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Abstract

The paper considers a panel model where the regression coe¢  cients 
undergo changes at an unknown time point, di¤erent for each series. The timings 
of changes are assumed to be independent, identically distributed, and drawn from 
some com-mon distribution, the density of which we aim to estimate 
nonparametrically. The estimation procedure involves two steps. First, change-
points are estimated indi-vidually for each series using the least-squares method. 
While these estimators are not consistent, they can be regarded as noisy signals of 
the true change-points. To address the inherent estimation error, a deconvolution 
kernel estimator is applied to estimate the density of the change-point. The paper 
establishes the consistency of this estimator and demonstrates that the rate of 
convergence of the Mean Inte-grated Squared error (MISE) is faster than that 
obtained with normal or Laplacian errors. Finally, using a Bayesian approach, we 
propose an estimator of the poste-rior means of the breakpoints, utilizing 
nonparametric estimates of the required densities. An application of the 
proposed methodology to portfolio returns reveals how quickly the markets 
responded to the Covid shock.
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1 Introduction

Structural breaks frequently occur in economics as the result of a policy change or a shock

like Covid. The time it takes for economic agents to respond to such shocks typically

vary among individuals or markets. Assuming that the change times are drawn from the

same distribution, it is of particular interest to estimate this distribution. Knowledge

of the distribution of changes can be valuable in various other scenarios. In medicine,

for example, it is often crucial to determine whether the introduction of a new drug

a¤ects the health state of a patient. Health indicators are recorded from a sample of

patients, and due to individual heterogeneity, they will not all react at the same time.

However, it is reasonable to assume that the reaction times follow the same distribution.

Understanding this distribution can provide valuable insights into the impact of the new

drug on patients�health.

The aim of this paper is to deduce the distribution of the break points from panel

data. In the change-point literature, the behavior of the shift is often either not speci-

�ed or assumed to be the realization of an Exponential or Weibull distribution (Pollak

and Siegmund (1985)). It is quite surprising that the nonparametric estimation of the

distribution of the change-point has received so little attention. However, related works

include Joseph and Wolfson (1993a, b) who consider discrete-time observations and es-

timate a probability mass function over a �nite period using the EM algorithm, and

Joseph et al. (1997) who take a Bayesian approach to the estimation of the density of

the change-point.

We consider a large panel of linear regressions where a subset of or all coe¢ cients

are a¤ected by a single change which occurs at a random time point. The break points

are assumed to be independent and identically distributed according to the same con-

tinuous distribution which we aim to determine. If the break-times were observed, the

distribution could be estimated by the usual nonparametric kernel estimator (see Li

and Racine, 2007). As the change-points are not known a priori, we adopt a two step

approach.

Firstly, the change-points of each individual series are estimated by least-squares. In
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the case of a shrinking magnitude of the shift, Bai (1997) shows that the break point

estimate converges to a distribution which is free of nuisance parameters when the time

span increases.

Our second step involves leveraging these estimators to estimate the underlying den-

sity. Unfortunately, these estimators are not consistent and can be seen as noisy signal

of the true break point. Consequently, we rely on a modi�cation of the deconvolution

kernel introduced by Stefanski and Carroll (1990). We show that the rates of conver-

gence obtained here are much better than those obtained when data are observed with

normal or even Laplace errors. The rapid rate of convergence can be attributed to the

shape of the distribution of the errors which is very �peaked�at zero.

From a theoretical point of view, we make several contributions. First, we derived the

characteristic function (CF) corresponding to the asymptotic distribution of the break

point estimation error. We show that the tail behavior of this CF corresponds to that of

ordinary smooth random variable (r.v), which are well-known to be easier to deconvolve

than the supersmooth r.v. (see Fan, 1991). Second, we propose a deconvolution kernel

estimator for heterogeneous panels, i.e. panels where the coe¢ cients di¤er from one

series to the next. Third, we derive its rate of convergence in the ideal situation where

the amplitude of the shift is �xed and known. We show that the rate of the MISE is

n�1=2. Next, we investigate the case of shrinking amplitude and unknown parameters.

We show that the rate of the MISE depends on the shrinking rate and is slower than

before. Finally, using Bayes theorem, we propose an estimator of the posterior mean of

the break points which uses nonparametric estimates of the necessary densities. This

estimator exploits the knowledge that the break points are all drawn from the same

distribution and hence is expected to give more accurate estimates of the break points

than the least-squares. Its motivation is similar to that of the nonparametric empirical

Bayes estimators proposed for instance by Gu and Koenker (2017) and Liu, Moon, and

Schorfheide (2020).

From an applied point of view, our simulations show that the deconvolution kernel is

capable of capturing features of the distribution which would be missed by the conven-

tional kernel estimator. Moreover, we contribute to the modeling of �nancial returns by
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studying the impact of covid shock in 2020 and Ukraine war in 2022 on the coe¢ cients

in Fama-French �ve factor model. We show that both events yielded a shift in the coef-

�cients and we estimate the density of the break points. While the density of the break

point in 2020 is unimodal and quite concentrated, that for 2022 is bimodal suggesting

the possibility of two shifts. Our empirical Bayes estimators permit to determine that

the Asian markets moved �rst during the covid crisis and the US portfolios last. Our

nonparametric estimator of the break point density could be used for policy evaluation.

Indeed, it could be used to determine how fast agents react to a policy change.

Our estimation method draws from two di¤erent literatures: one focused on struc-

tural change and the other on deconvolution kernel. The literature concerning structural

break estimation provides the asymptotic theory of the maximum likelihood estimator

of the break point (Hinkley (1970), Picard (1985), Yao (1987)) and of the least squares

estimator by Bai (1994, 1997). Recent work by Jiang et al. (2018) and Baek (2024)

demonstrate that when the amplitude of the shift is small, of the order O
�
T�1=2

�
, the

asymptotic distribution of the break point estimator is trimodal (with modes at 0 and

T ) and asymmetric. In this paper, we consider a shrinking amplitude of the order

O
�
T��1=2

�
for some � > 0; as in Bai (1994, 1997); this ensures a symmetric unimodal

distribution of the break point estimator. This aligns well with our application on the

impact of covid, where the estimated break points lie far from the boundaries.

There is a vast literature on the deconvolution kernel estimator. This estimator was

initially introduced by Carroll and Hall (1988) and Stefansky and Carroll (1990) with

its properties studied by Fan (1991) for independent data and Masry (1993) for weakly

dependent observations. Some extensions to the heteroscedastic case were explored by

Meister (2006) and Delaigle and Meister (2008). A version robust to the presence of

zeros in the characteristic function of the error was proposed by Carrasco and Florens

(2011). Given that our estimators of break points can be considered as the sum of

the true break point plus an additive error, our paper �ts also in the literature on

measurement error, see for instance Chen, Hong, and Nekipol (2011) for a survey. In our

paper, the measurement error comes from the �rst step estimation of the break points.

Our approach is further related to Arellano and Bonhomme�s (2012) nonparametric
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estimation of the density of individual e¤ects i based on a deconvolution estimator

using least-squares estimates of i as input.

The paper is organized as follows: In Section 2, we present the model. Section 3 lists

assumptions and describe the properties of the structural change estimator. Section 4

reviews the nonparametric deconvolution kernel estimator. Section 5 gives the rate of

convergence of this estimator when the parameters are known and �xed. In Section

6, the case with unknown parameters is considered. In Section 7, we explain how to

reestimate the break points using empirical Bayes. Simulation results are presented in

Section 8. Section 9 contains an empirical application to Fama-French factor model.

Finally, Section 10 concludes. All the proofs are collected in Appendix.

2 Model and overview

Consider a panel data model with a break in the regression coe¢ cients:(
yjt = w

0
jt�j + z

0
jt�1j + "jt; t = 1; 2; :::; kj;

yjt = w
0
jt�j + z

0
jt�2j + "jt; t = kj + 1; 2; :::; T;

(1)

where j = 1; 2; :::; n: The shocks "jt are independent, identically distributed (i.i.d.)

across individuals j and potentially cross-sectionally heteroscedastic with E
�
"2jt
�
= �2j :

The variables fyjt; wjt; zjtgj;t are observable. The regressors are assumed to be strictly
exogenous. The coe¢ cient of wjt does not change over time, whereas that of zjt varies

at an unknown time kj: The variables yjt and zjt could represent two economic variables

whose relationship has been altered due to a shock, such as a policy change or an

event like the Covid pandemic. We assume that the change-points kj are random and

independently drawn from an unknown distribution fk: We want to estimate kj, j =

1; 2; :::; n and their distribution fk.

