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Abstract 

 

We have demonstrated the usefulness of tert-butylsulfonyl (N-Bus) 

protecting group in amino acid and peptide chemistry. It is formed in a 2-step 

procedure involving reaction of an amine with tert-butylsulfinyl chloride, 

followed by oxidation with m-CPBA to obtain the corresponding tert-butyl- 

sulfonamides in excellent yields. The N-Bus group can be cleaved to regenerate 

the corresponding amino salt in 0.1 N TfOH/DCM/anisole at 0 oC for 10 h.  

A variety of N-Bus protected amino acids and other common amino acids 

can be used to form dipeptides and tripeptides. With the exception of the 

N-Fmoc group, the conditions required for the N-Bus group cleavage also 

cleaved the N-Boc, N-Cbz and O-Bn groups. Selective and orthogonal 

deprotection of N-Boc, N-Cbz, N-Fmoc and O-Bn groups could be achieved in 

the presence of the N-Bus protecting group. 

The new unnatural amino acids (3R, 2R) 3–methyl-D-leucine (β-Me-Leu) 

and its 2-methyl regioisomer were synthesized by ring opening of an N-Ts 

aziridine intermediate with excess LiMe2Cu. The 1:1.2 mixture of regioisomers 

were each converted to the corresponding methyl leucines, then coupled to 

D-phenyllactic acid, followed by coupling with 2-carboxyperhydroindole 

4-amidino-benzamide core in the presence of DEPBT. Further elaboration led to 

linear peptidic unnatural analogues of known aeruginosins such as 

chlorodysinosin A. The two analogues were also evaluated in enzymatic assays 

for their inhibitory activity against thrombin and trypsin. 

The presumed 3-sulfated aeruginosin 205B and its β–anomer were 

successfully synthesized from 5 subunits: 3-chloroleucine, D-phenyllactic acid, 

D-xylose, 2-carboxy-6-hydroxyoctahydroindole, and agmatine. Comparison of 



ix 
 

1H and 13C NMR reported data with that of synthetic aeruginosin 205B revealed 

a disturbing discrepancy with regard to the position of the presumed 3'-sulfate 

on the D-xylopyranosyl unit. We synthesized methyl α-D-xylopyranosides with 

sulfates at each of the hydroxyl groups and conclusively demonstrated the the 

presence of a C-4'-sulfate by comparison of the 1H and 13C NMR spectroscopic 

data. Thus, the structure of aeruginosin 205B should be revised. 

One of the key steps in the synthesis is glycoside formation of the axially 

oriented C-6 hydroxyl group in the Choi subunit. The 2-thiopyridyl carbonate 

was a suitable method for anomeric activation, followed by treatment with 

AgOTf and tetramethylurea in ether-DCM solution to give the desired α-anomer, 

which was easily separable from the β-anomer by column chromatography. 

 

 

 

 

 

 

 

 

Keywords:  tert-butylsulfonyl (N-Bus) group, amino acid protection, 

β–methyl-D-leucinyl aeruginosin, (3R, 2R) 3–methyl-D-leucine (β-Me-Leu), 

aeruginosin 205B, axially oriented glycoside synthesis  
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Résumé 

 

Nous avons démontré l’utilité du groupement protecteur tert-butylsulfonyle 

(N-Bus) pour la chimie des acides aminés et des peptides. Celui-ci est préparé 

en deux étapes, impliquant la réaction d’une amine avec le chlorure de 

tert-butylsulfinyle, suivie par l’oxydation par du m-CPBA, pour obtenir les 

tert-butylsulfonamides correspondants avec d’excellents rendements. Le 

groupement N-Bus peut être clivé par traitement avec 0.1 N TfOH/DCM/anisole 

à 0oC en 10h pour régénérer le sel d’ammonium.  

Une variété d’acides aminés N-Bus protégés ainsi que d’autres aminoacides 

peuvent alors être utilisés pour préparer divers dipeptides et tripeptides. A 

l’exception du groupe N-Fmoc, les conditions de déprotection du groupe N-Bus 

clivent également les groupements N-Boc, N-Cbz et O-Bn. Une déprotection 

sélective et orthogonale des groupes N-Boc, N-Cbz, N-Fmoc et O-Bn est 

également possible en présence du groupe protecteur N-Bus. 

Le nouvel acide aminé non-naturel (3R, 2R) 3–méthyl-D-leucine (β-Me-Leu) 

et son régioisomère 2-méthyle ont été synthétisés par ouverture d’une N-Ts 

aziridine en présence d’un excès de LiMe2Cu. Chacun des régioisomères du 

mélange (1:1,2) a été converti en la méthylleucine correspondante, puis couplé 

à l’acide D-phényllactique puis au motif 2-carboxyperhydroindole 

4-amidinobenzamide en présence de DEPBT. Des élaborations ultérieures ont 

conduit à des analogues peptidiques non-naturels d’aeruginosines telles que la 

chlorodysinosine A. Les deux analogues ont ensuite été évalués pour leur 

activité inhibitrice de la thrombine et la trypsine.  

La présumée aeruginosine 3-sulfate 205B et son anomère β ont été 

synthétisés avec succès à partir de 5 sous-unités : la 3-chloroleucine, l’acide 
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D-phényllactique, le D-xylose, le 2-carboxy-6-hydroxyoctahydroindole et 

l’agmatine. La comparaison des données RMN 1H et 13C reportées avec celles 

obtenues avec l’aeruginosine synthétique 205B révèle une différence majeure 

pour la position du groupe présumé 3'-sulfate sur l’unité D-xylopyranosyle. 

Nous avons alors synthétisés les dérivés méthyl-α-D-xylopyranosides avec un 

groupement sulfate à chacune des positions hydroxyles, afin de démontrer 

sans ambiguïté la présence du sulfate en position C-4' par comparaison des 

données spectroscopiques RMN 1H et 13C. La structure de l’aeruginosine 205B a 

alors été révisée. 

Une des étapes-clés de cette synthèse consiste en la formation du glycoside 

avec le groupe hydroxyle en C-6 orienté en axial sur la sous-unité Choi. Le 

2-thiopyridylcarbonate s’est avéré une méthode efficace pour l’activation 

anomérique. Le traitement par AgOTf et la tétraméthylurée en solution dans un 

mélange éther-DCM permet d’obtenir l’anomère α désiré, qui peut alors être 

aisément séparé de l’anomère β par chromatographie 

 

 

 

 

 

 

Mots clés:  groupe tert-butylsulfonyle (N-Bus), protection d’acides aminés, 

β–méthyl-D-leucinyl aeruginosine, (3R,2R) 3–méthyl-D-leucine (β-Me-Leu), 

aeruginosine 205B, synthèse de glycosides orientés en axial 
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Chapter One 

Tert-Butylsulfonyl (Bus), a New Protecting 

Group for Amino Acids and Peptides 
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1-1 Introduction 

1-1-1 Common amino acid protecting groups: Cbz, Boc, Fmoc… 

N-Protecting groups are of primary importance in the utilization of amino 

acids and nitrogen containing organic molecules in synthesis.[1-3] Among the 

more popular N-protecting groups that can also benefit from an orthogonal 

deprotection strategy are the N-Boc, N-Cbz and N-Fmoc groups (Figure 1).[4,5] 

 

 

Figure 1. Structures of the N-Boc, N-Cbz and N-Fmoc groups. 

 

1-1-1-1 N-Boc group  

The Boc group is used extensively in peptide synthesis for amine 

protection,[6] due to its stability under basic conditions and its inertness to 

many other nucleophilic reagents.  

One of the more common methods for Boc introduction is to treat the amine 

with Boc anhydride (Boc2O) in aqueous sodium hydroxide. It has the advantage 

that the product is easily isolated.[7] For sterically hindered amino acids, a 

superior method is to utilize Boc2O with tetramethylammonium hydroxide 

pentahydrate (Me4NOH.5H2O) in acetonitrile.[8] Both of these procedures afford 

excellent yields. 

The N-Boc group is sensitive to acidic conditions, such as 3 M HCl in ethyl 

acetate, [9] acetyl chloride (AcCl) in methanol,[10] 10% H2SO4 in dioxane and 50% 

trifluoroacetic acid (TFA) in dichloromethane.[11] The N-Boc group can also be 

deprotected by a catalytic amount of cerium(IV) ammonium nitrate (CAN) in 
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acetonitrile.[12]  

 

1-1-1-2 N-Cbz group 

The N-Cbz group is similar to the N-Boc group in its stability under basic 

conditions, however unlike N-Boc group, is also stable under mild acidic 

conditions. 

The reagent dibenzyl dicarbonate (PhCH2OCO)2O with sodium hydroxide or 

triethylamine (Et3N) as base in dioxane-water mixture[13,14], has been used to 

prepare N-Cbz compounds. Better yields were reported than with benzyl 

chloroformate (PhCH2OCOCl)[15]. 

The most common method to cleave the N-Cbz group is to use Pd over 

activated carbon (Pd-C) as a catalyst under hydrogen gas atmosphere.[15] The 

N-Cbz group is also readily cleaved under strongly acidic conditions such as 

hydrogen bromide (HBr) in acetic acid (AcOH),[16] 50% trifluoroacetic acid (TFA) 

solution,[17] or trifluoromethanesulfonic acid (CF3SO3H).[18] This group is also 

unstable under strongly basic condition such as 40% potassium hydroxide in 

the methanol-water solution[19] and with sodium (Na)-ammonia (NH3) in a 

dissolving metal reduction. [20] 

 

1-1-1-3 N-Fmoc group 

A major advantage of the Fmoc protecting group is that it has excellent 

acid stability, under which N-Boc and N-Cbz groups can be removed. It can be 

readily cleaved by simple amines to liberate the amine as its free base.[21]  

The most common method of introducing Fmoc is using 9-fluorenyl- 

methoxycarbonyl chloride (Fmoc-Cl) with sodium bicarbonate (NaHCO3) as a 

base in dioxane.[22] Diisopropylethylamine is reported to suppress dipeptide 

formation during Fmoc introduction with Fmoc-Cl.[23] Another reagent that also 

could be used is 9-fluorenylmethyl succinimidyl carbonate (Fmoc-OSu) in 
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acetonitrile-water solution.[24,25] The advantage of Fmoc-OSu is that little or no 

oligopeptides are formed when amino acid derivatives are prepared.[26] 

The N-Fmoc group is cleaved under mild conditions with an amine base, 

such as 20% piperidine in DMF, to afford dibenzofulvene and free amine.[26] 

N-Fmoc is generally considered to be stable to hydrogenation, but it has been 

shown that under certain conditions it can be hydrogenated by Pd-C as a 

catalyst under hydrogen gas in the presence of acetic acid in methanol.[27] 

 

1-1-2 Tert-Butylsulfonyl (Bus), as a new protecting group for 

amines  

Sulfonyl groups have had a long history in the protection of amines and 

other nitrogeneous functionalities.[28] Their stability within a wide array of 

reaction conditions is one of the most attractive features of sulfonamides. 

Unfortunately due to the harsh conditions, which are required for their removal, 

N-sulfonyl groups are not as versatile in highly functionalized or sensitive 

substrates. 

In recent years, N-sulfonyl protecting groups have been improved by 

addition of new aryl varieties, including the heteroarene-2-sulfonyl chlorides 

such as BtsCl and ThsCl groups (Figure 2) introduced by Vedejs[29]; and the 

N-o-nitrophenylsulfonyl chlorides such as DNsCl and NsCl groups (Figure 2), 

which were introduced by Fukuyama[30]. Those are stable in acidic conditions 

and amenable to mild removal, such as N-Bts or N-Ths groups were removed by 

treatment with zinc (Zn) in acetic acid-ethanol mixture or aluminum-mercury 

(Al-Hg) in ether-water solution at room temperature,[29] deprotection of N-DNs 

group was performed by treatment with thioglycolic acid (HSCH2CO2H) and 

triethylamine in dichloromethane,[30] and N-Ns group was deprotected with 

thiophenol (PhSH) and cesium carbonate (Cs2CO3) in acetonitrile.[30] 
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Figure 2. Structures of the BtsCl, ThsCl, DNsCl, NsCl and N-Bus groups. 

 

In 1997 Sun and Weinreb reported the use of the N-tert-butylsulfonyl group 

(Figure 2) as a new protecting group for amines.[31] tert-Butylsulfonyl chloride 

is quite unstable and does not normally undergo nucleophilic displacement at 

sulfur with amines.[32] The preparation of N-tert-butylsulfonamides consists of 

a 2-step procedure, which involves: 1) reaction of an amine with the 

commercially available tert-butylsulfinyl chloride; 2) oxidation of resulting 

tert-sulfinamide with a variety of oxidants, including KMnO4,[33]  m-CPBA,[31]  

RuCl3/NaIO4,[31]  H2O2/LiOH[34] and NaOCl/PTC;[35] to afford the corresponding 

product in excellent overall yield. Sun and Weinreb showed that the N-Bus 

group is stable to a variety of organolithium and Grignard reagents and also 

exhibited stability toward strong bases. The N-Bus group can be cleaved with 

TFA/anisole at room temperature to regenerate the amine salt in good yields. 

 

1-1-3 Tert-butylsulfonamide as a new functional group 

Only limited use has been made of this versatile functionality since its initial 

report in 1997 by Sun and Weinreb.[31]  

 

1-1-3-1 As an effective nitrogen source of aziridine 

Sharpless and coworkers have shown that tert-butylsulfonamide is an 

effective nitrogen source for catalytic aziridination of olefins (Scheme 1).[36]  
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R1
R2

NBus
R1

R2

NHBus

X
R1

R2 a b c
R1

R2

NH2

X

Scheme 1: Reagents and conditions: a) 1.2 eq. Bus-NClNa, PTAB (phenyltrimethylammonium
tribromide) 10 mol%, MeCN, r.t.,10 h; b) nucleophilic reagent; c) 20 eq. anisole,
TfOH, DCM, r.t.;

1.1 1.2 1.3 1.4

 

 

With simple unfunctionalized olefins 1.1, aziridines 1.2 which often are the 

only reaction products, are generally obtained in high yields. Product isolation 

is simple, and purification does not require chromatography. The aziridination 

of the olefins is stereospecific. For example, cis- and trans-β-methylstyrene 

afford exclusively the cis- and trans-aziridines, respectively. Substantial 

amounts of the rearranged allylic sulfonamide were obtained in the case of 

exocyclic olefins, such as methylenecyclohexane. Nucleoplilic attack led to 

tert-butylsulfonamides 1.3. The corresponding amines 1.4 were formed under 

reasonably mild acidic conditions, after cleavage of the Bus-group. 

 

1-1-3-2 As a protecting group in regioseletive opening of aziridines 

During the total synthesis of chlorodysinosin A, the regioselective opening 

of an aziridine intermediate 1.5 with CeCl3 (Scheme 2),[37] was only possible 

with the N-Bus protecting group on the aziridine. 

 

 
 

 The ratio of the products 1.6 and 1.7 was more than 10 to 1. A steric clash 

between the isopropyl group and the tert-butyl group on the N-Bus group could 
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be the reason for the high regioselectivity of CeCl3-mediated opening of the 

Bus-protected, and thus providing an open path for SN
2 attack at C3. The less 

sterically demanding N-Ts and N-trifluoromethylsulfonyl groups led to a 

competitive reaction at C2. This hypothesis is supported by the fact that 

cleavage of the aziridine with the smallest N-sulfonyl group (SO2CF3), showed 

the lowest regioselectivity at C3. The corresponding 3-chlorosulfonamide was 

obtained with the same region- selectivity and yield by CeCl3-mediated opening 

of hydroxymethyl aziridine, suggesting that the steric bulk of the TBS group 

was not responsible for the selectivity. 

Lithiation and electrophile trapping of terminal N-Bus aziridine 1.8,[38] led 

to an α-lithiated aziridine 1.9, which underwent rapid dimerization to afford 

2-ene-1,4-diamine 1.10 (Scheme 3).  

 

 
 

The aziridine 1.8 was transformed to the α-lithiated aziridine 1.9, which 

could occur via a 1,2-metallated shift. In the process, a nucleophilic attack can 

occur on 1.8. Subsequent syn-elimination, driven by the steric demand of the 

aziridine substituents and the N-Bus groups, leads to the formation of the 

E-alkene isomer 1.10 in highly selectivity. Compared to the analogous epoxide 
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dimerization reactions, the improved E/Z selectivity is attributed to the extra 

steric demand of the Bus groups. If a pendant alkene is present, as in 

compound 1.11, the N-Bus-α-lithiated unsaturated aziridine 1.11a affords a 

2-aminobicyclo-[3.1.0]hexane 1.12. 

 

1-1-3-3 As a functional group on imines 

There are also applications involving addition reactions on N-Bus imines, as 

exemplified by the asymmetric synthesis of fused bicyclic amino acids (Scheme 

4).[39] 

 The N-tert-butylsulfonyl imino ester 1.14 was used in one of the key steps 

of the synthesis. Firstly, starting material 1.13 was transformed to 

enantiomerically a pure bis(allylsulfoximine)titanium complex, which reacted 

with imino ester 1.14, through a highly selective allylation to give the enantio- 

and diastereo- merically pure product 1.15. 

 

 

 

Another example is the asymmetric synthesis of fused bicyclic proline 

1.22.[40] The key steps of this synthesis are: 1) a highly regio- and diastereo- 

selective amino alkylation of the cyclic bis(allylsulfoximine) titanium complex 

1.19 with the tert-butylsulfonyl imino ester 1.14; 2) a novel migratory 
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cyclization of the α-amino alkenyl sulfoxonium salt 1.21 (Scheme 5).  

 

 

 

1-2 Results and Discussion 

1-2-1 Tert-Butylsulfonyl (Bus), as a new protecting group for 

amino acids 

To date, there are no reports of the use of N-Bus protecting group in amino 

acid and peptide chemistry.[1-5] In this chapter, we report our efforts in the 

preparation of a variety of N-Bus derivatives of common amino acids and 

peptides. We further show the combination of N-Bus and other common 

N-protecting groups, and also show the prospects of performing orthogonal 

deprotections. 

 

1-2-2 N-Bus formation and cleavage 

1-2-2-1 Formation of the N-Bus group of amino acid esters 

tert-Butylsulfonyl chloride is quite unstable and cannot be used directly in 

the sulfonation of amines. Therefore, the straightforward and well-documented 

2-step procedure was chosen. [31] The amine 1.23 was reacted with the tert- 

butylsulfinyl chloride 1.28 to afford the corresponding tert-butylsulfonamides 

1.24. The reagents and conditions are shown in Scheme 6.[31]  
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ClH.H2N CO2Me

R
S
O

N
H

CO2Me

R
S
O

N
H

CO2Me

R

O
a b

Scheme 6: Reagents and conditions: a) tert-butylsulfinyl chloride 1.28, Et3N, DCM, 0 oC, 1 h;
b) m-CPBA, DCM, r.t., 1 h;

1.23 1.24 1.25

 
 

Due to the low purity of commercially available tert-butylsulfinyl chloride 

1.28, it was prepared by a 2-step procedure.[37] The Grignard reagent from 

tert-butylmagnesium chloride 1.26, was reacted with the excess SO2 gas, 

followed by the acylation of the resulting sulfinic acid 1.27 with thionyl chloride 

to afford tert-butylsulfinyl chloride 1.28 as a light yellow oil (Scheme 7).  

 

a

Scheme 7: Reagents and conditions: a) SO2, THF, 0 oC, 3 h; b) thionyl chloride, THF, r.t., 4 h;

Mg
Cl S

O

OH S
O

Cl
b

1.26 1.27 1.28

 

 

Neat tert-butylsulfinyl chloride 1.28 decomposes readily. However, a 

solution of 1.28 in dry DCM can be stored in a freezer for prolonged periods 

(more than 6 months without decomposing). 

The resulting sulfinamide 1.24 can be oxidized with a variety of oxidants. 

For our purposes, m-CPBA was proved to be a much milder and efficient oxidant. 

Since the thiohydryl group of cysteine is also oxidized by m-CPBA under these 

conditions, the Bus group cannot be used as a protecting group for cysteine. 

The results of the N-Bus group formation for a series of amino acid esters 

are shown in Table 1. 

 

1-2-2-2 Cleavage of the N-Bus group of amino acid esters 

A catalytic amount of CAN was found to act as an efficient catalyst for 
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removal of the N-Boc group from an amino, hydroxyl, or mercapto functionality 

in organic compounds, under the mild and neutral reaction conditions.[12] In 

contrast, the N-Bus group was completely unreactive when refluxed with 1 eq. 

CAN for 24 h. 

Various methods for the Bus cleavage were attempted, however the best 

way to cleave and to regenerate the corresponding amine salt was found to be 

with 0.1 N TfOH/DCM/anisole at 0 oC for 10 h (Scheme 8).  

 

 
 

During the workup either a strong base resin, such as DOWEX Monosphere 

550A a hydroxide form anion exchange resin, or saturated aqueous NaHCO3 

was used to neutralize the excess trifluoromethanesulfonic acid (TfOH) and to 

remove anisole from the reaction mixture. However, since some free amino 

acids are volatile, the amino acid esters were isolated as HCl salts. 

The results of the N-Bus group cleavage for a series of amino acid esters 

are shown in Table 1. 

 

Table 1 Bus-group formation and cleavage for amino acid esters 

Entry Compound 
N-Bus Formationb  N-Bus cleavage 

Compound Yield%a Compound Yield%a

1 
 

1.25a  84 1.23a 89 

2 
 

1.25b 82 1.23b 90 
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3 

 

1.25c 82 1.23c 79 

4 
 

1.25d 77 1.23d 85 

5 
 

1.25e 88 1.23e 85 

6 
 

1.25f 77 1.23f 85 

7 
 

1.25g 72 1.23g 84 

a) yields of isolated pure product; b) the total yields over two steps   

 

The results show that the 2-step formation of N-Bus derivatives of the 

amino acids some common and N-Bus cleavage with TfOH/anisole could be 

achieved in excellent overall yields.  

 

1-2-2-3 Retention of the stereochemistry during the protection and 

deprotection 

It is very important to retain the stereochemistry of the amino acid during 

the protection and deprotection steps. The stereochemistry of the amino acid 

esters, obtained after the Bus-group protection and deprotection, was analyzed 

by transforming them to the corresponding Mosher amides and NMR analysis. 

The 1H NMR and 19F NMR spectrum showed that the chirality of the amino acids 

was unaffected. 

HPLC was used for the further verification. The de % of the alanine Mosher 

amide and phenylalanine Mosher amide were >99.9%.  
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In conclusion, the process of Bus-groups formation and cleavage does not 

affect the stereochemistry of the amino acids. 

 

1-2-3 Forming dipeptides and tripeptides with the Bus 

protecting group 

1-2-3-1 Formation of amino acid esters dipeptides 

The formation of peptides using the N-Bus protected amino acids was 

studied next.  

N-Bus-O-benzyl-L-serine methyl ester 1.30a and N-Bus-O-benzyl- 

L-tyrosine methyl ester 1.30b were formed as previously described, then 

hydrolyzed using aqueous lithium hydroxide to afford carboxylic acids 1.31a 

and 1.31b, respectively. These were coupled with the primary amine of N6-Boc- 

L-lysine methyl ester 1.34 by using EDC, 2,6-lutidine and HOBt as coupling 

reagents to afford dipeptides 1.32a and 1.32b in 85% and 93% yield 

respectively (Scheme 9).  

 

BusHN

R

O

N

CO2Me

Scheme 9: Reagents and conditions: a) i) tert-butylsulfinyl chloride, Et3N, DCM, 0 oC, 1 h;
ii) m-CPBA, DCM, r.t., 1h; b) LiOH.H2O, MeOH/H2O, 4 oC, 10 h; c) EDC, HOBt,
2,6-lutidine, N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.34, DMF/DCM 1:4, r.t.,
4 h; d) L-proline methyl ester 1.23b, EDC, HOBt, 2,6-lutidine, DMF/DCM 1:4, r.t., 4 h;

1.33a. R=OBn, 86%
1.33b. R=p-C6h4OBn, 89%

1.31a. R=OBn, 86%
1.31b. R=p-C6h4OBn, 88%

BusHN CO2Me

R
a b

1.30a. R=OBn, 78%
1.30b. R=p-C6h4OBn, 80%

BusHN CO2H

R

BusHN R

CO2Me

NHBoc

N
H

O
1.32a. R=OBn, 85%
1.32b. R=p-C6h4OBn, 93%

c

ClHH2N CO2Me

R

d

1.29a. R=OBn
1.29b. R=p-C6h4OBn
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The carboxylic acids 1.31a and 1.31b were also coupled under the same 

conditions with L-proline methyl ester 1.23b to form corresponding dipeptides 

1.33a and 1.33b in high yields (Scheme 9).  

Next N-Bus-L-alanine methyl ester 1.25d and N-Bus-L-phenylalanine 

methyl ester 1.25e were also hydrolyzed to the free acids 1.36a and 1.36b 

respectively, then coupled with N6-Boc-L-lysine methyl ester 1.34 and N6-Cbz- 

L-lysine methyl ester 1.35 to form dipeptides 1.37a-d in excellent yields 

(Scheme 10). 

 

BusHN CO2H

R

BusHN R

CO2Me

NHR1

N
H

O

Scheme 10: Reagents and conditions: a) LiOH.H2O, MeOH/H2O, 4 oC, 10 h; b) EDC,
HOBt, 2.6-lutidine, N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.34 or
N6-benzyloxycarbonyl-L-lysine methyl ester 1.35, DMF/DCM 1:4, r.t., 4 h;

1.36a. R=Me, 88%
1.36b. R=CH2Ph, 90%

1.37a. R=Me, R1=Boc, 90%
1.37b. R=CH2Ph, R1=Boc, 94%
1.37c. R=Me, R1=Cbz, 90%
1.37d. R=CH2Ph, R1=Cbz, 93%

BusHN CO2Me

R

1.25d. R=Me
1.25e. R=CH2Ph

a

BusHN CO2H

R

BusHN R

CO2Me

NHR1

N
H

O
1.38a. R=Me
1.38b. R=CH2Ph

1.39a. R=Me, R1=Boc, 92%
1.39b. R=CH2Ph, R1=Boc, 93%
1.39c. R=Me, R1=Cbz, 92%
1.39d. R=CH2Ph, R1=Cbz, 92%

b

b

 

 

D-Amino acids were also utilized in preparation of N-Bus-D-alanine 1.38a 

and N-Bus-D-phenylalanine 1.38b. Following the same procedure, the 

carboxylic acids 1.38a and 1.38b were also coupled with N6-Boc-L-lysine 

methyl esters 1.34 and N6-Cbz-L-lysine methyl esters 1.35 to form dipeptides 

1.39a-d in excellent yields (Scheme 10). 

In order to study an N-Bus protected secondary amine, N-Bus-prolines 

1.40a and 1.40b were used. These were obtained from corresponding proline 

methyl esters using the standard method. Following the same procedure, the 
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N-Bus carboxylic acids 1.40a and 1.40b were coupled with N6-Cbz-L-lysine 

methyl esters 1.35 to form a pair of diastereomeric dipeptides 1.41a and 

1.41b in 91% and 92% yield, respectively (Scheme 11). 

 

 

 

1-2-3-2 Retention of the stereochemistry during the formation of 

the dipeptide 

HPLC was utilized to check the de% of dipeptides 1.37 and 1.39. The 

corresponding peptides, 1.37a and 1.39a differing in one chiral center, were 

used as tests. The 4 pairs were utilized to validate that the stereochemistry was 

retained during dipeptide formation as shown in Table 2. 

 

Table 2 HPLC results and methods of the peptides 

Entry Compound De % Compound De % HPLC method 

1 1.37a >99.9% 1.39a >99.9% a 

2 1.37b >99.9% 1.39b 99.86% b 

3 1.37c 95.66% 1.39c 96.24% c 

4 1.37d 95.50% 1.39d 92.22% d 
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a) AS-RH 150*4.6 mm, 25% MeCN in H2O (0.1%TFA), 0.5 mL/min; 

b) AS-RH 150*4.6 mm, 35% MeCN in H2O (0.1%TFA), 0.5 mL/min; 

c) OJ-R 150*4.6 mm, 30% MeCN in H2O (0.05%TFA), 0.5 mL/min; 

d) C-18 250*4.6 mm, 60% MeCN in H2O (0.1%TFA), 0.5 mL/min. 

 

In conclusion, little or no erosion of stereochemistry was observed during 

peptide formation using the N-Bus protected amino acids. 

 

1-2-3-3 Formation of amino acid ester tripeptides 

To form a tripeptide, N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.34 

and tert-butylsulfonyl-L-proline-N6-benzyloxycarbonyl-L-lysine methyl ester 

1.41a were used as examples. First, proline-lysine peptide methyl ester 1.41a 

was hydrolyzed using LiOH×H2O to free acid 1.42. Then, N6-Boc-L-lysine 

methyl ester 1.34 was used to couple with proline-lysine acid 1.42 using 

2.6-lutidine, EDC and HOBt as coupling reagents to form tripeptide 1.43 in 

excellent yield (Scheme 12). 

 

 

  

1-2-4 Retaining the Bus group, and use in the orthogonal 

deprotection 

The deprotection of the N-Bus derivatives to regenerate the corresponding 

amino salt was realized by using 0.1 N TfOH/DCM/anisole at 0 oC for 10 h. 
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Unfortunately these conditions also cleaved N-Boc, N-Cbz and benzyl ether 

groups. However selective deprotection of N-Boc, N-Cbz, N-Fmoc and benzyl 

ether groups could be achieved in the presence of the N-Bus protecting group. 

The formation of N-Bus derivatives of N-protected amino acids and 

orthogonal deprotection in presence of N-Bus group was also studied (Table 3). 

 

Table 3 Protection and orthogonal deprotection of N-Bus derivatives 

 

BusHN CO2Me

R

ClH.H2N CO2Me

R

BusHN CO2Me

R'

R=N-protected amino acid, R'=N-unprotected amino acid

Bus protection orthogonal
deprotection

 
 

Entry Compound 
Bus-Formation Orthogonal Cleavage 

Compound 
Yield
%a Compound 

Yield
%a 

1 

 

78

 

97b 

2 80 97b

3 

 

80 

 

97c 

4 

 

76 

 

97b
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5 

 

81 
 

92d

89e

6 

 

76 

 

95b

a) yields of isolated pure product;  b) 20% wt.% Pd(OH)2, H2, MeOH, r.t., 2 or 3 h;  

c) 5 eq. TFA, DCM, r.t., 8 h;  d) 5% piperidine, DMF, r.t., 8 h;  e) CF3SO3H, DCM, 

anisole, 4 oC, 6 h. 

 

In conclusion, the N-Bus formation of the N-Boc, N-Cbz, N-Fmoc and benzyl 

ether protected functionalized amino acids was achieved in good overall yields. 

Selective deprotection of other N-protecting groups in the presence of the 

N-Bus group was also realized in excellent yields. 

The N-Fmoc is stable during the deprotection of the N-Bus derivatives to 

regenerate the corresponding amino salt. As an example, the compound 1.44a 

N6-Bus-N-Fmoc-L-Lys-OMe was used to afford free amine N-Fmoc-L-Lys-OMe 

compound 1.44c, by using 0.1 N TfOH/DCM/anisole at 4 oC for 6 h with an 

excellent yield. 

The selective and orthogonal deprotection of the N-protecting groups on 

the dipeptides in the presence of N-Bus group was also studied. The results are 

shown in Table 4. 
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Table 4 Orthogonal deprotection of N-Bus group peptides 

Entry 
Start 

Material  

cleavage  

Product  Method Yield%a

1 1.37b BusHN Bn

CO2Me

NH2TFA

N
H

O

1.46a

 

10% TFA, DCM, 
r.t., 2 h, 

94 

2 1.39d 

 

20 wt.% 
Pd(OH)2, H2, 

r.t., 2 h,  
MeOH, 

95 

3 1.33a 

 

20 wt.% 
Pd(OH)2, H2, 

r.t., 3 h, MeOH, 
89 

4 1.33b 

 

20 wt.% 
Pd(OH)2, H2, 

r.t., 3 h, MeOH, 
89 

5 1.37c 

 

20 wt.% 
Pd(OH)2, H2, 

r.t., 2 h, MeOH, 
89 

6 1.39a 

 

10% TFA, DCM, 
r.t., 2 h, 

90 
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7 1.32a 

 

20 wt.% 
Pd(OH)2, H2, 

r.t., 1 h, MeOH, 
86 

8 1.32a 

 

10% TFA, DCM, 
r.t., 2 h 

92 

9 1.32b 
20 wt.% 

Pd(OH)2, H2, 
r.t., 1 h, MeOH, 

87 

10 1.32b 
10% TFA, DCM, 

r.t., 2 h 
94 

a) yields of isolated pure product 

 

Thus, selective and orthogonal deprotections of N-Boc, N-Cbz, and benzyl 

ether groups in the presence of the N-Bus dipeptides were also achieved in 

excellent yields. 

The results of orthogonal deprotection the N-protecting groups on the 

triipeptide are shown in Scheme 13. Using different methods, the selective and 

orthogonal deprotection steps of N-Boc, N-Cbz and N-Bus of N-Bus tripeptides 

could be realized in excellent yields. 
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1-2-5 O-Bus as a leaving group: 

When 1.0 equivalent serine methyl ester hydrochloride 1.48 was treated 

with 2.5 equivalents tert-butylsulfinyl chloride 1.28 and 3.0 equivalents 

m-CPBA, N-Bus-O-Bus-L-serine methyl ester 1.50 was isolated (Scheme 14). 

The O-Bus group underwent facile elimination to form a double bond even in 

the mild and neutral reaction conditions of tetrabutylammonium azide. With the 

O-Bus group of compound 1.50 being a good leaving group and an acidic 

proton present, the elimination occurs faster than the SN
2 substitution. 

 

ClH.H2N CO2Me

HO

t-Bu
S
O

N
H

CO2Me

O
S

t-BuO

BusHN CO2Me

OBus

BusHN CO2Me
a b c

Scheme 14: Reagents and conditions: a) 2.5 eq. compound 1.28, 5 eq. Et3N, DCM, 0 oC, 1 h;
b) 3 eq. m-CPBA, DCM, r.t., 1 h; 60% over 2 steps; c) THF, 2.4 eq. Bu4N+ N3

-,
r.t., 2 h. 62%

1.48

1.49

1.50 1.51
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1-2-6 Conclusion: 

The N-Bus protecting group in amino acid and peptide chemistry is formed 

in a 2-step procedure involving reaction of an amine with the commercially 

available tert-butylsulfinyl chloride, followed by oxidation of the resulting 

sulfinamide with a variety of oxidants to afford the corresponding tert-butyl- 

sulfonamides in excellent overall yields. The N-Bus group can be cleaved to 

regenerate the corresponding amino salt in 0.1 N TfOH/DCM/anisole at 0 oC for 

10 h.  

A variety of N-Bus protected amino acids and other common amino acids 

can be used to form dipeptide and tripeptides.  

Our studies showed that the conditions required for the N-Bus group 

cleavage, also cleaved the N-Boc, N-Cbz and O-Bn groups. The N-Fmoc is 

stable during the deprotection of the N-Bus derivatives to regenerate the 

corresponding amine salt with an excellent yield. However, selective and 

orthogonal deprotection of N-Boc, N-Cbz, N-Fmoc and O-Bn groups could be 

achieved in the presence of the N-Bus protecting group. 

 

1-3 Experimental 

General: Solvents were distilled under positive pressure of dry argon before 

use and dried by standard methods. THF, ether, DCM and toluene were dried by 

the SDS (Solvent Delivery System). All commercially available reagents were 

used without further purification. All reactions were performed under argon 

atmosphere and monitored by thin-layer chromatography. Visualization was 

performed by ultraviolet light and/or by staining with ceric ammonium 

molybdate, ninhydrine or potassium permanganate. IR, Perkin-Elmer FTIR 

Paragon 1000. Low- and high- resolution mass spectra were recorded using 
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fast atom bombardement (FAB) or electrospray techniques. Optical rotations 

were recorded in a 1 dm cell at 20 oC (PerkinElmer 343). Flash column 

chromatography was performed using (40-60 μm) silica gel at increased 

pressure. NMR (1H, 13C, 19F) spectra were recorded on Bruker AV-300 and 

AV-400 spectrometers. When necessary, assignments were aided by DEPT, 

COSY, NOESY, and HMBC and HMQC correlation experiments.  

 

 

Tert-butylsulfinic acid (1.27): Excess sulfur dioxide was bubbled quickly 

through a solution of tert-butylmagnesium chloride 1.26 (1.0 M in THF, 100 mL) 

at 0 oC in a fume hood allowing for adequate venting of excess gas. When the 

solution became saturated with SO2, (then excess SO2 was sent out from the 

solution and the pH of the bubble was <6), the SO2 bubble was stopped. After 

stirring at 0 oC under the argon atmosphere for 3 h, the reaction mixture was 

cautiously diluted with ice-cold 5% aqueous HCl (100 mL). After effervescence 

subsided, the aqueous layer was extracted with 100 mL×3 of DCM. The organic 

extracts were combined, dried over MgSO4, and concentrated under reduced 

pressure to afford tert-butylsulfinic acid 1.27 (11.37 g, 93%) as a colorless 

solid. The material was used without further purification: 1H NMR, (400M Hz, 

CDCl3) δ 1.20 (s, 9H).  

 

 

Tert-butylsulfinyl chloride (1.28): To a solution of tert-butylsulfinic acid 

1.27 (11.0 g, 90 mmol) in THF (50 mL), thionyl chloride (7.88 mL, 108 mmol) 

in THF (10 mL) was added dropwise at R.T.. After 4 h, the solvent was removed 

under reduced pressure and excess thionyl chloride was evaporated under 



24 
 

reduced pressure at 40 oC. The residue was then distilled at 61-62 oC at 

aspirator pressure to give tert-butylsulfinyl chloride 1.28 (9.97 g, 79%) as a 

light yellow oil: 1H NMR, (400 MHz, CDCl3) δ 1.40 (s, 9H). 

 

General Procedure for Formation of tert-Butylsulfonamides. 

 

 
N-Bus-L-Phe-OEt (1.25a): A solution of L-phenylanine ethyl ester 

hydrochloride 1.23a (58 mg, 0.25 mmol) in 3 mL of DCM was cooled to 0 oC and 

treated with Et3N (0.35 mL, 2.5 mmol), followed by dropwise addition of 

tert-butylsulfinyl chloride 1.28 (62 μL, 0.5 mmol) in 1 mL of DCM. The reaction 

mixture was stirred at 0 oC until TLC showed consumption of the starting 

material (1 h). Upon completion, 5 mL of saturated aqueous NaHCO3 were 

added, and the layers separated (note: acidic washes should be avoided as 

tert-butylsulfinamides 1.24a are known to be unstable at low pH). The organic 

layer was then dried over Na2SO4, and concentrated under reduced pressure. 

Flash column chromatography (EtOAc/hexane 3:2) gave pure sulfinamide 

1.24a which was directly taken up in 5 mL of DCM, and treated with m-CPBA 

(58 mg, 0.34 mmol) at 0 oC to R.T.. After the oxidation was complete by TLC (at 

R.T. for 1 h), the mixture was diluted with a mixture of saturated aqueous 

NaHCO3 (5 mL) and saturated aqueous Na2SO3 (5 mL). The aqueous layer was 

extracted with DCM (2×10 mL). The organic extracts were combined, dried 

over Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/hexane 1:1) to afford 

tert-butylsulfonyl-L-phenylalanine ethyl ester 1.25a (66 mg, 84% over 2 

steps), as a colorless solid, m.p. 71-73 oC: 1H NMR, (400 MHz, CDCl3) δ 
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7.31-7.20 (m, 5H), 4.80 (d, 1H, J=10.3 Hz), 4.21-4.16 (m, 3H), 3.10-3.04 (m, 

2H), 1.25-1.21 (m, 12H); 13C NMR, (100 MHz, CDCl3) δ 172.2, 135.8, 129.8, 

128.7, 127.4, 61.8, 60.2, 58.9, 39.7, 24.0, 14.2; [α]D +6.7 (c 1.0, CHCl3); 

HRMS for C15H23NO4S calculated (M+H+) 314.14206, found 314.14119. 

 

 

N-Bus-L-Pro-OMe (1.25b): The general procedure was followed using 

L-proline methyl ester hydrochloride 1.23b (166 mg, 1.0 mmol), Et3N (1.39 mL, 

10.0 mmol), tert-butylsulfinyl chloride 1.28 (0.25 mL, 2.0 mmol) in 5 mL of 

DCM and DCM (5 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 4:1), which was oxidized with m-CPBA (233 

mg, 1.35 mmol) and DCM (10 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 1:3) to afford tert-butylsulfonyl-L-proline 

methyl ester 1.25b (203 mg, 82% over 2 steps), as a colorless oil: 1H NMR, 

(400 MHz, CDCl3) δ 4.45 (d, 1H, J=6.6 Hz), 3.58-3.55 (m, 4H), 3.38-3.36 (m, 

1H), 2.10-2.07 (m, 1H), 1.88-1.80 (m, 3H), 1.24 (s, 9H); 13C NMR, (100 MHz, 

CDCl3) δ 173.0, 61.0, 60.9, 51.8, 49.9, 30.5, 24.7, 23.9; [α]D -66.9 (c 1.0, 

CHCl3); HRMS for C11H23NO4S calculated (M+H+) 250.11076, found 250.11106. 

 

 

N-Bus-L-Leu-OMe (1.25c): The general procedure was followed using 

L-leucine methyl ester hydrochloride 1.23c (182 mg, 1.0 mmol), Et3N (1.39 mL, 

10.0 mmol), tert-butylsulfinyl chloride 1.28 (0.25 mL, 2.0 mmol) in 5 mL of 

DCM and DCM (5 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 3:2), which was oxidized with m-CPBA (233 
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mg, 1.35 mmol) and DCM (10 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 1:3) to afford tert-butylsulfonyl-L-leucine 

methyl ester 1.25c (219 mg, 82% over 2 steps), as a colorless solid, m.p. 

56-57 oC: 1H NMR, (400 MHz, CDCl3) δ 5.21 (d, 1H, J=9.9 Hz), 3.88-3.82 (m, 

1H), 3.53 (s, 3H), 1.60-1.54 (m, 1H), 1.38-1.21 (m, 1H), 1.15 (s, 9H), 

0.75-0.72 (m, 6H); 13C NMR, (100 MHz, CDCl3) δ 173.5, 59.5, 55.4, 51.9, 42.6, 

24.0, 23.7, 22.4, 21.4; [α]D -16.0 (c 1.0, CHCl3); HRMS for C11H23NO4S 

calculated (M+H+) 266.14206, found 266.14225. 

 

 

N-Bus-L-Ala-OMe (1.25d): The general procedure was followed using 

L-alanine methyl ester hydrochloride 1.23d (209 mg, 1.5 mmol), Et3N (2.09 

mL, 15.0 mmol), tert-butylsulfinyl chloride 1.28 (0.37 mL, 3.0 mmol) in 8 mL 

of DCM and DCM (8 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 4:1), which was oxidized with m-CPBA (350 

mg, 2.025 mmol) and DCM (20 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 2:3) to afford tert-butylsulfonyl-L-alanine 

methyl ester 1.25d (257 mg, 77% over 2 steps), as a colorless solid, m.p. 

69-70 oC: 1H NMR, (400 MHz, CDCl3) δ 5.07 (d, 1H, J=9.5 Hz), 4.08-4.04 (m, 

1H), 3.68 (s, 3H), 1.38 (d, 3H, J=7.2 Hz), 1.30 (s, 9H); 13C NMR, (100 MHz, 

CDCl3) δ 173.7, 59.9, 52.8, 52.6, 24.0, 20.2; [α]D -12.4 (c 1.0, CHCl3); HRMS 

for C8H14NO4S calculated (M+H+) 224.09511, found 224.09507. 

 

 

N-Bus-L-Phe-OMe (1.25e): The general procedure was followed using 

L-phenylalanine methyl ester hydrochloride 1.23e (86 mg, 0.4 mmol), Et3N 
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(0.14 mL, 1.0 mmol), tert-butylsulfinyl chloride 1.28 (55 uL, 0.44 mmol) in 0.5 

mL of DCM and DCM (4 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 3:2), which was oxidized with m-CPBA (93 mg, 

0.54 mmol) and DCM (3 mL). The crude residue was purified by flash column 

chromatography (EtOAc/hexane 13:7) to afford tert-butylsulfonyl-L-phenyl- 

alanine methyl ester 1.25e (105 mg, 88% over 2 steps), as a colorless solid, 

m.p. 101-103 oC: 1H NMR, (400 MHz, CDCl3) δ 7.34-7.27 (m, 3H), 7.19-7.17 (m, 

2H), 4.49 (d, 1H, J=10.3 Hz), 4.34-4.28 (m, 1H), 3.76 (s, 3H), 3.15-3.03 (m, 

2H), 1.20 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.7, 135.8, 129.7, 128.8, 

127.5, 60.3, 58.8, 52.7, 39.9, 24.0; [α]D +12.1 (c 1.0, CHCl3); HRMS for 

C14H21NO4S calculated (M+H+) 300.12641, found 300.12591. 

 

 

N-Bus-L-Val-OMe (1.25f): The general procedure was followed using 

L-valine methyl ester hydrochloride 1.23f (1.26 g, 7.5 mmol), Et3N (2.61 mL, 

18.75 mmol), tert-butylsulfinyl chloride 1.28 (1.02 mL, 8.25 mmol) in 25 mL of 

DCM and DCM (25 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 4:1), which was oxidized with m-CPBA (1.75 g, 

10.125 mmol) and DCM (30 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 13:7) to afford tert-butylsulfonyl-L-valine 

methyl ester 1.25f (1.46 g, 77% over 2 steps), as a colorless solid, m.p. 70-72 

oC: 1H NMR, (400 MHz, CDCl3) δ 5.14 (d, 1H, J=10.2 Hz), 3.71-3.67 (m, 1H), 

3.53 (s, 3H), 1.90-1.85 (m, 1H), 1.14 (s, 9H), 0.78 (d, 3H, J=6.8 Hz), 0.73 (d, 

3H, J=7.3 Hz); 13C NMR, (100 MHz, CDCl3) δ 172.5, 62.3, 59.7, 51.9, 31.7, 

23.8, 18.8, 17.6; [α]D -8.9 (c 1.0, CHCl3); HRMS for C10H21NO4S calculated 

(M+H+) 252.12641, found 252.12660. 
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N-Bus-L-Asp-diOMe (1.25g): The general procedure was followed using 

L-aspartic dimethyl ester hydrochloride 1.23g (198 mg, 1 mmol), Et3N (0.35 

mL, 2.5 mmol), tert-butylsulfinyl chloride 1.28 (0.14 mL, 1.1 mmol) in 2 mL of 

DCM and DCM (15 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 9:1), which was oxidized with m-CPBA (233 

mg, 1.35 mmol) and DCM (10 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 2:3) to afford tert-butylsulfonyl-L-aspartic 

dimethyl ester 1.25g (201 mg, 72% over 2 steps), as a colorless solid, m.p. 

77-78 oC: 1H NMR, (400 MHz, CDCl3) δ 5.14 (d, 1H, J=9.6 Hz), 4.34-4.32 (m, 

1H), 3.75 (s, 3H), 3.67 (s, 3H), 3.02 (dd, 1H, J=4.6 Hz, J=17.2 Hz), 2.85 (dd, 

1H, J=4.7 Hz, J=17.2 Hz), 1.36 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 171.3, 

171.2, 60.5, 53.5, 53.1, 52.3, 38.6, 24.1; [α]D +21.3 (c 1.0, CHCl3); HRMS for 

C10H19NO6S calculated (M+H+) 282.10058, found 282.10097. 

 

 

N-Bus-O-Bn-L-Ser-OMe (1.30a): The general procedure was followed 

using O-benzyl-L-serine methyl ester hydrochloride 1.29a (1.13 g, 4 mmol), 

Et3N (1.39 mL, 10.0 mmol), tert-butylsulfinyl chloride 1.28 (0.55 mL, 4.4 

mmol) in 5 mL of DCM and DCM (40 mL). The crude product was purified by 

flash column chromatography (EtOAc/hexane 4:1), which was oxidized with 

m-CPBA (932 mg, 5.4 mmol) and DCM (30 mL). The residue was purified by 

flash column chromatography (EtOAc/hexane 2:3) to afford tert-butylsulfonyl- 

O-benzyl-L-serine methyl ester 1.30a (1.02 g, 78% over 2 steps), as a 

colorless solid, m.p. 88-89 oC: 1H NMR, (400 MHz, CDCl3) δ 7.35-7.25 (m, 5H), 
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4.98 (d, 1H, J=9.8 Hz), 4.52 (dd, 2H, J=12.2 Hz, J=25.3 Hz), 4.28-4.24 (m, 

2H), 3.87 (dd, 1H, J=3.2 Hz, J=9.4 Hz), 3.75 (s, 3H), 3.70 (dd, 1H, J=3.5 Hz, 

J=9.4 Hz), 1.37 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 170.9, 137.4, 128.4, 

127.9, 127.6, 73.2, 71.1, 60.1, 57.3, 52.7, 24.0; [α]D +2.4 (c 1.0, CHCl3); 

HRMS for C15H23NO5S calculated (M+H+) 330.13697, found 330.13723. 

 

 
N-Bus-O-Bn-L-Tyr-OMe (1.30b): The general procedure was followed 

using O-benzyl-L-tyrosine methyl ester hydrochloride 1.29b (1.13 g, 3.5 

mmol), Et3N (1.22 mL, 8.75 mmol), tert-butylsulfinyl chloride 1.28 (0.48 mL, 

3.85 mmol) in 4 mL of DCM and DCM (40 mL). The crude product was purified 

by flash column chromatography (EtOAc/hexane 3:2), which was oxidized with 

m-CPBA (699 mg, 4.05 mmol) and DCM (50 mL). The residue was purified by 

flash column chromatography (EtOAc/hexane 1:1) to afford tert-butylsulfonyl- 

O-benzyl-L-tyrosine methyl ester 1.30b (1.14 g, 80% over 2 steps), as a 

colorless solid, m.p. 107-108 oC: 1H NMR, (400 MHz, CDCl3) δ 7.44-7.32 (m, 

5H), 7.16 (d, 2H, J=8.5 Hz), 6.94 (d, 2H, J=8.6 Hz), 5.08 (d, 1H, J=10.3 Hz), 

5.04 (s,2H), 4.32-4.26 (m, 1H), 3.74 (s, 3H), 3.08-3.02 (m, 2H), 1.21 (s, 9H); 

13C NMR, (100 MHz, CDCl3) δ 172.8, 157.9, 136.9, 130.6, 129.5, 128.1, 127.9, 

127.4, 115.0, 69.8, 60.0, 59.0, 52.4, 38.6, 23.7; [α]D +11.8 (c 1.0, CHCl3); 

HRMS for C21H27NO5S calculated (M+H+) 406.16827, found 406.16843. 

 

 

N-Bus-N6-Cbz-L-Lys-OMe (1.35a): The general procedure was followed 
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using N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 (1.46 g, 

4.4 mmol), Et3N (1.53 mL, 11.0 mmol), tert-butylsulfinyl chloride 1.28 (0.60 

mL, 4.84 mmol) in 5 mL of DCM and DCM (40 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 4:1), which was 

oxidized with m-CPBA (812 mg, 5.94 mmol) and DCM (30 mL). The residue was 

purified by flash column chromatography (EtOAc/hexane 2:3) to afford 

tert-butylsulfonyl-N6-benzyloxycarbonyl-L-lysine methyl ester 1.35a (1.02 g, 

76% over 2 steps), as a colorless solid, m.p. 82-83 oC: 1H NMR, (400 MHz, 

CDCl3) δ 7.25-7.21 (m, 5H), 5.38 (d, 2H, J=9.5 Hz), 5.00 (s, 2H), 3.98-3.94 (m, 

1H), 3.64 (s, 3H), 3.08 (d, 2H, J=6.2 Hz), 1.72-1.62 (m, 2H), 1.44-1.38 (m, 

4H), 1.27 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 173.2, 156.5, 136.6, 128.3, 

127.83, 127.81, 66.2, 59.8, 56.9, 52.3, 40.2, 33.0, 29.0, 23.9, 22.2; [α]D +2.4 

(c 1.0, CHCl3); HRMS for C19H30N2O6S calculated (M+H+) 415.18973, found 

415.19077. 

 

Et3N, DCM
m-CPBA

DCM
1.28

ClH.H2N CO2Me BusHN CO2Me

NHBoc NHBoc

1.34 1.34a

 

N-Bus-N6-Boc-L-Lys-OMe (1.34a): The general procedure was followed 

using N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 1.34 (950 

mg, 3.2 mmol), Et3N (1.12 mL, 8.0 mmol), tert-butylsulfinyl chloride 1.28 

(0.44 mL, 3.52 mmol) in 5 mL of DCM and DCM (30 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 4:1), which was 

oxidized with m-CPBA (746 mg, 4.32 mmol) and DCM (30 mL). The residue was 

purified by flash column chromatography (EtOAc/hexane 7:13) to afford 

tert-butylsulfonyl-N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.34a (978 

mg, 80% over 2 steps), as a colorless solid, m.p. 84-85 oC: 1H NMR, (400 MHz, 
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CDCl3) δ 5.00 (d, 1H, J=9.8 Hz), 4.73 (s, 1H), 4.04-3.98 (m, 1H), 3.71 (s, 3H), 

3.05 (s, 2H), 1.75-1.66 (m, 2H), 1.46-1.39 (m, 2H), 1.37 (s, 9H), 1.31 (s, 9H); 

13C NMR, (100 MHz, CDCl3) δ 173.1, 155.8, 78.4, 59.6, 56.9, 52.1, 39.7, 33.0, 

29.1, 28.1, 23.8, 22.3; [α]D +1.4 (c 1.0, CHCl3); HRMS for C16H32N2O6S 

calculated (M+Na+) 403.18733, found 403.18793. 

