
Université de Montréal

Towards a Unified Model for Speech and Language
Processing

par

Artem Ploujnikov

Département d’informatique et de recherche operationelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)
en Intelligence artificielle

August 31, 2023

© Artem Ploujnikov, 2023





Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Towards a Unified Model for Speech and Language Processing

présenté par

Artem Ploujnikov

a été évalué par un jury composé des personnes suivantes :

Simon Lacoste-Julien
(président-rapporteur)

Mirco Ravanelli
(directeur de recherche)

Bang Liu
(membre du jury)





Résumé

Ce travail de recherche explore les méthodes d’apprentissage profond de la parole et du
langage, y inclus la reconnaissance et la synthèse de la parole, la conversion des graphèmes en
phonèmes et vice-versa, les modèles génératifs, visant de reformuler des tâches spécifiques dans
un problème plus général de trouver une représentation universelle d’information contenue
dans chaque modalité et de transférer un signal d’une modalité à une autre en se servant de
telles représentations universelles et à générer des représentations dans plusieurs modalités.
Il est compris de deux projets de recherche: 1) SoundChoice, un modèle graphème-phonème
tenant compte du contexte au niveau de la phrase qui réalise de bonnes performances et des
améliorations remarquables comparativement à un modèle de base et 2) MAdmixture, une
nouvelle approche pour apprendre des représentations multimodales dans un espace latent
commun.

Mot-clés: parole — apprentisage de représentations — reconaissance vocale — synthèse
vocale — graphème-phonème – G2P
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Abstract

The present work explores the use of deep learning methods applied to a variety of areas
in speech and language processing including speech recognition, grapheme-to-phoneme con-
version, speech synthesis, generative models for speech and others to build toward a unified
approach that reframes these individual tasks into a more general problem of finding a
universal representation of information encoded in different modalities and being able to
seamlessly transfer a signal from one modality to another by converting it to this universal
representations and to generate samples in multiple modalities. It consists of two main
research projects: 1) SoundChocice, a context-aware sentence level Grapheme-to-Phoneme
model achieving solid performance on the task and a significant improvement on phoneme
disambiguation over baseline models and 2) MAdmixture, a novel approach to learning a
variety of speech representations in a common latent space.

Keywords: speech — representation learning — deep learning — speech recognition —
ASR — text-to-speech — TTS — grapheme-to-phoneme – G2P
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Introduction

Speech processing is one of the most widely-used and well-studied applications of machine
learning and artificial intelligence with a variety of uses in industry ranging from digital
assistants to automatic transcripts for call centers to subtitles to automatic translation. Most
of us interact with speech processing systems daily in some capacity. Typical tasks performed
with speech processing include speech recognition (converting speech to written text), speech
synthesis (converting written text to speech), natural language understanding (converting text
and/or speech to actionable commands to be executed by an information system), speaker
separation (disentangling the overlapping speech of several speakers), speaker identification
and end-to-end translation.

Most early work on the subject treated each task completely in isolation, with a dedicated
set of methods used for each task relying on tailor-made feature-engineered representations.
The earliest methods [5] of speech recognition relied on locating formants within the audio
spectrum. Subsequent incremental improvements to the technologies involved the use of more
sophisticated statistical modeling techniques, such Dynamic Time Warping (DTW) [14],
which was eventually superseded by an approach based on Hidden Markov Models (HMM) [15]
representing speech as piecewise stationary signals. While these approaches constituted a
notable improvement, they still imposed strong assumptions on the signal and were not
very usable for practical applications in user interfaces. While consumer products based
on such technologies were usually successful at recognizing specific user commands, they
often required model fine-tuning for a specific features, and they also struggled with foreign-
accented speech or non-typical voices. Commercial products built in the 1990s were unable
to recognize fluent speech, requiring the speaker to pause between words and not allowing for
any background noise. At the time popular consumer-grade voice assistants were introduced,
speech recognition technology still relied primarily on classical methods, resulting in infamously
inaccurate command recognition. In recent years, with the advent of modern deep learning-
based methods [12,20] and off-device speech recognition allowing for more compute resources
to be used for the task, consumer-grade speech recognition for simple commands is finally at
a level where it can be used as a primary interface for smart home applications, achieving
reasonable accuracy without a significant effort on the part of the user. Other key components



of the processing pipeline, such as natural language understanding [23,44], are still active
research areas, and in recent years, advances in large language models and their use as
foundation models for other tasks have contributed to progress in NLU [7].

Speech synthesis follows a distinct, independent, yet somewhat similar development tra-
jectory. Intrinsically, the task is more mechanical and predetermined than speech recognition
and therefore, has been possible to implement in rudimentary forms prior to recent advances
in artificial intelligence, and even before the invention of the computer. The earliest attempts
at recreating human speech using machines predate modern digital computing technology
with Christian Gottlieb Kratzenstein [24] building a physical model of the human vocal tract
in 1779, producing distinct vowel sounds. Subsequently, a mechanical machine producing both
consonants and vowels was proposed by Wolfgang von Kempelen [31] in 1791 and built by
Charles Wheatstone in 1837. The first electronic vocoder was built by Bell Labs in the 1930s,
utilizing representations of speech consisting of fundamental tones and resonances, which
parallels some of the methods that are still in use. The first computer-based speech synthesis
work started in the 1950s, culminating in the first complete text-to-speech system for English
was developed by Noriko Umeda in 1968, still relying on an anatomical model of human
speech organs - but represented algorithmically rather than with a physical device. Further
improvements were achieved with approaches using statistical methods. Linear Predictive
Coding [25,29] was used in early speech synthesis chips The deep learning [19] revolution
has made inroads into the speech synthesis space as well with deep neural networks gradually
replacing feature engineering combined with classical statistical methods. The original seminal
work in using deep learning [19] methods for speech synthesis was WaveNet [32], a deep
convolutional network relying on dilated convolutions to create a sufficient receptive field for
long sequences and a gated unit inspired by PixelCNN [33]. In deep-learning text-to-speech
systems, WaveNet is commonly used as a vocoder, i.e. the component that converts a compact
representation of speech, such as a MEL spectrogram, to a raw waverform. A variety of
deep learning approaches have been attempted for deep learning, including the Recurrent
Neural Network-based Tacotron [8,19], which leverages an attention mechanism, the compute
efficiency-driven convolutional DeepVoice [1,2,27] family, also leveraging an encoder-decoder
architecture with attention but requiring significantly less training time and, more recently, the
TransformerTTS [20] model, leveraging the recurrence-free, parallelizable Transformer [41]
architecture, which has demonstrated solid performance exceeding that of earlier models on
a variety of sequential tasks. More recently, denoising diffusion probabilistic models [12]
have achieved state-of-the-art performance on a number of generative tasks. While most
initial applications of the technique focussed primarily on photographic image generation,
the DiffTTS [13] model has successfully applied the technique to waveform generation.

Grapheme-to-Phoneme models are used to determine the pronunciations of words or entire
sentences symbolically, converting from a representation based on a written alphabet to one
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derived from a phonetic transcription alphabet, such as ARPABET or IPA. Such models can
be used either in isolation or in the processing pipeline of a text-to-speech system, such as
the G2P-based Tacotron2 [8] varieties, and they can, in theory, be particularly helpful for
dealing with languages with a highly irregular non-phonetic spelling, such as English and
French. Early approaches, such as the one introduced by Warmus and Bole in 1973 [36],
relied on deterministic algorithms. The task is easily amenable to deep learning models
designed for sequence processing, such as RNNs and Transformers, and neural approaches
to G2P were introduced shortly after the usage of these architectures became widespread
for other tasks - using LSTM RNNs [13], convolutional networks [21] and, more recently,
Transformers [22]. Recent research directions include massively multilingual G2P systems,
such as ByT5 [40] and sentence-level ones, such as T5G2P [30]. The present work explores the
use of mixed representations combined with a variety of techniques used in speech recognition
for sentence-level G2P with semantic disambiguation.

Originally, most machine learning models were trained for a specific tasks. Such is the case
with most of the early state-of-the-art models driving the deep learning revolution, including
image classification models, such as AlexNet [17] and VGG [30]. That was also the case with
most early speech and language processing models, such as the ones listed previously, and
numerous current ones as well. The hallmark of human and animal intelligence and learning
is integrating inputs from multiple modalities to form a unified picture of the world. Recently,
many advances have been made in multimodal AI with deep neural networks combining
representations of a single message or piece of information in two or more modalities. For
instance, Facebook’s data2vec [3] combines speech, text and video, while MaMMUT [18]
proposes a unified model for text and images. Many common speech processing scenarios
lend themselves to the multimodal setting with the same signal or message being encoded
in different modalities, such as speech, text, phonetic transcriptions, etc that can all be
combined in a representation-sharing model.

In many deep learning models, especially ones related to sequential tasks, alignment
between inputs and outputs is of utmost importance. Early sequential deep learning models,
such as language models [23] and neural language translation had difficulty maintaining
context and alignment on longer sequences, frequently suffering from vanishing and exploding
gradient problems [26], particularly when relying exclusively on recurrences to maintain
context. Attention mechanisms were gradually introduced to mitigate these deleterious effects,
starting with Bahdanau attention [4], which relies on adding weighted states from both the
encoder and the decoder, with weights being learned separately. Subsequently, Luong et
al [21] have introduced an alternate multiplicative approach where the output is determined
either by a dot product of encoder and decoder states (with optional learned weights) or
a concatenation. Transformer [41]-based models have subsequently superseded recurrent
neural networks for a wide variety of sequence tasks, including speech processing [6] [20],
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featuring an easily parallelizable dot-product attention mechanism and a recurrence-free
architecture. Additionally, Connectionist Temporal Classification [11] is a common alignment-
free technique, which is fundamentally based on integrating over the probabilities of all
possible alignments - with a branch of the model used to estimate the alignment probability
- and a special loss function that efficiently sums up possible alignments using a dynamic
programming algorithm [10]. Combining CTC with an attention mechanism during decoding
has been successfully applied to speech recognition [16]. The present work takes advantage of
both attention and CTC for training and for sequence decoding - and it explores a constrained
alternative to traditional attention for cross-modality alignment.