Using the notation xjt =
�
w
0
jt; z

0
jt

�0
; �j =

�
�0j; �

0
1j

�0
; and �j = �2j � �1j; Model (1)

can be rewritten as(
yjt = x

0
jt�j + "jt; t = 1; 2; :::; kj;

yjt = x
0
jt�j + z

0
jt�j + "jt; t = kj + 1; 2; :::; T:
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The estimation method proposed in this paper involves two steps:

Step 1. The change-point kj is estimated using the least-squares estimator denotedbkj for each individual series separately.
Step 2. Leveraging the set of estimators bkj, j = 1; 2; :::; n, we construct a deconvo-

lution kernel estimator of fk:

These two steps are detailed in Sections 3 and 4 below.

3 Estimation of the change-points

First, we estimate kj by ordinary least-squares for each individual series j separately. To

simplify the notation, we are going to drop the subscript j in this section and describe

the estimation procedure for one typical series. Following Bai (1997), the least-squares

estimator bk of k is de�ned as
bk = arg min

1�k�T

TX
t=1

�
yt � x

0

t
b�k � z0tb�kI (t > k)�2

where b�k and b�k are the OLS estimators of � and � for a given k:
The assumptions needed to obtain the asymptotic distribution of bk are listed below.
A1. k = [�T ], where � 2 (0; 1) and [:] is the greatest integer value function.
A2. (xt; "t)t is strictly stationary withE (ztz

0
t) = Q <1; E ("2t jxt) = �2; E

�
kxtk4+�

�
�

C some � > 0; C <1:
A3. X 0X=T converges in probability to a nonrandom and positive de�nite matrix,

where X = (x1; x2; :::; xT )
0.

A4. f"t;Ftg is a martingale di¤erence sequence for Ft = � f"s; xs+1; s � tg : More-
over, E

�
j"tj4+�

�
< C for some C <1 and � > 0:

A5. �T = �0vT where vT is a positive scalar such that vT ! 0 and T 1=2��vT ! 1
for some � 2 (0; 1=2) ; �0 6= 0:
These assumptions are taken from Bai (1997). The martingale di¤erence sequence in

A4 could be replaced by a weak dependence at the cost of a more complicated estimator

of the asymptotic variance. Assumption A5 stipulates that the amplitude of the shift
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� goes to zero as T goes to in�nity. To make the dependence in T explicit, we use

the notation �T . This shrinking shift is standard in the structural change literature and

permits to obtain a relatively simple expression for the asymptotic distribution of bk (see
Picard (1985), Yao (1987), and Bai (1997) among others).

Under Assumptions A1 to A5, Bai (1997, Equation (14)) shows that as T !1;

�0TQ�T
�2

�bk � k� jk d! � � argmax
t2R

�
W (t)� jtj

2

�
(2)

where fW (t) : �1 < t <1g is a two-sided standard Brownian motion withW (0) = 0.

The limiting distribution � appeared �rst in Picard (1985) and Yao (1987), hence will be

referred to as Picard-Yao distribution in the sequel. It follows from (2) that the asymp-

totic distribution of bk�k is known up to an unknown parameter ! = �2=�0TQ�T . In the
sequel, ! will be estimated by !̂ = b�2=�̂0T bQ�̂T where the slope parameter �T is estimated
by the least-squares estimator �̂T (see Bai, 1997 for details), Q̂ =

PT
t=1 ztz

0
t=T; and

�̂2 =
PT

t=1

�
yt � x

0
t�̂ � z0t�̂T I

�
t > k̂

��2
=T where �̂ is the least-squares estimate of

�: Bai (1997, Corollary 1) shows that �̂
0
T
bQ�̂Tb�2 is a

p
T consistent estimator of �0TQ�T

�2
:

However, this is not the case for !̂ because �̂T goes to zero.

The estimator bk can be regarded as a noisy observation of k where the distribution
of the measurement error is known up to the unknown parameter !, so that

bk = k + !� (3)

where k and � are independent from each other. Equation (3) is an approximation which

will hold for T large enough. Notice that bk is not a consistent estimator of k becausebk � k is not multiplied by a function of T . However, the collection of bkj will be useful
to recover the distribution of kj using a deconvolution kernel described in Section 4.

4 Estimation of the density of kj

For each series j, we obtained an estimator k̂j of kj: Each estimator k̂j is approximately

the sum of the unobservable change-point kj and an error �j times a constant !j :
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k̂j = kj + !j�j (4)

where

�j � argmax
v

�
W (v)� 1

2
jvj
�

and !j = �2j=�
0
TjQj�Tj. Let us denote the density of k̂j by fk̂j while the density of

kj; which we wish to estimate, is denoted fk: First, the coe¢ cients !j are assumed

to be known. This assumption will be relaxed later. Since the distribution of �j and

that of the kj are independent, the distribution of k̂j is, in fact, the convolution of the

distributions of kj and !j�j.

fk̂j = fk � f!j�

To recover fk, we need to deconvolve the two densities, fk and f!j�. To deal with this

problem, we are going to use a deconvolution kernel �rst introduced by Carroll and Hall

(1988) and Stefanski and Carroll (1990) and whose properties have been studied by Fan

(1991). With regards to this, we �rst impose some regularity conditions. Let 'X denote

the characteristic function of a random variable X with probability density function f;

that is, 'X(t) = E
�
eitX

�
=
R
eitxf(x)dx:

B1. j '�(t) j> 0 8t 2 R:
B2. The density fk is bounded, twice di¤erentiable, and

R
f 00k (x) dx <1:

B3. The kernel K satis�es
R
K(t)dt = 1 and

R
tK(t)dt = 0:

And for every �xed h > 0 and !j > 0:

B4. sup
t
j 'K(t)
'�(!jt=h)

j<1:

B5.
R
j 'K(t)
'�(!jt=h)

j dt <1:
B6.

R1
0
x3'2K(x) dx <1:

The estimation of fk is essentially based on the properties of the characteristic func-

tion. Indeed, we have

'
k̂j
(t) = 'k(t)� '!j�(t):

Note that '!j�(x) = '� (!jx) : According to the Fourier inversion theorem, the target
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density can be written as

fk(x) =
1

2�

Z
e�itx

'k̂j(t)

'� (!jt)
dt:

The estimator of fk is obtained by replacing 'k̂j(t) by its estimator. Assuming !j is the

same for all j with !j = !, Stefanski and Carroll�s estimator of fk is given by

f̂k(x) =
1

2�

Z
e�itx'K (th)

1
n

Pn
j=1 exp

�
itk̂j

�
'f� (!t)

dt

where h is a bandwidth such that h! 0 as n goes to in�nity.

To handle the heterogenous case where !j is di¤erent for each series j, we propose

the following estimator inspired from Delaigle and Meister (2008):

f̂k(x) =
1

2�

Z
e�itx'K (th)

1

n

nX
j=1

exp
�
itk̂j

�
'� (!jt)

dt: (5)

This expression is actually simpler than that of Delaigle and Meister�s estimator (see

their equation (2.2)) because here the distributions of the error di¤er only through the

multiplicative term !j, whereas Delaigle and Meister treat the more general case where

the errors may have completely di¤erent distributions.

Using the notation K�
j (t) =

1
2�

R
eity 'K(y)

'�(!jy=h)
dy; the estimator given in (5) can be

rewritten as a kernel estimator:

f̂k(x) =
1

nh

nX
j=1

K�
j

 
k̂j � x
h

!
:

The consistency and rate of convergence of this estimator will be studied in the

subsequent sections. In Section 5, we will consider the special case where the relation

(4) holds exactly with !j �nite. Next, we will investigate the more realistic case where

the density of �j depends on T and !j is also a function of T and diverges when �Tj

goes to zero. These two features will contribute to deteriorate the rate of convergence.

