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Introduction

Societies delegate the conduct of fiscal policies to their government. A fiscal rule sets the terms of

the delegation contract. The design of a fiscal rule involves a fundamental trade-off between the

need for discretion to respond to shocks and the need for discipline to act in the best interest of the

citizenry. A main insight from the literature is that, for a single country, the optimal fiscal rule

balances the need for both discretion and discipline in a stark way. Under some conditions, the

optimal rule grants discretion below a threshold and imposes discipline with maximally enforced

sanctions above the threshold.2 In this paper, I study the design of a fiscal rule for an economic

union. While the main insight from the literature prevails under more stringent conditions, fiscal

rules featuring mild sanctions are optimal under an alternative set of conditions.

Fiscal rules are an important component of the constitution of economic unions. Unlike a fiscal

union, an economic union’s lack of fiscal integration limits transfers across countries. As a result,

the key trade-off remains between discretion and discipline. Unlike a single country, an economic

union can use financial sanctions to discipline its government members and use any revenue from

the sanctions as contributions to its budget. For instance, the Excessive Deficit Procedure of

the Stability and Growth Pact specifies non-interest-bearing deposits and fines starting at 0.2%

of GDP for deficits above 3% of GDP. The revenues from fines are earmarked for the European

Stability Mechanism. I argue that the lower cost of financial sanctions relative to non-financial

sanctions matters for the optimal structure and stringency of a fiscal rule. How then should an

economic union design its fiscal rule?

To answer this question, I solve the problem of a central authority designing a fiscal rule for

a union of small open economies. The central authority uses financial sanctions, and each small

open economy is subject to the usual tensions studied in the literature. As such, if financial

sanctions confer no advantage over non-financial sanctions, the model nests a standard model

from the literature (Amador, Werning, and Angeletos (2006)). Each government makes spending

and borrowing decisions in response to shocks to its citizenry’s need for public spending. The

objective of each government is present biased in the sense that it discounts the future at a higher

rate than the citizenry. The present bias captures in a reduced form the incentive to overborrow

2See the seminal paper of Amador, Werning, and Angeletos (2006) and the recent contribution of Halac and

Yared (2022a).
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on the part of government members of an economic union, whether the overborrowing is due to

the common pool problem caused by a common monetary authority that cannot commit or is

simply a result of the shortsightedness caused by political turnover. The combination of shocks

and a present-biased objective calls for both discretion and discipline.

The design of a fiscal rule is subject to two constraints. The first constraint captures a

limitation caused by the lack of fiscal integration. The rule can only levy sanctions; it cannot

use transfers. In the context of Europe, Brunnermeier, James, and Landau (2016) attribute the

limits on transfers between European countries to two main concerns: the risk of moral hazard

and the potential loss of sovereignty over the national budget. The second constraint gives rise

to a trade-off between discretion and discipline. The prescription of the rule is not contingent

on the shock realization. For instance, the prescription of the European fiscal rule could hardly

have been contingent on the severity of the shock to public spending needs resulting from the

banking crisis in Ireland.

The last defining characteristic of a rule is its enforcement mechanism. A single country nec-

essarily relies on non-financial sanctions, such as costly fiscal adjustments, for the enforcement of

its fiscal rule. An economic union can use financial sanctions as an additional means of enforce-

ment. Irrespectively of the instrument used, sanctions inevitably penalize both the citizenry and

the government. Financial sanctions, however, differ from non-financial sanctions in the relative

penalty they impose on the citizenry and the government because the economic union can use

the revenues from financial sanctions to partially compensate the citizenry. To avoid undoing

the discipline imposed on the government, the use of the revenues must compensate the citizenry

of the economic union more than it benefits the government. I show that the asymmetry in the

compensation depends on whether the revenues from sanctions expand the budget of the eco-

nomic union—as the European Union does—or reduce the members’ contribution to the budget

of the union. To focus on the key trade-off between discipline and discretion rather than the

choice of instrument, I summarize the advantage of financial sanctions by a welfare weight on

the cost of meting out sanctions.

The analysis covers the entire range of relevant welfare weights. At one end of the range,

the economic union perfectly recycles the revenues from sanctions. Since meting out sanctions

would then entail no loss of welfare, the optimal rule implements the first-best allocation with

a marginal sanction schedule that corrects for the deficit bias. At the other end of the range,
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revenues from sanctions are wasted, and financial sanctions have no advantage over non-financial

sanctions. The model then coincides with the model of delegation in Amador, Werning, and

Angeletos (2006). The relevant case for an economic union lies in between the two polar cases.

The analysis delivers two main findings. The first main finding resolves the key trade-off

between discipline and discretion for an economic union. The optimal sanction schedule balances

the need for discipline, governed by the degree of present bias, and the need for discretion,

governed by the thickness of the tail of the distribution of shocks.

A main insight from the literature carries over to the context of an economic union. Under

some conditions, a cap on public spending is optimal. The lower cost associated with financial

sanctions implies that the conditions are more stringent than they are for non-financial sanctions.

I interpret the conditions in terms of two characteristics of the economic union. First, granting

discretion below the cap is optimal for economic unions whose members have a low degree of

present bias. Second, imposing off-equilibrium sanctions above the threshold is optimal if the

distribution of shocks has a thin tail. If the tail is thin, large fiscal needs are relatively unlikely,

and the optimal rule features prohibitively large (i.e., off-equilibrium) sanctions.

In contrast, if the tail of the distribution of shocks is thick, large fiscal needs are relatively

likely, and the optimal rule is either no rule or one that provides discipline with mild (i.e., on-

equilibrium) sanctions. On-equilibrium sanctions achieve a finer balance between discipline and

discretion than a cap could achieve. I draw on insights from the first-order approach to determine

a candidate marginal sanction schedule. It is only a candidate because it solves a doubly relaxed

problem that ignores the standard monotonicity constraint and the constraint on transfers due

to the lack of fiscal integration.

The second main finding shows how to best address the limitations due to the lack of fiscal

integration. To comply with the limit on transfers, it is optimal to truncate the candidate

marginal sanction schedule. The structure of the sanction schedule at and above the truncation

threshold depends on the severity of the degree of present bias. For a low degree of present bias,

the candidate marginal sanction schedule takes negative values below a threshold. The optimal

truncation discards the negative part of the candidate marginal sanction schedule. The resulting

sanction schedule grants discretion below the truncation threshold.

If the degree of present bias is not low, however, the limitations due to the lack of fiscal

integration are more severe. As a partial substitute for transfers, an optimal rule features a
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threshold below which public spending is exempt from sanctions. The exemption truncates a

positive part of the candidate marginal sanction schedule. The benefit of the exemption is

that it lowers the level of the sanction schedule above the truncation threshold. It does so

while preserving the same marginal sanction schedule, and hence the same discipline, above the

threshold. Below the threshold, however, there is a loss of discipline. The exemption causes a

kink (i.e., a change in slope) in the sanction schedule. In contrast, the current design of the

Stability and Growth Pact features a notch (i.e., a change in level) from 0 to 0.2% of GDP. The

concluding section contains suggestions to reform the Stability and Growth Pact.

This paper offers a methodological contribution. The optimal design of a rule maps to a mech-

anism design problem with limited transfers. The constraint on transfers calls for Lagrangian

techniques (Luenberger (1969), Amador, Werning, and Angeletos (2006), and Amador and Bag-

well (2013, 2020)). I use insights from the standard first-order approach to shed light on the

optimality conditions of the powerful, yet less commonly used, global Lagrangian methods.

Related literature

This paper relates to the literature on the political economy of fiscal rules in economic unions

with limited commitment (Beetsma and Uhlig (1999), Cooper and Kempf (2004), Chari and

Kehoe (2007), Chari and Kehoe (2008), Aguiar, Amador, Farhi, and Gopinath (2015), Dovis

and Kirpalani (2020), and Dovis and Kirpalani (2021)). Yared (2019) surveys the literature.

Some of this literature provides the micro-foundations for modeling the deficit bias on the part

of members of an economic union with a present bias and focuses on the optimal stringency of

a cap on deficit. The analysis to follow focuses on the structure of an optimal fiscal rule.

This paper relates to the literature on optimal delegation and mechanism design with limited

transfers (Holmström (1977), Melumad and Shibano (1991), Martimort and Semenov (2006),

Alonso and Matoushek (2008), Kováč and Mylovanov (2009), Ambrus and Egorov (2017)).

Methodologically, this paper is closest to Amador, Werning, and Angeletos (2006), Amador

and Bagwell (2013), Amador, Bagwell, and Frankel (2018), and Amador and Bagwell (2020).

Throughout the analysis, I highlight the connection between the standard first-order approach

and the powerful—and increasingly popular—global Lagrangian method. This paper provides

easy-to-check conditions on the distribution of types (i.e., fiscal needs) and the degree of bias
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between the principal and the agents (i.e., the present bias of the governments) to determine

whether the optimal rule features on-equilibrium sanctions (also known as “money burning”).

This first main finding mirrors a finding in Diamond (1998), who sheds light on the role of the

thickness of the tail of the distribution of types for the optimal income tax schedule. Non-linear

taxes aim to redistribute with transfers. In contrast, a rule uses sanctions that jointly penalize

the principal and the agents to correct a bias. Besides, a rule cannot reward with transfers.

This paper contributes to the literature on the design of rules to discipline a policy-making

authority to act in the best interest of the citizenry (Athey, Atkeson, and Kehoe (2005), Amador,

Werning, and Angeletos (2006), Ambrus and Egorov (2013), Amador and Bagwell (2013), Halac

and Yared (2014), Halac and Yared (2020a), Halac and Yared (2020b), Halac and Yared (2022a),

Halac and Yared (2022b), and Halac and Yared (2022c)). This paper builds on the seminal

contribution of Amador, Werning, and Angeletos (2006) and the more recent contribution of

Halac and Yared (2022a) to study the design of a fiscal rule for an economic union.

This paper relates to the literature on fiscal rules when the government can default. Felli,

Piguillem, and Shi (2021) show that the risk of default makes it optimal to introduce a default

rule and to condition the stringency of the fiscal rule on the level of debt. A related literature

quantitatively evaluates the benefit of fiscal rules (see Hatchondo, Martinez, and Roch (2020),

Alfaro and Kanczuk (2019), and Aguiar, Amador, and Fourakis (2020)). This paper calls for the

quantitative evaluation of financial sanctions to discipline the members of an economic union.

1 Model

The economic union comprises a continuum of small open economies, each with their own gov-

ernment. Each government decides how much to spend and borrow in response to shocks to the

fiscal needs of its citizenry. Each government is present biased in the sense that it discounts

the future at a higher rate than its citizenry. The combination of shocks to fiscal needs and a

present-biased objective creates a need for both discretion and discipline.

Formally, each small open economy is subject to idiosyncratic shocks to its fiscal needs, denoted

θ, which is private information to the government.3 The shocks follow a distribution F whose

3Kocherlakota (2016) introduces the broader concept of nonrulable information which aptly captures the

economic content of this assumption: the prescription of the rule is not contingent on the realization of the shock.
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support is an interval Θ with lower bound θ > 0 and supremum θ̄ > θ.4 Although the supremum

can be infinite, the first moment is assumed to be finite. The distribution F is twice continuously

differentiable with density f . The tail of the distribution refers to 1− F .

The preferences of each government over the allocation of public spending over time are

represented by the objective function

θU(g) + βW (x), (1)

where the utility index θU(·) denotes the utility from public spending g ≥ 0, and the continuation

value W (·) is a function of future assets x.5 Both utility indexes are twice continuously differ-

entiable and strictly increasing. The index U is strictly concave and satisfies Inada conditions

and the index W is concave. The degree of present bias of the government is 1− β ∈ (0, 1] and,

to simplify the notation, the discount factor of the citizenry is subsumed into the continuation

value. The present bias captures the overborrowing tendency on the part of members of an eco-

nomic union that share a common monetary authority lacking the ability to commit to a policy

plan. Other political economy frictions, such as political turnover or household heterogeneity in

discount rates, also induce a present-biased government (for a survey, see Yared (2019)).

Each government’s budget constraint is

g + x+ τf (g) = T, (2)

where T > 0 denotes the government revenues, and τf denotes the financial sanction schedule,

τf (g) ≥ 0 for g ≥ 0. The non-negativity constraint on sanctions models the limit on transfers

due to the lack of fiscal integration.6 For simplicity, the gross interest rate is exogenous and

normalized to one. The timing of financial sanctions is irrelevant for the government because it

can borrow or save to allocate the burden of financial sanctions over time.

4Following Section 5.4 of Amador, Werning, and Angeletos (2006), Appendix OB illustrates how shocks to

fiscal needs can be interpreted as shocks to government revenues with a CARA utility index.
5Amador, Werning, and Angeletos (2006) show that the results apply to a multi-period environment with iid

shocks. Halac and Yared (2014) study an infinite horizon environment with persistent shocks and Halac and

Yared (2022c) study the design of self-enforced fiscal rules.
6Atkeson and Lucas (1992) study the case with transfers but without present bias in an infinite horizon version

of this economy. Amador, Werning, and Angeletos (2004) and Galperti (2015) study the case with transfers and

present bias.
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As far as the objective of a government is concerned, financial sanctions and non-financial

sanctions are equivalent. Substituting the budget constraint (2) into the objective of the govern-

ment (1) gives

θU(g) + βW (T − g)− βτ(g),

where the mapping of the financial sanction schedule τf (·) into a sanction schedule τ(·) follows

from τ(g) = W (T − g) −W (T − g − τf (g)). The objective is to design a fiscal rule, which is a

sanction schedule τ(·) that satisfies the no-transfer constraint τ(g) ≥ 0 for g ≥ 0.

The welfare of the economic union is the aggregation of the welfare of the citizenry of each

member. Assuming the law of large numbers, the aggregation over members of the economic

union and the expectation over shocks reduces to the single integral in the following objective:∫
Θ

[θU(g(θ)) +W (T − g(θ))− ρτ(g(θ))] dF (θ), (3)

where ρ denotes the welfare weight on the cost of sanctions for the economic union.7 An economic

union with ρ = 0 perfectly recycles the revenues from sanctions since meting out sanctions on

the governments has no effect on the welfare of the union. An economic union with ρ ∈ (0, 1)

recycles sanctions, albeit with a loss, hence financial sanctions are partially wasteful. For ρ = 1,

sanctions are wasteful, which corresponds to the case of non-financial sanctions.8 This paper

covers the full range of the welfare weights, ρ ∈ [0, 1].

The welfare weight ρ summarizes the extent to which forming an economic union matters

for the design of a fiscal rule. It depends on the way in which the economic union recycles

the revenues from sanctions. Appendix A elaborates two models of the budget of the economic

union to provide micro-foundations for the welfare weight ρ. If the economic union uses the

revenues from sanctions to expand its budget, then ρ measures the degree of home bias in the

citizenry’s preferences for public spending. Instead, if it uses the revenues from sanctions to

reduce the contribution of its members to its budget, then ρ measures the degree to which the

budget “leaks”.