Fundamentally, speech processing involves a variety of generative tasks, such as synthesis,
discriminative tasks operating across different modalities, such as speech recognition and
speaker identification and others. The main goal of the present work is to create a unified
model combining both generative and discriminative capabilities by leveraging a common
latent space for multiple speech representations and a variety of mechanisms for encoding
and decoding multiple representations of speech - or, more generally, of given information
represented in one or more modalities. While this study focuses mainly on speech, the
methods proposed here are rather general and can be extended to various other applications.
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Mirco Ravanelli suggested using curriculum learning to overcome the limitation of the
initial model in processing long sequences, starting with the lexicon and then continuing on
full sentences. Artem Ploujnikov expanded on the idea by adding a fine-tuning steps on the
homograph dataset.

Mirco Ravanelli suggested using the CTC loss and tokenization to improve the model’s
performance. Artem Ploujnikov implemented and evaluated it.
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• Mixed representations;
• Hyperparameter search using Orion
• Experiments;

Résumé. Les modèles de synthèse vocale de bout à bout visent à convertir une séquence de caractères
directement dans une représentation de la voix, par exemple, un spectrogramme. Malgré leurs performances
impressionnantes, de tels modèles ont de la difficulté à distinguer les prononciations des mots épelés
identiquement, i.e. des homographes. Pour adresser ce problème, un modèle séparé graphème-phonème peut
être utilisé pour convertir les caractères en phonèmes avant de synthétiser le son.

Cet article propose SoundChoice, une nouvelle architecture de modèle graphème-phonème qui peut
traiter des phrases en entier au lieu de les traiter un mot à la fois. Cette méthode profite d’une fonction de
perte d’homographes pondérée pour en faciliter la distinction, se sert de l’un programme d’apprentissage pour
changer graduellement de la conversion d’un mot à la fois à la conversion d’une phrase entière, et elle se sert
aussi des intégrations de mots BERT pour une amélioration de performance additionnelle. En plus, ce modèle
inclut des meilleures pratiques adoptées de la reconnaissance de la parole, y inclus la classification temporelle
connexionniste (CTC) et la recherche de faisceau avec un modèle de langage intégré. En conséquence, elle
atteint un taux d’erreur de phonème de 2.65% en transcription des phrases entières avec des données de
LibriSpeech et de Wikipédia.
Mots clés : graphème-phonème, synthèse vocale, phonétique, prononciation, disambiguation, homonymie

Abstract. End-to-end speech synthesis models directly convert the input characters into an audio
representation (e.g., spectrograms). Despite their impressive performance, such models have difficulty
disambiguating the pronunciations of identically spelled words. To mitigate this issue, a separate Grapheme-
to-Phoneme (G2P) model can be employed to convert the characters into phonemes before synthesizing the
audio.

This paper proposes SoundChoice, a novel G2P architecture that processes entire sentences rather
than operating at the word level. The proposed architecture takes advantage of a weighted homograph loss
(that improves disambiguation), exploits curriculum learning (that gradually switches from word-level to
sentence-level G2P), and integrates word embeddings from BERT (for further performance improvement).
Moreover, the model inherits the best practices in speech recognition, including multi-task learning with
Connectionist Temporal Classification (CTC) and beam search with an embedded language model. As a
result, SoundChoice achieves a Phoneme Error Rate (PER) of 2.65% on whole-sentence transcription using
data from LibriSpeech and Wikipedia.
Keywords: grapheme-to-phoneme, speech synthesis, text-to-speech, phonetics, pronunciation, disambigua-
tion

1. Introduction
Speech synthesis systems convert written text into a sequence of speech sounds. The

irregularities commonly encountered in natural language orthography pose significant chal-
lenges to this process. For instance, a given sequence of characters (grapheme) can yield
different pronunciations depending on the context (homographs). The sentence "English
is tough [2f]" can be understood through [[u:] thorough [@] thought [A] though [oU]. In
some cases, the disambiguation depends on parts of speech (live - [laIv] vs [lIv]) or semantics
(bass - [beIs] vs [bæs]). Popular end-to-end speech synthesis models often fail to perform
disambiguation of the homographs. Tacotron [19], for instance, is successful at only the
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most basic disambiguation (e.g. "read" - past vs present), while DeepVoice3 [12] produces
intermediate phonemes in homographs.

Grapheme-to-Phoneme (G2P) models can improve the system’s performance in these cases.
Several approaches have been proposed in the literature: early attempts were mainly based on
classical methods (e.g., Hidden Markov Models [16]), while more modern approaches rely on
sequence-to-sequence deep learning. LSTM-based models [13] have been largely adopted for
this task, and, more recently, transformer-based models [22] and convolutional models [21]
have been proposed as well. These models are typically trained and evaluated on word-level
lexicons (e.g., CMUDict [40]), making it impossible to resolve homograph disambiguation.
The task of homograph disambiguation, on the other hand, has been explored in the literature
as an independent research direction. Indeed, it was mainly framed as a classification task
rather than an actual Grapheme-to-Phoneme conversion. Early work includes a classical
hybrid method combining a rule-based algorithm and multinomial classifiers, such as the
method proposed by Gornman et al., [3]. A BERT-derived classifier model based on contextual
word embeddings [10] has been proposed as well. A recent example of a model exploiting
sentence context is T5G2P [30]. DomainNet [7], instead, handles the task from a purely
semantic view, while Alqahtani et al. [10] propose a self-supervised method for languages
with diacritics that are frequently omitted.

This paper introduces SoundChoice, a novel G2P model that builds on insights from earlier
contributions and addresses some of their prominent limitations. Different from previous
methods, SoundChoice operates at the sentence level. This feature enables the model to
exploit the context and better resolve homograph disambiguation. To further improve
disambiguation, we propose a homograph loss that penalizes errors made on homograph
words. The homograph disambiguation is not framed as a separate classification problem
but is embedded into the G2P model itself through our homograph loss. In summary, the
proposed SoundChoice introduces the following new features:

• It works at a sentence level, and it is trained with a weighted homograph loss.
• It gradually switches from word- to sentence-level G2P using a curriculum learning

strategy.
• It models the sentence context by taking advantage of a mixed representation composed

of characters and BERT word embeddings.
• It introduces Connectionist Temporal Classification (CTC) loss on top of the encoder

and combines it with the standard sequence-to-sequence loss computed after the
decoder (as commonly done in speech recognition).

Our best model achieves competitive Phonene-Error-Rate (PER%) on LibriSpeech sentence
data (best test PER = 2.65%) with a homograph accuracy of 94%. The code1 and the

1https://github.com/speechbrain/speechbrain

29

https://github.com/speechbrain/speechbrain


t o o

Graphemes

Emb

LSTM

LSTM

LSTM

LSTM

Encoder

Enc State

GRU Attn

GRU Attn

GRU Attn

GRU Attn

DecoderWordEmb

BERT

to

Words

Concat

FC

CTC FC

σout

σCTC

Beam Search

T UW

Phonemes

Fig. 1. Encoder-Decoder Architecture of SoundChoice.

pretrained model 2 are available on SpeechBrain [15]. We also release the new LibriG2P dataset
that combines data from LibriSpeech Alignments [8] and the Wikipedia Homograph [10] on
HuggingFace 3.

2. Model Architecture
The basic architecture of SoundChoice is depicted in Fig. 1. The input graphemes (discrete)

are first encoded into continuous vectors using a simple lookup table that stores embeddings
of a fixed dictionary and size. At this stage, we also combine word-level embeddings from a
pretrained BERT model [2]. This addition inflates higher-level semantic information into the
system that improves homograph disambiguation.

An LSTM-based encoder then scans the input characters and derives latent representations
that embed short and long-term contextual information. On top of the encoder, we use a CTC
loss (after applying a softmax classifier). The encoded states feed a GRU decoder coupled
with a content-based attention mechanism. Special tokens called ⟨bos⟩ and ⟨eos⟩ are used to
mark the beginning and end of a sentence, respectively. On top of the decoder, we combine
the standard Negative Log-Likelihood (NLL) loss with our homograph loss. Finally, a hybrid
beamsearch mechanism that exploits both the CTC and final predictions is employed. The
partial hypotheses are rescored with an RNN language model that operates at the phoneme
level.
2https://huggingface.co/speechbrain
3https://huggingface.co/datasets/flexthink/librig2p-nostress-space
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We will provide more details on the proposed architecture in the following sub-sections.

2.1. Word Embeddings

To improve homograph disambiguation, we need our model to learn latent representations
that correlate with grammar and semantics knowledge. We thus hypothesize that features
from a large language model trained on a large corpus can improve performance. Although
many of the recently-proposed language models could fit our purpose, we here used word
embeddings derived from the popular BERT model [2]. The BERT embeddings pass through
a simple encoder consisting of a normalization layer, a single downsampling linear layer, and
tanh activation. These features are then concatenated with the character-level embeddings
to form a single embedding vector.

2.2. Tokenization

We use the SpeechBrain [15] implementation of the SentencePiece [18] language-
independent tokenizer with a unigram model. The goal is to shorten the grapheme and
phoneme sequences, making them easier for the neural network to model. The tokenizer
achieves this by learning a transformation to a newly constructed vocabulary comprised of
the original tokens and common combinations of tokens encountered in the corpus. As we
will discuss in Sec.5, we find that tokenization in the character and phoneme spaces is not
always helpful and does not play an important role as expected.

2.3. Encoder/Decoder Architecture

The encoder and decoder use recurrent neural networks. The encoder is based on an
LSTM, while the decoder uses a GRU model coupled with content-based attention4. The
hyperparameters of the model are shown in Table 1. We derived them by performing a
hyperparameter search with Oríon [1], where we search for the embedding dimensions, depths,
and the number of neurons that maximize the PER on the validation set.

We attempted a variation of this model using residual convolutional layers [21]. In
particular, we replaced the Bi-LSTM model with a series of residual convolutional layers.
We achieve similar performance to the baseline one on lexicon data; however, it does not
appear to benefit from pretraining, performing poorly on sentence data. We also conduct
experiments to compare the RNN-based architecture with a Transformer-based one [41]. In
this case, we use a conformer as an encoder and a standard transformer for decoding. The

4The choice of RNN model types is based on existing G2P and ASR models in SpeechBrain - using other
combinations, such as both the encoder and decoder being an LSTM or a GRU is also possible; however, the
comparison of different RNN architectures was not the primary focus of this work

31



Table 1. RNN Model Hyperparameters.

