the red edge—linking the two cliques together—
will be under enormous pressure in order to allow nodes to communicate across the cliques.
Specifically, on certain highly-bottlenecked graphs (such as trees), nodes may need to sum-
marise exponentially increasing amounts of information into fixed-size vectors. This effect
has been commonly denoted as over-squashing of information [4], and may prevent GNNs
from achieving good performance even on their training data.
Heterophilic graphs. Lastly, GNNs have an implicit assumption that neighbouring nodes
will tend to reinforce each other’s representations for downstream prediction tasks—which
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Figure 3 – Picture from Xu et al. [6] indicating the alignment between Graph Neural
Networks and Bellman-Ford, a dynamic programming algorithm for finding shortest paths.

motivates repeated aggregation over neighbourhoods. In node classification tasks, this carries
the implication that nodes tend to be connected by an edge only if they belong to the same
class, and thus their representations should be close. GNNs, accordingly, struggle to perform
well when this assumption does not hold; i.e., on heterophilic data, such as the graph in
Figure 2. Certain architectural changes have been proposed to tackle this issue, such as
separately modelling the self- and neighbourhood information [35]:

h(l)
u = W(l)

selfϕ
(l)
1

(
h(l−1)

u

)
+ W(l)

aggϕ
(l)
2

 ⊕
(u,v)∈E

ψ(l)(h(l−1)
u ,h(l−1)

v )
 (1.1.8)

where the self-connection allows the model to apply specific focus to the receiving node, and
hence apply stronger forgetting to the neighbourhood messages if they prove distracting.

In Chapter 4, we will take a complementary approach – modifying the computation graph
by leveraging weak classifiers, instead of modifying the GNN architecture, in order to reduce
the heterophily in the input graph.

1.2. Neural Algorithmic Reasoning
Neural Algorithmic Reasoning (NAR) [19] is a paradigm that aims to combine neural

networks with algorithms to take advantage of their complementary benefits. Neural
networks work on raw, possibly noisy inputs and can be used across different tasks,
but to achieve this they require large amounts of data, while remaining unreliable when
extrapolating and lacking interpretability. On the other hand, algorithms are not robust
to task variations and require inputs to be in a specific format, but once that condition is
met, they can trivially generalise to inputs of different scales while maintaining guaranteed
correctness and interpretability. Overall, the idea of NAR is to have neural networks learn
to execute algorithmic computation, so that we can leverage the robust priors of algorithms
if we know our target might depend on that algorithm’s operations.
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Graph Neural Networks for Dynamic Programming. Dynamic programming (DP) is
a computer programming technique that has been at the center of NAR, partially because Xu
et al. [6] promptly discovered the algorithmic alignment between GNNs and DP, portrayed
in Figure 3. More precisely, dynamic programming solves a problem x by expanding it into
sub-problems η(x), until we reach the base instances for which the solution can be trivially
obtained and scored in terms of quality for the final solution of x. Lastly, the sub-problems
are recombined to obtain the solution for x. Formally, this can be described as in Dudzik
and Veličković [36]:

dp[x]← recombine(score(dp[y], dp[x]) for y in expand(x)) (1.2.1)

By associating sub-problems with nodes and the links between a problem and its directly
expanded sub-problems with edges, we obtain a graph. In the Bellman-Ford example from
Figure 3, which computes the shortest paths from a given source node s, the set of sub-
problems is the set of nodes V , the expansion of a node u is given by its one-hop neighborhood
N1(u), with the base cases setting the initial distance assumptions: zero from source to
source ds = 0 and infinity otherwise du = ∞. The distances are updated by recombining
the solutions of the sub-problems, with the distances between two vertices v and u being
represented on the edge between them, wv→u, as follows:

du = min(du, min
v∈N1(u)

dv + wv→u) (1.2.2)

With this formulation, it is easier to see that the GNN’s computation graph (algorithmically)
aligns with the DP computation, resulting in the fact that the MLPs that are part of the
GNN’s processor need to learn simple update equations (such as the addition between a
neighbour node’s features, dv, and the weight of the edge connecting it, wv→u). Alternatively,
learning a DP algorithm with an MLP instead of the GNN, would require the model to learn
the for-loop computation emphasised in Figure 3 that iterates over all sub-problems. Thus,
GNNs are well suited to imitate DP algorithm execution, as their algorithmic alignment
leads to data efficiency and generalisation abilities – an insight on which we base Chapter 6.

1.3. Geometric Deep Learning
While previously we focused on graph neural networks, Bronstein et al. [18] remarks how

they can be unified with many other popular deep learning architectures (convolutional neu-
ral networks, recurrent neural networks, Transformers, GNNs and beyond) by viewing deep
learning from the perspective of symmetries in data. This approach is known as geometric
deep learning, and it has been one of the most successful directions in deep learning research
in the past decade. To better understand this and prepare for using geometric deep learning
advances in RL in Chapter 8, we will first introduce fundamental aspects of group theory.

33



Figure 4 – A frame from the Chaser environment in the ProcGen suite [7] and its 90◦, 180◦

and 270◦ rotations.

1.3.1. Groups and Representations

A group (G, ◦) is a set G equipped with a composition operation ◦ : G×G→ G (written
concisely as g ◦ h = gh), satisfying the following axioms:
◦ (associativity) (gh)l = g(hl) for all g, h, l ∈ G;
◦ (identity) there exists a unique e ∈ G satisfying eg = ge = g for all g ∈ G;
◦ (inverse) for every g ∈ G there exists a unique g−1 ∈ G such that gg−1 = g−1g = e.

Groups are a natural way to describe symmetries: object transformations that leave the
underlying object unchanged. Chapter 8, which is one of the core contributions of the thesis,
studies geometric deep learning for RL. In this chapter, we empirically evaluate the agent
on the group of 90◦ rotations, which has four elements. Figure 4 displays a frame from
the Chaser [7] environment which has been acted upon with each element of the group, by
rotating the observation and the action.

Groups can be reasoned about in the context of linear algebra by using their real rep-
resentations: functions ρV : G → GL(V) that give, for every group element g ∈ G, a real,
invertible matrix demonstrating how this element acts on a vector space V . GL(V) is the
general linear group over V—the group of all invertible matrices operating over vectors in V .

For example, for the rotation group G = SO(n), and V = Rn, the representation ρV could
provide an appropriate n × n rotation matrix for each rotation g. As another example, for
the n-element permutation group G = Sn and V = Rm, with m ≥ n, the representation ρV

could provide an m ×m permutation matrix, where a specific collection of n elements are
permuted according to the permutation g, with the other m− n elements fixed in place.

1.3.2. Equivariance and Invariance

As symmetries are assumed to not change the essence of the data they act on, we would
like to construct neural networks that adequately represent such symmetry-transformed in-
puts. Assume we have a neural network f : X → Y , mapping between vector spaces X and
Y , and that we would like this network to respect the symmetries within a group G. Then
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Figure 5 – Commutative diagram displaying G-equivariance of function f , as described in
Equation 1.3.1 – general case to the left, then for permutation and rotation respectively.

we can impose the following condition, for all group elements g ∈ G and inputs x ∈ X :

f(ρX (g)x) = ρY(g)f(x). (1.3.1)

This condition is known as G-equivariance—for any group element, it does not matter
whether we act with it on the input or on the output of the function f—the end result
is the same. A special case of this, G-invariance, arises when the output representation is
trivial (ρY(g) = I):

f(ρX (g)x) = f(x). (1.3.2)

In geometric deep learning, equivariance to reflections, rotations, translations and per-
mutations has been of particular interest [18]. For example, if X in Figure 5-left represents
node features of a graph and ρX (g) is gives the permutation matrix P corresponding to g,
then we can reconstruct the second commutative diagram, popular instantiations of it being
graph neural networks, deep sets [37] and (graph) transformers [38, 39] similarly, with

f(PX) = Pf(X) (1.3.3)

The right figure refers to rotations, such as in the continuous group SO(2), or the discrete
group of 90◦ rotations, C4, which will be used in Chapter 8:

f(R⟳X) = R⟳f(X) (1.3.4)

Note that, especially if the function f does not preserve the dimensionality of the space, the
corresponding matrices P or R⟳ may be different on the left-hand side and right-hand side
of these equations.

As an example given in Figure 4-right, if the function f maps image data in Rn×n×k (with
k-dimensional features in each pixel of the n× n grid) to fixed-size vector representations in
Rm, then rotations R⟳ of the input space of f are represented by pixel-mapping matrices
(Rn2×n2), and the rotations R⟳ of the output space may be represented by rotation matrices
over Rm (Rm×m).
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1.4. Reinforcement Learning
A reinforcement learning environment is usually stated as a discounted Markov decision

process (MDP). A discounted MDP is a tuple (S,A, R, P, γ) where s ∈ S are states, a ∈ A
are actions, R : S × A → R is a reward function, P : S × A → Dist(S) is a transition
function such that P (s′|s,a) is the conditional probability of transitioning to state s′ when
the agent executes action a in state s, and γ ∈ [0,1] is a discount factor which trades off
between the relevance of immediate and future rewards.

In the infinite horizon discounted setting, an agent sequentially chooses actions according
to a stationary Markov policy π : S ×A → [0,1] such that π(a|s) is a conditional probability
distribution over actions given a state. The return is defined as:

Gt =
∞∑

k=0
γkR(at+k,st+k) (1.4.1)

Value functions represent the expected return induced by a policy in an MDP when
conditioned on a state:

V π(s,a) = Eπ[Gt|st = s] (1.4.2)

or state-action pair:
Qπ(s,a) = Eπ[Gt|st = s,at = a] (1.4.3)

In the infinite horizon discounted setting, we know that there exists an optimal stationary
Markov policy π∗ such that for any policy π it holds that V π∗(s) ≥ V π(s) for all s ∈ S.
Furthermore, such optimal policy can be deterministic – greedy – with respect to the optimal
values. Therefore, to find a π∗ it suffices to find the unique optimal value function V ⋆ as
the fixed-point of the Bellman optimality operator. The optimal value function V ⋆ is such a
fixed-point and satisfies the Bellman optimality equations [40]:

V ⋆(s) = max
a∈A

R(s,a) + γ
∑
s′∈S

P (s′|s,a)V ⋆(s′)
 (1.4.4)

Value iteration (VI) is a successive approximation method for finding the optimal
value function of a discount MDP as the fixed-point of the so-called Bellman optimality
operator [41]. VI randomly initialises a value function V0(s), and then iteratively updates it
as follows:

Vt+1(s) = max
a∈A

R(s,a) + γ
∑
s′∈S

P (s′|s,a)Vt(s′)
 . (1.4.5)

Value iteration is guaranteed to converge and it is a fundamental principle behind value-
based methods.
Value-based methods. The main idea behind value-based methods, such as Q-learning, is
that if we have access to a function giving what the return would be from a state, such as
V ⋆(s), or from taking a particular action in a given state—often denoted as Q⋆(s,a)—then
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the optimal policy can be obtained by considering the actions that maximise the rewards:

π⋆(a|s) =

1, if a = arg maxa Q
⋆(s,a)

0, otherwise
(1.4.6)

However, in most environments the optimal value function cannot be computed, as we
don’t have access to the reward function, R, or the transition function, P . In this case, we
can estimate Q, for example, by minimising the temporal difference (TD):

δ = Q(s,a)− (R(s,a) + γmax
a

Q(s′,a)) (1.4.7)

While value-based methods have achieved impressive results in deep reinforcement learn-
ing [42], they require learning value functions, which can be considered as only an interme-
diate step on the path to the true objective – learning good policies. Policy-based methods,
presented next, optimise the policy objective directly instead. There exist non-parameteric
methods that optimise the policy, such as policy iteration, and policy-gradient methods that
use neural networks as function approximators for the policy. In the next part we will focus
on the latter, as this constitutes the backbone of our RL agents in Chapters 6 and 8.
Policy-gradient methods. Policy-gradient methods optimise parameterised policies with
respect to the expected return using gradient ascent. That is, for a policy πθ parametrised
by θ, policy gradient would update its parameters iteratively as follows:

θ ← θ + η∇θEπθ
(Gt) (1.4.8)

where Eπθ
(Gt) is the expected return when acting using policy πθ, and η is a learning rate

hyperparameter. Such an update has the underlying aim of increasing the probabilities
of the actions resulting in high cumulative rewards. One such fundamental algorithm is
REINFORCE [43], computing gradients as follows:

∇θEτ |πθ
(R(τ)) = Eτ |πθ

R(τ)
kτ∑

t=0
∇θ log πθ(st, at)

 (1.4.9)

where πθ is the neural network, with parameters θ, approximating the desired policy. τ is a
(state-action-reward) trajectory (τ = (s0,a0,r0,s1,a2, . . . ,skτ ,akτ ,rkτ )), and R(τ) is the overall
return of this trajectory, computed for example as the Gt return value specified before. At
each step of REINFORCE, we sample a trajectory τ from our current policy πθ, then evaluate
this trajectory’s return R(τ), and use the update rule to compute a gradient for θ to follow.

Note that REINFORCE has a clear issue with credit assignment: it attaches the overall
trajectory return R(τ) to all the actions taken within τ , with no easy way to distinguish good
actions from bad ones within it. To tackle problems such as credit assignment, exploration
and the bias-variance trade-off, modified versions of REINFORCE were proposed such as
REINFORCE with baseline, Actor-Critic, Advantage Actor Critic (A2C), Asynchronous
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Advantage Actor Critic (A3C) [44], Trust-Region Policy Optimization (TRPO) [45] and
Proximal Policy Optimization (PPO) [46].

In particular, REINFORCE uses the score of observed trajectories to increase or decrease
the probabilities of every action in that sequence. While this is unbiased and relying on true,
rather than estimated returns, its high variance can be problematic – returns of trajectories
starting from the same state can vary significantly due to the stochasticity in the policy or
the environment. Increasing the batch size could reduce the variance in aggregate, but at
the cost of sample efficiency.

An alternative is presented by the class of actor-critic methods, where the actor (policy
that controls the agent πθ) is augmented by a critic qw, a neural network parametrized by
w, which estimates how good the action taken is. In particular, the policy parameters are
updated by scaling the actions’ probabilities using these action value estimates, instead of
the observed cumulative returns (with learning rate α):

∆θ = α∇θ(log πθ(st, at))qw(st, at) (1.4.10)

At the same time, we seek to improve the action value estimates by updating the critic’s
parameters using the TD error (with learning rate β):

∆w = β(R(st, at) + γqw(st+1, at+1)− qw(st,at))∇wqw(st, at) (1.4.11)

The parameters of the actor and the critic are updated separately.
While this actor-critic formulation moves from scaling every action probability equally in

a trajectory based on the overall return to considering individual action values, it could still
suffer from learning instability due to disproportionate gradients if, for example, all actions
in a state have a high value. A2C instead scales action probabilities using an advantage
function, which calculates how much better an action is compared to the average value in
that state:

A(s,a) = Q(s,a)− V (s) (1.4.12)

Even after such fixes, it was noticed that large steps in policy updates harm the stability
of RL training. TRPO and PPO address this limitation by proposing objectives that control
how far a new policy is allowed to deviate from the previous iteration of the policy. Thus, they
propose updating the parameters conservatively and avoiding having too much variability in
training (large updates) or too slow learning (small updates).

We will focus on Proximal Policy Optimization, a central building block in Chapter 6.
PPO builds on the previously mentioned proposals and is often the baseline of choice for
model-free agents, including in large language models that use reinforcement learning to
learn from human feedback [47]. PPO obtains updated policy parameters by:
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Figure 6 – Left portrays model-free agents, while right shows a general model-based agent.

θk+1 = arg max
θ

Es,a∼πθk
[L(s, a, θk, θ)] (1.4.13)

where the loss is given by:

L(s, a,θk, θ) = min
(
πθ(a|s)
πθk

(a|s)A(s,a), clip
(
πθ(a|s)
πθk

(a|s) , 1− ϵ, 1 + ϵ

)
A(s,a)

)
(1.4.14)

where ϵ defines the clip range, which controls how far the new policy can be from the old
policy πθk

, only updating the policy parameters if the ratio of the policies is in the clipping
range, or if the advantages bring it closer to the range. Note that, as specified in Equation
1.4.13, the trajectories used to optimise the PPO loss are sampled from the previous stable
policy πθk

.

1.4.1. Model-based RL

Model-free agents as those described in the previous section are based on reactive policies,
acting by adapting to observed rewards. In many cases, these require large quantities of data
and are slow to adapt, as they cannot anticipate novel situations easily.

Model-based agents (Figure 6-right) aim to address these limitations by learning models
of the world and using them to simulate the effects of actions before taking them. This
leads to gains in data efficiency, as having a good model implies fewer interaction in the
environment are needed to learn to act, quick adaptation to previously unexplored situations
and better safety through modeling of consequences resulting from acting, as well as having
the theoretical upside: perfect models are guaranteed to lead to planning perfect policies.
Some of the most successful examples of model-based RL have been applied to game-playing
and natural sciences [48–50, 8].

In terms of what the agent learns, how it learns and how it’s used, there are many types
of model-based RL agents. Here we will only mention briefly a few variants, and focus on
MuZero [8] for the rest of the section, as it constitutes the backbone of Chapter 8.
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Firstly, depending on what it learns, the model 1 can be:
— forward, for example predicting state transitions: st, at → st+1 or what the reward is

st, at → rt. This is the most common type of model, also used in MuZero.
— backward/reverse, for example modelling what could have been the previous state

and action that was taken to reach the current state st+1 → st, at

— inverse, such as predicting which action takes the agent from one state to another
st, st+1 → at

Regarding the manner of learning, some common examples include modelling one step
dynamics, multi-step outputs or matching the distributions between observed trajectories
and trajectories rolled out by the model. For example, when having a model that learns
state transitions, minimising the error between predicted and observed next states can be
seen as a supervised learning problem, or self-supervised objectives can be used, contrast-
ing observed triplets st, at, st+1 with triplets with randomly sampled next state st, at, s

′, as
we use in Chapter 6. For multi-step model learning, the input can be st together with a
sequence of actions at, at+1, at+2, ..., at+k, and the model is trained to predict next states
st+1, st+2, ..., st+k+1.

Once the model is available, it is common to use it in one of two ways: for planning,
or for data augmentation. For example, model predictive control (MPC) samples multiple
action sequences and selects the one with the highest evaluation (e.g. cumulative reward),
whose first action will be used in the environment. This type of planning is done after each
time step, thus belonging to the class of decision-time planners. Monte Carlo tree search
(MCTS) is also in this category, but instead of randomly sampling action sequences, MCTS-
based agents incrementally extend a search tree, where each node represents a state, with
an associated value. The tree is used to determine which actions to choose such that the
agent is more likely to transition to a state with a higher estimated value. Alternatively, the
model can be used to simulate experiences, which can be gathered in a dataset and be used
for value approximation or policy learning, in the style of Dyna [51].

There are many other methods of interest for model-based RL [52, 53]. We will next
focus on MuZero [8], a highly-performant agent that established the state of the art on the
full Atari benchmark and achieved superhuman results on chess, Go and Shogi, that is the
backbone of Chapter 8.
MuZero. MuZero is a model-based agent that learns a multi-step model of forward dynamics
leveraged for decision-time planning using MCTS. MuZero can be explained in three stages:
planning, acting and training, portrayed in Figure 7, and depends on three neural networks:

— representation network, h, which embeds inputs into a high-dimensional space;

1. It is worth noting that, in all of the cases listed below, the learnt mappings are implicitly written
as deterministic functions. However, in many cases, there could be multiple possible outcomes of state
transitions, or backward states—as such, in practice, models may be probabilistic and generative.
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Figure 7 – Picture from [8] portraying how MuZero plans (A), acts (B) and trains (C).

— dynamics network, g, which predicts next state embeddings and rewards, conditioned
on actions, and

— prediction network, f , which computes policy and value estimates from state embed-
dings.

In the first stage of planning, action selection is done using the stored statistics in each
internal node of the MCTS tree using the upper confidence bound (UCB) [54], followed by
expansion—using f and g—and the backup—when the statistics along the trajectory are
updated. The output of MCTS is a policy π which is used in the second stage, acting, to
select the actions to run in the environment. These trajectories are stored in a replay buffer
and are used to train f, g and h by minimising the differences between what the model
predicts for the reward rk

t , value vk
t and policy pk

t functions and the data experiences stored:

lt(θ) =
K∑

k=0
lr(ut+k, r

k
t ), lv(zt+k, v

k
t ),+lp(πt+k, p

k
t ) (1.4.15)

with ut being the true, observed rewards at time t, πt, as mentioned, the policy probabilities
computed by MCTS and used to select real actions at time t and zt+k = ut+1 + γut+2 + · · ·+
γn−1ut+n + γnνt+n is the value target. νt is the estimated value of the state at time t, as
computed by the MCTS algorithm.

1.5. Graph Neural Networks for Real-world applica-
tions

Graphs are ubiquitous data structures underlying virtually all tasks of interest, including
natural inputs (molecules [55]), entity relations (transportation networks [56], chip place-
ments [57]), or concept linking in reasoning processes (algorithms [6] and other theoretical
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constructs [58, 59]). These properties are inherent in several of the most useful GNN bench-
marks, such as the Open Graph Benchmark [60, OGB] and Benchmarking-GNNs [28].

We will next present possible tasks on graphs – first theoretically, then exemplified with
applications.

1.5.1. Graph task types

For classification tasks, we consider C to represent the set of possible classes and L is
the cross-entropy loss function. For regression tasks, L is the the mean-squared error. In all
tasks, the aim is to learn the function f , also known as the model, that optimizes the loss
function. We assume that we model our task using a GNN with T layers.

Node classification. For node classification tasks, f takes as input a node with input
features xu, which has an associated label yu ∈ C. The aim is to minimise E[L(yu, ŷu)],
where ŷu is the prediction of f(X)u = ŷu.

For example, in the antibody-antigen tasks [61, 62] presented in Section 1.5.2.2, nodes
are classified as belonging to the binding region or not, while Chapter 4 focuses on classifying
nodes in the correct class despite being connected to nodes from different classes.

Graph classification. Graph classification refers to predicting one label for each graph
sample in the dataset – for an input graph G and the label of the graph yG ∈ C, we aim
to learn f that minimises E[L(yG, ŷG)]. In order to obtain a graph-level prediction, a graph
aggregator can be used, such as summing all node features, followed by an MLP predictor ρ:

ŷG = ρ

(∑
u∈V

h(T )
u

)
(1.5.1)

An alternative is using a master node, often initialised as a zero-vector h(0)
G = 0 and updated

after each message passing layer:

h(t+1)
G = ρt+1

∑
u∈V

h(t+1)
u ,

∑
(u,v)∈E

h(t+1)
uv ,h(t)

G

 (1.5.2)

Graph regression is exemplified in the first part of Section 1.5.2.2 through the property
prediction of molecules, and graph classification is the main topic for Chapter 2, where
long-range interactions between nodes are more easily leveraged before getting a graph-level
prediction.

Edge prediction. The task of edge prediction, or link prediction, refers to predicting if an
edge exists between a pair of nodes or predicting the type of this edge. More precisely, for
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nodes u and v, the model predicts:

ŷuv = ρ(h(T )
u ,h(T )

v ) (1.5.3)

For example, [63] predicts if two drugs are linked positively or negatively, while [64], men-
tioned in Section 1.5.2.2, classifies the relation between two drugs out of 964 classes.

In knowledge graph literature, edges are often typed, and referred to as relations (u, euv, v),
linking two nodes (which can also be referred to as entities). These nodes may be referred
to as the head and tail of the relation. One popular loss, TransE [65], deployed in Chapter
6 to learn a transition model, contrasts true triplets (u, euv, v) with triplets using randomly
sampled tails (u, euv′ , v′) (or, equivalently, randomly sampled heads):

LTransE((u,euv,v), v′) = max(0, γm + d(hu + euv,hv)− d(hu + euv,hv′)) (1.5.4)

where γm is a margin hyper-parameter that implies that the distance between hu translated
by euv to hv should be at least γm smaller than the distance from hu + euv to hv′ .

1.5.2. Motivating modulators: Applied examples

In most tasks mentioned so far, the input graph and the computation graph (i.e., the
graph used for deciding which messages to pass in the GNN equation) were considered
identical. However, in many cases of interest, this is not sufficient, and modulating the
computation graph can provide signal for a more efficient algorithm, or is more aligned
with the application, as in the case of supporting long-range molecular interactions.

Exploring the derivation of improved computation graphs for GNNs is hence a critical
problem—one that arguably lies at the heart of several of the contributions of this thesis.
Within the framework proposed by Figure 1, it corresponds to the Modulator component.

Graph neural networks and geometric deep learning have been extensively used in scien-
tific tasks, and are poised to further accelerate scientific discovery [66]. I will present here
several motivating real-world examples from biology and chemistry, on which I have worked
concurrently or prior to the core works presented in this thesis, that show the utility of
modulating the computation graph.

1.5.2.1. Large-scale learning on graphs.

Effectively and efficiently deploying graph neural networks (GNNs) at scale remains one
of the most challenging aspects of graph representation learning. Many powerful solutions
have only ever been validated on comparatively small datasets, often with counter-intuitive
outcomes—a barrier which has been broken by the Open Graph Benchmark Large-Scale
Challenge (OGB-LSC). As an equal first-author contributor within a team of researchers from
DeepMind, I have entered the OGB-LSC with two large-scale GNNs: a deep transductive
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node classifier powered by bootstrapping, and a very deep (up to 50-layer) inductive graph
regressor regularised by denoising objectives. Our models achieved an award-level (top-3)
performance on both the MAG240M and PCQM4M benchmarks within the LSC. In doing so,
we demonstrate evidence of scalable self-supervised graph representation learning, and utility
of very deep GNNs—both very important open issues. We will focus on PCQM4M here, as
our findings on the MAG240M academic graph dataset are in many regards analogous.

For PCQM4M, the task is graph regression: estimate the HOMO-LUMO gap of each
molecule. This is an important quantum-chemical property for which ground-truth labels
are obtained through expensive DFT (density functional theory) calculations, possibly taking
several hours per molecule. It is believed that machine learning models, such as GNNs over
the molecular graph, may obtain useful approximations to the DFT at only a fraction of the
computational cost, if provided with sufficient training data [13].

While several factors contributed to the superior performance of our model [67], in the
end, by far, the most impactful method for our GNN regressor on PCQM4M has been
Noisy Nodes [68], and our results largely echo the findings therein. The main observation of
Noisy Nodes is that very deep GNNs can be strongly regularised by appropriate denoising
objectives. Noisy Nodes perturbs the input node or edge features in a pre-specified way,
then requires the decoder to reconstruct the un-perturbed information from the GNN’s
latent representations.