 

 

N-Bus-O-Bus-L-Ser-OMe (1.50): The general procedure was followed 

using L-serine methyl ester hydrochloride 1.48 (934 mg, 6 mmol), Et3N (4.18 

mL, 30 mmol), tert-butylsulfinyl chloride 1.28 (1.86 mL, 15 mmol) in 15 mL of 

DCM and DCM (40 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 3:2), which was oxidized with m-CPBA (3.11 g, 

18 mmol), DCM (25 mL). The residue was purified by flash column 

chromatography (EtOAc/hexane 1:4) to afford tert-butylsulfonyl-O-tert-butyl- 

sulfonyl-L-serine methyl ester 1.50 (1.30 g, 60% over 2 steps), as a colorless 

solid, m.p. 61-62 oC: 1H NMR, (400 MHz, CDCl3) δ 5.15 (d, 1H, J=9.7 Hz), 4.54 

(dd, 1H, J=5.4 Hz, J=10.8 Hz), 4.45-4.39 (m, 2H), 3.79 (s, 3H), 1.40 (s, 9H), 

1.36 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 169.4, 69.4, 60.5, 60.0, 56.5, 53.4, 

24.4, 24.1; [α]D +14.5 (c 1.0, CHCl3); HRMS for C12H25NO7S2 calculated (M+H+) 

360.11452, found 360.11443. 

 

 

N-Bus-Nδ,Nω-di-Cbz-L-Arg-OMe (1.45a): The general procedure was 

followed using Nδ,Nω-dibenzyloxycarbonyl-L-arginine methyl ester 1.45 (319 
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mg, 0.7 mmol), Et3N (0.13 mL, 0.91 mmol), tert-butylsulfinyl chloride 1.28 (95 

μL, 0.77 mmol) in 1 mL of DCM and DCM (15 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 1:1), which was 

oxidized with m-CPBA (163 mg, 0.95 mmol) and DCM (10 mL). The residue was 

purified by flash column chromatography (EtOAc/hexane 1:3) to afford 

tert-butylsulfonyl-Nδ,Nω-dibenzyloxycarbonyl-L-arginine methyl ester 1.45a 

(307 mg, 76% over 2 steps), as a mucous soft solid: 1H NMR, (400 MHz, CDCl3) 

δ 9.45 (s, 1H), 9.26 (s, 1H), 7.39-7.26 (m, 10H), 5.22 (s, 2H), 5.14 (d, 1H, 

J=10.0Hz), 5.12 (s, 2H), 4.16-4.14 (m, 1H), 4.05-4.00 (m, 1H), 3.62 (s, 3H), 

1.78-1.66 (m, 4H), 1.30 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 173.0, 163.7, 

160.6, 155.7, 136.9, 134.6, 128.8, 128.33, 128.28, 128.0, 127.8, 68.9, 66.9, 

59.9, 56.8, 52.4, 44.9, 30.4, 24.6, 24.0; [α]D +6.4 (c 1.0, CHCl3); HRMS for 

C27H36N4O8S calculated (M+H+) 577.23266, found 577.23372. 

 

Et3N, DCM
m-CPBA
DCM

1.28

FmocHN CO2Me FmocHN CO2Me

NH2TFA NHBus

1.44a1.44

 

N6-Bus-N-Fmoc-L-Lys-OMe (1.44a): The general procedure was followed 

using tert-butylsulfinyl chloride 1.28 (68 μL, 0.55 mmol) in 0.5 mL of DCM, 

N-9-fluorenylmethoxycarbonyl-L-lysine methyl ester hydrochloride 1.44 (248 

mg, 0.5 mmol), Et3N (0.17 mL, 1.25 mmol) and DCM (12 mL). The crude 

product was purified by flash column chromatography (EtOAc/hexane 1:1), 

which was oxidized with m-CPBA (117 mg, 0.675 mmol) and DCM (10 mL). The 

residue was purified by flash column chromatography (EtOAc/hexane 2:3) to 

afford N6-tert-butylsulfonyl-N-9-fluorenylmethoxy-carbonyl-L-lysine methyl 

ester 1.44a (204 mg, 81% over 2 steps), as a colorless solid, m.p. 49-51 oC: 1H 

NMR, (400 MHz, CDCl3) δ 7.75 (d, 2H, J=7.5 Hz), 7.63-7.60 (m, 2H), 7.40-7.37 
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(m, 2H), 7.32-7.28 (m, 2H), 5.65 (d, 2H, J=8.2 Hz), 4.64-4.61 (m, 1H), 

4.38-4.33 (m, 3H), 4.23-4.19 (m, 1H), 3.73 (s, 3H), 1.86-1.78 (m, 1H), 

1.73-1.65 (m, 1H), 1.61-1.51 (m, 2H), 1.47-1.40 (m, 2H), 1.37 (s, 9H); 13C 

NMR, (100 MHz, CDCl3) δ 173.1, 156.2, 144.0, 143.9, 141.3, 127.8, 127.2, 

125.3, 120.0, 67.1, 59.9, 53.8, 52.5, 47.2, 44.4, 32.0, 30.6, 24.4, 22.2; [α]D 

+6.5 (c 1.0, CHCl3); HRMS for C26H34N2O6S calculated (M+H+) 503.22103, 

found 503.22105. 

 

General Procedure for Cleavage of tert-Butylsulfonamides. A. 

 

 

Cleavage of N-Bus-L-Phe-OEt (1.23a): To a solution of anisole (0.65 mL, 

6.0 mmol) and tert-butylsulfonyl-L-phenylalanine ethyl ester 1.25a (90 mg, 

0.3 mmol) in DCM (9 mL) was slowly added trifluoromethanesulfonic acid (0.2 

N in DCM, 9 mL) at 0 oC. The solution was stirred at 0 oC for 2 h, then warmed 

to 4 oC for 10 h (TLC monitoring, EtOAc/hexane 1:1), 15 mL H2O was added. 

The aqueous layer was neutralized with saturated aqueous NaHCO3 at 0 oC until 

pH=7.5, then extracted with DCM (2×10 mL). The organic extracts were 

combined and acidified with 1 M HCl aqueous (10 mL). The aqueous layer was 

frozen and lyophilized to give L-phenylalanine ethyl ester hydrochloride salt 

1.23a (61 mg, 89%), as a colorless oil. 

 

CF3SO3H
anisole, DCMBusHN CO2Me

Ph

ClHH2N CO2Me

Ph
1.25e 1.23e

 

Cleavage of N-Bus-L-Phe-OMe (1.23e): The general procedure was 

followed using tert-butylsulfonyl-L-phenylalanine methyl ester 1.25e (60 mg, 

0.2 mmol), trifluoromethanesulfonic acid (0.2 N in DCM, 6 mL), anisole (0.43 



34 
 

mL, 4.0 mmol), and DCM (6 mL). The aqueous layer was frozen and lyophilized 

to afford L-phenylalanine methyl ester hydrochloride salt 1.23e (37 mg, 85%), 

as a colorless oil. 

 

 

Cleavage of N-Bus-L-Leu-OMe (1.23c): The general procedure was 

followed using tert-butylsulfonyl-L-leucine methyl ester 1.25c (80 mg, 0.3 

mmol), trifluoromethanesulfonic acid (0.2 N in DCM, 9 mL), anisole (0.65 mL, 

6 mmol), and DCM (9 mL). The aqueous layer was frozen and lyophilized to 

afford L-leucine methyl ester hydrochloride salt 1.23c (43 mg, 79%), as a 

colorless oil.  

 

General Procedure for Cleavage of tert-Butylsulfonamides. B. 

 

 

Cleavage of N-Bus-L-Ala-OMe (1.23d): To a solution of anisole (0.22 mL, 

2.0 mmol) and tert-butylsulfonyl-L-alanine methyl ester 1.25d (45 mg, 0.2 

mmol) in DCM (3 mL) was slowly added trifluoromethanesulfonic acid (0.2 N in 

DCM, 3 mL) at 0 oC. The solution was stirred at 0 oC for 2 h, then warmed to 4 

oC for 10 h (TLC monitoring, EtOAc/hexane 2:3), and 6 mL H2O was added. The 

aqueous layer was neutralized with DOWEX Monosphere 550A hydroxide form 

anion exchange resin at 0 oC until pH=8.5, then 6 mL MeOH was added and the 

resin was filtered. The filtrate was combined and acidified with 1 M HCl aqueous 

(3 mL). The aqueous layer was frozen and lyophilized to afford L-alanine methyl 

ester hydrochloride salt 1.23d (24 mg, 85%), as a colorless oil. 
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Cleavage of N-Bus-L-Pro-OMe (1.23b): The general procedure was 

followed using tert-butylsulfonyl-L-proline methyl ester 1.25b (50 mg, 0.2 

mmol), trifluoromethanesulfonic acid (0.2 N in DCM, 3 mL), anisole (0.22 mL, 

2 mmol), and DCM (3 mL). The aqueous layer was frozen and lyophilized to 

afford L-proline methyl ester hydrochloride salt 1.23b (30 mg, 90%), as a 

colorless oil. 

 

 

Cleavage of N-Bus-L-Val-OMe (1.23f): The general procedure was 

followed using tert-butylsulfonyl-L-valine methyl ester 1.25f (50 mg, 0.2 

mmol), trifluoromethanesulfonic acid (0.2 N in DCM, 3 mL), anisole (0.22 mL, 

2.0 mmol), and DCM (3 mL). The aqueous layer was frozen and lyophilized to 

afford L-valine methyl ester hydrochloride salt 1.23f (28 mg, 85%), as a 

colorless oil.  

 

 

Cleavage of N-Bus-L-Asp-diOMe (1.23g): The general procedure was 

followed using tert-butylsulfonyl-L-aspartic dimethyl ester 1.25g (56 mg, 0.2 

mmol), trifluoromethanesulfonic acid (0.2 N in DCM, 3 mL), anisole (0.22 mL, 

2.0 mmol), and DCM (3 mL). The acid aqueous layer was frozen and lyophilized 

to afford L-aspartic dimethyl ester hydrochloride salt 1.23g (33 mg, 84%), as 

a colorless oil.  
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Cleavage Bn of N-Bus-O-Bn-L-Ser-OMe (1.30c): To a solution of tert- 

butylsulfonyl-O-benzyl-L-serine methyl ester 1.30a (99 mg, 0.3 mmol) in 

MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (5 mg, cat.) was added 

and hydrogenated at 1 atm at R.T. for 2 h (TLC monitoring, EtOAc/ hexane 3:7). 

The reaction mixture was filtered over celite, and filtrate was concentrated 

under reduced pressure to afford tert-butylsulfonyl-L-serine methyl ester 

1.30c (70 mg, 97%), as a colorless solid, m.p. 77-79 oC: 1H NMR, (400 MHz, 

CDCl3) δ 5.66 (d, 1H, J=9.5 Hz), 4.18-4.16 (m, 1H), 3.96 (d, 1H, J=11.2 Hz), 

3.86 (d, 1H, J=11.2 Hz), 3.77 (s, 3H), 3.23 (s, 1H), 1.35 (s, 9H); 13C NMR, (100 

MHz, CDCl3) δ 171.4, 64.5, 60.5, 59.2, 53.0, 24.2; [α]D +0.99 (c 1.0, CHCl3); 

ESI/MS for C8H17NO5S calculated (M+H+) 240, found 240. 

 

 
Cleavage Bn of N-Bus-O-Bn-L-Tyr-OMe (1.30d): To a solution of tert- 

butylsulfonyl-O-benzyl-L-tyrosine methyl ester 1.30b (122 mg, 0.3 mmol) in 

MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (5 mg, cat.) was added 

and hydrogenated at 1 atm at R.T. for 3 h (TLC monitoring, EtOAc/hexane 1:1). 

The reaction mixture was filtered over celite, and filtrate was concentrated 

under reduced pressure to afford tert-butylsulfonyl-L-tyrosine methyl ester 

1.30d (92 mg, 97%), as a colorless solid, m.p. 141-143 oC: 1H NMR, (400 MHz, 

CD3OD) δ 7.08 (d, 2H, J=8.5 Hz), 6.74 (d, 2H, J=8.5 Hz), 4.60 (s, 1H), 

4.02-3.99 (m, 1H), 3.72 (s, 3H), 3.03-2.98 (m, 1H), 2.80-2.74 (m, 1H), 1.34 

(d, 1H, J=7.1 Hz), 1.09 (s, 9H); 13C NMR, (100 MHz, CD3OD) δ 174.9, 157.6, 

131.9, 129.0, 116.4, 61.3, 61.0, 53.0, 39.2, 24.2; [α]D -23.8 (c 1.0, MeOH); 

ESI/MS for C14H21NO5S calculated (M+H+) 316, found 316.  
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Cleavage Cbz of N-Bus-N6-Cbz-L-Lys-OMe (1.35b): To a solution of tert- 

butylsulfonyl-N6-benzyloxycarbonyl-L-lysine methyl ester 1.35a (125 mg, 0.3 

mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (5 mg, cat.) 

was added and hydrogenated at 1 atm at R.T. for 2 h (TLC monitoring, EtOAc/ 

hexane 1:1). The reaction mixture was filtered over celite and acidified with 1 

M HCl aqueous (10 mL). The aqueous layer was frozen and lyophilized to afford 

tert-butylsulfonyl-L-lysine methyl ester hydrochloride salt 1.35b (92 mg, 97%), 

as a colorless oil: 1H NMR, (400 MHz, CD3OD) δ 4.02-4.00 (m, 1H), 3.75 (s, 3H), 

2.98-2.94 (m, 2H), 1.84-1.77 (m, 1H), 1.76-1.69 (m, 3H), 1.64-1.53 (m, 2H), 

1.35 (s, 9H); 13C NMR, (100 MHz, CD3OD) δ 174.7, 61.0, 58.3, 53.1, 40.6, 34.0, 

28.0, 24.5, 23.8; [α]D -15.0 (c 1.0, MeOH); ESI/MS for C11H25ClN2O4S 

calculated (M+H+-HCl) 281, found 281. 

 

 

Cleavage Cbz of N-Bus-Nδ,Nω-di-Cbz-L-Arg-OMe (1.45b): To a solution 

of tert-butylsulfonyl-Nδ,Nω-dibenzyloxycarbonyl-L-arginine methyl ester 1.45a 

(58 mg, 0.1mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (3 

mg, cat.) was added and hydrogenated at 1 atm at R.T. for 2 h (TLC monitoring, 

EtOAc/hexane 1:1). The reaction mixture was filtered over celite and acidified 

with 1 M HCl aqueous (10 mL). The aqueous layer was frozen and lyophilized to 
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afford tert-butylsulfonyl-L-arginine methyl ester hydrochloride salt 1.45b (29 

mg, 95%), as a colorless oil: 1H NMR, (400 MHz, CD3OD) δ 4.07-3.98 (m, 1H), 

3.76 (s, 3H), 3.26-3.22 (m, 2H), 1.86-1.79 (m, 1H), 1.77-1.72 (m, 3H), 1.36 

(s, 9H); 13C NMR, (100 MHz, CD3OD) δ 174.4, 158.7, 61.1, 58.1, 53.1, 41.9, 

31.9, 26.4, 24.5; [α]D -9.6 (c 1.0, MeOH); ESI/MS for C11H25ClN4O4S calculated 

(M+H+-HCl) 309, found 309. 

 

 

Cleavage Boc of N-Bus-N6-Boc-L-Lys-OMe (1.34b): To a solution of tert- 

butylsulfonyl-N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.34a (95 mg, 

0.25 mmol) in DCM (5 mL), trifluoroacetic acid (56 μL, 0.75 mmol) was added 

dropwise and stirred at R.T. for 8 h (TLC monitoring, EtOAc/hexane 1:1). 

Solvent was evaporated, then 15 mL H2O was added and neutralized with 

saturated aqueous NaHCO3 at 0 oC until pH=7.5, then extracted with DCM 

(2×10 mL). The organic extracts were combined and acidified with 1 M HCl 

aqueous (10 mL). The aqueous layer was frozen and lyophilized to afford tert- 

butylsulfonyl-L-lysine methyl ester hydrochloride salt 1.34b (77 mg, 97%), as 

a colorless oil: 1H NMR, (400 MHz, CD3OD) δ 4.02-4.00 (m, 1H), 3.75 (s, 3H), 

2.98- 2.94 (m, 2H), 1.84-1.77 (m, 1H), 1.76-1.69 (m, 3H), 1.64-1.53 (m, 2H), 

1.35 (s, 9H); 13C NMR, (100 MHz, CD3OD) δ 174.7, 61.0, 58.3, 53.1, 40.6, 34.0, 

28.0, 24.5, 23.8; [α]D -15.0 (c 1.0, MeOH); ESI/MS for C11H25ClN2O4S 

calculated (M+H+-HCl) 281, found 281.  
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Cleavage Fmoc of N6-Bus-N-Fmoc-L-Lys-OMe (1.44b): To a solution of 

5% piperidine in DMF (1 mL) was added N6-tert-butylsulfonyl-N-9-fluorenyl- 

methoxycarbonyl-L-lysine methyl ester 1.44a (50 mg, 0.1 mmol) at R.T.. The 

reaction mixture was stirred at R.T. for 8 h (TLC monitoring, EtOAc/hexane 2:3), 

after which time it was diluted with 50 mL of EtOAc. The reaction mixture was 

washed with 2×50 mL of saturated aqueous Na2CO3 and 50mL of brine. The 

organic layer was dried over Na2SO4, and solvent was evaporated. The crude 

product was purified by flash column chromatography (EtOAc/hexane 2:3). The 

organic extracts were combined and acidified with 1 M HCl aqueous (10 mL). 

The aqueous layer was frozen and lyophilized to afford N6-tert-butylsulfonyl- 

L-lysine methyl ester hydrochloride salt 1.44b (26 mg, 92%), as a colorless oil: 

1H NMR, (400 MHz, CD3OD) δ 4.07-4.04 (m, 1H), 3.85 (s, 3H), 3.18- 3.15 (m, 

2H), 1.99-1.92 (m, 2H), 1.61-1.49 (m, 4H), 1.36 (s, 9H); 13C NMR, (100 MHz, 

CD3OD) δ 171.1, 60.8, 54.1, 53.8, 45.0, 31.9, 31.2, 24.8, 22.9; [α]D +13.3 (c 

1.0, MeOH); ESI/MS for C11H25ClN2O4S calculated (M+H+-HCl) 281, found 281. 

 

 

Cleavage Bus of N6-Bus-N-Fmoc-L-Lys-OMe (1.44c): To a solution of 

N6-tert-butylsulfonyl-N-9-fluorenylmethoxycarbonyl-L-lysine methyl ester 

1.44a (25 mg, 0.05 mmol) and anisole (0.11 mL, 1.0 mmol) in DCM (1.5 mL) 

was slowly added trifluoromethanesulfonic acid (0.2 N in DCM, 1.5 mL) at 0 oC. 
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The solution was stirred at 4 oC for 6 h (TLC monitoring, EtOAc/hexane 2:3), the 

reaction was finished. Solvents were evaporated. The residue was taken up in 

the 20 mL H2O and washed with 3×20 mL Et2O. The water layer was frozen and 

lyophilized to afford N-9-fluorenylmethoxycarbonyl-L-lysine methyl ester 

trifluoromethanesulfonic acid salt 1.44c (24 mg, 89%), as a colorless oil: 1H 

NMR, (400 MHz, CD3OD) δ 7.80 (d, 2H, J=7.5 Hz), 7.67 (t, 2H, J=6.7 Hz), 

7.40(t, 2H, J=7.3 Hz), 7.32(t, 2H, J=7.5 Hz), 4.42-4.32 (m, 2H), 4.24-4.16 (m, 

2H), 3.72 (s, 3H), 2.92 (t, 2H, J=7.2 Hz), 1.92–1.82 (m, 1H), 1.78–1.65 (m, 

3H), 1.52–1.42 (m, 2H); 13C NMR, (100 MHz, CD3OD) δ 174.5, 158.8, 145.3, 

145.2, 142,7, 128.9, 128.3, 126.34, 126.32, 121.0, 120.3, 68.0, 55.2, 52.9, 

48.5, 40.6, 32.0, 28.0, 23.9; [α]D –9.5(c 1.0, MeOH); ESI/MS for 

C23H27F3N2O6S calculated (M+H+-CF3SO3H) 383, found 383. 

 

General Procedure for Hydrolysis of tert-Butylsulfon amides. 

 

 

Hydrolysis of N-Bus-L-Ala-OMe (1.36a): To a solution of tert-butyl- 

sulfonyl-L-alanine methyl ester 1.25d (669 mg, 3.0 mmol) in MeOH (21 mL) 

and H2O (7 mL) was slowly added LiOH×H2O (627 mg, 15 mmol) at 0 oC. The 

solution was stirred at 4 oC for 10 h (TLC monitoring, EtOAc/hexane 3:2), and 

solvents were evaporated. Then the residue was taken up in the 30 mL H2O and 

acidified with 1 M HCl aqueous to pH=1, the aqueous layer was extracted with 

EtOAc (4×50 mL). The organic extracts were combined, dried over Na2SO4, and 

concentrated under reduced pressure to give tert-butylsulfonyl-L-alanine 

1.36a (552 mg, 88%), as a colorless solid, m.p. 161-162 oC: 1H NMR, (400 MHz, 

CD3OD) δ 4.03 (dd, 1H, J=7.3 Hz, J=14.6 Hz), 1.43 (d, 3H, J=7.3 Hz), 1.35 (s, 
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9H); 13C NMR, (100 MHz, CD3OD) δ 176.4, 60.8, 54.1, 24.5, 20.4; [α]D -19.9 (c 

1.0, MeOH); HRMS for C7H15NO4S calculated (M+Na+) 232.06140, found 

232.06111.  

 

 

Hydrolysis of N-Bus-L-Phe-OMe (1.36b): The general procedure was 

followed using tert-butylsulfonyl-L-phenylalanine methyl ester 1.25e (500 mg, 

1.67 mmol), LiOH×H2O (351 mg, 8.36 mmol), MeOH (21 mL) and H2O (7 mL). 

The organic extracts were combined, dried over Na2SO4 and concentrated 

under reduced pressure to afford tert-butylsulfonyl-L-phenylalanine 1.36b 

(425 mg, 90%), as a colorless solid, m.p. 203-205 oC: 1H NMR, (400 MHz, 

CD3OD) δ 7.30-7.22 (m, 5H), 4.04 (dd, 1H, J=4.5 Hz, J=10.0 Hz), 3.15 (dd, 1H, 

J=4.5 Hz, J=13.5 Hz), 2.87 (dd, 1H, J=10.0 Hz, J=13.5 Hz), 1.07 (s, 9H); 13C 

NMR, (100 MHz, CD3OD) δ 175.8, 138.6, 130.9, 129.6, 128.1, 61.0, 60.9, 40.2, 

24.2; [α]D -21.5 (c 1.0, MeOH); HRMS for C13H19NO4S calculated (M+Na+) 

308.09270, found 308.09191. 

 

 

Hydrolysis of N-Bus-L-Pro-OMe (1.40a): The general procedure was 

followed using tert-butylsulfonyl-L-proline methyl ester 1.25b (250 mg, 1.0 

mmol), LiOH×H2O (210 mg, 5.0 mmol), MeOH (15 mL) and H2O (5 mL). The 

organic extracts were combined, dried over Na2SO4, and concentrated under 

reduced pressure to afford tert-butylsulfonyl-L-proline 1.40a (214 mg, 90%), 

as a colorless solid, m.p. 135-137 oC: 1H NMR, (400 MHz, CDCl3) δ 9.85 (s, 1H), 

4.55 (d, 1H, J=6.3 Hz), 3.67-3.65 (m, 1H), 3.46-3.45 (m, 1H), 2.27-2.21 (m, 

1H), 2.07-1.93 (m, 3H), 1.36 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 178.5, 61.6, 
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61.5, 50.3, 31.0, 25.1, 24.4; [α]D -67.3 (c 1.0, CHCl3); HRMS for C9H17NO4S 

calculated (M+H+) 236.09511, found 236.09521.  

 

 

Hydrolysis of N-Bus-L-Val-OMe (1.52): The general procedure was 

followed using tert-butylsulfonyl-L-valine methyl ester 1.25f (25 mg, 0.1 

mmol), LiOH×H2O (21 mg, 0.5 mmol), MeOH (3 mL) and H2O (1 mL). The 

organic extracts were combined, dried over Na2SO4, and concentrated under 

reduced pressure to afford tert-butylsulfonyl-L-valine 1.52 (21 mg, 89%), as a 

colorless solid, m.p. 101-104 oC: 1H NMR, (400 MHz, CDCl3) δ 9.01 (s, 1H), 5.01 

(d, 1H, J=10.2 Hz), 3.95 (dd, 1H, J=4.8 Hz, J=10.3 Hz), 2.20-2.16 (m, 1H), 

1.36 (s, 9H), 1.04 (d, 3H, J=6.8 Hz), 0.94 (d, 3H, J=6.9 Hz); 13C NMR, (100 

MHz, CDCl3) δ 177.2, 62.5, 60.7, 32.1, 24.3, 19.5, 17.6; [α]D -3.2 (c 1.0, 

CHCl3); HRMS for C9H19NO4S calculated (M+Na+) 260.0927, found 260.09235. 

 

 

Hydrolysis of N-Bus-O-Bn-L-Ser-OMe (1.31a): The general procedure 

was followed using tert-butylsulfonyl-O-benzyl-L-serine methyl ester 1.30a 

(495 mg, 1.5 mmol), LiOH×H2O (315 mg, 7.5 mmol), MeOH (15 mL) and H2O 

(5 mL). The organic extracts were combined, dried over Na2SO4, and 

concentrated under reduced pressure to afford tert-butylsulfonyl-O-benzyl- 

L-serine 1.31a (408 mg, 86%), as a colorless solid, m.p. 58-60 oC: 1H NMR, 

(400 MHz, CDCl3) δ 7.33-7.28 (m, 5H), 6.95 (s, 1H), 5.22 (d, 1H, J=9.3 Hz), 

4.55 (s, 2H), 4.30-4.27 (m, 1H), 3.93 (dd, 1H, J=3.4 Hz, J=9.5 Hz), 3.73 (dd, 

1H, J=3.6 Hz, J=9.5 Hz), 1.37 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 174.6, 

137.3, 128.7, 128.2, 127.9, 73.6, 71.1, 60.5, 58.3, 24.2; [α]D -4.7 (c 1.0, 
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CHCl3);HRMS for C14H21NO5S calculated (M+H+) 316.12132, found 316.12180. 

  

 

Hydrolysis of N-Bus-O-Bn-L-Tyr-OMe (1.31b): The general procedure 

was followed using tert-butylsulfonyl-O-benzyl-L-tyrosine methyl ester 1.30b 

(609 mg, 1.5 mmol), LiOH×H2O (315 mg, 7.5 mmol), MeOH (15 mL) and H2O 

(5 mL). The organic extracts were combined, dried over Na2SO4, concentrated 

under reduced pressure to give tert-butylsulfonyl-O-benzyl-L-tyrosine 1.31b 

(518 mg, 88%), as a colorless solid, m.p. 148-149 oC: 1H NMR, (400 MHz, CDCl3) 

δ 7.96 (s, 1H), 7.43-7.30 (m, 5H), 7.17 (d, 2H, J=8.4 Hz), 6.93 (d, 2H, J=8.4 

Hz), 5.04 (s, 2H), 5.02 (d, 1H, J=13.0 Hz), 4.25 (s, 1H), 3.14 (dd, 1H, J=4.7 Hz, 

J=13.9 Hz), 2.98 (dd, 1H, J=7.7 Hz, J=13.8 Hz), 1.20 (s, 9H); 13C NMR, (100 

MHz, CDCl3) δ 176.7, 158.2, 137.0, 130.9, 128.7, 128.1, 128.0, 127.6, 115.2, 

70.1, 60.5, 58.9, 38.6, 23.9; [α]D +3.7 (c 1.0, CHCl3); HRMS for C20H25NO5S 

calculated (M+H+) 392.15262, found 392.15377.  

 

General Procedure for Peptide Coupling:  

 

 

 N-Bus-L-Phe-N6-Boc-L-Lys-OMe (1.37b): A solution of tert-butyl- 

sulfonyl-L-phenylalanine 1.36b (143 mg, 0.5 mmol) in 8mL of DCM and 2 mL of 

DMF was cooled to 0 oC, then EDC (144 mg, 0.75 mmol), HOBt (101 mg, 0.75 

mmol), N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 1.34 



44 
 

(148 mg, 0.5 mmol) and 2,6-lutidine (0.17 mL, 1.5 mmol) were added. The 

reaction mixture was stirred at 0 oC for 1 h, then at R.T. until MS showed 

consumption of the starting material (4 h). Upon completion, 20 mL of DCM was 

added and washed successively with the saturated aqueous NaHCO3 (2×30 mL), 

1 M HCl aqueous (2×30 mL) and brine (30 mL). The organic layer was dried 

over Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/hexane 1:1) to afford tert- 

butylsulfonyl-L-phenylalanine-N6-tert-butyloxycarbonyl-L-lysine methyl ester 

1.37b (247 mg, 93%), as a colorless solid, m.p. 131-132 oC: 1H NMR, (400 MHz, 

CDCl3) δ 7.26-7.16 (m, 5H), 6.95 (d, 1H, J=7.5 Hz), 5.51 (d, 1H, J=9.9 Hz), 

4.91 (s, 1H), 4.56-4.54 (m, 1H), 4.09-4.07 (m, 1H), 3.66 (s, 3H), 3.11-3.02 

(m, 4H), 1.82-1.71 (m, 1H), 1.66-1.60 (m, 1H), 1.45-1.38 (m, 11H), 

1.28-1.21 (m, 2H), 1.12 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.5, 172.4, 

156.1, 136.5, 129.9, 128.6, 127.1, 78.9, 60.1, 59.8, 52.4, 52.1, 40.1, 39.1, 

31.7, 29.2, 28.5, 23.8, 22.2; [α]D -15.9 (c 1.0, CHCl3); HRMS for C25H41N3O7S 

calculated (M+H+) 528.27380, found 528.27291. 

  

 

  Cleavage Boc of N-Bus-L-Phe-N6-Boc-L-Lys-OMe (1.46a): To a solution 

of tert-butylsulfonyl-L-phenylalanine-N6-tert-butyloxycarbonyl-L-lysine methyl 

ester 1.37b (53 mg, 0.1 mmol) in DCM (5 mL), trifluoroacetic acid (0.5 mL, 6.7 

mmol) was added dropwise and stirred at 0 oC (TLC monitoring, EtOAc/hexane 

1:1). Solvent was evaporated to afford tert-butylsulfonyl-L-phenylalanine- 

L-lysine methyl ester trifluoroacetic acid salt 1.46a (51 mg, 94%), as a 

colorless oil: 1H NMR, (400 MHz, MeOH-d4) δ 7.38-7.30 (m, 4H), 7.27-7.24 (m, 
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1H), 4.56-4.53 (m, 1H), 4.11-4.07 (m, 1H), 3.73 (s, 3H), 3.09 (dd, 1H, J=4.4 

Hz, J=13.7 Hz)， 2.96-2.92 (t, 2H, J=7.5 Hz), 2.82 (dd, 1H, J=10.6 Hz, J=13.5 

Hz), 2.02-1.91 (m, 1H), 1.83-1.60 (m, 3H), 1.58-1.49 (m, 2H), 1.06 (s, 9H); 

13C NMR, (100 MHz, MeOH-d4) δ 175.4, 175.3, 173.8, 138.8, 131.1, 129.6, 

128.1, 61.7, 60.9, 53.0, 52.9, 40.7, 40.0, 32.2, 27.8, 24.1, 23.5; [α]D -20.9 (c 

1.0, MeOH); ESI/MS for C22H34F3N3O7S calculated (M+H+) 428, found 428.  

 

 

N-Bus-D-Phe-N6-Boc-L-Lys-OMe (1.39b): The general procedure was 

followed using tert-butylsulfonyl-D-phenylalanine 1.38b (14 mg, 0.05 mmol),  

N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 1.34 (15 mg, 

0.05 mmol), EDC (14 mg, 0.08 mmol), HOBt (10 mg, 0.08 mmol), 2,6-lutidine 

(17 μL, 0.15 mmol), DCM (0.8 mL) and DMF (0.2 mL). The product (33 mg) was 

checked directly by HPLC and purified by flash column chromatography (EtOAc/ 

hexane 1:1) to afford tert-butylsulfonyl-D-phenylalanine-N6-tert-butyloxy 

carbonyl-L-lysine methyl ester 1.39b (24 mg, 92%), as a colorless soft powder: 

1H NMR, (400 MHz, CDCl3) δ 7.35-7.25 (m, 5H), 6.68 (d, 1H, J=7.4 Hz), 4.96 (d, 

1H, J=9.0 Hz), 4.72 (tr, s, 1H), 4.56 (dd, 1H, J=7.6 Hz, J=12.4 Hz), 4.16(dd, 

1H, J=7.2 Hz, J=16.1 Hz), 3.73 (s, 3H), 3.19-2.98 (m, 4H), 1.81-1.71 (m, 1H), 

1.69-1.59 (m, 1H), 1.45-1.41 (m, 11H), 1.31-1.17 (m, 11H); 13C NMR, (100 

MHz, CDCl3) δ 172.5, 171.2, 156.2, 136.4, 129.8, 129.0, 127.5, 79.3, 60.5, 

60.0, 52.7, 52.3, 40.2, 40.0, 31.8, 29.5, 28.6, 24.1, 22.3; [α]D +17.3 (c 1.0, 

CHCl3); ESI/MS for C25H41N3O7S calculated (M+H+) 528, found 528. 
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  N-Bus-D-Phe-N6-Cbz-L-Lys-OMe (1.39d): The general procedure was 

followed using tert-butylsulfonyl-D-phenylalanine 1.38b (143 mg, 0.5 mmol) 

N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 (166 mg, 0.5 

mmol), EDC (144 mg, 0.75 mmol), HOBt (101 mg, 0.75 mmol), 2,6-lutidine 

(0.17 mL, 1.5 mmol), DCM (8 mL) and DMF (2 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 2:3) to afford tert- 

butylsulfonyl-D-phenylalanine-N6-benzyloxycarbonyl-L-lysine methyl ester 

1.39d (257 mg, 92%), as a colorless solid, m.p. 57-59 oC: 1H NMR, (400 MHz, 

CDCl3) δ 7.31-7.21 (m, 5H), 7.02 (d, 1H, J=7.9 Hz), 5.58 (d, 1H, J=9.3 Hz), 

5.32-5.29 (m, 1H), 5.14-5.03 (m, 2H), 4.59-4.54 (m, 1H), 4.18-4.12 (m, 1H), 

3.66 (s, 3H), 3.19-3.10 (m, 3H), 3.03-2.98 (m, 1H), 1.77-1.73 (m, 1H), 

1.63-1.60 (m, 1H), 1.43-1.29 (m, 2H), 1.25-1.22 (m, 2H), 1.10 (s, 9H); 13C 

NMR, (100 MHz, CDCl3) δ 172.5, 171.6, 156.7, 136.7, 136.6, 129.7, 128.7, 

128.4, 128.0, 127.9, 127.2, 66.5, 60.3, 60.2, 52.4, 52.0, 40.4, 39.5, 31.4, 

29.1, 23.8, 22.0; [α]D +21.1 (c 1.0, CHCl3); ESI/MS for C28H39N3O7S calculated 

(M+H+) 562, found 562.  

 

 

Cleavage Cbz of N-Bus-D-Phe-N6-Cbz-L-Lys-OMe (1.46b): To a solution 

of tert-butylsulfonyl-D-phenylalanine-N6-benzyloxycarbonyl-L-lysine methyl 

ester 1.39d (56 mg, 0.1 mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over 
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activated carbon (5 mg, cat.) was added and hydrogenated at 1 atm at R.T. for 

2 h (TLC monitoring, EtOAc/hexane 1:1). The reaction mixture was filtered over 

celite and acidified with 1 M HCl aqueous (10 mL). The aqueous layer was 

frozen and lyophilized to afford tert-butylsulfonyl-D-phenylalaninel-L-lysine 

methyl ester hydrochloride salt 1.46b (44 mg, 95%), as a colorless oil: 1H NMR, 

(400 MHz, MeOH-d4) δ 7.34-7.32 (m, 4H), 7.28-7.26 (m, 1H), 4.40 (dd, 1H, 

J=4.6 Hz, J=8.8 Hz), 4.14-4.09 (m, 1H), 3.74 (s, 3H), 3.11 (dd, 1H, J=5.6 Hz, 

J=11.5 Hz)， 2.93-2.86 (m, 3H), 1.94-1.82 (m, 1H), 1.79-1.64 (m, 3H), 

1.40-1.33 (m, 2H), 1.13 (s, 9H); 13C NMR, (100 MHz, MeOH-d4) δ 174.8, 174.7, 

138.6, 131.0, 129.7, 128.2, 62.0, 61.0, 53.4, 53.0, 40.8, 40.6, 32.2, 28.0, 

24.3, 23.5; [α]D +27.8 (c 1.0, MeOH); ESI/MS for C20H34ClN3O5S calculated 

(M-HCl+H+) 428, found 428. 

 

 

  N-Bus-L-Phe-N6-Cbz-L-Lys-OMe (1.37d): The general procedure was 

followed using tert-butylsulfonyl-L-phenylalanine 1.36b (14 mg, 0.05 mmol), 

EDC (14 mg, 0.08 mmol), HOBt (10 mg, 0.08 mmol), 2,6-lutidine (0.017 mL, 

0.15 mmol), N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 

(16 mg, 0.05 mmol), DCM (0.8 mL) and DMF (0.2 mL). The crude product (34 

mg) was checked directly by HPLC, then purified by flash column 

chromatography (EtOAc/hexane 2:3) to afford tert-butylsulfonyl-L-phenyl- 

alanine-N6-benzyloxy-carbonyl-L-lysine methyl ester 1.37d (26 mg, 93%), as 

a colorless solid, m.p. 136-138 oC: 1H NMR, (400 MHz, CDCl3) δ 7.37-7.22 (m, 

5H), 6.77 (d, 1H, J=7.8 Hz), 5.23 (d, 2H, J=7.0 Hz), 5.24-5.04 (m, 2H), 

4.63-4.60 (m, 1H), 4.13-4.07 (m, 1H), 3.73 (s, 3H), 3.20-3.08 (m, 4H), 
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1.93-1.85 (m, 1H), 1.73-1.62 (m, 1H), 1.57-1.43 (m, 2H), 1.32-1.26 (m, 2H), 

1.16 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.5, 171.3, 156.9, 136.8, 136.4, 

130.0, 128.8, 128.7, 128.3, 128.2, 127.4, 127.1, 66.8, 60.4, 59.9, 52.6, 52.1, 

40.5, 39.3, 31.7, 29.2, 23.9, 22.1; [α]D -13.8 (c 1.0, CHCl3); HRMS for 

C28H39N3O7S calculated (M+H+) 562.25815, found 562.25834. 

 

 

 N-Bus-L-Ala-N6-Cbz-L-Lys-OMe (1.37c): The general procedure was 

followed using tert-butylsulfonyl-L-alanine 1.36a (209 mg, 1.0 mmol), EDC 

(288 mg, 1.5 mmol), HOBt (202 mg, 1.5 mmol), 2,6-lutidine (0.35 mL, 3.0 

mmol), N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 (331 

mg, 1.0 mmol), DCM (16 mL) and DMF (4 mL). The crude product was purified 

by flash column chromatography (EtOAc/hexane 2:3) to afford tert- 

butylsulfonyl-L-alanine-N6-benzyloxycarbonyl-L-lysine methyl ester 1.37c 

(437 mg, 90%), as a thick colorless liquid. 1H NMR, (400 MHz, CDCl3) δ 

7.33-7.28 (m, 5H), 7.10 (d, 1H, J=7.8 Hz), 5.53 (d, 1H, J=9.4 Hz), 5.43-5.40 

(m, 1H), 5.12-5.03 (m, 2H), 4.58-4.53 (m, 1H), 4.09-4.02 (m, 1H), 3.70 (s, 

3H), 3.20-3.08 (m, 2H), 1.90-1.82 (m, 1H), 1.74-1.65 (m, 1H), 1.56-1.45 (m, 

2H), 1.41-1.37 (m, 5H), 1.33 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.60, 

172.57, 156.9, 136.7, 128.5, 128.09, 128.07, 66.6, 60.0, 53.6, 52.5, 52.1, 

40.4, 31.5, 29.2, 24.1, 22.2, 19.8; [α]D -17.5 (c 1.0, CHCl3); HRMS for 

C22H35N3O7S calculated (M+H+) 486.22685, found 486.22712. 
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Cleavage Cbz of N-Bus-L-Ala-N6-Cbz-L-Lys-OMe (1.46c): To a solution 

of tert-butylsulfonyl-L-alanine-N6-benzyloxycarbonyl-L-lysine methyl ester 

1.37c (49 mg, 0.1 mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated 

carbon (5 mg, cat.) was added and hydrogenated at 1 atm at R.T. for 2 h (TLC 

monitoring, EtOAc/hexane 1:1). The reaction mixture was filtered over celite 

and acidified with 1 M HCl aqueous (10 mL). The aqueous layer was frozen and 

lyophilized to afford tert-butylsulfonyl-L-alanine-L-lysine methyl ester 

hydrochloride salt 1.46c (35 mg, 90%), as a thick colorless oil. 1H NMR, (400 

MHz, MeOH-d4) δ 4.48 (dd, 1H, J=6.8 Hz, J=9.8 Hz), 4.11-4.04 (m, 1H), 3.73 

(s, 3H), 2.96-2.92 (t, 2H, J=7.5 Hz), 2.00-1.89 (m, 1H), 1.81-1.63 (m, 3H), 

1.56-1.47 (m, 2H), 1.40 (d, 3H, J=7.2 Hz), 1.37 (s, 9H); 13C NMR, (100 MHz, 

MeOH-d4) δ 175.9, 173.8, 60.9, 54.9, 53.1, 53.0, 40.7, 32.1, 27.9, 24.6, 23.6, 

19.9; [α]D -50.6 (c 1.0, MeOH); ESI/MS for C14H30ClN3O5S calculated (M-HCl 

+H+) 352, found 352. 

 

 

  N-Bus-D-Ala-N6-Cbz-L-Lys-OMe (1.39c): The general procedure was 

followed using N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 

(33 mg, 0.1 mmol), tert-butylsulfonyl-D-alanine 1.38a (21 mg, 0.1 mmol),  

EDC (29 mg, 0.15 mmol), HOBt (20 mg, 0.15 mmol), 2,6-lutidine (0.035 mL, 

0.3 mmol), DCM (1.6 mL) and DMF (0.4 mL). The product (61 mg) was checked 



50 
 

directly by HPLC and purified by flash column chromatography (EtOAc/hexane 

2:3) to afford tert-butylsulfonyl-D-alanine-N6-benzyloxycarbonyl-L-lysine 

methyl ester 1.39c (45 mg, 92%), as a thick colorless liquid. 1H NMR, (400 MHz, 

CDCl3) δ 7.36-7.28 (m, 5H), 7.09 (d, 1H, J=7.9 Hz), 5.37 (d, 1H, J=8.9Hz), 

5.19 (tr, t, 1H), 5.09 (s, 2H), 4.59-4.54 (m, 1H), 4.13-4.06 (m, 1H), 3.72 (s, 

3H), 3.20-3.14 (m, 2H), 1.93-1.83 (m, 1H), 1.78-1.68 (m, 1H), 1.57-1.48 (m, 

2H), 1.45 (d, 3H, J=7.1 Hz), 1.40-1.36 (m, 11H); 13C NMR, (100 MHz, CDCl3) δ 

172.7, 172.6, 156.9, 136.7, 128.6, 128.2, 66.7, 60.3, 54.0, 52.6, 52.2, 40.5, 

31.5, 29.3, 24.3, 22.2, 20.3; [α]D +24.8 (c 1.0, CHCl3); ESI/MS for 

C22H35N3O7S calculated (M+H+) 486, found 486. 

 

1.39a
1.38a

EDC, 2,6-lutidine, HOBt
BusHN CO2H BusHN

DMF: DCM 1:4ClH.H2N CO2Me CO2Me

NHBoc NHBoc

N
H

O

1.34

 

  N-Bus-D-Ala-N6-Boc-L-Lys-OMe (1.39a) : The general procedure was 

followed using N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 

34 (297 mg, 1.0 mmol), tert-butylsulfonyl-D-alanine 1.38a (209 mg, 1.0 

mmol),  EDC (288 mg, 1.5 mmol), 2,6-lutidine (0.35 mL, 3.0 mmol), HOBt 

(202 mg, 1.5 mmol), DCM (16 mL) and DMF (4 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 1:1) to afford 

tert-butylsulfonyl-D-alanine-N6-tert-butyloxycarbonyl-L-lysine methyl ester 

1.39b (415 mg, 92%), as a colorless solid, m.p. 92-94 oC: 1H NMR, (400 MHz, 

CDCl3) δ 7.31 (s, 1H), 5.83 (d, 1H, J=8.5 Hz), 5.03 (s, 1H), 4.39 (br, d, 1H), 

3.98 (br, t, 1H), 3.56 (s, 3H), 2.92 (br, m, 2H), 1.71 (br, m, 1H), 1.58 (br, m, 

1H), 1.31 (br, m, 3H), 1.30 (br, m, 3H), 1.27 (s, 9H), 1.23 (s, 9H); 13C NMR, 

(100 MHz, CDCl3) δ 172.8, 172.4, 156.0, 78.6, 59.7, 53.6, 52.1, 51.9, 39.8, 

31.2, 29.0, 28.2, 23.9, 22.2, 20.2; [α]D +24.6 (c 1.0, CHCl3); ESI/MS for 
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C19H37N3O7S calculated (M+H+) 452, found 452. 

 

 

Cleavage Boc of N-Bus-D-Ala-N6-Boc-L-Lys-OMe (1.46d): To a solution 

of tert-butylsulfonyl-D-alanine-N6-tert-butyloxycarbonyl-L-lysine methyl ester 

1.39a (45 mg, 0.1 mmol) in DCM (5 mL), trifluoroacetic acid (0.5 mL, 6.7 

mmol) was added dropwise and stirred at R.T. for 2 h (TLC monitoring, 

EtOAc/hexane 1:1). Solvent was evaporated to afford tert-butylsulfonyl- 

D-alanine-L-lysine methyl ester trifluoroacetic acid salt 1.46d (42 mg, 89%), 

as a colorless oil: 1H NMR, (400 MHz, MeOH-d4) δ 4.44 (dd, 1H, J=4.8 Hz, J=9.2 

Hz), 4.05 (dd, 1H, J=7.2 Hz, J=14.4 Hz), 3.73 (s, 3H), 2.95-2.91 (t, 2H, J=7.5 

Hz), 1.97-1.89 (m, 1H), 1.82-1.60 (m, 3H), 1.53-1.44 (m, 2H), 1.42 (d, 3H, 

J=7.2 Hz), 1.38 (s, 9H); 13C NMR, (100 MHz, MeOH-d4) δ 175.8, 174.8, 173.6, 

61.1, 55.4, 53.3, 52.9, 40.6, 32.0, 28.0, 24.6, 23.6, 20.1; [α]D +23.4 (c 1.0, 

MeOH); ESI/MS for C16H30F3N3O7S calculated (M-TFA+H+) 352, found 352.  

  

 

  N-Bus-L-Ala-N6-Boc-L-Lys-OMe (1.37a): The general procedure was 

followed using N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 

1.34 (30 mg, 0.1 mmol), tert-butylsulfonyl-L-alanine 1.36a (21 mg, 0.1 

mmol),  EDC (29 mg, 0.15 mmol), HOBt (20 mg, 0.15 mmol), 2,6-lutidine (35 

μL, 0.3 mmol), DCM (1.6 mL) and DMF (0.4 mL). The crude product (56 mg) 
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was checked directly by HPLC, and then purified by flash column 

chromatography (EtOAc/hexane 1:1) to afford tert-butylsulfonyl-L-alanine- 

N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.37a (41 mg, 90%), as a 

colorless soft solid . 1H NMR, (400 MHz, CDCl3) δ 6.99 (d, 1H, J=9.4 Hz), 5.40 

(d, 1H, J=9.4 Hz), 4.91 (br, t, 1H), 4.60-4.57 (br, m, 1H), 4.09-4.06 (br, t, 1H), 

3.73 (s, 3H), 3.09-3.07 (br, m, 2H), 1.92-1.84 (br, m, 1H), 1.77-1.67 (br, m, 

1H), 1.44 (br, d, 14H), 1.40 (br, s, 11H); 13C NMR, (100 MHz, CDCl3) δ 172.7, 

172.5, 156.4, 79.3, 60.2, 53.8, 52.6, 52.2, 40.1, 31.6, 29.4, 28.6, 24.3, 22.4, 

20.0; [α]D -18.0 (c 1.0, CHCl3); HRMS for C19H37N3O7S calculated (M+Na+) 

474.22444, found 474.22551. 

 

 

N-Bus-O-Bn-L-Ser-L-Pro-OMe (1.33a): The general procedure was 

followed using tert-butylsulfonyl-O-benzyl-L-serine 1.31a (158 mg, 0.5 mmol), 

EDC (144 mg, 0.75 mmol), L-proline methyl ester hydrochloride 1.23b (83 mg, 

0.5 mmol), HOBt (101 mg, 0.75 mmol), 2,6-lutidine (0.17 mL, 1.5 mmol), DCM 

(8 mL), DMF (2 mL). The crude product was purified by flash column 

chromatography (EtOAc/hexane 3:7) to afford tert-butylsulfonyl-O-benzyl- 

L-serine-L-proline methyl ester 1.33a (184 mg, 86%), as a colorless liquid: 1H 

NMR, (400 MHz, CDCl3) δ 7.31-7.21 (m, 5H), 5.49-5.45 (m, 1H), 4.58-4.39 (m, 

4H), 3.68-3.55 (m, 6H), 2.32 (s, 1H), 2.20-2.04 (m, 1H), 1.99-1.86 (m, 

3H),1.81-1.71 (m, 1H), 1.33 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.1, 

169.5, 137.7, 128.3, 127.6, 127.5, 73.5, 71.1, 60.0, 59.0, 55.4, 52.2, 46.9, 

29.0, 24.8, 24.1; [α]D -43.3 (c 1.0, CHCl3); HRMS for C20H30N2O6S calculated 

(M+H+) 427.18973, found 427.19101.  
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Cleavage Bn of N-Bus-O-Bn-L-Ser-L-Pro-OMe (1.46e): To a solution of 

tert-butylsulfonyl-O-benzyl-L-serine-L-proline methyl ester 1.33a (43 mg, 0.1 

mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (3 mg, cat.) 

was added and hydrogenated at 1 atm at R.T. for 3 h (TLC monitoring, EtOAc/ 

hexane 1:1). The reaction mixture was filtered over celite, and the filtrate was 

concentrated under reduced pressure to afford tert-butylsulfonyl-L-serine- 

L-proline methyl ester 1.46e (30 mg, 89%), as a colorless liquid: 1H NMR, (400 

MHz, CDCl3) δ 5.45 (d, 1H, J=9.4 Hz), 4.62-4.59 (m, 1H), 4.42-4.36 (m, 1H), 

3.86-3.365 (m, 7H), 2.28-2.19 (m, 1H), 2.05-1.94 (m, 3H), 1.37 (s, 9H); 13C 

NMR, (100 MHz, CDCl3) δ 173.2, 170.5, 64.5, 60.2, 59.2, 56.7, 52.9, 47.3, 

29.0, 24.9, 24.2; [α]D -67.0 (c 1.0, CHCl3); ESI/MS for C13H24N2O6S calculated 

(M+H+) 337, found 337. 
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CO2Me

1.33b

 

N-Bus-O-Bn-L-Tyr-L-Pro-OMe (1.33b): The general procedure was 

followed using tert-butylsulfonyl-O-benzyl-L-tyrosine 1.31b (196 mg, 0.5 

mmol), EDC (144 mg, 0.75 mmol), L-proline methyl ester hydrochloride 1.23b 

(83 mg, 0.5 mmol), HOBt (101 mg, 0.75 mmol), 2,6-lutidine (0.17 mL, 1.5 

mmol), DCM (8 mL) and DMF (2 mL). The crude product was purified by flash 

column chromatography (EtOAc/hexane 3:7) to afford tert-butylsulfonyl- 

O-benzyl-L-tyrosine-L-proline methyl ester 1.33b (223 mg, 89%), as a 

colorless solid, m.p. 45-47 oC: 1H NMR, (400 MHz, CDCl3) δ 7.39-7.27 (m, 5H), 

7.22-7.10 (m, 2H), 6.90-6.88 (m, 2H), 5.63 (d, 1H, J=9.9 Hz), 5.02 (s, 2H), 
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3.66-3.64 (m, 4H), 3.33-3.30 (m, 1H), 3.06-3.01 (m, 1H), 2.89-2.83 (m, 1H), 

2.17-2.12 (m, 1H),1.93-1.92 (m, 1H), 1,27-1.19 (m, 2H), 1.13 (s, 9H); 13C 

NMR, (100 MHz, CDCl3) δ 172.2, 171.1, 157.6, 137.0, 131.0, 128.8, 128.4, 

127.8, 127.3, 114.8, 69.8, 59.7, 58.8, 57.6, 52.1, 46.6, 38.5, 28.9, 24.7, 23.6; 

[α]D -43.3 (c 1.0, CHCl3); HRMS for C26H34N2O6S calculated (M+H+) 503.22103, 

found 503.22170. 