Component Layer Details
Embedding Dim = 512

Encoder LSTM 4 layers, 512 neurons, dropout = 0.5
Decoder GRU 4 layers, 512 neurons, dropout = 0.5

FC Linear 43 neurons
CTC FC Linear 43 neurons

Table 2. Transformer (Conformer) Model Hyperparameters.

Component Layer Details

Embedding Dim = 256
Encoder Convolutional 2 layers, kernel size=15
Decoder Transformer 2 layers, dim = 4096

FC Linear 43 neurons
CTC FC Linear 43 neurons

best hyperparameters are shown in Table 2. As we will see in Sec. 5, this model performs
well but is slightly worse5 than the aforementioned RNN-based architecture.

2.4. Beam Search and Language Model

We employ a hybrid beamsearcher similar to those used in modern speech recognizers [20].
It combines the log probabilities derived from the CTC encoder with those estimated by the
decoder. The beamsearcher rescores the partial hypothesis with a phoneme language model.
We hypothesize that a language model trained on sequences of phonemes can help minimize
uncertainty by choosing the most likely phoneme sequences where an accurate prediction is
difficult to make. We use an RNN-based language model with an embedding dimension of
256 and 2 hidden layers of 512 neurons each, regularized via dropout at a rate of 0.15.

3. Training
In this section, we provide more information on the adopted training strategy.

3.1. CTC Loss

The CTC6 loss is computed on top of the encoder. CTC is suitable for grapheme-to-
phoneme because the length of the phoneme sequence does not normally exceed the length
of the input characters. This condition holds for many languages. For instance, in most
5See the Results section for likely reasons
6See the Introduction section for more details about CTC
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European languages, a single grapheme can produce one phoneme by itself, be silent or be
part of an n-graph. Languages producing more than one phoneme for single grapheme are rare.
One exception is Ukrainian, where the letters "ϵ" and "ï" yield two-phoneme combinations [jE]
and [ji:], respectively. In such cases, the limitation can be addressed via sequence padding or
by introducing quasi-categories where a single position stands for two phonemes.

The CTC loss is combined with a standard NLL loss used on top of the decoder. This multi-
task learning approach improves performance and helps the model convergence significantly.

3.2. Homograph Loss

In a typical ambiguous sentence from Wikipedia Homograph Data [4], the homograph
only represents an insignificant portion of the whole sentence. An error in the homograph can
involve only one or two phonemes out of 30-250 phonemes in the sentence. This incidence
is comparable to random variations in labeling or infrequent, ambiguous, or challenging
sequences, such as proper names or acronyms. A model can thus achieve a low PER without
successfully disambiguating the homographs.

We mitigate this issue by adding a special loss that amplifies the contribution of the
homographs relative to other words in the sentence. This is realized by computing the NLL
loss on the subsequence corresponding to the homograph only.

The total loss used to train the G2P is thus a combination of three objectives:

L = LNLL + λhLh + λcLCT C (3.1)

where LNLL, Lh, and LCT C are the sequence, homograph, and CTC losses, respectively.
The factors λh and λc are used to weight the homograph and CTC losses.

3.3. Curriculum Learning

We employ a curriculum learning strategy based on different stages of increasing complexity.
First, we learn how to convert words into phonemes using the lexicon information. This step
is relatively easy as it involves short sequences without the need to disambiguate homographs.
In our case, we trained the model with this modality for 50 epochs. Then, we move training
on by considering whole sentences from LibriSpeech-Alignments [8]. This step is more
challenging, but the model pretrained on single words is already well-initialized for addressing
this task. We train the model on sentences for 35 epochs. Finally, we perform a fine-tuning
step using the homograph dataset for up to 50 epochs.

The adoption of this curriculum learning strategy turned out to play a crucial role in our
G2P system. Without using it, the system provides a worse performance and struggles to
converge. Further details on training can be found in the released code7.

7https://github.com/speechbrain/speechbrain/tree/develop/recipes/LibriSpeech/G2P
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Type Train Validation Test Total
Lexicon 202377 2065 2066 206508
Sentence 103967 2702 2702 109371

Homograph 9231 516 512 10259

Table 3. LibriG2P splits.

4. Experimental Setup
4.1. Datasets

We train the Grapheme-to-Phoneme Model using LibriSpeech-Alignments [8], Google
Wikipedia Homograph Data [3] [4] and CMUDICT [40].

The set of outputs consists of 41 phonemes (ARPABET without stress markers) plus a
word-separator token. The original phoneme annotations in LibriSpeech-Alignments [8] lack
a word separator; its position is inferred from the word-level annotation. Google Wikipedia
Homograph Data [3] [4], instead, lacks the phoneme annotations completely. However, each
sample is tagged for the type of homograph it includes. Phoneme annotations are constructed
by searching the tagged homograph in the provided glossary (with phonemes mapped from
IPA to ARPABET) and looking up the remaining words in CMUDICT [40]. Uppercase
words appearing in the original text that do not exist in CMUDICT [40] are interpreted as
acronyms. We drop samples where the aforementioned methods fail.

We construct a new combined dataset named LibriG2P specialized for G2P with 3 slices:
a lexicon consisting of each unique word encountered in LibriSpeech [25] as a separate sample,
a sentence slice consisting of entire LibriSpeech dataset annotated for phonemes derived from
Librispeech-Alignments [8] and a homograph slice consisting of a subset of the Wikipedia
Homograph [3] [4] dataset. The non-space-enabled version lacks the homograph slice because
the underlying implementation relies on word boundaries to locate the homograph. The
train-validation-test split follows Table 3. The Google Wikipedia Homograph [3] [4] dataset
is highly unbalanced with regards to the frequencies of pronunciation variations for any given
homograph. We conduct experiments both with random sampling ("unbalanced") and with
weighted sampling attempting to equalize the probability of each variation being selected
("balanced").

Given the inconsistency between LibriSpeech-Alignments [25] annotations obtained from
audio and annotations computed using CMUDict [40], primarily in unstressed syllables or
short connecting words - conjunctions and prepositions (e.g. "and": [@nd] vs [ænd] or into
- [intu:] vs [int@], we produce a variation of the dataset with non-homograph words in the
sentence slice replaced with CMUDict [40] pronunciations where possible.

To foster replicability and follow-up studies, we release the processed datasets to the
community.
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4.2. Metrics

We use the Phoneme Error Rate (PER%) to evaluate all models. To evaluate the
performance of homograph disambiguation, we compute an additional metric, the homograph
classification accuracy, defined as the percentage of samples in which the pronunciation of
the homograph is predicted with no errors.

5. Results
5.1. RNN Model

Table 4 reports the performance achieved with the RNN model under different settings.
It clearly emerges that sentence-based systems significantly outperforms word-based systems
(see row 1 vs row 2 of Table 4). This change leads to a relative improvement of 47% in the
PER, confirming the key importance of contexts in grapheme-to-phoneme conversion. Table
4 also highlights the importance of adding a special token (space) in the phoneme space.
This token is needed to signal word boundaries and inject prior information about words into
the system. This simple trick leads to a further 18% relative improvement of the PER. The
tokenizer applied to phonemes leads to a minor performance improvement, while the BERT
word embeddings do not improve the PER. BERT embeddings, however, will play a crucial
role in homograph disambiguation. The phoneme language model turned out to not play a
significant role as well. The best system achieves a PER of 2.65% on the LibriSpeech dataset.

5.2. Transformer Model

Table 5 reports the results achieved with the Conformer/Transformer model. The
important benefits observed using a sentence-based system and adding the space token are
confirmed. The minor role played by BERT embeddings and language models is observed for
this model as well. In terms of performance, the best RNN model outperforms the transformer
one (PER=2.65% vs PER=2.83% ). The performance drop is not huge and might be because
transformers notoriously require large datasets to be trained properly.

5.3. Homograph Disambiguation

Table 6 reports the results achieved after fine-tuning the model with the homograph
dataset. The homograph disambiguation is evaluated on variations of the best-performing
RNN model, with and without word embeddings. The use of the proposed homograph loss
improves the homograph accuracy. With a weight factor λh of 2.0, the accuracy improves
from 82% (no homograph loss) to 87%, thus corroborating our conjecture that the signal
from the NLL loss on the entire sentence alone is not strong enough for disambiguation.
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# Sentence Space TP WE LM Val PER Test PER
1 6.82 6.46
2 ✓ 3.23 3.38
3 ✓ ✓ 2.63 2.76
4 ✓ ✓ ✓ 2.56 2.69
5 ✓ ✓ ✓ ✓ 2.42 2.71
6 ✓ ✓ ✓ 2.51 2.65

Table 4. G2P Model Results - RNN
Sentence is flagged when training/evaluating on full sentences, Space refers to the space token

preserved. TP is marked when applying the tokenization to phonemes, WE refers to BERT
embeddings, while LM is flagged when the phoneme language model is used.

# Sentence Space TP WE Val PER Test PER
1 9.11 9.23
2 ✓ 5.30 5.46
3 ✓ ✓ 3.59 3.70
4 ✓ ✓ ✓ 2.74 2.83
5 ✓ ✓ ✓ ✓ 2.79 2.97

Table 5. G2P Model Results - Conformer
Sentence is flagged when training/evaluating on full sentences, Space refers to the space token

preserved. TP is marked when applying the tokenization to phonemes, WE refers to BERT
embeddings, while LM is flagged when the phoneme language model is used.

BERT [2] embeddings significantly improve homograph detection as well. Thanks to this
addition, the best system reaches an accuracy of 94% in homograph disambiguation. While
the disambiguation accuracy cited in [3] is higher, this method achieves competitive results
within the sequence model itself without additional classifiers.

