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Résumé
Ce mémoire vise à estimer la densité neutre au risque (Risk neutral density (RND) en anglais)
par une approche non paramétrique tout en tenant compte de l’endogénéité. Les prix transver-
saux des options européennes sont utilisés pour l’estimation. Le modèle principal considéré est
la régression linéaire fonctionnelle. Nous montrons comment utiliser des variables instrumen-
tales dans ce modèle pour corriger l’endogénéité. En outre, nous avons intégré des variables
instrumentales dans le modèle approximant le RND par l’utilisation des fonctions d’Hermite
à des fins de comparaison des résultats. Pour garantir un estimateur stable, nous utilisons la
technique de régularisation de Tikhonov. Ensuite, nous effectuons des simulations de Monte-
Carlo pour étudier l’impact des différents types de distribution RND sur les résultats obtenus.
Plus précisément, nous analysons une distribution de mélange lognormale et une distribution
de smile de Black-Scholes. Les résultats des simulations démontrent que l’estimateur utilisant
des variables instrumentales pour corriger l’endogénéité est plus performant que l’alternative
qui ne les utilise pas. En outre, les résultats de la distribution de smile de Black-Scholes sont
plus performants que ceux de la distribution de mélange log-normale. Enfin, S&P 500 options
sont utilisées pour une application de l’estimateur.

Mots clés : Densité neutre au risque, Tarification des options, Variable instrumentale,
Régression fonctionnelle, Méthode de régularisation.
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Abstract
This thesis aims to estimate the risk-neutral density (RND) through a non-parametric approach
while accounting for endogeneity. The cross-sectional prices of European options are used for
the estimation. The primary model under consideration is functional linear regression. We
have demonstrated the use of instrumental variables in this model to address endogeneity.
Additionally, we have integrated instrumental variables into the model approximating RND
through the use of Hermite functions for the purpose of result comparison. To ensure a stable
estimator, we employ the Tikhonov regularization technique. Following this, we conduct Monte-
Carlo simulations to investigate the impact of different RND distribution types on the obtained
results. Specifically, we analyze a lognormal mixture distribution and a Black-Scholes smile
distribution. The simulation results demonstrate that the estimator utilizing instrumental
variables to adjust for endogeneity outperforms the non-adjusted alternative. Additionally,
outcomes from the Black-Scholes smile distribution exhibit superior performance compared to
those from the log-normal mixture distribution. Finally, S&P 500 options are used for an
application of the estimator.

Keywords : Risk neutral density, Option pricing, Instrumental variable, Functional re-
gression, Regularization method.
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1 Introduction
The estimation of the risk neutral density (RND) remains an important concern in finance. In-
deed, the risk-neutral density is a density function that contains rich information about market
expectations regarding the price process of the underlying assets and is used to value illiq-
uid derivatives; assess market beliefs; estimate investors’ risk preferences; manage risks; market
timing; etc. On a theoretical level, it is well known that in the risk-neutral valuation framework,
any European-style derivative can be valued by taking the expectation of its payoff function
with respect to the risk-neutral distribution and then discounted at the risk-free rate over the
life of the contract (see Cox and Ross (1976)). For example, the mathematical expression for
the price of a European put option is: Pt = e−rt,T (T −t) ∫ ∞

0 max(κ − ST , 0)f(ST |(T − t)) dST ;
where ST is the stock price at maturity, κ is the strike price, f(ST |(T − t)) is the unobserved
risk-free density (RND) of ST conditional to the maturity T , rt,T is the riskless interest rate
between date t and T .

The main challenge in this asset pricing problem is to be able to recover this unobserved
function f(ST |(T − t)). Indeed, there is a large literature on how to estimate this risk neutral
density (RND). Two categories can be distinguished: parametric methods and non-parametric
methods (including semi-parametric methods). Parametric methods assume that the RND
function can be approximated by a fixed distribution and estimate the parameters of this dis-
tribution by minimizing prediction errors (see Rompolis and Tzavalis (2008), Corrado and Su
(1996) who consider a log-normal distribution, Bahra (1997) who uses a mixture of log-normal
distribution). However, this class of methods has demonstrated to be insufficiently flexible to
adapt to real-world option prices. Indeed, as proven by Ait-Sahalia and Lo (2000), parametric
methods have the advantage of involving only a few parameters, so that the calculation process
is not cumbersome; but, they have disadvantages if an inappropriate process is assumed, or if
a distribution is chosen that is not flexible enough to adapt to the data. Thus non-parametric
methods (including semi-parametric methods), for their part, rather than assuming a proba-
bility distribution, opt for more general functions in order to obtain greater flexibility in the
adjustment of option prices based on certain criteria. We can cite: Garcia and Gençay (2000) for
the neural network method; Bondarenko (2003) for the positive convolution method; Carrasco
and Tsafack (2023) for the functional analysis technique; Lu and Qu (2021) for a sieve estima-
tor; Cui and Xu (2022) for the risk-neutral density established using exact representations of
the Dirac delta function.

What all these papers have in common is the consideration of the explanatory variable, the
strike price κ, as an exogenous variable. However, this exogeneity assumption may not hold as
the determination of the strike price depends on numerous factors in the stock market; and the
correlation between these latter factors (for example, the volatility or return of an asset) and
the strike price cannot be overlooked. This is because the strike price is a fixed price at which
a derivative contract can be bought or sold when it is exercised; and like all commodities, an
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imbalance between supply and demand will raise and lower the stock price. Thus, any variable
correlated to the demand and supply of a stock would explain the strike price. This may be
the current price (price on date t) of the stock, its volatility, its transaction cost, etc.

Based on these observations, the main idea of this work is to develop an estimator of RND
that allows endogeneity in the model and to study its properties. Concretely, the paper proposes
to address this problem of the endogeneity using instrumental variables in a nonparametric
approach that is functional regression. The proposed estimator is indeed the solution of a
Fredholm equation of the first kind which is an ill-posed problem because of the lack of stability
of the solution. The Tikhonov regularization is used to avoid this problem of the instability.
We analyse the performance of the proposed estimator using some Monte-Carlo simulations.
For that, we make the assumption of lognormal mixture distribution for the true density as
in Carrasco and Tsafack (2023). The results of these simulations show the importance of
considering the endogeneity, but the performance is poor. We deal with this issue by considering
Black-Scholes smile distribution as in Lu and Qu (2021). We therefore modify the way they
generate data to account for endogeneity. We find a good performance suggesting that the
performance depends on the true distribution considered.

The remainder of the paper is organized as follows. Section 2 describes the estimation
method and suggests a data-driven method to select the optimal hyper parameter. Section 3
presents on overview of the related literature. Section 4 explains how to compute the estimator.
It also presents the Monte-Carlo simulations results. Section 5 focuses on the impact of the
distribution of the true density considered on the results of prediction, using Black-Scholes
smile and lognormal mixture distributions. Section 6 presents an application case and section
7 concludes.

2 Definition and estimation of RND
This section shows how to obtain a consistent risk-neutral density estimator in the presence of
endogeneity using the Tikhonov regularization technique.

