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Résumé

L’enfance et l’adolescence sont des périodes uniques de la vie où les changements neuronaux
favorisent l’établissement de réseaux cérébraux matures et le développement des capacités
intellectuelles. Le langage est un domaine cognitif qui est, non seulement essentiel pour la
communication interhumaine, mais qui contribue également au développement de nombreuse
capacités et prédit de manière significative la réussite académique. Les régions cérébrales
frontotemporales sont des régions clés du réseau langagier du cerveau. Il a été démontré
que les neuropathologies telles que l’épilepsie des lobes frontal et temporal (ELF et ELT)
interfèrent avec le développement des réseaux cérébraux du langage et provoquent des circuits
cérébraux aberrants. Les patrons exacts de réorganisation des réseaux cérébraux fonctionnels
ne sont toutefois, pas entièrement compris et l’association avec le profil neuropsychologique
reste spéculative. Par conséquent, l’objectif principal de cette thèse est d’accroître la compré-
hension des altérations du réseau langagier et d’améliorer les connaissances de l’association
de l’architecture du réseau et des capacités cognitives chez les enfants et les adolescents avec
ELF ou ELT.

La présente thèse est composée de trois articles scientifiques, les deux premiers présentant
des travaux méthodologiques qui ont permis d’optimiser les méthodes appliquées dans le
troisième article, l’étude empirique principale menée auprès d’enfants avec ELF et ELT. Le
premier article présente le bilan neuropsychologique pédiatrique comme un outil important
pour estimer les capacités cognitives et dresser un profil cognitif avec ses forces et ses
faiblesses. Dans le deuxième article, l’analyse factorielle parallèle (PARAFAC) est présentée
et validée comme une nouvelle technique employée pour corriger les artefacts de mouvement
qui contaminent le signal hémodynamique évalué par la spectroscopie fonctionnelle proche
infrarouge (fNIRS). Une meilleure qualité du signal permet une interprétation fiable de la
réponse cérébrale en plis de déduire des métriques d’organisation du réseau cérébral. Le
troisième article consiste en une étude empirique, où le traitement cérébral du langage, est
comparé entre des enfants avec ELF et ELT, et des pairs neuroptypiques. Les schémas de
connectivité fonctionnelle indiquent que le groupe de patients présente moins de connexions
intra-hémisphériques dans l’hémisphère gauche et entre les hémisphères, et des connexions
accrues dans l’hémisphère droit par rapport au groupe témoin. Les mesures de l’architecture
du réseau révèlent en outre une efficacité de traitement local plus élevée dans l’hémisphère
droit chez les enfants atteints de ELF et ELT par rapport aux enfants en bonne santé.
L’architecture du réseau local de l’hémisphère gauche et la capacité intellectuelle globale dans
le groupe de patients sont négativement liées, tandis que dans le groupe contrôle, aucune
association de ce type n’est identifiable. Ces résultats suggèrent que la réorganisation du
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réseau de langage chez les enfants avec ELF ou ELT semble dans certains cas soutenir un
meilleur résultat cognitif, soit lorsque l’efficacité du traitement local dans l’hémisphère gauche
est diminuée. Au contraire, une plus grande efficacité de traitement local semble être une
caractéristique d’un réseau de langage cérébral associé à de moins bonnes capacités cognitives.

Les travaux de recherche de cette thèse de doctorat fournissent des lignes directrices pour
l’utilisation de l’évaluation neuropsychologique pédiatrique, à la fois dans un contexte clinique
et scientifique. L’introduction de PARAFAC pour corriger les artefacts de mouvement dans
le signal fNIRS est un ajout important au pipeline de prétraitement qui permet d’augmenter
la qualité du signal pour une analyse ultérieure. De futurs projets pourront s’appuyer sur
cette validation initiale et étendre l’utilisation de PARAFAC pour les analyses du signal
fNIRS. Sur cette base méthodologique solide, le travail empirique confirme l’incidence accrue
de circuits cérébraux aberrants liés au traitement du langage chez les enfants atteints de
ELF et de ELT, et soutient en outre l’efficacité du réseau local en tant que déterminant
clé de l’impact de la plasticité cérébrale précoce sur les capacités cognitives. Afin de mieux
comprendre les altérations du réseau en réponse aux neuropathologies et leur impact, des
études avec des échantillons plus grands et de différents groupes d’âge, devraient étudier
plus spécifiquement le rôle des facteurs cliniques (e.g., le type d’épilepsie, la latéralisation de
l’épilepsie, le contrôle des crises, etc.) et aborder leurs influences sur le développement. À long
terme, cela augmentera le pronostic des phénotypes cliniques chez les patients pédiatriques
atteints de ELF et de ELT, et offrira des opportunités d’interventions précoces pour soutenir
un développement typique.

Mots-clés : Neurodéveloppement, réseau cérébral du langage, plasticité cérébrale précoce,
neuropsychologie, spectroscopie fonctionelle proche infrarouge-éléctrophysiologie (fNIRS-
EEG), corréction des artefacts de mouvement, analyse des réseaux, épilepsie pédiatrique,
épilepsie du lobe frontotemporal, relation cerveau-comportement.
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Abstract

Childhood and adolescence are unique periods in life where neuronal changes support
the establishment of mature brain networks and the development of intellectual capacities.
Language is one cognitive domain that is not only an essential part of inter-human communi-
cation but also contributes to the development of other capacities and significantly influences
academic achievement. Frontotemporal brain areas are key regions of the brain’s language
network. Neuropathologies such as frontal and temporal lobe epilepsies (FLE and TLE)
have been shown to interfere with developing brain language networks and cause aberrant
cerebral circuits. The exact patterns of functional brain network reorganization are not
fully understood and the association with the neuropsychological profile remains speculative.
Therefore, the main objective of this thesis was to increase comprehension of language network
alterations and enhance the knowledge on the association of network topology and cognitive
capacities in children and adolescents with FLE or TLE.

This thesis consists of three scientific articles, with the first two presenting methodological
work that allowed for the optimization of the methods applied in the third article, which is
the main empirical study conducted on children with FLE and TLE. The first article presents
the pediatric neuropsychological assessment as a valuable tool to estimate cognitive capacities
and draw a cognitive profile with strengths and weaknesses. In the second article, parallel
factor analysis (PARAFAC) is presented and validated as a novel technique to correct motion
artifacts that contaminate the hemodynamic signal assessed with functional near-infrared
spectroscopy (fNIRS). A better signal quality is the basis for a reliable interpretation of the
cerebral response and derive metrics of brain network organization. The third article consists
of an empirical study where cerebral language processing is compared between children with
FLE and TLE, and neuroptypical peers. Patterns of functional connectivity indicate that the
patient group demonstrates fewer intra-hemispheric connections in the left hemisphere and
between hemispheres, and increased connections within the right hemisphere as compared to
the control group. Metrics of network architecture further reveal a higher local processing
efficiency within the right hemisphere in children with FLE and TLE compared to healthy
peers. Local network architecture of the left hemisphere and the overall intellectual capacity
in the patient group is negatively related, while in the control group no such association is
identifiable. These findings suggest that language network reorganization in children with
FLE or TLE in some cases seems to support a better cognitive outcome, namely when local
processing efficiency in the left hemisphere is decreased. On the contrary, a higher local
processing efficiency seems to be a characteristic of a brain language network that goes along
with worse cognitive capacities.
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The research work of this doctoral thesis provides guidelines for the use of pediatric
neuropsychological assessment both in a clinical and scientific context. The introduction of
PARAFAC to correct motion artifact in the fNIRS signal is an important add-on to the
preprocessing pipeline that allows to increase signal quality for subsequent analysis. Future
projects will be able to build on this initial validation and extend PARAFAC’s use for fNIRS
analysis. On this solid methodological foundation, the empirical work confirms the increased
incidence of aberrant brain circuits related to language processing in children with FLE and
TLE, and further supports local network efficiency as a key determinant of the impact of early
brain plasticity on cognitive capacities. In order to further understand network alterations
in response to neuropathologies and their impact, studies with larger samples sizes and
different age groups should further investigate the specific role of clinical factors (e.g., epilepsy
type, epilepsy lateralization, seizure control, etc.) and address developmental influences.
Ultimately, this will increase prognosis of clinical phenotypes in pediatric patients with
FLE and TLE, and offer opportunities for early interventions to support a healthy development.

Keywords: Neurodevelopment, cerebral language network, early brain plasticity, neuropsy-
chology, functional near-infrared spectroscopy-electrophysiology (fNIRS-EEG), motion artifact
correction, network analysis, pediatric epilepsy, frontotemporal lobe epilepsy, brain-behavior
relationship.
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Preface

Childhood is a unique period in life where major cerebral and cognitive development
occurs. Neuronal growth and maturation during the first years of life are complex and happen
at an impressive speed (Accogli et al., 2020; Paus, 2022). These cerebral changes accompany
the establishment of numerous skills that are essential for a healthy cognitive, behavioral
and socioaffective functioning (Cattell, 1987; Colom, 2020). Throughout childhood and
adolescence, cerebral development remains dynamic and brain networks become more and
more intricately intertwined (Gozdas et al., 2019; Koenis et al., 2018). This accompanies
more efficient and integrated information processing that supports fine tuning of previously
acquired skills (Skeide & Friederici, 2016) and ultimately leads to a mature and adult-like
cerebral organization and functional state.

Brain lesions and neurological disorders have been shown to interfere with normal cerebral
and cognitive development. They can cause the neurodevelopment to stagnate at a premature
stage, slow-down, recess or take atypical pathways, and cause alterations in the establishment
of mature cerebral networks (Smith, 2010). Childhood epilepsy is the most common pediatric
neurological disorder (Behr et al., 2016; Berg et al., 2013). Focal epilepsy, in particular, has
long served as a clinical model to investigate the human brain and its adaptive capacities
(Banks et al., 2014; Milner, 1982; Nasif et al., 2021; Penfield & Jasper, 1954). Pediatric frontal
and temporal lobe epilepsy (FLE, TLE) represent the most diagnosed clinical entities and
have been associated with a wide range of cognitive, behavioral and socioaffective difficulties
(Hernandez et al., 2002; Law et al., 2018; Smith, 2016; Wilson et al., 2015). Although certain
neuropsychological particularities have often been reported for each type of epilepsy, FLE
and TLE also share common patterns of difficulties. Language impairment is frequent in
both of these focal epilepsies (Bear et al., 2019; Metternich et al., 2014).

Previous studies, including the work from our lab, have further shown that cerebral
language processing in children with FLE or TLE is associated with a more frequent atypical
hemispheric dominance compared to neurotypical children (Gallagher et al., 2016; Vannasing
et al., 2016), altered network synchronization (Balter et al., 2019; Bear et al., 2019; Sepeta
et al., 2015) and deviant network topology (Slinger et al., 2022). Neuroimaging techniques,
especially the sophisticated acquisition methods and analysis approaches that have been
refined in the last few decades, have significantly contributed to characterize cerebral language
processing and identify alterations such as in children with FLE or TLE. Functional near-
infrared spectroscopy (fNIRS) is a particularly useful tool to study language processing in
pediatric epilepsy patients, because it does not require the participant to remain still during
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data acquisition, is relatively tolerant to movement, and thus allows the child to keep contact
with the accompanying caregiver during the recording.

Although an increased incidence of aberrant brain circuits that support language functions
in children with FLE or TLE has been reported in studies using functional magnetic resonance
imaging (fMRI) and fNIRS, the patterns of brain reorganization and their associations with
cognitive impairment in the context of the developing brain are still unclear. Precisely, it
remains speculative whether early brain plasticity allows for a cerebral reorganization that
promotes the development of language functions or whether the cerebral reorganization is a
sign of malfunctioning and is associated with an unfavorable development of language skills.

The main objective of this thesis is to map out functional brain language network
organization in association with the neuropsychological profile in children with FLE or TLE
using fNIRS and neuropsychological assessment. Prior to this empirical study, we conducted
two methodological projects to optimize our methods and data analysis procedure. Article one
underlines the relevance of pediatric neuropsychological evaluations to identify developmental
alterations. Article two was conducted to refine an important preprocessing step in fNIRS
data analyses, precisely motion artifact correction, to improve interpretation of the fNIRS
signal and have a better characterization of brain networks. These two methodologies
(neuropsychological assessment and fNIRS) are employed in the last and main article three of
this thesis on pediatric FLE and TLE.

This thesis is organized in six parts. First, chapter one provides the theoretical background,
including a literature review on the normal development of language functions and their
cerebral correlates, the epidemiology and clinical characteristics of pediatric epilepsy, the
current knowledge on the impact of FLE and TLE on cognitive and cerebral development,
and the background and methodological challenges of fNIRS. Chapter two lays out the
detailed research objectives and hypotheses of this doctoral research work. Part three to five
form the core of this thesis and include three publications. A book chapter on the pediatric
neuropsychological assessment published in the Handbook of Clinical Neurology, Volume
Neurocognitive Development: Disorders and Disabilities, in 2020, a validation study on a
novel method for signal processing in fNIRS published in Neurophotonics (2022), and an
empirical study on cerebral language networks and cognitive profiles in children with FLE or
TLE. Part six is a general discussion including a summary of the main findings, the strengths
and limitations of this research work, and future perspective. Two additional articles that I
co-authored are included in the appendices: 1) a systematic review published in Frontiers in
Human Neuroscience (2020) on cerebral language networks in children that built an important
theoretical foundation for the concepts used in the research of language development, and 2)
an article published in the Journal of Neuroscience Methods (2022) presenting a fNIRS data
analyses toolbox developed in our lab and used in articles 2 and 3.
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Chapter 1

Theoretical background

1.1. Language
Language is a key instrument of human communication and a cornerstone for successful

and efficient social interactions. Broadly speaking, language serves information transfer and
includes perception and production of both verbal, i.e., spoken, signed or written words,
and non-verbal, i.e., body language, mimic, gestures, expressions (Crystal & Robins, 2022;
Hauser et al., 2002). In this thesis, a narrower definition is applied with a focus on spoken
verbal language. Receptive language processing in the form of human speech is composed of
a coordinated analysis and integration of basic acoustic, phonetic (single characters), syllabic
(character units), morphologic (word units), lexic (word category), semantic (meaning),
syntactic (sentence structure), and prosodic (intonation) characteristics of spoken language
(e.g., Skeide & Friederici, 2016). Expressive language is based on the knowledge of all of
the above characteristics but further includes motor components to produce language (e.g.,
Skeide & Friederici, 2016). The cornerstones of the neurobiology of language processing and
the major developmental steps of language acquisition during childhood and adolescence are
presented in the next two sections.

Neurobiology of language

Most of the current knowledge of cerebral language processing originates from the findings
of early lesional studies by pioneers such as Paul Broca (1861) or Carl Wernicke (1969). During
the last decades however, sophisticated neuroimaging techniques and analytical approaches
have enabled more precise investigations of functional brain organization and allowed deeper
insight of cerebral correlates of language processing. Based on these findings Hickok and
Poeppel (2004) proposed their dual stream model, which considers the complex facets of
language processing and cerebral networks. Comparable with other sensory domains (e.g.,
visual), two processing streams, a ventral temporal stream and a dorsal parietofrontal stream,
are differentiated (Hickok & Poeppel, 2007; Matchin & Hickok, 2020). The ventral stream is
mainly involved in processing speech input and the dorsal stream is predominant in speech
production. While the model promotes the long-known left-hemispheric language dominance,
it also underlines that language comprehension incorporates a complex distributed network
involving bilateral temporal areas. Receptive language processing thus involves a myriad of
linguistic and nonlinguistic processes including acoustic analysis in bilateral primary auditory

3



cortices, phonological analysis in bilateral middle to posterior superior temporal areas, lexico-
semantic attribution predominantly, yet not exclusively, in left middle to posterior temporal
areas and a more complex sentence-level semantic integration in the left anterior temporal
lobe. Expressive language, generally represented in the dorsal stream, is assumed to require
a transfer of phonologic knowledge from bilateral posterior superior temporal regions via
parietotemporal connections (e.g., angular and supramarginal gyrus, arcuate fasciculus) to
elicit speech articulation in the left premotor cortex and inferior frontal gyrus (IFG). The
dorsal pathway further enables multisensory integration to improve speech processing during
comprehension. The right hemisphere seems to play a tangential role for speech production.
Despite revisions (Hickok & Poeppel, 2007) and extensions to speech production (Hickok
et al., 2021), and sentence level processing of syntax (Matchin & Hickok, 2020), the dual
stream model has remained unchanged in its core and has seen wide acceptance since its first
proposal (e.g., Bornkessel-Schlesewsky & Schlesewsky, 2013; DeWitt & Rauschecker, 2013;
Fedorenko & Thompson-Schill, 2014; Hickok, 2009; Hickok et al., 2021; Matchin & Hickok,
2020; Poeppel et al., 2012; P. Tremblay & Dick, 2016).

Development of language

The development of language abilities is an important achievement of early childhood.
The comprehension of human speech and the ability to express one’s needs and thoughts
pave the way for the acquisition and maturation of many cognitive and social abilities and
can have a predictive value for later academic achievement (Berwick et al., 2013; Gervain,
2020). While the first meaningful words are usually expressed around one year of age,
language skills knowingly start to develop much earlier (Skeide & Friederici, 2016). Neonates
born prematurely during the last trimester of pregnancy, already show advanced phonetic
differentiation capacities (Mahmoudzadeh et al., 2013). Fullterm newborns are already
sensitive to pitch variations (Perani et al., 2011), discriminate speech in their mother tongue
(Dehaene-Lambertz et al., 2002; May et al., 2011; Moon et al., 2013; Vannasing et al., 2016)
or a language they were regularly exposed in utero from speech in foreign languages or from
non-speech auditory stimuli (Caron-Desrochers, 2022; Partanen et al., 2013; Vannasing et al.,
2016). Even though early language development often refers to speech perception, specific
prosodic characteristics of the infant’s mother tongue have been identified in infant cries
shortly after birth, potentially representing early precursors of speech articulation (Gervain,
2018; Gustafson et al., 2017; Mampe et al., 2009; Manfredi et al., 2019).

Language capacities in neonates are still universal and specialization as well as maturation
is shaped by the first months and years of life experience (Dehaene-Lambertz & Houston,
1998; Gervain, 2018, 2020). Skeide and Friederici (2016) provide an extensive graphical
summary of language development and its cerebral correlates in childhood and adolescence
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(Fig. 1). Overall, language abilities develop gradually, and many also sequentially, such that
lower-level skills serve as a foundation for the development of more complex abilities. Some
basic receptive capacities precede the development of expressive language skills such as passive
phonetic discrimination that is established in utero, compared to the articulation of syllables
(babbling), which only arises during the first year of life. Around the age of three, the basic
language skills for a child’s native language(s) seem to have developed and henceforth mainly
undergo qualitative changes.

Figure 1 – Developmental of language capacities from the prenatal period until late adoles-
cence and early adulthood inspired by (Skeide & Friederici, 2016). The numbers one to eight
indicate the rough course of receptive language processing, though certain parts may also
occur in parallel.

The specialization of the brain’s left hemisphere for language processing is well-recognized.
Whether this left hemispheric dominance is present at birth remains debatable. Many studies
confirm this hypothesis (CaronDesrochers:submitted; Peña et al., 2003; Vannasing et al.,
2016), while others suggest that the left-hemispheric specialization establishes later during
development (May et al., 2011; Perani et al., 2011). The exact properties of language stimuli
may explain certain differences between these studies. Nevertheless, there is a common
agreement that the left hemispheric dominance is established early in life suggesting that the
brain possesses an innate predisposition for language processing (Cai et al., 2019).
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In their model, Skeide and Friederici (2016) differentiate between bottom-up, i.e., stimuli
driven, and top-down, i.e., higher-order or experience based, processing. Bottom-up processing
arises as soon as language input is being processed and dominates the early phase of language
acquisition, where the mental representations serving top-down processing have yet to be
established. As shown in Fig. 1, after the initial processing of acoustic features in bilateral
auditory cortices (1), the analysis of phonologic features and word form (2), morphosyntactic
(3) and lexico-semantic (4) categorization and sentence level understanding (5, 6 and 8) in
infants mainly involve the posterior, middle and anterior superior temporal gyrus (pSTG,
mSTG, aSTG) and anterior to posterior superior temporal sulcus (aSTS, pSTS) of the left
hemisphere. Only processing of intonation (7) is thought to involve the posterior superior
temporal areas of the right hemisphere, which shows a certain differentiation between mature
and developing language networks. Around the age of three, the rise of top-down processing
allows for a more advanced lexico-semantic categorization and analysis of syntactic relations.
It extends the language network into the IFG involving more higher-order control mechanisms.
Thus, in line with the developmental trajectory of language functions, after 3 years of age,
the main cornerstones of the cerebral language network are established and largely resemble
the adult’s network organization. This early network maturity goes along with other metrics
of cerebral development (e.g., gray and white matter), which after a rapid increase during
infancy knowingly level off (Bethlehem et al., 2022; Gilmore et al., 2018; Paus, 2022).

Henceforward, increasing top-down processing accompanies the qualitative changes of
language capacities and enables more efficient processing of complex human speech (Höhle
et al., 2004; Skeide & Friederici, 2016). Simultaneously the need for slower stimuli-driven
bottom-up decoding decreases. It seems inherent that meanwhile related cerebral networks are
being refined too (Bruchhage et al., 2020). Regional differences of functional connectivity (FC)
in the pSTG and the IFG during sentence-level speech comprehension have been observed in
younger (three-year-old) compared to older (six-year-old) children (Vissiennon et al., 2017).
Precisely, in younger children the activation in the pSTG showed a stronger association
with the activation in the pars triangularis, while the older children demonstrated more
dominant FC between the pSTG and the pars opercularis. Since older children demonstrate
better comprehension, the difference in network synchrony seems to be an indicator for more
mature language abilities. These findings are complemented by investigations of hemodynamic
correlates during language processing as assessed with fNIRS (Paquette et al., 2015). The
amplitude of the hemodynamic response during an expressive language paradigm increased
between the age of 3 to 16 years (Paquette et al., 2015). This modulation of the brain’s
response goes along with better performance during the task paradigm, suggesting that the
amplitude of the hemodynamic response may be an index of language maturation. An EEG
study further investigated acoustic and phonetic processing in individuals aged between 3 and
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32 years (Paquette et al., 2013). They showed that phonetic processing differs between young
children (3 to 7 years), older children (8 to 16 years) and adults (18 years and over), while
acoustic processing between the age of 8 and 16 years is comparable to adult participants.
The difference of discriminatory capacities for speech sounds between children and adults
suggests continuing maturation throughout childhood and adolescence for linguistic processing.
In school-aged children cerebral language networks have been characterized by more inter-
hemispheric connections, in contrast to adults where language comprehension elicited a
network predominated by intra-hemispheric connections within the left hemisphere (Friederici
et al., 2011). Again, these differences in FC probably reflect a more mature language
network organization in adults. The changing patterns of FC in language related brain
regions indicate continuous development of cerebral language processing during childhood
and adolescence. During this period, brain networks generally undergo substantial topological
changes whereby functional brain networks become more globally integrated with age, while
their local specialization decreases (Gozdas et al., 2019; Supekar et al., 2009). These changes
in network architecture probably aim at building robust brain networks enabling efficient
information processing and are accompanied by structural changes (e.g., gray matter pruning,
continuing myelination) (Giedd et al., 1999).

Neuropathologies during childhood and adolescence can interfere with the establishment of
functional brain networks and cognitive development. As a result, the developmental cascade
may stagnate at a premature stage, slow-down, recess or take atypical pathways, which in
consequence can alter global and specific cerebral networks (Smith, 2010). The structural
and functional organization of cerebral language networks, can be altered in children with
cerebral lesions (e.g., tumors, hemorrhages) or neurologic disorders (e.g., epilepsy), especially
when they affect brain regions associated with language processing (Anderson et al., 2006;
Berl et al., 2005; Gallagher et al., 2012; Gallagher et al., 2013; Hamberger & Cole, 2011; Ilves
et al., 2014; Slinger et al., 2022). Epilepsy has long served as a clinical model to study the
brain and its adaptive capacities and is used again in the current thesis to study adaptive
capacities of the brain’s language networks.

1.2. Epilepsy
Epidemiology, definitions, classification and etiologies

The phenomenon of epileptic seizures has long interested man kind and has been described
as early as 1000 B.C. on Babylonian tablets and by Hippocrates 450 B.C. (Wolf, 2014). For
many centuries epilepsy was however a great mystery causing people to assume a sacred or
even demonic origin. In the 19th and 20th century epilepsy played an important role in the
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development of modern neurological diagnostic and interventions, such as the refined local-
ization techniques with EEG, cortical stimulation, neuroradiology, presurgical mapping and
neuropsychology (Meador et al., 1989). Epilepsy today remains an important clinical model
to investigate cerebral network organization and its association with neuropsycholological
functions to better understand the brain’s adaptive mechanisms.

In 2020, the prevalence of epilepsy among the general Canadian population was estimated
to be around 300 000, thus about 0.8 % of the Canadian population were living with an
epilepsy diagnosis (« Canada [country] (table) », 2016; « Canada Population », 2023; « Cana-
dian Chronic Disease Surveillance System [CCDSS] », 2021; « Epilepsy in Canada », 2017;
« General information: epidemiology », n.d.). Out of the 17 000 newly diagnosed individuals
every year, 25 % are under the age of nineteen (« Canadian Chronic Disease Surveillance
System [CCDSS] », 2021). Epilepsy is in fact one of the most common neuropediatric disorders
worldwide (Berg et al., 2013).

Epilepsy is a heterogeneous brain disease that involves one of the following manifestations:
a person has had at least two unprovoked seizures that are more than 24 hours apart; if they
have had one unprovoked seizure and a probability of 60 % for having another seizure within
the next ten years; or if they are diagnosed with an epilepsy syndrome such as the Dravet or
West syndrome (Fisher et al., 2014). The term non-provoked means that the seizure occurred
spontaneously and is not associated with a factor that temporarily affects cerebral activation
such as a traumatic brain injury, during an episode of fever or in the context of a substance
withdrawal. Under some conditions, a specific stimulus provokes seizures and the diagnosis of
epilepsy is still appropriate, for instance in case of reflex seizures (e.g., photic or reading).
Epilepsy is considered as being resolved when patients have an age-dependent syndrome and
have outgrown the critical age or if they have not had a seizure during the past ten years out
of which during five years they did not receive anti-seizure medication (ASM) (Fisher et al.,
2014).

An epileptic seizure is the transient occurrence of signs and/or symptoms due to
abnormal excessive or synchronous neuronal activity in the brain and epilepsy is
a disorder of the brain characterized by an enduring predisposition to generate
epileptic seizures (Fisher et al., 2005, p. 471).