7Unless the continuation value is linear, aggregating welfare after mapping financial sanctions into sanctions

is not without loss. It implicitly assumes that only the first moment of the distribution of financial sanctions

matters for welfare (for more details, see Appendix A). On the upside, the analysis remains tractable.
8An economic union with ρ = 1 reduces to the economic environment in Amador, Werning, and Angeletos

(2006). See Halac and Yared (2022a) for an environment with ρ = 1 and limited enforcement.
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Some useful definitions. An allocation is a distribution of public spending g(·) with g(θ) ≥ 0

for θ ∈ Θ. A fiscal rule τ(·) implements an allocation g(·) if for θ ∈ Θ:

g(θ) ∈ arg max
g≥0

θU(g) + βW (T − g)− βτ(g). (4)

Consider a rule τ(·) and the allocation it implements g(·). A strictly positive sanction on g is

on-equilibrium if there exists θ ∈ Θ such that g(θ) = g, i.e., a government with fiscal needs

θ finds it worthwhile to incur the sanction. Otherwise, the sanction is off-equilibrium. Let gd

denote the discretionary allocation, which is the allocation that solves the government problem

(4) in the absence of a fiscal rule. Define the wedge ∆ in the Euler equation of the government as

follows: (1−∆(g, θ))θU ′(g) = βW ′(T − g). The wedge evaluated at the discretionary allocation

is ∆(gd(θ), θ) = 0. A rule that constrains a government to spend less, i.e., g(θ) ≤ gd(θ), induces

a positive wedge. The bias ν denotes the difference, before sanctions, between the objective of

the government and the welfare of the citizenry. It reads ν(g) = (β − 1)W (T − g).

1.1 Designing a rule

The optimal design of a rule consists of finding the sanction schedule that maximizes the welfare

at the allocation implemented by the rule. This subsection use the revelation principle to map

the design of a rule into a mechanism design problem without transfers. The composition of the

sanction schedule and the allocation gives the money-burning schedule t(θ) = τ(g(θ)) for θ ∈ Θ.

Note that on-equilibrium sanctions impose discipline at the cost of burning money (i.e., it uses

resources) whereas off-equilibrium sanctions do not burn money.

Incentive compatibility constraints guarantee the implementability of the allocation as in (4).

An allocation g(·) is incentive compatible given a money-burning schedule t(·) if

θU(g(θ)) + βW (T − g(θ))− βt(θ) ≥ θU(g(θ̂)) + βW (T − g(θ̂))− βt(θ̂), for θ, θ̂ ∈ Θ. (IC)

A fiscal rule is optimal if the allocation it implements g(·) and the associated schedule t(·) solve

max
g(·), t(·)

{∫
Θ

[
θU(g(θ)) +W (T − g(θ))− ρt(θ)

]
dF (θ)

∣∣ (IC) and t(θ) ≥ 0 for θ ∈ Θ

}
. (5)

The intercept of the schedule, if left implicit, is t(θ) = 0 and τ(g) = 0 for g ≤ g(θ). The no-

transfer constraint sets program (5) apart from the design of a mechanism with transfers. The

solution method exploits powerful Lagrangian techniques to allow for the no-transfer constraint

(for a description of the solution method, see Section 6).
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1.2 Optimal fiscal rule with perfectly recycled sanctions

For an economic union that perfectly recycles sanctions, i.e., ρ = 0, on-equilibrium sanctions

can implement the first-best allocation at no cost. The first-best allocation g∗(·) solves the

citizenry’s Euler equation θU ′(g∗(θ)) = W ′(T − g∗(θ)) for θ ∈ Θ. It suffices to verify that

the first-best allocation is compatible with incentives and that the associated sanction schedule

satisfies the no-transfer constraint. The first-best allocation is increasing and hence compatible

with incentives. Rewriting the Euler equation as ∆(g∗(θ), θ)θU ′(g∗(θ)) = ν ′(g∗(θ)) shows that the

sanction schedule induces a wedge that is commensurate with the marginal bias. The marginal

sanction is set equal to the marginal bias, which is positive, for g ≥ g∗(θ). For g < g∗(θ),

τ(g) = 0.

2 Off-equilibrium sanctions

In this section, I show that a main insight from the literature carries over to the context of an

economic union. Under more stringent conditions than those found in the literature (i.e., for

ρ = 1), a cap on public spending is optimal for an economic union with ρ < 1.

A cap on public spending is a simple fiscal rule. It grants discretion below a threshold and

imposes off-equilibrium sanctions above the threshold. To separate the cost of limiting discretion

from the benefit of addressing the government’s bias, I decompose the social welfare function

into the sum of the objective of the government, the bias, and the cost of meting out sanctions,∫
Θ

[θU(g(θ)) + βW (T − g(θ))− ν(g(θ))− ρt(θ)] dF (θ). (6)

I define the allocation implemented by the cap in two steps. A first step parameterizes the

cap by the fiscal needs fulfilled at the cap.

Definition. The discretion and off-equilibrium sanctions allocation, denoted gpd(·), is defined as

follows. For θ ∈ Θ,

gpd(θ) =

 gd(θp) for θ > θp

gd(θ) for θ ≤ θp.

A second step sets the threshold θp—where the subscript stands for the prohibitive na-

ture of off-equilibrium sanctions—to satisfy a first-order condition of the Lagrangian method.
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I postpone describing the solution method to focus on the economics. I rephrase the first-

order condition in terms of derivatives of the components of the social welfare (6) as follows:

θp = inf
{
θ̃ ∈ Θ | Inequality (7) holds for θ̂ ≥ θ̃

}
, and∫ θ̄

θ̂

[
θ∆(gd(θ̃), θ)

]
dF (θ) ≤

(
ν ′(gd(θ̃))

U ′(gd(θ̃))
+ ρ

θ̂∆(gd(θ̃), θ̂)

β

)
(1− F (θ̂)). (7)

The wedge on the left-hand side comes from the objective of the government, the first two terms

in (6). It determines the cost of limiting discretion. On the right-hand side, the marginal bias

determines the benefit of discipline. The last term is the marginal sanction, which is null for

θ̂ = θ̃ and positive for θ̂ > θ̃.

Inequality (7) is a function of two thresholds: θ̃ identifies the threshold at which public

spending bunches, and θ̂ determines the range over which the bunching is evaluated. If inequality

(7) is satisfied for θ̃ = θ and θ̂ ≥ θ, then θp = θ. Otherwise, the definition of θp encapsulates two

requirements. First, by continuity, inequality (7) holds with equality for θ̂ = θ̃ = θp > θ. Second,

inequality (7) must hold for all θ̂ ≥ θ̃ = θp. While the first requirement is well understood, this

paper contributes to our understanding of the second requirement.

The first requirement, that is inequality (7) holding with equality for θ̂ = θ̃ = θp > θ,

determines the stringency of the cap. It sets θp to equate the marginal cost to the marginal

benefit of lowering the cap. On the left-hand side, the marginal cost is the loss of discretion for

the governments that are constrained by the cap (by the envelope theorem, the cost of marginally

expanding the range of fiscal needs that are constrained is null). On the right-hand side, the

marginal benefit is the marginal correction of the bias. The wedge is null at the discretionary

allocation for θ̂ = θ̃. The first requirement simplifies to a familiar condition in the literature on

the optimal stringency of a cap: β E[θ|θ ≥ θp] = θp, for an interior θp (see Proposition 1 in Halac

and Yared (2018)). The condition does not depend on the welfare weight ρ precisely because the

sanctions are off-equilibrium. Without present bias (i.e., β = 1), there is no benefit to a cap and

the cap does not bind (i.e., θp = θ̄). In contrast, if the degree of present bias is severe enough,

in the sense that βE[θ] ≤ θ, then the cap binds for all fiscal needs (i.e., θp = θ) if the second

requirement is also satisfied.

The second requirement, that is inequality (7) must hold for θ̂ ≥ θ̃ = θp, determines the

structure of the fiscal rule above gd(θp). It ensures that off-equilibrium sanctions above gd(θp)

dominate on-equilibrium sanctions. At any point θ̂ ≥ θp, the mechanism designer has the choice
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to continue enforcing the cap, or to offer an alternative while preserving the bunching of public

spending between θp and θ̂. On the left-hand side of inequality (7), the marginal cost of enforcing

the cap at θ̂ is the loss of discretion. On the right-hand side, the marginal bias measures the

marginal benefit of enforcing the cap at θ̂. The difference gives the marginal cost, net of the

marginal benefit, of enforcing the cap at θ̂. Alternatively, consider a kink in the sanction schedule

that preserves the bunching of public spending at gd(θp) between θp and θ̂, but not beyond θ̂. The

kink is caused by jump in the marginal sanction schedule from zero to θ̂∆(gd(θp), θ̂)U
′(gd(θp)).

A mass 1 − F (θ̂) of governments would choose to incur the marginal sanction, which gives the

second term in the parenthesis on the right-hand side of inequality (7). In sum, for θ̂ ≥ θ̃ = θp,

inequality (7) verifies that the marginal cost net of the marginal benefit of enforcing the cap at

θ̂ is lower than the marginal cost of resorting to on-equilibrium sanctions.

The second requirement is equivalent to a simple upper bound on the thickness of the tail of

the distribution of shocks.

Lemma 1. Suppose that inequality (7) holds with equality for some θ̃ < θ̄ and θ̂ = θ̃. Then, for

θ̂ ∈ [θ̃, θ̄), inequality (7) holds if and only if βE[θ|θ ≥ θ̂]− ρθ̂ ≤ βE[θ|θ ≥ θ̃]− ρθ̃.

The proof is in Appendix OA.1. Intuitively, the thickness of the tail of the distribution

of shocks governs the need for discretion. For a sufficiently thin tail, the need for discretion

is sufficiently low that granting no discretion above a threshold with off-equilibrium sanctions

dominates on-equilibrium sanctions. For instance, for ρ = β and a log-concave tail, the first

requirement is sufficient for the second requirement. In contrast, for ρ = β and a log-convex

tail, the second requirement is not satisfied for an interior threshold and θp is either θ or θ̄.

Although ρ does not alter the stringency of an interior cap, the lower is ρ the more stringent are

the conditions under which off-equilibrium sanctions dominate on-equilibrium sanctions.

2.1 Low degree of present bias

The previous subsection focuses on the optimality of off-equilibrium sanctions above a threshold.

This subsection focuses on the optimality of granting discretion below the threshold.

Since Amador, Werning, and Angeletos (2006), a lower bound on the elasticity of the density

of the distribution of shocks has been understood to imply that granting discretion below a
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threshold is optimal for a rule enforced by non-financial sanctions. For ρ < 1, a more stringent

lower bound is needed to exclude financial sanctions below a threshold.

Assumption L. θf ′(θ)
f(θ)
≥ −1+ρ−β

1−β .

Assumption L relates the elasticity of the density of the distribution of shocks to the degree

of present bias. The following lemma shows that, under some conditions, Assumption L puts an

upper bound on the degree of present bias as a function of the inverse of the elasticity of 1− F .

Appendix OA.2 contains the proof.

Lemma 2. If θp ∈ (θ, θ̄) and Assumption L holds for θ ≤ θp, then 1− β ≤ ρ1−F (θ)
θf(θ)

for θ ≤ θp.

The lemma suggests the following definition: the degree of present bias is low if there exists

θ∗ > θ such that 1− β ≤ ρ1−F (θ)
θf(θ)

for θ ≤ θ∗. Lemma 2 implies that if the tail of the distribution

of shocks does not decrease too fast—in the sense of Assumption L—up to a point after which

it decreases fast enough—in the sense of Lemma 1—then the degree of present bias is low.

Proposition 1 (Optimal fiscal rule for a low degree of present bias and a thin tail). Suppose

θ < θp and Assumption L holds for θ ≤ θp. A fiscal rule that implements the discretion and

off-equilibrium sanctions allocation is optimal.

The proof is in Appendix B.1. The result extends a main insight from the literature to the

context of an economic union. For non-financial sanctions, i.e., ρ = 1, the proposition nests

Proposition 3 in Amador, Werning, and Angeletos (2006).

Proposition 1 relies on two conditions. The first one, Assumption L, implies that the result

holds for an economic union with a low degree of present bias up to θp. The second condition is

embedded in the definition of the threshold θp. Lemma 1 shows that the cap binds if the tail is

sufficiently thin above θp. The conditions in Proposition 1 are more stringent for ρ < 1 than they

are for non-financial sanctions ρ = 1. The rest of the paper characterizes optimal fiscal rules for

economic unions that do not satisfy the conditions in Proposition 1.

3 On-equilibrium sanctions

This section contains the main findings. First, under some conditions, the need for discretion

associated with a thick tail of the distribution of shocks justifies resorting to on-equilibrium sanc-
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tions above a threshold. Second, granting discretion below a threshold addresses the limitations

that the no-transfer constraint places on the design of a fiscal rule. To start, I use insights from

the first-order approach to characterize a candidate schedule of on-equilibrium sanctions.

The following standard result of the first-order approach exploits the incentive compatibility

constraints to characterize, for a given intercept t(θ), the money-burning schedule associated

with a non-decreasing allocation (Myerson (1981)). The proof is in Appendix OA.3.

Lemma 3 (Incentive compatible allocations). An allocation g(·) is incentive compatible given a

money-burning schedule t(·) if and only if g(·) is non-decreasing and

t(θ) = t(θ) +
θ

β
U(g(θ)) +W (T − g(θ))− θ

β
U(g(θ))−W (T − g(θ))− 1

β

∫ θ

θ

U(g(θ̃)) dθ̃. (8)

Lemma 3 is useful in substituting the money-burning schedule with a function of the allocation

in the objective of program (5). The resulting objective functional reads as follows:∫
Θ

[
−ν(g(θ)) + (1− ρ

β
) (θU(g(θ)) + βW (T − g(θ))) + ρ

β
1−F (θ)
f(θ)

U(g(θ))
]
dF (θ)

− ρ
β

(
t(θ)− θ U(g(θ))− βW (T − g(θ))

)
.

Maximizing the objective point-wise for θ > θ implicitly defines a candidate marginal sanction

schedule. It is only a candidate for the optimal marginal sanction schedule because the allocation

it implements solves a relaxed problem ignoring two constraints: the usual monotonicity condition

and the no-transfer constraint.

Definition (Public spending implemented by the candidate marginal sanction). Let ρ ∈ [0, 1).