It is worth mentioning that reevaluation of LibriSpeech [25] data after homograph fine-
tuning showed a deterioration in nominal PER. This is due to inconsistencies in labeling,
given that LibriSpeech Alignments was annotated using an automated aligner, capturing
minor subtleties in pronunciation, whereas the homograph step relied on a dictionary [40] and
allowed for only one pronunciation per word except for the homograph. When reevaluating
on LibriSpeech Alignments after homograph fine-tuning, the test PER increases from 2.65%
to 4.20%. Qualitative analysis reveals that most of the new errors originate from allowable
variations in the labeling of non-homograph words, especially in prepositions/conjunctions
and unstressed vowels. Retraining the model on the version of the dataset where the original
labels are harmonized with CMUDict [40] leads to an overall PER decrease to 1.54%. This
suggests that the apparent error increase in fine-tuning is due to a distribution shift rather
than catastrophic forgetting.
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Word Emb HG Weight Bal Accuracy
1 0.0 82 %
2 2.0 87 %
3 2.0 ✓ 85 %
4 5.0 ✓ 82 %
5 ✓ 2.0 ✓ 94 %

Table 6. Homograph Disambiguation Results
Word Emb refers to Word embeddings, HG Weight is the weight of the homograph loss (λh),

while Bal refers to balanced sampling.

6. Conclusions
This work proposed SoundChoice, a novel method for converting grapheme-to-phonemes

that is robust against homograph disambiguation. The model is trained with a curriculum
learning strategy that learns a word-based system first and finally learns a sentence-based
model with a special homograph disambiguation loss. The best solution relies on an RNN
system with hybrid/CTC attention and beam search. It takes advantage of word embeddings
from a pre-trained BERT model as well. We achieved a PER of 2.65% on whole-sentence
transcription using data from LibriSpeech and 94% accuracy in homograph detection using
the Google Wikipedia Homograph [3] [4] corpus.

SoundChoice can be used in different ways in speech processing pipelines. For instance, it
allows the training of TTS systems with phoneme tokens (or with mixed representation [5]).
It can be used for speech recognition as well, as phonemes are known to be excellent targets,
especially in channeling scenarios where speech is corrupted by noise and reverberation [9,14].
In future work, we would like to extend this approach to address multiple languages.
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Résumé. Ce travail vise à construire un modèle modulaire et unifié pour pouvoir exécuter des tâches
diverses de traitement de la parole telles que la reconnaissance vocale, la synthèse texte-parole, la conversion
graphème-phonème et d’autres tâches en se servant d’un réseau neural unifié modulaire au lieu d’entraîner
un modèle séparé pour chacune des tâches. L’idée principale est d’encourager des modules du réseau à
apprendre graduellement à partager un langage commun en se servant de représentations latentes similaires et
alignées. En plus, le modèle peut servir comme un autoencoder pour chaque modalité. L’approche permet au
modèle d’atteindre un niveau de performance comparable à celui des modèles spécifiques pour la conversion
graphème-phonème, et il peut aussi apprendre la reconnaissance et la synthèse vocale comme preuve de
concept. La méthode n’est pas limitée au traitement de la parole et elle peut être appliquée à des tâches
diverses où des représentations d’une seule donnée dans plusieurs modalités peuvent être représentées de
façon efficace dans un espace latent à l’aide d’un autoencoder et alignées l’une à l’autre dans la dimension
temporelle. Elle se subit aussi à l’apprentissage par transfert où les encodeurs et les décodeurs pré-entraînés
peuvent être intégrés dans le contexte multimodal avec d’autres tâches à apprendre. Cette approche introduit
aussi un aligneur de déformation temporelle à mélange gaussien, une alternative au mécanisme traditionnel
d’attention plus contraint, favorisant la stabilité d’entraînement.
Mots clés : multimodal, audio, speech, speech recognition, ASR, TTS, speech synthesis, grapheme-to-
phoneme, G2P, latent, generative, diffusion

Abstract. This work aims to build a modular, unified approach to handling a range of speech processing
tasks (speech recognition, text-to-speech, grapheme-to-phoneme and others) in a single modular network,
rather than training a separate model for each. The core idea is to enable modality-specific sub-networks to
progressively learn to speak a common language via shared, aligned latent representations. Additionally,
the model learns an auto-encoder for each modality. Thus, a variety of generative approaches, such as
latent diffusion, can be applied to generate samples in multiple modalities. The approach achieves a level
of performance comparable to commonly used systems on grapheme-to-phoneme tasks, and is also able to
learn ASR and TTS as a proof of concept. The method is not limited to speech and can be applied to a
variety of multitask learning problems in which representations of a single data element in multiple modalities
are temporally aligned and can be effectively represented in a latent space with an autoencoder. It is also
amenable to transfer learning where encoders and decoders from existing pre-trained single-task models are
integrated into the multimodal context with additional tasks to be learned. It introduces a novel method of
aligning representations in the temporal dimension, the Gaussian Mixture Time-Warping Aligner, a highly
constrained alternative to self-attention favouring training stability.
Keywords: multimodal, audio, parole, reconaissance vocale, synthèse vocale, graphème-phoneme, G2P,
latent, génératif, diffusion

1. Introduction
The essence of a wide variety of artificial intelligence tasks can be thought of as transferring

a signal or a piece of knowledge or information from one representation modality to another.
Such tasks are particularly common in the area of speech and natural language processing
where a given message can be written, spoken, handwritten or signed, as well as having the
same content represented in different natural languages.

Speech processing is one of the oldest and best-studied applications of machine learning and
artificial intelligence with a wide variety of practical uses in industry ranging from personal
assistants to content search to automatic captioning and language translation. Typical
tasks performed with speech processing include speech recognition [12,20](converting speech
to written text), speech synthesis [35,38,43] (converting written text to speech), natural
language understanding [23,44] (converting text and/or speech to actionable commands to be
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executed by an information system), speaker separation [36] (disentangling the overlapping
speech of several speakers) and end-to-end translation [16]. Most such tasks involve studying
and leveraging the interaction of representations of communications in human language across
multiple modalities, including speech, written text, phonetic transcription, emotional labels
or even raw video. For example, ASR is the transfer of a message from the audio modality
to the text modality, whereas NLU is the transfer of a unit of meaning to a structured,
machine-interpretable representation. For a given simples, modality representations differ in
their richness and information content, and some express aspects of the message not found
in others. Recorded speech represented as a waveform is the most high-dimensional and
carries the semantic meaning of the message, as well as the speaker’s voice timber, accent,
intonation contours affected by the speaker’s emotional state. A phonetic transcription of
the speech carries only a subset of the information carried in raw speech, with phonemes
representing only aspects of human speech used in distinguishing semantic units, discarding
any variations in vocal characteristics resulting from speaker characteristics, intonation or
emotion. Depending on the language used, written text may capture different subsets of this
meaning. In languages with alphabetic writing systems, text corresponds closely to a phonetic
transcription while carrying some information not encoded therein, such as punctuation, which
may correlate with intonation, or homophones, representing different semantic units that
require context and knowledge of the language to be disambiguated in speech or transcription.
Languages with hieroglyphic writing systems may omit phonetic information entirely, as
well as intonation, capturing only high-level semantics represented pictorially. Speech signal
representation may also include secondary modalities, such as speaker identity/characteristics,
emotions and intonation. These can, in theory, be derived from a waveform (as in speaker
identification [3]) but cannot be used in isolation to reconstruct the signal in the primary
modalities.

The present work studies the possibility of representing multiple modalities in speech in a
single embedding space. Some prior work on common latent spaces has been explored in the
literature. Examples include Amazon’s Tie Your Embeddings Down [1] where a common latent
space between audio and word embeddings was used for intent classification and SpeechT5 [2]
where a common latent space was introduced with a specific model Transofrmer [41]-based
architecture. We build on this prior work to devise a general approach. We also take advantage
of the shared latent space to unconditionally generate samples in multiple modalities with a
single generative sub-network. One example of a multimodal generative model using multiple
autoencoders is multimodal latent diffusion [32]. Another recent work exploring the shared
embedding idea is Meta AI’s ImageBind [10]. However, the scope is different: it focuses
mainly on single-vector embeddings of a single sample, lacking a time dimension, whereas
MAdmixture learns sequential time-aligned representations. The concept of creating shared
encoders for related tasks has also been explored in Unified Speech-Text Pre-training for
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Speech Translation and Recognition [39]. However, like in [2], alignment is achieved using a
combination of modality-specific and shared neural network modules. Existing methods are
also available for time-series alignment; however, the have not been used extensively in the
context of flexible multimodal architectures. One commonly used method is Dynamic Time
Warping [33]; however, this original technique, as originally proposed, is not differentiable.

Compared to traditional single-task neural network TTS [35], ASR [20] and G2P [30]
models, this approach makes it possible to reuse pre-trained subnetworks and the common
latent space "language" they learn for adaptation to new modalities. Also, in order to facilitate
content generation, a single generative model, such as latent diffusion [5], may be trained
with the common latent representation as the generation target. Thus, a generated signal
can then be decoded into multiple modalities. For models with 3 or more modalities, the
approach is economical with respect to parameter count, requiring 2n networks to be trained
(one encoder/aligner and one decoder per modality) plus n small aligner modules, compared
to at least n2 networks for the traditional non-multimodal approach.

2. MAdmixture Model

Fig. 2. MAdmixture Model Architecture

The present work introduces a novel audio model named MAdmixture (Modality Admix-
ture) (shown in Figure 2), which aims to coalesce multiple modalities into a unified latent
representation.

The proposed model introduces the following new features
• It introduces an approach where different modalities learn a common latent represen-

tation, facilitating the reuse of model components
• It introduces a new alignment technique, the Gaussian Mixture Time-Warping Aligner,

which facilitates a learned dynamic scaling of latent representations
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• It uses a combination of curriculum learning [4] and guided attention [37] to counter in-
stabilities commonly encountered with multitask training, particularly those involving
long sequences

The MAdmixture model consists of an arbitrary number of modalities representing the
same signal. For each modality, the model contains:

• An encoder to convert the raw representation to a modality-specific latent represen-
tation
• An aligner to project the modality-specific representation to the common latent space

approximately aligned in the time dimension
• A decoder to convert the common latent representation to a raw representation in a

given modality.
The model architectures for the encoder and decoder are essentially arbitrary so long

as they can learn good representations for the modality in question. Sub-networks from
existing model architectures featuring an encoder and a decoder can be good candidates
for integration into MAdmixture. For most speech modalities, RNN, Transformer [41] or
convolutional encoders and decoders can be used. The model achieves all common tasks by
extracting a latent representation from one modailty’s encoder-aligner pair and then passing
it to the decoder of the desired modality, which can be the same (autoencoding) or different
(TTS, ASR, G2P, etc).

