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Résumé

Le développement du domaine de l’apprentissage profond doit une grande part de son avancée

aux idées inspirées par la neuroscience et aux études sur l’apprentissage humain. De la

découverte de l’algorithme de rétropropagation à la conception d’architectures neuronales

comme les Convolutional Neural Networks, ces idées ont été couplées à l’ingénierie et aux

améliorations technologiques pour engendrer des algorithmes performants en utilisation

aujourd’hui. Cette thèse se compose de trois articles, chacun éclairant des aspects distincts

du thème central de ce domaine interdisciplinaire. Le premier article explore la modélisation

prédictive avec des données d’imagerie du cerveau de haute dimension en utilisant une nouvelle

approche de régularisation hybride. Dans de nombreuses applications pratiques (comme

l’imagerie médicale), l’attention se porte non seulement sur la précision, mais également

sur l’interprétabilité d’un modèle prédictif formé sur des données haute dimension. Cette

étude s’attache à combiner la régularisation l1 et l2, qui régularisent la norme des gradients,

avec l’approche récemment proposée pour la modélisation prédictive robuste, l’Invariant

Learning Consistency, qui impose l’alignement entre les gradients de la même classe lors

de l’entraînement. Nous examinons ici la capacité de cette approche combinée à identifier

des prédicteurs robustes et épars, et nous présentons des résultats prometteurs sur plusieurs

ensembles de données. Cette approche tend à améliorer la robustesse des modèles épars dans

presque tous les cas, bien que les résultats varient en fonction des conditions. Le deuxième

article se penche sur les algorithmes d’apprentissage inspirés de la biologie, en se concentrant

particulièrement sur la méthode Difference Target Propagation (DTP) tout en l’intégrant à

l’optimisation Gauss-Newton. Le développement de tels algorithmes biologiquement plausibles

possède une grande importance pour comprendre les processus d’apprentissage neuronale,

cependant leur extensibilité pratique à des tâches réelles est souvent limitée, ce qui entrave

leur potentiel explicatif pour l’apprentissage cérébral réel. Ainsi, l’exploration d’algorithmes

d’apprentissage qui offrent des fondements théoriques solides et peuvent rivaliser avec la

rétropropagation dans des tâches complexes gagne en importance. La méthode Difference

Target Propagation (DTP) se présente comme une candidate prometteuse, caractérisée par

son étroite relation avec les principes de l’optimisation Gauss-Newton. Néanmoins, la rigueur

de cette relation impose des limites, notamment en ce qui concerne la formation couche par
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couche des poids synaptiques du chemin de rétroaction, une configuration considérée comme

plus biologiquement plausible. De plus, l’alignement entre les mises à jour des poids DTP

et les gradients de perte est conditionnel et dépend des scénarios d’architecture spécifiques.

Cet article relève ces défis en introduisant un schéma innovant d’entraînement des poids

de rétroaction. Ce schéma harmonise la DTP avec la BP, rétablissant la viabilité de la

formation des poids de rétroaction couche par couche sans compromettre l’intégrité théorique.

La validation empirique souligne l’efficacité de ce schéma, aboutissant à des performances

exceptionnelles de la DTP sur CIFAR-10 et ImageNet 32×32. Enfin, le troisième article

explore la planification efficace dans la prise de décision séquentielle en intégrant le calcul

adaptatif à des architectures d’apprentissage profond existantes, dans le but de résoudre des

casse-tête complexes. L’étude introduit des principes de calcul adaptatif inspirés des processus

cognitifs humains, ainsi que des avancées récentes dans le domaine du calcul adaptatif. En

explorant en profondeur les comportements émergents du modèle de mémoire adaptatif

entraîné, nous identifions plusieurs comportements reconnaissables similaires aux processus

cognitifs humains. Ce travail élargit la discussion sur le calcul adaptatif au-delà des gains

évidents en efficacité, en explorant les comportements émergents en raison des contraintes

variables généralement attribuées aux processus de la prise de décision chez les humains.

Mots-clés: apprentissage profond, neuroscience, rétropropagation, régularisation, prise

de décision séquentielle, calcul adaptatif
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Abstract

The development of the field of deep learning has benefited greatly from biologically inspired

insights from neuroscience and the study of human learning more generally, from the discovery

of backpropagation to neural architectures such as the Convolutional Neural Network. Coupled

with engineering and technological improvements, the distillation of good strategies and

algorithms for learning inspired from biological observation is at the heart of these advances.

Although it would be difficult to enumerate all useful biases that can be learned by observing

humans, they can serve as a blueprint for intelligent systems. The following thesis is composed

of three research articles, each shedding light on distinct facets of the overarching theme. The

first article delves into the realm of predictive modeling on high-dimensional fMRI data, a

landscape where not only accuracy but also interpretability are crucial. Employing a hybrid

approach blending l1 and l2 regularization with Invariant Learning Consistency, this study

unveils the potential of identifying robust, sparse predictors capable of transmuting noise-

laden datasets into coherent observations useful for pushing the field forward. Conversely,

the second article delves into the domain of biologically-plausible learning algorithms, a

pivotal endeavor in the comprehension of neural learning processes. In this context, the

investigation centers upon Difference Target Propagation (DTP), a prospective framework

closely related to Gauss-Newton optimization principles. This exploration delves into the

intricate interplay between DTP and the tenets of biologically-inspired learning mechanisms,

revealing an innovative schema for training feedback weights. This schema reinstates the

feasibility of layer-wise feedback weight training within the DTP framework, while concurrently

upholding its theoretical integrity. Lastly, the third article explores the role of memory in

sequential decision-making, and proposes a model with adaptive memory. This domain entails

navigating complex decision sequences within discrete state spaces, where the pursuit of

efficiency encounters difficult scenarios such as the risk of critical irreversibility. The study

introduces adaptive computation principles inspired by human cognitive processes, as well

as recent advances in adaptive computing. By studying in-depth the emergent behaviours

exhibited by the trained adaptive memory model, we identify several recognizable behaviours

akin to human cognitive processes. This work expands the discussion of adaptive computing
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beyond the obvious gains in efficiency, but to behaviours emerging due to varying constraints

usually attributable to dynamic response times in humans.

Keywords: deep learning, neuroscience, neurobiologically plausible learning, regulariza-

tion, sequential decision-making, adaptive computation
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Introduction

The evolution of deep learning owes a substantial debt to the synergistic collaboration

between neuroscience and machine learning. This longstanding partnership has continued

to enrich the design of new technologies and yielded profound insights in neuroscience

and medicine in general. It is within this context that deep learning has flourished,

drawing inspiration from the intricate workings of biology to pave the way for transfor-

mative algorithms. Notable examples range from the inception of backpropagation to

the development of attention mechanisms and Convolutional Neural Networks. These

seminal breakthroughs, rooted in both neuroscience and machine learning, have catalyzed

the creation of algorithms that have left a significant impact on the field. This thesis

encompasses three articles that exemplify the profound impacts of this interdisciplinary fusion.

The first delves into predictive modeling with high-dimensional functional magnetic

resonance imaging (Functional Magnetic Resonance Imaging (fMRI)) data using hybrid

regularization. In many practical applications (e.g., medical imaging), we are often concerned

not only with the accuracy but also with the interpretability of a predictive model trained on

high-dimensional data, such as its ability to identify a sparse subset of invariant (robust)

predictors, generalizing across a wide variety of datasets affected by spurious noise (e.g., key

factors related to a disease, across different patients and hospitals). Towards this goal, we

explore here a combination of the sparsity-inducing l1 and l2 regularization, which focus on

regularizing the norm of the gradients during training, with the recently proposed approach

for robust predictive modeling, Invariant Learning Consistency, which forces alignment

between gradients of the same class during training [78]. We investigate the ability of

the combined approach to identify robust sparse predictors and demonstrate promising

results on several datasets, including synthetic data, the Modified National Institute of

Standards and Technology (MNIST) benchmark, and a functional Magnetic Resonance

Imaging (MRI) dataset. Our approach tends to improve the robustness of sparse mo-

dels in practically all cases, albeit with varying degrees of success and under certain conditions.



The second article centers on biologically-inspired learning algorithms, specifically

concentrating on Difference Target Propagation (Difference Target Propagation (DTP)),

while integrating it with Gauss-Newton optimization. The development of such biologically-

plausible algorithms holds significance in comprehending neural learning processes; however,

their practical scalability to real-world tasks is often constrained. This limitation impedes

their explanatory potential for real brain learning. Thus, the exploration of learning

algorithms that offer robust theoretical foundations and can rival backpropagation

(Backpropagation (BP)) in complex tasks gains prominence. Difference Target Propagation

(DTP) emerges as a promising candidate, characterized by its close association with

Gauss-Newton (GN) optimization. Nonetheless, the rigor of this relationship imposes

limitations, particularly regarding layer-wise training of feedback pathway synaptic weights, a

configuration deemed more biologically plausible. Furthermore, the alignment between DTP

weight updates and loss gradients is conditional and contingent upon specific architecture

scenarios. This paper addresses these challenges by introducing an innovative feedback

weight training scheme. This scheme harmonizes DTP with BP, restoring the viability of

layer-wise feedback weight training without compromising theoretical assurances. Empirical

validation underscores the efficacy of this scheme, culminating in DTP’s unparalleled

performance on Canadian Institute For Advanced Research (CIFAR-10) and ImageNet 32×32.

The third article explores efficient planning in sequential decision-making by integrating

adaptive computation to existing machine learning architectures with the objective of

solving complex puzzles. The study introduces adaptive computation principles inspired

by human cognitive processes, and recent work investigating similar mechanism but

applied to different domains [28, 8]. Our experiment demonstrate how our (Adaptive

Memory Model (AMM)) can learn to vary its depth of analysis to become more efficient

than its static counterpart, without any loss in performance. We have also observed

a notable negative correlation between thinking time and task completion progress.

Additionally, we observe that a trained AMM exhibits patterns of thinking akin to

human cognitive processes. We identify three such mechanisms which we explore using

various visualizations: increasing certainty, exploring alternatives, and reconsidera-

tion. We find certain trademark characteristics to each of these thinking patterns, such

as distinct patterns in the evolution of the entropy of the agent’s policy across pondering steps.

My contributions:

• The contributions of Sean Spinney to the first article titled: Identifying Invariant and

Sparse Predictors in High-dimensional Data, were in the conception, programming,

fMRI data preprocessing and quality control, as well as the analysis and writing of

the article. The paper was accepted at the ICML 2021 conference on Uncertainty &
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Direct Difference Target Propagation (s-DDTP), Parallel Direct Difference Target

Propagation (p-DDTP), and [63]), running and logging the results, hyperparameters,

and architecture details for MNIST, Fashion Modified National Institute of Standards

and Technology (F-MNIST), and CIFAR-10 experiments. He was also responsible for

creating the figures for those experiments, with the guidance of Maxence Ernoult.

This work was accepted at ICML in 2022.
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this project is in the process of being submitted to ICLR 2024.
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Chapter 1

Deep learning basics

With traditional machine learning failing to produce algorithms that can solve central problems

in AI, such as recognizing speech or recognizing objects [26], the advancement of deep learning

has opened up new learning capabilities at much larger scale and for a wide array of data

types [43]. Deep learning is at the core of the work presented in this thesis, and this section

will review the architectures used in our models.

1.1. Feedforward neural networks

A Feedforward Neural Network (FFN) is the most basic type of neural network, where

the goal is to approximate some function f ∗ [26]. Whether the problem to be solved is

classification or regression, the neural network maps the input x to a category or real number

y, and computes a loss function which allows a learning signal to update the parameters θ

of the neural network to improve performance. The most basic architecture for a FFN is a

multi-layer perceptrons neural network.

1.1.1. Multi-layer perceptrons

MLP have no feedback information or internal states (e.g. memory) and are typically

composed of units called neurons which are connected by way of how information is propogated.

Deep MLPs are built from many layers which improve its ability to solve the problem by

increasing capacity, at the risk of overfitting to the training data. A layer is typically composed

of a linear followed by a nonlinear transformation of the input, which can come from the

data or from a previous layer. In fact the power of feedforward neural nets lies in stacking

layers to represent more complex functions, making them "deeper". For example, if the model

y = f(x) has 3 layers then we can decompose the mapping to y = f(x) = f3(f2(f1(x))). The

previous example implies that information flows in a forward way through the layers.
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Figure 1.1. An example of a fully connected MLP with the green layer representing the
input and red the output layer.

1.1.2. Convolutional neural network

This section introduces Convolutional Neural Network (CNN) which are useful for vision

models primarily because they encode translation equivariance for small translations [48].

This allows the model to idenfity an object no matter its position or orientation in an image.

For example, suppose K is a convolution kernel of dimension 3x3 which is applied on an input

I of dimension 7x7. Computing the convolution operation is done by multiplying element-wise

a subset of I and K, adding up the terms, and then moving the convolution kernel over to

another subset. The distance the kernel is moved is called the stride. The highlighted subset

of I in Figure1.2 shows which elements of K they are multiplied with to give the output of 4.

Moving K by one step over to the right will give 1 found to the right of 4 in the I*K matrix.

Let’s further assume that the kernel has been trained to recognize a dog’s ear during training

for classifying whether or not a dog is in the input image. The output of the convolution

I ∗K is of dimension 5x5 and is shown in Figure1.2.

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0
I

∗
1 0 1

0 1 0

1 0 1

K

=

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

I ∗K

1 0 1

0 1 0

1 0 1

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

Figure 1.2. I is the input, K the convolution kernel and I*K is the output of the convolution
operation of K on I.
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A convolutional neural network will generally be composed of layers with multiple kernels

(e.g. K in Fig 1.1). Such an example is given below:

input image
layer l = 0

convolutional layer
with non-linearities

layer l = 1

subsampling layer
layer l = 3

convolutional layer
with non-linearities

layer l = 4

subsampling layer
layer l = 6

fully connected layer
layer l = 7

fully connected layer
output layer l = 8

Figure 1.3. The architecture of the original convolutional neural network, as introduced by
LeCun et al. (1989), alternates between convolutional layers including hyperbolic tangent
non-linearities and subsampling layers. In this illustration, the convolutional layers already
include non-linearities and, thus, a convolutional layer actually represents two layers. The
feature maps of the final subsampling layer are then fed into the actual classifier consisting
of an arbitrary number of fully connected layers. The output layer usually uses softmax
activation functions.

1.1.3. Autoencoders

Autoencoders, a class of feedforward neural network architectures, have gained prominence

in both machine learning and neuroscience due to their potential to capture informative

data representations through unsupervised learning. An autoencoder comprises two main

components: an encoder and a decoder. The encoder takes input data and transforms it

into a lower-dimensional latent space, often referred to as an information bottleneck [32].

This bottleneck forces the network to capture the most salient and essential features of

the input data, acting as an efficient representation that encapsulates the core information.

The decoder then reconstructs the original input data from this compressed representation,

resulting in a reconstruction that is ideally as close as possible to the original input.

The training process of autoencoders involves optimizing the network’s parameters to

minimize the difference between the input data and the reconstructed output. This is typically

achieved by defining a loss function that quantifies the dissimilarity between the original

input and the generated output. The most common loss function for this purpose is the Mean

Squared Error (MSE), which measures the average squared difference between corresponding

elements of the input and output vectors:
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MSE =
1

N

n∑

i=1

(xi − x̂i)
2 (1.1.1)

here xi represents the corresponding element of the reconstructed output, and N is the

total number of elements in the vectors.

The objective of training is to adjust the weights and biases of the encoder and decoder

networks to minimize the loss. This optimization is typically performed using gradient-based

methods like stochastic gradient descent (SGD) or its variants. The gradients of the loss

with respect to the network parameters are computed through backpropagation, and the

parameters are updated in the direction that reduces the loss.

During training, the encoder learns to extract informative features from the input data,

while the decoder learns to generate accurate reconstructions from these features. As the

training progresses, the network adapts its parameters to minimize the reconstruction error,

effectively learning a compact representation that encapsulates the essential features of the

input data.

1.2. Recurrent neural networks

AAA A=A

h0

x0

h1

x1

h2

x2

ht

xt

ht

xt . . .

Figure 1.4. Recurrent neural network. To the right of the equality is a representation of
the recurrence by "unrolling" the RNN.

Previously, we only considered single inputs which the FFN processes and an output is

given by the model. Suppose instead that the input is composed of a sequence of ordered

inputs such as an english sentence or a video as a series of images. It would be possible

to combine the sequence of inputs into one large X that is fed to a FFN, but there is still

no concept of memory. This in part motivated the creation of Recurrent Neural Network

(RNN); a neural network capable of taking a sequence of inputs and retaining long-term

dependencies by encoding them in a hidden state vector and making predictions at any point

[26]. By carefully specifying how the hidden state is updated, ht in Figure 1.4, RNNs can

theoretically model dependencies across infinite time horizons. The major problem with
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RNNs are exploding or vanishing gradients which are caused by backpropogating through

very long time horizons, which is a bottleneck on how far back RNNs can model dependencies.

1.2.1. Long short-term memory

This prompted the development of the Long Short-Term Memory (LSTM) module, which

allows long-term dependencies to flow through the model by using gates. The LSTM is a type

of recurrent neural network that is designed to handle long-term dependencies in sequential

data [37]. Unlike traditional RNNs, which can have difficulty learning and remembering

long-term dependencies [13], LSTMs are able to capture and retain information from long

sequences of data, and to use this information to make predictions and generate outputs.

LSTMs are able to handle long-term dependencies by using gates, which are neural

network units that control the flow of information through the network. Each LSTM cell

contains several gates, including input gates, output gates, and forget gates, which are used

to regulate the flow of information into, out of, and within the LSTM cell. The gates are

trained using a variant of Backpropagation Through Time (BPTT) [68, 90], which allows the

LSTM to learn and adapt its behavior based on the input data and the desired output.

One advantage of LSTMs is that they can learn to make predictions and generate outputs

based on long sequences of data, without losing track of the long-term dependencies and

patterns in the data. This allows LSTMs to perform well on tasks that require the ability

to remember and use long-term information, such as natural language processing, speech

recognition, and machine translation. Additionally, LSTMs are able to handle complex and

variable-length sequences, which makes them versatile and applicable to a wide range of tasks.