2.1 Definition

In Cox and Ross (1976), the price of a European Put option Pt of a stock is expressed as follows:

Pt = e−rt,T (T −t)
∫ ∞

0
max(κ− ST , 0)f(ST |(T − t)) dST (1)

where ST is the stock price at maturity, κ is the strike price, f(ST |(T − t)) is the unobserved
risk-free density (RND) of ST conditional on the maturity T , rt,T is the riskless interest rate
between date t and T .
Equation (1) means that, in the context of a complete market, the price of a European put
option Pt with a maturity T , with an underlying price at maturity ST and a strike price κ, is
equal to the expected pay-offs Z(ST ) = max(κ− ST , 0) discounted back to the present.
In reality, markets are incomplete, meaning that some payoffs cannot be replicated by trading
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in marketed securities (Staum (2007)). Hence, the previous equation must be rewritten to take
into account an error term. So, let’s consider put options indexed by i Pi contracted at the
same fixed date t with different corresponding strike price κi and of same end of the contract
T . Then,

Yi =
∫ ∞

0
Zi(s)f(s|τ) ds+ ϵi (2)

where Yi = Pie
rt,T (T −t), Zi(s) = max(κi − s, 0), τ = T − t.

In Carrasco and Tsafack (2023), the authors estimated directly this equation by assuming that
the explanatory variable, κi is exogenous and the error term is conditionally zero-mean and
homoskedastic.
This exogeneity hypothesis is not obvious and may not hold because the determination of the
strike price depends on some factors in the stock market; and the correlation between these
factors and the strike price cannot be overlooked (see Roberts and Whited (2012) for sources
of endogeneity in Empirical Corporate Finance). Indeed, the strike price is a set price at which
a derivative contract can be bought or sold when it is exercised; and like all commodities, an
imbalance between supply and demand will raise and lower the price of stock. Thereby, any
variable correlated with demand and supply of a stock would explain the strike price.
For instance, considering the S&P 500 index (SPX) data used for the real application in Car-
rasco and Tsafack (2023), we observe a strong negative correlation (around -0.90) between strike
price and transaction cost (bid-ask spread) as shown in figure 1
One can also see the strike price as the future price of a stock from its definition. And in

Figure 1: Strike price and spread
(Constructed from S&P 500 index (SPX) data)

this case, the strike price depends on the Volatility of its past prices of security. Indeed, the
volatility is the rate at which the price of a stock fluctuates over a particular period. Higher
stock price volatility often means higher risk and helps an investor to evaluate the uncertainty
that may happen in the future.
These different variables could be very important in estimating of the RND and not considering
them would bias the estimate.
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For this reason, in this paper, the explanatory variable κi is considered as an endogenous
variable and the estimation of the RND density will be done with instrumental variable.

2.2 Estimator of RND f̂ using IV

Let H = L2([0,∞)) be the space of square integrable functions mapping from the interval [0,∞)
to the set of real numbers R. H is a Hilbert-space endowed with an inner product < ., . >

and a norm ∥.∥ , which are respectively defined as follows : < f, g >=
∫ ∞

0 f(t)g(t)dt and
∥f∥ =

∫ ∞
0 (f 2)1/2.

Let us consider the sample (Y1, κ1,W1), (Y2, κ2,W2), ..., (Yn, κn,Wn) of independent variables
following the same distribution as the population version (Y, κ,W ). Let Zi(s) = max(κi − s, 0)
the pay-off at maturity of the put option with the strike price κi (Zi(s), for each s, is random
only through κi). Zi is a continuous time process indexed by by s and is an element of H
We consider the following functional linear model :

Yi =
∫ ∞

0
Zi(s)f(s) ds+ ϵi (3)

where Y is the scalar dependent variable. A possible instrument is W .
The identification in the linear IV regression relies on the uncorrelatedness between the
instrumental variable W and the unobservables ϵ, and the rank condition. One of the
requirements of the rank condition is that the number of instrumental variables corresponds
to the dimension of the endogenous covariate. In our settings, the endogenous covariate
Z is a function (high-dimensional realization), hence, one would need a high-dimensional
instrumental variable W to identify f . This condition may or may not be satisfied. We
therefore distinguish between two cases.

Case1: Condition of dimension of W is satisfied. That means W is a function like Z.
In this case, we assume that W is an element of H such that: E(Wϵ) = 0.
Then, by premultiplying both sides of Equation (3) by Wi(u) and taking the expectation, we
obtain:

E(Wi(u)Yi) =
∫ ∞

0 E(Wi(u)Zi(s))f(s) ds+ E(Wi(u)ϵi)

Then E(Wi(u)Yi) =
∫ ∞

0 E(Wi(u)Zi(s))f(s) ds, since E(Wi(u)ϵi) = 0

We can write the compact form of this equation as following:

CW Y = Kf (4)

where CW Y (u) = E(Wi(u)Yi) is the cross-covariance function between the instrumental variable
W and the response variable Y and K is the covariance operator from H to H defined as:

Kf =
∫ ∞

0 E(Wi(u)Zi(s))f(s) ds

Case2: Condition of dimension of W is not satisfied.
We consider the case where Wi is a finite dimensional random variable and E(ϵ|W ) = 0. Babii
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(2021) called this type of regression a high-dimensional mixed-frequency IV Regression.
Under this assumption, we have:

E(Yi|W = w) =
∫ ∞

0 E(Zi(s)|W = w)f(s) ds

Estimating directly this equation is not convenient. Thus, Babii (2021) shows that it is possible
to estimate f(s) under the condition of the linear completeness property of the distribution of
(Z;W )1. He proposes to convert the conditional moment condition into unconditional moment
condition using a square-integrable function of the instrumental variable, denoted Ψ. In his
paper, he recommended the logistic CDF: Ψ(u,W ) = 1

1+exp(−uT W 1)) ; where W 1 = (1,W T )T ,
u ∈ V ⊂ R1+q, with V is a compact set with nonempty interior.
With this transformation, Ψi(u,W ) plays exactly the role of Wi(u) in the previous case1. So,
we have:

E(Ψi(u,W )Yi) =
∫ ∞

0 E(Ψi(u,W )Zi(s))f(s) ds

Then, we have the similar compact form:

CΨY = KΨf (5)

Our goal is to estimate the density function f solution of equation (4) or equation (5) and
verify the validity of the instrument used. Those equations are indeed integral equations, also
called Fredholm equations of the first kind (see Carrasco et al. (2007)). Such equations in f are
ill-posed problems because of the lack of stability of the solution. To overcome this problem,
we will propose a regularized solution of f . The Tikhonov regularization technique is proposed
to stabilize the solution.

2.3 Estimation using Tikhonov method

We want to estimate f solution of equation (4): CW Y = Kf (it is the same technique for the
equation 5: CWΨY = KΨf .). Let K∗ be the adjoint operator of K, this operator is such that:
< Kf, g >=< f,K∗g >, for all f ∈ H and g ∈ H.
We multiply both sides of equation (4) by K∗.

K∗Kf = K∗CW Y (6)

The Tikhonov regularization solution is characterized by:

f̂α = (αI +K∗K)−1K∗CW Y (7)

where α (with α > 0) is a regularization parameter which will be allowed to converge to zero
as n goes to infinity. This estimator can be viewed as a generalization of ordinary least-squares
estimator (with Ridge regularization).