 

1.46f1.33b
Pd(OH)2/C, H2
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Cleavage Bn of N-Bus-O-Bn-L-Tyr-L-Pro-OMe (1.46f): To a solution of 

tert-butylsulfonyl-O-benzyl-L-tyrosine-L-proline methyl ester 1.33b (50 mg, 

0.1 mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (3 mg, cat.) 

was added and hydrogenated at 1 atm at R.T. for 3 h (TLC monitoring, EtOAc/ 

hexane 1:1). The reaction mixture was filtered over celite, and the filtrate was 

concentrated under reduced pressure to afford tert-butylsulfonyl-L-tyrosine- 

L-proline methyl ester 1.46f (37 mg, 89%) as a colorless solid, m.p. 70-72 oC: 

1H NMR, (400MHz, CDCl3) δ 7.09 (d, 2H, J=8.1 Hz), 6.75 (d, 2H, J=8.1 Hz), 

5.09 (d, 1H, J=9.8 Hz), 4.58-4.55 (m, 1H), 4.30-4.24 (m, 1H), 3.72-3.63 (m, 

4H), 3.40-3.37 (m, 1H), 3.01 (dd, 1H, J=5.8 Hz, J=13.8 Hz), 2.82 (dd, 1H, 

J=7.3 Hz, J=14.0 Hz), 2.39 (s, 1H), 2.21-1.95 (m, 2H), 1.33 (d, 2H, J=16.4 Hz), 

1.20 (s, 9H); 13C NMR, (100 MHz, CDCl3) δ 172.5, 171.4, 155.6, 131.2, 127.3, 

115.6, 60.1, 59.2, 57.5, 52.5, 46.9, 38.9, 29.1, 25.0, 24.1, 23.9; [α]D -38.9 (c 

1.0, CHCl3); ESI/MS for C19H28N2O6S calculated (M+H+) 413, found 413. 
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1.31a
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N-Bus-O-Bn-L-Ser-N6-Boc-L-Lys-OMe (1.32a): The general procedure 

was followed using tert-butylsulfonyl-O-benzyl-L-serine 1.31a (158 mg, 0.5 

mmol), N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 1.34 

(148 mg, 0.5 mmol), EDC (144 mg, 0.75 mmol), HOBt (101 mg, 0.75 mmol), 

2,6-lutidine (0.17 mL, 1.5 mmol), DCM (8 mL) and DMF (2 mL). The product 

was purified by flash column chromatography (EtOAc/hexane 3:7) to afford 

tert-butylsulfonyl-O-benzyl-L-serine-N6-tert-butyloxycarbonyl-L-lysine methyl 

ester 1.32a (238 mg, 85%), as a colorless thick liquid: 1H NMR, (400 MHz, 

CDCl3) δ 7.30-7.21 (m, 5H), 5.44 (dd, 1H, J=8.2 Hz, J= 26.5 Hz), 4.76-4.74 (m, 

1H), 4.55-4.45 (m, 3H), 4.16-4.13 (m, 1H), 3.88-3.82 (m, 1H), 3.65-3.62 (m, 

3H), 2.97-2.95 (m, 2H), 1.80-1.76 (m, 1H), 1.62-1.59 (m, 1H), 1.37 (s, 11H), 

1.34 (s, 9H), 1.24-1.20 (m, 2H); 13C NMR, (100 MHz, CDCl3) δ 172.2, 169.7, 

156.0, 137.2, 128.4, 127.9, 127.7, 78.9, 73.5, 71.1, 70.8, 60.4, 52.3, 52.2, 

40.0, 31.8, 29.2, 28.4, 24.1, 22.3; [α]D +6.3 (c 1.0, CHCl3); HRMS for 

C26H43N3O8S calculated (M+Na+) 580.26631, found 580.26710. 
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Cleavage Bn of N-Bus-O-Bn-L-Ser-N6-Boc-L-Lys-OMe (1.46g): To a 

solution of tert-butylsulfonyl-O-benzyl-L-serine-N6-tert-butyloxycarbonyl-L- 
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lysine methyl ester 1.32a (56 mg, 0.1 mmol) in MeOH (5 mL), 20 wt.% 

Pd(OH)2 over activated carbon (3 mg, cat.) was added and hydrogenated at 1 

atm at R.T. for 1 h (TLC monitoring, EtOAc/hexane 1:1). The reaction mixture 

was filtered over celite, and filtrate was concentrated under reduced pressure 

to afford tert-butylsulfonyl-L-serine-N6-tert-butyloxycarbonyl-L-lysine methyl 

ester 1.46g (40 mg, 86%), as a colorless thick liquid: 1H NMR, (400 MHz, CDCl3) 

δ 7.36 (d, 1H, J=7.5 Hz), 5.84 (d, 1H, J=8.7 Hz), 5.74 (d, 1H, J=8.7 Hz), 4.89 

(br, m, 1H), 4.62-4.55 (br, m, 1H), 4,11 (br, m, 1H), 4.01 (br, m, 1H), 3.91 (br, 

m, 1H), 3.80 (br, m, 1H), 3.73 (s, 3H), 3.07 (d, 1H, J=5.3 Hz), 1.93-1.85 (br, 

m, 1H), 1.78-1.68 (br, m, 1H),1.57-1.34 (br, m, 20H); 13C NMR, (100 MHz, 

CDCl3) δ 172.9, 170.9, 156.4, 79.4, 64.1, 60.5, 59.4, 52.7, 52.5, 52.2, 40.2, 

31.4, 29.4, 28.6, 24.3, 22.5; [α]D -5.5 (c 1.0, CHCl3); ESI/MS for C19H37N3O8S 

calculated (M+H+) 468, found 468. 

 

 

Cleavage Boc of N-Bus-O-Bn-L-Tyr-N6-Boc-L-Lys-OMe (1.46h): To a 

solution of tert-butylsulfonyl-O-benzyl-L-serine-N6-tert-butyloxycarbonyl-L- 

lysine methyl ester 1.32a (56 mg, 0.1 mmol) in DCM (5 mL), trifluoroacetic 

acid (0.5 mL, 6.7 mmol) was added dropwise and stirred at R.T. for 2 h (TLC 

monitoring, EtOAc/hexane 1:1). Then the solvent was evaporated to afford 

tert-butylsulfonyl-O-benzyl-L-serine-L-lysine methyl ester trifluoroacetic acid 

salt 1.46h (53 mg, 92%), as a colorless solid, m.p. 37-39 oC: 1H NMR, (400 

MHz, MeOH-d4) δ 7.35-7.29 (m, 5H), 4.57 (s, 2H), 4.53-4.45 (m, 1H), 

4.24-4.23 (br, t, 1H), 3.73-3.69 (m, 4H), 2.90-2.79 (m, 2H), 1.95-1.86 (br, m, 
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1H), 1.76-1.59 (m, 3H),1.47-1.41 (m, 2H), 1.37 (s, 9H); 13C NMR, (100 MHz, 

MeOH-d4) δ 173.6, 172.9, 139.3, 129.5, 129.0, 189.9, 74.4, 71.9, 61.2, 59.3, 

53.2, 52.9, 40.6, 32.2, 27.9, 24.5, 23.5; [α]D -11.6 (c 1.0, MeOH); ESI/MS for 

C23H36F3N3O8S calculated (M-TFA+H+) 458, found 458. 

 

 

N-Bus-O-Bn-L-Tyr-N6-Boc-L-Lys-OMe (1.32b): The general procedure 

was followed using tert-butylsulfonyl-O-benzyl-L-tyrosine 1.31b (196 mg, 0.5 

mmol), N6-tert-butyloxycarbonyl-L-lysine methyl ester hydrochloride 1.34 

(148 mg, 0.5 mmol), EDC (144 mg, 0.75 mmol), HOBt (101 mg, 0.75 mmol), 

2,6-lutidine (0.17 mL, 1.5 mmol), DCM (8 mL) and DMF (2 mL). The product 

was purified by flash column chromatography (EtOAc/hexane 3:7) to afford 

tert-butylsulfonyl-O-benzyl-L-tyrosine-N6-tert-butyloxycarbonyl-L-lysine 

methyl ester 1.32b (295 mg, 93%), as a colorless solid, m.p. 160-161 oC: 1H 

NMR, (400 MHz, CDCl3) δ 7.42-7.31 (m, 5H), 7.16 (d, 2H, J=8.5 Hz), 6.90 (d, 

2H, J=8.6 Hz), 6.75 (d, 1H, J=8.2 Hz), 5.04 (s, 3H), 4.82 (m, 1H), 4.66-4.57 

(m, 1H), 4.07-4.03 (m, 1H), 3.70 (m, 3H), 3.16-2.87 (m, 4H), 1.84-1.81 (m, 

1H), 1.70-1.64 (m, 1H), 1.48-1.42 (m, 11H), 1.29-1.25 (m, 2H), 1.11 (s, 9H); 

13C NMR, (100 MHz, CDCl3) δ 172.4, 171.2, 158.0, 156.2, 137.0, 131.0, 128.7, 

128.5, 128.1, 127.5, 115.2, 79.1, 70.1, 60.3, 59.8, 52.5, 52.2, 40.2, 38.5, 

31.9, 29.4, 28.6, 23.9, 22.3; [α]D -7.0 (c 1.0, CHCl3); HRMS for C32H47N3O8S 

calculated (M+Na+) 656.29761, found 656.29837. 
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Cleavage Bn of N-Bus-O-Bn-L-Tyr-N6-Boc-L-Lys-OMe (1.46i): To a 

solution of tert-butylsulfonyl-O-benzyl-L-tyrosine-N6-tert-butyloxycarbonyl- 

L-lysine methyl ester 1.32b (63 mg, 0.1 mmol) in MeOH (5 mL), 20 wt.% 

Pd(OH)2 over activated carbon (3 mg, cat.) was added and hydrogenated at 1 

atm at R.T. for 1 h (TLC monitoring, EtOAc/hexane 1:1). The reaction mixture 

was filtered over celite, filtrate was concentrated under reduced pressure to 

afford tert-butylsulfonyl-L-tyrosine-N6-tert-butyloxycarbonyl-L-lysine methyl 

ester 1.46i (47 mg, 87%), as a white powder, m.p. 71-73 oC: 1H NMR, (400 

MHz, CDCl3) δ 8.14 (s, 1H), 7.07 (d, 2H, J=7.8 Hz), 6.93 (d, 1H, J=7.1 Hz), 

6.88 (d, 2H, J=7.8 Hz), 4.89 (br, r, 1H), 4.62 (br, d, 1H), 4.49 (d, 1H, J=10.2 

Hz), 4.25-4.24 (br, m, 1H), 3.73 (s, 3H), 3.50 (br, dd, 1H), 3.16-3.08 (m, 1H), 

1.92-1.85 (m, 1H), 1.73-1.62 (m, 1H), 1.49-1.42 (m, 11H), 1.42-1.30 (m, 9H), 

0.92-0.83 (m, 2H); 13C NMR, (100 MHz, CDCl3) δ 172.1, 170.2, 156.8, 156.7, 

131.1, 125.6, 116.1, 80.4, 60.6, 59.1, 52.8, 52.4, 40.8, 38.3, 31.7, 30.7, 28.6, 

24.2, 21.7; [α]D -9.9 (c 1.0, CHCl3); ESI/MS for C25H41N3O8S calculated (M+H+) 

544, found 544. 

 

 

Cleavage Boc of N-Bus-O-Bn-L-Tyr-N6-Boc-L-Lys-OMe (1.46j): To a 
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solution of tert-butylsulfonyl-O-benzyl-L-tyrosine-N6-tert-butyloxycarbonyl- 

L-lysine methyl ester 1.32b (63 mg, 0.1 mmol) in DCM (5 mL), trifluoroacetic 

acid (0.5 mL, 6.7 mmol) was added dropwise and stirred at R.T. for 2 h (TLC 

monitoring, EtOAc/hexane 1:1). Then the solvent was evaporated to afford 

tert-butylsulfonyl-O-benzyl-L-tyrosine-L-lysine methyl ester trifluoroacetic acid 

salt 1.46j (77 mg, 94%), as a colorless solid, m.p. 89-91 oC: 1H NMR, (400 MHz, 

MeOH-d4) δ 7.43-7.27 (m, 5H), 7.24 (d, 2H, J=8.6 Hz), 6.93 (d, 2H, J=8.6 Hz), 

6.75 (d, 1H, J=8.2 Hz), 5.07 (s, 2H), 4.53 (dd, 1H, J=4.5 Hz, J=10.0 Hz), 4.01 

(dd, 1H, J=4.6 Hz, J=10.4 Hz), 3.70 (m, 3H), 3.01 (dd, 1H, J=4.6 Hz, J=13.8 

Hz), 2.94-2.91 (m, 2H), 2.77-2.71 (m, 1H), 1.98-1.89 (m, 1H), 1.77-1.60 (m, 

3H), 1.54-1.46 (m,2H), 1.37-1.28 (m, 2H), 1.03 (s, 9H); 13C NMR, (100 MHz, 

MeOH-d4) δ 175.3, 173.7, 159.2, 138.9, 132.0, 130.9, 129.6, 128.9, 128.6, 

116.1,70.9, 61.7, 60.9, 52.9, 52.8, 40.6, 39.2, 32.1, 27.7, 24.1, 23.4; [α]D 

-28.4 (c 1.0, MeOH); ESI/MS for C29H40F3N3O8S calculated (M-TFA+H+) 534, 

found 534.  

 

 

N-Bus-L-Pro-N6-Cbz-L-Lys-OMe (1.41a): The general procedure was 

followed using N6-benzyloxycarbonyl-L-lysine methyl ester hydrochloride 1.35 

(332 mg, 1.0 mmol) with tert-butylsulfonyl-L-proline 1.40a (238 mg, 1.0 

mmol), EDC (288 mg, 1.5 mmol), HOBt (203 mg, 1.5 mmol), 2,6-lutidine (0.35 

mL, 3.0 mmol), DCM (8 mL) and DMF (2 mL). The crude product was purified by 

flash column chromatography (EtOAc/hexane 2:3) to afford tert-butylsulfonyl- 

L-proline-N6-benzyloxycarbonyl-L-lysine methyl ester 1.41a (469 mg, 92%), 

as a colorless oil. 1H NMR, (400 MHz, CDCl3) δ 7.38-7.31 (m, 5H), 6.80 (d, 1H, 
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J=7.2 Hz), 5.08 (m, 2H), 4.99 (br, t, 1H), 4.58-4.53 (m, 1H), 4.50 (dd, 1H, 

J=3.9Hz, J=7.9 Hz), 3.76-3.70 (m, 4H), 3.44-3.38 (m, 1H), 3.25-3.12 (m, 2H), 

2.23-2.08 (m, 2H), 2.05-1.85 (m, 3H), 1.78-1.69 (m, 1H), 1.58-1.51 (m, 2H), 

1.41-1.33 (m, 11H); 13C NMR, (100 MHz, CDCl3) δ 172.6, 171.9, 156.8, 136.8, 

128.7, 128.34, 128.28, 66.8, 62.9, 61.9, 52.7, 52.3, 50.8, 40.7, 32.0, 30.6, 

29.4, 25.6, 24.8, 22.4; [α]D -30.6 (c 1.0, CHCl3); HRMS for C24H37N3O7S 

calculated (M+H+) 512.24250, found 512.24303. 

 

1.40b

1.35
EDC, 2.6-lutidine, HOBt

DMF: DCM 1:4

1.41b
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N
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N
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N-Bus-D-Pro-N6-Cbz-L-Lys-OMe (1.41b): The general procedure was 

followed using N6-benzyloxy-carbonyl-L-lysine methyl ester hydrochloride 

1.35 (166 mg, 0.5 mmol), EDC (144 mg, 0.75 mmol), 2,6-lutidine (0.17 mL, 

1.5 mmol), tert-butylsulfonyl-D-proline 1.40b (120 mg, 0.5 mmol),  HOBt 

(101 mg, 0.75 mmol), DCM (8 mL) and DMF (2 mL). The crude product was 

purified by flash column chromatography (EtOAc/hexane 3:2) to afford tert- 

butylsulfonyl-D-proline-N6-benzyloxycarbonyl-L-lysine methyl ester 1.41b 

(236 mg, 92%), as a colorless oil. 1H NMR, (400 MHz, CDCl3) δ 7.28-7.21 (m, 

5H), 6.96 (d, 1H, J=8.0 Hz), 5.36 (br, t, 1H), 5.01 (s, 2H), 4.52-4.44 (m, 2H), 

3.65-3.59 (m, 4H), 3.47-3.41 (m, 1H), 3.15-3.07 (m, 2H), 2.11-2.02 (m, 2H), 

1.98-1.82 (m, 3H), 1.69-1.61 (m, 1H), 1.51-1.41 (m, 2H), 1.32 (m, 11H); 13C 

NMR, (100 MHz, CDCl3) δ 172.4, 171.9, 156.6, 136.7, 128.4, 128.0, 127.9, 

66.4, 62.8, 62.0, 52.3, 51.8, 50.4, 40.3, 31.5, 30.8, 28.9, 25.0, 24.7, 22.1; 

[α]D +54.3 (c 1.0, CHCl3); ESI/MS for C24H37N3O7S calculated (M+H+) 512, 

found 512. 
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Hydrolyzation of N-Bus-L-Pro-N6-Cbz-L-Lys-OMe (1.42): The general 

procedure was followed using tert-butylsulfonyl-L-proline-N6-benzyloxy- 

carbonyl-L-lysine methyl ester 1.41a (409 mg, 0.8 mmol), LiOH×H2O (168 mg, 

4.0 mmol), MeOH (24 mL) and H2O (8 mL). The organic extract was combined, 

dried over Na2SO4, and concentrated under reduced pressure to afford tert- 

butylsulfonyl-L-proline-N6-benzyloxycarbonyl-L-lysine 1.42 (371 mg, 93%), as 

a colorless oil. 1H NMR, (400 MHz, CDCl3) δ 7.37-7.30 (m, 5H), 7.11 (d, 1H, 

J=7.2 Hz), 5.27-5.25 (br, t, 1H), 5.15-5.06 (m, 2H), 4.54-4.50 (m, 2H), 

3.73-3.66 (m, 1H), 3.45-3.39 (m, 1H), 3.24-3.15 (m, 2H), 2.16-2.11 (m, 2H), 

2.04-1.97 (m, 1H), 1.95-1.86 (m, 2H), 1.80-1.71 (m, 1H), 1.55-1.49 (m, 2H), 

1.37 (s, 11H); 13C NMR, (100 MHz, CDCl3) δ 174.9, 172.7, 157.0, 136.6, 128.7, 

128.3, 128.1, 66.9, 62.8, 61.9, 52.4, 50.9, 40.6, 31.5, 30.8, 29.4, 25.6, 24.7, 

22.3; [α]D -24.5 (c 1.0, CHCl3); HRMS for C23H35N3O7S calculated (M+H+) 

498.22685, found 498.22749. 

 

 

N-Bus-L-Pro-N6-Cbz-L-Lys-N6-Boc-L-Lys-OMe (1.43): The general 

procedure was followed using N6-tert-butyloxycarbonyl-L-lysine methyl ester 

hydrochloride 1.34 (148 mg, 0.5 mmol), EDC (144 mg, 0.75 mmol), 

2,6-lutidine (0.17 mL, 1.5 mmol), HOBt (101 mg, 0.75 mmol), tert-butyl- 
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sulfonyl-L-proline-N6-benzyloxycarbonyl-L-lysine 1.42 (249 mg, 0.5 mmol), 

DCM (8 mL) and DMF (2 mL). The product was purified by flash 

chromatography (EtOAc/hexane 7:3) to afford tert-butylsulfonyl-L-proline- 

N6-benzyloxycarbonyl-L-lysine-N6-tert- butyloxycarbonyl-L-lysine methyl ester 

1.43 (333 mg, 90%), as a colorless oil.1H NMR, (400 MHz, CDCl3) δ 7.33-7.28 

(m, 5H), 7.09 (br, s, 1H), 6.99 (br, s, 1H), 5.32 (br, s, 1H), 5.06 (s, 2H), 4.86 

(br, s, 1H), 4.49 (br, m, 3H), 3.72-3.65 (br, m, 4H), 3.52-3.46 (br, m, 1H), 3.17 

(br, d, 2H), 3.07 (br, d, 2H), 2.20-2.12 (m, 2H), 2.01-1.98 (m, 3H), 1.96-1.87 

(m, 1H), 1.82-1.63 (m, 2H), 1.60-1.24 (m, 22H); 13C NMR, (100 MHz, CDCl3) δ 

172.9, 172.3, 171.5, 156.8, 156,3, 136.8, 128.6, 128.2, 128.1, 79.2, 66.6, 

63.2, 62.2, 53.0, 52.5, 52.4, 52.2, 50.8, 40.5, 40.2, 31.9, 31.6, 31.3, 31.1, 

29.8, 29.5,29.3, 28.6, 25.4, 24.8, 22.8, 22.3; [α]D -31.3 (c 1.0, CHCl3); HRMS 

for C35H57N5O10S calculated (M+H+) 740.38989, found 740.39049. 

 

 

Cleavage Cbz of N-Bus-L-Pro-N6-Cbz-L-Lys-N6-Boc-L-Lys-OMe 

(1.47a): To a solution of tert-butylsulfonyl-L-proline-N6-benzyloxycarbonyl- 

L-lysine-N6-tert-butyloxycarbonyl-L-lysine methyl ester 43 (73.9 mg, 0.1 

mmol) in MeOH (5 mL), 20 wt.% Pd(OH)2 over activated carbon (5 mg, cat.) 

was added and hydrogenated at 1 atm at R.T. for 1 h (TLC monitoring, 

EtOAc/hexane 4:1). The reaction mixture was filtered over celite and acidified 

with 1 M HCl aqueous (10 mL) carefully to pH=6～7. The aqueous layer was 

frozen and lyophilized to afford tert-butylsulfonyl-L-proline-L-lysine-N6-tert- 

butyloxycarbonyl-L-lysine methyl ester hydrochloride salt 1.47a (63 mg, 98%), 
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as a colorless oil. 1H NMR, (400 MHz, MeOH-d4) δ 4.51 (dd, 1H, J=3.2 Hz, J=8.2 

Hz), 4.45-4.38 (m, 2H), 3.73 (s, 3H), 3.68-3.61 (m, 2H), 3.06-3.02 (t, 2H, 

J=7.5 Hz),  2.98-2.94 (t, 2H, J=7.5 Hz), 2.34-2.26 (m, 1H), 2.13-1.82 (m, 

5H), 1.79-1.68 (m, 4H), 1.56-1.47 (m, 4H), 1.45 (s, 10H), 1.41 (s, 10H); 13C 

NMR, (100 MHz, MeOH-d4) δ 175.7, 174.2, 156.4, 80.0, 64.0, 63.0, 54.0, 52.9, 

52.0, 41.2, 40.7, 32.6, 32.2, 30.6, 28.9, 28.1, 26.2, 25.0, 24.3, 23.5; [α]D 

-52.2 (c 1.0, MeOH);  ESI/MS for C27H52ClN5O8S calculated (M-HCl+H+) 606, 

found 606. 

 

 

Cleavage Boc of N-Bus-L-Pro-L-Lys-N6-Boc-L-Lys-OMe (1.47b): To a 

solution of tert-butylsulfonyl-L-proline-L-lysine-N6-tert-butyloxycarbonyl-L- 

lysine methyl ester hydrochloride 1.47a (58 mg, 0.09 mmol) in MeOH (1 mL), 

1.25 M HCl in MeOH solution 1 mL was added and stirred at R.T. for 4 h. Solvent 

was evaporated to afford tert-butylsulfonyl-L-proline-L-lysine-L-lysine methyl 

ester hydrochloride salt 1.47b (51 mg, 99%) as a colorless oil. 1H NMR, (400 

MHz, MeOH-d4) δ 4.53-4.50 (m, 1H), 4.44-4.36 (m, 2H), 3.74 (s, 3H), 

3.65-3.60 (m, 2H), 2.99-2.93 (m, 4H), 2.36-2.27 (m, 1H), 2.08-2.93 (m, 2H), 

1.90-1.89 (m, 3H), 1.81-1.72 (m, 6H), 1.57-1.48 (m, 4H), 1.41 (s, 9H); 13C 

NMR, (100 MHz, MeOH-d4) δ 175.7, 174.2, 173.9, 64.0, 63.1, 54.5, 53.6, 53.0, 

52.0, 40.7, 32.7, 32.3, 31.9, 28.1, 28.0, 26.2, 25.1, 23.9, 23.7; [α]D -45.6 (c 

1.0, MeOH); ESI/MS for C22H45Cl2N5O6S calculated (M-2HCl+H+) 506, found 

506. 
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Cleavage Boc of N-Bus-L-Pro-N6-Cbz-L-Lys-N6-Boc-L-Lys-OMe 

(1.47c): To a solution of tert-butylsulfonyl-L-proline-N6-benzyloxycarbonyl- 

L-lysine-N6-tert-butyloxycarbonyl-L-lysine methyl ester 1.43 (74 mg, 0.1 

mmol) in DCM (5 mL), trifluoroacetic acid (0.5 mL, 6.7 mmol) was added 

dropwise and stirred at R.T. for 4 h (TLC monitoring, 100% EtOAc). Solvent was 

evaporated to afford tert-butylsulfonyl-L-proline-N6-benzyloxycarbonyl-L- 

lysine-L-lysine methyl ester trifluoroacetic acid salt 1.47c (70 mg, 93%), as a 

colorless oil.1H NMR, (400 MHz, MeOH-d4) δ 7.36-7.30 (m, 5H), 5.07 (s, 2H), 

4.50 (dd, 1H, J=2.8 Hz, J=8.2 Hz), 4.47-4.39 (m, 1H), 4.30-4.24 (m, 1H), 

3.71(s, 3H), 3.68-3.62 (m, 1H), 3.59-3.53 (m, 1H), 3.16-3.12 (m, 2H), 

2.97-2.93 (t, 2H, J=7.5 Hz), 2.33-2.21 (m, 1H), 2.08-1.83 (m, 5H), 1.80-1.65 

(m, 4H), 1.62-1.42 (m, 6H), 1.39 (m, 9H); 13C NMR, (100 MHz, MeOH-d4) δ 

175.7, 175.1, 174.5, 159.0, 138.5, 129.6, 129.1, 128.9, 67.5, 63.9, 62.9, 55.1, 

53.3, 52.9, 52.0, 41.6, 40.6, 32.5, 32.4, 32.1, 30.5, 28.0, 26.3, 25.0, 24.2, 

23.9; [α]D -36.4 (c 1.0, MeOH); ESI/MS for C32H50F3N5O10S calculated (M-TFA 

+H+) 640, found 640.  

 

 

Cleavage the whole protecting groups of N-Bus-L-Pro-N6-Cbz-L- 
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Lys-N6-Boc-L-Lys-OMe (1.47d): To a solution of tert-butylsulfonyl- 

L-proline-N6-benzyloxycarbonyl-L-lysine-N6-tert-butyloxycarbonyl-L-lysine 

methyl ester 1.43 (74 mg, 0.1mmol) and anisole (0.11 mL, 1.0 mmol) in DCM 

(1.5 mL) was slowly added trifluoromethanesulfonic acid (0.2 N in DCM, 1.5 mL) 

at 0 oC. The solution was stirred at 0 oC for 48 h (TLC monitoring, 100% EtOAc), 

6 mL H2O and 4 mL DCM was added. The aqueous layer was neutralized with 

DOWEX anion exchange resin at 0 oC until pH=9.5. Then 6 mL MeOH was added 

and filtered. At last the solution was combined and acidified with 1 M HCl 

aqueous (3 mL). The acid layer was frozen and lyophilized to afford L-proline- 

L-lysine-L-lysine methyl ester hydrochloride salt 1.47d (41 mg, 82%), as a 

colorless oil.1H NMR, (400 MHz, MeOH-d4) δ  4.45-4.37 (m, 3H), 3.73 (s, 3H), 

3.45-3.33 (m, 2H), 3.01-2.94 (br, m, 4H), 2.57-2.47 (m, 1H), 2.17-2.01 (m, 

3H), 1.99-1.87 (m, 2H), 1.84-1.67 (m, 6H), 1.62-1.46 (m, 4H); ESI/MS for 

C18H38Cl3N5O4 calculated (M-3HCl+H+) 386, found 386. 

 

 

Elimination OBn of N-Bus-O-Bus-L-Ser-OMe (1.51): A solution of 

tert-butylsulfonyl-O-tert-butylsulfonyl-L-serine methyl ester 1.50 (54 mg, 

0.15 mmol) in 2 mL of THF was treated with Bu4N+ N3
- (102 mg, 0.36 mmol) at 

R.T.. The solution was stirred at R.T. for 2 h (TLC monitoring, EtOAc/hexane 

1:4). Solvent was evaporated, and the residue was purified by flash column 

chromatography (EtOAc/hexane 1:4) to afford tert-butylsulfonyl-2-amino- 

acrylate methyl ester 1.51 (14 mg, 62%), as a colorless liquid: 1H NMR, (400 

MHz, CDCl3) δ 6.62 (s, 1H), 5.84 (s, 1H), 5.69 (s, 1H), 3.86 (s, 3H), 1.43 (s, 

9H); 13C NMR, (100 MHz, CDCl3) δ 164.3, 132.5, 106.8, 62.5, 53.5, 29.8, 24.6; 

HRMS for C8H15NO4S calculated (M+Na+) 244.06140, found 244.06116. 
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HPLC method of Mosher ester: 1) alanine Mosher ester: Column: AD-RH 

150*4.6 mm. Comment: 0.1% TFA and 25% MeCN in H2O solution. Flow: 0.5 

mL/min. 2) phenylalanine Mosher ester: Column: AD-RH 150*4.6 mm. 

Comment: 0.1% TFA and 45% MeCN in H2O solution. Flow: 0.5 mL/min. 
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Chapter Two 

Total Synthesis of a β-Methyl-D-leucinyl 

Unnatural Aeruginosin Hybrid 
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2-1 Introduction 

2-1-1 Aeruginosin family 

The aeruginosin family is a relatively new class of potent serine protease 

inhibitors.[1] In the last two decades, more than 20 aeruginosins have been 

isolated from blue-green algae or marine sponges originating from 

geographically distinct aquatic sources.[1-7] Their structures have been 

determined by chemical, spectroscopic, and X-ray crystallographic methods.[2] 

 The aeruginosins are a new class of linear peptides, that for the most part 

contain a characteristic central core (P2), which is a 6-mono- or 5,6-dihydroxy- 

2-carboxyoctahydroindole core unit (named as Choi or OH-Choi subunit 

respectively).[1,3] Almost all members are also composed of three subunits: an 

N-terminal hydroxy or acidic group (P4), a bulky hydrophobic amino acid (P3), 

and a C-terminal guanidine-containing group (P1)(Figure 3)[4-6].  

 

 

Figure 3. Generalized structure of the aeruginosins. 

 

The members of the aeruginosin family exhibit very different degrees of 

inhibitory activity against serine proteases, and the profile of their activity has 

been explained by a high degree of pharmacophoric and structural homology 
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within the family. This array of structural and functional features specifically, a 

basic P1 subunit with three hydrophobic P2, P3 and P4 main pharmacophoric 

subunits, is responsible for their affinity to the catalytic and optimal binding 

pockets of trypsin, thrombin, and other serine proteases, involved in the blood 

coagulation cascade. 

Due to the structural novelty and the biological activity of the aeruginosins, 

the family members have also garnered considerable attention from synthetic 

organic chemists. The 2-carboxyperhydroindole core has received the most 

attention with respect to conceptually diverse synthetic approaches. To date, 

the total syntheses of seven aeruginosins have been completed, and four of 

these involving revisions about their originally proposed structures.[2,4,7]  

 

2-1-2  Biological activity 

The biological activities associated with the aeruginosin family of natural 

products have mainly been in relation to inhibitors of serine proteases such as 

thrombin, Factor VIIa, and Factor Xa. [8-11] These proteases are implicated in 

either intrinsic or extrinsic pathways, and eventually leading to blood clots in 

humans. Some of the aeruginosins have also been evaluated against the 

cysteine protease papain or other enzymes. 

 

2-1-2-1 Inhibition of coagulation cascade factors 

Blood coagulation is a very complex process, but still an ordered event. The 

process involves two components. One is cellular such as blood platelets and 

leukocytes. The other one is called as proteinaceous, which includes the 

coagulation factors and cofactors. The basic events involve two steps: 1) 

primary hemostasis, which is the aggregation of platelet and formation of a 

primary platelet plug, 2) secondary hemostasis, where plasma coagulation 
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factors are activated and generate fibrin, then the fibrin intertwines and 

reinforces the aggregated platelets, to form a strong fibrin clot.[9-12] There are 

also two pathways, which are respectively defined as an intrinsic contact 

activation system and an extrinsic tissue factor system. Both pathways are 

responsible for the biochemical coagulation cascade, which leads to the 

generation of fibrin. The details are shown as Figure 4.[10] 

 

 

Figure 4. Schematic overview of the blood coagulation cascade.  

 

Both pathways involve a stepwise activation of proteases, including 

thrombin. Thrombin is a multifunctional serine protease,[13] and responsible for 

the final cleavage of fibrinogen and the formation of fibrin. Along both pathways, 

the coagulation process is accelerated by the positive- feedback mechanisms. 

In recent years, the extrinsic system has been considered to be the major 

pathway to thrombinogenesis, triggered by tissue factors.[10] 



73 
 

Several of the aeruginosins exhibit high inhibitory potency against blood 

coagulation factors, which has made them attractive small-molecule targets in 

the search for new anticoagulants, although they may not be suitable as such 

for direct use in humans. Overall, the aeruginosins exhibit in vitro inhibitory 

activities against thrombin with micromolar to nanomolar IC50 values. Until now 

two compounds, chlorodysinosin A[5,14] and oscillarin[4] (thrombin IC50=0.0057 

μM and 0.028 μM, respectively), are the most potent members of the 

aeruginosin family, which have been isolated to date. Their structures and data 

are depicted in Figure 5. Total synthesis and structure confirmation of the 

chlorodysinosin A[5,14] and oscillarin[4] have been reported by Hanessian and 

coworkers. A total synthesis of dysinosin A[15] was also reported by the 

Hanessian group. 

 

 
Figure 5. Structures and enzymatic activities of the natural aeruginosins 

dysinosin A, chlorodysinosin A, and oscillarin. 

 

2-1-2-2 Inhibition of trypsin 

Trypsin-like substrate specificity is responsible for the high inhibitory 

activities against serine proteases. These enzymes are involved in important 
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physiological processes, and their relevance in the complex blood coagulation 

cascade has been well established.[16,17] Trypsin-like proteases are known to 

cleave substrates, which contain positively charged amino acid residues in the 

P1 position. Due to the fact that the aeruginosins contain a basic C-terminal 

arginine mimetic in the active sites of these proteases, some members of the 

family bind well. Trypsin is a digestive enzyme, which is frequently employed as 

a marker for inhibition of trypsin-like serine proteases. Ingeneral inhibition of 

trypsin should be avoided and selectivity is a prime consideration. 

 

2-1-2-3 Other biological activities 

The aeruginosins have also been evaluated for activity against other of 

enzyme targets. Several of the naturally occurring aeruginosins have been 

considered as inhibitors of plasmin, which is a trypsin-like serine protease 

involved in the fibrinolytic system. Because plasmin has also been implicated in 

angiogenesis and metastasis during the progression of cancer,[18] the 

aeruginosin family has been regarded as the potential agents for development 

as anticancer agents.  

So far, no inhibitory activity of the aeruginosins has been found against the 

digestive serine proteases chymotrypsin and elastase. However, some of the 

aeruginosins have also been tested against the cysteine protease papain,[19] 

but only weak activity has been demonstrated. Only one aeruginosin has been 

evaluated against the metalloprotease neprolysine, but no inhibition was 

detected at 20.0 μgmL-1.[20] 

 

2-1-3  Effect of the chlorine substituent 

The most recently isolated chlorodysinosin A exhibits the highest in vitro 

inhibitory activities against thrombin (Factor IIA) and Factor VIIA (IC50= 
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0.0057 and 0.039 μM, respectively) among the 20 or so normally occurring 

aeruginosins.[5] Another member, dysinosin A (IC50 thrombin, 0.046 μM; Factor 

VIIA, 0.326 μM), lacks the chlorine in the (2S,3R)-3-chloroleucine subunit. The 

dramatically different activities of these two compounds is remarkable in view 

of the simple replacement of a hydrogen by a chlorine atom in the same amino 

acid unit.[15] Both the X-ray co-crystal structure data and molecular modeling 

studies[5] of chlorodysinosin A[5] and dysinosin A[3] have identified the possible 

reasons for this remarkable “chlorine effect”. The amino acid residues in the 

enzyme, do not undergo major positional or conformational changes in the 

presence of their inhibitors. Our laboratory has ascribed a more restricted χ1 

angle as the reason of this unexpected “chlorine effect”. Due to the possible 

position of the chlorine atom in a favorable orientation within the hydrophobic 

S3 pocket, an entropic gain associated with the loss of water molecules may 

present a distinct advantage (Figure 6).[5]  

 

 

Figure 6.  Contour diagram of the S3 pocket and the P3 side-chains from an 
overlay of the co-crystal structures of chlorodysinosin A[3] (pink) 
and dysinosin A[5] (green) with thrombin. 
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To map the structure-activity relationships of the P1, P2, P3, and the 

N-terminal subunits against thrombin, a series of unnatural aeruginosin hybrids 

were synthesized.[21] When incorporating a β-substituent on the D-leucinyl P3 

subunit instead of the chlorine, a pronounced increase in activity was found, 

which also established the previously acknowledged importance of a 

hydrophobic interaction originally observed with the (3R)-chloro-D-leucine unit 

in chlorodysinosin A. 

 

2-1-4 β-Methyl-D-leucinyl analog of aeruginosin 

According to the contour diagram in Figure 6,[3,5] it appears that the S3 

subsite can accommodate β-substituents of the D-leucinyl subunit, and even 

larger ones as potential aeruginosin hybrids.  

Due to the presence of the α-proton in D-(3R)-chloroleucine, in chloro- 

dysinosin A, there is a possibility of β-elimination under basic conditions. The 

methyl group is very similar to the chlorine atom in molecular size, and a 

D-(3R)-β-methylleucine analog would not be subject to elimination. To validate 

such this notion, the new unnatural amino acid was synthesized and 

incorporated in a hybrid type analog. 

Among a series of unnatural chloroaeruginosin hybrids, which have been 

previously synthesized, compound 2.1 (Figure 7) was found to be the most 

potent (thrombin IC50=0.0016 μM). [21] Thus, deleting the hydroxyl group from 

oscillarin bicyclic core was not detrimental to acitivity against thrombin. 

Compound 2.2, in which the β-substituent of the P3 D-leucinyl subunit is a 

methyl group, was the target compound (Figure 7). The regioisomer 2.3 was 

also prepared as a model compound for comparison of their thrombin inhibitory 

acitivities. 
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Figure 7. Structures of chloroaeruginosin 2.1 and target comounds. 

 

2-2 Synthesis of ”methyl-leucine” aeruginosin hybrids 

 

Figure 8. Retrosynthesis of the target compound. 
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Based on the method of synthesis of chloroaeruginosin 2.1,[21] we 

envisaged the disconnections shown in the Figure 8. The two hybrid molecules 

2.2 and 2.3 were formed by coupling four subunits. The C-terminal 

guanidine-containing group (P1) is 4-amidino-benzamide, the P2 subunit is the 

2-carboxyperhydroindole core, and the N-terminal subunit (P4) is 

D-phenyllactic acid. Aziridine 2.4 is the starting material, which could be 

opened by a methyl nucleophile, then followed by oxidation to carboxylic acid, 

to give β-methyl-D-leucine and its regioisomer (P3). 

 

2-2-1 Synthesis of (3R, 2R)-3-methyl-D-leucine (β-Me-Leu) 

and its 2-methyl regioisomer (P3 subunit) 

2-2-1-1 Aziridine opening  

The aziridine 2.4, was prepared as previously reported,[5] and was 

protected as N-Ts aziridine 2.5 and N-Bus aziridine 2.6. Trimethylaluminum 

(AlMe3) was the first reagent to be used as the source of the methyl nucleophile 

(Scheme 15). 

 

 

 

Initial attempts to open the corresponding TBS-protected N-Ts aziridine 2.5 

using AlMe3 led to a complex mixture and a poor yield of the desired 3-methyl 

regioisomer. Only cleavage of the Bus-group occurred in the case of the N-Bus 
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aziridine 2.6. 

Flame-dried copper(I) iodide (CuI) was treated with methyllithium and 

lithium bromide (MeLi.LiBr) complex to form LiMe2Cu. Reaction of 2.5 with 

LiMe2Cu led to a mixture of 2-methyl and 3-methyl regioisomers in good 

combined yield. In addition to the N-Ts aziridine and N-Bus aziridine, the free 

and protected hydroxyl groups of the N-Ts aziridine, were also reacted in order 

to obtain a better ratio of the desired 3-methyl regioisomer as shown in Table 5. 

 

Table 5 Reaction of N-sulfonylaziridines with lithium dimethylcopper(II) 

 

 

 

a) Determined by NMR on the crude reaction mixture after workup 

b) Yb(OTf)3 was added as catalyst (20 mol%) 

 

Using excess LiMe2Cu, the TIPS-protected N-Ts aziridine 2.10 led to a 1:1.2 

mixture of the two regioisomers 2.10a and 2.10b. The other protecting groups, 

such as TBS, TES, TBDPS and N-Bus all resulted in lower ratios, and the 

compound R1 R2 Temperature
Time 

(hr) 

Ratio(a) 

a : b 

Total 

Yield (%)

2.5 Ts TBS -10 oC - 0 oC 16 1.8 : 1 89 

2.7 Ts H -10 oC - 0 oC 16 1 : 0 96 

2.5 Ts TBS(b) -10 oC– r.t. 16 2.3 : 1 nd 

2.8 Ts TBDPS -10 oC – r.t. 24 3 : 1 nd 

2.9 Ts TES -10 oC – r.t. 24 1.6 : 1 nd 

2.10 Ts TIPS -10 oC – r.t. 24 1.2 : 1 84 

2.11 Bus TIPS -10 oC – r.t. 24 2 : 1 53 
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undesired 2-methyl regioisomer a was the predominant product. In the 

presence of the Lewis acid Yb(OTf)3, which was added as catalyst,[22] the ratio 

of the undesired 2-methyl regioisomer was also increased. 

 

2-2-1-2 N-Ts group cleavage 

Compound 2.5b was used as the model to test three different conditions, 

for cleavage the N-Ts group, including acidic, free radical and basic conditions. 

First, compound 2.5b was treated with 2 equivalents of phenol in 30% 

hydrogen bromide (HBr) in acetic acid solution and heated to 60 oC,[23] for 12 h. 

MS analysis showed the TBS-group was cleaved, and the Ts-group remained 

intact even after heating to reflux for 36 h. The result was the same with 3 

equivalents of phenol in 48% hydrogen bromide aqueous at 90 oC.[24,25] 

Compound 2.5b was heated to reflux with 20 equivalents of samarium (II) 

iodide (SmI2) and 120 equivalents of 1,3-dimethyl-3,4,5,6-tetrahydro-2(1H)- 

pyrimidinone (DMPU) in THF solution under argon atmosphere. [26] However all 

starting material remained unreacted after heating to reflux for 24 h. 

Compound 2.5b in THF with 6 equivalents of sodium in liquid ammonia at 

-78 oC for 1 h resulted in the cleavage of the Ts-group (Scheme 16). 
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In cases involving small scale reactions and short reaction times, the 

TBS-group was found to be stable during the reaction. When scaling up a 

reaction, the mixture of compounds 2.12 and 2.13 was obtained. Compound 

2.12 was totally transformed to 2.13 in longer reaction times. The TIPS-group 

was stable in the Birch reaction conditions, so the analog 2.10a and 2.10b was 

converted to free amines 2.14 and 2.15, respectively (Scheme 16). 

 

2-2-1-3 (3R, 2R)-β-Methyl-D-leucine  

As shown in Scheme 17, compound 2.5b was treated with an HF solution to 

form compound 2.16, which was oxidized to the β-methyl-N-Ts-D-leucine 

2.16a in the presence of H5IO6 and CrO3.[5] Unfortunately, the yield of the 

oxidation was low and the acid was difficult to purify. 

 

 

 

2-2-2 Synthesis of the intermediates 

2-2-2-1 Formation of the P1 and P2 subunit 

Methyl octahydroindole-2-carboxylate 2.17[21] was first protected as the 

Boc-group. After saponification with LiOH and acidification, the free acid 2.19 

was coupled with P1 subunit (benzamidine 2.20), in the presence of PyBOP and 

2.6-lutidine as coupling reagents, to afford the coupling product 2.21. Finally, 

the N-Boc was cleaved by trifluoroacetic acid (TFA) to give the free amine 2.22 

as the final segment of the P1 and P2 subunit. The conditions, reagents and 

yields are shown in Scheme 18. 
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2-2-2-2 Formation of the P3 and P4 subunit 

In the coupling reaction involving the free amine of P3 subunit with 

MOM-D-phenyllactic acid 2.23[21] (P4 subunit), using 2.6-lutidine as base, three 

different kinds of coupling reagents were tested: 1) EDC and HOBt, 2) DEPBT, 3) 

PyBOP. For the P3 subunit, compounds 2.12, 2.13 and 2.14 were used as the 

starting materials. The results are shown in Table 6. 

 
Table 6 Coupling reaction of P3 and P4 subunit 
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a) Yields of isolated pure product 

 

Coupling reagent PyBOP was not effective. However, when the R-group is 

small (as TBS in the compound 2.14), EDC and HOBt are suitable reagents for 

the coupling reaction. When the R-group is large (as TIPS in the compound 

2.15), DEBPT was satisfactory, although the reaction was slow. The 2-methyl 

regioisomer 2.16 of the P3 subunit was treated under the same conditions. 

2-Methyl-O-TIPS analog 2.16 was used as the starting material for 

coupling with the P4 acid 2.23 in the presence of DEPBT to afford the coupling 

product 2.25a, in an acceptable yield (Scheme 19).  

Hydrogen fluoride (HF) stock solution was used in wet acetonitrile (MeCN) 

solution to easily cleave the TBS- and TIPS- hydroxyl protecting groups to 

afford compounds 2.24 and 2.25 in excellent yields, respectively (Scheme 19). 

Oxidation of the primary alcohol was effected upon treatment with 0.4 M 

periodic acid (H5IO6)[5] in wet acetonitrile (MeCN) and a catalytic amount of 

chromium (VI) oxide (CrO3) at 0 oC to afford the carboxylic acid. Following the 

same method, compounds 2.24 and 2.25 were oxidized to afford the 

carboxylic acids 2.26 and 2.27 (Scheme 19), as the final segment of the P3 and 

P4 subunit. 

P3  subunit Coupling reagent 

condition A  

Time 

(h) 

Poduct 

Compound R Compound Yielda(%) 

2.13 H PyBOP 24 2.24 Not found 

2.13 H DEBPT 20 2.24 57 

2.14 TBS EDC and HOBt 16 2.24a 64 

2.15 TIPS EDC and HOBt 16 2.24b 56 

2.15 TIPS  DEBPT 40 2.24b 86 
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2-2-3 Synthesis of the β-methyl-D-leucinyl aeruginosin hybrid 

The carboxylic acids 2.26 and 2.27 were coupled with free amine 2.22, to 

form compounds 2.28 and 2.29, as shown in Scheme 20. 

The Cbz-group was cleaved using Pd over activated carbon (Pd/C) as a 

catalyst under hydrogen gas atmosphere, followed by cleavage of the MOM 

group using a solution of >99.9% trifluoroacetic acid (TFA) and dichloro- 

methane (DCM) (9:1). The final target compound methyl-aeruginosin hybrid 

2.2 and its isomer 2.3 were purified by RP-HPLC, (85 min. gradient of 20-80% 

CH3CN in 0.05% aqueous TFA) to afford products as the TFA salt, which was 

transformed to the hydrochloride salt (1.25 M hydrochloric acid in methanol 

solution), as shown in Scheme 20. 
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2-3 Biological results 

     Methyl-aeruginosin hybrid 2.2 and its isomer 2.3 were evaluated in 

enzymatic assays for their inhibitory activity against thrombin and trypsin. The 

results are presented as IC50 values as below. 

A. β-methyl-D-leucinyl aeruginosin hybrid 2.2 

Thrombin IC50=0.022 μM (n=2, 0.016 μM and 0.028 μM) 

Trypsin IC50=0.02 μM (n=1) 



86 
 

B. Isomer 2.3 

Thrombin IC50=17.6 μM (n=1) 

Trypsin IC50=2.89 μM (n=1) 

The β–methyl analog 2.2 is less active than the β–chloro one 2.1. As 

expected, the 2–methyl analog 2.3 is much less active than its isomer 2.2. 

 

2-4 Experimental 

General: Solvents were distilled under positive pressure of dry argon before 

use and dried by standard methods. THF, ether, DCM and toluene were dried by 

the SDS (Solvent Delivery System). All commercially available reagents were 

used without further purification. All reactions were performed under argon 

atmosphere and monitored by thin-layer chromatography. Visualization was 

performed by ultraviolet light and/or by staining with ceric ammonium 

molybdate, ninhydrine or potassium permanganate. IR, Perkin-Elmer FTIR 

Paragon 1000. Low- and high-resolution mass spectra were recorded using fast 

atom bombardement (FAB) or electrospray techniques. Optical rotations were 

recorded in a 1 dm cell at 20 oC (PerkinElmer 343). Flash column 

chromatography was performed using (40-60 μm) silica gel at increased 

pressure. NMR (1H, 13C) spectra were recorded on Bruker AV-300 and AV-400 

spectrometers. When necessary, assignments were aided by DEPT, COSY, 

NOESY, and HMBC and HMQC correlation experiments.  

 

 

Compound 2.5: To a solution of 2.4 (459 mg, 2.0 mmol) in DCM (10.0 mL) 

at 0 °C was added K2CO3 (1.38 g, 10.0 mmol) under argon atmosphere. After 

stirring for 5 min., TsCl was added to the reaction mixture at 0 °C, then warmed 
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to R.T.. After stirring at R.T. for 16 h, the reaction mixture was filtered and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (toluene/hexane 1:1 to toluene/EtOAc 1:5) to give 

2.5 (679 mg, 89%), as a colorless solid, m.p. 46-48 °C: 1H NMR, (400 MHz, 

CDCl3) δ 7.79 (d, 2H, J=8.3 Hz), 7.23 (d, 2H, J=8.0 Hz), 4.02 (dd, 1H, J=5.0 Hz, 

J=11.0 Hz), 3.82 (dd, 1H, J=7.0 Hz, J=11.0 Hz),  2.77-2.73 (m, 1H), 2.52 (dd, 

1H, J=4.5 Hz, J=8.5 Hz), 2.35 (s, 3H), 1.64-1.56 (m, 1H), 0.88 (d, 3H, J=6.8 

Hz), 0.83-0.81 (m, 12H), -0.01 (s, 6H); 13C NMR, (100 MHz, CDCl3) δ 143.8, 

137.5, 129.4, 127.6, 61.1, 53.7, 49.0, 29.6, 25.8, 21.5 20.3, 19.8, 18.1, -5.3; 

[α]D -5.3 (c 1.0, CHCl3); ESI/MS for C19H33NO3SSi calculated (M+H+) 384, 

found 384. 

 

 

Compound 2.6: A solution of 2.4 (1.0 g, 4.4 mmol) in 40 mL of DCM was 

cooled to 0 °C and treated with Et3N (1.53 mL, 11.0 mmol), followed by 

dropwise addition of tert-butyl sulfinyl chloride 2.A (0.60 mL, 4.8 mmol) in 4.8 

mL of DCM. The reaction mixture was stirred at 0 oC until TLC showed 

consumption of the starting material (1 h). Upon completion, 40 mL of 

saturated aqueous NaHCO3 was added, and the layers separated (note: acidic 

washes should be avoided as tert-butyl sulfinamides are known to be unstable 

at low pH). The aqueous layer was extracted with DCM (3×50 mL). The organic 

layer was then dried over Na2SO4, and concentrated under reduced pressure. 

Flash column chromatography (EtOAc/hexane 1:9) afforded pure sulfinamide, 

which was directly taken up in 30 mL of DCM, and treated with m-CPBA (2.56 g, 

14.9 mmol). After the oxidation was complete by TLC (2 h), the reaction 

mixture was diluted with a mixture of saturated aqueous NaHCO3 (25 mL) and 

saturated aqueous Na2SO3 (25 mL). The aqueous layer was extracted with DCM 
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(3×50 mL). The organic extract was combined, dried over Na2SO4 and 

concentration under reduced pressure. The residue was purified by flash 

column chromatography (EtOAc/hexane 1:19) to afford 2.6 (1.36 g, 88% over 

2 steps), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 4.04 (m, 1H), 3.72 (dd, 

1H, J=7.1 Hz, J=10.9 Hz), 2.75 (m, 1H), 2.53 (m, 1H), 1.94-1.87 (m, 1H), 1.44 

(s, 9H), 1.16 (d, 3H, J=6.6 Hz), 0.96 (d, 3H, J=6.8 Hz), 0.88 (s, 9H), 0.08 (s, 

6H); 13C NMR, (100 MHz, CDCl3) δ 61.8, 59.8, 52.0, 46.6, 31.3, 28.3, 25.6, 

24.0, 23.5, 20.4, 18.0; [α]D +31.5 (c 1.0, CHCl3); HRMS for C16H35NO3SSi 

calculated (M+H+) 350.21797, found 350.21788. 