Similarly, for this task, where very specific constraints apply for valid inputs—given
by valences, for example—we can modulate the molecular graph by randomly corrupting
the nodes or the edges, to obtain an improved algorithm that optimizes for the property
prediction task, as well as for the Noisy Nodes objective. More specifically, we randomly
replace atom or bond types, or, when appropriate, we modify the 3D atom coordinates,
aiming to then reconstruct the original node/edge properties. Consequently, we note that,
while most prior works on GNN modelling seldom use more than eight steps of message
passing [69], our method allows us to observe monotonic improvements of deeper GNNs
on this task, all the way to 32 layers when the validation performance plateaus, allowing
for longer-range reasoning and better final performance. We attribute this benefit to the
random corruptions to the computational graph’s edge types, making the model less prone
to overfitting to message passing over molecular graphs.

1.5.2.2. Molecular interactions.

The tasks we consider next have one common structural bias, portrayed in Figure 8:
the ground-truth label we need to predict is based on pairwise interactions (drug-drug,
drug-protein or amino acids in antibody-antigen). In both cases, we will model these
pairwise interactions by exploiting bipartite computational graphs, allowing for explicitly
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Figure 8 – The high-level overview of molecular interaction tasks – we form a bipartite graph
with the two entities or types of entities of interest, allowing for all pairwise interactions:
atoms of drug pairs, drug-protein and amino acids in antibody-antigen complex.
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modelling the cross-influence between the relevant pairs.
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Drug-drug interactions. Diseases are often caused by complex biological processes which
cannot be treated by individual drugs and thus introduce the need for concurrent use of
multiple medications. Similarly, drug combinations are needed when patients suffer from
multiple medical conditions.

I’ll present my work on drug combinations, found in the form of a link prediction task.
The aim is to predict which side-effect will occur for a given co-administration of two drugs
by classifying the edge (previously referred to as relation) type between drug pairs (which
we called entities).

To achieve the state-of-the-art performance on this task, we heavily leverage bipartite
computational graphs. As the individual molecular structures of the drugs are known, we
design our GNNs that classify drug pairs to periodically exchange information between the
two drugs in a pair, by performing message passing over the full bipartite graph, connecting
every atom in one drug to every atom in the other. Our ablation studies clearly indicate that
the model’s performance significantly degrades in the absence of these drug-drug exchange
layers.

This proposed approach aims to follow domain intuition of what guides the treatment
outcome, forming a graph that includes all possible underlying interactions. Specifically,
one reason for side-effects when administering two drugs together is that one drug contains
a functional group that reacts with a functional group from the other drug. By forming
a bipartite graph between the atom representations of the two chemical graphs, the model
can predict side-effects by jointly reasoning over functional groups from the two molecules.
Message passing provides a robust mechanism for encoding within-drug representations of
atoms. For learning an appropriate joint drug-drug representation, we allow atoms to interact
across drug boundaries via a co-attentional mechanism, as in Figure 9. This approach [64]
is empirically better than models considering drugs individually, sharing information late in
the computation graph and even (complementary) approaches that consider additional data
sources, such as interaction with proteins.
Antibody-antigen interactions. Antibodies are proteins in the immune system which
bind to antigens to detect and neutralise them. The binding sites in an antibody-antigen
interaction are known as the paratope and epitope, respectively, and the prediction of these
regions is key to vaccine and synthetic antibody development. More traditionally, this prob-
lem was attempted by analyzing the antibody and the antigen in isolation, lacking comple-
mentary information that leads to structural changes.

Similarly to the drug-drug interaction example, we will form a bipartite computational
graph using the antibody and the antigen amino acids. Predicting the binding sites of
antibodies and antigens will thus be a node classification task: an amino acid participates in
the binding if it connects to any amino acids from the other subset. We present two methods
of modeling the interaction:
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Figure 10 – The Para-EPMP architecture (left) and the Epi-EPMP multitask architecture
(right). The output feature dimension for each layer is the first term in the bracket. For
the convolutional layers, the second term is the kernel size.

◦ In [61], contrary to prior art, we argue that paratope and epitope predictors require
asymmetric treatment as paratopes are highly sequential and can be predicted well
in isolation, while epitopes are structural in nature and are inherently conditioned
by the paratope. We propose distinct neural message passing architectures that are
geared towards the specific aspects of paratope and epitope prediction, respectively.
To combine information from the two representations, we allow the residue represen-
tations to interact across the antibody-antigen boundary. For this purpose, we used
graph attention networks [15] over the fully connected bipartite graph between the
antigen residues and the antibody residues (i.e. each antigen residue is attending
over every antibody residue, and vice-versa) [70]. Once attention is performed, the
network then predicts both the paratope and epitope residues at once. This paratope
prediction is solely for aiding the epitope prediction as, without such a multi-task ob-
jective, antibody residues would remain unlabelled, and hence the GAT would have
to learn in an unsupervised manner which antibody residues are the most important
in the attention layers. Instead, by leveraging multitasking, the network is given ex-
plicit cues as to which parts of the antibody are actually relevant to the binding site.
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Figure 11 – Qualitative example on the 4jr9 pdb. We plot on the residuals the binding
probability as increasing intensity colors: blue for the antibody and red for the antigen. The
left figure shows the results of the E(n)-EPMP on the residual graph, while the right sides
displays the predictions of the surface-based method.

Furthermore, it allows for knowledge transfer between the two tasks, regularising the
epitope representations – similarly to Subsection 1.5.2.1, modulating the graph lends
itself to an additional objective for the optimization algorithm.
◦ Lastly, we extend the architectures from the previous tasks by integrating insights

from geometric deep learning based on insights about the data, such as invariance
to translations, rotations, and reflections and the importance of the outer surface of
the molecules. To this end, in [62] we integrate equivariant GNNs and surface-based
methods, allowing us to consider point-cloud and mesh representations. As shown in
Figure 11, the latter leads to better localized predictions.

1.6. Summary
In the previous three examples, I demonstrated how even simple modulations of the

computational graph—such as random corruptions and full bipartite interactions—can make
a significant difference to the downstream performance of GNNs in relevant biological and
chemical tasks. These benefits proved robust across various levels of training data abundance,
as well as input feature diversity.
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Armed with this intuition, we are ready to dive into the core contributions of this thesis.
The computation graph modulations induced in the following chapters will, in contrast, be
nontrivial:

— In EGP [22], we demonstrate the utility of sparse expander graphs as a general-purpose
computational template. Sparse expander graphs are exotic and elusive mathematical
objects: they have extremely rich theoretical underpinnings, and only few ways of
constructing them are known to mathematics.

— In ECG [23], we demonstrate the utility of improving homophily in the computational
graph, via learned weak classifiers—both pointwise and structural. This procedure is
conceptually elegant, and easy to motivate, but nontrivial to stabilise, as it relies on
(at least) a two-phase method, and the success of the second phase critically depends
on the power of the classifiers trained in the first phase.

— In XLVIN [24], we demonstrate how computational graphs can be dynamically in-
ferred on-the-fly by leveraging a learned transition model, coupled with breadth-first
search. Such a setup is often necessary when deploying GNN processors in reinforce-
ment learning, as the agent usually does not know a priori what the environment
transition dynamics are: it must infer these through interacting with the environ-
ment. The learned transition model hence indicates the agent’s best current guess
of these transition dynamics, from which relevant local computational graphs can be
obtained via sampling and search.

— In Equivariant MuZero [25], we demonstrate how to improve the low-data performance
and robustness of state-of-the-art reinforcement learning agents by taking into account
geometric constraints. Specifically, by exploiting the symmetries assumed in the RL
environment, we are able to define and modulate specialised computational graphs
between various views of that environment—for example, all possible 2D rotations of
it. The computational graph is defined in a way that respects the assumed symmetries
of the environment, and leads to significant empirical gains in data efficiency, along
with provable equivariance properties of the underlying planning algorithm—in the
case of MuZero, this is Monte Carlo tree search (MCTS).
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Chapter 2

Graph Neural Networks for Long-Range
Interaction: Prologue to the first article

2.1. Article Details
Expander Graph Propagation (EGP). Andreea Deac, Marc Lackenby, Petar Veličković.
The paper was published at Learning on Graphs 2022 and received the Best Paper Award
at NeurIPS 2022 Frontiers in Graph Learning workshop.

Personal contribution: Marc initially suggested that expander graphs could have highly
favourable properties for addressing the over-squashing problem, by definition. Based on
this suggestion, I have proposed, shaped, implemented and thoroughly evaluated a viable
machine learning method—EGP—based on this suggestion, and advice from Petar. Marc
and Petar also contributed the foundational theory behind EGP, with Marc proving the
Theorem about the impossibility of building infinite positively-curved sparse computational
graphs without bottlenecks. All authors wrote and improved the manuscript.

2.2. Context
Graph neural networks have proved successful in many applications, drug discovery [55],

transportation networks [56] and mathematical advances [58] being just a few of them. At
the same time, some of their limitations were brought to light, many of them regarding their
scalability. One class of problems comes from the way the propagation is designed: GNNs
aggregate information from 1-hop neighbourhoods by using one GNN layer. To aggregate
information from k-hop neighbourhoods, k layers need to be applied. Problems arise when
not enough layers are used (under-reaching [33]), when the signals are being too homogenised
(over-smoothing [32]) or when a layer is required to summarise signals from an exponentially
large receptive field (over-squashing [4]). The latter, particularly important for tasks where
long-range interaction is required or bottlenecks are present, is the topic of EGP. In this



work, we use expander graphs, a mathematical object known to have good propagation
properties—such as low diameter, high Cheeger constant, and favourable mixing time—as
a template to send information across the graph. Thus, all nodes will be connected to each
other in at most log(N) steps, where N is the number of nodes in the graph, ensuring that
nodes that are far apart in the input graph can now easily communicate.

Thanks to their qualities, the expander graphs were also used concurrently in Shirzad
et al. [71], presenting an approach that leverages them to improve the scalability and accuracy
of graph Transformers.

2.3. Modulator
In EGP [22], we demonstrate the utility of sparse expander graphs as a general-purpose

computational template. Sparse expander graphs are exotic and elusive mathematical ob-
jects: they have extremely rich theoretical underpinnings, and only few ways of constructing
them are known to mathematics. In this case, the modulator samples an appropriate ex-
pander graph, and substitutes it as the computation graph for certain GNN layers.

2.4. Contributions and Research Impact
EGP presents using expander graphs as global templates for propagation in GNNs.

In order to do this, we first propose an efficient way to construct a family of expander
graphs. Using them we are able to show empirical improvements on a theoretical task
called TreeNeighboursMatch [4]—which was previously introduced to rigorously study over-
squashing—as well as on practical real-world tasks from the Open Graph Benchmark [60].
Moreover, in EGP we extend on the findings of Topping et al. [72], where, under some con-
ditions, negatively curved edges were linked to over-squashing. Specifically, we observe that
expander graphs can never be sufficiently negatively curved to trigger those conditions and,
even more, that negatively curved edges are required to have sparse communications without
bottlenecks. This highlights negatively-curved edges as important area of future theoretical
study for the over-squashing effect.

Following this work, expanders graphs were identified as a potential solution for sparsify-
ing attention in graph transformers [73], Black et al. [74] described the connection between
expansion properties and effective resistance and Giovanni et al. [75] showed how the over-
squashing effect limits the expressive power of GNNs. The latter, which I was also involved
in as a co-author, was developed as a direct consequence of the conclusions of EGP, and
its framework using commute times provides strong theoretical evidence for the downstream
utility of expander graphs as a computational template for GNNs.
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Chapter 3

Expander Graph Propagation

Deploying graph neural networks (GNNs) on whole-graph classification or regression tasks
is known to be challenging: it often requires computing node features that are mindful of
both local interactions in their neighbourhood and the global context of the graph structure.
GNN architectures that navigate this space need to avoid pathological behaviours, such as
bottlenecks and oversquashing, while ideally having linear time and space complexity re-
quirements. In this work, we propose an elegant approach based on propagating information
over expander graphs. We leverage an efficient method for constructing expander graphs of a
given size, and use this insight to propose the EGP model. We show that EGP is able to ad-
dress all of the above concerns, while requiring minimal effort to set up, and provide evidence
of its empirical utility on relevant graph classification datasets and baselines in the Open
Graph Benchmark. Importantly, using expander graphs as a template for message passing
necessarily gives rise to negative curvature. While this appears to be counterintuitive in
light of recent related work on oversquashing, we theoretically demonstrate that negatively
curved edges are likely to be required to obtain scalable message passing without bottle-
necks. To the best of our knowledge, this is a previously unstudied result in the context of
graph representation learning, and we believe our analysis paves the way to a novel class of
scalable methods to counter oversquashing in GNNs.

3.1. Introduction
Graph neural networks (GNNs) are a flexible class of models for learning representations

over graph-structured data [76]. Their versatility [14, 15, 13] and generality [18, 17] has made
them a very attractive approach, leading to considerable application in areas as diverse as
virtual drug screening [55], traffic prediction [56], combinatorial chip design [57] and pure
mathematics [59, 58].

Most GNNs rely on repeatedly propagating information between neighbouring nodes
in the graph. This is commonly expressed in the message passing [13] paradigm: nodes



send vector-based messages to each other along the edges of the graph, and nodes update
their representations by aggregating all the messages sent to them, in a permutation-invariant
manner. Under many industrially-relevant tasks, this paradigm is very potent, often allowing
for highly scalable model variants [77–79].

However, in many areas of scientific interest, purely local interactions are likely insuffi-
cient. Among the principal graph tasks, graph classification is perhaps most ripe with such
situations: to meaningfully attach a label to a graph, in many cases it is insufficient to treat
graphs as “bags of nodes”. For example, when classifying a molecule for its potency as a
candidate drug [55], the label is driven by complex substructure interactions in the molecule
[80], rather than a naïve sum of atom-level effects.

Accordingly, GNNs deployed in this regime need to update node features in a manner
that is mindful of the global properties of the graph. It quickly became apparent that it
is often inadequate to merely stack more message passing layers over the input graph. In
fact, for many graph classification tasks, such approaches may be weaker than discarding
the graph structure altogether [81, 82]. Now, it is well-understood that stacking many
local layers leaves GNNs vulnerable to pathological behaviours such as oversquashing [4].
Intuitively, oversquashing occurs when nodes need to store quantities of information that
are exponentially increasing with model depth [4, Section 5]. Such nodes often arise in the
vicinity of bottlenecks in a graph—small collections of edges which are responsible for carrying
representations between large groups of nodes. One typical example of such a bottleneck

can be found in a barbell graph , where the red edge is under significant
representational pressure to transport information between the two communities.

Within this space, we are interested in proposing a method that satisfies four desirable
criteria: (C1) it is capable of propagating information globally in the graph; (C2) it is re-
sistant to the oversquashing effect and does not introduce bottlenecks; (C3) its time and
space complexity remain subquadratic (tighter than O(|V |2) for sparse graphs); and (C4) it
requires no dedicated preprocessing of the input. Satisfying all four of these criteria simul-
taneously is challenging, and we will survey many of the popular approaches in the next
section—demonstrating ways in which they fail to meet some of them.

In this paper, we identify expander graphs as very attractive objects in this regard. Specif-
ically, they offer a family of graph structures that are fundamentally sparse (|E| = O(|V |)),
while having low diameter : thus, any two nodes in an expander graph may reach each other in
a short number of hops, eliminating bottlenecks and oversquashing (see Figure 12). Further,
we will demonstrate an efficient way to construct a family of expander graphs (leveraging
known theoretical results on the special linear group, SL(2,Zn)). Once an expander graph
of appropriate size is constructed, we can perform a certain number of GNN propagation
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Figure 12 – Left: The Cayley graph of SL(2,Z3), constructed using our method. It has
|V | = 24 nodes and it is 4-regular (implying |E| = 2|V |), hence it is sparse. Despite its
sparsity, it is highly interconnected: any node is reachable from any other node by no more
than 4 hops. Hence, it can serve as a strong “template” for globally propagating node
features with a GNN. Right: The Cayley graph of SL(2,Z5), constructed in an analogous
way (with |V | = 120 nodes). A 2-hop neighbourhood of one node (in red) is highlighted,
demonstrating its tree-like local structure.

steps over its structure to globally distribute the nodes’ features. Accordingly, we name our
method expander graph propagation (EGP).

A key contribution of our work extends the implications of prior art on oversquashing
via curvature analysis [72]. According to [72], negatively curved edges are causing the over-
squashing effect—yet, counterintuitively, the edges of the expander graphs we construct will
always be negatively curved! We prove, however, that our expanders can never be sufficiently
negatively curved to trigger the conditions necessary for the results in [72] to be applicable,
and show that the existence of negatively curved edges might in fact be required in order
to have sparse communication without bottlenecks.

3.2. Related work
We begin with a survey of the many prior approaches to handling global context in graph

representation learning, evaluating them carefully against our four desirable criteria (C1–
C4; cf. Table 2). This list is by no means exhaustive, but should be indicative of the most
important directions.

Stacking more layers. As already highlighted, one way to achieve global information
propagation is to have a deeper GNN. In this case, we are capable of satisfying (C1) and
(C4)—no dedicated preprocessing is needed. However, depending on the graph’s diame-
ter, we may need up to O(|V |) layers to cover the graph, leading to quadratic complexity
(violating (C3)) and introducing a vulnerability to bottlenecks (C2), as theoretically and
empirically demonstrated in [4].
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Table 2 – A summary of principal approaches to handling global context in graph repre-
sentation learning (Section 3.2). “(✓)” indicates that a criterion may be satisfied, depending
on the method’s tradeoffs. Our proposal, the expander graph propagation (EGP) method,
satisfies all four criteria.

Approach (C1) (C2) (C3) (C4)
(global prop.) (no bottlenecks) (subquadratic) (no dedicated preproc.)

GNNs ✗ ✗ ✓ ✓
Sufficiently deep GNNs ✓ ✗ ✗ ✓
Master node [83, 13] ✓ ✗ ✓ ✓
Fully connected [4, 84–88] ✓ ✓ ✗ ✓
Feature aug. [89–94] ✓ (✓) (✓) ✗
Graph rewiring [95, 72, 96] ✓ ✓ ✓ ✗
Hierarchical MP [97–102] ✓ ✓ (✓) ✗

EGP (ours) ✓ ✓ ✓ ✓

Master nodes. An attractive approach to introducing global context is to introduce
a master node to the graph, and connect it to all of the graph’s nodes. This can be done
either explicitly [13] or implicitly, by storing a “global” vector [83]. It trivially reduces the
graph’s diameter to 2, introduces O(1) new nodes and O(|V |) new edges, and requires no
dedicated preprocessing, hence it satisfies (C1, C3, C4). However, these benefits come at
the expense of introducing a bottleneck in the master node: it has a very challenging task
(especially when graphs get larger) to continually incorporate information over a very large
neighbourhood in a useful way. Hence it fails to satisfy (C2).

Fully connected graphs. The converse approach is to make every node a master node:
in this case, we make all pairs of nodes connected by an edge—this was initially proposed
as a powerful method to alleviate oversquashing by [4]. This strategy proved highly popular
in the recent surge of Graph Transformers [85, 86, 88], and is common for GNNs used in
physical simulation [84] or reasoning [87] tasks. The graph’s diameter is reduced to 1, no
bottlenecks remain, and the approach does not require any dedicated preprocessing. Hence
(C1, C2, C4) are trivially satisfied. The main downside of this approach is the introduction
of O(|V |2) edges, which means (C3) can never be satisfied—and this approach will hence be
prohibitive even for modestly-sized graphs.

Feature augmentation. An alternative approach is to provide additional features to
the GNN which directly identify the structural role each node plays in the graph [89]. If done
properly (i.e., if the computed features are relevant to the target), this can drastically improve
expressive power. Hence, in theory, it is possible to satisfy (C1) while not violating (C2,
C3). However, computing appropriate features requires either specific domain knowledge,
or appropriate pre-training [90–94], in order to obtain such embeddings. Hence all of these
gains come at the expense of failing to satisfy (C4).
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Graph rewiring. Another promising line of research involves modifying the edges of
the original graph to alleviate bottlenecks. Popular examples of this approach involve using
diffusion [95]—which diffuse additional edges through the application of kernels such as the
personalised PageRank, and stochastic discrete Ricci flows [72]—which surgically modify a
small quantity of edges to alleviate the oversquashing effect on the nodes with negative Ricci
curvature. Recent concurrent work [96] also uses constructions inspired by expander graphs
to randomly locally rewire a given input graph. If realised carefully, such approaches will not
deviate too far from the original graph, while provably alleviating oversquashing; hence it is
possible to satisfy (C1, C2, C3). However, this comes at a cost of having to examine the
input graph structure, with methods that do not necessarily scale easily with the number of
nodes. As such, dedicated preprocessing is needed, failing to satisfy (C4).

Hierarchical message passing. Lastly, going beyond modifying the edges, it is also
possible to introduce additional nodes in the graph—each of them responsible for a particular
substructure in the graph 1. If done carefully, it has the potential to drastically reduce the
graph’s diameter while not introducing bottlenecked nodes (hence, allowing us to satisfy
(C1, C2)). However, in prior work, a cost has to be paid for this, usually in the need for
dedicated preprocessing. Prior proposals for hierarchical GNNs that remain scalable require
a dedicated pre-processing step [97–99], sometimes coupled with domain knowledge [99]—
thus failing to satisfy (C4). In addition, such methods may require adding prohibitively
large numbers of substructures [100, 101] or expensive pre-computation, e.g. computing the
graph Laplacian eigenvectors [102]. This might make even (C3) hard to satisfy.

We remark that our work is not the first to study expander graph-related topics in the
context of GNNs. Specifically, the ExpanderGNN [103] leverages expander graphs over neural
network weights to sparsify the update step in GNNs. This is a direct application of Deep
Expander Networks [104], which studied such constructs over CNNs. With respect to our
contributions, neither of these cases discuss expanders in the context of the computational
graph for a GNN, nor attempt to propagate messages over such a structure. Further, neither
satisfy all four of our desired criteria (C1–C4).

3.3. Theoretical background
We now dedicate our attention to the key theoretical results over expander graphs, which

will allow EGP to have favourable properties and be efficiently precomputable.

1. Master nodes are a special case: a single node is responsible for a “substructure” spanning the entire
graph.
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Definition 3.3.1. For a finite connected graph G = (V (G), E(G)), we consider functions
f : V (G)→ R. The Laplacian Lf : V (G)→ R of such a function is defined to be

Lf(v) = deg(v)f(v)−
∑

vw∈E(G)
f(w),

where deg(v) is the degree of the vertex v.
The mapping L : RV (G) → RV (G) sending a function f to its Laplacian Lf is a linear

transformation. It is not hard to show [105] that L is symmetric with respect to the standard
basis for RV (G) and positive semi-definite and hence has non-negative real eigenvalues

0 = λ0(G) < λ1(G) ≤ λ2(G) ≤ . . . .

The smallest eigenvalue is 0 and its associated eigenspace consists of the constant func-
tions (assuming G is connected). The smallest positive eigenvalue, λ1(G), is central to the
definition of expander graphs, as the next definition shows.
Definition 3.3.2. An infinite collection {Gi} of finite connected graphs is an expander family
if there is a constant c > 0 such that for all Gi in the collection, λ1(Gi) ≥ c.

Expander families [106–108] have many remarkable and useful properties, particularly
when there is a uniform upper bound on the degree of the vertices of Gi.
Definition 3.3.3. Let G be a finite graph. For A ⊂ V (G), its boundary ∂A is the collection
of edges with one endpoint in A and one endpoint not in A. The Cheeger constant h(G) is
defined to be

h(G) = min
{
|∂A|
|A|

: A ⊂ V (G), 0 < |A| ≤ |V (G)|/2
}
.

Thus, having a small Cheeger constant is equivalent to the graph having a ‘bottleneck’, in
the sense that there is a collection of edges ∂A that, when removed, disconnects the vertices
into two sets (A and its complement, V (G) \ A), with the property that the sizes of A and
its complement are significantly larger than the size of ∂A.

Expander families can be reinterpreted using Cheeger constants, as follows (see, e.g.,
[109–112]):
Theorem 3.3.4. Let {Gi} be an infinite collection of finite connected graphs with a uniform
upper bound on their vertex degrees. Then the following are equivalent:

(1) {Gi} is an expander family;

(2) there is a constant ϵ > 0 such that for all graphs in the collection, h(Gi) ≥ ϵ.

Hence, expander graphs have higher Cheeger constants and will hence experience less
severe problems arising due to bottleneck edges. The following result is one of the many
useful properties of expander families, and it concerns their diameter. It was proved by
Mohar [113, Theorem 2.3]. See also [110].
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Theorem 3.3.5. The diameter diam(G) of a graph G satisfies

diam(G) ≤ 2
⌈

∆(G) + λ1(G)
4λ1(G) log(|V (G)| − 1)

⌉
,

where ∆(G) is the maximal degree of any vertex of G. Hence, if {Gi} is an expander family
of finite graphs with a uniform upper bound on their vertex degrees, then there is a constant
k > 0 such that for all graphs in the family,

diam(Gi) ≤ k log V (Gi).

Therefore, if we want to globally propagate information over an expander graph which
has |V | nodes, we only need O(log |V |) propagation steps to do so—yielding subquadratic
complexity.

We showed that expanders will experience less severe problems arising due to bottleneck
edges, with favourable propagation qualities. What is missing is an efficient method of
constructing an expander of (roughly) |V | nodes. To demonstrate such a method, we leverage
known results from group theory.
Definition 3.3.6. A group (Γ, ◦) is a set Γ equipped with a composition operation ◦ :
Γ × Γ → Γ (written concisely by omitting ◦, i.e. g ◦ h = gh, for g, h ∈ Γ), satisfying the
following axioms:

— (Associativity) (gh)l = g(hl), for g, h, l ∈ Γ.
— (Identity) There exists a unique e ∈ Γ satisfying eg = ge = g for all g ∈ Γ.
— (Inverse) For every g ∈ Γ there exists a unique g−1 ∈ Γ such that gg−1 = g−1g = e.
A group is hence a natural construct for reasoning about transformations that leave an

object invariant (unchanged). Further, we define a relevant notion of a group’s generating
set:
Definition 3.3.7. Let Γ be a group. A subset S ⊆ Γ is a generating set for Γ if it can
be used to “generate” all of Γ via composition. Concretely, any element g ∈ Γ can be
expressed by composing elements in the generating set, or their inverses; that is, we can
express g = s±1

1 s±1
2 s±1

3 · · · s±1
n−1s

±1
n for si ∈ S.

