
Université de Montréal

Fair Vaccination Strategies with Influence
Maximization: A Case Study on COVID-19

par

Nicola Neophytou

Département d’informatique et de recherche opérationnelle
Faculté des arts et des sciences

Mémoire présenté en vue de l’obtention du grade de
Maître ès sciences (M.Sc.)

en Informatique

November 8, 2023

© Nicola Neophytou, 2023





Université de Montréal
Faculté des arts et des sciences

Ce mémoire intitulé

Fair Vaccination Strategies with Influence
Maximization: A Case Study on COVID-19

présenté par

Nicola Neophytou

a été évalué par un jury composé des personnes suivantes :

Pierre-Luc Bacon
(président-rapporteur)

Golnoosh Farnadi
(directeur de recherche)

Guillaume Rabusseau
(membre du jury)





Résumé

Pendant la pandémie de Covid-19, les minorités raciales et les groupes économiquement
défavorisés ont connu des taux accrus d’infection, d’hospitalisation et de décès dans les
zones urbaines. Cette disparité témoigne de l’oppression systématique à laquelle sont
confrontées les minorités raciales et la classe ouvrière, qui s’étend évidemment aux services
de santé. Les inégalités flagrantes en matière de santé étaient évidentes avant que les vaccins
ne soient disponibles, nous ne pouvons donc pas simplement les attribuer à des attitudes
culturelles d’hésitation à la vaccination. Dans ce travail, nous présentons des solutions pour
optimiser la distribution équitable des vaccins pour différents groupes démographiques,
afin de promouvoir un accès équitable aux vaccins lors du premier cycle d’attribution.
Nous nous appuyons sur des travaux antérieurs pour construire des réseaux de mobilité
de trois zones métropolitaines américaines en utilisant des données de visites réelles dans
des lieux publics au cours des premières semaines de la pandémie. Nous proposons une
nouvelle méthode utilisant la maximisation de l’influence pour détecter les quartiers les plus
influents de la zone urbaine en termes d’efficacité dans la propagation de la maladie. Nous
modélisons ensuite la propagation ultérieure de la maladie avec ces quartiers sélectionnés
vaccinés. De plus, nous introduisons des considérations d’équité afin de mettre en œuvre un
accès équitable aux vaccins pour les groupes raciaux et les groupes de revenus du réseau.
Pour fusionner nos solutions avec les stratégies actuelles, nous combinons nos stratégies
équitables avec une méthode de priorisation pour les groupes plus âgés du réseau.

Mots clés: Maximisation de l’influence, réseaux de mobilité, distribution de vaccins, équité
démographique

v





Abstract

During the Covid-19 pandemic, racial minorities and economically-disadvantaged groups
experienced heightened rates of infection, hospitalization and death in urban areas. This
disparity speaks to the systematic oppression faced by racial minorities and the working
classes, which evidently extends to healthcare provisions. The stark inequalities in health
outcomes were clear before vaccines became available, so we cannot simply attribute this
to cultural attitudes of vaccine hesitancy. In this work, we present solutions to optimize
the fair distribution of vaccines for different demographic groups, in order to promote
equitable vaccine access in the first round of allocation. We build on previous work to
construct mobility networks of three US metropolitan areas using data of real visits to
public places during the first weeks of the pandemic. We propose a novel method using
influence maximization (IM) to detect the most influential neighborhoods in the urban
area in terms of efficacy in spreading the disease. We then model the subsequent disease
spread with these selected neighborhoods vaccinated. Additionally, we introduce fairness
considerations, to implement equitable vaccine access for racial groups and income groups in
the network. To merge our solutions with current strategies, we combine our fair strategies
with a prioritization method for older-age groups in the network.

Keywords: Influence Maximization, mobility networks, vaccine distribution, demographic
fairness
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Chapter 1

Introduction

In the outbreak of the Covid-19 pandemic, economically-disadvantaged groups and marginal-
ized racial groups experienced higher rates of infection, hospitalization and death [82, 70,
75, 64, 40, 8, 36, 30]. These effects are particularly striking in urban areas of Western
countries; in Chicago, African-Americans make up 30% of the population, yet in 2020 they
represented 50% of Covid-19 cases and 70% of Covid-19 deaths [77]. In Louisiana, they
represented 32.2% of the population and 70.5% of Covid-19 deaths. In New York City, the
urban area with the largest counts of cases and deaths in the country, African-Americans
and Hispanics/Latinos accounted for 22% and 29% of the population, and represented 28%
and 34% of deaths respectively [2]. The sobering statistics signal the extreme ways in which
deprived communities in Western urban areas still benefit disproportionately less from health
and social care resources compared to the economically-favoured in the same areas. This
inequality in access to healthcare was also reflected when vaccines became available; vaccine
uptake rates were lower amongst communities of color in the US and the UK [9, 74]. It
has long been the case, as exhibited in other disease outbreaks before Covid-19, that mi-
norities are failed in three major ways: disparities in exposure to the virus, disparities in
susceptibility to contracting the virus, and disparities in treatment [12].

In the US, CDC data revealed that in April 2021, the gap in vaccination rates across all
states between White and Black groups was a 14 percentage point difference, and between
White and Hispanic groups was 13 percentage points [69]. Similarly, a study of individuals
aged fifty and over in Wales, UK found that the likelihood of being vaccinated was for
lower for males, non-whites, and people living in deprived areas and urban areas [74]. The
largest inequality was observed between racial groups, with the gap between average rate
of vaccination being 20.2 percentage points higher amongst those identifying as White than
those identifying as Black. They also revealed that this gap widened over the first five



months of the vaccine roll-out, as other additional priority groups became eligible to receive
vaccination.

We cannot simply attribute this discrepancy to the difference in vaccine hesitancy due to
cultural attitudes (though this is often the focus of much of the literature [23, 85]); we must
also consider additional barriers that economically-deprived communities must overcome
in order to get vaccinated. This can be anything from limited access to the internet for
finding and booking appointments, to language barriers encountered when dispelling myths
and controversies around vaccines, to limited ability to travel to vaccine or test sites. A
study uncovered which socio-economic factors affected the Covid-19 racial vaccine disparity
(CVD) rates affecting 51.5% of the US population, from April 2021, measured as the rate
of one vaccine dose for White individuals over Black individuals per US county [1]. Vaccine
hesitancy was not found to be a significant driver of disparities in vaccine uptake rates
within a US county. Rather, the three major social determinants correlated with vaccine
disparity were median income, high school graduation rates, and political ideology. They
compared with flu vaccine disparity (FVD), and uncovered that the Republican vote share
is significantly negatively associated with CVD, much more than for FVD, highlighting the
effect of political discourse on social media on vaccination rates around the 2020 election.

It is the responsibility of governments to account for such factors when organizing some-
thing as important as distributing life-saving resources. These same social structures, when
analyzed on a global scale, are also responsible for the delayed distribution of the vaccine in
the global South [88]. Clearly, if uptake rates of vaccines are so unfairly distributed, both
nationally and globally, it is essential to re-evaluate vaccine distribution systems with a strict
focus on access; no community should have less of an opportunity to obtain a vaccine should
they choose to do so.

Our proposed methodology therefore has a focus on equitable vaccine access, taking into
consideration the demographic distribution of racial groups and income levels in urban areas.
Our method selects neighborhoods to be prioritized in the first vaccine roll-out, based on
their influence in spreading the disease and fair access considerations. Practically, the use of
our method would mean deploying mobile vaccine sites to these neighborhoods, or facilitating
their local clinics and hospitals with allocated vaccine budgets. This would also facilitate
the community by removing the necessity to travel to obtain a vaccine. Similar work was
actually deployed in the state of Virginia, which targeted areas of low vaccine up-take rates
[61]. Similarly, a mobile vaccination program in Middle Tennessee successfully administered
vaccines and information to underserved communities [3]. This evidence suggests that our
method which uses mobile vaccine sites could similarly be easily deployed.
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1.1. Contribution
We firstly propose a solution using a technique called Influence Maximization (IM). In-

fluence Maximization is the optimization problem of finding the most influential nodes in a
network - in our case, the most influential neighborhoods in terms of spreading disease in a
wider urban area. IM differs from other network science techniques in that it assumes access
to a known propagation model used to simulate the spread of the transmissible quantity,
for example a disease or information in a social network. The spread function can then be
used to run simulations over the network, and spreading occurs due to interactions between
nodes in the graph. Such interactions can vary over time, as in our case, where we use real
data of visits of neighborhood populations to public places where the disease can spread and
infectious individuals can expose susceptible people. We use IM as a basis for our proposed
methods, to firstly offer a solution that is competitive in terms of reducing overall infections
in the whole urban area, by targetting the most influential communities for vaccination. We
subsequently build on this methodology to apply fairness considerations, using Census data
to match neighborhoods with demographic data.

1.1.1. Demographic fairness

With the introduction of AI used to inform critical decision-making in high-stake situa-
tions, such as loan applications and granting bail to prison inmates based on recidivism risk,
many are concerned with the possible social inequalities as a result of the model outputs.
Investigative works found the potential of AI systems to exacerbate existing racial and social
biases for already marginalized groups [15, 62]. ProPublica exposed COMPAS’s higher false
negative rates for Black inmates when predicting recidivism in the US, meaning more Black
candidates were being wrongly predicted of recidivating than White inmates [6]. Examples
like these have catalysed the research direction of fairness in AI and machine learning, in-
vestigating how models can be harmful when using sensitive demographic data, and what
methods we can use to mitigate it. In general, fairness methods are categorised into pre-
processing (mitigating bias in data), in-processing (mitigating bias in the models themselves),
and post-processing (mitigating bias in predictions output from models). In this work, we
use an in-processing technique to ensure fairness during the selection of neighborhoods for
vaccination. Following previous work in fair influence maximization, we leverage the notion
of equal treatment, where we ensure fairness in vaccine allocation for social groups, and also
measure equal outcome, corresponding to fairness in subsequent infection rates for different
social groups. Both of these fairness notions exist as pre-defined group fairness notions in
the IM literature, but have never been applied to a vaccination task.

3



Previous research alluded to the idea that economically marginalized communities were
less able to reduce their mobility during lockdown [83, 17, 89]. Many factors could be
responsible for this, in particular how less economically prosperous communities assume
more roles of frontline and essential work, within which reducing mobility and working from
home is not an option. Within our framework, we target the most influential communities in
terms of disease spread. It is therefore possible that racial minority communities would be
favoured for vaccination if they are more mobile. In our experiments, though we do find that
minorities were less able to reduce their mobility as quickly during lockdown, this does not
necessarily lead to their over-sampling when identifying the most influential communities to
vaccinate. We posit that this could be attributed to our method reaching as many corners
of the network as possible, including for example more remote suburbs of metropolitan areas
which are less diverse [52].

Many people in non-Western countries also experience vaccine access inequality, for the
same reasons that racial minorities in Western countries do; economic and financial disparity
is the main cause of boundaries in healthcare access [66, 42]. Our framework therefore also
focuses on fairness with respect to social groups divided by income level. Indeed, in many
societies this will be correlated with racial minorities, as institutional racism historically -
and still does - forces migrants into lower economic statuses. However, we also want our
framework to be adaptable for countries where there may not be such high racial diversity,
or perhaps when statistics on racial diversity by neighborhood are not well documented. We
therefore include fairness by economic status, which can be also a useful proxy for fairness
by race even for when racial diversity is low [53].