1.2.2. Deep repeated convolutional LSTM

Figure 1.5. Deep Repeated ConvLSTM (DRC) architecture. Source: [31]

Combining the concepts of CNNs and LSTMs gave rise to Convolutional LSTMs or

Convolutional LSTM (ConvLSTM) which allow a richer spatial structure to be modelled in
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time [101]. The main idea is that instead of flattening the input to the ConvLSTM, the three

dimensional structure is conserved using a 3-D hidden state representation throughout the

rollout. There is good evidence to support that for vision tasks, this module performs better.

One advantage of using ConvLSTMs for vision tasks is that they can capture and retain

spatial information from the input data, and use this information to make more accurate and

informative predictions. For example, in a task such as image classification, a ConvLSTM can

learn to recognize and classify objects in an image by using the spatial relationships between

the pixels in the image, and the spatial relationships between the objects in the scene. This

ability to capture and use spatial information can improve the performance of ConvLSTMs

on vision tasks, and make them more effective and versatile than traditional LSTMs.

1.3. Training and evaluation

The optimization involved in training a Neural Network (NN) relies on making changes

to the weights θ such that performance is improved. How those changes are implemented is

often referred to as the credit assignment problem, where the objective is to obtain a certain

desired behaviour from the model by finding an optimal set of weights [64, 97]. When training

a deep NN, the problem we aimed to solve will generally determine whether the NN learns in

a supervised fashion where input and output pairs are fed to the model, or unsupervised

which means the model only requires input and learns without a corresponding output

example [96]. Both of these approaches can be combined, where Unsupervised Learning (UL)

facilitates Supervised Learning (SL) and Reinforcement Learning (RL) through pretraining

more compact representations using UL before feeding these to a task [7, 98, 99]. The focus

of the current work is primarily on the supervised learning setting, as the RL algorithms

under study require receiving rewards from the environment. This setting involves predicting

output labels from input data to enable the training of models that can perform specific

tasks with the aid of target labels.

Most deep learning models are trained using backpropogation [60, 111, 90]; an algorithm

which updates the weights of a model after a certain number of examples have been evaluated

in a way that lowers the current loss. Backpropogation uses gradient descent to find weights

that minimize a loss function which is defined by the user e.g. cross-entropy loss. Let X be a

batch of inputs, y the corresponding correct outputs, ŷ the model’s output, and L(y,ŷ) = e

be the loss function which outputs a scalar value we will call the error. Then the update for

the weights located at layer i following backpropogation is:

∆θi = −α ·
∂L(y,ŷ)

∂θi

32



where α is the learning rate, a hyperparameter which determines the size of the weight

updates. Once the model has been trained, it can be evaluated on a separate dataset called

the validation set to assess its generalization performance. The model’s performance on the

validation set is used to choose the best performing model, or to determine if the model is

overfitting to the training data and needs to be regularized or have more data added.

In Supervised Learning, the NN is trained using input-output pairs, where the inputs are

fed to the model, and the corresponding desired outputs are provided as targets. The goal is

for the model to learn a mapping from inputs to outputs that approximates the underlying

relationship within the data. This process involves minimizing a loss function that quantifies

the difference between the predicted outputs and the true targets.

Mathematically, given a dataset D = (xi, yi) consisting of N input-output pairs, the loss

function L can be defined as the average loss over the dataset:

L(θ) =
1

N

N∑

i=1

L(yi, f(xi; θ)), (1.3.1)

where L is a suitable loss function, such as the mean squared error or cross-entropy,

and f(x; θ) is the output of the NN with weights θ for input x. The weights are updated

iteratively using gradient descent:

θt+1 = θt − α∇L(θt), (1.3.2)

where α is the learning rate controlling the step size of the updates.

Conversely, Unsupervised Learning encompasses various techniques aimed at extracting

valuable insights from input data without the presence of corresponding output labels. This

approach serves to uncover inherent patterns, structures, or relationships within the data

itself. Several common types of unsupervised learning tasks include: clustering, learning by

association, anomaly detection, and autoencoders [69].

1.3.1. Regularization

When training deep learning models, it is often required to improve the robustness

of deep learning models and prevent overfitting, which occurs when a model learns

to perform well on the training data but struggles to generalize to new, unseen data.

Regularization techniques are employed to mitigate this issue by adding constraints

or penalties to the model’s learning process. These constraints encourage the model

to prioritize simpler solutions and avoid fitting noise in the data, leading to improved

generalization performance. Regularization methods play a vital role in promoting model
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stability and preventing the model from becoming overly complex, ultimately enhancing

its ability to generalize to new data points. In the following sections, we delve into

some commonly used regularization techniques and their implications for training deep

learning models.Two commonly used forms of regularization in deep learning are L1 and L2

regularization. These techniques add a penalty term to the loss function during training, dis-

couraging the model from assigning excessively large weights to certain features or parameters.

L1 Regularization adds a penalty proportional to the absolute value of the weights

to the loss function, mediated by a hyperparameter λ. This encourages the model to drive

some of the weights to exactly zero, effectively selecting a subset of important features while

disregarding others. L1 regularization is particularly useful for creating sparse models, where

only a small subset of features are actively contributing to the model’s predictions. Sparse

models are not only computationally efficient but can also provide interpretability and insight

into the underlying patterns in the data.

Lreg = λ
∑

i

|wi|

L2 Regularization, on the other hand, adds a penalty proportional to the square of

the weights to the loss function. This encourages the model to distribute the weights more

evenly across all features, avoiding extreme values. L2 regularization is effective in preventing

individual features from dominating the model’s predictions and can lead to smoother weight

distributions.

Lreg = λ
∑

i

|wi|

Another effective approach to regularization involves the use of Kullback-Leibler (KL)

divergence, a concept from information theory [83, 109]. KL divergence measures the difference

between two probability distributions, indicating how one distribution diverges from another.

In the context of regularization, KL divergence can be used to enforce certain properties on

the learned parameters of a deep learning model. In other words, it is the expectation of the

logarithmic difference between the probabilities P and Q:

Lreg = λ
∑

i

DKL(P ‖ Q) = λ
∑

i

∑

j

Pij log

(
Pij

Qij

)

where i and j are indices denoting the elements of the probability distributions P and Q.

Pij and Qij represent the values of the probability distributions P and Q at indices i and

j, respectively, and is the regularization strength (hyperparameter). In this formulation,

the Kullback-Leibler divergence DKL(P ‖ Q) is calculated for each pair of corresponding

elements in the probability distributions P and Q, and the results are summed up to create

the overall regularization term. By applying KL divergence regularization to a parameter
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which describes a probability distribution as seen above, we can steer its values towards a

predefined distribution, effectively constraining its variability. This regularization approach

is particularly useful when we have prior knowledge about the desired distribution of a

parameter, or when we want to ensure that a certain property is maintained during training.

KL divergence regularization allows us to incorporate domain-specific information into the

learning process, leading to models that adhere to specific constraints and exhibit desired

behaviors.

1.4. Biologically plausible learning algorithms

BP is just one algorithm developed for training deep learning models, but its biological

plausibility has been questioned upon considering how the brain learns by modifying synaptic

connections between neurons [62, 25]. For instance, BP relies on linear transformations

during propagation from output to weights, whereas biological neural networks involve a

combination of linear and non-linear operations. Moreover, for the brain to accurately assign

credit along feedback pathways like BP, it would need precise knowledge of derivatives

for the non-linearities in the feedforward path. BP uses the same weights for both the

forward pass and backward error propagation, which necessitates imposing symmetry and

transposition of feedforward connections, which is unlikely happening in the brain given the

uniqueness of each neuron [14, 57]. This is commonly referred to as the weight transport

problem [58]. More discrepancies exist such as the fact that biological neurons use discrete

signals (spiking) to communicate, rather than real-valued numbers [40], the timing of the

propagation of the learning signal [114], and the observation of local connectivity patterns in

real neural circuits, suggesting that learning happens locally, at the synaptic level, instead

of relying on error signals being backpropogated down feedback pathways [39]. This is

more plausible than supervised learning with examples and labels, since the origin of

such labels in the brain is not known. There are several alternative algorithms for more

biologically plausible learning, some of which are briefly mentioned below followed by a

more detailed look at Target Propagation since it is the focus of the second article of this thesis.

Feedback Alignment (FA). : Feedback Alignment (FA) is a biologically plausible learning

rule that decouples feedforward and feedback weights, making it more consistent with the

biological structure of neural networks by relaxing BP’s weight symmetry requirements [59].

Another concurrent work, focused on aligning the signs of the forward and feedback weights [56]

Spike Timing Dependent Plasticity (SDTP). : STDP approaches learning by adjus-

ting the synaptic weights based on the relative timing of pre- and post-synaptic spikes [114, 14]
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Target-Propagation (TP, DTP). : Target Propagation (TP) and its variant, DTP [52],

represent a distinct line of research exploring alternatives to backpropagation. Unlike

BP, TP and DTP propagate target activations instead of error signals to the hidden

layers. This involves updating the weights of each layer to align with the propagated

target activation [12, 14, 75, 49]. In essence, rather than computing gradients, these

methods calculate targets by utilizing autoencoders at each layer. DTP refines TP by

introducing a linear correction to compensate for autoencoders’ imperfections [52, 63].

TP and DTP effectively address two key concerns regarding the biological plausibility of

BP: the weight transport problem and the weight symmetry requirement. The following

section provides a more comprehensive insight into how TP and DTP generate learning signals.

Consider a fully connected feedforward network characterized by a sequence of forward

mappings:

hi = fi(hi−1) = si(Wihi−1) = si(ai), i = 1, . . . , L

Here, hi denotes the vector containing the post-activation values of layer i, ai signifies

the pre-activation values, si represents a smooth nonlinear activation function, Wi stands for

the layer weights, and h0 denotes the network input. Given the network output hL and the

training sample label l, a loss L(l, hL) is calculated.

While BP computes gradients for this loss function, TP calculates an output target and

backpropagates it. The adapted output target ĥL is defined as the output activation adjusted

in the opposite direction of the gradient:

ĥL = hL − η̂
∂L

∂hL

Here, η̂ denotes the output target step size. This modified target ĥL is then backpropagated

to obtain hidden layer targets ĥi:

ĥi = gi(ĥi + 1) = ti(Qiĥi+1), i = L− 1, . . . , 1

Here, gi approximates the inverse of fi+1, Qi represents the feedback weights, and ti

signifies a smooth nonlinear activation function. Different parameterizations for gi are also

possible. Local layer losses Li(ĥi, hi) = |ĥi − hi|
2
2 are defined using ĥi. The forward weights

Wi are updated through gradient descent steps with respect to this local loss, assuming ĥi

remains constant. Finally, the training of feedback parameters Qi, fi+1, and gi is considered

as training a shallow auto-encoder pair. The feedback parameter Qi can be trained using a

gradient step based on a local reconstruction loss:
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Li
rec =

1

2
|gi(fi+1(ĥi))− ĥi|

2
2

The original variant of DTP includes a linear correction, called difference correction

[53], which subtracts the reconstruction error from the propagated targets: hi = gi(ĥi+1)−

gi(hi+1)− hi.

The developments and insights derived from methodologies such as TP, DTP, and related

approaches contribute to a more nuanced comprehension of neural computation. Through

a reevaluation of the learning paradigm and by finding inspiration in cognitive systems, a

direction has emerged that leads toward the enhancement of learning frameworks with more

refined principles. Nevertheless, while these methods address specific limitations of BP in

developing biologically plausible learning algorithms, none has comprehensively resolved all

aspects. As the effort to bridge the gap between artificial and biological intelligence persists,

it would seem wise to maintain an awareness of the development of both domains of research.
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Chapter 2

Reinforcement learning

2.1. Introduction

The field of reinforcement learning has a long history of effective methods in solving

control problems and even simple maze-like environments which remain fairly simplistic

[103, 93, 15]. The introduction of deep learning methods to the field of reinforcement

learning has lead to significant improvements, notably the first Deep Reinforcement Learning

algorithm to successfully reach superhuman performances on the set of Atari 2600 games

[65]. This was mainly attributed to the powerful function approximation and representation

learning properties of deep learning methods [5]. One could suggest that the ability

of deep neural networks in finding compact low-dimensional representations (features)

in high-dimensional data (e.g. images) has been the major contribution of deep learning to RL.

Learning agents are presented with states which contain information about the environment

and their position therein. Agents can take actions to transition to another state which is

accessible from the previous one, and receive a reward after transitioning. More formally, let

S represent the set of states, A the set of actions and R(s) the reward function returning

a scalar for each s ∈ R. Additionally, we have the transition dynamics T (st+1|st,at) which

maps to which state at time point t+1 the agent is sent from its current state after having

interacted with the environment. We will review the main ideas in the field of reinforcement

learning that will be used throughout this thesis.

2.2. Learning from returns

The modelling framework most used in reinforcement learning is the stochastic Markov

Decision Process (MDP), which makes the simplifying assumption that the current

input contains all the necessary information to select the next best action. The state

itself contains information pertaining to the environment and the agent, and can be



represented as images or vectors which represent the necessary information to navigate

the environment. A successful RL agent will associate which actions lead to the highest

reward with certain states, and ideally finds the optimal sequence of actions such that

the cumulative reward is maximized. We will refer the optimal sequence of actions

as the optimal policy which maximises the expected return. Through trial and error,

the agent’s goal is to discover the optimal policy. The learning process often involves

interacting with the environment and learning from one’s mistakes, but the usefulness

of the information gleaned depends on the exploration strategy employed by the agent

as well as its ability to use the information to its advantage. Exploration is akin to

searching for states in the environment that will reveal useful information when interac-

ted with and is a challenging facet to designing efficient artificial intelligence in traditional RL.

The reward signal is often assumed to be sufficient to learn goals. In this case, the agent’s

goal is to maximize the total amount of reward it receives called the return. Therefore the

agent aims to maximize the cumulative reward as opposed to the immediate reward. This

has been informally referred to as the reward hypothesis [103]:

«That all of what we mean by goals and purposes can be well thought of as
the maximization of the expected value of the cumulative sum of a received
scalar signal (called reward) »

The reward helps the agent identify which actions have the highest return from a given

state. In other words, the agent learns a value function which can be used to select actions

with higher returns. This function must be estimated continuously as experience helps to

cement which sequence of actions are optimal, and is one of the most used quantities in RL.

2.2.1. Value and Policy Functions

As previously stated, the return is the sum of discounted rewards defined as follows:

Gt = Rt+1 + γRt+2 + γ2Rt+3 + ... =
∞∑

k=0

γkRt+k+1

For purposes of this work, the sum will be finite as the number of steps permitted in each

attempt at solving the puzzles is limited. This gives us:

Gt =
T∑

k=t+1

γk−t−1Rk

The value function maps a state to a real number representing the expected future reward

from that state. If an agent were to encounter this state many times, then the average return

from that state would define its value. In other words it is an estimate of how good it is for
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the agent to be in that state. More formally we can define the state-value function for policy

π using the future rewards obtained from that state as follows:

vπ(s) = Eπ[Gt|St = s] = Eπ

[
T∑

k=0

γkRt+k+1|St = s

]

where Eπ is the expected value obtained by the agent given it follows the policy π at

time step t. The value function serves as a metric of how good a given state is, independent

of the subsequent action taken from that state. When we consider the state-action value

function qπ(s,a), then we can begin to measure the value of taking a certain action at any

state. This function is often referred to as the action-value function for policy π [103].

At each step in the environment, the model outputs a policy πt = πθ(·|ht) which considers

the past observations ht = (x0,...,xt) to form a probability distribution over actions, and an

estimate of that policy’s value vπ(ht) = E[Gt|ht] as a real numeric value can be formulated

from the value function (or directly, see policy iteration). Finally, the agent may or may not

have access to or learns a model of the the environment. We have previously defined this as

the transition dynamics T (st+1|st,at). The model is used to do planning by accessing the

next states from the current optimal policy, and is either explicitly define for model-based

agent or abstracted away in model-free agents.

Many algorithms exist to learn value or policy functions from rewards, such as dynamic

programming, Monte Carlo methods, temporal-difference learning. We call these tabular

solutions since they track a value or policy for each state and action combination. Alternati-

vely, there are approximate methods which learn state representations and optimal policies

simultaneously. We will review policy gradient solutions before introducing the actor-critic

method which is the core algorithm presented in this work.

2.2.2. Policy gradient methods

Policy gradient methods are a class of reinforcement learning algorithms that attempt

to directly optimize the policy function πθ by updating the parameters θ in the direction of

improving performance of the actor. The objective function for policy gradients is defined as:

J(θ) = Eτ [
T −1∑

t=0

rt+1]

where rt+1 is the reward at time t + 1 returned for using action at at state st. Since we

want to maximize this function using gradient ascent, we take the gradient and obtain the

following update to the weights of the policy function (a neural network) θ:
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θ = θ +
d

dθ
J(θ)

We derive the policy gradient update equation d
dθ

J(θ) by expanding the expectation:

J(θ) = Eτ [
T −1∑

t=0

rt+1|πθ] (2.2.1)

=
T −1∑

t=0

P (st,at|τ)rt+1 (2.2.2)

where τ is some trajectory and P (st,at|τ) is the probability of state and action st,at

occuring given the trajectory τ .

This is done by using gradient descent to maximize the expected return of the policy,

J(θ) = E[ht] ∼ πθ[vπ(ht)]. At each step, the gradient of the expected return is computed

using the policy gradient theorem, which states that the gradient of the expected return with

respect to the policy’s parameters is equal to the expected value of the gradient of the log of

the policy with respect to the same parameters:

∇θJ(θ) = E[ht] ∼ πθ[∇θ log πθ(at|ht) · v
π(ht)]

This expected gradient can be approximated using sample trajectories generated by the

policy, and the policy’s parameters can then be updated using the gradient and a suitable

optimization algorithm, such as stochastic gradient descent. By repeating this process over

multiple steps, the policy is gradually improved and converges to the optimal policy.