The various etiologies of epilepsy, the different seizure semiologies and the numerous
comorbidities, underline the complex clinical pathology of epilepsy. A systematic classification
is important for the clinical care of these patients, to plan appropriate interventions and
facilitate coordination among the interdisciplinary health professionals (Bracchi et al., 1990).
In 2017, the ILAE proposed a classification system based on four different factors: 1) the
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type of seizures, 2) the type of epilepsy, 3) the nature of the syndrome, and 4) the underlying
etiology (Scheffer et al., 2017). Based on the electroencephalogram (EEG) results (Berg et al.,
2010; Engel, 2006; Fisher et al., 2017), three types of seizures have been identified: focal
seizures with an onset in one cerebral hemisphere, generalized seizures originating from both
hemispheres and seizures with unknown onset. Whenever possible, the brain lobe or even
more precise cerebral region where the epileptic activity presumably initiates, is specified
(e.g., frontal, temporal, or mesial temporal) (Berg et al., 2010). The description of the type
of seizures leads to the classification of the type of epilepsy: focal epilepsy (focal or multifocal
seizures), generalized epilepsy (generalized seizures), combined epilepsy (focal and generalized
seizures) and unknown epilepsy (Scheffer et al., 2017). In some cases, the characteristics
of the clinical picture, i.e., the seizure semiology, the cerebral activity measured with the
EEG, neuroimaging data, the age of epilepsy onset, and neuropsychologic or psychiatric
comorbidities, allow the identification of a specific epilepsy syndrome (e.g., juvenile absence
epilepsy, juvenile myoclonic epilepsy, Dravet syndrome). Recently, it has been proposed
that in underaged patients, these syndromes should be subdivided into 1) self-limited focal
epilepsies, 2) generalized epilepsies, and 3) developmental and/or epileptic encephalopathies
(Scheffer et al., 2017; Specchio et al., 2022). Finally, epilepsy can also be categorized based on
the underlying etiology(ies). It may originate from a structural abnormality, such as a brain
tumor or a cerebral hemorrhage, an assumed (e.g., family history of epilepsy) or identified
genetic mutation (e.g., FLE with nocturnal seizures), an infectious disease (e.g., tuberculous),
a metabolic dysfunction (e.g., porphyria) or the cause can be unknown (Berg et al., 2010;
Fisher et al., 2014; Scheffer et al., 2017). A good characterization of the precise seizures and
epilepsy type provides clinicians with a theoretical framework and significantly guides the
treatment.

The treatment of choice for epilepsy is a pharmacotherapy with ASM, which efficiently
eliminates or significantly reduces seizure occurrence in 70 % of all patients. To achieve a
satisfactory control of seizures, trials with different ASM or even a combination of several
ASM may be necessary (Holmes et al., 2013). Some patients are however refractory to a
pharmacologic treatment and alternative options such as the implantation of a vagus nerve
simulation, a ketogenic diet or a neurosurgical intervention may be considered.

Frontal and temporal lobe epilepsy

The most common types of epilepsies are frontal and temporal lobe epilepsies (FLE,
TLE; Téllez-Zenteno & Hernández-Ronquillo, 2012). If FLE and TLE originate from the
left cerebral hemisphere, they are prone to interfere with widely distributed brain networks
involved in language processing and consequently may cause language impairment. Although
FLE and TLE are two rather heterogeneous clinical entities, the following sections will include
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a more detailed description of the specific characteristics of these two syndromes and their
impact on cerebral organization and cognitive functioning.

FLE is a focal epilepsy where the epileptogenic zone is located in the left, right or bilateral
frontal lobe. It is the second most common form of epilepsy in children and adolescents
(Behr et al., 2016; Deonna et al., 1986; Gallagher & Lassonde, 2005; Hermann et al., 2002;
Téllez-Zenteno & Hernández-Ronquillo, 2012). A general characteristic of seizures in patients
with FLE is that they often rapidly spread from the onset localization and lead to secondary
generalization, which is probably due to the involvement of the frontal brain regions in many
cerebral networks (Y. Hu et al., 2012; Lawson et al., 2002; Smith, 2016). Seizures often
occur during the night, manifest as involuntary movements and vocalizations, are preceded
by a non-specific aura and patients often show post-ictal aphasia (Manford et al., 1996;
Quesney et al., 1990). Children who suffer from FLE are often (up to 40 %) refractory to
pharmacotherapy and account for 23 to 25 % of patients that are candidates for a surgical
removal of the epileptogenic zone, thus making them the second most represented cases in
epilepsy surgery (Braakman et al., 2011; Rasmussen, 1991; Rougier et al., 1992; Téllez-Zenteno
& Hernández-Ronquillo, 2012).

TLE is a focal epilepsy where the epileptogenic zone is located in the left, right or bilateral
temporal lobe. It is the most common form of epilepsy in children and adolescents (Behr et al.,
2016; Deonna et al., 1986; Gallagher & Lassonde, 2005; Hermann et al., 2002; Téllez-Zenteno
& Hernández-Ronquillo, 2012). TLE is often associated with an early onset of seizures and
earlier studies have reported high prevalence of febrile seizures in the history of children with
TLE (Commission on Classification and Terminology of the International League Against
Epilepsy [ILAE], 1989; Engel, 1996; Holmes et al., 2013). TLE seizures are often announced
by an aura such as the feeling of déjà-vu, psychiatric symptoms, epigastric sensations and
accompanied by oral or manual automatisms (Holmes et al., 2013; Manford et al., 1996; Ray
& Kotagal, 2005). Further, 30 % of patients with TLE are refractory to a pharmacological
treatment (Téllez-Zenteno & Hernández-Ronquillo, 2012; Wiebe, 2000). Depending on various
clinical variables such as the EEG trace, the presence of cerebral lesions, the presence of a
genetic syndrome, the localization of cerebral language processing, patients with TLE may be
candidates for a surgical removal of the epileptogenic zone (Helmstaedter, 2001; Téllez-Zenteno
& Hernández-Ronquillo, 2012; Wiebe, 2000). They in fact account for a majority, up to 73 %
of cases, in epilepsy surgery.

Neuropsychological profile of children with FLE or TLE

The presence of epilepsy does not only have an important impact on the daily life of
children but often leads to cognitive, behavioral, psychological and social impairments. Even
though the neuropsychological profile in children with FLE or TLE is often heterogeneous
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and cognitive difficulties are complexly intertwined, there are certain cognitive characteristics
in each of the subgroups (Kellermann et al., 2016).

Children with FLE often have an overall reduced intelligence quotient (IQ) probably
partly caused by important attentional and executive deficits (Gallagher & Lassonde, 2005;
Orduña et al., 2021). Difficulties in attentional and executive functions such as planning,
inhibition, working memory, and cognitive flexibility are in fact typical in these patients and
attention-deficit hyperactivity disorder is a common comorbidity in pediatric FLE, with more
than 50 % of patients having this diagnosis (Gallagher & Lassonde, 2005; Gonzalez-Heydrich
et al., 2007; Hernandez et al., 2003; Hernandez et al., 2002; Nickels et al., 2016; Prévost et al.,
2006; Smith, 2016; D.-Q. Zhang et al., 2014). Reduced performance in memory tasks has
also been reported, particularly during learning (encoding) and retrieval of information. The
underlying cause may therefore not be a deficit in memory capacities but rather represent a
consequence of attentional and executive difficulties (Hernandez et al., 2003).

Children with TLE commonly have an IQ within the norm although at the lower limit
of the average (Gallagher & Lassonde, 2005; Orduña et al., 2021). Evidence from adult
patients however, suggests that depending on the specific type of TLE, especially the level
of neuronal atrophy and hippocampal sclerosis, these patients may also have a mild to
moderate reduction of their IQ (Hermann et al., 2002; Jokeit & Schacher, 2004). Even though
attention and executive deficits are particular concerns in children with FLE, children with
TLE can face similar challenges in tasks with attentional and executive demands (Smith,
2016). Memory difficulties (e.g., episodic memory, semantic memory) however are the most
typical characteristics of the neuropsychological profile of children with TLE (e.g., Gallagher
& Lassonde, 2005; Hermann et al., 2002; Hernandez et al., 2003; Menlove & Reilly, 2015;
Nickels et al., 2016; Smith, 2016). Mnesic impairments may be driven by the lateralization
of the epileptogenic zone, i.e., left or right, leading to difficulties in a specific modality, i.e.,
verbal or visual memory, specifically (Gallagher & Lassonde, 2005; Jambaqué et al., 1993;
Menlove & Reilly, 2015; Nolan et al., 2004). However, this hemispheric-dependent memory
impairment type is not as clear as in the adult population (Golby et al., 2001; T. M. C. Lee
et al., 2002).

Although limited studies evaluate and compare the performance between patients with
FLE as opposed to TLE, difficulties in language functions (e.g., impaired comprehension,
reading, vocabulary, verbal fluency) have been reported in both patient groups (Gallagher
& Lassonde, 2005; Hermann et al., 2002; Hermann et al., 2007; Hernandez et al., 2002;
Vanasse et al., 2005). In adults with focal epilepsies, a meta-analysis regrouped 39 scientific
publications that investigated language capacities (Metternich et al., 2014). Most participants
in the included studies received their diagnosis before 18 years of age, thus the results
of the meta-analysis reveal to some extent the impact of childhood epilepsy on language.
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In comparison to neurotypical controls, patients with TLE presented difficulties in both
semantic and phonemic verbal fluency tasks, while those with FLE only had reduced word
production in the phonemic condition. The direct comparison between patient groups revealed
poorer phonemic verbal fluency in patients with FLE compared to those with TLE, while
their semantic word production did not differ. The authors argue that the higher demands
on executive processes during the phonemic verbal fluency task may explain the poorer
performance in patients with FLE. Even though similar results have been found independent
of epilepsy lateralization, difficulties were more pronounced in patients with left hemispheric
frontal or temporal seizure onset than those with right hemispheric onset in homologous
brain regions. In pediatric patients, language has also been identified as a vulnerability,
though results are less consistent (Braakman et al., 2011; Braakman et al., 2012; Caplan
et al., 2009; Hermann et al., 2006; Law et al., 2018; Orduña et al., 2021; Verche et al., 2018).
In children with FLE exclusively, language is typically impaired, but this seems to be part
of a broad reduction of the neuropsychological functioning rather than a domain specific
effect (Braakman et al., 2011; Braakman et al., 2012). In contrast, a study on pediatric
patients with drug-resistant FLE or TLE, language was not identified as a specific domain
of concern (Orduña et al., 2021). Differences between studies are probably partially due to
the heterogeneous methods used to assess language functions and the previously emphasized
confounding measures of attentional and executive functions. Law and colleagues (2018)
recently compared the performance of an extensive neuropsychological assessment in executive
functions, verbal semantics, motor, nonverbal cognition and impulsivity, and verbal cognition
and attention between children with FLE and TLE, and their healthy peers. Children with
FLE had reduced performance in all domains with the exception of motor functions, while
those with TLE only had deviant performances in executive functions and verbal capacities,
in comparison to the neurotypical control group. The comparison between both patient
groups further revealed poorer executive functions and verbal capacities in children with FLE
than in those with TLE. Language may thus not be the only domain of concern in children
with FLE or TLE, but it is a common difficulty in both types of epilepsies, as expected
given the neurobiology of language. The neuropsychological evaluation is a key instrument to
assess cognitive, behavioral and socioaffective functions including language capacities, allows
to draw conclusions about a patient’s individual profile of strengths and weaknesses, and
hypothesis about the underlying neuropathology (Berl et al., 2017; Jones-Gotman et al., 2010;
Smith, 2010; Wilson et al., 2015). Therefore, the first article of this thesis aimed to introduce
the pediatric neuropsychological assessment, with a detailed description of the methodological
procedures, present its relevance for the diagnostic process of neurodevelopmental disorders
such as pediatric FLE or TLE, specify how it can guide the therapeutic approach and elaborate
its prognostic value.
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Structural and functional brain alterations in children with F/TLE

The focal onset of FLE and TLE imply that pathologic processes emerge from a specific
cerebral region. However, cerebral alterations associated with FLE and TLE go beyond frontal
or temporal areas (Gao et al., 2012; Meng et al., 2010). Widespread structural abnormalities
such as cortical thinning in both hemispheres (Widjaja et al., 2011) and alterations in fiber
pathways outside the frontal lobe (Lawson et al., 2002; Widjaja et al., 2014) have been found
in children with FLE irrespective of the lateralization of the epileptogenic zone. In children
with TLE, some structural variations are more localized and lateralized, such as the disruption
of gray matter in ipsilateral hippocampal and parahippocampal areas (Guimarães et al.,
2007), while alterations in white matter have also been reported in both hemispheres, though
ipsilateral fibers seem slightly more affected (Gao et al., 2012; Meng et al., 2010). These
deviations also seem to affect overall network architecture as well as regional organization of
structural networks as it has been shown in adult patients with TLE (Larivière et al., 2022;
Slinger et al., 2022; van Diessen et al., 2014). How these structural abnormalities potentially
affect functional brain networks of language processing is elaborated in the following sections.

Patients with cerebral lesions or neurologic disorders localized in the left hemisphere
often present an atypical hemispheric dominance for language processing (e.g., Berl et al.,
2014; Gallagher et al., 2013; Gallagher et al., 2007; Hamberger & Cole, 2011; Mbwana
et al., 2008; Vannasing et al., 2016). In fact, several studies of our lab that applied fNIRS
show that language processing in children with left lateralized FLE or TLE yields in a
cerebral reorganization, i.e., a more bilateral cerebral activation or a shift towards homologous
frontotemporal regions of the right hemisphere (Gallagher, Bastien, et al., 2008; Gallagher et
al., 2007; Vannasing et al., 2016). In a case of a nine-year-old child with left hemispheric F-TLE,
expressive language has elicited an altered cerebral response within posterior temporoparietal
areas of the left hemisphere, suggesting an intra-hemispheric reorganization (Gallagher,
Bastien, et al., 2008). Similarly, in adult patients with FLE or TLE, semantic verbal fluency
has yielded in a more bilateral activation of homologous temporal areas as compared to
a more left dominant activation in healthy controls (Tung et al., 2021). Phonemic verbal
fluency has however remained dominant within frontotemporal regions of the left hemisphere
underlining that alterations in cerebral language processing may be different for specific
linguistic processes.

In recent years, neuroimaging techniques and new FC data analyses enabled a paradigm
shift from hemispheric dominance and localization towards more complex investigations of
cerebral networks. Distinct patterns of FC in cerebral language networks have been observed
both in pediatric (Chou et al., 2018; Foley et al., 2020; Sepeta et al., 2015; Vannest et al.,
2019) and adult patients with epilepsy (Balter et al., 2019; Caciagli et al., 2023; Trimmel et al.,
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2018). In particular, children with left lateralized focal epilepsy show reduced FC between
homologous frontal, i.e., IFG and middle frontal gyri (MFG), and posterior temporal, i.e.,
pSTG, as well as lower bilateral intra-hemispheric coupling between IFG and MFG during a
semantic decision task (Sepeta et al., 2015). Children with TLE specifically, show decreased
FC within the left IFG compared to neurotypical children while listening to a passive story
listening task (Vannest et al., 2019). Such reduced FC indicates that certain components of
the cerebral language network in children with FLE and TLE are less synchronized compared
to neurotypical children. Although studies on network alterations in children with FLE
or TLE are still scarce, many adult patients have had a disease onset during childhood
and adolescence, and thus adult findings provide some guidance and allow to uncover long-
term effects of childhood epilepsy. A recent fMRI study specifically evaluated disruptions
of cerebral language processing in a large sample of adults (n = 172) with FLE or TLE
(Caciagli et al., 2023). A majority of this sample had epilepsy onset during childhood or
adolescence. Compared to healthy controls, patients with FLE show reduced activation of
frontal (left MFG to IFG) and large parts of the middle temporal lobe during a phonemic
verbal fluency task, while those with TLE only have reduced activation in the left IFG. In
contrast to healthy controls, both patient groups demonstrate less deactivation of cortical
regions associated with the default-mode network, though in those with FLE, this appears in
bilateral anterior (prefrontal cortex) and posterior (temporal and angular gyrus) areas, while
in those with TLE it mainly affects the precuneus. Similarly, cerebral activation during a
verb generation task, reveals reduced activation of inferior frontal areas in the left hemisphere
and less deactivation of the right angular gyrus in patients with FLE compared to healthy
controls, while those with TLE exhibit a whole-brain reduction of hemodynamic response.
Consequently, comparisons between both patient groups reveals a widespread increase of
activation in left, and to some extent bilateral posterior areas, and less deactivation within
the right angular gyrus and bilateral precuneus in patients with FLE compared to those with
TLE. These findings illustrate how both task-dependent language networks and large-scale
brain networks are affected by FLE and TLE, and that even though overall both groups have
similar alterations, there are also some subgroup specificities.

Graph theory has become a popular approach to better characterize the specific brain
network topology in patients with epilepsy (e.g., Bernhardt et al., 2015; Farahani et al., 2019;
Rodríguez-Cruces et al., 2020; Slinger et al., 2022; Tavakol et al., 2019; Tung et al., 2021).
The graphical representation of a network is commonly based on the FC matrix, where each
measurement of cerebral activation (e.g., voxel in fMRI, channels in fNIRS) represents a
node and the coupling between two nodes represents an edge (Rubinov & Sporns, 2010).
The graphical illustration of a network’s nodes and edges forms the basis for numerous
metrics to interpret the networks local and global processing efficiency. There are three
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main characteristics describing the network: i) the degree centrality, which is the number
of connections each node has where a higher value implies a node is highly connected; ii)
segregation, which refers to the tendency of a network to build local clusters, hence the level
of cerebral activation in proximal nodes synchronizes, which is an indicator of local efficiency
in a network; and iii) integration, which describes how well distinct parts of the network
are connected, thus how efficient information is transferred between distant cerebral regions,
which is an indicator of global efficiency in a network (Fornito et al., 2016; Latora & Marchiori,
2003; Latora & Marchiori, 2001; Sporns, 2018; Watts & Strogatz, 1998). The small-world
index further specifies the ratio between a network’s segregation and integration, thus the
balance between efficient local and global information processing (Watts & Strogatz, 1998). A
small-world topology has been shown to be a key network feature in healthy individuals (e.g.,
Asis-Cruz et al., 2015; Fornito et al., 2016; Fransson et al., 2011). Graph analysis represents
a data-driven network approach, and the network metrics are based on the entire data set.
This results in fewer statistical comparisons than in traditional analysis of individual nodes,
and therefore reduces the risk of false positive results. A meta-analysis recently evaluated the
results of 45 studies using graph theory to assess cerebral network topology in pediatric and
adult patients with different focal epilepsies (Slinger et al., 2022). Their analyses revealed that
compared to healthy controls, the overall epilepsy group as well as the subgroup of those with
TLE, had lower network segregation. This is in contrast to findings of an earlier meta-analysis
by the same group, where functional brain networks showed higher local segregation, but
reduced global integration (van Diessen et al., 2014). Similarly, structural network topology
in patients with TLE compared to that of healthy adults, suggests higher network segregation
and reduced network integration (Larivière et al., 2022; van Diessen et al., 2014). The
heterogeneity of the individual results probably precluded the identification of other robust
network alterations. Nevertheless, these results suggest that one of the main brain network
topology patterns in patients with focal epilepsy is local information processing.

Associations between cognitive and cerebral alterations in children
with F/TLE

The previous sections revealed cognitive and cerebral alterations in children with FLE
or TLE. The following question remains: how is the neuropsychological profile associated
with the neural network characteristics of individuals with FLE or TLE? In healthy children,
the precise links between the developmental trajectories of language functions and cerebral
language processing is yet to be fully understood. There is some evidence for a positive
association between visual, motor and language abilities and FC in the visual, dorsal attention
and frontoparietal brain networks in healthy children (Bruchhage et al., 2020). This suggests
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a global effect of increasing functional abilities and reinforcement of different brain networks,
rather than a specific functional association between for instance language abilities and
language brain networks. The developmental trajectory of network topology in healthy
individuals does show that global integration increases, while local segregation decreases
during childhood and adolescence (Gozdas et al., 2019; Supekar et al., 2009). Therefore,
while cognitive processes become more complex and interrelated with age, cerebral networks
similarly become more sophisticated and globally integrated. In children and adolescents
with focal epilepsy, resting-state graph network analyses reveal a mixed relationship between
global intellectual functioning and alterations in network architecture (Songjiang et al.,
2021). Precisely, higher full-scale, verbal and performance IQ were associated with both
higher network integration, degree centrality and network segregation of resting-state brain
networks, suggesting an atypical development of network topology that may enable better
cognitive outcome in these patients. In pediatric patients with FLE or TLE specifically,
reduced neuropsychological functions reportedly went along with lower FC across different
resting-state networks (Widjaja et al., 2013). This extends to language abilities in particular,
where naming was associated with lower FC among bilateral frontotemporal language areas
(Sepeta et al., 2015). In adult patients with FLE or TLE, a well-integrated and sufficiently
active cerebral language network with an adequate deactivation of the default-mode network
are indicators for better language performance (Caciagli et al., 2023). The relationship
between brain activity and cognitive performance thus seems to go beyond language networks.
It remains however speculative whether alterations of brain network structure in children
with FLE or TLE reflect an aberrant development or a compensatory effect, especially since
cerebral organization in these patients seems dynamic and the association between cerebral
organization and the neuropsychological profile may change over time (Helmstaedter et al.,
2006; Vannasing et al., 2016).

1.3. Functional neuroimaging
Numerous neuroimaging techniques have been used to study cerebral language networks

in pediatric patients with epilepsy (e.g., Balter et al., 2019; Gallagher et al., 2012; Pirmoradi
et al., 2016). fNIRS is a very well adapted technique for pediatric populations, in whom
collaboration is often limited, is non-invasive, does not require a complete immobilization as it
is relatively tolerant to movements and thus allows a more natural setting and constant contact
between the child, the assessor and caregiver (Gervain et al., 2011; Lloyd-Fox et al., 2010).
fNIRS uses light in the near-infrared spectrum between 650 and 1000 nm to measure cerebral
hemodynamic changes (Delpy & Cope, 1997; Ferrari & Quaresima, 2012; Jobsis, 1977). Each
wavelength has individual absorption properties specific to oxy- and deoxyhemoglobin (HbO,
HbR). Therefore, depending on the photon variation measured with each wavelength (∆ of
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emitted to detected light), it is possible to determine relative changes of HbO and HbR to
estimate the hemodynamic response in different cerebral regions (Ferrari & Quaresima, 2012;
Huppert et al., 2009). Another advantage of fNIRS is that it can be easily combined with
other brain recording techniques, such as EEG, which in the case of patients with epilepsy
is essential to monitor interictal epileptic discharges and screen for potential subclinical or
rather discreet epileptic seizures (Obrig, 2014). The value of fNIRS for localizing cerebral
language networks in children with epilepsy is well established (Gallagher, Bastien, et al.,
2008; Gallagher, Lassonde, et al., 2008; Gallagher et al., 2007) and fNIRS is now often part of
the presurgical clinical assessment of children with refractory epilepsy. Figure 2 summarizes
the principles of fNIRS and the origin of its signal (A), and the derived interpretation of
cerebellar activity (B).

Figure 2 – Functional neuroimaging with near-infrared spectroscopy and composition of the
cerebral signal adapted with permission (« Our story: fNIRS and NIRx », 2023)

.

Even though, fNIRS is relatively tolerant to motion compared to other neuroimaging
techniques, motion can cause abrupt changes in the fNIRS signal (Yücel et al., 2014), and
is an important source of noise. Several artifact correction methods have been proposed
in the literature, but to date, none fully take advantage of the complexity of the fNIRS
signal. The dynamic between the signal of the two wavelengths is one valuable source of
information to detect and correct such movement artifacts (Cui et al., 2010). Currently,
two-dimensional techniques for artifact correction do not allow to exploit this advantage
(Brigadoi et al., 2014; Cooper et al., 2012; Tak & Ye, 2014). A multidimensional decomposition
approach called parallel factor analysis (PARAFAC) represents an interesting alternative for
motion artifact detection since it allows to simultaneously consider the time course, space
(channels) and wavelength (λ1|2) signatures to extract the characteristics of the motion artifact
(Bro, 1998; Harshman, 1970). PARAFAC has shown promising results for multidimensional
(>2 dimensions) EEG and joint fMRI-EEG neuroimaging data analysis (Acar et al., 2007;
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Martínez-Montes et al., 2004; Miwakeichi et al., 2004), yet has not been used for analysis of
the fNIRS signal. Therefore, we conducted a methodological study to validate PARAFAC for
fNIRS data analysis (article two). Based on the promising results of article two for the use of
PARAFAC to detect motion artifacts in the fNIRS signal, PARAFAC has also been used in
article three.
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Chapter 2

Research objectives and hypotheses
Although basic and key aspects of language abilities and cerebral language processing

develop during infancy, their maturation continues throughout childhood and adolescence.
Neuropathologies, such as pediatric FLE and TLE, can disrupt language and cognitive
brain processes as well as impair language and cognitive abilities. However, the patterns of
reorganization of cerebral language networks in the context of pediatric FLE and TLE are not
yet well understood, and the association with language and cognitive abilities remains unclear.
The ultimate objectives of this thesis were thus to characterize cerebral language network
patterns in children and adolescents with FLE or TLE using fNIRS, and to better understand
the associations between cognitive and language abilities, and brain networks. This thesis
includes one handbook chapter and two scientific articles. The first two manuscripts were
necessary steps to establish the optimal methodology of the third article, which is the main
article of this doctoral work. The objectives of each manuscript are briefly presented here:

Article 1: The first article is a methodological manuscript that underlines the rel-
evance of the neuropsychologic assessment for the estimation of the functional impact of
neurodevelopmental disorders such as pediatric FLE and TLE, and to better understand the
brain-behavior relationship. This manuscript consists of a book chapter on the specific goals,
background, methods and clinical values of a pediatric neuropsychologic evaluation and has
been published in the Handbook for Clinical Neurology, Volume Neurocognitive Development:
Disorders and Disabilities (Hüsser et al., 2020). The handbook provides extensive guidelines
to clinicians and researchers alike regarding typical and atypical neurodevelopment and the
commonly used methods to assess deviations.

Article 2: fNIRS is the neuroimaging technique of choice to address cerebral processing
of language in pediatric patients with FLE or TLE. Despite its relatively high tolerance
to movement, motion induced signal variations can reduce signal quality. The second
article aimed to validate a multidimensional decomposition approach, PARAFAC, to correct
movement artifacts in fNIRS data under controlled conditions. We hypothesized that a
multidimensional decomposition and subtraction of components related to the artifact’s
signature would lead to a significant increase in signal quality. Our results confirmed this
hypothesis and PARAFAC has therefore been used for fNIRS data pre-processing analyses of
article three. Article two has been published in Neurophotonics (Hüsser et al., 2022), the
journal of the international society for fNIRS.
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Article 3: The main objectives of the third article were to characterize cerebral language
network patterns in children and adolescents with FLE or TLE using fNIRS, and to better
understand the associations between cognitive and language abilities, and brain networks in
these patients. Therefore, the hemodynamic response of 20 patients with FLE or TLE and
29 healthy controls was assessed using fNIRS during a resting-state paradigm and a receptive
language task. We hypothesized that epilepsy patients would demonstrate altered FC within
frontotemporal regions compared to the control group, and that this would reflect in less
efficient network topology of cerebral language processing. We further assumed that higher
cerebral abnormalities would be associated with more neuropsychological impairments in these
patients and that the relationship between cerebral language networks and cognitive abilities
in the patient group would differ from that observed in the healthy children group. Since the
current literature on the developmental impact of pediatric FLE and TLE is non-conclusive,
a data-driven approach with few a priori hypotheses was employed. This study allows to
better understand the adaptive capacities of the developing brain, and the impacts of cerebral
alterations on cognitive and language functioning. The third article has been published in the
special issue Bridging Cognitive Neuroscience and Neurosurgery for Effective Brain Mapping
in Frontiers in Human Neuroscience (Hüsser et al., 2023).