For θ such that ρ− β < ρ1−F (θ)
θf(θ)

, define gn(θ) as follows:

ν ′(gn(θ))

U ′(gn(θ))
= θ∆(gn(θ), θ) +

ρ

β

(
1− F (θ)

f(θ)
− θ∆(gn(θ), θ)

)
. (9)

For ρ = 1, the candidate marginal sanction is not defined because equation (9) is independent

of gn.9 It is without loss since Proposition 1 in Halac and Yared (2022a) shows that, for ρ = 1,

an optimal rule necessarily relies on extreme—bang-bang—sanctions. For ρ ∈ [β, 1), the bound

9The subscript stands for the non-prohibitive nature of on-equilibrium sanctions. Combining the terms in (9)

that depend on gn(θ) gives ν′(gn(θ))
U ′(gn(θ))

− (1 − ρ
β )θ∆(gn(θ), θ) = 1−ρ

1−β
ν′(gn(θ))
U ′(gn(θ))

− (1 − ρ
β )θ, which is independent of

gn(θ) for ρ = 1.
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on the elasticity of 1− F at θ guarantees that gn(θ) is strictly positive. For ρ < β, gn is defined

for θ ∈ Θ.

Equation (9) equates the marginal benefit of on-equilibrium sanctions on the left-hand side

to their marginal cost on the right-hand side. For ρ = 0, equation (9) reduces to the equation

characterizing the first-best allocation (see Subsection 1.2 on optimal rules with perfectly recycled

sanctions). For ρ > 0, the marginal cost has an additional component. To be compatible with

incentives, a marginal sanction on a given spending gn(θ) raises the level of the sanction schedule

on spending above gn(θ), which affects a mass 1 − F (θ) of governments. I refer to the term

ρ1−F (θ)
f(θ)

as the incentive cost of a marginal sanction. The wedge measures the extent to which

the marginal sanction discourages spending at gn(θ).

The weight 1/β > 1 on the incentive cost highlights a difficulty in disciplining a present-biased

government. A present-biased government tilts the allocation of the burden of the financial sanc-

tion toward the future. As a result, on-equilibrium sanctions tend to impose a disproportionate

cost on the citizenry. For ρ = β, the asymmetry in the welfare weight on the cost of sanctions

exactly offsets the additional burden of sanctions caused by the government’s present bias.

The characterization of the candidate marginal sanction in (9) ignores two constraints. First,

to be compatible with incentives, the allocation must be non-decreasing.

Lemma 4 (Monotonicity of the allocation implemented by the candidate marginal sanction).

Suppose that gn(θ) is well-defined for θ ∈ (θ∗, θ
∗). Then gn is non-decreasing at θ ∈ (θ∗, θ

∗) if

and only if the derivative of ρ1−F
f

at θ is not smaller than ρ− β.

Appendix OA.4 contains the proof. The lemma gives a sufficient condition for the candidate

marginal sanction at gn(θ) to be on-equilibrium. A marginal sanction at gn(θ) is on-equilibrium

if the slope of gn, which is governed by the slope of the inverse hazard rate, is positive at θ.

Second, the sanction schedule must satisfy the no-transfer constraint. A sufficient condition

for a non-negative sanction schedule is a non-negative marginal sanction schedule starting from

a non-negative intercept. Lemma 5 shows that the marginal sanction is non-negative for a

sufficiently low incentive cost.

Lemma 5 (Non-negative candidate marginal sanction). Suppose that gn(θ) is well-defined at

θ ∈ Θ. Then gn(θ) ≤ gd(θ) if and only if ρ1−F (θ)
θf(θ)

≤ 1− β.
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Appendix OA.5 contains the proof. The proof relies on the observation that the wedge at

gn(θ) is ∆(gn(θ), θ) = − 1
1−ρ

(
ρ1−F (θ)

θf(θ)
− (1− β)

)
.

Lemma 4 and Lemma 5 reveal the distinct roles played by the slope and the level of the inverse

hazard rate for the design of a rule. The level of the inverse hazard rate governs the incentive cost

of a marginal sanction, which is a determinant of the level of the candidate marginal sanction.

The slope of the inverse hazard rate determines the need for discretion corrected for the associated

incentive cost. I refer to d
dθ

(ρ1−F (θ)
f(θ)

− (ρ − β)θ) as the virtual need for discretion.10 Intuitively,

the slope of the inverse hazard rate governs the thickness of the tail of the distribution of shocks.

A thick tail indicates a high virtual need for discretion. To accommodate a high virtual need for

discretion, the candidate marginal sanction schedule induces a graduated schedule of sanctions.

To summarize, two conditions guarantee the validity of gn(θ) as building block of a solution.

The virtual need for discretion, governed by the slope of the inverse hazard rate, is not too low

at θ (see Lemma 4). The incentive cost satisfies the following assumption (see the definition of

gn and Lemma 5).

Assumption I. ρ− β < ρ1−F (θ)
θf(θ)

≤ 1− β.

For ρ ≤ β, the left inequality is invariably satisfied. Assumption I suggests two definitions

to complement the definition of a low degree of present bias. The degree of present bias is

intermediate if there exists θ∗ > θ such that Assumption I holds for θ ≤ θ∗. The degree of

present bias is high if the following assumption holds instead.

Assumption H. ρ1−F (θ)
θf(θ)

≤ ρ− β for θ ∈ Θ.

For the rest of this section, assume ρ < 1 so that if Assumption I holds at θ, then gn(θ) is

defined. The next candidate solution features on-equilibrium sanctions above a threshold and

grants discretion below the threshold.

Definition. The discretion and on-equilibrium sanctions allocation, denoted gnd (·), is defined,

for θ ∈ Θ, as follows:

gnd (θ) =

 gn(θ) for θ > θn

gd(θ) for θ ≤ θn,

where θn = inf
{
θ̃ ∈ Θ

∣∣ Assumption I holds for θ ≥ θ̃
}
.

10Following Myerson (1981), the term virtual qualifies a concept augmented by the incentive cost. I interpret the

following measure of the slope of the first-best allocation g∗ as the need for discretion: β = d
dθ θ(1−∆(g∗(θ), θ)).

16



The threshold is set at the lowest fiscal need such that gn is well-defined and associated with

a non-negative marginal sanction. If 0 < gn(θ) ≤ gd(θ) for θ ∈ Θ, then Assumption I holds for

θ ∈ Θ and θn = θ. If θn ∈ (θ, θ̄), the continuity of both F and f implies that the threshold satisfies

gn(θn) = gd(θn) if the upper bound in Assumption I binds. If the lower bound in Assumption I

is constraining instead, then limθ→θn gn(θ) = 0. In contrast, if the set in the definition of θn is

empty, then set θn = θ̄. For instance, if shocks are Pareto distributed, 1− F (θ) = θ−γ, and the

elasticity of the tail γ ∈ (1, ρ
1−β ), then the need for discretion is such that the candidate solution

does not feature sanctions since θn = θ̄. The order of θn and θp depends on the distribution of

shocks. For ρ = β, θn ≤ θp for a strictly log-convex 1− F and θp ≤ θn for a log-concave 1− F .

The discretion and on-equilibrium sanctions allocation need not be increasing. Lemma 4 shows

that gn is increasing if and only if the derivative of ρ1−F
f

at θ is not smaller than ρ−β. If θ̄ <∞,

the condition cannot be satisfied close to θ̄. For a compact Θ, the need for discipline overwhelms

the need for discretion at the top.

Definition. The discretion, on-equilibrium, and off-equilibrium sanctions allocation, denoted

gnpd (·), is defined for θ ∈ Θ, as follows:

gnpd (θ) =


gn(θnp) for θ ≥ θnp

gn(θ) for θn′ ≤ θ ≤ θnp

gd(θ) for θ ≤ θn′ ,

in which θn′ = inf
{
θ̃ ∈ Θ

∣∣ Assumption I holds for θ ∈ [θ̃, θnp]
}
, and

θnp = inf
{
θ̃ ∈ Θ | Inequality (10) holds for θ̂ ≥ θ̃

}
,∫ θ̄

θ̂

[
θ∆(gn(θ̃), θ)

]
dF (θ) ≤

(
ν ′(gn(θ̃))

U ′(gn(θ̃))
+ ρ

θ̂∆(gn(θ̃), θ̂)

β

)
(1− F (θ̂)). (10)

The definition of θn′ adapts the definition of θn for fiscal rules imposing off-equilibrium sanc-

tions above a threshold. The analysis of the definition of θnp follows the analysis of the definition

of θp with one exception regarding the right-hand side of (10). For a fiscal rule featuring on-

equilibrium sanctions, the marginal benefit of a cap is the marginal discipline and, additionally,

the economy of the marginal sanction. A strictly positive wedge at gn(θnp) < gd(θnp) captures an

additional benefit of off-equilibrium sanctions for a fiscal rule featuring on-equilibrium sanctions.

Off-equilibrium sanctions economize on the loss associated with on-equilibrium sanctions. The

similarity between the following lemma and Lemma 1 confirms that the economic content of the

definitions of θp and θnp is otherwise the same. Appendix OA.6 contains the proof.
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Lemma 6. Suppose that inequality (10) holds with equality for some θ̃ < θ̄ and θ̂ = θ̃. Then,

for θ̂ ∈ [θ̃, θ̄), inequality (10) holds if and only if βE[θ|θ ≥ θ̂]− ρθ̂ ≤ βE[θ|θ ≥ θ̃]− ρθ̃.

3.1 Low degree of present bias

This subsection contains two findings. First, for a thick tail—defined by a lower bound on

the slope of the inverse hazard rate—an optimal fiscal rule imposes graduated on-equilibrium

sanctions. Second, to address the limitations that the no-transfer constraint places on the design

of a fiscal rule, it is optimal to truncate the candidate marginal sanction schedule below a

threshold.

Proposition 2 (Optimal fiscal rule for a low degree of present bias and a thick tail). Suppose

θ < θn′ and Assumption L holds for θ ≤ θn′. If the derivative of ρ1−F
f

is not smaller than

ρ − β for θ ∈ [θn′ , θnp], then a fiscal rule that implements the discretion, on-equilibrium, and

off-equilibrium sanctions allocation is optimal.

The proof is in Appendix B.2. The optimal fiscal rule has three parts. A first part grants

discretion below gd(θn′). The optimal sanction is null below gd(θn′) because, as the next lemma

shows, Assumption L implies a low degree of present bias relative to the incentive cost.

Lemma 7 (Implications of Assumption L). 1) If θn′ ∈ (θ, θ̄) and Assumption L holds for θ ≤
θn′, then 1 − β ≤ ρ1−F (θ)

θf(θ)
for θ ≤ θn′. 2) Assumption L is equivalent to d

dθ
θ∆(gn(θ), θ) ≥

1+ρ−β
1−β ∆(gn(θ), θ).

The proof is in Appendix OA.7. The first statement extends the insight of Lemma 2 to

fiscal rules with on-equilibrium sanctions. The second statement shows that Assumption L

is equivalent to a bound on the elasticity of the wedge evaluated at gn. It implies an upper

bound on the virtual need for discretion because the wedge evaluated at gn(θ) is negatively

related to the inverse hazard rate. Lemma 7 shows that the optimal rule grants discretion below

gd(θn′) because discipline is too costly, not because of a high virtual need for discretion. The

optimal fiscal rule grants discretion below a threshold to comply with the no-transfer constraint

because the candidate marginal sanction schedule is negative below gd(θn′) and zero at gd(θn′)

(by definition of θn′). Proposition 2 confirms that it is optimal to discard the negative part of

the candidate marginal sanction schedule.
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A second part of the fiscal rule imposes graduated on-equilibrium sanctions on spending

between gd(θn′) and gn(θnp). The conditions on the derivative of the incentive cost between

θn′ and θnp guarantee that the virtual need for discretion is sufficiently high to justify imposing

graduated on-equilibrium sanctions. If gn is decreasing over a subinterval of [θn′ , θnp], the solution

would be to “iron” gn as in Myerson (1981). Ironing the allocation requires a jump in the marginal

sanction instead of a continuous schedule of marginal sanctions. The marginal sanction schedule

jumps at gn(θnp) precisely for this reason. A third part of the fiscal rule imposes off-equilibrium

sanctions above gn(θnp). The tail of the distribution of shocks is sufficiently thin above θnp that

the need for discipline overwhelms the need for discretion above θnp.

3.2 Intermediate degree of present bias

This previous subsection showed that for a low degree of present bias, it is optimal to truncate

the negative part of the candidate marginal sanction schedule. For an intermediate degree of

present bias, the limitations due to the lack of fiscal integration are more severe. As a result, it

is optimal to truncate a positive part of the candidate marginal sanction schedule.

To gain insights into how the no-transfer constraint matters for the design of the optimal fiscal

rule, it is useful to decompose the sanction schedule in two parts: the intercept and the marginal

sanction schedule. For an intermediate degree of present bias, the candidate marginal sanction

is positive. The no-transfer constraint forces the intercept to be non-negative. Truncating the

candidate marginal sanction schedule below a threshold is a partial substitute for a negative

intercept. The truncation shifts the sanction schedule downward, as a negative intercept would

do. Unlike a negative intercept, however, the truncation entails a loss of discipline because it

grants an exemption from the candidate marginal sanction below a threshold.

The exemption causes a jump in the marginal sanction schedule and the resulting kink induces

the spending of some governments to bunch at the exemption threshold. For the following

definition, suppose that Assumption I holds for θ ∈ Θ.

Definition. The exemption and on-equilibrium sanctions allocation, denoted gnx(·), is defined

for θ ∈ Θ as follows:

gnx(θ) =

 gn(θ) for θ > θx

gn(θx) for θ ≤ θx,
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where θx = sup
{
θ̃ ∈ Θ | Inequality (11) holds for θ̂ ≤ θ̃

}
, and

ν ′(gn(θ̃))

U ′(gn(θ̃))
F (θ̂)−

∫ θ̂

θ

[
θ∆(gn(θ̃), θ)

]
dF (θ) ≤ ρ

θ̂∆(gn(θ̃), θ̂)

β
(1− F (θ̂)). (11)

The first-order conditions from the Lagrangian methods suggest the definition of the exemption

threshold θx. Inequality (11) is a function of two thresholds: θ̃ determines the level at which

public spending bunches, and θ̂ determines the range of the bunching. If inequality (11) is

satisfied for θ̃ = θ̄ and θ̂ ≤ θ̄, then θx = θ̄. Otherwise, θx encapsulates two requirements. First,

by continuity, inequality (11) holds with equality at θ̂ = θ̃ = θx. Second, inequality (11) holds

for θ̂ ≤ θ̃ = θx.

The first requirement determines the leniency of the exemption. It sets θx to equate the

marginal cost to the marginal benefit of the exemption. On the left-hand side of (11), the

marginal cost amounts to the loss of discipline net of the gain in discretion for countries whose

fiscal need is below the exemption threshold. On the right-hand side, the marginal benefit is

the marginal economy of sanctions. For θ̂ = θ̃ = θx, the exemption from the marginal sanction

U ′(gn(θx))θx∆(gn(θx), θx) benefits a mass 1− F (θx) of governments with fiscal needs above θx.