Our proposed methods also accommodate for older, higher-risk communities. Many
governments opted for vaccinating oldest communities first, since they are more at risk
of severe symptoms and death if they contract the disease [73]. We therefore build the
same prioritization for older groups into our method, using the median age of neighbor-
hoods. In our findings, we uncover how priorization of older generations in the US is
sub-optimal in terms of reducing overall infections, due to older groups being less mobile
in the network. We also find that only prioritizing age and not mobility can lead to a
non-diverse choice of communities selected for vaccination, as older generations in the US
are majority White. We therefore propose methods to combine all three aspects; mobility
for performance, prioritization of older groups, and fair access for of racial and income groups.
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Our main contributions are therefore as follows:
(1) A novel vaccine distribution method using influence maximization to target the most

influential neighborhoods, modelling disease spread with a propagation function cal-
ibrated to real case counts of Covid-19.

(2) Fairness considerations to achieve equal vaccine access for racial groups and income
groups, based on their population size in the network.

(3) Priotization of older neighborhoods to protect those most at risk of severe illness
and death, using a novel metric of infections weighted by the median age of the
neighborhood.

(4) Experiments on temporal mobility networks constructed from data of real visits oc-
curing during the Covid-19 outbreak in three major metropolitan areas in the US.

5





Chapter 2

Related work

2.1. Influence Maximization
Influence maximization defines the optimization problem of selecting the k most influ-

ential nodes in a graph G = (V,E) from its set of nodes V , in terms of propagating a
transmissible substance. Such a substance could be, for example, information or advertising,
with the goal of causing the most spreading and maximizing the number of nodes “infected”
with the substance. It is distinguishable from other techniques for finding influential nodes
since we assume access to a propagation or influence function, σ, which describes how the
transmissible substance travels between nodes in the network. The problem solution is a
final set of nodes S, often referred to as the seed set. This represents the optimum choice of
influential nodes, to whom the substance should be given, and who are responsible for trans-
mitting it to the rest of the network. The problem is often applied to viral marketing and
resource allocation settings, but is also cited in epidemiology literature. In our application,
we use IM to identify the neighborhoods in an urban area who cause the most infections in
the whole network, when simulating Covid-19 beginning from each neighborhood at a time.

Solving an influence maximization problem exactly and providing optimal solutions has
been shown to be NP-hard [44, 55], and therefore many approximation algorithms have
been proposed to reduce the complexity of the problem. Most notably, Kempe et al. [44]
demonstrated how the greedy IM strategy provides a 1 − 1/e approximation guarantee, so
long as the influence function is both monotone and submodular. That is, for a greedy
solution Ŝ, and true optimal solution S∗, we have σ(Ŝ) ≥ (1−1/e)σ(S∗). The classic greedy
algorithm is shown in Algorithm 1.

The greedy approach can also be adapted to the scenario where each node u is attributed
with its own cost, c(u). In this case, we want to maximize the influence in the network
caused by selected nodes S, but are bound by a budget B, requiring

∑
c(u) ≤ B, ∀u ∈ S.

In this work, we are interested in this application since we are bound by a total vaccine



Algorithm 1 Greedy influence maximization [44]
1: Input: G = (V,E), k, σ
2: Output: S
3: S ← ∅
4: for i = 1,...,k do
5: u∗ ← argmaxu∈V \Sσ(S ∪ {u})− σ(S)
6: S ← S ∪ {u∗}
7: end for
8: return S

budget for the entire network, and each neighborhood has its own “cost” - its population
size. Allocating vaccines for a higher population neighborhood is therefore more costly to the
vaccine budget than a lower population neighborhood. Subsequent works including CELF
[50] and CELF++ [32] focus on this cost-adapted setting, but also offer more efficient
implementations of the greedy strategy. In Section 3.1, we outline how CELF saves on
compute time by exploiting the submodularity of the influence function. Like these, there
are many following works which attempt to reduce the hardness of the IM problem, and
can generally be categorized into simulation-based (running Monte Carlo simulations) [91,
84, 38], proxy-based (devising proxy propagation models for σ) [20, 67] and sketch-based
approaches [51, 22].

2.1.1. Submodularity

Many works which choose to adopt a greedy strategy must therefore rely on proving
the submodularity and monotonicity of their influence functions, in order to provide the
same optimality guarantees outlined by Kempe et al. In typical static graph settings where
nodes and edges do not change over time, proofs of submodularity are typically established
by leveraging the notion of reachability [55, 56]. For example, it is possible to generate
multiple graph instances which illustrate the “path of infection”. Certain nodes may begin
with the disease at t = 0, and at each time instance there is some probability of infecting its
neighbors with a certain probability p. We can therefore build a subgraph instance where
each edge e(u,v) is placed in the graph if, when sampling from probability p, node u infects
node v. The resulting graph is therefore a mapping of the infection path from t = 0 to the
final time instance t = T . Any nodes with which there is a defined path to the initial infected
nodes are therefore “reachable” by the infected nodes. Taking multiple of these subgraph
instances and averaging counts of reachable nodes is a way of estimating the influence of
a set of seed nodes S. While this aids submodularity proofs for typical static graphs, this
approach is not applicable to our setting, where one edge represents the number of people
moving from a neighborhood to a public place. It is therefore not possible to track the
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infection paths, as the granularity of the data does not allow us to track movements of
specific infected individuals, only the movement of fractions of the neighborhood together.

Gayraud et al. [31] pose an interesting problem with establishing submodularity on dif-
fusion functions on temporal networks, in which edges change over time. They demonstrate
that the total infections caused in the network will depend on the placement of the starting
infected nodes. In some cases, because edges are added and removed, some parts of the
graph will be infectious but be “locked-off” from the rest of the network. The infectiousness
of the infected nodes may expire during this time, and by the time edges appear to connect
these nodes to the rest of the network, the infectiousness has already worn off. This results
in a trapping effect of the infection, which means that the placement of the initial starting
nodes affects how many infections can occur. They demonstrate with examples that this
causes the propagation function to be neither monotone nor submodular in some cases.

Contrary to this, Erkol et al. [25] demonstrate that the greedy strategy can still be
effective even when the influence function is not always submodular, but the number of
submodularity violations is low. In our work, we also observe low submodularity violations,
and therefore maintain using the greedy strategy.

2.1.2. Fair influence maximization

Many works have proposed solutions for introducing demographic fairness to influence
maximization problems. This problem is relevant to settings where each node u has its own
demographic attributes. In many cases, nodes can represent individuals, for example in a
social network; we may then have access to their demographic information, such as race,
gender or age. The specific fairness task will depend on the choice of fairness definition in
the IM setting. For example, equal treatment tries to achieve proportional sizes of each social
group within the seed set S. Equal outcome, on the other hand, requires proportional sizes of
each social group within all the nodes who are infected. The choice of fairness definition will
depend on the application, and whether nodes in the seed set S are particularly benefited.
In our case, our seed set nodes experience a benefit because they are selected for vaccination
first; we therefore employ equal treatment for racial groups and income groups in the network.
However, we also measure the equal outcome in infections as a result of our vaccine strategy.

Farnadi et al. [28] present a framework for solving the fair IM problems optimally with
mixed integer programming. Their framework allows for an array of fairness constraints in
IM, including equal treatment and equal outcome. Though the solver finds optimal solutions,
the method is not scalable for large networks. Anwar et al. [7] present a methodology for
ensuring fairness in networks where nodes can belong to two or more defined groups, and
display evidence of homophily in their interactions, i.e. members of the same group are more
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likely to interact with each other. In this setting, they demonstrate with use of a fairness
regularizer on the influence function that it is possible to ensure fairness in terms of equal
outcome. This constraint aims to ensure that the number of influenced nodes in a group is
proportional to that groups size in the entire network.

Within the IM literature scope, the closest work to our contribution is from Minutlo et
al. [65], who lay the theoretical foundations for using influence maximization for targeted
vaccination. Our contribution differs significantly from this, as theirs does not consider
demographic fairness, whilst our contribution is motivation by fair vaccine access. Their
work does not model any specific disease as we do, and in fact is simplistic in using generic IM
propagation functions on networks unrelated to any specific disease. They also experiment
on networks with interactions between individuals, whereas our community-level structure is
a more condensed way to model the interactions between millions of people with only a few
thousand neighborhood nodes. Further, our network setup is more realistic for obtaining
demographic information; privacy concerns rightly limit the possibility of reconstructing
both demographic and mobility information for individuals, but is available publicly through
Census data at the neighborhood level.

2.2. Vaccine distribution optimization
Many works have discussed how to optimize vaccine distribution in a setting with lim-

ited supply by use of mathematical modelling commonly used in epidemiology, particularly
around the period of the Covid-19 vaccine first becoming available [57, 60, 11, 10]. Ma-
trajt et al. [59] find that in the situation of low vaccine effectiveness, it is most beneficial
to vaccinate older groups first to minimize overall deaths. But in the setting of high vaccine
effectiveness, it is more effective to vaccinate high-transmitting individuals, which generally
aligns with younger populations. Similarly, Shim et al. [81] and other works find that the
most effective age group to vaccinate depends on the objective; typically younger adults,
around 20-49 years, to minimize infections and those above 50 to minimize mortality rates.
The importance of time-varying prioritization strategies is also stressed, in order achieve
multiple objectives like minimizing overall deaths and infections simultaneously [34]. In our
work, we also consider multiple objectives to optimize for, by creating metrics that combine
minimizing overall infections and protecting the most at-risk (older) groups.

There are also works that consider targeted immunization of the most influential disease
spreaders to optimize the vaccine strategy [35]. Lee et al. consider time-varying interactions
in a network [49], and detects the most influential members of a network by looking at histor-
ical contact patterns and projecting into the future. However, this requires precise naming of
interactions between individuals, which are difficult data to obtain in the real-world. In our
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work, we combine these efforts to provide a solution that both considers the most influential
communities, protects the most at-risk communities and considers demographic fairness.

Mehrab et al. [61] propose a method for sending mobile vaccine sites to areas with
low up-take rates and high hesitancy, and use demographic information to support minority
racial groups. Their solution is more of a post-mortem approach for supplementing vaccines
in resulting gaps in up-take rates after deploying the initial round of vaccines. Arguably,
the delay in time between the first distribution of vaccines and the deployment of their
post-mortem mobile vaccine sites allows for infections to spread more amongst the minority
groups and inequality to occur. Our proposal however aims to ensure fair vaccine access
for all social groups during the first rounds of roll-out from the beginning. Their method
was actually deployed in practise to assist the Virginia Department of Health in 2021, which
strengthens the plausibility of deploying our method in the real-world, since this would also
rely on mobile vaccination sites to target specific neighborhoods.

The work by Chang et al. [17] simulates Covid-19 spread on mobility networks to measure
the effects of the lockdown strategies, including tests of counterfactual lockdown implemen-
tations. Their study focuses on the importance of lockdown for various categories of points
of interest, such as restaurants and gyms. However, the results demonstrate how racial mi-
norities were less able to reduce their mobility during lockdown, resulting in unequal rates
of infection depending on race. These findings largely motivated the work of our paper,
to consider how different demographic groups may exhibit different mobility patterns, and
whether a vaccine solution can cater to this. In our work, we leverage some contributions
made by Chang et al. [17], using their method to construct mobility networks using real visit
data in the US, and simulate their Covid-19 model. We adapt this framework to our setting
by introducing vaccination into the model, and including age information per neighborhood
before conducting our fair influence maximization method.
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Chapter 3

Additional Preliminaries

In this chapter, we outline some additional theoretical and practical details which motivate
our approach. The reader may find it useful to first read Section 4.3 of the main article to
familiarize themselves with the problem setup before continuing with this chapter.