Now we are ready to define a Cayley graph of a group w.r.t. its generating set.
Definition 3.3.8. Let Γ be a group with a finite generating set S. Then the associated
Cayley graph Cay(Γ;S) has vertex set Γ and it has an edge g → gs for each g ∈ Γ and each
s ∈ S. We say that s is the label on this edge. This is a potentially non-simple graph, as
it may have edges with both endpoints on the same vertex and it may have multiple edges
between a pair of vertices. In particular, when s has order 2, then we view the edge g → gs

and the edge gs→ gs2 = g as distinct edges.
Note that the degree of each vertex of a Cayley graph Cay(Γ;S) is 2|S|. This is because

each vertex g is joined by edges to gs and gs−1 for each s ∈ S. Thus, we shall be particularly
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interested in the case where there is a uniform upper bound on |S|. The specific group we
use for EGP is as follows.

For each positive integer n, the special linear group SL(2,Zn) denotes the group of 2 ×
2 matrices with entries that are integers modulo n and with determinant 1. One of its
generating sets is:

Sn =


1 1

0 1

 ,
1 0

1 1

 .
Central to our constructions is the following important result.

Theorem 3.3.9. The family of Cayley graph Cay(SL(2,Zn);Sn) forms an expander family.
The proof uses a result of Selberg [114] who showed that the smallest positive eigenvalue

of the Laplacian of certain hyperbolic surfaces is at least 3/16. One can use this to a produce
a lower bound on the first eigenvalue of the Laplacian on Cay(SL(2,Zn);Sn). Full proofs are
given in [108, 107].

Lastly, it is useful to state a known result: the number of nodes of Cay(SL(2,Zn);Sn) is:

|V (Cay(SL(2,Zn);Sn))| = n3 ∏
prime p|n

(
1− 1

p2

)
, (3.3.10)

hence, it is of the order of O(n3). We now study the local properties of Cayley graphs in
detail.

3.4. Local structure of the Cayley graphs, and the util-
ity of negative curvature

Recent work [72] has suggested that the local structure of the graph G underlying a GNN
may play an important role in the way that information propagates around G. In particular,
various notions of ‘Ricci curvature’ such as Forman curvature [115], Ollivier curvature [116,
117] and balanced Forman curvature [72] have been examined. These are all local quantities,
in the sense that they depend on the structure of the graph within a small neighbourhood of
each edge. In this section, we will therefore examine the local structure of the Cayley graphs
Gn = Cay(SL(2,Zn);Sn).

The various notions of curvature given above are defined for each e of the graph G.
Since, as defined by [72], the balanced Forman curvature of an edge depends only on local
structures (i.e. triangles and squares) around that edge, they can be determined by only
observing the immediate 2-hop surrounding of that edge. Formally, for an edge e of a graph
G, let N2(e) be the induced subgraph with vertices that are at most two hops away from
at least one endpoint of e. Then the curvature of e only depends on the isomorphism type
of N2(e). More specifically, if e and e′ are edges in possibly distinct graphs, and there is a
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graph isomorphism between N2(e) and N2(e′) that sends e to e′, then this guarantees that
the curvatures of e and e′ are equal.

This situation arises prominently in the Cayley graphs that we are considering, as follows.
Proposition 3.4.1. Let s be one of1 1

0 1

 ,
1 0

1 1

 .
Let n, n′ > 18 and let e and e′ be s-labelled edges in Gn and Gn′. Then there is a graph
isomorphism between N2(e) and N2(e′) taking e to e′.

We prove Proposition 3.4.1 in Appendix A.1. This immediately allows us to charac-
terise the balanced Forman curvature and Ollivier curvature for all of the Cayley graphs we
generate:
Proposition 3.4.2. The balanced Forman curvatures Ric(n), and the Ollivier curvatures
κ(n) of all edges of Cayley graphs Gn are given by:

Ric(n) =



0 if n = 2
−1/4 if n = 3
−1/2 if n = 4
−1 if n ≥ 5,

κ(n) =



0 if n = 2
−1/8 if n = 3
−1/4 if n = 4
−3/8 if n = 5
−1/2 if n ≥ 6.

Proof. Proposition 3.4.1 implies that the balanced Forman and Ollivier curvatures are all
equal for n > 18. Their values for 2 ≤ n ≤ 19 can all be empirically computed, and are
given as above. □

Prior work [72] suggests it is preferable for GNNs to operate on graphs with positive Ricci
curvature, whereas our graphs Gn (n > 2) all have negative Ricci curvature. However, we
contend that negative Ricci curvature is not in itself an impediment to efficient propagation
around a GNN. Indeed, it was shown in [72, Theorem 4] that poor propagation arises when
the balanced Forman curvature is close to −2, specifically if it is at most −2 + δ for some
δ > 0. Here, δ is required to satisfy certain inequalities. But, with certainty, δ = 1 can never
be satisfied in the hypotheses of [72, Theorem 4].

Furthermore, positive Ricci curvature may have downsides when used for GNNs. One
significant downside can be derived using the main result of [118], which says that the three
properties of expansion, sparsity and non-negative Ollivier curvature are incompatible, in
the following sense.
Theorem 3.4.3. For any δ > 0 and ∆ > 0, there are only finitely many graphs with
maximum vertex degree ∆, Cheeger constant at least δ and non-negative Ollivier curvature.

We prove Theorem 3.4.3 in Appendix A.2. Furthermore, quoting directly from [118]:
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“The high-level message is that on large sparse graphs, non-negative curvature (in an
even weak sense) induces extremely poor spectral expansion. This stands in stark contrast
with the traditional idea – quantified by a broad variety of functional inequalities over the
past decade – that non-negative curvature is associated with good mixing behavior.”

In our view, it is highly desirable that the graphs used for GNNs have high Cheeger
constants, in the sense of globally lacking bottlenecks. Having bounded vertex degree is
certainly useful too, since it implies that the graphs will be sparse, and the nodes will not
have to handle ever-increasing neighbourhoods for message passing as graphs grow larger in
size.

However, by proving Theorem 3.4.3, we showed non-negative Ollivier curvature is incom-
patible with these properties for sufficiently large graphs. Specifically, given the finite supply
of non-negatively curved sparse graphs, we can define N ′ as the largest number of nodes of
such graphs. Then, for all graphs G where |V (G)| > N ′, we will be unable to produce a
computational graph for a GNN which is non-negatively curved everywhere. It remains an
interesting challenge to provide an bound on N ′ (as a function of δ and ∆). It is possible
that a careful analysis of [118] may provide this.

Further, while the expander graphs we generate are negatively-curved at −1 everywhere,
and we will empirically show this helps alleviate oversquashing, we also believe that it is wor-
thy of further investigation to theoretically examine whether performance of GNNs decreases
significantly when the curvature is less than −1.

The negative curvature of each edge in Gn implies that they are locally ‘tree-like’. In
Appendix A.3, we make this statement precise by showing that Gn is ‘tree-like’ up to scale
c log(n) about each node, for c ≃ (1/2)(log((1 +

√
5)/2))−1 (see Figure 12 (Right) for a

schematic view).
This tree-like structure might seem, at first, to be counter-productive for good propaga-

tion across the graphs Gn. Indeed, GNNs based on trees have been shown to have provably
poor performance [4]. The reason for this seems to be two-fold. On the one hand, trees have
small Cheeger constant. Indeed, any tree G on n vertices has a Cheeger constant 1/⌊n/2⌋,
since we may find an edge that, when removed, decomposes the graph into subgraphs with
⌊n/2⌋ and ⌈n/2⌉ vertices. As discussed in Section 3.3 and in [72], when a graph has small
Cheeger constant, its performance when used as a template for a GNN is likely to become
poor. Secondly, GNNs based on trees are susceptible to oversquashing. For a k-regular
infinite tree, there are k(k − 1)r−1 vertices at distance r from a given vertex. Hence, if
information is to be propagated at least distance r from a given vertex, then seemingly an
exponential amount of information is required to be stored.

However, neither of these issues are problematic for a GNN based on the Cayley graph Gn.
By Theorem 3.3.9, their Cheeger constants are bounded away from 0. Secondly, although
they are tree-like locally, this is only true up to scale O(log n). In fact, the r-neighbourhood
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of any vertex is the whole graph Gn as soon as r > C log n, for some constant C, by Theorem
3.3.5. Being tree-like up to distance O(log n) does not lead to a requirement to store too
much information as the message propagates. This is because k(k− 1)r−1 is polynomial in n
when r ≤ O(log n). Beyond this scale, there exist many additional connections, which lead
to many possible paths joining any pair of vertices. The perspective of information transfer
also gives rise to another perspective in which expanders fare very favourably: the mixing
time of their corresponding Markov chain (see Appendix A.4 for details).

3.5. Expander graph propagation
Let an input to a graph neural network be a node feature matrix X ∈ R|V |×d, and an

adjacency matrix A ∈ R|V |×|V |. This setup is such that the feature vector of node u, xu ∈ Rd,
can be recovered by taking an appropriate row from X. Note that the adjacency information
can also be fed in an edge-list manner, which is desirable from a scalability perspective.
Further, each edge in the graph may be endowed with additional features rather than a
single real scalar. None of the above modifications would change the essence of our findings;
we use a matrix formalism here purely for simplicity.

There exist many ways in which the computed Cayley graph Cay(SL(2,Zn);Sn) can be
leveraged for message propagation, and exploring these variations could be very useful for
future work. Here, we opt for a simple construction: interleave running a standard GNN
over the given input structure, followed by running another GNN layer over the relevant
Cayley graph. If we let ACay(n) be an adjacency matrix derived from Cay(SL(2,Zn);Sn),
this implies:

H = GNN(GNN(X,A),ACay(n)) (3.5.1)

Here, GNN refers to any preferred GNN layer, such as the graph isomorphism network [1,
GIN]:

hu = ϕ

(1 + ϵ) xu +
∑

v∈Nu

xv

 (3.5.2)

where Nu is the neighbourhood of node u, i.e. in our setup, the set of all nodes v such that
avu ̸= 0. ϵ ∈ R is a learnable scalar, and ϕ : Rd → Rd′ is a two-layer MLP.

This procedure is iterated for a certain number of steps, after which the computed node
embeddings in H can be used for any downstream task of interest—such as node classifica-
tion, link prediction or graph classification. Note that, unlike [4], who apply their custom
layer only at the tail of the architecture, we apply the expander graph immediately after each
layer over the input graph. We find that if the input graph given by A contains bottlenecks,
applying the GNN over ACay(n) only at the end may result in oversquashing occurring before
any expander graph propagation can take place.
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The setup so far assumed the number of nodes in our input graph to line up with the
Cayley graph, that is, ACay(n) ∈ R|V |×|V |. However, there is no guarantee that we can find
an appropriate n such that Cay(SL(2,Zn);Sn) would have |V | nodes. What we can do in
practice, as an approximation, is choose the smallest n such that the number of nodes of
Cay(SL(2,Zn);Sn) is ≥ |V |, then consider ACay(n)

1:|V |,1:|V |—i.e. only the subgraph containing the
first |V | nodes in the Cayley graph.

There is a slight misalignment to our theory in this slicing choice—if the |V | vertices in
this subgraph are chosen completely arbitrarily, we risk disconnecting the graph. However,
in all our experiments we construct the Cayley graph in a breadth-first manner, starting
from the identity element as “node zero”. Hence, the node at index i is always guaranteed to
be reachable from the nodes at lower indices (j < i), and the graph cannot be disconnected
under this construction. More interesting strategies for this step can also be considered in
the future. Note that, much like the fully connected graph used by [4], we interpret the
Cayley graph mainly as a template for global information propagation, in order to relieve
bottlenecks in a scalable way. Our interpretation, hence, assumes that the efficient diffusion
of information over the whole graph is of benefit to the learning task we perform. When
this is not the case, it might be worthwhile to construct expanders that somehow align with
the input graph, but no such expander constructions are currently known, to the best of our
knowledge. There is also a possible effect of stochasticity due to arbitrarily having to align
the Cayley graph’s nodes to the input graph—which would not appear when using master
nodes or fully-connected graphs—though our preliminary experiments did not observe any
such negative effects.

Algorithm 1 summarises the steps of our proposed EGP model. As direct corollaries
of results we proved or demonstrated, we note that EGP satisfies all four of our desirable
criteria: (C1) by Theorem 3.3.5 (so long as logarithmically many layers are applied), (C2) by
Theorem 3.3.4 (high Cheeger constant implies no bottlenecks), (C3) by the fact our Cayley
graphs are 4-regular and hence sparse, and (C4) by the fact we can generate a Cayley graph
of appropriate size without detailed analysis of the input—we may precompute a “bank” of
Cayley graphs of various sizes to use in an ad-hoc manner.

3.6. Empirical evaluation
Our work provides mainly a theoretical contribution: demonstrating a simple,

theoretically-grounded approach to relieving bottlenecks and oversquashing in GNNs
without requiring quadratic complexity or dedicated preprocessing. Further, we prove
several additional results which deepen our understanding of curvature-based analysis of
GNNs, showing how our expanders can be favourable in spite of their negatively-curved
edges. We now provide results that empirically supplement our claim.
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Algorithm 1: Expander graph propagation (EGP) forward pass
Inputs : Node features X ∈ R|V |×d, Adjacency matrix A ∈ R|V |×|V |

Output: Node embeddings H
// Choose the smallest Cayley graph from our family that has number of

nodes equal to, or greater than, |V |
n← argminm∈N|V (Cay(SL(2,Zm);Sm))| ≥ |V |; // We can use Equation 3.3.10
to determine n

GCay(n) ← Cay(SL(2,Zn);Sn)

ACay(n)
uv ←

1 (u, v) ∈ E(GCay(n))
0 otherwise

; // Populate adjacency matrix of the

Cayley graph

H(0) ← X; // Initialise GNN inputs

for t ∈ {1, . . . ,T} do
if t mod 2 = 0 then

H(t) ← GNN(t)(H(t−1),A) ; // GNN layer over input graph; e.g.
Equation 3.5.2

else
H(t) ← GNNCay(t)

(
H(t−1),ACay(n)

1:|V |,1:|V |

)
; // GNN layer over Cayley graph;

e.g. Eq. 3.5.2

return H(T ) ; // Return final embeddings for downstream use

Tree-NeighborsMatch We start by comparing our models on the Tree-NeighborsMatch
task (for more details, see Alon and Yahav [4, Section 4.1]). Tree-NeighborsMatch is a syn-
thetic benchmark explicitly designed to test a GNN’s ability to counter oversquashing, and
therefore it allows us to empirically verify that EGP is capable of alleviating oversquashing.
We augment the original GIN implementation from the authors [4] with EGP layers, and
find that it is capable of solving the task at depth=5 at 100% accuracy, demonstrating
alleviated oversquashing. In comparison, baseline GIN can only achieve 29% on this same
task, and the best-performing GNN without EGP—i.e. propagating over the input tree
only—cannot exceed 60% accuracy.

OGB Datasets For real-world evaluation, we leverage the established Open Graph
Benchmark collection of tasks [2, OGB]. Specifically, we provide results on all of its graph
classification datasets: ogbg-molhiv, ogbg-molpcba, ogbg-ppa and ogbg-code2. The first
two are among the largest molecule property prediction datasets in the MoleculeNet bench-
mark [119]. The third dataset is concerned with classifying species into their taxa, from
their protein-protein association networks [120, 121] given as input. The fourth dataset is a
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Table 3 – Comparative evaluation performance on the four datasets studied. Our baseline
model is a GIN [1], using exactly the same implementation as in [2]. See Appendix A.5 for
ablations.

Model ogbg-molhiv ogbg-molpcba ogbg-ppa ogbg-code2

GIN 0.7558± 0.0140 0.2266± 0.0028 0.6892± 0.0100 0.1495± 0.0023
GIN + EGP 0.7934± 0.0035 0.2329± 0.0019 0.7027± 0.0159 0.1497± 0.0015

code summarisation task: it requires predicting the tokens in the name of a Python method,
given the abstract syntax tree (AST) of its implementation.

We provide a summary of important dataset statistics in Appendix A.5; please see [2] for
detailed information. These datasets are designed to span a wide variety of domains (virtual
drug screening, molecular activity prediction, protein-protein interactions, code summari-
sation) and sizes (from small molecules to very large syntax trees—the largest graph in
ogbg-code2 has 36,123 nodes).

Models In all four datasets, we want to directly evaluate the empirical gain of intro-
ducing an EGP layer and completely rule out any effects from parameter count, or similar
architectural decisions.

To enable this, we take inspiration from the experimental setup of [4]. Our baseline
model is the GIN [1], with hyperparameters as given by [2]. We use the official publicly
available model implementation from the OGB authors [2], and modify all even layers of the
architecture to operate over the appropriately-sampled Cayley graph.

Note that our construction leaves both the parameter count and latent dimension of the
model unchanged, hence any benefits coming from optimising those have been diminished.

Results The results of our evaluation are presented in Table 3. It can be observed
that, in all four cases, propagating information over the Cayley graph yields improvements
in mean performance—these improvements are most apparent on ogbg-molhiv, but also
present in ogbg-molpcba and ogbg-ppa. We believe that these results provide encouraging
empirical evidence that propagating information over Cayley graphs is an elegant idea for
alleviating bottlenecks. We provide additional results on OGB, comparing EGP to various
other oversquashing-countering methods, in Appendix A.5.

3.7. Conclusion
In this paper, we have presented expander graph propagation (EGP), a novel and elegant

approach to alleviating bottlenecks in graph representation learning, which provably supports
global communication while not requiring quadratic complexity or dedicated preprocessing
of the input.
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To this end, we offered a detailed theoretical overview of Cayley graphs of special linear
groups, Cay(SL(2,Zn);Sn). We cite proofs that these graphs have highly favourable prop-
erties for information propagation in graph neural networks: they are sparse and 4-regular,
they have logarithmic diameter, and they can be efficiently precomputed by a simple proce-
dure that does not rely on the input structure. We show that, in spite of having negatively
curved edges, our findings do not violate any prior results on understanding oversquashing
via curvature. Even under a simple intervention—interleaving EGP layers inbetween stan-
dard GNN layers—we have been able to recover significant performance returns without
changing the parameter count or latent space dimensionality.

We hope that our work serves as a foundation for further work on deploying Cayley
graphs—or other expander families—within the context of GNNs.
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Chapter 4

Graph Neural Networks for Heterophilic
data: Prologue to the second article

4.1. Article Details
Evolving Computation Graphs (ECG). Andreea Deac, Jian Tang. The paper is under
submission at NeurIPS 2023 and was accepted at ICML 2023 TAGML workshop.

Personal contribution: I proposed the idea, implemented and ran the experiments on
this paper based on Jian’s supervision of the project. All authors contributed to writing the
manuscript.

4.2. Context
Most graph neural networks are built on the assumption that the input graphs are ho-

mophilic, which means that nodes are connected by an edge if they belong to the same
class. In fact, when graphs are highly homophilic, substantial progress can be made without
most of the complexities induced by GNNs—if we assume that most of a node’s neighbours
share a label with it, then taking simple averages of neighbours can be a sufficiently strong
regulariser—a feat demonstrated by the simplified graph convolution [79, SGC]. Consequen-
tially, GNNs were noticed to perform significantly worse on heterophilic data [122].

As many graphs of interest in the world are heterophilic (such as social networks, where,
e.g., re-tweeting does not necessarily mean agreement, fraud networks, e.g., fraudsters con-
necting with victims, or protein-protein networks, e.g., proteins with different functions being
associated in the same pathways), more works focused on designing specialised GNNs that
perform well on heterophilous datasets. However, Platonov et al. [3] showed that the previous
benchmark used to test heterophilic architectures suffered from limitations such as node du-
plicates, class imbalance and overlap in the data sources. Therefore, they proposed a bench-
mark that addresses these limitations, on which it was noticed that the specialised GNNs



are outperformed by classic, general-purpose GNN architectures. Therefore, we wanted to
find a solution that improves GNNs’ performance without specialising the architecture, such
as modifying the computation graphs towards increased homophily. This was also based on
the previous success we obtained with Expander Graph Propagation [22], presented in the
previous chapter, where we modify the computation graphs using templates that are known
to improve long-range connectivity.

However, in the case of ECG, such template graphs are not immediately available. In
order to know how to improve homophily on test nodes, it is important to have a strong guess
of the test node’s label—but, as classifying the test nodes well is arguably the main objective
of a learned GNN model, this produces a chicken-and-egg problem: the data necessary for
obtaining a perfectly-homophilic graph at test time requires first solving the downstream
task we care about! Therefore, in ECG, we propose a customised solution, where we first
use weak classifiers to discover nodes that are similar by predicted label or local structure,
and then deriving new computation graphs by leveraging embedding similarity in the weak
classifier’s latent space.

4.3. Modulator
In ECG [23], we demonstrate the utility of improving homophily in the computational

graph, via learned weak classifiers—both point-wise and structural. This procedure is con-
ceptually elegant, and easy to motivate, but nontrivial to stabilise, as it relies on (at least)
a two-phase method, and the success of the second phase critically depends on the power of
the classifiers trained in the first phase. In this case, the modulator consists of a pre-trained
weak classifier, from which edges are sampled using the similarity of node embeddings ob-
tained from this classifier. As a common example, the ECG modulator may sample edges
according to the k nearest neighbours of each node in the latent space of the weak classifier.

4.4. Contributions and Research Impact
“Evolving Computation Graphs” (ECG) [23] proposed a novel method to improve GNNs’

performance on heterophilic graphs, yielding improvements in 95% of the cases tested. As
this work is recent, there have not been any follow-up papers building on it yet, but one
of the things I am most excited about would be extending the idea of evolved computation
graphs beyond ameliorating heterophily. In general, we may consider a generic reward model,
providing a way to score the “desirability” of a particular graph (in the particular case of
ECG, such a reward model would compute the graph’s homophily ratio), and then trying to
optimise the model’s reward as guidance for edge selection.

70



Chapter 5

Evolving Computation Graphs

Graph neural networks (GNNs) have demonstrated success in modeling relational data,
especially for data that exhibits homophily: when a connection between nodes tends to imply
that they belong to the same class. However, while this assumption is true in many relevant
situations, there are important real-world scenarios that violate this assumption, and this
has spurred research into improving GNNs for these cases. In this work, we propose Evolving
Computation Graphs (ECGs), a novel method for enhancing GNNs on heterophilic datasets.
Our approach builds on prior theoretical insights linking node degree, high homophily, and
inter vs intra-class embedding similarity by rewiring the GNNs’ computation graph towards
adding edges that connect nodes that are likely to be in the same class. We utilise weaker
classifiers to identify these edges, ultimately improving GNN performance on non-homophilic
data as a result. We evaluate ECGs on a diverse set of recently-proposed heterophilous
datasets and demonstrate improvements over the relevant baselines. ECG presents a simple,
intuitive and elegant approach for improving GNN performance on heterophilic datasets
without requiring prior domain knowledge.

5.1. Introduction
Neural networks applied to graph-structured data have demonstrated success across var-

ious domains, including practical applications like drug discovery [55], transportation net-
works [56], chip design [57] and theoretical advancements [58, 59]. Numerous architectures
fall under the category of graph neural networks [18], with one of the most versatile ones be-
ing Message Passing Neural Networks [13]. The fundamental concept behind these networks
is that nodes communicate with their neighbouring nodes through messages in each layer.
These messages, received from neighbours, are then aggregated in a permutation-invariant
manner to contribute to a new node representation.

It has been observed that the performance of graph neural networks may rely on the
underlying assumption of homophily, which suggests that nodes are connected by edges if
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Figure 13 – A simplified illustration of Evolving Computation Graphs. Step 1: nodes in a
graph, G, are embedded using a pre-trained weak classifier. Step 2: Based on these embed-
dings, a nearest-neighbour graph, GEGC, is generated. This graph is likely to have improved
propagation and homophily properties (illustrated by similar colours between neighbouring
nodes). Step 3: Message passing is performed, both in the original and in the ECG graph,
to update node representations.

they are similar based on their attributes or belonging to the same class, as commonly seen
in social or citation networks. However, this assumption often fails to accurately describe
real-world data when the graph contains heterophilic edges, connecting dissimilar nodes.
This observation holds particular significance since graph neural networks tend to exhibit
significantly poorer performance on heterophilic graphs compared to datasets known to be
homophilic. Several studies [35, 123–125] have highlighted this issue, using a mixture of
strongly homophilous graphs—such as Cora, Citeseer and Pubmed [126]—as well a standard
suite of six heterophilic datasets—Squirrel, Chameleon, Cornell, Texas, Wisconsin and Actor
[127, 128]—first curated jointly by Pei et al. [129].

In the context of this standard suite of heterophilic graphs, it has been observed that
general graph neural network architectures tend to underperform unless there is high label
informativeness [122, 130]. In prior work, this issue was tackled primarily by proposing
modifications to the GNN architecture. These modifications include changes to the ag-
gregation function, such as separating self- and neighbour embeddings [35], mixing low- and
high-frequency signals [131, 132], and predicting and utilising the compatibility matrix [133].
Other approaches involve using the Jacobi basis in spectral GNNs [124] or learning cellular
sheaves for neural sheaf diffusion [134] to improve performance.
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However, it was recently remarked [3] that this standard heterophilous suite has signifi-
cant drawbacks, such as data originating from only three sources, two of the datasets having
significant numbers of repeated nodes and improper evaluation regarding class imbalance.
To address these shortcomings, a more recent benchmark suite has been introduced by
Platonov et al. [3], incorporating improvements on all of the above issues. Interestingly, once
such corrections are accounted for, standard GNN models such as graph convolutional net-
works [14, GCN], GraphSAGE [135, SAGE], graph attention networks [15, GAT], and Graph
Transformers [136, GT] have demonstrated superior performance compared to specialized ar-
chitectures tailored specifically for heterophily—in spite of the heterophilic properties of the
datasets. The notable exception is -sep [35] which has consistently improved GAT and GT
by modelling self and neighbouring nodes separately.

In light of this surprising discovery, we suggest that there should be alternate routes to
making the most of heterophilic datasets. Rather than attempting to modify these standard
GNNs, we propose modifying their computation graph: effectively, enforcing messages to be
sent across additional pairs of nodes. These node pairs are chosen according to a particular
measure of similarity. If the similarity metric is favourably chosen, such a computation graph
will improve the overall homophily statistics, thereby creating more favourable conditions
for GNNs to perform well.

We further propose that the modification of the computation graph should be separate
from its utilisation 1. That is, we proceed in two phases: the first phase learns the represen-
tations that allow us to construct new computation graphs, and the second phase utilises
those representations to construct new computation graphs, to be utilised by a GNN in each
layer. This design choice makes our method elegant, performant and easy to evaluate: the
two-phase nature means we are not susceptible to bilevel optimisation (as in [138, 139]), the
graphs we use need to be precomputed exactly once rather than updated on-the-fly in every
layer (as in [140]), and because the same computation graph is used across all GNN layers,
we can more rigidly evaluate how useful this graph is, all other things kept equal.