The second requirement determines the structure of the fiscal rule below the threshold. It

checks that for any g ≤ gn(θx), the exemption dominates any alternative. As a result of the

exemption, the marginal sanction schedule jumps from 0 to U ′(gn(θx))θx∆(gn(θx), θx) at gn(θx).

Consider θ̂ ≤ θx. The mechanism designer can impose a marginal sanction that a government

with fiscal need θ̂ would incur, while preserving the bunching of public spending between θ̂ and

θx. The marginal cost of such a switch to on-equilibrium sanctions is the marginal sanction

U ′(gn(θx))θ̂∆(gn(θx), θ̂). The marginal benefit is the discipline from the marginal sanction net

of the loss of discretion for governments with fiscal needs below θ̂. Inequality (11) implies that

the marginal benefit of switching from the exemption to on-equilibrium sanctions lies below the

marginal cost at any point below the exemption threshold.

The second requirement is equivalent to a sufficiently thick tail of the distribution of shocks.

Lemma 8. Suppose that inequality (11) holds with equality for some θ̃ ∈ Θ and θ̂ = θ̃. Then,

for θ̂ ≤ θ̃, inequality (11) holds if and only if∫ θ̃

θ̂

[
ρ1−F (θ)

f(θ)
− (ρ− β)θ

]
dF (θ) ≤

∫ θ̃

θ̂

[
ρ1−F (θ̃)

f(θ̃)
− (ρ− β)θ̃

]
dF (θ). (12)
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The intuition for this result relates the thickness of the distribution of shocks to the marginal

benefits and costs of an exemption. The inverse hazard rate governs the incentive cost that a

marginal sanction on public spending g imposes on all public spending above g. An exemption

benefits the citizenry in two ways. It economizes on the incentive cost of the marginal sanction

and it grants discretion below the exemption. The thicker is the tail of the distribution of shocks

between θ̂ and θx for θ̂ ≤ θx, the greater are the two benefits. For instance, for ρ = β, a log-convex

tail is sufficiently thick for the first requirement to imply the second requirement.

Although the inequality determining the exemption threshold resembles the inequalities de-

termining the thresholds for off-equilibrium sanctions, their economic content differ. The resem-

blance stems from the shared origin of these characterizations. Both come from the first-order

conditions of the Lagrangian methods. The economic content of the exemption pertains to the

limitations due to the lack of fiscal integration. Again, the exemption is an imperfect substitute

for a transfer from the economic union to its members. In contrast, the economic content of the

threshold for off-equilibrium sanctions pertains to the trade-off between the need for discretion

and the need for discipline. The next allocation is defined if Assumption I holds below θnp.

Definition (Exemption, on-equilibrium, and off-equilibrium sanctions). The exemption, on-

equilibrium, and off-equilibrium sanctions allocation, denoted gnpx (·), is defined for θ ∈ Θ as

follows:

gnpx (θ) =


gn(θnp) for θ > θnp

gn(θ) for θx ≤ θ ≤ θnp

gn(θx) for θ ≤ θx,

where the thresholds θx and θnp are defined in (11) and (10), respectively.

The last candidate allocation sets a cap on public spending to fulfill the average fiscal need.

Definition (Tight cap). The tight cap allocation, denoted gc(·), is gc(θ) = gc for θ ∈ Θ, where

gc solves the following Euler equation: W ′(T − gc) = E[θ]U ′(gc).

The next proposition is the second main result of this paper. For an intermediate degree of

present bias, if an optimal fiscal rule features on-equilibrium sanctions, then it features a kink in

the sanction schedule caused by an exemption from sanctions below a threshold.

Proposition 3 (Optimal fiscal rules for an intermediate degree of present bias).

1) Suppose that Assumption I holds for θ. If the derivative of ρ1−F
f

is smaller than ρ− β for
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θ ∈ Θ, then a fiscal rule that implements the tight cap allocation is optimal.

2) Suppose that Assumption I holds for θ ≤ θnp. If the derivative of ρ1−F
f

is not smaller than

ρ − β for θ ∈ [θ, θnp], then a fiscal rule that implements the exemption, on-equilibrium, and

off-equilibrium sanctions allocation is optimal.

Appendix B.3 contains the proof. The insight regarding the balance between the needs for

discretion and discipline from Propositions 1 and 2 carries over to an economic union with an

intermediate degree of present bias. The additional insight—the optimality of granting an ex-

emption below a threshold—matters for economic unions with an intermediate degree of present

bias. The exemption balances the loss of discipline below θx with the gain from a lower level of

sanctions meted out above θx.

4 High degree of present bias

This subsection shows that for a high degree of present bias, the need for discipline outweigh the

need for discretion.

The tight cap is set such that it fulfills the expected fiscal need. Assumption H implies that

the tight cap allocation constrains governments irrespectively of the shock to their fiscal needs,

i.e., gc ≤ gd(θ) (see Appendix OA.10 for the formal statement and its proof). The proof of the

following proposition is in Appendix B.4.

Proposition 4 (Optimal fiscal rule for a high degree of present bias). Suppose that Assumption

H holds. A fiscal rule that implements the tight cap allocation is optimal.

5 Examples

This section illustrates the main findings with computed examples.11 With CRRA utility indices

U(g) = g1−η/(1 − η) and W (x) = (ω + x)1−η/(1 − η), the discretionary allocation is gd(θ) =

(ω + T )
(
1 + (β/θ)

1
η
)−1

. The grey line in the panels of Figures 1 and 2 depicts the discretionary

allocation. For an economic union with ρ = β, the allocation implemented by the candidate

11The code is available on the GitHub page guillaumesublet/Fiscal Rules with Discretion Economic Union.
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marginal sanction schedule is

gn(θ) = (ω + T )

(
1 + (β/θ)1/η

(
β

1− β
1− F (θ)

θf(θ)

)−1/η )−1

. (13)

The dashed line in the panels of Figure 2 depicts gn. The allocations gd and gn are two of the

three building blocks of the candidate solutions. The third building block is the bunching of

public spending.
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Figure 1: Optimal fiscal rule with non-financial sanctions, i.e., ρ = 1.

The grey line depicts the discretionary allocation. The black line depicts the allocation implemented

by an optimal fiscal rule. Fiscal needs are exponentially distributed with parameter λ = 3. The only

difference between the parameters for the two panels is the degree of present bias: 1− β = 0.2 for the

left panel and 1− β = 0.6 for the right panel.

The parameters that are common across the examples are the fiscal revenues T normalized

to 1, and the coefficient of relative risk aversion η = 2. The parameter ω = 1 sets the average

deficit as a percentage of fiscal revenues for economies with a low degree of present bias to 12%

in the absence of a fiscal rule.12

The parameters that differ across the examples are the ones determining the optimal structure

of a fiscal rule. They are the welfare weight on the cost of sanctions ρ, the degree of present

bias 1 − β, and the distribution of fiscal needs F . They are set to best illustrate the findings

12The choice is based on data for the euro area. The average deficit for the three years prior to the implemen-

tation of the Stability and Growth Pact was 4.9% of GDP (Source: OECD (2021), General government deficit).

Fiscal revenues averaged 40.8% of GDP (Source: Eurostat (gov 10a taxag)). Combining these two moments gives

a target average deficit as a percentage of fiscal revenues of 4.9%/40.8% = 12%.
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Figure 2: Optimal fiscal rule with financial sanctions, ρ = β.

Panels on the left depict allocations for an economic union with a low degree of present bias (i.e.,

1− β = 0.2). Panels on the right depict allocations for an economic union with an intermediate degree

of present bias (i.e., 1 − β = 0.3). The grey line depicts the discretionary allocation. The dashed line

depicts the allocation implemented by the candidate marginal sanction schedule. The black line depicts

the allocation implemented by the optimal fiscal rule. The distribution of fiscal needs is displayed at

the top right of each panel.
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of this paper.13 The captions of Figures 1 and 2 contain the specifications that differ across the

examples.

The contrast between Figures 1 and 2 highlights the importance of the enforcement mechanism

for the design of a fiscal rule. The contrast between the panels on the left and on the right in

Figures 1 and 2 depicts how the need for discipline, governed by 1− β, matters for the design of

an optimal fiscal rule. Figure 1 depicts allocations implemented by optimal fiscal rules enforced

by non-financial sanctions (i.e., Propositions 1 and 4 for ρ = 1). Figure 2 depicts allocations

implemented by optimal fiscal rules enforced by financial sanctions (Propositions 1, 2, and 3 for

ρ = β < 1). For each panel, I verify that the economic union satisfies the conditions of the

relevant Proposition in Appendix OC.

Comparing the optimal fiscal rules for different distributions of shocks emphasizes the role of

the virtual need for discretion in shaping the sanction schedule. I consider three distributions

that differ in the virtual need for discretion that they imply. The constant inverse hazard rate

1/λ of the exponential distribution implies that the virtual need for discretion is null for ρ = β

because 0 = d
dθ

(ρ 1
λ
−(ρ−β)θ). The linear inverse hazard rate of the Pareto distribution implies a

constant virtual need for discretion β− ρ(1− 1/γ), where γ > 1 denotes the tail parameter. The

hazard rate of the third distribution, denoted Fa, is a convex combination of the hazard rates of

the exponential distribution and the Pareto distribution, as follows:14 ha(θ) = aλ + (1− a)γ/θ,

and a ∈ (0, 1). The inverse hazard rate of the distribution Fa implies a decreasing virtual need

for discretion. The increasing severity of the marginal sanction schedule that implements the

discretion and on-equilibrium sanctions allocation in the bottom left panel of Figure 2 reflects

the decreasing virtual need for discretion implied by Fa. The parameters for the exponential

distribution, the Pareto distribution, and the coefficient a for the distribution Fa are all set

so that the three distributions have the same mean. The distributions for the panels in the

middle row in Figure 2 are truncated versions of Fa and the Pareto distribution. For ease of

comparison, the parameters of the truncated distributions are kept the same as the ones for their

non-truncated counterparts.15

13A quantitative evaluation of the Stability and Growth Pact is left for future research. The model would need

to be extended to feature heterogeneity across members of the economic union and an endogenous interest rate.

14The hazard rate ha(·) uniquely characterizes the distribution Fa(θ) = 1− exp
(
−
∫ θ
θ
ha(x)dx

)
for θ ∈ Θ.

15Truncating the Pareto and Fa distributions at θ̄ = 3 does not significantly alter the mean.
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6 Solution method for the design of rules

The no-transfer constraint sets program (5) apart from mechanism design problems in which

transfers are possible. Unlike the incentive compatibility constraints, the no-transfer constraint

cannot be easily summarized in the objective function to be maximized point-wise without re-

sorting to Lagrangian methods. This section outlines how I use the first-order conditions of the

Lagrangian method to identify a candidate solution and to find conditions for global optimality.

The first step uses a Lagrange multiplier function to combine the no-transfer constraint and

the objective in a Lagrangian. Let Λ : Θ 7→ [0, 1] be a non-decreasing function such that

limθ→θ̄ Λ(θ) = 1 and 1−Λ is integrable. A valid Lagrange multiplier function is non-decreasing,

which is the infinite dimensional analog of a non-negative Lagrange multiplier for the Kuhn-

Tucker theorem with finitely many inequality constraints. Define the Lagrangian, with Lagrange

multiplier function Λ, as a functional on Φ ≡ {(u, t) | u : Θ 7→ R+ is non-decreasing, and t ∈ R+}
as follows:

L(u, t|Λ) ≡
∫

Θ

[
θu(θ) +W (T − U−1(u(θ)))− ρt(θ, u, t)

]
dF (θ) +

∫
Θ

t(θ, u, t)dΛ(θ), (14)

where t(θ, u, t) is the schedule associated with allocation U−1(u(·)) in Lemma 3 and t(θ) = t.

The Gateaux derivative in the direction (h, ht) ∈ Φ is defined as follows:16

∂L(u, t, h, ht|Λ) ≡ lim
α↓0

1

α

[
L(u+ αh, t+ αht|Λ)− L(u, t|Λ)

]
. (15)

The next lemma gives optimality conditions in terms of the Gateaux derivative evaluated at

the solution. The optimality conditions are that the Gateaux derivative evaluated at the solution

is null in the direction of the solution and non-positive in any non-decreasing direction.

Lemma 9 (Lemma of optimality). If there exists a non-decreasing u∗ ≡ U(g∗) and t∗ in the

convex cone Φ and a non-decreasing function Λ∗ : Θ 7→ [0, 1] such that limθ→θ̄ Λ∗(θ) = 1 and

1− Λ∗ is integrable, and if

∂L(u∗, t∗, u∗, t∗|Λ∗) = 0, and ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for all (h, ht) ∈ Φ,

then g∗ ≡ U−1(u∗) and the associated money-burning schedule t∗ characterized by (8) with t∗(θ) =

t∗ solve the mechanism design problem (5).

16The existence of the Gateaux differential follows from Lemma A.1 p. 390 of Amador, Werning, and Angeletos

(2006).
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The proof in Appendix OA.9 is an application of the global theory of constrained optimization

(Chapter 8 in Luenberger (1969), Lemma 1 p.227, and Theorem 1 p.220), as used in Lemma A.2

in Amador, Werning, and Angeletos (2006) and Theorem 1 in Amador and Bagwell (2013). A

part of the proof shows that the degree of concavity of the Lagrangian depends on ρ. The

Lagrangian is strictly concave for ρ ∈ [0, 1) and a non-decreasing Lagrange multiplier function

(see the proof of Lemma 9). The Lagrangian is linear for ρ = 1.

The solution method appears to ask the designer to guess the solution and verify that it satisfies

the optimality conditions in Lemma 9. Guessing the solution amounts to the arrangement of

three building blocks. The first building block obtains from ignoring the monotonicity and the

no-transfer constraint to determine the spending gn for ρ < 1. The second building block is the

discretionary allocation. It is a natural candidate because of the no-transfer constraint. Third,

the allocation may be constant over subintervals of Θ.

I use the optimality conditions of Lemma 9 to determine the arrangement of the three building

blocks. The first optimality condition sets the Gateaux derivative of the Lagrangian to zero.

It is the first requirement in the definition of the thresholds between the different building

blocks θp, θnp, θx. It also determines the Lagrange multiplier function. In turn, Assumption L is

precisely the condition needed for the Lagrange multiplier function to be non-decreasing. The

second optimality condition verifies that the Gateaux derivative of the Lagrangian in any non-

decreasing direction is negative. It is the second requirement in the definition of the thresholds

θp, θnp, θx.

7 Concluding remarks

To conclude, I use the findings from this paper to evaluate the Excessive Deficit Procedure

(EDP) of the Stability and Growth Pact and propose avenues for reforms. For some context, the

following quote reflects the current financial sanction schedule of the EDP:

A non-interest-bearing deposit of 0.2% of GDP may be requested from a euro area

country that is placed in EDP. [...] In case of non-compliance with the initial recom-

mendation for corrective action, this non-interest-bearing deposit will be converted

into a fine. EU Economic governance “Six Pack” - State of Play, Memo/11/647.