We firstly present some justificiation of our choice of the greedy approach with Monte
Carlo simulations over others in the literature. The existing literature on IM for tempo-
ral networks and similar diffusion models predominantly focuses on the greedy approach
[87]. Other methods that utilize diffusion model proxies are primarily designed for simpler
diffusion functions like the Independent Cascade and Linear Threshold models [79, 21], typ-
ically seen in IM literature, and do not readily extend to more complex models. Our SEIR
(susceptible, exposed, infected and recovered) model, as outlined in the Appendix (Section
4.8), is notably complex and features non-linear dependencies on the matrix of visits data.
Consequently, attempting to reliably simplify this function would prove infeasible. Regard-
ing alternative sketch-based methods, our mobility network presents a unique challenge.
We cannot meaningfully construct sketches (graph instances) since our edges represent the
movements of multiple individuals conducting visits, not just a single person. As a result, it
becomes impossible to track the definitive paths of infection created by infectious individuals
for the purpose of evaluating influence, given that their movements cannot be isolated. For
these reasons, we opt for the greedy approach with Monte Carlo simulations, and we present
further implementation details below.

3.1. CELF
Classically, in order to provide optimality guarantees, the greedy IM strategy imposes

two constraints on the influence function - monotonicity and submodularity. The contri-
bution made by Leskovec et al. [50] was to leverage the submodularity of the influence
function in order to reduce the number of calculations required to execute the greedy IM



strategy. We also implement this contribution, named Cost-Effective Lazy Forward (CELF),
and here explain why it reduces computation time for IM with submodular functions.

Monotonicity: A set function f is monotonic if for everyX ⊆ Y we have that f(X) ≤ f(Y ).
This requires that the function f when applied to a set X is never greater than the

output of the same function when applied to a superset of X, Y .

Submodularity: A set function f is said to be submodular if for every X, Y ⊆ V with
X ⊆ Y and every x ∈ V \ Y we have that f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y ).

In words, the gain in function f when adding a new set element x to set X is greater
than the gain in f when adding x to set Y , if X is a subset of Y . This is often referred to
as the law of diminishing returns; the gain to be achieved is decreasing as we add to the
size of the set. We refer to the “marginal gain” of adding the set element x to set X as
gX(x) = f(X ∪ {x})− f(X).

During the greedy implementation, recall that one new node is added to the seed set
at a time, because that node provides the greatest marginal gain compared to all the other
candidates at that iteration (see Algorithm 1). The size of the seed set is therefore growing
with each iteration. In this case, if our influence function is submodular, the possible gain
of adding a new node ui, if it has not already been added, is always diminishing as the seed
set grows in size: f(X ∪ {ui}) − f(X) ≥ f(Y ∪ {ui}) − f(Y ). The trick that Leskovec et
al. realized is as follows: suppose that a node ui is added to the seed set S at iteration
n, where n > 1, because it provided the greatest marginal gain at that iteration. Then, at
iteration n + 1, the seed set is now S ∪ {ui} after adding ui in the previous round. Also
suppose the node with the second greatest marginal gain in iteration n was node uj. Then,
if only uj’s gain is re-calculated in round n+ 1, with the modified seed set S ∪ {ui}, and it
is the highest gain node compared to all the other nodes whose last gain calculation is with
a smaller version of S, then it is in fact the highest gain node of iteration n + 1 compared
to all the other candidate nodes, and we do not need to re-calculate the gain of all the other
nodes to prove it.

Why is this true? Consider the node with third greatest gain at iteration n, uk - see the
diagram in Figure 3.1. We use Sn to denote the set S at round n, so S1 denotes S at the first
iteration. The gain gS1(u) therefore denotes the gain of node u evaluated when S was in the
first iteration. Some nodes will not have had a more recent gain calculation since the first
round, so we illustrate those here. As the seed set grows from iteration n to n+ 1, the gain
of adding uk to the seed set can only decrease, due to submodularity (which is true of all
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Fig. 3.1. A diagram of the greedy node selection using CELF [50]. Nodes (rectangles) are
ordered by their marginal gain on the seed set gS. At each iteration, the node with the
greatest gain from the last iteration (n) has their gain re-calculated for the current iteration
(n+1), which may change its position in the list (red arrow). If it maintains its top position,
it is added to the seed set (green arrow).

nodes). In this case, it can never supersede it’s gain from the previous iteration n. Hence if
uj’s gain at round n+ 1 is greater than uk’s gain at any other previous round, it is definitely
greater than uk’s gain at round n+ 1. Mathematically, due to submodularity, we know that
the gain of any node reduces as the seed set grows, i.e. with iterations. We can write this as

gS1(uk) ≥ gSn+1(uk), (3.1.1)

for node uk, though it applies to all nodes. And if, when evaluated at round n+ 1, when S

is larger, the gain of uj is greater than the last evaluation of uk’s gain, then we can write

gSn+1(uj) ≥ gS1(uk) ≥ gSn+1(uk). (3.1.2)

We can therefore infer that uj is indeed the highest gain node at round n+1, without having
to re-calculate the gain of uk or any of the other nodes in the list. This saves a significant
amount of time and compute power, as we are not required to run simulations to calculate
the new gain value for all nodes at every iteration of IM.

It’s possible that, for example, after re-calculating node uj’s gain at iteration n + 1, is
not greater than uk’s last evaluated gain from a previous round. This indicates that uj is
not the optimum node choice at n+ 1, since the influence of some other nodes calculated in
a previous round have superseded it. In which case, we re-calculate whichever node appears
at the highest gain position in the list until it maintains the highest position spot after
calculating their gain for the n+ 1th iteration.
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In our application of this method, the disease spread function is generally submodular,
but some violations are exhibited in a few rare cases. We therefore implement CELF, and
the corresponding re-calculation steps can be seen in lines 13 to 18 of Algorithm 2 in the
main article. However, when we later amend our spread function to protect older populations
(see Section 4.4), we witness many more submodularity violations, and therefore remove the
re-calculation steps.

3.2. Vaccination model
In this Section, we present the intuition for how the disease propagates according to the

model proposed by Chang et al. [17], and how we adapt this to model vaccination in the
network. Figure 3.2 depicts the bipartite graph structure used to represent the mobility
network. Edges connect a CBG (Census Block Group - a geographical divisions of a neigh-
borhood in the US) to a POI (Points of Interest - public places such as gyms, restaurants
etc.), with a weight corresponding to the number of people from the CBG visiting the POI
at hour t. The edge weights therefore vary hourly, with the possibility of reducing to zero,
which indicates no visitors at the POI were from that particular CBG during that hour. The
disease is able to spread due to infectious individuals mixing with susceptible individuals at
POIs, depending on the average duration of stay and the number of infectious people at the
location. It is also possible for individuals to be infected when they are not visiting POIs,
which can represent for example infections at home or on public transport - anywhere that is
unaccounted for in the potential public places. The full disease model equations are included
in the Appendix of the main article, see Section 4.8.

Fig. 3.2. Bipartite graph of CBG and POI nodes. Edge weights et
ij represent the number

of individuals from CBG ci visiting POI pj at hour t.
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3.2.1. Parameter learning for propagation model

We initialize the SEIR model following the work of Chang et al. [17], with the full
mathematical model outlined in Section 4.8. To ensure the model exhibits realistic spread
dynamics, it is calibrated to match real case counts of Covid-19 over the same time period
in each of the different MSAs (metropolitan statistical areas). The SEIR model contains
several variables which affect the likelihood of being infected, such as the number of infectious
visitors at a POI. However, there are only three free parameters which are used to fine-tune
the model’s predicted number of infections with real case counts per each metropolitan area.
These free parameters are

(1) p0, the probability of any individual being infected at the first hour t0 of the simula-
tion,

(2) ψ, a transmission constant shared across all POIs, which affects the likelihood of
being infected at a POI, and

(3) βbase, the base transmission rate shared across all CBGs, which affects the likelihood
of being infected while not at a POI, for example while at home or on public transport.

After finding plausible ranges for these parameters, a grid search is performed to fit the
output of the model to real case counts.

The confirmed case counts are only used to reflect 10% of all case counts, including those
unreported. Therefore, only 10% of total simulated infections are used to match to real cases.
The predicted case counts are also modelled to be confirmed 7 days after initial infection.
For each MSA, we select the set of calibrated model parameters with the lowest RMSE with
real case counts, summed over each day of the simulation. The final model parameters for
each MSA are included in Section 4.8.

3.2.2. Simulating vaccination

We will now describe how we manipulate the simulations to implement IM and evaluate
our results. Figure 3.3 shows how disease spread amongst CBGs is modelled in the network.
For the sake of the demonstration, we have simplified the bipartite graph of CBGs and POIs
in Figure 3.2 to only containing CBG nodes, and creating an edge at hour t between two
CBG nodes if members from both those CBGs are present at the same POI at that hour. In
this case, there is a possibility of infection spread between members of the two CBGs. The
diagram demonstrates a toy example of the disease spread mechanism from t = 0 to t = 2,
on a network of six CBGs. At each time step, the edges and their weights change, in some
cases disappearing entirely (edge weight of zero). This edge weight signifies the number of
people overlapping at the same POI at hour t between two CBGs. An edge weight of zero
therefore indicates no members overlapping at the same public place.

17



In order to quantify the influence of each of CBGs in terms of its capacity to spread
disease, our proposed algorithm runs what we define as “prior” simulations. Figure 3.3 (a)
demonstrates how the prior simulation works, where we model disease spread when members
of only one CBG have the possibility of being infected at time t = 0. This probability is the
parameter p0, the probability of infection at t = 0 - one of the three model hyperparameters
which is tuned to ensure the simulation matches real case counts when setting up the mobility
networks. For the other remaining CBGs in (a), p0 is set to zero. We run this simulation
nseeds times for every CBG, taking an average over the resulting infections at the final time
T . The result is an averaged number of infections caused due to a particular CBG beginning
with the disease. This is how we first create an ordered list of the CBGs by their “prior”
influence, before moving onto the stage where we iteratively select from this list which CBGs
are most jointly influential and therefore should be vaccinated.

Fig. 3.3. Spread of disease exposure amongst CBGs in (a) prior simulations, where individ-
uals in only one CBG have a small probability of being infected at t = 0, and (b) evaluation
simulations, where members of all CBGs have a small probability of infection at t = 0, except
those that are vaccinated. The dashed CBGs represent those that are vaccinated, and the
black filled areas represent the fraction of the CBG members who have been exposed to the
disease (the size is exaggerated for these early time steps to illustrate the point).