Two additional publications representing relevant work conducted during this doctoral
thesis are presented in Appendices I and II. Appendix I includes the fourth article, which
is a second-author systematic review on functional brain networks of language functions
in children that introduces important research concepts about language brain networks
development. Article four has been published in Frontiers of Human Neuroscience (Gaudet,
Hüsser, Vannasing, & Gallagher, 2020). The fifth article (Appendix II) presents a fNIRS
analysis toolbox developed in our lab that was used for data analysis of articles two and
three. Article five has been published in the Journal of Neuroscience Methods (J. Tremblay,
Martínez-Montes, Hüsser, Caron-Desrochers, Lepage, Pouliot, Vannasing, & Gallagher, 2022).

20



First Article.

Neuropsychologic Assessment
by

Alejandra Hüsser 1,2, Solène Fourdain 1,2 and Anne Gallagher 1,21

(1) Neurodevelopmental Optical Imaging Laboratory (LIONlab), Research Center, CHU Sainte-
Justine Mother and Child University Hospital Center, Montreal, QC, Canada

(2) Department of Psychology, Université de Montréal, Montreal, QC, Canada

This article has been published in the Handbook of Clinical Neurology (2020), Vol. 174, 3rd

series, pp. 239-249. Elsevier. doi: 10.1016.B978-0-444-64148-9.00017-X.

A.H. set up the concept of the publication, conducted the literature search and wrote the
manuscript. S.F. revised and complemented the concept and the bibliography, and she
thoroughly revised the manuscript. A.G. was the supervisor and revised both the concept
and the manuscript.



Abstract. The purpose of a pediatric neuropsychologic assessment is to evaluate cogni-
tive, behavioral, sensory-motor, perceptual and socioaffective functioning. A standardized,
validated set of tools, questionnaires, and qualitative methods is applied to this end. The
neuropsychologist integrates the results of the formal assessment, the case history, and
third-party observations to interpret the individual findings across disciplines and draw
conclusions about brain–behavior relationships.
Various indications for neuropsychologic assessment include the identification of neurode-
velopmental difficulties and the characterization of the impact of medical conditions or a
pharmaceutical treatment. Prior to the evaluation, as much information as possible must
be gathered about the child for efficient and accurate planning. In the context of pediatric
neuropsychologic assessments, special challenges may arise, requiring more flexibility as
regards the duration of the assessment, the use of different age-specific tools, or particular
sensitivity when interacting with the child may arise.
Neuropsychologic assessment is a cornerstone in the process of diagnosing neurodevelopmental
disabilities in children and is frequently one component of a multidisciplinary evaluation.
From it can be derived recommendations for the different contexts of a child’s life (e.g.,
family, care team, school).
Keywords: Pediatric population, neuropsychologic evaluation, psychometric tests, stan-
dardized cognitive assessment, brain–behavior relationship, cognitive functioning.

1. General Aspects of Pediatric Neuropsychologic As-
sessments

Neuropsychologic assessment is a cornerstone in the process of diagnosing neurodevelop-
mental disabilities in children and adolescents based on known or presumed brain–behavioral
relationships. It includes the formal evaluation of a variety of cognitive, sensory-motor and
perceptual functions as well as behavior and socioaffective functioning using a standard-
ized, validated set of tools and questionnaires (Baron, 2010; Evans, 2003; Glasel & Mazeau,
2017b, 2017c; Goldstein & McNeil, 2004; Heffelfinger, 2014; Schoenberg & Scott, 2011). The
standardized and observational results of the assessment provide a detailed picture of the
child’s intellectual capacities and an overall cognitive profile covering strengths, weaknesses,
and sometimes deficits in domains such as attentional and executive functioning, learning
and memory, language functions, visuospatial abilities, and overall characteristics of work
behavior (e.g., motivation, endurance, performance anxiety) (Evans, 2003; Gorske & Smith,
2009; Reynolds & Fletcher-Janzen, 2009). To draw conclusions on potential dysfunctions,
the neuropsychologist interprets the results by factoring in data from several sources: 1) the
child’s behavior during the evaluation; 2) the child’s socioaffective well-being; 3) observations
reported by caregivers and family members (parents, siblings and teachers); 4) the case
history, including previous neuropsychologic or other neurodevelopmental assessments, like
occupational or speech therapy, and other clinical examinations, like hearing and vision tests,
imaging data or laboratory analyses (Baron, 2010; Schoenberg & Scott, 2011; Snyder et al.,
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2006). For a clinical neuropsychologist, the challenge extends beyond simply describing
cognitive functioning based on test scores: it involves interpreting all relevant findings from a
range of health disciplines (Aylward, 2010; Schoenberg & Scott, 2011). Thus, broad knowl-
edge of basic neuroscience, functional neuroanatomy, neurobiology, neuropathology, clinical
psychology, and, in particular, neuro- and psychological development is vital to properly
incorporating neuropsychologic findings into the diagnostic process. This leads to accurate
assumptions on brain–behavior relationships. Only an integrative approach such as this
allows for proper identification of the neurologic pathologies that may be responsible for the
particular pattern and degree of functional impairments in cognition, behavior and emotions
(Aylward, 2010; Baron, 2010; Heffelfinger, 2014; Koziol & Budding, 2010; Rae-Grant &
Parsons, 2014; Reynolds & Fletcher-Janzen, 2009; Schoenberg & Scott, 2011; Vanderploeg,
2000). Finally, detecting and specifying cognitive impairment is the foundation for introducing
appropriate intervention strategies.

1.1. Indications

Many indications may lead to a referral for a neuropsychologic evaluation (see Table 1
for an overview of these). These indications are significant in determining the scope of the
assessment and establishing the principle hypothesis (Rae-Grant & Parsons, 2014).

Table 1 – Main indications for a pediatric neuropsychologic assessment.

• Cognitive and behavioral difficulties • Brain surgery
• Impact of medical conditions • Scientific documentation of normal neurodevelopment
• Effects of pharmaceutical treatment • Liability and causal relationships of legal forensic context
• Guidance for interventions

First, a neuropsychologic assessment is indicated whenever cognitive or behavioral dif-
ficulties are observed and neurodevelopmental alterations are suspected. Hence, such an
assessment contributes substantially to the diagnosis of pathologies with varying etiologies.
In this context, the neuropsychologist must consider different causes and clinical conditions
that may be associated with the specific neuropsychologic profile (pattern of cognitive and
behavioral strengths and impairments), including neurodevelopmental disorders, functional
or structural cerebral pathologies, psychiatric disorders, metabolic malfunctioning, and phar-
macologic treatment (Heilbronner et al., 2009; Lezak et al., 2012c; Snyder et al., 2006). In
some cases, the clinical picture may require a differential diagnosis and the neuropsychologist
must specifically address the differentiation between various disorders (e.g., between attention
deficit hyperactivity disorder (ADHD) and a learning disorder, an autism spectrum disorder
(ASD) and a language disability, ADHD and anxiety). In addition, numerous scientific
publications (Baron, 2010; Giedd, 2004; Goldstein & McNeil, 2004; Paquette et al., 2015;
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Skeide & Friederici, 2016) outline the ongoing neuronal maturation that occurs throughout
childhood until late adolescence. These maturational processes may, on one hand, show
significant alterations due to pathologic events and thus enhance impairments or, on the other
hand, allow the child or adolescent to outgrow or compensate for impairments despite the
pathologic influence. Thus, the neuropsychologic assessment can contribute to understanding
the complex interactions between cognitive impairment, the underlying pathology, and the
child’s (neuro-) development and can be used to track developmental trajectories (Aylward,
2010; Baron, 2010; Goldstein & McNeil, 2004; Reynolds & Fletcher-Janzen, 2009).

Second, a neuropsychologic assessment may be requested to identify and document the
impact of a clinical condition (e.g., traumatic brain injury, cerebral hemorrhages, brain
tumor, cerebral malformation) on the child’s cognitive abilities and behavior (Schoenberg &
Scott, 2011; Snyder et al., 2006; Vanderploeg, 2000). This type of assessment will provide
a comprehensive cognitive profile of the child that can guide the clinical team in his or her
care. In some cases, the impact of a known clinical condition can only be estimated through
follow-up evaluations as part of long-term neurodevelopmental monitoring (Aylward, 2010;
Glasel & Mazeau, 2017b; Snyder et al., 2006).

A third indication is associated with specific pathologies that require pharmaceutical
treatment. In these cases, the neuropsychologic assessment aims to demonstrate pharmaceu-
tical effectiveness or document adverse side-effects on cognitive functioning. For example, in
children with ADHD, it may be of interest to evaluate the potential improvement of atten-
tional and executive functions related to the medication (Brown & Daly, 2009; Faraone &
Buitelaar, 2010). Also, patients with epilepsy must be monitored for the potential side-effects
of anti-epileptic drugs on processing speed, attention and memory functions (Bennett & Ho,
2009; Lagae, 2006; Yu et al., 2015).

Although the neuropsychologic assessment itself is not an intervention, its conclusions will
lead to recommendations that may include intervention strategies and professional follow-up
(Aylward, 2010; Baron, 2010; Lezak et al., 2012b; Schoenberg & Scott, 2011). The inter-
ventions will be personalized to each child based on his or her strengths and deficits. One
core element of the intervention is to build on the individual’s intact functions and strengths
to reduce dysfunctions (Aylward, 2010; Baron, 2010; Lezak et al., 2012c; Schoenberg &
Scott, 2011). Another important point is early diagnosis for the purpose of early intervention
(Nadel & Poss, 2007). In several pediatric clinical populations (e.g., ASD, children born
prematurely or with congenital heart disease), early intervention has been shown to improve
neurodevelopmental outcomes, probably due to brain plasticity in children (Gallagher et al.,
2017; Kern et al., 2013; Procianoy et al., 2009). Ultimately, follow-up evaluations are used to
monitor the efficacy of intervention programs and make individual adjustments.

Neuropsychologic assessment may also be part of pre-surgical protocols. For example,
children with refractory epilepsy (i.e., who have not experienced a significant reduction in
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seizures despite several forms of treatment) may be candidates for surgical removal of the
epileptic zone (Holmes et al., 2013; Téllez-Zenteno & Hernández-Ronquillo, 2012; Wiebe,
2000). In this situation, a neuropsychologic assessment will be useful in investigating language
function lateralization and in identifying the location of the cerebral area to be removed or
spared, resulting in a targeted evaluation. In these cases, the neuropsychologist should under-
stand the general scope of the surgical procedure. Furthermore, the pre- and post-surgical
assessments can be compared to estimate the impact of the surgery on the child’s cognitive
functioning (Berl et al., 2017).

In a scientific context, a neuropsychologic assessment has various applications. It can be
used to: 1) detect potential neuropsychologic markers for the development or course of a
disease, and thus to identify at-risk populations; 2) determine the effectiveness of interventions
or treatments; 3) document the child’s development; 4) establish a referent group of healthy
children to develop normalized data for adequate interpretation of clinical data and detect
altered functions in clinical populations; or 5) study the behavioral aspects that influence
the child’s performance during neuropsychologic evaluation, such as task engagement (Lezak
et al., 2012b; Schoenberg & Scott, 2011).

Finally, there may also be forensic/legal indications for a neuropsychologic assessment.
Here, the formal assessment of cognitive functioning and behavior is considered an expert
report for estimating cause-and-effect relationships (e.g., cognitive impairments or behavioral
alterations related to injuries) or the potential alteration of liability due to dysfunctions
known to affect behavior, emotion and cognition, and thus decision-making capacity (e.g.,
intellectual disabilities that alter comprehension of social interactions and other people’s
needs or the expression of the child’s own needs; psychological conditions associated with
an altered perception of reality; brain injuries with significant impact on a behavior and
personality) (Lezak et al., 2012b; Schoenberg & Scott, 2011).

1.2. Minimum information required to efficiently plan an assessment

While the attending physician or another professional is often the referring party, the
evaluation may also be requested by the child’s parents based on their observations or at
the school’s recommendation, in which case there is no referral letter. Whoever requires the
assessment, the following information should be obtained before an evaluation to efficiently
plan and conduct the assessment (Table 2 for an overview of guidelines; Annett & Dencoff,
2010; Snyder et al., 2006). In addition to the specific indications, complaints and questions, the
neuropsychologist would benefit from knowing about previously diagnosed clinical conditions,
suspected developmental alterations or behavioral/cognitive regression (e.g., learning disorders,
ADHD, ASD, language disabilities, epilepsy syndromes) or physical handicaps (e.g., blindness
or hearing loss; any conditions requiring a bedside assessment). In fact, these conditions
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may influence the child’s performance or explain a discrepancy between chronologic and
developmental age that may require a modified protocol and thus the use of alternative tools,
such as non-verbal intelligence tests (Glasel & Mazeau, 2017a, 2017c; Heffelfinger, 2014; Nadel
& Poss, 2007; Yeates et al., 2010). Any information that may guide the hypotheses and
interpretation is useful. For example, if a differential diagnosis is necessary and the range
of potential pathologies is already restricted, these pathologies should be named in order to
address specific hypotheses (Noël, 2007; Rae-Grant & Parsons, 2014).

As children and adolescences grow continuously and quickly, within a short age range
they show significant differences in their cognitive performance levels. Consequently, there
is a need for adapted tools that are sensitive to minor developmental changes as well as for
specific norms (Baron, 2010; Giedd, 2004; Goldstein & McNeil, 2004; Paquette et al., 2015;
Skeide & Friederici, 2016). Knowing the child’s chronologic age prior to the assessment is
crucial to properly planning the first appointment. Doing so means the neuropsychologist is
able to choose tests designed for the child’s age group, including appropriate types of stimuli
(i.e., non-verbal stimuli or more playful activities for younger children) and the availability
of age-specific norms. Finally, the attention span differs significantly within age groups,
younger children having shorter attention span. It is thus necessary to adjust the duration of
the assessment and the number of separate meetings based on the age of the child to allow
measuring a valid performance. Knowledge of any previous evaluations conducted in other
settings, such as private or public health care facilities or at school, greatly supports the
neuropsychologist in planning the evaluation. For instance, if the last assessment was carried
out shortly before the current one, some parts of it may not need to be repeated (e.g., a
thorough intellectual assessment may not be necessary), while certain tests may have to be
replaced to prevent repetition effects (Matson et al., 2009). If the child performed specific tasks
a few weeks or months ago, his or her performance would not be valid if the same tests were
repeated, because the enhanced performance may be attributable to a repetition (or learning)
effect rather than to actual improvement in the functions. Further, for a follow-up evaluation,
the interpretation mainly focuses on comparing the current and previous assessments to
address individual progress or regression. In such cases, the neuropsychologist benefits from
insight into previous report(s).

Pharmaceutical treatment can affect a child’s performance during the neuropsychologic
assessment. Without knowledge of the child’s pharmaceutical record and current medication,
the neuropsychologist may falsely attribute underperformance to pathologic processes or
overestimate certain functions that are improved due to medication. That is why it is essential
to know the list of medications a child is currently taking. In some cases, the effectiveness
of a medication may also be of particular interest or constitute the main indication for the
assessment. The neuropsychologist may thus consider comparing the child’s performance
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with and without medication (e.g., in children with ADHD) (Rae-Grant & Parsons, 2014;
Reynolds & Fletcher-Janzen, 2009; Snyder et al., 2006).

Table 2 – Information that contributes to appropriate planning of the neuropsychologic
assessment.

• Indications, complaints, and questions • Previous neuropsychologic evaluation(s)
• Child’s chronologic age • Pharmacologic treatment
• Clinical pathology/pathologies and devel-
opmental alteration(s)

2. Specific Stages and Considerations of the Pediatric
Neuropsychologic Assessment

The following section will give readers a better understanding of the various information
sources available for a neuropsychologic assessment. These include the child’s case history,
the evaluation of cognitive and behavioral functions, and a screening of the socio-affective
well-being. The overall duration of the formal assessment ranges from 2 to 6 hours, but can
last as long as 8 hours. The duration depends on variables like the child’s age, his or her
medical condition and developmental status, case complexity, the indications, the depth of
evaluation required, and the patient’s cooperation and motivation.

2.1. Case history

Neuropsychologists begin gathering information for their interpretation as soon as a patient
is referred for or books a neuropsychologic assessment. The indication for the assessment helps
the neuropsychologist draft specific questions that will be addressed during the process (Noël,
2007). Several sources of information must then be consulted to reconstruct the case history,
allowing for different perspectives on the child’s cognitive, behavioral and socioaffective
condition, both previous and current (Table 3).

To begin, the patient’s medical record (e.g., public health service) or earlier clinical reports
include the findings of previous clinical examinations conducted by other professionals (e.g.,
neuropsychologists, psychologists, neurologists, speech or occupational therapists) and the
record summary can guide the hypothesis for the assessment.

The evaluation itself starts with the anamnesis, or initial interview, which is guided by the
referral question leading to the neuropsychologic assessment (Heffelfinger, 2014; Noël, 2007;
Snyder et al., 2006). The purpose of the anamnesis is to understand and gather information
on the child’s general development and the milestones met. It specifically addresses past and
current cognitive or behavioral difficulties in the varied contexts of daily life (e.g., at home,
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Table 3 – Sources of information for the case history.

• Medical record, including previous evaluations
• Attending physician and other allied health professionals
• Patient
• Parent/primary caregiver
• Teachers
• Siblings or extended family
• Developmental questionnaires

school or daycare, with peers) (Heffelfinger, 2014; Matson et al., 2009). When conducted with
the pediatric population, this process differs significantly from that conducted with adults.
In fact, the child may be unable to recover precise time-related personal information and
may have trouble describing symptoms. Parents and caregivers must therefore be involved.
Nevertheless, the child’s own point of view on present difficulties, examples of daily challenges,
and the level of suffering should be given a great deal of consideration, whenever possible.
As children age and mature and as their introspective abilities and verbal skills grow, their
personal perspective carries greater and greater weight (Bauer et al., 2010; Bergen & Woodin,
2010; Bronk, 2010).

Parents or primary caregivers usually provide a great deal of information, giving the
neuropsychologist a broad picture of the child’s behavior in ordinary, day-to-day contexts
(Heffelfinger, 2014; Noël, 2007). These observations are the main source of information and
should be incorporated into the anamnesis for deeper insight into the child’s early development
and the family’s medical history. Furthermore, the caregiver’s perspective reveals how the
child’s dysfunctions affect family dynamics. It is sometimes a good idea to conduct a separate
meeting or phone interview with the caregivers/parents before or after the neuropsychologic
evaluation in order to discuss sensitive information that may affect the child or that may take
up too much time during the initial assessment session.

Developmental questionnaires filled out by the primary and external caregivers (e.g.,
teachers) are another source of information. These provide a standardized approach to address
factual, specific information about the child’s developmental milestones and behavioral traits
with peers and adults, as well as a summary of additional medical records (Matson et al.,
2009). Whenever possible, such questionnaires should be completed before the date of the
assessment to free up significantly more time for the anamnesis and to adapt the protocol to
the child’s specific needs.

Apart from the primary caregivers, it can also be useful to consider other sources of
information, such as siblings and members of the extended family who are in regular contact
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with the child. If the child already attends daycare or school, the teacher will add another
valuable perspective. This is also an opportunity to identify behavioral incongruences between
home and school. Only a profound knowledge of the child’s environment will result in realistic,
effective recommendations for intervention strategies that will support his or her development
and further involve members of his or her social environment.

Now that the neuropsychologist has consulted multiple sources of information to elucidate
the grounds for the referral or appointment, the case history, and a range of perspectives
on the child’s difficulties, he or she is ready to formally evaluate the patient’s cognitive and
behavioral functioning.

2.2. Cognitive assessment

The assessment of cognitive and behavioral functioning will start with the child alone
while the family is usually asked to wait outside. Meanwhile, they can complete questionnaires
given by the neuropsychologist. The use of quantitative and qualitative tools make up the
core of the evaluation process.

2.2.1. Quantitative assessment

Quantitative tools are among the fundamental elements that neuropsychologists use to
estimate a child’s functioning in various domains (Table 4). However, quantitative assessment
of cognitive and behavioral function is far from a purely dichotomic categorization: functions
are not just labelled “normal” or “abnormal,” but are estimated on a continuous scale from
impaired to gifted. Further, the neuropsychologic assessment is a patient-centered and
hypothesis-oriented approach, not just the administration of a single battery of tests that
overlooks certain cognitive functions. Each standardized psychometric test or group of tests
should be carefully chosen to answer a specific question, based on the nature, the intensity,
the mechanisms and the potential causes of the child’s difficulties (Glasel & Mazeau, 2017a).
Even when the assessment is properly planned, the list of selected tools is often modified
during the evaluation by adding or removing tests based on the child’s performance and
behavior during the clinical interview or the assessment. Thus, the neuropsychologist must
be highly flexible and remain ready to change the plan at any time.
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Table 4 – Cognitive and motor functions commonly evaluated in a neuropsychologic assess-
ment.

General intellectual functioning Global capacity to act purposefully, think rationally
and deal effectively with the environment (Wechsler,
1944, p. 3)

Attention Immediate, selective, sustained, or divided: allocation
of resources and efforts towards an object or a task
(Naglieri & Otero, 2010, p. 320)

Executive functions Inhibition, flexibility, planning, working memory, etc.:
Capacity to respond in an adaptive manner to novel
situations and coordinate cognitive, emotional and
social skills (Lezak et al., 2012c, p. 666)

Memory and learning Verbal and nonverbal, short- and long-term: capacity
to retain information and utilize it for adaptive pur-
poses (Fuster, 1995; Lezak et al., 2012a)

Academic learning Reading, writing, mathematics
Visual and visuospatial capacities Ability to visually perceive the size and color of objects

as well as their spatial orientation and relation (« Les
fonctions cognitives », 2018)

Motor functions Fine and gross motor coordination, handwriting skills,
handedness as an index for hemispheric dominance of
language functions

Visuomotor skills Coordination of visual perception and motor functions,
including eye-hand coordination

Social cognition Perception and processing of social interactions and
own behavior during it, and about the social norms
and procedures (Beer & Ochsner, 2006)

The main advantages of using standardized, valid and reliable tools are: 1) cognitive
functions are conceptualized based on widely used theoretical concepts, which facilitates
communication among clinical professionals and allows comparability; 2) standardization of
the administration procedure (e.g., detailed verbatim instructions and non-verbal procedures
for exact introduction and administration, if necessary; guidelines on how many times a
task should be explained, how one should react to the child’s questions, or how much the
neuropsychologist can push the child in order to receive an answer) allows inter-individual
comparisons; 3) each test or subtest has been designed to assess specific functions or abilities,
which leads to precise interpretation of the results; and, finally, 4) the results are scored in a
systematic process that maps individual results based on standardized scores.

Until recently, pediatric psychometric tests were based on theoretical concepts developed
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for adults. It has only been a few decades since standardized tests for the pediatric population,
deduced from specific scientific findings in children, began to be developed in a significant
manner. Today, child neuropsychologists have access to several batteries of tests that
have been standardized on substantial normative pediatric samples (Snyder et al., 2006).
Hence, standardized assessment tools establish acceptable statistical limits of inter-individual
variability and can be used to categorize a child’s individual performance in relation to an
age-specific normative sample (impaired, below average, average, above average, exceptional)
(Glasel & Mazeau, 2017a). For certain neuropsychologic test batteries, language- or culture-
specific norms supplement age-specific references for even more accurate measurement of the
child’s functioning.

Despite important advances in standardized age-specific neuropsychologic assessments
as well as major advances in the documentation of developmental patterns in the pediatric
population, it remains a challenge to differentiate between developmental delay and permanent
impairment (delay vs. disorder, e.g., Baron, 2010; Giedd, 2004; Goldstein & McNeil, 2004;
Paquette et al., 2015; Skeide & Friederici, 2016). This is also due to the individual variability
of functional development among children, the different developmental courses within cognitive
domains, and the maturation rates of different brain areas. In some cases, only repeated
neuropsychologic assessments provide adequate interpretations of an individual developmental
trajectory.

Further, there also remain certain statistical challenges regarding the availability of well
standardized assessment tools. First, some tools are based on very small samples, therefore
limiting generalization in terms of statistical means. Second, the sample may be drawn
from individuals who do not accurately represent the patient’s population, introducing
potential distortion for the distribution. These limits may prevent the neuropsychologist from
assessing the effect of demographic and socioeconomic factors on cognitive performances. Some
standardized tests are based on samples of children diagnosed with various neuropsychologic
conditions, allowing for classification of a child’s performance within the normative sample of
a specific pathologic population, which can be highly relevant for some children. However,
these clinical normative samples are still scant and their number should increase considerably
in the future.

2.2.2. Qualitative assessment

In the neuropsychologic assessment process the qualitative assessment is as important
as the quantitative assessment. In addition, when a child cannot complete the quantitative
assessment due to age or to developmental, medical or motivational restrictions, qualitative
observations are of particular value. This part of the evaluation will be discussed in the next
section.

While the quantitative assessment is a standardized process, the qualitative assessment is
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based mainly on the neuropsychologist’s observation and requires a high degree of expertise.
The child’s behavior must be observed from the first direct contact with the child and the
family (Snyder et al., 2006). Throughout the clinical interview, the neuropsychologist must
be alert to the child’s verbal, motor (e.g., pencil grasp) and attentional abilities (e.g., whether
the child understands questions and responds appropriately), the family dynamics, the child’s
temperament and behavioral particularities (e.g., anxious, approachable, calm, nail biting)
and interaction with the neuropsychologist (e.g., eye contact, extroverted or reserved) (Noël,
2007). Throughout the sessions, the neuropsychologist must continuously observe how the
child approaches tasks and understands instructions, whether the child is confident in his or
her performance or how fast he or she finishes tasks (working speed). With respect to age
and developmental stage, it is also of particular importance to pay attention to the child’s
expressive and receptive language, including vocabulary, syntax, morphology, comprehension,
grammar, pragmatics, articulation, pronunciation, speed of speech or fluidity of speech,
and lexical access. Regarding attentional skills, the focus should be on distractibility, the
capacity to sustain attention, the tolerance to mental effort, hyperactivity, and the capacity
to sit still for a long period. Further, the observations include fine motor functions such as
comprehension, pencil grasp maturity, motor control while writing and the handling of toys
and testing material (e.g., blocks), as well as gross motor skills such as coordination, walking,
running and general body language. The qualitative assessment of cognitive and behavioral
function illustrates that the neuropsychologic assessment is far from a purely psychometric
assessment. In particular, when quantitative assessment produces surprising or inconsistent
results, the qualitative assessment contributes to a better understanding (e.g., fatigue indexes
during a task administered right before the break or anxiety indexes during a challenging
task).