First, there is a threshold below which discretion prevails and above which the country is
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placed in EDP. This paper lends support to this feature of the Stability and Growth Pact.

Second, the EDP features a jump in the level of financial sanctions—a notch point—from 0 to

a non-interest-bearing deposit of 0.2% of GDP. Initially, the sanction is the forgone interest on the

deposit. This notch could be optimal if it is an off-equilibrium sanction. Off-equilibrium sanctions

are part of the optimal design of a fiscal rule if the distribution of shocks has a sufficiently thin

tail. Otherwise, the optimal design features a kink point at the exemption threshold. Expressing

the sanction as a percentage of the deficit above the threshold, instead of a percentage of GDP,

would turn the notch into a kink.

Third, the EDP could convert the deposit into a fine. The sanction would then be the deposit

instead of the forgone interest on this deposit. This sharp increase in the sanction is not the

relevant difference in the choice of instrument to impose discipline. Indeed, the designer can

set a fine that matches the forgone interest on a deposit. The relevant difference between a

non-interest-bearing deposit and a fine is the illiquid nature of the fine. If the economic union

is better able to recycle illiquid sanctions, by say investing the revenues in union-specific public

goods, then a fine is a better instrument (i.e., lower ρ) to enforce a rule with on-equilibrium

sanctions. Appendix A contains a discussion of the choice of instrument.

The quantitative evaluation of the potential for a reform of the Stability and Growth Pact

has been left for future research. Two considerations stand out. First, the E.U. is a union of

heterogeneous countries. This paper shows that the cross-country heterogeneity in the degree

of present bias and in the thickness of the tail of the distribution of shocks determines the

heterogeneity in the competing needs for discipline and discretion across members of the economic

union. Second, a union of countries may be large enough for its fiscal rule to affect the interest

rate. Halac and Yared (2018) solve for the optimal stringency of a cap on spending in an

environment with an endogenous interest rate.

The global Lagrangian method used in this paper is widely applicable to solve mechanism

design problems with limited transfers. Werning (2007) study Pareto efficient income taxation.

The requirement that a reform be Pareto-improving limits transfers. The method also applies

to design the cost of verifying the state to determine whether escape clauses apply (see Halac

and Yared (2020b) for the design of a rule with costly state verification). Another promising

application is the study of the optimal illiquidity of retirement savings accounts for households

who under-save for their retirement (see Laibson et al. (1998), and Beshears et al. (2020)).
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Appendix

A Determinants of the welfare cost of sanctions

This section shows that the way in which the economic union recycles the revenues from sanctions

matters for the welfare cost of sanctions. It contains two models of the budget of the economic

union. The two models differ in the way in which the economic union uses the revenues from

sanctions. In the first model, inspired by the Excessive Deficit Procedure of the Stability and

Growth Pact, the revenues from sanctions expand the budget of the economic union. In the
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second model, the revenues from sanctions reduce the contributions of each members to the

budget of the union.

For this section, I assume a money-metric continuation value. As a result, the social welfare

function depends only on the first moment of the distribution of financial sanctions meted out.

This is because if W (x) = x, then τ(g) = τf (g).

A.1 Home-biased preferences for public spending

Suppose the revenues from sanctions are used to expand the budget of the economic union.

The budget of the economic union finances union-specific public goods. For instance, in the

context of the Stability and Growth Pact, the fine contributes to a union-specific public good,

the European Stability Mechanism (Section 2.4.2 of the Vade Mecum on the Stability and Growth

Pact, European Commission 2019).

The citizenry puts a weight of (1−ρ) ∈ (0, 1) on a contribution to the budget of the economic

union relative to a contribution to the country’s future assets. Hence ρ measures the degree of

home bias in the citizenry’s preferences for public good spending∫
Θ

[θU(g(θ)) + x(θ) + (1− ρ)b] dF (θ). (16)

The revenues from sanctions contribute b to the budget of the economic union:

b =

∫
Θ

τf (g(θ))dF (θ). (17)

Substituting the budget constraint of each country and the budget constraint of the economic

union (17) in (16) gives the same social welfare function as the one used in the main text,∫
Θ

[θU(g(θ)) +W (T − g(θ))− ρτ(g(θ))] dF (θ).

Ultimately, the economic union chooses how to use the revenues from sanctions. The next

subsection considers an economic union that uses the revenues from sanctions to reduce the

contribution of its members instead of expanding its budget.

A.2 The budget of the economic union as a “leaky bucket”

Suppose the economic union needs to finance an exogenous expenditure G. To do so, each

member contributes c to finance the expenditures not covered by the revenues from sanctions. In
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the spirit of the “leaky bucket” model of public finance, a fraction 1− ρ ∈ (0, 1) of the revenues

from sanctions accrue to the budget and a fraction ρ “leaks” (see Okun (1975)).17 The budget

constraint of the economic union is

c = G− (1− ρ)

∫
Θ

τf (g(θ))dF (θ). (18)

The reduction in the contribution amounts to a uniform transfer to the governments. This shows

that the level of the limit in the no-transfer constraint is inessential.

The budget constraint of each government depends on the revenues from taxation net of the

contribution to the union, that is,

g + x+ τf (g) = T − c. (19)

Substituting (19) in the government’s objective gives: θU(g) +β(T − g− c)−βτf (g), where each

government takes c as given and independent of the sanction it pays since it has a negligible

impact on the budget of the economic union.

The welfare of the economic union is
∫

Θ
[θU(g(θ)) +W (x(θ))] dF (θ). Substituting the budget

constraints (18) and (19) in the welfare of the economic union gives the same social welfare

function, up to an irrelevant constant, as the one used in the main text:∫
Θ

[θU(g(θ)) +W (T − g(θ))− ρτ(g(θ))] dF (θ)−G.

B Proofs of main results

The Lagrangian (14), after rescaling the objective by β and the Lagrange multiplier by ρβ, reads

L(u, t|Λ) =

∫
Θ

[
−βν(U−1(u(θ))) + ρ1−F (θ)

f(θ)
u(θ)

]
dF (θ)

+ (β − ρ)

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dF (θ)

+ ρ
(
θu(θ) + βW (T − U−1(u(θ)))− t

)
Λ(θ)

+ ρ

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dΛ(θ)− ρ

∫
Θ

[u(θ)(1− Λ(θ))] dθ.

17To put a lower bound on the extent of the leak, suppose that the only source of leakage is the administrative

cost of the fiscal rule. Based the budget of the European Union, if the administrative cost of the fiscal rule is

commensurate with the administrative cost of the economic union, then the leak amounts to 6% of the revenues.
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The Gateaux derivative in the direction (h, ht), defined in (15), reads as follows:18

∂L(u, t, h, ht|Λ) =

∫
Θ

[(
−β ν′(U−1(u(θ)))

U ′(U−1(u(θ)))
+ ρ1−F (θ)

f(θ)

)
h(θ)

]
dF (θ) (20)

+ (β − ρ)

∫
Θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
dF (θ) + ρ

(
θ∆(U−1(u(θ)), θ)h(θ)− ht

)
Λ(θ)

+ ρ

∫
Θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
dΛ(θ)− ρ

∫
Θ

[h(θ)(1− Λ(θ))] dθ.

B.1 Proof of Proposition 1

Proof of Proposition 1. The proof consists of applying Lemma 9. Let u∗(θ) = U(gpd(θ)) for θ ∈ Θ

and t∗ = 0. Since gpd is non-decreasing, (u∗, t∗) ∈ Φ. The Lagrange multiplier function is

ρΛ∗(θ) =


ρ for θ ≥ θp

ρF (θ) + (1− β)θf(θ) for θ ∈ (θ, θp)

0 for θ = θ.

A valid Lagrange multiplier function is non-decreasing. The lower bound on the elasticity

of the density in Assumption L holding for θ ≤ θp is equivalent to the Lagrange multiplier Λ∗

being non-decreasing on (θ, θp). The jumps at θ and θp must be non-decreasing. The jump

at θ is non-negative since f is non-negative, 0 < β ≤ 1, and ρ > 0. The jump at θp is non-

negative, as shown in Lemma 2. Lemma 2 shows that Assumption L holding for θ ≤ θp and

βE[θ|θ ≥ θ̂] − ρθ̂ ≤ βE[θ|θ ≥ θp] − ρθp holding for θ̂ ≥ θp implies ρ1−F (θ)
θf(θ)

≥ 1 − β for θ ≤ θp,

which is a non-negative jump of Λ∗ at θp. Note also that 1 − Λ∗ is integrable because 1 − F is

integrable and the expectation exists.

The rest of the proof checks that the conditions in terms of Gateaux derivatives in Lemma 9

are satisfied. The Gateaux derivative (15) in the direction of h, with Lagrange multiplier function

Λ∗ reads

∂L(u, t, h, ht|Λ∗) =

∫
Θ

[(
− β ν′(U−1(u(θ)))

U ′(U−1(u(θ)))
+ ρ1−F (θ)

f(θ)

)
h(θ)

]
dF (θ)

+ (β − ρ)

∫
Θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
dF (θ)

+

∫ θp

θ

[
θ∆(U−1(u(θ)), θ)h(θ)

]
ρdΛ∗(θ)− ρ

∫ θp

θ

[(1− Λ∗(θ)) h(θ)] dθ.

18The existence of the Gateaux differential follows from Lemma A.1 p. 390 of Amador, Werning, and Angeletos

(2006).
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Rewriting the Euler equations characterizing gd gives

β ν′(U−1(u∗(θ)))
U ′(U−1(u∗(θ))) =

 (1− β)θp for θ > θp

(1− β)θ for θ ≤ θp
and, θ∆(U−1(u∗(θ)), θ) =

 θ − θp for θ > θp

0 for θ ≤ θp.

After substitution of these two expressions, the Gateaux derivative evaluated at u∗ simplifies to

∂L(u∗, t∗, h, ht|Λ∗) =

∫ θp

θ

[(
−(1− β)θ + ρ1−F (θ)

f(θ)
− ρ1−Λ∗(θ)

f(θ)

)
f(θ)h(θ)

]
dθ (21)

+

∫ θ̄

θp

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ) (θ − θp)

)
f(θ)h(θ)

]
dθ. (22)

The Lagrange multiplier Λ∗ over (θ, θp] is defined so that the integral (21) is null, for (h, ht) ∈
Φ. Suppose that θ̄ <∞ so that for any (h, ht) ∈ Φ, h is bounded (the case θ̄ =∞ is addressed

below). For h bounded, the following term is null:

lim
θ̂→θ̄

∫ θ̄

θ̂

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ h(θ̂) = 0,

hence, integrating (22) by parts gives∫ θ̄

θp

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ h(θp) (22.1)

+

∫ θ̄

θp

[∫ θ̄

θ̂

[(
−(1− β)θp + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θp)

)
f(θ)

]
dθ

]
dh(θ̂). (22.2)

As the next claim shows, θp is defined so that the inner integral in (22.2) is negative for θ̂ ≥ θp

and null for θ̂ = θp (which also implies that (22.1) is null).

Claim 1. Inequality (7) is equivalent to∫ θ̄

θ̂

[(
−(1− β)θ̃ + ρ1−F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

)
f(θ)

]
dθ ≤ 0. (23)

Proof of Claim 1. After substitution of the wedge evaluated at the discretionary allocation, i.e.,

θ̂∆(gd(θ̃), θ̂) = θ̂ − θ̃, inequality (7) reads as follows:∫ θ̄

θ̂

[
θ − θ̃

]
dF (θ) ≤ ν ′(gd(θ̃))

U ′(gd(θ̃))
(1− F (θ̂)) + ρ

θ̂ − θ̃
β

(1− F (θ̂)).

After multiplying both sides by β and grouping terms, the inequality reads∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ β

ν ′(gd(θ̃))

U ′(gd(θ̃))
(1− F (θ̂)).
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Substituting the definition of the bias ν ′(gd(θ̃)) = (1 − β)W ′(T − gd(θ̃)) on the right-hand side

and using the Euler equation defining the discretionary allocation gives∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− β)θ̃(1− F (θ̂)). (24)

Adding and subtracting ρ(θ − θ̃) to the integrand on the left-hand side gives∫ θ̄

θ̂

[
ρ(θ − θ̂) + (β − ρ)(θ − θ̃)

]
dF (θ) ≤ (1− β)θ̃(1− F (θ̂)).

Integrating the left-hand side by parts gives inequality (23).

Since θp > θ, inequality (7) holds with equality for θ̂ = θ̃ = θp, hence (23) holds with equality

for θ̂ = θ̃ = θ. By definition of θp > θ, (22.1) is null and the inner integral of (22.2) is negative

for θ̂ ≥ θp.

Consider (h, ht) = (u∗, t∗). The Gateaux derivative ∂L(u∗, t∗, u∗, t∗|Λ∗) is null since (22.1) and

(22.2) are both null. Line (22.2) is null for h = u∗ because dh(θ) = du∗(θ) = 0 for θ ≥ θp.

Consider any (h, ht) ∈ Φ. The Gateaux derivative ∂L(u∗, t∗, h, ht|Λ∗) is negative since (22.1)

is null and (22.2) is negative. Line (22.2) is negative because dh ≥ 0 since (h, ht) ∈ Φ and (23)

is negative.

For θ̄ = ∞, consider a sequence of environments, indexed by m ∈ N, with Θ = [θ, θ̄m],

θ̄m <∞, and limm→∞ θ̄m =∞. Denote by Fm the truncation of F on [θ, θ̄m], defined as follows:

Fm(θ) = Fθ
F (θm)

for θ ∈ [θ, θ̄m] and Fm(θ) = 1 for θ ≥ θ̄m. Note that Fm converges weakly to F .

Also, since F is twice continuously differentiable, fm is continuous and it converges point-wise

to f . For each m ∈ N, denote the solution of the environment with the truncated distribution

Fm by gpd(·;m) and the threshold at which the cap binds by θ
(m)
p .

First, note that gpd(·;m) converges point-wise to gpd(·) if limm→∞ θ
(m)
p = θp. By assumption

θp > θ. For θp < θ̄, it is the lowest fiscal need that solves β E[θ|θ ≥ θp] = θp, and satisfies (see

Lemma 1), βE[θ|θ ≥ θ̂]−ρθ̂ ≤ βE[θ|θ ≥ θp]−ρθp for θ̂ ≥ θp. The threshold θ
(m)
p is characterized

analogously. For θ
(m)
p < θ̄, it is the lowest fiscal need that solves β Em[θ|θ ≥ θ

(m)
p ] = θ

(m)
p ,

and, by Lemma 1, βEm[θ|θ ≥ θ̂] − ρθ̂ ≤ βEm[θ|θ ≥ θ
(m)
p ] − ρθ

(m)
p for θ̂ ≥ θ

(m)
p . For any

θ̂ > θ, because Fm converges weakly to F , limm→∞ Em
[
θ

θ̂
|θ ≥ θ̂

]
= E

[
θ

θ̂
|θ ≥ θ̂

]
. Because taking

the limit preserves weak inequalities, limm→∞ θ
(m)
p ≥ θp. Since Fm is a right-truncation of F ,

Em
[
θ

θ̂
|θ ≥ θ̂

]
≤ E

[
θ

θ̂
|θ ≥ θ̂

]
. Hence θ

(m)
p ≤ θp for every m. It follows that limm→∞ θ

(m)
p ≤ θp.