2.1. Aligner Architecture

The goal of the MAdmixture aligner is to learn a dynamic, variable time-warping function
to scale the inputs in a given modality to roughly match the anchor modality in the time
dimension. We hypothesize that while a self-attention mechanism is well-suited to computing
an alignment between two sequences in the general case, for this specific problem, it is overly
general, and a full attention mechanism is redundant given that most decoders that can
be adapted from existing task-specific architectures already have an attention layer. Also,
most current approaches to standard attention on variable-length sequences require target
sequence lengths to be known in advance in order to avoid attending to zero padding. Early
attempts at using based on traditional self-attention [41] suffered from too much instability
for them to be practical. We thus re-frame alignment as a more constrained and explicit
task of learning a time-warping function. This is achieved by predicting the width a given
encoding vector occupies in the latent space irrespective of its absolute position. It is then
reinterpreted as a distribution over positions in the latent space.

We propose a time-warping approach that is more constrained and stable than an attention
mechanism with a strong prior of a near-monotonic, near-diagonal alignment where the weight
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of a given input in the latent space is defined by the Gaussian PDF. We use a simple linear
layer to output the desired width of a given encoder output in the latent space.

The method transforms raw encoder outputs X(enc) with a context-embedding transform
f (ctx), such as a 1D convolution and then uses a width prediction network f (w) to predict
the width and compute alignment matrix A. An output projection f (out) and normalization
Norm(out) is then applied to obtain a final latent representation X(latent) The aligner also
outputs a length prediction l(latent), a simple sum of predictions for individual steps, to which
a regression loss can then be applied during training. The method is shown in 1

Algorithm 1: Gaussian Mixture Time-Warping Aligner
X(ctx) ← Norm(out)

(
f (ctx

(
X(enc)

))
; /* Context embedding & input

normalization */
ŵt ← f (w)(x(ctx)

t ) ; /* Predict encoder time step latent width */
µt ←

∑t−1
t′=1 ŵt′ + ŵt

2 , σt ← ϵ ŵt

4 ; /* Compute Gaussian prior mean/std */

f (a)(t′, t) = 1
σ

√
2π

exp
(
−1

2

(
t′−µt

σt

)2
)

; /* Gaussian prior */

At′,t ← f (a)(t′,t)∑l

k=1 f (a)(t′,k)
; /* Normalized alignment matrix */

X(latent) ← Norm(out)
(
f (out)

(
X(ctx)A⊤

))
; /* Aligned & normalized outputs */

l(latent) ← ∑l
t=1 ŵt ; /* Latent length prediction */

Unlike methods based on attention, such as the classic self-attention method used in
Transformers [41], this alignment method is naturally diagonal and not prone to the common
training instabilities encountered with classic attention (e.g. failure to align). To address
possible numerical instabilities when length predictions are close to zero, we use a scale-and-
shift technique described in detail in Appendix 8.1.

2.1.1. Model Architecture. The baseline model is based on the CRDNN (convolutional
+ recurrent + deep/fully connected neural network) ASR found in SpeechBrain [29] and
SoundChoice G2P [28] with some hyperparameter adjustments made to accommodate a
common latent space. For detailed hyperparameter settings used in the model, refer to
Appendix 8.2.

We also attempt a preliminary proof-of-concept where the CRDNN encoders and decoders
are replaced with their Conformer [13]/Transformer [41] counterparts (see appendix 8.7).

2.2. Sampling

Generative models based on latent diffusion [5] have been shown in literature to achieve
state-of-the-art results on a variety of tasks, most notably image generation. We use a similar
approach to generate audio and text samples simultaneously by training a residual UNet [31].
We use channel multipliers of 1 and 2 with 2 residual layers per multiplier. The UNet [31]
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implementation from OpenAI Guided Diffusion [24] was used as a base for the UNet [31], and
Phil Wang’s open-source denoising-diffusion-pytorch [42] was used as a guide to implementing
diffusion within SpeechBrain.

On each training step, we randomly choose a latent representation from one of the available
modalities and then add a certain amount of random noise sampled from a time step schedule
and train the UNet to predict the noise as suggested in [15]. This process is then reversed
during influence to produce a latent sample, which can then be fed to multiple decoders to
obtain generated signals in multiple modalities. The sampler is used to obtain generated
signal samples across multiple modalities (e.g. of speech, text, etc).

3. Theoretical Problem Formulation
3.1. The Traditional Approach

In the traditional approach where a single model is trained for a specific task, such as
ASR, TTS or G2P, the model transfers from the source modality to the target modality:

x̂(tgt) = fmodel(x(src))

x̂(tgt) is the predicted signal in the target modality, and x(src) is the signal in the source
modality. For example, in the case of ASR, x̂(tgt) is the predicted text sequence (e.g. a
sequence of characters or tokens), whereas x(src) is the source audio signal.

The problem can thus be framed as finding the message representation in the target
modality with the highest probability given the message in the source modality.

x̂(tgt) = arg max
x(tgt)∼X (tgt)

P
(
x(tgt)|x(src)

)
Consider the most common applications: ASR and text-to-speech. In the case of ASR,

x(src) = x(audio), x(tgt) = x(text). In the case of TTS, x(src) = x(text), x(tgt) = x(audio). Other
common applications can be formulated similarly. For instance, in emotion recognition,
x(src) = x(audio), x(tgt) = x(emotion).

3.2. Extension to Multimodal Processing

In some cases, one may consider extending this to multiple modalities. For instance, one
may want to synthesize speech expressed with a specific emotion in cases where the emotional
content cannot be unambiguously inferred from the textual representation.

45



The formulation then becomes(
x̂(tgt)

1 , x̂(tgt)
2 , ..., x̂(tgt)

k

)
= arg max

x(tgt)
1 ∼X (tgt)

1
x(tgt)

2 ∼X (tgt)
2

...
x(tgt)

k
∼X (tgt)

k

P
(
x(tgt)

1 ,x(tgt)
2 , ..., x(tgt)

k |x(src)
1 , x(src)

2 , ..., x(src)
j

)

Thus, the model needs to find the most likely combination of samples from the chosen k
target modalities given specific samples from j source modalities.

Commonly deployed speech models do not currently address this problem generically.
However, specific model architectures performing this for select modalities are available. For
instance, multispeaker TTS systems, such as DeepVoice3 [27], combine text representations
with speaker embeddings to produce speech in the desired voice.

3.3. Common Latent Space Embeddings

The proposed approach involves a joint training approach, which would remove the explicit
distinction between source and target modalities. Instead, let x(m) be the representation of a
sample in modality m. Additionally, instead of using a task-specific pre-processing function,
each modality will have an encoder function that produces an embedding of the signal in that
modality and a decoder function f̂−1(z(m)) that will attempt an approximate reconstruction
from the common embedding space into that same modality, with error ϵ(m). The approach
is inspired by Tie Your Embeddings Down [1].

z(m) = f (m)
enc (x(m)), x(m) = f̂−1

enc
(m)(x(m)) + ϵ(m)

Intuitively, we want to learn a transformation of all available modalities into the shared
embedding space, such that:

• The reconstruction error within a single modality is minimized (i.e. a faithful recon-
struction of any modality can be obtained from the latent representation)
• For a given speech sample, the projections of all modalities into the latent space are

closer to each other than they would be to the projection of any modality from an
unrelated, differently-sounding speech sample
• The time dimension in the latent space is shared across modalities
• The time dimension of the latent space embedding is preserved, at least approximately.

That is, given a latent representation Z ∈ Rtz×fz of raw input X ∈ Rt×f , and for
kz < tz, one were to construct a subset Z′ = Z0:kz ,f , one can approximately reconstruct
the first kzt

tz
time steps on the input with no access to the rest of the latent space

tensor. Here tz refers to the number of time steps in the latent space fz refers to the
size of the latent feature dimension.
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Examples of modality transfers include speech recognition (audio → text), phonetic
transcription (audio → phonemes), speech synthesis (text → audio, phonemes → audio),
G2P (text → phonemes).

More formally, the objectives can be formulated as follows:

min
∑

m∈M

E
[
d(
(
x̂(m), x(m)

)
)
]

= min
∑

m∈M

E
[
d
(
f̂−1

enc
(m)(f̂ (m)

enc (x(x))), x(m)
)]

min
∑

m∈M

E
[
d(z(m), z̄)

]
where d(x1, x2) is a distance metric between vectors or tensors (e.g. MSE, cosine distance)

3.4. Sequence Length Handling

The task of mapping multiple modalities to a common latent space involves finding a
common representation of the time dimension. This task is not straightforward because the
representation of a given segment in different modalities can vary significantly in length.
Additionally, for some modalities, such as raw characters, the mapping is not entirely
equivariant with many orthographies relying on polygraphs to represent a single phoneme, as
well as featuring silent letters that have no representation in the phoneme or audio modalities
at all.

For certain tasks in prior work, such as intent classification in Tie Your Embeddings
Down [1], the time dimension can be discarded completely. However, in the task featured
in the present work, such as TTS, ASR and G2P, we consider it useful to preserve the time
dimension.

The aligner : z(m)
t = A

(m)
t (x(m)

1 , x(m)
2 , ..., x(m)

n ) is used to map a raw encoded representation
from a single modality to the time dimension. For practical reasons, we assume that a
desirable latent representation is approximately equivariant in the time dimension. While it
is not necessary to satisfy this assumption in order to achieve good performance on the tasks
being considered, this property is useful for interpretability and modularity.