 

 

Compound 2.7: To a solution of 2.5 (58 mg, 0.15 mmol) in MeCN (1 mL) at 

0 °C was added HF stock solution (0.79 mL, prepared by mixing 43 mL MeCN, 

4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. After 

stirring for 1 h, the reaction mixture was quenched by addition of saturated 

aqueous NaHCO3 (15 mL) and extracted with DCM (3×20 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The product 2.7 (39 mg, 95%) is unstable in the silica gel which was 

sufficiently pure for use in the following step: 1H NMR, (400 MHz, CDCl3) δ 7.85 

(d, 2H, J=8.2 Hz), 7.33 (d, 2H, J=8.1 Hz), 4.15 (dd, 1H, J=2.9 Hz, J=13.3 Hz), 

4.00 (dd, 1H, J=8.7 Hz, J=13.5 Hz), 2.98-2.94 (m, 1H), 2.79 (dd, 1H, J=4.7 Hz, 

J=7.8 Hz), 2.45 (s, 3H), 1.54-1.46 (m, 1H), 1.27 (s, 1H), 0.89 (d, 3H, J=6.8 

Hz), 0.77 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, CDCl3) δ 144.1, 137.7, 129.6, 

127.8, 61.7, 54.4, 49.3, 29.9, 21.8, 20.7, 20.0, 18.1, 12.1; ESI/MS for 

C13H19NO3S calculated (M+H+) 270, found 270. 
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  Compound 2.8: To a solution of 2.5 (77 mg, 0.2 mmol) in MeCN (3.6 mL) at 

0 °C was added HF stock solution (3.2 mL, prepared by mixing 43 mL MeCN, 4.5 

mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. After 

stirring for 1 h, the reaction mixture was quenched by addition of saturated 

aqueous NaHCO3 (15 mL) and extracted with DCM (3×20 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced 

pressure and used directly. A solution of the crude 2.7 in DCM (8 mL) was 

cooled on ice to 0 °C and treated with NEt3 (366 μL, 0.9 mmol) and TBDPSCl 

(0.18 mL, 0.72 mmol), then warmed to R.T. After stirring for 10 h, the reaction 

mixture was diluted with DCM (10 mL) and washed with 1 M HCl aqueous (20 

mL). The aqueous phase extracted with DCM (2×20 mL). The organic phase 

was combined, dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (hexane to 

EtOAc/hexane 1:19) to afford 2.8 (98 mg, 96%), as a colorless oil: 1H NMR, 

(400 MHz, CDCl3) δ 7.84 (d, 2H, J=8.3 Hz), 7.67 (d, 4H, J=6.6 Hz), 7.48-7.40 

(m, 6H), 7.27 (d, 2H, J=7.8 Hz), 4.09 (dd, 1H, J=5.2 Hz, J=11.2 Hz), 3.92 (dd, 

1H, J=6.6 Hz, J=11.2 Hz), 2.94-2.90 (m, 1H), 2.55 (dd, 1H, J=4.5 Hz, J=8.6 

Hz), 2.43 (s, 3H), 1.83-1.73 (m, 1H), 1.09 (s, 9H), 1.00-0.98 (t, 6H, J=6.8 Hz); 

13C NMR, (100 MHz, CDCl3) δ 144.0, 137.6, 134.0, 130.0, 129.6, 129.3, 127.8, 

61.7, 54.3, 49.3, 29.8, 21.8, 20.7, 20.0, 18.1, 17.9; ESI/MS for C29H37NO3SSi 

calculated (M+H+) 508, found 508. 

 

 

Compound 2.9: To a solution of compound 2.5 (77 mg, 0.2 mmol) in MeCN 
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(3.6 mL) at 0 °C was added HF stock solution (3.2 mL, prepared by mixing 43 

mL MeCN, 4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to 

R.T.. After stirring for 1 h, the reaction mixture was quenched by addition of 

saturated aqueous NaHCO3 (15 mL) and extracted with DCM (3×20 mL). The 

combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure and used directly. A solution of the crude 2.7 in DCM (8 mL) 

was cooled on ice to 0°C and treated with NEt3 (627 μL, 0.9 mmol) and TESCl 

(0.11 mL, 0.64 mmol), then warmed to R.T.. After stirring for 6 h, the reaction 

mixture was diluted with DCM (10 mL) and washed with 1 M HCl aqueous (20 

mL). The aqueous phase extracted with DCM (2×20 mL). The organic phase 

was combined, dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (hexane to 

EtOAc/hexane 1:19) to give 2.9 (73 mg, 94%), as a colorless oil: 1H NMR, (300 

MHz, CDCl3) δ 7.82 (d, 2H, J=8.3 Hz), 7.27 (d, 2H, J=8.1 Hz), 4.03 (dd, 1H, 

J=5.0 Hz, J=11.0 Hz), 3.83 (dd, 1H, J=7.0 Hz, J=11.0 Hz), 2.81-2.75 (m, 1H), 

2.55 (dd, 1H, J=4.5 Hz, J=8.5 Hz), 2.40 (s, 3H), 1.74-1.58 (m, 1H), 0.93-0.84 

(m, 15H), 0.55 (dd, 6H, J=8.2 Hz, J=16.2 Hz); 13C NMR, (75 MHz, CDCl3) δ 

138.7, 132.8, 125.4, 123.8, 62.3, 56.0, 51.5, 33.5, 26.2, 25.0, 24.6, 12.4, 

10.2; ESI/MS for C19H33NO3SSi calculated (M+H+) 384, found 384. 

 

Et3N, DCM
OTBS

NTs
HF solution

MeCN
TIPSOTf OTIPS

NTs

2.5 2.10  

Compound 2.10: To a solution of 2.5 (575 mg, 1.50 mmol) in MeCN (9.0 mL) 

at 0 °C was added HF stock solution (7.9 mL, prepared by mixing 43 mL MeCN, 

4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. After 

stirring for 1 h, the reaction mixture was quenched by addition of saturated 

aqueous NaHCO3 (40 mL) and extracted with DCM (3×50 mL). The combined 
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organic phases were dried over Na2SO4 and concentrated under reduced 

pressure and used directly. A solution of the crude 2.7 in DCM (20 mL) was 

cooled on ice to 0 °C and treated with NEt3 (627 μL, 4.5 mmol) and TIPSOTf (1.0 

mL, 3.75 mmol). After stirring at 0 °C for 4 h, the reaction mixture was diluted 

with DCM (30 mL) and washed with 1 M HCl aqueous (40 mL). The aqueous 

phase extracted with DCM (2×50 mL). The organic phase was combined, dried 

over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (hexane to EtOAc/hexane 1:19) to 

afford 2.10 (609 mg, 95%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 7.85 

(d, 2H, J=8.3 Hz), 7.30 (d, 2H, J=8.0 Hz), 4.14 (dd, 1H, J=4.7 Hz, J=10.7 Hz), 

3.92 (dd, 1H, J=7.3 Hz, J=10.7 Hz), 2.84-2.80 (m, 1H), 2.59 (dd, 1H, J=4.5 Hz, 

J=8.5 Hz), 2.43 (s, 3H), 1.71-1.62 (m, 1H), 1.04 (s, 18H), 1.03 (s, 3H), 0.95 (d, 

3H, J=6.8 Hz), 0.88 (d, 3H, J=6.6 Hz); 13C NMR, (100 MHz, CDCl3) δ 144.1, 

137.7, 129.6, 127.8, 61.7, 54.4, 49.3, 29.9, 21.8, 20.7, 20.0, 18.1, 12.1; [α]D 

-3.5 (c 1.0, CHCl3); HRMS for C22H39NO3SSi calculated (M+H+) 426.24927, 

found 426.25097. 

 

 

Compound 2.6a: To a solution of 2.6 (1.33 g, 3.8 mmol) in MeCN (18.0 mL) 

at 0 °C was added HF stock solution (15.8 mL, prepared by mixing 43 mL MeCN, 

4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. After 

stirring for 1 h, the reaction mixture was quenched by addition of saturated 

aqueous NaHCO3 (60 mL) and extracted with DCM (3×80 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude residue was purified by flash column chromatography 

(EtOAc/hexane 1:3) to afford 2.6a as a colorless oil (823 mg, 92%): 1H NMR, 
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(300 MHz, CDCl3) δ 4.10 (br, dd, 1H), 3.85 (dd, 1H, J=6.7 Hz, J=10.1 Hz), 3.23 

(s, 1H), 2.90-2.86 (m, 1H), 2.81-2.79 (t, 1H, J=3.8 Hz), 1.88-1.80 (m, 1H), 

1.50 (s, 9H), 1.03 (d, 3H, J=5.1 Hz), 0.91 (d, 3H, J=5.2 Hz); 13C NMR, (75 MHz, 

CDCl3) δ 63.1, 61.8, 49.7, 49.0, 28.7, 24.3, 19.7, 18.1, 12.5; [α]D -3.7 (c 1.0, 

CHCl3); HRMS for C10H21NO3S calculated (M+H+) 236.13149, found 236.13176. 

 

 

Compound 2.11: A solution of 2.6a (612 mg, 2.6 mmol) in DCM (20 mL) 

was cooled on ice to 0 °C and treated with NEt3 (1.09 mL, 7.8 mmol) and 

TIPSOTf (1.75 mL, 6.5 mmol). After stirring at 0 °C for 4 h, the reaction mixture 

was diluted with DCM (60 mL) and washed with 1 M HCl aqueous (80 mL). The 

aqueous phase extracted with DCM (2×80 mL). The combined organic phase 

was dried over Na2SO4 and concentrated under reduced pressure. The crude 

residue was purified by flash column chromatography (hexane to 

EtOAc/hexane 1:24) to afford compound 2.11 (916 mg, 90%), as a colorless 

oil: 1H NMR, (400 MHz, CDCl3) δ 4.13 (br, dd, 1H), 3.79 (dd, 1H, J=7.2 Hz, 

J=10.7 Hz), 2.77-2.73 (m, 1H), 2.55 (dd, 1H, J=4.6 Hz, J=6.8 Hz), 1.97-1.88 

(m, 1H), 1.46 (s, 9H), 1.03 (s, 3H), 1.13 (d, 3H, J=6.6 Hz), 1.05 (s, 14H), 1.04 

(s, 7H), 0.95 (d, 3H, J=6.8 Hz); 13C NMR, (100 MHz, CDCl3) δ 62.6, 60.2, 52.7, 

46.9, 28.7, 24.4, 20.8, 19.5, 18.1, 12.0; [α]D +31.5 (c 1.0, CHCl3); HRMS for 

C19H41NO3SSi calculated (M+H+) 392.26492, found 392.26553.  

 

 

Compounds 2.5a and 2.5b：Flame-dried CuI (1.91 g, 10 mmol) was 
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suspended in fresh dry THF (40 mL), and the solution was cooled to -10 °C. 

MeLi.LiBr (20 mmol) 1.5 M in Et2O (13.3 mL) was added dropwise and stirred at 

-10 °C until everything was transparent to colorless solution. Then a solution of 

2.5 (192 mg, 0.5 mmol) and activated 4Å molecular sieves in THF (5 mL) was 

added. Stirring was continued for 2.5 h, then the solution was warmed to R.T.. 

After stirring for 72 h, the reaction mixture was quenched with saturated 

aqueous NH4Cl (100 mL) and extracted with CHCl3 (4×100 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude residue was purified by flash column chromatography 

(hexane to EtOAc/ hexane 1:49) to afford 2.5a (114 mg, 57%) as a colorless 

oil and 2.5b (63 mg, 32%) as a colorless oil. The ratio of 2.5a:2.5b is 1.8:1 

and total yield is 89%.  

Compound 2.5a：1H NMR, (400 MHz, CDCl3) δ 7.69 (d, 2H, J=8.3 Hz), 7.22 

(d, 2H, J=8.1 Hz), 5.68 (d, 1H, J=8.3 Hz), 3.64 (dd, 1H, J=3.8 Hz, J=10.5 Hz), 

3.33 (dd, 1H, J=4.5 Hz, J=10.3 Hz), 3.04-3.01 (m, 1H), 2.37 (s, 3H), 1.79- 

1.70 (m, 2H), 0.88 (s, 9H), 0.83(d, 6H, J=6.8 Hz), 0.76 (d, 3H, J=7.0 Hz), 0.01 

(d, 6H, J=1.7 Hz); 13C NMR, (100 MHz, CDCl3) δ 142.6, 139.7, 129.4, 126.9, 

65.6, 64.2, 35.6, 31.9, 26.0, 21.6, 20.3, 19.4, 18.1, 16.4, -5.5; [α]D -10.3 (c 

1.0, CHCl3); HRMS for C20H37NO3SSi calculated (M+H+) 400.23362, found 

400.23390. 

Compound 2.5b：1H NMR, (400 MHz, CDCl3) δ 7.75 (d, 2H, J=8.3 Hz), 7.29 

(d, 2H, J=8.4 Hz), 4.83 (d, 1H, J=8.9 Hz), 3.51 (dd, 1H, J=2.6 Hz, J=10.3 Hz), 

3.22 (dd, 1H, J=3.3 Hz, J=10.3 Hz), 3.12-3.07 (m, 1H), 2.43 (s, 3H), 

1.96-1.90 (m, 1H), 1.57-1.52 (m, 1H), 0.88 (d, 3H, J=6.9 Hz), 0.83 (s, 9H), 

0.73 (d, 3H, J=7.0 Hz), 0.68 (d, 3H, J=6.8 Hz), -0.06(d, 6H, J=14.5 Hz); 13C 

NMR, (100 MHz, CDCl3) δ 143.3, 138.5, 129.8, 127.2, 61.4, 57.4, 39.8, 27.3, 

25.9, 21.8, 21.7, 18.3, 16.4, 10.4, -5.5; [α]D +8.3 (c 1.0, CHCl3); HRMS for 
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C20H37NO3SSi calculated (M+H+) 400.23362, found 400.23389. 

 

 

Compound 2.7a： Flame-dried CuI (167 mg, 0.88 mmol) was suspended in 

fresh dry THF (28 mL), and the solution was cooled to -10 °C. MeLi.LiBr (1.76 

mmol) 1.5 M in Et2O (1.17 mL) was added dropwise and stirred at -10 °C, until 

everything was transparent to colorless solution. The reaction mixture was 

cooled to -10 °C, then a solution of 2.7 (17 mg, 0.044 mmol) and activated 4Å 

molecular sieves in THF (0.8 mL) was added at -10 °C. Stirring was continued 

for 1 h, then the solution was warmed to 0 °C. After stirring for 10 h, the 

reaction mixture was quenched with saturated aqueous NH4Cl (15 mL) and 

extracted with CHCl3 (3×20 mL), then the combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (hexane to EtOAc/hexane 3:7) to give 

2.7a (12 mg, 97%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 7.75 (d, 2H, 

J=8.3 Hz),  7.28 (d, 2H, J=7.9 Hz), 4.87 (d, 1H, J=9.5 Hz), 3.97 (dd, 1H, 

J=3.0 Hz, J=11.6 Hz), 3.49 (dd, 1H, J=3.4 Hz, J=11.4 Hz), 3.17-3.11 (m, 1H), 

2.54 (s, 1H), 2.42 (s, 3H), 1.86-1.81 (m, 1H), 1.68-1.60 (m, 1H), 0.95 (d, 3H, 

J=7.0 Hz), 0.74 (d, 3H, J=6.9 Hz), 0.51(d, 3H, J=6.8 Hz); 13C NMR, (100 MHz, 

CDCl3) δ 143.4, 138.4, 129.8, 127.3, 62.3, 57.8, 39.9, 27.5, 21.9, 21.7, 18.1, 

16.7, 12.0, 10.7; HRMS for C14H23NO3S calculated (M+H+) 286.14714, found 

286.14719. 

 

 

Compounds 2.10a and 2.10b：Flame-dried CuI (1.33 g, 7.0mmol) was 
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suspended in fresh dry THF (28 mL), and the solution was cooled to -10 °C. 

MeLi.LiBr (14.0 mmol) 1.5 M in Et2O (9.3 mL) was added dropwise and stirred 

at -10 °C, until everything was transparent to colorless solution. The reaction 

mixture was cooled to -35 °C, then a solution of 2.10 (149 mg, 0.35 mmol) and 

activated 4Å molecular sieves in THF (5 mL) was added at -35 °C. Stirring was 

continued for 2.5 h, then the solution was warmed to R.T.. After stirring for 48 

h, the reaction mixture was quenched with saturated aqueous NH4Cl (80 mL) 

and extracted with CHCl3 (4×80 mL). The combined organic phases were dried 

over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (hexane to EtOAc/hexane 1:24) to 

afford 2.10a (71 mg, 46%) as a colorless oil and 2.10b (59 mg, 38%) as a 

colorless oil. The ratio of 2.10a:2.10b is 1.2:1 and total yield is 84%.  

Compound 2.10a：1H NMR, (400 MHz, CDCl3) δ 7.73 (d, 2H, J=8.3 Hz), 7.24 

(d, 2H, J=8.1 Hz), 5.77 (d, 1H, J=8.3 Hz), 3.51 (dd, 1H, J=2.6 Hz, J=10.3 Hz), 

3.22 (dd, 1H, J=3.3 Hz, J=10.3 Hz), 3.07-3.02 (m, 1H), 2.40 (s, 3H), 

1.86-1.76 (m, 2H), 1.06-1.05 (m, 21H), 0.87 (dd, 6H, J=2.0 Hz, J=6.8 Hz), 

0.81 (d, 3H, J=7.0 Hz); 13C NMR, (100 MHz, CDCl3) δ 142.6, 139.7, 129.4, 

127.0, 66.1, 64.3, 35.8, 31.9, 21.6, 20.4, 19.6, 18.1, 16.5, 11.9; [α]D -9.9 (c 

1.0, CHCl3); HRMS for C23H43NO3SSi calculated (M+H+) 442.28057, found 

442.28079. 

Compound 2.10b：1H NMR, (400 MHz, CDCl3) δ 7.75 (d, 2H, J=8.2 Hz), 7.27 

(d, 2H, J=8.3 Hz), 4.80 (d, 1H, J=8.5 Hz), 3.66 (dd, 1H, J=3.0 Hz, J=10.1 Hz), 

3.45 (dd, 1H, J=3.3 Hz, J=10.2 Hz), 3.15-3.09 (m, 1H), 2.41 (s, 3H), 

1.92-1.84 (m, 1H), 1.65-1.56 (m, 1H), 0.97 (s, 21H), 0.86 (d, 3H, J=6.9 Hz), 

0.76 (d, 3H, J=7.0 Hz), 0.66 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, CDCl3) δ 

143.4, 138.4, 129.8, 127.3, 62.3, 57.8, 39.9, 27.5, 21.9, 21.7, 18.1, 16.7, 

12.0, 10.7; [α]D +14.9 (c 1.0, CHCl3); ESI/MS for C23H43NO3SSi calculated 
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(M+H+) 442, found 442. 

 

 

Compound 2.12：To 5 mL of liquid ammonia was added Na (8 mg, 0.36 

mmol) at -78 °C. After stirring, to the dark-blue solution 2.5b (24 mg, 0.6 

mmol) in fresh dry THF (2 mL) was added dropwise. The cooling bath was 

removed and stirring was continued for 30 min.. The reaction mixture was 

quenched by addition of solid NH4Cl carefully. After NH3 was evaporated, the 

residue was partitioned between water 5 mL and DCM 10 mL. The aqueous 

layer was extracted with DCM (2×10 mL), and the combined organic phases 

were dried over Na2SO4, then concentrated under reduced pressure. The 

residue was purified by flash column chromatography (MeOH/DCM 1:24) to 

give 2.12 (12 mg, 83%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 3.74 (d, 

1H, J=8.0 Hz), 3.36 (dd, 1H, J=8.0 Hz, J=9.7 Hz), 2.73 (s, 1H), 2.24 (s, 2H), 

1.99-1.91 (m, 1H), 1.35-1.20 (m, 1H), 0.92 (d, 3H, J=6.8 Hz), 0.90 (s, 9H), 

0.80 (d, 3H, J=6.8 Hz), 0.75 (d, 3H, J=6.9 Hz), 0.06 (d, 6H, J=3.0 Hz); 13C NMR, 

(100 MHz, CDCl3) δ 66.3, 55.4, 41.6, 27.9, 26.1, 21.8, 18.5, 16.6, 10.4, -5.1, 

-5.2; [α]D -10.0 (c 1.0, CHCl3); ESI/MS for C13H31NOS calculated (M+H+) 246, 

found 246. 

 

 

Compound 2.13：To 15 mL of liquid ammonia was added Na (58 mg, 2.5 

mmol) in small pieces at -78 °C. After stirring, to the dark-blue solution, 2.5b 

(100 mg, 0.25 mmol) in fresh dry THF (5 mL) was added dropwise. The cooling 

bath was removed and stirring was continued for 1 h. The reaction mixture was 
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quenched by addition of solid NH4Cl carefully. After NH3 was evaporated, the 

residue was partitioned between water 30 mL and DCM 35 mL. The aqueous 

layer was extracted with DCM (2×30 mL), and the combined organic phases 

were dried over Na2SO4, then concentrated under reduced pressure. The crude 

residue was purified by flash column chromatography (MeOH/DCM 1:1) to 

afford 2.13 (24 mg, 74%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 3.68 

(br, d, 1H), 3.26-3.21 (t, 1H, J=9.5 Hz), 2.69 (s, 1H), 2.17 (s, 3H), 1.96-1.85 

(m, 1H), 1.30-1.19 (m, 1H), 0.93 (d, 3H, J=6.8 Hz), 0.79 (d, 3H, J=6.8 Hz), 

0.74 (d, 3H, J=6.9 Hz); 13C NMR, (100 MHz, CDCl3) δ 64.6, 55.3, 28.0, 21.7, 

16.5, 10.2; [α]D -14.4 (c 1.0, CHCl3); ESI/MS for C7H17NO calculated (M+H+) 

132, found 132. 

 

 

Compound 2.14：To 15 mL of liquid ammonia was added Na (17 mg, 0.72 

mmol) at -78 °C. After stirring, to the dark-blue solution 2.10b (53 mg, 0.25 

mmol) in fresh dry THF (5 mL) was added dropwise. The cooling bath was 

removed and stirring was continued for 1 h. The reaction mixture was quenched 

by addition of solid NH4Cl carefully. After NH3 was evaporated, the residue was 

partitioned between water 20 mL and DCM 25 mL. The aqueous layer was 

extracted with DCM (2×20 mL), and the combined organic phases were dried 

over Na2SO4, then concentrated under reduced pressure. The crude residue 

was purified by flash column chromatography (MeOH/DCM 1:49) to afford 2.14 

(30 mg, 88%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 3.85 (dd, 1H, 

J=3.1 Hz, J=9.6 Hz), 3.46 (dd, 1H, J=8.2 Hz, J=9.5 Hz), 2.78 (br, t, 1H), 2.21 

(br, s, 2H), 2.03-1.95 (m, 1H), 1.36-1.23 (m, 1H), 1.11-1.07 (m, 21H), 0.94 (d, 

3H, J=6.8 Hz), 0.82 (d, 3H, J=6.8 Hz), 0.77 (d, 3H, J=6.9 Hz); 13C NMR, (100 
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MHz, CDCl3) δ 66.5, 55.8, 41.5, 27.9, 21.8, 18.2, 16.6, 12.1, 10.4; [α]D -5.7 (c 

1.0, CHCl3); ESI/MS for C16H37NOSi calculated (M+H+) 288, found 288. 

 

 

Compound 2.15：To 25 mL of liquid ammonia was added Na (31 mg, 1.32 

mmol) in small pieces at -78 °C. After stirring, to the dark-blue solution 2.10a 

(97 mg, 0.25 mmol) in fresh dry THF (7 mL) was added dropwise. The cooling 

bath was removed and stirring was continued for 1 h. The reaction mixture was 

quenched by addition of solid NH4Cl carefully. After NH3 was evaporated, and 

the residue was partitioned between water 30 mL and DCM 35 mL. The aqueous 

layer was extracted with DCM (2×30 mL), and the combined organic phases 

were dried over Na2SO4, then concentrated under reduced pressure. The crude 

residue was purified by flash column chromatography (MeOH/DCM 1:49 to 

MeOH/DCM 1:9) to give 2.15 (53 mg, 83%), as a colorless oil: 1H NMR, (400 

MHz, CDCl3) δ 3.80-3.71 (m, 2H), 2.47 (dd, 1H, J=4.5 Hz, J=6.8 Hz), 2.14 (s, 

2H), 1.88-1.80 (m, 1H), 1.71-1.63 (m, 1H), 1.13-1.04 (m, 21H), 0.96 (dd, 6H, 

J=5.3 Hz, J=5.1 Hz), 0.87 (d, 3H, J=6.8 Hz); 13C NMR, (100 MHz, CDCl3) δ 66.9, 

59.8, 38.9, 29.7, 20.9, 18.2, 16.0, 15.3, 12.2; [α]D +1.9 (c 1.0, CHCl3); 

ESI/MS for C16H37NOSi calculated (M+H+) 288, found 288. 

 

 

Compound 2.16：To a solution of 2.5b (20 mg, 0.05 mmol) in MeCN (0.9 mL) 

at 0 °C was added HF stock solution (0.79 mL, prepared by mixing 43 mL MeCN, 

4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. After 

stirring for 1 h, the reaction mixture was quenched by addition of saturated 
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aqueous NaHCO3 (15 mL) and extracted with DCM (3×20 mL). The combined 

organic phases were dried over Na2SO4 and concentrated under reduced 

pressure. The crude residue was purified by flash column chromatography 

(EtOAc/hexane 2:3) to afford 2.16 (16 mg, 96%), as a colorless oil: 1H NMR, 

(400 MHz, CDCl3) δ 7.78 (d, 2H, J=8.3 Hz), 7.31 (d, 2H, J=7.9 Hz), 5.06 (d, 1H, 

J=8.2 Hz), 3.57 (d, 1H, J=3.3 Hz,), 3.20-3.13 (m, 1H), 2.43 (s, 3H), 2.02 (s, 

1H), 1.70-1.62 (m, 1H), 1.43-1.45 (m, 1H), 0.80 (d, 3H, J=6.8 Hz), 0.74 (d, 3H, 

J=7.0 Hz), 0.54 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, CDCl3) δ 140.9, 135.0, 

127.1, 124.6, 59.6, 55.2, 37.8, 25.2, 18.9, 18.8, 14.2, 8.0; [α]D +11.7 (c 1.0, 

CHCl3); ESI/MS for C14H23NO3S calculated (M+H+) 286, found 286. 

 

 

Compound 2.18: To a solution of methyl octahydroindole-2-carboxylate 

2.17 (0.10 g, 0.46 mmol) in MeOH (2 mL) at 0 °C were added NEt3 (220 μL, 1.6 

mmol) and Boc2O (0.11 g, 0.50 mmol), then warmed to R.T.. After stirring for 

26 h, the reaction mixture was concentrated under reduced pressure. The 

crude residue was purified by flash column chromatography (EtOAc/hexane 

1:19 to EtOAc/ hexane 1:9) to afford 2.18 (124 mg, 95%), as a white powder: 

1H NMR, (300 MHz, CDCl3) δ (rotamers) 4.05 (br, m, 1H), 3.60 (br, m, 1H), 3.55 

(s, 3H), 2.10 (br, m, 1H), 2.08-0.79 (m, 19H); 13C NMR, (75 MHz, CDCl3) δ 

(rotamers) 59.0, 58.5, 56.8, 51.8, 51.6, 36.8, 36.2, 32.2, 31.4, 28.2, 28.0, 

27.6, 27.2, 25.6, 23.4, 20.3; [α]D -32.7 (c 1.0, CHCl3); ESI/MS for C15H25NO4 

calculated (M+H+) 284, found 284. 

 

 



100 
 

Compound 2.19: A solution of 2.18 (1.2 g, 4.3 mmol) in THF/H2O (5:3, 160 

mL) was treated with LiOH.H2O (0.72 g, 17.0 mmol). After stirring at R.T. for 18 

h, the reaction mixture was washed with Et2O. The aqueous phase was cooled 

on ice to 0 °C, acidified with 5% citric acid aqueous until pH=3-4 and extracted 

with DCM (3×100 mL). The combined organic phases were dried over Na2SO4 

and concentrated under reduced pressure to afford carboxylic acid 2.19 (0.98 

g, 85%) as a colorless solid, m.p. 130-132 °C, which was sufficiently pure for 

use in the following step: 1H NMR, (400 MHz, DMSO-d6) δ (rotamers) 12.49 (br, 

s, 1H), 4.03 (br, m, 1H), 3.63 (br, m, 1H), 2.24 (br, m, 1H), 2.06 (br, m, 1H), 

1.95-1.76 (m, 2H), 1.67-1.52 (m, 3H), 1.43-1.01 (m, 13H); 13C NMR, (100 

MHz, DMSO-d6) δ (rotamers) 174.6, 174.0, 153.0, 152.4, 78.4, 78.3, 58.8, 

58.5, 56.8, 56.4, 36.2, 35.7, 31.7, 31.0, 28.1, 27.9, 27.5, 27.0, 25.3, 23.3, 

23.2, 20.1, 20.0; [α]D -23.2 (c 1.0, MeOH); ESI/MS for C15H25NO4 calculated 

(M+H+) 270, found 270. 

 

 

Compound 2.21: To a solution of carboxylic acid 2.19 (71 mg, 0.26 mmol) 

in DMF (5 mL) at 0 °C was added PyBOP (0.21 g, 0.40 mmol) with stirring for 10 

min., then benzamidine 2.20 (0.11 g, 0.40 mmol) and 2,6-lutidine (92 μL, 0.79 

mmol) were added, and warmed to R.T.. After stirring for 18 h, the reaction 

mixture was diluted with DCM (50 mL), washed with 0.5 M HCl aqueous (50 mL), 

5% aqueous Na2CO3 (50 mL), brine (50 mL), and H2O (50 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by 
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flash column chromatography (EtOAc/hexane 1:1 to EtOAc/hexane 2:1) to give 

2.21 (126 mg, 91%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ (rotamers) 

9.50 (br, s, 1H), 7.85-7.70 (m, 2H), 7.47-7.24 (m, 8H), 5.3 (s, 0.3H), 5.2 (s, 

1.7H), 4.53-4.39 (m, 2H), 4.25 (m, 1H), 3.84 (m, 1H), 2.30-2.00 (m, 3H), 1.90 

(m, 1H), 1.75-1.55 (m, 3H), 1.51-1.10 (m, 13H); 13C NMR, (100 MHz CDCl3) δ 

(rotamers) 172.9, 167.8, 165.2, 164.3, 155.2, 151.2, 142.9, 136.5, 134.9, 

133.1, 128.59, 128.56, 128.3, 128.14, 128.18, 128.9, 127.7, 127.3, 80.3, 

67.8, 67.1, 60.3, 58.1, 42.7, 36.5, 28.5, 28.3, 25.8, 23.7, 20.4; [α]D –19.4 (c 

1.0, MeOH); ESI/MS for C30H38N4O5 calculated (M+H+) 535, found 535. 

 

 

Compound 2.22: Compound 2.21 (0.57 g, 1.1 mmol) was treated 

with >99.9% TFA/DCM (1:9, 10 mL). After stirring at R.T. for 1 h, the reaction 

mixture was diluted with EtOAc (50 mL) and concentrated under reduced 

pressure. The crude residue was suspended in 5% Na2CO3 aqueous (40 mL) 

and extracted with DCM (3×40 mL). The organic phases were combined, dried 

over Na2SO4, and concentrated under reduced pressure to afford 2.22 (473 mg, 

99%), as a colorless oil, which was sufficiently pure for use in the following step：

1H NMR, (400 MHz, CDCl3) δ (rotamers) 9.45 (br, s, 1H), 8.28 (t, 1H, J=6.2 Hz), 

7.84 (AA’ part of AA’XX’, 2H), 7.44-7.39 (m, 2H), 7.35-7.24 (m, 3H), 7.19 (XX’ 

part of AA’XX’, 2H), 5.17 (s, 2H), 4.46-4.30 (m, 2H), 3.67 (dd, 1H, J=5.1 Hz, 

J=10.6 Hz), 3.21 (br, m, 1H), 2.20 (br, m, 1H), 1.91 (br, m, 1H), 1.70 (br, m, 

1H), 1.55-1.35 (m, 5H), 1.30-1.13 (m, 3H); 13C NMR, (100 MHz, CDCl3) δ 
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(rotamers) 176.2, 176.1, 167.7, 164.3, 142.63, 142.61, 136.5, 133.2, 128.2, 

127.9, 127.71, 127.69, 127.1, 66.8, 58.6, 57.1, 42.3, 42.1, 37.8, 35.2, 29.0, 

27.3, 23.3, 21.5; [α]D +8.3 (c 1.0, CHCl3); ESI/MS for C25H30N4O3 calculated 

(M+H+) 435, found 435. 

 

 

Compound 2.24: To a solution of MOM-D-phenyllactic acid 2.23 (35 mg, 

0.17 mmol) in DCM (5 mL) at 0 °C were added DEPBT (75 mg, 0.25 mmol) with 

stirring at 0 °C for 10 min., then a solution of 2,6-lutidine (58 μL, 0.50 mmol) 

and 2.13 (18 mg, 0.14 mmol) in DCM (1.5 mL) was added, and then slowly 

warmed to R.T.. After stirring for 20 h, the reaction mixture was diluted with 

DCM (15 mL), washed with saturated aqueous NaHCO3 (20 mL), 1 M HCl 

aqueous (20 mL) and brine (20 mL), dried over Na2SO4 and concentrated under 

reduced pressure. The crude residue was purified by flash column 

chromatography (100% EtOAc) to afford 2.24 (26 mg, 57%), as a colorless 

solid, m.p. 62-64 °C: 1H NMR, (400 MHz, CDCl3) δ 7.30-7.20 (m, 5H), 6.59 (d, 

1H, J=8.4 Hz), 4.66 (d, 1H, J=6.4 Hz), 4.52 (d, 1H, J=6.4 Hz), 4.31 (dd, 1H, 

J=3.8 Hz, J=7.4 Hz), 3.79-3.72 (m, 1H), 3.71 (dd, 1H, J=3.0 Hz, J=11.4 Hz), 

3.60 (dd, 1H, J=5.2 Hz, J=11.2 Hz), 3.22 (s, 3H), 3.19 (dd, 1H, J=3.8 Hz, 

J=14.2 Hz), 2.98 (dd, 1H, J=7.2 Hz, J=14.0 Hz), 2.55 (s, 1H), 1.53-1.42 (m, 

2H), 0.86 (d, 3H, J=6.8 Hz), 0.76 (d, 3H, J=6.8 Hz), 0.73 (d, 3H, J=6.8 Hz); 13C 

NMR, (100 MHz, CDCl3) δ 172.2, 137.2, 130.0, 128.4, 126.8, 96.8, 79.3, 63.7, 

56.2, 54.2, 39.0, 27.9, 21.7, 16.5, 10.7; [α]D +80.3 (c 1.0, CHCl3); ESI/MS for 

C18H29NO4 calculated (M+H+) 324, found 324.  
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Compound 2.24a: To a solution of MOM-D-phenyllactic acid 2.23 (18 mg, 

0.084 mmol) in DCM (3 mL) at 0 °C were added EDC (20 mg, 0.11 mmol) and 

HOBt (14 mg, 0.11 mmol) with stirring at 0 °C for 10 min., then a solution of 

2.14 (17 mg, 0.07 mmol) and 2,6-lutidine (16 μL, 0.14 mmol) in DCM (2 mL) 

was added, and then slowly warmed to R.T.. After stirring for 72 h, the reaction 

mixture was diluted with DCM (15 mL), washed with saturated aqueous 

NaHCO3 (20 mL), 1 M HCl aqueous (20 mL) and brine (20 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/hexane 1:9) to give 2.24a 

(20 mg, 64%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 7.29-7.24 (m, 

4H), 7.23-7.19 (m, 1H), 6.72 (d, 1H, J=9.7 Hz), 4.57 (d, 1H, J=6.6 Hz), 4.52 

(d, 1H, J=6.6 Hz), 4.36 (dd, 1H, J=3.7 Hz, J=7.6 Hz), 3.85-3.78 (m, 1H), 3.73 

(dd, 1H, J=2.6 Hz, J=10.3 Hz), 3.57 (dd, 1H, J=2.8 Hz, J=10.3 Hz), 3.20 (dd, 

1H, J=3.6 Hz, J=10.5 Hz), 3.11 (s, 3H), 2.97 (dd, 1H, J=7.5 Hz, J=14.1 Hz), 

1.57-1.49 (m, 1H), 1.48-1.40 (m, 1H), 0.87 (s, 9H), 0.83 (d, 3H, J=6.8 Hz), 

0.73 (dd, 6H, J=3.3 Hz, J=6.8 Hz), 0.01 (d, 6H, J=11.0 Hz); 13C NMR, (100 MHz, 

CDCl3) δ 170.7, 137.5, 130.0, 128.4, 126.7, 95.8, 87.2, 63.3, 56.0, 52.5, 39.0, 

38.5, 27.4, 26.0, 21.9, 16.2, 14.3, 10.3, -5.3, -5.4; [α]D +103.6 (c 1.0, CHCl3); 

ESI/MS for C24H43NO4Si calculated (M+H+) 438, found 438.  
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Compound 2.24：To a solution of 2.24a (19 mg, 0.044 mmol) in MeCN (0.9 

mL) at 0 °C was added HF stock solution (0.79 mL, prepared by mixing 43 mL 
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MeCN, 4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. 

After stirring for 1 h, the reaction mixture was quenched by addition of 

saturated aqueous NaHCO3 (15 mL) and extracted with DCM (3×20 mL), and 

the combined organic phases were dried over Na2SO4, then concentrated under 

reduced pressure. The crude residue was purified by flash column 

chromatography (100% EtOAc) to give 2.24 (14 mg, 99%), as a colorless solid. 

 

 

Compound 2.24b: To a solution of MOM-D-phenyllactic acid 2.23 (23 mg, 

0.11 mmol) in DCM (3 mL) at 0°C were added DEPBT (48 mg, 0.16 mmol) with 

stirring at 0°C for 10 min., a solution of 2.15 (26 mg, 0.09 mmol) and 

2,6-lutidine (38 μL, 0.32 mmol) in DCM (2 mL) was added, then slowly warmed 

to R.T.. After stirring for 40 h, the reaction mixture was diluted with DCM (15 

mL), washed with saturated aqueous NaHCO3 (20 mL), 1 M HCl aqueous (20 mL) 

and brine (20 mL), dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (EtOAc/ 

hexane 1:9) to afford 2.24b (37 mg, 86%), as a colorless oil: 1H NMR, (400 

MHz, CDCl3) δ 7.28-7.25 (m, 4H), 7.23-7.21 (m, 1H), 6.72 (d, 1H, J=9.3 Hz), 

4.56 (dd, 1H, J=6.6 Hz, J=20.4 Hz), 4.36 (dd, 1H, J=3.6 Hz, J=7.3 Hz), 

3.91-3.77 (m, 2H), 3.73-3.71 (m, 1H), 3.21 (dd, 1H, J=3.6 Hz, J=14.1 Hz), 

3.09 (s, 9H),  2.99 (dd, 1H, J=7.4 Hz, J=14.1 Hz), 1.62-1.54 (m, 1H), 

1.48-1.40 (m, 1H), 1.12-0.98 (m, 21H), 0.84 (d, 3H, J=6.9 Hz), 0.76 (d, 3H, 

J=6.9 Hz), 0.72 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, CDCl3) δ 170.8, 137.5, 

130.0, 128.4, 126.7, 96.1, 78.5, 63.7, 56.0, 52.9, 39.2, 38.6, 27.6, 22.0, 18.2, 

16.3, 12.1, 10.6; [α]D +89.9 (c 1.0, CHCl3); ESI/MS for C27H49NO4Si calculated 
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(M+H+) 480, found 480.  

 

 

Compound 2.24：To a solution of 2.24b (36 mg, 0.075 mmol) in MeCN (0.9 

mL) at 0 °C was added HF stock solution (0.79 mL, prepared by mixing 43 mL 

MeCN, 4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. 

After stirring for 6 h, the reaction mixture was quenched by addition of 

saturated aqueous NaHCO3 (20 mL) and extracted with DCM (3×25 mL), and 

the combined organic phases were dried over Na2SO4, then concentrated under 

reduced pressure. The crude residue was purified by flash column 

chromatography (100% EtOAc) to give 2.24 (24 mg, 98%) as a colorless solid. 

 

 

Compound 2.25a: To a solution of MOM-D-phenyllactic acid 2.23 (45 mg, 

0.22 mmol) in DCM (6 mL) at 0 °C were added DEPBT (97 mg, 0.32 mmol) with 

stirring at 0 °C for 10 min., a solution of 2,6-lutidine (75 μL, 0.65 mmol) and 

2.16 (52 mg, 0.18 mmol) in DCM (4 mL) was added, and then slowly warmed 

to R.T.. After stirring for 48 h, the reaction mixture was diluted with DCM (25 

mL), washed with saturated aqueous NaHCO3 (30 mL), 1 M HCl aqueous (30 mL) 

and brine (30 mL), dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (EtOAc/ 

hexane 1:9) to afford 2.25a (45 mg, 52%), as a colorless oil: 1H NMR, (400 

MHz, CDCl3) δ 7.30-7.26 (m 4H), 7.24-7.18 (m, 1H), 6.98 (d, 1H, J=10.1 Hz), 
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4.52 (d, 1H, J=6.6 Hz), 4.39 (d, 1H, J=6.6 Hz), 4.33 (dd, 1H, J=3.1 Hz, J=9.4 

Hz), 3.79 (dd, 1H, J=4.6 Hz, J=10.1 Hz), 3.72-3.65 (m, 1H), 3.56 (dd, 1H, 

J=4.1 Hz, J=10.1 Hz), 3.25 (dd, 1H, J=3.1 Hz, J=14.0 Hz), 2.98 (s, 3H), 2.86 

(dd, 1H, J=9.5 Hz, J=14.0 Hz), 1.96-1.82 (m, 2H), 1.16-1.09 (m, 21H), 0.95 

(dd, 6H, J=2.5 Hz, J=6.8 Hz), 0.90 (d, 3H, J=6.7Hz); 13C NMR, (100 MHz, CDCl3) 

δ 171.9, 138.1, 129.8, 128.4, 126.6, 95.9, 78.9, 65.6, 57.5, 55.7, 40.0, 35.9, 

31.0, 20.3, 19.1, 18.3, 18.2, 15.7, 12.1; [α]D +36.9 (c 1.0, CHCl3); ESI/MS for 

C27H49NO4Si calculated (M+H+) 480, found 480.  

 

 

Compound 2.25：To a solution of 2.25a (43 mg, 0.09 mmol) in MeCN (0.9 

mL) at 0 °C was added HF stock solution (0.79 mL, prepared by mixing 43 mL 

MeCN, 4.5 mL H2O, and 7.5 mL 48% aqueous HF solution), then warmed to R.T.. 

After stirring for 4 h, the reaction mixture was quenched by addition of 

saturated aqueous NaHCO3 (25 mL) and extracted with DCM (3×30 mL). The 

combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The crude residue was purified by flash column 

chromatography (EtOAc/hexane 1:1) to afford 2.25 (25 mg, 86%), as a 

colorless solid, m.p. 59-60 °C: 1H NMR, (400 MHz, CDCl3) δ 7.33-7.27 (m, 4H), 

7.26-7.21 (m, 1H), 6.69 (d, 1H, J=9.8 Hz), 4.62 (d, 1H, J=6.5 Hz), 4.52 (d, 1H, 

J=6.5 Hz), 4.39 (dd, 1H, J=3.4 Hz, J=8.3 Hz), 3.75-3.69 (m, 1H), 3.37 (dd, 1H, 

J=3.0 Hz, J=11.8 Hz), 3.32-3.25 (m, 2H), 3.14 (s, 3H), 2.95 (dd, 1H, J=8.3 Hz, 

J=14.1 Hz), 2.89 (s, 1H), 2.08-1.99 (m, 1H), 1.52-1.43 (m, 1H), 1.01 (d, 3H, 

J=6.9 Hz), 0.92 (d, 3H, J=6.8 Hz), 0.85 (d, 3H, J=6.9 Hz); 13C NMR, (100 MHz, 

CDCl3) δ 173.0, 137.4, 129.9, 128.5, 126.9, 96.3, 78.8, 64.8, 56.1, 55.1, 39.2, 

37.4, 27.8, 20.8, 15.5, 15.2; [α]D +78.6 (c 1.0, CHCl3); ESI/MS for C18H29NO4 
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calculated (M+H+) 324, found 324. 

 

 

Compound .26: A solution of 2.24 (23 mg, 0.07 mmol) in MeCN (2.5 mL) 

was cooled to 0 °C and a solution of 1.0 mg CrO3 dissolved in 420 μL of 0.4 M 

H5IO6 in wet MeCN (MeCN/H2O 99.3:0.7) was added. After stirring at 0 °C for 30 

min., the reaction mixture was quenched at same temperature by adding 2.4 

mL saturated aqueous NaHCO3. After MeCN was evaporated, the aqueous 

mixture was treated with 1 mL of 0.5 M aqueous NaOH, and washed with DCM 

(15 mL). The aqueous layer was acidified with 0.5 M HCl aqueous (10 mL) and 

extracted with DCM (3×20 mL). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure to give carboxylic acid 2.26 

(19 mg, 82%), as a colorless oil, which was sufficiently pure for use in the 

following step. 1H NMR, (400 MHz, CDCl3) δ 10.4 (s, 1H), 7.31-7.22 (m, 5H), 

7.03 (d, 1H, J=8.8 Hz), 4.65-4.58 (m, 3H), 4.40 (dd, 1H, J=3.6 Hz, J=6.9 Hz), 

3.22-3.14 (m, 4H), 2.99 (dd, 1H, J=6.9 Hz, J=14.0 Hz), 1.62-1.50 (m, 2H), 

0.95 (d, 3H, J=6.6 Hz), 0.78 (dd, 6H, J=6.6 Hz, J=11.4 Hz); 13C NMR, (100 MHz, 

CDCl3) δ 176.2, 171.8, 136.9, 130.0, 128.4, 126.9, 96.1, 77.9, 56.2, 55.0, 

42.1, 38.9, 28.6, 21.5, 18.2, 11.8; [α]D +45.5 (c 1.0, CHCl3); ESI/MS for 

C18H27NO5 calculated (M+H+) 338, found 338. 
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Compound 2.27: A solution of alcohol 2.25 (24 mg, 0.075 mmol) in MeCN 

(2.5 mL) was cooled to 0 °C and a solution of 1.0 mg CrO3 dissolved in 450 μL 
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of 0.4 M H5IO6 in wet MeCN (MeCN/H2O, 99.3:0.7) was added. After stirring at 

0 °C for 30 min., the reaction mixture was quenched by adding 2.4 mL saturated 

aqueous NaHCO3. After MeCN was evaporated, the aqueous mixture was 

treated with 1 mL 0.5 M aqueous NaOH, and washed with DCM (15 mL). The 

aqueous layer was acidified with 0.5 M HCl aqueous (10 mL) and extracted with 

DCM (3×20 mL). The combined organic phases were dried over Na2SO4 and 

concentrated under reduced pressure to give carboxylic acid 2.27 (21 mg, 

82%), as a colorless oil, which was sufficiently pure for use in the following step. 

1H NMR, (400 MHz, CDCl3) δ 10.6 (s, 1H), 7.44 (d, 1H, J=10.2 Hz), 7.35-7.25 

(m, 4H), 7.23-7.18 (m, 1H), 4.59 (d, 1H, J=6.7 Hz), 4.48 (d, 1H, J=6.7 Hz), 

4.39 (dd, 1H, J=3.1 Hz, J=8.7 Hz), 3.82-3.76 (m, 1H), 3.26 (dd, 1H, J=3.1 Hz, 

J=14.0 Hz), 3.12 (s, 3H), 2.93-2.83 (m, 2H), 1.85-1.76 (m, 1H), 1.07 (d, 3H, 

J=7.1 Hz), 0.98 (d, 3H, J=6.6 Hz), 0.91 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, 

CDCl3) δ 180.4, 172.5, 137.6, 129.9, 128.5, 126.8, 96.4, 78.9, 56.6, 56.1, 

40.1, 39.5, 31.6, 20.0, 19.5, 15.6; [α]D +20.7 (c 1.0, CHCl3); ESI/MS for 

C18H27NO5 calculated (M+H+) 338, found 338.  
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Compound 2.28: To a solution of 2.22 (29 mg, 0.085 mmol) and carboxylic 

acid 2.26 (44 mg, 0.10 mmol) in DCM (2 mL) at 0 °C were added fresh 

recrystallized DEPBT (45 mg, 0.15 mmol), and 2,6-lutidine (35 μL, 0.30 mmol), 

and then warmed to R.T.. After stirring for 20 h, the reaction mixture was 
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diluted with DCM (20 mL), washed with 0.5 M HCl aqueous (20 mL), 5% Na2CO3 

aqueous (20 mL) and brine (20 mL), dried over Na2SO4, and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (EtOAc/toluene 1:3 to EtOAc/hexane 3:1 to 100% EtOAc to 

MeOH/CHCl3 1:49) to afford 2.28 as a colorless oil (47 mg, 74%). 1H NMR, (400 

MHz, CDCl3) δ 9.43 (s, 1H), 7.81 (d, 2H, J=8.0 Hz), 7.56-7.52 (m, 1H), 7.46 (d, 

2H, J=6.8 Hz), 7.38-7.14 (m, 9H), 7.07 (d, 2H, J=6.8 Hz), 6.79 (d, 1H, J=6.8 

Hz), 5.23 (s, 2H), 4.76 (dd, 1H, J=7.6 Hz, J=16.0 Hz), 4.62-4.56 (m, 1H), 4.38 

(d, 1H, J=6.8 Hz), 4.32 (d, 1H, J=6.8 Hz), 4.29 (d, 1H, J=4.4 Hz), 4.25 (d, 1H, 

J=4.4 Hz), 3.92-3.89 (br, t, 1H), 3.68 (dd, 1H, J=3.4 Hz, J=7.8 Hz), 3.04 (s, 

3H), 2.98 (dd, 1H, J=3.2 Hz, J=14.2 Hz), 2.74 (dd, 1H, J=7.9 Hz, J=14.1 Hz), 

2.32-2.23 (m, 4H), 1.84-1.15 (m, 9H), 0.88 (d, 3H, J=6.9 Hz), 0.77 (dd, 6H, 

J=1.9 Hz, J=6.9 Hz); 13C NMR, (100 MHz, MeOH-d4) δ 174.2, 173.7, 172.3, 

170.5, 165.2, 144.9, 138.5, 138.4, 134.3, 131.0, 129.6, 129.3, 129.21, 

129.17, 129.16, 128.9, 128.5, 127.8, 97.0, 78.6, 68.2, 61.8, 60.5, 56.6, 54.4, 

43.7, 42.7, 39.7, 38.8, 32.0, 28.9, 27.8, 26.7, 25.0, 21.9, 21.2, 16.1, 9.6; [α]D 

+9.6 (c 1.0, CHCl3); ESI/MS for C43H55N5O7 calculated (M+H+) 754, found 754.  

 

DEPBT,
2,6-lutidine
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Compound 2.29: To a solution of 2.22 (20 mg, 0.06 mmol) and carboxylic 

acid 2.27 (31 mg, 0.072 mmol) in DCM (2 mL) at 0 °C were added fresh 

recrystallized DEPBT (31 mg, 0.11 mmol), and 2,6-lutidine (24 μL, 0.21 mmol), 
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and then warmed to R.T.. After stirring for 20 h, the reaction mixture was 

diluted with DCM (20 mL), washed with 0.5 M HCl aqueous (20 mL), 5% Na2CO3 

aqueous (20 mL) and brine (20 mL), dried over Na2SO4, and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (EtOAc/toluene 1:3 to EtOAc/hexane 3:1 to 100% EtOAc to 

MeOH/CHCl3 1:99) to afford 2.29 as a colorless oil (31 mg, 69%). 1H NMR, (400 

MHz, CDCl3) δ 9.56 (s, 1H),  8.32 (d, 1H, J=9.9 Hz), 7.83 (d, 2H, J=8.2 Hz), 

7.53-7.17 (m, 14H), 5.22 (s, 2H), 4.61-4.34 (m, 5H), 3.76-3.66 (m, 2H), 3.22 

(dd, 1H, J=3.1 Hz, J=14.0 Hz), 3.02 (s, 3H), 2.90 (dd, 1H, J=8.8 Hz, J=14.0 

Hz), 2.79 (dd, 1H, J=3.4 Hz, J=7.1 Hz), 2.67-2.58 (m, 1H), 2.32-2.19 (m, 1H), 

2.03-1.95 (m, 1H), 1.85-1.18 (m, 10H), 0.97 (d, 3H, J=7.1 Hz), 0.82 (dd, 6H, 

J=6.7 Hz, J=12.3 Hz); 13C NMR, (100 MHz, MeOH-d4) δ 176.3, 174.43, 174.37, 

170.4, 154.3, 144.9, 138.9, 138.4, 134.6, 131.0, 129.6, 129.4, 129.2, 129.1, 

128.7, 127.7, 97.3, 79.8, 68.1, 61.8, 59.80, 59.76, 56.5, 43.8, 40.4, 39.0, 

38.7, 33.2, 32.0, 29.5, 26.8, 25.0, 21.15, 21.10, 20.3, 16.9,; [α]D -12.0 (c 1.0, 

CHCl3); ESI/MS for C43H55N5O7 calculated (M+H+) 754, found 754.  