Once we begin iteratively adding CBGs to the set Z selected for vaccination, as mentioned
in Section 3.1, more influence calculations are required as the set Z grows in size. Here, we use
Z to denote the seed set instead of S as is typical in the IM literature, because in our case we
use S to denote the “susceptible” state in the SEIR model. In this case, we are calculating the
gain of adding a particular CBG ci to a selected set Z, given by gZ(ci) = σ(Z ∪{ci})−σ(Z).
To calculate the influence of multiple CBGs, we therefore run prior simulations, but with all
the CBGs in Z starting with infected individuals at t = 0, instead of just one CBG. This
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would look like Figure 3.3 (a), but with multiple nodes starting with the disease instead of
just one. Then, the probability of infection for individuals in CBG ci at time t = 0 is

pci
0 =

p0, if ci ∈ Z

0, otherwise.
(3.2.1)

Figure 3.3 (b) illustrates a different simulation type, which is used during the evaluation
stage. In the evaluation phase, a set of CBGs V have been selected for vaccination (V
denotes the final version of Z), depicted as dashed nodes in (b). We want to measure the
total infections in the network at the final time T as a result of vaccinating set V . In this
case, individuals in all the remaining, non-vaccinated CBGs can begin infected at time t = 0
with probability p0, such that

pci
0 =

p0, if ci /∈ V

0, otherwise.
(3.2.2)

The disease can spread accordingly using the hourly visits, with vaccinated CBGs never
being able to contract the disease. We ensure that vaccinated CBGs never contract the
disease by setting the number of susceptible individuals to zero at all time periods in those
CBGs. We also take averages of these results with nseeds = 10.

An alternative approach to this optimization problem, which seems more relevant to the
problem, is to instead employ an influence function to maximize the prevented infections due
to vaccination, rather than selecting CBGs which cause the most infections and then vacci-
nate them. In our experiments, explored utilizing an influence function designed to maximize
infections prevented by vaccination. However, the inherent high uncertainty associated with
our diffusion model necessitates a significant increase in the number of Monte Carlo simula-
tions required to accurately estimate the impact of vaccination, as compared to estimating
infections caused. We found that measuring the infections prevented by vaccinating only one
CBG at a time was not tractable without many more random runs. This substantial com-
putational overhead renders the simulation unnecessarily inefficient and resource-intensive.

Additionally, the limited knowledge available surrounding the performance of the vaccine
in the early stages of pandemics would introduce further uncertainty into our modelling.
Variables such as vaccine effectiveness rates and the time to achieve immunity may not be as
extensively studied before the first round of large-scale deployment. Consequently, if we were
to base our CBG selection on infections prevented by vaccination, we would exacerbate the
existing uncertainties within the model. This would compromise the realism and practicality
of our model, making it less suitable for its intended purpose.
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These considerations underscore the challenges and limitations associated with adapting
the influence function to maximize the infections prevented by vaccination. For these reasons,
we believe that our current methodology remains more suitable for this application.

3.3. Replacing social distancing data
In the original framework by Chang et al. [17], they use social distancing data provided

by Safegraph in 2020 which contained foot traffic data during the pandemic. One portion of
this data contained the fraction of each CBG who stayed at home daily, which was used in
order to construct the mobility networks. This particular section of the data was discontinued
by Safegraph, so instead we reconstruct the same stay-at-home data using the Neighborhood
Patterns data which Safegraph still provides.

The Neighborhood Patterns documentation, found here [78], provides explanations for
features in the data. In this section we will demonstrate how we extracted the daily counts
of CBG members who were out visiting other CBGs i.e. those who did not stay at home
per day. In the Neighborhood Patterns dataset, there is information about stops made by
individuals and unique devices stopping at a particular CBG, including which home CBG
the visitors are from. The intuition is to aggregate over this to extract a count of how many
individual devices per home CBG were out visiting other CBGs everyday.

One device corresponds to a unique individual, but each device can make multiple stops in
the same CBG. So firstly, we calculate a factor g per CBG, defined as the ratio of stops made
to devices stopping at that CBG, an indication of the average number of stops people make
at a CBG. We have access to raw_stop_counts and raw_device_counts, which provide
the number of stops and devices respectively visiting a CBG during the total time period (5
weeks). We use this to calculate an average number of stops per device in that area, which
we call the factor gi,

gi = raw_stop_countsi

raw_device_countsi

(3.3.1)

which is defined for each CBG ci. We use this factor to then convert stops_by_day, the
count of stops in the area per day, to a daily device count dn for the nth day in our total
time period, given by

dn
i = stops_by_dayn

i

gi

. (3.3.2)

This gives us, for each CBG ci, a count of the number of people (devices) stopping there for
each day n in our total time period.

The weekday_device_home_areas and weekend_device_home_areas contain counters
of the number of devices stopping in a CBG grouped by their home CBG, during weekdays
and weekends respectively. We turn these into distributions Dweekday

i and Dweekend
i of the
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number of devices stopping at CBG ci coming from other home CBGs. Sampling once from
these distributions will therefore return a device labelled with their home CBG, based on the
probability that members of that CBG visit CBG ci on weekdays or weekends respectively.
We choose to separate the weekdays and weekends since visit patterns change based on
whether people are commuting for work or not.

For each of the n days in the total time period, we then sample a total of dn
i daily devices

from the distributions Dweekday
i or Dweekend

i depending on which day of the week day n is.
We then have daily CBG samples sn

i , a vector of size dn
i , where each element represents

one device from a particular home CBG visiting CBG ci on day n. In vector sn
i , there will

be several elements containing the same home CBG, representing different visitors (devices)
from the same CBG. We can then turn sn

i into an un-normalized distribution of device counts
visiting ci, Sn

i , for all n days.
For each of the n days, we can then use all of these distributions Sn

i to count how many
visits are made by devices from a home CBG cj, to any other CBG (switching the index
to j to signify these are home CBGs, not CBGs being visited). This provides a count,
per home CBG cj, of how many devices were out visiting any other CBG ci on each day,
device_count_outn

j . We can therefore compute the fraction of a CBG which did not stay
home, fraction_out, as

fraction_outn
j =

device_count_outn
j

nj

(3.3.3)

where nj is the total population size of CBG cj. The fraction of CBG cj which stayed at home
on day n is therefore 1 − fraction_outn

j . We implement this in place of the discontinued
social distancing data used in the previous work, an essential element to constructing the
mobility networks accurately.

3.4. Multiple Knapsack Problem
In Section 4.4, we outline how we distribute vaccines amongst social groups to achieve

fairness in terms of equal treatment. We formulate this task similarly to the Multiple Knap-
sack Problem, with some amendments, which we detail below.

In general, the multiple knapsack refers to the optimization problem in which we want to
maximize the profit contained in M knapsacks, by filling them with objects, choosing from
K potential items with profits pj and weights wj. We are constrained by not exceeding the
maximum weights Wi of the m knapsacks. The factor xij refers to the fraction of item j

which we choose to store in knapsack i.
In our work, we split the total vaccine budget B for the whole network into separate

vaccine budgets for each social group. We do this by taking proportional numbers of vaccines
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per social group, according to the fraction of that social group in the entire network, such
that Bj = Nj

N
B, where Nj is the population of social group j in the whole network, and N is

the whole network population. The multiple knapsack is therefore analogous to our problem,
since we are trying to distribute vaccines up to the vaccine budget Wj (Bj), for each of the
M social groups, by selecting from K CBGs (items) which add the most influence pi (profit).
Each CBG contains a certain population (weight) wi, which is comprised of populations of
the M social groups, i.e. each CBG has its own demographic makeup of racial groups; xij

therefore denotes the fraction of CBG ci’s population belonging to social group j. When a
CBG is selected for vaccination, we can think of filling the knapsacks by separating the CBG
population into it’s M social groups, and filling each corresponding social group “knapsack”
accordingly.

We make some small adaptations to the optimization problem, in that each population
fraction xij can exist in the range 0 to 1, for example a CBG has 40% Black/African-American
residents, so the xij is 0.4. The value of these factors are therefore not modifiable. Further,
each CBG (item) can either be selected for vaccination or not. In this sense, the sum of its
fractions xij over the social group knapsacks is either 0 or 1, a binary indicator for whether
it has been selected. The factors are therefore modifiaible only in the sense that they can
be zero (CBG not selected) or the constant fraction of social group j in CBG i. The final
optimization problem is therefore given by

maximize
K∑

i=1

M∑
j=1

pixij

subject to
K∑

i=1

wixij ≤ Wj, for all 1 ≤ j ≤M

M∑
j=1

xij ∈ {0,1}, for all 1 ≤ j ≤ K

xij ∈ [0, 1] for all 1 ≤ j ≤ K and all 1 ≤ i ≤M

In the implementation, our greedy IM approach already takes care of ordering the CBGs
by maximium gain (profit) at each iteration. The only change we need to make is therefore
simply filtering out the candidate CBGs which would exceed any of the social group budgets
Wj if they were to be chosen for vaccination. This is implemented at the end of each IM
iteration, between lines 19 and 20 of Algorithm 2. The result is therefore only selecting from
the most influential candidates at each iteration which do not exceed any of the social group
budgets.
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Résumé. Les conséquences de la pandémie de Covid-19 ont été plus graves pour les groupes
minoritaires raciaux et les communautés économiquement défavorisées. De telles disparités
peuvent s’expliquer par plusieurs facteurs, notamment l’inégalité d’accès aux soins de santé,
ainsi que l’incapacité des groupes à faible revenu à réduire leur mobilité en raison de leurs
obligations professionnelles ou sociales. De plus, les personnes âgées se sont révélées plus
susceptibles de présenter des symptômes graves, en grande partie pour des raisons de santé
liées à l’âge. Il est donc essentiel d’adapter les stratégies de distribution des vaccins pour
tenir compte d’un éventail de données démographiques pour remédier à ces disparités. Dans
cette étude, nous proposons une nouvelle approche qui utilise la maximisation de l’influence
(IM) sur les réseaux de mobilité pour développer des stratégies de vaccination intégrant
l’équité démographique. En prenant en compte des facteurs tels que la race, le statut social,
l’âge et les facteurs de risque associés, nous visons à optimiser la distribution des vaccins afin
d’obtenir diverses définitions d’équité pour un ou plusieurs attributs protégés à la fois. Grâce
à des expériences approfondies menées sur la propagation du Covid-19 dans trois grandes
zones métropolitaines des États-Unis, nous démontrons l’efficacité de l’approche proposée
pour réduire la transmission de la maladie et promouvoir l’équité dans la distribution des
vaccins.
Mots clés : Maximisation de l’influence, réseaux de mobilité, distribution de vaccins, équité
démographique

Abstract. The aftermath of the Covid-19 pandemic saw more severe outcomes for racial
minority groups and economically-deprived communities. Such disparities can be explained
by several factors, including unequal access to healthcare, as well as the inability of low
income groups to reduce their mobility due to work or social obligations. Moreover, senior
citizens were found to be more susceptible to severe symptoms, largely due to age-related
health reasons. Adapting vaccine distribution strategies to consider a range of demograph-
ics is therefore essential to address these disparities. In this study, we propose a novel
approach that utilizes influence maximization (IM) on mobility networks to develop vacci-
nation strategies which incorporate demographic fairness. By considering factors such as
race, social status, age, and associated risk factors, we aim to optimize vaccine distribu-
tion to achieve various fairness definitions for one or more protected attributes at a time.
Through extensive experiments conducted on Covid-19 spread in three major metropolitan
areas across the United States, we demonstrate the effectiveness of our proposed approach
in reducing disease transmission and promoting fairness in vaccination distribution.
Keywords: Influence Maximization, mobility networks, vaccine distribution, demographic
fairness

4.1. Introduction
The fallout of Covid-19 revealed the stark inequalities in access to healthcare between

social groups in diverse and urban areas [70, 75, 64, 40, 8, 36, 30]. Studies confirmed
that economically-deprived communities and racial minorities experienced higher rates of
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infection, hospitalization and mortality as a result of Covid-19 [47, 82, 2]. The reasons
for this disparity form a long chain of events, with unequal access to healthcare between
socioeconomic groups, and therefore racial groups, at the root of it. Furthermore, studies on
mobility networks in the US also revealed how minority communities were less able to reduce
their mobility as quickly during the pandemic, and as a result suffered higher rates of infection
[17]. This can be largely attributed to underprivileged groups assuming the roles of frontline
and critical infrastructure work, and also living and working in more crowded circumstances.
Inequalities in access to the internet and ease of travelling to test and vaccination sites are also
factors contributing to this discrepancy [90]. These data demonstrate inequities in receiving
resources throughout the pandemic, which also extends to vaccination [74, 43, 69, 9]. In
Figure 4.1, we demonstrate how racial minorities and lower income communities in three US
metropolitan areas were less able to reduce their mobility as quickly when the lockdown was
introduced.