1We say that the stochastic process Z ∈ H is linearly complete for W if for all b ∈ H with E| < Z, b > | < ∞,
we have: E(< Z, b > /W ) = 0 =⇒ b = 0. The linear completeness is a generalization of the rank condition
imposed in the finite-dimensional linear IV regression.
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2.4 Choice of instrument W and form of Ψ
This subsection gives some ideas about relevant instrumental variables that could be used.
The instrument must be correlated with the strike price κ (because the endogenous variable
Z is random only through κ) and must be exogenous. Since, the strike price is a set price at
which a security can be bought or sold when the option is exercised; and like all commodities,
an imbalance between supply and demand will raise and lower the price of stock. Thereby, any
variable correlated with demand and supply of a stock would explain the strike price. Thus,
the strike price of the security at time t may depend on its past price at the previous time t−1.
The volatility of the security (using its past prices) or the performance of a share on the stock
market influence the fixation of the strike price.

Basically, the past volatility or the past return of the asset could be potential instrumental
variables, because these variables are correlated with strike price. Besides, asset returns are
only slightly self-correlated (see Cont (2001)).
As we work in the case of European options, i.e. we consider options contracted on the same
day and which mature all on the same day, the past price would be nothing other than the price
just before the signature of the contract (just before the sale or purchase of the option) and as
for the volatility or the return, it would take into account all the prices just before the signing
of the contract. For example, if we consider the S&P500 index, we will need to know its price
at every moment of the day, when each European option based on this index is contracted.

As can be seen, the instrumental variable will likely be a scalar. Thus, the use of a square-
integrable function is necessary to convert a conditional moment condition into an unconditional
moment condition. The following two functions are considered in this paper:

• Ψ(u,W ) = 1
1+exp(−u∗W ) , for u ∈ [0, 1]

• Ψ(u,W ) = max(0,W − u), for u ∈ [min(W ),max(W )]

Both provide fairly close results. Therefore, either can be used.

2.5 Validation of the instrument

It would be important to verify if the instrument used is effectively a valid instrument. Indeed,
the instrument W must verify two important conditions:

1. Correlation with the explanatory variable Z: the covariance function between Z and W

(or Ψ) is not null.

2. Exogeneity with the error term: E(Wϵ) = 0 or E(ϵ|W ) = 0

For this purpose, an improvement of Hansen (1982)’s J-test proposed by Amengual et al. (2020)
in the case of a continuum of moment conditions would be used.
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2.6 Correction of f̂α

The estimated Risk neutral density f̂α, like any density, must keep the properties of positivity
and integrability to one. However, the estimation technique used does not guarantee these
properties. For that reason, one need to correct the estimator. We propose to correct f̂α into
a density noted f̃α using the following simple correction:

f̃α(s) = max(0,f̂α(s))∫ ∞
0 max(0,f̂α(s))ds

.
f̃α is positive and its integral is equal to one.

2.7 Selection of the hyperparameter α

In order to have a stable solution, the estimated RND depends on the hyperparameter α which
must be obtained optimally. Since the main goal is to estimate the RND and therefore predict
the put prices, we define a prediction criterion to select the optimal hyperparameter α. That
means we choose the regularization parameter in such a way that the mean squared prediction
error (MSPE) is minimized. We use the K-fold cross-validation for the selection procedure.
Indeed, we split the initial sample in K subsamples denoted I1,...,IK (K = 10 in this work by
following numerous articles in the literature such as Carrasco and Tsafack (2023) or Lu and Qu
(2021)). To do this:

• We divide the number of observations n by K, denoted nb, i.e, nb = n/K;

• Then, th first K-1 groups are made up of observations equal to the integer part of nb, and
the remaining observations form the last group.

αop = argmin
α∈Il

1
K

∑K
l=1

1
card(Il)

∑
j∈Il

(Ŷj − Yj)2

For l ∈ {1, 2, ...., K}, we estimate f in sample I−l representing all observations except those in
Il. With this f̂ , we predict the response variable in Il: Ŷj is the prediction of the jth observation
in Il. The MSPE is calculated for each value of α in Iα, where Iα is the set of candidate α.

3 Related literature
In this section, we will begin by examining several methodologies used to estimate the risk-
neutral density. Next, we will reference papers that are related to the proposed technique of
functional regression. Lastly, we will provide an overview of the IV method.

3.1 Literature on RND

Several papers have been written on the estimation of the Risk-Neutral density (RND), with
different methods of estimation, which preserve the properties of density (positiveness and
integration to one). These methods can be categorized as: Parametric methods and semi-
parametric or non-parametric methods. Considering the parametric techniques, they start with
a distribution involving a set of parameters and make adjustments to the assumed distribution.

7



Then based on the distribution one can price the options and determine the parameters of the
distribution by minimizing the pricing error. The most classical approach in this category is
modeling the RND as a log-normal distribution (see Rompolis and Tzavalis (2008), Corrado
and Su (1996) and Jarrow and Rudd (1982)) and a log-normal mixture distribution (see Bahra
(1997)). One can also see the paper of Fabozzi et al. (2009) which extracts the RND with a
three-parameter distribution, such as the generalized gamma distribution, that falls between
the Weibull and the generalized beta distributions.
The second category is non-parametric (including semi-parametric) methods. These methods,
rather than assuming a probability distribution, use more general functions to achieve greater
flexibility in fitting option prices using certain criteria.
One well-known approach within this category is the smoothed implied volatility smile method
(SML). SML utilizes the fact that the second derivative of the option price function is propor-
tional to the RND; that means, to recover the RND, one needs to estimate the second derivative
of the option (put or call) price.
Approaches within the semi and non-parametric methods category are diverse. Ait-Sahalia
and Lo (2000) suggest to estimate the function option price by nonparametric kernel regression
and then differentiate it twice to recover the RND. However, the resulting estimator is very
volatile and the authors use a semiparametric approach based on Black and Scholes formula
and realized volatility. To be fully non-parametric, Ait-Sahalia and Duarte (2003) propose to
use a constrained locally polynomial kernel smoothing (see also Grith et al. (2012)) which has
the advantage to reduce the variance.
Methods to fit the option pricing function using neural network are proposed by Garcia and
Gençay (2000), Ludwig (2015). An extension of the concept of mixture density networks method
was proposed by Schittenkopf and Dorffner (2001). Positive convolution methods is proposed
by Bondarenko (2003). Estimating the risk-neutral density based on support vector regression
is proposed by Feng and Dang (2016).
Some papers use flexible functions such as polynomials or splines to fit the option prices or
implied volatilities and then convert them to the RND or fit the RND directly. One can cite :
Monteiro et al. (2008), Yijun et al. (2012), Barletta et al. (2019), Monteiro and Santos (2022).
Recently, Lu and Qu (2021) propose a sieve estimator for RND by using Hermite approxima-
tion; Jiang et al. (2021) estimate the RND by Piecewise Constant Nonparametric Approach.
They propose per intervalle of strike price, a constant that is estimating by cross-validation.
Carrasco and Tsafack (2023) use the functional analysis technique to estimate RND. They are
the first authors who use this technique (to our knowledge). Cui and Xu (2022) propose a novel
representation of the risk-neutral density established using exact representations of the Dirac
Delta function.

3.2 Literature on estimation with functional regression

This paper is related to the literature on functional data analysis. For a general treatment, see
the books by Bosq (2000), Ferraty and Vieu (2000). Theoretical results on the model where
the predictor is a function and the response is a scalar are developed by Cai and Hall (2006),
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Delaigle and Hall (2012), Tsafack (2020), etc.. The more general case where both predictor
and response variables are functions is discussed by Benatia et al. (2017) (the authors studied
in this paper the theorical case of endogeneity of explanatory variables), Kargin and Onatski
(2008), Chang et al. (2016), etc..