2.2.3. Behavioral and socioaffective functioning

The impact of socioaffective well-being on cognitive functions has been widely investigated.
As such, the child’s psychological state at the time of the evaluation must be considered in order
to properly interpret the aetiology of the identified phenotype, i.e., the pattern of cognitive
strengths and impairments (Glasel & Mazeau, 2017a). For example, it is widely known that
anxiety or depression symptoms are frequently associated with distractibility, concentration
problems, or memory problems (Gualtieri & Morgan, 2008; Rock et al., 2018). On the
other hand, socioaffective dysfunction may also be a consequence of cognitive impairment
or developmental delay (Tavano et al., 2007). In fact, cognitive impairment can result in
reduced academic performance, altered social relationships and limited social participation,
or a disruptive family dynamic, which in turn may lead to anxiety symptoms, feelings of
helplessness, low self-esteem, and depressive mood. The neuropsychologic assessment should
therefore screen for specific behavioral and socioaffective difficulties that would require further
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psychological consultation. However, the neuropsychologic assessment does not include a
complete psychological evaluation, i.e., a detailed exploration of the child’s emotional and
relational experiences, unresolved unconscious conflicts, or personality development. Usually,
a variety of questionnaires is used to screen for socioemotional characteristics like aggressive
behavior, disobedience, anxiety, and depression symptoms. It is important to emphasize
that screening does not always allow for a final psychological diagnosis nor does it replace a
comprehensive psychological evaluation. However, it does help identify whether the child’s
performance may have been hampered by a psychological condition, and the interpretation
of the assessment should take this information into account. If socioaffective deviations are
observed, the child should be referred to a clinical psychologist.

2.3. Interpretation

Once the formal neuropsychologic assessment is completed, the neuropsychologist must
organize and summarize all results in order to interpret the findings (Table 4). By integrating
quantitative findings (the performance in the psychometric assessment of cognitive and
behavioral functioning) with qualitative findings (observations of the behavior during the
direct contact with the child), the neuropsychologist is able to determine whether the child’s
performance for a specific subfunction is within, above, or below the norm—respectively
representing the norm, a strength or a weakness. The combination of results for each cognitive
function (e.g., flexibility, inhibition, organization skills) leads to an integrated estimation
of the cognitive level within a class of functions (e.g., executive functions). The overall
picture of the results gives a global profile of the child’s cognitive capacities and allows
for identification of individual strengths and weaknesses and, in some cases, deficits. The
established performance profile should be interpreted in the context of the normative sample,
as well as in consideration of intra-individual variability. Different tests assessing the same
function may result in contradictory findings. The neuropsychologist must then identify
potential explanations for these discrepancies: assessment using different modalities (e.g.,
verbal versus non-verbal memory functions); timing of administration within the assessment
session, which can affect the child’s level of fatigue or anxiety (e.g., at the beginning or end
of the session or before or right after a break); or other explanations (e.g., motivational or
attentional fluctuations).

Overall, the interpretation process requires the neuropsychologist to consider the pa-
tient’s entire history, including: 1) the case history, i.e., medical records, developmental
reports and questionnaires, third-party observations; 2) the profile of the child’s performance
revealed by the quantitative and qualitative assessment; and 3) his or her socioaffective
well-being. The final step is the integration of the individual findings across disciplines, i.e.,
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neuroscience, functional neuroanatomy, neurobiology, neurology, neuropathology, clinical psy-
chology, and, in particular, neuro- and psychological development. This leads to conclusions
about brain–behavior relationships that enable the neuropsychologist to identify possible
underlying neurologic processes and potential pathologic conditions. The conclusion should
reflect the initial indication and specific questions. This emphasizes yet again the importance
of specifying the indications, complaints and questions from the outset in order to maximize
the efficiency of the neuropsychologic assessment.

The findings of the assessment will be summarized in a neuropsychologic report, allowing
third parties to be informed of and to understand the conclusions (Rae-Grant & Parsons,
2014). This report is also intended for clinical professionals in other disciplines, the child’s
primary caregivers, and significant individuals in regular contact with the child (e.g., teachers).
The report must be written in plain, objective language. Usually, it contains the following
sections: a) the indications, complaints and questions; b) the case history; c) the findings
of the qualitative assessment; d) the results of the formal evaluation; e) the conclusions
regarding cognitive and behavioral functions, the assumptions, and the diagnosis of underlying
pathologies; and f) personalized recommendations for interventions to address the difficulties
identified.

3. Pediatric Neuropsychologic Assessment in Specific
Situations

Although there are certain well known similarities between pediatric and adult neuropsy-
chologic assessment, different approaches and techniques must be applied to each population
(Baron, 2010; Reynolds & Fletcher-Janzen, 2009). A number of factors influence the interpre-
tation of a pediatric assessment, and expertise on adult brain–behavior relationships does
not apply to children in the same way. The following paragraphs explore the distinctive
characteristics and challenges that are met when conducting assessments of children, and
these will be illustrated with examples of pathologic conditions.

First, various behavioral dysfunctions can affect the child’s cooperation and motivation.
In this case, if the neuropsychologist wishes to properly assess the child’s best performance,
he or she will need to have strategies at hand to keep the child interested. Depending
on the extent and severity of the behavioral dysfunctions, the neuropsychologic protocol
requires substantial adjustments. For example, in children with an intellectual disability (ID),
frequently alternating between the evaluation and play-breaks to reward them for their efforts
is crucial. Thus, the duration of the formal assessment is limited and the assessment requires
a rather narrow protocol with a focus on the most important functions.

Second, language abilities can be limited and the comprehension of instructions may be
challenging. Standardized administration therefore requires adjusted instructions. Tools that
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use simple, non-verbal instructions can be used to overcome this challenge. These are often
used for children with ID to assess cognitive functioning despite limited verbal skills.

Third, a limited attention span can have significant effects on the neuropsychologic assess-
ment, as it affects more aspects than just the tasks assessing attentional functions. It is often
challenging for the neuropsychologist to keep the child’s attention during the evaluation, thus
flexibility to adjust the protocol (e.g., the need to break down a task into several blocks, taking
numerous short breaks) or creative strategies (e.g., running around and other physical activity
between tasks) may be crucial to obtain valid results. Among others, the cognitive profile
of children with ADHD is characterized by attentional and executive difficulties (American
Psychiatric Association [APA], 2013; WHO, 1992). In these cases, there is often a frequent
need for breaks, as attention and concentration decline and fluctuate, or because impulsive
and hyperactive behavior causes interruptions. This may result in quite divergent results
for similar tasks and functions, which the neuropsychologist should not only attribute to
cognitive underperformance but also interpret as due to attentional difficulties. Overall, the
validity of the psychometric results may be reduced, which emphasizes the importance of
qualitative observations, in order to estimate the influence of attentional difficulties on all
the neuropsychologic results.

Fourth, impaired social skills and altered communicative capacities can render the interac-
tion during the assessment difficult and often unpredictable (e.g., children suspected to have
or diagnosed with ASD). In these cases, the neuropsychologist’s observations of social cues
and elements of the interaction are of great importance. There are also certain standardized
tools for evaluating specific social abilities, such as non-sense stories or stories with ironic
content and real-life situations. During the entire assessment, the neuropsychologist should
pay particular attention to his or her style of interacting with the child to maximize the
extent and quality of the assessment. Children with ASD or with social difficulties may show
reduced flexibility and ability to adapt to a social situation. Adjusting to a new setting
demands significantly more time and cognitive resources of these children. The child’s focus
of attention can also be quite different; some aspects of the room or certain objects may
attract unusual attention, while focus on the task itself is low. Finally, the child may also have
trouble understanding implicit requests or may show a low underlying level of tolerance when
trying to complete a task. The neuropsychologist should be aware of these particularities,
limit the sources of distraction, allow more time for the child to become familiar with the
setting, and be particularly clear when introducing a task.

Lastly, the selection of tests depends largely on the child’s developmental age. Where
there is a considerable developmental delay (e.g., ID, in some children with ASD), the
developmental age may differ significantly from the child’s chronologic age (Koziol & Budding,
2010; Mazeau & Pouhet, 2014). As a consequence, the neuropsychologist will have to adjust
the choice of tests during the initial interview to include more playful tasks. For instance,
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when evaluating a 6-year-old showing a developmental delay, the use of tools for pre-schoolers
may be more appropriate than the school-age batteries normally applied. This generally
requires the neuropsychologist to develop a broad range of expertise, a deep knowledge of the
available tools, and a high degree of flexibility.

4. Conclusion
The main objective of the neuropsychologic assessment is to document neurodevelopmental

alterations within various cognitive and behavioral domains, sensory-motor and perceptual
functions, and socioaffective functioning. Subsequently, it aims to propose appropriate ex-
planations for the specific pattern of impairments previously documented. To do so, the
neuropsychologist not only integrates the results of the extensive formal quantitative and
qualitative assessment, but also considers observational reports by caregivers and the case
history. The main expertise of a clinical neuropsychologist lies in the integrative and multidis-
ciplinary interpretation of the findings. This ultimately allows him or her to specify potential
neurodevelopmental pathologies, to document the impact of structural abnormalities, and
to draw profound assumptions about brain–behavior relationships. The neuropsychologic
assessment is frequently part of a multidisciplinary evaluation, from which recommendations
are derived for various contexts of the child’s daily life (e.g., family, care team, school). In
fact, it provides significant guidance in introducing or adjusting the appropriate therapeutic
and intervention programs addressing the difficulties identified. Further, the assessment also
finds application within a scientific context, where it contributes to documenting normal
development or, in legal cases, to justifying conclusions about causal relationships.

Since the acquisition of valid, reliable performances that accurately reflect a child’s cogni-
tive potential depends largely on his or her motivation, cooperation and concentration, the
pediatric neuropsychologic assessment in particular requires a high degree of flexibility on
the part of the neuropsychologist (e.g., regarding the evaluation protocol, the duration of
each session, and the interaction with the child). That is why efficient preparation for the
evaluation is essential. This also depends on a range of information the neuropsychologist
must know prior to the assessment (e.g., chronologic age, known pathologies, pharmaceutical
treatment).

Future advances in pediatric neuropsychologic assessments should address the develop-
ment of more sophisticated tools. This includes, for example, establishing larger normative
samples that improve statistical power, building pathologic normative samples to facilitate the
categorization of results, or augmenting sociocultural specific norms. Further, there should
be a deeper understanding of the importance of pediatric neuropsychologic assessments to
the child’s neurodevelopment and an exchange of information with other disciplines. This
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may pave the way for more holistic protocols and make diagnosis as well as intervention more
effective.
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Abstract. Significance: Current techniques for data analysis in functional near-infrared
spectroscopy (fNIRS), such as artifact correction, do not allow to integrate the information
originating from both wavelengths, considering only temporal and spatial dimensions of the
signal’s structure. Parallel factor analysis (PARAFAC) has previously been validated as a
multidimensional decomposition technique in other neuroimaging fields.
Aim: We aimed to introduce and validate the use of PARAFAC for the analysis of fNIRS
data, which is inherently multidimensional (time, space, wavelength).
Approach: We used data acquired in 17 healthy adults during a verbal fluency task to
compare the efficacy of PARAFAC for motion artifact correction to traditional 2D decompo-
sition techniques, i.e., target principal (tPCA) and independent component analysis (ICA).
Correction performance was further evaluated under controlled conditions with simulated
artifacts and hemodynamic response functions.
Results: PARAFAC achieved significantly higher improvement in data quality as compared
to tPCA and ICA. Correction in several simulated signals further validated its use and
promoted it as a robust method independent of the artifact’s characteristics.
Conclusions: This study describes the first implementation of PARAFAC in fNIRS and
provides validation for its use to correct artifacts. PARAFAC is a promising data-driven
alternative for multidimensional data analyses in fNIRS and this study paves the way for
further applications.
Keywords: near-infrared spectroscopy, multidimensional decomposition, parallel factor
analysis (PARAFAC), canonical decomposition, artifact correction, language paradigm
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1. Introduction
Functional near-infrared spectroscopy (fNIRS) is a noninvasive neuroimaging technique

that uses light of at least two different wavelengths in the near-infrared spectrum in order
to assess brain activity based on neurovascular coupling. The specific absorption properties
of oxygenated (HbO) and deoxygenated (HbR) hemoglobin allow individual assessments of
concentration changes in both HbO and HbR separately (Jobsis, 1977). Although the fNIRS
signal is considered to be relatively tolerant to movement (Lloyd-Fox et al., 2010), quality
of data may be reduced due to abrupt changes in the light intensity caused by movement
artifacts (Yücel et al., 2014). It has been shown that the dynamics of both wavelengths provide
important information for artifact detection and correction (Cui et al., 2010). However, current
techniques for movement artifact correction (e.g., wavelet filtering, decomposition, spline
interpolation, and so on) typically assume that the behavior of both wavelengths is similar in
time, thus do not take advantage of the structured information offered by both wavelengths
(Brigadoi et al., 2014; Cooper et al., 2012; Tak & Ye, 2014). Two-dimensional (2D) analyses
require that data with more dimensions, such as fNIRS data, undergo superficial unfolding
before processing, e.g., treating both wavelengths or HbO and HbR independently. Hence,
some of these 2D analysis tools are forced to impose other nonphysiological constraints, such
as orthogonality in the case of principal component analysis (PCA) or statistical independence
for independent component analysis (ICA).

Although there are several ways to approach PCA, e.g., dimensionality reduction (H.
Zhang et al., 2011), classification (James et al., 2021), from the signal decomposition point of
view, PCA aims at extracting the so-called principal components, i.e., those components that
explain the greatest amount of variance of the signal (X. Zhang et al., 2017) activities in fNIRS
(Cooper et al., 2012; Peng et al., 2014; Tak & Ye, 2014; X. Zhang et al., 2017). In temporal
PCA, the data is decomposed into a sum of components, each one formed by the product of two
vectors: one representing the temporal principal component and the other, the corresponding
topography (scores for each channel). A basic problem with PCA is that the components
defined by only two signatures (time and space) are not uniquely determined. Therefore,
orthogonality is imposed between the corresponding temporal signatures of the different
components (Becker et al., 2011; Miwakeichi et al., 2004; Tak & Ye, 2014). Orthogonality
among brain signals is, however, a rather nonphysiological constraint. Even with this
restriction, the extracted principal components are not completely unique, given that the
arbitrary rotation of axes does not change the explained variance of the data. This has led
researchers to use different mathematical criteria as the basis for choosing specific rotations
(e.g., Varimax, Quartimax, and Promax). In fNIRS, PCA has also been applied to target
time intervals (tPCA), that is only during periods where artifacts related to articulation or
other head movements occurred, instead of during the entire unsegmented signal (Behrendt
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et al., 2018; Yücel et al., 2014). This type of targeted correction resulted in better signal
quality, as compared to wavelet-based filtering and spline interpolation, while also reducing
the risk of altering the signal’s global integrity (Yücel et al., 2014). Although PCA is very
common and easy to use, some authors have already discussed its pitfalls and caveats as a
method for artifact correction (Brigadoi et al., 2014; Jahani et al., 2018).

More recently, ICA has become another popular tool for data decomposition in fNIRS
(Kamran et al., 2016; Tachtsidis & Scholkmann, 2016; H. Zhang et al., 2010). It has the
benefit of preventing rotational freedom (Jung et al., 2001). However, uniqueness is achieved
at the cost of imposing a constraint even stronger than orthogonality, namely, statistical
independence of the temporal signatures (Comon, 1994; Jutten & Herault, 1991). Statistical
independence is appropriate for identifying artifacts with spatio-temporal signatures that are
very different to those of neural activity (e.g., ocular movements), but is less appropriate for
artifacts that share spatio-temporal characteristics with neural signals. What is more, ICA is
commonly applied to the entire signal in contrast to a target decomposition as introduced
previously for tPCA (H. Zhang et al., 2010). It may thus be more challenging to achieve
a satisfying correction of irregular movement artifacts. In ICA, the maximal number of
components (hypothesized sources) equals the number of observations, which in neuroimaging
is often rather high. It could therefore become difficult to identify the artifact’s signature,
which could be split into several components.

To overcome these limitations, a multidimensional (≥ 3D) approach called parallel factor
analysis (PARAFAC) (Bro, 1998; Harshman, 1970), or less frequently referred to as canonical
decomposition (Carroll & Chang, 1970), could be considered as an alternative for the analysis
of fNIRS data. PARAFAC is a decomposition technique applicable to any dataset that can be
described in more than two dimensions (e.g., time, space, frequency, participants, conditions,
signal characteristics) and allows for the extraction of different signatures present in the
data. It assumes multilinear relations between the different dimensions and usually does not
need any other mathematical constraints to find a unique decomposition of the data. It may
therefore be used in the data preprocessing steps to isolate artifacts, as well as in the actual
data analyses to extract a predominant brain activation, or other relevant characteristics
of the signal. Such multidimensional decomposition was initially introduced in the field of
psychometrics and linguistics as a tool for multifactorial analysis (Carroll & Chang, 1970;
Harshman, 1970; Tucker, 1966). Over time, its use was extended to neuroimaging signals,
such as the analysis of event-related potentials (ERPs) assessed by electroencephalography
(EEG), in which time, space and participants were considered for the signal decomposition
(Field & Graupe, 1991; Möcks, 1988). Multidimensional decomposition with PARAFAC is
not limited to 3D and could potentially be applied to data with more dimensions. In the
context of ERP data, PARAFAC as a five-way analysis has successfully been used to identify
differences and common characteristics of intertrial phase coherence across conditions and
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subjects, including the dimensions of time, channels, frequency, subjects, and conditions
(Möcks, 1988). PARAFAC was also applied for data analysis in continuous EEG recordings,
taking into account the temporal, spatial and frequency representation of the EEG signal
(Martínez-Montes et al., 2004; Miwakeichi et al., 2004). Indeed, using a time-frequency wavelet
transformation for each channel in EEG data, Miwakeichi and colleagues (2004) revealed
PARAFAC as an appropriate tool for both the detection of ocular movement artifacts and
the identification of dominant brain activation patterns. In their study, some of the artifact
components identified using PARAFAC were highly similar to those extracted with principal
component analysis (PCA), a well-established approach for 2D decomposition. Specifically,
significant overlap was shown for eigenvalues and peaks of time/frequency components, as
well as their topographical representations found with PCA and PARAFAC for activities
that effectively fulfill the orthogonality requirement. PARAFAC, using the dimensions of
time, space and frequency, has also been applied successfully to the EEG data of individuals
with epilepsy, for the purposes of artifact detection and the identification of aberrant cerebral
activation (Acar et al., 2007). The growing popularity of PARAFAC in neuroimaging stems
from the intrinsic advantage of multidimensional decomposition, as it reflects the nature of
most data gathered in neuroscience. Compared to 2D methods, the application of PARAFAC
does not need to impose nonphysiological constraints (Martínez-Montes et al., 2004). What
is more, since decomposition techniques represent data-driven approaches, PARAFAC could
also contribute to enlighten new aspects of neuroimaging data compared to model-based
techniques (Calhoun, 2018). Although PARAFAC has been applied for data analysis on
NIRS data in the food industry (Bro, 1998), it has not yet been used in fNIRS in the field of
neuroscience.

The current study aimed to introduce and validate PARAFAC as a multidimensional
decomposition technique to extract and correct artifacts in fNIRS data. To account for the
natural complexity and variability regarding motion artifacts, we first applied the PARAFAC
technique in real cognitive fNIRS data. More specifically, data were acquired from participants
that performed aloud a verbal fluency task, in which the main motion artifacts are known
to be task-dependent and have characteristics that might confound the estimation of the
hemodynamic response function (HRF) (Brigadoi et al., 2014). PARAFAC’s performance
to correct motion artifacts was compared to two traditional bidimensional decomposition
techniques: tPCA and ICA. In doing so, we investigated differences in artifact correction
efficacy related to the number of dimensions used in the decomposition techniques (i.e.,
treating both wavelengths as independent or as a dimension). As the true HRF was unknown
and therefore did not allow to directly compare the recovered task activation to a ground
truth, we used statistical analysis of correction performance based on various quality measures
of the three different corrected signals.
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Secondly, we investigated how artifact correction with PARAFAC performed in various
controlled scenarios to disentangle in which cases a multidimensional decomposition approach
that does not impose orthogonality constraints could become advantageous. For that purpose,
a real artifact was extracted from a data set of the task condition and added to a clean resting-
state signal. Different artifact parameters (e.g., amplitude, onset of overlapping artifacts)
were controlled to produce various scenarios, including variation in the level of orthogonality
among the signals combined in the simulated data. Further, the use of the resting-state signal
allowed us to evaluate how artifact correction would affect the reconstruction of a synthesized
HRF (HRFsim), which has actually been named as one of the most suitable methods to
validate artifact correction (Cooper et al., 2012). Artifact correction in these scenarios was
performed with PARAFAC and tPCA only, both applied specifically during the artifacted
interval (i.e., target decomposition), compared to ICA that is typically applied to the entire
signal, and thus being more comparable methods. Indices for the similarity between the clean
signal before adding artifacts and the signal after artifact correction, the signal’s quality as
well as the recovery of the HRFsim after correction, were used to compare the performance of
both correction approaches.

2. Methods
2.1. Sample and Data Acquisition

Eighteen healthy native French-speaking adults participated in this study. One participant
was excluded from the analyses, as it showed continuous noise precluding the identification
of individual artifacts. The final sample for the validation of using PARAFAC for artifact
correction thus included 17 participants (mean age ± standard deviation = 22.8 ± 2.0
years; nine females and eight males). All were right-handed and presented no neurological or
psychiatric disorders. Experimental procedures were approved by the local ethics committee.

fNIRS data was acquired with a multichannel Imagent Tissue Oxymeter (ISS Inc., Cham-
paign, Illinois) frequency-domain fNIRS device using 14 light detectors and 60 laser light
emitters, each regrouping two light sources of different wavelengths (λ1|2 = 690|830 nm) with
an average power of 10 mW. Emitters and detectors coupled at a distance of 3 to 4.5 cm
allowed for the recording of 104 channels for each wavelength. Optodes were held in place
perpendicularly, using a cap that was fitted on the head of participants in accordance with
the 10-20 system (Klem et al., 1999). Optical intensity, including information regarding the
average light intensity (DC), amplitude modulation (AC) and phase shift (ϕ), was measured
with a sampling rate of 19.53 Hz (Boxy, ISS Inc., champaign, Illinois). The channel setup
covered both hemispheres equally and included the regions of interest for the investigation of
language functions, i.e., frontal, temporal and parietal lobes (Fig. 1A).
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Participants sat comfortably in a soundproof room. They were instructed to relax, to
avoid any intentional movements or muscular tension, and to fix their gaze on the center
of a screen placed at a distance of 114 cm. Participants underwent fNIRS recording during
two conditions (Fig. 1B): (1) a 12-min resting-state with eyes open and (2) a verbal fluency
task previously validated for expressive language-related activation (Gaillard et al., 2003;
Gallagher et al., 2016; Paquette et al., 2015). The task consisted of 11 different familiar
semantic categories (e.g., animals, colors, fruits, and so on) that appeared one at a time on
the screen. Participants were instructed to name as many words as possible belonging to the
specified category and to continue as long as the category name appeared on the screen. We
used a block design paradigm in which periods of rest (fixation cross presented on the screen)
and task (semantic category) alternated (PresentationsR⃝, Neurobehavioral Systems, 2018).
The inter-stimulus interval varied randomly between 25 and 29 s, while stimuli (one of the
semantic categories) were always presented for 30 s. An audiovisual recording of the fNIRS
session enabled visual support during offline preprocessing for the identification of movements
and the timing of word articulation. Participants completed on average 10.4 ± 0.9 blocks of
the verbal fluency task and named an average of 14 ± 2.2 words during each 30-s block. Data
analysis was conducted with the use of a homemade toolbox (LIONirs) (J. Tremblay et al.,
2022) adapted in SPM12 (Statistical Parametric Mapping) (Villringer & Dirnagl, 1995) in
MATLAB® (The MathWorks, Inc., Massachusetts).

Figure 1 – fNIRS setup: (A) Probe placement (sources in small light gray dots, detectors
in dark gray dots) as shown on an adult’s head model. (B) Experimental design including
a 12-min resting-state followed by an expressive verbal fluency task that included 11 trials.
Trials lasted 30 s and inter-stimulus intervals varied pseudo-randomly between 25 and 29 s.

44



2.2. Validation Process

Validation of PARAFAC for artifact correction was done in two realistic applications
as illustrated in Fig. 2. First, artifact correction with PARAFAC was tested on the real
task-based signal of the whole sample, and its performance was compared with tPCA and ICA.
Indices for the signal’s quality were used to compare the three techniques (Sec. 2.6). Second, a
simulation analysis was conducted to investigate the efficacy of PARAFAC to correct artifacts
with controlled parameters. Similarity metrics, quality measures and reconstruction of the
HRFsim were used to evaluate artifact correction with PARAFAC and tPCA both applied in
a target manner (Secs. 2.6, 2.3 and 2.8).

2.3. Nonsimulated Task-related Motion Artifacts

Preprocessing of the task-condition data first included the automatic exclusion of channels
with insufficient light intensity amplitude (average raw DC intensity across time < 100). The
signal was afterwards segmented into blocks of 50 s (5 s resting-state baseline, 30 s task, and 15
s resting-state), and light intensity was converted to changes in optical density (normalization
of each block). We then performed a semi-automatic artifact detection using a moving-window
algorithm to automatically mark segments where an abrupt change of the signal’s variance
exceeded three times the average variance of the previous interval (Aarabi & Huppert, 2016)
with a window duration of 0.8 s. Events that were 2 s or less apart were considered as one
and channels that were strongly correlated with a noisy channel (Pearson correlation of ≥ 0.8)
within the aberrant segment were also marked as artifacted. The automatic detection step
was reviewed afterward and adjusted based on an inter-rater visual inspection of the signal’s
characteristics and the video recordings. Because the task required participants to name
words aloud, artifacts in the current language paradigm were mostly due to facial movements
related to the muscular contraction of articulation.

2.4. Simulated Motion Artifacts

A real resting-state dataset from one of the participants in which we could identify a 180-s
segment without any motion artifact was employed for the simulated artifact experiment. As
for the task-based data, channels with insufficient raw light intensity amplitude were first
excluded based on the previously mentioned criteria, yielding a total of 82 channels. The
data was then converted to changes in optical density (normalization based on the whole
180-s segment). It served as the initial signal baseline (NIRSini) for similarity and quality
signal assessments.

To add a motion artifact with controlled parameters, we first used PCA to decompose all
channels of a task-based fNIRS signal during a typical motion artifact (A) with a duration of
7 s. The obtained temporal signature of the first component was then added to the NIRSini.
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Figure 2 – Processing streams to validate PARAFAC as a multidimensional artifact cor-
rection technique for fNIRS data. (A) The processing of the real task data derived from
17 subjects, and (B) of the simulated data based on a single-subject, respectively. The
metric(s) used to evaluate correction performance of each stream are presented on the right
side. NIRSini = initial signal used for comparison (with artifacts for the real task data; before
artifact simulation for the resting-state data). PRD, Percent root difference; RMSE, root
mean square error; R, Pearson product-moment correlation coefficient; SNR, signal-to-noise
ratio; Rλ, Pearson’s correlation between wavelengths; GLM, general linear model; HRFsim,
simulated hemodynamic response function.