We will �rst address the case where !j is known in Section 6.1 and then when !j is
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unknown in Section 6.2.

5 Rate of convergence of deconvolution kernel

In this section, we derive the rate of convergence of f̂k(x) in the ideal setting where the

relation (4) holds exactly with !j < 1. The purpose of investigating this simple case
�rst is to gain some insights on the best possible rate we could hope to achieve. This

rate crucially depends on the behavior of the characteristic function of � in the tails.

The density f� has a closed-form expression (see for instance Yao (1987)):

f� (x) =
3

2
exp (jxj) �

 
�3
p
jxj
2

!
� 1
2
�

 
�
p
jxj
2

!

where � denotes the cumulative distribution function of the standard normal. Using

this expression, the characteristic function of f� can be calculated explicitly and is given

in the following lemma.

Lemma 1.

'�(x) =
9

2
p
2

1

1 + x2

p
1 +

p
1 + 64x2p

1 + 64x2
+

1

2
p
2

8x2 � 1
j x j (1 + x2)

pp
1 + 64x2 � 1p
1 + 64x2

� 3
2

1

1 + x2
:

From this result, it is clear that '� satis�es Assumption B1. Moreover, '� (x) de-

cays at an arithmetic rate x�3=2 in the tails. So � belongs to the class of ordinary

smooth random variables (r.v.) which typically yields faster rate of convergence than

the supersmooth r.v. (see Fan (1991)).

The criterion of convergence that we consider is the Mean Integrated Squared Error

(MISE):

MISE(f̂k) = E

Z
ff̂k(x)� fk(x)g2dx (6)

Theorem 1. Assume the relation (4) holds exactly, !j < 1 is �xed and (kj; �j),

j = 1; 2; :::; n are i.i.d. where the density of �j is f�: Assume that B1 to B6 hold and K

is a second-order kernel
�
i.e.

R
x2K (x) dx 6= 0

�
. Then, the asymptotic MISE is given

by
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AMISE =
h4

4
�2(K)

2

Z
(f

00

k (x))
2dx+

1

n2�h4

 
nX
j=1

!3j

!Z 1

0

x3'2K(x)dx

where �2(K) =
R
x2K(x) dx. The optimal bandwidth is then given by

ĥ =

244
�Pn

j=1 !
3
j

� R1
0
x3'2K(x) dx

n2��22(K)
R
(f

00
k (x))

2dx

35
1
8

(7)

and the optimal MISE:

inf
h>0
MISE(h) �

�2(K)

r�Pn
j=1 !

3
j

� R
(f

00
k (x))

2dx
R1
0
x3'2K(x) dx

n
p
�

as n goes to in�nity.

It follows fromTheorem 1 that the speed of convergence of the MISE is n�
1
2 (note thatPn

j=1 !
3
j = O (n)): To make this result meaningful, we must compare it to other rates

present in the literature. The deconvolution kernel has been developed to estimate the

density of a variable that is measured with an error. When the measurement error follows

a Laplace distribution, the speed of convergence of the MISE is n�
4
9 (Stefanski-Carroll

(1990)) and when the error is normal, the rate is only (ln(n))�2 (Carroll-Hall (1988)).

Optimal rates of convergence for general errors are given by Fan (1991). But none of

the standard distribution gives a rate as fast as that obtained here. Therefore, n�
1
2 is

a very good rate given the data are not directly observable. The speed of convergence

depends on the tails of the characteristic function of the measurement error which itself

is linked to the smoothness of the density. Figure 1 gives the plots of the pdf of the

standard normal, the Laplace and the Picard-Yao distribution given in (2). We see

that the smoother density is the normal which is therefore the most di¢ cult density

to deconvolve while the Picard-Yao pdf is very peaked at zero yielding a faster rate of

convergence. However as expected, a speed of convergence of the MISE of order n�
1
2

is much slower than the rate obtained when the data are observable without error, i.e.

n�
4
5 , this is the price to pay for measurement error.
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Figure 1: Shapes of densities
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Theorem 1 assumes that the relation (4) holds exactly with �xed !j. In practice,

for �xed value of T; the �nite sample distribution of the measurement error may have

a di¤erent shape from that of �: This introduces a misspeci�cation of the distribution.

When T goes to in�nity, the distribution of the measurement error tends to the pos-

tulated distribution but another problem arises. When T ! 1; �T ! 0 and hence

!j !1. This has for e¤ect to blur the signal and hence slower the rate of convergence.
In spite of these pitfalls, we will show in the next section that f̂k is a consistent estimator

even when taking into account the e¤ect of T:

An assumption that we will maintain throughout the paper is the cross-sectional

independence of the series. This assumption could be relaxed. Masry (1991) shows

that if the dependence is not too strong, the rate of convergence of the deconvolution

estimator remains the same.

6 Consistency of f̂k

In the previous section, we derived the rate of convergence of f̂k in the ideal situation

where (4) holds exactly and !j <1 does not depend on T . We consider now the case

where bkj are obtained from the estimation of the structural break as described in Section
2. First, we assume that !j is known, then we assume !j is unknown.

6.1 Case where !j is known

For a given T , we denote 1
!j

�bkj � kj� by �T . The distribution of �T converges to that
of � as T goes to in�nity where � is the Picard-Yao distribution given in (2).

Remark that the distribution of �T does not have an explicit expression even in the

simple case of a shift in the mean (see Hinkley, 1970). Moreover, the rate at which the

density of �T approaches that of � is unknown.

In this section, we assume that K has a characteristic function with bounded sup-

port [-1,1]. An example is given in Section 8. Such kernels are frequently used in

deconvolution because they satisfy assumptions B3 to B6.
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Theorem 2. Suppose !j is known. Assume that, for each series j, Assump-

tions A1 to A5 hold and (xjt; "jt)j are independent across j: Let K be a kernel which

characteristic function has bounded support [-1,1]. Assume B1 and B2 hold. Let

aT =
R �
f�T (x)� f� (x)

�2
dy with aT ! 0 as T goes to in�nity. The MISE is de-

composed into variance and squared bias so that

V ar = O

 P
j !

3
j

n2h4

!
= O

�
1

nh4v6T

�
;

Bias2 = O

 
aT
h4

P
j !

2
j

n

!
+O

�
h4
�
= O

�
aT
h4
1

v4T

�
+O

�
h4
�

where vT was de�ned in A5.

When we compare Theorems 1 and 2, we see that Theorem 2 exhibits an extra term,

O
�
aT
h4

P
j !

2
j

n

�
; which is linked to the approximation of the error distribution (the use

of '� instead of '�T which is unknown). Moreover, we notice that both variance and

bias are potentially a¤ected by vT . An interesting case is when aT
h4

1
v4T
is negligible with

respect to h4. In that case, the bias does not depend on vT and the optimal h is such

that h � n�1=8v�3=4T and MISE(f̂k) � n�1=2v�3T : Compared to Theorem 1, we obtain a

slower rate because of the shrinking amplitude of the jump. Note that for this choice of

h, a su¢ cient condition for aT
h4

1
v4T
to be negligible with respect to h4 is naTv2T ! 0 which

will be achieved provided T is large enough with respect to n:

6.2 Case where !j is estimated

Now, !j is replaced by its estimator !̂j = b�2j=�̂0Tj bQj �̂Tj: While 1=!j can be consistently
estimated at the 1=

p
T rate of convergence, it is not the case for !j because !j diverges

with T . However, we can show that !̂j=!j converges to 1 at the rate op (T��) where �

was de�ned in A5.

Theorem 3. Assume that, for each series j, Assumptions A1 to A5 hold. Then,

!̂j
!j
� 1 = op

�
T��

�
, for j = 1; 2; :::; n:
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To establish the rate of convergence of f̂k, some extra restrictions are needed. First,

to simplify, we assume !j = ! for all j and hence, ! can be estimated by !̂ = 1
n

Pn
j=1 !̂j:

Next, we impose the following assumption.

C.

E

Z ����� '�T (t)'�
� b!t
!

� � 1�����
2

dt � bT ! 0 as T goes to in�nity.

Moreover E
�
(!̂=!)6

�
<1:

Similarly to Meister (2006), we restrict the density of k to belong to a class F of

densities with characteristic functions which decline at an arithmetic rate.