3.3 Literature on IV

In this paper, we propose to use IV and verify its validity because of endogeneity. The following
papers talk about endogeneity analysis. Roberts and Whited (2012) presented the different
sources of endogeneity and discuss on some econometric techniques to address this issue (see also
Hill et al. (2021)). Wang (2010) propose to use instrumental variables approach to correct the
problem of endogeneity in finance and Andrews et al. (2019) treats the case of weak instrumental
variables. For the instrumental variables treatment in non-parametric models, see Horowitz
(2011) and Amengual et al. (2020). For a general discussion in the case of non (semi) parametric,
see the book Dewatripont et al. (1997) (chapter8). The most recent paper in this field and
most related to our work is that of Babii (2021) which treats the case of low-frequency IV and
proposes the solution (a continuous function) to overcome this issue.

3.4 Contribution

Based on these previous findings, this work focuses on the introduction of instrumental variables
to estimate RND, using functional analysis technique. This case has not previously been treated
in the literature. This paper can be seen as the continuity of Carrasco and Tsafack (2023).

4 Computation and simulation of the estimator
In this section, we show how to compute the estimator in both exogenous and endogenous cases,
focusing on the various integrals without the need for discretization, thus preserving crucial
information. Indeed, we can use the trapezoidal rule to approximate all integrals as in Carrasco
and Tsafack (2023). However, we observed that the results are not satisfactory, in particular
excessive noise in the density tails. Consequently, we use the following method to avoid dis-
cretizing certain integrals. We use this computational technique to run simulations in each case.

Remember: The goal is to estimate f such that:

Yi =
∫ ∞

0
Zi(s)f(s|τ) ds+ ϵi (8)

where Yi = Pie
rt,T (T −t), Zi(s) = max(κi − s, 0), τ = T − t

N.B: In practice, s takes values between a and b, finite values. That means we solve:
Yi =

∫ b
a Zi(s)f(s|τ) ds+ ϵi.
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4.1 Exogenous case

4.1.1 Computation of the estimator

We have: E(Zi(l)Yi) =
∫ ∞

0 E(Zi(l)Zi(s))f(s|τ) ds+ E(Zi(l)ϵi)

E(Zi(l)Yi) =
∫ ∞

0 E(Zi(l)Zi(s))f(s|τ) ds because E(Zi(l)ϵi) = 0

The compact form of this equation is: CZY = Kf

where CZY = E(Zi(l)Yi) is a cross-covariance function between Z and Y .
K is a covariance operator from H to H.

The regularized estimation of f based on Tikhonov regularization is: f̂α = (K̂ +αI)−1ĈZY ,
where K̂ and ĈZY are the sample counterparts of K and CZY .

Let define Rn the space of n× 1 vectors endowed with inner product v′w/n for any pair of
n× 1 vectors v and w and T the operator from H to Rn such that:

Tf =


< Z1, f >

.

.

< Zn, f >

 for any function f in H

Let T ∗ be the adjoint operator of T such that: (T ∗v)(s) = 1
n

∑n
i=1 Zi(s)vi

With these notations, we can remark that: ĈZY = T ∗Y and K̂ = T ∗T

Then the Tikhonov estimator is: f̂α = (T ∗T + αI)−1T ∗Y

This equation is equivalent to: f̂α = T ∗(TT ∗ + αI)−1Y = T ∗(C + αI)−1Y , with C = TT ∗.
Indeed, the equivalence comes from Engl et al. (1999).

- C = TT ∗ is such that: for a vector g

(Cg) =


< Z1, (T ∗g) >

.

.

< Zn, (T ∗g) >

 =


1
n

∑n
i=1 < Z1, Zi > gi

.

.
1
n

∑n
i=1 < Zn, Zi > gi



Then, C = TT ∗ = 1
n



< Z1, Z1 > < Z1, Z2 > . . < Z1, Zn >

< Z2, Z1 > < Z2, Z2 > . . < Z2, Zn >

. . . . .

. . . . .

< Zn, Z1 > < Zn, Z2 > . . < Zn, Zn >


, C is n× n matrix.
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- To compute T ∗, we need to consider a grid of values of s = s1, s2, ..., sm in order to

have an approximation, denoted T ∗. We therefore estimate the vector: f̂
α

=



f̂α(s1)
f̂α(s2)
.

.

.

f̂α(sm)


an

approximation of f̂α. T ∗ is m× n matrix such that:

T ∗ = 1
n



Z1(s1) Z2(s1) . . Zn(s1)
Z1(s2) Z2(s2) . . Zn(s2)
. . . . .

. . . . .

Z1(sm) Z2(sm) . . Zn(sm)


- < Zi, Zj > is computed as following:

< Zi, Zj >=
∫ b

a Zi(s)Zj(s)ds =
∫ b

a max(0, κi − s)max(0, κj − s)ds

-if κi ≤ κj, then we have:

< Zi, Zj > =
∫ κi

a
(κi − s)(κj − s)ds (9)

=
∫ κi

a
(κi ∗ κj − (κi + κj)s+ s2)ds (10)

= (κi − a)κiκj − 1
2(κi + κj)(κ2

i − a2) + 1
3(κ3

i − a3) (11)

-if κi > κj, then we have:

< Zi, Zj > =< Zj, Zi > (12)

= (κj − a)κjκi − 1
2(κj + κi)(κ2

j − a2) + 1
3(κ3

j − a3) (13)

Now, the estimator can be computed in the exogenous case. It is evident that the inverse
matrix is independent of the discretization value of the integral.

4.1.2 Simulation results

The Monte-Carlo simulations are used to show how the proposed computation method works.
For that, we generate the data for different values of n, representing the number of observations.
This simulation follows the same idea as the one by Carrasco and Tsafack (2023) with a change
on how to compute the estimator.

11



The simulation procedure is as follows.

1. Generate ϵ ∼ U(−
√

3,+
√

3) (n observations) to reflect the variation of errors in reality
in a similar way to Carrasco and Tsafack (2023);

2. Generate κ a grid of n observations between 1500 and 3000, where the interval [1500,
3000] corresponds to the range of κ values observed in the application done by Carrasco
and Tsafack (2023);

3. Define for s, a grid of m values between min(κ)−1 and max(κ)+1 (In practice, m = 1200
represents a large dimension of covariates which are initially a function, see Carrasco and
Tsafack (2023).);

4. Define a matrix of pay-offs Z such that Z[i, j] = max(κi − sj, 0) where i = 1, 2, ..., n and
j = 1, 2, ...,m

5. Compute the true density of f as a lognormal mixture distribution : f(s) =
π1LN (s|η1, σ1) + π2LN (s|η2, σ2) + π3LN (s|η3, σ3), with π1 + π2 + π3 = 1 (π1 =
0.0812, π2 = 0.0914, π3 = 0.8274) ;

6. Compute y = Zf + ε as following: yi = ∑m
j=1 Z[i, j] ∗ f(sj+1)(sj+1 − sj) + εi;

7. Run the 10-fold cross-validation procedure in order to select the optimal hyperparameter.
The whole sample is randomly divided into 10 groups. 9 groups are used as the training
sample and the last one is used as the the validation sample.The validation sample is
defined to select the optimal hyperparameter α. This operation is repeated 10 times as
we have 10 different groups in the cross-validation procedure.