46



The spatial distribution of A, i.e., the weight of each channel was randomized, but the same
distribution was added to both wavelengths with only a different overall scale. Figure 3
provides an overview of the set of simulations and their parameters, while more details are
provided in Fig. S1 of the Supplemental Material. For the first simulation, the amplitude of
the original artifact was modulated and scaled to five different amplitudes in order to produce
artifacts with various signal-to-noise ratio (SNR) (simulations 1a to 1e). For the second
simulation, we aimed to produce artifacts with more complex signatures (simulations 2a to 2f).
The idea emerged from observations of artifact correction in the task-related signal and also
aimed at exploring the decomposition when different artifacts are not completely orthogonal
in the data. To do so, two individual artifacts (A1, A2) with varying time intervals between
the onset of A1 and A2 led to different temporal orthogonality (r) which was evaluated for
each simulation. The levels of orthogonality between the time courses of the raw signal and
the first artifact ra (Raw × A1) and between the time courses of the artifacted signal and the
second artifact rb ((Raw + A1) × A2), were derived from the angle between both signals
(i.e., taking the time course of each signal as a vector of time points and computing the angle
between both vectors). A normalized measure of the orthogonality level is then computed
such that when the angle between the signals is 90 deg, the measure is maximum and equal
to one, while when the angle departs from 90 deg (both higher or lower) the measure linearly
decreases to zero. Then, r values of one indicate perfect orthogonality between the two time
courses, while r values lower than one, specifically those closer to zero indicate that the
two time courses are not orthogonal to each other. Additionally, an HRF was synthesized
(HRFsim) in SPM by the linear combination of two gamma functions as proposed in the
literature (Glover, 1999). That is, gamma functions one and two had a time-to-peak of 5.4
and 10.8 s respectively, a full-width-at-half maximum of 5.2 and 7.36 s respectively, and a
scaling coefficient for the second gamma function of 0.35. The amplitude of the HRFsim was
scaled by 14 % for the 830 nm signal and 0.6 % for the 690 nm signal, which approximately
produces an HRF with an 15µM increase in HbO concentration and a 5µM decrease in HbR
concentration (Cooper et al., 2012; Gagnon et al., 2012; Gagnon et al., 2011; Glover, 1999).
The response was simulated as a convolution of the HRF with a stimulus duration of 30 s
resulting in a simulated physiological signal (HRFsim) of ∼40 s. The HRFsim was then added
to the signal along with an artifact (A), so as to produce different overlaps between both
time courses (simulations 3a to 3d).
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Figure 3 – Simulated fNIRS signals: (A) One example of the simulated fNIRS signal for
each simulation condition one to three. (B) The details of the varying parameters of all
simulations. Five scaling factors (0.4, 0.8, 1.0, 1.5, 3.0) were used to create simulated artifacts
with different amplitudes. λ1|2 = 690|830 nm; A, artifact; HRFsim = simulated hemodynamic
response function.

2.5. Artifact Correction

In the task-based data set, artifact correction with PARAFAC and tPCA was applied
in a target manner, i.e., to the segments identified during artifact detection as described
in Sec. 2.3; while, with ICA the analysis was applied to the entire continuous signal. In
the simulated signals, target correction was applied to a time interval of ±2 s around the
simulated artifacts. More details on each decomposition technique will be presented in the
following sections (Secs. 2.5.1 and 2.5.2).

2.5.1. Two-dimensional Signal Decomposition for Artifact Correction

For both ICA and tPCA, the decomposition of the 2D data matrix X (whose elements
xij are indexed by channel i and time points j), leads to Nf components as defined in Eq. 1
and illustrated in Fig. 4A

xij =
Nf∑
f=1

aifbjf + Eij. (1)
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The matrix concatenates two separate data matrices (X1,X2) corresponding to the 2D
structure for both wavelengths. The maximum number of components Nf could be equal
to or less than the smaller dimension of the X matrix dimension, i.e., twice the number
of channels or number of time points. Each component is modeled as the product of two
factors/vectors which represent signatures of the space (af ) and time (bf ) dimensions. The
temporal signatures are constrained to be orthogonal among components, and rotated in
order to obtain those signatures that offer the highest variance explanation (Varimax) from
all the infinite solutions of the decomposition. The unexplained part of the data is considered
irrelevant activity or noise (E).

Artifact correction with tPCA was performed on each time interval containing artifacts
as specified by the time interval of the simulated artifacts or the identified artifact detection
of the task-based data set. From the obtained components we subtracted the first, which
explains most of the variance based on the assumption that the highest variance in the data
for each segment is assumed to be caused by the artifact.

Artifact correction with ICA, was done using BrainVision Analyzer (Brain Products
GmbH, Gilching, Germany), and followed the steps proposed by Plank (2013). First, optical
density fNIRS data were exported and ICA was applied on the entire unsegmented signal,
as for the method commonly reported in the literature (H. Zhang et al., 2010). Noisy
intervals reflecting artifacts were identified by semi-automatic inter-rater artifact detection
(Sec. 2.3). We visually selected the ICA components reflecting the artifact, based first on their
time course, i.e., high variation of light intensity similar to the artifact signature. Secondly,
we rejected those whose subtraction would induce artificial artifacts elsewhere. Data was
subsequently imported back into the LIONirs toolbox (J. Tremblay et al., 2022) in order to
apply segmentation (Sec. 2.3).

2.5.2. Multidimensional Signal Decomposition

The fNIRS data naturally offers the time courses of all channels for two wavelengths,
i.e., two separate data matrices. This data can be arranged in a tridimensional array, as
illustrated in Fig. 4B. The dimensions of this 3D array are time (indexed by the time points
in the analyzed segment), space (indexed by channels) and wavelength (indexed by the two
wavelengths). As explained above, PARAFAC establishes a trilinear decomposition of each
element of the fNIRS data array (Xtsw) in Nf components, each being the product of three
factors (Bro, 1998) as defined in Eq. 2:

Xtsw =
Nf∑
f=1

atfbsfcwf + Etsw. (2)

The estimated factors, atf , bsf and cwf are the elements of the so-called loading matrices
A, B and C, whose column vectors af = atf , bf = bsf , cf = cwf , represent the temporal,
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Figure 4 – Schematic representation of the decomposition models applied to fNIRS data. (A)
The data X is arranged as a 2D data array by vertically concatenating the 2D matrices with
dimensions being space (s) and time (t) for each wavelength (w). tPCA/ICA decomposes
the array into components, each being a bilinear product of the loading vectors representing
temporal (atf ) and spatial signatures (bswf ). The latter is formed by the spatial signatures for
the different wavelengths, which are represented in components without taking into account
their spatial dependence, i.e., for the same temporal signature of each component, there will
be two topographies corresponding to the two wavelengths. Matrices A = {af} and B = {bf},
contain as columns the temporal and spatial signatures for all components, respectively. (B)
The data X is arranged as a 3D data array with dimensions being time (t), space (s) and
wavelengths (w). PARAFAC decomposes this array into the sum of components, each being
a trilinear product of loading vectors representing temporal (atf ), spatial (channel, bsf ) and
spectral (wavelength, cwf ) signatures. In practice, the decomposition consists of finding the
matrices A = {af}, B = {bf} and C = {cf} that explain X with minimal residual error.

spatial and wavelength signatures of each component. The main advantage of this method
is that it provides a unique decomposition of the fNIRS data into components reflecting
different activities that do not need to be orthogonal or statistically independent in any of the
dimensions. As long as an activation shows a different behavior in one of the dimensions, it can
be extracted as a separate component. In this application, the spatial dependency between
wavelengths is therefore exploited in order to perform the decomposition. The uniqueness of
the solution is guaranteed when the number of components (Nf ) is smaller than the sum of
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the ranks of the three loading matrices. In the case of noisy data, it is very likely that the
loading matrices are always full rank. Uniqueness is thus guaranteed as long as the number
of components (Nf ) is smaller than half the sum of the number of time points (Nt), number
of channels (Nc), and number of wavelengths (Nw: Nf ≤ (Nt+NC+Nw)

2−1 ). For instance, even
in a small array of 20 time points and eight channels at two different wavelengths, a unique
decomposition could be achieved, using up to 14 components (20(t)+8(s)+2(w)

2 − 1 = 14(Nf)).
Computationally, the decomposition is achieved by the Alternating Least Squares algorithm,
as it has been used in previous studies on neuroscience data (Acar et al., 2007; Martínez-
Montes et al., 2004; Miwakeichi et al., 2004; Mørup et al., 2006). The only indeterminacies in
the least-squares solution are trivial and easy to handle: the order of the additive components
and the relative scaling of the signatures (Bro, 1998).

In this work, we used the PARAFAC implementation from the N-way Toolbox (Andersson
& Bro, 2000), which was included into the LIONirs toolbox (J. Tremblay et al., 2022) so
as to visualize and apply the decomposition exclusively during selected time intervals and
channels. Calculation with PARAFAC can be obtained in < 1 s for a dataset size of ∼50
channels x 100 time points x two wavelengths (typical dataset size in our experiments), which
is as fast as comparable techniques such as tPCA. Components were ordered according
to their importance in explaining the data’s variance (similar to tPCA). The scale of the
data was kept in the temporal signatures, while the other dimensions were normalized
so as to have Frobenius norms equal to one. Since measures from both wavelengths are
sampled simultaneously at each specific position on the scalp, movement artifacts affect
their amplitudes similarly. During time intervals containing artifacts, the time courses of
the signal from the two wavelengths commonly show a drastic and correlated increase as
compared to the task-related or baseline signal (Cui et al., 2010). By using multidimensional
PARAFAC decomposition, we can take advantage of this information for the adequate
selection of components of the artifact’s signature. PARAFAC decomposition was specified to
extract between two to four components, allowing a clear separation of the artifact signatures
representing the artifacts characteristics from the rest of the signal. This was associated
with a Core Consistency Diagnostic (Corcondia) of more than 90 %, indicating that the
model accurately described the data (Bro & Kiers, 2003). The appropriate components were
selected based on (1) a visual inspection of their temporal overlap with the artifact, (2) the
smallest number of possible components that would sufficiently correct the artifact, and (3)
components showing similar weights for both wavelengths. In simulations, a standardized
PARAFAC decomposition with three components was applied. Two components that clearly
showed evidence of an amplitude change typically related to a movement artifact, i.e., short
impulses, were discarded as reflecting the artifact in the original signal.
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2.6. Signal Quality

The signal’s overall quality was estimated by two quality measures (Cooper et al., 2012;
Cui et al., 2010; Sweeney et al., 2012):

(1) Signal-to-noise-ratio: For each data segment with an artifact we estimated the SNR,
as defined by Sweeney and colleagues (2012):

SNR = 10log10
σ2

x

σe2
, (3)

where σx2 represented the signal’s variance computed in segments of data without an artifact.
In case of the real task-based data set, σx2 was computed in a 5-s interval during the baseline
of the task condition. For the simulations, σx2 was computed in a 5-s interval at the beginning
of the resting-state signal. σe2 represented the variance of a segment where an artifact was
identified or simulated. Therefore, our SNR works more like a constrast metric indicating
how much the signal’s variance of a noisy segment differs from the signal’s variance of a clean
segment. Whenever an artifact contaminated the signal, σe2 would usually be higher than
σe2 because it comprised both the variance of the physiological signal and the variance of
the artifact. It was therefore expected that the SNR of the signal before artifact correction
would be negative. After artifact correction, a negative SNR (σx < σe) would indicate
that the artifact had not been entirely removed, a positive SNR (σx > σe) would imply
overcorrection meaning that artifact correction removed the artifact as well as parts of the
relevant physiological activity, and an SNR of about zero (σx = σe) would suggest that the
artifact had been eliminated to the extent that the variance of the corrected signal would not
differ from the baseline segment without an artifact. In case of the task-based data set, the
SNR of the uncorrected signal served as a baseline, thus the more the SNR of the corrected
signal differed from the baseline value and approached zero, the better the artifact had been
corrected. Since the ground truth of the signal’s variance was unknown and besides the
artifact also the hemodynamic response may contribute to the signal’s variance, no further
interpretation of a negative or positive SNR would have been appropriate. For the simulations,
the SNR of the initial signal before artifact simulation (NIRSini and NIRSini + HRFsim) served
as a reference and the more the SNR of the corrected signal would approach this value, the
better the performance of artifact correction was assumed to be.

(2) Pearson’s correlation coefficient (Rλ) between the time courses of both wavelengths
from the same site were used as a subsequent quality measure to evaluate artifact correction
performance (Cui et al., 2010). This was based on the assumption that a high correlation
coefficient indicates the presence of artifactual signals measure simultaneously by both
wavelengths, since in a clean signal these temporal courses appear much less correlated.
Similar to how it was previously done for the SNR, we computed Rλ for all segments with
identified or simulated artifacts before (i.e., uncorrected artifact reference) and after artifact
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correction (i.e., corrected signal). For the task-based data, Rλ was additionally calculated for
artifact-free baseline intervals (i.e., artifact-free reference) and in case of the simulations for
the intervals of the initial signal (NIRSini and NIRSini + HRFsim) before artifact simulation
(i.e., artifact-free reference).

2.7. Similarity Indices

For the analysis of simulated data, three additional metrics were used to evaluate perfor-
mance of artifact correction: (1) the percent root difference (PRD), (2) the root mean square
error (RMSE) and (3) the Pearson product-moment correlation (R). These allowed us to
estimate the degree of correspondence between the initial signal without simulated artifacts
(NIRSini and NIRSini + HRFsim) and the signal after correction of the simulated artifacts
(Gagnon et al., 2012; S. Liu et al., 2008; Scholkmann et al., 2010). PRD, RMSE and R were
defined as follows:

PRD = 100%

√√√√ N∑
i=1

(x(ti) − y(ti))2(
N∑

i=1
x2(ti))−1, (4)

RMSE =

√√√√ 1
N

N∑
i=1

(x(ti) − y(ti))2, (5)

R = 1
N − 1

N∑
i=1

(x(ti) − x̄

sx

)(y(ti) − ȳ

sy

,

where sx =

√√√√ 1
N

N∑
i=1

(x(ti) − x̄)2, sy =

√√√√ 1
N

N∑
i=1

(y(ti) − ȳ)2.

(6)

For all three indices, x(ti) and y(ti) represented the i-th point of the time courses of the
corrected signal and of the initial artifact-free signal (NIRSini and- NIRSini + HRFsim),
respectively. N corresponded to the duration of the time courses and x̄ and ȳ to their
respective mean values along time. An ideal artifact correction would have been achieved
when the artifact was completely removed, and the corrected signal maximally resembled the
initial signal. As PDR and RMSE inform on the difference of the two signals, the smaller
they were, the more accurate the performance of artifact correction was. On the contrary,
the R index represents the similarity of both signals, hence a higher value suggested better
artifact correction.

2.8. HRF Recovery

In order to investigate how artifact correction would affect the interpretation of the
hemodynamic response, in the last simulations (3a to 3d) we aimed to recover a previously
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synthesized HRF. Therefore, a Butterworth low-pass filter (filter order = 4, cut-off fre-
quency = 0.2 Hz) was applied to the signal to remove oscillations caused by heartbeat and
respiration. The optical intensity changes of the two wavelengths were then transformed
into relative concentration changes of HbO and HbR, done so by using an age-adapted
differential pathlength factor (DPF) and the modified Beer-Lambert Law (Kocsis et al., 2006;
Scholkmann & Wolf, 2013). A general linear model (GLM) with the HRFsim as a predictor
was then applied. The GLM assumes that a linear relation exists between different inputs
(Friston et al., 2011), and has already been applied in several fNIRS studies to specify the
HRF (Minagawa-Kawai et al., 2011; Schroeter et al., 2004; Tak & Ye, 2014). The cerebral
activation of the signal (y) is defined as:

y = β0 + βHbO/HbRx + E , (7)

where y referred to the analyzed signal, β0 was a constant, βHbO/HbR represented the predictive
value of the simulated hemodynamic response represented by x (HRFsim) for both concentration
changes of HbO and HbR, respectively, and E represented the error or the unexplained part
of the signal. GLM was applied to a 60-s interval that was set to 15 s before and 45 s after
the onset of the HRFsim. The GLM allowed us to estimate how much of the signal’s variance
(R2) could be predicted by the HRFsim. This estimation was conducted for the initial signal
without artifacts (NIRSini + HRFsim), the uncorrected signal with a simulated artifact, and
for the corrected signal.

2.9. Statistical Analysis

Quality and similarity measures were computed for each channel separately and then
averaged across channels for statistical analysis. Prior to statistical analysis, correlation
coefficients (R and Rλ) were standardized using Fisher’s transformation to obtain values
following a normal distribution. For the real task-based data, we conducted statistical analysis
to compare the signal quality metrics among the motion artifact correction techniques. A
repeated measures ANOVA including PARAFAC, tPCA, ICA and the uncorrected reference
signal as the within factor, was performed independently for the mean of each metric across all
channels (i.e., SNR, Rλ). In case of the Rλ, the reference of the baseline (nonartifacted signal)
was included as another condition. Follow-up paired contrasts were conducted with a critical
alpha of 0.05. For the simulations, we applied a repeated measures ANOVAs to compare the
mean outcome of the quality and similarity metrics between the different simulations, i.e.,
1a to 1e for the amplitude scaling, 2a to 2f for the complex artifacts and 3a to 3d for the
HRFsim, and within correction condition, i.e., PARAFAC, tPCA, and the uncorrected signal.
Tukey correction for multiple comparisons was applied for posthoc analysis.
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3. Results
3.1. Correction of Nonsimulated Task-related Motion Artifacts

First, decomposition with PARAFAC was applied for the correction of real task-based
motion artifacts. The signal’s quality (SNR, Rλ) after correction with PARAFAC was
evaluated and compared to the signal before correction (uncorrected), the signal after correction
with two 2D decomposition techniques (i.e., tPCA and ICA), and a reference signal of a
segment without artifacts (Rλ). Figure 5 provides an example of target artifact correction
with PARAFAC illustrating the 3D decomposition for a motion artifact detected in the real
task-based signal. The time course of the three components obtained with PARAFAC allowed
to differentiate between the two components with distinct artifact signatures, and the one
component representing the clean signal. Spatial distribution of each component is shown as a
loading matrix and helps to identify in which channels (localization) the artifact’s signatures
were most important. The two components that appear to represent the artifact showed
similar scores for both wavelengths, as represented in the wavelength signatures. Subsequently,
removal of PARAFAC first and second components resulted in a less noisy time interval and
satisfyingly corrected signal.

Figure 5 – Example of target 3D PARAFAC decomposition to correct motion artifacts in a
task-based fNIRS data set. (A) The initial uncorrected data segment. (B) The temporal,
spatial (channel) and wavelength (λ1|2 = 690|830 nm) signatures of the components iden-
tified with PARAFAC decomposition are presented, respectively. (C) The corrected signal,
illustrating the efficacy of movement artifact correction with PARAFAC after subtraction of
two components (1 and 2). Y -axis is presented in arbitrary units.

Automatic and manual artifact detection agreed on a majority of the signal with an
average concordance of 92.8 %, so only minor manual adjustments had been applied. A total
of 585 different artifactual events, on average 66 events per subject with a mean, minimal and
maximal duration of 5, 0.7 and 21.2 s, respectively, were considered for correction. Comparison
of the SNR included measures of every channel of both wavelengths. Repeated-measures
ANOVA with Greenhouse-Geisser correction for the SNR of all conditions (uncorrected,
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PARAFAC, tPCA and ICA) revealed a significant main effect, F (2.3, 44966.3) = 7550.7,
p < 0.001, η = 0.28. The uncorrected signal had the largest ratio of noise (-0.69), followed by
the signal after ICA correction (-0.50), tPCA correction (-0.33), and PARAFAC correction
(-0.31) (Table 1). Pairwise contrasts (Cohen, 1988) revealed that PARAFAC correction
resulted in a significantly higher SNR compared to the uncorrected signal (η = 0.45), and
the signal after correction with ICA (η = 0.13), both having a large effect size. Comparison
of PARAFAC and tPCA, though statistically significant, revealed only a small effect size
(η = 0.002). Repeated-measures ANOVA with Greenhouse-Geisser correction for the Rλ

revealed a significant difference between the five conditions: F (3.2, 30999.0) = 2686.46,
p < 0.01, η = 0.22. Mean Rλ coefficients showed the highest association between wavelengths
for the uncorrected signal (0.74), followed by the signal after ICA correction (0.67), tPCA
correction (0.53), PARAFAC correction (0.51) and the artifact-free reference signal (0.47)
(Table 1). Contrasts of Rλ coefficients between PARAFAC and ICA (η = 0.14, large effect)
as well as the uncorrected signal (η = 0.35, large effect) suggested that wavelengths were
greatly less correlated after PARAFAC correction. Correction with PARAFAC resulted in
slightly higher Rλ coefficients compared to segments without artifacts (artifact-free reference,
η = 0.01, small effect), and slightly lower Rλ coefficients compared to correction with tPCA
(η = 0.01, small effect).

Table 1 – Mean quality metrics for evaluation of artifact correction in the task-based data
set.

Mean ±SD
Artifact-free

reference PARAFAC tPCA ICA Uncorrected
artifact reference

Signal-to-noise ratio (dB) N/A -0.31 ± 0.58 -0.33 ± 0.57 -0.50 ± 0.64 -0.69 ± 0.65

Pearson’s correlation
between wavelengths (Rλ) 0.47 ± 0.33 0.51 ± 0.38 0.53 ± 0.38 0.67 ± 0.38 0.74 ± 0.29

Results are displayed for the three decomposition techniques, parallel factor analysis
(PARAFAC), target principal component analysis (tPCA) and independent component
analysis (ICA), as well as for two reference signals, an artifact-free segment retrieved from
the baseline before task onset, and the uncorrected signal consisting of all artifact segments
before correction was applied.

3.2. Correction of Simulated Motion Artifacts

As a second step, we evaluated the performance of PARAFAC to correct simulated
artifacts with varying parameters, see Fig. 3 for the composition of the different scenarios.
Three similarity indices (PRD, RMSE, R) for the agreement of the initial (NIRSini) and the
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corrected signal (NIRSPARAFAC/tPCA), two quality measures (SNR, Rλ) and the reconstruction
of the synthesized HRF were used to quantitatively compare performance of PARAFAC
to tPCA. The sample for each index (PRD, RMSE, R, SNR) consisted of 164 measures,
corresponding to channels of both wavelengths. Since Rλ is a correlation coefficient between
both wavelengths, the sample consisted of 82 values. For each simulation condition (1a to 1e,
2a to 2f, 3a to 3d), indices were computed for three correction conditions (=within-subject
factor), i.e., the signal corrected with PARAFAC or tPCA and the uncorrected signal. Table 2
shows the results of the interaction effects between simulations and corrections as revealed by
the repeated measures ANOVA. Results of post-hoc comparisons with Tukey correction are
illustrated in Fig. 6 using the example of PRD. The results of the other indices are mostly in
line with those. Detailed results for the RMSE, R, SNR and Rλ can be found in Fig. S 2-S 5
in the Supplemental Material, respectively.

Simulations 1a to 1e included artifacts with extra small, small, medium, large and extra-
large amplitudes. Similarity indices (PRD, RMSE, R) revealed that both PARAFAC and
tPCA resulted in a significant higher resemblance of the corrected signal and the initial signal
compared to the uncorrected condition for all amplitude sizes except for the artifact with
an extra small amplitude where tPCA did not lead to a significant improvement compared
to the uncorrected signal. Similarly, both correction methods led to a significantly higher
signal quality, i.e., lower SNR and Rλ, compared to the uncorrected signal with the same
exception for tPCA in the extra small amplitude, where no difference was observed to the
uncorrected signal. When artifacts had a small, medium or extra-large amplitude, correction
methods obtained comparable results over all indices and did not statistically differ. The
most consistent differences between correction methods can be observed for the artifact with
extra small and large amplitudes. While similarity metrics and quality measures revealed
that PARAFAC achieved significantly better results than tPCA for the correction of artifacts
with an extra small amplitude, for artifacts with a large amplitude tPCA seemed to have a
slight but statistically significant advantage as compared to PARAFAC.
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Table 2 – Interaction effects of the statistical comparisons between simulations and within
correction methods

[F (df), η2
partial]

Amplitude size
(1a-1e)

Onset delay of second artifact
(2a-2f)

Onset of the artifact relative
to the HRFsim (3a-3d)

PRD 67.14 (8, 1630)**, 0.248 4.98 (10, 1956)**, 0.025 26.67 (6, 1304)**, 0.109

RMSE 132.35 (8, 1630)**, 0.394 8.93 (10, 1956)**, 0.044 52.74 (6, 1304)**, 0.195

R 94.01 (8, 1630)**, 0.316 7.82 (10, 1956)**, 0.038 63.23 (6, 1304)**, 0.225

SNR 214.90 (8, 1630)**, 0.513 7.18( 10, 1956)**, 0.035 61.31 (6, 1304)**, 0.220

Rλ 115.96(8, 810)*, 0.534 2.36(10, 972)*, 0.024 22.06(6, 648)*, 0.170

The table shows the results for the five metrics, i.e., PRD, percent root difference, RMSE, root
mean square error, R, product-moment correlation, the SNR, the signal-to-noise ratio and
the Rλ, Pearson’s correlation coefficient, that were used to compare artifact correction with
PARAFAC and targeted PCA among the different simulated noise scenarios. See Sect. 2.4
and Fig. S1 in the Supplemental Material for details regarding the simulations’ parameters.
*p < 0.01, **p < 0.001.
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Figure 6 – Evaluation of correction in simulated motion artifacts based on signal similarity. Simulations are identified on the
x-axis. (A) 1a to 1e: artifacts with different amplitude sizes; (B) 2a to 2f: complex artifacts with two superimposed artifacts
and an onset delay between the first (A1) and second artifact (A2); and (C) 3a to 3d: the onset of the artifact relative to the
beginning of a simulated HRF. Performance of artifact correction is illustrated by the use of the similarity index percent root
difference (PRD), where a lower value represents higher resemblance between the corrected and the initial clean fNIRS signal,
hence a better correction of the artifact. Results are displayed separately for the correction with PARAFAC (light gray bars)
and tPCA (gray bars). The PRD of the uncorrected signal is not displayed in this figure but differed significantly from both
correction techniques in all conditions, except where specified (n.s.) otherwise inside the bar. Significance level are based on
post-hoc tests with Tukey correction. ***p ≤ 0.001, n.s. p > 0.05. Uncorrected = NIRSini + artifact (A1) without correction,
PARAFAC = NIRSini + artifact (A1/A2) after artifact correction with PARAFAC, tPCA = NIRSini + artifact (A1/A2) after
artifact correction with tPCA.
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Simulations 2a to 2f led to signals with different onset delays (1-5 s and 10 s) between
two superimposed artifacts, which allowed to create different complex artifacts. Over all
conditions, notwithstanding their onset delay, similarity indices indicated a significantly higher
overlap with the initial signal for the signal corrected with PARAFAC as compared to the
one corrected with tPCA and the uncorrected signal. Similarly, quality metrics revealed a
significantly higher signal quality after correction with PARAFAC compared to the correction
with tPCA and the uncorrected signal. Nevertheless, tPCA also resulted in statistically
significant better results as compared to the uncorrected signal in all conditions both with
regard to the similarity metrics and the quality measures.