This disparity motivates the need for a fair vaccination strategy that differs from the cur-
rent technique. In this work, we investigate a collection of alternative vaccination strategies
that consider both mobility and fairness. We leverage an approach called influence maxi-
mization (IM), a network science technique designed to detect the most influential members
of social networks, typically used in applications such as viral marketing campaigns [19].
We adapt this principle to instead detect the neighborhoods or communities which exhibit
the largest influence on a mobility network in terms of disease propagation. Such communi-
ties are likely to include essential workers who are less able to reduce their mobility during
lockdowns [76, 72].

We adapt our IM approach to achieve fairness in vaccine allocation for racial groups as
well as groups of different social statuses. Moreover, older individuals may be less mobile but
more at risk of severe outcomes when exposed to the disease. It is essential not to overlook
this trade-off; we therefore also design a strategy designed to protect communities based on
higher risk and vulnerability. To summarize, our contributions are as follows:

(1) A novel community-level influence maximization approach for identifying impactful
neighborhoods, aiding targeted vaccination against disease transmission.

(2) Extension of influence maximization to mitigate infection disparities among racial
and income-level communities.

(3) Introduction of a competitive method, merging influence maximization with priori-
tizing older communities to reduce overall infections.

(4) Empirical validation on mobility networks from three major US metropolitan areas,
utilizing real aggregated visit data from census block groups (CBGs) to points of
interest (POIs) during the first five weeks of Covid-19 pandemic.
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Fig. 4.1. The reduction in mobility from before lockdown to during lockdown per racial
groups and income groups in Philadelphia, New York and Chicago metropolitan areas. For all
three areas, lower income groups and racial minorities belonging to lower income groups (see
Fig. 4.2) were less able to reduce their mobility as quickly when transitioning to lockdown.

4.2. Related Work
Fairness in AI is an expanding area of research which has seen traction since the exposure

of biases in several significant technologies [62, 15, 6]. This extends to the field of influence
maximization, where various works impose fairness constraints on the optimization problem.
For instance, Farnadi et al. provide a framework for applying a variety of fairness definitions
to IM tasks [28]. Other works have included developing adversarial graph embeddings to
achieve fair IM in social networks [45], and balancing majority and minority groups in IM
when networks and diffusion processes demonstrate homophily [7]. Ali et al. ensure fairness
in exposure under a time-critical perspective, for example posting a job advertisement which
should be reached by equal sub-populations before the deadline to apply for the position
[4]. This does not however consider the possibility of changing network structure over time,
as is the case with mobility or contact networks used in epidemiology, and is therefore not
extendable to the problem of vaccine distribution.

Meister et al. characterize communities by their social activity and vulnerability due to
age in a comparative game for optimizing vaccination, however, they do not use real contact
or mobility data to test their approach [63]. Similarly, works which do consider demographic
fairness in vaccination do not necessarily consider mobility to improve performance [46, 68,
41]. Anahideh et al. propose a vaccine allocation solution which tackles the apparent
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trade-off between equal distribution amongst regions and demographic fairness [5]. Their
approach defines effective distributions as those that cover many geographical areas; however,
we argue that this does not necessarily reduce infections most effectively as it treats each
area as equally influential in disease transmission. Commonly, works that do consider social
contact often do not consider fairness implications [39]. Much research considers how to
optimize the age-based vaccination approach, but often other sensitive attributes are not
considered [86, 80, 48, 29, 33, 80, 37, 14].

Similar to our approach, Minutoli et al. [65] lay the theoretical foundations for using IM
to reduce disease transmission via vaccination, though they do not consider fairness. They
use a simplistic propagation model which is not specific to a particular disease, nor does it
consider important factors in disease transmission such as the number of people in a confined
space, or the duration spent there, as we do. Additionally, their implementation is for contact
networks containing interactions between individuals, rather than communities. We argue
that privacy regulations on mobile tracking data will limit the ability to reconstruct such
specific interactions, not to mention also matching demographic information to individuals
in these interactions. Using aggregate visits as in our work is therefore more realistic in terms
of the data available, and allows us to extract demographic information on the community
level which we use for our fairness approaches. Rather than using large contact networks,
condensed mobility networks of aggregate visits also drastically reduces the network size
which is beneficial for computation.
Mehrab et al. use the same mobility data as in our contribution to guide vaccine distribution
to groups with lower up-take rates [61]. However, they use visit counts to public places to
determine the best candidates, whereas we determine influence by simulating disease spread
on top of the mobility network to predict infections. Further, their contribution is to identify
groups with low vaccine uptake at a later stage of vaccine deployment, whereas we offer a
solution for the first stages of the allocation, to ensure fairness from the beginning. To our
knowledge, our work is the first approach to use community-level influence maximization to
propose vaccination strategies which consider demographic fairness.

4.3. Preliminaries
4.3.1. Influence Maximization

IM is a network science technique used to identify the most influential nodes in a graph,
with respect to their ability to propagate a certain transmissible quality, such as information
or disease. IM is particularly popular in viral marketing problems on social media platforms,
in which an entity wants to share advertisements with only a few individuals online, but
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hopes to optimize this choice by selecting those who are more likely to share the information
with the rest of the network. While some techniques rely on heuristics like node centrality
or betweenness to measure a node’s importance in a graph [71, 13], IM assumes access
to a function which models the propagation of the given substance across the network.
The algorithm uses this propagation function to generate its selection for the set of most
influential nodes, often referred to as the seed set. In their seminal work, Kempe et al.
[44] proposed a greedy algorithm which achieves (1− 1

e
) optimality guarantees on the seed

set, so long as the objective function - which is the given propagation function - is both
submodular and monotonic. However, the biggest drawback of the greedy strategy is its
inefficient runtime. The commonly used propagation functions, such as the Linear Threshold
[21] and Independent Cascade [79] models, are stochastic in nature. The greedy strategy,
therefore, relies on running several Monte Carlo simulations of these stochastic propagation
functions, which is costly. Much of the proceeding work following this focus on trying to
improve runtime performance; CELF exploits the submodularity of the influence function
to reduce the number of influence evaluations, achieving a runtime of up to 700 times faster
than the greedy algorithm [50]. In our experiments, we also use CELF to reduce the number
of evaluations.

4.3.2. Mobility networks

We draw on the work conducted by Chang et al. to construct our mobility networks
and simulate Covid-19 propagation on them [17]. The mobility network of a metropolitan
statistical area (MSA) contains K nodes which represent CBGs, neighborhoods of a few
hundred to a few thousand residents. Each CBG is denoted by ci, with i = 1,..,K. The
population of each CBG is known and is given by nci

for CBG ci. The total number of
residents in the network is, therefore, N =

∑K
i=1 nci

. Each individual in the network can
belong to one of M social groups (e.g. racial groups) indexed by j = 1,..,M . In our work,
we experiment with j representing racial groups and also groups based on their median
household income, obtained from US Census data [58]. For racial groups, each CBG can
contain any number of individuals belonging to each social group, up to its total population
size. The fraction of residents in CBG ci who belong to racial group j is known and given
by αij, where 0 ≤ αij ≤ 1, and therefore

∑M
j=1 αij = 1∀i. The total number of individuals

in the network belonging to racial group j is therefore obtained by Nj =
∑K

i=1 αijnci
. For

social status groups, we split the CBGs into M groups defined by the median income of the
households in that CBG. The total number of individuals belonging to a group is, therefore,
Nj =

∑K
i=1 nci

if ci belongs to income group j.
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4.3.3. Covid-19 propagation model

We use the Covid-19 simulation proposed by Chang et al. [17], which models the propa-
gation of the disease on the network of CBGs and POIs. The constructed hourly visits from
the network describe how many individuals travel from CBGs to POIs per hour. POIs here
represent public places such as restaurants, gyms and religious centers, where interactions
with members of other communities can happen, and the disease can spread accordingly. In-
dividuals can also transmit the disease amongst members of their home CBG. The number of
new infections per CBG is therefore a summation of two terms drawn from different distribu-
tions; one Poisson distribution for new exposures from POIs, and one Binomial distribution
for new exposures from their home CBG and other places which may not be accounted for
in the POIs, such as public transportation. The previous work fixed the parameters of the
model by comparing it to the counts of real Covid-19 cases, which we also reproduce in our
work. Our vaccination approach can technically be used to combat any disease, simply by
swapping the influence function σ for a model of said disease. This would mean changing
the parameters of the model when calibrating it to real case counts. Further details of the
model and its calibration can be found in the Appendix.
At all time steps in the disease simulation, we have access to the number of susceptible,
infected, exposed, and recovered or removed individuals residing in each CBG. We maintain
a vector of size K for each of these states, denoted respectively by S, E, I, and R. Their
elements are indexed by i and contain the fraction of individuals in CBG ci belonging to that
state. For example, element I t

i contains the fraction of individuals in CBG ci who are in the
infected state at time t. In this work, we are only interested in the final rates of exposed,
infected or recovered/removed (EIR) individuals in the final time step of the model, T , and
readers can assume we use the final iteration at T of these vectors from here onwards. For
example, the sum of all exposed-or-worse individuals in the network at time T is given by
NEIR =

∑K
i=1(ET

i + IT
i +RT

i )nci
.

Individuals in the network therefore always belong to one of M social groups, as well as one
of the four SEIR states. Since we only have access to these statistics on the community
level, we approximate the number of people in the network belonging to racial group j and
exposed-or-worse as NEIRj

=
∑K

i=1(ET
i +IT

i +RT
i )αijnci

. For income group j, the equivalent
is obtained by NEIRj

=
∑K

i=1(ET
i + IT

i +RT
i )nci

for CBGs belonging to income group j.