8. Compute an estimation of f denoted f̂ using the selected optimal hyperparameter. We
call this estimator, Tikhonov estimator;

9. Calculate f̃ , corrected Tikhonov estimator (f̃(s) = max(0,f̂(s))∫
max(0,f̂)ds

);

10. Calculate the root mean-square prediction error (RMSPE) by 10-fold cross-validation;

11. Repeat the steps 1 to 10 with 200 iterations and calculate the average RMSPE, average
Tikhonov estimator and average corrected Tikhonov estimator over the simulations.

N.B: f is such that LN (s|ηj, σj) = with η1 = 7.8020, η2 = 7.7023, η3 = 7.8052 and σ1 =
0.0285, σ2 = 0.0987, σ3 = 0.0245.
The following three figures (2, 3, 4) represent the average estimators computed with three
different numbers of observations (1000, 500 and 200) and 200 iterations. We can see that the
results are very good regardless of the values of n. And also, the corrected estimate almost
coincides with the uncorrected one. We can therefore say that the proposed estimator performs
well in the exogenous case.
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Figure 2: Data generated with exogenous error term. f average of 200 replications. Number of
observations n=1000.
Blue curve is true density, green curve is estimated density and red curve is estimated density
corrected

Figure 3: Data generated with exogenous error term. f average of 200 replications. Number of
observations n=500.
Blue curve is true density, green curve is estimated density and red curve is estimated density
corrected
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Figure 4: Data generated with exogenous error term. f average of 200 replications. Number of
observations n=200.
Blue curve is true density, green curve is estimated density and red curve is estimated density
corrected

4.2 Endogenous case

4.2.1 Computation

Now, we will demonstrate how to calculate the estimator, focusing on directly solving the
involved integrals, when utilizing the instrumental variable noted as W to tackle the issue of
endogeneity, which is the primary objective of this research.
For that, we have: E(Ψi(l)Yi) =

∫ b
a E(Ψi(l)Zi(s))f(s|τ) ds+E(Ψi(l)ϵi), where Ψi is a function

of Wi and l.

E(Ψi(l)Yi) =
∫ b

a E(Ψi(l)Zi(s))f(s|τ) ds , because E(Ψi(l)ϵi) = 0

The compact form is: CΨY = CΨZf

Then, CZΨCΨY = CZΨCΨZf , because the adjoint operator of CΨZ is CZΨ

The Tikhonov estimator is: f̂α = (CZΨCΨZ + αI)−1CZΨCΨY

This solution is equivalent to: f̂α = CZΨ(CΨZCZΨ + αI)−1CΨY

Now, we explain how to compute CΨZCZΨ. Note that:
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CΨZCZΨω = CΨZg, where g = CZΨω

CΨZCZΨω(t) =
∫ 1
n

∑
i

Ψi(t)Zi(s)g(s)ds, for t ∈ [a, b] (14)

= 1
n

∑
i

Ψi(t)
∫ 1
n
Zi(s)g(s)ds, for t ∈ [a, b] (15)

= 1
n

∑
i

Ψi(t)
∫
Zi(s)(

1
n

∑
j

Zj(s)
∫

Ψj(t)ω(t)dt)ds, for t ∈ [a, b] (16)

= 1
n

∑
i

Ψi(t)
1
n

∑
j

∫
Zi(s)Zj(s)ds

∫
Ψi(t)ω(t)dt, for t ∈ [a, b] (17)

= 1
n2

∑
i

∑
j

Ψi(t)(
∫
Zi(s)Zj(s)ds)

∫
Ψi(t)ω(t)dt, for t ∈ [a, b] (18)

So, CΨZCZΨω = 1
n
Φ′
CΦω

where: ω =



ω(t1)
ω(t2)
.

.

ω(tk)



-C = 1
n



< Z1, Z1 > < Z1, Z2 > . . < Z1, Zn >

< Z2, Z1 > < Z2, Z2 > . . < Z2, Zn >

. . . . .

. . . . .

< Zn, Z1 > < Zn, Z2 > . . < Zn, Zn >


is n × n matrix, the matrix computed in

exogenous case.

An approximation of Φ, denoted Φ, is given by considering a grid of val-

ues of t = t1, t2, ..., tk. Φ =



Ψ1(t1) Ψ1(t2) . . Ψ1(tk)
Ψ2(t1) Ψ2(t2) . . Ψ2(tk)
. . . . .

. . . . .

Ψn(t1) Ψn(t2) . . Ψn(tk)


is n × k matrix with

Ψi(tj) = max(0, wi − tk)

Thus, an approximation of f̂α is: f̂α = CZΨ(CΨZCZΨ + αI)−1CΨY

with CZΨ = T ∗Φ and CΨY = 1
n
Φ′
y

Finally, the Tikhonov estimator can be computed in the endogenous case.

4.2.2 Simulations in the endogenous case

For this simulation part, we modify just a few steps of the exogenous case to allow endogeneity.
Simulation procedure is as follows. Data are generated (in particular steps 1 to 4) to preserve
the range of κ values as in the exogenous case (see previous simulation), and to check IV

15



conditions, such as the correlation between W and κ, and the absence of correlation between
W and ϵ.

1. Generate v ∼ U(−1/2,+1/2) (n = 1000 observations);

2. Generate the instrument variable W ∼ U(1650, 2850) (n = 1000 observations);

3. Compute κ = w + 300 ∗ v;

4. Compute error terms ϵ = 100 ∗ v;

5. Define s, as a grid of m = 1200 values between 1499 and 3001;

6. Follow Steps 5 to 11 of the exogenous simulation part. The difference here is that we
determine two estimators and calculate RMSPE and RISE:

• Tikhonov estimation of f without considering endogeneity, that means we estimate
f with the method described in the exogenous case;

• Estimation of f using instrument, so by considering the presence of endogeneity.

Indeed, we use two criteria to compare the results:

• The Root Mean Squared Prediction Error (RMSPE) between the estimated put prices
Ŷ and the theoretical one Y . It is the root of MSPE corresponding to the optimal
hyperparameter presenting in 2.7:
RMSPE =

√
1
K

∑K
l=1

1
card(Il)

∑
j∈Il

(Ŷj − Yj)2.

• The Root Integrated Squared Error (RISE) between the estimated density f̂ and the
theoretical one f :
RISE =

√∫ ∞
0 (f̂α(s) − f(s))2ds, with f̂α is the RND corresponding to the optimal hy-

perparameter α. In practice, we calculate an approximation of this error as follows:
ˆRISE =

√∑m
j=1(f̂α(sj) − f(sj))2∆sj, where ∆sj = sj − sj−1, for j = 2, 3, ...,m and

∆s1 = s2 − s1.
N.B: m = 1200 is the number of points considered to calculate f .

The following figure 5 presents the results of the simulations: blue curve is true density,
green curve and red curve are respectively density estimated without and with considering
endogeneity. Using the RMSPE and RISE comparison criteria (see table 1), the estimator with
IV outperforms the estimator without IV. Indeed, the RMSPE is equal to 0.001098 for the
estimator when the IV is used, versus 0.001375 when the estimator is obtained by neglecting
endogeneity. We can therefore say that the IV helps to estimate the RND.
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Figure 5: Data generated by introducing endogeneity and f estimated with and without con-
sidering this endogeneity.
Blue curve is true density, green curve and red curve density estimated without and with con-
sidering endogeneity.