Hence, the essence of our method is Evolving Computation Graphs (ECG), which uses
weak classifiers to generate node embeddings. These embeddings are then used to define
a similarity metric between nodes (such as cosine similarity). We then select edges in a
k-nearest neighbour fashion: we connect each node to k nodes most similar to it, according
to the metric. The edges selected in this manner form a complementary graph, which we
propose using in parallel with the input graph to update each node’s representation. For
this purpose, we use standard, off-the-shelf, GNNs. Our method is illustrated in Figure 13.

1. We note that [129, 137] also rest on a similar proposal, however their updated computation graph is
fully derived as a function of the input graph structure (ignoring node features and labels), and thus it is
unavoidably vulnerable to any biases or inconsistencies in the input graph—and real-world graph inputs are
rarely flawless.
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The nature of the weak classifier employed in ECG is flexible and, for the purpose of this
paper, we used two representative options. The first option is a point-wise MLP classifier,
attempting to cluster together nodes based on the given training labels, without any graph-
based biases. For the second option, we attempt the converse: utilising the given graph
structure and node features, but not relying on the training labels. This is a suitable setting
for a self-supervised graph representation learning method, such as BGRL [93], which is
designed to cluster together nodes with similar local neighbourhoods—both in terms of
subgraphs and features—through a bootstrapping objective [141].

To evaluate the effectiveness of ECG, we conduct experiments on the benchmark suite
proposed by Platonov et al. [3]. Our results demonstrate that ECG models outperform their
GNN baselines in 19 out of 20 head-to-head comparisons. The most significant improvements
can be noticed for GCNs—which are best suited to benefit from improved homophily—where
improvements reach up to 10% in absolute terms. Further, the best performing ECG models
outperform a diverse set of representative heterophily-specialised GNNs.

5.2. Background
In this section, we introduce the generic setup of learning representations on graphs,

along with all of the key components that comprise our ECG method.
Graph representation learning setup. We denote graphs by G = (V,E), where V is the set of
nodes and E is the set of edges, and we denote by euv ∈ E the edge that connects nodes u
and v. For the datasets considered here, we can assume that the input graphs are provided
to the GNNs via two inputs: the node feature matrix, X ∈ R|V |×k (such that xu ∈ Rk are the
input features of node u ∈ V ), and the adjacency matrix, A ∈ {0, 1}|V |×|V |, such that auv

indicates whether nodes u and v are connected by an edge. We further assume the graph is
undirected; that is, A = A⊤. We also use du = ∑

v∈V auv (= ∑
v∈V avu) to denote the degree

of node u.
We focus on node classification tasks with C representing the set of possible classes,

where for node with input features xu, there is a label yu ∈ C. Thus we aim to learn a
function f that minimises E[L(yu, ŷu)], where ŷu is the prediction of f(xu) = ŷu, and L is
the cross-entropy loss function.
Graph neural networks. The one-step layer of a GNN can be summarised as follows [18]:

h(l)
u = ϕ(l)

h(l−1)
u ,

⊕
(u,v)∈E

ψ(l)
(
h(l−1)

u ,h(l−1)
v

) (5.2.1)

where, by definition, we set h(0)
u = xu. Leveraging different (potentially learnable) functions

for ϕ(l) : Rk × Rm → Rk′ , ⊕ : bag(Rm) → Rm and ψ(l) : Rk × Rk → Rm then recovers
well-known GNN architectures. Examples include GCN [14]: ψ(l)(xu,xv) = βuvω

(l)(xv),
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with βuv ∈ R being a constant based on A, GAT [15]: ψ(l)(xu,xv) = α(l)(xu,xv)ω(l)(xv)
with α(l) : Rk × Rk → R being a (softmax-normalised) self-attention mechanism, and -sep
[35]: ϕ(l) = W(l)

selfϕ
(l)
1

(
h(l−1)

u

)
+ W(l)

aggϕ
(l)
2

(⊕
(u,v)∈E ψ

(l)(h(l−1)
u ,h(l−1)

v )
)
, where we explicitly

decompose ϕ(l) into two parts, with one of them (ϕ(l)
1 ) depending on the receiver node only.

Homophily. has been repeatedly mentioned as an important measure of the graph, especially
when it comes to GNN performance. Intuitively, it corresponds to an assumption that
neighbouring nodes tend to share labels: auv = 1 =⇒ yu = yv, which is often the case for
many industrially-relevant real world graphs (such as social networks). Intuitively, a graph
with high homophily will make it easier to exploit neighbourhood structure to derive more
accurate node labels.

However, in spite of the importance of quantifying homophily in a graph, there is no
universally-agreed-upon metric for this. One very popular metric, used by several studies, is
edge homophily [142], which measures the proportion of homophilic edges:

h-edge = |(u,v) ∈ E : yu = yv|
|E|

(5.2.2)

while [130] also introduces adjusted homophily to account for number of classes and their
distributions:

h-adj = h-edge−∑C
k=1 D

2
k/(2|E|)2

1−∑C
k=1 D

2
k/(2|E|)2 (5.2.3)

where Dk = ∑
u:yu=k du, the sum of degrees for the nodes belonging to class k.

Additionally, the label informativeness (LI) measure proposed in [130] measures how much
information about a node’s label is gained by observing its neighbour’s label, on average. It
is defined as

LI = I(yξ, yη)/H(yξ) (5.2.4)

where (ξ, η) ∈ E is a uniformly-sampled edge, H is the Shannon entropy and I is mutual
information.
Weak classifier. In order to derive novel computation graphs which are likely to result in
higher test performance, we likely require “novel” homophilic connections to emerge—rather
than amplifying the homophily already present in A. Therefore, for the purposes of building
a useful computation graph, our ECG method aims to first learn representations of nodes
governed by a model which does not have access to inputs (X), graph structure (A) and
training labels (ytr) simultaneously. We hence call such a model a “weak classifier”, as it is
not exposed to the same kind of inductive biases as a supervised GNN would (and hence it
must obtain useful models which do not rely on these biases).
MLPs. Arguably the simplest way to make a weak classifier, as above, is to withhold ac-
cess to the graph structure (A), and force the model to classify the nodes in pure isola-
tion from one another. This is effectively a standard multi-layer perceptron (MLP) applied
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pointwise. Another way of understanding this model is setting A = I|V |, or equivalently,
E = {(u, u) | u ∈ V }, in Equation 5.2.1, which is sometimes referred to as the Deep Sets
model [37]. We train this model by using cross-entropy against the training nodes’ labels
(ytr) and, once trained, use the final layer activations, h(L)

u —for a model with L layers—as
our MLP embeddings.
BGRL. While using the embeddings from an MLP can offer a solid way to improve homophily
metrics, their confidence will degrade for nodes where the model is less accurate outside of
the training set—which are arguably the nodes we would like to improve predictions on
the most. Accordingly, as a converse approach to obtaining a weak classifier, we may also
withhold access to the training labels (ytr). Now the model is forced to arrange the node
representations in a way that will be mindful of the input features and graph structure, but
without knowing the task specifics upfront, and hence not vulnerable to overfitting on the
training nodes. Such a weak classifier naturally lends itself to self-supervised learning on
graphs.

Bootstrapped graph latents [93, BGRL] is a state-of-the-art self-supervised graph rep-
resentation learning method based on BYOL [141]. BGRL learns two GNN encoders with
identical architecture; an online encoder, Eθ, and a target encoder, Eϕ. BGRL also contains
a predictor network pθ. We offer a “bird’s eye” view of how BGRL is trained, and defer to
[93] for implementation details.

At each step of training, BGRL proceeds as follows. First, two data augmentations
(e.g. random node and edge dropout) are applied to the input graph, obtaining augmented
graphs (X1,A1) and (X2,A2). Then, the two encoders are applied to these augmentations,
recovering a pair of latent node embeddings: H1 = Eθ(X1,A1), H2 = Eϕ(X2,A2). The
first embedding is additionally passed through the predictor network: Z1 = pθ(H1). At this
point, BGRL attempts to preserve the cosine similarity between all the corresponding nodes
in Z1 and H2, via the following loss function:

LBGRL = − Z1H⊤
2

∥Z1∥∥H2∥
(5.2.5)

Lastly, the parameters of the online encoder Eθ and predictor pθ are updated via stochastic
gradient descent on LBGRL, and the parameters of the target encoder Eϕ are updated as the
exponential moving average of the online encoder’s parameters.

Once the training procedure concludes, typically only the online network Eθ is retained,
and hence the embeddings H = Eθ(X,A) are the BGRL embeddings of the input graph
given by node features X and adjacency matrix A.

Owing to its bootstrapped objective, BGRL does not require the generation of negative
samples, and is hence computationally efficient compared to contrastive learning approaches.
Further, it is very successful at large scales; it was shown by Addanki et al. [67] that BGRL’s
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benefits persist on industrially relevant graphs of hundreds of millions of nodes, leading to
one of the top-3 winning entries at the OGB-LSC competition [60]. This is why we employ
it as a representative self-supervised embedding method for our ECG framework.

5.3. Evolving Computation Graphs
Armed with the concepts above, we are now ready to describe the steps of the ECG

methodology. Please refer to Algorithm 2 for a pseudocode summary.
Step 1: Embedding extraction. Firstly, we assume that an appropriate weak classifier has
already been trained (as discussed in previous sections), and is capable of producing node em-
beddings. We start by invoking this classifier to obtain ECG embeddings HECG = γ(X,A).
We study two simple but potent variants of γ, as per the previous section:

MLP: In this case, we utilise a simple deep MLP 2; that is, γ(X,A) = σ (σ (XW1) W2),
where W· are the weights of the MLP, and σ is the GELU activation function [143].

BGRL: In this case, we set γ = Eθ, the online encoder of BGRL. For our experiments,
we utilise a publicly available off-the-shelf implementation of BGRL provided by the
Deep Graph Library 3 [144], which uses a two-layer GCN [14] as the base encoder.

The parameters of γ are kept frozen throughout, and are not to be further trained on.
Step 2: Graph construction. Having obtained HECG, we can now use it to compute a simi-
larity metric between the nodes, such as cosine similarity, as follows:

S = HECGH⊤
ECG ŝuv = suv

∥hECGu∥∥hECGv∥
(5.3.1)

Based on this similarity metric, for each node u ∈ V we select its neighbourhood N ECG
u

to be its k nearest neighbours in S (where k is a tunable hyperparameter):

N ECG
u = top-kv∈V ŝuv (5.3.2)

Equivalently, we construct a new computation graph, GECG = (V,EECG), such that its
edges are EECG = {(u, v) | u ∈ V ∧ v ∈ Nu}. These edges are effectively determined by the
weak classifier.
Step 3: Parallel message passing. Finally, once the ECG graph, GECG, is available, we can
run our GNN of choice over it. To retain the topological benefits contained in the input
graph structure, we opt to run two GNN layers in parallel—one over the input graph (as in

2. Note that this MLP only computes high-dimensional embeddings of each node; while training γ, an
additional logistic regression layer is attached to this architecture.

3. https://github.com/dmlc/dgl/tree/master/examples/pytorch/bgrl
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Equation 5.2.1), and one over the ECG graph, as follows:

h(l)
INPu

= ϕ
(l)
INP

h(l−1)
u ,

⊕
(u,v)∈E

ψ
(l)
INP

(
h(l−1)

u ,h(l−1)
v

) (5.3.3)

h(l)
ECGu

= ϕ
(l)
ECG

h(l−1)
u ,

⊕
(u,v)∈EECG

ψ
(l)
ECG

(
h(l−1)

u ,h(l−1)
v

) (5.3.4)

Then the representation after l layers is obtained by jointly transforming these two rep-
resentations:

h(l)
u = W(l)h(l)

INPu
+ U(l)h(l)

ECGu
(5.3.5)

where W(l) and U(l) are learnable parameters.
Equations 5.3.3–5.3.5 can then be repeatedly iterated, much like is the case for any

standard GNN layer. As it is possible that GECG will contain noisy edges which do not
contribute to useful propagation of messages, we additionally apply DropEdge [145] when
propagating over the ECG graph, with probability pde = 0.5.

5.4. Experiments
We evaluate the performance of ECG on five heterophilic datasets, recently-proposed

by Platonov et al. [3]: roman-empire, amazon-ratings, minesweeper, tolokers and
questions. All five datasets are node classification tasks, testing for varying levels of ho-
mophily in the input (roman-empire has the highest label informativeness), different con-
nectivity profiles (tolokers is the most dense, questions has the lowest values of clustering
coefficients) and providing both real-world datasets(amazon-ratings), as well as synthetic
examples (minesweeper).

We ran ECG as an extension on standard GNN models, choosing the “-sep” variant [35]
for GAT and GT as it was noted to improve their performance consistently on these tasks
[3]. Thus, our baselines are GCN, GraphSAGE, GAT-sep and GT-sep, which we extend by
modifying their computation graph as presented in Section 5.3. For each ECG model, we
ran three variants, depending on which weak classifier was used to select the complementary
edges, EECG: the MLP, the BGRL, or a concatenation of the output of the two.

For each of these architectures, the hyper-parameters to sweep are the number of neigh-
bours sampled in the ECG graph, k (selected from {3, 10, 20}), the edge dropout rate used
on it (selected from {0., 0.5}, the hidden dimension of the graph neural networks, where
the one ran on the original graph G always matches the one ran on GECG (selected from
{256, 512}), as well as the standard choice of number of layers (selected from {2, 3, 4, 5}).
In the Appendix, we present additional information on the experiments, together with the
hyper-parameters corresponding to the best validation results.
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Algorithm 2: Evolving Computation Graph for Graph Neural Networks: ECG-
GNN

Input: Graph G = (V,E); Node Feature Matrix X; Adjacency Matrix A.
Hyper-parameters: Value of k; Drop edge probability pde; Number of layers L;
Output: Predicted labels ŷ
begin

/* Step 1: Extract embeddings */
HECG ← γ(X,A) /* Embeddings stored in matrix */
/* Step 2: Construct ECG graph */
S← HECGH⊤

ECG
for u ∈ V do

for v ∈ V do
ŝuv ← suv/(∥hECGu

∥∥hECGv
∥) /* Compute pair-wise cosine similarities */

NECG
u ← top-kv∈V ŝuv /* Compute k nearest neighbours of u */

EECG ← {(u, v) | u ∈ V ∧ v ∈ Nu} /* Construct the ECG edges */
/* Step 3: Running ECG-GNN with parallel processing of G and GECG */
for u ∈ V do

h0
u ← xu /* Setting initial node features */

for l← 1 to L do
/* Message passing propagation with the two parallel processors on G and

GECG respectively */
EECG

(l) ← DropEdge(EECG, pde) /* Randomly drop edges in the ECG graph */
for u ∈ V do

h(l)
INPu

← ϕ
(l)
INP

(
h(l−1)

u ,
⊕

(u,v)∈E ψ
(l)
INP

(
h(l−1)

u ,h(l−1)
v

))
/* GNN on G */

h(l)
ECGu

← ϕ
(l)
ECG

(
h(l−1)

u ,
⊕

(u,v)∈EECG
(l)

ψ
(l)
ECG

(
h(l−1)

u ,h(l−1)
v

))
/* GNN on GECG */

h(l)
u ←W(l)h(l)

INPu
+ U(l)h(l)

ECGu
/* Updating the node representation */

/* Predict node labels */
for u ∈ V do

pu ← softmax(W(c)h(L)
u ) ŷu ← arg maxc∈C pc /* Predicted class label */

return ŷ

In Table 4, we show the test performance corresponding to the highest validation score
among all embedding possibilites for each of the five datasets and for each of the four base-
lines. Altogether, there are 20 dataset-model combinations that ECG is tested on. We find
that on 19 out of these 20 combinations (marked with arrow up in the table), using ECG
improves the performance of the corresponding GNN architecture, the only exception being
GraphSAGE on amazon-ratings.

Moreover, we observe the highest gains in performance are achieved by ECG-GCN, rang-
ing from 1.17% to 10.84% (absolute values) in a manner that is correlated with the homophily
of the dataset. This confirms the hypothesis that, due to the aggregation function it employs,
GCN is also the architecture most prone to performance changes based on the homophily of
the graph.
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Table 4 – ECG performance on datasets proposed in [3]. We report accuracy for
roman-empire and amazon-ratings and ROC AUC for minesweeper, tolokers, and
questions.

Model roman-empire amazon-ratings minesweeper tolokers questions
MLP 65.88±0.38 45.90±0.52 50.89±1.39 72.95±1.06 70.34±0.76

GCN [14] 73.69±0.74 48.70±0.63 89.75±0.52 83.64±0.67 76.09±1.27

ECG-GCN 84.53±0.26 (↑) 51.12±0.38 (↑) 92.63±0.10 (↑) 84.81±0.25 (↑) 77.50±0.35 (↑)
SAGE [135] 85.74±0.67 53.63±0.39 93.51±0.57 82.43±0.44 76.44±0.62

ECG-SAGE 87.88±0.25 (↑) 53.45±0.27 (↓) 94.11±0.07 (↑) 82.61±0.29 (↑) 77.23±0.36 (↑)
GAT-sep [15] 88.75±0.41 52.70±0.62 93.91±0.35 83.78±0.43 76.79±0.71

ECG-GAT-sep 89.62±0.18 (↑) 53.65±0.39 (↑) 94.52±0.20 (↑) 84.23±0.25 (↑) 77.38±0.18 (↑)
GT-sep [136] 87.32±0.39 52.18±0.80 92.29±0.47 82.52±0.92 78.05±0.93

ECG-GT-sep 89.56±0.16 (↑) 53.25±0.39 (↑) 93.62±0.27 (↑) 84.00±0.24 (↑) 78.12±0.32 (↑)
H2GCN 60.11±0.52 36.47±0.23 89.71±0.31 73.35±1.01 63.59±1.46

CPGNN 63.96±0.62 39.79±0.77 52.03±5.46 73.36±1.01 65.96±1.95

GPR-GNN 64.85±0.27 44.88±0.34 86.24±0.61 72.94±0.97 55.48±0.91

FSGNN 79.92±0.56 52.74±0.83 90.08±0.70 82.76±0.61 78.86±0.92

GloGNN 59.63±0.69 36.89±0.14 51.08±1.23 73.39±1.17 65.74±1.19

FAGCN 65.22±0.56 44.12±0.30 88.17±0.73 77.75±1.05 77.24±1.26

GBK-GNN 74.57±0.47 45.98±0.71 90.85±0.58 81.01±0.67 74.47±0.86

JacobiConv 71.14±0.42 43.55±0.48 89.66±0.40 68.66±0.65 73.88±1.16

Additionally, we note that BGRL-based embeddings are consistently preferred for the
roman-empire and questions graphs. These datasets have the lowest average degree and
average local clustering – this emphasises the need for different methods of obtaining com-
plementary graphs, balancing connectivity and homophily aspects, as remarked in [146].

5.4.1. Qualitative studies

In Table 5, we analyse the properties of the complementary graphs GECG with k = 3
nearest neighbours. We note that this represents the graph used by ECG-GCN, which
preferred lower values of k, while the optimal values of k for SAGE, GAT-sep and GT-sep
were on the higher end, varying between 3, 10 and 20 depending on the dataset.

We observe that MLP-ECG confirms our hypothesis: taking the edges corresponding to
the pairs of nodes marked as most similar by the ResNet results in a graph GECG with high
homophily, especially compared to the original input graph. It is important to note that all
of our MLP-ECG graphs were obtained with a relatively shallow ResNet, which, as it can be
seen in Table 4 lacks in performance compared to the graph-based methods. However, our
method’s success in conjunction with GNNs shows that even a weak classifier can be used

80



Figure 14 – For roman-empire, we use a random GCN layer to obtain node embeddings
based on the original graph G (left) or from the complementary graph GECG (right). The
colours correspond to the ground-truth labels of the nodes.

to generate homophilic graphs that can improve performance when used to complement the
information provided by the given input data.

In Figure 14, we also verify how predictive of the node classes the graph topology is when
obtained from the original data compared to when we build a complementary graph GECG.
More precisely, we first build the graph GECG as presented in Step 1 of Algorithm 2, using
pre-trained MLP embeddings. Then we use a randomly initialised GCN to compute node
embeddings on the input graph G, as well as on GECG. We visualise these two sets of node
embeddings using t-SNE [147] by projecting to a 2D space, attributing the colour of each
point based on the node’s ground truth label. We can observe that using the GECG topology
leads to more distinguishable clusters corresponding to the classes even without any training,
thus supporting the enhancements in performance when building ECG-GNN.

5.5. Related work
Many specialised architectures have been proposed to tackle GNNs limitations in mod-

eling heterophilic data. H2GCN [35] proposes separation of ego and neighbour embeddings,
using higher-order neighbourhoods and combining representations from intermediate layers.
CPGNN [123] learns a compatibility matrix to explicitly integrate information about label
correlations and uses it to modulate messages. Similarly, GGCN [146] modifies GCN through
degree corrections and signed messages, based on an insight linking heterophily and over-
smoothing. FAGCN [131] uses a self-gating mechanism to adaptively integrate low-frequency
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Table 5 – Statistics of the original heterophilous graphs and of the evolutionary computation
graph obtained from MLP and BGRL.

roman-empire amazon-ratings minesweeper tolokers questions

edges 32,927 93,050 39,402 519,000 153,540
edge homophily 0.05 0.38 0.68 0.59 0.84
adjusted homophily −0.05 0.14 0.01 0.09 0.02
LI 0.11 0.04 0.00 0.01 0.00

ECG(k = 3) edges 67,986 73,476 30,000 35,274 146,763
MLP-ECG edge homophily 0.73 0.66 0.79 0.79 0.97
MLP-ECG adjusted homophily 0.7 0.53 0.33 0.4 0.41
MLP-ECG LI 0.65 0.33 0.16 0.19 0.28

BGRL-ECG edge homophily 0.16 0.3 0.68 0.6 0.93
BGRL-ECG adjusted homophily 0.06 0.02 0.12 0.08 0.01
BGRL-ECG LI 0.1 0.03 0.05 0.03 0.03

signals, high-frequency signals and raw features and ACM-GNN [132] extends it to enable
adaptive channel mixing node-wise. GPRGNN [148] learns Generalized PageRank weights
that adjust to node label patterns. FSGNN [149] proposes Feature Selection GNN which
separates node feature aggregation from the depth of the GNN through multiplication the
node features with different powers and transformations of the adjacency matrix and uses a
softmax to select the relevant features. GloGNN [150] leverages global nodes to aggreagte
information, while GBK-GNN [151] uses bi-kernel feature transformation.

Most relevant to ECG-GNN could be considered GeomGCN [129] and the work of Suresh
et al. [137]. The former uses network embedding methods to find neighbouring nodes in
the corresponding latent space, to be then aggregated with the neighbours in the original
graph, over which a two-level aggregation is then performed. Similarly, [137] modifies the
computation graph by computing similarity of degree sequences for different numbers of
hops. However, in both cases, the input node features and labels are not used, making it
prone to inaccuracies in the graph structure.

However, it was recently pointed [3] that the standard datasets on which these models
were tested, such as Squirrel, Chameleon, Cornell, Texas and Wisconsin, had considerable
drawbacks: high number of duplicated nodes, highly imbalanced classes and lack of diversity
in setups considered. In fact, when evaluated on their newly proposed heterophilic suite, it
was noted that most specialised architectures are outperformed by their standard counter-
parts such as GCN, SAGE, GAT and GT, with only the separation of ego and neighbour
embeddings from [35] maintaining an advantage.
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5.6. Limitations and further work
We observe that our complementary graph is constructed based on two sources of ho-

mophily: a pretrained ResNet model that relies on provided training labels, and a pretrained
self-supervised graph module, BGRL, which depends solely on the graph structure and node
features without any labels. In cases where neither of these two approaches generates a
graph with a satisfactory level of homophily and advantageous connectivity, the comple-
mentary graph may struggle to enhance the overall model performance, as evidenced by the
relatively smaller gains observed in the amazon-ratings dataset.

In such cases, it may be beneficial to explore additional sources for obtaining embed-
dings. Furthermore, there is potential for improvements in leveraging the complementary
information, such as separately using three distinct graphs: the original graph, the MLP-
ECG graph, and the BGRL-ECG graph. This approach might prove to be more effective in
incorporating the different types of information, rather than relying solely on the projection
of concatenated embeddings.

Finally, it is worth noting that while this method enhances the performance of standard
graph neural networks, it can also be applied to specialised architectures specifically de-
signed to improve performance on heterophilic data. These two approaches are independent
and can in principle be combined to further boost a model’s capabilities. By integrating
the complementary graph construction into specialized architectures, we could leverage the
benefits of both techniques and potentially achieve even better results when dealing with
heterogeneous data. As our paper focuses on the effects of modulating the graph structure
using weak classifiers, we apply only commonly-used GNN layers, and leave explorations of
this kind to future work.

5.7. Conclusions
We present Evolving Computation Graphs for graph neural networks, ECG-GNN. This

is a two-phase method focused on improving the performance of standard GNNs on het-
erophilous data. Firstly, it builds an evolved computation graph, formed from the original
input and a complementary set of edges determined by a weak classifier. Then, the two com-
ponents of this computation graph are modelled in parallel by two GNNs processors, and
projected to the same embeddings space after each propagation layer. This simple and ele-
gant extension of existing graph neural networks proves to be very effective – for four models
considered on five diverse heterophilic datasets, the ECG-GNN enhances the performance in
95% of the cases.
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Chapter 6

Graph Neural Networks for Reinforcement
Learning: Prologue to the third article

6.1. Article Details
Neural Algorithmic Reasoners are Implicit Planners. Andreea Deac, Petar Veličković,
Ognjen Milinković, Pierre-Luc Bacon, Jian Tang, Mladen Nikolic. The paper was accepted
at NeurIPS 2021 as a Spotlight talk.

Personal contribution: This work started with a self-proposed project [152] I worked
on for the course taught by Pierre-Luc, on “Reinforcement Learning and Control”. This
project was in the area of Neural Algorithmic Reasoning [19] and it aimed to teach a graph
neural network to execute value iteration. Based on its success, we followed up by building
an agent that plans using this learnt GNN executor, over a graph built using a transition
model. On the implementation side, I worked on the neural executor and the RL loop and
Ognjen built the transition model, experimented with pre-training it, as well as providing
the visualisations of the agent’s learned representations. Petar, Pierre-Luc, Mladen and Jian
provided insights into which environments to use and what ablation studies to perform, for
which I was responsible. All authors contributed to writing the paper and revising the article
in response to reviewer comments.