4.4. Proposed Approach
In this section, we present three methods of targeted vaccination using IM. Firstly, we

present our simple method for vaccinating with IM and no additional constraints. We then
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outline two methods for introducing fairness to IM, for both racial groups and income groups.
Finally, we present a method for applying weights to communities corresponding to their rel-
ative risk, in order to use IM and still prioritize older communities that are more vulnerable
to severe outcomes if infected.
In our approach, the treatment of the three sensitive attributes (also referred to as protected
attributes) in the network - race, income level and age - are not the same. For the racial and
income groups, we aim to achieve fairness according to their population size in the network.
An individual should be no more at risk of infection due to their race or income than what
is expected given the racial or income group’s population size in the network. However,
the same strategy should not be adopted for age, since infection can lead to more severe
outcomes for older individuals, making them more high risk. Therefore, we strive to achieve
fairness amongst race and income, but adopt a bias with respect to age, in order to protect
individuals at high-risk.
As addressed in the Preliminaries, the greedy approach in influence maximization provides
provable guarantees on the optimality of the seed set, so long as the influence function is
both monotonic and submodular. Previous findings have found issues proving these proper-
ties in a temporal SIR model [25]. Similar to this work, we argue that the greedy approach
is still effective despite the propagation model exhibiting some submodularity violations.
Additionally, the greedy approach is more scalable for greater network sizes than solving
the optimization problem exactly, particularly when fairness constraints are required [28].
Further, we argue that the greedy approach provides an element of model interpretability,
which is particularly important when justifying why one neighborhood should receive vac-
cines over another; in our case, we can clearly demonstrate with the greedy approach that a
neighborhood with higher mobility and influence is more likely to be selected for vaccination.
Further, we argue that using community-level influence maximization, with aggregated data
on CBGs rather than individuals, is a more realistic approach when we want to obtain
demographic information for fairness purposes. Privacy concerns (rightly) limit access to
fine-grained data on individual mobility and their sensitive attributes, but here we use Cen-
sus data to match demographic data to CBGs.

4.4.1. Vaccinating with Influence Maximization

In this section, we outline how to select the most influential communities in the network
in terms of disease spread using IM and CELF. The algorithm is provided in Algorithm 2.
We begin with a budget B corresponding to the number of vaccines available for allocation
to the whole network. We can simulate the disease spread from a set Z of CBGs, in order
to quantify how influential those communities are. In the general case, Z can contain any
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number of CBGs, but to quantify the influence of just one, only that CBG would be contained
in the set Z, e.g. Z = {ci} for i = 1,..,K.

For all K CBGs in the network, we then conduct simulations of the disease spreading
from that neighborhood alone. We maintain a list of lists L = [[1, σ({c1})],...,[K, σ({cK})]],
where for CBG i, σ({ci}) represents the NEIR count as a result of simulating disease spread
starting only from ci. L, therefore, contains the list of pairs of the candidate CBGs indices
along with their corresponding influence, as a count of how many people resulted in exposed-
or-worse states.
We initialize the set of nodes to vaccinate, Z, as an empty set. Then, in each iteration, the
CBGs with the greatest marginal gain are greedily added to Z. The marginal gain is the
difference in influence between the current set of selected CBGs (spread), and the influence
of the current selected CBGs plus a potential candidate CBG. Note that the gain is also
normalized by the population of the CBG, nci

. We implement this normalized version of
IM since we want to select CBGs that are the most influential per their population, and
CBGs with a higher population use more of the vaccination budget than CBGs with a lower
population. We keep track of how much budget is used so far with B′, which gets updated
with the population sizes of CBGs when they are added to Z.

In lines 9-15, we perform a check to test whether the highest-influence candidate after
the previous iteration is still the highest-influence candidate in the current iteration. If this
is true, we omit the requirement to re-calculate the influence of the other candidates. This
exploits the submodularity of the influence function, since the marginal gain of adding CBG
ci to a smaller set Z can only decrease. This is the contribution made by CELF [50], which
we use to improve run time. The algorithm then continues to add candidate CBGs to Z

so long as their addition does not exceed the budget B. The final output of the model is
therefore a set of CBGs to be vaccinated, which we call V . Our subsequent variations of this
contribution in the next sections adapt this method to apply demographic fairness.

4.4.2. IM with equal treatment

Equal treatment is an existing fairness notion in the domain of fair IM, which aims to
achieve fair representations of social groups in the final set of selected nodes V . This is
equivalent to achieving the same demographic distribution in the set of communities to be
selected for vaccination as in the whole network. We model this task as a multiple knapsack
problem [18], whereby each social group j = 1,..,M is allocated a number of vaccines based
on the fraction of their population in the network. Each social group j, therefore, receives
its own budget Bj, corresponding to the number of vaccines to be allocated to the group,
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Algorithm 2 Selecting CBGs to vaccinate using IM and CELF
1: Input: budget B, number of CBGs K, disease model σ
2: Output: CBGs to vaccinate V
3: B′ ← 0, spread← 0, L← [], Z ← []
4: for i = 1, . . . , K do
5: L.append([i, (σ({ci})− spread)/nci

])
6: end for
7: sort L by gain, descending
8: Z.append(L0,0) {add cbg with best gain to Z}
9: spread← L0,1 ∗ nZ−1

10: B′ ← nZ−1 {update budget used}
11: while there are possible candidates in L do
12: matched← False
13: while not matched do
14: best← L0,0
15: L0,1 ← (σ(Z ∪ {best})− spread)/nbest

16: sort L by gain, descending
17: matched← L0,0 is best
18: end while
19: spread← spread+ L0,1 ∗ nbest

20: Z.append(L0,0)
21: B′ ← B′ + nZ−1 {update budget used}
22: L← L[1 :] {remove best from the candidate list}
23: keep only candidates in L which cannot exceed B
24: end while
25: return Z

given by
Bj = Nj

N
B (4.4.1)

where Nj is the number of individuals in the network belonging to group j and N is the
total network population. To implement this, when a CBG is selected for vaccination, we
update the budget used by each of the M social groups, between lines 19 and 20 of Algorithm
2. Additionally, after line 21, we perform another check to ensure the remaining candidate
list contains only CBGs whose addition would not violate any of the social group budgets
Bj. We use these definitions to outline two strategies: equal treatment by racial groups and
equal treatment by median household income.

4.4.2.1. Equal treatment by racial groups (IM-R). When performing equal treatment
for racial groups, the budget of racial group j is updated when CBG ci is selected for
vaccination via

B′
j = B′

j + nci
αij (4.4.2)

This update is performed for all M racial groups when any additional CBG is selected.
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We acknowledge that our fairness framework takes a Western-centric perspective, par-
ticularly with respect to race, and is relevant mostly to countries containing urban areas
with high diversity, as is more typical of the global West. The most effective strategy for
each country, however, will not be the same [26]. We therefore propose IM-I to counteract
this bias; many non-Western countries may not have the same extent of racial diversity,
but will still experience income disparities in their urban areas. Using income as a sensitive
attribute therefore still provides a fair IM method which is relevant for areas with low racial
diversity. Further, Figure 4.2 identifies that in our selected MSAs, the White population
tends to dominate higher income CBGs, while historically marginalized groups of Black or
African-American are more prevalent in lower income groups, as is typical of high-diversity
urban areas in the West. Therefore, fairness by income level may also achieve fairness by
racial groups for our selected MSAs.

4.4.2.2. Equal treatment by median income (IM-I). We perform a similar equal treat-
ment scenario, this time with social groups defined by income. We use labels of the median
household income of each CBG. The distribution of the CBG median income is split into
four quartiles. We then bucket the CBGs into one of M = 4 groups according to which
quartile its median income falls into. The budget is split in the same way as with race, using
Bj = Nj

N
B for each income group j, where Nj is the total population of that income group.

However this time, the budget updates are given by

Bj′ =

B′
j + nci

, if ci belongs to group j

B′
j, otherwise

(4.4.3)

4.4.3. IM with age-associated risk-weights (IM-A)

While older individuals in the network are less mobile, they are more likely to experience
severe consequences if they contract the disease, including hospitalisation and death. As a
result, it is important to consider this tradeoff when using IM. To do so, we incorporate
this notion into our IM technique such that the significance of infecting a person from a
CBG with a higher median age is greater. We implement this by weighting the CBGs with
a “risk-factor" according to their median age. The purpose is to not only select CBGs for
vaccination that are highly influential in the network but in particular, find those CBGs
that pose more of a risk of exposing older communities to the disease. We achieve this by
scaling the influence calculations σ, which is used as the selection criteria for vaccination
(see Algorithm 2). We construct a vector µ of size K containing the associated risk-weights
for each CBG, determined by its median age. We fill this vector with the death rates per
age group from the CDC, which are the rates of death of older groups compared to 18-29
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Fig. 4.2. Racial distributions of CBGs grouped by their median income. Income groups
are determined by quartiles of the median income distribution. Results are for three MSAs:
Philadelphia, New York and Chicago.

year olds in the US [16]. We report these values in the Appendix. The resulting influence,
which before was just the sum of exposed-or-worse individuals in the network, is now instead
a weighted sum where each CBG is weighted according to its risk-factor in vector µ, given
by

σA =
K∑

i=1

µinci
(Ei + Ii +Ri). (4.4.4)

We use this metric as a proxy to account for infections as well as more severe cases and
deaths. In Algorithm 2, the influence function σ is replaced by σA in lines 3 and 13.

4.4.4. Multiple Protected attributes

The methods proposed so far each strives for fairness using one protected attribute at a
time. However, it is possible that achieving the desired fairness for one protected attribute is
not beneficial for another. For example, older communities tend to be predominantly White
in the US. Therefore, a vaccination strategy based solely on age, without consideration for
fair distribution amongst racial groups, leads to an unfair allocation. This would also lead
to unfair allocation amongst income groups as White populations tend to dominate higher
income CBGs, as shown in Figure 4.2. To address this issue, we propose the following
combinations of our methods:

4.4.4.1. IM- with Race groups and Age-associated risk-weights (IM-RA). We per-
form equal treatment to achieve representative allocation of vaccines amongst racial groups,
but use the influence function σA to apply a heavy penalty for infecting older communities.

34



4.4.4.2. IM - with median Income and Age-associated risk-weights (IM-IA). Sim-
ilarly, we perform equal treatment of vaccines amongst the four income groups and replace
the influence function with σA. In our experiments, we later find high numbers of submod-
ularity violations when using the σA influence function. For all experiments using the “-A”
suffix, we, therefore, omit the recalculation checks in Lines 10 to 15 of Algorithm 2.

4.5. Experiments
Dataset We conduct experiments on three mobility networks of MSAs in the US, constructed
from individual mobile tracking data from SafeGraph, from the Dewey platform [24]. We
use the implementation proposed by [17] to construct these networks, and also use their
Covid-19 model as our influence function. A mobility network is constructed as a temporal
bipartite graph Gt = (V,Et), whose nodes V are either CBGs, which are communities of
between 600 and 3,000 US residents, or POIs. A directed weighted edge et(v1,v2) ∈ Et

represents the number of residents from a CBG who are visiting a POI at hour t. The graph
varies over time, such that no nodes are added or removed, but the edge weights vary hourly.
We use five weeks of visits from CBGs to POIs beginning on the 2nd of March 2020. For our
implementation, only the first two weeks are used to select the most influential communities,
and vaccination is implemented after the two-week mark. We used data from the beginning
of March in order to exploit the full mobility of individuals before lockdown. Otherwise, it
would not have been possible to measure the effect of the proposed vaccination strategies
separately from the effect of lockdown. We include details of the computing infrastructure
for creating the networks and running experiments in the Appendix.