RMSPE RISE

f̂IV 0.001098 0.00082
f̂ 0.001375 0.001104

Table 1: Comparison of the estimation results

4.3 Discussion

As we can see, we estimate and compare the estimator obtained by using IV with that obtained
by neglecting the presence of endogeneity. We find that the estimator that takes endogeneity
into account is more efficient than the one that neglects it.
Moreover, neither estimator performs well. That is, neither predicts the true density well. This
raises the question: (i) Is it related to the way the data are generated? or (ii) Is it related to
the assumption about the true density?
In the next section we will focus on the second question, because in the literature authors
consider different distributions of the true density.

5 Comparison with sieve estimator
In this section, we consider the approach of Lu and Qu (2021). We first summarize their work
and introduce the endogeneity within their estimation technique; and at the end we bring the
distribution of the true density they use into our proposed estimation technique. .
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5.1 Sieve estimator of RND

To estimate RND, Lu and Qu (2021) use a sieve estimator. Also, they didn’t estimate the
density of an underlying price at expiration ST , but the density of their return log(ST/S0).
The problem is still ill-posed, but they used the Hermite approximation of the density, used
put and call options together, considered a distribution that is not exactly normal but close to
it as the true density, and transformed the initial data.
We summarize their idea and generate data like they did, while introducing endogeneity.

5.1.1 Description of the Sieve estimator

Lu and Qu (2021) propose a nonparametric estimator of the RND implied by a single cross-
section of European options with different strikes and the same maturity.
They consider both put and call options:

Ct(κ) = e−rtτ
∫ ∞

0
(ST − κ)+f ∗

t (ST )dST (19)

and
Pt(κ) = e−rtτ

∫ ∞

0
(κ− ST )+f ∗

t (ST )dST (20)

where κ is the strike price, τ = T − t, (ST − κ)+ = max(ST − κ, 0), rt is the risk-free rate at
time t, and ST denotes the potential price of the underlying asset at time T .

There are two issues that need to be addressed for a sieve estimator:

1. The first concerns the fact that the RND is a dynamic object, so they standardize it by
the following change of variables:

X = log(ST/S) − rτ

σ
√
τ

(21)

and
Z̃ = log(κ/S) − rτ

σ
√
τ

(22)

where S = St is the spot price of the underlying asset at time t and σ is equal to the
Black–Scholes implied volatility for at-the-money call option of the same underlying asset
and maturity.
With these transformations, the rewriting of (19) and (20) give:

C(Z̃) =
∫ ∞

−∞
S(e

√
τσX − e

√
τσZ̃)+f(X)dX (23)

and
P (Z̃) =

∫ ∞

−∞
S(e

√
τσZ̃ − e

√
τσX)+f(X)dX (24)

where f(.) denotes density function after the change of variables.
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Then, they recover f ∗ from f through

f ∗(ST ) = 1
σ

√
τST

f( log(ST/S) − rτ

σ
√
τ

) (25)

.

Also, the density of the log-return RT = log(ST/S) is recovered : f ∗(RT ) = 1
σ

√
τ
f(RT −rτ

σ
√

τ
)

(N.B: In the following, the paper focuses on the density of the log-return).

2. The second concerns the choice of basis functions for the approximation (because the
sample size is usually small). Hermite functions are suitable basis functions for this
approximation. This choice is based on three features of f :

• the support of f has no fixed boundary,

• f is closely related to the normal density,

• f can have thicker tails than the normal distribution.

So,
f(X) ∼

∞∑
j=0

βjhj(X) (26)

where hj(X) = Hj(X)
(2jj!π1/2)1/2 e

−X2/2 with Hj(X) = (−1)jeX2 dj

dXj e
−X2 , j = 0, 1, 2, 3, ....

Then βj =
∫ ∞

−∞ f(X)hj(X)dX

Practical implementation of sieve estimator.
Let {yi, Zi}(i = 1, ..., n) denote the sample of observed option prices and transformed strike
prices at time t. They assume that the first nc observations are call options and the remaining
n− nc observations are put options. Thus, they obtain the following system:

yi =


∫ ∞

−∞ S(e
√

τσX − e
√

τσZ̃i)+f(X)dX + εi, for i = 1, 2, ..., nc∫ ∞
−∞ S(e

√
τσZ̃i − e

√
τσX)+f(X)dX + εi, for i = nc + 1, ..., n

(27)

The approximation of f is: f(X) ≈ ∑J
j=0 βjhj(X), J is the truncation order and they suggest

to choose J = ceiling(2(n/logn)1/5).
To compute this f , they follow three steps:

1. Step1: For j = 0, 1, ..., J , compute

Xi,j =


∫ m

−m S(e
√

τσX − e
√

τσZ)+hj(X)dX, for i = 1, 2, ..., nc∫ m
−m S(e

√
τσZ − e

√
τσX)+hj(X)dX, for i = nc + 1, ..., n

(28)

where m = max{10, logn}.

2. Step2: Solve the optimization problem:
minβ∈HJ

∑n
i=1(yi −X

′
iβ)2 + β

′
Qαβ

Where:
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• Xi = (Xi,0, Xi,1, ..., Xi,J)′

• β = (β0, β1, ..., βJ)′ and HJ = {β ∈ RJ+1 : infX∈R
∑J

j=0 βjhj(X) ≥ η}. with η

choosing between −10−4 and −10−3

• Qα is a (J + 1)-dimensional regularization matrix. They use two specifications.

– The first is Qα = αI, I is an identity matrix.
– The second is Qα = V DαV

′ with Dα = diag[max{α − nλ1, 0},max{α −
nλ2, 0}, ...,max{α − nλJ+1, 0}], where λ1 ≥ λ2 ≥ ... ≥ λJ+1 are the ordered
eigenvalues of n−1 ∑n

i=1 XiX
′
i , and V contains the corresponding orthonormal

eigenvectors as columns.
– α is chosen by K-fold cross validation (here they choose K = 10).

The solution of this optimization leads to: f̂(X) = ∑J
j=0 β̂jhj(X).

3. Step3 (This step is optional): correction of f̂ :
f̃(X) = max(0, f̂(X) − c), where c is a constant is such that

∫ m
−m f̃(X)dX = 1.

For the authors, this step is optional, because the differences between f̃(X) and f̂(X) are
small.

5.1.2 Simulation of Sieve estimator: exogenous case

They consider an equal number of call nc and put np options, nc = np = 25 (and also nc =
np = 50) with strike prices which take values between 1000 and 1700; and have the same time
to maturity T = 30. The spot price, interest rate, and dividend yield are equal to St = 1365,
rt = 4.5%, and δt = 2.5%, respectively.