In simulations 3a to 3d the onset of an artifact varied relative to the beginning of a
simulated HRFsim: +0 s, +5 s, +15 s, and +30 s. Independent of the onset of the artifact,
correction with PARAFAC resulted in a signal that showed a significantly higher overlap with
the initial signal compared to the uncorrected condition. Similarly, quality measures showed
a significant improvement of the signal’s quality after correction with PARAFAC compared to
the uncorrected signal. tPCA achieved almost identical results as PARAFAC in comparison
to the uncorrected signal, except when the artifact was placed shortly after the beginning of
the HRFsim (+5 s) for which PRD and RMSE did not show a significant difference between
the uncorrected signal and the one corrected with tPCA. Further, for artifacts at the very
beginning (+0 s), shortly after (+5 s) or at the very end (+30 s) of the HRFsim (at the same
time than the low-frequency increase or decrease that is intrinsic to the HRFsim), similarity
indices revealed a significant better overlap of the corrected signal with the initial signal after
correction with PARAFAC as opposed to tPCA. In contrast, tPCA compared to PARAFAC
seemed to have a significant advantage for the correction of artifacts during the plateau
of the HRFsim (+15 s), which might be explained by a higher orthogonality between the
artifact and the signal at this onset. Quality measures however only partially support these
findings, namely in favor of correction with tPCA for the artifact at the beginning (+0 s)
and in favor of PARAFAC for the artifact shortly after (+5 s) the beginning of the HRFsim.
When the artifact is at the very beginning of the HRFsim (+0 s), signal quality is however
significantly higher after correction with tPCA as compared to PARAFAC. There is no
statistically significant difference between signal quality for any of the correction methods
when the artifact is placed at the very end of the HRFsim (+30 s). Further, results of the
GLM revealed that in none of the conditions the simulated artifact led to an important
reduction of the variance explained by the HRFsim as compared to the initial signal (Table 3).
In line with the results of the similarity metrics, reconstruction of the HRF after correction
with PARAFAC was qualitatively better as compared to tPCA when the artifact occurred at
the beginning (+0 s), shortly after (+5 s) and at the end (+30 s) of the HRF. In particular,
for the artifact 5 s after the onset of the HRF, reconstruction after correction with tPCA
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seemed disturbed. There was no important difference between correction methods for the
reconstruction of the HRF when the artifact was during the plateau of the HRF (+15 s).

Table 3 – Percentage of explained variance by the HRFsim based on the R2 of the GLM.

Mean ± SD Initial Uncorrected PARAFAC tPCA

3a: HRF + 0 s 95.16 ± 16.24 94.88 ± 16.49 95.18 ± 15.68 94.23 ± 18.33

3b: HRF + 5 s 95.16 ± 16.24 94.43 ± 7.84 94.54 ± 7.78 86.96 ± 12.81

3c: HRF + 15 s 95.16 ± 16.24 95.00 ± 16.16 95.10 ± 16.27 95.18 ± 16.20

3d: HRF + 30 s 95.16 ± 16.24 95.14 ± 16.25 94.92 ± 16.26 91.83 ± 15.89
Results are displayed for the three decomposition techniques, parallel factor analysis
(PARAFAC), target principal component analysis (tPCA) and independent component
analysis (ICA), as well as for two reference signals, an artifact-free segment retrieved from
the baseline before task onset, and the uncorrected signal consisting of all artifact segments
before correction was applied.

Orthogonality measure for the relation of the time courses of the raw signal and the
artifact signal (Raw x A1: ra) were calculated for all simulations, orthogonality for the time
courses of the raw signal with the first artifact and the second artifact (RawA1 x A2: rb) was
only computed for simulations of complex artifacts (2a to 2f). A value of one, represented
maximum orthogonality between both signals meaning they are in a 90 deg angle to each
other. Any value smaller than one or even zero indicated nonorthogonality meaning that
they are in any other angle than 90 deg, maximally zero or 180 deg to each other. Results
of ra revealed consistently high orthogonality for all simulations with varying amplitudes
(Min = Max = 0.97) and with complex artifacts (Min = 0.97, Max = 0.98). Orthogonality
for the simulations with the HRF revealed more variations (Min = 0.88, Max = 0.97) where
the artifact 30 s after the HRFsim created the least orthogonal condition (Median ± standard
error: 0.88 ± 0.03), followed by the simulation with the artifact at 0s (Median ± standard
error: 0.93 ± 0.05), 5 s (Median ± standard error: 0.96 ± 0.01) and 15 s (Median ± standard
error: 0.97 ± 0.01) of the HRFsim. Results of the second orthogonality measure rb indicated
that the onset delay of 2 s led to the least orthogonal condition (Median ± standard error:
0.75 ± 0.07), followed by the delay of 3 s (Median ± standard error: 0.93 ± 0.02) and 5 s
(Median ± standard error: 0.98 ± 0.02). When the second artifact had a delay of 1 s, 4 s or
10 s, there was equally high orthogonality for all three conditions (Median ± standard error:
0.99 ± 0.02).
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4. Discussion
Promising results have been reported by using parallel factor analysis (PARAFAC) for

multidimensional (n ≥ 3) data analysis in EEG data (Martínez-Montes et al., 2004; Miwakeichi
et al., 2004; Mørup et al., 2006). Since the fNIRS signal has inherently three dimensions,
time × space × wavelength, we aimed to extend the application of PARAFAC to fNIRS and
validate its use for artifact correction. First, we explored the usefulness of PARAFAC to
correct movement artifacts in a data set of task-related fNIRS signals acquired during an
expressive language paradigm. Performance of artifact correction was evaluated by the use of
two signal quality metrics, (1) the SNR considering the signal’s variance during the simulated
intervals after correction; and (2) the temporal similarity between both wavelengths during the
simulated intervals after correction (Rλ). Quality measures after correction with PARAFAC
were compared to those obtained after the use of two commonly used decomposition methods
in fNIRS (i.e., tPCA and ICA). Second, several scenarios with simulated artifacts in a clean
resting-state signal were computed to assess the performance of artifact correction with
PARAFAC and its homologue 2D target decomposition technique (tPCA) in a controlled
setting. Simulated artifacts had five amplitude sizes, six levels of temporal overlap with a
second artifact to create complex artifactual events and were added at four different time
points of a simulated HRF. We compared the performance of both correction methods using
(1) similarity indices describing the degree of correspondence between the corrected signal
after removal of simulated artifacts and the artifact-free signal before simulation (RMSE, PRD,
and R); and (2) the two quality measures, SNR and Rλ, already used for the task-related
signal.

With regard to motion artifact correction in the task-based data set, the signal after artifact
correction with PARAFAC had the smallest SNR among the three methods (PARAFAC,
tPCA, ICA), suggesting that more of the variance related to the artifact had been removed
and a better signal quality was achieved. Similarly, correction with PARAFAC led to the
lowest correlation between HbO and HbR indices, as well as the correlation index that most
resembled the nonartifactual resting-state baseline reference. Even though the resting-state
signal has been reported to show slightly different hemodynamic changes as compared to
a stimuli-induced cerebral activity (T. T. Liu, 2013; H. Zhang et al., 2010), we consider
it a suitable reference for a time interval without artifacts, because it was not affected by
articulation. In line with previous findings, our analyses also revealed a robust advantage in
applying target corrections (tPCA and PARAFAC) instead of whole-block (ICA) correction,
resulting in a better signal quality (Behrendt et al., 2018; Kamran et al., 2016). ICA was
indeed applied to the entire signal as reported in the literature (H. Zhang et al., 2010), while
tPCA and PARAFAC were used in a target manner, i.e., only decomposing the signal during
specific intervals where artifacts had been detected. As proposed by Yücel and colleagues
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(2014), target artifact correction prevents large changes in the overall composition of the signal,
and exclusively corrects the noisy time interval of the artifact. It allows the decomposition
to clearly sort a component representing the artifact signature, without considering the
characteristics of these channels during the intervals without artifacts. Target decomposition
is thus beneficial for a precise identification of the artifact’s signatures and PARAFAC for
artifact correction in fNIRS should also be applied in a target manner.

Results of the conducted simulations with controlled parameters suggest that artifact
correction with PARAFAC led to a signal that corresponded more closely to the initial signal,
as compared to the uncorrected signal. Similarly, PARAFAC yielded a significant better
signal quality as compared to the uncorrected signal. This result is a preliminary validation
of the use of PARAFAC for artifact correction in fNIRS signals and similarity measures show
that the signal comes close to the original signal, thus it does not remove large parts of the
physiological or relevant activity. While correction with tPCA in most cases also led to better
results compared to the uncorrected signal, it has to be mentioned that its performance was
less consistent over conditions. tPCA correction of an artifact with an extra small amplitude
for instance did not lead to a significant improvement compared to the uncorrected signal.
This is probably due to the ability of the numerical engine to extract a component that
explains a small portion of the data variance and list such a component among the first one
or two components, which is related to the signal-to-noise ratio of the signals. In a real data
set, such a small artifact might however not have been detected and it might not even have
disturbed the interpretation of the hemodynamic signal. This result’s significance is thus
limited. Further, in almost all scenarios correction with PARAFAC compared to tPCA led
to either better or comparable results. Especially, when the artifact was simulated along
with a simulated HRF, PARAFAC showed superior and more robust results compared to
tPCA. According to the applied orthogonality measure, those conditions where tPCA showed
a poor performance were exactly those where the artifact and the simulated HRF were less
orthogonal. This is in line with the assumption that decomposition with PARAFAC is not
affected by nonorthogonality given there is enough information in the wavelength dimension
to differentiate nonorthogonal artifacts due to their different profile in both wavelengths.
Only in two simulations, namely when the artifact had a large amplitude or was during the
plateau of the simulated HRF (where the orthogonality between the HRFsim and the artifact
was the highest), correction with tPCA outperformed PARAFAC. It does not come as a
surprise that tPCA outperforms PARAFAC when a perfectly orthogonal artifact is added to
the physiological signal, as this is exactly its main assumption, which is not for PARAFAC.
Finally, results of the GLM indicate that artifact correction with PARAFAC did not negatively
affect the recovery of the simulated HRF, which suggests that it successfully targeted the
artifact signature and did not induce changes of the signal that would alter interpretation
of the underlying hemodynamic response. Even though this is an encouraging result, it has
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to be mentioned that similar results were achieved for the HRFsim of the uncorrected signal,
suggesting that the simulated artifact did not have a very strong impact on the signal and
the interpretation of the HRFsim. This could be different for more complex artifacts where
correction may not sufficiently work or more likely, when not using the same linear model to
simulate and subsequently recover the HRF. In most cases correction with tPCA allowed a
similarly good recovery of the simulated HRF, but was strongly affected when an artifact was
placed shortly after the beginning of the HRFsim, i.e., when the assumption of orthogonal
artifact is not perfectly met. This is in line with the findings for the similarity and quality
metrics for this scenario.

Regarding the comparison of both targeted decomposition techniques, the small effect
size of the difference between tPCA and PARAFAC in the task-based data set suggests that
both target correction techniques led to a similar reduction of the variance induced by motion
artifacts and to an equal reduction of correlation between both wavelengths. Even though
correction of simulated artifacts outlined certain advantages of PARAFAC compared to tPCA
in some conditions, there was no consistent difference between both methods when applied to
large data sets of real movement artifacts in a verbal fluency task. Since it was previously
emphasized that performing accurate simulations of real motion artifacts is challenging,
validation of an artifact correction technique in real data is a crucial step (Brigadoi et al.,
2014). We can conclude that its performance both in real and simulated data was generally
equally good as tPCA and slightly better under certain conditions, suggesting the validation
of PARAFAC as a new tool for artifact correction in fNIRS data.

What is more, PARAFAC’s core strength compared to tPCA is mainly related to its
conceptualization. The use of a decomposition approach considering the multidimensional
structure of the fNIRS signal where a unique decomposition is achieved with few constraints,
i.e., without imposing orthogonality nor independence, is appropriate and seems advantageous
compared to tPCA as well as ICA (Mørup, 2011; Mørup et al., 2006). Even though the results
of the simulations provide some support that artifact correction with PARAFAC was not
affected by nonorthogonality, orthogonality did not sufficiently vary among simulations and
mostly reached a high orthogonality as we used resting state as background data. Nevertheless,
given that in real data, the ground truth about the signal’s composition of noise is unknown
and orthogonality cannot be verified, it is safe to say that PARAFAC represents a robust
approach for artifact correction in fNIRS. Two-dimensional decomposition, such as ICA and
tPCA, analyzes both wavelengths as independent measures of the fNIRS signal, even though
they are in fact highly related, since they are acquired at the same location (Cui et al., 2010).
Since the estimation of the hemodynamic signal is based on the signal of both wavelengths
(Kocsis et al., 2006), reliable conclusions require the signal to be clean in both of them. It is
also worth to notice that for artifact correction, we have followed in all our simulations the
assumption that both wavelengths are affected by artifacts equally across channels (just with
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a different general scale). This is in fact the worst case for PARAFAC, as it will give better
results if there are larger differences in all dimensions of the data. Therefore, we could expect
an improved performance when artifacts have even small differences between the spatial
distributions for the two wavelengths.

Decomposition with PARAFAC offers a rather easy way to make a selection of rele-
vant components that differentiate between signatures related to artifacts or other relevant
characteristics of the signal. Even if fNIRS is considered to be less sensitive to movements
-as compared to other neuroimaging techniques such as fMRI and signal quality should be
controlled during data acquisition as much as possible, appropriate tools for artifact correction
are an essential part of preprocessing in fNIRS, particularly for data acquired in populations
where cooperation is limited, such as children and clinical populations (Brigadoi et al., 2014;
Tak et al., 2015; Yücel et al., 2021). PARAFAC thus appears to be a suitable and robust
alternative to the currently used approaches and will be a valuable add-on for fNIRS studies
and clinical examinations by minimizing the amount of nonusable data and improving data
quality. That being said, the researcher always has to weigh the means of applying artifact
correction and should not do so without visual inspection of the decomposition signature. It
is the overall quality of a data set, i.e., the amount of clean signal, and the duration, extent
and moment of the artifact that ought to influence the researcher’s choice to reject data sets,
to apply artifact correction and to proceed with analysis.

4.1. Usefulness and Limitations of PARAFAC

PARAFAC is a data-driven approach based on the linear relations of the three dimensions
of the fNIRS signal (Bro, 1998; Martínez-Montes et al., 2004; Möcks, 1988). PARAFAC has
the advantage of allowing for the three-way arrays of data to be uniquely decomposed into a
sum of components, each of which is a trilinear combination of factors or signatures. The
only statistical requirements of PARAFAC is that of a moderate linear independence across
components, i.e., their time course, topography and wavelength characteristics. This is a
less stringent requirement than previous models that underlie space/time decompositions
(PCA or ICA). Each component provides characteristics of a particular pattern identified
within the mixed measured fNIRS signal. When there are empirical or theoretical reasons to
expect more than one relevant component (e.g., resting state functional connectivity analysis,
epileptic activity, physiological aspects, and so on), PARAFAC would also allow disentangling
several components. Moreover, when there are reasons to include other constraints such
as orthogonality, nonnegativity, smoothness and sparseness of the signatures, it has been
shown that PARAFAC can also include them in the decomposition procedure (Bro, 1998;
Martínez-Montes, Sánchez-Bornot, et al., 2008; Martínez-Montes, Vega-Hernández, et al.,
2008).
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Different from ICA, PARAFAC components can be ordered according to their importance
in explaining the data’s variance (Poeppel et al., 2012). This is why many studies using ICA
apply data reduction or clustering techniques such as PCA prior to the execution of ICA
(Makeig, 2002; H. Zhang et al., 2010). Moreover, when using PARAFAC, the description of
the data is based on more dimensions, and with less theoretical constraints (orthogonality,
independence) which lead to the identification of fewer relevant components (Deburchgraeve.
et al., 2009; Martínez-Montes et al., 2004; Miwakeichi et al., 2004; Sidiropoulos & Bro, 2000).
Compared to ICA, the selection of the relevant components is thus simplified. Importantly,
when using PARAFAC, it is not recommended to ask for more than five components, as
this increases the risk of overfitting the data with the decomposition model. Even though
the issue of selecting the optimal number of components should be better explored and
standardized in future studies, based on our experience and previous studies, usually, three
to five components sufficiently describe the signal’s relevant characteristics (Acar et al., 2007;
Bro, 1998; Harshman, 1970; Martínez-Montes et al., 2004; Miwakeichi et al., 2004). The
Corcondia index provides further information regarding a good fit of the PARAFAC model
and the analyzed data. Precisely, a satisfying decomposition should have a core consistency
of 85% or higher and usually drops below 80% if an extra component is extracted, suggesting
overfitting (Bro & Kiers, 2003). Similar to PCA, a typical choice made when using PARAFAC
analysis, is that of ordering the extracted components according to their contribution to
explaining the variance of the data. In this sense, it can be expected that the first PARAFAC
component will always represent the highest activity, which, in the case of target artifact
correction, will correspond to the artifact activity. This makes PARAFAC also a promising
choice to explore the development of simple automatic methodologies for the detection and
correction of such artifacts. Relevant components for artifact correction could for instance be
selected based on the amplitude size or the differences between scores for the two wavelengths.
Despite being a time efficient and promising approach, we believe that at the current state
visual verification cannot be ceased, because depending on the paradigm, noise may have
characteristics that render automatic processing inadequate. Future studies should be devoted
to this specific aim.

Some challenges of PARAFAC have already been discussed in previous studies (Martínez-
Montes et al., 2004; Miwakeichi et al., 2004). One limitation is related to PARAFAC’s
assumption of linear relations of the temporal characteristics between different channels
(which also applies to (t)PCA and ICA). Despite being one of the most common and simple
models, imposing linearity may not entirely reflect complex cerebral processes (Huppert, 2016).
Some attempts have been made to introduce approaches that tolerate nonlinear relations
(Freiwald et al., 1999; M. Hu & Liang, 2014). However, to date, linear models remain the
most popular and adequate approach for analysis of macroscopic data in neuroscience. Thus,
it represents a general limit of the domain, rather than one specific to PARAFAC. Another
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potential limitation of our implementation of PARAFAC might arise from the specific use of
the simple alternating least-squares algorithm to perform the decomposition. Other methods
have been proposed for estimating PARAFAC models, but some studies have shown that,
given the uniqueness of the solution, they do not usually outperform the simple least-squares
technique (Faber et al., 2003).

The need for careful preprocessing of data before characterizing brain activity constitutes
another limitation. When PARAFAC was introduced for the analysis of EEG data, the
authors emphasized the importance of searching for constant factors, outliers, and degeneracy
(Field & Graupe, 1991; Miwakeichi et al., 2004). Detailed information on how to deal with
these aspects can be found in previous literature (Miwakeichi et al., 2004). In the current
study, the implementation of PARAFAC into the LIONirs toolbox (J. Tremblay et al., 2022),
gave us a certain flexibility regarding the channels and time segments to be included. Thus,
we were able to exclude deviant channels prior to use PARAFAC.

Finally, among the applications of PARAFAC not yet tested in fNIRS, is its use to identify
patterns of brain activity in the hemodynamic response as it has been applied in EEG data
analysis (Acar et al., 2007; Miwakeichi et al., 2004; Mørup et al., 2006). Compared to
other techniques such as GLM or global averaging who treat each channel independently and
provide a narrower spatial representation of the dominant activation, PARAFAC analysis
could reveal a wider distributed activation pattern. This would strongly correspond to the
current understanding of cerebral processing, whereby mostly large-scale networks, and not
isolated regions, are considered to be involved in various cognitive processes (Jasdzewski
et al., 2003; T. Sato et al., 2016; Tak et al., 2015). PARAFAC could thus appear to be
suitable for reflecting cerebral processes occurring in distributed networks, rather than for
the identification of a specific core region. This is obviously given a sufficient fNIRS covering.
Moreover, the topographic signature would correspond to a whole time course of the extracted
activations and can easily be subjected to diffusion optical tomography in order to locate the
HbO and HbR concentration changes in the brain cortex (J. Tremblay et al., 2018). Another
potential application is using PARAFAC as a screening tool. For instance, Miwakeichi and
colleagues (2004) applied PARAFAC to an EEG dataset in order to extract one component
related to ocular movement artifacts, and subsequently used the PARAFAC analysis fixing
spatial and spectral signatures of that component to screen a second dataset in order to
identify and correct similar artifacts. This application can also support the development
of a detection method as has already be done in other fields such as detection of epileptic
seizures (Acar et al., 2007; Ontivero-Ortega et al., 2015) and for brain-computer interfacing
(Cichocki et al., 2008; Eliseyev & Aksenova, 2013; Eliseyev et al., 2012; Nazarpour et al.,
2006). Although this can be useful for correcting artifacts that have consistent topographical
and wavelength profiles, movement artifacts were mostly related to articulation in our study,
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often showing quite different signatures. A different paradigm may enable the testing of this
application of PARAFAC in fNIRS.

Our findings also encourage the general application of PARAFAC for multidimensional de-
composition in neuroimaging, where data can often be described in more than two dimensions.
PARAFAC could for instance be of interest for fNIRS data acquired with a multi-wavelength
(> 2 wavelengths) system (Bale et al., 2016; Highton et al., 2018). Beyond the obvious
dimensions of a technique such as that of time × space × wavelength (fNIRS) or frequency
(EEG), characteristics of the task paradigm or group variables could also be considered in
the decomposition model (Mørup et al., 2006). For instance, if a ”group” dimension was to
be included, groups could be compared regarding their relative weight over the main cerebral
activation component that would have been outlined from the PARAFAC model.

4.2. Limits of the Current Study

The use of a language paradigm allowed for the induction of artifacts that were mainly
related to articulation and often overlapped with the stimulus onset. This makes identification
and correction of artifacts particularly challenging and may limit the generalization of our
results. From video recordings, however, we were able to acknowledge that swallowing,
jaw or tongue movements, eye blinks, and frowning also induced artifacts in our data set.
Our results particularly contribute to an improved artifact correction in a paradigm where
artifacts can pose a significant problem for interpretation. The validation of PARAFAC
in a realistic scenario represents an important advantage because simulated artifacts either
completely artificial or by instruction of participants to make certain movements, rarely live
up to the complexity and variability of real spontaneous artifacts (Brigadoi et al., 2014). Even
though the simulated artifacts were also based on one identified during the task-condition,
parameters were modified and allowed to create noise with different characteristics. Further
fNIRS studies using PARAFAC, and including different task paradigms, resting-state, and
recording in naturalistic environments when participants are moving or are instructed to
perform specific movements, could show its utility for a wider range of artifacts (e.g., baseline
shifts or physiology).

The validation of PARAFAC for artifact correction was conducted by comparing results
with two other decomposition techniques. This could be considered one limit of the present
study, because we did not consider other correction approaches for comparison. The objective
of this study was not to conduct exhaustive and systematic comparisons in order to identify
the best method for artifact correction, but rather to introduce PARAFAC as an alternative
and adequate method in fNIRS analysis. Future studies could therefore expand the validation
of PARAFAC and extend comparisons of its performance to other tools that do not necessarily
use decomposition, such as spline interpolation or wavelet filtering. With relation to that,

68



even if there were to be a slight advantage of PARAFAC over tPCA in artifact correction
results, the small difference might not have a concrete impact on the applicability of those
two methods. Qualitative differences between tPCA and PARAFAC regarding the type of
artifacts and corrected signal should be further assessed and described in subsequent studies
to better understand how their efficacy may vary according to the artifact’s characteristics.

Last but not least, PARAFAC’s components related to artifacts were selected during a
visual inspection based on their temporal overlap with the artifact, i.e., sudden change of
amplitude, and those showing similar weights for both wavelengths. The smallest number of
possible components that sufficiently corrected the artifact were selected. Even though our
results show that this procedure led to satisfying correction, it is not a fully standardized
procedure which may hamper an easier, automatic correction that would reduce the need of
the researcher’s expertise in detecting and adequately applying correction. This issue could
be addressed using the screening procedure mentioned in the previous section or using other
templates for the artifacts of interest or by applying the usual automatic rules based on
amplitude characteristics to the temporal signatures obtained by PARAFAC instead of the
original mixed data. The goal of the current study was not to propose a method for artifact
detection but to validate the relative efficacy of these methods in artifact correction. It would
be interesting for future studies to address the development of a more automatic procedure
based on PARAFAC analysis contributing to a faster and standardized processing pipeline.