6.2. Context
Classical algorithms are fundamental units of computation because they are guaranteed

to be correct, consist of modules that can be combined, strongly generalise to unseen inputs
and have interpretable operations that address highly relevant downstream problems. On
the other hand, neural networks work with raw inputs, can deal with inaccuracies in the data
and can be reused in different tasks. The Neural Algorithmic Reasoning (NAR) paradigm
[19] proposed having neural networks that learn to execute algorithms, thus obtaining the



Figure 15 – Correspondences between value iteration and graph convolution

Table 6 – Our models are trained to execute the value iteration algorithm by predicting
the values of each MDP state. We show the mean-squared error of the predicted values
against ground-truth. Taking the action with the highest expected predicted value using the
Bellman equation, we can also predict policies. We then compute the policy accuracy with
respect to the ground-truth optimal policy. We test different GNN architectures, noting the
MPNN is generally robust to aggregator type, while the less aligned version using attention
under-performs in terms of policy accuracy.

Model MSE Accuracy
|S| = 20 |S| = 50 |S| = 100 |S| = 20 |S| = 50 |S| = 100
|A| = 5 |A| = 10 |A| = 20 |A| = 5 |A| = 10 |A| = 20

MPNN-Sum 0.457 2.175 5.154 97.75 99.3 99.32
MPNN-Mean 0.455 2.199 5.199 98.125 99.3 99.32
MPNN-Max 0.454 2.157 5.119 98. 99.25 99.22
MPNN-2-Sum 0.454 2.159 5.123 98.37 99.4 99.37
Attn-Sum 0.757 1.725 3.765 89.75 90.55 89.69

best of both worlds. In this context, and based on the assumption that there exist algorithms
that could perform optimal planning, such as value iteration [40], I have worked on a neural
network that learnt to execute value iteration [152] with the idea of leveraging new possibilites
for reinforcement learning agents. More precisely, thanks to the alignment between value
iteration and graph convolution portrayed in Figure 15, in [152], I designed a graph neural
network that can predict value iteration outputs to a high degree of accuracy, as shown in
Table 6.

Being able to plan using value iteration could greatly improve a reinforcement learning
agent’s abilities. However, for most environments of interest, the inputs to the VI algorithm
would have to be approximate, and, as mentioned, classical algorithms operate with the
assumption that the inputs are perfect. This assumption is taken in order to be able to
study these kinds of hard problems in a purely abstractified setting, free from the noisy
environments of the real world. However, this means that algorithms have no associated
guarantees of working on incorrect or noisy inputs. On the other hand, neural networks are
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known to work with raw inputs. Therefore, in the article that is the focus of the next chapter,
“Neural Algorithmic Reasoners are Implicit Planners”, we proposed the eXecuted Latent
Value Iteration Network (XLVIN), an agent which uses the neural algorithmic reasoner pre-
trained on value iteration as an implicit planner, and combined with neural networks that
approximate the inputs to the executor in latent space.

Moreover, as deploying neural algorithmic reasoners proved valuable, I also continued to
collaborate on works that developed neural algorithmic reasoners. In the work of Xhonneux
et al. [153], for the first time we trained a neural network to learn multiple graph algorithms
and gained insights into what is needed to achieve good performance on algorithm multi-
tasking. Further, I also took part in designing the Triplet-GMPNN architecture [154], that
scaled this idea to all algorithms in the CLRS-30 benchmark [155], learning 30 algorithms
with one single multi-task graph neural network.

6.3. Modulator
In XLVIN [24], we demonstrate how computational graphs can be dynamically inferred

on-the-fly by leveraging a learned transition model, coupled with breadth-first search. Such
a setup is often necessary when deploying GNN processors in reinforcement learning, as the
agent usually does not know a priori what the environment transition dynamics are: it
must infer these through interacting with the environment. The learned transition model
hence indicates the agent’s best current guess of these transition dynamics, from which
relevant local computational graphs can be obtained via sampling and search. Accordingly,
the modulator of XLVIN consists of a learned transition model, which can be used to sample
successor states, and these are then linked to their predecessors with edges in the modulated
computation graph.

6.4. Contributions and Research Impact
“Neural Algorithmic Reasoners are Implicit Planners” was one of the first deployments of

the NAR paradigm. It was successful in potentiating planning, showing good performance
with significantly less data compared to purely model-free baselines or baselines which pre-
dicted the VI inputs and used them to run the algorithm itself, on diverse classic-control
and Atari environments. Moreover, the ablation studies showed the neural executor is more
robust to noise compared to a classic algorithm executor, emphasising the importance of
avoiding the algorithmic bottleneck.

The algorithmic bottleneck, discovered for the first time in this paper, relates to the need
to predict low-dimensional—often scalar—values in order to be able to execute an algorithm
directly on them. For example, in optimal-trajectory-finding algorithms such as Value It-
eration, it is necessary to provide scalar transition probabilities and reward values in every
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Swimmer Swimmer Swimmer Swimmer

(a) Manual-Gaussian (b) Learned-Gaussian (c) Reuse-Policy (d) Learned-Sampling

HalfCheetah HalfCheetah HalfCheetah HalfCheetah

(e) Manual-Gaussian (f) Learned-Gaussian (g) Reuse-Policy (h) Learned-Sampling

Figure 16 – From [9]: average rewards over time for CNAP (red) and PPO baseline (blue),
in Swimmer (action dimension=2) and Halfcheetah (action dimension=6), using different
sampling methods. In Swimmer, CNAP with sampling methods were compared with the
original version by expanding all actions (green). In (a)(e), the actions were sampled using
Gaussian distribution with mean=N/2 and std=N/4, where N was the number of action
bins used to discretize the continuous action space. In (b)(f), two linear layers were used
to learn the mean and std, respectively. In (c)(g), the Policy layer was reused in sampling
actions to expand. In (d)(h), a separate linear layer was used to learn the optimal neighbor
sampling distribution.

node and edge of the MDP graph. However, if the neural network has not observed enough
data to reliably compute such inputs, the algorithm may further amplify this problem due to
being executed on an incorrect input, with no way to correct for any mistakes downstream.
Our executor, being a high-dimensional GNN, avoids this issue altogether, making it easier
to deploy downstream in spite of any inaccuracies it may have when executing the algorithm.

In a similar vein to our work, Numeroso et al. [156] use NAR on the max-flow min-cut
theorem for brain vessel classification, and Veličković et al. [157] introduce physical laws into
the pre-trained executor.

After the XLVIN project, we wanted to see if the framework would also be successful in
more extended cases, for example when scaling to large or continuous action spaces, when
the algorithm and its application are not fully aligned and the built local MDP is incomplete.
Therefore, we worked on “Continuous Neural Algorithmic Planners” [9, CNAP] where we
sample actions to build the graph fed as input to the neural executor, matching or improving
model-free baselines on MuJoCo environemnts [158] such as in Figure 16.
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Chapter 7

Neural Algorithmic Reasoners are Implicit
Planners

Implicit planning has emerged as an elegant technique for combining learned models of
the world with end-to-end model-free reinforcement learning. We study the class of implicit
planners inspired by value iteration, an algorithm that is guaranteed to yield perfect policies
in fully-specified tabular environments. We find that prior approaches either assume that the
environment is provided in such a tabular form—which is highly restrictive—or infer “local
neighbourhoods” of states to run value iteration over—for which we discover an algorithmic
bottleneck effect. This effect is caused by explicitly running the planning algorithm based
on scalar predictions in every state, which can be harmful to data efficiency if such scalars
are improperly predicted. We propose eXecuted Latent Value Iteration Networks (XLVINs),
which alleviate the above limitations. Our method performs all planning computations in a
high-dimensional latent space, breaking the algorithmic bottleneck. It maintains alignment
with value iteration by carefully leveraging neural graph-algorithmic reasoning and con-
trastive self-supervised learning. Across eight low-data settings—including classical control,
navigation and Atari—XLVINs provide significant improvements to data efficiency against
value iteration-based implicit planners, as well as relevant model-free baselines. Lastly, we
empirically verify that XLVINs can closely align with value iteration.

7.1. Introduction
Planning is an important aspect of reinforcement learning (RL) algorithms, and planning

algorithms are usually characterised by explicit modelling of the environment. Recently, sev-
eral approaches explore implicit planning [159–161, 48, 162–164]. Such approaches propose
inductive biases in the policy function to enable planning to emerge, while training the policy



in a model-free manner. Accordingly, implicit planners combine the effectiveness of large-
scale neural network training with the data efficiency promises of planning, making them a
very attractive research direction.

Many popular implicit planners attempt to align with the computations of the value
iteration (VI) algorithm within a policy network [159, 160, 162, 165, 166].

As VI is a differentiable algorithm, guaranteed to find the optimal policy, it can com-
bine with gradient-based optimisation and provides useful theoretical guarantees. We also
recognise the potential of VI-inspired deep RL, hence it is our primary topic of study here.
However, applying VI assumes that the underlying RL environment (a) is tabular, and that
its (b) transition and (c) reward distributions are both fully known and provided upfront.
Such assumptions are unfortunately unrealistic for most environments of importance to RL
research. Very often the dynamics of the environment will not be even partially known, and
the state space may either be continuous (e.g. for control tasks) or very high-dimensional
(e.g. for pixel-space observation in Atari), making a tabular representation hard to realise
from a storage complexity perspective.

Accordingly, VI-based implicit planners often offer representation learning based solu-
tions for alleviating some of the above limitations. Impactful early work [159, 162, 166]
showed that, in tabular settings with known transition dynamics, the reward distribution
and VI computations can be approximated by a (graph) convolutional network. While highly
insightful, this line of work still does not allow for RL in generic non-tabular environments
with unobserved dynamics. Conversely, approaches such as ATreeC [165] and VPN [160]
lift the remaining two requirements, by using a latent transition model to construct a “lo-
cal environment” around the current state. They then use learned models to predict scalar
rewards and values in every node of this environment, applying VI-style algorithms directly.

While such approaches apparently allow for seamless VI-based implicit planning, we
discover that the prediction of scalar signals represents an algorithmic bottleneck: if the neural
network has observed insufficient data to properly estimate these scalars, the predictions of
the VI algorithm will be equally suboptimal. This is limiting in low-data regimes, and can be
seen as unfavourable, particularly given that one of the main premises of implicit planning
is improved data efficiency.

In this paper, we propose the eXecuted Latent Value Iteration Network (XLVIN),
an implicit planning policy network which embodies the computation of VI while addressing
all of the limitations mentioned previously. We retain the favourable properties of prior
methods while simultaneously performing VI in a high-dimensional latent space, removing
the requirement of predicting scalars and hence breaking the algorithmic bottleneck. We
enable this high-dimensional VI execution by leveraging the latest advances in neural algo-
rithmic reasoning [19]. This emerging area of research seeks to emulate iterations of classical
algorithms (such as VI) directly within neural networks. As a result, we are able to seamlessly
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run XLVINs with minimal configuration changes on a wide variety of discrete-action envi-
ronments, including pixel-based ones (such as Atari), fully continuous-state control and nav-
igation. Empirically, the XLVIN agent proves favourable in low-data environments against
relevant model-free baselines as well as the ATreeC family of models.

Our contributions are thus three-fold: (a) we provide a detailed overview of the prior art
in value iteration-based implicit planning, and discover an algorithmic bottleneck in impact-
ful prior work; (b) we propose the XLVIN implicit planner, which breaks the algorithmic
bottleneck while retaining the favourable properties of prior work; (c) we demonstrate a
successful application of neural algorithmic reasoning within reinforcement learning, both
in terms of quantitative analysis of XLVIN’s data efficiency in low-data environments, and
qualitative alignment to VI.

7.2. Background and related work
We will now present the context of our work, by gradually surveying the key developments

which bring VI into the implicit planning domain and introducing the building blocks of our
XLVIN agent.

Planning has been studied under the umbrella of model-based RL [167, 8, 168]. However,
having a good model of the environment’s dynamics is essential before being able to construct
a good plan. We are instead interested in leveraging the progress of model-free RL [46, 42]
by enabling planning through inductive biases in the policy network—a direction known as
implicit planning. The planner could also be trained to optimise a supervised imitation
learning objective [169, 170]. This is performed by UPNs [169] in a goal-conditioned setting.
Our differentiable executors are instead applicable across a wide variety of domains where
goals are not known upfront. Diff-MPC [170] leverages an algorithm in an explicit manner.
However, explicit use of the algorithm often has issues of requiring a bespoke backpropagation
rule, and the associated low-dimensional bottlenecks.

Throughout this section we pay special attention to implicit planners based on VI, and
distinguish two categories of previously proposed planners: models which assume fixed and
known environment dynamics [159, 162, 166] and models which derive scalars to be used for
VI-style updates [165, 160].

Value iteration (VI) is a successive approximation method for finding the optimal value
function of a discounted Markov decision process (MDPs) as the fixed-point of the so-called
Bellman optimality operator [41]. A discounted MDP is a tuple (S,A, R, P, γ) where s ∈ S
are states, a ∈ A are actions, R : S ×A → R is a reward function, P : S ×A → Dist(S) is a
transition function such that P (s′|s,a) is the conditional probability of transitioning to state
s′ when the agent executes action a in state s, and γ ∈ [0,1] is a discount factor which trades
off between the relevance of immediate and future rewards. In the infinite horizon discounted
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setting, an agent sequentially chooses actions according to a stationary Markov policy π : S×
A → [0,1] such that π(a|s) is a conditional probability distribution over actions given a state.
The return is defined as Gt = ∑∞

k=0 γ
kR(at+k,st+k). Value functions V π(s,a) = Eπ[Gt|st = s]

and Qπ(s,a) = Eπ[Gt|st = s,at = a] represent the expected return induced by a policy in an
MDP when conditioned on a state or state-action pair respectively. In the infinite horizon dis-
counted setting, we know that there exists an optimal stationary Markov policy π∗ such that
for any policy π it holds that V π∗(s) ≥ V π(s) for all s ∈ S. Furthermore, such optimal policy
can be deterministic – greedy – with respect to the optimal values. Therefore, to find a π∗ it
suffices to find the unique optimal value function V ⋆ as the fixed-point of the Bellman opti-
mality operator. The optimal value function V ⋆ is such a fixed-point and satisfies the Bellman
optimality equations [40]: V ⋆(s) = maxa∈A (R(s,a) + γ

∑
s′∈S P (s′|s,a)V ⋆(s′)). Accordingly,

VI randomly initialises a value function V0(s), and then iteratively updates it as follows:

Vt+1(s) = max
a∈A

R(s,a) + γ
∑
s′∈S

P (s′|s,a)Vt(s′)
 . (7.2.1)

VI is thus a powerful technique for optimal control in RL tasks, but its applicability hinges
on knowing the MDP parameters (especially P and R) upfront—which is unfortunately not
the case in most environments of interest. To make VI more broadly applicable, we need to
leverage function approximators (such as neural networks) and representation learning to
estimate such parameters.

Value iteration is message passing Progress towards broader applicability started by
lifting the requirement of knowing R. Several implicit planners, including (G)VIN [159, 162]
and GPPN [166], were proposed for discrete environments where P is fixed and known.
Observing the VI update rule (Equation 7.2.1), we may conclude that it derives values by
considering features of neighbouring states; i.e. the value V (s) is updated based on states s′

for which P (s′|s, a) > 0 for some a. Accordingly, it tightly aligns with message passing over
the graph corresponding to the MDP, and hence a graph neural network (GNN) [13] over
the MDP graph may be used to estimate the value function.

Graph neural networks (GNNs) have been intensively studied as a tool to process
graph-structured inputs, and were successfully applied to various RL tasks [171–173]. For
each state s in the graph, a set of messages is computed—one message for each neighbouring
node s′, derived by applying a message function M to the relevant node (hs,hs′) and edge
(es′→s) features. Incoming messages in a neighbourhood N (s) are then aggregated through
a permutation-invariant operator ⊕ (such as sum or max), obtaining a summarised message
ms:

ms =
⊕

s′∈N (s)M(hs,hs′ , es′→s) (7.2.2)
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Figure 17 – XLVIN model summary. Its modules are explained (and colour-coded) in
Section 7.3.1.

The features of state s are then updated through a function U applied to these summarised
messages:

h′
s = U(hs,ms) (7.2.3)

GNNs can then emulate VI computations by setting the neighbourhoods according to the
transitions in P ; that is, N (s) = {s′ | ∃a ∈ A. P (s′|s, a) > 0}. For the special case of grid
worlds, the neighbours of a grid cell correspond to exactly its neighbouring cells, and hence
the rules in Equations 7.2.2–7.2.3 amount to a convolutional neural network over the grid
[159].

While the above blueprint yielded many popular implicit planners, the requirement of
knowing upfront the transition neighbourhoods is still limiting. Ideally, we would like to be
able to, on-the-fly, generate states s′ that are reachable from s as a result of applying some
action. Generating neighbouring state representations corresponds to a learned transition
model, and we present one such method, which we employed within XLVIN, next.

TransE The TransE [65] loss for embedding objects and relations can be adapted to
RL [174, 5]. State embeddings are obtained by an encoder z : S → Rk and the effect of an
action in a given state is modelled by a translation model T : Rk × A → Rk. Specifically,
T (z(s),a) is a translation vector to be added to z(s) in order to obtain an embedding of the
resulting state when taking action a in state s. This embedding should be as close as possible
to z(s′), for the observed transition (s, a, s′), and also far away from negatively sampled state
embeddings z(s̃). Therefore, the embedding function is optimised using the following variant
of the triplet loss (with hinge hyperparameter ξ):

LTransE((s,a,s′), s̃) = d(z(s) + T (z(s),a), z(s′)) + max(0,ξ − d(z(s̃),z(s′))) (7.2.4)

Having a trained T function, it is now possible to dynamically construct N (s). For
every action a, applying T (hs, a) yields embeddings hs,a which correspond to one neighbour
state embedding in N (s). We can, of course, roll out T further from hs,a to simulate longer
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trajectory outcomes—the amount of steps we do this for is denoted as the “thinking time”,
K, of the planner. With neighbourhoods constructed, one final question remains: how to
apply VI over them, especially given that the embeddings hs are high-dimensional, and VI
is defined over scalar reward/value inputs?

If we also train a reward model, R(hs, a), and a state-value function, V (hs) from state
embeddings, we can attach scalar values and rewards to our synthesised graph. Then, VI
can be directly applied over the constructed tree to yield the final policy. As the VI update
(Equation 7.2.1) is differentiable, it composes nicely with neural estimators and standard RL
loss functions. Further, R and V can be directly trained from observed rewards and returns
when interacting with the environment. This approach inspired a family of powerful implicit
planners, including VPN [160], TreeQN and ATreeC [165]. However, it remains vulnerable
to a specific bottleneck effect, which we discuss next.

Algorithmic bottleneck Through our efforts of learning transition and reward models,
we reduced our (potentially highly complex) input state s into an abstractified graph with
scalar values in its nodes and edges, so that VI can be directly applied. However, VI’s
performance guarantees rely on having the exactly correct parameters of the underlying
MDP. If there are any errors in the predictions of these scalars, they may propagate to the
VI operations and yield suboptimal policies. We will study this effect in detail on synthetic
environments in Section 7.4.3.

As the ATreeC-style approaches commit to using the scalar produced by their reward
models, there is no way to recover from a poorly predicted value. This leaves the model
vulnerable to an algorithmic bottleneck, especially early on during training when insufficient
experience has been gathered to properly estimate R. Accordingly, the agent may struggle
with data efficiency.

With our XLVIN agent, we set out to break this bottleneck, and do not project our state
embeddings hs further to a low-dimensional space. This amounts to running a graph neural
network directly over them. Given that these same embeddings are optimised to produce
plausible graphs (via the TransE loss), how can we ensure that our GNN will stay aligned
with VI computations?

Algorithmic reasoning An important research direction explores the use of neu-
ral networks for learning to execute algorithms [175, 19]—which was recently extended to
algorithms on graph-structured data [176]. In particular, [6] establishes algorithmic align-
ment between GNNs and dynamic programming algorithms. Furthermore, [176] show that
supervising the GNN on the algorithm’s intermediate results is highly beneficial for out-of-
distribution generalization. As VI is, in fact, a dynamic programming algorithm, a GNN
executor is a suitable choice for learning it, and good results on executing VI emerged on
synthetic graphs [152]—an observation we strongly leverage here.

94



7.3. XLVIN Architecture
Next, we specify the computations of the eXecuted Latent Value Iteration Network

(XLVIN). We recommend referring to Figure 17 for a visualisation of the model dataflow
(more compact overview in Appendix C.1) and to Algorithm 3 for a step-by-step description
of the forward pass.

We propose a policy network—a function, πθ(a|s), which for a given state s ∈ S specifies
a probability distribution of performing each action a ∈ A in that state. Here, θ are the
policy parameters, to be optimised with gradient ascent.

7.3.1. XLVIN modules

Encoder The encoder function, z : S → Rk, consumes state representations s ∈ S and
produces flat embeddings, hs = z(s) ∈ Rk. The design of this component is flexible and may
be dependent on the structure present in states. For example, pixel-based environments
will necessitate CNN encoders, while environments with flat observations are likely to be
amenable to MLP encoders.

Transition The transition function, T : Rk × A → Rk, models the effects of taking
actions, in the latent space. Accordingly, it consumes a state embedding z(s) and an action
a and produces the appropriate translation of the state embedding, to match the embedding
of the successor state (in expectation). That is, it is desirable that T satisfies Equation 7.3.1
and it is commonly realised as an MLP.

z(s) + T (z(s), a) ≈ Es′∼P (s′|s,a)z(s′) (7.3.1)

Executor The executor function, X : Rk×R|A|×k → Rk, processes an embedding hs of
a given state s, alongside a neighbourhood set N (hs), which contains (expected) embeddings
of states that immediately neighbour s—for example, through taking actions. Hence,

N (hs) ≈
{
Es′∼P (s′|s,a)z(s′)

}
a∈A

(7.3.2)

The executor combines the neighbourhood set features to produce an updated embedding
of state s, χs = X(hs,N (hs)), which is mindful of the properties and structure of the
neighbourhood. Ideally, X would perform operations in the latent space which mimic the
one-step behaviour of VI, allowing for the model to meaningfully plan from state s by stacking
several layers of X (with K layers allowing for exploring length-K trajectories). Given the
relational structure of a state and its neighbours, the executor is commonly realised as a
graph neural network (GNN).

Actor & Tail components The actor function, A : Rk × Rk → [0, 1]|A| consumes
the state embedding hs and the updated state embedding χs, producing action probabilities
πθ(a|s) = A (hs, χs)a, specifying the policy to be followed by our XLVIN agent. Lastly,
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note that we may also have additional tail networks which have the same input as A. For
example, we train XLVINs using proximal policy optimisation (PPO) [46], which necessitates
a state-value function: V (hs, χs).

Algorithm 3: XLVIN forward pass
Input : Input state s, executor depth K

Output: Policy function πθ(a|s), state-value function V (s)

hs = z(s) ; // Embed the input state with the encoder
S0 = {hs}, E = ∅
for k ∈ [0,K) do

Sk+1 = ∅ ; // Initialise depth-(k + 1) embeddings
for h ∈ Sk, a ∈ A do

h′ = h + T (h, a) ; // Get (expected) neighbour embedding
Sk+1 = Sk+1 ∪ {h′}, E = E ∪ {(h,h′, a)} ; // Attach h′ to the graph

/* Run the execution model over the graph specified by the nodes
S = ⋃K

k=0 Sk and edges E, by repeatedly applying h = X(h,N (h)), for
every embedding h ∈ S, for K steps. */

χs = Execute(hs,
⋃K

k=0 Sk,E, X,K) ; // See Appendix C.2 for details on the
Execute function

/* Use the actor and tail to predict the policy and value functions
from the (updated) state embedding of s */

πθ(s, ·) = A(hs,χs), V (s) = V (hs,χs)
Discussion. The entire procedure is end-to-end differentiable, does not impose any assump-
tions on the structure of the underlying MDP, and has the capacity to perform computations
directly aligned with value iteration, while avoiding the algorithmic bottleneck. This achieves
all of our initial aims.

The transition function produces state embeddings that correspond to the expectation
of the successor state embedding over all possible outcomes (Equation 7.3.1). While taking
expectations is an operation that aligns well with VI computations, it can pose limitations
in the case of non-deterministic MDPs. This is because the obtained expected latent states
may not be trivially further expandable, should we wish to plan further from them. One
possible remedy we suggest is employing a probabilistic (e.g. variational) transition model
from which we could repeatedly sample concrete next-state latents.

Our tree expansion strategy is breadth-first, which expands every action from every node,
yielding O(|A|K) time and space complexity. While this is prohibitive for scaling up K,
we empirically found that performance plateaus by K ≤ 4 for all studied environments,
mirroring prior findings [165]. Even if these are shallow trees of states, we anticipate a
compounding effect from optimising TransE together with PPO’s value/policy heads. We
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defer allowing for deeper expansions and large action spaces to future work, but note that it
will likely require a rollout policy, selecting actions to expand from a given state. For example,
I2A [161] obtains a rollout policy by distilling the agent’s policy network. Extensions to
continuous actions could also be achieved by rollout policies, or discretising the action space
by binning [177].

7.3.2. XLVIN Training

As discussed, the success of XLVIN relies on our transition function, T , constructing
plausible graphs, and our executor function, X, reliably imitating VI steps in a high dimen-
sional latent space. Accordingly, we train both of them using established methods: TransE
for T and [152] for X.

To optimise the neural network parameters θ, we use proximal policy optimisation
(PPO) 1 [46]. Note that the PPO gradients also flow into T and X, which could displace
them from the properties required by the above, leading to either poorly constructed graphs
or lack of VI-aligned computation.

Without knowledge of the underlying MDP, we have no easy way of training the executor,
X, online. We instead opt to pre-train the parameters of X and freeze them, treating them
as constants rather than parameters to be optimised. In brief, the executor pre-training
proceeds by first generating a dataset of synthetic MDPs, according to some underlying
graph distribution. Then, we execute the VI algorithm on these MDPs by iterating Equation
7.2.1, keeping track of intermediate values Vt(s) at each step t, until convergence. Finally,
we supervise a GNN (operating over the MDP transitions as edges) to receive Vt(s)—and
all other parameters of the MDP—as inputs, and predict Vt+1(s) (optimised using mean-
squared error). Such a graph neural network has three parts: an encoder, mapping Vt(s) to
a latent representation, a processor, which performs a step of VI in the latent space, and a
decoder, which decodes back Vt+1(s) from the latent space. We only retain the processor as
our executor function X, in order to avoid the algorithmic bottleneck in our architecture.

For the transition model, we found it sufficient to optimise TransE (Equation 7.2.4) using
only on-policy trajectories. However, we do anticipate that some environments will require
a careful tradeoff between exploration and exploitation for the data collection strategy for
training the transition model.

Thus, after pre-training the GNN to predict one-step value iteration updates and freezing
the processor, a step of the training algorithm corresponds to:

(1) Sample on-policy rollouts (with multiple parallel actors acting for a fixed number of
steps).