MAdmixture addresses the problem of temporal representation alignment by choosing an
anchor modality to which all modalities aligned, i.e. ∀m ∈M,E[l(m)] = l(anchor). We handle
this by learning a length prediction f (l)(X(enc)) so as to minimize the difference between the
predicted length and ground truth anchor lengths arg minΘ E[f (l)(X(enc))− l(anchor)]

3.5. Sampling

With the common latent representation approach, generating samples across modalities can
be reduced to sampling from a single latent distribution z ∼ Z, which can be parameterized
using a single neural network.
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3.6. Loss Function

The proposed optimization criterion is:

L = λrec Lrec +λtransfer Ltransfer +λdistance Ldistance +λalign Lalign +λlen Llen

+ λctx Lctx +λsampler Lsampler

L is the total loss, Lalign is the alignment loss Lrec, λrec are the reconstruction loss and its weight,
Ltransfer, λtransfer are the transfer loss and its weight, Ldistance, λdistance are the latent space
distance loss and its weight Llen, λlen are the length loss and its weight, Lctx, λctx are the
context loss and its weight and Lsampler, λsampler are the sampler loss and its weight.

The reconstruction loss Lrec = ∑
m∈M d(m)(x̄(m), x(m)) is expected to be modality-specific,

appropriate for the model being used. For the baseline model, we use the MSE loss for
spectrograms and the Negative Likelihood Loss for character modalities. The latent space
distance loss Ldist can encourages the representations of different modalities from the same
example to be closely aligned. The simplest approach involves computing the stepwise MSE
loss between the latent representation in the anchor modality and other modalities. More
complex contrastive losses can also be used.

The purpose of the alignment loss is to improve training stability in any attention-based
decoders. The approach used in the present work involves applying a guided attention loss
as proposed in Efficiently Trainable Text-to-Speech System Based on Deep Convolutional
Networks with Guided Attention [37]

kin,kout = 1− exp
(

kin

Lin
− kout

Lout

)
Lalign = E [kin,kout kin,kout ]

The transfer loss ensures that a decoder of a given modality can effectively reconstruct
latent representations from the encoders of other modalities.

Ltransfer =
∑

src∈M,tgt∈M,src ̸=tgt
d(tgt)(Dec(tgt)

(
Align(src)

(
Enc(src)(x(src))

))
, x(tgt))

d(tgt) is the modality-specific distance function between target outputs and ground truths,
such as MSE, negative log-likelihood, etc.

The context loss Lctx refers to any modality-specific losses applied to decoders. In the
baseline implementation, we use a CTC [11] loss to improve decoding for character and
phoneme modalities and a Tacotron [35] gate loss to predict sequence lengths.

The sampler loss Lsampler refers to the loss function applied to the sampler network for
the generative context. For a Denoising Diffusion [15] sampler, this is the MSE loss between
the added noise and the predicted noise.
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4. Related Work
The idea of creating a common embedding space for multiple languages or modalities

is inspired by the Tie Your Embeddings Down [1] work from Amazon, which combines
pretrained sentence embeddings and raw audio embeddings in a single embedding space
aiming to improve the performance of Natural Language Understanding tasks. Outside of
speech processing, the idea has been explored for word embeddings in Learning Multilingual
Word Embeddings in Latent Metric Space: A Geometric Approach where a language-specific
embedding is learned as a rotation of the original embedding. The idea has also been applied
to language translation [8] and sentence embeddings [9].

Similar ideas have been explored in the speech context SpeechT5 [2] model. However,
whereas SpeechT5 proposes a very concrete architecture for a joint TTS and ASR model,
the present model proposes a meta-learning technique that can be used with a variety of
sequence models, such as GRU [6] or other recurrent models, Transformer [41]-based. The
main advantage of our proposed approach is that rather than proposing a specific architecture
for a specific task, we propose a general technique in which a base model can be trained and
then easily expanded further to other modalities.

While the latent space alignment approach proposed in this work has been designed
specifically for this multimodal learning task, similar concepts of using Gaussian priors for
dynamic time-warping have been proposed in Gaussian Process Latent Variable Alignment
Learning [17]. However, it introduces a more complex statistical model for direct learning
on sequences, whereas our proposed approach functions more as a highly constrained scaled
self-attention mechanism.

In recent years, a lot of research has been focusing on both conditioned and unconditioned
generation of content in different modalities with a major body of literature focusing on
conditioned image generation. One popular method is denoising diffusion [15] where a model
is trained to predict Gaussian noise given a noisy sample, and the process is reversed stepwise
during inference, starting from pure noise and removing it one step at a time to generate a
sample. Our method incorporates denoising diffusion to generate new samples in the available
modalities.

5. Results
5.1. Training

Two data sets are being used for the common latent space model : LibriSpeech [25] is an
multi-speaker audio dataset comprised of 1,000 hours of read English speech and LibriSpeech-
Alignments [22] enhances the LibriSpeech [25] dataset with explicit phoneme alignment
annotations. The model does not require alignments for training unless the underlying TTS
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does, we only use LibriSpeech-Alignments [22] for phoneme modality labels. To facilitate
curriculum learning, we use a curriculum of gradually increasing sequence length described in
Appendix 8.3. We also attempt to enhance ASR performance by applying SpecAugment [26],
which aims to remove portions of the spectrogram during training.

5.2. Evaluation

Since the main practical purpose of this model is to transfer the representation of a
signal from one modality to another, the most important evaluation metric is the accuracy of
reconstruction, for each modality. For tasks involving sequential target modalities, including
audio to character, audio to phoneme and character to phoneme using the Token Error
Rate metric based on the Levenshtein edit distance [19]: TER = nins+ndel+nsub

n
, on previously

unseen data.
We conduct a preliminary experiment where curriculum learning is disabled, but find

initial convergence too slow and unstable for the approach to be practical.
To evaluate the effectiveness of the Gaussian Mixture Aligner, we compare the training

trajectory of a phoneme-grapheme MAdmixture that uses the aligner to that of a model that
uses a simple projection instead. We choose a model with text modalities only because they
can be evaluated using a simple objective metric (Token Error Rate). The evaluation details
are described in appendix 8.1.

5.3. Results

Table 7 summarizes the results on modality transfer tasks that were evaluated. The
Data column evaluates the type of data used for evaluation: Segment indicates that sampled
segments from LibriSpeech (clean) of up to 20 words are used in curriculum learning, Full
indicates complete examples from LibriSpeech (clean). SAindicates that SpecAugment [26]
and non-clean data is used.

Model Data aud - phn aud - char char - phn phn - char
MM: AUDIO + CHAR Segment — 3.8% — —
MM: AUDIO + PHN Segment — 4.3% — —

MM: AUDIO + CHAR + PHN Segment 4.2% 4.0 % 3.2 % 2.2 %
MM: CHAR + PHN Segment — —- 3.3% 2.2 %

MM: AUDIO + CHAR Full — 4.1% — —
MM: AUDIO + CHAR SA Full — 3.2% — —

ASR - SpeechBrain - CRDNN Full — 1.2 % — —
ASR - SpeechBrain - Transformer Full — 2.3 % (WER) — —

ASR - SpeechT5 - Transformer Full — 1.9 % (WER) — —
G2P - SoundChoice - RNN Full — — 2.7 % —

G2P - SoundChoice - Conformer Full — — 2.8 % —
G2P - Conv8 Word (CMU) — — 4.8 % —

Table 7. MAdmixture Performance Comparison
All metrics are Token Error Rates (phoneme or character) - except where indicated using (WER) where only a Word Error Rate

(WER) is available
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(a) ASR with Character Targets (b) ASR with Phoneme Targets

(c) Grapheme-to-Phoneme (d) Phoneme-to-Grapheme

Fig. 3. Multimodal Learning Effect Comparison

We compare the training trajectory of a model with three modalities (audio, character
and phonemes) with different combinations of two-modality models (character + phoneme,
audio + phoneme, audio + character) in order to determine the marginal effect of adding a
modality. We find empirically that at least during early training stages, training on more
modalities leads to better performance of a given modality transfer, and the effect is observed
across multiple modality combinations. We hypothesize that given the approach relies on
shared representations, learning encoder representations and latent alignments for a given
modality improves performance in other modalities. The effect is less noticeable during later
stages of training or when using aggressive gradient clipping.

We find that G2P performance is similar to that of the single-task SoundChoice G2P [28]
trained and evaluated on the same dataset - LibriSpeech [25] with LibriSpeech-Alignments
[22].

The remaining gap between MAdmixture results and single-task models of comparable
capacity for ASR could be due to the fact that the best results were achieved with Senten-
cePiece [18] tokenization and a beam search trained with a large language model. With
MAdmixture, preliminary experiments with tokenization produced subpar results compared

8Grapheme-to-Phoneme Conversion with Convolutional Neural Networks, evaluated on CMUDict [40]
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to raw character embeddings, which is likely due to a greater difference in length between
the representations that need to be aligned.

For speech synthesis, we observe that as expected, for a given training stage the quality
of the audio autoencoding reconstruction is superior to reconstructions from token sequence
modalities. We also note that given that we train a single-speaker TTS on multispeaker data,
over time, reconstructions converge to an "average" voice, and this affects both autoencoding
reconstructions and reconstructions from text.

We conclude that the proposed approach is capable of effectively supporting common
speech processing tasks: ASR, TTS, G2P, and extending it to others can be further evaluated.

6. Limitations
The model created in this work are limited to a single language and a single dataset [25].

It is unclear how well it would transfer to other languages, particularly those with non-
alphabetic writing systems. Despite being generic in theory, the evaluation is limited to only a
single family of architectures (RNN/CRDNN) plus a preliminary Conformer [13] experiment
and to only three modalities (audio, characters, phonemes). Further study is needed on
the quality/transferability of representations learned and how they scale with data and/or
compute compared to other approaches. It is also unclear whether the specific alignment
methodology used in these experiments can be easily extended to modalities with a very high
variance in time dimension alignment.

7. Future Work
Future research can build on the present work to achieve state-of-the-art performance in

the modalities explored in the present work with various techniques used in state-of-the-art
TTS/ASR models, including data augmentation and artificial noise.

One possible line of follow-up work is to expand the approach to other modalities
representing human speech and language, such as lip reading, sign language or handwriting.
The approach can also be used with other neural architectures.

Further empirical research is also needed on the scaling properties of such models with
respect to compute and data and how they compare to traditional approaches, possibly
deriving scaling laws [14].
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8. Appendix
8.1. Alignment

8.1.1. Gaussian Mixture Time-Warping Aligner. We aim to design an aligner such that
• On average, the modality inputs are scaled by a constant scale (set by a hyperparam-

eter) when projected to the latent space
• A given input feature is assigned a specific width in the latent space
• The widths can very continuously, and this can be accounted for in a representation

of fixed resolution similar to how subpixel interpolation is used in image scaling
The built-in prior of the proposed aligner is that the distribution of time positions in the

output (latent) space corresponding to a given encoded position corresponds to Gaussian
distribution centered at the midpoint of the cumulative predicted width.