5. Conclusion
PARAFAC has the advantage to simultaneously treat both wavelengths or HbO and HbR

during fNIRS data analyses. Our findings from real task-related signals and controlled simu-
lations validate previous results in EEG data and promote multidimensional decomposition
with PARAFAC as a promising new tool for the correction of movement artifacts in fNIRS.
Precisely, PARAFAC achieves comparable results as tPCA when the artifact’s signature
is simple and clearly distinguishable from the signal. It outperforms tPCA mainly when
artifacts have small amplitude, show a complex temporal signature or when they co-occur
during an HRF. These results can partially be attributed to low orthogonality between signal
and noise. The advantages of PARAFAC and tPCA, as compared to ICA, are consistent
and seem to be due to the target application. Further, PARAFAC has a strong advantage
compared to both 2D decomposition techniques because it offers a unique decomposition
without orthogonality or independence constraints, hence represents a robust decomposition
technique. The validation of its use paves the way for future use in fNIRS research to extract
relevant signatures represented in the fNIRS signal.
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Figure S 1 – Parameters of all simulations. One or two real motion artifact(s) (A1/2) and a synthesized HRF (HRFsim) were
added to a normalized resting-state fNIRS signal (Raw). (A) shows simulations 1a to 1e with an artifact of varying amplitude
sizes, (B) simulations 2a to 2f with a complex artifact where the onset of the second artifact (A2) was varied relative to the onset
of the first artifact (A1), and (C) simulations 3a to 3d with varying onset of the artifact relative to the beginning of the HRFsim.
λ1|2 = 690|830 nm.
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Figure S 2 – Evaluation of correction in simulated motion artifacts based on signal similarity by the use of the root mean
square error (RMSE). Simulations are identified on the x-axisis. (A) 1a to 1e: artifacts with different amplitude sizes; (B) 2a
to 2f: complex artifacts with two superimposed artifacts and an onset delay between the first (A1) and second artifact (A2);
and (C) 3a to 3d: the onset of the artifact relative to the beginning of a simulated HRF. A lower RMSE represents higher
resemblance between the corrected and the initial clean fNIRS signal, hence a better correction of the artifact. Results are
displayed separately for the correction with PARAFAC (light gray bars) and tPCA (gray bars). The RMSE of the uncorrected
signal is not displayed in this figure but differed significantly from both correction techniques in all conditions, except where
specified otherwise inside the bar. Significance level are based on post-hoc tests with Tukey correction. *p ≤ 0.05, ***p ≤ 0.001,
n.s. p > 0.05. Uncorrected = NIRSini + artifact (A1) without correction, PARAFAC = NIRSini + artifact (A1/2) after artifact
correction with PARAFAC, tPCA = NIRSini + artifact (A1/2) after artifact correction with tPCA.
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Figure S 3 – Evaluation of correction in simulated motion artifacts based on signal similarity by the use of the Pearson
product-moment correlation coefficient (R). Simulations are identified on the x-axis. A: 1a-e) artifacts with different amplitude
sizes; B: 2a-f): complex artifacts with two superimposed artifacts and an onset delay between the first (A1) and second artifact
(A2); and C: 3a-d) the onset of the artifact relative to the beginning of a simulated HRF. A higher R represents higher
resemblance between the corrected and the initial clean fNIRS signal, hence a better correction of the artifact. Results are
displayed separately for the correction with PARAFAC (light gray bars) and tPCA (gray bars). The R of the uncorrected signal
is not displayed in this figure but differed significantly from both correction techniques in all conditions, except where specified
otherwise inside the bar. Significance level are based on post-hoc tests with Tukey correction. *p ≤ 0.05, ***p ≤ 0.001, n.s.
p > 0.05. Uncorrected = NIRSini + artifact (A1) without correction, PARAFAC = NIRSini + artifact (A1/2) after artifact
correction with PARAFAC, tPCA = NIRSini + artifact (A1/2) after artifact correction with tPCA.
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Figure S 4 – Evaluation of correction in simulated motion artifacts based on signal similarity by the use of the signal-to-noise
ratio (SNR). Simulations are identified on the x-axis. (A) 1a to 1e: artifacts with different amplitude sizes; (B) 2a to 2f: complex
artifacts with two superimposed artifacts and an onset delay between the first (A1) and second artifact (A2); and (C) 3a to 3d:
the onset of the artifact relative to the beginning of a simulated HRF. An SNR closer to 0 represents a more equal ratio between
the signal’s variation during the artifact period and the clean signal. Results are displayed separately for the correction with
PARAFAC (light gray bars) and tPCA (gray bars). The SNR of the uncorrected signal is not displayed in this figure but differed
significantly from both correction techniques in all conditions, except where specified otherwise inside the bar. Significance level
are based on post-hoc tests with Tukey correction. *p ≤ 0.05, ***p ≤ 0.001, n.s. p > 0.05. Uncorrected = NIRSini + artifact (A1)
without correction, PARAFAC = NIRSini + artifact (A1/2) after artifact correction with PARAFAC, tPCA = NIRSini + artifact
(A1/2) after artifact correction with tPCA.
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Figure S 5 – Evaluation of correction in simulated motion artifacts based on signal similarity by the use of the Pearson’s
correlation between wavelengths (Rλ). Simulations are identified on the x-axis. (A) 1a to 1e: artifacts with different amplitude
sizes; (B) 2a to 2f: complex artifacts with two superimposed artifacts and an onset delay between the first (A1) and second
artifact (A2); and (C) 3a to 3d: the onset of the artifact relative to the beginning of a simulated HRF. Rλ in a clean signal is
usually lower than in artifacted signals. Results are displayed separately for the correction with PARAFAC (light gray bars)
and tPCA (gray bars). The Rλ of the uncorrected signal is not displayed in this figure but differed significantly from both
correction techniques in all conditions, except where specified otherwise inside the bar. Significance level are based on post-hoc
tests with Tukey correction. *p ≤ 0.05, ***p ≤ 0.001, n.s. p > 0.05. Uncorrected = NIRSini + artifact (A1) without correction,
PARAFAC = NIRSini + artifact (A1/2) after artifact correction with PARAFAC, tPCA = NIRSini + artifact (A1/2) after artifact
correction with tPCA.
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Abstract. Introduction: Pediatric frontal and temporal lobe epilepsies (FLE, TLE) have
been associated with language impairments and structural and functional brain alterations.
However, there is no clear consensus regarding the specific patterns of cerebral reorganization
of language networks in these patients. The current study aims at characterizing the cerebral
language networks in children with FLE or TLE, and the association between brain network
characteristics and cognitive abilities. Methods: Twenty (20) children with FLE or TLE
aged between 6 and 18 years and 29 age- and sex-matched healthy controls underwent a
neuropsychological evaluation and a simultaneous functional near-infrared spectroscopy and
electroencephalography (fNIRS-EEG) recording at rest and during a receptive language
task. EEG was used to identify potential subclinical seizures in patients. We removed
these time intervals from the fNIRS signal to investigate language brain networks and
not epileptogenic networks. Functional connectivity matrices on fNIRS oxyhemoglobin
concentration changes were computed using cross-correlations between all channels. Results
and Discussion: Group comparisons of residual matrices (=individual task-based matrix
minus individual resting-state matrix) revealed significantly reduced connectivity within the
left and between hemispheres, increased connectivity within the right hemisphere and higher
right hemispheric local efficiency for the epilepsy group compared to the control group. The
epilepsy group had significantly lower cognitive performance in all domains compared to
their healthy peers. Epilepsy patients’ local network efficiency in the left hemisphere was
negatively associated with the estimated IQ (p = .014), suggesting that brain reorganization
in response to FLE and TLE does not allow for an optimal cognitive development.
Keywords: Language networks; receptive language; functional near-infrared spectroscopy
(fNIRS); functional connectivity; electroencephalography (EEG); pediatric frontotemporal
lobe epilepsy; neurodevelopment.
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1. Introduction
Focal epilepsy of the frontal (FLE) or temporal lobe (TLE) is the most frequent diagnosis

in pediatric epilepsy (Behr et al., 2016; Beleza & Pinho, 2011; Gallagher & Lassonde, 2005;
Hermann & Seidenberg, 2002; Téllez-Zenteno & Hernández-Ronquillo, 2012). Pediatric FLE
and TLE have been shown to interfere with brain development and can result in altered
functional cerebral networks including reorganization of brain circuits that support language
functions (Berl et al., 2005; Berl et al., 2014; Gallagher et al., 2013; Hamberger & Cole,
2011; Mbwana et al., 2008). For instance, a more frequent bilateral hemispheric speech
representation or right-hemispheric language dominance have been found in these children
(Baciu & Perrone-Bertolotti, 2015; Foley et al., 2020; Gallagher, Lassonde, et al., 2008;
Gallagher et al., 2016). Moreover, there is evidence of intra-hemispheric reorganization in
patients with left FLE or TLE, where regions within the left hemisphere typically not involved
in language production (e.g., posterior areas) are recruited during an expressive language
task (Gallagher et al., 2007; Vannasing et al., 2016). Such alterations in children with FLE
and TLE may reflect either language network reorganization allowed by early brain plasticity
(Hamberger & Cole, 2011; Staudt et al., 2002; Staudt et al., 2001) or aberrant development
of language brain networks due to early neuropathology (Bear et al., 2019; Hermann et al.,
2002; Sepeta et al., 2015; Vannest et al., 2009).

Major advances in neuroimaging data acquisition and functional connectivity (FC) analysis
have allowed a more thorough investigation of brain network reorganization (Friston et al.,
2011). Children (Chou et al., 2018; Foley et al., 2020; Sepeta et al., 2015; Vannest et al., 2019)
and adults (Balter et al., 2019) with FLE or TLE show different FC patterns within their
cerebral language networks compared to healthy controls. Precisely, reduced FC between
homologous inferior (IFG) and middle (MFG) frontal gyri and posterior superior temporal
gyri (pSTG) as well as decreased intra-hemispheric FC between the IFG and MFG in both
hemispheres has been reported in children with left hemispheric focal epilepsy during a
semantic congruency task compared to typically developing controls (Sepeta et al., 2015).
In children with TLE specifically, FC within the left IFG during a story listening task was
significantly lower than in healthy peers (Vannest et al., 2019). The strength of FC among
language-related brain areas might therefore be an index of altered brain network in children
with FLE or TLE.

The graph theory approach has gained increasing recognition as a mean to characterize
brain networks in patients with epilepsy of all ages (e.g., Bernhardt et al., 2015; Farahani
et al., 2019; Rodríguez-Cruces et al., 2020; Slinger et al., 2022; Tavakol et al., 2019; Tung
et al., 2021). Graph theory allows the rederivation of common network properties from the FC
matrices. Notably, it provides the network’s segregation and integration properties (Rubinov
& Sporns, 2010), which refer to a network’s tendency to have locally specialized subnetworks

78



(segregation), and to the efficacy of a network to efficiently globally integrate information from
distinct parts of the network (integration; Rubinov & Sporns, 2010). A recent meta-analysis
addressed the question of network alterations in pediatric and adult patients with focal epilepsy
(Slinger et al., 2022). The authors included the results of 45 studies (n > 1400) published
between 2006 and 2020 that used a graph theoretical approach. Although the structural
integration of neural networks was lower in patients with epilepsy than healthy controls,
the network integration and segregation characteristics did not statistically differ between
groups. The authors hypothesized that the high heterogeneity of individual results notably
due to methodological or technological differences probably precluded the identification of
network differences between groups. To reduce this heterogeneity, they performed sub-analyses
that included only recent studies (2013 and after) and found a significantly lower network
segregation for the epilepsy group compared to healthy controls. This difference was even
more striking when comparing patients with TLE only, i.e., the largest subgroup of patients,
to healthy controls. Lower network segregation suggests reduced local processing efficiency
(Rubinov & Sporns, 2010), which may be a specific characteristic of cerebral networks in
epilepsy patients.

In addition to altered brain networks, pediatric FLE and TLE have been associated with
many behavioral, cognitive, and psycho-affective deficits impacting the well-being and quality
of life of these children and their families (Berg et al., 2008; S. W. Goodwin et al., 2017;
Hernandez et al., 2002; Karrasch et al., 2017; Law et al., 2018; Smith, 2016; Wilson et al.,
2015). Although most children with FLE and TLE have intellectual abilities within the norms,
some children have an overall decrease of their intellectual profile (Gallagher & Lassonde,
2005). Also, children with FLE and TLE often present deficits in specific cognitive domains
including attention, executive functions, memory, language, and social cognition (Fuentes
& Smith, 2015; Gallagher & Lassonde, 2005; Helmstaedter, 2001; Hermann & Seidenberg,
2002; Hernandez et al., 2003; Hernandez et al., 2002; Jokeit & Schacher, 2004; Prévost et al.,
2006; Reuner et al., 2016). Although some cognitive difficulties are more specific to FLE
(e.g., impaired executive functions) or TLE (e.g., memory problems), the neuropsychological
profiles of these children are often heterogeneous and complexly intertwined (Hermann et al.,
2021; Law et al., 2018; Smith, 2016). Common and frequent difficulties in children with
FLE and TLE are language impairments affecting expressive (e.g., phonetic or semantic
verbal fluency, naming) or receptive (e.g., phonological awareness, comprehension) language
functions, or verbal problem-solving skills (Bear et al., 2019; Metternich et al., 2014; Teixeira
& Santos, 2018). This is not surprising since language processing in healthy humans is
thought to be organized in a complex cerebral network predominantly in the left hemisphere
including posterior inferior frontal regions, large parts of the temporal lobe, the angular
and supramarginal gyri in the parietal lobe, and white matter fiber pathways connecting
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frontotemporoparietal and occipitotemporal regions (Hickok, 2022; Hickok et al., 2021; P.
Tremblay & Dick, 2016).

Typical development of language brain networks is a long process that starts in utero and
evolves throughout infancy, childhood and even into late adolescence (Paquette et al., 2015;
Paquette et al., 2013; Skeide & Friederici, 2016; Weiss-Croft & Baldeweg, 2015). Overall,
brain network topology in typically developing children is characterized by a decrease of
network segregation with age, while global integration increases (Giedd et al., 1999; Supekar
et al., 2009). The establishment of language-related neuronal networks is accompanied by
the development of language abilities that are crucial for later social, academic, and daily
functioning. In children with focal epilepsies, the strength of left intra-hemispheric FC
between the IFG and pSTG during a language task has been positively associated with
language skills (Sepeta et al., 2015). This suggests that reductions of FC within regions of the
brain’s language network might represent suboptimal cerebral reorganization associated with
language impairments. Furthermore, graph theoretical studies in children and adolescents
with focal epilepsies have shown that higher resting-state network segregation and integration
are associated with higher general intellectual capacities (Paldino et al., 2017; Songjiang
et al., 2021). A positive association between segregation and cognitive capacities differs
from the typical developmental trajectory of network topology reported in healthy children
(Giedd et al., 1999; Supekar et al., 2009). However, whether a similar atypical relationship
exists between brain language network characteristics and language and cognitive functions
in children with FLE or TLE specifically remains unknown.

Despite numerous studies reporting cerebral alterations in pediatric focal epilepsies, specific
patterns of brain network reorganization are still unpredictable and the precise impact on
cerebral language networks is not clear. Also, there is no consensus yet on the functional
impact of specific language network alterations. The current study aims at characterizing the
cerebral networks related to language processing in children with FLE or TLE as compared to
healthy controls, using functional near-infrared spectroscopy (fNIRS) and a graph theoretical
approach. Qualitative comparisons of fNIRS FC patterns between epilepsy subgroups (FLE
vs. TLE, left vs. right epilepsy) and graph theory characteristics will also be explored. fNIRS
has been widely used to investigate cerebral language processing because it allows to capture
hemodynamic changes in cortical regions. It is particularly adapted for pediatric patients
because it is non-invasive, relatively tolerant to movements, and offers the flexibility to acquire
data when the caregiver remains close by. The secondary aim of this study is to characterize
the association between language brain network characteristics and the neuropsychological
profile of children with FLE and TLE.

This is the first study to explicitly focus on pediatric FLE and TLE, the two most common
types of focal epilepsies. Based on the overlap between the epileptogenic network of these
patients and the typical organization of cerebral language processing, children with FLE
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and TLE have a higher risk of alterations in brain language networks. Our findings will
strengthen the current knowledge on FC alterations of brain language networks in these
patients. Moreover, graph network analysis allows to uncover how alterations of FC translate
to characteristics of graph network architecture. To our knowledge this is the first study
that applies graph theory to characterize functional brain network topology in children
with FLE and TLE. Moreover, this study will contribute to a better understanding of the
cerebral alterations and cognitive abilities in children with FLE and TLE, i.e., the specific
brain-behavior relationship under neuropathologic conditions.

2. Materials and methods
2.1. Participants

Between 2017 and 2020, we recruited 20 children with FLE (n = 9) or TLE (n = 11) and 29
healthy controls. All participants were French speakers, aged between 6 and 18 years, born at
term, and had no history of previous neurosurgery, metabolic disorder, traumatic brain injury
or intellectual disability. Medical files of patients with epilepsy followed at the Neurology
Division of the Mother and Child University Hospital Center Sainte-Justine (CHUSJ, Montreal,
QC, Canada) were screened. For children with epilepsy, exclusion criteria were: multifocal
epilepsy, significant structural abnormalities with mass effect, genetic syndrome known to
significantly affect neurodevelopment, autism spectrum disorder, multiple (≥ 3) comorbidities
(e.g., attention deficit hyperactivity disorder, dyslexia, dyspraxia, and so on). Patients and
their caregivers were approached by their neurologist (BO, AL, PD, PM, ER) and subsequently
contacted by the research coordinator (AMH). The study’s protocol (2014-664, 3876) was
approved by the research ethics board of the Sainte-Justine Mother and Child University
Hospital. All parents and children provided written informed consent. Descriptive statistics
of the sample’s sociodemographic and clinical characteristics are presented in Table 1.

2.2. Procedure

Participation in the study included 1) a combined functional near-infrared spectroscopy
(fNIRS) and electroencephalography (EEG) data acquisition at rest and during a receptive
language task, and 2) a neuropsychological assessment. Both are described in the following
sections.

2.2.1. fNIRS-EEG data acquisition

The fNIRS-EEG data acquisition was performed using a continuous-wave fNIRS system
(NIRScout, NIRx Medical Technologies, LLC, Berlin, Germany) equipped with 16 detectors
and 16 sources emitting light at two-different wavelengths (λ1|2 = 760|850 nm), yielding to a

81



total of 50 channels per wavelengths. The hemodynamic signal was recorded at a sampling rate
of 7.8 Hz. Detectors and sources were held in place on an elastic cap (NIRScap, EASYCAP
GmbH, Woerthsee-Etterschlag, Germany) and arranged according to the 10-20 system to
cover frontal, temporal, and part of the parietal and occipital areas bilaterally (Fig. 1A).
Spatial localization of all probes was digitalized on a head model using fiducial points (nasion,
inion, LPA and RPA) as reference landmarks (Polaris stereotaxic system, Northern Digital

Table 1 – Descriptive statistics of the socio-demographic and clinical characteristics of
participants who completed the neuropsychological assessment, the resting state and the
passive story listening task during the fNIRS-EEG recording.

Epilepsy patients Healthy controls Group comparison

(Number of missing data) (p-value)

N 13 26
Sex [female/male] 4/9 11/15 .728
Age [M ± SD] 11.2 ± 3.9 12.9 ± 4.1 .203
Socio-economic status [Median]
Family income 5/5 5/5(3) .793
Parental education 5/6 5.8/6 .311
Socio-affective well-beinga [M ± SD]
Self-concept 50.2 ± 7.1(1) 52.1 ± 6.0 .439
Symptoms of depression 49.8 ± 8.2(1) 47.5 ± 5.5 .343
Symptoms of anxiety 49.8 ± 8.5(1) 48.1 ± 8.5(1) .0571

Handedness [right/left/ambidexter] 9/3/1 21/1/4 -
Epilepsy diagnosis
Type [FLE or TLE] 5/8b - -
Lateralization [left/right/bilateral] 3/6/3 - -
Age of epilepsy onset [M ± SD] 6.4 ± 3.1(1) - -

Median = 5.7
Epilepsy duration [M ± SD] 4.8 ± 3.1(1) - -

Median = 4.1
Number of ASM [M ± SD] 1.3 ± 0.48 - -
Seizure control [yes/no] 9/4 - -

*Critical alpha = .05, 1statistical tendency (.05 < p < .08), ameasured with the Beck Youth
Inventory (BYD-II) who was only completed by participants aged ≥ 7 years, nepi/ctrl = 10/23,
bleft/right/bilateral FLE: 1/3/1, left/right/bilateral TLE: 3/3/2. FLE: frontal lobe epilepsy.
TLE: temporal lobe epilepsy, ASM: anti-seizure medication.
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Inc., Waterloo, ON, Canada; Brainsight Frameless 39 software, Rogue Research Inc., Montreal,
QC, Canada). Digitalized coordinates were projected onto a structural MRI template (Fonov
et al., 2011; Fonov et al., 2009) and visualized with the 3DMTG interface from the LIONirs
toolbox (J. Tremblay et al., 2022), allowing to project individual fNIRS data into a 3D MRI
space.

Simultaneously to fNIRS data acquisition, EEG signal was acquired to identify potential
subclinical seizures in patients, remove these time intervals from the fNIRS signal, and ensure
we investigate language brain networks and not epileptogenic networks. EEG recording
(BrainVision Recorder, Version 1.2, Brain Products GmbH, Gilching, Germany) included
21 active electrodes placed between the fNIRS fibers and arranged according to the 10-20
system, with FCz as the reference (actiCHamp system, Brain Products GmbH, Gilching,
Germany). The electrophysiological signal was acquired at a sampling rate of 500 Hz.

The fNIRS-EEG recording took place in a dimmed-soundproof room. Participants sat
in a comfortable armchair and were instructed to relax, avoid any intentional movements
or muscular tension, and keep their gaze on the fixation cross presented in the center of
a screen (placed at 114 cm in front of them). Throughout the entire session, a member
of the research team sat next to the participant to give instructions and ensure that the
participant remained engaged. Meanwhile the quality of the fNIRS-EEG signal and the
state of alertness of the participant were monitored by a senior NIRS-EEG technician (PV).
fNIRS-EEG data was acquired during two conditions (Fig. 1B): (1) a consecutive 12-min
resting-state with eyes open, and (2) a 12-min passive story listening task previously validated
for receptive language-related brain activation (Bassett et al., 2008; Gallagher, Bastien,
et al., 2008; Gallagher et al., 2012; Gallagher et al., 2016; Vannasing et al., 2016). This
paradigm had the advantage to minimize movements, minimizing signal artifacts and the
need for signal preprocessing and modifications. The story was an abbreviated version of
Snow White narrated in French and presented throughout 18 individual segments in a block
design paradigm, where periods of rest and task alternated (Presentations®, Neurobehavioral
Systems, 2018, Berkeley, CA, USA). The interstimulus interval was pseudo randomized
between 15 and 20 s and stimulus presentation was ∼20 s. After the fNIRS-EEG recording,
participants responded to 12 questions verifying if they followed the storyline. A video
recording of the fNIRS-EEG session enabled visual support during offline preprocessing for
the identification of movements and potential epileptic seizures.

2.2.2. Neuropsychological assessment

All participants underwent a neuropsychological evaluation that included an estimation
of the general intellectual functioning (estimated IQ) and the assessment of the receptive and
expressive language abilities. As proposed in the Wechsler Abbreviated Scale of Intelligence
(WAIS-II; Wechsler, 2011), the estimated IQ was computed based on four subtests of the

83



Figure 1 – fNIRS-EEG recording set-up. (A) fNIRS-EEG montage as it was placed on a
participant’s head (left), and the arrangement of 16 emitting light sources (λ 1|2 = 760|850
nm, red dots) and 16 light detectors (dark grey dots) covering regions of interest over both
hemispheres (right). This resulted in 50 measurement channels. (B) The two behavioral
paradigms, i.e., 12-minute resting-state period and the 12-minute receptive language task,
performed during combined fNIRS-EEG data collection.

Wechsler intelligence scale for children (6 to 16 years, WISC-IV; Wechsler, 2005) and adults
(16 years and over, WAIS-IV; Wechsler, 2010): Vocabulary (word knowledge), Similarities
(verbal reasoning), Block design (visuo-constructive abilities) and Matrix reasoning (non-
verbal problem solving). The receptive and expressive language abilities were assessed using
the Peabody Picture Vocabulary Test, revised version (PPVT-R; Dunn et al., 1993) and the
One-Word Picture Vocabulary Test (EOWPVT-2000; Brownell, 2000), respectively. All these
tests are standardized validated tools frequently used for neuropsychological assessment of
children with epilepsy. Individual test results were transformed into T scores based on the
norms for the French-Canadian population.

In addition, three questionnaires were completed. First, a homemade demographic,
developmental and socio-economic inventory was completed by the primary caregiver prior to
the first meeting to confirm the eligibility of the child and determine the family socio-economic
status (SES). The family’s income (scaled from one to five) and the parental education as
defined by the mean of the maternal and paternal level of education (scaled from one to six)
served as indices for the SES (« APA Dictionary of Psychology », 2022). Second, the assessor
completed the Beck Youth Inventory (BYI-II; Beck et al., 2005) with the child (aged seven
and over) to assess three factors of the participants’ psychological-wellbeing: self-concept,
depression, and anxiety. Since impaired self-concept and psychological problems have been
shown to be more prevalent in the epileptic population (Puka et al., 2020; Reilly et al., 2014)
and can have an impact on the cognitive profile (Rock et al., 2018), these scores allowed to
detect symptoms of psychological distress and control for differences between study groups if
needed. Third, a French version of the Edinburgh Handedness Inventory (Oldfield, 1971) was
also completed by the child to determine each participant’s handedness based on self-reported
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daily activities. Left-handedness and ambidexterity have been associated with an increased
incidence of atypical hemispheric representation of language functions (Knecht et al., 2000).

2.3. fNIRS-EEG data preprocessing

The raw EEG signal was filtered (bandpass range: 0.3-35 Hz, notch: 60 Hz) and screened
for potential neurophysiological abnormalities by a clinical epileptologist (BO) (BrainVision
Analyzer, Version 2.2, Brain Products GmbH, Gilching, Germany). This aimed to identify
sub-clinical seizures in the participants with epilepsy and assure the absence of pathological
findings within the control group. fNIRS data recorded simultaneously to a subclinical seizure
identified on the EEG were excluded from further analyses to avoid contamination of the
epileptogenic networks when mapping the language brain networks.

Raw fNIRS data was imported into the LIONirs toolbox (J. Tremblay et al., 2022), which
is embedded in SPM12 (Statistical Parametric Mapping) and operates in MATLAB (The
MathWorks, Inc., 2019b, Natick, MA, USA). Signal coherence among channels for the peak
frequency commonly related to the cardiac beat (0.8-2.3 Hz) allowed to exclude channels
with poor optode-to-scalp coupling (Fourdain et al., 2023; Yücel et al., 2021). Intervals with
aberrant signal variation based on moving average criteria were identified using an automatic
algorithm. An artifact was identified if a) changes in light intensity within a time interval of
6 s exceeded three standard deviations, b) the noise lasted for more than 3 s, and c) at least
5 % of channels were affected. Temporally correlated (r > 0.8) channels within the same
interval were considered as artifacts and intervals less than 2 s apart were considered as one
event. A visual inspection was also performed, and minor manual adjustments were applied.
Subsequently, parallel factor analysis (PARAFAC), i.e., a multidimensional decomposition
method (Bro, 1997; Harshman, 1970) which has recently been validated for fNIRS data
(Hüsser et al., 2022), was used to correct the signal during relatively isolated artifact intervals.
Noisy periods that lasted for a relatively long interval and where no clear signature could be
extracted were excluded. Optical density of the signal between uncorrected noisy intervals,
was transformed into delta optical density to normalize the signal. A fourth-order zero-phase
Butterworth band-pass filter with cut-off frequencies 0.001-0.5 was applied to reduce confounds
of systemic physiology related to respiratory or cardiac pulsation, while keeping the low
frequencies presumably related to the hemodynamic response (Pinti et al., 2019; Santosa
et al., 2020). Optical density was then transformed into relative oxy-/deoxyhemoglobin
(HbO/HbR) concentration changes using the modified Beer-Lambert Law (Kocsis et al.,
2006) with age-appropriate differential pathlength factors (Scholkmann & Wolf, 2013). The
averaged signal of all channels was regressed from every channel, a procedure which has been
shown to successfully remove remaining physiologic confounds appearing in frequency bands
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that are in the range of the hemodynamic signal and thus hard to filter (Saager & Berger,
2008). See Fig. 2 for an overview of the fNIRS preprocessing pipeline.

Figure 2 – Processing pipeline for the fNIRS signal. (A) Individual raw data of the resting-
state and receptive language task; (B) preprocessing steps applied to ensure signal quality
and transform raw optical density into relative HbO and HbR concentration changes; (C)
extraction of random samples of 60 s; (D) computation of cross-correlations between all
channels of each sample to produce averaged individual functional connectivity matrices on
HbO signal (An); (E) thresholding of individual matrices over a sparsity range to produce
undirected weighted graphs; (F) derivation of graph theoretical metrics to describe network
properties. fNIRS: functional near-infrared spectroscopy, HbO: oxyhemoglobin.

2.4. Functional connectivity analysis

FC and network analyses were conducted on HbO matrices only, which is considered
a sensitive indicator of regional oxygenation differences in response to cerebral activation
(Homae et al., 2007) and has a good concordance with the fMRI BOLD signal (H. Sato
et al., 2013; Tung et al., 2021). Circular bootstrapping was used to extract 200 random 60-s
samples from each data set (resting-state and task) of each participant (Bellec et al., 2010).
For each valid sample, we computed cross-correlations, i.e., pairwise Pearson’s correlations
(ρ) between the time course of all measurement channels (yi,yj = 1,...50). The symmetric
matrix of each subject (An) included the averaged ρij of all possible pairs (k = 1225) over
all samples. Correlation coefficients underwent Fisher’s transformation to obtain normally
distributed values (zij). Developmental effects were removed by estimating and regressing
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the contribution of age from An with a general linear model (GLM): An = β0 + β1(age) + ϵ,
resulting in Bn. The hemodynamic signal related to receptive language processing was isolated
by subtracting the FC matrix computed using the resting-state data from the FC matrix
computed using data gathered during the story listening task (Bn(task) − Bn(resting−state)). The
subtraction allowed to control for inter-ictal epileptic or default mode network activity and
yielded in a residual matrix (Rn) specific to language comprehension.