F =
n
f density : C2 jtj�� � j'k (t)j � C1 jtj

�� , for all t with jtj > T0 > 0
o

with constants C2 > C1 > 0, � > 1, and T0 > 0:

So, instead of assuming that f is twice di¤erentiable as in Theorems 1 and 2, we

make an assumption on the tail of its characteristic function.

Moreover, we assume K is a sinc-kernel, i.e. K is such that 'K (t) = I[�1;1] (t) : So

that the estimator takes the form

f̂k(x) =
1

2�

Z 1=h

�1=h
e�itx

1

n

nX
j=1

exp
�
itk̂j

�
'� (!̂jt)

dt

The following theorem establishes the rate of convergence of f̂k toward fk:

Theorem 4. Assume that, for each series j, Assumptions A1 to A5 hold and

(xjt; "jt)j are independent across j: Assume !j = !, 8j; Assumption C holds, fk 2 F ,
and K is a sinc kernel. Then,

MISE(f̂k) = O

�
!3

h4n

�
+O

�
h2��1

�
+O

�
bT
!

�
= O

�
1

nh4v6T

�
+O

�
h2��1

�
+O

�
v2T bT

�
:

Remarks.

� If the term O (v2T bT ) is negligible with respect to the other terms (which is likely
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to happen if T is large enough compared to n), the optimal h is such as h �
n�

1
2�+3v

� 6
2�+3

T and MISE(f̂k) � n�
2��1
2�+3 v

� 6(2��1)
2�+3

T :

� If we replace the class F by another class of densities (for instance the super-

smooth densities), then the only thing that will change in Theorem 4 is the �rst

term of the MISE, O
�
h2��1

�
, which depends on the tail behavior of the charac-

teristic function of k: This term must be replaced by the appropriate rate.

7 Empirical Bayes

For each series j, we obtained an estimator of the break point bkj by least-squares:
However, this estimate does not take into account that the kj are random and drawn

from a common distribution. To take this information into account, we can adopt

an approach borrowed from the empirical Bayes literature (see for instance, Gu and

Koenker, 2017).

Let yj denote the vector of all the observations (yjt)t and Xj the matrix of re-

gressors (xjt)t. Our objective is to �nd ekj which minimizes the squared error loss
E

��ekj � kj�2 j (yj; Xj)j=1;:::;n� : The solution is simply E �kjj (yj; Xj)j=1;:::;n� : Let �2j
be the variance of "jt and g denote the density of "jt=�j. To simplify, we assume that

this density is the same for all j. Then, assuming independence of "jt across time, we

have

E
�
kjj (yj; Xj)j=1;:::;n

�
=

R
k�Tt=1g

�
yjt�X0

jt�jk
�j

�
1
�j
fk (k) dkR

�Tt=1g
�
yjt�X0

jt�jk
�j

�
1
�j
fk (k) dk

:

The traditional parametric approach would consist in replacing the density g but that of

the standard normal. However, here we are able to estimate g nonparametrically. Let bkj
be the least-squares estimator of kj, then we de�ne "̂jt = yj�X 0

j�jbkj and �̂2j =Pt "̂
2
jt=T .

Using the rescaled residuals "̂jt=�̂j, j = 1; 2; :::; n; t = 1; 2; :::; T , we can estimate g by a

kernel estimator bg: bg (x) = 1

nTehXj
X
t

K

�
"̂jt=�̂j � xeh

�
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for some bandwidth eh which goes to zero with the sample size. The density fk can
be estimated by bfk given in Equation (5) with !j replaced by !̂j: Finally, we get an
estimator of E

�
kjj (yj; Xj)j=1;:::;n

�
given by

Ê
�
kjj (yj; Xj)j=1;:::;n

�
=

R
k�Tt=1bg�yjt�X0

jt
b�jkb�j
�

1b�j bfk (k) dkR bg�yjt�X0
jt
b�jkb�j
�

1b�j bfk (k) dk : (8)

Equation (8) provides an estimator of the posterior mean of kj:

8 Simulations

To evaluate the quality of our estimator, we generate simulations with T = 150, 300, 600

time periods, and n = 50; 100, 200 series. For each combination of n and T , we perform

B = 500 replications, so that we can accurately assess the average error resulting from

the estimation. We calibrate our simulations on real data from Fama-French, which will

be studied in Section 9. The idea is to generate data with the same number of regressors

as the Fama-French model. For each of the n series drawn, we draw X of dimension

T � 5 and " of dimension T � 1 according to normal distributions whose mean and
variance are those of the real data for spring 2020 sample. In the same way, the break

points are drawn according to a normal distribution with mean and variance equal to

the empirical mean and variance found in the data. Finally, the coe¢ cients � and � of

formula (1) are drawn in a normal distribution whose mean and variance are again given

by the empirical mean and variance of the coe¢ cients �̂ and �̂ estimated on the real

data. This �rst step therefore allows us to generate data sets (X;Y )b for b = 1; :::; B

that are fairly similar to the actual observed data. We then apply to each of these draws

the two-step density estimation method. First, we compute for each time series j the

least-square estimate k̂j of the break point kj. Then, we estimate fk by f̂k given by (5)

with the second-order kernel used in Delaigle and Meister (2008):

K2 (x) =
48x(x2 � 15) cos x� 144 (2x2 � 5) sin x

�x7
: (9)

16



This kernel has the following bounded-support characteristic function

'K (t) =
�
1� t2

�3
I[�1;1] (t) :

Kernels that have a compactly supported Fourier transform are commonly used in de-

convolution problems because it guarantees that assumption B3 is satis�ed even for

supersmooth error. Moreover, the integral calculation in (5) is faster in practice.

We then seek to evaluate the mean integrated squared error of f̂k. Since estimating

the density fk is computationally demanding, we approximate the integral in (6) by a

grid. Hence, we simply calculate f̂k for the points of a set L = f0; 2; 4; 6; :::; 260g. Then,
the following quantity:

\MISE =
1

Bcard(L)

BX
b=1

X
x2L

�
f̂k;b(x)� fk(x)

�2
:

is used to estimate the MISE. Table 1 reports the values of \MISE for this �rst set of

simulated data.

To assess the sensitivity to �, we run a second set of simulations. The only mod-

i�cation is to consider � following a normal distribution whose mean is now equal to

10 times the mean of the estimated b�j. Consequently, the structural shift will be more
obvious for this new simulated data. The resulting MISEs are collected in Table 2.

In both cases, we observe that the magnitude \MISE decreases for increasing values
of n and T . This suggests that the estimation error decreases as the number of time

steps and the number of series in the panel increase. We also observe that for a small

number of time steps (T = 150), the estimate is signi�cantly better when the amplitude

of the shift is large (see Table 2) than when it is small (see Table 1). For a small number

of time periods, the extreme rupture is better captured by least squares, resulting in a

better quality of the density estimate after deconvolution.

On the other hand, the estimate is not signi�cantly better with a large shift as the

number of time steps becomes large (T = 600). This can be explained by the result of

Proposition 1 of Bai (1997), bk = k0+Op �k�Tk�2� which holds even for �T �xed. As we
17



increase �T , the relative error committed by using bkj instead of the true break point kj
becomes very small. As this estimation error becomes negligible, it is less relevant to

apply the two-step deconvolution procedure. A kernel estimator applied directly on the

least-squared estimates of kj is likely to give a satisfactory estimate of fk for a large T

and large �T . Using the deconvolution kernel may add noise which results in a larger

MISE.

n = 50 n = 100 n = 200

T = 150 4:050 � 10�6 2:975 � 10�6 2:190 � 10�6

T = 300 2:774 � 10�6 1:678 � 10�6 1:123 � 10�6

T = 600 2:557 � 10�6 1:383 � 10�6 8:456 � 10�7
Table 1: MISE when � is conform to the data

n = 50 n = 100 n = 200

T = 150 3:563 � 10�6 1:839 � 10�6 1:383 � 10�6

T = 300 3:204 � 10�6 1:834 � 10�6 1:105 � 10�6

T = 600 2:969 � 10�6 1:774 � 10�6 1:033 � 10�6
Table 2: MISE for large �

We perform a third simulation experiment meant to illustrate the importance of the

deconvolution step when estimating the density. In this experiment, the kj are drawn

from a mixture of two equally-weighted normal distributions with means �1 = 100 and

�2 = 200 and the same standard deviation, � = 16. Therefore, the density fk has two

peaks. As before, we simulate panel data with n = 400 cross-sections and T = 150

time steps. Apart from the distribution of break points, the parameters are the same as

for Table 1. Now we estimate fk by two methods, a direct method (without applying

deconvolution) using the conventional kernel estimator de�ned as

efk̂(t) = 1

nh

nX
i=1

K

 
t� k̂j
h

!
(10)

with a Gaussian kernel and a bandwidth h optimally chosen as in Wand and Jones

(1994). The second method is the two-stage deconvolution with the K2 kernel. Figure
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Figure 2: Estimation of bimodal density with and without deconvolution

2 displays the plot of the two densities. It is evident that when estimated by a direct

method, the density is less accurately estimated compared to when applying a two-stage

deconvolution method. In particular the density appears �attened for the conventional

kernel estimator. Conversely, the deconvolution kernel allows us to better capture the

two distinct peaks in the bimodal density.