Throughout the experiments, we set the vaccination budget to 5% of the population
size of the whole network. We experiment with three MSAs - Philadelphia, New York
and Chicago - each of which encompasses the main city as well as the wider metropolitan
area. These particular MSAs were selected based on their high racial diversity, and high
discrepancy in infections between racial groups as reported in the previous work. We
provide more details of this setup, including further pre-processing steps, in the Appendix.
The outputs are mobility networks modelling metropolitan areas of populations between 6
and 10 million residents. We provide statistics of network size after these pre-processing
steps in the Appendix.

Baselines Each vaccination strategy is run over 30 random seeds, and we report the average
results in comparison to three baseline approaches. We design our own baselines here, since
the closest approach to ours which uses IM for vaccination uses a generic propagation function
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which is not specific to a particular disease, and is valid only on rooted trees and not general
graphs [65].

• No vaccination: We model free-spreading Covid-19 during the total five-week period,
without any vaccination strategy.
• Random vaccination (RAND): We implement a random selection of CBGs for vacci-

nation within the budget B. We collect results over three random seeds and report
the average.
• Current strategy proxy (CS): Here we replicate the current strategy which prioritizes

older communities. We select the oldest communities for vaccination, by the median
age of the CBG, up to the vaccine budget B.

Fairness Evaluation Metrics In addition to evaluating the performance of the vaccination
strategies, we propose two methods of evaluating fairness for social groups in this context. In
both cases, we measure the discrete KL-divergence between two distributions; we compare
a distribution from the outcome of our experiments p(j) to an ideal “fair” distribution q(j).
We draw on fairness notions from the IM literature - equal treatment and equal outcomes.
For both measures, the fair distribution q(j) corresponds to the fractions of each social group
in the network, q(j) = Nj/N .

• Equal treatment For equal treatment, we aim to obtain a fair representation of
each social group j within the CBGs selected for vaccination. As such, the output
distribution p(j) is the proportion of social group j amongst vaccinated CBGs, p(j) =
(Nj/N)V .
• Equal outcome To obtain equal outcomes, the goal is to ensure that no individual is

more at risk of infection than the fraction of that social group in the network dictates.
In this case, we set p(j) to be the proportion of infections received by social group j,
as a result of our vaccination strategy. This can be written as p(j) = (Nj/N)EIR.

4.6. Results and Discussion
4.6.0.1. Reducing overall infections. The performance of each vaccination strategy in
reducing the number of infections is shown in Figure 4.3 (green). For every MSA, all vacci-
nation strategies using IM outperform both RAND and CS. Though the infections decrease
by only a few percent, given the network size, these percentage point differences are signifi-
cant. For example, a 5% decrease in infections for Philadelphia corresponds to around 18,000
fewer people infected (including estimates of unreported infections). We observe that the
variations of IM experiments which include fairness (the last five bars) do not experience a
significant decrease in performance even when optimizing for both performance and fairness.
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Fig. 4.3. Performance measured by percentage decrease in infections (top), and percentage
decrease in risk-weighted infections, i.e. with a weighted penalty of infecting older commu-
nities (bottom), compared to not vaccinating. Higher is better for both metrics.

This illustrates that fairness considerations in vaccination distribution do not have to come
at the cost of increasing infection counts.

4.6.0.2. Infections in high-risk groups. Figure 4.3 (purple) reports the percentage de-
crease in infections weighted by age-associated risk, as described in Equation 4.4.4. The
experiments optimizing for age are the baseline CS and our contributions IM-A, IM-RA,
and IM-IA, which therefore perform best for this metric. However, we see that all of our
proposed solutions which optimize for age outperform the current strategy, even when they
are also optimizing for another sensitive attribute at the same time. The results testify to
several alternative solutions that better protect older communities as well as ensure fairness
for other sensitive attributes like race and income.

4.6.0.3. Comparing fairness notions. In Figure 4.4 left, we present results for equal
treatment (red) and equal outcome (blue) for racial groups, and in Figure 4.4 right we present
the same metrics for income groups. Though the DKL values are small, these still correspond
to significant differences in these large networks. For example, the current strategy model
(CS) has a DKL of around 5.8 × 10−4 for Philadelphia, which corresponds to the Black
population suffering around 6,000 more infections than if they were distributed according to
their proportion in the network. Critically, we see that IM-R methods successfully achieve
equal treatment for racial groups across all MSAs, as does IM-RA, with the exception of
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Fig. 4.4. The KL-divergence scores measure fair treatment (red) and fair outcomes (blue)
with respect to racial groups (left) and income groups (right). Lower DKL corresponds to
better fairness for both metrics.

Chicago. The effect is stronger for income, where IM-I and IM-IA experiments achieve near-
perfect (DKL of zero) distribution of vaccines to income groups, for all MSAs. Though equal
treatment is important to ensure, we are more interested in an equal outcome, as infections
are the more serious consequence. We see that the experiments which perform best for
equal outcomes amongst races are also IM-R and IM-RA. This demonstrates that achieving
equal treatment can be very effective in delivering fair outcomes for those same demographic
groups. Additionally, for some MSAs, constraining on fairness by income (IM-I) leads to
fair outcomes for race, and vice versa. This implies that the objectives of achieving fairness
amongst races and fairness amongst social status are similar.

4.6.0.4. Optimizing for multiple sensitive attributes. Since the results of every vacci-
nation experiment for each MSA can differ, it is possible that there is no one one-size-fits-all
best vaccination strategy for every urban area. In particular, we can identify how account-
ing for higher-risk individuals (experiments with the “-A” suffix) can work favourably for
achieving demographic fairness in infections for some but not all MSAs (see Chicago, Figure
4.4 blue, left and New York, Figure 4.4 blue, right). Despite this, we can identify at least
one strategy per metropolitan area which achieves high performance in reducing infections

38



overall, as well as a competitive result for the infection outcomes of all three sensitive at-
tributes of age, race, and social status by income: IM-RA for Philadelphia and New York,
and IM-IA for Chicago.

4.7. Conclusion
Fair vaccination strategies are essential to protect at-risk communities and mitigate dis-

parities among different social groups. As minorities and lower-income communities were
not able to reduce their movement during the pandemic, we proposed alternative strategies
based on the mobility of individuals using influence maximization.

For policy-makers, choosing a vaccination strategy amongst those presented here is non-
trivial. There is no one-size-fits-all solution for every urban area. However, we demonstrate
that, for all networks we tested here, one of our proposed methods can successfully ensure
demographic fairness for all three sensitive attributes. We, therefore, argue that community-
level influence maximization should be incorporated into whichever ethical stance is taken,
and we present the methodology to do so.

Our approach can be extended to accommodate multiple rounds of vaccine allocation, as
commonly observed in real-world scenarios. It would be necessary to capture the mobility
shifts at different stages of lockdown, and how this affects demographic groups differently.
There are many factors which could be incorporated to make the simulation more realistic,
such as vaccine hesitancy. For later stages of vaccine roll-out, our approach could be combined
with data on rates of uptake or hesitancy to influence the selection of neighborhoods.
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4.8. Appendix
4.8.1. Constructing Mobility Networks

We use the Covid-19 simulation and mobility network proposed by Chang et al. [17].
To construct the networks, they used the Safegraph social-distancing data of daily estimates
of the fraction of CBG’s residents who are out visiting other CBGs. Safegraph no longer
provides these values, so we estimated it ourselves using Safegraph’s Neighborhood Patterns
of visitors arriving at CBGs, and aggregating over these. We make our code available upon
publication of this work to demonstrate our approach. Additionally, due to sparsity in
the weekly patterns data used to construct the mobility networks, we aggregate over two
previous months of the monthly patterns data. We use fewer months of aggregate visits
than the previous approach, which means our networks’ statistics differ from theirs. This
also leads to Covid-19 model parameters which differ from that of the previous work (see
Table 4.1).

βhome ψ p0

Philadelphia 0.02 300 0.001
New York 0.02 100 0.005
Chicago 0.02 500 0.0005

Table 4.1. Final model parameters obtained by tuning infection model to real Covid-19
case counts for each MSA.

Table 4.2 summarizes the network statistics of the three MSAs in terms of population,
CBGs, and POIs.

MSA Population CBGs POIs
Philadelphia 9,247,281 5,603 11,479
New York 9,990,617 6,522 20,606
Chicago 6,074,364 3,452 8,281

Table 4.2. Final statistics of mobility networks.

4.8.2. Covid-19 Model

Below we describe the basic set-up of the Covid-19 model. More details can be found in
the supplementary information of the previous work by Chang et al. [17]
The model maintains four vectors of size K - S, E, I and R - corresponding to the fraction
of susceptible, exposed, infected and recovered/removed individuals per CBG. The rates
of transitions between these states at a time step t are determined by the number of new
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exposures N (t)
Sci →Eci

, the number of exposures transitioning to infections N (t)
Eci →Ici

, and the
number of infections transitioning to recovered/removed, N (t)

Ici →Rci
. The number of new

exposures depends on two factors; visits to public places (from the visit matrix w) containing
other infectious individuals, and interactions from the home CBG with other infectious
individuals. Transitions are sampled from the following distributions:

N
(t)
Sci →Eci

∼ PoisS
(t)
ci

Nci

n∑
j=1

λ(t)
pj
w

(t)
ij + Binom(S(t)

ci
, λ(t)

ci
) (4.8.1)

N
(t)
Eci →Ici

∼ Binom(E(t)
ci
, 1/δE) (4.8.2)

N
(t)
Ici →Rci

∼ Binom(I(t)
ci
, 1/δI) (4.8.3)

Here, λpj
refers to the infection rate at POI pj, and λci

is the infection rate at CBG ci. δE

and δI refer to the mean exposure period and the mean infectious period respectively.
Using the number of transitions, the number of S, E, I and R for a CBG ci at time t > 0

can be expressed as follows:
S(t)

ci
= S(t−1)

ci
−N (t)

Sci →Eci
(4.8.4)

E(t)
ci

= E(t−1)
ci

−N (t)
Eci →Ici

+N
(t)
Sci →Eci

(4.8.5)

I(t)
ci

= I(t−1)
ci

+N
(t)
Eci →Ici

−N (t)
Ici →Rci

(4.8.6)

R(t)
ci

= R(t−1)
ci

+N
(t)
Ici →Rci

(4.8.7)

At t = 0:

E(0)
ci

=
{
Nci

p0 if ci is infected
0 otherwise.

(4.8.8)

S(0)
ci

= Nci
− E(0)

ci
(4.8.9)

I(0)
ci

= 0 (4.8.10)

R(0)
ci

= 0 (4.8.11)

where p0 is the probability that an individual in the metro area is exposed at the first
time step. This probability is one of the three parameters set when calibrating the disease
propagation to real case counts, see Table 4.1.

4.8.3. Age group risk factors

Table 4.3 shows the different risk factors of infection, hospitalisation, and death of differ-
ent age brackets compared to 18-29 years olds. The trend shows that while younger people
are more prone to getting infected, they are less likely to face grave or fatal consequences.
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For instance, a person aged 85 is 350 times more likely to die from covid compared to a per-
son in their 20s. It is important to consider such risks when using developing a vaccination
strategy.

30-39 40-49 50-64 65-74 75-84 85+
Cases 1.0x 0.9x 0.8x 0.6x 0.6x 0.7x
Hosp. 1.5x 1.9x 3.1x 4.8x 8.6x 15x
Death 3.5x 10x 25x 60x 140x 350x

Table 4.3. Age group risk factors of cases, hospitalization and death compared to 18-29
year olds, from CDC [16].