Combining the two inequalities, limm→∞ θ
(m)
p = θp, and gpd(·,m) converges pointwise to gpd(·).
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Second, note that since (gpd(·,m))m∈N is a uniformly bounded sequence and (fm)m∈N is bounded

by an integrable density, the dominated convergence theorem implies that the sequence of social

welfare (with the incentive compatible t(·;m) substituted in) resulting from the sequence of

truncated economies converges to the social welfare of the non-truncated economy. Hence a fiscal

rule with a null intercept that implements gpd(·) is optimal for the non-truncated economy.

B.2 Proof of Proposition 2

Proof of Proposition 2. The proof consists of applying Lemma 9. A valid allocation is non-

decreasing. The allocation gnpd is continuous since gd(θn) = gn(θn) for θn ≥ θ. The discretionary

allocation gd is strictly increasing. The public spending gn(θ) is defined for θ ∈ (θn, θnp) because

Assumption I holds for θ ∈ (θn, θnp). Lemma 4 implies that gn is non-decreasing over (θn, θnp)

because the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ − β. The utility index U is strictly

increasing so the utility profile from the discretion, on-equilibrium, and off-equilibrium sanctions

allocation u∗(θ) = U(gnpd (θ)) for θ ∈ Θ and t∗ = 0 satisfies (u∗, t∗) ∈ Φ.

The Lagrange multiplier function is

ρΛ∗(θ) =


ρ for θ ≥ θn

ρF (θ) + (1− β)θf(θ) for θ ∈ (θ, θn)

0 for θ = θ.

A valid Lagrange multiplier function is non-decreasing. The lower bound on the elasticity

of the density in Assumption L holding for θ ≤ θn is equivalent to the Lagrange multiplier Λ∗

being non-decreasing on (θ, θn). The jumps at θ and θn must be non-negative. The jump at θ

is non-negative since f is non-negative, 0 < β ≤ 1, and ρ > 0. By Lemma 5, the jump at θn is

non-negative since either θn < θ̄ in which case gn(θn) = gd(θn) and the Lagrange multiplier is

continuous at θn, or θn = θ̄ in which case gn(θn) ≤ gd(θn) and the jump is non-negative. Note

also that 1− Λ∗ is integrable because 1− F is integrable and the expectation exists.
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The Gateaux derivative (20), with a Lagrange multiplier function equal to 1 for θ ≥ θn, reads

∂L(u, t, h, ht|Λ∗) =

∫ θn

θ

ρ
[
θ∆(U−1(u(θ)), θ)h(θ)

]
dΛ∗(θ) (25)

+

∫ θn

θ

[(
−β ν′(U−1(u(θ)))

U ′(U−1(u(θ)))
+ ρ1−F (θ)

f(θ)
+ (β − ρ)θ∆(U−1(u(θ)), θ)−ρ(1− Λ∗(θ))

)
h(θ)

]
dF (θ) (26)

+

∫ θnp

θn

[(
−β ν′(U−1(u(θ)))

U ′(U−1(u(θ)))
+ ρ1−F (θ)

f(θ)
+ (β − ρ)θ∆(U−1(u(θ)), θ)

)
h(θ)

]
dF (θ) (27)

+

∫ θ̄

θnp

[(
−β ν′(U−1(u(θ)))

U ′(U−1(u(θ)))
+ ρ1−F (θ)

f(θ)
+ (β − ρ)θ∆(U−1(u(θ)), θ)

)
h(θ)

]
dF (θ). (28)

The last step shows that the conditions in terms of Gateaux derivatives in Lemma 9 are met.

The term (25) evaluated at u∗ is null irrespectively of the direction of the Gateaux derivative

(h, ht) because gnpd (θ) = gd(θ) for θ ≤ θn implies ∆(U−1(u∗(θ)), θ) = 0 for θ ≤ θn. The choice

of Lagrange multiplier over (θ, θn) is precisely the condition needed for the term (26) to be null

irrespectively of the direction (h, ht) of the Gateaux derivative. The definition of gn in (9) implies

that the term (27) evaluated at u∗ is null irrespectively of the direction (h, ht) of the Gateaux

derivative.

Using the definition of the bias to get θ∆(U−1(u(θ)), θ) = θ− β
1−β

ν′(U−1(u(θ)))
U ′(U−1(u(θ)))

, and the following

characterization of u∗ above θnp: β
1−ρ
1−β

ν′(U−1(u∗(θ)))
U ′(U−1(u∗(θ))) = ρ1−F (θnp)

f(θnp)
+ (β − ρ)θnp, for θ ≥ θnp, line

(28) reads ∫ θ̄

θnp

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ)(θ − θnp)

)
h(θ)

]
dF (θ). (29)

Integrating (29) by parts gives∫ θ̄

θnp

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ) h(θnp) (29.1)

+

∫ θ̄

θnp

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ)

]
dh(θ̂), (29.2)

where I used that limθ̂→θ̄
∫ θ̄
θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ)h(θ̂) is zero since h

is bounded if θ̄ < ∞. If θ̄ = ∞, the result follows from taking the limit of a sequence of

environments with compact support as in the proof of Proposition 1 in Appendix B.1.

The definition of θnp is precisely so that the inner integral in (29.2) is negative for θ̂ ≥ θnp

and null for θ̂ = θnp (which also implies that (29.1) is null).
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Claim 2. Inequality (10) is equivalent to∫ θ̄

θ̂

[
ρ

1− F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (30)

Proof of Claim 2. The definition of the wedge implies the following identity:

θ̂∆(g, θ̂) = θ̂ − βW ′(T − g)

U ′(g)
= θ̂ − θ̃ + θ̃∆(g, θ̃).

Multiplying both sides of inequality (10) by β and substituting the identity for the wedge gives∫ θ̄

θ̂

[
β(θ − θ̃) + βθ̃∆(gn(θ̃), θ̃)

]
dF (θ) ≤

(
β
ν ′(gn(θ̃))

U ′(gn(θ̃))
+ ρ(θ̂ − θ̃) + ρθ̃∆(gn(θ̃), θ̃)

)
(1− F (θ̂)).

Rearranging terms gives∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤

(
β
ν ′(gn(θ̃))

U ′(gn(θ̃))
+ (ρ− β)θ̃∆(gn(θ̃), θ̃)

)
(1− F (θ̂)).

Using the definition of gn, i.e., equation (9), on the right-hand side gives∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (31)

Add and subtract ρθ to the integrand on the left-hand side and rearrange terms to get∫ θ̄

θ̂

[
ρ(θ − θ̂) + (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)).

Integrating the left-hand side by parts gives inequality (30).

For (h, ht) ∈ Φ, h is non-decreasing and because the inner integral from (29.2) is non-positive,

the integral (29.2) is non-positive for (h, ht) ∈ Φ. The Gateaux derivative of the Lagrangian

at the candidate solution (u∗, t∗) is null in the direction (h, ht) = (u∗, t∗) and negative in all

directions (h, ht) ∈ Φ.

B.3 Proof of Proposition 3

Proof of Proposition 3 part 1). The proof consists of applying Lemma 9. Let u∗(θ) = U(gc) for

θ ∈ Θ and t∗ = 0, hence (u∗, t∗) ∈ Φ. The Lagrange multiplier function Λ∗(θ) = 1 for θ ∈ Θ is

valid since it is non-decreasing and 1− Λ∗ is integrable.
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The marginal bias and the wedge evaluated at gc are ν′(gc)
U ′(gc)

= (1−β)
∫

Θ
θ̃dF (θ̃), and θ∆(gc, θ)) =

θ − β
∫

Θ
θ̃dF (θ̃). The Gateaux derivative (20), evaluated at (u∗, t∗) and in the direction (h, ht),

given the constant Lagrange multiplier Λ∗, reads

∂L(u∗, t∗, h, ht|Λ∗) =

∫
Θ

[(
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

)
h(θ)

]
dF (θ) (32)

+

((
θ − β

∫
Θ

θ̃ dF (θ̃)

)
h(θ)− ht

)
ρ. (33)

Integrating the inverse hazard rate by parts gives the following:
∫ θ̂
θ

1−F (θ)
f(θ)

dF (θ) = θ̂(1−F (θ̂))−
θ+

∫ θ̂
θ
θdF (θ). Since the expectation of θ exists, θ̂(1−F (θ̂))→ 0 as θ̂ → θ̄. Substitute θ in (33),(

θ − β
∫

Θ

θ̃ dF (θ̃)

)
h(θ)− ht = −

(∫
Θ

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ)

)
h(θ)− ht.

First, I show that the Gateaux derivative in the direction of the candidate solution is null

when evaluated at the candidate solution. Consider the direction h(θ) = u∗(θ) for θ ∈ Θ and

ht = t∗ = 0. Since h is constant, h(θ) = h(θ) for θ ∈ Θ and h(θ) can be taken out of the

expectation in (32). Since −β(1−ρ) +β−ρ = −ρ(1−β), it follows that ∂L(u∗, t∗, u∗, t∗|Λ∗) = 0

as claimed.

It remains to show that the Gateaux derivative evaluated at (u∗, t∗) in any direction (h, ht) ∈ Φ

is non-positive. Integrating (32) by parts gives∫
Θ

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃dF (θ̃) + (β − ρ)θ

]
dF (θ)h(θ) (32.1)

+

∫
Θ

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

]
dF (θ)

]
dh(θ̂). (32.2)

Claim 3. Suppose Assumption I holds for θ and the derivative of ρ1−F (θ)
f(θ)

is smaller than ρ− β
for θ ∈ Θ, then ∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ̃ dF (θ̃) + (β − ρ)θ

]
dF (θ) ≤ 0 (32.2.i)

for all θ̂ ∈ Θ and
∫

Θ

[1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ) ≤ 0.

Proof of Claim 3. The proof consists of first showing that the inequality (32.2.i) holds for θ̂ = θ.

The condition on the slope of the inverse hazard rate implies ρ1−F (θ)
f(θ)
−(ρ−β)θ ≤ ρ1−F (θ)

f(θ)
−(ρ−β)θ

for θ ∈ Θ. Assumption I for θ implies ρ1−F (θ)
f(θ)

≤ (1− β)θ. Combining the two inequalities gives

ρ1−F (θ)
f(θ)

− (ρ− β)θ ≤ (1− ρ)θ. Taking expectations on both sides gives

ρ

∫
Θ

1−F (θ)
f(θ)

dF (θ)− (ρ− β)

∫
Θ

θdF (θ) ≤ (1− ρ)θ. (34)
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Integrating the inverse hazard rate by parts to substitute θ in (34) gives

ρ

∫
Θ

1−F (θ)
f(θ)

dF (θ)− (ρ− β)

∫
Θ

θdF (θ) ≤ (1− ρ)

(∫
Θ

θdF (θ)−
∫

Θ

1−F (θ)
f(θ)

dF (θ)

)
,

which simplifies to
∫

Θ
1−F (θ)
f(θ)

dF (θ) ≤ (1 − β)
∫

Θ
θdF (θ). Note that for θ̂ = θ, inequality (32.2.i)

reduces to
∫

Θ

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ).

Second, I show that given that inequality (32.2.i) holds for θ̂ = θ, then the condition on the

derivative of the inverse hazard rate implies that inequality (32.2.i) holds for θ̂ ∈ Θ. Rewrite

inequality (32.2.i) as follows: E
[
ρ1−F (θ)

f(θ)
− (ρ− β)θ

∣∣ θ ≥ θ̂
]
≤ β(1−ρ)

∫
Θ
θ dF (θ). The condition

on the slope of the inverse hazard rate implies that ρ1−F (θ)
f(θ)

−(ρ−β)θ is decreasing. It follows that

the conditional expectation E
[
ρ1−F (θ)

f(θ)
− (ρ− β)θ

∣∣ θ ≥ θ̂
]

is a decreasing function of θ̂. Since

the inequality holds for θ̂ = θ, it follows that it holds for θ̂ ∈ Θ.

For any (h, ht) ∈ Φ, h is non-decreasing so inequality (32.2.i) implies that line (32.2) is non-

positive. Claim 3 also shows that line (32.1) is non-positive.

Proof of Proposition 3 part 2). The proof consists of applying Lemma 9. Let u∗(θ) = U(gnpx (θ))

for θ ∈ Θ and t∗ = 0. The lower bound on the derivative of the inverse hazard rate implies that

gnpx (θ) is non-decreasing, hence (u∗, t∗) ∈ Φ. The Lagrange multiplier function is Λ∗(θ) = 1 for

θ ∈ Θ is valid since it is non-decreasing and 1− Λ is integrable.

Substituting the wedge θ∆(g, θ) = θ− β
1−β

ν′(g)
U ′(g) and the constant Lagrange multiplier function

Λ∗ in the Gateaux derivative (20) gives:

∂L(u, t, h, ht|Λ∗) =

∫
Θ

[(
ρ1−F (θ)

f(θ)
− β

(
1−ρ
1−β

)
ν′(U−1(u(θ)))
U ′(U−1(u(θ)))

+ (β − ρ)θ
)
h(θ)

]
dF (θ)

+
((
θ − β

1−β
ν′(U−1(u(θ)))
U ′(U−1(u(θ)))

)
h(θ)− ht

)
ρ.

The definition of gnpx implies the following profile of utility:

β
1− ρ
1− β

ν ′(U−1(u∗(θ)))

U ′(U−1(u∗(θ)))
=


ρ1−F (θnp)

f(θnp)
+ (β − ρ)θnp for θ ≥ θnp

ρ1−F (θ)
f(θ)

+ (β − ρ)θ for θx ≤ θ ≤ θnp

ρ1−F (θx)
f(θx)

+ (β − ρ)θx for θ ≤ θx .
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The Lagrangian, evaluated at the allocation u∗, reduces to

∂L(u∗, t∗, h, ht|Λ∗) =

∫ θ̄

θnp

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ)(θ − θnp)

)
h(θ)

]
dF (θ) (35)

+

∫ θx

θ

[(
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
+ (β − ρ)(θ − θx)

)
h(θ)

]
dF (θ) (36)

+
((
θ − ρ

1−ρ
1−F (θx)
f(θx)

− β−ρ
1−ρ θx

)
h(θ)− ht

)
ρ. (37)

Integrating (35) and (36) by parts and grouping terms,

∂L(u∗, t∗, h, ht|Λ∗) = −ρht (38)

+

∫ θ̄

θnp

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ) h(θnp) (39)

+

∫ θ̄

θnp

[∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ)

]
dh(θ̂) (40)

+

(∫ θx

θ

[
ρ1−F (θ)

f(θ)
−ρ1−F (θx)

f(θx)
+ (β − ρ) (θ − θx)

]
dF (θ)+

(
θ − ρ

1−ρ
1−F (θx)
f(θx)

− β−ρ
1−ρ θx

)
ρ

)
h(θx) (41)

−
∫ θx

θ

[∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
+(β − ρ)(θ − θx)

]
dF (θ)+

(
θ − ρ

1−ρ
1−F (θx)
f(θx)

+ β−ρ
1−ρ θx

)
ρ

]
dh(θ̂), (42)

using that limθ̂→θ̄
∫ θ̄
θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θnp)

f(θnp)
+ (β − ρ) (θ − θnp)

]
dF (θ)h(θ̂) is zero since h is bounded

for θ̄ <∞. If θ̄ =∞, the result follows from taking the limit of a sequence of environments with

compact support as in the proof of Proposition 1 in Appendix B.1.