9 Application to portfolio returns

In order to illustrate the method on real data, we have chosen to apply it to the Fama-

French �ve-factor model during two extreme events. The selected periods are the �rst
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Covid lockdown of spring 2020 and the Ukraine Invasion in spring 2022. Our hypothesis

is that these events have had an impact on �nancial markets, which manifests itself in

structural breaks in the regression coe¢ cients.

9.1 Presentation of the Fama-French �ve-factor model

The Fama-French �ve-factor asset pricing model proposed by Fama and French (2015)

is an empirical explanation of the return of a �nancial asset j at time t. It is written as

follows:

Rjt �RFt = aj + bj(RMt �RFt) + sjSMBt + hjHMLt + rjRMWt + cjCMAt + eit

where Rjt is the return of asset j at time t, RFt is the risk-free return, RMt is the market

return, SMBt (Small Minus Big) is the di¤erence between the return of a diversi�ed

portfolio of small company stocks and that of large company stocks, indicating the

outperformance of small companies compared to large ones, and HMLt (High Minus

Low) is the di¤erence between the returns of a diversi�ed portfolio of high-cap stocks

and low-cap stocks. In addition to these factors, which form the foundation of the

three-factor Fama-French model, the authors introduced RMWt (Robust Minus Weak)

and CMAt (Conservative Minus Aggressive), which respectively measure the di¤erence

in returns between the most pro�table and least pro�table companies, and between the

most conservative and most aggressive companies in their investments.

Throughout our work, we rely on data from Kenneth French�s website. These data

include the returns of a certain number of portfolios for di¤erent geographical areas,

business types, etc. Since we aim for the portfolios under study to have the lowest pos-

sible correlations with each other, it is important to ensure that the intersection between

two portfolios is empty. Therefore, we have chosen portfolios grouped by geographical

area, company size, and momentum (size and momentum). Thus, we consider 25 Asian

portfolios (excluding Japan), 25 European portfolios, 25 Japanese portfolios, and 25

North American portfolios, for a total of n = 100 portfolios.

In addition to these portfolio returns, the Kenneth French�s website provides the 5
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factors of the model for each of the considered geographical areas. For each portfolio j,

we regress the excess returns on the 5 Fama-French factors. We allow for a single break

point which a¤ects at the same time the intercept and the regression coe¢ cients. This

break point, as well as the intercept and regression coe¢ cients, are estimated separately

for each portfolio.

9.2 Spring 2020: E¤ect of Covid pandemic

We apply our estimator to the Fama-French data around the spring lockdown of 2020.

This period is particularly interesting as the lockdown measures were implemented at

very close dates worldwide, and the pandemic a¤ected all geographical areas. Conse-

quently, we can apply our estimator to the n = 100 portfolios, assuming that the jump

times are drawn from the same distribution, regardless of the geographical zone.

We consider daily observations ranging from 11/01/2019 to 09/01/2020, resulting

in T = 241 dates, accounting for market closure days. This relatively broad range

around the break dates allows for a good estimation of coe¢ cients before and after the

shocks. We start by ensuring that the jumps are statistically signi�cant for the n = 100

considered portfolios. We apply the sup-Wald test of Andrews (1993) to test the null

hypothesis H0 : �j = 0. We exclude � = 5% of the possible jump points at the beginning

and at the end of the interval. The table of values provided by Andrews (2003) ensures

that we can reject the null hypothesis (of no structural change) at the 5% level with

p = 6 a¤ected coe¢ cients and � = 5% if the test statistics exceeds 21:56. We note that

out of the 100 studied portfolios, only 4 do not allow us to reject the null hypothesis at

the 5% level. Therefore, panel data indeed exhibit signi�cant structural breaks during

the period considered. We apply the method to all series including those for which we

cannot reject the null hypothesis of parameter stability.

We implement two kernels:

The Gaussian kernel: K1(x) = 1=
p
2� exp (�x2=2), with 'K1

= exp(�x2=2):
The K2 kernel de�ned in (9).

We also choose the optimal bandwidth bh using the formula (7).
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Figure 3: Density of break points during Covid

Figure 3 displays the estimated densities of the break points obtained for the two

kernels. The two densities are very similar for the two kernels with K2 being slightly

smoother. Moreover, we observe that most of the breaks occur after March 13th, which

corresponds to the initial lockdown. This suggests that the markets did not anticipate

these events. Moreover, we observe a distribution of structural break points concentrated

between March and April 2020. This is in line with the duration of the initial spring

2020 lockdown.

We now turn our attention to the posterior means of structural break points. This

approach leverages the assumption that the break points follow the same distribution.

To perform the Bayesian reestimation of structural break points, we �rst compute the

deconvolution estimator bfk using the K2 kernel. We then incorporate this estimatorbfk into Equation (8), yielding new values for bkj. Figure 4 plots the histograms of the
posterior means of break points for the 100 studied portfolios grouped into 4 regions.

We observe that the Asian markets (excluding Japan) exhibit a highly concentrated
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Figure 4: Posterior means of breakpoints by regions

distribution of structural break points between time steps 120 and 140 (corresponding

to dates from March 17th to April 14th, 2020). The same pattern is evident for Euro-

pean and Japanese data. This does indeed seem to align with the impact of the initial

lockdown measures. In contrast, the American data reveals a much less localized distri-

bution of break point instances, with a primary break around time step 140 (mid-April)

and subsequent break points occurring between time steps 160 and 185 (from May 12th

to June 16th). This suggests a delayed e¤ect of the crisis, with break points occurring

later in North America than in other regions of the world.
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9.3 Spring 2022: E¤ect of the Ukraine invasion

We apply the same methodology as before to data from spring 2022, assuming again

that an international political event, the invasion of Ukraine in this case, will impact

�nancial markets, leading to changes in the Fama-French coe¢ cients. We analyze data

from 06/01/2021 to 01/01/2023, covering a span of one and a half years.

Similar to before, we conduct the sup-Wald test while excluding 5% of observations

at the beginning and end of the interval. This time, the null hypothesis, indicating

the absence of structural breaks, is rejected slightly less often compared to the case

of the 2020 lockdown. Speci�cally, out of the 100 time series in the panel, 13 do not

reject the null hypothesis at the 5% level. However, a structural break in the Fama-

French model in the spring of 2022 is plausible for nearly 90% of the series, which is still

satisfactory. Here again, we keep all series when we apply the estimation procedure of

the change-point density.

Figure 5: Density of break points during 2022

Figure 5 shows the plots of the density estimators for the two kernels K1 and K2,
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with optimal bandwidths. Once more, we observe that the results produced by the two

kernels are close to each other. However, we note that the shock is much less localized

than in the spring of 2020. Speci�cally, we observe two peaks in the distribution of jump

times. One begins in November 2021 and peaks in February 2022, while the second,

more pronounced, peak reaches its maximum in June 2022.

Further analysis of the data reveals that the �rst of the two peaks in the distribution

is primarily observed in the Asian data. This peak appears to correspond to China�s

reinforcement of its zero-Covid policy following the arrival of Omicron end of 2021. On

the other hand, the second peak is more pronounced in Europe and the United States.