One advantage of policy gradient methods is that they can directly optimize the policy

without the need for an explicit value function, which can be difficult to learn in some

environments. Additionally, the use of gradient descent allows for the use of techniques

such as backpropagation, which can make it easier to optimize complex policies with many

parameters. However, policy gradient methods can also suffer from high variance in the

estimates of the gradient, which can make convergence slow and unstable. To address

this issue, many variations of the policy gradient algorithm have been proposed, including

actor-critic methods and trust region methods.

2.3. Offline RL

One of the primary advantages of offline RL methods is their superior sample efficiency

compared to online RL approaches. Online methods require active exploration in the

environment to collect data, which can be time-consuming and inefficient. Agents often
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need to perform numerous interactions before acquiring enough experience to learn effective

policies. In contrast, offline RL methods utilize pre-collected datasets, enabling agents to

learn from a large amount of offline data without the need for additional exploration. By

efficiently reusing data, offline RL methods can achieve higher sample efficiency, reducing the

number of interactions required to reach desirable performance levels.

2.3.1. Behavioral Cloning

Behavioral cloning is a technique used in machine learning, specifically in the field of

imitation learning, to train an agent to imitate an expert’s behavior simply by observing

its actions [105]. In behavioral cloning, the goal is to learn a policy that can replicate the

expert’s actions given observed states. The common approach to behavioral cloning involves

using target expert actions and minimizing a loss L that characterises a measure of difference

between the predicted actions and the expert actions:

L =
1

N

N∑

i=1

f(ai,âi)
2

where f computes some distance metric. To train a behavioral cloning model, a dataset

is collected by observing the expert’s behavior. The dataset consists of state-action pairs,

where each state is associated with the action taken by the expert. These state-action pairs

serve as the training examples for the behavioral cloning model. In behavioral cloning, the

expert’s actions are considered as the target actions that the model aims to imitate. These

target expert actions are used during training to guide the learning process. For each state in

the dataset, the expert’s corresponding action is provided as the target output for the model.

To train the behavioral cloning model, a common choice of loss function is the L2 loss (also

known as mean squared error). The L2 loss measures the average squared difference between

the predicted actions and the target expert actions. The loss function encourages the model

to produce actions that are as close as possible to the expert’s actions.

During training, the behavioral cloning model takes the observed states as input and

generates predicted actions. The loss is then computed between the predicted actions and

the target expert actions. The model’s parameters are adjusted through backpropagation

and gradient descent to minimize this loss. A main limitation of this method is when the

expert trajectories are suboptimal, passing the error on to the model that is learning from

these observations.
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Chapter 3

First article: Identifying Invariant and Sparse

Predictors in High-dimensional Data

Abstract:

In many practical applications (e.g., medical imaging), we are often concerned not only

with the accuracy but also with the interpretability of a predictive model trained on high-

dimensional data, such as its ability to identify a sparse subset of invariant (robust) predictors,

generalizing across a wide variety of datasets affected by spurious noise (e.g., key factors

related to a disease, across different patients and hospitals). Towards this goal, we explore

here a combination of the sparsity-inducing l1 and l2 regularization with the recently proposed

approach for robust predictive modeling, Invariant Learning Consistency. We investigate

the ability of the combined approach to identify robust sparse predictors and demonstrate

promising results on several datasets, including synthetic data, the MNIST benchmark, and

a functional MRI dataset. Our approach tends to improve the robustness of sparse mo-

dels in practically all cases, albeit with varying degrees of success and under certain conditions.

Main contributions:

The main contributions of Sean Spinney for this article are the following:

• ideation and conceptualization of the project

• processing and quality control of the fMRI data

• programming of the proposed approach

• running and logging of the experiments

• analysis and writing of the article

The work was split among the first three authors, except for the fMRI data preprocessing

and quality control. Co-authors (in order of appearance) are: Amin Mansouri, Sean Spinney,

Amin Memarian, Patricia Conrod, and Irina Rish. This article was submitted and accepted

to ICML 2021 workshop for Uncertainty & Robustness in Deep Learning.



3.1. Introduction

In recent years, there has been a surge of interest in the deep learning community towards

better understanding which aspects of deep network models allow them to generalize better to

test data drawn from distributions different from the one on which these models were trained

- the problem commonly referred to as out-of-distribution (OoD) generalization. A specific

focus is on methods that aim to disentangle the true causal predictors from the possibly

many spuriously correlated ones, often present in high-dimensional data [3, 67, 70, 1, 4].

In this work, we build upon the recently proposed Invariant Learning Consistency (ILC)

approach [77] that imposes higher levels of consistency (stability) on the parameters of a

neural network (or other predictive models), and is shown to improve out-of-distribution

generalization, sometimes outperforming the popular IRM approach [4] for invariant/robust

representation learning,

However, none of the previous approaches to robust predictive modeling seemed to focus

directly on the consistency, or invariance, of the learned network structure, which is the novel

contribution of this approach. Herein, we apply ILC to the problem of learning robust sparse

predictive models which are structurally consistent across a range of data distributions, in

terms of high overlap across the (sparse) network structure. More specifically, we combine

ILC with sparsity-inducing regularization methods based on l1-norm (e.g., Lasso [104] and

Elastic Net [117])).

As it is well-known, l1 regularization promotes learning sparse solutions, i.e., weight

vectors with a relatively small number of non-zero entries, which translates into selecting

a sparse subnetwork of an original (dense) neural network model. Consequently, a sparse

set of links at a given network layer connects to a subset of features that tend to be "most

relevant" (most predictive) about the nodes in the next layer. Note that a neural network

can be viewed as a deterministic Bayes net, and imposing sparsity via an l1 regularizer, we

can find "parents" of a given node in this graphical model; however, in general, we cannot

yet view this network as a causal graph, since l1 regularization will not necessarily return

the same sparse representation for each round of training. In other words, imposing sparsity

alone is unlikely to yield a true causal model; rather, we get a different set of sparse selectors

each time. This is the advantage of ILC: by forcing agreement between gradient updates, we

suspect it will result in consistent and causal sparse representations.

3.2. Methodology

3.2.1. Invariant Learning Consistency

Let {De}e∈E , where |E| = d and De = {(xe
i ,y

e
i )| i = 1, . . . , ne}, be a collection of datasets

sampled from different data distributions, or environments e ∈ E . The empirical loss (risk) of
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a model with parameters θ is defined for each environment e as follows:

Le(θ) :=
1

|De|

∑

(xe
i
,ye

i
)∈De

ℓ(f(xe
i ; θ),ye

i ); (3.2.1)

Using the new loss with respect to the environment definition, we can define the new

ILC-regularized loss function proposed in [77]:

LILC(θ) := Eθ∼p(θ)

[
1

|E|

∑

e∈E

Le(θ)

]
− λ · ILC(θ) (3.2.2)

Here the regularization factor ILC(θ) reflects the consistency score of a given gradient

across all environments. This means that if the neighborhood of the minimum is not consistent

across environments, it is probably not a consistent minimum, and it does not relate to an

invariant mechanism. Notice that λ adjusts the desire of predictive power (ERM [107]) and

invariance (ILC) if λ = 0 we get back to the classic gradient descent (gradients are averaged

and agreement among them will not be considered.) and λ > 0 means we care about finding

invariant mechanisms.
AND-Mask. On top of the new ILC-regularized loss, the paper introduces the AND-mask.

The regularization term needs not be explicitly added to the loss function. We can update the

model by evaluating if the gradient directions (sign) are consistent across all environments

and take the optimization step in those directions. If a component of the gradient has a

majority of the same sign above a certain threshold τ ∈ [0,1] the component is left as is, if

not, then the component is zeroed-out. Mathematically, the mask mτ for a given component

j is given by:

[mτ ]j = 1

[
τd ≤

∣∣∣∣∣
∑

e

sign([∇Le]j)

∣∣∣∣∣

]
(3.2.3)

where d = |E| is the number of environments in the batch. Finally we have the final definition

of the masked-ILC-regularized gradient:

∇θL
m-ILC(θ) = mτ ⊙∇θL(θ) (3.2.4)

Note that the notion of environments is very general and could be interpreted differently in

various settings. In [77] they treat every single sample as its own environment, and we follow

the same convention.

3.2.2. Evaluation

In order to assess the quality of the improvement in recovering consistent estimators, we

use the following metrics and motivate their relevance in evaluating the ILC algorithm: test

accuracy and an overlap score for the MNIST experiment, which measures the consistency of

learned sparse representations across environments. Therefore, a high overlap score means

a greater agreement between which features of the data are useful for prediction across
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environments. Together we can compare the predictive power (test accuracy) with robustness

(overlap score).

3.3. Experiments

3.3.1. Synthetic Dataset

Using a procedure inspired by the original paper [77], we simulate a binary classification

dataset with weak invariant predictors across samples (environments). Let X ∈ RN×D and

y ∈ {0,1}N be a Bernoulli random variable, where N is the number of samples and D the

number of predictors. We assume the data is generated according to the following:

ǫn ∼ N(0, σ2),∀n = 1,...,N

yn =





1 βRXn,ΓR
+ βSXn,ΓS

+ βIXn,ΓI
+ ǫn > 0

0 0

where we consider that β = {βR; βS; βI : βS ≫ βI} are the coefficients defining the relationship

between X and y. ΓR refers to completely random valued columns (features), ΓS refers to

columns that contain spurious features but are strong (have high values), and ΓI refers to

columns that are invariant, but are weak (have lower values). βR,βS,βI are the coefficients

determining the values for each of these column sets. That is, for every n we have that

βI,n 6= 0 reflecting the fact that the invariant features of Xn have non-zero coefficients across

environments by definition. The set R = {k ∈ D; k 6∈ {ΓS, ΓI}} represents the set of all the

random predictors in X (no association to y; i.e. βR is random noise).

Note that here ΓR := {1,2,3,4} and ΓI := {5}, and there is no added noise to X in (1).

The error is drawn from a normal distribution for simplicity (i.e. probit). An example of

such a dataset is given in the appendix.

3.3.2. MNIST

We divide the training set of MNIST into two environments and keep the test set for

evaluating the predictive power of learned sparse representations from training environments.

For this experiment, the environments are created by splitting the training set into two evenly

shuffled subsets with images and labels corresponding to the 10 digit classification problem.

Then we train a sparse multiclass logistic regression on the two environments on a range of

values for the tuple (l1,l2,τ), where l1,l2 denote the coefficient for l1,l2 regularization terms,

and τ denotes the agreement threshold among gradients (see section 3.2.1). According to the

AND-mask, this model is typically referred to as an Elastic Net regularized network with the

added ILC mechanism of computing gradients. Evaluation metrics were presented in 3.2.2.

Overlap score is calculated by normalizing the number of weights that are non-zero and have
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the same index (after rounding to 0.001) in the two sparse representations (obtained from

each split) by the number of non-zero weights.

Figure 3.1. ILC is applied after regulariza-
tion. Each color corresponds to a value of l1
coefficient and fixed l2, and shows the behavior
of sparse representation’s consistency (overlap
score) averaged over all digits.

Figure 3.2. ILC is applied after regulariza-
tion. Each color shows the trend of test accu-
racy for varying l1 values, with fixed l2, over
increasing τ .

3.3.3. fMRI

The dataset comprises 38,700 3D MRI brain images, each of dimension 53x63x52, taken

during a task where subjects must either go or stop following a stimulus that is viewed

on a screen directly in front of them. Each subject is scanned three times over five years.
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This experiment aims to train a model that can predict the event, which is a combination

of what the subject sees and the action taken while being invariant to the inherent noise

involved in this high dimensional data (53x63x52 = 173,628 variables). We propose to use

a fully connected single hidden layer network with both l1 and l2 regularization such that

the recovered sparse model represents the causal graph of brain activation for this 5-way

classification problem (Table 3.3). We compare this model with the same setup but with ILC

applied to enforce invariance across different sampled scans. Data from subjects and the first

two time points are shuffled together, and we test generalization by evaluating the model on

the third timepoint from the dataset.

3.4. Results

3.4.1. Synthetic

For the sake of brevity, we review the main results and mention interesting auxiliary

findings observed through experimentation. First, we note that the agreement threshold has

a significant impact on the test set performance of ILC, Figure 3.3. There is considerable

improvement in out-of-distribution accuracy when using ILC (agreement ∈ 0.2,0.4), and we

note the sharp rate of increase in test accuracy in the first epochs following the onset of ILC.

Setting the agreement threshold to 0.4, we run additional experiments (Appendix A.2) to

compare performance under different experimental setups (high-dimensionality and a large

number of environments, high-dimensionality, and a small number of environments). When

ILC outperforms traditional regularized Adam, the number of environments is greater than

or equal to the dimensionality of the feature space. For the details of hyperparameters refer

to appendix 3.1.

3.4.2. MNIST

Results for MNIST using sparse multiclass logistic regression are shown in Figures 3.1-3.2.

Table 3.2 in the appendix contains the hyperparameters that we have trained the environments

on. It should be noted that the lack of distributional shift in MNIST is suboptimal for using

invariant representations (see appendix fig. 3.6 for the measurement of distribution shift.).

Thus OoD performance in this setting is not very meaningful, and this experiment only

demonstrates the effect of ILC on robustness, not OoD generalization. With that in mind,

the findings are as follows:

In Figure 3.1,3.2 for large l1 coefficient and increasing agreement threshold, we see that

more consistent sparse representations have been achieved at the expense of accuracy, i.e.,

very sparse representations yet with good predictive power on the test set. This suggests that

a larger agreement threshold is beneficial in improving the robustness of the learned model
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Figure 3.3. Grey vertical line indicates when ILC is turned on.

to varying strengths of the l1 regularization. This is especially noticeable for large values

of l1 > 0.1. The correlation between a high overlap score (Figure 3.1) and a greater test

accuracy (Figure 3.2) for larger agreement threshold ( τ > 0.6) suggests that we have achieved
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Figure 3.4. ILC was turned on halfway through training. Note that an agreement threshold
of 0 means only Adam optimization is used.

sparse and invariant predictors in the case of MNIST that has a very small distribution shift

between both environments. Thus, we suspect there are improvements to be made in cases

where meaningful distribution shifts occur e.g. Coloured MNIST.

Late start of ILC: We observed that applying this kind of gradient alignment (AND-

masking) should not be from the very first epochs. The reason is that masking all gradients

in the initial stages where no meaningful features have been found would result in no learning,

so we start masking gradients close to the middle of the training.

3.4.3. fMRI

The results for the fMRI experiment can be found in Figure 3.4. There is no obvious set

of hyperparameters that achieves good classification scores across the five classes, and we
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note that the volatile nature of the accuracy is due to the imbalanced distribution of classes

across batches, which was not controlled for in this case (see Table 3.3). Considering that we

find poor results even with just ElasticNet without ILC (thresh=0), we should not expect

ILC to perform better since we cannot enforce invariance without any useful learned features.

The complexity of brain fMRI data is very high (the number of voxels is on the order of

100000), and we have approached this challenging problem with only a single fully connected

layer network (with the motivation of finding a deterministic causal Bayes net). These results

do not rule out the possibility for ILC in improving the recovered sparse predictors for brain

activity, but exploring more complex architectures may yield better results and is the focus

of future work.

3.5. Conclusion

In this work, we extended the original ILC experiments to a more extensive set of

synthetic experiments, outlining failure and success modes. Beyond this, we applied the

method to the MNIST dataset and a much more difficult task of predicting events using

voxel activations for an fMRI task. More specifically, we showed that for the case of MNIST,

ILC had a meaningful impact in finding sparse predictors that also contribute to better OoD

performance. The synthetic experiments showed that when the number of environments is

large compared to a sparse and noisy feature space, ILC outperforms ElasticNet. Finally,

we found that ILC did not perform significantly better for fMRI by a noticeable margin;

however, several considerations may improve these results. For example, given the insights

gleaned from the synthetic dataset, using more environments may benefit ILC especially

given the very high dimensionality involved in fMRI. Additionally, there may be more

optimal configurations of environments for ILC, such as considering the hierarchical nature

of the data (i.e. subjects within years). As such, we conclude that ILC should not be used

blindly with the expectation of improving OoD performance and sparse variable selection for

all datasets, but these experiments suggest an important relationship between the number

of environments and the dimensionality of the feature space, as well as the strength of l1

regularization.

3.6. Appendix

3.7. Synthetic task

3.7.1. Example of synthetic dataset

Below is an example of X where N = 4, D = 5:
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X4,5 =




3 0 0 0 0.3

0 0 0 0 0

0 0 3 0 0.3

0 0 0 0 0




; y4 =




1

0

1

0




(3.7.1)

3.7.2. Hyperparameters for training sparse logistic regression on

the synthetic dataset

Elastic Net Elastic Net + ILC
log L1 Regularization 1e-4 1e-4
log L2 Regularization 1e-4 1e-4
Agreement Threshold 0 [0.2,0.4,0.7,0.9]

Table 3.1. Hyperparameters used for training. Optimizer in all cases is Adam, and para-
meters for optimizers are default: lr=0.001, b1=0.9, b2=0.999. For each experiment, the
number of true causal factors was set to 5.

3.7.3. Additional results:

Effect of late starting ILC 3.5.

3.8. MNIST task

3.8.1. Hyperparameters for training sparse logistic regression on

the two environments on MNIST

Elastic Net Elastic Net + ILC
log L1 Regularization [-1,-2,-3] [-1,-2,-3]
log L2 Regularization [-3,-4,-5] [-3,-4,-5]
Agreement Threshold 0 [0.2,0.4,0.5,0.7,0.9]

Table 3.2. Hyperparameters used for training, overall there are 54 settings. Optimizer in
all cases is Adam, and parameters for optimizers are default: lr=0.001, b1=0.9, b2=0.999,
see below for samples of the sparse representations learned.

3.8.2. Sparse representations achieved for each digit in several sets

of hyperparameters

Each row corresponds to an environment or MNIST train split.
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Figure 3.5. Grey vertical line indicates when ILC is turned on. ILC performs best when
the number of predictors is close to or greater than the number of environments.

55



56



Figure 3.6 shows that the entropy of the predicted class on the test set is higher than the

training set in each environment. However, there is no significant distribution shift across

environments.