By default, the standard deviation is set so that the predicted width corresponds to 4
standard deviations, putting 95 percent of the total probability density within the segment of
width ŵt. We introduce a spread hyperparameter ϵ, which makes it possible to adjust the
distribution, increasing or degree to which a given input step blends into the position in the
latent space occupied by previous and following steps.

µt =
t−1∑
t′=1

wt′ + wt

2

σt = ϵ
w

(pred)
t

4
We attempt to incorporate some immediate context information for the encoder represen-

tations to ensure the aligner can effectively estimate width in situations where the alignment
is dependent on neighboring tokens or steps. For instance, in the case of graphemes, this is
the case with n-graphs. To this end, we propose a context transformation, such as a series of
1-D convolutions. By default, we use a single convolutional layer to compute the context to
which the width prediction function is then applied.

X(ctx) = Norm(in)(f (ctx)(X(enc)))

ŵt = f (w)
(
X(ctx)

)
By default, we use a single linear layer on the context outputs as a width predictor with

sigmoid activation, for simplicity, outputting a value of up to wmax = 2s. In preliminary
experiments, we find that allowing the predictor to output very small lengths causes numerical
instability, which we address by constraining the range of the activation output. An additional
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sensitivity hyperparameter is used to prevent small perturbations from saturating the sigmoid
activation.

E[f (w)(x(ctx)
t )] ≈ s

∀x(ctx)
t f (w)(x(ctx)

t ) ∈ (wmin, wmax)

o(w)
t = W(w)x(ctx)

t + b(w)

ŵt = f (w)(X(ctx)) = wmin + (wmax − wmin)σ (γ + βot)

We want to choose a value γ such that for typical initializations where the expected of
the linear layer’s output is zero, the expected output is still s despite the shift by wmin. We
thus choose the following value:

γ = σ−1
(

s− wmin

wmax − wmin

)
This relies on an assumption that E[σ(x)] ≈ σ(E[x]), which, while not generally true,

holds in the portion of the sigmoid function that is approximately linear.
We subsequently set up the Gaussian PDF prior for the alignments as follows, where t is

the input step and t′ is the output step.

f (a)(t′,t) = 1
σ
√

2π
exp

−1
2

(
t′ − µt

σt

)2


We then collect the discrete approximations of the individual Gaussians into a matrix
and normalize it over the inputs so that for any given output the contributions of inputs
add up to one to obtain an alignment matrix A similar to one used in a standard attention
mechanism. Similarly, aligned latent representations can then be obtained by multiplying
context-embedded input by the alignments and then applying an output projection f (out) and
an output normalization Norm(out)

At′,t = f (a)(t′,t)∑l
k=1 f (a)(t′,k)

X(latent) ∈ Rd(latent)×l′ = Norm(out)
(
f (out)

(
X(ctx)A⊤

))
8.1.2. Alignment Hyperparameters. Table 8 shows the hyperparameters used for the

modalities studied. We observe that the distribution of length ratios is approximately normal
with a "long tail" of outliers. We determine the appropriate scale value by first setting
the scale of the anchor modality to 1.0 and then determining the average ratio of encoded
representations in the train set, excluding any values above the 90% percentile. For most
modalities, we observe that the system learns alignments as expected achieving adequate
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performance with the default spread value of 1.0 with the exceptions of pretrained experiments
with tokenization9 where a qualitative examination reveals gaps in the latent space. As a
result, we increase the value of the spread hyperparameter slightly.

Modality Scale Spread

AUDIO 1.0 1.0
CHAR 1.7 1.0
PHN 2.5 1.0

CHAR - Tokenized 5.2 1.5

Table 8. MAdmixture Alignment Hyperparameters

8.1.3. Evaluation. The raw encoded output length distributions and the distribution of
latent representation lengths predicted by the aligner is shown in Table 9 and Figure 5. At
face value, the distribution confirms that the aligner set-up combined with the alignment
loss encourages the samples to be scaled, on average, to match the ground truth, i.e. the
length of the raw encoder outputs in the anchor modality. Figure 6 shows the distributions
of alignment errors (i.e. absolute differences between the aligner-assigned total length of the
sample and the ground truth) and compares it to the error obtained if one were to naively,
deterministically scale the output by the value of the scale hyperparameter. We observe
a reduction in median error from 11.71 to 9.69 for characters and from 12.07 to 8.80 for
phonemes. One should note that the aligner loss is combined with the other losses in a way
where reconstruction and transfer losses dominate over the alignment loss, which discourages
the model from learning a better alignment if its impact on decoding is marginal.

One notable finding regarding the distributions of both lengths and errors is the large
number of outliers. A qualitative error analysis revealed that particularly unusual length
ratios are typically due to the presence of pauses in the recordings. A possible improvement
to this aligner architecture that could be considered in future work is the ability to explicitly
account for positions in the latent space for which the encoder in a given modality does not
have a corresponding output position (i.e. the ability to "skip" positions). Another possible
alternative is data pre-processing to remove long pauses.

The results of the ablation experiment for the Gaussian Mixture Time Warping Aligner
are shown in Figure 4. We observe faster convergence for both modalities when the aligner is
used - compared to the model that only using a simple projection, preserving the lengths
from individual modality encoders. The observed effect is stronger for phoneme-to-character
conversion than for character-to-phoneme conversion. We hypothesize that this effect is likely
due to the aligner producing more similar representations across modalities.
9Using SentencePiece: https://github.com/google/sentencepiece
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(a) Grapheme-to-Phoneme (b) Phoneme-to-Grapheme

Fig. 4. MAdmixture Aligner Ablation - Effects on Training

(a) Raw Encoder Output Lengths (b) Aligned Latent Representation Lengths

Fig. 5. MAdmixture Aligner Evaluation - Length Distributions

Fig. 6. MAdmixture Aligner Evaluation - Error Distribution

8.2. Baseline Model Architecture Details

Table 10 outlines the architecture that was used for the Audio/Grapheme/Phoneme
MAdmixture model. c refers to the number of channels, k is the kernel size, d is the layer
dimension, p(drop) is the dropout probability, p is the pooling size, s is the scale parameter,
ϵ is the spread parameter.
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mean std min 25% 50% 75% max

AUDIO Raw Length 71.75 44.19 2.99 36.89 62.59 99.33 288.00
CHAR Raw Length 47.09 26.74 1.98 25.73 42.59 65.06 143.00
PHN Raw Length 32.23 18.34 1.97 17.76 28.65 44.36 103.00
AUDIO Latent Length 70.17 43.48 1.93 35.65 60.78 97.56 277.30
CHAR Latent Length 77.26 43.16 1.88 42.74 69.57 105.91 229.94
PHN Latent Length 75.99 42.81 1.97 41.72 67.71 104.56 239.02
AUDIO Error 1.57 0.94 0.05 0.95 1.37 1.96 10.70
AUDIO Naive Error 0.00 0.00 0.00 0.00 0.00 0.00 0.00
CHAR Error 12.09 10.43 0.00 4.47 9.69 17.06 128.50
CHAR Naive Error 14.42 11.70 0.01 5.68 11.71 20.45 120.29
PHN Error 11.47 10.36 0.01 4.08 8.80 15.98 125.99
PHN Naive Error 14.59 11.89 0.00 5.72 12.07 20.51 131.49

Table 9. Lengths and Length Predictions - Descriptive Statistics

Modality Encoder Decoder Aligner
Audio CRDNN

2 × CNN c = 128, 256, k = 3, p = 3
2 × Bi-LSTM, d = 1024
2 × FC d = 512

Tacotron 2
Prenet: d = 128
Attention: d = 128, f = 32, k = 31
RNN: d = 1024

GMTW
s = 1.0, ϵ = 1.0

Character GRU
4 × GRU, d = 512
p(drop) = 0.1

GRU
4 × GRU, d = 1024
Attention: d = 1024, k = 100
p(drop) = 0.15

GMTW
s = 1.7, ϵ = 1.0

Phoneme GRU
4 × GRU, d = 512
p(drop) = 0.1

GRU
4 × GRU, d = 1024
Attention: d = 1024, k = 100
p(drop) = 0.15

GMTW
s = 2.5ϵ = 1.0

Table 10. MAdmixture Baseline Architecture Hyperparameters

8.3. Curriculum Learning

Most speech processing systems involve training a model on sequences with long-term
dependencies. Based on previous experience with training G2P systems, such as SoundChoice
G2P [28], we hypothesize that model training can benefit from pre-conditioning on shorter
sequences. The approach introduces a curriculum learning sampler that makes it possible to
train the system with samples of increasing length using LibriSpeech [25] with LibriSpeech-
Alignments [22] or any other compatible dataset with phoneme annotations. For a given epoch,
the maximum and minimum sample length, in words, is given as a hyperparameter. First, the
algorithm samples a length from a uniform distribution lsample ∼ Uniform(lmin, lmax) for each
sample. Secondly, it samples an offset fraction from a uniform distribution orel ∼ Uniform(0, 1),
which is then interpreted as a relative offset, i.e. a orel corresponds to selecting the first lsample

words, and orel = 1.0 corresponds to selecting the last lsample words. The method can be used
both within a single training run, gradually increasing sequence length at every n epochs
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(where n is a hyperparameter), and gradually over time as the model evolves. Table 11 shows
the proposed curriculum for training MAdmixture.

Curriculum Step Epoch Min Words Max Words Sample Count
1 1 1 3 25000
2 20 2 10 50000
3 40 2 20 100000

Table 11. MAdmixture Learning Curriculum

We conduct experiments involving only this sampling curriculum and a variation where
complete random samples of complete utterances are used. We find that the curriculum
facilitates convergence, and a switch to full sequences results in better performance.

We use an initial learning rate of 0.001, annealed using the NewBob 10 scheduler with an
annealing factor of 0.9 and an improvement threshold of 0.0025.