This period corresponds to a period of high uncertainty in �nancial markets linked to

the surge of oil prices resulting from the invasion of Ukraine.

This observation challenges the assumption of homogeneity of panel data since Asian

and European data exhibit distinct behaviors. Consequently, the assumption that struc-

tural break points are drawn from the same distribution for all portfolios is questionable.

Generally, it is important to note that multiple shocks can overlap and cause di¤erenti-

ated structural breaks in a panel dataset. When the estimated distribution of structural

break points shows multiple peaks, it is necessary to consider possible heterogeneity and

the presence of multiple structural breaks.

As our estimator estimates precisely the density fk, it permits to identify the pres-

ence of distinct peaks. Figure 6 plots the estimated densities using the deconvolution

estimator and the Gaussian kernel without deconvolution. We observe that without the

deconvolution step, the estimated density is much broader, making it quite challenging

to conclude regarding the existence of one or multiple distinct shocks. However, with

the application of deconvolution, the two peaks are clearly visible, making it easy to

recognize the presence of two distinct break points.
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Figure 6: Density of breakpoints during 2022 with and without deconvolution

10 Conclusion

The paper shows how to estimate the density of break points using deconvolution ker-

nel. Deconvolution kernel estimation has often been criticized dues to its slow rate of

convergence when the error is normally distributed. Here, in this case, the error is much

more concentrated around 0, resulting in a faster rate of convergence. Moreover, by em-

ploying empirical Bayes, we can estimate posterior means of the break points leveraging

our density estimator.

Simulations with a bimodal density shows that our method allows us to capture

the two humps in the density, which may be overlookedwhen using a standard kernel

estimator. The application on Fama-French �ve-factor model reveals that Covid and

the Ukraine war had an impact on the coe¢ cients.

Our method could be employed for policy evaluation. For instance, it could be used

to observe how quickly the agents react to a policy change. The presence of a peak

following a policy decision can indicate an e¤ect of that measure.
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Some of our results could be applied to alternative models, particularly the Threshold

Autoregressive and sample splitting models. Indeed, the Picard-Yao distribution (2)

emerges as the asymptotic distribution of the threshold estimation error in Hansen

(2000). Therefore, the deconvolution kernel presented here could be adapted to the

estimation of the density of thresholds assuming a panel of observations is available and

the thresholds are drawn from some common distribution.
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11 Proofs

Proof of Lemma 1. Given the density f� is even, its characteristic function is given

by

'� (t) = 2
R1
0
cos(tx)f�(x)dx

= 3
R1
0
cos(tx)ex�

�
�3
2

p
x
�
dx�

R1
0
cos(tx)�

�
�
p
x
2

�
dx:

First consider the second term. Integration by parts gives:R1
0
cos(tx)�

�
�
p
x
2

�
dx =

h
sin(tx)
t
�
�
�
p
x
2

�i1
0
+
R1
0

1
4t
p
x
�
�p

x
2

�
sin(tx)dx where �

denotes the pdf of the standard normal. The term within brackets is equal to zero as x

goes to in�nity since j sin(tx) j� 1: Using the change of variables u =
p
x; we obtain

= 1
2t

R1
0
�
�
u
2

�
sin(tu2)du

= 1
4it
p
2�

�R1
0

n
e�

u2

8
(1�8it) � e�u2

8
(1+8it)

o
du
�
:

Denote g(t) =
R1
0
e�

u2

8
(1�8it)du: Deriving g and an integration by parts show that

g(t) satis�es a di¤erential equation

g0(t) =
4i

1� 8itg(t) =
4i� 32t
1 + 64t2

g(t)

Let g(t) = g1(t) + ig2(t), g1 and g2 are real and satisfy the following system(
g01(t) =

�4g2(t)�32tg1(t)
1+64t2

g02(t) =
4g1(t)�32tg2(t)

1+64t2

Then g1(t) =
p
1+
p
1+64t2p

2
p
1+64t2

g(0) and g2(t) =
pp

1+64t2�1p
2
p
1+64t2

g(0); with g(0) =
R1
0
e�

u2

8 du =
p
2�: Moreover, g(t) takes the simple form

p
2�p
1�8it : This shows that

1p
2�

Z 1

0

e�
u2

8
(1�8it)du =

1p
1� 8it

= A+ iB with

A =

p
1 +

p
1 + 64t2p

2
p
1 + 64t2

and B =

pp
1 + 64t2 � 1p
2
p
1 + 64t2

:

By the same way, we obtain
1p
2�

R1
0
e�

u2

8
(1+8it)du = 1p

1+8it
= A� iB:
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Then, we haveR1
0
cos(tx)�

�
�
p
x
2

�
dx = 1

4it

h
1p
1�8it �

1p
1+8it

i
= B=(2t):

Now consider the �rst part of the characteristic function:R1
0
cos(tx)ex�

�
�3
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p
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using an integration by parts. The term in brackets tends to zero as x tends to

in�nity, and is equal to � 1
2(1+t2)

as x = 0, so we focus our attention on the second term

which, using the change of variables u =
p
x, becomes

1
1+t2

R1
0
eu

2
(cos(tu2) + t sin(tu2)) 3

2
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�
3
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du
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o
After simpli�cation, we obtain the form given in Lemma 1.

The proof of Theorem 1 uses the following result.

Lemma 2. Assume ! �xed or !=h goes to in�nity. Then,Z 1

0

'K(x)
2

'�
�
!x
h

�2dx � !3

h3

Z 1

0

x3'K(x)
2dx as h goes to zero:

Proof of Lemma 2. Without loss of generality, let ! = 1. The relation that we

want to show is the following:Z 1

0

'2K(x)

'�
�
x
h

�2dx � 1

h3

Z 1

0

x3'2K(x)dx as h goes to zero:

From the expression of '�, one can deduce immediately an equivalent when x goes to

in�nity:

'�(x) � x�
3
2 :

Let x be �xed such that a < x < b; for any 0 < a < b and ", 0 < " < 1, there is some

number h� such that for all h � h�; we have

(1� ")x
3

h3
� 1

'�
�
x
h

�2 � (1 + ")x3h3
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It follows that

(1� ") 1
h3

Z b

a

x3'2K(x) dx �
Z b

a

'2K(x)

'�
�
x
h

�2 dx � (1 + ") 1h3
Z b

a

x3'2K(x) dx

Since
R1
0
x3'2K(x) dx converges by Assumption B6, we can make a tend to zero and b

tend to in�nity. Then, the result follows.

Proof of Theorem 1.

Assumptions B4 and B5 imply that K�
j is bounded, so f̂k is also bounded and its

expectation necessarily exists. We examine �rst the bias, second the variance.

Bias. By Fubini�s theorem and B4-B5, we can interchange the expectation and

integration to obtain
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eiy(kj�x)=h'K(y)dy

= K

�
kj � x
h

�
where the last equality follows from the Fourier inversion formula. Hence, we have

E
�
f̂k (x)

�
=

1

nh

nX
j=1

E

"
K�
j

 
k̂j � x
h

!#

=
1

nh

nX
j=1

E

�
K

�
kj � x
h

��
=

1

h

Z
K

�
u� x
h

�
fk (u) du

= (Kh � fk) (x)

where Kh (:) = K (:=h) =h: Therefore, the bias of f̂k depends neither on !j nor on the

distribution of �. It coincides with the bias of the ordinary kernel estimator: There-
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fore, we can exploit well-known results on the bias of kernel estimators which yield the

following rate provided the second-order derivative of fk is squared integrable (see for

instance Wand and Jones (1995)):Z h
E
�
f̂k (x)

�
� fk (x)

i2
dx =

h4

4
�2(K)

2

Z
f 00k (x)

2dx+ o
�
h4
�
:

Variance. Z
V
�
f̂k (x)

�
dx =

1

n2h2

nX
j=1

Z
V

 
K�
j

 
k̂j � x
h

!!
dx

where

V

 
K�
j

 
k̂j � x
h

!!
= E

24 K�
j

 
k̂j � x
h

!!235� "E K�
j

 
k̂j � x
h

!!#2
:

We have E
�
K�
j

�
k̂j�x
h

��
= h (Kh � fk) (x) = O (h), therefore the second term on the

r.h.s. will be negligible. We focus on the �rst term. By a change of variables t =�
k̂j � x

�
=h, we have

1

n2h2

nX
j=1

Z
E

24 K�
j

 
k̂j � x
h

!!235 dx =
1

n2h2

nX
j=1

E

Z  
K�
j

 
k̂j � x
h

!!2
dx

=
1

n2h

nX
j=1

Z
K�
j (t)

2 dt:

By Parseval�s Identity, we haveZ
K�
j (t)

2 dt =

Z �
1

2�

Z
eity

'K(y)

'� (!jy=h)
dy

�2
dt

=
1

2�

Z
'2K(y)

'2� (!jy=h)
dy:
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Hence, Z
V
�
f̂k (x)

�
dx =

1

n2h2�

nX
j=1

Z
'2K(y)

'2� (!jy=h)
dy +O

�
1

n

�
:

We obtain

MISE =

Z �
E
�
f̂k (x)� f (x)

��2
dx+

Z
V
�
f̂k (x)

�
dx

=
h4

4
�2(K)

2

Z
f 00k (x)

2dx+
1

n2�h2

nX
j=1

Z
'2K(x)

'2� (!jx=h)
dx+ o

�
h4
�
+ o

�
1

nh

�
:

Then, using Lemma 2, the asymptotic MISE is given by

AMISE =
h4

4
�2(K)

2

Z
(f

00

k (x))
2dx+

1

n2�h4

 
nX
j=1

!3j

!Z 1

0

x3'2K(x)dx:

The result follows.

Proof of Theorem 2.

We use the notation bkj = kj + !j�T . The density of �T is denoted f�T : We have
K�
j

 bkj � x
h

!
=
1

2�

Z
exp

 
iy

 bkj � x
h

!!
'K(y)

'� (!jy=h)
dy:

Hence,

E

"
K�
j

 bkj � x
h

!
jkj

#
=

1

2�

Z
e
iy
�
kj�x
h

�
'K(y)

'� (!jy=h)
'�T (!jy=h) dy

=
1

2�

Z
e
iy
�
kj�x
h

� �'�T (!jy=h)� '� (!jy=h)�
'� (!jy=h)

'K(y)dy

+
1

2�

Z
e
iy
�
kj�x
h

�
'K(y)dy:

=
1

2�

Z
e
iy
�
kj�x
h

� �'�T (!jy=h)� '� (!jy=h)�
'� (!jy=h)

'K(y)dy

+K

�
kj � x
h

�
:
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Squared bias.

By Fubini�s theorem, we have

E
�
f̂k (x)

�
=

1

hn

1

2�

X
j

Z Z
eiy(

k�x
h )fk (k) dk

�
'�T (!jy=h)� '� (!jy=h)

�
'� (!jy=h)

'K(y)dy (11)

+(Kh � fk) (x) (12)

where Kh = K(:=h)=h: HenceZ �
E
�
f̂k (x)

�
� fk (x)

�2
dx � 2

Z
(11)2dx+ 2

Z
((Kh � fk) (x)� fk (x))2 dx:

We have

(11) =
1

2�nh

X
j

Z
e�iyx=h'k (y=h)

�
'�T (!jy=h)� '� (!jy=h)

�
'� (!jy=h)

'K(y)dy

=
1

2�nh

X
j

Z
eitx=h'k (�t=h)

�
'�T (�!jt=h)� '� (�!jt=h)

�
'� (�!jt=h)

'K(�t)dt

by a change of variables t = �y. By Parseval�s identity,

Z
(11)2dx � 1

2�nh2

X
j

Z
'k (�y=h)

2

�
'�T (�!jy=h)� '� (�!jy=h)

�2
'� (�!jy=h)

2 'K(�y)2dy

� 1

2�nh2

X
j

sup
t2[�1;1]

1

'� (�!jt=h)
2

Z 1

�1

�
'�T (�!jy=h)� '� (�!jy=h)

�2
'K(�y)2dy

using the compactness of the support of 'K(�y): Moreover,R 1
�1
�
'�T (�!jy=h)� '� (�!jy=h)

�2
'K(�y)2dy � 4

R 1
�1 'K(�y)

2dy < 1. So by the
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dominated convergence theorem,

lim
T!1

Z 1

�1

�
'�T (�!jy=h)� '� (�!jy=h)

�2
'K(�y)2dy

=

Z 1

�1

n
lim
T!1

�
'�T (�!jy=h)� '� (�!jy=h)

�2o
'K(�y)2dy

= 0:

However, the term 1
h2
supt2[�1;1]

1
'�(!jt=h)

2 =
!3j
h5
by Lemma 2 and hence diverges when

h ! 0. In absence of a rate of convergence of the characteristic function, it is not

possible to characterize the rate of convergence of the bias.

Denote
R 1
�1
�
'�T (�!jy=h)� '� (�!jy=h)

�2
'K(�y)2dy = eaTj. We have

eaTj � C

Z �
'�T (�!jy=h)� '� (�!jy=h)

�2
dy

= C
h

!j

Z �
'�T (u)� '� (u)

�2
du

= C 0
h

!j

Z �
f�T (x)� f� (x)

�2
dx

= C 0
h

!j
aT

for some constants C;C 0 > 0, where the �rst equality comes from a change of vari-

ables and the second equality from Parseval�s identity. Then the squared bias is

O
�
aT
h4

P
j !

2
j

n

�
+ O (h4) = O

�
aT
h4

1
v4T

�
+ O (h4) : Under the assumption, aT

h4
1
v4T
! 0, the

bias goes to zero. Given h depends on n only, this imposes restrictions on the growth

rate of T relative to n.

Variance.

V
�
f̂k (x)

�
=

1

n2h2

X
j

V

 
K�
j

 bkj � x
h

!!

� 1

n2h2

X
j

E

24 K�
j

 bkj � x
h

!!235 :
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E

"
K�2
j

 bkj � x
h

!#
= E

"
E

"
K�2
j

 bkj � x
h

!
jkj = k

##

=

Z �Z
K�2
j

�
k + !j� � x

h

�
f�T (�) d�

�
fk (k) dk

=

Z �Z
K�2
j

�
k + !j� � x

h

�
fk (k) dk

�
f�T (�) d�

by Fubini. By a change of variables t = (k + !j� � x)=h, we obtain

E

"
K�2
j

 bkj � x
h

!#
= h

Z �Z
K�2
j (t) fk (th� !j� + x) dt

�
f�T (�) d�:

Denote

A (h; a) =

R
K�2
j (t) fk (th+ a) dtR
K�2
j (t) dt

and notice that A (h; a) � supx fk (x) � Bfk <1 by B2: Hence, we have

E

"
K�2
j

 bkj � x
h

!#
= h

�Z
A (h; x� !j�) f�T (�) d�

�Z
K�2
j (t) dt

� hBfk

Z
K�2
j (t) dt

= hBfk
1

2�

Z
'2K(y)

'2� (!jy=h)
dy

by Parseval�s identity. Therefore,

V
�
f̂k (x)

�
� Bfk

n2h

X
j

1

2�

Z
'2K(y)

'2� (!jy=h)
dy

� C
1

n2h4

X
j

!3j = O

�
1

nh4v6T

�

by Lemma 2. So combining these results, we obtain

MISE = O

�
aT

(hvT )
4

�
+O

�
h4
�
+O

�
1

nh4v6T

�
:
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Proof of Theorem 3.

From Corollary 1 of Bai (1997), �̂ � � = Op( 1p
T
) and �̂ � �T = Op( 1p

T
): Moreover,

Proposition 1 of Bai (1997) states that

k̂ = k0 +Op(jj�T jj�2): (13)

Limit of �̂2:

Let Y = (y1; y2; :::; yT )
0, X = (x01; x

0
2; :::; x

0
T )
0, and Z = (z01; z

0
2; :::; z

0
T )
0 : As in Bai

(1997), we de�neR as the full ranked matrix such that zt = R0xt. Let X̂ =
�
0; :::; 0; xbk+1; :::; xT �0

and bZ = bXR:
�̂2 =

1

T
(Y �X�̂ � Ẑ�̂)0(Y �X�̂ � Ẑ�̂)

=
1

T
(Y �X� � Z�T �X(�̂ � �)� (Ẑ � Z)�T � Ẑ(�̂ � �T ))

0

(Y �X� � Z�T �X(�̂ � �)� (Ẑ � Z)�T � Ẑ(�̂ � �T ))

=
1

T
(Y �X� � Z�T )

0
(Y �X� � Z�T )

� 2

T
(Y �X� � Z�T )0(X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T ))

+
1

T
(X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T ))0(X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T )):

By the law of large numbers, 1
T
(Y �X��Z�T )0(Y �X��Z�T )! �2 in probability.