The terms (39) and (40) with θ̂ = θnp are null and (40) is non-positive for θ̂ ≥ θnp (see Claim

2 in the proof of Proposition 2 in Appendix B.2).

Claim 4. For θ̂ ≤ θx,∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θx)

f(θx)
− (ρ− β) (θ − θx)

]
dF (θ) ≥ −ρθ + ρ

(
ρ

1−ρ
1−F (θx)
f(θx)

− ρ−β
1−ρ θx

)
, (43)

with equality at θ̂ = θx.

Proof of Claim 4. Inequality (43) holds with equality at θ̂ = θx precisely because of the definition

of an interior θx in (11).

Since the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ − β over θ ∈ [θ, θnp] and θx ≤ θnp,

integrating from θ to θx gives ρ1−F (θ)
f(θ)

−ρ1−F (θx)
f(θx)

≤ (ρ−β)(θ−θx). The left-hand side of inequality

(43) is hence decreasing as a function of θ̂, and the inequality holds with equality at θ̂ = θx. It

follows that inequalities (43) hold for θ̂ ≤ θx as claimed.
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The last step of the proof shows that the conditions in terms of Gateaux derivatives in Lemma

9 are satisfied. First, consider the different terms (38)-(42) of the Gateaux derivative in the

direction of the solution (h, ht) = (u∗, t∗). Since t∗ = 0, the term on line (38) is zero. Lines (39)

and (41) are zero by Claim 2 and Claim 4. Lines (40) and (42) are zero because u∗ is constant

above θnp and below θx. Hence, ∂L(u∗, t∗, u∗, t∗|Λ∗) = 0 as desired.

Second, consider the Gateaux derivative (38)-(42) in any direction (h, ht) ∈ Φ. Since ht ≥ 0,

the term on line (38) is negative. Claim 2 and Claim 4 imply that lines (40) and (42) are negative

since h is non-decreasing and lines (39) and (41) are zero. Hence, ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for

(h, ht) ∈ Φ as desired.

B.4 Proof of Proposition 4

Proof of Proposition 4. The proof is identical to the proof of Proposition 3 part 1) up to Claim

3. The rest of the proof uses implications from the definition of a high degree of present bias to

imply the same conclusion as the one in Claim 3. Note that∫ θ̄

θ̂

[
ρ1−F (θ)

f(θ)
− β(1− ρ)

∫
Θ

θ dF (θ)− (ρ− β)θ

]
dF (θ) ≤ −β(1− ρ)

∫
Θ

θ dF (θ) ≤ 0,

where the first inequality uses Assumption H, ρ1−F (θ)
f(θ)

≤ (ρ − β)θ, for θ ∈ Θ, and the second

inequality follows from ρ ≤ 1. A high degree of present bias also implies 1−F (θ)
θf(θ)

≤ 1 − β for

θ ∈ Θ because ρ−β
ρ
≤ 1−β for 0 < ρ ≤ 1. Hence

∫ θ̄
θ̂

[
1−F (θ)
f(θ)

− (1− β)θ
]
dF (θ) ≤ 0 for θ̂ ∈ Θ. For

(h, ht) ∈ Φ, h is non-decreasing and ht ≥ 0. Hence ∂L(u∗, t∗, h, ht|Λ∗) ≤ 0 for (h, ht) ∈ Φ.
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Online Appendix

OA Proofs

OA.1 Lemma 1 on the second requirement in the definition of θp

Proof of Lemma 1. A first step consists of rewriting inequality (7) as one of the first-order con-

ditions of the Lagrangian method. The first step is Claim 1 in the proof of Proposition 1 in

Appendix B.1. For convenience, I repeat the claim here.

Claim 1. Inequality (7) is equivalent to∫ θ̄

θ̂

[(
−(1− β)θ̃ + ρ

1− F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

)
f(θ)

]
dθ ≤ 0. (23)

The proof of Claim 1 is in the proof of Proposition 1 in Appendix B.1. It also shows that

inequalities (23) and inequality (24) are equivalent.∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− β)θ̃(1− F (θ̂)). (24)

The second step uses the equivalence between inequalities (7) and (24) and the assumption

that inequality (7) holds with equality for some θ̃ < θ̄ and θ̂ = θ̃ to get:∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ) = (1− β)θ̃(1− F (θ̃)). (44)

Multiplying both sides of (24) by (1− F (θ̃)) and using (44) for the right-hand side gives

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ)

which simplifies to

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + βθ

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
βθ
]
dF (θ).

Rearranging terms give

(1−F (θ̃))β

∫ θ̄

θ̂

θdF (θ)−(1−F (θ̃))(1−F (θ̂))ρθ̂ ≤ (1−F (θ̂))β

∫ θ̄

θ̃

θdF (θ)−(1−F (θ̂))(1−F (θ̃))ρθ̃.

Since θ̃ ≤ θ̂ < θ̄, both sides can be divided by (1− F (θ̃))(1− F (θ̂)) to give the result.
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OA.2 Lemma 2 on an implication of Assumption L

Proof of Lemma 2. The proof proceeds in three steps. The first step shows that the definition

of θp implies ρ1−F (θp)

θpf(θp)
≥ 1 − β if θp ∈ (θ, θ̄). The second requirement in the definition of θp is

the following inequality on the conditional tail expectation (see Lemma 1): βE[θ|θ ≥ θ̂]− ρθ̂ ≤
βE[θ|θ ≥ θp] − ρθp for θ̂ ≥ θp. The derivative of the left-hand side with respect to θ̂ reads

−β θ̂f(θ̂)

1−F (θ̂)
+ βE[θ|θ ≥ θ̂] f(θ̂)

1−F (θ̂)
− ρ. The derivative must be negative at θ̂ = θp because the

inequality holds with equality at θp. Using that βE[θ|θ ≥ θp] = θp for an interior θp gives

−β θpf(θp)

1−F (θp)
+ θp

f(θp)

1−F (θp)
− ρ ≤ 0, which completes the first step.

The second step proves the following claim.

Claim 5. Suppose that Assumption L holds for θ ≤ θ∗ and there exists θ∗ ≤ θ∗ such that

ρ1−F (θ∗)
θ∗f(θ∗)

< 1− β. Then ρ1−F (θ)
θf(θ)

< 1− β for θ ∈ [θ∗, θ
∗].

Proof of Claim 5 . For any θ ≤ θ∗,

d
dθ

(
ρ1−F (θ)

f(θ)
− θ(1− β)

)
= −ρ− ρ1−F (θ)

θf(θ)
θf ′(θ)
f(θ)
− (1− β)

≤ ρ1−F (θ)
θf(θ)

1−β+ρ
1−β − (1− β + ρ)

= 1−β+ρ
1−β

(
ρ1−F (θ)

θf(θ)
− (1− β)

)
,

in which the inequality follows from Assumption L. By assumption, ρ1−F (θ∗)
θ∗f(θ∗)

−1−β < 0 for θ∗ ≤
θ∗. Given that 1−β+ρ

1−β ≥ 0, combining the two inequalities implies d
dθ

(
ρ1−F (θ)

f(θ)
− θ(1− β)

)
< 0

for θ ∈ [θ∗, θ
∗].

The last step shows that ρ1−F (θ)
θf(θ)

≥ 1 − β for θ ≤ θp by contradiction. Suppose not, so there

exists θ∗ < θp such that ρ1−F (θ∗)
θ∗f(θ∗)

< 1− β. Claim 5 implies that ρ1−F (θ∗)
θ∗f(θ∗)

< 1− β for θ ∈ [θ∗, θp],

which contradicts ρ1−F (θp)

θpf(θp)
≥ 1− β.

OA.3 Lemma 3 on incentive compatible money-burning schedules

Proof of Lemma 3. The proof follows the argument in Myerson (1981). Suppose that g(·) is

incentive compatible given a money-burning schedule t(·). Define V (θ) = θU(g(θ)) + βW (T −
g(θ))− βt(θ) and u(θ) = U(g(θ)). Consider θ > θ̂, incentive compatibility implies,

V (θ) ≥ V (θ̂) + (θ − θ̂)u(θ̂), and V (θ̂) ≥ V (θ) + (θ̂ − θ)u(θ).
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The inequalities combined imply that u(·) is non-decreasing,

u(θ) ≥ V (θ)− V (θ̂)

θ − θ̂
≥ u(θ̂).

Since U is strictly increasing and u(·) is non-decreasing, g is also non-decreasing and V (·) is

continuous and differentiable almost everywhere. Taking the limit, V ′(θ) = u(θ). Integrating

from θ to θ gives V (θ) = V (θ) +
∫ θ
θ
u(θ). Replacing V and u by their definitions gives (8).

Suppose instead that g(·) is non-decreasing and, for a given t(θ), define t(·) according to (8).

Using the definitions of V and u, rewrite (8) as follows: V (θ) = V (θ) +
∫ θ
θ
u(θ)dθ. For θ ≥ θ̂,

V (θ)− V (θ̂) =

∫ θ

θ̂

u(θ)dθ ≥
∫ θ

θ̂

u(θ̂)dθ = (θ − θ̂)u(θ̂).

The inequality holds because a non-decreasing g(·) implies that u(·) is also non-decreasing. Sub-

stituting the definitions of V and u gives the incentive compatibility constraints.

OA.4 Lemma 4 on the monotonicity of gn

Proof of Lemma 4. Using the observation from footnote 9, rewrite equation (9) as follows:

1− ρ
1− β

ν ′(gn(θ))

U ′(gn(θ))
=
ρ

β

1− F (θ)

f(θ)
+
β − ρ
β

θ.

For ρ < 1, we have 0 < 1−ρ
1−β . The bias ν is convex and the utility index U is strictly concave,

so the ratio ν′(gn)
U ′(gn)

is unambiguously increasing in the argument gn. The right-hand side is non-

decreasing in θ if and only if the derivative of ρ1−F (θ)
f(θ)

is not smaller than ρ− β.

OA.5 Lemma 5 on non-negative marginal sanctions

Proof of Lemma 5. The Euler equation characterizing gd is θU ′(gd(θ)) = βW ′(T − gd(θ)). For

ease of comparison, I rewrite equation (9) defining gn as follows:(
ρ

1− ρ
1− F (θ)

θf(θ)
+
β − ρ
1− ρ

)
θU ′(gn(θ)) = βW ′(T − gn(θ)).

With U strictly concave and W concave, gn(θ) ≤ gd(θ) if and only if the term in the parenthesis

is smaller than one. Hence gn(θ) ≤ gd(θ) if and only if ρ1−F (θ)
θf(θ)

≤ 1− β.
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OA.6 Lemma 6 on the second requirement in the definition of θnp

Proof of Lemma 6. A first step consists of rewriting inequality (10) as one of the first-order

conditions of the Lagrangian method. The first step is Claim 2 in the proof of Proposition 2 in

Appendix B.2. I repeat the claim here for convenience.

Claim 2. Inequality (10) is equivalent to∫ θ̄

θ̂

[
ρ

1− F (θ)

f(θ)
+ (β − ρ)(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (30)

The proof of Claim 2 is in the proof of Proposition 2 in Appendix B.2. It also shows that

inequality (30) and inequality (31) are equivalent.∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̂)). (31)

The second step uses the equivalence between inequalities (10) and (31) and the assumption

that inequality (10) holds with equality for some θ̃ < θ̄ and θ̂ = θ̃ to get:∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ) = ρ

1− F (θ̃)

f(θ̃)
(1− F (θ̃)). (45)

Multiplying both sides of (31) by (1− F (θ̃)) and using (45) for the right-hand side gives

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + β(θ − θ̃)

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
β(θ − θ̃)

]
dF (θ),

which simplifies to

(1− F (θ̃))

∫ θ̄

θ̂

[
ρ(θ̃ − θ̂) + βθ

]
dF (θ) ≤ (1− F (θ̂))

∫ θ̄

θ̃

[
βθ
]
dF (θ).

Rearranging terms give:

(1−F (θ̃))β

∫ θ̄

θ̂

θdF (θ)−(1−F (θ̃))(1−F (θ̂))ρθ̂ ≤ (1−F (θ̂))β

∫ θ̄

θ̃

θdF (θ)−(1−F (θ̂))(1−F (θ̃))ρθ̃.

Since θ̃ ≤ θ̂ < θ̄, both sides can be divided by (1− F (θ̃))(1− F (θ̂)) to give the result.

OA.7 Lemma 7 on the implications of Assumption L

Proof of Lemma 7. For the first part, note that θn ∈ (θ, θ̄) implies that ρ1−F (θn)
θnf(θn)

= 1 − β. The

argument is by contradiction. Suppose that there exists θ∗ ≤ θn such that ρ1−F (θ∗)
θ∗f(θ∗)

< 1 − β.
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Claim 5, implies that ρ1−F (θ)
θf(θ)

< 1 − β for θ ∈ [θ∗, θn], which contradicts ρ1−F (θn)
θnf(θn)

= 1 − β (for

Claim 5, see Proof of Lemma 2 in Appendix OA.2).

The second part uses ∆(gn(θ), θ) = − 1
1−ρ

(
ρ1−F (θ)

θf(θ)
− (1− β)

)
.

d

dθ
θ∆(gn(θ), θ) =

1

1− ρ
d

dθ

(
θ(1− β)− ρ1−F (θ)

f(θ)

)
=

1

1− ρ
1 + ρ− β

1− β
(

1− β + ρ1−F (θ)
θf(θ)

θf ′(θ)
f(θ)

1−β
1+ρ−β

)
≥ 1 + ρ− β

1− β
1

1− ρ
(

1− β − ρ1−F (θ)
θf(θ)

)
=

1 + ρ− β
1− β ∆(gn(θ), θ),

where the inequality is equivalent to Assumption L.

OA.8 Lemma 8 on the second requirement in the definition of θx

Proof of Lemma 8. A first step consists of rewriting inequality (11) as the first-order condition

of the Lagrangian method. I record this step in the following claim.