We find that the best results are achieved with very aggressive gradient clipping, with the
maximum gradient set to 0.0001, with larger values frequently causing training instability.
This could be due to the fact that a very large number of sub-networks is being trained
jointly, and a large gradient update destroying learned representations can affect multiple
sub-networks simultaneously.

8.4. Transfer Learning

The MAdmixture approach allows for the incorporation of existing pretrained models
trained for a specific modality transfer, such as ASR or TTS and expand it to handle additional
transfer directions and autoencoding. The proposed approach is to introduce an alternate
invertible projection aligner that always produces an identity alignment matrix but uses a
projection layer (1D convolutions) followed by an optional invertible global normalization
layer that makes it possible to project pretrained representations to a common latent space
and recover them before passing them to the decoder. This is combined with a modified
training curriculum where initially both the parameters of source modality’s encoder and
the target modality’s decoder are frozen, and only the aligner is trained together with the
source modality’s decoder, the target modality’s encoder and any other modalities. After it
is trained sufficiently to avoid destroying the pretraining, we then unfreeze the components,
allowing the model full latitude to realign. Figure 7 shows the evolution of the character
reconstruction loss, audio-to-character transfer loss and difference loss. We fined that starting
with a pre-trained model has a beneficial effect on both the speed of learning and the speed
with which audio and character latent spaces converge to a shared space. No noticeable effect

10Herve A Bourlard and Nelson Morgan, Connectionist speech recognition: a hybrid approach, vol. 247,
Springer Science & Business Media, 2012.
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(a) Pretraining Effect - Character Reconstruc-
tion Loss

(b) Pretraining Effect - Character Transfer
Loss

(c) Pretraining Effect - Distance Loss

Fig. 7. MAdmixture Pretraining Effects

is observed on the speed of learning TTS if the audio encoder and character decoder are
pretrained.

8.5. Hyperparameters and Hyperparameter Optimization

For token sequence modalities (characters and phonemes), we use a standard beam search
implementation with a language model for the same token sequences also pre-trained on
LibriSpeech data to help disambiguate sequences using linguistic regularities. We also use
Oríon11 for hyperparameter tuning with the Character Error Rate as the objective.

Table 12 shows the beam search hyperparameters used to achieve the listed results,
following the Oríon-based hyperparameter search.

Given the large size of the search space and the time it takes to obtain results, we do not
perform a hyperparameter search on the architecture. Instead, we use hyperparameters from
existing SpeechBrain [29] ASR and TTS models with minor manual modifications.
11Xavier Bouthillier and Christos Tsirigotis and François Corneau-Tremblay and Thomas Schweizer and Lin
Dong and Pierre Delaunay and Fabrice Normandin and Mirko Bronzi and Dendi Suhubdy and Reyhane
Askari and Michael Noukhovitch and Chao Xue and Satya Ortiz-Gagné and Olivier Breuleux and Arnaud
Bergeron and Olexa Bilaniuk and Steven Bocco and Hadrien Bertrand and Guillaume Alain and Dmitriy
Serdyuk and Peter Henderson and Pascal Lamblin and Christopher Beckham, Epistimio/orion: Asynchronous
Distributed Hyperparameter Optimization https://doi.org/10.5281/zenodo.3478592
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Modality Data Hyperparameter Value

CHAR Segment

Minimum Decode Ratio 0.0001883
Maximum Decode Ratio 1.206

Beam Size 29
EOS Threshold 4.202

Maximum Attention Shift 235
Language Model Weight 0.3729

CHAR Full

Minimum Decode Ratio 0.00927
Maximum Decode Ratio 1.931

Beam Size 6
EOS Threshold 1.057

Maximum Attention Shift 125
Language Model Weight 0.01981

PHN Segment

Minimum Decode Ratio 0.002961
Maximum Decode Ratio 1.231

Beam Size 27
EOS Threshold 3.625

Maximum Attention Shift 125
Language Model Weight 0.3495

Table 12. MAdmixture Beam Search Hyperparameters

For audio representations we re-use the hyperparameters used in the SpeechBrain [29]
LibriSpeech [25] ASR and Tacotron [35] implementations, respectively.

8.6. Sampling

In a preliminary generation experiment, we train a UNet [31] with layers of 64, 128 and
256 channels, group normalization with groups of 32 neurons, 2 residual blocks per layer
and a single attention layer. We find that decoding the generated latent space with multiple
modalities results in close-sounding, albeit not identical decodings.

Example:
(1) CHAR: INTO SO MOON BEER

PHN: IH-N-T-AH-S-AH-N-D-AH
(2) CHAR: WHAND THEN AND SEES EARED SEE

PHN: HH-AE-N-D-DH-EH-N-EY-N-T-S
(3) CHAR: DEVICA A HEAP THE

PHN: D-EH-V-OY-AH-N-T-HH-IH-M
Further work may explore training the diffusion model non-jointly against the encoders of

a model trained to convergence with join training and using additional techniques to fully
align generated decodings.
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Kind Hyperparameter Value

Input

Spec Module Filterbanks
Number of FFTs 400
Number of MELs 40

Minimum Frequency 0 Hz
Maximum Frequency 8000 Hz

Power 2
Reference 1.0

Output

Spec Module MEL Spectrogram
Number of FFTs 1024
Number of MELs 80

Minimum Frequency 0 Hz
Maximum Frequence 80 Hz

Hop Length 256
Window Length 1024

Norm Slaney
Power 1

Reference 10

Table 13. Spectrogram Hyperparameters

8.7. Alternative Transformer-Based Model

We attempt to build a preliminary proof-of-concept Transformer-based [41] model is similar
to the CRDNN model in its basic structure; however, the individual encoders and decoders
for token sequence modalities (characters and phonemes) are based on the Transformer [41]
and Conformer [13] implementations of SpeechBrain [29]’s ASR models, whereas the TTS
decoder is based on the TransformerTTS [21] architecture from Microsoft Research with some
implementation and enhancement ideas from existing open-source implementations [7,34].
The G2P model achieves a token error rate of 3.2% for character-to-character and 1.4% for
character-to-phoneme conversion on LibriSpeech samples of up to 20 words with a beam
size of 1, which is close to the results RNN model - and these preliminary results were
obtained without beam tuning. Preliminary ASR TER was 5.2% (also with beam size =
1), indicating that more training and tuning is needed. The hyperparameters are similar to
those of SpeechBrain [29] ASR models: 8-layer encoders, 6-layer decoders, model dimension
= 512, FFN dimension = 2048. Subsequent work on Transofrmers will involve tuning the
TTS decoder and beam search, as well as incorporating a language model.

Figure 8 shows a training trajectory comparison between the CRDNN model and the
Conformer model, as measured on the validation set with spectrogram augmentation enabled.
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Fig. 8. MAdmixture: Conformer vs CRDNN Training Comparison

The trajectories are similar with the Conformer training slightly faster in the beginning.
However, the last (full-sequence) curriculum step exhibited training instabilities that are likely
due to the model overfitting to the sequence lengths on which it was trained. Subsequent
work will address them with regularization and position sampling techniques. Overall, the
preliminary experiment suggests that Transformer/Conformer [13,41] encoders and decoders
are a promising direction for MAdmixture given that their fully-tuned single-task equivalents
outperform their CRDNN counterparts.
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Conclusion

This work explores a variety of deep learning approaches to the speech domain, including
grapheme-to-phoneme conversion, speech recognition and speech synthesis in an attempt to
build towards a more generic approach based on unified cross-modality signal representations,
building on prior work in the domain. The SoundChoice [28] grapheme-to-phoneme system
attempts to take advantage of mixed representations combining character tokens and sentence
context in order to achieve significant performance improvements over baseline approaches by
incorporating sentence context from pretrained models and by applying a variety of techniques
from the speech recognition field that facilitate signal decoding. MAdmixture further expands
on these ideas not only by using a similar decoding approach for text modalities but also by
building on the Grapheme-to-Phoneme and combining it with elements of existing ASR and
TTS models available within SpeechBrain [29] and introducing a new time-warping technique
to create a single composite model incorporating all of these tasks in a single modular network -
while also providing functionality similar to that of a classic autoencoder and a proof of concept
for using common representations as a basis for a generative model. Empirical evaluation
confirms the general feasibility of the approach. While the proof-of-concept MAdmixture
models evaluated in the present work do not achieve state-of-the-art performance, further
improvements can be attempted via architecture search, data transformation, the use of
larger pre-trained language models and decoder fine-tuning for specific modalities.

Future work can build on the approaches explored and evaluated here to fine-tune the
model to achieve levels of performance close to the state of the art on the relevant tasks while
using aligned representations across modalities to which new modalities can be easily added.
Some possible examples include lip-reading video, handwriting or token sequences for natural
language understanding. It can also explore improved techniques of cross-modality alignment
where the relative lengths of raw encoded samples vary more widely across modalities.

Within the broader context of artificial intelligence, the integration of information coming
from different senses and different sources to produce a rich, vivid experience of the world
as a coherent whole (rather than attending to only one type of signal at a time for a given
task) and seamlessly transferring them across modalities is becoming key. As humans, we
absorb it all, and then, when we read a book (text modality), and we say it out loud in our



heads (speech), and our imagination completes a visual scene with sights, sounds, smells and
feelings, allowing us to conjure up entire worlds, whether real or imaginary. State-of-the-art
artificial intelligence with multimodality is already making strides towards our machines
enhancing our experiences or creating their own - or, perhaps, even having their own if that
is at all possible. And integrating senses or modalities is just a small building block of human
intelligence, which then proceeds to correlate the fully integrated sensory information from
the present moment with the context of time and space, broader history, histories that could
have been, possible futures that may or may not arrive... It miraculously navigates this
infinite realm of possibilities by making decisions and then taking action, little by little taking
us towards better outcomes and greater possibilities, and in today’s complex world, it is
already difficult to imagine this navigation without the help of intelligent machines. This
work on creating a cross-modal representational "language" in a very specific context is but
a small learning experience, a tiny drop in the vast ocean of explorations in this field. I
hope that with all the work in machine learning and the scientific community at large on
multimodality we will come one step closer to understanding our own integrating experience,
giving a small bit of it to our machines and then building a better world with their help.
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