 

 
Compound 2.2: To a solution of 2.28 (34 mg, 0.045 mmol) in MeOH (2 mL) 

was added Pd/C 10 wt.% (6 mg) and the reaction mixture was stirred under H2 

(1 atm) at R.T. for 10 h. The Pd/C catalyst was removed by filtration and the 

filtrate was concentrated under reduced pressure to afford benzamidine (18 mg) 
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as a colorless oil, which was used directly. The crude benzamidine was treated 

with >99.9% TFA/DCM (9:1, 2 mL) and 1 drop of H2O. After stirring at R.T. for 

3 h, the reaction mixture was diluted with EtOAc (15 mL) and concentrated 

under reduced pressure. The crude residue was purified by RP-LC-MS (85 min. 

gradient of 20-80% CH3CN in 0.05% aqueous TFA) to afford final 2.2 (18 mg, 

57%, over two steps) as the TFA salt. The TFA salt of the product was 

transformed to the hydrochloride salt (16 mg) and analyzed. 1H NMR, (400 MHz, 

MeOH-d4) δ 8.61 (s, 1H), 7.74 (d, 2H, J=6.8 Hz), 7.56 (d, 2H, J=6.9 Hz), 7.37 

(br, d, 1H), 7.21 (br, m, 5H), 4.57 (d, 2H, J=12.5 Hz), 4.43-4.36 (br, m, 2H), 

4.15 (br, m, 1H), 3.96 (br, m, 1H), 3.01 (d, 1H, J=13.6 Hz), 2.82 (br, dd, 1H), 

2.38 (br, m, 1H), 2,15 (br, m, 2H), 2.04 (br, dd, 1H), 1.80-1.58 (br, m, 5H), 

1.50 (br, d, 1H), 1.41 (br, m, 1H), 1.29 (d, 2H, J=15.0 Hz), 0.80 (d, 3H, J=5.9 

Hz), 0.73 (t, 6H, J=7.1 Hz); 13C NMR, (100 MHz, MeOH-d4) δ 175.4, 174.6, 

172.4, 168.2, 147.2, 138.7, 131.0, 129.15, 129.12, 129.0, 128.0, 127.6, 73.8, 

61.8, 60.4, 54.1, 43.6, 42.9, 41.3, 38.7, 32.1, 28.9, 27.6, 26.6, 24.9, 21.8, 

21.2, 16.0, 9.5; [α]D +70.7 (c 0.10, MeOH); HRMS (Not salt, Free amine) for 

C33H45N5O4 calculated (M+H+) 576.35443, found 576.35492. 

 

 

Compound 2.3: To a solution of 2.29 (30 mg, 0.04 mmol) in MeOH (2 mL) 

was added Pd/C 10 wt.% (6 mg) and the reaction mixture was stirred under H2 

(1 atm) at R.T. for 10 h. The Pd/C catalyst was removed by filtration and the 
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filtrate was concentrated under reduced pressure to afford the benzamidine (19 

mg) as a colorless oil, which was used directly. The crude benzamidine was 

treated with >99.9% TFA/DCM (9:1, 2 mL) and 1 drop of H2O. After stirring at 

R.T. for 3 h, the reaction mixture was diluted with EtOAc (15 mL) and 

concentrated under reduced pressure. The crude residue was purified by 

RP-LC-MS (85 min. gradient of 20-80% CH3CN in 0.05% aqueous TFA) to afford 

final 2.3 (16 mg, 59%, over two steps) as the TFA salt. The TFA salt of the 

product was transformed to the hydrochloride salt (15 mg) and analyzed. 1H 

NMR, (400 MHz, MeOH-d4) δ 9.22 (s, 1H), 8.72 (s, 1H), 7.76 (d, 2H, J=7.9 Hz), 

7.61 (d, 2H, J=7.9 Hz), 7.26-7.22 (br, m, 4H), 7.19-7.15 (br, m, 1H), 4.66 (d, 

1H, J=16.2 Hz), 4.39-4.35 (m, 2H), 4.26 (d, 1H, J=7.5 Hz), 3.95-3.89 (br, m, 

1H), 3.75 (br, m, 1H), 3.05 (d, 1H, J=14.2 Hz), 2.90-1.96 (br, m, 1H), 2.76 (d, 

1H, J=8.4 Hz, J=14.0 Hz), 2.41 (br, m, 1H), 2.11 (t, 2H, J=9.2 Hz), 2.00-1.95 

(br, m, 1H), 1.85-1.73 (m, 4H), 1.54-1.50 (m, 1H), 1.43-1.23 (m, 3H), 1.00 (d, 

3H, J=6.4 Hz), 0.95 (d, 3H, J=6.6 Hz), 0.85 (d, 3H, J=6.6 Hz); 13C NMR, (100 

MHz, MeOH-d4) δ 176.3, 176.1, 174.8, 168.5, 147.4, 139.7, 130.8, 129.3, 

129.24, 129.19, 128.1, 127.5, 74.4, 62.0, 59.7, 59.0, 43.7, 41.5, 39.4, 39.1, 

32.6, 32.1, 29.8, 26.9, 25.0, 21.2, 19.2, 16.6; [α]D +24.7 (c 0.10, MeOH); 

HRMS (Not salt, Free amine) for C33H45N5O4 calculated (M+H+) 576.35443, 

found 562.35369. 

 

General Procedure for Recrystallization of DEPBT: DEPBT (5 g) was 

dissolved in DCM (50 mL), and then filtered out the undissolved solid, which is 

probably the acid. The solution was washed with saturated aqueous Na2CO3 

(3×30 mL), dried over Na2SO4, and concentrated under reduced pressure. The 

crude residue was redissolved in very small amount of hot EtOAc (reflux, a few 

drops), and then petroleum ether (20 mL) was added. The solution was stand 
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at R.T. for 1 h, then removed the solution, and washed with petroleum ether (2 

mL) to afford recrystallized DEPBT (4 g), as a colorless crystalline solid. The 

recrystallized DEPBT was stored in the 0 oC under the argon atmosphere. 
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Chapter Three 

Total Synthesis and Structural Revision of the 

Presumed Aeruginosin 205B 
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3-1 Introduction 

3-1-1 Revision of proposed and misassigned structures of 

aeruginosins through total synthesis 

The aeruginosins are classified as natural products produced by the 

cyanobacterium Microcystis aeruginosa that incorporate a new azabicyclic 

amino acid, 2-carboxy-6-hydroxyoctahydroindole (Choi). To date, the total 

syntheses of seven aeruginosins have been completed, four of these involving 

revisions to the originally proposed structures.[1-14] 

 

3-1-1-1 Revision of aeruginosin 298A 

In 1994, aeruginosin 298A was isolation from from Microcystis aeruginosa 

by Murakami and coworkers.[1] The structure of aeruginosin 298A (3.1a in 

Figure 9)[1,2] was initially elucidated through 2D NMR studies. In Murakami’s 

initial report,[1] a linear peptide containing four subunits was proposed: a 

reduced arginine (L-Argol), a 2-carboxy-6-octahydroindole (L-Choi) core, a 

L-leucine, and an hydroxyphenyllactic acid (D-Hpla), based on degradation and 

derivatization of the acid hydrolyzate. 

In 1998, Tulinsky and coworkers[2] published an X-ray crystallographic 

structure of a ternary complex of 3.1a bound to a hirugen–thrombin complex, 

thus providing an absolute stereochemical configuration. The crystal structure 

of the ternary complex revealed some unexpected interactions between 3.1a 

and the binding pocket of thrombin. L-Leu was found to occupy the hydrophobic 

D-enantiomorphic S3 subsite. In addition, the Hpla subunit was also found to 

interact with the S3 subsite, which was expected to accommodate the L-Leu 

subunit. These key observations cast some doubt on the stereochemical 

assignments initially made for aeruginosin 298A, and would not be resolved 

until the proposed structure (3.1a) was revised through total synthesis by the 
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groups of Bonjoch[3,4] and Wipf[5] independently in 2000 (see revised structure 

3.1b in Figure 9). 

 

 

Figure 9. Originally proposed and revised structures of aeruginosin 298A. 

 

3-1-1-2 Revision of oscillarin 

In 1997, researchers at Boehringer Mannheim GmbH (now Roche 

Diagnostics) in Germany disclosed the isolation and characterization of a new 

compound 3.2a (Figure 10) called oscillarin, from algal cultures of Oscillatoria 

agardhii, and originally isolated from Lake Kasumigaura in Japan.[6]  

The structure and absolute configuration were proposed on the basis of 

NMR data and a partially resolved co-crystal complex with trypsin. Oscillarin 

was proposed to comprise a D-phenyllactic acid (D-Pla), a D-Phe subunit, a 

L-Choi subunit and a cyclic guanidine containing P1 subunit. The structure was 

later revised to be 3.2b (Figure 10) without any change in the original data.[7] 

The revised structure of oscillarin 3.2b was confirmed by total synthesis, and 

by high-resolution X-ray crystallography of a thrombin–oscillarin complex by 

Hanessian and coworkers.[8] Oscillarin comprises a D-phenyllactic acid (D-Pla), 

a D-phenylalanine, a L-Choi coin, and an unique heterocyclic motif, described 

as 1-(N-amidino-Δ3-pyrrolino)ethyl subunit (Adc).  
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Figure 10. Originally proposed and revised structures of oscillarin. 

 

3-1-1-3 Total synthesis of dysinosin A and chlorodysinosin A 

The unique Adc heterocyclic motif is also present in dysinosin A 3.3a 

(Figure 11),[9,10] whose isolation and characterization were reported by Quinn 

and coworkers in 2002.[10] Dysinosin A, isolated from the extracts of sponge 

belonging to the family Dysideidae, is a functionally novel aeruginosin. Its 

structural elucidation was achieved through a combination of NMR and 

degradation studies, while the stereochemical assignments were confirmed by 

the X-ray structure of a ternary complex of dysinosin A, thrombin, and 

hirugen.[10] The familiar perhydroindole core structure of Dysinosin A harbors 

an additional hydroxy group at C5, resulting in a trans-diaxial orientation. The 

N-terminal residues are D-Leu and a sulfated glyceric acid derivative not 

previously found in the other aeruginosins. A total synthesis of dysinosin A was 

reported by Hanessian and coworkers.[11]  

In 2003, the Pharmacia Corporation[12] disclosed the isolation and 

characterization of a chlorinated dysinosin A derivative 3.3b (Figure 11) later, 

named as chlorodysinosin A following its total synthesis by Hanessian and 

coworkers.[13] It contains 3-chloroleucine (Cleu), an amino acid unknown in the 
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natural-product literature. The basic structure of 3.3b was first deduced by 

NMR spectroscopy and degradation studies, and its structure and absolute 

configuration have recently been confirmed by total synthesis and a high 

resolution X-ray structure with thrombin.[13]  

 

 

Figure 11. Structure of dysinosin A and chlorodysinosin A. 

 

3-1-2 Original structure of aeruginosins 205A and B 

In 1997, Murakami and coworkers[15] isolated new aeruginosins from the 

genus Microcystis, designed as 205A and 205B. Two compounds were isolated 

from the cyanobacterium Oscillatoria agardhii, which was collected from Lake 

Kasumigaura in Japan. These glycopeptides are potent inhibitors of trypsin 

(IC50=0.07 μg/mL) and thrombin (IC50=1.5 μg/mL 205A, IC50=0.17 μg/mL 

205B).[15] A characteristic isotopic and fragmentation pattern in positive-ion 

FAB mass spectrum indicated that there is a chlorine atom and a sulfate group 

in the molecules. 

Extensive spectroscopic studies based on previous reports that related to 

aeruginosins,[1,14,16] suggested the presence of five subunits: 1) P1 subunit is 

Plas (phenyllactic acid 2-O-sulfate), 2) P2 subunit is Hleu (3-hydroxyleucine), 3) 

P3 subunit is Ccoi (2-carboxy-6-chloro octahydroindole), 4) P4 subunit is Agma 

(agmatine), and 5) P5 subunit is Xyl (xylopyranose), assembled as a linear 

peptide array, and shown in expressions 3.4a and 3.4b (Figure 12).  
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Figure 12. Originally proposed structures of aeruginosins 205A and B. 

 

The absolute stereochemistry of these aeruginosins was determined by 

acid hydrolysis and HPLC analysis of appropriate derivatives.[15]  

Hydrolysis of the peptides and derivatization of the Plas residues as their 

methyl esters showed an L- and D-Plas configuration for aeruginosins 205A and 

205B, respectively.  

Although the relative stereochemistry of the Ccoi residue was determined 

from the NMR coupling constants and by NOE analysis, however the absolute 

stereochemistry of the Ccoi subunit remained undisclosed.  

The (2R,3S)- and (2S,3R)-stereochemistry of Hleu, respectively, were 

assigned after derivatization with Marfey's reagent and comparison of HPLC 

retention times with the authentic three of the four possible diastereomers of 

the same compound. Since the retention time did not match, the 

stereochemistry was assigned by exclusion.   

An assignment of D-xylose arose from GC analysis of the degradation 

fragment on a chiral column.  
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205A and 205B were the only known glycopeptidic aeruginosins at the time 

of their discovery, and they are among a very small group of sugar-containing 

natural products isolated from cyanobacteria.[9,17-22] The elucidation of their 

structures also resulted in the identification of two new structural units named 

Ccoi and Plas, respectively. The third residue, Hleu, is also quite rare among 

natural products.  

 

3-1-3 Revised structure of aeruginosins 205A and 205B 

There has been an ongoing debate over the definitive structures of 

aeruginosins. In spite of a seemingly definitive evidence for the original and 

revised structures of 3.4a and 3.4b, recent developments in the total synthesis 

of other members of this family of glycopeptides have cast some doubt on the 

structural and stereochemical assignments. 

 

3-1-3-1 The first revision of aeruginosins 205A and 205B 

In 2003, Toyooka, Nemoto and coworkers[23] synthesized glycopeptides 

model compounds 3.7a and 3.7b (α and β isomers)(Scheme 21).  

 

 

 

Based on the comparison of NMR data and the composition of other 

members of aeruginosin family, the authors revised the position of the sulfate 

group, which was originally thought to be on the Plas residue, to the 3- or 
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4-position of the xyl residue, while maintaining the Ccoi subunit intact. The 

proposed revised structures of aeruginosins 205A and B are showed as 3.8a 

and 3.8b in the Figure 13. 

 

23

8a: Aeruginosins 205A
R1=SO3H, R2=H, L-Plas, (2R, 3S)-Hleu;

8b: Aeruginosins 205B
R1=H, R2=SO3H, D-Plas, (2S, 3R)-Hleu;
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Figure 13. First revision of aeruginosins 205A and B by Toyooka/Nemoto.[23] 

 

3-1-3-2 The synthesis of the supposed Ccoi core  

The position of the chlorine atom on aeruginosins 205A and 205B has been 

called into question by definitive synthesis of the Ccoi subunit,[24] which was the 

original proposed structure by Murakami, Toyooka and their respective 

coworkers. Recently, Valls, Bonjoch and coworkers[24] reported the synthesis of 

the supposed Ccoi core (Scheme 22).  

 

 

 

When the NMR data of the synthetic Ccoi subunit was compared with the 

data of isolated natural products, some significant differences in the chemical 

shifts of the protons and carbons close to the 6-chlorine atom were found. For 
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example, in the 1H NMR spectrum the H-6 methine proton of synthetic Ccoi 

shows a signal peak at δ=4.60, while in the spectrum of the natural products 

the resonance for this proton is recorded at δ=3.83. There are also a number of 

differences in the 13C NMR spectrum, such as the C-6 methine carbon of 

synthetic Ccoi shows a peak at δ=59.1, while in the spectrum of the natural 

products the resonance for this carbon is recorded at δ=68.7. These results 

seemed to indicate that the chlorine atom of aeruginosins 205A and 205B is not 

on the 2-carboxyperhydroindole (Choi) core. 

 

3-1-3-3 The second revision of aeruginosins 205A and 205B 

In 2006, Valls and Bonjoch reported the synthesis of β-chloroleucine 

derivatives 3.13 and 3.15, which consisted of the chlorine promoted ring 

opening of hydroxyleucine β-lactones 3.12 and 3.14 (Scheme 23).  
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Scheme 23: Reagents and conditions: a) Cbz-Suc, 3.12 92%, 3.14 92%; b) O-benzotriazole-
N,N,N',N'-tetramethyluronium-hexafluorophosphate (HBTU), 3.12 83%; c) LiCl, THF,
reflux, 90 h, 3.12 46%, 3.14 35%;d) H2, Pd/C, EtOH, 3.12 96%, 3.14 85%; e) benzo-
triazol-1-yl-oxytripyrrolidinophosphonium hexafluorophosphate (PyBOP), 3.14 95%;

a, e

 

The reported occurrence of a 3-chloroleucine in chlorodysinosin A[25] and a 

Choi subunit (as above discussion in B)[24] prompted Valls and Bonjoch to 

suspect that the same subunits might also be present in aeruginosin 205A and 

205B. Thus, not only the originally proposed structures of aeruginosins 205 A 



124 
 

and B (3.4a and 3.4b), but also the first revised structures 3.8a and 3.8b were 

incorrect. Furthermore, the authors proposed the structures of aeruginosins 

205A and 205B to be as 3.16a and 3.16b (shown in Figure 14),[25] in which the 

sulfated xylose residue (O-sulfated D-xylopyranosyl ring) must be residing on 

the C-6 methine carbon of a 2-carboxy-6-hydroxyocta-hydroindole (Choi) 

subunit instead of the originally assumed Ccoi; and the chlorine atom was 

assumed to be part of a 3-chloroleucine (Cleu) residue as in chlorodysinosin 

A[13] instead of Hleu as originally proposed. 

 

 

Figure 14. Second revision of aeruginosins 205A and B by Valls/Bonjoch.[25] 

  

3-2 Synthesis of the presumed aeruginosin 205B 

Based on the above information it seemed most likely that the structure of 

aeruginosin 205A and 205B should be revised as shown 3.16a and 3.16b. We 

therefore undertook the total synthesis of 3.16b to validate this conclusion. 

Based on the previous synthesis of compounds in aeruginosins’ family, we 

envisaged the disconnections to the 5 subunits (Figure 15). These are 1) Agma 

subunit, an agmatine; 2) Choi subunit, a 2-carboxy-6-hydroxyoctahydroindole; 

3) Xyl subunit, a D-xylose; 4) Cleu subunit, 3-chloroleucine; and 5) Pla subunit, 

a D-phenyllactic acid. 
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Figure 15. Retrosynthesis of the target compound. 

 

3-2-1 Synthesis plan for aeruginosin 205B 

3-2-1-1 Original attempt 

Initially, the previously published method to synthesize the aeruginosin 

family[14,26] was used to obtain the protected aglycone subunit 3.17 of 

aeruginosin 205B (Scheme 24) by postdoctoral associates Dr. Karolina Ersmark 

and Dr. Juan R. Del Valle.  

First the Choi subunit 3.17a was coupled with the Agma subunit 3.18 to 

afford compound 3.17c. Next, the Cleu subunit 3.19 was coupled with Pla 

subunit 3.20, followed by deprotection and oxidation to give free acid 3.21. 

Finally, compound 3.17c was coupled with free acid 3.21 to afford the 

protected aeruginosin 205B aglycone 3.17d. Because of steric hindrance, the 

yield of the coupling reaction was low. Cleavage of the TBS ether group led to 

intermediate 3.17 ready to be coupled with the Xyl subunit to get our target. At 

the same time, the sequential deprotected of the O-MOM and N-Boc groups 

with TFA afforded the intended glycone 3.16c, which inhibited the enzyme 

thrombin at IC50=0.31 μM.  
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Two coupling methods[27, 28] between compound 3.17 and Xyl subunit were 

studied to afford the product 3.22 (scheme 25). 
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Due to the hindrance, the coupling reaction is too hard to finish. However, 

the ratios of α– and β–regioisomers and the yields of glycoside synthesis were 

unsatisfactory, so this route was abandoned. 

 

3-2-1-2 Coupling of Xyl subunit and Choi subunit 

To solve the glycoside problem, as a second option, the coupling between 

the Xyl subunit and the Choi subunit was studied as a model. 

Firstly, two different solvent systems were tested in the glycosylation of 

cyclohexanol 3.23 with the trichloroacetimidate derivative of 2,3,4-tri-O- 

benzyl-D-xylopyranose 3.24 (Scheme 26). The results showed that the 

presence of Et2O can increase the ratio of the desired α-regioisomer 3.24a. 

 

 

 

Secondly, two glycosylation methods, using anomeric trichloroacet- 

imidate[27] and 2-pyridyl thiocarbonate derivatives[28], were also attempted by 

using the 3-acetate derivatives 3.36 and 3.38 as models (Scheme 27). 
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Excellent yields of the α– and β–anomers (3.25a and 3.25b) were 

obtained, favoring the α-anomer (3.25b), especially when 3.38 was used as 

the glycosyl donor. Glycosylation reactions were done between the Xyl donors 

3.36 and 3.38, and the Choi subunit led to excellent yields with the acceptable 

ratios, as shown in Table 7. 

 

Table 7 Coupling reaction between the Xyl subunit and the Choi subunit 

 

 
 

Xyl Reagents and Conditions Et2O/DCM 
α/β 

(3.34b/3.34a) 
Yielda(%) 

31 cat. TfOH, MS 4A, r.t., 0.5 h 6:1 1:1.4 91 

31 cat. TfOH, MS 4A, r.t., 0.5 h 8:1 1:1.2 90 

31 cat. TfOH, MS 4A, r.t., 0.5 h 10:1 1:1.1 82 

33 
1) 1.4 eq. TMU, MS 4A, 12 h,

2) 9 eq. AgOTf, 36 h, 
10:1 1:1.2 95 

a) Yields of isolated pure product 

 

    Due to the hindrance of the Choi subunit, the α-anomer (3.34b), which is 

the desired intermediate, is not favoring. Increasing the α/β ratio to 1:1.2, we 

therefore decided to adopt the 2-pyridyl thiocarbonate method[28] and use 

Et2O/DCM 10:1 as the solvent system in view of the excellent yield and 

acceptable α/β–ratio. 
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3-2-1-3 Final plan 

Due to the successful result of coupling between the Xyl subunit and the Choi 

subunit, the synthesis plan was changed to another sequence of coupling 

(Figure 16). Firstly, the Choi subunit was coupled with the Xyl subunit, followed 

by the Agma subunit to get the subunit B. Secondly, the Cleu subunit was 

coupled with Pla subunit, followed by deprotection and oxidation to afford 

subunit C. Finally the subunit B was coupling with the subunit C. After sulfation 

and deprotection, the intended target aeruginosin 205B was obtained.  

 

 

Figure 16. Final plan of retrosynthesis of the target compound. 

 

3-2-1-4 Sulfation  

Methyl α-D-xylopyranoside 3.26[29] was used as a model in search of a 

method for selective 3-O-sulfation.  

Sulfur trioxide pyridine complex, is a common sulfation reagent for the 

secondary alcohols of the sugars.[30, 31] In the case of 3.26, NMR studies result 

showed that a mixture of 2-monosulfated (3.26c) 4-monosulfated (3.26b) and 

2,4-disulfated (3.26d) products was obtained. 3-Monosulfated as in 3.26a was 

not observed (Scheme 28).  
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The use of bis(tributyltin) oxide reagent[32, 33] to activate hydroxyl groups 

through stannylene acetals such as 3.26e was expected to give the single 

product 3.26a. Unfortunately, a complex mixture was obtainedunpo sulfation 

(Scheme 28). 

To get the single 3-monosulfation product 3.26a, the 2,4-hydroxy groups of 

3.26 were first protected by Bn-groups to get the major di-benzyl product 

3.27[34], which was sulfated, followed by deprotection to form the single sulfate 

ester 3.26a. The reagents and conditions are shown in Scheme 29. 

 

 

 

3-2-1-5 Choice of protecting group 

From the analysis of the structure and previous experience in the synthesis 

of the aeruginosin family, the stability of the final compound was considered in 

the choice of orthogonally compatible protecting groups. 
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Firstly in basic conditions: Due to the presence of the α-proton and the 

β-chlorine atom on the Cleu subunit, the elimination of the β-chlorine atom was 

a possibility under the basic conditions. Hence, strong bases should be avoided 

in the final deprotection.  

Secondly in acidic conditions: The final product is a monosulfate, and most 

sulfates are reported to be unstable to mineral acids.[35, 36] The compound 

3.26a, which is the 3-O-sulfated product of methyl α-D-xylopyranoside 3.26, 

was used as the model, and the results showed that the sulfates can be purified 

via the silica gel chromatography with 5% methanol in DCM, but not stable 

under pH<3 conditions.  

According to these results, hydrogenation was considered as a safe 

deprotection process, and new protecting groups, which should remain intact 

until the last step, were considered (Figure 17). For example: 1) The Cbz- 

groups on the guanidine on the Agma subunit was used in place of Boc-groups. 

2) The Bn-group on the alcohol on the Pla subunit was to be used instead of 

MOM-group. 3) The two final free alcohols on the Xyl subunit were also to be 

protected with Bn-groups. 

 

 

Figure 17. Protecting groups in the total synthesis. 
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3-2-2 Synthesis of the A-C subunits 

3-2-2-1 The Choi subunit 

Following our previous studies,[8] N-Cbz-L-glutamic acid dimethyl ester 

3.28 was converted to intermediate 3.29. Azonia-Prins reaction led to 

compound 3.30 in greater yield than previously reported.[8] During this 

reaction, dry DCM as solvent, 2 equivalents of tin(IV) bromide (SnBr4) and 

extending the reaction time to 30min led to a higher yield (90%). The bromine 

atom was substituted in an SN
2 reaction with Bu4NOAc to form 3.31, which was 

followed by Cbz-group deprotection, Boc-group protection and Ac-group 

cleavage to give the N-Boc Choi derivative 3.33. The structure and 

stereochemistry of 3.33 was ascertained by X-ray crystallography. The details 

are shown as Scheme 30. 

 

 

 

3-2-2-2 The Xyl subunit 

The 2,4-hydroxyl groups of methyl α-D-xylopyranoside 3.26[29] were 

selectively protected as Bn-ethers[34] to give 3.27, which was hydrolyzed under 

acidic conditions and acetylated to afford 3.34. After selective deacetylation, 

3-O-acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 3.35 was obtained. The 

reagents and conditions are shown in Scheme 31. 
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Scheme 31: Reagents and conditions: a) BnCl, NaH, 100 oC, 4 h, 62%; b) 1,4-dioxane/AcOH
1:1, 1 M H2SO4, 60 oC , 72 h; c) Ac2O, DMAP, Et3N, DCM, r.t., 3 h, 98% over 2
steps; d) benzylamine, THF, r.t., 48 h, 83%;

O
HO

HO
OH

OMe

O
BnO

HO
OBn

OMe
a b, c O

BnO
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d O
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3-2-2-3 Subunit A 

As the discussed in section 3-2-1-2, N-Boc Choi 3.33 was glycosylated 

with 3.38 to form compound 3.39, which is a 1.2:1 mixture of β- and α- 

anomers (3.39a and 3.39b). These were separated by flash column 

chromatography and their structures determined by NMR data of 3.40a and 

3.40b (Scheme 32). The ratio of the desired α-anomer was lower compared to 

cyclohexanol possibly due to the axial disposition of the hydroxyl group in 3.33. 

 

 

 

3-2-2-4 The Agma subunit  

Following the literature[37], guanidine hydrochloride 3.41 was transformed 

into the Goodman’s reagent 3.42, which was reacted with 10 equivalents of 
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1,4-diaminobutane 3.43 to form the Agma subunit 3.44. Protection as N-Boc 

gave an easily purifiable product 3.45, as shown in Scheme 33.  

 

H2N NH2

NH
HCl

3.41
CbzHN NHCbz

NTf

3.42

RHN
H
N NCbz

NHCbz

3.44, R=H

3.45, R=Boc

a,b c
d e

Scheme 33: Reagents and conditions: a) 5 eq. NaOH, 3 eq. CbzCl, H2O/DCM 1:2, 20 h, 0 oC,
86%; b) 2 eq. NaH, 0 oC, 1 eq. Tf2O, chlorobenzene, r.t., 9 h, 67%; c) CHCl3,
10 eq. 1,4-diaminobutane 3.43, r.t., 2 h, 94%; d) 1.4 eq. Boc2O, 2 eq. NEt3, DCM,
0 oC to r.t., 10 h, 92%; e) 4 M HCl, 1,4-dioxane, 99%;

 

 

3-2-2-5 Subunit B 

Compounds 3.46a and 3.46b, which were obtained by saponification of 

the compounds 3.39a and 3.39b respectively, were coupled with the Agma 

subunit 3.44 to afford compounds 3.47a and 3.47b, in the good yield 

(Scheme 34). The structure and stereochemistry of compound 3.46b was also 

established by X-ray crystallography. 
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3-2-2-6 The Cleu subunit  

    The Cleu subunit was prepared as previously described[13] from aziridine 

3.48. First the reaction with tert-butylsulfinyl chloride 3.49, followed by 

oxidation with m-CPBA gave 3.50. Then regioselectivie opening with CeCl3 as 

the chloride source afforded the major isomer 3.51, which was oxidized with 

H5IO6 in the presence of CrO3 catalyst[13] to afford N-Bus-3-chloroleucine 3.51a. 

The detailed reagents and conditions are shown in Scheme 35. 

 

 

 

3-2-2-7 The Pla subunit 

D-(+)-3-Phenyllactic acid 3.52 was treated with NaH and BnBr to obtain 

O-Bn-D-(+)-3-phenyllactic acid 3.53 as the major product in addition to the 

ester 3.53a. After saponification, the transesterification by-product 3.53a was 

transformed back to 3.53 (Scheme 36).  

 

 

 

3-2-2-8 Subunit C 

The Cleu intermediate 3.51 was treated with TfOH to cleave the N-Bus 
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group, then the free amine salt was coupled in presence of DEPBT and 

2,6-lutidine with O-Bn-D-(+)-3-phenyllactic acid 3.53 to afford 3.54. The 

carboxylic acid 3.55 was obtained by oxidation of intermediate 3.54 with H5IO6 

and CrO3 catalyst. The details are shown in Scheme 37. 

 

 

 

3-2-3 Synthesis of aeruginosin 205B 

As shown in Scheme 38, free amines 3.57a and 3.57b, obtained from 

3.42a and 3.42b respectively, were coupled with the subunit C carboxylic acid 

55 to form corresponding 3.57a and 3.57b in presence of 2,6-lutidine and 

DEPBT. The compounds 3.57a and 3.57b were sulfated with 50 equivalents 

sulfur trioxide (SO3) pyridine complex at 50 oC for 2 days. The O-Bn and N-Cbz 

groups in 3.58a and 3.58b were cleaved in presence of excess palladium 

hydroxide (Pd(OH)2, 20 wt.% Pd on carbon) and hydrogen in methanol to form 

target compounds 3.59 and 3.16b respectively. The progress of the 

deprotection was checked by MS each hour to avoid the over-reduction of the 

D-Pla subunit.  

Finally, HPLC was used to purify the compounds 3.59 and 3.16b. Due to 

the stability of the sulfates on these two compounds, the whole HPLC system 

was treated in the neutral condition, and no acidic buffer (0.5% Formate Acid) 

was presence in the flow. 

 



137 
 

 

 

3-3 Comparison of NMR data 

3-3-1 Comparison of NMR data of aeruginosin 205B aglycone，

synthetic aeruginosin 205B and natural aeruginosin 205B 

To confirm the presumed structure of aeruginosin 205B 3.16b, comparison 

of 1H and 13C NMR of synthetic aeruginosin 205B aglycone 3.16c, synthetic 

aeruginosin 205B 3.16b, desulfated synthetic aeruginosin 205B 3.16d and 

natural aeruginosin 205B 3.16e[15] has been done. The chemical shift values for 

the Cleu, Pla, Agma, Choi and Xyl subunit of each compound were listed group 

by group in Table 8.  
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Table 8 1H and 13C NMR data for each subunit of synthetic aeruginosin 205B aglycone 3.16c (500 Hz), synthetic 

presumed aeruginosin 205B 3.16b (700 Hz) and desulfated presumed aeruginosin 205B 3.16d (700 Hz) with 

reported data[15] for natural aeruginosin 205B 3.16e in DMSO-d6
a 

 

 

  3.16c 3.16d 3.16b 3.16e 3.16c 3.16d 3.16b 3.16e 

Subunit  1H 1H 1H 1H 13C 13Cb 13C 13C 

Cleu 1 -- -- -- -- 169.1  167.5 167.3 

 2 4.88 4.91 4.93 4.90 51.0 51.4 51.1 51.1 

 3 3.92 3.99 3.97 3.98 69.5 69.3 69.0 68.9 

 4 1.62 1.67 1.66 1.69 27.3 30.0 27.5 27.5 

 5,5’ 0.83,0.84 0.85,0.86 0.84,0.86 0.85,0.88 20.3,14.7 21.2,15.9 20.9,15.4 20.8,15.4

 NH 7.52  7.67 7.62 -- -- -- -- 
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  3.16c 3.16d 3.16b 3.16e 3.16c 3.16d 3.16b 3.16e 

Subunit  1H 1H 1H 1H 13C 13Cb 13C 13C 

Pla 1 -- -- -- -- 173.8  172.4 172.4 

 2 4.19 4.19 4.19 4.19 72.0 72.1 71.8 71.9 

 3a,3b 2.82,2.93 2.79,2.96 2.78,2.94 2.78, 2.93 39.8 40.4 40.0 40.0 

 4 -- -- -- -- 139.1  138.1 137.9 

 5,9 7.22 7.23 7.22 7.23 130.9 130.0 129.8 129.6 

 6,8 7.25 7.26 7.24 7.25 129.0 128.3 127.9 127.9 

 7 7.18 7.19 7.17 7.18 127.2 126.4 126.1 126.0 

 2-OH 5.92  3.16 -- -- -- -- -- 

Choi 1 -- -- -- -- 172.8  171.2 171.2 

 2 4.17 4.19 4.19 4.19 60.0 60.2 59.8 59.8 

 3,3’ 1.80,1.97 1.82,2.01 1.85,2.01 1.84,2.02 30.6 31.1 30.8 30.8 

 3a 2.18 2.23 2.26 2.24 35.7 36.3 35.9 35.8 

 4,4’ 1.41,2.01 1.47,2.14 1.49,2.13 1.48,2.13 18.5 19.9 19.5 19.4 

 5 1.42 1.53 1.54 1.54 25.9 25.2 24.9 24.7 

 6 3.89 3.84 3.86 3.83 64.1 68.8 67.3 68.7 

 7,7’ 1.62,2.02 1.58,2.22 1.58,2.32 1.59,2.23 33.2 29.0 28.8 28.7 

 7a 4.26 4.31 4.35 4.23 54.7 54.6 54.0 54.2 

Table 8 (contd.) 



140 
 

  3.16c 3.16d 3.16b 3.16e 3.16c 3.16d 3.16b 3.16e 

Subunit  1H 1H 1H 1H 13C 13Cb 13C 13C 

Agma 1 2.99,3.09 2.98,3.08 3.00,3.07 2.97,3.11 37.9 38.3 38.0 37.9 

 2 1.38 1.44 1.41 1.40 26.0 26.4 26.3 26.2 

 3 1.42 1.45 1.44 1.44 26.0 25.5 25.9 25.8 

 4 3.06 3.09 3.03 3.09 40.3 40.8 40.3 40.4 

 1-NH 7.96  8.83 7.92  -- -- -- 

 4-NH 7.63  8.05 7.44  -- -- -- 

 C=N   -- -- 158.5  157.5 156.6 

a. Recorded at MHZ (
1H) and MHZ (

13C);   b. Recorded from HMQC  
 

Part of Xyl subunit of synthetic 3.16b, desulfated 3.16d and natural 3.16e in DMSO-d6
a 

  3.16d 3.16b 3.16e 3.16d 3.16b 3.16e 

Subunit  1H 1H 1H 13Cb 13C 13C 

Xyl 1 4.96 5.09 4.93 95.8 94.2 95.2 

 2 3.24 3.39 3.28 72.5 70.7 72.1 

 3 3.27 4.14 3.58 70.5 80.5 71.7 

 4 3.42 3.45 3.93 73.9 68.6 74.9 

 5 3.30,3.39 3.35,3.45 3.37,3.67 62.4 61.4 59.6 

a. Recorded at MHZ (
1H) and MHZ (

13C);   b. Recorded from HMQC  

Table 8 (contd.) 

Table 8 (contd.) 
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Thus similarity of chemical shift values for the Cleu, Pla, Agma and Choi 

subunit listed in Table 8, indicate that the structure of the natural product 

should be revised to include a Cleu , Pla and Choi subunit, rather than a Hleu, 

Plas and Ccoi subunit as originally proposed by Murakami.[15]  

Comparison of 1H and 13C NMR shows virtual identity with allowance made 

for the absence of the Xyl subunit in the synthetic aeruginosin 205B aglycone 

3.16c. The 1H and 13C spectra characteristics matched those published for 

aeruginosin 205B 3.16e except for the absence of resonances due to the 

sulfated D-xylopyranosyl moiety. Thus, the reported values for the Pla and Cleu 

subunits were agree to those in the synthetic sample of 205B aglycone 3.16c.  

The same was also true for the Choi subunit with allowance made for C-6, which 

carries a glycosidic moiety in the natural product. The agreement also extends 

to the synthetic aeruginosin 205B 3.16b, and desulfated synthetic aeruginosin 

205B 3.16d, according to the 1H and 13C chemical shift at C-6 of the Choi 

sununit.  

Comparison of 1H and 13C NMR data of the Xyl subunit of synthetic 

aeruginosin 205B 3.16b, desulfated synthetic aeruginosin 205B 3.16d and 

natural aeruginosin 205B 3.16e, indicates that the 1H and 13C chemical shifts 

do not match at the C-3 position. Therefore the sulfate group cannot be on C-3 

of the Xyl subunit (Table 8, the part of Xyl subunit). To validate this conclusion, 

we prepared methyl α-D-xylopyranosides with sulfate group on each hydroxyl 

group individually.  

 

3-3-2 NMR Comparison of model sulfate esters 

Model compounds with and without the O-sulfated group were synthesized. 

Firstly, Methyl α-D-xylopyranoside 3.26, 2-O-sulfate 3.26c, 3-O-sulfate 3.26a, 

4-O-sulfate 3.26d and 2,4-O-disulfate 3.26d were prepared (Scheme 39).  
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Scheme 39: Reagents and conditions: a) 1) 2.2 eq. Bu2SnO, MS, toluene/MeOH, 70 oC, 10 h,
2) 2.2 eq. MOMCl, 1 eq. Bu4NI, toluene, r.t., 10 h, 47%; b) 1.5 eq. NaH, 1.5 eq.
BnBr, 1 eq. Bu4NI, r.t., 10 h, 89%; c) TFA/DCM 1:2, r.t., 3 h, 82%; d) pyridine,
25 eq. SO3/pyridine, 50 oC, 10 h, 3.65 87%, 3.60b 92%, 3.61b 91%; e) 20 wt.%
Pd(OH)2/C, H2, r.t., 3h, 3.26a 96%, 3.26b 96%, 3.26c 97%, 3.26d 96%; f) BnCl,
2 eq. NaH, 100 oC, 3 h, 3.27 62%, 3.60+3.61 12%; g) 1.5 eq. Ac2O, cat. DMAP,
2 eq. Et3N, r.t., 3 h, 3.60a 35%, 3.61a 48%; h) 50 eq. SO3/pyridine, pyridine, 24 h,
50 oC, 87%; i) 2 eq. NaOMe, MeOH, r.t., 2 h, 3.60 96%, 3.61 96%

 

 

Compound 3.26 was protected as Bn-ethers to give 3.27, 3.60 and 3.61, 

which were sulfated and cleaved O-Bn groups to afford 3.26a-c respectively. 

Compound 3.26 was also selectively protected as MOM-ethers to give 3.62, 

which subjected Bn-protection, MOM-cleavage and sulfation, followed by O-Bn 

group cleavage to afford 3.26d. 1H and 13C NMR data are shown in Table 9. 
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Table 9 1H and 13C NMR data for compounds 3.26, 3.26a-d (Xyl subunit), aeruginosin 205A and B in DMSO-d6  

 

 
 

 3.26 3.26a 3.26b 3.26c 3.26d 205B 205A 3.26 3.26a 3.26b 3.26c 3.26d 205B 205A

 1H 1H 1H 1H 1H 1H 1H 13C 13C 13C 13C 13C 13C 13C 

1 4.47 4.52 4.48 4.72 4.79 4.93 4.95 100.2 99.8 99.8 98.3 97.9 95.2 95.1 

2 3.17 3.35 3.25 3.81 3.83 3.28 3.28 72.0 70.4 71.7 76.2 76.0 72.1 72.1 

3 3.29 4.11 3.46 3.46 3.53 3.58 3.58 73.5 79.8 71.9 71.8 69.4 71.7 71.8 

4 3.24 3.46 3.90 3.32 3.93 3.93 3.93 70.0 68.6 74.8 70.3 74.9 74.9 75.0 

5 
3.25 

3.39 

3.25 

3.48 

3.30 

3.66 

3.22 

3.43 

3.26  

3.76 

3.37 

3.67 

3.37 

3.67 
61.7 61.5 59.3 61.2 59.0 59.6 59.5 

OMe 3.24 3.26 3.25 3.23 3.24   54.6 54.7 54.7 54.7 54.8   

a. Recorded at MHZ (
1H) and MHZ (

13C);  

 

Conclusion: The similarity in the chemical shifts of the protons and carbons reported for aeruginosin 205B and 

205A with those recorded for 3.26b shows that sulfate unit is not on C-3, but on C-4 of the Xyl subunit. 
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Secondly, compound 3.47 subjected esterification to afford D-Phenyllactic 

acid methyl ester 3.52a, and followed by sulfation to give O-sulfated product 

3.52b. The reagents and conditions are shown in Scheme 40. Both 3.52a and 

3.52b were used as the Pla subunit models. 1H and 13C NMR data are shown in 

Table 10. 

 

 
 

Table 10 1H and 13C NMR data for compounds 3.52a and 3.52b (Pla subunit) 

in DMSO-d6 (400 MHz) 

 3.52a 3.52b 205B 3.52a 3.52b 205B 

 1H 1H 1H 13C 13C 13C 

1 -- -- -- 174.0 171.3 172.4 

2 4.25 4.68 4.19 71.3 74.9 71.9 

3 2.83,2.96 2.95,3.002.78,2.93 40.1 38.3 40.0 

Ph 
7.18-7.23 

7.26-7.29 

7.16-7.22 

7.24-7.28 

7.18,7.23 

7.25 

126.3,128.1

129.4,137.7

126.6,128.2,

129.3, 36.3,

126.0,127.9

129.6,137.9

OMe 3.61 3.50  51.5 51.3  

a. Recorded at MHZ (
1H) and MHZ (

13C); 

 

Conclusion: The similarity in the chemical shifts of the protons and 

carbons on 3-position of 3.52a and aeruginosin 205B shows that sulfate group 

is not on the D-Pla subunit. 
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3-3-3 Conclusion 

     According to the 1H and 13C NMR data reported[15] for natural 205B and 

synthetic 3.16b, the O-sulfated group must be present on the 4-OH of Xyl 

subunit, but not on the D-Pla subunit or on the 3-OH of the D-Xyl subunit as 

originally proposed by Toyooka[23]. Furthermore, the chlorine atom is not 

situated at C-6 of the Choi subunit as originally proposed. The third revised 

structure and stereochemistry of aeruginosin 205B based on the work 

described in this thesis is shown in the Figure 18. The structure of aeruginosin 

205A is the same as 205B except for the presence of (2R, 3S)-Cleu and L-Plas 

instead of (2S, 3R)-Cleu and D-Plas. The revision should also be valid for 205A. 

 

 

Figure 18. Third revision of aeruginosin 205B. 

 

3-4 Experimental 

General: Solvents were distilled under positive pressure of dry argon before 

use and dried by standard methods. THF, ether, DCM, and toluene were dried 

by the SDS (Solvent Delivery System). All commercially available reagents 

were used without further purification. All reactions were performed under 

argon atmosphere and monitored by thin-layer chromatography. Visualization 

was performed by ultraviolet light and/or by staining with ceric ammonium 

molybdate, ninhydrine or potassium permanganate. IR, Perkin-Elmer FTIR 
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Paragon 1000. Low- and high-resolution mass spectra were recorded using fast 

atom bombardement (FAB) or electrospray techniques. Optical rotations were 

recorded in a 1 dm cell at 20 oC (PerkinElmer 343). Flash column chromate- 

graphy was performed using (40-60 μm) silica gel at increased pressure. NMR 

(1H, 13C) spectra were recorded on Bruker AV-300, AV-400, AV-500 and AV-700 

spectrometers. When necessary, assignments were aided by DEPT, COSY, 

NOESY, and HMBC and HMQC correlation experiments.  

 

 

Compound 3.29: To a solution of 3.28a (500 mg, 1.5 mmol) in dry THF (15 

mL) under argon atmosphere was added dropwise LiBEt3H (1.7 mmol) 1 M in 

THF (1.7 mL) at -78 °C. After stirring at -78 °C for 2 h, the reaction mixture was 

quenched with saturated aqueous NaHCO3 (7.5 mL) carefully, then warmed to 

R.T., and 30% H2O2 aqueous (7.5 mL) was added. After stirring for 30 min., the 

reaction mixture was extracted with EtOAc (4×50 mL), then the organic phases 

were combined, dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was redissolved in DCM (20 mL), washed with brine (20 mL), 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue 

was redissolved in dry DCM (5 mL) and cooled at 0 °C. To the solution was 

added Ac2O (430 μL, 4.5 mmol), DMAP (15 mg, 0.15 mmol) and Et3N (421 μL, 

3.0 mmol), and warmed to R.T.. After stirring for 4 h, the reaction mixture was 

diluted with DCM (20mL), washed with 0.5 M HCl aqueous (20 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by 

flash column chromatography (hexane to EtOAc/hexane 1:9) to afford 3.29 

(454 mg, 80%)(two products mixture as 1:1.5), as a colorless oil: 1H NMR, 
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(400 MHz, CDCl3) δ 7.35-7.17 (m, 5H), 6.73 (d, 0.4H, J=4.5 Hz), 6.7 (d, 0.6H, 

J=4.6 Hz), 5.78-5.67 (m, 1H),  5.21-4.95 (m, 4H), 4.30 (dd, 1H, J=10.5 Hz, 

J=18.4 Hz), 3.76 (s, 2H), 3.57 (s, 1H), 2.46-2.39 (m, 1H), 2.28-2.15 (m, 1H), 

2.10-2.01 (m, 4H), 1.83-1.70 (m, 1H), 1.62-1.52 (m, 1H), 1.40-1.31 (m, 1H); 

13C NMR, (100 MHz, CDCl3) δ 172.3, 172.0, 169.9, 153.6, 153.4, 137.6, 136.0, 

128.5, 128.23, 128.19, 128.1, 127.8, 115.5, 83.1, 82.5, 67.6, 67.5, 59.1, 59.1, 

52.4, 52.2, 43.0, 42.4, 33.7, 32.7, 31.7, 27.3, 27.2, 21.11, 21.06; ESI/MS for 

C20H25NO6 calculated (M-OAc+H+) 316, found 316.  

 

 
Compound 3.30: To a solution of 3.29 (319 mg, 0.85 mmol) in dry DCM (5 

mL) under argon atmosphere was added dropwise SnBr4 (223 μL, 1.7 mmol) in 

fresh dry DCM (6 mL) at -78 °C. After stirring for 30 min., the reaction mixture 

was quenched with aqueous 10% Na2CO3 (30 mL), then warmed to R.T., and 

extracted with DCM (3×30 mL). The combined organic phases were dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by 

flash column chromatography (EtOAc/hexane 1:4) to give 3.30 (300 mg, 89%), 

as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ (rotamers) 7.42-7.24 (m, 5H), 

5.21-4.97 (m, 2H), 4.38-4.23 (m, 1H), 4.07-4.00 (m, 0.5H), 3.98-3.70 (m, 

3H), 3.56 (s, 1.5H), 2.85-2.75 (m, 0.5H), 2.70-2.60 (m, 0.5H), 2.40-2.30 (m, 

1H), 2.28-1.92 (m, 4H), 1.90-1.65 (m, 3H); 13C NMR, (100 MHz, CDCl3) δ 

(rotamers) 173.0, 172.8, 154.0, 153.4, 136.3, 136.1, 128.4, 128.3, 128.0, 

127.9, 127.7, 67.1, 67.0, 59.1, 59.0, 57.8, 57.4, 52.3, 52.0, 46.8, 38.9, 38.3, 

35.4, 34.7, 32.2, 31.9, 31.7, 31.1, 25.4, 25.3; [α]D +5.2 (c 1.0, CHCl3);  

ESI/MS for C16H23BrNO4 calculated (M+H+) 396, found 396. 
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Compound 3.31: To a solution of 3.30 (320 mg, 0.8 mmol) in dry toluene (9 

mL) at 40 °C was added Bu4NOAc (3.65 g, 12 mmol). After stirring at 40 °C for 

2.5 h, the reaction mixture was diluted by addition hexane (40 mL) and cooled 

to R.T.. The reaction mixture was washed with H2O (40 mL) and brine (40 mL), 

dried over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (EtOAc/hexane 3:17) to afford 3.31 

(245 mg, 82%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ  (rotamers) 

7.36-7.28 (m, 5H), 5.23-4.99 (m, 3H), 4.39-4.31 (m, 1H), 4.27-4.21 (m, 

0.5H), 4.17-4.11 (m, 0.5H), 3.77 (s, 1.5H), 3.57 (s, 1.5H), 2.46-2.30 (m, 2H), 

2.25-2.18 (m, 1H), 2.06 (s, 1.5H), 2.05 (s, 1.5H), 2.03-1.88 (m, 2H), 

1.78-1.69 (m, 2H), 1.64-1.54 (m, 2H); 13C NMR, (100 MHz, CDCl3) δ (rotamers) 

173.8, 173.6, 170.5, 170.4, 154.6, 153.9, 136.9, 136.6, 128.6, 128.5, 128.1, 

128.05, 127.98, 127.6, 69.4, 69.2, 67.2, 67.0, 59.4, 59.3, 54.5, 54.1, 52.5, 

52.3, 36.8, 36.5, 35.8, 32.7, 31.7, 31.2, 30.7, 23.8, 21.4; ESI/MS for 

C20H25NO6 calculated (M+H+) 376, found 376.  

 

 

  Compound 3.31a: To a solution of 3.31 (99 mg, 0.25 mmol) in dry MeOH (5 

mL) was added Pd/C 10 w.t.% (20 mg) and the suspension was stirred under H2 

(1 atm) at R.T. for 5 h. The Pd/C catalyst was removed by filtration and the 

filtrate was concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (MeOH/DCM 1:39) to give 3.31a (57 

mg, 95%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 5.03-4.95 (m, 1H), 
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3.79 (dd, 1H, J=5.7 Hz, J=10.3 Hz), 3.72 (s, 3H), 3.66 (s, 1H), 3.31 (dd, 1H, 

J=4.9 Hz, J=9.9 Hz), 2.36 (br, m, 1H), 2.22-2.15 (m, 1H), 2.05-1.89 (m, 5H), 

1.85-1.78 (m, 1H), 1.74-1.56 (m, 4H); 13C NMR, (100 MHz, CDCl3) δ 175.8, 

170.6, 69.7, 58.4, 52.3, 37.2, 35.2, 32.9, 29.3, 24.9, 21.5; ESI/MS for 

C12H19NO4 calculated (M+H+) 242, found 242. 

 

 

Compound 3.32: To a solution of 3.31a (145 mg, 0.6 mmol) in dry DCM (15 

mL) at 0 °C was added NEt3 (167 μL, 1.20 mmol) and Boc2O (196 mg, 0.9 

mmol), then warmed to R.T.. After stirring for 26 h, the reaction mixture was 

diluted with DCM (30 mL) and washed with brine (30 mL). The aqueous phase 

extracted with DCM (2×30 mL). The organic phases were combined, dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/hexane 3:17) to afford 3.32 

(180 mg, 88%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 5.07 (br, m, 1H), 

4.24-4.18 (m, 1H), 4.16-4.10 (m, 0.65H), 3.97 (br, m, 0.35H), 3.71 (s, 3H), 

2.36-2.29 (br, m, 2H), 2.18-2.11 (m, 1H), 2.02 (s, 3H), 1.99-1.88 (m, 2H), 

1.73-1.62 (m, 2H), 1.56-1.47 (m, 2H), 1.37 (s, 9H); 13C NMR, (100 MHz, CDCl3) 

δ 174.1, 170.4, 153.3, 80.1, 69.3, 59.5, 53.6, 52.1, 35.8, 32.5, 30.8, 28.4, 

23.8, 21.3, 20.1; [α]D -47.5 (c 1.0, CHCl3); ESI/MS for C17H28NO6 calculated 

(M+H+) 342, found 342. 