3.9. fMRI task

The task analyzed in this work is the stop-signal task, and we refer the reader to previous

work, which details the same methodology used for the dataset (Li et al., 2006). The scans

were gathered from three different time points for each subject. There are five distinct events

used for the classification task: go-success, go-toolate, go-wrong, stop-failure, and stop-success.

The data were normalized using z-normalization. The data of subjects from the first two time

points were concatenated and shuffled for the training set. The data of the last time point was

used for the test set. Each data sample was considered an environment in the experiments

presented in this work. Other curations of environments could yield more meaningful results,

e.g., considering data from each time point as an environment.

3.9.1. Distribution of classes
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Figure 3.6. Entropy of of the predicted class for each sample in the test and train batches
for two environments after 100 epochs with ILC turned on after epoch 50. The probabilities
used for computation were averaged over all batches of size 10000.
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Training Set Test Set
go-success 4619 2559
go-toolate 293 68
go-wrong 363 73

stop-failure 851 447
stop-success 864 453

Table 3.3. The number of samples used in training and test set belonging to each class. As
we can see the classes are imbalanced.
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Chapter 4

Second article: Towards Scaling Difference

Target Propagation by Learning Backprop

Targets

Abstract:

The development of biologically-plausible learning algorithms is important for un-

derstanding learning in the brain, but most of them fail to scale-up to real-world tasks,

limiting their potential as explanations for learning by real brains. As such, it is important

to explore learning algorithms that come with strong theoretical guarantees and can

match the performance of backpropagation (BP) on complex tasks. One such algorithm

is Difference Target Propagation (DTP), a biologically-plausible learning algorithm

whose close relation with Gauss-Newton (GN) optimization has been recently established.

However, the conditions under which this connection rigorously holds preclude layer-wise

training of the feedback pathway synaptic weights (which is more biologically plausible).

Moreover, good alignment between DTP weight updates and loss gradients is only loosely

guaranteed and under very specific conditions for the architecture being trained. In this

paper, we propose a novel feedback weight training scheme that ensures both that DTP

approximates BP and that layer-wise feedback weight training can be restored without

sacrificing any theoretical guarantees. This theory is corroborated by experimental results

and we report the best performance ever achieved by DTP on CIFAR-10 and ImageNet 32×32.

Main contributions: The contributions of Sean Spinney to this project were:

• programming of the baseline alternative models used as a benchmark for the proposed

algorithm (s-DDTP, p-DDTP, and [63])

• running the experiments for these models and logging the results, hyperparameters,

and architecture details for MNIST, F-MNIST, and CIFAR10 experiments

• creating the figures for these experiments, with the guidance of Maxence Ernoult



Co-authors (in order of appearance) are: Maxence Ernoult, Fabrice Normandin, Abhinav

Moudgil, Sean Spinney, Eugene Belilovsky, Irina Rish, Blake Richards, and Yoshua Bengio.

4.1. Introduction
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Figure 4.1. Computational graph of the feedforward pathway F (on the left, shaded) with
input x and associated DTP feedback pathway with ground-truth label y (right). The targets
tn (purple nodes) are forward-propagated through the Gn+1 operator whose Jacobian has
been made to approximately match that of the transpose of F n. This way, the resulting local
activation differences δn ∝ tn − sn encode backprop error signals. We thus learn to estimate
layer-wise backprop targets.

Although artificial neural networks were originally inspired by the brain, the strict

implementation of the backpropagation algorithm (BP) violates biological constraints, and no

known biologically plausible candidate algorithm can match its performance on challenging

tasks. Conversely, bridging this gap could bring a better understanding of biological learning

[88]. Recent efforts towards this goal suggest that it could be achieved by developing learning

algorithms that relax the requirements of BP while preserving strong theoretical guarantees.

Target Propagation (TP) [50] and its Difference Target Propagation (DTP) variants

[12, 53, 10, 75, 11, 63] constitute a family of such algorithms which, from the biological

prospective, sidesteps two issues of BP. Most importantly, TP computes error signals in

feedforward architectures by propagating target values for the neurons rather than error

gradients, thereby aligning better with the current understanding of what feedback pathways

in the brain communicate [57]. A major consequence of handling neural activation targets

across all layers is that feedforward weights can be updated in a fully local fashion to

push neural activations closer to their target values. Second, TP routes those targets

through a distinct set of feedback weights rather than transporting the weights from the

feedforward pathway [59]. Rather than being fixed throughout learning, though, these

feedback weights learn to invert the feedforward pathway. But what would it take to learn to
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backprop the feedforward pathway? This is the central question addressed by the present work.

Nevertheless, TP algorithms have yet to scale to complex tasks, and as such, they do

not yet stand as a compelling biological learning model. Recent work highlighting the

connection between TP and Gauss-Newton (GN) optimization [11, 63] has incentivized to

revisit the scalability of TP algorithms [10]. More precisely, meulemans2020theoretical

demonstrate that while TP neural activations updates emulates GN optimization in invertible

neural networks, this connection can be maintained with DTP on non-invertible networks

if the feedback weights training scheme is changed accordingly. Indeed, to emulate GN

optimization, as the pseudo-inverse of the whole feedforward pathway does not factorize

as the product of each feedforward module’s pseudo-inverse, each feedback module should

capture the pseudo-inverse of the whole downstream feedforward pathway: when computing

the resulting Difference Reconstruction Loss (DRL), noisy perturbations subsequently need

to be propagated all the way up to the output layer. However, their approach still has

limitations from a biological learning perspective. First, enforcing GN optimization in DTP

like this precludes layer-wise feedback weights training and instead calls for the use of direct

connections in the feedback pathway: this topological restriction seriously compromises

biological plausibility. Second, the resulting optimization algorithm used to update the

feedforward weights is a hybrid between between gradient descent and GN optimization.

Therefore, only loose alignment between backprop and DTP updates can be accounted for

by their theory and with restrictive assumptions on the architecture being trained. Finally,

although that theory offers a principled way to design the architectures trained by these

variants of DTP, the CIFAR-10 training experiments they report are limited to relatively

shallow architectures with poor performance.

In this paper, we propose to revisit the GN interpretation of DTP by having the feedback

pathway synaptic weights compute layer-wise BP targets rather than GN targets. To this

end, we propose a novel feedback weights training scheme which, by construction, pushes the

Jacobian of the feedback operator towards the transpose of its feedforward counterpart, in a

layer-wise fashion and without having to use direct feedback connections in the feedback

pathway. Therefore, assuming this condition holds for all the layers and keeping everything

else unchanged in the DTP algorithm, the DTP feedforward weight updates closely approach

those of BP. This leads us to a scalable biologically plausible approximation of BP.

More specifically, the contributions of this work are as follows:

• We propose a novel Local Difference Reconstruction Loss (L-DRL) along with an

algorithm to train the feedback weights which ensures that the Jacobian of the
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feedback pathway matches the transpose of the Jacobian of the associated feedforward

pathway (Section 4.4.1, Theorem 4.4.2, Alg. 3). We call this condition the Jacobian

Matching Condition (JMC) (Definition 4.4.1).

• Assuming the JMC holds for a given architecture and using the standard DTP

equations to propagate targets, we demonstrate that DTP feedforward weight updates

approximate BP gradients (Section 4.4.2, Theorem 4.4.3). We say that such an

architecture satisfies the Gradient Matching Property (GMP).

• We numerically demonstrate the GMP and JMC, showing that L-DRL is more efficient

than DRL to align feedforward and feedback weights and that the GMP is subsequently

significantly better satisfied (Section 4.5.1-4.5.2).

• Finally, we validate this novel implementation of DTP on training experiments on

MNIST, Fashion MNIST, CIFAR-10 and ImageNet 32×32 [74] (Section 4.5.3). In

particular, we achieve a 89.38 % accuracy on CIFAR-10 and 60.6 % top-5 accuracy on

ImageNet 32×32, which are the best performances ever reported in the DTP literature

on these datasets and nearly match the performance of BP on the same architectures.

4.2. Related Work

DTP borrows several key concepts from the biologically plausible deep learning literature.

First, resorting to a distinct set of weights to route error signals in the feedback pathway

as done in DTP solves a problem known as weight transport [59]. While having randomly

initialized fixed feedback weights is sufficient to carry useful error signals on MNIST [59,

71], subsequent studies demonstrated it was insufficient to scale to harder tasks [66, 10, 47,

20]. The main approach undertaken to overcome this issue is to add extra mechanisms to

promote alignment between feedforward and feedback weights [113, 46, 29, 2, 44]. More

specifically, many of these mechanisms are based on the idea of perturbing the feedforward

activations with noise, and communicating the resulting noisy activations in the feedback

pathway to coordinate feedback and feedforward weight updates consistently [2, 46, 44],

which constitutes a second important feature of DTP. However, a limitation of many of

these algorithms is that they require gradient computation of the operations carried out in

the feedforward pathway. One solution to mitigate this issue, which is the third important

ingredient of DTP, is to propagate neural activation differences as implicit error signals rather

than error gradients [57]. These error signals may typically arise from a mismatch between

feedforward (bottom-up) predictions and (top-down) actual feedback [112, 92, 19], as it is

the case for DTP, or from a perturbation from equilibrium [95]. Recent works have explored

the application of DTP to recurrent neural networks [61, 89], albeit with the implausible

requirement of processing inputs backward in time during target computation, a challenge

that we do not aim to address in the present paper. As emphasized in the introduction, the
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closest work to ours is that of [63], and we show the theoretical and experimental advantages

of the proposed approach.

4.3. Background

We first introduce the key notations and assumptions used throughout this paper.

Definition 4.3.1. We define a feedforward architecture as:

F(x) = F N−1 ◦ F N−1 ◦ · · · ◦ F 0(x), (4.3.1)

where each feedforward module F n(·; θn) is parametrized by its feedforward weights θn.

Each F n is paired with a feedback module Gn(·; ωn) with distinct weights ωn.

Definition 4.3.2. We recursively define the layers s1, . . . , sN of an architecture F defined

by Definition 4.3.1 as:





s0 = x

sn+1 = F n(sn; θn) ∀n = 0 · · ·N − 1
(4.3.2)

Gn can either take as input the feedforward path activations sn+1 = F n(sn) (with Gn

then forming the decoder part of a kind of auto-encoder with F n as encoder) or the backward

path targets tn+1 produced by Gn+1 from tn+2 and representing targets for sn+1.

Learning setting. We study the supervised context where, given a target y, the goal is to find

the forward weights θn which minimize a predictive loss Lpred(sN , y).

Notations. We denote the Frobenius dot product between two matrices A and B as 〈A, B〉F ,

Tr
(
A ·B⊤

)
. Also, we denote ∂xF (x⋆) = ∂F

∂x
(x⋆) the Jacobian of F with respect to x evaluated

at x⋆. For notational simplicity, we may omit to write x⋆, in which case the Jacobians are

implicitly evaluated on the feedforward activations.

4.3.1. Difference Target Propagation (DTP)

Instead of transporting the transpose Jacobian of the feedforward operators ∂snF n⊤

to

the feedback pathway, TP and variants use a separate set of parameters through the feedback

operator Gn to carry targets across layers. The Gn operators are subsequently trained,

layer-wise, to approximately invert their associated feedforward counterpart: Gn ≈ (F n)−1.

TP learning thus entangles feedforward and feedback weights training.

Forward weights training. Target values for the neurons should be such that they decrease

the predictive loss Lpred. For most TP algorithms, the first target is computed as:

tN
β = sN − β

∂Lpred

∂sN
, (4.3.3)
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where β is a small nudging parameter. In TP, the subsequent upstream targets are

propagated the feedback operators as tn
β = Gn(tn+1

β ; ωn). However in non-invertible feedforward

networks, this results in a significant reconstruction error sn−Gn(sn; ωn), which was shown to

compromise learning. Difference Target Propagation [53] aims to solve this issue by removing

this reconstruction term from the target computation:

tn
β = Gn(tn+1

β ; ωn) + sn −Gn(sn+1; ωn). (4.3.4)

For later convenience, we denote

G̃(tn+1, sn+1; ωn) , Gn(tn+1
β ; ωn) + sn −Gn(sn+1; ωn) (4.3.5)

the feedback operation used to propagate the targets in Eq. (4.3.4). Finally, the parameters

θn are updated by the local loss Ln
θ , defined as:

Ln
θ =

1

2β
‖tn

β − sn‖2, (4.3.6)

where tn
β is treated as a constant and the gradients blocked at sn−1. For example, if F n

was linear, we would have the weight update ∆θn ∝ sn−1 · (tn
β − sn)⊤.

Feedback weights training. Both TP and DTP employ the same mechanism to train the Gn

operators. First, the feedforward activations sn get a noisy perturbation ǫ. The resulting

noisy activations sn
ǫ perturb the next layer sn+1

ǫ through F n, which in return yields a noisy

reconstruction rn
ǫ through Gn. The feedback weights are then updated to minimize the local

loss Ln
ω defined as:

L̂n
ω =

1

2
‖rn

ǫ − sn
ǫ ‖

2, (4.3.7)

where sn is treated as a constant and the gradient are blocked at sn+1. Assuming again a linear

Gn, the resulting feedback weight update also reads in a local fashion: ∆ωn ∝ sn+1 ·(rn
ǫ −sn

ǫ )⊤.

Algorithm 1 Standard DTP feedback weight training
[53]

1: ǫ ∼ N (0, σ2), sn
ǫ = sn + ǫ

2: sn+1
ǫ = F n(sn

ǫ ; θn)
3: rn

ǫ = Gn(sn+1
ǫ ; ωn)

4: Update ωn with L̂n
ω = 1

2
‖rn

ǫ − sn
ǫ ‖

2.

4.3.2. Connection between DTP and Gauss-Newton Optimization

Using Eq. (4.3.3)-(4.3.4) and sending β → 0, note that the DTP activation updates can

be conveniently defined as:
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δn
DTP , lim

β→0

tn
β − sn

β
= −

[
N−1∏

k=n

∂sk+1Gk

]
·

∂Lpred

∂sN
(4.3.8)

It was suggested that under some conditions, δn
DTP encoded Gauss-Newton updates [24] of

the layer activations with respect to the output loss function [11, 63]. In invertible networks,

i.e. assuming (F n)−1 exists, the Gauss-Newton update of layer sn with respect to Lpred is:

δn
GN = −

[
∂snF

n
]−1
·

∂Lpred

∂sN
, (4.3.9)

where F
n

= F N ◦ · · · ◦ F n denotes the forward mapping from sn to sN . Furthermore,

assuming Gn = F n−1−1

for all n = 1 · · ·N − 1, from Eq. (4.3.8), Eq. (4.3.9) and the inverse

function theorem, it can be seen that δn
GN = δn

DTP.

In non-invertible networks, meulemans2020theoretical show that with a block-diagonal

approximation of the Gauss-Newton curvature matrix, the Gauss-Newton update of sn with

respect to Lpred reads:

δn
GN = −

[
∂snF

n
]†
·

∂Lpred

∂sN
, (4.3.10)

where A† = limλ→0 A⊤ ·
(
A · A⊤ − λ

)−1
denotes the Moore-Penrose pseudo-inverse.

However, there are are two reasons why in this case we may not have δn
GN = δn

DTP. First,

using Eq. (4.3.7) as a reconstruction loss, it may not hold in general that ∂sn+1Gn = (∂snF n)†.

Second, even assuming this condition holds,
[
∂snF

n
]†

generally does not factorize as
∏N

k=n

[
∂skF k

]†
. A direct consequence of this is that DTP standard layer-wise feedback

weights training leads to mostly inefficient feedforward weight updates that fail to move the

output layer towards its target.

[63] show that by adapting DTP standard feedback training scheme, δn
GN = δn

DTP can be

recovered for non-invertible networks. Instead of propagating perturbated activations sn
ǫ back

and forth through F n and Gn into the reconstructed activation rn
ǫ to train ωn, they prescribe

sending sn
ǫ up to ŷ through F

n
, back into rn

ǫ through G̃n ◦ · · · ◦ G̃N where G̃n (Eq. (4.3.5))

stands for the operator used for the target computation in Eq. (4.3.4). Finally, an extra noisy

perturbation in the output layer sN + η needs to be propagated back into rn
η . The resulting

Difference Reconstruction Loss (DRL) to be optimized is defined as:

L̂n
ω =

1

2
‖rn

ǫ − sn
ǫ ‖

2 + λ‖rn
η − sn‖2. (4.3.11)

In practice though, they replace the second term by weight decay. Taking expectation of

Eq. (4.3.11) and sending the noise amplitude to 0, it can be shown that minimizing L̂n
ω yields

the desired property:
∏N−1

k=n ∂sk+1Gk =
(
∂snF

n
)†

.
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Algorithm 2 Difference Reconstruction Loss (DRL) feedback weight training [63]

1: ǫ ∼ N (0, σ2), sn
ǫ = sn + ǫ

2: for k = n · · ·N − 1 do
3: sk+1

ǫ = F k(sk
ǫ ; θk)

4: end for
5: rN

ǫ = sN
ǫ

6: for k = N − 1 · · ·n do
7: rk

ǫ = Gk(rN
ǫ , rk+1

ǫ ; ωk) + sk −Gk(sN , sk+1; ωk)
8: end for
9: Update ωn with L̂n

ω = 1
2
‖rn

ǫ − sn
ǫ ‖

2 + λωn.

4.4. Learning Backprop Targets rather than Gauss-

Newton Targets

In the spirit of meulemans2020theoretical, we propose to adapt the feedback weight training

and the reconstruction loss, but we make it so that Gn learns the transpose Jacobian of its

associated feedforward module F n rather than its pseudo-inverse. This way, by construction,

the DTP weight updates are made to match BP weight updates rather than a hybrid between

BP and Gauss-Newton updates. We can also avoid the requirement of direct connections

and restore layer-wise feedback weights training while preserving theoretical guarantees with

respect to BP.

4.4.1. Feedback weights training

Definition 4.4.1. For a given architecture F defined by Definition 4.3.1, we say that a

feedforward module F n and associated feedback module Gn satisfy the Jacobian-Matching

Condition (JMC) if:

(∂snF n(sn))⊤ = ∂sn+1Gn(sn+1) (4.4.1)

We say that an architecture F satisfies the JMC if for n = 1 · · ·N , (F n, Gn) satisfy the

JMC.