Claim 6. Inequality (11) is equivalent to∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− (ρ− β)(θ − θ̃)

]
dF (θ) ≥ ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
. (46)

Proof of Claim 6. The definition of the wedge implies the following identity:

θ̂∆(g, θ̂) = θ̂ − βW ′(T − g)

U ′(g)
= θ̂ − θ̃ + θ̃∆(g, θ̃).

Multiplying both sides of inequality (11) by β and substituting the identity for the wedge gives

β
ν ′(gn(θ̃))

U ′(gn(θ̃))
F (θ̂)− β

∫ θ̂

θ

[
θ − θ̃ + θ̃∆(gn(θ̃), θ̃)

]
dF (θ) ≤ ρ(θ̂ − θ̃ + θ̃∆(gn(θ̃), θ̃))(1− F (θ̂)).

Grouping terms gives:(
β
ν ′(gn(θ̃))

U ′(gn(θ̃))
+ (ρ− β)θ̃∆(gn(θ̃), θ̃)

)
F (θ̂) ≤

∫ θ̂

θ

[
β(θ−θ̃)−ρ(θ̂−θ̃)

]
dF (θ)+ρ(θ̂−θ̃+θ̃∆(gn(θ̃), θ̃)).

Using the definition of gn, i.e., equation (9), on the left-hand side gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂) ≤

∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρ(θ̂ − θ̃) + ρθ̃∆(gn(θ̃), θ̃).
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Again, using the definition of gn, i.e., equation (9), expressed as a function of the wedge reads:

θ̃∆(gn(θ̃), θ̃) = θ̃−
(

ρ
1−ρ

1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
, which, upon substitution in the previous inequality gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂) ≤

∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρ(θ̂ − θ̃) + ρθ̃ − ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
.

Upon subtracting ρθ on both sides and rearranging terms, the inequality reads

ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
≤
∫ θ̂

θ

[
β(θ − θ̃)− ρ(θ̂ − θ̃)

]
dF (θ) + ρθ̂ − ρθ.

Adding and subtracting ρθ to the integrand on the right-hand side gives

ρ1−F (θ̃)

f(θ̃)
F (θ̂)− ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
≤
∫ θ̂

θ

[
ρ(θ − θ̂)− (ρ− β)(θ − θ̃)

]
dF (θ) + ρθ̂ − ρθ.

Integration by parts gives the following identity:

ρ

∫ θ̂

θ

[θ − θ̂]dF (θ) + ρθ̂ − ρθ =

∫ θ̂

θ

[
ρ1−F (θ)

f(θ)

]
dF (θ),

which, after substitution in the right-hand side of the previous inequality, gives (46).

The second step uses the equivalence in Claim 6 and the assumption that inequality (10) holds

with equality for some θ̃ < θ̄ and θ̂ = θ̃ to get:∫ θ̃

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ) = −ρθ + ρ

(
ρ

1−ρ
1−F (θ̃)

f(θ̃)
− ρ−β

1−ρ θ̃
)
. (47)

Substituting (47) in the right-hand side of (46) gives∫ θ̂

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ)≥

∫ θ̃

θ

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ).

Subtracting the left-hand side on both sides gives

0 ≥
∫ θ̃

θ̂

[
ρ1−F (θ)

f(θ)
− ρ1−F (θ̃)

f(θ̃)
− (ρ− β)(θ − θ̃)

]
dF (θ),

which gives (12) after rearranging terms.

OA.9 Proof of Lemma 9 on the global optimality conditions

Proof of Lemma 9. Lemma A.2 in Amador, Werning, and Angeletos (2006) implies that if the

Lagrangian with Lagrange multipliers Λ∗ is concave, then the equality and inequality conditions

in terms of Gateaux derivatives imply that the Lagrangian is maximized at u∗, t∗:

L(u∗, t∗|Λ∗) ≥ L(u, t|Λ∗) for all (u, t) ∈ Φ.
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To show the concavity of the Lagrangian with Lagrange multipliers Λ∗, it is convenient to spell

out the Lagrangian (14) and factorize the non-linear terms as follows:

L(u, t|Λ∗) ≡
∫

Θ

[
u(θ)

(
(1− F (θ))− θ ρ−β

ρ
f(θ)

)]
dθ

−
∫

Θ

[u(θ)(1− Λ∗(θ))] dθ + (θ u(θ)− t)Λ∗(θ) +

∫
Θ

[θ u(θ)] dΛ∗(θ)

+

∫
Θ

[
βW (T − U−1(u(θ)))

]
d
(

1−ρ
ρ
F (θ) + Λ∗(θ)

)
+ βW (T − U−1(u(θ)))Λ∗(θ).

The integrands for the integrals in the first two lines are linear in u. For the terms in the

remaining two lines, to show that the function u 7→ W (T − U−1(u))) is concave, note that

the utility index U is strictly increasing and concave so its inverse U−1 is strictly increasing

and convex ( U−1′(U(x)) = 1/U ′(x) and U−1′′(U(x)) = −U−1′(U(x))U ′′(x)/U ′(x)2). Since W is

increasing and concave and −U−1 is concave, the composition u 7→ W (T − U−1(u)) is concave.

A sufficient condition for the Lagrangian to be concave is that the function 1−ρ
ρ
F (θ) + Λ∗(θ) be

non-decreasing, which is the case since 0 ≤ ρ ≤ 1 and F and Λ∗ are both non-decreasing.

It remains to show that the maximizer of a concave Lagrangian at a valid Lagrange multiplier

is the solution to the constrained optimization problem of interest. This is precisely what the

global theory of constrained optimization does for us.

The following notation maps the environment studied in this paper to Theorem 1 in Amador

and Bagwell (2013) p.1575: X = {u, t | u : Θ 7→ R, t ∈ R}, Z = {z | z : Θ 7→ R} with norm

||z||= supθ∈Θ|z(θ)|, Ω = {(u, t) ∈ X| u is non-decreasing, t ≥ 0}, and P = {z ∈ Z | z(θ) ≥
0 for θ ∈ Θ}. The objective is a functional f : Ω 7→ R defined as follows:

f(u, t) =−
∫

Θ

[
u(θ)ρ1−F (θ)

f(θ)
− βν(U−1(u(θ)))

]
dF (θ)

− (ρ− β)

∫
Θ

[
θu(θ) + βW (T − U−1(u(θ)))

]
dF (θ).

The constraints on limited transfers are defined as follows: G : Ω 7→ Z,

G(u, t) = −
(
t+ θ u(θ) + βW (T − U−1(u(θ)))− θ u(θ)− βW (T − U−1(u(θ)))−

∫ θ

θ

u(θ̃) dθ̃

)
,

and their contributions to the Lagrangian are given by T : Z 7→ R,

T (z) =

∫
Θ

z(θ)dΛ∗(θ),
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which satisfies T (z) ≥ 0 for all z ∈ P since Λ∗ is non-decreasing. Since L(u|Λ∗) = −f(u) −
T (G(u)), Theorem 1 from Amador and Bagwell (2013) implies that (u∗, t∗) solves

min
(u,t)∈Ω

{f(u, t)|−G(u, t) ∈ P}.

Inverting the above mapping from the environment of this paper to Theorem 1 in Amador and

Bagwell (2013) and using t(·) defined in (8) as a function of g(·), the allocation g∗ = U−1(u∗)

and the initial level t∗ solve the optimization problem:

max
g∈Ω, t≥0

∫
Θ

[θU(g(θ)) + βW (T − g(θ))− ν(g(θ))− ρt(θ)] dF (θ)

s.t. for all θ ∈ Θ:

βt(θ) = βt+ θU(g(θ)) + βW (T − g(θ))− θU(g(θ))− βW (T − g(θ))−
∫ θ

θ

U(g(θ̃))dθ̃

g is non-decreasing

t(θ) ≥ 0.

The characterization of incentive compatible allocations in Lemma 3 implies that (g∗, t∗) in which

βt∗(θ) ≡ βt∗ + θ U(g∗(θ)) + βW (T − g∗(θ))− θ U(g∗(θ))− βW (T − g∗(θ))−
∫ θ

θ

U(g∗(θ̃)) dθ̃

solve the mechanism design problem (5).

OA.10 Proof that Assumption H implies a tight cap

This section contains the formal statement and the proof of an observation made in Section 4.

Claim 7. Assumption H implies that the tight cap allocation lies below the discretionary alloca-

tion; that is, gc ≤ gd(θ) for θ ∈ Θ.

Proof of Claim 7. Integrate the inequality in Assumption H to get∫ θ̄

θ

(1− F (θ))dθ ≤ (1− β)

∫ θ̄

θ

θf(θ)dθ.

Integrating 1− F by parts gives∫ θ̄

θ

θf(θ)dθ − θ + lim
θ→θ̄

θ(1− F (θ)) ≤ (1− β)

∫ θ̄

θ

θf(θ)dθ.

Since the expectation of θ is finite and the distribution of θ has a density, limθ→θ̄ θ(1−F (θ)) = 0.

The inequality reduces to β E[θ] ≤ θ, which is equivalent to gc ≤ gd(θ). The discretionary

allocation is non-decreasing and hence gc ≤ gd(θ) ≤ gd(θ).
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OB Shocks to government revenues

This section uses Section 5.4 in Amador, Werning, and Angeletos (2006) to derive shocks to

fiscal needs from shocks to government revenues. I then show that the mapping preserves the

log-convexity of the tail. Although log-concavity need not be preserved, an example illustrates

that it may be preserved. For this section, assume that the utility index exhibits constant

absolute risk aversion: U(g) = e−αg. The objective of the government does not feature a priori

shocks to fiscal needs; it reads U(g) + βW (x). The budget constraint is

g + x+ τf (g) = T + T̃ ,

where T̃ denotes the idiosyncratic shocks to government revenues. Suppose that T̃ ∼ FT̃ . Substi-

tuting the budget constraint in the objective function maps shocks to fiscal revenues into shocks

to fiscal needs as follows: θ = e−αT̃ . The distribution of shocks to fiscal needs θ is related to the

distribution of shocks to revenues T̃ as follows: F (x) = 1− FT̃ (− ln(x)/α) .

The distribution of fiscal needs is a transformed and mirrored version of the distribution of

government revenues. Convex (resp. concave) monotonic transformations of a random vari-

able preserve the log-convexity (resp. log-concavity) of the tail. Mirroring preserves the log-

concavity/convexity.

Proposition (Log-convex tails). If FT̃ is log-convex, then 1− F is also log-convex.

Proof. Let z(x) = − 1
α

ln(x). Since z is monotonic and convex, the log-convexity of FT̃ implies

that FT̃ ◦ z is also log-convex. Since 1 − F = FT̃ ◦ z, the tail of the distribution of θ is also

log-convex.

The analog correspondence for log-concave tails need not hold. The convex function for

the change of variable counteracts the concavity of the log of the tail. The following example

illustrates that the result holds for some class of distributions.

Example (Log-concave tails). Fiscal need θ is uniformly distributed on [0, 1] if and only if the

shock to fiscal revenue T̃ is exponentially distributed with F (x) = 1− exp (−x/α) on [0,∞). The

uniform and exponential distributions both have a log-concave tail.
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Assumption L pertains to the elasticity of the density. The densities are related as follows:

f(x) = 1
αx
fT̃ (− ln(x)/α) . A lower bound on the elasticity of f corresponds to an upper bound

on the semi-elasticity of fT̃ ; the correspondence follows from xf ′(x)
f(x)

= −
(

1 +
f ′
T̃

(− ln(x)/α)

fT̃ (− ln(x)/α)

)
.

OC Examples

OC.1 Figure 1

For non-financial sanctions (i.e., ρ = 1), the optimal fiscal rule is a cap on spending as depicted in

the left and right panels of Figure 1. First, consider the left panel. To show that implementing the

discretion and off-equilibrium sanctions allocation is optimal, it suffices to check that Assumption

L holds for θ ≤ θp so that Proposition 1 applies. The elasticity of the density of the exponential

distribution is −λθ, which is smaller than −2−β
1−β for θ ≤ 2 since 1 − β = 0.2. The degree of

present bias is low and θ = 1 < θp < 2. The threshold for the optimal cap is interior because

the tail of the exponential distribution is log-concave. In contrast, if shocks to fiscal needs were

distributed according to a distribution with a strictly log-convex tail, the cap would either be

infinitely loose (i.e., no cap), or it would be tight.

Second, consider the right panel of Figure 1. To show that implementing the tight cap alloca-

tion is optimal, it suffices to check that Assumption H holds so that Proposition 4 applies. For

the exponential distribution, 1−F (θ)
θf(θ)

= 1
λθ
≤ 1

λθ
< 0.6 = 1− β, so Assumption H holds.

OC.2 Figure 2

For ρ = β < 1, the dashed line in the panels in Figure 2 depicts the allocation implemented by

the candidate marginal sanction schedule.

Consider the top left panel of Figure 2. To show that a fiscal rule that implements the

discretion and off-equilibrium sanctions allocation is optimal, it suffices to show that Proposition

1 applies. Note that 1−F is log-concave, and Assumption L holds for θ ≤ 1
λ

1
1−β and θp < 1.66̄ =

1
λ

1
1−β . Consider the bottom left panel. Proposition 2 implies that implementing the discretion

and on-equilibrium sanctions allocation is optimal since 1 − Fa is log-convex (so θnp = θ̄) and

Assumption L holds for θ ≤ θn. Consider the middle left panel. Proposition 2 applies because
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the tail of the truncated Fa distribution becomes log-concave after a point that lies above θnp

and Assumption L holds for θ ≤ θn′ .

Consider the bottom right panel. To show that implementing the exemption and on-equilibrium

sanctions allocation is optimal, it suffices to show that part 2) of Proposition 3 applies. Since

the tail of the Pareto distribution is log-convex, θnp = θ̄. To check that Assumption I holds

for θ ≤ θnp, note that for the Pareto distribution, β 1−F (θ)
θf(θ)

= β
γ

= 0.7
4
< 0.3 = 1 − β. Consider

the middle right panel. The only change from the bottom right panel is that the distribution

is truncated. Because a truncated Pareto distribution is log-convex up to a point after which it

is log-concave, θnp < θ̄ in the middle left panel. Last, consider the top right panel. Part 1) of

Proposition 3 applies since the exponential distribution has a log-concave tail and Assumption I

holds for θ = θ.

Two main lessons emerge from Figure 2. First, the three panels on the left illustrate the role

of the tail of the distribution of shocks in determining the optimal severity of sanctions. In all

three panels, the sanction schedule imposes increasing discipline. In the middle left panel, for

instance, there is no sanction below a threshold, sanctions are on-equilibrium for an intermediate

range of spending levels, and sanctions are off-equilibrium above the cap. The bunching caused

by off-equilibrium sanctions can be understood as “ironing.” In contrast the bunching caused by

the exemption cannot be understood as “ironing” because gn is increasing below the exemption

threshold.
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