 

 

Compound 3.33: A solution of 3.32 (51 mg, 0.15 mmol) in 1.8 mL of MeOH 

was treated with 0.5 M NaOMe (1.1 mmol) in MeOH 2.1 mL. After stirring at R.T. 
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for 6 h, the reaction mixture was diluted with saturated aqueous NH4Cl (1 mL), 

and concentrated under reduced pressure. The residue was redissolved in 

EtOAc (20 mL), filtered and concentration under reduced pressure. The crude 

residue was purified by flash column chromatography (EtOAc/hexane 2:3) to 

afford 3.33 (40 mg, 90%), the solid was recrystallized from DCM, to give a 

colorless crystalline solid, m.p. 153-155 °C: 1H NMR, (400 MHz, CDCl3) δ 

4.20-4.11 (br, m, 3H), 3.72 (s, 3H), 2.32 (br, m, 2.5H), 2.16-2.09 (m, 2.5H), 

1.98-1.38 (m, 12H); 13C NMR, (100 MHz, CDCl3) δ 174.2, 153.4, 80.0, 66.0, 

59.6, 53.7, 52.1, 36.0, 33.8, 32.6, 28.4, 26.5, 19.7; [α]D -31.8 (c 1.0, CHCl3); 

ESI/MS for C15H25NO5 calculated (M+H+) 300, found 300. 

 

 

Methyl D-xylopyranoside 3.B：SOCl2 (0.25 ml, 3.45 mmol) was added 

carefully at 0 °C into dry MeOH, then the reaction mixture was allowed to warm 

up to R.T. slowly. After stirring for 30 min., D-xylose 3.A (1.2 g, 8.0 mmol) was 

added, and the reaction mixture was heated to reflux. After refluxing for 15 h, 

the reaction mixture was cooled to R.T., and neutralized by solid NaHCO3 

carefully. After MeOH was evaporated, the crude residue was purified by flash 

column chromatography (MeOH/DCM 3:17) to afford 3.B (1.28 g, 98%, a 

colorless oil), as a α/β=7:3 mixture: 1H NMR, (400 MHz, MeOH-d4)(α and β 

mixture) δ 4.63 (d, 0.7H, J=3.6 Hz), 4.12 (d, 0.3H, J=7.6 Hz), 3.88 (dd, 0.3H, 

J=5.3 Hz, J=11.4 Hz), 3.59-3.53 (m, 1H), 3.51-3.45 (m, 2H), 3.43-3.30 (m, 

4H), 3.23-3.14 (m, 0.7H); 13C NMR, (100 MHz, MeOH-d4)(α and β mixture) δ 

106.1, 101.5, 77.8, 75.2, 74.9, 73.6, 71.5, 71.2, 67.0, 62.8, 57.4, 55.7; 

Chemical Formula: C6H12O5.  
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Methyl 2,3,4-tri-O-acetyl-D-xylopyranosides 3.C (β) and 3.D (α) : 

Methyl D-xylopyranoside 3.B (0.98 g, 6.0 mmol) was dissolved in dry DCM (50 

mL), and cooled at 0 °C, then Ac2O (2.8 mL, 30.0 mmol), DMAP (73 mg, 0.6 

mmol), and Et3N (5.0 mL, 36 mmol) were added. After stirring at 0 °C for 6 h, 

the reaction mixture was washed with 1 M HCl aqueous (50 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (hexane to EtOAc/hexane 3:17) to 

give the β-isomer 3.C (507 mg, 29%), as a colorless solid, m.p. 100-105 °C, 

and the α-isomer 3.D (1.18 g, 68%), as a colorless solid, m.p. 76-81 °C. 

Methyl 2,3,4-tri-O-acetyl-β-D-xylopyranoside 3.C: 1H NMR, (400VMHz, 

CDCl3) δ 5.05 (t, 1H, J=8.6 Hz), 4.87-4.76 (m, 2H), 4.30 (d, 1H, J=6.9 Hz), 

4.01 (dd, 1H, J=5.1 Hz, J=11.8 Hz), 3.35 (s, 3H), 3.28 (dd, 1H, J=5.1 Hz, 

J=6.7 Hz), 1.94 (s, 3H), 1.93 (s, 3H), 1.92 (s, 3H); 13C NMR, (100 MHz, CDCl3) 

δ 169.9, 169.7, 169.3, 101.5, 71.4, 70.7, 68.8, 61.9, 56.5, 20.6; [α]D -56.3 (c 

1.0, CHCl3); ESI/MS for C12H18O8 calculated (M-OAc+H+) 259, found 259.  

Methyl 2,3,4-tri-O-acetyl-α-D-xylopyranoside 3.D: 1H NMR, (400 MHz, 

CDCl3) δ 5.42 (t, 1H, J=9.7 Hz), 4.92 (ddd, 1H, J=6.0 Hz, J=9.6 Hz, J=10.5 Hz), 

4.83 (d, 1H, J=3.6 Hz), 4.79 (dd, 1H, J=3.6 Hz, J=10.0 Hz), 3.75 (dd, 1H, 

J=6.0 Hz, J=10.9 Hz), 3.54 (t, 1H, J=10.8 Hz), 3.35 (s, 3H), 2.03 (s, 3H), 1.99 

(s, 6H); 13C NMR, (100 MHz, CDCl3) δ 170.3, 170.1, 170.0, 96.9, 71.1, 69.6, 

69.4, 58.2, 55.4, 20.8; [α]D +117.9 (c 1.0, CHCl3); ESI/MS for C12H18O8 

calculated (M-OAc+H+) 259, found 259. 
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Methyl α-D-xylopyranoside 3.26: A solution of methyl 2,3,4-tri-O-acetyl- 

α-D-xylopyranoside 3.D (3.5 g, 12.0 mmol) in dry fresh MeOH (40 mL) was 

treated with small pieces of Na (414 mg, 18.0 mmol) carefully. After stirring at 

R.T. for 1 h, the reaction mixture was diluted with solid NH4Cl, filtered and 

concentrated under reduced pressure. The crude residue was redissolved in 

DCM (40 mL), filtered and concentration under reduced pressure. The residue 

was purified by flash column chromatography (MeOH/DCM 3:17) to afford 3.26 

(1.9 g, 97%), as a colorless solid, m.p. 81-82 °C: 1H NMR, (300 MHz, MeOH-d4) 

δ 5.54 (s, 1H), 5.38 (d, 1H, J=6.2 Hz), 4.62 (d, 1H, J=3.7 Hz), 3.60–3.49 (m, 

2H), 3.49–3.41 (m, 2H), 3.41–3.35 (m, 4H); 13C NMR, (75 MHz, MeOH-d4) δ 

101.5, 75.2, 73.6, 71.5, 62.8, 55.7; [α]D +153.4 (c 1.0, MeOH); Chemical 

Formula: C6H12O5. 

 

 

Compounds 3.27, 3.60+3.61: To a solution of methyl α-D-xylopyranoside 

3.26 (879 mg, 5.35 mmol) in dry BnCl (20 mL) at 0 °C was added NaH (428 mg, 

10.7 mmol) carefully, and then heated to 100 °C. After stirring at 100 °C for 10 

h, the reaction mixture was cooled to R.T., and quenched with AcOH (0.06 mL). 

Then solvent was evaporated at 90 °C to afford yellow oil, which was purified by 

flash column chromatography (EtOAc/hexane 1:4) to give the major product 

3.27 (1.14 g, 62%), as a colorless solid, m.p. 77-78 °C. Then the mixture of 

products 3.60 and 3.61 (221 mg, 12%), as a colorless oil, was obtained by 

flash column chromatography (EtOAc/hexane 1:4). 
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Methyl 2,4-di-O-benzyl-α-D-xylopyranoside 3.27: 1H NMR, (400 MHz, 

CDCl3) δ 7.43-7.29 (m, 10H), 4.79 (dd, 2H, J=5.5 Hz, J=12.1 Hz), 4.69 (t, 2H, 

J=11.7 Hz), 4.60 (d, 1H, J=3.5 Hz), 4.09 (t, 1H, J=8.1 Hz), 3.66-3.63 (m, 1H), 

3.53-3.51 (m, 2H), 3.39 (dd, 1H, J=3.6 Hz, J=9.6 Hz), 3.37 (s, 3H), 3.09 (s, 

1H); 13C NMR, (100 MHz, CDCl3) δ 138.4, 138.2, 128.43, 128.39, 127.98, 

127.87, 127.71, 97.8, 79.4, 77.7, 73.1, 73.0, 72.8, 59.5, 55.1; [α]D +63.0 (c 

1.0, CHCl3); ESI/MS for C20H24O5 calculated (M+H+) 345, found 345.  

 

 

2,4-Di-O-benzyl-α,β-D-xylopyranose 3.34a: To a solution of methyl 

2,4-di-O-benzyl-α-D-xylopyranoside 3.27 (2.15 g, 6.25 mmol) in 1,4-dioxane 

(18 mL) was added 3 M H2SO4 aqueous (18 mL) and AcOH (18 mL), then the 

reaction mixture was heated to 60 °C. After refluxing for 72 h, the reaction 

mixture was cooled to R.T., diluted with H2O (200 mL), and extracted with 

EtOAc (3×200 mL). The organic phases were combined, dried over Na2SO4 and 

concentrated under reduced pressure. The oil was purified by flash column 

chromatography (EtOAc/hexane 3:7) to afford 3.34a (2.04 g, 99%, a colorless 

oil), as a α/β=1:1 mixture: 1H NMR, (400 MHz, CDCl3)(α and β mixture) δ 

7.40-7.29 (m, 10H), 5.18 (d, 0.5H, J=3.6 Hz), 4.97 (d, 0.5H, J=11.5 Hz), 

4.79-4.56 (m, 4H), 4.01 (t, 0.5H, J=9.1 Hz), 3.97 (dd, 0.5H, J=5.2 Hz, J=11.5 

Hz), 3.79-3.66 (m, 1H), 3.57-3.44 (m, 1.5H), 3.41 (dd, 0.5H, J=3.6 Hz, J=9.3 

Hz), 3.27 (dd, 0.5H, J=10.1 Hz, J=11.6 Hz), 3.21 (dd, 0.5H, J=7.5 Hz, J=9.1 

Hz); 13C NMR, (100 MHz, CDCl3)(α and β mixture) δ 138.5, 138.4, 137.9, 

128.82, 128.74, 128.34, 128.30, 128.24, 128.15, 128.13, 128.10, 128.03, 

128.00, 97.9, 91.2, 79.7, 77.7, 74.6, 73.9, 73.4, 73.3,73.03, 72.98, 72.94, 

64.2, 61.7; ESI/MS for C19H22O5 calculated (M+H2O) 348, found 348.  
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1,3-Di-O-acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 3.34: 2,4-di-O- 

benzyl-α,β-D-xylopyranose 3.34a (1.31 g, 3.95 mmol) was dissolved in dry 

DCM (50 mL), and cooled at 0 °C, then Ac2O (1.12 mL, 11.85 mmol), DMAP (48 

mg, 0.4 mmol), and Et3N (2.2 mL, 15.8 mmol) were added, then warmed to 

R.T.. After stirring for 3 h, the reaction mixture was washed with 1 M HCl 

aqueous (50 mL), dried over Na2SO4 and concentrated under reduced pressure. 

The crude residue was purified by flash column chromatography (hexane to 

EtOAc/ hexane 1:4) to afford 3.34 (1.61 g, 98%, a colorless oil), as a α/β=1:1 

mixture: 1H NMR, (400 MHz, CDCl3)(α and β mixture) δ 7.38-7.32 (m, 10H), 

7.32-7.27 (m, 10H), 6.26 (d, 1H, J=3.6 Hz), 5.63 (d, 1H, J=7.6 Hz), 5.43 (t, 1H, 

J=9.6 Hz), 5.25 (t, 1H, J=8.9 Hz), 4.73-4.50 (m, 8H), 3.99 (dd, 1H, J=5.0 Hz, 

J=11.6 Hz), 3.80 (dd, 1H, J=5.8 Hz, J=11.2 Hz), 3.70 (t, 1H, J=10.9 Hz), 

3.61-3.44 (m, 5H), 2.17 (s, 3H), 2.09 (s, 3H), 2.04 (s, 3H), 1.98 (s, 3H); 13C 

NMR, (100 MHz, CDCl3)(α and β mixture) δ 170.2, 169.9, 169.8, 169.1, 137.99, 

137.97, 137.93, 137.63, 128.66, 128.63, 128.59, 128.16, 128.14, 128.00, 

127.96, 127.92, 127.88, 127.83, 94.7, 89.7, 78.2, 76.1, 75.4, 75.2, 74.5, 74.4, 

73.2, 72.91, 72.88, 64.5, 62.0; ESI/MS for C23H26O7 calculated (M+H2O) 432, 

found 432. 

 

 

3-O-Acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 3.35: 1,3-di-O-acetyl- 

2,4-di-O-benzyl-α,β-D-xylopyranose 3.34 (2.3 g, 5.55 mmol) was dissolved in 

dry THF (30 mL), and benzylamine (2.42 mL, 22.2 mmol) was added at R.T.. 
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After stirring for 48 h, the reaction mixture was concentrated under reduced 

pressure. The crude residue was redissolved in DCM (30 mL), and washed with 

1 M HCl aqueous (30 mL). The aqueous phase was extracted with DCM (2×30 

mL). The organic phases were combined, dried over Na2SO4 and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (hexane to EtOAc/hexane 1:3) to give 3.35 (1.72 g, 83%, a 

colorless oil), as a α/β=1:1 mixture: 1H NMR, (400 MHz, CDCl3)(α and β mixture) 

δ 7.38-7.27 (m, 20H), 5.44 (t, 1H, J=8.9 Hz), 5.19 (t, 2H, J=9.3 Hz), 4.88 (d, 

1H, J=11.9 Hz), 4.71 (d, 1H, J=7.5 Hz), 4.68-4.52 (m, 7H), 4.19 (s, 1H), 3.97 

(dd, 1H, J=5.3 Hz, J=11.6 Hz), 3.90 (dd, 1H, J=10.5 Hz, J=10.9 Hz), 3.72 (dd, 

1H, J=5.2 Hz, J=11.4 Hz), 3.61 (s, 1H), 3.60-3.48 (m, 2H), 3.46 (dd, 1H, J=3.4 

Hz, J=9.1 Hz), 3.34-3.25 (m, 2H), 2.04 (s, 3H), 1.97 (s, 3H); 13C NMR, (100 

MHz, CDCl3)(α and β mixture)  δ 170.3, 138.4, 138.1, 138.0, 137.6, 128.7, 

128.58, 128.57, 128.47, 128.2, 128.02, 127.98, 127.8, 98.0, 91.1, 80.2, 77.4, 

75.6, 75.3, 74.9, 74.1, 72.9, 72.8, 72.6, 72.4, 63.9, 60.3, 21.2, 21.1; ESI/MS 

for C21H24O6 calculated (M+H2O) 390, found 390. 

 

 

Compound 3.36: 3-O-acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 3.35 

(104 mg, 0.28 mmol) was dissolved in dry DCM (10 mL), then CCl3CN (93 μL, 

0.93 mmol) and DBU (13 μL, 0.08 mmol) were added at R.T.. After stirring for 

2.5 h, the solvent was evaporated. The residue was purified by flash column 

chromatography (hexane to EtOAc/hexane 1:4) to give 3.36 (131 mg, 91%, a 

light yellow oil), as a α/β=3.5:1 mixture, which is not stable by keeping and 

used directly after made: 1H NMR, (400 MHz, CDCl3)(α and β mixture) δ 8.74 (s, 

0.3H), 8.61 (s, 1H), 7.39-7.28 (m, 13H), 6.41 (d, 1H, J=3.5 Hz), 5.93 (d, 0.3H, 
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J=6.5 Hz), 5.54 (t, 1H, J=9.6 Hz), 5.29 (t, 0.3H, J=7.9 Hz), 4.86 (d, 0.3H, J= 

11.8 Hz), 4.70-4.55 (m, 4.9H), 4.15 (q, 0.3H, J=7.1 Hz), 4.11-4.07 (m, 0.3H), 

3.86 (d, 1H, J=2.4 Hz), 3.84 (d, 1H, J=5.3 Hz), 3.68-3.58 (m, 2.6H), 2.04 (s, 

3H), 1.98 (s, 0.9H); 13C NMR, (100 MHz, CDCl3)(α and β mixture)  δ 170.0, 

161.6, 160.9, 137.93, 137.88, 137.81, 137.78, 128.7, 128.57, 128.56, 128.15, 

128.12, 128.08, 128.0, 127.95, 127.91, 127.7, 98.4, 93.9, 91.2, 91.0, 77.1, 

76.6, 75.3, 74.5, 74.2, 73.14, 73.11, 72.75, 72.73, 72.66, 64.0, 62.3, 21.2, 

21.1; ESI/MS for C23H24Cl3NO6 calculated (M-O(C=NH)CCl3) 355, found 355.  
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Compounds 3.39a and 3.39b: To a solution of 3.33 (129 mg, 0.4 mmol) 

and 4Å molecular sieves (400 mg, powdered, activated) in DCM (1 mL) was 

added a solution of 3.36 (289 mg, 0.6 mmol) in Et2O (10 mL) under argon 

atmosphere. After stirring at R.T. for 30 min., TfOH (4 μL, 0.04 mmol) was 

added dropwise. After addition was completed, the solution was stirring for 30 

min., then neutralized with solid NaHCO3, filtered and concentrated under 

reduced pressure. The residue was purified by flash column chromatography 

(EtOAc/hexane 3:17) to obtain the β-isomer 3.39a (126 mg, 44%), as a 

colorless oil, and the α-isomer 3.39b (114 mg, 40%), as a colorless oil. 

Compound 3.39a: 1H NMR, (400 MHz, CDCl3) δ (rotamers)  7.35-7.25 (m, 

10H), 5.13 (t, 1H, J=9.3 Hz), 4.83 (d, 1H, J=11.8 Hz), 4.63-4.51 (m, 3H), 4.44 

(br, m, 1H), 4.31-4.21 (br, m, 1.5H), 4.11 (br, m, 1.5H), 4.00-3.87 (br, m, 

1.5H), 3.73 (s, 3H), 3.55-3.48 (br, m, 1H), 3.30-3.23 (m, 2H), 2.53-2.44 (br, m, 
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0.5H), 2.41-2.25 (br, m, 1.5H), 2.19-2.10 (br, m, 1H), 2.08-1.87 (m, 5H), 

1.88-1.76 (br, d, 1H), 1.71-1.60 (br, m, 1H), 1.50-1.36 (br, m, 11H); 13C NMR, 

(100 MHz, CDCl3) δ (rotamers) 174.2, 174.0, 170.1, 154.0, 153.1, 138.33, 

138.26, 138.15, 138.01, 128.5, 128.4, 128.0, 127.97, 127.94, 127.92, 127.7, 

101.5, 101.2, 79.7, 79.4, 79.0, 75.6, 75.5, 74.9, 74.6, 74.2, 72.8, 72.1, 63.8, 

63.7, 59.5, 58.9, 54.1, 53.8, 52.2, 52.0, 36.4, 35.8, 32.6, 32.4, 32.3, 31.8, 

28.5, 28.4, 22.9, 22.7, 21.1, 19.8; [α]D -30.9 (c 1.0, CHCl3); HRMS for 

C36H47NO10 calculated (M+H+) 654.32727, found 654.32596.  

Compound 3.39b: 1H NMR, (400 MHz, CDCl3) δ (rotamers) 7.34-7.27 (m, 

10H), 5.47-5.42 (br, t, 1H), 5.14-5.18 (br, m, 1H), 4.89-4.82 (br, m, 1H), 4.56 

(q, 3H, J=12.0 Hz), 4.28-4.11 (br, m, 2H), 3.99 (br, m, 1H), 3.74 (s, 3H), 3.64 

(d, 2H, J=8.9 Hz), 3.53 (t, 1H, J=8.4 Hz), 3.47 (dd, 1H, J=3.1 Hz, J=9.9 Hz), 

2.58-2.53 (br, m, 0.6H), 2.45-2.40 (br, m, 0.4H), 2.36-2.10 (br, m, 3H), 

2.03-1.92 (br, m, 5H), 1.70-1.67 (br, m, 1H), 1.59-1.41 (br, m, 11H); 13C NMR, 

(100 MHz, CDCl3) δ (rotamers) 174.4, 174.1, 170.2, 154.0, 153.0, 138.5, 

138.1, 128.52, 128.48, 128.44, 128.29, 128.14, 127.94, 127.79, 127.57, 

127.45, 93.9, 93.1, 79.9, 79.5, 76.3, 75.0, 73.15, 73.04, 72.95, 72.89, 72.3, 

72.0, 70.3, 69.3, 60.0, 59.8, 59.5, 59.1, 53.8, 53.5, 52.2, 52.0, 36.4, 35.7, 

32.7, 31.8, 29.8, 29.4, 28.5, 28.4, 25.7, 25.6, 21.2, 21.1, 20.2, 20.1; [α]D 

+21.4 (c 1.0, CHCl3); HRMS for C36H47NO10 calculated (M+H+) 654.32727, 

found 654.32635. 

 

 

Di(S-2-pyridyl) Thiocarbonate (3.37): To a solution of triphosgene (505 

mg, 1.7 mmol) and 2-mercaptopyridine 3.E (1.1 g, 10 mmol) in DCM (50 mL) 

at 0 °C was added dropwise Et3N (1.5 mL, 10.8 mmol). The reaction mixture 

was stirred for 1 h, then warmed to R.T. and stirred for 2 h. The reaction 
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mixture was concentrated, treated with cold saturated aqueous NaHCO3 (50 mL) 

at 0 °C, and extracted with EtOAc (2×50 mL). The organic layer was washed 

with H2O (50 mL) and brine (50 mL), dried over NaSO4, filtered and 

concentrated under reduced pressure to obtain the crude product as a yellow 

solid. The crude residue was purified by flash column chromatography (EtOAc/ 

hexane 3:7) to afford 3.37 (1.04 g, 84%), as a pale yellow needle-shaped 

crystals, m.p. 42-44 °C: 1H NMR (400 MHz, CDCl3) δ 8.57 (ddd, 2H, J=0.8 Hz, 

J=1.9 Hz, J=4.8 Hz), 7.69 (td, 2H, J=1.9 Hz, J=7.9 Hz), 7.63 (dt, 2H, J=1.1 Hz, 

J=7.9 Hz), 7.26 (ddd, 2H, J=1.3 Hz, J=4.8 Hz, J=7.3 Hz); 13C NMR (CDCl3, 100 

MHz) δ 185.6, 150.6, 150.5, 137.5, 130.5, 124.2; ESI/MS for C11H9ON2S2 

calculated (M+H+) 250, found 250. 

 

 

3-O-Acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 2-Thiopyridyl 

Carbonate 3.38: A mixture of di(S-2-pyridyl) thiocarbonate 3.37 (201 mg, 

0.81 mmol), 3-O-acetyl-2,4-di-O-benzyl-α,β-D-xylopyranose 3.35 (101 mg, 

0.27 mmol), and Et3N (113 μL, 0.81 mmol) in DCM (10 mL) was stirred at R.T. 

for 24 h. Concentration and purification by flash column chromatography 

(EtOAc/hexane 1:3) gave 3.38 (119 mg, 86%, a light yellow oil), as a 

α/β=1:3.2 mixture: 1H NMR, (400 MHz, CDCl3)(α and β mixture) δ 8.63-8.59 

(m, 4H), 8.49-8.48 (m, 1H), 7.76-7.70 (m, 9H), 7.66-7.59 (m, 2H), 7.38-7.27 

(m, 52H), 7.12 (ddd, 1H, J=1.7Hz, J=4.8 Hz, J=6.7 Hz), 6.28 (d, 1H, J=3.5 Hz), 

5.79 (d, 3H, J=6.8 Hz), 5.32 (t, 1H, J=9.6 Hz), 5.24 (t, 3H, J=8.2 Hz), 4.77 (d, 

4H, J= 11.8 Hz), 4.67-4.51 (m, 12H), 4.03 (dd, 3H, J=4.3 Hz, J=11.4 Hz), 3.80 

(dd, 1H, J=5.6 Hz, J=11.2 Hz), 3.67-3.48 (m, 12H), 2.03 (s, 3H), 1.99 (s, 9H); 

13C NMR, (100 MHz, CDCl3)(α and β mixture)  δ 169.93, 169.88, 167.9, 167.6, 
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151.0, 150.33, 150.28, 149.6, 137.8, 137.7, 137.58, 137.54, 137.51, 137.49, 

137.43, 129.9, 129.4, 128.56, 128.53, 128.09, 128.06, 128.01, 127.84, 

127.81, 127.7, 123.87, 123.85, 121.2, 119.7, 97.0, 92.8, 76.8, 75.9, 74.9, 

74.4, 74.2, 73.1, 72.9, 72.8, 72.6, 72.4, 64.0, 62.2, 21.1, 21.0; HRMS for 

C23H24Cl3NO6 calculated (M+H+) 510.1581, found 510.15856.  

 

 

Compounds 3.39a and 3.39b: A mixture of 3-O-acetyl-2,4-di-O-benzyl- 

α,β-D-xylopyranose 2-thiopyridyl carbonate 3.38 (120 mg, 0.24 mmol), 3.33 

(50 mg, 0.17 mmol), 1,1,3,3-tetramethylurea (30 μL, 0.24 mmol) and 4Å 

activated molecular sieves in Et2O (20 mL) and DCM (2 mL) was stirred at R.T. 

for 10 h, and then cooled at 0 °C. Silver triflate (400 mg, 1.53 mmol) was added 

to the reaction mixture, and the stirring was continued 24 h at R.T. in the dark. 

The suspension was treated with a few drops of pyridine, filtered over celite and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (EtOAc/hexane 2:3) to give 3.39a (58 mg, 53%), as 

a colorless oil, and 3.39b (47 mg, 43%), as a colorless oil. 

 

 

Compound 3.40a: Compound 3.39a (39 mg, 0.06 mmol) was treated 

with >99.9% TFA/DCM (1:9, 3 mL). After stirring at R.T. for 3 h, the reaction 
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mixture was diluted with EtOAc (20 mL) and concentrated under reduced 

pressure. The crude residue was suspended in saturated aqueous Na2CO3 (10 

mL) and extracted with DCM (3×10 mL). The organic phases were combined, 

dried over Na2SO4 and concentrated under reduced pressure. The crude residue 

was purified by flash column chromatography (DCM to MeOH/DCM 1:24) to 

afford 3.40a (32 mg, 95%), as a light yellow oil: 1H NMR, (400 MHz, CDCl3) δ 

7.35-7.26 (m, 10H), 5.13 (t, 1H, J=9.4 Hz), 4.82 (d, 1H, J=11.9 Hz), 4.60-4.48 

(m, 4H), 4.03-3.89 (m, 3H), 3.77 (s, 3H), 3.52 (dt, 1H, J=5.4 Hz, J=9.9 Hz, 

J=9.7 Hz), 3.46 (dd, 1H, J=5.0 Hz, J=10.0 Hz), 3.29-3.24 (m, 2H), 2.30-2.23 

(m, 1H), 2.11-2.03 (m, 3H), 1.97-1.93 (m, 3H), 1.86-1.66 (m, 3H), 1.45-1.31 

(m, 2H); 13C NMR, (100 MHz, CDCl3) δ176.1, 170.2, 138.5, 138.1, 128.61, 

128.47, 128.11. 128.05, 127.88, 127.84, 127.77, 102.4, 79.2, 75.6, 75.1, 

74.4, 74.1, 72.9, 72.4, 63.9, 58.43, 58.38, 52.4, 37.3, 35.4, 34.8, 29.9, 29.4, 

25.0, 21.2; [α]D -9.3 (c 1.0, CHCl3); ESI/MS for C31H39NO8 calculated (M+H+) 

554, found 554.  

 

 

Compound 3.40b: Compound 3.39b (27 mg, 0.042 mmol) was treated 

with >99.9% TFA/DCM (1:9, 3 mL). After stirring at R.T. for 3 h, the mixture 

was diluted with EtOAc (20 mL) and concentrated under reduced pressure. The 

crude residue was suspended in saturated aqueous Na2CO3 (10 mL) and 

extracted with DCM (3×10 mL). The organic phases were combined, dried over 

Na2SO4, and concentrated under reduced pressure. The residue was purified by 

flash column chromatography (DCM to MeOH/DCM 1:24) to give 3.40b (22 mg, 

92%), as a light yellow oil: 1H NMR, (400 MHz, CDCl3) δ 7.38-7.28 (m, 10H), 
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5.42 (t, 1H, J=9.6 Hz), 4.88 (d, 1H, J=3.6 Hz), 4.61-4.52 (m, 4H), 3.93 (dd, 1H, 

J=5.6 Hz, J=10.5 Hz), 3.84-3.76 (m, 4H), 3.70-3.61 (m, 2H), 3.54-3.43 (m, 

2H), 3.40 (dd, 1H, J=3.6 Hz, J=10.0 Hz), 1.79-1.70 (m, 2H), 1.52-1.43 (m, 

1H), 1.36-1.30 (m, 2H); 13C NMR, (100 MHz, CDCl3) δ176.1, 170.2, 138.26, 

138.24, 128.6, 128.0, 127.93, 127.86, 95.2, 77.3, 76.3, 73.2, 73.0, 72.5, 72.4, 

59.9, 58.54, 58.45, 52.4, 37.4, 35.7, 32.6, 31.2, 25.5, 21.3; [α]D +37.2 (c 1.0, 

CHCl3); ESI/MS for C31H39NO8 calculated (M+H+) 554, found 554.  

 

 

Compound 3.41a: To a solution of guanidine hydrochloride 3.41 (960 mg, 

10 mmol) and NaOH (2.0 g, 50 mmol) in H2O (10 mL) was added DCM (20 mL), 

then the reaction mixture was cooled to 0 °C. CbzCl (4.3 mL, 30 mmol) was 

added dropwise with stirring over a period of 45 min.. After addition was 

completed, the reaction mixture was stirring at 0 °C for 20 h, and diluted with 

DCM (10 mL). The layers were separated, and the aqueous layer was extracted 

with DCM (25 mL). The combined organic phases were washed with H2O (2×50 

mL), dried over Na2SO4 and concentrated under reduced pressure. The crude 

residue was recrystallized from MeOH to give 3.41a (2.8 g, 86%), as a 

colorless crystals, m.p. 148-150 °C: 1H NMR, (400 MHz, DMSO-d6) δ 10.88 (br, 

s, 1H), 8.67 (br, s, 2H), 7.40-7.25 (m, 10H), 5.10 (s, 4H); ESI/MS for 

C17H17N3O4 calculated (M+H+) 328, found 328.  

 

 

Compound 3.42: A solution of crystals 3.41a (1.65 g, 5.0 mmol) in 

chlorobenzene (50 mL) was cooled on ice to 0 °C, and treated with NaH (400 mg, 

60 dispersion in mineral oil) under argon atmosphere. After stirring at 0 °C for 
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2 h, the reaction mixture was cooled to -45 °C, and Tf2O (0.82 mL, 5 mmol) was 

added, then allowed to warm up to R.T. and stirred for 10 h. After solvent was 

evaporated, the residue was redissolved in a mixture of EtOAc (100 mL) and 2 

M NaHSO4 aqueous (50 mL), then the phases were separated. The organic 

phase was washed with H2O (50 mL) and brine (50 mL), dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (DCM/Et2O 19:1) to afford Goodman’s reagent 3.42 

(1.56 g, 67%), as a pale oil that was crystallized under reduced pressure, m.p. 

73-75 °C: 1H NMR, (400 MHz, CDCl3) δ 10.35 (br, s, 2H), 7.46-7.42 (m, 10H), 

5.29 (s, 4H); ESI/MS for C18H16F3N3O6S calculated (M+H+) 460, found 460.  

 

 

Compound 3.44：A solution of Goodman’s reagent 3.42 (1.17 g, 2.55 mmol) 

in CHCl3 (40 mL) was added dropwise to a vigorously stirred solution of 

1,4-diaminobutane 43 (2.25 g, 25.5 mmol) in CHCl3 (30 mL) at R.T. over 2 h. 

After addition, the reaction mixture was stirred for 30 min.. then diluted with 

CHCl3 (30 mL) and washed with 10% NaHCO3 aqueous (2×100 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (MeOH/CHCl3 1:9) to give 3.44 (0.96 

g, 94%), as a colorless wax: 1H NMR, (400 MHz, CDCl3) δ 8.34 (s, 1H), 

7.40-7.23 (m, 10H), 5.24 (s, 1H), 5.15 (s, 2H), 5.12 (s, 2H), 3.40 (t, 2H, J=6.1 

Hz), 2.67 (t, 2H, J=6.1 Hz), 1.61-1.54 (m, 2H), 1.49-1.42 (m, 2H); 13C NMR, 

(100 MHz, CDCl3) δ 163.6, 155.9, 153.7, 136.7, 134.6, 128.7, 128.6, 128.4, 

128.3, 128.0, 127.8, 68.0, 67.0, 41.4, 40.8, 30.3, 26.2; ESI/MS for C21H26N4O4 

calculated (M+H+) 399, found 399. 
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Compound 3.45: To a solution of 3.44 (300 mg, 0.75 mmol) in dry DCM (15 

mL) at 0 °C was added NEt3 (209 μL, 1.50 mmol) and Boc2O (231 mg, 1.06 

mmol), then warmed to R.T.. After stirring for 10 h, the reaction mixture was 

diluted with DCM (15 mL) and washed with brine (30 mL). The aqueous phase 

was extracted with DCM (3×30 mL). The organic phase was combined, dried 

over Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/hexane 1:4) to afford 3.45 

(344 mg, 92%), as a colorless solid, m.p. 63-65 °C: 1H NMR, (400 MHz, CDCl3) 

δ 11.75 (s, 1H), 8.32 (t, 1H, J=5.2 Hz), 7.39-7.24 (m, 10H), 5.15 (s, 2H), 5.12 

(s, 2H), 4.87 (br, t, 1H), 3.40 (dd, 2H, J=6.7 Hz, J=12.6 Hz), 3.11 (br, dd, 2H), 

1.59-1.53 (m, 2H), 1.52-1.46 (m, 2H), 1.43 (s, 9H); 13C NMR, (100 MHz, CDCl3) 

δ 163.6, 155.95, 155.88, 153.7, 136.7, 134.6, 128.7, 128.6, 128.34, 128.28, 

128.0, 127.8, 78.9, 68.0, 67.0, 40.6, 39.9, 28.3, 27.2, 26.2; ESI/MS for 

C26H34N4O6 calculated (M+H+) 499, found 499.  

 

 

Compound 3.44：A solution of 3.45 (136 mg, 0.27 mmol) was treated with 

4 M HCl in 1,4-dioxane (2 mL) at R.T. for 6 h. Then the reaction mixture was 

diluted with CHCl3 (10 mL) and washed with 10% NaHCO3 aqueous (15 mL) 

carefully, dried over Na2SO4 and concentrated under reduced pressure to obtain 

Cbz-protected agmatine 3.44, as a colorless wax (108 mg, 99%), which was 

sufficiently pure for use in the following step. 

 



164 
 

 
Compound 3.46a: A solution of 3.39a (85 mg, 0.13 mmol) in THF/H2O (5:3, 

3.2 mL) was treated with LiOH×H2O (16 mg, 0.39 mmol). After stirring at R.T. 

for 24 h, the reaction mixture was cooled on ice to 0 °C and acidified with 5% 

citric acid aqueous to pH=3-4. The organic phase was separated and the 

aqueous phase was extracted with DCM (3×20 mL). The combined organic 

phases were dried over Na2SO4 and concentrated under reduced pressure to 

afford carboxylic acid 3.46a (77 mg, 99%), as a colorless oil, which was 

sufficiently pure for use in the following step. 1H NMR, (400 MHz, CDCl3) δ 

(rotamers) 7.38-7.30 (m, 10H), 4.94 (d, 1H, J=11.4Hz), 4.77 (d, 1H, J=11.9 

Hz), 4.72 (d, 1H, J=11.4 Hz), 4.65 (d, 1H, J=11.8 Hz), 4.41 (d, 1H, J=7.4 Hz), 

4.32 (s, 1H), 4.17 (s, 1H), 4.08 (s, 1H), 3.91 (s, 1H), 3.70 (t, 1H, J=8.9 Hz), 

3.55-3.49 (m, 1H), 3.28-3.19 (m, 2H), 2.38-2.28 (br, m, 1.5H), 2.20-2.13 (br, 

m, 1.5H), 2.08-1.99 (br, m, 1H), 1.79-1.76 (br, dd, 1H), 1.56-1.53 (br, dd, 2H), 

1.46 (br, s, 9H), 1.28 (br, s, 2H); 13C NMR, (100 MHz, CDCl3) δ (major rotamer) 

138.43, 138.36, 128.71, 128.67, 128.09, 128.02, 101.6, 81.3, 77.4, 75.8, 

74.7, 73.3, 73.0, 64.0, 59.3, 54.7, 36.0, 32.6, 29.9, 28.6, 23.4, 20.1; [α]D 

-43.5 (c 1.0, CHCl3); HRMS for C33H43NO9 calculated (M+Na+) 620.283, found 

620.28556. 

 

 
Compound 3.46b: A solution of 3.39b (118 mg, 0.18 mmol) in THF/H2O 

(5:3, 4.8 mL) was treated with LiOH×H2O (23 mg, 0.54 mmol). After stirring at 

R.T. for 24 h, the reaction mixture was cooled on ice to 0 °C and acidified with 
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5% citric acid aqueous to pH=3-4. The organic phase was separated and the 

aqueous phase was extracted with DCM (3×20 mL). The combined organic 

phases were dried over Na2SO4 and concentrated under reduced pressure to 

afford 3.46b (107 mg, 99%). The crude solid was recrystallized from MeCN to 

give as a colorless crystalline solid, m.p. 143-145 °C, which was sufficiently 

pure for use in the following step. 1H NMR, (700 MHz, CDCl3, 50 °C) δ (rotamers) 

7.37-7.35 (m, 7.5H), 7.32-7.28 (m, 2.5H), 5.03 (s, 1H), 4.84 (s, 1H), 4.80 (d, 

1H, J=11.7 Hz), 4.68 (dd, 3H, J=6.5 Hz, J=11.8 Hz), 4.30 (s, 1H), 4.16 (s, 1H), 

4.07 (t, 1H, J=9.0 Hz), 3.93 (s, 1H), 3.63 (dd, 1H, J=5.1 Hz, J=10.3 Hz), 

3.56-3.49 (m, 2H), 3.40(dd, 1H, J=3.5 Hz, J=9.6 Hz), 2.37-2.31 (m, 1H), 

2.19-2.13 (m, 2H), 1.72-1.67 (m, 1H), 1.65-1.59 (m, 2H), 1.57-1.48 (m, 1H), 

1.44 (s, 9H), 1.35-1.30 (m, 2H); 13C NMR, (175 MHz, CDCl3, 50 °C) δ (major 

rotamer) 138.6, 138.4, 130.3, 129.9, 128.7, 128.1, 94.3, 79.8, 78.0, 73.6, 

73.1, 72.7, 70.8, 60.3, 59.5, 54.5, 36.1, 32.1, 29.99, 29.92, 29.91, 29.73, 

29.55, 29.51, 29.43, 29.39, 29.33, 28.6, 27.5, 27.4, 25.9, 25.7, 22.9, 20.5, 

14.3; [α]D +15.5 (c 1.0, CHCl3); HRME for C33H43NO9 calculated (M+NH4
+) 

615.32761, found 615.32741. 

 

 

Compound 3.47a: To a solution of 3.46a (60 mg, 0.1 mmol) in DCM (2 mL) 

at 0 °C was added PyBOP (78 mg, 0.15 mmol) with stirring for 10 min., and then 

a solution of Cbz-protected agmatine 3.44 (60 mg, 0.15 mmol) in DCM (3 mL) 

and 2,6-lutidine (58 μL, 0.5 mmol) were added, then allowed to warm to R.T. 

slowly. After stirring for 10 h, the reaction mixture was diluted with DCM (20 
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mL), washed with 0.5 M HCl aqueous (15 mL) quickly, saturated aqueous 

NaHCO3 (25 mL) and brine (25 mL), dried over Na2SO4 and concentrated under 

reduced pressure. The crude residue was purified by flash column 

chromatography (DCM/EtOAc/hexane 1:8:11 to DCM/EtOAc/hexane 1:12:7) 

to afford 3.47a (82 mg, 84%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 

(major rotamer) 11.76 (br, s, 1H), 8.34 (t, 1H, J=5.1 Hz), 7.42-7.28 (m, 20H), 

5.17 (d, 4H, J=17.2 Hz), 4.95(d, 1H, J=11.4 Hz), 4.74 (dd, 2H, J=11.7 Hz, 

J=17.4 Hz), 4.63 (d, 1H, J=11.9 Hz), 4.41 (d, 1H, J=7.4 Hz), 4.20 (t, 1H, J=8.0 

Hz), 4.08 (br, s, 1H), 3.91 (dd, 1H, J=5.1 Hz, J=11.6 Hz), 3.69 (t, 1H, J=8.9 

Hz), 3.53-3.43 (m, 3H), 3.33-3.19 (m, 4H), 2.61 (br, s, 1H), 2.26-2.15 (br, m, 

3H), 2.08-1.96 (br, m, 3H), 1.76-1.72 (br, d, 1H), 1.66-1.49 (br, m, 5H), 1.43 

(br, s, 9H); 13C NMR, (100 MHz, CDCl3) δ (major rotamer) 172.7, 163.8, 156.2, 

155.4, 154.0, 138.5, 138.4, 136.9, 134.8, 128.9, 128.8, 128.7, 128.64, 

128.61, 128.55, 128.3, 128.07, 128.04, 127.98, 101.3, 81.3, 80.3, 77.3, 75.8, 

74.6, 73.2, 72.9, 68.3, 67.3, 64.0, 60.4, 55.2, 40.8, 39.1, 36.0, 33.0, 29.9, 

28.6, 27.0, 26.5, 23.3, 20.3; [α]D -27.8 (c 1.0, CHCl3); HRMS for C54H67N5O12 

calculated (M+H+) 978.4859, found 978.48615. 

 

 

Compound 3.47b: To a solution of 3.46b (107 mg, 0.18 mmol) in DCM (6 

mL) at 0 °C, was added PyBOP (141 mg, 0.27 mmol) with stirring for 10 min., 

and then a solution of Cbz-protected agmatine 3.44 (108 mg, 0.27 mmol) in 

DCM (8 mL) and 2,6-lutidine (105 μL, 0.9 mmol) were added, then allowed to 

warm to R.T. slowly. After stirring for 10 h, the reaction mixture was diluted 
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with DCM (20 mL), washed with 0.5 M HCl aqueous (15 mL) quickly, saturated 

aqueous NaHCO3 (25 mL) and brine (25 mL), dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (EtOAc/DCM 1:4 to EtOAc/DCM 2:3) to afford 3.47b 

(148 mg, 84%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ (major rotamer) 

11.77 (br, s, 1H), 8.36 (t, 1H, J=5.2 Hz), 7.45-7.28 (m, 20H), 5.16 (d, 4H, 

J=13.5 Hz), 5.03 (d, 1H, J=3.4 Hz), 4.84 (d, 0.8H, J=11.6 Hz), 4.79 (d, 1.2H, 

J=11.7 Hz), 4.66 (dd, 2H, J=6.6 Hz, J=11.7 Hz), 4.20-4.14 (br, m, 2H), 4.07 (t, 

1H, J=8.8 Hz), 3.92 (br, s, 1H), 3.64-3.60 (br, m, 1H), 3.57-3.43 (m, 4H), 3.39 

(dd, 1H, J=3.4 Hz, J=9.6 Hz), 3.36-3.19 (m, 2H), 2.34-2.20 (br, m, 2H), 

2.15-2.01 (br, m, 2H), 1.66-1.50 (br, d, 9H), 1.40 (br, s, 9H); 13C NMR, (100 

MHz, CDCl3) δ (major rotamer) 172.8, 163.8, 156.1, 154.8, 153.9, 138.4, 

138.2, 136.8, 134.7, 128.9, 128.8, 128.57, 128.56, 128.52, 128.50, 128.2, 

128.08, 128.03, 128.00, 127.95, 127.91, 93.9, 80.2, 79.4, 77.7, 73.4, 72.8, 

72.3, 70.7, 68.2, 67.2, 60.9, 60.0, 54.8, 40.7, 39.1, 36.0, 30.2, 29.8, 28.5, 

26.9, 26.5, 25.8, 20.5; [α]D +10.9 (c 1.0, CHCl3); HRMS for C54H67N5O12 

calculated (M+H+) 978.4859, found 978.48704.    

 

 

Compound 3.50: A solution of 3.48 (460 mg, 2 mmol) in 40 mL of DCM was 

cooled to 0 oC and treated with Et3N (0.7 mL, 5 mmol), followed by dropwise 

addition of tert-butylsulfinyl chloride 3.49 (0.3 mL, 2.4 mmol) in 2.4 mL of DCM. 

The reaction mixture was stirred at 0 oC until TLC showed consumption of the 

starting material (1 h). Upon completion, 40 mL of saturated aqueous NaHCO3 

was added, and the layers separated (note: acidic washes should be avoided as 

tert-butylsulfinamides are known to be unstable at low pH). The aqueous layer 

was extracted with DCM (3×50 mL). The organic layer was combined, dried 
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over Na2SO4 and concentrated under reduced pressure. Flash column 

chromatography (EtOAc/hexane 1:9) gave pure sulfinamide, which was taken 

up directly in 30 mL of DCM, and treated with m-CPBA (466 mg, 2.7 mmol). 

After oxidation was complete by TLC (2 h), the reaction mixture was diluted 

with a mixture of saturated aqueous NaHCO3 (25 mL) and saturated aqueous 

Na2SO3 (25 mL). The aqueous layer was extracted with DCM (3×50 mL). The 

organic extract was combined, dried over Na2SO4 and concentration under 

reduced pressure. The crude residue was purified by flash column 

chromatography (EtOAc/hexane 1:19) to afford 3.50 (594 mg, 85% over 2 

steps), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 4.04 (m, 1H), 3.72 (dd, 

1H, J=7.1 Hz, J=10.9 Hz), 2.75 (m, 1H), 2.53 (m, 1H), 1.94-1.87 (m, 1H), 1.44 

(s, 9H), 1.16 (d, 3H, J=6.6 Hz), 0.96 (d, 3H, J=6.8 Hz), 0.88 (s, 9H), 0.08 (s, 

6H); 13C NMR, (100 MHz, CDCl3) δ 61.8, 59.8, 52.0, 46.6, 31.3, 28.3, 25.6, 

24.0, 23.5, 20.4, 18.0; [α]D +31.5 (c 1.0, CHCl3); ESI/MS for C16H35NO3SSi 

calculated (M+H+) 350, found 350.  

 

 

Compounds 3.50a and 3.51：A solution of 50 (700 mg, 2.0 mmol) in 30 mL 

MeCN was heated to reflux and treated with CeCl3.7H2O (3.35 g, 6.0 mmol) in 

portions over 36 h (best results were obtained, when 1 equiv. was added every 

12 h). The reaction mixture was then refluxed for an additional 36 h, cooled to 

R.T. and filtered over Celite pad with EtOAc rinsing. After concentration of the 

filtrate under reduced pressure, the crude residue could be readily crystallized 

from DCM/hexane to give pure by-product 3.50a. Alternatively, the crude 

material was purified by flash column chromatography (EtOAc/hexane 3:7) to 

afford 3.51 as a white solid (428 mg, 79%).  
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Compound 3.50a：1H NMR, (300 MHz, CDCl3) δ 4.10 (br, dd, 1H), 3.85 (dd, 

1H, J=6.7 Hz, J=10.1 Hz), 3.23 (s, 1H), 2.90-2.86 (m, 1H), 2.81-2.79 (t, 1H, 

J=3.8 Hz), 1.88-1.80 (m, 1H), 1.50 (s, 9H), 1.03 (d, 3H, J=5.1 Hz), 0.91 (d, 3H, 

J=5.2 Hz); 13C NMR, (75 MHz, CDCl3) δ 63.1, 61.8, 49.7, 49.0, 28.7, 24.3, 19.7, 

18.1, 12.5; [α]D -3.7 (c 1.0, CHCl3); ESI/MS for C10H21NO3S calculated (M+H+) 

236, found 236. 

Compound 3.51：1H NMR, (400 MHz, CDCl3) δ 4.48 (d, 1H, J=10.0 Hz), 

4.00- 3.76 (m, 4H), 2.14 (sept, 1H, J= 6.8 Hz), 2.01 (br, s, 1H), 1.42 (s, 9H), 

1.07 (2d, 6H, J= 6.4 Hz, J= 6.4 Hz); 13C NMR, (100MHz, CDCl3) δ 71.7, 61.8, 

60.7, 60.6, 60.5, 60.0, 57.4, 31.3, 29.7, 24.3, 24.1, 20.2, 19.0 ; [α]D -4.6 (c 

1.0, CHCl3); ESI/MS for C10H22ClNO3S calculated (M+H+) 272, found 272. 

 

 

Compound 3.51a:  A solution of 3.51 (49 mg, 0.18 mmol) in MeCN (1 mL) 

was cooled to 0 °C and a solution of 1 mg CrO3 dissolved in 1.1 mL of 0.4 M 

H5IO6 in wet MeCN (MeCN/H2O 99.3:0.7) was added. After stirring for 1 h, the 

reaction mixture was quenched with 1.2 mL saturated aqueous NaHCO3. The 

solvent was evaporated, and the aqueous mixture was treated with 400 μL 0.5 

M NaOH aqueous, and washed with Et2O (5 mL). The aqueous layer was 

acidified with 1 M HCl aqueous (5 mL) and extracted with DCM (3×10 mL). The 

combined organic phases were dried over Na2SO4 and concentrated under 

reduced pressure. The residue was purified by flash column chromatography 

(CHCl3/MeOH 10:1) to afford carboxylic acid 3.51a, as a colorless oil (30 mg, 

57%). 1H NMR, (400 MHz, MeOH-d4) δ 3.02 (d, 1H, J=4.1 Hz), 2.74 (dd, 1H, 

J=3.0 Hz, J=7.6 Hz), 2.02 (td, 1H, J=6.5 Hz, J=13.5 Hz), 1.45 (s, 9H), 1.21 (d, 

3H, J=6.5 Hz), 1.04 (d, 3H, J=6.7 Hz); 13C NMR, (100 MHz, MeOH-d4) δ 174.4, 
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61.9, 55.2, 47.4, 29.8, 24.5, 21.7, 21.0; [α]D +42.3 (c 1.0, MeOH). HRMS for 

C10H20ClNO4S calculated (M-H)- 284.07288, found 284.07270. 

 

 

Compounds 3.53 and 3.53a： A solution of D-(+)-3-phenyllactic acid 3.52 

(400 mg, 2.4 mmol) in THF (25 mL) was cooled on ice under argon atmosphere 

to 0°C, and treated with NaH (240 mg, 60 dispersion in mineral oil), then 

allowed to warm up to R.T.. After stirring for 2 h, BnBr (0.43 mL, 3.6 mmol) and 

Bu4NI (369 mg, 1.0 mmol) were added, then stirring was continued for 10 h. 

The reaction mixture was quenched by H2O (2 mL) carefully and concentrated 

under reduced pressure. Then the residue was redissolved in a mixture of DCM 

(35 mL) and H2O (25 mL). The phases were separated and the organic phase 

was washed with H2O (25 mL) and brine (25 mL). The organic phase was dried 

over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (hexane to EtOAc/hexane 1:19) to 

give 3.53a (271 mg, 33%), as a colorless oil. The aqueous layer was acidified 

carefully by concentrated aqueous HCl to pH=1 and then extracted with DCM 

(3×50 mL). The organic phases were combined, dried over Na2SO4 and 

concentration under reduced pressure. The residue was purified by flash 

column chromatography (MeOH/DCM 1:19) to afford carboxylic acid 3.53 (379 

mg, 62%), as a colorless solid, m.p. 47-49 °C. 

Compound 3.53：1H NMR, (400 MHz, CDCl3) δ 8.09 (s, 1H), 7.37-7.28 (m, 

8H), 7.22-7.20 (m, 2H), 4.74 (d, 1H, J=11.8 Hz), 4.46(d, 1H, J=11.8 Hz), 4.24 

(dd, 1H, J=4.1 Hz, J=8.5 Hz), 3.22 (dd, 1H, J=4.0 Hz, J=14.0 Hz), 3.11 (dd, 1H, 

J=8.6 Hz, J=14.0 Hz); 13C NMR, (100 MHz, CDCl3) δ 177.3, 137.0, 136.9, 129.7, 

128.5, 128.1, 127.0, 78.8, 72.9, 39.2; [α]D +59.0 (c 1.0, CHCl3); ESI/MS for 

C16H16O3 calculated (M+H2O) 274, found 274.  
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Compound 3.53a: 1H NMR, (400 MHz, CDCl3) δ 7.45-7.40 (m, 3H), 

7.39-7.35 (m, 2H), 7.34-7.30 (m, 6H), 7.29-7.26 (m, 2H), 7.24-7.21 (m, 2H), 

5.19 (s, 2H), 4.74 (d, 1H, J=11.8 Hz), 4.45 (d, 1H, J=11.8 Hz), 4.26 (dd, 1H, 

J=5.4 Hz, J=8.0 Hz), 3.21-3.11 (m, 2H),; 13C NMR, (100 MHz, CDCl3) δ 172.1, 

137.4, 127.0, 135.6, 129.6, 128.7, 128.5, 128.43, 128.42, 128.0, 127.9, 

126.8, 79.4, 72.6, 66.8, 39.4; [α]D +43.7 (c 1.0, CHCl3); ESI/MS for C23H22O3 

calculated (M+H2O) 364, found 364.  