To illustrate the proposed algorithm to train the feedback weights, let us consider

the feedforward module F n and associated feedback module Gn. Let ǫ ∼ N (0, σ2) be a

perturbation to input feature sn so that the resulting noisy activations sn
ǫ triggers a noisy

perturbation in the next layer sn+1
ǫ through F n. Then, we assume sn+1

ǫ yields in turn a

noisy reconstruction rn
ǫ through G̃n from Eq. (4.3.5) (rather than Gn). Furthermore, we

let η ∼ N (0, σ2) be a second source of noise in layer sn+1. The resulting noisy activations

sn+1
η create the noisy reconstructions rn

η again through G̃n. We then prescribe updating the

feedback weights with the Local Difference Reconstruction Loss (L-DRL) which we define as:
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L̂n
ω = −ǫ⊤ · (rn

ǫ − sn) +
1

2
‖rn

η − sn‖2. (4.4.2)

Algorithm 3 Local Difference Reconstruction Loss
(L-DRL)

1: for i = 1 to K do
2: sn+1 = F n(sn; θn)
3: ǫ ∼ N (0, σ2), sn

ǫ = sn + ǫ

4: sn+1
ǫ = F n(sn

ǫ ; θn)
5: rn

ǫ = Gn(sn+1
ǫ ; ωn)−Gn(sn+1; ωn) + sn

6: η ∼ N (0, σ2), rn+1
η = sn+1 + η

7: rn
η = Gn(rn+1

η ; ωn)−Gn(sn+1; ωn) + sn

8: Update ωn to descend layer-wise loss Ln
ω:

9: L̂n
ω = −ǫ⊤ · (rn

ǫ − sn) + 1
2
‖rn

η − sn‖2

10: end for

//

Contrary to existing DTP approaches, the above procedure is repeated K times per

training batch, so that feedback weights can quickly and locally (per-layer) adapt on the fly to

the feedforward activations and recent feedforward weight updates. This avoids interleaving

phases of pure feedback weight training with frozen feedforward weights and instead makes it

possible to train feedback and feedforward weights together from the beginning.

We now state Theorem 4.4.2 which guarantees that minimizing Ln
ω as defined in Eq. (4.4.2)

yields the JMC for layer n.

Theorem 4.4.2. Let:

L̂n
ω = −

1

σ2
ǫ⊤ · (rn

ǫ − sn) +
1

2σ2

∥∥∥rn
η − sn

∥∥∥
2

, (4.4.3)

Ln
ω =

1

2

∥∥∥∂snF n⊤

− ∂sn+1Gn+1
∥∥∥

2

F
. (4.4.4)

Then:

lim
σ→0

Eǫ,η

[
L̂n

ω

]
= −

〈
∂snF n⊤

, ∂sn+1Gn
〉

F

+
1

2
‖∂sn+1Gn‖2

F (4.4.5)

∂

∂ω
lim
σ→0

Eǫ,η

[
L̂n

ω

]
=

∂Ln
ω

∂ω
, (4.4.6)

This means that training the feedback weights with respect to the local layer loss of

Eq. (4.4.2) makes the feedback path compute the Jacobian of the feedforward path in the

limit of small noise and in expectation over the noisy samples.
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4.4.2. Feedforward weight training

Although this new implementation of DTP uses the exact same equations as standard

DTP to propagate the targets (Eq. (4.3.3)-Eq. (4.3.4)) and update the forward weights

(Eq. (4.3.6)), they acquire a very different meaning with the proposed novel feedback weights

training scheme. If we assume that an architecture F satisfies the JMC upon applying Alg. (3)

with fixed feedforward weights, then combining Eq. (4.3.8) and Eq. (4.4.1) yields:

δn
DTP = −

[
N−1∏

k=n

∂skF k⊤

]
·

∂Lpred

∂sN
= δn

BP, (4.4.7)

where δn
BP denotes the activation updates computed by BP. Subsequently, given that the

feedforward loss Ln
θ defined in Eq. (4.3.6) is updated by gradient descent, the whole DTP

gradient computing scheme exactly implements BP rather than a hybrid between gradient

descent and Gauss-Newton optimization. We now formally state the result.

Theorem 4.4.3 (Gradient Matching Property). Let a feedforward architecture F defined per

Definition 4.3.1 which satisfies the JMC. Then the following holds:

∀n ∈ [1, N ],
∂Lpred

∂θn
= lim

β→0

1

2β

∂

∂θn
‖tn

β − sn‖2, (4.4.8)

where the targets (tn
β)n≥1 obey the following recursive equations, ∀n = N − 1 . . . 1:





tN
β = sN − β

∂Lpred

∂s

tn
β = sn + Gn(tn+1

β ; ωn)−Gn(sn+1; ωn)
(4.4.9)

4.5. Experiments

In this section, we present several experimental results supporting the above theory. We

first numerically demonstrate the claims stated by Theorem 4.4.2 and Theorem 4.4.3, thereby

showing the efficiency of the proposed approach to align feedforward and feedback weights

(JMC) and subsequently compute DTP feedforward weight updates well aligned with BP

gradients (GMP). Next, we present training simulation results on MNIST, F-MNIST and

CIFAR-10, where the proposed approach significantly outperforms meulemans2020theoretical’s

DTP. Finally, we report the best results ever obtained on ImageNet 32×32 by a DTP algorithm.

4.5.1. Demonstrating the JMC

Experimental set-up. The goal of the following experiment is to compare meule-

mans2020theoretical’s DRL algorithm with the L-DRL approach in terms of their ability to

align the (transposed) feedforward weights and their associated feedback weights for the last

fully connected layer, and thereby realize the JMC in the output layer. We perform this test
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with randomly initialized and fixed feedforward weights and on a single randomly selected in-

put batch x (for a given seed). The choice of focusing only on the output layer is justified below.

Architecture. We consider a random batch of CIFAR-10 data along with a LeNet [51]

architecture consisting of two convolutional layers and two fully connected (FC) layers.

For both algorithms, we use the same feedforward pathway for the model. However since

regular DRL prescribes by construction direct connections in the feedback pathway, the form

of the Gn functions used depends on the feedback algorithm used. For DRL, we use the

DDTP-linear architecture as per meulemans2020theoretical, where the output layer are

directly connected to each upstream layer via linear connections. Therefore, the parameters

of the resulting Gn functions have dimension dim(ωn) = sn × sN for n = N − 1, · · · , 1.

However, since the associated feedforward parameters θn have dimension dim(θn) = sn+1×sn,

we can only readily compare θN⊤

and ωN in the last FC layer. For L-DRL, we use layer-wise

Gn functions such that dim(ωn) = sn × sn+1 for n = N − 1, · · · , 1. Full architecture details

are included in the Appendix.

Results. We illustrate in Fig. 4.2 the results obtained. We show the angle (in degrees) and

the relative distance between the last layer feedforward (θN⊤

) and feedback weights (ωN)

throughout pure feedback training on a single input batch. Therefore, each feedback training

iteration here corresponds to a feedback weight update on the same input batch (for a given

seed). However, we do use different input batches across different seeds. For each algorithm,

the amount of noise and learning rates have been carefully tuned to achieve the minimal

angles and distances after 5000 iterations, which we empirically found to be large enough to

reach convergence for both algorithms. We observe that L-DRL achieves an angle of ≈ 3◦

and a relative distance of ≈ 0, while DRL can only reduce these quantities to 18.7◦ and ≈ 1.8

respectively. These results confirm that the L-DRL is more suited than DRL to achieve the

JMC in the output layer.

Figure 4.2. Angle in degrees (∠(θN , ωN⊤

)) and relative distance (d(θN , ωN⊤

)) between θN

and ωN⊤

throughout feedback weight learning with L-DRL (presented here) and DRL [63]
with fixed feedforward weights.
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4.5.2. Demonstrating the GMP

Experimental set-up. In this experiment, we want to demonstrate the ability of the proposed

DTP to compute feedforward weight updates closely matching those prescribed by BP

(therefore achieving the GMP), assuming that the JMC is initially satisfied, as hypothesized

by Theorem 4.4.3. Again here, we assume a single randomly selected input batch x (also

with different input across different seeds). In contrast with the previous experiment

though, we carry out this analysis across all the layers. Indeed, regardless of the form of

the Gn functions (whether we use direct connections or not), the DTP feedforward weight

updates can always be compared against those of BP. Given randomly sampled feedforward

parameters θn, we study five different feedback weight initialization schemes and associated

targets computation: (a) ωn are random and targets are computed through the DDTP-linear

feedback pathway (DRLrandom); (b) same as (a) with targets computed through the layer-wise

feedback pathway (L-DRLrandom); (c) ωn are trained with DRL (DRL); (d) ωn are trained

with L-DRL (L-DRL); (e) Finally, ωn = θn⊤

with targets propagated through the layer-wise

feedback pathway (L-DRLsym). For each of these situations, the feedforward DTP weight

updates are thereafter obtained with Eq. (4.3.6) on the one hand. On the other hand, we

compute BP gradients via standard BP through the feedforward pathway.

Architecture. The architecture used for this experiment is the same LeNet architecture

than the one used for the previous experiment, with two convolutional layers and two fully

connected layers.

Results. We show on Fig. 4.3 the results obtained. The blue, red, green and purple bars corres-

pond to the angle between DTP feedforward weight updates and those of BP (∠(∆θn
DTP,∆θn

BP))

for the first Conv, second Conv, first FC and second FC layers respectively: the lower

∠(∆θn
DTP,∆θn

BP), the more the GMP is satisfied. We show these quantities for each of the five

feedback weight initialization mentioned above. We observe that upon training the feedback

weights with L-DRL (compared to a random configuration), the GMP is significantly better

satisfied (∠(∆θn
DTP,∆θn

BP) going from ≈ 90◦ to / 35◦) than when trained with DRL (/ 79◦)),

and almost as well as in the ideal situation with symmetrically initialized weights. Overall,

these results confirm the prediction of Theorem 4.4.3.

4.5.3. DTP learning dynamics

Experimental set-up. We present here the training experiments obtained on MNIST,

F-MNIST and CIFAR-10 with the implementation of DTP (refered to as “DTP” or “Ours”

below) and that of meulemans2020theoretical which we will refer to as “DDTP”. While

the previous DRL/L-DRL terminology concerns feedback weights training specifically, the
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Figure 4.3. Angle between the forward weight updates obtained through L-DRL (proposed
here) or DRL [63] and those obtained through BP, for each layer, under various initial
conditions. Each color corresponds to a specific layer, ordered from input to output: Blue
(1st Convolution), Red (2nd Convolution), Green (3rd Convolution), Light Purple (4th
Convolution), Orange (5th Convolution), and Turquoise (Fully Connected Output).

term “DDTP” is used here to refer to the resulting feedforward weights training algorithm

when GN targets are being computed, rather than the architecture itself. Also, we want

to emphasize that two features of DDTP fundamentally differs from the proposed DTP.

First, DTP is made to emulate BP while DDTP is a hybrid between GN optimization and

BP as highlighted previously. Second, while DDTP employs feedback weights pre-training

and subsequent interleaved epochs of pure feedback weights training, the presented DTP

method trains together at all times feedforward weights and feedback weights and allowing

for multiple feedback weight updates per mini-batch. To disentangle these two aspects and

ensure a fair comparison between the proposed DTP and DDTP, we propose two different

implementations of DDTP.

Simple DDTP (“s-DDTP”) is the standard DDTP implementation of meule-

mans2020theoretical that yields their best training results. For s-DDTP, training starts

with Nω,i epochs of pure feedback weights training, then at each subsequent epoch feedback

weights and feedforward weights are both updated once per batch, and each of these epoch is

followed by Nω,e epoch of pure feedback training. Therefore, denoting Nθ the number of

epochs where the feedforward weights are trained, there are Nω = Nω,i + Nθ × (1 + Nω,e)

epochs where the feedback weights are trained, therefore O(Nω,i + Nθ × (1 + Nω,e)) feedback

weight updates.

We define Parallel DDTP (“p-DDTP”) as a variant of DDTP where there is no initial

feedback pre-training (Nω,i = 0), nor interleaved epochs of pure feedback training (Nω,e = 0),

but where feedback weights and feedforward weights are always trained altogether, with K

73



feedback weight updates per batch, yielding O(Nθ ×K) feedback weight updates. Therefore,

p-DDTP has the same complexity cost for feedback weights training as in the proposed DTP.

We use the same architecture in this study as in Section 4.5.1-4.5.2.

Figure 4.4. Angle between forward weight updates obtained through DTP (ours), s-DDTP,
p-DDTP and those obtained through back-propogation for each layer throughout training
on CIFAR-10 with LeNet architecture. Each epoch represents a feedforward training epoch,
pure feedback training epochs for s-DDTP are not displayed.

Results. We display in Table 4.1 the accuracies obtained with the proposed DTP, s-DDTP

and p-DDTP on MNIST, Fashion MNIST (“F-MNIST”) and CIFAR-10. The DTP method

outlined in this work outperforms s-DDTP and p-DDTP on all tasks, by ≈ 0.3% on MNIST

and F-MNIST, by at least ≈ 9% on CIFAR-10 and is within ≈ 1% of the BP baseline

performance. While p-DDTP slightly outperforms s-DDTP on MNIST and F-MNIST, it

performs worse than s-DDTP on CIFAR-10, suggesting that DDTP does not benefit much

from multiple feedback weight updates per batch. An important conclusion to be drawn

here is that the gap in performance between DTP and DDTP is not due to updating the

feedback weights multiple times per training batch, but more fundamentally to the feedback

training scheme at use (L-DRL for the proposed DTP, or DRL for DDTP), yielding better

feedforward error signals with the proposed DTP. This conclusion is also confirmed by Fig. 4.4

where we plot the angle between the DTP feedforward weight updates and those of BP

(∠(∆θn
BP, ∆θn

DTP)) throughout learning CIFAR-10, for each layer and each algorithm. While

the angles obtained by DTP, s-DDTP and p-DDTP are comparable for the last two (FC)

layers (≈ 0◦), they are at least twice as smaller for DTP compared to s-DDTP and p-DDTP

in the first two (Conv) layers. Finally, these angles are ≈ 15◦ smaller for s-DDTP compared

to p-DDTP. Consequently, these curves directly account for the discrepancies in results on

CIFAR-10 reported in Table 4.1.

4.5.4. Towards scaling up DTP

Since we have demonstrated that the proposed DTP method learns better error signals to

update the feedforward weights than DDTP with consistently better performance, we focus in

this section on learning a slightly deeper and wider architecture on CIFAR-10 and ImageNet

32×32 [74], a downsampled version of the full ImageNet data. For these experiments, we
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Table 4.1. Accuracies (%) obtained with BP, DDTP and the proposed DTP on the LeNet
architecture for MNIST, F-MNIST and CIFAR-10 test set. Each result is in terms of the
mean and standard deviation obtained over five different seeds.

MNIST F-MNIST CIFAR-10

s-DDTP 98.59±0.16 88.86±0.44 76.33±0.27

p-DDTP 98.58±0.13 89.42±0.69 72.15±0.29

Ours 98.93±0.04 90.35±0.11 85.33±0.32

BP 98.92±0.04 91.94±0.33 86.34±0.35

employ a 6-layers VGG-like architecture, consisting of 5 Conv layers and 1 Fully Connected

(FC) layer (see Appendix for architecture details).

Results. We report the results in Tables 4.2–4.3. With this choice of architecture, the proposed

DTP method achieves 89.38% accuracy on CIFAR-10 and 60.55% top-5 accuracy on ImageNet

32 × 32, which is both cases within < 1% of the BP baseline.

Table 4.2. Accuracies (%) obtained on CIFAR-10 with BP and the proposed DTP model
on a VGG-like architecture. Each result is in terms of the mean and standard deviation
obtained over five different seeds. We also report below the current best CIFAR-10 accuracies
obtained by DTP in the literature on any architecture.

Accuracy

BP 89.07±0.22

Ours 89.38±0.20

meulemans2020theoretical 76.01
bartunov2018assessing 60.53

Table 4.3. Top-1 and Top-5 Accuracies for ImageNet 32×32 validation set obtained with
BP and the proposed DTP on a VGG-like architecture across five seeds.

Top-1 Top-5

BP 37.29± 0.14 61.28± 0.11
Ours 36.79± 0.05 60.55± 0.06

4.6. Discussion
Training feedforward weights with Gauss-Newton targets results in optimal updates to

move the feedforward activations towards their associated target, yet they appear sub-optimal

to decrease the prediction loss [63], which calls for the design of a principled way to build

backprop-like targets. In this work, we have demonstrated the benefits of such an approach,

with mathematically and experimentally grounded arguments. We showed the efficiency
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of the presented L-DRL algorithm to align feedforward and (transposed) feedback weights

and therefore achieve the Jacobian matching condition (JMC). We also showed that the

resulting feedforward weight updates prescribed by Difference Target Propagation (DTP)

closely match those of BP, a property we called the gradient-matching property (GMP).

The proposed DTP implementation subsequently outperforms DDTP [63] on all training

tasks and approaches the BP baseline performance. We also consistently showed that the

more the GMP is satisfied throughout learning, the better the resulting performance. The

best CIFAR-10 performance obtained by DTP is ≈ 13% higher than the existing DTP

performances reported in the literature [10, 63] and to our knowledge this is the first report

of a DTP performance closely matching that of BP on such a complex task as ImageNet 32×32.

Limitations and Future Work. The prescription to run several feedback weight

updates per training batch entails longer simulation times but may be biologically

plausible since local recurrent paths will have shorter axons that should have much

shorter delays than long-range paths with complex, long axons [21, 22]. As it can be

seen from Appendix 4.13, the proposed DTP implementation can be up to 30 times

slower than BP. Future work could be done to leverage the parallelism allowed by the

layer-wise feedback weight training strategy presented in this work, to accelerate training

and subsequently scale up this DTP implementation to ImageNet on deeper architectures.