1. We use the PPO implementation and hyperparameters from Kostrikov [178].
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(2) Based on the transitions in these rollouts, evaluate the PPO [46] and TransE (Equation
7.2.4) losses. Negative sample states for TransE, s̃, are randomly sampled from the
rollouts.

(3) Update the policy network’s parameters, θ, using the combined loss. It is defined, for
a single rollout, T = {(st, at, rt, st+1)}t, as follows:

L(T ) = LPPO(T ) + λ
|T |∑
i=1
LTransE((si, ai, si+1), s̃i) s̃i ∼ P(s|T ) (7.3.3)

where we set λ = 0.001, and P(s|T ) is the empirical distribution over the states in T .

It should be highlighted that our approach can easily be modified to support value-based
methods such as DQN [42]—merely by modifying the tail component of the network and the
RL loss function.

7.4. Experiments
We now deploy XLVINs in generic discrete-action environments with unknown MDP

dynamics (further details in Appendix C.3), and verify their potential as an implicit planner.
Namely, we investigate whether XLVINs provide gains in data efficiency, by comparing them
in low-data regimes against a relevant model-free PPO baseline, and ablating against the
ATreeC implicit planner [165], which executes an explicit TD(λ) backup instead of a latent-
space executor, and is hence prone to algorithmic bottlenecks. All chosen environments were
previously explicitly studied in the context of planning within deep reinforcement learning,
and were identified as environments that benefit from planning computations in order to
generalise [21, 165, 160, 179].

7.4.1. Experimental setup

Common elements On all environments, the transition function, T , is a three-layer
MLP with layer normalisation [180] after the second layer. The executor, X, is, for all
environments, identical to the message passing executor of [152]. We train the executor
from completely random deterministic graphs—making no assumptions on the underlying
environment’s topology.

Continuous-space We focus on four OpenAI Gym environments [181]: classical
continuous-state control tasks—CartPole, Acrobot and MountainCar, and a continuous-state
spaceship navigation task, LunarLander. In all cases, we study data efficiency by presenting
extremely limited data scenarios.

The encoder function is a three-layer MLP with ReLU activations, computing 50 output
features and F hidden features, where F = 64 for CartPole, F = 32 for Acrobot, F = 16 for
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MountainCar and F = 64 for LunarLander. The same hidden dimension is also used in the
transition function MLP.

As before, we train our executor from random deterministic graphs. In this setting only,
we also attempt to illustrate the potential benefits when the graph distribution is biased
by our beliefs of the environment’s topology. Namely, we attempt training the executor
from synthetic graphs that imitate the dynamics of CartPole very crudely—the MDP
graphs being binary trees where only certain leaves carry zero reward and are terminal.
More details on the graph construction, for both of these approaches, is given in Appendix
C.5. The same trained executor is then deployed across all environments, to demonstrate
robustness to synthetic graph construction. For LunarLander, the XLVIN uses K = 3
executor layers; in all other cases, K = 2.

It is worthy to note that CartPole offers dense and frequent rewards—making it easy for
policy gradient methods. We make the task challenging by sampling only 10 trajectories at
the beginning, and not allowing any further interaction—beyond 100 epochs of training on
this dataset. Conversely, the remaining environments are all sparse-reward, and known to be
challenging for policy gradient methods. For these environments, we sample 5 trajectories
at a time, twenty times during training (for a total of 100 trajectories) for Acrobot and
MountainCar, and fifty times during training (for a total of 250 trajectories) for LunarLander.

Pixel-space Lastly, we investigate how XLVINs perform on high-dimensional pixel-
based observations, using the Atari-2600 [182]. We focus on four games: Freeway, Alien,
Enduro and H.E.R.O.. These environments encompass various aspects of complexity: sparse
rewards (in Freeway), larger action spaces (18 actions for Alien and H.E.R.O.) and visually
rich observations (changing time-of-day on Enduro) and long-range credit assignment (on
H.E.R.O.). Further, we successfully re-use the executor trained on random deterministic
graphs, showing its transfer capability across vastly different settings. We evaluate the
agents’ low-data performance by allowing only 1,000,000 observed transitions. We re-use
exactly the environment and encoder from Kostrikov [178], and run the executor for K = 2
layers for Freeway and Enduro and K = 1 for Alien and H.E.R.O..

7.4.2. Results

In our results, we use “XLVIN-CP” to denote XLVIN executors pre-trained using
CartPole-style synthetic graphs (where applicable), and “XLVIN-R” for pre-training them
on random deterministic graphs. “PPO” denotes our baseline model-free agent; it has
no transition/executor model, but otherwise matches the XLVIN hyperparameters. As
planning-like computation was shown to emerge in entirely model-free agents [164], this
serves as a check for the importance of the VI computation.

99



Table 7 – Mean scores for low-data CartPole-v0, Acrobot-v1, MountainCar-v0 and
LunarLander-v2, averaged over 100 episodes and five seeds.

CartPole-v0 Acrobot-v1 MountainCar-v0 LunarLander-v2
Agent 10 trajectories 100 trajectories 100 trajectories 250 trajectories
PPO 104.6 ± 48.5 −500.0 ± 0.0 −200.0 ± 0.0 90.52 ± 9.54
ATreeC 117.1 ± 56.2 −500.0 ± 0.0 −200.0 ± 0.0 84.04 ± 5.35
XLVIN-R 199.2 ± 1.6 −353.1 ± 120.3 −185.6 ± 8.1 99.34 ± 6.77
XLVIN-CP 195.2 ± 5.0 −245.4 ± 48.4 −168.9 ± 24.7 N/A

Figure 18 – Average clipped reward on Freeway, Alien, Enduro and H.E.R.O. over 1,000,000
transitions and ten seeds.

To analyse the impact of the algorithmic bottleneck, we use “ATreeC” [165] as one
of our baselines, capturing the behavior of a larger class of VI-based implicit planners
(including TreeQN and VPN [160]). For maximal comparability, we make ATreeC fully
match XLVIN’s hyperparameters, except for the executor model. Since ATreeC’s policy is
directly tied to the result of applying TD(λ), its ultimate performance is closely tied to the
quality of its scalar value predictions. Comparing against ATreeC can thus give insight into
negative effects of the algorithmic bottleneck at low-data regimes.

CartPole, Acrobot, MountainCar and LunarLander Results for the continuous-
space control environments are provided in Table 7. We find that the XLVIN model solves
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CartPole from only 10 trajectories, outperforming all the results given in [5] (incl. RE-
INFORCE [43], Autoencoders, World Models [183], DeepMDP [184] and PRAE [5]), while
using 10× fewer samples. For more details, see Appendix C.4.

Further, our model is capable of solving the Acrobot and MountainCar environments
from only 100 trajectories, in spite of sparse rewards. Conversely, the baseline model, as well
as ATreeC, are unable to get off the ground at all, remaining stuck at the lowest possible score
in the environment until timing out. This still holds when XLVIN is trained on the random
deterministic graphs, demonstrating that the executor training need not be dependent on
knowing the underlying MDP specifics.

Mirroring the above findings, XLVIN also demonstrates clear low-data efficiency gains
on LunarLander, compared to the PPO baseline and ATreeC. In this setting, ATreeC even
underperformed compared to the PPO baseline, highlighting once again the issues with
algorithmic bottlenecks.

Freeway, Alien, Enduro and H.E.R.O. Lastly, the average clipped reward of the
Atari agents across the first million transitions can be visualised in Figure 18. From the
inception of the training, the XLVIN model explores and exploits better, consistently re-
maining ahead of the baseline PPO model in the low-data regime (matching it in the latter
stages of Enduro). In H.E.R.O., XLVIN is also the first agent to break away from the per-
formance plateau, towards the end of the 1,000,000 transitions. The fact that the executor
was transferred from randomly generated graphs (Appendix C.5) is a further statement to
XLVIN’s robustness.

On all four games, ATreeC consistently trailed behind XLVIN during the first half of the
training, and on Enduro, it underperformed even compared to the PPO baseline, indicating
that overreliance on scalar predictions may damage low-data performance. It empirically
validates our observation of the potential negative effects of algorithmic bottlenecks at low-
data regimes.

7.4.3. Qualitative results

The success of XLVIN hinges on the appropriate operation of its two modules; the tran-
sition model T and the executor GNN X. In this section, we qualitatively study these two
components, hoping to elucidate the mechanism in which XLVIN organises and executes its
plan.

To faithfully ground the predictions of T and X on an underlying MDP, we analyse a pre-
trained XLVIN agent with a CNN encoder and K = 4 executor steps on randomly-generated
8× 8 grid-world environments. We chose grid-worlds because V ⋆ can be computed exactly.
We train on mazes of progressively increasing difficulty (expressed in terms of their level:
the shortest-path length from the start state to the goal). We move on to the next level once
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Figure 19 – Top: A test maze (left) and the PCA projection of its TransE state embeddings
(right), colour-coded by distance to goal (in green). Bottom: PCA projection of the XLVIN
state embeddings after passing the first (left), second (middle), and ninth (right) level of the
continual maze.

the agent solves at least 95% of the mazes from the current level. On these environments,
we generally found that XLVIN is competitive with implicit planners that are aware of the
grid-world structure. See Appendix C.6 for details, including the hyperparameters of the
XLVIN architecture.

Projecting the embeddings We begin by qualitatively studying the embeddings
learnt by the encoder and transition model. At the top row of Figure 19, we (left) colour-
coded a specific held-out 8 × 8 maze by proximity to the goal state, and (right) visualised
the 3D PCA projections of the “pure-TransE” embeddings of these states (prior to any PPO
training), with the edges induced by the transition model. Such a model merely seeks to
organise the data, rather than optimise for returns: hence, a grid-like structure emerges.

At the bottom row, we visualise how these embeddings and transitions evolve as the agent
keeps solving levels; at levels one (left) and two (middle), the embedder learnt to distinguish
all 1-step and 2-step neighbours of the goal, respectively, by putting them on opposite parts
of the projection space. This process does not keep going, because the agent would quickly
lose capacity. Instead, by the time it passes level nine (right), grid structure emerges again,
but now the states become partitioned by proximity: nearer neighbours of the goal are closer
to the goal embedding. In a way, the XLVIN agent is learning to reorganise the grid; this
time in a way that respects shortest-path proximity.

V ⋆ predictibility We hypothesise that the encoder function z is tasked with learning to
map raw states to a latent space where the executor GNN can operate properly, and then the
GNN performs VI-aligning computations in this latent space. We provide a qualitative study
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Figure 20 – Left: V ⋆ predictibility–Coefficient of determination from linearly regressing on
the state embeddings obtained from the encoder (green) and from the executor (red). Right:
Algorithmic bottleneck–Policy accuracy from introducing Gaussian noise in the scalar input
fed into VI (red) and in the embeddings fed into the XLVIN executor (green).

to validate this: for all positions in held-out 8×8 test mazes, we computed the ground-truth
values V ⋆(s) (using VI), and performed linear regression to test how accurately they are
decodable from the XLVIN state embeddings before (hs) and after (χs) applying the GNN.
We computed the R2 goodness-of-fit measure, after passing each of the ten training levels.
Our results (Figure 20) are strongly in support of the hypothesis: while the embedding
function (z(s) = hs; in green) is already reasonably predictive of V ⋆(s) (R2 ≈ 0.85 on
average), after the GNN computations are performed, the recovered state embeddings (χs;
in red) are consistently almost-perfectly linearly decodable to VI outputs V ⋆(s) (R2 ≈ 1).
Hence, the encoder maps s to a latent space from which the executor can perform VI.

Algorithmic bottleneck In formulating the algorithmic bottleneck, we assume that
inaccuracies in the scalar values used for VI will have a larger impact on degrading the
performance than perturbations in high-dimensional state embeddings inputted to the ex-
ecutor. To faithfully evaluate policy accuracy, we study this sensitivity on the randomly
generated MDPs used to train the executor. Here, ground-truth values V ∗ can be explicitly
computed, and we can compare the recovered policy directly to the greedy policy over these
values. Hence, we study the effect of introducing Gaussian noise in the scalar inputs fed
to VI compared to introducing Gaussian noise in the high-dimensional latents fed into the
XLVIN executor. In Figure 20, we plot the policy accuracy as a function of noise standard
deviation, showing that, while XLVIN is unable to predict policies perfectly at zero noise, it
quickly dominates the VI’s policy predictions once the noise magnitude increases. Besides
indicating that imperfections in TransE outputs can be handled with reasonable grace, this
experiment provides direct evidence of the algorithmic bottleneck: errors in scalar inputs to
an algorithm can impact its predictions substantially, while a high-dimensional latent space
executor is able to more gracefully handle such perturbations.
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7.5. Conclusions
We presented eXecuted Latent Value Iteration Networks (XLVINs), combining recent

progress in self-supervised contrastive learning, graph representation learning and neural al-
gorithm execution for implicit planning on irregular, continuous or unknown MDPs. Our
results showed that XLVINs match or outperform appropriate baselines, often at low-data
or out-of-distribution regimes. The learnt executors are robust and transferable across en-
vironments, despite being trained on purely random graphs. XLVINs represent, to the best
of our knowledge, one of the first times neural algorithmic executors are used for implicit
planning, and they successfully break the algorithmic bottleneck.

104



Chapter 8

Geometric Deep Learning for Reinforcement
Learning: Prologue to the fourth article

8.1. Article Details
Equivariant MuZero. Andreea Deac, Théophane Weber, George Papamakarios. The pa-
per is under submission at TMLR and was awarded an Oral Presentation at ICLR 2023
Domain Generalisation workshop.

Personal contribution: This work was done as part of my internship at DeepMind. Théo,
George and I brainstormed together for the project idea, with George providing insights on
group theory and Théo advising on the reinforcement learning side, and providing valuable
information on MuZero implementations. I was responsible for the project’s full implemen-
tation and evaluation, with advice from George on equivariant layer implementation details.
I ran all the experiments and wrote the proof of the agent’s equivariance. All authors par-
ticipated in writing and improving the manuscript.

8.2. Context
After working on XLVIN, a question arose: in what other ways can geometric deep

learning (GDL) help reinforcement learning? Reinforcement learning algorithms have been
successful thanks to their general applicability, but at the same time their generality is
also cause for inefficiency. In cases such as molecular discovery or robotics, data is limited
and the function search space could be reduced by integrating known symmetries (such as
equivariances under different camera angles). Therefore, encouraged by related works such
as [185, 186], and with the underlying idea that model-based RL could be an even better
target for GDL by grounding the world model using laws of the environment, we proposed
Equivariant MuZero.



8.3. Modulator
In Equivariant MuZero [25], we demonstrate how to improve the low-data performance

and robustness of state-of-the-art reinforcement learning agents by taking into account geo-
metric constraints. Specifically, by exploiting the symmetries assumed in the RL environ-
ment, we are able to define and modulate specialised computational graphs between various
views of that environment—for example, all possible 2D rotations of it. The computational
graph is defined in a way that respects the assumed symmetries of the environment, and
leads to significant empirical gains in data efficiency, along with provable equivariance prop-
erties of the underlying planning algorithm—in the case of MuZero, this is Monte Carlo tree
search (MCTS). The modulator of the EqMuZero agent hence designs the computation graph
based on the structure of the symmetry group used to capture the geometric constraints. It is
worth noting that the processor networks in the context of EqMuZero are also geometrically
constrained, and hence more specialised than off-the-shelf CNNs typically used for RL from
pixel inputs.

8.4. Contributions and Research Impact
This paper presents a twofold research contribution, both theoretically and empirically.

On the theoretical side, our work proves that making constituent neural networks of MuZero
equivariant leads to having a MuZero agent that is equivariant overall: that is, its acting
and planning is performed in an equivariant manner. Empirically, we have verified that our
method exhibits significant data efficiency for environments that are symmetric under the
C4 group. We have shown that an Equivariant MuZero agent achieves performance that is
similar on the training data and its rotations, while non-equivariant agents tend to struggle
on the rotated inputs. Further, Equivariant MuZero achieves a significant performance
improvement on unseen environments: a gap that becomes more pronounced in lower-data
environments. As this work has been recently made public, there have not been any follow-
ups yet. However, I am looking forward to relaxing the constraints on the equivariance so
that larger symmetry groups can be tackled and testing Equivariant MuZero on limited-data
domains, such as robotics [187], drug discovery [188] and autonomous vehicles.
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Chapter 9

Equivariant MuZero

Deep reinforcement learning repeatedly succeeds in closed, well-defined domains such as
games (Chess, Go, StarCraft). The next frontier is real-world scenarios, where setups are
numerous and varied. For this, agents need to learn the underlying rules governing the envi-
ronment, so as to robustly generalise to conditions that differ from those they were trained
on. Model-based reinforcement learning algorithms, such as the highly successful MuZero,
aim to accomplish this by learning a world model. However, leveraging a world model has
not consistently shown greater generalisation capabilities compared to model-free alterna-
tives. In this work, we propose improving the data efficiency and generalisation capabilities
of MuZero by explicitly incorporating the symmetries of the environment in its world-model
architecture. We prove that, so long as the neural networks used by MuZero are equivariant
to a particular symmetry group acting on the environment, the entirety of MuZero’s action-
selection algorithm will also be equivariant to that group. We evaluate Equivariant MuZero
on procedurally-generated MiniPacman and on Chaser from the ProcGen suite: training on
a set of mazes, and then testing on unseen rotated versions, demonstrating the benefits of
equivariance. Further, we verify that our performance improvements hold even when only
some of the components of Equivariant MuZero obey strict equivariance, which highlights
the robustness of our construction.

9.1. Introduction
Reinforcement learning (RL) is a potent paradigm for solving sequential decision making

problems in a dynamically changing environment. Successful examples of its uses include
game playing [189], drug design [49], robotics [190] and theoretical computer science [191].
However, the generality of RL often leads to data inefficiency, poor generalisation and lack
of safety guarantees. This is an issue especially in domains where data is scarce or difficult
to obtain, such as medicine or human-in-the-loop scenarios.



Most RL approaches do not directly attempt to capture the regularities present in the
environment. As an example, consider a grid-world: moving down in a maze is equivalent
to moving left in the 90◦ clock-wise rotation of the same maze. Such equivalences can be
formalised via Markov Decision Process homomorphisms [192, 193], and while some works
incorporate them [e.g. 194, 195], most deep reinforcement learning agents would act differ-
ently in such equivalent states if they do not observe enough data. This becomes even more
problematic when the number of equivalent states is large. One common example is 3D
regularities, such as changing camera angles in robotic tasks.

In recent years, there has been significant progress in building deep neural networks
that explicitly obey such regularities, often termed geometric deep learning [18]. In this
context, the regularities are formalised using symmetry groups and architectures are built by
composing transformations that are equivariant to these symmetry groups (e.g. convolutional
neural networks for the translation group, graph neural networks and transformers for the
permutation group).

As we are looking to capture the symmetries present in an environment, a fitting place is
within the framework of model-based RL (MBRL). MBRL leverages explicit world-models
to forecast the effect of action sequences, either in the form of next-state or immediate
reward predictions. These imagined trajectories are used to construct plans that optimise
the forecasted returns. In the context of state-of-the-art MBRL agent MuZero [8], a Monte-
Carlo tree search is executed over these world-models in order to perform action selection.

In this paper, we demonstrate that equivariance and MBRL can be effectively combined
by proposing Equivariant MuZero (EqMuZero, shown in Figure 22), a variant of MuZero
where equivariance constraints are enforced by design in its constituent neural networks. As
MuZero does not use these networks directly to act, but rather executes a search algorithm
on top of their predictions, it is not immediately obvious that the actions taken by the
EqMuZero agent would obey the same constraints—is it guaranteed to produce a rotated
action when given a rotated maze? One of our key contributions is a proof that guarantees
this: as long as all neural networks are equivariant to a symmetry group, all actions taken
will also be equivariant to that same symmetry group. Consequently, EqMuZero can be
more data-efficient than standard MuZero, as it knows by construction how to act in states
it has never seen before. We empirically verify the generalisation capabilities of EqMuZero in
two grid-worlds: procedurally-generated MiniPacman and the Chaser game in the ProcGen
suite.

9.2. Background
Reinforcement Learning. The reinforcement learning problem is typically formalised as a
Markov Decision Process (S,A, P,R, γ) formed from a set of states S, a set of actions A,
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a discount factor γ ∈ [0, 1], and two functions that model the outcome of taking action a

in state s: the transition distribution P (s′|s, a)—specifying the next state probabilities—
and the reward function R(s, a)—specifying the expected reward. The aim is to learn a
policy, π(a|s), a function specifying (probabilities of) actions to take in state s, such that
the agent maximises the (expected) cumulative reward G(τ) = ∑t=T

t=0 γ
tR(st, at), where τ =

(s0, a0, s1, a1, . . . , sT , aT ) is the trajectory taken by the agent starting in the initial state s0

and following the policy to decide at based on st.
MuZero. Reinforcement learning agents broadly fall into two categories: model-free and
model-based. The specific agent we extend here, MuZero [8], is a model-based agent for
deterministic environments (where P (s′|s, a) = 1 for exactly one s′ for all s ∈ S and a ∈ A).
MuZero relies on several neural-network components that are composed to create a world
model. These components are: the encoder, E : S → Z, which embeds states into a latent
space Z (e.g. Z = Rk), the transition model, T : Z × A→ Z, which predicts embeddings of
next states, the reward model, R : Z×A→ R, which predicts the immediate expected reward
after taking an action in a particular state, the value model, V : Z → R, which predicts the
value (expected cumulative reward) from this state, and the policy model P : Z → [0, 1]|A|,
which predicts the probability of taking each action from the current state. To plan its next
action, MuZero executes a Monte Carlo tree search (MCTS) over many simulated trajecto-
ries, generated using the above models.

MuZero has demonstrated state-of-the-art capabilities over a variety of deterministic or
near-deterministic environments, such as Go, Chess, Shogi and Atari, and has been suc-
cessfully applied to real-world domains such as video compression [196]. Although here
we focus on MuZero for deterministic environments, we note that extensions to stochastic
environments also exist [197] and are an interesting target for future work.
Groups and Representations. A group (G, ◦) is a set G equipped with a composition oper-
ation ◦ : G × G → G (written concisely as g ◦ h = gh), satisfying the following axioms:
(associativity) (gh)l = g(hl) for all g, h, l ∈ G; (identity) there exists a unique e ∈ G satisfy-
ing eg = ge = g for all g ∈ G; (inverse) for every g ∈ G there exists a unique g−1 ∈ G such
that gg−1 = g−1g = e.

Groups are a natural way to describe symmetries: object transformations that leave
them unchanged. They can be reasoned about in the context of linear algebra by using their
real representations: functions ρV : G → RN×N that give, for every group element g ∈ G,
a real matrix demonstrating how this element acts on a vector space V . For example, for
the rotation group G = SO(n), the representation ρV would provide an appropriate n × n
rotation matrix for each rotation g.
Equivariance and Invariance. As symmetries are assumed to not change the essence of the
data they act on, we would like to construct neural networks that adequately represent such
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Figure 21 – Commutative diagram of symmetries in RL. State transitions due to an action
a are back-to-front, transformations due to a symmetry g are left-to-right, state encoding
and decoding by the model is bottom-to-top.

symmetry-transformed inputs. Assume we have a neural network f : X → Y , mapping be-
tween vector spaces X and Y , and that we would like this network to respect the symmetries
within a group G. Then we can impose the following condition, for all group elements g ∈ G

and inputs x ∈ X :
f(ρX (g)x) = ρY(g)f(x). (9.2.1)

This condition is known as G-equivariance—for any group element, it does not matter
whether we act with it on the input or on the output of the function f—the end result
is the same. A special case of this, G-invariance, is when the output representation is trivial
(ρY(g) = I):

f(ρX (g)x) = f(x). (9.2.2)

In geometric deep learning, equivariance to reflections, rotations, translations and permuta-
tions has been of particular interest [18].

Generally speaking, there are three ways to obtain an equivariant model: a) data aug-
mentation, b) data canonicalisation and c) specialised architectures. Data augmentation
creates additional training data by applying group elements g to input/output pairs (x,y)—
equivariance is encouraged by training on the transformed data and/or minimising auxiliary
losses such as ∥ρY(g)f(x)− f(ρX (g)x)∥. Data augmentation can be simple to apply, but it
results in only approximate equivariance. Data canonicalisation requires a method to stan-
dardise the input, such as breaking the translation symmetry for molecular representation by
centering the atoms around the origin [198]—however, in many cases, such as the relatively
simple MiniPacman environment we use in our experiments, such a canonical transforma-
tion may not exist. Specialised architectures have the downside of being harder to build, but
they can guarantee exact equivariance—as such, they reduce the search space of functions,
potentially reducing the number of parameters and increasing training efficiency.
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Figure 22 – Architecture of Equivariant MuZero, where h, g are encoders, τ is the transition
model, ρ is the reward model, v is the value model and π is the policy predictor. Each colour
represents an element of the C4 group {I,R90◦ ,R180◦ ,R270◦} applied to the input (observation
and action).

Equivariance in RL. There has been previous work at the intersection of reinforcement learn-
ing and equivariance. While leveraging multi-agent symmetries was repeatedly shown to hold
promise [199, 200], of particular interest to us are the symmetries emerging from the envi-
ronment, in a single-agent scenario. Related work in this space can be summarised by the
commutative diagram in Figure 21. When considering only the cube at the bottom, we
recover [186]—a supervised learning task where a latent transition model T learns to predict
the next state embedding. They show that if T is equivariant, the encoder can pick up the
symmetries of the environment even if it is not fully equivariant by design. Mondal et al.
[201] build a model-free agent by combining an equivariant-by-design encoder and enforcing
the remaining equivariances via regularisation losses. They also consider the invariance of
the reward, captured in Figure 21 by taking the decoder to be the reward model and l = 1.
The work of [194] can be described by having the value model as the decoder, while the work
of [202] has the decoder as the policy model and l = |A|.

9.3. Equivariant MuZero
In what follows, we describe how the various components of EqMuZero (Figure 22) are

designed to obey C4-equivariance. For simplicity, we assume there are only four directional
movement actions in the environment (A = {→, ↓,←, ↑}). Any additional non-movement
actions (such as the “do nothing” action) can be included without difficulty.

To enforce C4-equivariance in the encoder, we first need to specify the effect of rotations
on the latent state z. In our implementation, the latent state consists of 4 equally shaped
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arrays, z = (z1, z2, z3,z4), and we prescribe that a 90◦ clock-wise rotation manifests as a
cyclical permutation: R90◦z = (z2, z3, z4,z1). Then, our equivariant encoder embeds state X
and action a as follows:

E(X, a) = (h(X)+g(a), h(R90◦X)+g(R90◦a), h(R180◦X)+g(R180◦a), h(R270◦X)+g(R270◦a))
(9.3.1)

where h is a CNN and g is an MLP. The output of g is accordingly broadcasted across
all pixels of h’s output. This equation satisfies C4-equivariance, that is, E(R90◦X,R90◦a) =
R90◦E(X, a).