 

 

Compound 3.53: To a solution of 3.53a (118 mg, 0.34 mmol) in THF (3.5 

mL) and H2O (1.5 mL) was added LiOH×H2O (43 mg, 1.0 mmol) at R.T., and 

then stirred for 4 h (TLC monitoring, EtOAc/hexanes 1:9). After solvent was 

evaporated, 15 mL H2O was added and extracted with DCM (20 mL), then 

acidified dropwise with concentrated HCl aqueous to pH=1. The aqueous layer 

was extracted with DCM (3×20 mL). The organic phases were combined, dried 

over Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (MeOH/DCM 1:19) to give 3.53 (75 

mg, 86%), as a colorless solid, m.p. 47-49 °C. 

 

 

Compound 3.54: A solution of 3.51 (340 mg, 1.25 mmol) in DCM (63 mL) 

was cooled to 0 °C and treated with anisole (2.7 mL, 25 mmol) and TfOH (0.56 

mL, 6.25 mmol). The solution was stirred at R.T. for 12 h, after which the 

volatiles were removed under reduced pressure. The residue was taken up in 

water (15 mL), washed with Et2O (2×15 mL), frozen and lyophilized to afford 
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triflate salt of amine, which was used directly. A solution of crude amine salt in 

DCM (10 mL) was cooled to 0 °C. 2,6-Lutidine (0.73 ml, 6.25 mmol), carboxylic 

acid 53 (352 mg, 1.38 mmol), and DEPBT (598 mg, 2.0 mmol) were added, 

then allowed to warm up to R.T. slowly. After stirring for 27 h, the reaction 

mixture was diluted with DCM (30 mL), washed with 0.5 M HCl aqueous (30 mL), 

saturated aqueous NaHCO3 (30 mL) and brine (30 mL), dried over Na2SO4 and 

concentrated under reduced pressure. The crude residue was purified by flash 

column chromatography (EtOAc/Hexane/DCM 4:15:1) to afford 3.54 (422 mg, 

87% over 2 steps), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 7.38-7.27 (m, 

10H), 7.14 (d, 1H, J=9.5 Hz), 4.54 (dd, 2H, J=11.6 Hz, J=28.3 Hz), 4.26-4.20 

(m, 1H), 4.17 (dd, 1H, J=3.6 Hz, J=7.0 Hz), 3.98 (dd, 1H, J=4.5 Hz, J=11.3 

Hz), 3.78-3.72 (m, 2H), 3.23 (dd, 1H, J=3.6 Hz, J=14.1 Hz), 3.01 (dd, 1H, 

J=7.1 Hz, J=14.1 Hz), 1.76-1.68 (m, 1H), 0.99 (dd, 6H, J=3.6 Hz, J=6.6 Hz); 

13C NMR, (100 MHz, CDCl3) δ 171.9, 137.0, 136.9, 129.9, 128.6, 128.25, 

128.17, 128.13, 126.7, 80.6, 73.0, 68.5, 62.2, 52.6, 38.6, 30.2, 20.8, 17.1; 

[α]D +60.3 (c 1.0, CHCl3); HRMS for C22H28ClNO3 calculated (M+H+) 390.18305, 

found 390.18235.  

 

N
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Compound 3.55: A solution of 3.54 (300 mg, 0.77 mmol) in MeCN (5 mL) 

was cooled to 0 °C and a solution of 8 mg CrO3, which was dissolved in 4.6 mL 

of 0.4 M H5IO6 in wet MeCN (MeCN/H2O 99.3:0.7), was added. After stirring at 

0 °C for 45 min., the reaction mixture was quenched by adding 5mL saturated 

aqueous NaHCO3. After MeCN was evaporated, the aqueous mixture was 

treated with 2 mL 0.5 M NaOH aqueous and washed with Et2O (15 mL). The 

aqueous layer was acidified with concentrated HCl aqueous carefully at 0 °C, 
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and extracted with DCM (3×30 mL). The organic phases were combined, dried 

over Na2SO4 and concentrated under reduced pressure to give 3.55 (271 mg, 

87%), as a colorless oil, which was sufficiently pure for use in the following step, 

and was purified by RP-LC-MS (C4 column, 25 min., gradient of 73-80% CH3CN 

in 0.1% aqueous FA) to afford pure 3.55 (217 mg, 70%): 1H NMR, (400 MHz, 

CDCl3) δ 11.03 (s, 1H), 7.48 (d, 1H, J=9.0 Hz), 7.33-7.27 (m, 8H), 7.25-7.22 

(m, 2H), 5.07 (dd, 1H, J=4.3 Hz, J=9.0 Hz), 4.60 (d, 1H, J=11.4 Hz), 4.45 (d, 

1H, J=11.4 Hz), 4.22 (dd, 1H, J=3.4 Hz, J=7.4 Hz), 3.51 (dd, 1H, J=4.4 Hz, 

J=8.4 Hz), 3.21 (dd, 1H, J=3.4 Hz, J=14.1 Hz), 2.99 (dd, 1H, J=7.4 Hz, J=14.1 

Hz), 2.16-2.04 (m, 1H), 1.12 (d, 3H, J=6.6 Hz), 1.06 (d, 3H, J=6.5 Hz); 13C 

NMR, (100 MHz, CDCl3) δ 172.7, 172.4, 136.9, 136.8, 130.0, 128.7, 128.5, 

128.4, 128.3, 127.0, 80.4, 73.3, 69.6, 54.3, 39.0, 31.9, 20.4, 20.0; [α]D +37.7 

(c 1.0, CHCl3); HRMS for C22H26ClNO4 calculated (M+H+) 404.16231, found 

404.16164. 

 

 

Compound 3.56a: Compound 3.47a (103 mg, 0.11 mmol) was treated 

with >99.9% TFA/DCM (1:9, 3 mL) at R.T.. After stirring for 2 h, the reaction 

mixture was diluted with EtOAc (20 mL) and concentrated under reduced 

pressure. The crude residue was suspended in saturated aqueous Na2CO3 (20 

mL) and extracted with DCM (3×30 mL). The organic phases were combined, 

dried over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (DCM to MeOH/DCM 1:49 to MeOH/ 

DCM 1:19) to give 3.56a (89 mg, 96%), as a colorless oil: 1H NMR, (400 MHz, 

CDCl3) δ 11.77 (s, 1H), 8.35 (t, 1H, J=5.2 Hz), 7.65 (t, 1H, J=6.0 Hz), 



174 
 

7.42-7.28 (m, 20H), 5.16 (d, 4H, J=14.6 Hz), 4.95(d, 1H, J=11.4 Hz), 4.77 (d, 

1H, J=11.9 Hz), 4.69 (d, 1H, J=11.4 Hz), 4.64 (d, 1H, J=11.9 Hz), 4.49 (d, 1H, 

J=7.5 Hz), 4.02-3.97 (m, 1H), 3.93 (dd, 1H, J=5.1 Hz, J=11.6 Hz), 3.71 (t, 1H, 

J=5.6 Hz), 3.67 (d, 1H, J=8.9 Hz), 3.55-3.43 (m, 4H), 3.32-3.22 (m, 4H), 

2.37-2.26 (m, 1H), 1.98-1.88 (br, m, 3H), 1.77-1.67 (m, 3H), 1.64-1.53 (br, m, 

4H), 1.42-1.26 (m, 2H); 13C NMR, (100 MHz, CDCl3) δ 175.7, 163.8, 156.1, 

154.0, 138.5, 138.3, 136.8, 134.7, 128.9, 128.8, 128.58, 128.57, 128.53, 

128.50, 128.2, 128.07, 128.02, 127.96, 127.93, 101.8, 81.2, 77.2, 75.7, 74.5, 

74.2, 73.2, 68.3, 67.2, 63.9, 58.8, 57.7, 40.8, 38.5, 37.1, 35.9, 35.2, 29.4, 

27.2, 26.5, 25.6; [α]D -12.9 (c 1.0, CHCl3); HRMS for C49H59N5O10 calculated 

(M+H+) 878.43347, found 878.43666.  
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  Compound 3.56b: Compound 3.47b (104 mg, 0.11 mmol) was treated 

with >99.9% TFA/DCM (1:9, 3 mL) at R.T.. After stirring for 2 h, the reaction 

mixture was diluted with EtOAc (20 mL) and concentrated under reduced 

pressure. The crude residue was suspended in saturated aqueous Na2CO3 (20 

mL) and extracted with DCM (3×30 mL). The organic phases were combined, 

dried over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (DCM to MeOH/DCM 1:49 to MeOH/ 

DCM 1:19) to give 3.56b (84 mg, 91%), as a colorless oil: 1H NMR, (400 MHz, 

CDCl3) δ 11.77 (s, 1H), 8.35 (t, 1H, J=5.2 Hz), 7.66 (t, 1H, J=5.5 Hz), 

7.41-7.28 (m, 20H), 5.15 (d, 4H, J=10.4 Hz), 4.89 (d, 1H, J=3.4 Hz), 4.77 (d, 

1H, J=11.8 Hz), 4.70 (d, 2H, J=5.3 Hz), 4.66 (d, 1H, J=11.8 Hz), 4.04 (t, 1H, 

J=9.2 Hz), 3.82-3.76 (br, m, 1H), 3.72 (dd, 1H, J=4.1 Hz, J=11.0 Hz), 3.61 (d, 
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2H, J=8.2 Hz), 3.51-3.43 (m, 4H), 3.35 (dd, 1H, J=3.4 Hz, J=9.6 Hz), 

3.32-3.26 (m, 2H), 2.61 (s, 1H), 2.35-2.28 (m, 1H), 1.99-1.90 (br, m, 1H), 

1.87-1.68 (br, m, 3H), 1.67-1.52 (br, m, 5H), 1.48-1.39 (br, m, 1H), 1.35-1.25 

(br, m, 1H); 13C NMR, (100 MHz, CDCl3) δ 175.5, 163.8, 156.1, 154.0, 138.4, 

138.3, 136.8, 134.7, 128.9, 128.8, 128.64, 128.60, 128.55, 128.53, 128.3, 

128.10, 128.06, 127.97, 127.95, 95.1, 79.6, 77.8, 73.3, 72.9, 72.8, 68.3, 67.2, 

60.0, 58.9, 57.7, 40.8, 38.5, 37.1, 35.2, 34.0, 30.9, 29.8, 27.1, 26.6, 25.8; 

[α]D +26.1 (c 1.0, CHCl3); HRMS for C49H59N5O10 calculated (M+H+) 878.43347, 

found 878.43746. 

 

 

Compound 3.57a: To a solution of 3.55 (11 mg, 0.026 mmol) and 3.56a 

(21 mg, 0.024 mmol) in DCM (2 mL) at 0 °C were added fresh recrystallized 

DEPBT (11 mg, 0.036 mmol) and 2,6-lutidine (8 μL, 0.072 mmol). After 

addition, the reaction mixture was allowed to warm to R.T. slowly, and stirred 

for 20 h, then cooled to 0 °C. To the mixture, 3.55 (6 mg, 0.013 mmol) in DCM 

(0.3 mL), fresh recrystallized DEPBT (11 mg, 0.036 mmol) and 2,6-lutidine (8 

μL, 0.072 mmol) were added at 0 °C. After addition, the reaction mixture was 

allowed to warm to R.T. slowly, and stirred for 24 h, then diluted with DCM (10 

mL), washed with 0.5 M HCl aqueous (15 mL) and brine (15 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (EtOAc/DCM 7:13) to give crude 
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product, which was purified by RP-LC-MS (C4 column, 26 min., isocratic of 80% 

CH3CN in 0.1% aqueous FA) to afford pure 3.57a (21 mg, 69%), as a colorless 

oil. 1H NMR, (400 MHz, CDCl3) δ 11.73 (s, 1H), 8.30 (t, 1H, J=5.2Hz), 7.41-7.22 

(m, 30H), 7.12 (d, 1H, J=9.3 Hz), 6.83 (t, 1H, J=5.6 Hz), 5.15 (d, 4H, J=14.2 

Hz), 4.99 (dd, 2H, J=10.8 Hz, J=20.8 Hz), 4.77-4.69 (m, 3H), 4.54-4.47 (m, 

3H), 4.44-4.36 (m, 2H), 4.20 (dd, 1H, J=5.0 Hz, J=11.7 Hz), 4.11-4.08 (m, 

2H), 3.86 (d, 1H, J=10.4 Hz), 3.71 (t, 1H, J=9.0Hz), 3.49 (dt, 1H, J=5.1 Hz, 

J=9.4 Hz, J=9.1 Hz), 3.39-3.21 (m, 4H), 3.16 (dd, 1H, J=3.7 Hz, J=14.4 Hz), 

3.06 (dt, 1H, J=6.1 Hz, J=12.5 Hz, J=12.2 Hz), 2.96 (dd, 1H, J=6.9 Hz, J=14.1 

Hz), 2.54-2.46 (br, m, 2H), 2.35 (t, 2H, J=6.6Hz), 2.14-2.00 (m, 2H), 

1.79-1.68 (m, 2H), 1.60-1.39 (m, 7H), 1.31 (d, 1H, J=21.0 Hz), 0.89 (d, 6H, 

J=6.5 Hz); 13C NMR, (100 MHz, CDCl3) δ 171.3, 170.9, 169.8, 164.0, 156.2, 

154.0, 138.6, 138.5, 137.07, 137.00, 136.98, 134.8, 130.0, 129.0, 128.9, 

128.73, 128.72, 128.69, 128.64, 128.62, 128.35, 128.31, 128.29, 128.24, 

128.13, 128.06, 128.04, 128.00, 126.9, 102.7, 82.0, 80.6, 76.0, 74.9, 74.2, 

73.03, 72.99, 68.5, 68.3, 67.3, 63.8, 60.2, 55.9, 52.4, 40.7, 39.2, 38.6, 36.1, 

32.2, 29.8, 28.5, 26.6, 26.5, 24.0, 21.0, 20.0, 15.2; [α]D +1.5 (c 1.0, CHCl3); 

HRMS for C71H83ClN6O13 calculated (M+H+) 1263.57794, found 1263.57212.  

 

 

Compound 3.57b: To a solution of 3.55 (10 mg, 0.024 mmol) and 3.56b 

(20 mg, 0.022 mmol) in DCM (2 mL) at 0 °C were added fresh recrystallized 
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DEPBT (10 mg, 0.033 mmol) and 2,6-lutidine (8 μL, 0.066 mmol). After 

addition, the solution was allowed to warm to R.T. slowly, and stirred for 20 h, 

then cooled to 0 °C, and then 3.55 (4 mg, 0.011 mmol) in DCM (0.3 mL), fresh 

recrystallized DEPBT (10 mg, 0.033 mmol), and 2,6-lutidine (5 μL, 0.044 mmol) 

were added. After addition, the mixture was allowed to warm to R.T. slowly, and 

stirred for 24 h, then cooled to 0 °C, and then 3.55 (4 mg, 0.011 mmol) in DCM 

(0.3 mL), fresh recrystallized DEPBT (10 mg, 0.033 mmol) and 2,6-lutidine (5.2 

μL, 0.044 mmol) were added at 0 °C. After addition, the reaction mixture was 

allowed to warm to R.T. slowly, and stirred for 24 h, then diluted with DCM (10 

mL), washed with 0.5 M HCl aqueous (15 mL) and brine (15 mL), dried over 

Na2SO4 and concentrated under reduced pressure. The crude residue was 

purified by flash column chromatography (MeOH/DCM 1:49) to give crude 

product, which was purified by RP-LC-MS (C4 column, 26 min., isocratic of 80% 

CH3CN in 0.1% aqueous FA) to afford 3.57b (17 mg, 60%), as a colorless oil. 

1H NMR, (400 MHz, CDCl3) δ 11.74 (s, 1H), 8.33 (t, 1H, J=5.5 Hz), 7.47-7.22 

(m, 30H), 7.07 (d, 1H, J=9.9 Hz), 6.68 (t, 1H, J=5.0 Hz), 5.22 (d, 1H, J=2.5 

Hz), 5.16 (d, 4H, J=8.7 Hz), 5.02 (t, 1H, J=10.3 Hz), 4.93 (d, 1H, J=12.4 Hz), 

4.78 (dd, 2H, J=12.1 Hz, J=18.8 Hz), 4.65 (d, 1H, J=11.8 Hz), 4.55 (d, 1H, 

J=11.4 Hz), 4.44-4.34 (m, 3H), 4.11 (dd, 1H, J=3.2 Hz, J=6.5 Hz), 4.06 (d, 1H, 

J=8.1 Hz), 4.00-3.95 (m, 2H), 3.74-3.61 (m, 1H), 3.54-3.46 (m, 2H), 3.43- 

3.31 (m, 3H), 3.24 (dd, 1H, J=6.9 Hz, J=13.6 Hz), 3.19-3.09 (m, 2H), 2.94 (dd, 

1H, J=6.8 Hz, J=14.1 Hz), 2.57 (s, 1H), 2.48-2.44 (br, m, 1H), 2.42-2.34 (m, 

1H), 2.32-2.18 (m, 2H), 2.04-1.97 (m, 1H), 1.81-1.46 (m, 10H), 1.35-1.27 (m, 

1H), 0.89 (d, 1H, J=6.3 Hz), 0.82 (dd, 5H, J=6.5 Hz, J=14.4 Hz); 13C NMR, 

(100 MHz, CDCl3) δ 171.5, 171.0, 169.3, 163.8, 156.2, 154.0, 138.5, 138.4, 

137.04, 136.98, 136.93, 134.7, 130.0, 128.99, 128.89, 128.64, 128.61, 

128.33, 128.29, 128.22, 128.19, 128.13, 128.03, 128.00, 126.8, 94.2, 80.5, 
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78.5, 73.5, 72.9, 72.8, 71.8, 70.7, 68.3, 68.2, 67.3, 60.7, 60.3, 55.6, 52.5, 

40.7, 39.2, 38.7, 36.5, 30.0, 29.9, 28.3, 26.5, 26.4, 25.1, 20.8, 20.1, 15.5; 

[α]D +45.0 (c 1.0, CHCl3); HRMS for C71H83ClN6O13 calculated (M+H+) 

1263.57794, found 1263.58015. 

 

 

N

H

H O

NH
O

BnO

O

HN
ClO NH

CbzN NHCbz

O

OBn
HO

BnO

3.57a
SO3/pyr.,

pyr.
3.58a

N

H

H O

NH
O

BnO

O

HN
ClO HN

NCbz

NHCbz

O

OBn
HO3SO

BnO

4 4

 

Compound 3.58a: To a solution of 3.57a (10 mg, 0.008 mmol) in dry 

pyridine (3 mL) at R.T., was added sulfur trioxide pyridine complex (64 mg, 0.4 

mmol). After addition, the mixture was heated to 50 oC and stirred for 48 h, TLC 

(DCM/MeOH 19:1) showed the conversion of 3.57a into 3.58a, then cooled to 

R.T. and pyridine was evaporated. The crude residue was suspended in 15mL 

H2O and extracted with 15 mL×4 DCM. The organic phases were combined, 

dried over Na2SO4 and concentrated under reduced pressure. The residue was 

purified by flash column chromatography (DCM to MeOH/DCM 1:24 to MeOH/ 

DCM 2:23) to give 3.58a (10 mg, 88%), as a colorless film: 1H NMR, (700 MHz, 

MeOH-d4) δ (major rotamer) 8.01 (dd, 1H, J=4.8 Hz, J=6.5 Hz), 7.72 (d, 1H, 

J=9.5 Hz), 7.50 (d, 2H, J=7.1 Hz), 7.46 (d, 2H, J=7.0 Hz), 7.41-7.15 (m, 26H), 

5.11 (d, 2H, J=6.9 Hz), 5.10 (d, 2H, J=2.1 Hz), 5.00 (d, 1H, J=10.5 Hz), 4.76 

(d, 1H, J=10.5 Hz), 4.69 (d, 1H, J=11.9 Hz), 4.57 (dd, 2H, J= 8.6 Hz, J=9.9 Hz), 

4.51 (d, 2H, J=7.2 Hz), 4.41 (d, 1H, J=11.6 Hz), 4.32 (dd, 1H, J=8.0 Hz, 

J=10.0 Hz), 4.11 (dd, 1H, J=3.9 Hz, J=6.5 Hz), 4.05 (s, 1H), 4.03 (dd, 1H, 
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J=5.3 Hz, J=12.0 Hz), 4.00 (dd, 1H, J=1.7 Hz, J=10.8 Hz), 3.64-3.60 (m, 1H), 

3.39 (dd, 1H, J=7.3 Hz, J=8.7 Hz), 3.37 (d, 1H, J=4.8 Hz), 3.35-3.31 (m, 2H), 

3.13 (dd, 1H, J=3.8 Hz, J=14.1 Hz), 3.07 (qd, 1H, J=5.4 Hz, J=10.7 Hz), 2.96 

(dd, 1H, J=6.6 Hz, J=14.2 Hz), 2.62 (d, 1H, J=14.0 Hz), 2.31 (ddd, 1H, J=8.1 

Hz, J=14.7 Hz, J=23.0 Hz), 2.12–2.07 (m, 1H), 2.06–2.02 (m, 1H), 1.99 (td, 

1H, J=10.7 Hz, J=12.9 Hz), 1.81 (t, 1H, J=12.1 Hz), 1.71 (d, 1H, J=13.4 Hz), 

1.59- 1.44 (m, 8H), 1.34-1.30 (br, d, 2H), 0.86 (dd, 6H, J=6.6 Hz, J=11.5Hz); 

13C NMR, (175 MHz, MeOH-d4) δ (major rotamer) 172.40, 171.83, 168.82, 

163.4, 155.7, 153.2, 138.59, 138.56, 137.17, 136.90, 136.83, 134.9, 129.7, 

128.4, 128.37, 128.19, 128.11, 128.10, 128.03, 128.0, 127.9, 127.8, 127.7, 

127.69, 127.66, 127.5, 127.3, 127.2, 126.3, 101.64, 82.2, 80.6, 80.2, 76.0, 

74.7, 73.5, 72.9, 72.3, 67.9, 67.0, 63.3, 60.7, 55.5, 53.8, 52.1, 40.4, 38.2, 

37.8, 36.4, 31.8, 30.8, 28.1, 25.6, 23.0, 19.8, 19.2, 14.3; [α]D +4.2 (c 0.95, 

MeOH); HRMS for C71H83ClN6O16S calculated (M+Na+) 1365.5167, found 

1365.51264. 

 

 

Compound 3.58b: To a solution of 3.57b (9 mg, 0.007 mmol) in dry 

pyridine (2 mL) at R.T., was added sulfur trioxide pyridine complex (59 mg, 

0.37 mmol). After addition, the mixture was heated to 50 °C and stirred for 48 

h, TLC (DCM/MeOH 19:1) showed the conversion of 3.57b into 3.58b, then 

cooled to R.T. and pyridine was evaporated. The crude residue was suspended 
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in 15 mL H2O and extracted with 15 mL×4 DCM. The organic phases were 

combined, dried over Na2SO4 and concentrated under reduced pressure. The 

residue was purified by flash column chromatography (DCM to MeOH/DCM 1:24 

to MeOH/DCM 2:23) to give 3.53b (9 mg, 85%), as a colorless film: 1H NMR, 

(700 MHz, MeOH-d4) δ (major rotamer) 7.55 (d, 2H, J=7.1Hz), 7.42-7.29 (m, 

18H), 7.26-7.20 (m, 9H), 7.16-7.11 (m, 4H), 5.17 (d, 1H, J=2.8 Hz), 

5.14-5.09 (m, 3H), 5.04 (s, 2H), 4.89-4.87 (m, 2H), 4.67 (s, 1H), 4.60 (dd, 2H, 

J=11.6 Hz, J=20.0 Hz), 4.44 (dd, 1H, J=9.6 Hz, J=15.0 Hz), 4.42 (d, 1H, 

J=11.6 Hz), 4.32 (dd, 1H, J=8.1 Hz, J=10.1 Hz), 4,17 (dd, 1H, J=3.9 Hz, J=6.6 

Hz), 4.08 (dd, 1H, J=1.9 Hz, J=10.9 Hz), 4.03 (br, m, 1H), 3.68-3.63 (m, 3H), 

3.61-3.58 (m, 1H), 3.45-3.41 (1H, m), 3.35-3.33 (dr, m, 1H), 3.17 (dd, 1H, 

J=3.7 Hz, J=14.2 Hz), 3.06 (dt, 1H, J=5.2Hz, J=13.1Hz), 3.00 (dd, 1H, J=6.6 

Hz, J=14.1 Hz), 2.66-2.63 (br, m, 0.4H), 2.42-2.37 (m, 0.6H), 2.31-2.26 (m, 

1H), 2.14-2.10 (m, 1H), 2.05-1.99 (m, 1H), 1.86-1.83 (m, 1H), 1.76-1.74 (d, 

1H, J=14.3 Hz), 1.67-1.50 (m, 8H), 1.30 (br, m, 2H), 0.81 (dd, 6H, J=1.8 Hz, 

J=6.6 Hz); 13C NMR, (175 MHz, MeOH-d4) δ (major rotamer) 173.9, 173.2, 

170.2, 165.0, 157.3, 154.6, 140.2, 140.1, 138.8, 138.5, 138.4, 136.4, 131.2, 

129.91, 129.89, 129.63, 129.59, 129.51, 129.47, 129.36, 129.33, 129.31, 

129.24, 129.17, 129.14, 129.02, 128.7, 128.5, 127.8, 97.2, 81.8, 79.4, 77.8, 

76.9, 74.13, 74.01, 73.94, 72.0, 69.4, 69.3, 68.5, 63.3, 62.4, 56.9, 53.6, 41.9, 

49.5, 39.3, 38.2, 32.3, 31.0, 29.4, 27.0, 26.0, 21.2, 21.0, 16.3; [α]D +23.3 (c 

0.8, MeOH); HRMS for C71H83ClN6O16S calculated (M+H+) 1343.53476, found 

1343.53163. 
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Compound 3.59: To a solution of 3.58a (9 mg, 0.007 mmol) in MeOH (8 mL) 

was added Pd(OH)2/C (20 wt. %, max. 50% water)(65 mg) and the suspension 

was stirred under H2 at R.T. for 6 h. The catalyst was removed by filtration and 

the filtrate was concentrated under reduced pressure to obtain crude product, 

which was purified by RP-LC-MS (Column: Synergi Polar-RP, 12 min., gradient 

of 60-80% MeOH in H2O) to afford pure final 3.59 (5 mg, 85%), as a white 

powder. 1H NMR (700 MHz, DMSO-d6) δ (major rotamer) 8.43 (s, 1H), 7.97 (t, 

2H, J=5.5 Hz), 7.52 (d, 1H, J=9.5 Hz), 7.37 (s, 1H), 7.25 (dd, 2H, J=10.0 Hz, 

J=17.2 Hz), 7.22 (d, 2H, J=6.9 Hz), 7.20–7.17 (m, 1H), 6.69 (s, 1H), 5.97 (d, 

1H, J=5.8 Hz), 5.40 (d, 1H, J=3.0 Hz), 5.26 (d, 1H, J=3.4 Hz), 4.86 (t, 1H, 

J=10.0 Hz), 4.28–4.23 (m, 2H), 4.20–4.15 (m, 2H), 3.92 (t, 2H, J=8.9 Hz), 

3.87 (ddd, 2H, J=3.6 Hz, J=5.7 Hz, J=10.4 Hz), 3.45–3.39 (m, 1H), 3.34 (s, 

1H), 3.16 (t, 1H, J=11.0 Hz), 3.10 (dd, 1H, J=6.4 Hz, J=13.2 Hz), 3.08–3.03 

(m, 3H), 2.99 (dd, 1H, J=6.3 Hz, J=12.1 Hz), 2.96 (dd, 1H, J=3.7 Hz, J=13.9 

Hz), 2.82 (dd, 1H, J=7.0 Hz, J=13.8 Hz), 2.27 (d, 1H, J=13.3 Hz), 2.20 (td, 1H, 

J=6.1 Hz, J=12.6 Hz), 2.06–1.96 (m, 2H), 1.81 (dd, 1H, J=12.2 Hz, J=22.7 Hz), 

1.70–1.64 (m, 2H), 1.63 (dd, 1H, J=7.0 Hz, J=14.3 Hz), 1.49–1.36 (m, 6H), 

0.87 (d, 3H, J=6.5 Hz), 0.84 (d, 3H, J= 6.7 Hz); 13C NMR (175 MHz, DMSO-d6) 

δ (major rotamer) 172.11, 171.19, 167.60, 156.91, 137.86, 129.80, 127.90, 

126.14, 102.20, 82.98, 72.95, 72.32, 71.70, 69.28, 68.53, 65.32, 59.86, 
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54.66, 51.05, 40.38, 40.01, 37.97, 35.74, 31.71, 30.91, 27.79, 26.29, 25.86, 

23.12, 20.79, 19.16, 15.02; [α]D +13.0 (c 0.1, MeOH); HRMS for 

C34H53ClN6O12S calculated (M+H+) 805.32035, found 805.32158. 

 

 

Compound 3.16b: To a solution of 3.58b (10 mg, 0.008 mmol) in MeOH (10 

mL) was added Pd(OH)2/C (20 wt. %, max. 50% water)(70 mg) and the 

suspension was stirred under H2 at R.T. for 5.5 h. The catalyst was removed by 

filtration and the filtrate was concentrated under reduced pressure to obtain 

crude product, which was purified by RP-LC-MS (Column: Synergi Polar-RP, 12 

min., gradient of 60-80% MeOH in H2O) to afford pure final 3.16b (5 mg, 84%), 

as a white powder. 1H NMR (700 MHz, DMSO-d6) δ (major rotamer) 8.83 (s, 1H), 

8.05 (t, 1H, J=5.5 Hz), 7.83 (s, 2H), 7.67 (d, 1H, J=9.5 Hz), 7.24 (dd, 2H, 

J=8.0 Hz, J=15.0 Hz), 7.22 (d, 2H, J=6.7 Hz), 7.17 (t, 1H, J=7.7 Hz), 6.69 (s, 

1H), 6.01 (s, 1H), 5.32 (d, 1H, J=2.4 Hz), 5.09 (d, 1H, J=3.8 Hz), 4.93 (t, 1H, 

J=9.7 Hz), 4.82 (d, 1H, J=4.2 Hz), 4.35 (dt, 1H, J=6.1 Hz, J=12.0 Hz), 

4.22–4.13 (m, 3H), 3.97 (dd, 1H, J=1.6 Hz, J=10.7 Hz), 3.86 (s, 1H), 3.45 

(ddd, 2H, J=3.6 Hz, J=8.4 Hz, J=12.2 Hz), 3.39 (br, m, 1H), 3.35 (br, m, 1H), 

3.16 (s, 1H), 3.07 (dd, 1H, J=6.7 Hz, J=13.5 Hz), 3.03 (s, 2H), 3.00 (dd, 1H, 

J=6.4 Hz, J=13.9 Hz), 2.94 (dd, 1H, J=3.7 Hz, J=14.0 Hz), 2.78 (dd, 1H, J=7.5 

Hz, J=13.8 Hz), 2.32 (d, 1H, J=11.8 Hz), 2.26 (dt, 1H, J=6.9 Hz, J=13.1 Hz), 
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2.13 (ddd, 1H, J=6.4 Hz, J=11.2 Hz, J=19.8 Hz), 2.01 (dt, 1H, J=6.8 Hz, 

J=13.3 Hz), 1.85 (dd, 1H, J=13.1 Hz, J=23.5 Hz), 1.66 (dt, 1H, J=6.9 Hz, 

J=13.3 Hz), 1.58 (d, 1H, J=14.4 Hz), 1.54 (d, 2H, J=12.8 Hz), 1.49 (d, 1H, 

J=13.6 Hz), 1.46–1.43 (m, 2H), 1.43–1.38 (m, 2H), 0.85 (d, 3H, J=6.6 Hz), 

0.84 (d, 3H, J=6.6 Hz); 13C NMR (175 MHz, DMSO-d6) δ (major rotamer) 

172.37, 171.16, 167.45, 157.47, 138.05, 129.75, 127.91, 126.08, 94.20, 

80.45, 71.77, 70.71, 68.96, 68.58, 67.33, 61.43, 59.81, 54.03, 51.10, 40.25, 

40.03, 38.04, 35.92, 30.84, 28.78, 27.52, 26.25, 25.89, 24.89, 20.85, 19.51, 

15.37; [α]D +39.4 (c 0.5, MeOH); HRMS for C34H53ClN6O12S calculated (M-H+) 

803.30579, found 803.30339. 
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50 eq. SO3/pyridine,
pyridine, 50 oC, 48 h,

3.27 3.27a

 

Methyl 3-O-sulfated-2,4-di-O-benzyl-α-D-xylopyranoside 3.27a: To a 

solution of methyl 2,4-di-O-benzyl-α-D-xylopyranoside 3.27 (172 mg, 0.5 

mmol) in dry pyridine (10 mL) at R.T. were added sulfur trioxide pyridine 

complex (3.98 g, 25 mmol). After addition, the reaction mixture was heated to 

50 oC slowly, and stirred for 24 h, when TLC (EtOAc/hexane 3:7) showed the 

conversion of 3.27 into 3.27a, then cooled to R.T. and pyridine was evaporated. 

The crude residue was suspended in 15 mL H2O and extracted with 15 mL×4 

DCM. The organic phases were combined, dried over Na2SO4 and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (DCM to MeOH/DCM 2:23) to give 3.27a (220 mg, 87%), as a 

colorless oil: 1H NMR (400 MHz, CDCl3) δ 7.48–7.40 (m, 4H), 7.36–7.23 (m, 

6H), 4.91 (dd, 2H, J=2.0 Hz, J=11.9 Hz), 4.75 (td, 1H, J=3.8 Hz, J=8.4 Hz), 

4.65 (dd, 2H, J=11.9 Hz, J=17.5 Hz), 4.54 (d, 1H, J=3.3 Hz), 3.60 (dd, 1H, 

J=4.0 Hz, J=8.6 Hz), 3.57 (dd, 1H, J=3.3 Hz, J=7.9 Hz), 3.53 (dd, 1H, J=3.3 Hz, 
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J=5.9 Hz), 3.50 (td, 1H, J=3.5 Hz, J=9.2 Hz), 3.33 (s, 3H); 13C NMR (100 MHz, 

CDCl3) δ 139.8, 139.7, 129.5, 129.42, 129.41, 129.35, 128.9, 128.8, 100.3, 

80.6, 79.0, 77.3, 74.9, 74.5, 61.8, 55.8; Chemical Formula: C20H24O8S. 

 

 

Methyl 3-O-sulfated-α-D-xylopyranoside 3.26a: To a solution of methyl 

3-O-sulfated-2,4-di-O-benzyl-α-D-xylopyranoside 3.27a (55 mg, 0.13 mmol) 

in dry MeOH (10 mL) was added Pd(OH)2/C 20 w.t.% (2 mg) and the 

suspension was stirred under H2 (1 atm) at R.T. for 4 h. The Pd(OH)2/C catalyst 

was removed by filtration and the filtrate was concentrated under reduced 

pressure to afford 3.26a (31 mg, 96%), as a colorless oil: 1H NMR (400 MHz, 

CDCl3) δ 4.68 (d, 1H, J=3.5 Hz), 4.40(t, 1H, J=8.8 Hz), 3.70 (ddd, 1H, J=5.5 Hz, 

J=8.3 Hz, J=9.9 Hz), 3.65 (dd, 1H, J=5.5 Hz, J=10.9 Hz), 3.60 (dd, 1H, J=3.5 

Hz, J=9.2 Hz), 3.52 (t, 1H, J=10.5 Hz), 3.42 (s, 3H), 3.35 (s, 2H); 13C NMR 

(100 MHz, CDCl3) δ 101.2, 82.8, 71.9, 70.2, 62.8, 55.8; HRMS for C6H12O8S 

calculated (M-H)- 243.01801, found 243.01846. 

 

 

Compounds 3.60a and 3.61a: The mixture of 3.60 and 3.61 (43 mg, 

0.125 mmol) was dissolved in dry DCM (5 mL), and cooled at 0 °C. To the 

solution at 0 °C, Ac2O (17 μL, 0.18 mmol), DMAP (1 mg, 0.01 mmol), and Et3N 

(35 μL, 0.25 mmol) were added, then warmed to R.T.. After stirring for 3 h, the 

reaction mixture was diluted with DCM (10 mL), washed with 1 M HCl aqueous 

(15 mL), dried over Na2SO4 and concentrated under reduced pressure. The 
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crude residue was purified by flash column chromatography (hexane to 

EtOAc/hexane 1:5) to afford the mixture of 3.60a and 3.61a (45mg, 93%), as 

a colorless oil, which was separated by RP-LC-MS (Column: Synergi Polar-RP, 

30 min., gradient of 70-73% MeOH in H2O with 0.1% FA) to give 3.60a (17 mg, 

35%), as a colorless oil and 3.61a (23 mg, 48%), as a colorless oil. 

Methyl 4-O-acetyl-2,3-di-O-benzyl-α-D-xylopyranoside 3.60a: 1H 

NMR (400 MHz, CDCl3) δ 7.38–7.24 (m, 10H), 4.86 (ddd, 2H, J=4.0 Hz, J=8.9 

Hz, J=15.2 Hz), 4.78 (d, 1H, J=12.1 Hz), 4.66 (dd, 2H, J=11.8 Hz, J=15.7 Hz), 

4.54 (d, 1H, J=3.5 Hz), 3.89 (t, 1H, J=9.4 Hz), 3.67 (dd, 1H, J=5.9 Hz, J=10.7 

Hz), 3.50 (dd, 1H, J=3.5 Hz, J=9.5 Hz), 3.42 (t, 1H, J=10.7 Hz), 3.36 (s, 3H), 

1.93 (s, 3H); 13C NMR, (100 MHz, CDCl3) δ 170.3, 138.8, 138.2, 128.7, 128.5, 

128.3, 128.2, 128.0, 127.8, 98.5, 79.6, 79.0, 75.6, 73.8, 71.4, 58.7, 55.6, 

21.1; ESI/MS for C22H26O6 calculated (M+Na+) 409, found 409. 

Methyl 2-O-acetyl-3,4-di-O-benzyl-α-D-xylopyranoside 3.61a: 1H 

NMR, (400 MHz, CDCl3) δ 7.37–7.24 (m, 10H), 4.85 (d, 1H, J=11.4 Hz), 4.80 (s, 

1H), 4.77 (d, 1H, J=3.6 Hz), 4.72 (dd, 2H, J=2.4 Hz, J=11.3 Hz), 4.62 (d, 1H, 

J=11.6 Hz), 3.89 (t, 1H, J=8.8 Hz), 3.65 (dd, 1H, J=3.9 Hz, J=7.5 Hz), 3.64 (dq, 

2H, J=5.4 Hz, J=8.6 Hz), 3.57–3.46 (m, 1H), 3.35 (s, 3H), 2.04 (s, 3H); 13C 

NMR, (100 MHz, CDCl3) δ 170.6 138.8, 138.3, 128.7, 128.6, 128.1, 128.0, 

127.8, 97.3, 79.5, 78.3, 75.6, 73.7, 73.3, 60.0, 55.3, 21.2; ESI/MS for 

C22H26O6 calculated (M+Na+) 409, found 409. 

 

 

Methyl 2,3-di-O-benzyl-α-D-xylopyranoside 3.60: A solution of methyl 

4-O-acetyl-2,3-di-O-benzyl-α-D-xylopyranoside 3.60a (15 mg, 0.04 mmol) in 

dry fresh MeOH (3 mL) was treated with 0.5 M MeONa in MeOH (0.16 mL, 0.08 
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mmol) carefully. After stirring at R.T. for 2 h, the reaction mixture was diluted 

with solid NH4Cl, filtered and concentrated under reduced pressure. The crude 

residue was redissolved in DCM (10 mL), filtered and concentration under 

reduced pressure. The residue was purified by flash column chromatography 

(EtOAc/hexane 1:4) to afford 3.60 (13 mg, 96%), as a colorless oil: 1H NMR, 

(400 MHz, CDCl3) δ 7.40–7.25 (m, 10H), 4.95 (d, 1H, J=11.4 Hz), 4.73 (d, 1H 

J=12.0 Hz), 4.68 (d, 1H, J=1.9 Hz), 4.66 (d, 1H, J=11.4 Hz), 4.56 (d, 1H, 

J=3.1 Hz), 3.71 (t, 1H, J=8.3 Hz), 3.68–3.57 (m, 2H), 3.54 (dd, 1H, J=7.0 Hz, 

J=10.6 Hz), 3.48 (dd, 1H, J=3.1 Hz, J=8.7 Hz), 3.38 (s, 3H); 13C NMR, (100 

MHz, CDCl3) δ 138.7, 138.1, 128.8, 128.7, 128.3, 128.2, 128.1, 98.8, 81.2, 

79.4, 75.3, 73.4, 69.7, 62.0, 55.6; ESI/MS for C20H25O5 calculated (M+H+) 345, 

found 345. 

 

 

Methyl 3,4-di-O-benzyl-α-D-xylopyranoside 3.61: A solution of methyl 

2-O-acetyl-3,4-di-O-benzyl-α-D-xylopyranoside 3.61a (19 mg, 0.05 mmol) in 

dry fresh MeOH (4 mL) was treated with 0.5 M MeONa in MeOH (0.2 mL, 0.1 

mmol) carefully. After stirring at R.T. for 2 h, the reaction mixture was diluted 

with solid NH4Cl, filtered and concentrated under reduced pressure. The crude 

residue was redissolved in DCM (10 mL), filtered and concentration under 

reduced pressure. The residue was purified by flash column chromatography 

(EtOAc/hexane 1:4) to afford 3.61 (17 mg, 96%), as a colorless oil: 1H NMR, 

(400 MHz, CDCl3) δ 7.38–7.24 (m, 10H), 4.88 (d, 1H, J=11.3 Hz), 4.81 (d, 1H, 

J=11.3 Hz), 4.70 (d, 1H, J=11.9 Hz), 4.68 (d, 1H, J=3.9 Hz), 4.61 (d, 1H, 

J=11.6 Hz), 3.68 (dd, 2H, J=7.2 Hz, J=16.0 Hz), 3.60 (ddd, 1H, J=3.3 Hz, 

J=6.6 Hz, J=9.8 Hz), 3.55 (d, 2H, J=6.4 Hz), 3.41 (s, 3H); 13C NMR, (100 MHz, 
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CDCl3) δ 138.8, 138.3, 128.7, 128.6, 128.12, 128.05, 127.96, 127.93, 99.6, 

81.7, 77.7, 75.3, 73.3, 72.3, 62.5, 55.5; ESI/MS for C20H25O5 calculated (M+H+) 

345, found 345. 

 

 

Methyl 4-O-sulfated-2,3-di-O-benzyl-α-D-xylopyranoside 3.60b: To a 

solution of methyl 2,3-di-O-benzyl-α-D-xylopyranoside 3.60 (13 mg, 0.036 

mmol) in dry pyridine (2 mL) at R.T. were added sulfur trioxide pyridine 

complex (143 mg, 0.9 mmol). After addition, the reaction mixture was heated 

to 50 oC slowly, and stirred for 10 h, when TLC (EtOAc/hexane 3:7) showed the 

conversion of 3.60 into 3.60b, then cooled to R.T. and pyridine was evaporated. 

The crude residue was suspended in 15 mL H2O and extracted with 15 mL×4 

DCM. The organic phases were combined, dried over Na2SO4 and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (DCM to MeOH/DCM 2:23) to give 3.60b (14 mg, 92%), as a 

colorless oil: 1H NMR (400 MHz, MeOH-d4) δ 7.47–7.40 (m, 2H), 7.37–7.20 (m, 

8H), 5.01 (d, 1H, J=10.9 Hz), 4.72 (d, 1H, J=4.7 Hz), 4.69 (d, 1H, J=3.8 Hz), 

4.66 (d, 1H, J=3.6 Hz), 4.63 (d, 1H, J=11.8 Hz), 4.38 (ddd, 1H, J=5.9 Hz, 

J=9.0 Hz, J=10.7 Hz), 4.00 (dd, 1H, J=5.9 Hz, J=11.1 Hz), 3.78 (t, 1H, J=9.2 

Hz), 3.56 (t, 1H, J=11.0 Hz), 3.48 (dd, 1H, J=3.6 Hz, J=9.5 Hz), 3.36 (s, 3H); 

13C NMR (100 MHz, MeOH-d4) δ 140.3, 139.8, 129.6, 129.5, 129.31, 129.27, 

129.0, 128.6, 99.5, 80.6, 77.8, 76.3, 74.5, 60.7, 55.7; Chemical Formula: 

C20H24O8S. 

 

 



188 
 

Methyl 2-O-sulfated-3,4-di-O-benzyl-α-D-xylopyranoside 3.61b: To a 

solution of methyl 3,4-di-O-benzyl-α-D-xylopyranoside 3.61 (16 mg, 0.046 

mmol) in dry pyridine (2 mL) at R.T. were added sulfur trioxide pyridine 

complex (183 mg, 1.15 mmol). After addition, the reaction mixture was heated 

to 50 oC slowly, and stirred for 10 h, when TLC (EtOAc/hexane 3:7) showed the 

conversion of 3.61 into 3.61b, then cooled to R.T. and pyridine was evaporated. 

The crude residue was suspended in 15 mL H2O and extracted with 15 mL×4 

DCM. The organic phases were combined, dried over Na2SO4 and concentrated 

under reduced pressure. The crude residue was purified by flash column 

chromatography (DCM to MeOH/DCM 2:23) to give 3.61b (18 mg, 91%), as a 

colorless oil: 1H NMR (400 MHz, MeOH-d4) δ 7.45–7.40 (m, 2H), 7.34–7.20 (m, 

8H), 5.03 (d, 1H, J=3.5 Hz), 4.99 (d, 1H, J=10.9 Hz), 4.68 (dd, 2H, J=2.3 Hz, 

J=11.2 Hz), 4.62 (d, 1H, J=11.6 Hz), 4.27 (dd, 1H, J=3.6 Hz, J=9.7 Hz), 3.80 

(d, 1H, J=8.8 Hz), 3.82–3.75 (m, 1H), 3.78 (d, 1H, J=9.5 Hz), 3.66 (dd, 1H, 

J=5.4 Hz, J=10.2 Hz), 3.56 (ddd, 1H, J=5.4 Hz, J=8.6 Hz, J=10.4 Hz), 3.47 (t, 

1H, J=10.4 Hz), 3.39 (s, 3H); 13C NMR (100 MHz, MeOH-d4) δ 140.3, 140.0, 

129.6, 129.5, 129.3, 129.1, 128.8, 128.6, 99.7, 80.8, 79.3, 78.9, 76.3, 74.6, 

60.8, 55.9; Chemical Formula: C20H24O8S. 

 

 

Methyl 4-O-sulfated-α-D-xylopyranoside 3.26b: To a solution of methyl 

4-O-sulfated-2,3-di-O-benzyl-α-D-xylopyranoside 3.60b (14 mg, 0.033 mmol) 

in dry MeOH (5 mL) was added Pd(OH)2/C 20 w.t.% (2 mg) and the suspension 

was stirred under H2 (1 atm) at R.T. for 4 h. The Pd(OH)2/C catalyst was 

removed by filtration and the filtrate was concentrated under reduced pressure 

to afford 3.26b (8 mg, 96%), as a colorless oil: 1H NMR (400 MHz, DMSO-d6) 
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δ 5.01 (d, 1H, J=3.0 Hz), 4.88 (d, 1H, J=6.6 Hz), 4.48 (d, 1H, J=3.6 Hz), 3.90 

(ddd, 1H, J=5.8 Hz, J=8.9 Hz, J=10.7 Hz), 3.66 (dd, 1H, J=5.8 Hz, J=10.9 Hz), 

3.46 (td, 1H, J=3.0 Hz, J=9.2 Hz), 3.32–3.27 (m, 1H), 3.25 (s, 3H), 3.30–3.20 

(m, 1H); 13C NMR (100 MHz, DMSO-d6) δ 99.8, 74.8, 71.9, 71.7, 59.3, 54.7; 

HRMS for C6H12O8S calculated (M-H)- 243.01801, found 243.01851.  

 

 

Methyl 2-O-sulfated-α-D-xylopyranoside 3.26c: To a solution of methyl 

2-O-sulfated-3,4-di-O-benzyl-α-D-xylopyranoside 3.61b (17 mg, 0.13 mmol) 

in dry MeOH (10 mL) was added Pd(OH)2/C 20 w.t.% (2 mg) and the 

suspension was stirred under H2 (1 atm) at R.T. for 4 h. The Pd(OH)2/C catalyst 

was removed by filtration and the filtrate was concentrated under reduced 

pressure to afford 3.26c (9 mg, 97%), as a colorless oil: 1H NMR (400 MHz, 

DMSO-d6) δ 5.07 (d, 1H, J=4.9 Hz), 4.92 (d, 1H, J=2.2 Hz), 4.72 (d, 1H, J=3.3 

Hz), 3.81 (dd, 1H, J=3.2 Hz, J=9.4 Hz), 3.49–3.37 (m, 2H), 3.36–3.28 (m, 1H), 

3.23 (s, 3H), 3.22 (dd, 1H, J=5.5 Hz, J=13.3 Hz); 13C NMR (100 MHz, DMSO-d6) 

δ 98.3, 76.2, 71.8, 70.3, 61.2, 54.7; HRMS for C6H12O8S calculated (M-H)- 

243.01801, found 243.01820. 

 

 

Methyl 2,4-di-O-MOM-α-D-xylopyranoside 3.62: To a solution of Methyl 

α-D-xylopyranoside 3.26 (82 mg, 0.5 mmol) in dry toluene (12 mL) and dry 

MeOH (2 mL) at R.T. was added bis(tributyltin) oxide (274 mg, 1.1 mmol) and 

activated 4Å molecular sieves. After heating at 70 oC for 10 h, solvent was 

evaporated. The crude residue was redissolved in dry dry toluene (5 mL), then 
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treated with MOMCl (84 μL, 1.1 mmol) and Bu4NI (185 mg, 0.5mmol) at R.T. for 

10 h. The suspension was filtered over celite and concentrated under reduced 

pressure. The crude residue was purified by flash column chromatography 

(EtOAc/hexane 3:7) to afford major product 3.62 (59 mg, 47%), as a colorless 

oil: 1H NMR (300 MHz, CDCl3) δ 4.83 (d, 1H, J=6.9 Hz), 4.77 (d, 2H, J= 6.9 Hz), 

4.76 (dd, 2H, J=2.6 Hz, J=3.6 Hz), 4.71 (d, 1H, J=7.0 Hz), 3.87 (t, 1H, J=8.8 

Hz), 3.71 (d, 2H, J=4.9 Hz), 3.52 (d, 2H, J=6.4 Hz), 3.43 (s, 3H), 3.42 (s, 3H), 

3.41 (s, 3H),; 13C NMR (75 MHz, CDCl3) δ 98.9, 98.0, 97.5, 80.0, 78.7, 71.8, 

59.8, 55.86, 55.85, 55.4; [α]D +76.8 (c 1.0, CHCl3), ESI/MS for C10H20O7 

calculated (M+H+) 253, found 253. 

 

 

Methyl 3-O-benzyl-2,4-di-O-MOM-α-D-xylopyranoside 3.63 ：  A 

solution of methyl 2,4-di-O-MOM-α-D-xylopyranoside 3.62 (20 mg, 0.08 mmol) 

in THF (5 mL) was cooled to 0°C, and treated with NaH (5 mg, 60 dispersion in 

mineral oil) under argon atmosphere, and warmed up to R.T.. After stirring for 

1 h, BnBr (14 μL, 0.12 mmol) and Bu4NI (30 mg, 0.08 mmol) were added, and 

stirred for 10 h. The mixture was quenched by H2O (0.5 mL) carefully and 

concentrated under reduced pressure. Then the residue was redissolved in a 

mixture of DCM (15 mL) and H2O (15 mL). The phases were separated, and the 

organic phase was washed with H2O (15 mL) and brine (15 mL), then dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by 

flash column chromatography (hexane to EtOAc/hexane 3:17) to give 3.63 (25 

mg, 89%), as a colorless oil: 1H NMR, (400 MHz, CDCl3) δ 7.29 (d, 4H, J=4.4 

Hz), 7.28–7.21 (m, 1H), 4.79 (d, 1H, J=6.8 Hz),4.75 (dt, 3H, J=7.4 Hz, J=10.0 

Hz), 4.68 (d, 1H, J= 6.7 Hz), 4.60 (d, 1H, J=6.7 Hz), 3.76 (t, 1H, J= 9.3 Hz), 
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3.70 (dd, 1H, J=5.5 Hz, J=10.3 Hz), 3.61 (ddd, 1H, J=5.5 Hz, J=8.8 Hz, J=10.4 

Hz), 3.53 (dd, 1H, J=3.6 Hz, J=9.6 Hz), 3.50 (t, 1H, J=10.4 Hz),3.41 (s, 3H), 

3.35 (s, 3H), 3.31 (s, 3H); 13C NMR, (100 MHz, CDCl3) δ 138.9, 128.5, 127.9, 

127.8, 99.4, 97.9, 97.4, 80.7, 78.8, 77.0, 75.9, 60.5, 55.7, 55.6, 55.4; ESI/MS 

for C17H26O7 calculated (M+H+) 343, found 343.  