However we emphasize again that DTP is not meant as a new practical optimization method

but rather an abstract but plausible biological implementation of a BP-like update mechanism.

The code is available at https://github.com/ernoult/scalingDTP.
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4.8. Appendix

The appendix is structured as follows:

• Section 4.9 provides the demonstrations of Theorem 4.4.2 and Theorem 4.4.3

• Section 4.10 shows the explicit equations used for inference and weight updates on a

simple example.
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• Section 4.11 precisely describes the architectures used for the experiments.

• Section 4.12 lists all the hyperparameters used across all the experiments.

• Finally, Section 4.13 gives the simulation run times of all the training experiments.

4.9. Theoretical results

4.9.1. Feedback weights training

We re-state the main theorem for feedback weights training (Theorem (4.4.2) in the main).

Theorem 4.9.1. Let:

L̂n
ω = −

1

σ2
ǫ⊤ · (rn

ǫ − sn) +
1

2σ2

∥∥∥rn
η − sn

∥∥∥
2

, (4.9.1)

Ln
ω =

1

2

∥∥∥∂snF n⊤

− ∂sn+1Gn+1
∥∥∥

2

F
. (4.9.2)

Then:

lim
σ→0

Eǫ,η

[
L̂n

ω

]
= −

〈
∂snF n⊤

, ∂sn+1Gn
〉

F
+

1

2
‖∂sn+1Gn‖2

F (4.9.3)

∂

∂ωn
lim
σ→0

Eǫ,η

[
L̂n

ω

]
=

∂Ln
ω

∂ωn
, (4.9.4)

Démonstration. We have:

ǫ⊤ · (rn
ǫ − sn) = ǫ⊤ · (Gn ◦ F n(sn + ǫ)−Gn ◦ F n(sn))

= ǫ⊤ · (∂sn+1Gn · ∂snF n · ǫ + o(‖ǫ‖))

= Tr(ǫ · ǫ⊤ · ∂sn+1Gn · ∂snF n) + o(‖ǫ‖2). (4.9.5)

Likewise:

∥∥∥rn
η − sn

∥∥∥
2

= Tr
(
η · η⊤ · ∂sn+1Gn · ∂sn+1Gn⊤

)
+ o(‖η‖2). (4.9.6)

Moreover, since ǫ ∼ N (0, σ2) and η ∼ N (0, σ2), Eǫ [o(‖ǫ‖2)] = Eη [o(‖η‖2)] = o(σ2).

Altogether with Eq. (4.9.5) and Eq. (4.9.6), we finally obtain:
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Eǫ,η

[
L̂n

ω

]
= −

1

σ2
Tr(Eǫ

[
ǫ · ǫ⊤

]

︸ ︷︷ ︸
=σ2×1

·∂sn+1Gn · ∂snF n) +
1

2σ2
+ Tr


Eη

[
η · η⊤

]

︸ ︷︷ ︸
=σ2×1

·∂sn+1Gn · ∂sn+1Gn⊤


+ o(1)

= −
〈
∂snF n⊤

, ∂sn+1Gn
〉

F
+

1

2
‖∂sn+1Gn‖2

F + o(1). (4.9.7)

Therefore, sending σ → 0 yields the desired result Eq. (4.9.3). Finally, noticing that:

lim
σ→0

Eǫ,η

[
L̂n

ω

]
= Ln

ω −
1

2
‖∂snF n‖2

F , (4.9.8)

with the second term of Eq. (4.9.8) not depending on the feedback weights ωn, Eq. (4.9.4)

is straightforward. �

4.9.2. Feedforward weights training

We re-state here the main theorem for feedforward weights training (Theorem 4.4.3) in

the main).

Theorem 4.9.2 (Gradient Matching Property). Let a feedforward architecture F defined per

Definition 4.3.1 which satisfies the JMC. Then the following holds:

∀n ∈ [1, N ],
∂Lpred

∂θn
= lim

β→0

1

2β

∂

∂θn
‖tn

β − sn‖2, (4.9.9)

where the targets (tn
β)n≥1 obey the following recursive equations, ∀n = N . . . 2:





tN
β = sn − β

∂Lpred

∂s

tn
β = sn + Gn(tn+1

β ; ωn)−Gn(sn+1; ωn)
(4.9.10)

Démonstration. First, note we have:





tN
β − sn = −β

∂Lpred

∂s
,

tn
β − sn = ∂sn+1Gn ·

(
tn+1
β − sn+1

β

)
+ o

(∥∥∥tn+1
β − sn+1

β

∥∥∥
)

.
(4.9.11)

Since tN
β −sN = o(β), by immediate induction tn

β−sn = o(β) ∀n = N−1 · · · 1. Denoting

δ̂n
DTP(β) , tn−sn

β
, we therefore obtain:





δ̂N
DTP(β) = −∂Lpred

∂s
+ o(1),

δ̂n
DTP(β) = ∂sn+1Gn · δ̂n+1

DTP(β) + o (1) .
(4.9.12)

Furthermore note that, treating tn
β as a constant, we also have:
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1

2β

∂

∂θn
‖tn

β − sn‖2 = −
1

β
∂θnF n⊤

· (tn
β − sn)

= −∂θnF n⊤

· δ̂n
DTP(β). (4.9.13)

Finally, sending β → 0, defining:

δn
DTP , lim

β→0
δ̂n(β) (4.9.14)

∆n
θ,DTP , lim

β→0

1

2β

∂

∂θn
‖tn

β − sn‖2 (4.9.15)

along with the JMC property ∂sn+1Gn = ∂snF n⊤

, we obtain:





δN
DTP = −∂Lpred

∂s
,

δn
DTP = ∂sn+1F n⊤

· δ̂n+1
DTP

∆n
θ,DTP = −∂θnF n⊤

· δ̂n
DTP

(4.9.16)

Note that Eq. (4.9.16) is equivalent to computing
∂Lpred

∂θn by backprop, yielding the desired

result Eq. (4.9.9). �

4.10. A concrete example with explicit equations

We detail for completeness and clarity all the equations for the neural dynamics and the

learning rules of the forward and of the backward weights for a LeNet-like architecture with

two Conv layers and one fully connected layer for the sake of simplicity.

Forward operations.

s1 = F 0(x; θ0) = σ(θ0 ⋆ x),

s2 = F 1(s1; θ1) = σ(θ1 ⋆ s1),

s3 = F 2(s2; θ2) = θ2 · s2,

ŷ = softmax(s3),

where we implicitly assume the flattening operation between s2 and s3 for notational

convenience.

Backward operations. We assume here the following feedback operators G1 and G2 associated

with F 1 and F 2 respectively:

G2(s3; ω2) = ω2 · s3

G1(s2; ω1) = ω1 ⋆ σ(s2).
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Again, note that there is no G0 feedback operator paired to F 0 since we do not need to

propagate error signals down to the input layer.

Feedback weights training. Given input noises ǫ2 and η3 in layers s2 and s3 respectively, we

update ω2 so as to minimize the loss Lω2 . More precisely, ǫ2, η3 and Lω2 are defined as:

ǫ2 ∼ N (0, σ2),

η3 ∼ N (0, σ2),

Lω2 = −
(
ǫ2
)⊤
· (G2(F 2(s2 + ǫ2))−G2(s3)) +

1

2

∥∥∥G2(s3 + η3)−G2(s3)
∥∥∥

2
,

which results in the weight update for ω2:

∆ω2 = ǫ2 · (θ2 ·∆x2)⊤ − (ω2 · η3) ·∆y3⊤

. (4.10.1)

Similarly, we train the feedback convolutional filters ω1 by injecting the input noise ǫ1

and η2 in s1 and s2 respectively and minimizing the loss Lω1 defined as:

ǫ1 ∼ N (0, σ2),

η2 ∼ N (0, σ2),

Lω1 = −
(
ǫ1
)⊤
· (G1(F 1(s1 + ǫ1))−G1(s2)) +

1

2

∥∥∥G1(s2 + η2)−G1(s2)
∥∥∥

2
,

which results in the weight update for the convolutional feedback filters ω1:

∆ω1 = ǫ1 ⋆ (σ(F 1(s1 + ǫ1))− σ(s2))− (G1(s2 + η2)−G1(s2)) ⋆ (σ(s2 + η2)− σ(s2)). (4.10.2)

Forward weights training. We compute the first target t3
β and associated weight update ∆θ2

as:

t3
β = s3 + β(ŷ − y), (4.10.3)

∆θ2 =
1

β
(t3

β − s3) · s2⊤

. (4.10.4)

Then, the target t3
β passes through G2, yielding the target t2

β and associated weight update

∆θ1:

t2
β = s2 + G2(t3; ω2)−G2(s3; ω2), (4.10.5)

∆θ1 =
1

β
((t2

β − s2)⊙ σ′(s2)) ⋆ s1. (4.10.6)
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Similarly, we compute t1
β and ∆θ0 as:

t1
β = s1 + G1(t2; ω2)−G1(s2; ω2) (4.10.7)

∆θ0 =
1

β
((t1

β − s1)⊙ σ′(s1)) ⋆ x (4.10.8)

4.11. Architecture Details

In Table 4.4, we give the details of the two representative architectures studied in this

work.

LeNet VGGNet
Conv 5x5x32 (stride=1, pad=2) Conv 3x3x128 (stride=1, pad=1)
Maxpool 3x3 (stride=2, pad=1) Maxpool 2x2 (stride=2, pad=0)
Conv 5x5x64 (stride=1, pad=2) Conv 3x3x128 (stride=1, pad=1)
Maxpool 3x3 (stride=2, pad=1) Maxpool 2x2 (stride=2, pad=0)

FC 512 Conv 3x3x256 (stride=1, pad=1)
FC+Softmax 10 Maxpool 2x2 (stride=2, pad=0)

- Conv 3x3x256 (stride=1, pad=1)
- Maxpool 2x2 (stride=2, pad=0)
- Conv 3x3x512 (stride=1, pad=1)
- Maxpool 2x2 (stride=2, pad=0)
- FC+Softmax 10

Table 4.4. Architectures described by layer

4.12. Hyperparameters

In Tables 4.5,4.6,4.8,4.9, we report the hyperparameters for each method and dataset

studied. In both CIFAR-10 and Imagenet 32×32 experiments we use the same data augmen-

tation consisting of random horizontal flipping with 0.5 probability and random cropping

with padding 4.
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Hyperparameter
Dataset

MNIST F-MNIST CIFAR-10

channels [32, 64] [32, 64] [32, 64]
activation ELU ELU ELU
lrf 0.007938 0.01374 0.03
forward optimizer SGD SGD SGD
forward momentum 0.9 0.9 0.9
wdf 0.0001 0.0001 0.0001
scheduler cosine cosine cosine
scheduler eta min 0.00001 0.00001 0.00001
scheduler Tmax 85 85 85
scheduler inter-
val/frequency

epoch/1 epoch/1 epoch/1

initialization kaiming
uniform

kaiming
uniform

kaiming
uniform

batch size 166 140 193
epochs 40 40 90

Table 4.5. Tuned BP LeNet hyperparameters
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Table 4.8. Tuned s-DDTP LeNet hyperparameters
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Table 4.9. Tuned p-DDTP LeNet hyperparameters
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4.13. Simulation run times

Table 4.10. Run time and accuracy of the training experiments (hours:minutes) for ImageNet
32×32 obtained with BP and the proposed DTP on a VGG-like architecture across 5 seeds.

Top-1 Top-5 Run time

BP 37.29± 0.14 61.28± 0.11 2:22 ± 0:2

Ours 36.79± 0.05 60.55± 0.06 61:41 ± 0:54

Table 4.11. Run time of the training experiments (hours:minutes) obtained with BP, DDTP
and the proposed DTP model on the LeNet architecture for MNIST, F-MNIST and CIFAR-10
across 5 seeds.

MNIST F-MNIST CIFAR-10

s-DDTP 0:36 ± 0:06 0:32 ± 0:05 1:11 ± 0:04

p-DDTP 3:03 ± 0:04 3:01 ± 0:03 3:42 ± 0:05

Ours 1:17 ± 0:10 1:05 ± 0:07 4:13 ± 0:33

BP 0:9 ± 0:02 0:10 ± 0:02 0:22 ± 0:03

Table 4.12. Run time of the training experiments (hours:minutes) obtained on CIFAR-10
with BP and the proposed DTP model on a VGG-like architecture across 5 seeds.

Run time

BP 0:17 ± 0:03

Ours 6:03 ± 0:39

∏N−1
k=n ∂sk+1Gk =

(
∂sn(F N ◦ · · · ◦ F n)

)†

Theorem 4.13.1 (Informal). If JMC is satisfied then:

∀n ∈ J1, NK,
∂Lpred

∂θn
= lim

β→0

1

2β

∂

∂θn
‖tn

β − sn‖2, (4.13.1)

Theorem 4.13.2 (Informal).
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Chapter 5

Third article: On the Role of Memory in

Planning and Reasoning within Sequential

Decision-Making Domains

Abstract: Efficient planning in sequential decision-making tasks remains a core challenge

for machine learning models. These tasks often involve intricate decision sequences within

discrete state spaces, leading to combinatorial complexity that hampers traditional planning

methods. In this study, we investigate adaptive computation, a strategy inspired by human

cognitive processes, to enhance planning efficiency and resource allocation. The presented

approach borrows concepts from adaptive computation, incorporating memory and reusability

mechanisms into models that must solve tasks where planning is required. In summary, this

paper presents an exploratory study on integrating adaptive computation for efficient planning,

demonstrating the potential to achieve model efficiency while preserving performance. We find

that models that can perform more computation on the same input have better performance,

and are more efficient during training. Additionally, we present an architecture with an

adaptive memory module that can learn to dynamically adjust its computation, and we show

that it performs slightly better than its static counterpart. Finally, this study of the adaptive

memory module reveal patterns comparable to human decision-making mechanisms such as

reconsideration or exploring alternatives. These findings pave the way for future research in

resource-aware planning architectures, promising broader applications across AI and machine

learning domains. This work contributes to the evolving understanding of harnessing adaptive

computation to enhance machine learning models’ capabilities in complex decision-making

tasks.

My contributions:

The main contributions of Sean Spinney for this project are:

• ideation and conceptualization of the project



• programming of every respect of the codebase (models, environments, training, figures,

etc.)

• running and logging all experiments

• analysis and writing of the article

At the time of writing this thesis, the article is in preparation to be submitted to ICLR

2024. Co-authors (in order of appearance): Sean Spinney, Kshitij Gupta, Xutong Zhao,

Janarthanan Rajendran, Irina Rish, Patricia Conrod, and Sarath Chandar.

5.1. Introduction

Planning and reasoning are integral to human decision making and have yet to be

adequately incorportated into AI models. These components are required in building

highly capable general AI agents that assist in scientific discovery and pushing the frontiers

of human knowledge. Furthermore, reasoning in sequential decision making domains is

characterized by an interaction between past and future, where information and decisions

from previous steps significantly informs the present decisions while these decisions, in turn,

influence future inputs and observations.

The study of decision-making and planning extends to human psychology, particularly in

scenarios where task complexity requires varying degrees of cognitive effort [80].Throughout

human development, engagement with the environment undergoes a series of changes,

shaping one’s own ability to navigate challenges and solve tasks. Early on, basic functions

emerge in response to simple, repetitive tasks, forming the foundation for later complexities.

As we mature, higher-order cognitive processes emerge in the brain, allowing us to handle

more intricate situations and integrate conflicting information through complex deliberation.

This progressive development aligns with the evolving demands of human surroundings,

reflecting the adaptable nature of human cognition. Furthermore, it is clear from empirical

data that human reaction times vary considerably based on task complexity [81, 16],

where results have been shown that correct response times to a stimulus increase either

with a greater number of stimuli or possible planning alternatives to be considered. For

example, increased fixation time on a set of increasingly more complex, or contradictory,

instructions to complete a task was observed using eye tracking [106]. There is a clear pattern

relating task complexity in the form of information processing load and possible sequence

of actions or interactions to complete a task. Notably, previous research has indicated

that temporal pressure and the risk of critical irreversibility can hinder decision-making,

even in situations demanding swift actions [42, 76, 82]. Human decision-making exhibits a

remarkable flexibility and responsiveness to environmental cues, often prompted by a sense of

urgency [87]. These influences of urgency, whether biologically driven by factors like aging or
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environmentally-induced pressures, create a natural push for more efficient decision-making

mechanisms, such as reflexes. Such cognitive mechanisms would be extremely useful in

modern machine learning methods which are becoming larger due to scaling laws.

Prior research has addressed this context and attempted to emulate features of urgency

of the human decision-making process within machine learning models. A common approach

for tackling sequential decision-making challenges involves model-based reinforcement

learning. In this approach, the decision-maker constructs mental simulations of potential

future states, actions, or outcomes within a decision tree, using a learned transition

dynamics model. However, such methods exhibit limitations in terms of adaptability and

scalability. The requirement to manage state transition dynamics can lead to computational

challenges, particularly in environments with a large range of states. A recent approach [31],

demonstrates that an agent can meta-learn flexible planning routines by utilizing recurrent

neural networks, which serve as a memory mechanism, within an end-to-end training process.

This also helps agents adapt and learn their planning strategy, and avoiding tree search

planning algorithms, or any algorithms reliant on discrete state planning.

Adaptive Memory
oi ← s(x, hi)

yi,hi+1,λi ← oi

s(x2,h1)s(x1,h0) s(xn,hn−1)

(xinput, h0) (xinput, h1)

no halt

(xinput, hn−1)

yn

Figure 5.1. The embedded input is combined with an initialized core state h0, which is
updated with the same input at each iteration by the step function s(x,h), until the halting
probability (λ) forces termination. The outcome of the memory rollout ,y, is then passed to
a linear layer which outputs the action logits.

Leveraging these prior advancements, we extend prior work to suit the requirements of

sequential decision-making scenarios, thereby enabling us to probe the effects of adaptive com-

putation on the planning process. Earlier research by [8, 28] has not only demonstrated the

performance benefits of adaptive computation but has also highlighted instances where higher

computation is needed, indicating increased task complexity. Understanding the role of these
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features in task performance grants us insight into the underlying mechanisms of these models.