We can build a C4-equivariant transition model by maintaining the structure in the latent
space:

T (z) = (τ(z1), τ(z2), τ(z3), τ(z4)). (9.3.2)

A less constrained T would allow components of z to interact, while still retaining C4-
equivariance:

T (z) = (τ(z1, z2, z3,z4), τ(z2, z3, z4,z1), τ(z3, z4, z1,z2), τ(z4, z1, z2,z3)). (9.3.3)

In our experiments, we use the more constrained variant for MiniPacman, and the less
constrained variant for Chaser, as more data is available for the latter. In either case, we
take τ to be a ResNet.

The policy is made C4-equivariant by combining state and action embeddings from all
four latents:

P (a | z) = π(a | z1) + π(R90◦a | z2) + π(R180◦a | z3) + π(R270◦a | z4)
4 (9.3.4)

where π(· | zi) is an MLP followed by a softmax, which produces a probability distribution
over actions given the map encoded by zi. It is easy to show that ∑a∈A P (a | z) = 1, i.e.
P (· | z) is properly normalised, and that P (R90◦a |R90◦z) = P (a | z), i.e. it satisfies C4-
equivariance.

Lastly, the reward and value networks (R, V ), modeled by MLPs ρ and v respectively,
should be C4-invariant. We can satisfy this constraint by aggregating the latent space with
any C4-invariant function, such as sum, average or max. Here we use summation:

R(z) = ρ(z1 + z2 + z3 + z4), V (z) = v(z1 + z2 + z3 + z4). (9.3.5)

Composing the equivariant components described above (Equations 9.3.1–9.3.5), we con-
struct the end-to-end equivariant EqMuZero agent, displayed in Figure 22. Indeed, we can
show that EqMuZero will provably behave in an equivariant manner when selecting actions:

Theorem 1 If all the relevant neural networks used by MuZero are G-equivariant, the
proposed EqMuZero agent will select actions in a G-equivariant manner, that is for every
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state s ∈ S and for every g ∈ G, if EqMuZero selects action a while in s, then it must select
ga while in gs.

Proof. Assume our neural networks are: h for the encoder, τ for the transition model,
π for the policy model, v for the value model and ρ for the reward model. By design, we
make h, τ and π be G-equivariant, and v and ρ be G-invariant.

The reward, value, policy and transition respect the equivariances, as compositions of
equivariant functions:

R = ρτ kh

V = vτ kh

P = πτ kh

T = τ kh.

(9.3.6)

Then, the return is also a G-invariant function as it is the sum of two G-invariant functions:

G(sk) =
l−1−k∑

τ=0
γτρ(sk+τ , ak+1+τ ) + γl−kv(sl, al+1). (9.3.7)

For proving that one planning step is equivariant, we need to show that the action
selection is G-equivariant.

Since the outcome of MuZero’s MCTS function is based on the initial observation, o,
we denote MCTS’s internal state as {Qo(s, a), N o(s, a), . . .}. We use identical notation as
Schrittwieser et al. [8] for these states, even though we express the MuZero models R,V,P,T
somewhat differently.

Knowing how they are updated:

ak = argmax
a

[
Qo(sk−1, a) + P o(sk−1, a)

√∑
b N o(sk−1, b)

1 +N o(sk−1, a)

(
c1 + log

(∑
bN

o(sk−1, b) + c2 + 1
c2

))]
(9.3.8)

Qo
t (sk−1,ak) = N o

t−1(sk−1,ak)Qo
t−1(sk−1,ak) +G(sk−1)

N o
t−1(sk−1,ak) + 1

N o
t (sk−1,ak) = N o

t−1(sk−1,ak) + 1.
(9.3.9)

As discussed previously, we need to show that, for each MCTS internal state (e.g. N o),
if we assume π, v, τ, ρ, h to be equivariant functions, the resulting state would also be equi-
variant under transformations of the initial observation. That is, for all s, a:

N goo(gss, gaa) = N o(s, a). (9.3.10)

To prove this, we will use induction on the number of backups performed by MCTS, t.
We proceed:

Base case (t = 0) : N goo
0 (gss,gaa) = N o

0 (s, a) = 0

Qgoo
0 (gss,gaa) = Qo

0(s, a) = 0.
(9.3.11)
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Assume:
Case t : N goo

t (gss,gaa) = N o
t (s, a)

Qgoo
t (gss,gaa) = Qo

t (s, a).
(9.3.12)

We will start by showing that the states and actions expanded by MCTS under
initial G-transformed observation goo (s̃0, ã1, s̃1, ã2, . . . ), would exactly correspond to
(gss

0, gaa
1, gss

1, gaa
2, . . . ), where (s0, a1, s1, a2, . . . ) are states expanded under the non-

transformed observation, o.
By equivariance of h, s̃0 = h(goo) = gsh(o) = gss

0, as expected.
Next, we show that the actions selected by MCTS also obey a G-equivariance constraint,

in the sense that: if s̃k−1 = gss
k−1, then ãk = gaa

k.
As we assumed N o

t to be G-equivariant, it must hold that ∑b N
o
t (s, b) is G-invariant (as

a sum-reduction of equivariant functions). Hence, we can rewrite Equation 9.3.8 as:

ak = arg max
a

[
Qo

t (sk−1, a) + P o
t (sk−1, a) ϵ(sk−1)

1 +N o
t (sk−1, a)

]
(9.3.13)

where ϵ is G-invariant, P o is G-equivariant by composition of functions that are G-equivariant
by assumption, and Qo is G-equivariant by assumption of Case t.

Hence, using this formula to define ãk, we recover:

ãk = arg max
a

[
Qgoo

t (s̃k−1, a) + P goo
t (s̃k−1, a) ϵ(s̃k−1)

1 +N goo
t (s̃k−1, a)

]

= arg max
a

[
Qgoo

t (gss
k−1, a) + P goo

t (gss
k−1, a) ϵ(gss

k−1)
1 +N goo

t (gssk−1, a)

]

= arg max
a

[
Qgoo

t (gss
k−1, gag

−1
a a) + P goo

t (gss
k−1, gag

−1
a a) ϵ(gss

k−1)
1 +N goo

t (gssk−1, gag−1
a a)

]

= arg max
a

[
Qo

t (sk−1,g−1
a a) + P o

t (sk−1,g−1
a a) ϵ(sk−1)

1 +N o
t (sk−1,g−1

a a)

]

= ga arg max
a

[
Qo

t (sk−1,a) + P o
t (sk−1,a) ϵ(sk−1)

1 +N o
t (sk−1,a)

]
= gaa

k.

Note that we have taken the ga out of the arg max, which is an unambiguous operation only
if there is a unique action ak that maximises the expression in Equation 9.3.13. To avoid
breaking the symmetry in practice, we propose that tiebreaks for ak are resolved in a purely
randomised fashion.

Showing this, we now only need to verify that the updates to Nt and Qt (in Equation
9.3.9) are equivariant for all state-action pairs along the trajectory. Values of N and Q for all
other state-action pairs will be unchanged from Nt, and therefore trivially still G-equivariant.
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First we show this for N :

N goo
t+1(s̃k−1, ãk) = N goo

t+1(gss
k−1,gaa

k)

= N goo
t (gss

k−1, gaa
k) + 1

= N o
t (sk−1, ak) + 1

= N o
t+1(sk−1, ak).

Hence, Case t+ 1 still holds for N . Now we turn our attention to Q.
First, by invariance of ρ and w, we can show that G(sk) is a sum of G-invariant functions

and therefore also invariant. Plugging into the Q update:

Qgoo
t+1(s̃k−1, ãk) = Qgoo

t+1(gss
k−1,gaa

k)

= N goo
t (gss

k−1,gaa
k)Qgoo

t (gss
k−1,gaa

k) +G(gss
k−1)

N goo
t (gssk−1,gaak) + 1

= N o
t (sk−1,ak)Qo

t (sk−1,ak) +G(sk−1)
N o

t (sk−1,ak) + 1
= Qo

t+1(sk−1, ak).

Hence, Case t+ 1 also holds for Q. As discussed before, we assume it holds by composition
for all other state stored by MCTS (P, T,R). □

Having proved that all internal state of of MCTS consistently remains transformed by G

under transformed input observations, we can conclude that the final policy given by MCTS
will be exactly G-equivariant.

9.4. Experiments and results
Environments. We consider two 2D grid-world environments, MiniPacman [203] and Chaser
[7], that feature an agent navigating in a 2D maze. In both environments, the state is
the grid-world map X and an action is a direction to move. Both of these grid-worlds are
symmetric with respect to 90◦ rotations, in the sense that moving down in some map is the
same as moving left in the 90◦ clock-wise rotated version of the same map. Hence, we take
our symmetry group to be G = C4 = {I,R90◦ ,R180◦ ,R270◦}, the 4-element cyclic group,
which in our case represents rotating the map by all four possible multiples of 90◦.
Results. We compare EqMuZero with a standard MuZero that uses non-equivariant compo-
nents: ResNet-style networks for the encoder and transition models, and MLP-based policy,
value and reward models, following [21]. As the encoder and the policy of EqMuZero are
the only two components which require knowledge of how the symmetry group acts on the
environment, we include the following ablations in order to evaluate the trade-off between
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Figure 23 – Results on procedurally-generated MiniPacman (top) and Chaser from ProcGen
(bottom).

end-to-end equivariance and general applicability: Standard MuZero with an equivariant en-
coder, equivariant MuZero with a standard encoder and equivariant MuZero with a standard
policy model.

We train each agent on a set of maps, X. To test for generalisation, we measure the
agent’s performance on three, progressively harder, settings. Namely, we evaluate the agent
on X, with randomised initial agent position (denoted by same in our results), on the set of
rotated maps RX, where R ∈ {R90◦ ,R180◦ ,R270◦} (denoted by rotated) and, lastly, on a set
of maps Y, such that Y ∩X = ∅ and Y ∩RX = ∅ (denoted by different).

Figure 23 (top) presents the results of the agents on MiniPacman. First, we empirically
confirm that the average reward on layouts X, seen during training, matches the average
reward gathered on the rotations of the same mazes, RX, for EqMuZero. Second, we notice
that changing the equivariant policy with a non-equivariant one does not significantly impact
performance. However, the same swap in the encoder brings the performance of the agent
down to that of Standard MuZero—this suggests that the structure in the latent space of the
transition model, when not combined with some explicit method of imposing equivariance in
the encoder, does not provide noticeable benefits. Third, we notice that Equivariant MuZero
is generally robust to layout variations, as the learnt high-reward behaviours also transfer to
Y. At the same time, Standard MuZero significantly drops in performance for both Y and
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RX. We note that experiments on MiniPacman were done in a low-data scenario, using 5
maps of size 14×14 for training; we observed that the differences between agents diminished
when all agents were trained with at least 20 times more maps.

Figure 23 (bottom) compares the performance of the agents on the ProcGen game,
Chaser, which has similar dynamics to MiniPacman, but larger mazes of size 64 × 64 and
a more complex action space. Due to the complexity of the action space, we only use Eq-
MuZero with a standard policy, rather than a fully equivariant version. We use 500 maze
instances for training. Our results demonstrate that, even when the problem complexity is
increased in such a way, Equivariant MuZero still consistently outperforms the other agents,
leading to more robust plans being discovered.

9.5. Limitations and future work
While the theory of Equivariant MuZero generalizes to any symmetry group, in this

work we test an instance where the component neural networks satisfy the criteria for the
C4 group. Scaling it up to continuous rotations, such as the SO(3) group, would make
the architecture applicable to different problems, such as molecular tasks. However, for
parts such as the encoder, the transition model and the policy, a different strategy would
be required, as it is impossible to transform the input observation and action with every
element of the group. Future work could consider enforcing the equivariance constraints via
additional losses, possibly combining with an approach such as in Park et al. [186], keeping in
mind that the theoretical guarantees will no apply as they are in their current form anymore.
More generally, this work can also be composed with a module that discovers symmetries,
such as in [204].

9.6. Conclusions
We present Equivariant MuZero, a model-based agent that is, by construction, equivari-

ant. We theoretically verify its properties with respect to general symmetry groups, proving
the agent’s overall equivariance given the appropriate conditions are met by its constituent
neural networks. Moreover, we empirically demostrate that an Equivariant MuZero agent
that is C4-equivariant generalizes to unseen rotations of the training data, as well as more
robustly performing on test mazes, with diminishing returns when presented with 100× more
data.
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Chapter 10

General Conclusions

I started this PhD at a time where graph neural networks were a niche topic and I am
finishing now, when it’s constantly been the second most popular area at Machine Learning
Conferences, after Reinforcement Learning. In the process, I saw how GNNs were applied to
tasks where machine learning was already used, with data where the structure was present,
but not being leveraged, as well as completely novel applications that were made possible
because of GNNs. Benchmarks were proposed and explored to the point of exposing GNN
limitations that we didn’t know about at the beginning, and also uncovering GNN strengths
that were also waiting to be found. All in all, impressive results were obtained thanks to
this new manner of learning representations and likely more are to be found.

In a sense, my thesis reflects this journey – from applying GNNs to drug-like molecules,
which were previously modelled as strings, to tackling the problem of antibody-antigen in-
teraction, only lightly explored in ML before, to studying GNNs’ limitations on data with
long-range interactions or a high degree of heterophily, to leveraging GNNs’ algorithmic
alignment with planning algorithms and using them as neural algorithmic reasoners in rein-
forcement learning, and, lastly, extending beyond GNNs in RL, to rotation-equivariance in
model-based agents.

In most early explorations of structure within deep learning arcitecures, including many
works that have been published in machine learning venues during the development of this
thesis, the provided structure was used “as-is”, often without any questioning about its
utility or origin. One underlying theme for the presented chapters is that, in order to
squeeze the most potential out of geometric deep learning, it might be in fact necessary to
modulate this input structure. For the first two core chapters, it is beneficial to obtain the
computation graph not directly from the input graph, as it is standard, but from an evolved
version of it, for example using “template graphs” with excellent communication properties
(low diameter, low commute times, etc.), or using weak classifiers to connect nodes that are
feature-wise or structurally similar. For the last two core chapters, modulation is not just



advantageous, but necessary – deploying neural algorithmic reasoners requires the formation
of a graph-structured input in latent space, similarly to how applying equivariant neural
networks requires command of the symmetry group’s elements. In both implicit planning
and model-based reinforcement learning, such structures are not readily given in the input.

While the proposed approaches provided ways to improve GNNs’ applicability, they also
emphasise the need for more scalable and robust solutions. Going forward, I think the heuris-
tics of how to modify the computation graph should be replaced by automatic search of the
true connectivity underlying the graph generation process, guided by the downstream task—
this is, arguably, part of the reason behind Transformers’ success—starting from the given
input graph and taking into account local and global properties of information propagation.
When extended to geometric deep learning, this can provide the solution to many problems
where there are symmetries in the input, such as tasks across many areas of natural sciences.

The other utility of graph-based methods that I found exciting along my PhD was using
them to store, process and leverage information about the world. One instance of this is a
graph of states visited by an agent when acting in an environment, and the other a graph
of knowledge about the world, on which an agent can reason. The latter constitutes an
emerging area of interest, mainly through the huge progress in large language models – a
recent talk by John Schulman remarked that LLMs implicitly learn a knowledge graph.

While, in my view, these developments successfully move the “starting point” from spe-
cialist architectures that need to (re)learn using backpropagation to generalists where infor-
mation is readily available from a foundation model, it still leaves fundamental questions
unanswered. Many of these questions might have already been tackled by previous GNN
and RL research, and they can often be related to problems of long-range interactions, het-
erophilic and path-finding problems on a graph. Just to name a few examples, such questions
may include: how to adapt to new knowledge and situations in scalable ways, how to both
explore new skills and discover skills that are latent in the training data, how to optimize
not just one-step answers, but answers that truly consider the time axis, how to leverage
different types of data, from multi-modality to varying levels of expertise and, generally, how
to reason robustly and extrapolate beyond previously seen data.

With all these parallels in mind, I am hopeful that my PhD thesis research can form
an exciting stepping-stone towards methods that can ameliorate or even resolve such funda-
mental problems. I look forward to exploring these directions in future work!
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Appendix A

Appendix of Chapter 2

A.1. Proof of Proposition 3.4.1
Let s be one of 1 1

0 1

 ,
1 0

1 1

 .
Let n, n′ > 18 and let e and e′ be s-labelled edges in Gn and Gn′. Then there is a graph
isomorphism between N2(e) and N2(e′) taking e to e′.

Proof. Note first that, by the homogeneity of the Cayley graphs Gn and Gn′ , we may
assume that e and e′ emanate from the identity vertex of each graph.

Let G∞ be the Cayley graph of SL(2,Z) with respect to the generators

S∞ =


1 1

0 1

 ,
1 0

1 1

 .
Let e∞ be the s-labelled edge emanating from the identity vertex of G∞. The quotient
homomorphism

SL(2,Z)→ SL(2,Zn)

induces a graph homomorphism G∞ → Gn sending e∞ to e. We will show that it restricts
to a graph isomorphism

N2(e∞)→ N2(e).

As there is a similar graph isomorphism N2(e∞)→ N2(e′), the proposition will follow.
Note that two elements of SL(2,Z) map to the same element of SL(2,Zn) if and only if

they differ by multiplication by an element of the kernel Kn. This is

Kn =


a b

c d

 ∈ SL(2,Z) : a ≡ d ≡ 1 mod n and b ≡ c ≡ 0 mod n

 .



The graph homomorphism sends edges to edges, and so it is distance non-increasing.
Hence it certainly sends N2(e∞) to N2(e). It is also clearly surjective, because any element
of N2(e) is reached from an endpoint of e by a path of length at most 2, and there is a
corresponding path in N2(e∞).

We just need to show that this is an injection. If not, then two distinct vertices g1 and g2

in N2(e∞) map to the same vertex in N2(e). Note then that as elements of SL(2,Z), g2 = g1k

for some k ∈ Kn. There are paths with length at most 3 joining the identity 1 to g1 and
g2 respectively. Hence, the distance in G∞ between g1 and g2 is at most 6. Therefore, the
distance between 1 and g−1

1 g2 is at most 6. This element g−1
1 g2 lies in Kn. We will show that

when n > 18, the only element of Kn that has distance at most 6 from the identity is the
identity itself. This will imply that g−1

1 g2 = 1 and hence g1 = g2. But this contradicts the
assumption that g1 and g2 are distinct vertices. Our argument follows that of [205].

The operator norm ||A|| of a matrix A ∈ SL(2,Z) is

||A|| = sup{|A(v)| : v ∈ R2, |v| = 1}.

This is submultiplicative: ||AB|| ≤ ||A|| ||B|| for matrices A and B. It can be calculated as
the square root of the largest eigenvalue of AtA. In our case, the operator norms satisfy∥∥∥∥∥∥

1 1
0 1

∥∥∥∥∥∥ =

∥∥∥∥∥∥
1 0

1 1

∥∥∥∥∥∥ = 1 +
√

5
2 .

Consider an element

K =
a b

c d


of Kn that is not the identity. Since a ≡ d ≡ 1 modulo n and b ≡ c ≡ 0 modulo n, we deduce
that at least one |a|, |b|, |c| and |d| is at least n − 1. Therefore, this matrix acts on one of
the vectors (1,0)t or (0,1)t by scaling its length by at least n− 1. Therefore, ||K|| ≥ n− 1.
Suppose now that K has distance at most 6 from the identity. Then K can be written as a
word in the generators of SL(2,Z) with length at most 6. Therefore, we obtain the inequality

||K|| ≤
(

1 +
√

5
2

)6

< 17.95.

Hence, n < 18.95 and therefore, as n is integral, n ≤ 18. □

A.2. Proof of Theorem 3.4.3
For any δ > 0 and ∆ > 0, there are only finitely many graphs with maximum vertex

degree ∆, Cheeger constant at least δ and non-negative Ollivier curvature.
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Proof. This is a consequence of the main result of Salez [118, Theorem 3]. This states if
Gn = (Vn, En) is a sequence of graphs with the following properties:

sup
n≥1

 1
|Vn|

∑
v∈Vn

deg(v) log deg(v)

 <∞ (A.2.1)

∀ϵ > 0, 1
|En|
|{e ∈ En : κ(e) < −ϵ}| → 0 as n→∞, (A.2.2)

then
∀ρ < 1, lim inf

n→∞

{
1
|Vn|
|{i : µi(Gn) ≥ ρ}|

}
> 0.

Here, κ(e) is the Ollivier curvature of an edge e and

1 = µ0(G) ≥ µ1(G) ≥ · · · ≥ 0

are the eigenvalues of the lazy random walk operator. To prove the theorem, we suppose
that on the contrary, there are infinitely many distinct graphs Gn = (Vn, En) with maximum
vertex degree ∆, Cheeger constant at least δ and non-negative Olliver curvature. Then∑

v∈Vn

deg(v) log deg(v) ≤ |Vn|∆ log ∆

and so condition A.2.1 is satsfied. Condition A.2.2 is trivially satisfied because the Ollivier
curvature of each graph is non-negative. Thus, we deduce that the conclusion of Salez’
theorem holds. Setting ρ = 1 − (δ2/4∆2), we deduce that a definite proportion of the
eigenvalues of the lazy random walk operator are at least 1 − (δ2/4∆2). In particular,
µ1(Gn) ≥ 1− (δ2/4∆2). Denote the eigenvalues of the normalised Laplacian by

0 = λ′
0(Gn) ≤ λ′

1(Gn) ≤ . . .

These are related to the eigenvalues of the lazy random walk operator by λ′
i(Gn) = 2 −

2µi(Gn). Hence, λ′
1(Gn) ≤ δ2/(2∆2). There is a variation of Cheeger’s inequality that

relates λ′
1 to the conductance of the graph. To define this, one considers subsets A of the

vertex set, and defines their volume to be vol(A) = ∑
v∈A deg(v). The conductance ϕ(G) of

a graph G is

ϕ(G) = min
{
|∂A|

vol(A) : A ⊂ V (G), 0 < vol(A) ≤ vol(V (G))/2
}
.

Then, by Chung [105, Theorem 2.2],

ϕ(G) ≤
√

2λ′
1(G)

Hence, in our case,
ϕ(Gn) ≤ δ/∆.
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Consider any subset An of the vertex set that realises ϕ(Gn). Thus 0 < vol(An) ≤ vol(Vn)/2
and |∂An|/vol(An) = ϕ(Gn) ≤ δ/∆. If An is at most half the vertices of Gn, then this
implies that the Cheeger constant h(Gn) ≤ δ. On the other hand, if An is more than half
the vertices of Gn, we consider its complement Ac

n. Its cardinality |Ac
n| satisfies

|Ac
n| ≥ vol(Ac

n)/∆.

Hence,
h(Gn) ≤ |∂A

c
n|

|Ac
n|
≤ |∂An|∆

vol(Ac
n) ≤

|∂An|∆
vol(An) = ϕ(Gn)∆ ≤ δ.

In either case, we deduce that the Cheeger constant of Gn is at most δ, contradicting one
of our hypotheses. Hence, there must have been only finitely many graphs satisfying the
conditions of the theorem. □

A.3. Cayley graph at infinity is quasi-isometric to a tree
As all vertices of Gn look the same, we focus attention on Nr(1), the r-neighbourhood of

the identity vertex. The proof of Proposition 3.4.1 immediately gives the following.
Proposition A.3.1. Let r be a positive integer satisfying

r <
1
2

(
log

(
1 +
√

5
2

))−1

log(n− 1).

Then there is a graph isomorphism between the r-neighbourhood of the identity vertex in Gn

and the r-neighbourhood of the identity vertex in G∞. This isomorphism takes the identity
vertex to the identity vertex.

Proof. As shown in the proof of Proposition 3.4.1, there is a graph homomorphsm from
Nr(1) in G∞ to Nr(1) in Gn that is a surjection. If it fails to be an injection, then there is
a non-trivial element K in the kernel Kn of SL(2,Z)→ SL(2,Zn) satisfying

||K|| ≤
(

1 +
√

5
2

)2r

.

But any non-trivial element K in Kn satisfies

||K|| ≥ n− 1.

Rearranging gives the required inequality. □

This raises the question of the local structure of G∞. The answer is well-known: it is
‘tree-like’. Specifically, it is quasi-isometric to a tree. The formal definition of quasi-isometry
is as follows.
Definition A.3.2. A quasi-isometry between two metric spaces (X1, d1) and (X2, d2) is a
function f : X1 → X2 that satisfies the following two conditions:
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(1) there are constants c, C > 0 such that, for every x,x′ ∈ X1

c d1(x, x′)− c ≤ d2(f(x), f(x′)) ≤ C d1(x,x′) + C,

(2) there is a constant K ≥ 0 such that for every y ∈ X2, there is an x ∈ X1 with
d2(f(x), y) ≤ K.

If there is such a quasi-isometry, we say that (X1, d1) and (X2, d2) are quasi-isometric.
This forms an equivalence relation on metric spaces. When two metric spaces are quasi-

isometric, they are viewed as being ‘essentially the same’ at large scales.
When S and S ′ are finite generating sets for a group Γ, the graphs Cay(Γ;S) and

Cay(Γ;S ′) are quasi-isometric. Hence, the quasi-isometry type of a finitely generated group
is well-defined, and this is the central object of study in geometric group theory.

The group SL(2,Z) has a finite-index subgroup that is a free group F [206]. If S ′ denotes
a free generating set for F , then Cay(F ;S ′) is a tree. As passing to a finite-index subgroup
preserves its quasi-isometry class, we deduce that the Cayley graphG∞ = Cay(SL(2,Z);S∞))
is indeed quasi-isometric to a tree, as claimed above.

A.4. Mixing time properties of expander graphs
Expanders are well known to have small mixing time, in the following sense.
Let G be a graph. We will consider probability distributions π on V (G). The lazy random

walk operator M acts on probability distributions as follows. We think of π(v) as being the
probability of the random walk being at vertex v. If the current location of the walk is at
v, then at the next step of the walk, either we stay put with probability 1/2 or we move to
one of its neighbours with equal probability. Then Mπ is the new probability distribution.

In the case when G is k-regular, this takes a particular simple form. The operator M is
represented by the matrix (1/2)I + (1/2k)A, where A is the adjacency matrix. In that case,
any initial distribution π converges under powers of M to the uniform distribution.

This is true for any reasonable notion of convergence, but we will use the ∥ · ∥1 norm,
where for two probability distributions π and π′,∥∥∥π − π′

∥∥∥
1

=
∑

v∈V (G)
|π(v)− π′(v)|.