1. Generate κ, a grid of n = 25 values equally spaced between 1000 and 1700

2. Compute smile volatility which is a linear function of the strike price:
smile = σ(κ) = c+ b ∗ κ+ a ∗ κ2,
where a = 0,
b = (σ(κmin) − σ(κmax))/(κmin − κmax),
and c = σ(κmin) − b ∗ κmin;
( σ(κmin) = 0.4 σ(κmax) = 0.2 )

3. Compute call price and put price using the Black-Scholes formula:

calli = call(St, κi, rt, δt, T, σ(κi)) = St∗exp(−δt∗T/365)∗Φ(d1)−exp(−rt∗T/365)∗κi∗Φ(d2)
(29)

puti = put(St, κi, rt, δt, T, σ(κi)) = exp(−rt∗T/365)∗κi∗Φ(−d2)−St∗exp(−δt∗T/365)∗Φ(−d1)
(30)

where Φ denotes the standard normal cumulative distribution function;
d1 = log(St∗exp((rt−δt)∗T/365)

κ
) + (σ(κ)2/2)∗T/252)

σ(κ)∗
√

T/252
;

d2 = d1 − σ(κ) ∗
√
T/252
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4. After that, they construct the error terms for each price options as following:

• error1 = 15/70000 ∗ κ− 0.1842857 (it is a vector)

• callerror = 2
√

3 ∗ error1(U(0, 1) − 0.5)

• puterror = 2
√

3 ∗ rev(error1)(U(0, 1) − 0.5)

u.v denotes product element by element;
U uniform distribution (n = 25 draw)
rev denotes the reverse of the vector (Example: rev(1 2 3) = (3 2 1))

5. Finally the vector of put price and call price are:
call = call ∗ (1 + callerror)
and put = put ∗ (1 + puterror);

6. They define s, stock price at maturity as a grid of 100 values equally spaced between 1000
and 1700

7. They develop Black-Scholes smile density in following steps : (Indeed, f the second
derivative of put or call (see 29 or 30) with respect to a κi. We can demonstrate using
calli =

∫ ∞
0 max(ki − s, 0)f(s)ds )

(a) f1(s) = exp(−rT/365) ∗ exp(−d22/2) ∗ 1/
√

2 ∗ π

(b) vega = S ∗
√
T/252 ∗ exp(−δ ∗ T/365) ∗ exp(−d12/2) ∗ 1/

√
2 ∗ π

(c) dvega = vega ∗ d1 ∗ d2/smile

(d) dvegas = vega ∗ d1 ∗ 1/(s ∗ smile ∗
√
T/252)

(e) f2(s) = f1(s) + dvega ∗ (b+ 2 ∗ a ∗ s)2

(f) f3(s) = f2(s) + 2 ∗ dvegak ∗ (b+ 2 ∗ a ∗ s)

(g) To finish, f(s) = f3(x) ∗ exp(rT/365).

8. Compute Sigma to get the transformation in equation (21) and (22) as following:
Sigma = 1/2 ∗ (σput + σcall) ∗

√
1/365, where:

• σput is implied volatility of a put price and strike price κ corresponding to min(κ−S),

• σcall is implied volatility of a call price and strike price κ corresponding to min(κ−S).

9. Then, they compute the transformation in equation (22).

10. They define for X in equation (21), a grid of m = 1020 points on [−10, 10].

11. With n = ncall + nput = 25 + 25 = 50, the truncation order is J = 4 by applying the
formula in equation (27).

12. They compute equation (28) by using Riemann sum.

13. They solve the optimization problem of step2: α is chosen by 10-fold cross-validation.
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Figure 6: Data generated as in Lu and Qu (ncall=nput=25); f estimated following Lu and Qu.
The Blue curve is true return density and green curve, estimated density

14. They compute f̂(X) from Hermite polynomials.

15. They run 5000 replications (Here, we run 200 replications).

16. They compute the density of return f̂ ∗(R) = 1/(Sigma ∗
√
τ ∗ f̂(X)) and determine the

grid of R associated with the grid of X by applying the formula in equation (21).

17. With the grid of R, they get a grid of s which is s = S ∗ exp(R).

18. With this new grid of s, they compute the Black-Scholes smile density as in point 7.

19. To finish, they represent the graph of true return density and estimated return density
(mean over the 5000 replications, median, quantile 0.25 and quantile 0.9725. Here, we
only represent the mean over the 200 replications considered.)

The results show that the sieve estimator performs well in the exogenous case, as in their
paper (see figure 6).
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5.1.3 Simulation of Sieve estimator: endogenous case

Here, we generate data following the idea of Lu and Qu while introducing endogeneity. We
then propose a modification of the Lu and Qu estimation method to account for endogeneity.
In fact, data are generated to preserve the range of κ values as in the paper of Lu and Qu
(2021), and to check IV conditions such as the correlation between W and κ, and the absence
of correlation between W and ϵ.

• Generate v ∼ U(−1,+1) (ncall=nput=200, so 200 observations).

• Generate W ∼ U(1150, 1550) (200 observations).

• Compute κ = W + 150 ∗ v and ε = 10v.

• Define a grid of m discrete points for s between 1000 and 1700 (s is used to compute the
density function f(s));

• I add to yput and ycall the same error term.

• I solve the problem by two ways:

– Benchmark: I solve the problem as exogenous (previous situation presented).

– I solve it as endogenous: for that, the problem becomes E(ΨWi
yi) =∫

E(ΨWi
Zi(s)f(s)ds. Then, we construct the sieve estimator in endogenous case

as follows:

∗ We premultiply the equation (27) by the instrument ψi(l):

ψi(l)yi =


∫ ∞

−∞ ψi(l)S(e
√

τσX − e
√

τσZ̃i)+f(X)dX + ψi(l)εi, for i = 1, 2, ..., nc∫ ∞
−∞ ψi(l)S(e

√
τσZ̃i − e

√
τσX)+f(X)dX + ψi(l)εi, for i = nc + 1, ..., n

(31)
∗ By following the same computation technique (see equation (28)), the sieve

estimator in endogenous case is the solution of:
minβ∈HJ

∑L
l=1

∑n
i=1(Ψi(l)yi − Ψi(l)X

′
iβ)2 + β

′
Qαβ

where Ψi(w, l) = 1/(1 + exp(−wl)) or Ψi(w, l) = max(0, w − l)

• we run 200 replications.

The following graph (Figure 7) compares two Sieve estimators of the RND of return (the
red curve is the density estimated neglecting endogeneity and the green curve is the density
estimated considering endogeneity) to the true return density (blue curve). It shows that both
estimators perform well overall, with a small gain when we use instruments to solve the problem,
considering the RMSPE and RISE criteria (see table 2).
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Figure 7: Data generated similary to Lu and Qu, plus endogenous; f estimated following Lu
and Qu; ncall=nput=200.
Blue curve is true density, red curve is density estimated neglecting endogenous and green curve
is density estimated considering endogeneity

RMSPE RISE

f̂sieveIV
4.213e−5 1.954e−5

f̂sieve 5.651e−5 3.232e−5

Table 2: Comparison of the Sieve estimation results

In what follows, we will focus on how Lu and Qu (2021) generate data. We will make a few
modifications in order to study the effect of the generated true density.

5.2 Sieve and Tikhonov estimators with Black-scholes smile distri-
bution

In this subsection, we present the Sieve and Tikhonov estimators in two cases: exogenous and
endogenous, without the use of instruments. To achieve this, we generate data for put options
(n=500 observations) using the technique presented in the previous section (from Lu and Qu
(2021)). We compute three estimators and display the results for the underlying price directly,
rather than its log-return.

• First estimator: Sieve estimator. Data are standardized and we use Hermite polynomials
to approximate f .