The aim of this work is to enhance decision time efficiency in artificial neural networks

(ANNs) to emulate reflexive response intervals, while retaining the capacity to opt for

additional computational deliberation when warranted. The motivation underlying the

utilization of adaptive computation originates from empirical observations of human

decision-makers, who consistently demonstrate context-driven biases aimed at mitigating the

computational load associated with evaluating diverse alternatives in an efficient manner [16,

73]. 5.1 describes the main halting mechanism for terminating the adaptive computation in

the suggested architecture.

With this goal in mind we extensively study the interplay between adaptive computation

and memory and the contributions of this work are as follows:

(1) Analysis of Memory Modules: This investigation centers on agents equipped

with single and multiple-step memory modules in the realm of sequential decision-

making. This comprehensive analysis sheds light on the potential influence of memory

integration on agents’ planning efficiency and their capacity to make informed decisions.

(2) Demonstration of Adaptive Computation: We present a compelling demonstra-

tion of the adaptive computation capabilities inherent in the proposed architecture.

By applying it to intricate puzzle-solving scenarios, we seek to highlight the potential

of the proposed approach to amplify planning efficiency while concurrently upholding

performance standards.

(3) Exploration of Complexity-Pondering Relationship: This research studies

the interplay between information complexity within a state and the subsequent

pondering steps carried out by an adaptive agent. We observe three distinct learned

behaviors, namely increasing certainty, exploring alternatives, and reconsideration.

These behaviors are interpreted through a psychological lens by analyzing the evolution

of internal transformations within a trained AMM agent. The central hypothesis of

this work posits that the adaptive agent strategically allocates computation resources

based on the perceived or actual complexity of input data, as well as the remaining

difficulty of the task.

In essence, the contributions of this work collectively advance the understanding of

memory modules, adaptive computation, and their interplay in the context of sequential

decision-making. This paper fosters a deeper appreciation for the intricate dynamics at play

within adaptive agents and their implications for efficient planning.
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5.2. Related Works

Recent trends have shown how simply scaling up model size, and dataset size can result in

emergent capabilities like reasoning [110, 115, 72, 116, 45, 38, 54]. However, its been shown

[94], these large language models are still weak at more complex reasoning tasks. Factors

contributing to these limitations include low quality step-by-step reasoning data available on

the internet and difficulty in collecting high quality reasoning data for complex reasoning

problems. Collecting such data becomes very difficult for problems that humans themselves

cannot solve, and for visual reasoning problems.

Another common approach taken towards building AI agents capable of planning has

been studied under the umbrella of model-based reinforcement learning. These methods rely

on learning world models, and leveraging explicit search strategies like Monte Carlo Tree

Search to build AI agents that can solve long horizon planning problems [100, 102, 85, 84,

33]. These works also leverage additional decision/inference time to achieve super-human

level performance in various complex planning games like Chess and Go. However, these

approaches lack flexibility and adaptability, and are often difficult to scale in more complex

environments. Human’s on the other hand adapt their planning strategies and planning time

based on the complexity of the problem and urgency around the need to arrive at a decision.

Works like [23], show the benefit of other planning routines involving hierarchical planning

and reverse directional planning routines.

Works like [86, 79, 30, 27] have taken a step toward flexible and adaptable planning

routines by allowing agents to learn to plan. However, these still rely on having an explicit

transition dynamics model. Recently [31] proposed to learn an end-end agent that meta-learns

planning routines via its memory. Another recent work [9], also shows similar effects in

other planning domains. However, the computation time in above approaches is fixed. These

works have also shown how leveraging more computation at inference time for more difficult

problems [6], can help improve the performance of the model. Other works have also shown

how additional computation time can help improve performance in complex planning domains

[31, 9, 41, 34]. All these works however fix the computation time and do not allow the agent

to adapt the number of repetitions taken by the memory module e.g. LSTM with a fixed

number of iterations.

5.3. Methodology

In this section we formally introduce the proposed architecture, Adaptive Memory Model

(AMM; Figure 5.1), and the training procedure. Many of the same parts of AMM are also

used for the alternative models found in the experiments section, mainly the encoder and

size of memory module and policy.
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5.3.1. Architecture

The models are composed of an encoder which takes an input (state or observation),

followed by the recurrent memory module which processes the encoded representation and is

further transformed through a linear layer (policy linear layer). A softmax transformation is

applied to the output of the policy layer which probabilistically selects an action from the

policy’s logits. The following section reviews the specifics of each part of the model.

5.3.1.1. Encoder. The encoder is a composed of layers of CNN’s with MaxPooling and

Dropout between each layer. Once the input is processed by the encoder, it is either flattened

for memory modules which take flat inputs RNN, LSTM or the three dimensional structure

is retained for the DRC module. The input is a one-hot encoded transformation of the entire

grid of the puzzle i.e. a 7x7 grid with 7 different elements (e.g. walls, boxes, etc.) becomes a

7x7x7 boolean matrix.

5.3.1.2. Dynamic memory module. The dynamic memory module introduces adaptability

in the recurrent network by altering the number of computational steps it undertakes based

on input conditions, and its available memory which is not reset at each step. AMM attains

this adaptability through an end-to-end gradient descent learning framework. The core of

AMM’s operation is encapsulated in a step function of the form:

ŷn, hn+1, λn = s(x, hn)

where the symbol x denotes the input, while hn represents the state, and ŷn characterizes

the predictive output at the n-th computational step. It is important to note that x is

the same original for each iteration of the step function, as can be seen in Figure5.1 as

xinput. The parameter λn encapsulates the likelihood of halting or terminating the ongoing

process at the current step. The function s can be instantiated as a diverse array of neural

network architectures, ranging from Long Short-Term Memory (LSTM) [37] and Multi-Layer

Perceptron (MLP) [91] to Gated Recurrent Unit (GRU) [18] and Attention-based layers [108],

thereby imparting flexibility and adaptability to the model.

The unconditioned probability associated with the act of halting at the n-th step, denoted

as pn, is derived as follows:

pn = λn

n−1∏

j=1

(1− λj)

This represents the probability of avoiding termination in preceding computational stages

and subsequently halting at the specific step, denoted as n. During inference, the halting

process is implemented via either a stochastic sampling mechanism, where the halting

probability λn guides the decision to terminate by drawing from the Bernoulli distribution
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with parameter λn, or simple probability threshold i.e. halt if λn > 0.5. Finally, the predictive

output ŷn is obtained from the halting layer.

haltn = Bernoulli(λn) or haltn = λn > 0.5

During training, predictions are gathered from each layer, initiating the computation of

distinct loss values for individual layers. Subsequently, a weighted averaging strategy is used

to consolidate these losses, with the weighting scheme derived from the layer-specific halting

probabilities (pn). Simultaneously, the step function is bounded by a predetermined upper

limit on computational steps, as characterized by the variable N . The aggregate loss function

for AMM, denoted as L, is composed as follows:

L = LRec + βLReg (5.3.1)

LRec =
N∑

n=1

pnL(y, ŷn) (5.3.2)

LReg = KL

(
pn‖pG(λp)

)
(5.3.3)

This aggregate loss is the summation of two constituent components: the recurrent

segment of the loss and the regularization term in the form of Kullback–Leibler divergence.

LRec captures the aggregate effect of losses across pondering steps, with L representing the

loss function quantifying the dissimilarity between the target value y and the predictive

output ŷn. The regularization loss, denoted as LReg, leverages the Kullback–Leibler divergence

(KL), where pG signifies the geometric distribution parameterized by the prior λp. We select

the geometric distribution as the probability distribution for regularizing the λ parameter

for halting, where λp is the prior probability of stopping at any given pondering step. The

geometric distribution takes the following form:

PrpG(λp)(X = k) = (1− λp)kλp

The regularization loss biases the network in performing around 1
λp

steps and incentivizes

non-zero probabilities for all pondering steps. In essence, it encourages the network to explore

different possibilities and options.

5.3.2. Training

The training approach described here employs behavior cloning [105], wherein the agent

learns from expert trajectories by predicting subsequent actions in the sequence. Specifically,

we employ a cross-entropy loss function that measures the discrepancy between the expert’s
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actions and the model’s predictions.

For the static model, the loss is calculated without pondering, following the equation:

Loss without pondering = −
N∑

i=1

expert actioni · log(model predictioni)

where N is the number of examples (number of episodes and timepoints) in a batch. In

the case of the adaptive model, the loss that considers a weighted average across the various

pondering steps can be expressed using cross-entropy loss as:

Loss with pondering = −
K∑

j=1

wj ·
Nj∑

i=1

expert actioni · log(model predictionij)

where Nj is the number of expert actions at pondering step j, and wj is the weight

assigned to pondering step j.

To create the expert trajectories, we resort to utilizing the deterministic solver A* [35],

which generates solutions in the form of action sequences. For instance, the sequence

"lLuURrD" corresponds to the actions: move left, push left, move up, push up, push right,

move right, and push down. Employing the initial state of the puzzle and the derived

action sequence, we simulate the solution rollout in the environment. This process involves

executing the actions on the initial state and recording the corresponding states, rewards,

actions, and a "done" flag. Consequently, a trajectory is represented as a tensor of length

equal to the number of steps needed to solve the puzzle. Each element within this tensor

comprises a sub-tensor containing the state, reward, action, and "done" flag. The splitting of

training and validation subsets of the datasets generated is explained for each experiment

demonstrated in section 6.

For optimization, we use the AdamW optimizer with weight decay. The proposed training

strategy involves a scheduler that initially executes the LRlambda scheme for a predefined

number of warmup steps, followed by the cosine annealing algorithm for the remaining

training iterations. The model undergoes training for a single epoch only. The details of the

hyperparameter values can be found in the appendix (Tables 5.5,5.6).

5.3.3. Evaluation

We evaluate the following metrics by performing the experiments explained in section 5.5:
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Performance : Thefinalmeanreturnandfractionsolvedserveaskeyindicatorstoevaluatetheefficacyoftheadaptiv

Training efficiency: Additionally, we investigate the impact on the length of solutions

achieved by varying the number of repetitions permitted in the adaptive memory module

(Table 5.3).

Adaptability: Through an examination of the mean, standard deviation, and range of

ponder steps taken by a trained model to solve levels against the number of repetitions

allowed for adaptive computation, we ascertain the model’s capacity to adapt its computation

based on input. We also explore the extent to which increasing repetitions influence these

statistical measures (Table 5.4).

Finally, we produce Figures (??) that highlight certain behaviors observed when inves-

tigating the relationship between input content, the number of pondering steps, and the

evolution of the policy entropy across pondering steps. We observe certain distinct patterns

which are described in detail in Section 5.6.3.

5.4. Environments

We have chosen the subsequent pair of environments due to the recognition that both

necessitate a degree of planning to determine a sequence of actions that precludes future

complications arising from a lack of foresight. For each game, we will outline the specific

factors that determine its level of difficulty.

5.4.1. Sokoban

This challenging puzzle is presented as a two dimensional grid where an agent must push

boxes over targets in under a fixed amount of steps [86, 31, 17]. When increasing the number

of boxes, it becomes more important to become aware of potential irreversible moves that

could be avoided with better planning. We use the same methodology as [17] to generate

levels which are then split into train and test sets. The following represent the environments

used in the experiment section:

There are a total of 8 possible actions: move or push in the 4 possible directions, and 7

possible elements in the state: walls, spaces, targets for boxes, boxes on target, and boxes

not on target. We decided to omit the inclusion of the no-op action which has the effect that

the agent performs no operation, while the environment may or may not change (if there are
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Dataset Name Number of Samples Description

Sokoban-small-v0-train 2.1M Training data; 7x7 grid, 2 boxes
Sokoban-small-v0-validation 1000 Validation in-distribution; 7x7 grid, 2 boxes
Sokoban-small-v1-validation 1000 Validation out-of-distribution; 7x7 grid, 3 boxes

Table 5.1. Summary of the datasets.

no other moving objects, it will remain the same input). Also referred to as "stay" actions,

many variations on the same idea have been implemented with the goal being to include

stochasticity which may help learn a better performing policy, with aperiodic sequence of

actions [36]. It is important to note that the internal state of the memory module will not

be reinitialized. This can be seen as a way to grant the ability to ponder for any agent

by allowing it to do nothing and watch its environment, similar to the no-op action. The

reasoning for this is that the AMM already includes the possibility of adaptive computation

for an input, and does not entangle the concept of thinking and action by including no-op in

the space of possible actions.

5.5. Experiments

The selected model is composed of an encoder which takes an input (state or observation),

followed by the recurrent memory module which takes in the encoded representation and is

further processed through a linear layer (policy linear layer). A softmax transformation is

applied to the output of the policy layer which probabilistically selects an action from the

policy’s logits. It is important to note that the memory is not reset after each step in the

environment (static and adaptive), enabling the possibility for the agent to formulate longer

term planning.

Each experiment is engineered in a way to answer one or more hypotheses about dynamic

planning’s abilities. The following experiments examine the following:

(1) A static memory module with more repetitions obtains the greatest final mean return

and fraction solved. We test this hypothesis in the single epoch setting.

(2) Similarly, more repetitions leads to more efficient training i.e. less steps/interactions

with the environment are needed to obtain the same performance

(3) A dynamic memory module should perform at least as well as the same version but

static

(4) Simpler (i.e. objective and/or subjective complexity) inputs require a smaller number

of repetitions and is reflected by the adaptive model

(5) How does the memory module output affect the decision-making process? In other

words, how is the policy’s action probability transformed with more repetitions?
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5.5.1. Experiment 1: Impact of Repetitions in Memory Module

In this section, we study the impact of augmenting the number of repetitions within

the memory module on the average return observed across both training and validation

datasets. The underlying hypothesis posits that an increased number of repetitions facilitate

the encoding of long-term interactions which should improve planning capabilities. While

this augmentation may not prove advantageous for every input scenario, the expectation

is that it would, at the very least, not yield inferior performance compared to an identical

model employing only a single repetition.

Furthermore, an additional dimension of interest pertains to sample efficiency during

training. Specifically, we probe whether a higher count of repetitions expedites the learning

process. To gauge this, we examine the average episode return after a fixed number of steps

undertaken by the agent.

Four models with increasing number of repetitions are trained on a subset of Sokoban-small-

v0 levels and validated on a different subset of Sokoban-small-v0 as well as Sokoban-small-v1

levels to test generalization to an environment with one more box. The models are compared

on the basis of mean episode return and percent of fraction solved, as well as sample efficiency

during training.

5.5.2. Experiment 2: Comparing Dynamic and Static Planning

This section tests the hypothesis that the dynamic planning model performs on par with

its static counterpart. We now allow the model to learn when to stop pondering and compare

the same metrics observed in Experiment 1. The hypothesis explored here is whether or not

the dynamic pondering model can perform as well or better than a static model. If this can

be shown, then a model that acts dynamically will have a shorter inference time making it

more efficient after training. The application of the dynamic module to the training process

is another question not explored in this work.

5.5.3. Experiment 3: Relationship Between Input Complexity and

Pondering Steps

The concept of increased computation is inherently intertwined with the notions of

objective and experiential complexity. The aim of this work is to explore the interplay

between input complexity and the number of pondering steps.
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Objective Complexity refers to the inherent intricacy and fundamental level of

difficulty that are intrinsic to a given problem or the process of decision-making, which

can be objectively measured by factors such as the number of variables involved, the

depth of analysis required, and the computational resources demanded. In dynamic

planning, ANNs strive to tackle objective complexity by adapting their computational efforts

based on the intricacy of the task at hand. This adaptability allows the network to al-

locate more resources for complex scenarios, leading to more accurate and thoughtful decisions.

Experiential Complexity, on the other hand, takes into account the subjectivity of

decision-making, considering the cognitive load and mental effort experienced by an individual

or an artificial system when processing information and making choices. In dynamic planning,

ANNs aim to replicate experiential complexity by adjusting their decision-making strategies

to mirror the varying cognitive demands posed by different stimuli. This enables ANNs to

simulate a more human-like decision process, where certain decisions may feel effortless while

others require deeper contemplation.

The hypothesis put forward posits that inputs with higher complexity necessitate a

greater amount of computational resources. To explore this notion, we will employ established

definitions of both objective and subjective complexity. By doing so, we aim to establish

a correlation between the difficulty of inputs and the corresponding number of pondering

steps employed by the adaptive agent. Furthermore, we will selectively analyze specific

levels, focusing on visualizing the count of pondering steps taken per input. This exploration

aims to provide valuable insights into the intricate connection between acquired pondering

behaviors and the complexity of inputs. Importantly, the approach described in this work

leverages the information available to the model during the pondering process, contributing

to a comprehensive understanding of the dynamics at play.

5.6. Results

5.6.1. Experiment 1

In the first experiment, we sought to gauge the effects of augmenting the number of

repetitions within the memory module on both training and validation datasets. The primary

focus was to ascertain if an increased number of repetitions aids in encoding long-term

interactions, thereby enhancing planning capabilities. The main hypothesis posited that such

an augmentation would, at the very least, not yield inferior performance compared to models

utilizing a single repetition.
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Validation Performance: The outcomes presented in Table 5.2 manifest a discernible

enhancement in the fraction of puzzles solved by models with an augmented repetition

count. Notably, as the repetition count increased from 1, both validation datasets displayed

an upward trajectory in the fraction of puzzles successfully solved. This observed trend

substantiates the underlying hypothesis that increased repetitions contribute to improved

planning efficacy, particularly when addressing intricate decision sequences.