 

 

Methyl 3-O-benzyl-α-D-xylopyranoside 3.64: Methyl 3-O-benzyl-2,4-di- 

O-MOM-α-D-xylopyranoside 3.58 (24 mg, 0.07 mmol) was treated with >99.9% 

TFA/DCM (1:2, 3 mL) at R.T.. After stirring for 3 h, the reaction mixture was 

diluted with EtOAc (20 mL) and concentrated under reduced pressure. The 

crude residue was suspended in saturated aqueous Na2CO3 (20 mL) and 

extracted with DCM (3×30 mL). The organic phases were combined, dried over 

Na2SO4 and concentrated under reduced pressure. The residue was purified by 

flash column chromatography (DCM to MeOH/DCM 1:49) to afford 3.64 (15 mg, 

82%), as a colorless oil: 1H NMR, (400 MHz, MeOH-d4) δ 7.43 (d, 2H, J=7.3 Hz), 

7.31 (t, 2H, J=7.4 Hz), 7.25 (t, 1H, J= 7.2 Hz), 4.86 (d, 2H, J=4.0 Hz), 4.61 (d, 

1H, J=3.3 Hz), 3.65–3.56 (m, 1H), 3.55 (dd, 1H, J=7.2 Hz, J=9.3 Hz), 

3.58–3.51 (m, 1H), 3.48 (dd, 2H, J=9.5 Hz, J=19.7 Hz), 3.40 (s, 3H); 13C NMR, 

(100 MHz, MeOH-d4) δ 140.6, 129.3, 129.2, 128.6, 101.9, 83.8, 76.3, 73.7, 71.5, 

63.1, 55.7; ESI/MS for C13H18O5 calculated (M+H+) 255, found 255. 

  

 

Methyl 3-O-benzyl-2,4-di-O-sulfated-α-D-xylopyranoside 3.65: To a 

solution of methyl 3-O-benzyl-α-D-xylopyranoside 3.64 (12 mg, 0.04 mmol) in 
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dry pyridine (2 mL) at R.T. were added sulfur trioxide pyridine complex (159 mg, 

1.0 mmol). After addition, the reaction mixture was heated to 50 oC slowly and 

stirred for 10 h, when TLC (MeOH/DCM 1:19) showed the conversion of 3.64 

into 3.65, then cooled to R.T.. The reaction mixture was filtered and pyridine 

was evaporated. The residue was purified by flash column chromatography 

(MeOH/DCM 1:9 to MeOH/DCM 1:4) to give 3.65 (14 mg, 87%), as a colorless 

oil: 1H NMR (400 MHz, MeOH-d4) δ 7.52 (d, 2H, J=7.2 Hz), 7.29 (t, 2H, J=7.3 

Hz), 7.24–7.18 (m, 1H), 5.05 (d, 1H, J=3.4 Hz), 4.88 (d, 2H, J=19.3 Hz), 4.40 

(ddd, 1H, J=6.1 Hz, J=8.9 Hz, J=10.6 Hz), 4.29 (dd, J=3.5 Hz, J=9.7 Hz), 4.02 

(dd, 1H, J=6.0 Hz, J=11.1 Hz), 3.77 (t, 1H, J=9.4 Hz), 3.60 (t, 1H, J=10.1 Hz), 

3.40 (s, 3H); 13C NMR (100 MHz, MeOH-d4) δ 139.9, 129.7, 129.2, 128.5, 99.6, 

78.5, 78.4, 77.1, 75.9, 60.7, 56.0; Chemical Formula: C13H18O11S2. 

 

 

Methyl 2,4-di-O-sulfated-α-D-xylopyranoside 3.26d: To a solution of 

methyl 3-O-benzyl-2,4-di-O-sulfated-α-D-xylopyranoside 3.65 (10 mg, 0.024 

mmol) in dry MeOH (5 mL) was added Pd(OH)2/C 20 w.t.% (2 mg) and the 

suspension was stirred under H2 (1 atm) at R.T. for 3 h. The Pd(OH)2/C catalyst 

was removed by filtration and filtrate was concentrated under reduced pressure 

to give 3.26d (7 mg, 96%), as a colorless oil: 1H NMR (400 MHz, DMSO-d6) δ 

4.97 (d, 1H, J=2.6 Hz), 4.79 (d, 1H, J=3.5 Hz), 3.93 (ddd, 1H, J=5.9 Hz, J=9.0 

Hz, J=10.8 Hz), 3.83 (dd, 1H, J=3.6 Hz, J=9.8 Hz), 3.76 (dd, J=5.9 Hz, J=11.0 

Hz), 3.53 (td, 1H, J=2.5 Hz, J=9.5 Hz), 3.26 (dd, 1H, J=12.6 Hz, J=23.7 Hz), 

3.24 (s, 3H); 13C NMR (100 MHz, DMSO-d6) δ 97.9, 76.0, 74.9, 69.4, 59.0, 54.8; 

HRMS for C6H12O11S2 calculated (M-H)- 322.97483, found 322.97594.  
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Compound 3.52a: To a solution of D-(+)-3-phenyllactic acid 3.52 (50 mg, 

0.3 mmol) in MeOH (0.5 mL) and hexanes (1.0 mL) was added 2 M trimethyl- 

silyldiazomethane in hexanes (0.6 mmol, 0.3 mL) at R.T., and stirred for 1 h 

(TLC monitoring, EtOAc/hexanes 7:13), then solvents were evaporated. The 

crude residue was purified by flash column chromatography (EtOAc/hexanes 

1:4) to give 3.52a (51 mg, 94%), as a colorless needle: 1H NMR (400 MHz, 

Acetone-d6) δ 7.29–7.25 (m, 4H), 7.24–7.18 (m, 1H), 4.38 (dd, 1H, J=5.2 Hz, 

J=6.5 Hz), 4.29 (s, 1H), 3.67 (s, 3H), 3.06 (dd, 1H, J=4.6 Hz, J=13.8 Hz), 2.91 

(dd, 1H, J=7.6 Hz, J=13.8 Hz); 13C NMR (100 MHz, Acetone-d6) δ 174.9, 138.6, 

130.4, 129.0, 127.3, 72.6, 52.1, 41.4; ESI/MS for C10H12O3 calculated (M+H+) 

181, found 181. 

 

 

Compound 3.52b: To a solution of 3.52a (25 mg, 0.14 mmol) in dry toluene 

(10 mL) was added activated 4Å molecular sieves and bis(tributyltin) oxide (69 

mg, 0.28 mmol) at R.T.. After heating at 80 oC for 10 h, solvent was evaporated. 

The crude residue was redissolved in dry DMF (3 mL) and dry toluene (3 mL) at 

R.T., and treated with sulfur trioxide trimethylamine complex (38 mg, 0.28 

mmol) for 10 h. The suspension was filtered over celite and concentrated under 

reduced pressure. The residue was purified by flash column chromatography 

(DCM to MeOH/DCM 1:24 to MeOH/DCM 1:12) to afford 3.52b (23 mg, 65%), 

as a colorless oil: 1H NMR (400 MHz, Acetone-d6) δ 7.26–7.24 (m, 4H), 

7.23–7.16 (m, 1H), 5.07 (t, 1H, J=6.3 Hz), 3.59 (s, 3H), 3.17 (d, 1H, J=4.4 Hz), 

3.15 (d, 1H, J=5.1 Hz); 13C NMR (100 MHz, Acetone-d6) δ 172.3, 137.1, 130.6, 

129.1, 127.5, 77.2, 52.4, 39.2; HRMS for C10H12O6S calculated (M-H)- 
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259.02818, found 259.02827.  
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 Table 1.  Crystal data and structure refinement for C15 H25 N O5.  

        Identification code                benit94  

        Empirical formula                  C15 H25 N O5  

        Formula weight                      299.36  

        Temperature                          150K  

        Wavelength                           1.54178 Å  

        Crystal system                      Monoclinic  

        Space group                          P21  

        Unit cell dimensions                a = 8.8510(2) Å    α = 90°  

                                                b = 11.2574(3) Å    β = 115.248(1)°  

                                                c = 9.0523(2) Å    γ = 90°  

        Volume                                 815.80(3)Å3  

        Z                                       2  

        Density (calculated)                1.219  g/cm3  

        Absorption coefficient              0.750 mm-1  

        F(000)                                 324  

        Crystal size                          0.21 x 0.20 x 0.18 mm  

        Theta range for data collection   5.40 to 72.02°  

        Index ranges                          -10 ≤ h ≤ 10, -13 ≤ k ≤ 13, -11 ≤ l ≤ 10  
        Reflections collected               10191  

        Independent reflections             3035 [Rint = 0.034]  

        Absorption correction               Semi-empirical from equivalents  

        Max. and min. transmission         0.8737 and 0.8000  

        Refinement method                    Full-matrix least-squares on F2  

        Data / restraints / parameters     3035 / 1 / 196  

        Goodness-of-fit on F2                1.101  

        Final R indices [I>2sigma(I)]      R1 = 0.0403, wR2 = 0.0957  

        R indices (all data)                 R1 = 0.0406, wR2 = 0.0961  

        Absolute structure parameter        0.02(14)  

        Extinction coefficient               0.119(4)  

        Largest diff. peak and hole         0.433 and -0.304 e/Å3  
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Table 2.  Atomic coordinates (x 104) and equivalent isotropic  

         displacement parameters (Å2 x 103) for C15 H25 N O5.  

         Ueq is defined as one third of the trace of the orthogonalized  

         Uij tensor.  

         ________________________________________________________________  

   
                         x             y             z           Ueq  

         ________________________________________________________________  
   
          O(1)         2928(1)       3923(1)      10370(1)       42(1)  
          O(2)        -1309(2)       3994(1)       3001(2)       42(1)  
          O(3)        -1813(1)       2213(1)       1776(1)       38(1)  
          O(4)         2378(1)       3659(1)       3177(1)       30(1)  
          O(5)         3819(1)       4457(1)       5719(1)       32(1)  
          N(1)         1836(1)       3125(1)       5305(1)       25(1)  
          C(1)         2189(2)       3101(1)       7056(2)       24(1)  
          C(2)         1347(2)       4144(1)       7502(2)       30(1)  
          C(3)         1248(2)       3944(2)       9124(2)       36(1)  
          C(4)          337(2)       2786(2)       9092(2)       39(1)  
          C(5)         1184(2)       1718(2)       8723(2)       38(1)  
          C(6)         1479(2)       1882(1)       7184(2)       28(1)  
          C(7)          -79(2)       1787(1)       5562(2)       29(1)  
          C(8)          485(2)       2328(1)       4313(2)       24(1)  
          C(9)         -945(2)       2978(1)       2972(2)       26(1)  
          C(10)       -3306(2)       2675(2)        461(2)       55(1)  
          C(11)        2672(2)       3751(1)       4617(2)       23(1)  
          C(12)        5014(2)       5158(1)       5331(2)       29(1)  
          C(13)        4111(2)       6024(1)       3945(2)       38(1)  
          C(14)        6137(2)       4328(2)       4927(2)       39(1)  
          C(15)        5981(3)       5801(2)       6931(2)       51(1)  
         ________________________________________________________________  
 



 

200 
 

          

Table 3. Hydrogen coordinates (x 104) and isotropic displacement  

         parameters (Å2 x 103) for C15 H25 N O5.  

         ________________________________________________________________  

   
                         x             y             z           Ueq  

         ________________________________________________________________  
   
          H(1)         2917          3814         11283          63  
          H(1A)        3422          3119          7745          29  
          H(2A)        1984          4880          7570          35  
          H(2B)         205          4251          6629          35  
          H(3)          634          4621          9334          43  
          H(4A)        -830          2842          8249          47  
          H(4B)         307          2669         10163          47  
          H(5A)         482          1006          8586          46  
          H(5B)        2271          1577          9668          46  
          H(6)         2292          1261          7193          34  
          H(7A)       -1020          2242          5597          34  
          H(7B)        -423           948          5293          34  
          H(8)          922          1690          3831          28  
          H(10A)      -4079          2958           902          82  
          H(10B)      -3843          2045          -340          82  
          H(10C)      -3008          3335           -69          82  
          H(13A)       3497          5581          2931          57  
          H(13B)       4928          6548          3810          57  
          H(13C)       3327          6501          4199          57  
          H(14A)       6658          3755          5817          59  
          H(14B)       7007          4791          4791          59  
          H(14C)       5470          3902          3911          59  
          H(15A)       5223          6321          7167          77  
          H(15B)       6867          6279          6848          77  
          H(15C)       6478          5219          7813          77  
         ________________________________________________________________  
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Table 4.  Anisotropic parameters (Å2 x 103) for C15 H25 N O5.  

           The anisotropic displacement factor exponent takes the form:  

                   -2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
    _______________________________________________________________________  

   
              U11        U22        U33        U23        U13        U12  
    _______________________________________________________________________  
   
    O(1)     38(1)      68(1)      23(1)      -6(1)      14(1)     -12(1)  
    O(2)     41(1)      33(1)      49(1)       1(1)      16(1)       8(1)  
    O(3)     35(1)      41(1)      27(1)      -4(1)       4(1)      -3(1)  
    O(4)     35(1)      36(1)      23(1)      -3(1)      17(1)      -8(1)  
    O(5)     35(1)      40(1)      25(1)      -7(1)      17(1)     -17(1)  
    N(1)     26(1)      30(1)      20(1)      -4(1)      12(1)      -7(1)  
    C(1)     24(1)      30(1)      19(1)       1(1)      10(1)      -4(1)  
    C(2)     35(1)      32(1)      25(1)      -2(1)      16(1)      -3(1)  
    C(3)     36(1)      50(1)      26(1)      -8(1)      18(1)      -4(1)  
    C(4)     38(1)      61(1)      26(1)      -1(1)      21(1)     -10(1)  
    C(5)     43(1)      46(1)      27(1)       8(1)      15(1)     -10(1)  
    C(6)     33(1)      27(1)      25(1)       3(1)      14(1)      -3(1)  
    C(7)     32(1)      28(1)      28(1)      -1(1)      14(1)      -8(1)  
    C(8)     24(1)      25(1)      23(1)      -3(1)      11(1)      -3(1)  
    C(9)     25(1)      30(1)      26(1)       0(1)      14(1)      -2(1)  
    C(10)    36(1)      81(2)      32(1)       2(1)      -1(1)       3(1)  
    C(11)    23(1)      26(1)      23(1)      -1(1)      12(1)      -2(1)  
    C(12)    27(1)      30(1)      34(1)      -1(1)      18(1)      -8(1)  
    C(13)    36(1)      29(1)      53(1)       6(1)      22(1)       1(1)  
    C(14)    30(1)      34(1)      59(1)       2(1)      23(1)       1(1)  
    C(15)    55(1)      60(1)      43(1)     -17(1)      25(1)     -35(1)  
    _______________________________________________________________________  
 



 

202 
 

        
Table 5.  Bond lengths [Å] and angles [°] for C15 H25 N O5  

    ______________________________________________________________________  
  
 
    O(1)-C(3)              1.4325(19)  
    O(2)-C(9)              1.1919(19)  
    O(3)-C(9)              1.3398(17)  
    O(3)-C(10)             1.4459(19)  
    O(4)-C(11)             1.2194(17)  
    O(5)-C(11)             1.3395(16)  
    O(5)-C(12)             1.4766(16)  
    N(1)-C(11)             1.3512(16)  
    N(1)-C(8)              1.4580(16)  
    N(1)-C(1)              1.4791(16)  
    C(1)-C(2)              1.534(2)  
    C(1)-C(6)              1.5349(19)  
    C(2)-C(3)              1.5243(19)  
    C(3)-C(4)              1.527(2)  
    C(4)-C(5)              1.527(3)  
    C(5)-C(6)              1.534(2)  
    C(6)-C(7)              1.5306(19)  
    C(7)-C(8)              1.5419(18)  
    C(8)-C(9)              1.5171(17)  
    C(12)-C(15)            1.516(2)  
    C(12)-C(14)            1.518(2)  
    C(12)-C(13)            1.520(2)  
   
    C(9)-O(3)-C(10)        116.20(14)  
    C(11)-O(5)-C(12)       122.14(10)  
    C(11)-N(1)-C(8)        120.23(10)  
    C(11)-N(1)-C(1)        126.64(11)  
    C(8)-N(1)-C(1)         113.05(10)  
    N(1)-C(1)-C(2)         111.36(11)  

    N(1)-C(1)-C(6)         101.02(10)  
    C(2)-C(1)-C(6)         113.82(11)  
    C(3)-C(2)-C(1)         112.02(13)  
    O(1)-C(3)-C(2)         107.11(12)  
    O(1)-C(3)-C(4)         111.29(14)  
    C(2)-C(3)-C(4)         110.73(12)  
    C(3)-C(4)-C(5)         111.81(12)  
    C(4)-C(5)-C(6)         113.20(13)  
    C(7)-C(6)-C(5)         115.50(12)  
    C(7)-C(6)-C(1)         102.70(11)  
    C(5)-C(6)-C(1)         114.18(12)  
    C(6)-C(7)-C(8)         103.60(11)  
    N(1)-C(8)-C(9)         112.39(11)  
    N(1)-C(8)-C(7)         103.21(10)  
    C(9)-C(8)-C(7)         110.89(11)  
    O(2)-C(9)-O(3)         124.57(13)  
    O(2)-C(9)-C(8)         125.94(13)  
    O(3)-C(9)-C(8)         109.38(12)  
    O(4)-C(11)-O(5)        126.51(11)  
    O(4)-C(11)-N(1)        122.64(12)  
    O(5)-C(11)-N(1)        110.84(11)  
    O(5)-C(12)-C(15)       101.41(11)  
    O(5)-C(12)-C(14)       109.75(12)  
    C(15)-C(12)-C(14)      111.32(15)  
    O(5)-C(12)-C(13)       111.19(12)  
    C(15)-C(12)-C(13)      111.49(15)  
    C(14)-C(12)-C(13)      111.30(13)  
   
    

______________________________________________________________________  
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         Table 6.  Torsion angles [°] for C15 H25 N O5.  

  ______________________________________________________________________________  
  
 
  C(11)-N(1)-C(1)-C(2)      84.54(16)  
  C(8)-N(1)-C(1)-C(2)      -98.56(12)  
  C(11)-N(1)-C(1)-C(6)    -154.26(12)  
  C(8)-N(1)-C(1)-C(6)       22.64(13)  
  N(1)-C(1)-C(2)-C(3)      163.00(12)  
  C(6)-C(1)-C(2)-C(3)       49.60(15)  
  C(1)-C(2)-C(3)-O(1)       65.05(16)  
  C(1)-C(2)-C(3)-C(4)      -56.47(16)  
  O(1)-C(3)-C(4)-C(5)      -61.12(16)  
  C(2)-C(3)-C(4)-C(5)       57.91(17)  
  C(3)-C(4)-C(5)-C(6)      -52.09(17)  
  C(4)-C(5)-C(6)-C(7)      -73.87(17)  
  C(4)-C(5)-C(6)-C(1)       44.89(17)  
  N(1)-C(1)-C(6)-C(7)      -37.35(13)  
  C(2)-C(1)-C(6)-C(7)       82.09(14)  
  N(1)-C(1)-C(6)-C(5)     -163.15(12)  
  C(2)-C(1)-C(6)-C(5)      -43.71(16)  
  C(5)-C(6)-C(7)-C(8)      164.47(13)  
  C(1)-C(6)-C(7)-C(8)       39.53(14)  
  C(11)-N(1)-C(8)-C(9)     -61.76(15)  
  C(1)-N(1)-C(8)-C(9)      121.13(12)  

  C(11)-N(1)-C(8)-C(7)     178.71(12)  
  C(1)-N(1)-C(8)-C(7)        1.59(14)  
  C(6)-C(7)-C(8)-N(1)      -25.49(14)  
  C(6)-C(7)-C(8)-C(9)     -146.05(12)  
  C(10)-O(3)-C(9)-O(2)      -1.2(2)  
  C(10)-O(3)-C(9)-C(8)     175.12(14)  
  N(1)-C(8)-C(9)-O(2)      -26.55(19)  
  C(7)-C(8)-C(9)-O(2)       88.40(17)  
  N(1)-C(8)-C(9)-O(3)      157.19(11)  
  C(7)-C(8)-C(9)-O(3)      -87.85(14)  
  C(12)-O(5)-C(11)-O(4)     -5.9(2)  
  C(12)-O(5)-C(11)-N(1)    174.33(11)  
  C(8)-N(1)-C(11)-O(4)      -1.98(19)  
  C(1)-N(1)-C(11)-O(4)     174.71(13)  
  C(8)-N(1)-C(11)-O(5)     177.82(11)  
  C(1)-N(1)-C(11)-O(5)      -5.49(18)  
  C(11)-O(5)-C(12)-C(15)   178.98(15)  
  C(11)-O(5)-C(12)-C(14)   -63.22(17)  
  C(11)-O(5)-C(12)-C(13)    60.35(18)  
   
  

______________________________________________________________________________  
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   Table 7. Bond lengths [Å] and angles [°] related to the hydrogen  

   bonding for C15 H25 N O5.  

   ______________________________________________________________________  
   
        D-H         ..A       d(D-H)      d(H..A)     d(D..A)     <DHA  
   
     O(1)-H(1)      O(4)#1     0.84        1.97       2.7994(14)  167.6  
 
   ______________________________________________________________________  
   
    Symmetry transformations used to generate equivalent atoms:  
   
         #1 x,y,z+1      
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ORTEP view of the C15 H25 N O5 compound with the numbering scheme adopted. 
Ellipsoids drawn at 30% probability level. Hydrogen atoms are represented 
by sphere of arbitrary size.  
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      Table 1.  Crystal data and structure refinement for C33 H43 N O9.  

        Identification code                 bent112  

        Empirical formula                   C33 H43 N O9  

        Formula weight                       597.68  

        Temperature                           150K  

        Wavelength                            1.54178 Å  

        Crystal system                       Orthorhombic  

        Space group                           P212121  

        Unit cell dimensions                a = 10.4333(5) Å    α = 90°  

                                                b = 12.4407(5) Å    β = 90°  

                                                c = 23.9905(10) Å    γ = 90°  

        Volume                                 3113.9(2)Å3  

        Z                                       4  

        Density (calculated)                1.275  g/cm3  

        Absorption coefficient              0.758 mm-1  

        F(000)                                 1280  

        Crystal size                          0.22 x 0.15 x 0.14 mm  

        Theta range for data collection   3.68 to 72.64°  

        Index ranges                          -12 ≤ h ≤ 11, -15 ≤ k ≤ 15, -29 ≤ l ≤ 29  
        Reflections collected               40744  

        Independent reflections             6091 [Rint = 0.044]  

        Absorption correction               Semi-empirical from equivalents  

        Max. and min. transmission         0.87 and 0.85  

        Refinement method                    Full-matrix least-squares on F2  

        Data / restraints / parameters    6091 / 4 / 449  

        Goodness-of-fit on F2               0.967  

        Final R indices [I>2sigma(I)]     R1 = 0.0352, wR2 = 0.0868  

        R indices (all data)                R1 = 0.0404, wR2 = 0.0890  

        Absolute structure parameter      -0.10(12)  

        Extinction coefficient             0.00326(19)  

        Largest diff. peak and hole       0.136 and -0.186 e/Å3  
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          Table 2.  Atomic coordinates (x 104) and equivalent isotropic  

         displacement parameters (Å2 x 103) for C33 H43 N O9.  
         Ueq is defined as one third of the trace of the orthogonalized  

         Uij tensor.           
 

Occ.        x             y            z           Ueq           

          O(1)      1        4977(1)      -82(1)      566(1)      37(1)  
          O(2)      1        4361(1)    -5982(1)      210(1)      43(1)  
          O(3)      1        3168(1)    -4514(1)       54(1)      35(1)  
          O(4)      1        5309(1)    -2561(1)     -946(1)      48(1)  
          O(5)      1        5496(1)    -4379(1)     -822(1)      38(1)  
          O(6)      1        6259(1)      946(1)     -263(1)      36(1)  
          O(7)      1        7752(1)     2389(1)      412(1)      46(1)  
          O(9)      1        4052(1)     1522(1)      882(1)      50(1)  
          N(1)      1        5406(1)    -3312(1)      -84(1)      33(1)  
          C(1)      1        5414(2)    -2288(1)      222(1)      33(1)  
          C(2)      1        4093(2)    -1734(1)      206(1)      37(1)  
          C(3)      1        3978(2)     -876(1)      653(1)      39(1)  
          C(4)      1        4168(2)    -1370(1)     1223(1)      44(1)  
          C(5)      1        5504(2)    -1865(1)     1276(1)      43(1)  
          C(6)      1        5841(2)    -2646(1)      808(1)      37(1)  
          C(7)      1        5235(2)    -3771(1)      862(1)      38(1)  
          C(8)      1        5370(2)    -4258(1)      279(1)      34(1)  
          C(9)      1        4260(2)    -5015(1)      167(1)      33(1)  
          C(10)     1        5387(2)    -3347(1)     -648(1)      36(1)  
          C(11)     1        5086(2)    -4682(1)    -1391(1)      41(1)  
          C(12)     1        3677(2)    -4385(2)    -1454(1)      52(1)  
          C(13)     1        5259(2)    -5890(2)    -1384(1)      56(1)  
          C(14)     1        5901(2)    -4169(2)    -1836(1)      61(1)  
          C(15)     1        4562(2)      948(1)      419(1)      40(1)  
          C(16)     1        5709(2)     1556(1)      190(1)      37(1)  
          C(17)     1        6739(2)     1745(1)      631(1)      38(1)  
          C(20)     1        6369(2)     1546(1)     -772(1)      43(1)  
          C(21)     1        6816(2)      824(1)    -1238(1)      40(1)  
          C(22)     1        6604(2)     -275(1)    -1246(1)      40(1)  
          C(23)     1        6997(2)     -890(2)    -1696(1)      46(1)  
          C(24)     1        7604(2)     -423(2)    -2143(1)      55(1)  
          C(25)     1        7810(2)      681(2)    -2140(1)      65(1)  
          C(26)     1        7417(2)     1297(2)    -1693(1)      55(1)  
          O(8A)     0.807(4) 6993(5)     2280(4)     1596(3)      50(1)  
          C(18A)    0.807(4) 6131(9)     2298(11)    1131(3)      44(1)  
          C(19A)    0.807(4) 4972(13)    1664(17)    1319(5)      52(1)  
          C(27A)    0.807(4) 7977(2)     3074(2)     1625(1)      59(1)  
          C(28A)    0.807(4) 7533(2)     4171(1)     1812(1)      41(1)  
          C(29A)    0.807(4) 8306(2)     5051(2)     1691(1)      61(1)  
          C(30A)    0.807(4) 8005(3)     6057(2)     1907(2)      74(2)  
          C(31A)    0.807(4) 6931(4)     6183(2)     2243(2)      72(2)  
          C(32A)    0.807(4) 6158(3)     5303(2)     2364(1)      57(1)  
          C(33A)    0.807(4) 6459(2)     4298(2)     2148(1)      44(1)  
          O(8B)     0.193(4) 6850(20)    2249(18)    1669(11)     67(7)  
          C(18B)    0.193(4) 6180(40)    2290(50)    1146(10)     44(1)  
          C(19B)    0.193(4) 4990(50)    1680(70)    1310(20)     52(1)  
          C(27B)    0.193(4) 6446(13)    3039(8)     2032(5)      60(4)  
          C(28B)    0.193(4) 7000(9)     4160(6)     1925(5)      34(3)  
          C(29B)    0.193(4) 7897(8)     4325(7)     1505(5)      57(3)  
          C(30B)    0.193(4) 8438(9)     5335(9)     1430(5)      80(6)  
          C(31B)    0.193(4) 8082(14)    6182(6)     1775(7)     104(9)  
          C(32B)    0.193(4) 7186(16)    6018(7)     2195(6)      65(6)  
          C(33B)    0.193(4) 6645(12)    5007(9)     2270(4)      59(4)         
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         Table 3. Hydrogen coordinates (x 104) and isotropic displacement  

         parameters (Å2 x 103) for C33 H43 N O9.  
            

                    Occ.       x           y            z           Ueq          

          H(3)      1        2559       -4955          70         53  
          H(7)      1        8211        2014         201         68  
          H(1)      1        6075       -1799          58         39  
          H(2A)     1        3964       -1402        -165         44  
          H(2B)     1        3413       -2280         261         44  
          H(3A)     1        3116        -526         632         46  
          H(4A)     1        3512       -1932        1285         53  
          H(4B)     1        4056        -810        1512         53  
          H(5A)     1        6147       -1279        1282         52  
          H(5B)     1        5560       -2249        1637         52  
          H(6)      1        6793       -2735         803         44  
          H(7A)     1        5697       -4209        1142         46  
          H(7B)     1        4322       -3718         971         46  
          H(8)      1        6198       -4658         251         41  
          H(12A)    1        3189       -4684       -1142         78  
          H(12B)    1        3348       -4678       -1805         78  
          H(12C)    1        3589       -3601       -1456         78  
          H(13A)    1        6161       -6062       -1313         84  
          H(13B)    1        5003       -6188       -1746         84  
          H(13C)    1        4725       -6202       -1090         84  
          H(14A)    1        5789       -3387       -1824         91  
          H(14B)    1        5642       -4440       -2202         91  
          H(14C)    1        6804       -4346       -1770         91  
          H(15)     1        3891         890         123         48  
          H(16)     1        5413        2267          44         45  
          H(17)     1        7096        1036         752         46  
          H(20A)    1        6987        2141        -721         51  
          H(20B)    1        5527        1861        -870         51  
          H(22)     1        6186        -610        -940         48  
          H(23)     1        6845       -1643       -1696         55  
          H(24)     1        7880        -848       -2449         66  
          H(25)     1        8224        1014       -2448         77  
          H(26)     1        7557        2052       -1697         67  
          H(18A)    0.807(4) 5886        3053        1037         53  
          H(19A)    0.807(4) 5253         950        1453         63  
          H(19B)    0.807(4) 4559        2043        1634         63  
          H(27A)    0.807(4) 8375        3143        1252         70  
          H(27B)    0.807(4) 8647        2820        1885         70  
          H(29A)    0.807(4) 9041        4965        1461         73  
          H(30A)    0.807(4) 8534        6658        1824         89  
          H(31A)    0.807(4) 6725        6870        2390         87  
          H(32A)    0.807(4) 5423        5390        2593         68  
          H(33A)    0.807(4) 5930        3696        2230         52  
          H(18B)    0.193(4) 5956        3051        1056         53  
          H(19C)    0.193(4) 5246         968        1455         63  
          H(19D)    0.193(4) 4571        2072        1622         63  
          H(27C)    0.193(4) 6676        2818        2415         73  
          H(27D)    0.193(4) 5500        3084        2012         73  
          H(29B)    0.193(4) 8140        3746        1269         69  
          H(30B)    0.193(4) 9051        5448        1143         96  
          H(31B)    0.193(4) 8452        6873        1724        124  
          H(32B)    0.193(4) 6943        6596        2431         78  
          H(33B)    0.193(4) 6032        4895        2557         71  
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     Table 4.  Anisotropic parameters (Å2 x 103) for C33 H43 N O9.  
           The anisotropic displacement factor exponent takes the form:  

                   -2 π2 [ h2 a*2 U11 + ... + 2 h k a* b* U12 ]  
        
              U11         U22        U33         U23         U13        U12        
    O(1)     33(1)      27(1)      50(1)       0(1)       4(1)       2(1)  
    O(2)     44(1)      27(1)      58(1)       3(1)      -3(1)       2(1)  
    O(3)     32(1)      26(1)      47(1)       2(1)       1(1)      -2(1)  
    O(4)     71(1)      32(1)      40(1)       3(1)       8(1)      -7(1)  
    O(5)     42(1)      32(1)      40(1)      -5(1)       1(1)       2(1)  
    O(6)     40(1)      29(1)      39(1)       5(1)       0(1)       6(1)  
    O(7)     45(1)      33(1)      59(1)      -6(1)       3(1)      -5(1)  
    O(9)     43(1)      40(1)      67(1)      -8(1)      13(1)      10(1)  
    N(1)     38(1)      27(1)      35(1)       0(1)       5(1)      -4(1)  
    C(1)     33(1)      27(1)      38(1)      -2(1)       4(1)      -6(1)  
    C(2)     35(1)      31(1)      44(1)       0(1)      -2(1)      -2(1)  
    C(3)     33(1)      32(1)      51(1)      -4(1)       7(1)       0(1)  
    C(4)     50(1)      36(1)      46(1)      -7(1)      13(1)      -9(1)  
    C(5)     55(1)      36(1)      39(1)       0(1)      -3(1)     -10(1)  
    C(6)     35(1)      35(1)      41(1)       0(1)      -3(1)      -3(1)  
    C(7)     42(1)      35(1)      37(1)       3(1)      -3(1)      -2(1)  
    C(8)     31(1)      30(1)      42(1)       2(1)       0(1)       1(1)  
    C(9)     38(1)      28(1)      34(1)       1(1)       3(1)       2(1)  
    C(10)    35(1)      32(1)      41(1)      -2(1)       6(1)      -3(1)  
    C(11)    45(1)      37(1)      40(1)      -7(1)       3(1)      -5(1)  
    C(12)    52(1)      48(1)      56(1)       2(1)      -7(1)      -5(1)  
    C(13)    71(1)      41(1)      56(1)     -13(1)      -2(1)       4(1)  
    C(14)    70(1)      65(1)      47(1)     -14(1)      18(1)     -18(1)  
    C(15)    37(1)      32(1)      51(1)      -3(1)       2(1)       8(1)  
    C(16)    41(1)      24(1)      47(1)       1(1)       2(1)       8(1)  
    C(17)    41(1)      25(1)      48(1)      -2(1)      -1(1)       3(1)  
    C(20)    51(1)      33(1)      45(1)      10(1)      -5(1)      -1(1)  
    C(21)    39(1)      39(1)      41(1)       7(1)      -9(1)      -5(1)  
    C(22)    42(1)      38(1)      41(1)       8(1)      -6(1)      -3(1)  
    C(23)    51(1)      39(1)      47(1)       1(1)     -10(1)      -5(1)  
    C(24)    65(1)      56(1)      42(1)      -4(1)      -2(1)      -8(1)  
    C(25)    89(2)      59(1)      46(1)       2(1)      10(1)     -24(1)  
    C(26)    73(1)      43(1)      50(1)       5(1)      -1(1)     -20(1)  
    O(8A)    66(2)      38(2)      47(2)      -9(1)      -4(1)      16(2)  
    C(18A)   52(1)      28(1)      53(1)      -5(1)      -2(1)       9(1)  
    C(19A)   63(1)      43(1)      51(1)     -11(1)      11(1)       9(1)  
    C(27A)   47(2)      64(2)      65(2)     -29(1)      -4(1)       7(1)  
    C(28A)   40(2)      47(2)      35(2)      -4(1)      -3(1)      -4(1)  
    C(29A)   54(2)      67(2)      60(2)      13(2)     -13(2)     -10(2)  
    C(30A)   84(4)      45(2)      94(3)      16(2)     -46(2)     -21(2)  
    C(31A)  111(4)      39(2)      67(3)      -8(2)     -41(2)      15(2)  
    C(32A)   74(3)      50(2)      45(2)     -11(1)     -12(2)      19(2)  
    C(33A)   52(2)      40(1)      38(1)      -6(1)       1(1)       3(1)  
    O(8B)    93(12)     64(10)     43(8)      -5(6)     -14(8)     -43(8)  
    C(18B)   52(1)      28(1)      53(1)      -5(1)      -2(1)       9(1)  
    C(19B)   63(1)      43(1)      51(1)     -11(1)      11(1)       9(1)  
    C(27B)   87(9)      39(6)      56(7)       4(5)      17(6)     -21(5)  
    C(28B)   26(7)      29(5)      47(7)       1(4)       5(5)     -12(4)  
    C(29B)   32(6)      66(8)      75(9)      14(7)      -4(6)       3(5)  
    C(30B)   59(9)      61(9)     119(15)     31(10)    -51(9)      -3(6)  
    C(31B)  110(20)     71(14)    126(19)     29(14)    -57(14)     4(12)  
    C(32B)   68(10)     30(7)      97(15)      2(8)     -48(10)      1(8)  
    C(33B)   59(10)     83(13)     35(6)       7(7)      -3(6)       2(8)     
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      Table 5.  Bond lengths [Å] and angles [°] for C33 H43 N O9  
    ______________________________________________________________________  
  
 
    O(1)-C(15)             1.3973(18)  
    O(1)-C(3)              1.4517(19)  
    O(2)-C(9)              1.2116(18)  
    O(3)-C(9)              1.3279(19)  
    O(4)-C(10)             1.2139(19)  
    O(5)-C(10)             1.3559(18)  
    O(5)-C(11)             1.479(2)  
    O(6)-C(20)             1.4355(19)  
    O(6)-C(16)             1.4436(19)  
    O(7)-C(17)             1.426(2)  
    O(9)-C(15)             1.423(2)  
    O(9)-C(19a)            1.432(5)  
    O(9)-C(19b)            1.432(17)  
    N(1)-C(10)             1.353(2)  
    N(1)-C(8)              1.4639(18)  
    N(1)-C(1)              1.4692(18)  
    C(1)-C(6)              1.540(2)  
    C(1)-C(2)              1.542(2)  
    C(2)-C(3)              1.519(2)  
    C(3)-C(4)              1.511(2)  
    C(4)-C(5)              1.529(3)  
    C(5)-C(6)              1.526(2)  
    C(6)-C(7)              1.541(2)  
    C(7)-C(8)              1.531(2)  
    C(8)-C(9)              1.516(2)  
    C(11)-C(14)            1.506(3)  
    C(11)-C(13)            1.513(2)  
    C(11)-C(12)            1.523(3)  
    C(15)-C(16)            1.519(2)  
    C(16)-C(17)            1.528(2)  
    C(17)-C(18a)           1.521(5)  
    C(17)-C(18b)           1.524(16)  
    C(20)-C(21)            1.507(2)  
    C(21)-C(22)            1.385(2)  
    C(21)-C(26)            1.391(2)  
    C(22)-C(23)            1.385(3)  
    C(23)-C(24)            1.375(3)  
    C(24)-C(25)            1.390(3)  
    C(25)-C(26)            1.380(3)  
    O(8a)-C(27a)           1.426(6)  
    O(8a)-C(18a)           1.432(5)  
    C(18a)-C(19a)          1.512(5)  
    C(27a)-C(28a)          1.510(3)  
    C(28a)-C(29a)          1.39  
    C(28a)-C(33a)          1.39  
    C(29a)-C(30a)          1.39  
    C(30a)-C(31a)          1.39  
    C(31a)-C(32a)          1.39  
    C(32a)-C(33a)          1.39  
    O(8b)-C(27b)           1.38(3)  
    O(8b)-C(18b)           1.436(17)  
    C(18b)-C(19b)          1.512(17)  
    C(27b)-C(28b)          1.532(11)  
    C(28b)-C(29b)          1.39  
    C(28b)-C(33b)          1.39  

    C(29b)-C(30b)          1.39  
    C(30b)-C(31b)          1.39  
    C(31b)-C(32b)          1.39  
    C(32b)-C(33b)          1.39  
   
    C(15)-O(1)-C(3)        115.98(12)  
    C(10)-O(5)-C(11)       120.18(13)  
    C(20)-O(6)-C(16)       113.51(11)  
    C(15)-O(9)-C(19A)      112.5(9)  
    C(15)-O(9)-C(19B)      112(4)  
    C(19A)-O(9)-C(19B)       1(3)  
    C(10)-N(1)-C(8)        124.59(13)  
    C(10)-N(1)-C(1)        121.76(13)  
    C(8)-N(1)-C(1)         113.61(12)  
    N(1)-C(1)-C(6)         101.94(12)  
    N(1)-C(1)-C(2)         111.72(12)  
    C(6)-C(1)-C(2)         114.22(13)  
    C(3)-C(2)-C(1)         111.56(13)  
    O(1)-C(3)-C(4)         108.23(14)  
    O(1)-C(3)-C(2)         108.60(13)  
    C(4)-C(3)-C(2)         110.09(13)  
    C(3)-C(4)-C(5)         111.03(14)  
    C(6)-C(5)-C(4)         113.90(15)  
    C(5)-C(6)-C(1)         114.94(13)  
    C(5)-C(6)-C(7)         114.95(14)  
    C(1)-C(6)-C(7)         102.71(12)  
    C(8)-C(7)-C(6)         104.19(13)  
    N(1)-C(8)-C(9)         114.49(13)  
    N(1)-C(8)-C(7)         103.12(12)  
    C(9)-C(8)-C(7)         109.71(13)  
    O(2)-C(9)-O(3)         123.92(15)  
    O(2)-C(9)-C(8)         122.39(15)  
    O(3)-C(9)-C(8)         113.56(12)  
    O(4)-C(10)-N(1)        124.36(14)  
    O(4)-C(10)-O(5)        125.87(15)  
    N(1)-C(10)-O(5)        109.75(14)  
    O(5)-C(11)-C(14)       112.45(14)  
    O(5)-C(11)-C(13)       102.06(14)  
    C(14)-C(11)-C(13)      111.18(17)  
    O(5)-C(11)-C(12)       107.99(14)  
    C(14)-C(11)-C(12)      111.80(17)  
    C(13)-C(11)-C(12)      110.93(16)  
    O(1)-C(15)-O(9)        112.33(14)  
    O(1)-C(15)-C(16)       107.68(12)  
    O(9)-C(15)-C(16)       109.09(13)  
    O(6)-C(16)-C(15)       108.92(12)  
    O(6)-C(16)-C(17)       108.89(12)  
    C(15)-C(16)-C(17)      112.30(14)  
    O(7)-C(17)-C(18A)      110.2(6)  
    O(7)-C(17)-C(18B)      109(2)  
    C(18A)-C(17)-C(18B)      2.4(15)  
    O(7)-C(17)-C(16)       110.61(14)  
    C(18A)-C(17)-C(16)     108.9(3)  
    C(18B)-C(17)-C(16)     111.2(13)  
    O(6)-C(20)-C(21)       110.19(13)  
    C(22)-C(21)-C(26)      118.61(17)  
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    C(22)-C(21)-C(20)      123.32(16)  
    C(26)-C(21)-C(20)      118.00(16)  
    C(21)-C(22)-C(23)      120.61(17)  
    C(24)-C(23)-C(22)      120.68(18)  
    C(23)-C(24)-C(25)      119.05(19)  
 
    C(26)-C(25)-C(24)      120.43(19)  
    C(25)-C(26)-C(21)      120.61(18)  
    C(27A)-O(8A)-C(18A)    118.6(7)  
    O(8A)-C(18A)-C(19A)    105.3(6)  
    O(8A)-C(18A)-C(17)     110.2(5)  
    C(19A)-C(18A)-C(17)    109.4(11)  
    O(9)-C(19A)-C(18A)     112.5(9)  
    O(8A)-C(27A)-C(28A)    114.9(3)  
    C(29A)-C(28A)-C(33A)   120  
    C(29A)-C(28A)-C(27A)   118.2(2)  
    C(33A)-C(28A)-C(27A)   121.4(2)  
    C(30A)-C(29A)-C(28A)   120  
    C(29A)-C(30A)-C(31A)   120  

    C(32A)-C(31A)-C(30A)   120  
    C(31A)-C(32A)-C(33A)   120  
    C(32A)-C(33A)-C(28A)   120  
    C(27B)-O(8B)-C(18B)    112.2(19)  
    O(8B)-C(18B)-C(19B)     99(2)  
    O(8B)-C(18B)-C(17)     120(2)  
    C(19B)-C(18B)-C(17)    108(5)  
    O(9)-C(19B)-C(18B)     116(4)  
    O(8B)-C(27B)-C(28B)    115.4(14)  
    C(29B)-C(28B)-C(33B)   120  
    C(29B)-C(28B)-C(27B)   120.6(9)  
    C(33B)-C(28B)-C(27B)   119.3(9)  
    C(28B)-C(29B)-C(30B)   120  
    C(31B)-C(30B)-C(29B)   120  
    C(30B)-C(31B)-C(32B)   120  
    C(33B)-C(32B)-C(31B)   120  
    C(32B)-C(33B)-C(28B)   120  
   
    

______________________________________________________________________  
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          Table 6.  Torsion angles [°] for C33 H43 N O9.  
  ______________________________________________________________________________   
  C(10)-N(1)-C(1)-C(6)    -163.69(14)  
  C(8)-N(1)-C(1)-C(6)       18.60(16)  
  C(10)-N(1)-C(1)-C(2)      73.94(18)  
  C(8)-N(1)-C(1)-C(2)     -103.78(15)  
  N(1)-C(1)-C(2)-C(3)      162.80(12)  
  C(6)-C(1)-C(2)-C(3)       47.76(17)  
  C(15)-O(1)-C(3)-C(4)    -126.13(14)  
  C(15)-O(1)-C(3)-C(2)     114.36(14)  
  C(1)-C(2)-C(3)-O(1)       59.19(16)  
  C(1)-C(2)-C(3)-C(4)      -59.15(17)  
  O(1)-C(3)-C(4)-C(5)      -57.19(17)  
  C(2)-C(3)-C(4)-C(5)       61.38(17)  
  C(3)-C(4)-C(5)-C(6)      -52.25(18)  
  C(4)-C(5)-C(6)-C(1)       40.90(19)  
  C(4)-C(5)-C(6)-C(7)      -78.04(18)  
  N(1)-C(1)-C(6)-C(5)     -159.38(14)  
  C(2)-C(1)-C(6)-C(5)      -38.73(18)  
  N(1)-C(1)-C(6)-C(7)      -33.81(15)  
  C(2)-C(1)-C(6)-C(7)       86.84(15)  
  C(5)-C(6)-C(7)-C(8)      163.38(14)  
  C(1)-C(6)-C(7)-C(8)       37.82(16)  
  C(10)-N(1)-C(8)-C(9)     -53.7(2)  
  C(1)-N(1)-C(8)-C(9)      123.89(14)  
  C(10)-N(1)-C(8)-C(7)    -172.87(15)  
  C(1)-N(1)-C(8)-C(7)        4.77(17)  
  C(6)-C(7)-C(8)-N(1)      -26.33(16)  
  C(6)-C(7)-C(8)-C(9)     -148.72(13)  
  N(1)-C(8)-C(9)-O(2)      144.37(15)  
  C(7)-C(8)-C(9)-O(2)     -100.29(18)  
  N(1)-C(8)-C(9)-O(3)      -39.60(19)  
  C(7)-C(8)-C(9)-O(3)       75.74(16)  
  C(8)-N(1)-C(10)-O(4)     173.53(16)  
  C(1)-N(1)-C(10)-O(4)      -3.9(3)  
  C(8)-N(1)-C(10)-O(5)      -7.8(2)  
  C(1)-N(1)-C(10)-O(5)     174.75(13)  
  C(11)-O(5)-C(10)-O(4)    -21.3(2)  
  C(11)-O(5)-C(10)-N(1)    160.02(14)  
  C(10)-O(5)-C(11)-C(14)    65.8(2)  
  C(10)-O(5)-C(11)-C(13)  -174.99(15)  
  C(10)-O(5)-C(11)-C(12)   -58.03(18)  
  C(3)-O(1)-C(15)-O(9)      75.66(17)  
  C(3)-O(1)-C(15)-C(16)   -164.21(13)  
  C(19A)-O(9)-C(15)-O(1)    60.3(8)  
  C(19B)-O(9)-C(15)-O(1)    62(3)  
  C(19A)-O(9)-C(15)-C(16)  -59.0(8)  
  C(19B)-O(9)-C(15)-C(16)  -58(3)  
  C(20)-O(6)-C(16)-C(15)   125.27(14)  
  C(20)-O(6)-C(16)-C(17)  -111.96(15)  
  O(1)-C(15)-C(16)-O(6)     55.25(16)  
  O(9)-C(15)-C(16)-O(6)    177.41(13)  
  O(1)-C(15)-C(16)-C(17)   -65.45(16)  
  O(9)-C(15)-C(16)-C(17)    56.71(16)  
  O(6)-C(16)-C(17)-O(7)     63.83(16)  
  C(15)-C(16)-C(17)-O(7)  -175.46(12)  
  O(6)-C(16)-C(17)-C(18A) -174.9(6)  
  C(15)-C(16)-C(17)-C(18A) -54.2(6)  
  O(6)-C(16)-C(17)-C(18B) -174(3)  
  C(15)-C(16)-C(17)-C(18B) -54(3)  

  C(16)-O(6)-C(20)-C(21)  -173.99(13)  
  O(6)-C(20)-C(21)-C(22)    26.2(2)  
  O(6)-C(20)-C(21)-C(26)  -156.94(16)  
  C(26)-C(21)-C(22)-C(23)    0.7(3)  
  C(20)-C(21)-C(22)-C(23)  177.55(16)  
  C(21)-C(22)-C(23)-C(24)    0.1(3)  
  C(22)-C(23)-C(24)-C(25)   -0.6(3)  
  C(23)-C(24)-C(25)-C(26)    0.4(4)  
  C(24)-C(25)-C(26)-C(21)    0.4(4)  
  C(22)-C(21)-C(26)-C(25)   -0.9(3)  
  C(20)-C(21)-C(26)-C(25) -177.9(2)  
 C(27A)-O(8A)-C(18A)-C(19A) -160.1(1)  
  C(27A)-O(8A)-C(18A)-C(17) 82(1)  
  O(7)-C(17)-C(18A)-O(8A)  -70.9(1)  
  C(18B)-C(17)-C(18A)-O(8A) -1(71)  
  C(16)-C(17)-C(18A)-O(8A) 167.6(7)  
  O(7)-C(17)-C(18A)-C(19A) 173.9(6)  
  C(18B)-C(17)-C(18A)-C(19A) -116(72)  
  C(16)-C(17)-C(18A)-C(19A) 52.4(8)  
  C(15)-O(9)-C(19A)-C(18A)  60.9(15)  
  C(19B)-O(9)-C(19A)-C(18A)-13(10)  
  O(8A)-C(18A)-C(19A)-O(9)-174.9(12)  
  C(17)-C(18A)-C(19A)-O(9) -56.5(16)  
  C(18A)-O(8A)-C(27A)-C(28A)77.2(6)  
 O(8A)-C(27A)-C(28A)-C(29A) -160.6(3)  
  O(8A)-C(27A)-C(28A)-C(33A) 26.5(4)  
  C(33A)-C(28A)-C(29A)-C(30A)0  
C(27A)-C(28A)-C(29A)-C(30A) -173.1(2)  
  C(28A)-C(29A)-C(30A)-C(31A)0  
  C(29A)-C(30A)-C(31A)-C(32A)0  
  C(30A)-C(31A)-C(32A)-C(33A)0  
  C(31A)-C(32A)-C(33A)-C(28A)0  
  C(29A)-C(28A)-C(33A)-C(32A)0  
 C(27A)-C(28A)-C(33A)-C(32A) 172.8(2)  
  C(27B)-O(8B)-C(18B)-C(19B) -83(5)  
  C(27B)-O(8B)-C(18B)-C(17)161(4)  
  O(7)-C(17)-C(18B)-O(8B)  -77(5)  
  C(18A)-C(17)-C(18B)-O(8B)172(76)  
  C(16)-C(17)-C(18B)-O(8B) 161(4)  
  O(7)-C(17)-C(18B)-C(19B) 171(3)  
  C(18A)-C(17)-C(18B)-C(19B)60(71)  
  C(16)-C(17)-C(18B)-C(19B) 49(3)  
  C(15)-O(9)-C(19B)-C(18B)  59(7)  
  C(19A)-O(9)-C(19B)-C(18B) 166(10)  
  O(8B)-C(18B)-C(19B)-O(9)-179(6)  
  C(17)-C(18B)-C(19B)-O(9) -52(7)  
  C(18B)-O(8B)-C(27B)-C(28B-79(3)  
  O(8B)-C(27B)-C(28B)-C(29B)-3.2(17)  
 O(8B)-C(27B)-C(28B)-C(33B) 179.9(13) 
  C(33B)-C(28B)-C(29B)-C(30B)0  
C(27B)-C(28B)-C(29B)-C(30B) -176.9(1) 
  C(28B)-C(29B)-C(30B)-C(31B)0  
  C(29B)-C(30B)-C(31B)-C(32B)0  
  C(30B)-C(31B)-C(32B)-C(33B)0  
  C(31B)-C(32B)-C(33B)-C(28B)0  
  C(29B)-C(28B)-C(33B)-C(32B)0  
 C(27B)-C(28B)-C(33B)-C(32B) 176.9(1)  
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Table 7. Bond lengths [Å] and angles [°] related to the hydrogen  

   bonding for C33 H43 N O9.  

   

______________________________________________________________________  

   
        D-H         ..A       d(D-H)      d(H..A)     d(D..A)     <DHA  
   
     O(7)-H(7)      O(2)#1     0.84        2.01       2.8488(16)  171.8  
     O(3)-H(3)      O(6)#2     0.84        1.89       2.7195(15)  168.4  
   
   
______________________________________________________________________  
   
    Symmetry transformations used to generate equivalent atoms:  
   
         #1 x+1/2,-y-1/2,-z    #2 x-1/2,-y-1/2,-z      
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ORTEP view of the C33 H43 N O9 compound with the numbering scheme 
adopted. Ellipsoids drawn at 30% probability level. Hydrogen atoms 
are represented by sphere of arbitrary size.  
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