4.8.4. Mobility of selected CBGs for vaccination

Table 4.4 contains the average mobility of CBGs who were selected for vaccination, both
before lockdown and during lockdown. The first column contains the average pre- and in-
lockdown mobility of the entire network. Strategies which select higher mobility CBGs to
vaccinate generally have better performance in reducing overall infections (see Figure 4.3,
green).

NTWRK RAND CS IM IM-R IM-I IM-A IM-RA IM-IA

PH pre-lockdown 2.069 2.066 1.956 1.986 2.149 2.009 2.042 2.077 2.061
in-lockdown 0.830 0.822 0.779 0.822 0.897 0.838 0.806 0.832 0.812

NY pre-lockdown 2.956 2.997 2.835 3.111 3.111 3.087 2.966 2.968 2.909
in-lockdown 0.973 0.966 0.992 1.049 1.039 1.014 1.007 0.994 0.990

CH pre-lockdown 2.108 2.097 2.034 2.213 2.246 2.151 2.119 2.137 2.141
in-lockdown 0.763 0.764 0.745 0.781 0.819 0.796 0.758 0.777 0.795

Table 4.4. The average mobility of CBGs selected for vaccination for each strategy, com-
pared to average mobility in the whole network (NTWRK). Values for pre-lockdown and
in-lockdown are presented, with the highest mobility values per row in bold.

4.8.5. Infrastructure

To first construct the three mobility networks, we use 2CPUs and 64Gb of memory on
Linux OS. The vaccination experiments can then each be run on 1CPU, 2GPU and 8Gb
memory. We point the reader to the README file included in the code repository for a list
of libraries and packages required to run on conda environments. The code can be found
here: (we make this link live upon publication).
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Chapter 5

Conclusion and Future Work

In this work, we present our contributions for tackling the problem of unequal protection
from disease outbreaks for economically-disadvantaged groups and racial minorities using
a vaccination deployment strategy which considers demographic fairness. Using aggregate
statistics of visits to public places, we first optimize for the overall reduction in infections
using an influence maximization approach. We then build on this basis to apply constraints
equivalent to fair access to vaccines for racial groups and income groups, and a prioritization
for older groups due to their increased risk of severe symptoms. Our proposed techniques are
combinations of these demographic fairness considerations, whereby we optimize for several
sensitive attributes at once.

Amongst the solutions we present in this work, it is evident that due to their differing
mobility patterns and demographic configurations, each MSA has a different best approach.
If we take the prioritization of older groups as an absolute requirement, respecting the
obligations which governments currently abide by, we are left with three of our IM solutions
to choose from per MSA; IM-A, influence maximization with age priority, IM-RA, age priority
and racial group fairness, and IM-IA, age priority and income group fairness. Of these three,
the best performing technique is different for each MSA when we take into consideration all
the performance and fairness metrics by which we evaluate them. When selecting from these
three, we find that their order is similar for fair treatment and fair outcomes per MSA; for
example in Figure 4.4, in New York, based on fair treatment for races (red, left) the clear
best choice is IM-RA, followed by IM-IA and then IM-A. We observe the same pattern in
the fair outcomes for race in New York (blue, left). This pattern is replicated in all of the
treatment-outcome plot pairs (except for income in Philadelphia). This is further evidence
that, although we only implement fairness in terms of equal treatment for our sensitive
attributes (race and income), this leads to the desired equal outcome. Put simply, fair



distribution of vaccines with respect to a sensitive attribute leads to fair rates of infection
for that sensitive attribute without needing to explicitly constrain on it.

It is also important to note that fair treatment (red) and fair outcome (blue) measures do
not always coincide (see Figure 4.4); in particular, for income fairness in Chicago, the plain
IM approach is most unfair in terms of treatment but most fair in terms of outcome. Indeed,
the shapes of the red and blue income plots for Chicago are strikingly dissimilar, whereas
for New York and Philadelphia (above) we could say there is an approximate similar trend
between treatment and outcome. This demonstrates the importance of evaluating each MSA
separately, as it is the consequence of their mobility dynamics and their unique patterns in
wealth and race distribution in the network which affects how each solution will perform.
In practise, it would be the responsibility of local governments to implement the framework
and oversee this choice.

5.1. Fairness-performance trade-off
Based on the typical behaviour of fair models studied in fairness literature, we would

expect the plain IM approach to perform best in terms of reducing overall infections, since
additional fairness considerations may introduce a performance-fairness trade-off. However,
our results demonstrate that some of our approaches which include fairness perform better
in terms of reducing overall infections than the plain IM approach. There is an explana-
tion for this phenomenon based on our choice of time period in which we test and evaluate
our models. The period in which we select CBGs occurs before lockdown was introduced,
however our subsequent evaluation period does overlap with lockdown. Our initial obser-
vations revealed that minority communities exhibited less capacity to reduce their mobility
during lockdown, as demonstrated in Figure 4.1. With this discovery, we anticipation that
minority communities might be more likely to be selected for vaccination if our selection
period coincided with the lockdown. The objective was to demonstrate that even if the
plain IM strategy inherently disadvantaged minority communities, our fairness-enhancing
method could rectify this bias. By conducting this test before the lockdown, we established
a compelling case for our model’s fairness, thereby showcasing its effectiveness in addressing
disparities in infections.

So while the plain IM approach does not actively favour minorities, picking the most
mobile CBGs while everyone’s mobility was at its highest, it is evaluated during a time when
minorities are more mobile. It is therefore possible that the fairness-enhanced method per-
forms better during the evaluation since minorities were more mobile. In practice, we may
not witness this same effect since both the selection and evaluation periods would both occur
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in lockdown. As such, the model should be applied to mobility data immediately before vac-
cine availability. This would likely result in a more diverse selection of CBGs for vaccination,
as minorities would exhibit less mobility reduction. Nevertheless, we intentionally chose to
test the model during a period when the trade-off between performance and fairness is more
pronounced, posing a greater challenge to the model’s capabilities.

5.1.1. Defining fairness

It is an interesting line of argument to consider the following question: what about how
the infection rates disproportionately affected economically-disadvantaged groups and racial
minorities before the vaccine was available? Is it the responsibility of the vaccine deployment
orchestrators to make up for this, by providing a greater advantage to those already disad-
vantaged from the period spanning the beginning of the outbreak until the availability of
the vaccine? One could argue this case by citing the importance of equity. In this work, we
instead only consider fairness from the moment the vaccine becomes available, as a “clean-
slate”. If policy-makers wanted to implement a positive bias towards the disadvantaged
group(s) who suffered more infections and deaths than their population size would account
for, then this would be possible to implement within our framework, simply by changing the
“fair” distributions in order to up-weight the previously marginalized groups. However, the
new distribution choice would have to be rigorously justified, in order to place a numerical
value on how much positive bias and extra protection these groups should inherit. This is,
again, a very non-trivial ethical problem, but made possible in our framework should it be
considered by policy-makers.

5.2. Limitations
One of the biggest limitations of the solution presented here is the use of aggregate-level

age data. Having only statistics of the median age of CBGs means that we can only penalize
a method for infecting an individual from a CBG with a high median age. This means
there are many older people who will not be accounted for, living in CBGs with lower
median ages, but the model is not penalized for infecting them. A potential work-around
could be found by utilizing the hesitant populations of each CBG. In each CBG, there
will be some members who display vaccine hesitancy, and while our model will allocate
vaccines to all members of the CBG if the CBG is selected, some of these will go unused
if the uptake rate is not 100%. While it is hard to predict hesitancy rates for the first
round of vaccination, we can imagine a re-allocation scheme where we anticipate a certain
hesitancy rate in all CBGs, and those vaccines, which would otherwise go unclaimed, are
re-distributed to older members of other CBGs. In this sense, it is possible to merge our
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solutions even more so with the current strategy of vaccinating older individuals first.
Although this may introduce a degree of realism in estimating the impact of hesitancy on
total infections, a uniform hesitancy rate for all CBGs would not affect the selection process
for CBGs, particularly given that vaccination is only introduced during the evaluation period.

Using a SEIR model as in our case, there are many ways to adapt the model to be ever
more realistic. Firstly, in this work we model vaccination by setting the whole CBG to
reach full immunity, reducing their rate of transmission to zero. We also implement this full
immunity immediately after the vaccine is available. As we know, Covid-19 vaccines were
never 100% effective, required several weeks to reach their highest immunity rate, and their
efficacy reduced for older recipients [27, 54]. In this sense, a more realistic model could
implement an efficacy rate drawn from some random distribution, based on the average age
of the CBG, as well as increasing the efficacy gradually over the first few weeks. This also
brings us to the limitations of the demographic information: the age data and income level
data are simply averages over the CBG neighborhood, and the race data is also the racial
distribution on the aggregate CBG level. In this sense, when we report final infection rates
for racial groups, we are limited to sampling that racial group from the final infections rates
of the CBG. The same can be said for calculating mobility. Despite these limitations, we
were still able to extract the expected trends from the data which matched what we know
about how wealth is distributed among racial groups in the US (Figure 4.2) and in who was
able to reduce their mobility quicker (Figure 4.1). This reassures us that our results with
respect to infections in demographic groups are also extracting reliable trends despite only
having access to aggregate-level data.

5.3. Future work
The vaccine distribution solutions proposed in this work are tested on only five weeks of

mobility data. As such, there is potential to extend the proposed methods to facilitate several
rounds of vaccine roll-out. In reality, the first round of vaccines were not all distributed at
once. It is therefore an on-going problem of optimizing the distribution process when new
rounds of the vaccine become available. In order to extend our solutions to fit this problem,
it would be necessary to map simulations to on-going infection rates in order to calibrate
the model to real cases more than just once. Considerations of who has already received
the vaccine, and how high the up-take rates are per CBG are important factors and would
add extra layers of complexity. There exists work focusing on targeting communities of high
hesitancy and low up-take, after initial rounds of deployment have already occurred; pairing
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this with our optimization and fairness methods using influence maximization would make
for an interesting direction for a sequential problem.

We also explored a method of constraining explicitly on the infections in order to directly
achieve fair outcomes in terms of how infections were distributed amongst demographic
groups. Inspired by previous work in fair IM, we experimented with the use of a regularizer
to explicitly constrain on the infections [7]. This was an alternative to our equal treatment
approach proposed in the paper, which only deals with how the vaccines themselves are
distributed rather than the infections in the outcome. Though we did not have success with
our attempts of using a regularizer, we believe there is still potential for this direction.

While the specific propagation model we use exhibited some submodularity violations, it
would be a significant contribution to design a completely submodular propagation model to
simulate infections on these same types of mobility networks. While the greedy approach we
use here is effective compared to baseline methods - despite our influence function showing
some submodularity violations - one could provide explicit optimality guarantees with use
of an entirely submodular function. Such guarantees are common in IM literature, where
approaches are often evaluated based on their proximity to the optimal solution. We made
attempts to prove submodularity of our influence function theoretically, but the proof became
intractable when iterating over hundreds of hours of simulation equations, particularly as
the graph edges vary hourly. Either the development of an alternative submodular spread
function, or identifying the optimality guaruntees with the function used in this work, would
be valuable contributions to the research direction and strengthen the robustness of this
approach.
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