Static Models

Number of Repetitions
Sokoban-small-v0 Sokoban-small-v1

6.4× 104 1.28× 106 2.4× 106 6.4× 104 1.28× 106 2.4× 106

1 60.69 (5.7) 86.1 (2.8) 90.01 (3.1) 32.00 (4.0) 57.76 (6.9) 62.3 (5.2)
3 67.59 (3.0) 90.06 (2.4) 92.37 (2.9) 35.30 (2.5) 62.82 (4.6) 66.19 (4.3)
9 72.75 (5.0) 91.77 (2.3) 92.36 (2.7) 42.71 (4.8) 63.97 (7.0) 67.30 (5.6)
25 76.30 (4.5) 91.47 (3.4) 92.10 (2.4) 47.97 (6.5) 65.83 (5.8) 69.39 (6.0)
50 75.36 (4.6) 90.51 (2.8) 92.17 (0.1) 47.55 (5.9) 66.73 (5.6) 66.31 (0.1)

Adaptive Models

Number of Repetitions
Sokoban-small-v0 Sokoban-small-v1

6.4× 104 1.28× 106 2.4× 106 6.4× 104 1.28× 106 2.4× 106

3 63.86 (1.2) 88.67 (1.2) 92.07 (1.1) 28.51 (1.0) 61.90 (1.4) 65.74 (0.9)
9 76.56 (2.2) 91.07 (2.3) 93.70 (2.2) 45.05 (2.6) 68.22 (1.9) 71.03 (3.2)
25 61.89 (10.8) 90.33 (3.6) 92.86 (2.0) 27.20 (7.1) 65.21 (4.4) 68.89 (3.0)

Table 5.2. Percentage of mean fraction solved at different steps of training for static
versus dynamic models. Both dataset tested are from a subset of unseen data from either
in-distribution (Sokoban-small-v0), or out-of-distribution (Sokoban-small-v1).

Sample Efficiency: The assessment of sample efficiency during training revealed that

an increased number of repetitions indeed expedited the learning process. Models with more

repetitions displayed faster improvement, reaching comparable performance levels with fewer

training steps, as evidenced by higher average fraction solved after a fixed number of steps in

Table5.2. We also noted in Table 5.3 that models with a higher number of repetitions solved

levels with a lower average number of steps, as well as a smaller maximal number of steps

taken suggesting they may be more effective planners.

5.6.2. Experiment 2

The second experiment focused on comparing the performance of dynamic and static plan-

ning models. Here, we explored the hypothesis that a dynamic planning model could achieve

similar or better results than its static counterpart. The dynamic model was equipped with the

ability to learn when to halt pondering, potentially leading to a more efficient inference process.
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Static Models
Repetitions Sokoban-small-v0 Sokoban-small-v1

Mean Std Range Mean Std Range
1 12.14 6.91 61.00 17.65 9.76 89.00
3 11.99 6.39 37.00 17.84 9.57 77.00
9 11.95 6.30 39.00 16.84 8.29 46.00
25 12.16 6.75 44.00 16.89 8.46 62.00
50 12.34 7.12 41.00 17.15 9.01 70.00

Adaptive Models
Repetitions Sokoban-small-v0 Sokoban-small-v1

Mean Std Range Mean Std Range
3 12.15 7.10 86.00 16.46 8.08 57.00
9 11.93 6.38 41.00 17.18 9.09 67.00
25 11.78 6.46 61.00 16.18 7.85 75.00

Table 5.3. Length of solved episodes statistics for both sets of validation (in-distribution
and out-of-distribution). This represents the number of steps taken to complete a level.

Performance Parity: The results in Table5.2 reveal that the adaptive planning model

exhibited improved performance in general, when compared with its static counterpart. This

observation holds true for both in-distribution (Sokoban-small-v0) and out-of-distribution

(Sokoban-small-v1) settings, suggesting that the adaptive model’s flexible decision-making

does not compromise its planning capabilities, and in most cases it scores higher.

Inference Efficiency: Moreover, the comparable performance of the adaptive planning

model bears favorable implications for inference efficiency. Indeed, Table5.4 show the memory

iteration statistics for an AMM. It is noteworthy that, across varying repetition numbers,

the trained AMM adeptly capitalizes on its adaptive computational resources, often aligning

closely with its maximum iteration count. For example, in Table5.4 we see that each

AMM’s mean halting step is off by its max value by about 1, but with a large relative

standard deviation, and a range that implies each AMM can and does halt at all possible

steps. This inclination towards comprehensive pondering underscores the model’s capacity to

thoroughly deliberate when necessary, yet also showcases its ability to swiftly reach decisions

by terminating after a few initial steps, thus presenting a clear avenue for computational

savings.

5.6.3. Experiment 3

In the third experiment, we delved into the relationship between input and the number of

pondering steps taken. One of the hypothesis covered in this work is centered on the notion

that more complex inputs would require a higher degree of computation. To this end, we

create visualizations to observe how the adaptive memory module of a trained agent impacts
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Repetitions
Sokoban-small-v0 Sokoban-small-v1

Mean Std Range Mean Std Range
3 1.12 0.93 2.0 0 1.19 0.94 2.00
9 6.76 2.66 8.00 7.14 2.31 8.00
25 22.50 5.44 24.00 22.7 5.13 24.00

Table 5.4. Pondering statistics across validation datasets. Shown is the result of taking the
mean, standard deviation, and range of the number of ponder steps taken by a trained AMM
over 1000 levels for each environment.

its policy.

Complexity-Steps Relationship: Harder levels found in the Sokoban-small-v1 dataset,

characterized by higher objective complexity due to having an extra box to place, exhibited a

greater number of pondering steps on average, as can be seen in Table5.4. Moreover, we

investigate the connection between early-episode pondering and the stage nearing level

completion by quantifying the correlation between the current step within an episode and

the agent’s frequency of computational iterations (max repetition = 9). The subsequent

analysis uncovers a statistically significant negative correlation (r = −0.31, p = 6.14e−16)

between the step number within an episode and the duration of contemplation, when the

agent chose to adapt its computation (number of repetition smaller than the max). This

indicates that, as the episode unfolds, the corresponding halting times exhibit a marginal

reduction. This trend suggests that there is a perceived decrease in the overall complexity

level by the agent, which decides to deliberate more quickly when nearing the end of an episode.

Visualizing Pondering Steps: Visualizations of pondering steps taken per input are

used as visual support for highlighting certain observed behaviors from a trained AMM agent

with 9 maximum possible repetitions (Figures 5.35.45.5). By comparing the input with how

this information is used throughout pondering, we find further evidence of the interplay

between input complexity and adaptive planning in the form of learned behaviours. The

observed behaviours are the following:

(1) Increasing certainty: the action with the highest probability of being selected does

not change across pondering steps, however the probability increases with every step.

This is the most commonly observed use case for pondering by the trained model.

(2) Exploring alternatives: one or more other actions are more seriously considered

(increase in probability during deliberation), but ultimately the same action is chosen.

(3) Reconsideration: the action with the highest probability after the first pondering

step is not the same one at the last step taken. This is the rarest observed behavior

found
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Increasing Certainty

Figure 5.2. Visualization of a trained AMM agent. Left: the game state with the number of
steps pondered at that state displayed on the agent (blue); the current step and the resulting
action chosen after pondering is displayed below the image. Right top: the difference in norm
of the output between pondering steps. Right middle: the action probability distribution
across actions and pondering steps. Right bottom: the entropy of the policy across ponder
steps.

The first observed behaviour is analogous to the case of thinking longer to confirm an

initial plan. Indeed, we observe that a trained AMM agent will sometimes choose to ponder

for longer with the effect of steadily increasing the probability of its initial plan (the action

chosen). Figure 5.2 shows on such example, and more examples can be found with different

repetition lengths in the appendix. We note that the policy’s entropy follows a downward

trend, reinforcing the hypothesis that the agent ponders for longer to decrease its uncertainty.

Another consistently observed behaviour is related to deliberation or the exploration

of alternatives, Figure 5.3. This occurs when throughout pondering the agent’s policy

temporarily increases the probability of selecting one or other actions, but the final decision

remains the same. This type of behaviour is easily compared to forms of exploration, where

the policy’s entropy is adjusted for exploration. In fact, we can observe this fluctuation in

the agent’s policy entropy, which shows a temporary increase when the agent begins to more

seriously consider an alternative and then begins to fall again.
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Exploring Alternatives

Figure 5.3. Visualization of a trained AMM agent. Left: the game state with the number of
steps pondered at that state displayed on the agent (blue). Right top: the difference in norm
of the output between pondering steps. Right middle: the action probability distribution
across actions and pondering steps. Right bottom: the entropy of the policy across ponder
steps.

Lastly, the phenomenon of reconsideration manifests when an agent’s initial and final

choices of action differ across the sequence of pondering steps (Figure 5.4; appendix for more

examples). This behavior is characterized by fluctuating levels of certainty after the initial

pondering step, followed by a gradual decrement in the probability assigned to the initial

action. Subsequently, one or more alternative actions observe a surge in their probabilities,

culminating in the selection of a single action among the candidates.

5.7. Discussion

The series of experiments detailed in the preceding section highlight the compelling

potential of adaptive computation in bolstering planning efficiency. By learning to

dynamically adjust the duration of deliberation according to the input, the proposed models

simulate a cognitive adaptability characterized by learned behaviors that closely resemble the

decision-making processes observed in humans. The integration of memory and reusability

mechanisms further empowers models to dynamically allocate computational resources where

required, ultimately resulting in more efficient planning strategies.

105



Reconsideration

Figure 5.4. Visualization of a trained AMM agent. Left: the game state with the number of
steps pondered at that state displayed on the agent (blue). Right top: the difference in norm
of the output between pondering steps. Right middle: the action probability distribution
across actions and pondering steps. Right bottom: the entropy of the policy across ponder
steps.

The AMM’s ability to make quicker decisions by deliberating for less iterations (Table

5.4), combined with the empirical observation that more repetitions lead to shorter solutions

on average ( Table 5.3), translates into a more efficient inference process, potentially leading

to shorter decision-making times in practical applications. Moreover, the adaptive memory

module (AMM) exhibits an elevation in the average pondering steps when subjected to

the more challenging dataset (Sokoban-small-v1; Table 5.4). This observation hints at a

potential connection between effectively solving more intricate problems and engaging in

prolonged contemplation. Furthermore, this investigation reveals a pattern where trained

AMMs tend to deliberate for shorter intervals as they approach the conclusion of an episode,

characterized by a negative correlation between step number in an episode and thinking

time. This behavior may be an indication that the model is actively assessing the remaining

complexity of the episode and adjusting its computational effort accordingly.

In the course of the second experiment, we noted a superior performance of the adaptive

version compared to its static counterpart for most of the models under investigation. This

discrepancy in performance could potentially stem from differences in their respective loss
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functions. Unlike static models, AMMs produce an output at each iteration of the memory

module, contributing to the optimization of the loss function. The adaptive module’s loss,

characterized by the weighted sum across pondering steps, could introduce a stabilizing effect

during the optimization process.

The manifestation of the identified learned behaviors (increasing certainty, exploration of

alternatives, and reconsideration) in the third experiment, prompts us to inquire whether

these behaviors are intrinsic to the task on which the Adaptive Memory Module is trained, or

if they arise as emergent capabilities in parallel with scaling laws. Moreover, a fundamental

question arises: can we deliberately induce the emergence of additional, potentially novel

planning-oriented behaviors by scaling the models, expanding the dataset, and augmenting

computational resources?

Several inherent limitations warrant acknowledgment in this study. Primarily, this

investigation has been confined to a specific range of environments, prompting the need for

expanded explorations across a wider gamut of scenarios to ensure the generalizability of

these findings. Moreover, while this study makes a notable contribution to the expanding

body of research supporting the effectiveness of adaptive computation, a more comprehensive

evaluation could result from intricate comparisons involving alternative architectures that

incorporate adaptive memory modules.The analysis of the relationship between input

complexity and pondering time was primarily grounded in objective measures of difficulty

drawn from the dataset, rather than a metric that establishes a connection between

current input information and deliberation time. Future endeavors delving deeper into this

relationship would be instrumental in designing new algorithms with a heightened difficulty

threshold. Lastly, we did not study the effects of varying the prior on the halting probability

distribution, an aspect that holds potential for influencing training dynamics towards either

swift decision-making or more thorough contemplation.

We hope that the insights gleaned from these results will serve as a catalyst for more

profound and expansive analyses of adaptive computation’s potential. Furthermore, the

implications of this research extend beyond academic curiosity, potentially influencing the

evolution of the next generation of artificial intelligence. Particularly pertinent is the role

that efficient adaptive computation could play in the training and deployment of progressively

larger models. Not only could this significantly mitigate the operational costs associated

with these models, but it could also pave the way for more resource-efficient AI systems

that continue to deliver comparable performance through refined computational adaptation

strategies.
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5.8. Appendix

5.8.1. Additional visualizations

Figure 5.5. Increasing certainty
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Figure 5.6. Exploring alternatives

Hyperparameter Value

Memory Architecture DRC(X,Y)
Learning Rate 0.01

Batch Size (number of episodes) 64
Epochs 1

Optimizer AdamW
Weight Decay 1× 10−4

Hidden Units 128
Dropout Rate 0.1

Activation Function ReLU
Learning Rate Schedule LRlambda for 6.4× 104 steps then cosine annealing

Gradient Clipping 1.0
Embedding Size 50
Recurrent Units 64

Initialization He Normal
Regularization None

Total Number of Parameters 1297097

Table 5.5. Hyperparameters for static models.
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Figure 5.7. Reconsideration

Figure 5.8. Deep Repeated ConvLSTM (DRC) architecture. Source [31]
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Hyperparameter Value

Memory Architecture DRC(X,Y)
Learning Rate 0.01

Batch Size (number of episodes) 64
Epochs 1

Optimizer AdamW
Weight Decay 1× 10−4

Hidden Units 128
Dropout Rate 0.1

Activation Function ReLU
Learning Rate Schedule LRlambda for 6.4× 104 steps then cosine annealing

Gradient Clipping 1.0
Embedding Size 50
Recurrent Units 64

Initialization He Normal
Regularization Kullback-Liebler for λ

Total Number of Parameters 1306314

Table 5.6. Hyperparameters for adaptive models.
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Chapter 6

Conclusion

In the pursuit of advancing our knowledge of complex systems like humans brains or

large artificial models, this thesis sought out to explore how the tools of neuroscience and

psychology could help in discovering new applications in deep learning or developing a

greater understanding of the challenges involved in applying deep learning to complex brain

data. Across the trio of articles presented within this thesis, the convergence of deep learning,

neuroscience, and cognitive psychology is evident. The first article experimented with mixing

traditional and more recent work in regularization. This is a significant challenge in studying

the brain, because the data is high-dimensional (e.g. one brain scan has more than 100 000

voxels), and noisy due to variations across many variables which are difficult to control for,

such as variations in the magnetic field during scanning, in the pre-processing of the raw data

and many other elements of the methodology that accompanies MRI studies. It was found

that the proposed model performed better under certain conditions i.e. a large number of

groups compared to the dimensionality of the data on synthetic data, which suggests how

to improve its performance on brain MRI data; by increasing the examples of brain scans

from different groups of interests e.g. alzheimer patients, depression, anxiety, and other

neuropsychopathologies which show promise in being diagnosed from brain scans.

Improving models to study the brain has clear implications, as previously mentioned, but

in turn implementing the knowledge gleaned from studying the brain is a promising direction

in developing artificial intelligence. The brain shows incredible efficiency and learning

capabilities, and the biological neural networks studied have demonstrated high levels of

complex interactions and mechanisms to promote learning. In this view, trying to recreate

the underlying learning process brings us closer to a deeper understanding of our own biology,

but possibly more efficient and smarter AI. The purpose of the second article seeks to add

to the growing field of biologically plausible learning algorithms, another advancement

which shows state-of-the-art improvements on benchmarks. This work demonstrates how



the proposed method L-DRL closes the gap the traditional based on backpropagation by

carefully designing a principled way to build backprop-like targets. The alignement of the

feedforward and feedback weights is shown to be crucial, and L-DRL demonstrates greater

efficiency in ensuring that the Jacobian of the feedback pathway matches the transpose

of the Jacobian of the associated feedforward pathway. This improvement closes the gap

with traditional backprogation, and highlights the mapping from theory to experimental

observation. Unfortunately, our method is up to 30 times slower than backpropagation, due

to the amount of iterations per layer in order to properly align the weights. The good news

is this issue could be resolved by better parallelism, or optimized hardware and would be

a promising direction for future work. Many algorithms today are prevalent because of

technological advancements on the hardware side.

The efficiency with which humans learn to explore the world, and achieve amazing feats

in new situations remains unmatched by biology and artificial intelligence. One remarkable

ability we have is how long we can ponder over difficult problems, using writing to more easily

return to a previous line of thinking even, thereby greatly enhancing the window of reflection

on any given topic. The last article explores the integration of such adaptive computation to

artificial models applied to sequential decision-making tasks, in the form of puzzles. Three

experiments routed in the sequential decision-making domain seek to establish that first,

extended deliberation longer thinking time improves performance. We find that allowing the

models to use a larger deliberation window (more repetitions in the memory module), directly

contributed to more efficient learning. This was observed in the form of higher percentage of

fraction solved for less data trained on. Next, we showed that using a simple mechanism to

enable adaptive computation, you can train a model which performs on par with its static

counterpart, but learns to deliberate for shorter times. Finally, through a set of detailed

visualizations, we established three forms of patterns observed in the evolution of the output

of the memory module over pondering steps: increasing certainty, exploring alternatives, and

reconsideration. By integrating adaptive computation principles in investigating memory’s

role in planning and reasoning within sequential decision-making domains, these experiments

showcase the value and potential cost benefits to training models with adaptive capabilities.

Future work which commits to testing adaptive computation over a very large number of

domains, and across architectures, would help cement the validity of the empirical observa-

tions made in this work. Furthermore, studying different formulations of the architecture

responsible for the halting mechanism could lead to the discovery of new and improved models.

While each article tackled distinct facets of the convergence between neuroscience, cognitive

psychology, and deep learning, they collectively underscore the promise and complexities

inherent in this interdisciplinary field. As we navigate this path, further investigations across
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diverse scenarios and rigorous comparisons with alternative architectures are essential to

comprehensively assess the efficacy of the proposed approaches. By delving into the biological

foundations of learning, integrating adaptive computation and other cognitive mechanisms,

and unveiling novel learning strategies, this thesis has contributed valuable insights to the

ongoing exploration of deep learning’s potential. These findings raise thought-provoking

questions and open avenues for future research, fostering a deeper understanding of the

intricate interplay between neuroscience, cognitive psychology, and artificial intelligence.
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