Moreover,(Y �X� � Z�T )0(X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T ))
� kY �X� � Z�Tk

X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T )
� kY �X� � Z�Tk

�X(�̂ � �)+ (Ẑ � Z)�T+ Ẑ(�̂ � �T )� : (14)

Regarding the �rst term, 1p
T
(X(�̂ � �))

 � 1p
T
jjXjj jj�̂ � �jj:

As 1p
T
jjXjj converges in probability (by Assumptions A2 and A3) and �̂ � � =

36



Op(
1p
T
), Slutsky�s theorem yields: 1p

T
(X(�̂ � �))

 � 1p
T
jjXjj jj�̂ � �jj = Op(

1p
T
): (15)

Similarly,  1p
T
(Ẑ(�̂ � �))

 � 1p
T
jjẐjj jj�̂ � �jj

� 1p
T
jjXjj jj�̂ � �jj

where the second inequality comes from the fact that Ẑ is a linear transformation of X.

It follows that  1p
T
(Ẑ(�̂ � �T ))

 = Op( 1pT ): (16)

For the third term, we use Equation (13):

 1p
T
(Ẑ � Z)�T

 =
 1p
T

k0X
i=k̂+1

zi�T

 � 1p
T

k0X
i=k̂+1

jjzijj jj�T jj

=
1p
T
jj�jj Op(jj�T jj�2) =

1p
T
Op(jj�T jj�1):

As �T�1 = op(T 1=2��), we obtain 1p
T
(Ẑ � Z)�T

 = op� 1

T�

�
: (17)

From Equations (15), (16), and (17), we obtain by Inequality (14) that as T !1:

1

T
(Y �X� � Z�T )0(X(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T )) = op

�
1

T�

�
:

Similarly, we have 1
T
jjX(�̂ � �) + (Ẑ � Z)�T + Ẑ(�̂ � �T )jj2 = op

�
1
T 2�

�
:

It follows that for T !1:

�̂2 = �2 + op

�
1

T�

�
:
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Limit of Q̂:

By the law of large numbers,

Q̂ =
1

T

TX
t=1

ztz
0
t
P! E(ztz

0
t)

Moreover, by Assumption A2 (existence of the fourth moment of zt) and the central

limit theorem Q� Q̂ = Op( 1p
T
):

Limit of �̂2=(�̂
T
Q̂�̂):

By Assumption A5, we have

�̂ = �T +Op(
1p
T
) = �0vT +Op(

1p
T
) = vT (�0 +Op(

v�1Tp
T
))

= vT (�0 + op(
1

T�
)):

Hence,

�̂2

�̂
0
Q̂�̂

�2

�
0
TQ�T

=
�̂2

�2
�0TQ�T

�̂
0
Q̂�̂

=
�̂2

�2
v2T �

0
0Q�0

v2T (�0 + op(
1
T�
))0Q̂(�0 + op(

1
T�
))

=
�̂2

�2
�00Q�0

(�0 + op(
1
T�
))0Q̂(�0 + op(

1
T�
))
:

Therefore,

�̂2

�̂
0
Q̂�̂

�2

�0Q�

P! 1:

Rate of convergence:

�̂2

�̂
0
Q̂�̂
� �2

�0Q�

�2

�0Q�

=

�2+op(
1
T�
)

(�0+op(
1
T�
))0(Q+Op(

1p
T
))(�0+op(

1
T�
))
� �2

�
0
0Q�0

�2

�T0 Q�0

=
�00Q�0
�2

�00Q�0�
2 + op(

1
T�
)� �00Q�0�2 + op( 1T� )

(�00Q�0)(�
0
0Q�0 + op(

1
T�
))

:

(18)
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It follows from Slutsky�s theorem that

�̂2

�̂
0
Q̂�̂
� �2

�0Q�

�2

�0Q�

=
op(

1
T�
)

�2(�00Q�0 + op(
1
T�
))
= op

�
1

T�

�
: (19)

Proof of Theorem 4.

f̂k(x)� fk (x) =
1

2�

Z 1=h

�1=h
e�itx

24 1
n

nX
j=1

exp
�
itk̂j

�
'� (!̂t)

dt� 'k (t)

35 dt (20)

+
1

2�

Z
jtj>1=h

e�itx'k (t) dt: (21)

By Parseval�s inequality, we haveZ h
f̂k(x)� fk (x)

i2
dx

� 2

�

Z 1=h

�1=h

������ 1n
nX
j=1

exp
�
itk̂j

�
'� (!̂t)

dt� 'k (t)

������
2

dt (22)

+
2

�

Z
jtj>1=h

j'k (t)j
2 dt: (23)

First, we consider the term (23). Using the tail behavior of fk in F , we have

1

�

Z
jtj>1=h

j'k (t)j
2 dt � Ch2��1 (24)

where C > 0 is a generic constant.
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Now, we consider the term (22).

(22) =
2

�

Z 1=h

�1=h

������ 1n
nX
j=1

exp
�
itk̂j

�
'� (!̂t)

dt� 'bk (t)
'� (!̂t)

+
'bk (t)
'� (!̂t)

� 'k (t)

������
2

dt

� 4

�

Z 1=h

�1=h

1

'� (!̂t)
2

����� 1n
nX
j=1

exp
�
itk̂j

�
� 'bk (t)

�����
2

dt (25)

+
4

�

Z 1=h

�1=h

���� 'bk (t)'� (!̂t)
� 'k (t)

����2 dt: (26)

Consider (25). By Fubini and Cauchy-Schwarz, we have

E

Z 1=h

�1=h

1

'� (!̂t)
2

����� 1n
nX
j=1

exp
�
itk̂j

�
� 'bk (t)

�����
2

dt

=

Z 1=h

�1=h
E

8<: 1

'� (!̂t)
2

����� 1n
nX
j=1

exp
�
itk̂j

�
� 'bk (t)

�����
2
9=; dt

�
Z 1=h

�1=h

vuuutE 1

'� (!̂t)
4

!
E

24����� 1n
nX
j=1

exp
�
itk̂j

�
� 'bk (t)

�����
4
35dt

Using Lemma 2, we havevuutE 1

'� (!̂t)
4

!
� C

q
E
�
!̂6
�
t3

= C

vuutE � !̂
!

�6!
!3t3:

Moreover, by Assumption C, E
��

!̂
!

�6�
< 1 and by the independence of

nbkjo, j =
1; 2; :::; n; E

���� 1nPn
j=1 exp

�
itk̂j

�
� 'bk (t)

���4� = O (1=n2) : Combining these terms, we

obtain

E

Z 1=h

�1=h

1

'� (!̂t)
2

����� 1n
nX
j=1

exp
�
itk̂j

�
� 'bk (t)

�����
2

dt =
!3

h4
O

�
1

n

�
:
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Now consider (26). Using 'bk (t) = 'k (t)'�T (!t) and j'k (t)j2 � 1; we have

(26) =
4

�

Z 1=h

�1=h
j'k (t)j

2

����'�T (!t)'� (!̂t)
� 1
����2 dt

� 4

�

Z 1=h

�1=h

����'�T (!t)'� (!̂t)
� 1
����2 dt:

A change of variables, u = !t, yields

Z 1=h

�1=h

����'�T (!t)'� (!̂t)
� 1
����2 dt =

1

!

Z !=h

�!=h

����� '�T (u)'�
�
!̂
!
u
� � 1�����

2

du

� 1

!

Z ����� '�T (u)'�
�
!̂
!
u
� � 1�����

2

du

=
1

!
O (bT )

by Assumption C.
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