Definition A.4.1. The mixing time for a regular graph G is the minimum value of ℓ such
that for any starting probability distribution π on the vertex set of G,∥∥∥M ℓπ − u

∥∥∥
1
≤ 1

4 .

Here, u is the uniform probability distribution on the vertex set, and M is the lazy random
walk operator.

Expanders have small mixing times in the following very strong sense.
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Table 8 – Statistics of the three graph classification datasets studied in our evaluation.

Name Number of graphs Avg. nodes/graph Avg. edges/graph Metric
ogbg-molhiv 41,127 25.5 27.5 ROC-AUC
ogbg-molpcba 437,929 26.0 28.1 Avg. precision
ogbg-ppa 158,100 243.4 2,266.1 Accuracy
ogbg-code2 452,741 125.2 124.2 F1 score

Theorem A.4.2. For any k > 0 and δ > 0, there is a constant c > 0 with the following
property. If G is a connected k-regular graph on n vertices with Cheeger constant at least
δ > 0, then the mixing time for G is at most c log(n).

A.5. Additional experimental details and ablations
OGB dataset statistics. We provide additional details on the dataset statistics for the OGB
tasks we used in Table 8. More substantial details can be found in the OGB paper [2].
Ablations on propagation graph. Our work concerns sparse expander graphs, determined
using the Cayley graphs of the special linear group. We acknowledge that this approach, while
theoretically beneficial, is not the only possible way to aid global information propagation
in a GNN. Therefore, in this subsection we compare against other classes of approaches.

Our additional baseline methods include: GINs with a master node, GINs with a fully
connected layer (FA), as done in Alon and Yahav [4], and GINs with applying a recently
proposed rewiring method, G-RLEF [96].

Note that both the FA method and G-RLEF have motivations related to expanders:
the fully-connected graph in the FA method is a trivial dense expander, whereas G-RLEF’s
rewiring iterations can converge to an expander for certain input graph distributions. There-
fore, comparing against these methods allows us to also evaluate the impacts of expander
density, as well as proximity to the input graph (since G-RLEF iteratively modifies the input
graph). We run G-RLEF for O(V ) steps.

The results of our ablative analysis are summarised in Table 9. We find that, as expected,
all of our added methods outperform the baseline GIN, demonstrating that oversquashing
had been alleviated. When comparing them against each other, however, we find that EGP
tends to be highly competitive on two out of the three datasets considered (having the
largest average overall). The fully-adjacent dense expander method remains strong on both
ogbg-molhiv and ogbg-molpcba, but runs out of memory as graphs increase in size (as is
the case with ogbg-ppa).

We find that this collection of ablation studies further supplements the analysis of EGP
we have conducted, and serves as a good starting point for further investigations of expander
propagation templates with various properties.

144



Table 9 – Comparative ablation performance of various propagation templates on
ogbg-molhiv, ogbg-molpcba and ogbg-ppa. Our baseline model is a GIN [1], using
exactly the same implementation as in [2]. All models have exactly the same number of
parameters—we only modify the connectivity in certain layers depending on the scheme.
N.B. The fully-connected graph, used in the FA approach [4] can be seen as a dense
expander graph, i.e. a special case of EGP. ’OOT’ indicates that the method failed to
approach baseline performance within five days of training time (while not converging
within this time), and ’OOM’ indicates out-of-memory (on a V100 GPU).

Model ogbg-molhiv ogbg-molpcba ogbg-ppa

GIN 0.7558± 0.0140 0.2266± 0.0028 0.6892± 0.0100
GIN + master node 0.7668± 0.0096 0.2527± 0.0064 0.6916± 0.0154
GIN + FA [4] 0.7850± 0.0090 0.2595± 0.0049 OOM
GIN + G-RLEF [96] 0.7802± 0.0024 OOT OOM
GIN + EGP (ours) 0.7934± 0.0035 0.2329± 0.0019 0.7027± 0.0159
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Appendix B

Appendix of Chapter 4

B.1. Training information
We used the same experimental setup as presented in Platonov et al. [3]. Results are

aggregated over ten random splits of the data, with each run taking 50% of the nodes for
training, 25% for validation, and 25% for testing. The following hyperparameters are tuned
for all models and baselines, using the average validation performance across the splits:

— Number of GNN/ResNet layers, L ∈ {1, 2, 3, 4, 5}.
— The dimensionality of the GNN/ResNet’s latent embeddings, d ∈ {256,512,1024}.

Additionally, for the ECG models only, the following hyperparameters were swept:
— Embeddings used by ECG, τ ∈ {MLP,BGRL,MLPBGRL,MLP → GNN}, referring

to:
MLP: Using the embeddings from a pre-trained ResNet;
BGRL: Using the embeddings from a pre-trained BGRL model;
MLPBGRL: Using the normalised concatenation of the ResNet and BGRL embed-

dings;
MLP→GNN: Using the embeddings from a pre-trained MLP-ECG model of the same

type.
Note that, for methods requiring access to labels (such as MLP), a separate set of
embeddings is computed for every dataset split (to avoid test data contamination).
For self-supervised methods like BGRL, no labels are used, and hence a single set of
embeddings is produced for all experiments.

— The number of neighbours sampled per node, k ∈ {3,10,20}.
— The DropEdge rate, pde ∈ {0.0, 0.5}.
The model configuration with the best-performing average validation performance is then

evaluated on the corresponding test splits, producing the aggregated performances reported
in Table 4.



Table 10 – The best-performing hyperparameters for each GNN propagation rule in our
experiments. The only experiment where the baseline model outperforms ECG is the SAGE
propagation layer on amazon-ratings; hence, the hyperparameters k and pde are irrelevant.

roman-empire amazon-ratings minesweeper tolokers questions
ResNet
L 2 1 5 5 1
d 512 512 512 512 512
GCN
L 5 2 4 4 3
d 512 512 256 512 256
τ MLPBGRL MLP→GNN MLP MLP BGRL
k 3 3 3 3 3
pde 0.5 0.5 0.5 0.5 0.0
SAGE
L 5 2 5 4 5
d 512 1024 256 256 256
τ BGRL Baseline BGRL BGRL BGRL
k 10 — 20 20 10
pde 0.5 — 0.5 0.5 0.0
GAT-sep
L 5 2 5 5 4
d 512 512 256 256 256
τ BGRL MLP→GNN MLP BGRL BGRL
k 10 3 20 20 10
pde 0.5 0.5 0.5 0.5 0.5
GT-sep
L 5 2 5 5 4
d 512 512 256 256 256
τ BGRL MLP→GNN MLP MLPBGRL BGRL
k 20 3 20 20 10
pde 0.5 0.5 0.0 0.0 0.5

The best-performing hyperparameters for each model type on each dataset are given in
Table 10. Each individual experiment has been executed on a single NVIDIA Tesla P100
GPU, and the longest training time allocated to an individual experiment has been six hours
(on the questions dataset).

For convenience, and to assess the relative benefits of various ECG embedding sources,
we provide in Table 11 an expanded version of 4, showing the test performance obtained by
the tuned version of each ECG variant, for every embedding type.

For additional information, the anonymised code can be found at https://anonymous.
4open.science/r/evolving_computation_graphs-97B7/.
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Table 11 – Detailed breakdown of model performance on the datasets proposed by Platonov
et al. [3]. ResNet, GCN, SAGE, GAT-sep and GT-sep are the baselines, while all the other
models are variants of ECG. Red marks the best performance on each dataset for each of
the considered GNN architectures and the corresponding ECGs. Accuracy is reported for
roman-empire and amazon-ratings, and ROC AUC is reported for minesweeper, tolokers,
and questions.

roman-empire amazon-ratings minesweeper tolokers questions
ResNet 65.88± 0.38 45.90± 0.52 50.89± 1.39 72.95± 1.06 70.34± 0.76
GCN 73.69± 0.74 48.70± 0.63 89.75± 0.52 83.64± 0.67 76.09± 1.27
MLP-ECG-GCN 83.55± 0.39 50.99± 0.64 92.63± 0.10 84.81± 0.25 76.25± 0.59
BGRL-ECG-GCN 80.59± 0.48 48.99± 0.28 92.35± 0.10 84.25± 0.22 77.50± 0.35
MLPBGRL-ECG-GCN 84.53± 0.26 50.11± 0.60 92.47± 0.50 84.73± 0.23 77.32± 0.31
MLP->GNN-ECG-GCN 84.39± 0.22 51.12± 0.38 92.56± 0.23 84.35± 0.31 75.16± 0.87
SAGE 85.74± 0.67 53.63± 0.39 93.51± 0.57 82.43± 0.44 76.44± 0.62
MLP-ECG-SAGE 85.82± 0.62 53.32± 0.39 94.10± 0.08 82.60± 0.23 76.13± 0.41
BGRL-ECG-SAGE 87.88± 0.25 53.12± 0.32 94.11± 0.07 82.61± 0.29 77.23± 0.36
MLPBGRL-ECG-SAGE 86.50± 0.34 52.34± 0.92 94.01± 0.07 82.55± 0.18 76.55± 0.33
MLP->GNN-ECG-SAGE 85.94± 0.57 53.45± 0.27 93.77± 0.12 82.52± 0.22 75.53± 0.64
GAT-sep 88.75± 0.41 52.70± 0.62 93.91± 0.35 83.78± 0.43 76.79± 0.71
MLP-ECG-GAT-sep 88.22± 0.36 52.98± 0.30 94.52± 0.20 83.91± 0.32 77.30± 0.47
BGRL-ECG-GAT-sep 89.62± 0.18 52.20± 0.57 94.24± 0.15 84.23± 0.25 77.38± 0.18
MLPBGRL-GAT-sep 88.73± 0.37 51.06± 0.73 94.39± 0.20 84.11± 0.23 76.97± 0.45
MLP->GNN-ECG-GAT-sep 88.04± 0.32 53.65± 0.39 93.97± 0.19 83.75± 0.30 75.61± 0.74
GT-sep 87.32± 0.39 52.18± 0.80 92.29± 0.47 82.52± 0.92 78.05± 0.93
MLP-ECG-GT-sep 88.56± 0.35 52.68± 0.65 93.62± 0.27 83.65± 0.29 77.82± 0.43
BGRL-ECG-GT-sep 89.56± 0.16 52.37± 0.30 93.55± 0.18 82.97± 0.26 78.12± 0.32
MLPBGRL-GT-sep 88.70± 0.30 52.29± 0.60 93.52± 0.25 84.00± 0.24 77.85± 0.45
MLP->GNN-ECG-GT-sep 88.62± 0.46 53.25± 0.39 92.69± 0.34 83.41± 0.44 75.50± 1.13
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Appendix C

Appendix of Chapter 6

C.1. Alternate rendition of XLVIN dataflow
See Figure 24 for an alternate visualisation of the dataflow of XLVIN—which is more

compact, but does not explicitly sequentialise the operations of the transition model with
the operations of the executor.

C.2. Additional description of the Execute function
In Algorithm 2, we provide a symbolic overview of running the executor network X over

the local state embedding graph constructed in Algorithm 1.

X(~hs,N (~hs))

s

~hs
z(s)

~χs

~hs,a1

~hs,a2

~hs,a3

T (
~hs,

a1)

π
V

Figure 24 – XLVIN model summary with compact dataflow. The individual modules are
explained (and colour-coded) in Section 7.3.1, and the dataflow is outlined in Algorithm 3.



Algorithm 4: Forward propagation of the executor

Input : State embedding hs, executor depth K, graph with nodes S =
K⋃

k=0
Sk and

edges E
Output: Updated state embedding χs

for h ∈ Sk do
N (h) = {h′ | ∃α.(h,h′, α) ∈ E} ; // Construct neighbourhood of node
embedding h

X0 =
K⋃

k=0
Sk; // We will use Xk to store the executor embeddings after k

steps; initially, X0 = S
for k ∈ [0,K) do

for h ∈ Xk do
χ = X(h,N (h)); // Run executor on the neighbourhood of node
embedding h ∈ Xk

Mk(h) = χ; // Maintain a mapping, Mk, from input to output
embeddings of X at step k

Xk+1 = {χ | ∃h.h ∈ Xk ∧Mk(h) = χ} ; // Xk+1 consists of all outputs of
Mk

for χ ∈ Xk+1; // Rebuild neighbourhoods for node embeddings in Xk+1

do
N (χ) = {χ′ | ∃h∃h′.h ∈ Xk∧h′ ∈ Xk∧Mk(h) = χ∧Mk(h′) = χ′∧h′ ∈ N (h)}

χs = MK−1(. . .M1(M0(hs)) . . . ) ; // To recover χs, follow the mappings Mk

starting from hs

C.3. Environments under study
We provide a visual overview of all eight environments considered in Figure 25.

CartPole. The CartPole environment is a classic example of continuous control, first proposed
by [207]. The goal is to keep the pole connected by an un-actuated joint to a cart in an
upright position. Observations are four-dimensional vectors indicating the cart’s position
and velocity as well as pole’s angle from vertical and pole’s velocity at the tip. Actions
correspond to staying still, or pushing the engine forwards or backwards. The agent receives
a fixed reward of +1 for every timestep that the pole remains upright. The episode ends
when the pole is more than 15 degrees from the vertical, the cart moves more than 2.4 units
from the center or by timing out (at 200 steps), at which point the environment is considered
solved.

152



Figure 25 – The eight environments considered within our evaluation: continuous control
environments (CartPole-v0, Acrobot-v1, MountainCar-v0, LunarLander-v2) and pixel-based
environments (Atari Freeway, Alien, Enduro and H.E.R.O.).

Acrobot. The Acrobot system includes two joints and two links, where the joint between the
two links is actuated. Initially, the links are hanging downwards, and the goal is to swing the
end of the lower link up to a given height. The environment was first proposed by [208]. The
observations—specifying in full the Acrobot’s configuration—constitute a six-dimensional
vector, and the agent is able to swing the Acrobot using three distinct actions. The agent
receives a fixed negative reward of −1 until either timing out (at 500 steps) or swinging the
acrobot up, when the episode terminates.
MountainCar. The MountainCar environment is an example of a challenging, sparse-reward,
continuous-space environment first proposed by [209]. The objective is to make a car reach
the top of the mountain, but its engine is too weak to go all the way uphill, so the agent
must use gravity to their advantage by first moving in the opposite direction and gathering
momentum. Observations are two-dimensional vectors indicating the car’s position and
velocity. Actions correspond to staying still, or pushing the engine forward or backward.
The agent receives a fixed negative reward of −1 until either timing out (at 200 steps) or
reaching the top, when the episode terminates.
LunarLander. The LunarLander task concerns rocket trajectory optimization—a classic topic
in optimal control. It concerns navigating a spaceship in two dimensions to a landing pad (at
coordinates (0, 0)). Successful landing can be achieved by firing the ship’s engines, however
this expenses fuel and therefore must be done in a parsimonious manner. The observations
are eight-dimensional vectors that include the spaceship’s coordinates, velocity, angle of
attack, angular velocity, and whether either of its two legs are in ground contact. Actions
correspond to firing the main engine, firing one of the two side engines, or idling. The agent
receives shaped negative reward corresponding to its distance to the landing pad, and the
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magnitude of its velocity and angle. Further, fixed negative rewards are incurred whenever
the engines are fired (more so for the main engine than the side engines). The agent receives
shaped positive rewards of +10 whenever its legs make contact with the ground, and a reward
of either +100 or −100 upon completing the episode, dependent on whether landing on the
landing pad was successful.
Freeway. Freeway is a game for the Atari 2600, published by Activision in 1981, where the
goal is to help the chicken cross the road (by only moving vertically upwards or downwards)
while avoiding cars. It is a standard part of the Atari Learning Environment and the OpenAI
Gym. Observations in this environment are the full framebuffer of the Atari console while
playing the game, which has been appropriately preprocessed as in [42]. Actions correspond
to staying still, moving upwards or downwards. Upon colliding with a car, the chicken will
be set back a few lanes, and upon crossing a road, it will be teleported back at the other
side to cross the road again (which is also the only time when it receives a positive reward
of +1). The game automatically times out after a fixed number of transitions.
Enduro. Enduro is a game for the Atari 2600, published by Activison in 1983. The goal of
the game is to complete an endurance race, overtaking a certain number of cars each day of
the race to continue to the next day. It is a standard part of the Atari Learning Environment
and the OpenAI Gym. Observations in this environment are the full framebuffer of the Atari
console while playing the game, which has been appropriately preprocessed as in [42]. This
game is one of the first games with day/night cycles as well as weather changes which makes
it particularly visually rich. There are nine different actions we can take in this environment
corresponding to staying still as well as accelerating, decelerating, moving left/right and
combinations of two of them.
Alien. Alien is a game for the Atari 2600, published by 20th Century Fox in 1982. The
goal of the game is to destroy the alien eggs laid in the hallways (similar to the pellets in
Pac-Man) while running away from three aliens on the ship. It is a standard part of Atari
Learning Environment and the OpenAI Gym. Observations in this environment are the
full framebuffer of the Atari console while playing the game, which has been appropriately
preprocessed as in [42]. There are 18 different actions we can take in this environment
corresponding to staying still, firing the flamethrower and moving or firing the flamethrower
in eight directions.
H.E.R.O.. H.E.R.O. is a game from Atari 2600, whose goal is to navigate through a mine,
clearing obstacles and destroying enemies on the way, in order to rescue a miner at the end
of each level. Similarly to Alien, observations in this environment are the full framebuffer of
the Atari console while playing the game, which has been appropriately preprocessed as in
[42] and the action space is formed of 18 different actions.
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Table 12 – Mean scores for CartPole-v0 after training, averaged over 100 episodes and five
seeds. Baseline CartPole results reprinted from [5].

CartPole-v0 100 trajectories Only 10 trajectories

REINFORCE 23.84 ± 0.88 -
WM-AE 114.47 ± 17.32 -
LD-AE 154.73 ± 50.49 -
DMDP-H (J = 0) 72.81 ± 20.16 -
PRAE, J = 5 171.53 ± 34.18 -
PPO - 104.6 ± 48.5
XLVIN-R - 199.2 ± 1.6
XLVIN-CP - 195.2 ± 5.0

Figure 26 – Synthetic graphs constructed for pre-training the GNN executor: random
deterministic (20 states, 8 actions) (left) and CartPole (right)

C.4. Additional CartPole results
In Table 12, we provide a comparison between XLVIN and several baselines from [5].

C.5. Synthetic graphs
Figure 26 presents the two kinds of synthetic graphs used for pretraining the GNN ex-

ecutor.
In most cases, we pre-train the executor using randomly generated deterministic graphs

(left): for |S| = 20 states and |A| = 8 actions, we create a |S|-node graph. For each state-
action pair we select, uniformly at random, the state it transitions to, deterministically. We
sample the reward model using the standard normal distribution. Overall, the graphs are
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Figure 27 – Success rate on 8 × 8 (left) and on 16 × 16 (right) held-out mazes obtained
after passing each level of their respective train mazes. Cut-off curves imply failure to pass
a difficulty level.

sampled as follows:

T̃ (s, a) ∼ Uniform(|S|) (C.5.1)

P (s′ | s, a) =

1 s′ = T̃ (s, a)
0 otherwise

(C.5.2)

R(s, a) ∼ N (0, 1) (C.5.3)

These k-NN style graphs do not assume upfront any structural properties of the underlying
MDP, and are a good prior distribution for evaluating the performance of XLVIN.

For CartPole-style environments, we attempt a different type of graph (right). It is a
binary tree, where red nodes represent nodes with reward 0, and blue nodes have reward 1.
This aligns with the idea that going further from the root, which is equivalent with taking
repeated left (or right) steps, leads to being more likely to fail the episode.

We also attempt using the CartPole graph for pre-training the executor for the other two
continuous-observation environments (MountainCar, Acrobot). Primarily, the similar action
space of the environments is a possible supporting argument of the observed transferability.
Moreover, MountainCar and Acrobot can be related to a inverted reward graph of CartPole,
with more aggressive combinations left/right steps often bringing a higher chance of success.

C.6. Maze results
As described in the main text, in order to qualitatively assess the transition and executor

modules in XLVIN, we evaluated them on a known, fixed and discrete MDP—where optimal
values V ⋆(s) can be trivially computed. Accordingly, we use the 8×8 and 16×16 grid-world
mazes proposed by [159]. The observation for this environment consists of the maze image,
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Figure 28 – Freeway frames (above) and reconstructions (below) using a VAE-style world
model.

the starting position of the agent and the goal position. Every maze is associated with a
difficulty level, equal to the shortest path length between the start and the goal.

Using this concept, we formulate the continual maze task: the agent is, initially, trained
to solve only mazes of difficulty level 1. Once the agent reaches 95% success rate on the last
1,000 sampled episodes of level d, it advances to level d+1 (without observing level d again).
If the agent fails to reach 95% within 1,000,000 trajectories, it is not allowed to progress.
After each passed difficulty, the agent is evaluated by computing its success rate on held-out
test mazes.

Given the grid-world structure, our encoder for the maze environment is a three-layer
CNN computing 128 latent features and 10 outputs. The transition function is a three-layer
MLP with layer normalisation [180] after the second layer, computing 128 hidden features.
We apply the executor until depth K = 4, with layer normalisation applied after every step.

Beyond its use for qualitative evaluation, we also perform a comparison of XLVINs against
several standard implicit planners in this space (including (G)VIN and GPPN). The results
are summarised in Figure 27, and indicate that XLVIN is competitive with all other models,
while not making any upfront assumptions about the dynamics of the environment.

C.7. Pixel-based world models
XLVIN is, in principle, agnostic to the choice of transition model. We chose a latent-

space transition model in the style of TransE because this aligned the closest with the ATreeC
baseline, which also used a latent-space transition model. World models that predict full
observations are also plausible.

We attempt replacing our Atari transition model with a variant that learns representa-
tions through pixel-based reconstructions (using a VAE objective, as done by [210]). We
found that representations obtained in this way were not useful; we observed that most of
our state encodings converged to a fixed-point, and that the pixel-space reconstructions com-
pletely ignored the foreground observations (see Figure 28). This aligns with prior investiga-
tions of VAE-style losses on Atari, which found they tend to overly focus on reconstructing
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the background and were less predictive of RAM state than latent-space models, as well as
randomly-initialised CNNs [211]. This comparison stands in favour of our approach to using
a transition model optimised purely in the lower-dimensional latent space.

C.8. Compute details
We used one V100 GPU from an internally provided cluster for training our model on

the Atari environments, for which the training time for one seed per environment was always
less than 24 hours. For the classical control and navigation tasks, a 2.7GHz i7 CPU was
used.

We used the OpenAI Gym [181] for access to environments, PytorchRL [178] for the
PPO implementation and encoder parameters and OpenAI Baselines [212] for environment
wrapper capabilities. All of the above are licensed under the MIT license.

C.9. Potential societal impact
Our work studies fundamental insights related to implicit planners. The problem of

improving data efficiency, while building better plans is highly important for real world ap-
plications. However, this work does not explicitly focus on the engineering efforts for such
applications or implications. Instead, we analyse the problem from a theoretical and empir-
ical angle, first identifying bottleneck issues in prior art and then empirically verifying the
effects of alleviating the bottleneck on classical control and standard game-playing bench-
marks. Therefore, we consider direct societal impact not to be applicable in this setting.

158


	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of acronyms and abbreviations
	Remerciements
	Introduction
	Chapter 1. Background and Motivation
	1.1. Graph Representation Learning
	1.1.1. Graph neural networks
	1.1.2. Expressive power of graph neural networks

	1.2. Neural Algorithmic Reasoning
	1.3. Geometric Deep Learning
	1.3.1. Groups and Representations
	1.3.2. Equivariance and Invariance

	1.4. Reinforcement Learning
	1.4.1. Model-based RL

	1.5. Graph Neural Networks for Real-world applications
	1.5.1. Graph task types
	1.5.2. Motivating modulators: Applied examples
	1.5.2.1. Large-scale learning on graphs
	1.5.2.2. Molecular interactions


	1.6. Summary

	Chapter 2. Graph Neural Networks for Long-Range Interaction: Prologue to the first article
	2.1. Article Details
	2.2. Context
	2.3. Modulator
	2.4. Contributions and Research Impact

	Chapter 3. Expander Graph Propagation
	3.1. Introduction
	3.2. Related work
	3.3. Theoretical background
	3.4. Local structure of the Cayley graphs, and the utility of negative curvature
	3.5. Expander graph propagation
	3.6. Empirical evaluation
	3.7. Conclusion

	Chapter 4. Graph Neural Networks for Heterophilic data: Prologue to the second article
	4.1. Article Details
	4.2. Context
	4.3. Modulator
	4.4. Contributions and Research Impact

	Chapter 5. Evolving Computation Graphs
	5.1. Introduction
	5.2. Background
	5.3. Evolving Computation Graphs
	5.4. Experiments
	5.4.1. Qualitative studies

	5.5. Related work
	5.6. Limitations and further work
	5.7. Conclusions

	Chapter 6. Graph Neural Networks for Reinforcement Learning: Prologue to the third article
	6.1. Article Details
	6.2. Context
	6.3. Modulator
	6.4. Contributions and Research Impact

	Chapter 7. Neural Algorithmic Reasoners are Implicit Planners
	7.1. Introduction
	7.2. Background and related work
	7.3. XLVIN Architecture
	7.3.1. XLVIN modules
	7.3.2. XLVIN Training

	7.4. Experiments
	7.4.1. Experimental setup
	7.4.2. Results
	7.4.3. Qualitative results

	7.5. Conclusions

	Chapter 8. Geometric Deep Learning for Reinforcement Learning: Prologue to the fourth article
	8.1. Article Details
	8.2. Context
	8.3. Modulator
	8.4. Contributions and Research Impact

	Chapter 9. Equivariant MuZero
	9.1. Introduction
	9.2. Background
	9.3. Equivariant MuZero
	9.4. Experiments and results
	9.5. Limitations and future work
	9.6. Conclusions

	Chapter 10. General Conclusions
	References
	Appendix A. Appendix of Chapter 2
	A.1. Proof of Proposition 3.4.1
	A.2. Proof of Theorem 3.4.3
	A.3. Cayley graph at infinity is quasi-isometric to a tree
	A.4. Mixing time properties of expander graphs
	A.5. Additional experimental details and ablations

	Appendix B. Appendix of Chapter 4
	B.1. Training information

	Appendix C. Appendix of Chapter 6
	C.1. Alternate rendition of XLVIN dataflow
	C.2. Additional description of the Execute function
	C.3. Environments under study
	C.4. Additional CartPole results
	C.5. Synthetic graphs
	C.6. Maze results
	C.7. Pixel-based world models
	C.8. Compute details
	C.9. Potential societal impact