• Second estimator: Tikhonov estimator, we estimate directly f as presented in Section 2
(the data have not been processed here).
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• Last estimator: Tikhonov estimator (Standard). Here we have just standardized data
and estimated directly f using the technique proposed in Section 2.

Case1: Exogenous case
Figure 8 shows the three estimators and the true density in the exogenous case. The data was
generated as described in Lu and Qu (2021). The results indicate good performance overall
for all three estimators. Specifically, the Tikhonov estimator performs the best with a RISE
of 8.129e−6 compared to the Tikhonov estimator (Standard) and Sieve estimator with RISE of
1.032e−5 and 3.532e−5, respectively. Therefore, it can be inferred that the Tikhonov estimator
yields strong results when implemented on exogenously created data, as seen in Carrasco and
Tsafack (2023) and Lu and Qu (2021). Additionally, it surpasses the Sieve estimator.
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Figure 8: Data generated similarly to Lu and Qu.
Blue curve is true density, red curve is Tikhonov estimator, green curve is Tikhonov estima-
tor(standard) and yellow curse is Sieve estimator.

RMSPE RISE

f̂T 2.231e−5 8.129e−6

f̂T S 3.523e−5 1.032e−5

f̂sieve 5.514e−5 3.532e−5

Table 3: Comparison of the estimation results, exogenous case
f̂T : Tikhonov estimator; f̂T S: Tikhonov estimator(standard); f̂sieve: Sieve estimator

Case2: Endogenous case without the use of instruments
Data are generated to take account of endogeneity and the estimators are computed by ne-
glecting this endogeneity. The figure 9 illustrates that all of the estimators perform well. Upon
comparison, it is observed that the (standard) Tikhonov estimator performs better than the
Tikhonov estimator, but the difference between them is minimal. Additionally, the Tikhonov
estimator outperforms the Sieve estimator. The Table 4 depicts the values of the different
comparison criteria. Indeed, the RISE value is 2.409e−5 for the Tikhonov estimator, 2.088e−5
for the Tikhonov estimator (Standard), and 5.002e−5 for the Sieve estimator. The study in-
dicates that the Tikhonov estimator achieves better performance with the Black-Scholes smile
distribution compared to the Tikhonov estimator using the lognormal mixture distribution (see
Figure 5). This implies that the true density may significantly affect the estimator’s accuracy.
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Figure 9: Data generated similary to Lu and Qu, plus endogeneity, solve as exogenous.
Blue curve is true density, red curve is Tikhonov estimator, green curve is Tikhonov estima-
tor(standard) and yellow curse is Sieve estimator.

RMSPE RISE

f̂T 4.739e−5 2.409e−5

f̂T S 4.061e−5 2.088e−5

f̂sieve 6.121e−5 5.002e−5

Table 4: Comparison of the estimation results, endogenous case and solve as exogenous
f̂T : Tikhonov estimator; f̂T S: Tikhonov estimator(standard); f̂sieve: Sieve estimator

We now present our proposed Tikhonov estimator with instruments, utilizing the Black-
Scholes smile distribution.

5.3 Tikhonov estimator with Black-scholes smile distribution

In this subsection, we want to investigate the impact of the generated true density on our
proposed Tikhonov estimator using simulated instruments (see 5.1.3 for simulation procedure).
Figure 10 displays a Tikhonov estimator with instrumental variables (IV) and a Tikhonov es-
timator without IV for a Black-Scholes smile distribution. Based on comparison criteria of
RMSPE and RISE, the IV estimator outperforms the estimator without IV, which neglects
endogeneity (refer to table 5). The Figure 10 also demonstrates that our proposed estimation
technique performs better when using the Black-Scholes distribution, as considered by Lu and
Qu (2021), than the log-normal mixture distribution, as considered by Carrasco and Tsafack
(2023). For further details, refer to Figure 5, which shows the true density as a log-normal
mixture distribution. Consequently, our suspicions were confirmed that the estimator’s perfor-
mance may be influenced by the distribution of the true density.
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Figure 10: Data generated similarly to Lu and Qu, plus endogeneity.
Blue curve is true density, green curve and red curve are density estimated without and with
considering endogeneity respectively.

RMSPE RISE

f̂IV 2.976e−5 1.611e−5

f̂ 4.739e−5 2.409e5

Table 5: Comparison of the Tikhonov estimation results, with IV and without IV.
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6 Application
This section focuses on a real data example. We consider the data employed by Carrasco and
Tsafack (2023). The dataset utilizes the S&P 500 index (SPX) to derive the underlying and
the strikes. Specifically, the database archives the optimal bid and ask prices for all SP 500
European options that are collected on June 3, 2019, with a maturity period of 25 days. The
price of the index at the end of the same day is also collected: it was evaluated at 2744.45
dollars. The expiration price ranges from 1500 to 3999.50 dollars. This study solely examines
put options, while Carrasco and Tsafack (2023) investigate both puts and calls. The sample size
is n = 108. We aim to utilize instrumental variables, comparing outcomes in the exogenous case
to those obtained in the endogenous case. Unfortunately, we could not build the instruments
as outlined in section 2.4. Consequently, we present the findings in the exogenous scenario
utilizing two estimators: the Tikhonov and Sieve estimators.
The root mean square prediction error (RMSPE) is used as the criterion to select the optimal
hyperparameter and estimate RND, following 10-fold cross-validation. The results of Tikhonov
and Sieve estimators are presented in figure 11, with Tikhonov’s RMSPE at 0.100 and Sieve’s
at 2.061. Thus, our findings suggest that, in the exogenous case, the Tikhonov estimator
outperforms the Sieve estimator, consistent with the simulation section. The difference in the
RMSPE may be attributed to the greater flexibility of the Tikhonov estimator compared to
the Sieve estimator. The Sieve estimator is less flexible due to its use of Hermite polynomials
in estimation, resulting in a reduction of parameters considered.
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Figure 11: Risk neutral density with real data.
Green curve is Tikhonov estimator and red curve is Sieve estimator.

7 Conclusion
We propose in this paper, a non-parametric estimation for the Risk Neutral Density (RND)
in European option context by using IV method. The non-parametric model examined is the
functional linear model. One of the main issue of this model is the high dimensionality problem
as the inverse of the covariance operator of the predictor variable is not continuous. This
problem leads to an unstable estimated function. To overcome this issue, we propose to use
the Tikhonov regularization technique. We control for the positivity and the integration to one
of the density by applying a density correction. We also address the discretization of integrals
by proposing a way to calculate our estimator. The simulation results effectively show that in
the presence of endogeneity, the estimator without considering this endogeneity underperforms.
And, when, we use the IV, the result is better (in term of RISE or RMSPE). We also note that
the overall performance can depend on the true distribution considered. Indeed, in this work,
we consider two types of true density: the lognormal mixture distribution and the Black-Scholes
smile distribution. The results are better with the last density than with the first one. It might
be interesting to investigate what the true risk-neutral density would be, as an extension of this
work. At the end, we present an application case with real data on S&P 500 options in the
exogenous case because we were unable to find instrumental variables in the European options
case as described in subsection 2.4. The results show that the Tikhonov estimator outperforms
the Sieve estimator. Consequently, the Tikhonov estimator method proposed in this work,
in particular the computational technique, can be seen as a promising alternative to existing
methods.
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