The brain networks were characterized with common graph theoretical measures of local
and global processing efficiency. Segregation is the network’s tendency to build local clusters
and refers to local information processing. It is measured with: 1) the clustering coefficient
(γ), which is the level a node’s neighbors are directly connected to each other and describes the
clustering density around each node; and 2) the local efficiency (Elocal) index, which considers
direct and indirect paths to describe a node’s integration among its neighbors (Achard &
Bullmore, 2007; Fornito et al., 2016; Latora & Marchiori, 2003; Latora & Marchiori, 2001;
Newman, 2003; Sporns, 2018; Watts & Strogatz, 1998). Integration describes a network’s
ability to efficiently integrate information from distinct parts and refers to global information
processing. It is commonly assessed using: 1) the characteristic’s path length (λ), which
quantifies the averaged shortest path between all possible nodes - a lower λ implies more
rapid and efficient information processing; and 2) the global efficiency (Eglobal) index, which
also refers to the network’s global information exchange and is the reciprocal of the λ (1/λ)
(Farahani et al., 2019; Fornito et al., 2016; Latora & Marchiori, 2001; Tavakol et al., 2019; Tung
et al., 2021). Additionally, the small-world index (σ), which is a network characteristic that
considers the normalized balance of a network’s segregation and integration σ = γ/λ (Watts
& Strogatz, 1998), was considered. A network with small-world properties is characterized
by a good balance of global and local processing efficiency, which is inherent for a healthy
brain network architecture since early infancy and throughout adulthood (Fornito et al., 2016;
Fransson et al., 2011; Liao et al., 2017).

Network metrics (γ, Elocal, λ, Eglobal, σ) were computed with in-house Matlab scripts
incorporating functions from The Brain Connectivity Toolbox (Rubinov & Sporns, 2010). In
the graph theoretical framework, each measurement channel (i,j) of the fNIRS data represents
a node and every correlation pair (ρij) is an edge. Individual connectivity matrices (Bn(task))
computed from the language task signal only that were corrected for developmental effects,
were transformed into undirected weighted graphs (Wn) using a range of absolute correlation
thresholds (τ). The ideal range is commonly achieved when a fully connected network,
that is each node is at least connected with one other node (degree centrality (K) ≥ 1),
is accompanied by a small-world topology (γ > 1, λ > 1, σ > 1 or in small networks when
γ > γrand) (Bassett et al., 2008; Montoya & Solé, 2002; Rubinov & Sporns, 2010). These
criteria were most appropriate for our set of data and have been tested in other studies (Provost
et al., 2023; Roger et al., under review). In the current study, a satisfying mean minimal K of
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one was maintained from a threshold of 0.01 to 0.17 for the task matrices. Within that range,
the average normalized γ and λ also fulfilled the criteria of 1. Small-world topology based on
the criteria for small networks was also fulfilled for this range; the actual index was however
only greater than one for thresholds above 0.12. Given the size of the cerebral network, i.e.,
< 3000 nodes, analyses were conducted for threshold ranges of τ1 = 0.01, to τ(m(task)) = 0.17,
with △τ = 0.01. Correlations fulfilling the threshold criteria kept their absolute value (|ρij|).
Correlations on the principal diagonal representing each channel’s correlation with itself and
correlations below the threshold were set to zero. For every threshold, we extracted 100
random graphs, derived network metrics and calculated a group mean over all graphs and
subjects (Mrand). We then divided individual metrics, derived from the real graph, by Mrand

resulting in normalized metrics. Finally, we calculated the area under the curve (AUC) for
the normalized network metrics over the sparsity range, which provided a valuable alternative
to analyzing metrics for each threshold individually (Ding et al., 2017; Lei et al., 2015; Suo
et al., 2015; H. Zhang et al., 2011).

2.5. Statistics

The statistical analyses were conducted using the R statistical software and Matlab
functions integrated in the LIONirs toolbox. Between group analysis (epilepsy vs control group)
allowed to: 1) detect potential differences regarding the sample’s demographic characteristics
(age, sex and SES) and socio-affective wellbeing measure with the BYD-II questionnaire; 2)
ensure equal fNIRS signal quality (the number of good trials included for FC matrices); and
3) statistically compare graph network metrics as well as cognitive performance. Student’s
t-tests, or the non-parametric Mann-Whitney-U test when normality was violated, were used
for continuous variables and Fisher’s exact tests were used to analyze categorical variables.

Due to the high number of connectivity links (n = 1225), 2000 unpaired permutation
tests based on student t-test statistic were computed to compare the residual FC matrices of
the epilepsy group to the control group (Galán et al., 1997; Lage-Castellanos et al., 2010).
Insufficient power precluded quantitative analyses of patient subgroups (FLE vs. TLE, left vs.
right epilepsy). Therefore, the mean and standard deviation of the control group’s residual
FC matrices were used to transform the patients’ residual FC matrices into z-scores. The
z-scores of four different patient subgroups, i.e., FLE, TLE, left and right lateralized epilepsy,
were averaged to qualitatively evaluate the impact of epilepsy lateralization and localization
on organization of cerebral language networks.

Pearson’s correlation analysis between cognitive measures (estimated IQ, expressive and
receptive language skills) and the AUC of the graph metrics were used to better understand the
associations between network organization and the neuropsychological profile. Subsequently,
linear regression models with the cognitive measures and the group factor (epilepsy and healthy
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control) as predictor variables, were tested to evaluate their relative explanation of the different
network properties, i.e., the AUC of the network’s segregation (γ, Elocal) of each hemisphere,
the network’s integration (λ, Eglobal), and its small-world topology (σ). Post-hoc analyses were
applied to disentangle the moderating effect of the group factor on the association between
cognitive measures and the AUC of the different brain network. Explorative correlation
analyses between clinical factors and the AUC of the graph metrics of epilepsy patients
were computed to explore the impact of the type of epilepsy (frontal/temporal), epilepsy
lateralization (left/right/bilateral), age of epilepsy onset, epilepsy duration and seizure control
on the language brain network topology. Pearson’s correlation coefficients and Spearman
rank correlations were used for continuous and categorical variables, respectively. Results are
all interpreted with a critical alpha level of .05 and common effect size measures, i.e., Cohen’s
d, partial eta squared (η2

p), and Varga and Delaney’s A (Cohen, 1988; Vargha & Delaney,
2000).

3. Results
All 49 participants completed the neuropsychological assessment and the resting-state

fNIRS-EEG recording. However, fNIRS-EEG recording during the passive story listening
task was not done or not completed in 9 participants (seven epilepsy patients and two
healthy controls) due to participant discomfort, limited collaboration or time restrictions.
Since it was not possible to compute the residual matrix in those participants, they were
excluded for all cerebral network analyses (Secs. 3.2 and 3.4). The EEG of one healthy control
suggested potential epileptiform abnormalities. Consequently, this participant was excluded
from the study. The neurologist did not identify subclinical seizures in any epilepsy or control
participant. Indicators of inter-ictal activity, such as spikes or slow waves, were identified in
the resting-state signal of five patients and in the task signal of three patients. These events
were short (≈ 0.002 s) and mostly limited to a single channel, thus minimally affecting the
hemodynamic signal. The sample characteristics and neuropsychological results for the final
sample are reported in Sec. 3.1.

3.1. Socio-demographic and clinical characteristics of the final sam-
ple

The final sample was composed of 13 children with epilepsy and 26 healthy controls
(Table 1 for socio-demographic and clinical characteristics). Comparisons between healthy
controls and epilepsy patients regarding their socio-demographic characteristics revealed no
significant differences for sex (Fisher’s exact test: p = .728), age (t(37) = 1.30, p = .203,
d = 0.44, small effect), socio-economic status operationalized as the family income (W = 155.5,
p = .793, A=0.46, very small effect) nor the mean parental education (W = 202.0, p = .311,
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A = 0.60, small effect). The BYD-II was only completed by participants aged ≥ 7 years i.e.,
10 epilepsy patients and 23 healthy controls. Both groups have a socio-affective well-being
within the normative range, with no statistically significant differences between groups for any
of the three dimensions of the BYI-II, i.e., self-concept (t(31) = 0.78, p = .439, d = 0.30, small
effect), depression (t(31) = -0.93, p = .343, d = 0.37, small effect) and anxiety (t(31) = -2.00,
p = .056, d = 0.75, medium effect). We thus considered both groups as being comparable
and did not include any of the socio-demographic nor the socio-affective factors as covariables
for primary statistical analysis. The etiology of epilepsy was unknown in eight patients,
potentially structural (e.g., atrophy, cyst, sclerosis) in three, though one had incomplete
signs of a hippocampal sclerosis, and an auto-immune disease was suspected in one. Etiology
could not be verified for one. None of the patients presented a self-limited epilepsy syndrome
(Specchio et al., 2022). Nine patients received a monotherapy, and four a combination of two
ASMs. Carbamazepine and levetiracetam were the most common ASMs in this study group
and anyone received treatment with topiramate, which is known to affect language functions
(S. Lee et al., 2003; Szaflarski & Allendorfer, 2012). See Table S1 in the supplemental material
for details on individual patients.

3.2. Cerebral networks

On average, we recorded 12.2 (SD: ± 2.8) and 12.3 (SD: ± 2.1) min of resting-state and
task data, respectively. After the bootstrapping of 60-s trials, we extracted an average of
93.2 (SD: ± 59.5) and 121.6 (SD: ± 59.1) valid resting-state and 67.2 (SD: ± 51.9) and 95.3
(SD: ± 54.2) task segments for the epilepsy and control groups, respectively. The number
of valid segments for the resting-state (t(46) = 1.63, p =.109, d = 0.48, small effect) nor
the language paradigm (t(37) = 1.54, p = .131, d = 53, medium effect) statistically differed
between groups. When the comprehension of the story line presented during the receptive
language task was assessed, epilepsy patients gave significantly fewer correct answers (40 %)
as compared to the healthy controls (90 %, W = 181, p = 0.002, A = 0.54, very small effect).

Permutations were conducted at a channel-level, for visualization and interpretation pur-
poses, channels were attributed to four regions of interest (ROI), i.e., frontal, temporoparietal,
temporal and temporooccipital areas of both hemispheres (Fig. 3A, Koessler et al., 2009;
T. Nguyen et al., 2018). Averaged residual connectivity matrices (R) of epilepsy patients
and healthy control children are illustrated in Fig. 3B. Student’s t-test statistics after 2000
permutations revealed numerous significant differences (p < .05) between residual matrices of
patients with epilepsy and healthy control children (Fig. 3C). Group differences indicated
that, compared to their healthy peers, children with FLE or TLE overall had decreased
frontotemporal FC within the left hemisphere, increased frontotemporal FC within the right
hemisphere, and mixed results regarding FC alterations of inter-hemispheric FC (p < .05,
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d |Min-Max|: 0.74-2.81, medium to large effect, Fig. 3D). Precisely, the epilepsy group
predominantly had reduced FC between homologous regions (e.g., fronto-frontal connections)
and a few stronger long-range inter-hemispheric connections (e.g., right frontal-left temporal)
compared to the control group. The averaged z-score matrices for the four patient subgroups
implied that children with FLE and right lateralized pathology, as compared to healthy
controls, had the most different frontotemporal FC (Fig. 4). These patients had particularly
increased FC of posterior temporal areas. Strikingly, children with left lateralized epilepsy had
mainly left hemispheric and inter-hemispheric FC alterations, while their right hemisphere
seemed almost unaffected and comparable to their healthy peers. The sample size prevented
further statistical analyses between the subgroups.

Figure 3 – Results of functional brain networks involved in language processing: (A) Specifies
how channels were regrouped into four regions of interest. The color codes of these regions
are used to indicate regions in the connectivity matrices and the connectograms; (B) the
averaged residual matrices (FC story – FC resting-state) are illustrated for the patient (left)
and the control (right) group; (C) the group difference matrix shows the correlation pairs that
differed significantly (p < 0.05) between both groups; (D) the connectograms separately show
the significantly positive (left, patients < controls, Cohen’s d Min-Max: |0.74-2.81|, medium
to large effect) and negative (right, patients > controls, Cohen’s d Min-Max: |0.74-2.07|,
medium to large effect) differences of functional connections between groups, respectively.

Connectivity strengths across all channels showed overall a similar distribution of FC.
Averaged FC in the epilepsy and control group was 0.11 and 0.12, respectively (Fig. 5A).
Weighted graph networks of children with FLE or TLE and healthy controls revealed a
small-world topology (γ > 1, λ > 1, γ > γrand) for the language brain network over the
sparsity range of τ1 = 0.01, to τ(m(task)) = 0.17. Figure 5B displays the averaged AUC for
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Figure 4 – Qualitative results of averaged standardized residual matrices of patients’
subgroups. The upper part contains connections that are ≥ 2 SD lower in the epilepsy
group than in the control group, while those in the bottom illustrate connections that are
≥ 2 SD higher in the epilepsy group compared to the control group. For all connectograms,
the intra-hemispheric connections within the left and right hemisphere are displayed in blue
and purple, respectively, and inter-hemispheric connections in orange. The color code of the
regions of interest is specified in Figure 3A, where channels in red refer to frontal, blue to
temporoparietal, purple to temporal and turquoise to temporoccipital areas of the brain.

each graph network metrics. We found a significant group difference for the AUC of Elocal in
the right hemisphere (t(37) = -2.07, p = .046, d = -0.70, medium effect) and a relevant but
not significant difference between groups for the clustering coefficient for the same hemisphere
(t(37) = -2.07, p = .059, d = -0.66, medium effect), but no differences between patients and
controls for any of the other network metrics (p > .05).

Explorative correlation analysis between clinical factors and the AUC of the graph metrics
of epilepsy patients revealed that overall epilepsy type showed the highest correlation across
the AUC of all network metrics (Spearman r = |0.58-0.69|), followed by seizure control
(Spearman r = |0.32-0.54|). Age of epilepsy onset (Pearson r = |0.20-0.33|) had a small to
moderate correlations with network metrics. Lateralization (Spearman r = |0.05-0.28|) and
epilepsy duration (Pearson r = |0.00-0.10|) did not show any strong associations with the
AUC of network metrics (Table 2).

3.3. Cognitive profile

Results of the neuropsychological evaluation revealed that, compared to children of the
control group, children of the patients group had a significantly lower estimated global IQ
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Figure 5 – Graph analysis of functional brain networks involved in language processing: (A)
The distribution of the functional connectivity strength and the mean functional connectivity
as indicated by the undirected weighted absolute correlation coefficients across all channels
of the receptive language task for the epilepsy (red) and control (blue) group. The overlap
between the distribution of both groups appears purple; (B) the mean AUC of the local
and global graph metrics respectively over the sparsity range of 0.01-0.17. Local metrics are
displayed for the left and right hemisphere individually. AUC: area under the curve, FC:
functional connectivity, LH: left hemisphere, RH: right hemisphere. *Critical alpha: p = .05,
1statistical tendency (.05 < p < .08).

(t(35) = 5.43, p < .001, d = 1.91, large effect, missing nepi/ctrl: 1/1), reduced overall verbal
capacities (verbal comprehension index of the Wechsler intelligence scale, VCI: t(35) = 3.37,
p = .002, d = 1.19, large effect, missing nepi/ctrl: 1/1), lower receptive (t(36) = 3.64, p < .001,
d = 1.27, large effect, missing nepi: 1), and expressive language abilities (t(37) = 2.94, p = .006,
d = 1.00, large effect) as well as decreased non-verbal skills (perceptual reasoning index of
the Wechsler intelligence scale, PRI: t(37) = 4.78, p < .001, d = 1.62, large effect). Detailed
results of the subtests are illustrated in Fig. 6.
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Table 2 – Correlation analysis to assess the association of clinical factors and metrics of
brain network organization.

Epilepsy type [FLE or TLE]1 -0.65 -0.58 -0.60 -0.58 0.69 -0.66 -0.66
Epilepsy lateralization [left, right, bilateral]1 -0.10 0.13 -0.05 0.18 -0.25 0.28 0.09
Age of epilepsy onset2 -0.20 -0.30 -0.24 -0.27 0.33 -0.30 -0.29
Epilepsy duration2 0.10 0.07 0.00 -0.09 -0.05 -0.01 0.07
Seizure control [yes, no]1 0.49 0.42 0.54 0.41 -0.36 0.32 0.47
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1Spearman rank correlation, 2Pearson correlation coefficient, light grey, light blue/pale orange
and dark blue/orange indicate small (r = |0.029|, medium (r = |0.30-0.49|), and large
(r = |0.50-1.0|) correlations, respectively. Orange and blue stand for positive and negative
correlations, respectively. LH: left hemisphere, RH: right hemisphere.

3.4. Association of brain network organization and the cognitive
profile

Correlation coefficients revealed high correlations between the different cognitive measures
(r > 0.70). Table S2 in the Supplemental Material provides the correlation coefficients between
all variables. Due to multicollinearity between cognitive measures and because the estimated
IQ had the most relevant and consistent association with network metrics across different
metrics (r = |0.18-0.29|), we opted for a linear model that included the centered estimated IQ,
the group factor and their interaction term to predict the AUC of the brain network metrics.
Statistical results of this model are summarized in Table 3. 14.4 % of the Elocal variance in the
left hemisphere (F(3,33) = 3.02, p = .044, d = 0.08, small effect) was explained by this model.
13.0 % of the Elocal variance in the right hemisphere (F(3,33) = 2.79, p = .056, d = 0.02,
small effect) was explained by the included variables, which was however not statistically
significant. We did not find any main effects of the group nor the estimated IQ, but there
was a significant interaction effect between the group and estimated IQ for Elocal of the left
hemisphere (Beta = -1.46, p = .014, η2

p = 0.16, large effect) and an equally large but not
significant effect for Elocal of the right hemisphere (Beta = -1.29, p = .055, η2

p = 0.10, medium
to large effect). The F-statistics of all the other metrics did not reveal a significant model fit.
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Figure 6 – Group comparisons of cognitive performance: children with frontal or temporal
lobe epilepsy (orange stripes) and healthy control children (blue dotted) are illustrated
separately. Results are expressed as t-scores. The normative range is indicated with the grey
rectangle (M ± SD = 50 ± 10). All comparisons had a medium to large effect size (d ≥ 0.7).
*Critical alpha: p = .05.

Post-hoc simple slope analyses revealed that the association between the estimated IQ
and Elocal of the left hemisphere differed significantly between groups (p = .014) and at trend
level for the Elocal of the right hemisphere (p = .055). Precisely, an increase in the estimated
IQ was associated with a significant decrease of Elocal in the left (-1.43, p = .006) and the
right hemispheres (1.17, p = .046) in the epilepsy group. In the control group, an increase of
the estimated IQ did not relate to any changes of the Elocal in the left (+0.03, p = .915) nor
the right (+0.12, p = .714) hemispheres (Fig. 7).
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Table 3 – Regression analysis to assess the association of cognitive measures and metrics of
brain network organization and to detect potential moderating effects of the group factor.
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LH RH LH RH

Model fit AUC = β0 + β1(Est.IQ) + β2(Group) + β3(Est.IQ ∗ Group)
F(3,33) 1.47 1.95 3.02 2.79 1.66 1.11 2.19

Adjusted R2 0.04 0.07 0.14 0.13 0.05 0.01 0.09
Estimated IQ

β -0.14 0.01 0.03 0.12 -0.04 0.03 0.02
p .745 .984 .915 .714 .816 .745 .972

Group

β -0.49 0.53 -0.19 0.49 -0.06 0.09 0.10
p .489 .492 .676 .360 .819 .489 .890

Group*Estimated IQ

β -1.41 -1.37 -1.46 -1.29 0.59 -0.20 -1.80

β .112 .149 .014* .0551 .0801 .223 .0571

*Critical alpha: p = .05, 1statistical tendency (.05 < p < .08). Significant effects and statistical
tendencies are emphasized in bold. LH: left hemisphere, RH: right hemisphere.

4. Discussion
Developing language brain networks are vulnerable to neuropathologies, which may

interrupt or disturb their normal development. At the same time, the developing brain
benefits from great plasticity, offering a unique window for adaptive processes in response
to neuropathologies (Smith, 2010). Differences in cerebral networks involving language
processing have been reported in children with focal epilepsies compared to healthy controls
(e.g., Hamberger & Cole, 2011; Sepeta et al., 2015; Slinger et al., 2022). However, specific
patterns of language brain network alterations in pediatric patients with FLE and TLE are
unknown and their associations with cognitive and language abilities are not fully understood.
Therefore, it is not clear if the differences found in children with FLE or TLE compared to
healthy controls represent positive adaptive reorganization or if they constitute pathological
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Figure 7 – Moderation of the association between the estimated IQ and local network
topology by the group factor. Black brackets indicate the between group differences in the
slope, orange lines show the slopes of the epilepsy group, and the blue lines represent the
slopes of the control group. *Critical alpha = .05, 1statistical tendency (.05 < p < .08).

brain reorganization in response to epilepsy. The main objectives of this study were to
characterize the cerebral language network organization and to study the associations of these
networks’ characteristics with the cognitive and language profiles in children with FLE or
TLE.

4.1. Cerebral networks

In the current study, the healthy control group presented typical cerebral language networks
characterized by a joint recruitment of left temporoparietal, temporal and temporooccipital
areas as well as of bilateral frontal and temporal areas (Hickok, 2022; Skeide & Friederici,
2016). Compared to healthy controls, children with FLE and TLE demonstrated weaker left
hemispheric and inter-hemispheric FC as well as increased right frontotemporal connections.
These group differences support the known incidence of atypical functional language networks
in pediatric focal epilepsy (Baciu & Perrone-Bertolotti, 2015; Berl et al., 2014; Marcelle
et al., 2022; Vannest et al., 2019). While the enhanced recruitment of right hemispheric
frontotemporal regions is a frequent and well-established cerebral alteration of language
processing in epilepsy patients, the impact on long-distance connections is less documented.
In a recent fNIRS study in adult patients with frontotemporal epilepsy, Tung and colleagues
(2021) investigated brain FC during a semantic and a phonemic verbal fluency task and found
weaker inter-hemispheric FC in adult epilepsy patients compared to healthy controls. Our
findings thus suggest that weaker inter-hemispheric FC between homologous frontotemporal
regions in patients with FLE and TLE compared to controls is a characteristic of cerebral
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language network reorganization across ages and different language domains (Sepeta et al.,
2015; Tung et al., 2021).

Graph theory analysis revealed that global network topology of language processing was
comparable between both groups, but that local network properties, i.e., local processing
efficiency, in the right hemisphere was increased in the patient group compared to the control
group. This suggests that the altered FC patterns in our epilepsy group only marginally
affected the network’s overall architecture and that the increase of right intra-hemispheric FC
results in more segregation of right hemispheric frontotemporal regions. The reduction of FC
within the left hemisphere does not however lead to significant changes in network architecture
within this hemisphere. The typical developmental timeline of network architecture indicates
that local network topology, i.e., network segregation, tends to decrease with age, while global
network efficiency usually increases (Gozdas et al., 2019; Supekar et al., 2009). Hence, the
above reported alteration could indicate a certain immaturity of brain language networks
in children with FLE and TLE. Similarly, local network organization seems a common area
of alterations in patients with epilepsy as the results of the meta-analysis by Slinger and
colleagues (2022) underline. In contrast to our findings, they report however a lower clustering
coefficient, suggesting a reduction of network segregation in adolescent and adult patients
with focal epilepsy. Alterations of local network properties appear to be a key characteristic
of brain network topology in patients with focal epilepsy such as FLE and TLE, and this both
for large-scale brain networks as well as specific functional brain networks such as cerebral
language networks. The direction of reorganization, i.e., whether fewer or more subnetworks
are built, seems to depend on the patients’ age.

Exploratory analyses of cerebral language networks in patient subgroups revealed that,
compared to healthy controls, children with right lateralized epilepsy had overall more altered
FC in cerebral language networks than patients with left lateralized epilepsy. The latter
mainly had reduced FC among ipsilateral frontotemporal regions, suggesting that their
language networks demonstrate primarily local deviations from the FC of healthy controls.
Although epilepsy lateralization reportedly causes distinct differences in language networks,
the literature rather suggests that patients with left lateralized FLE and TLE, i.e., seizure onset
in the dominant hemisphere for language processing, experience more important alterations in
their language networks compared to those with right hemispheric lateralization (Hamberger
& Cole, 2011; Rodríguez-Cruces et al., 2020; Tung et al., 2021). Our data and others show
that right hemispheric epilepsy does however not seem to prevent reorganization of cerebral
language networks, causing a distinct pattern of alteration (Smith, 2016; Tung et al., 2021).
This is in line with the current understanding of the typical neurobiology of cerebral language
networks that suggests that despite a left hemispheric dominance, bilateral frontotemporal
areas are involved in language processing (Hickok, 2009, 2022; Hickok & Poeppel, 2007).
Regarding the role of epilepsy type, our results indicate that FC in children with FLE was
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more strongly affected compared to those with TLE with much more differences in intra- and
inter-hemispheric FC in FLE than TLE compared to healthy controls. A distinct pattern of
FC for epilepsy type has recently also been identified in adult patients with FLE and TLE
(Caciagli et al., 2023). Precisely, fMRI data acquired during two expressive language tasks
indicate that patients with FLE compared to those with TLE demonstrate increased FC
within left temporooccipital and bilateral occipital areas. In our data set, epilepsy type and to
some extent seizure control, showed the strongest associations with graph metrics of network
topology. Epilepsy type and lateralization seem relevant predictors for the organization
of cerebral language networks, though more studies are necessary to better characterize
the specific pattern of reorganization associated with each subgroup. In this context, it
is also important to emphasize the heterogeneous seizure semiology. Precisely, cerebral
language network organization may be affected differently when seizures are purely unilateral,
or epileptic activity propagates to the other hemisphere or seizures commonly result in a
secondary generalization. Future studies with larger samples size should consider more precise
characteristics of seizure semiology.

4.2. Cognitive profile

The neuropsychological results indicated that children with FLE or TLE had an overall
cognitive performance and receptive and expressive language capacities within the normative
range, however significantly lower than their healthy peers. In our sample, FLE and TLE seem
to have a general impact on the cognitive capacities rather than a specific effect on language
abilities. This is in line with the current state of the literature on pediatric FLE or TLE,
which shows that focal epilepsy is a network disorder and affects multiple cognitive domains
(Garcia-Ramos et al., 2015; Hermann et al., 2017; Kellermann et al., 2016; Rodríguez-Cruces
et al., 2020; Verche et al., 2018).

4.3. Relationships between brain network organization and cognitive
profile

During the fNIRS-EEG recording, patients with epilepsy demonstrated reduced task
performance at the passive story listening task, i.e., lower comprehension of the story line,
compared to the control group. This suggests that the diffuse FC alterations and increased
local processing efficiency in the right hemisphere measured during language processing seem to
represent aberrant network organization. Specific regression analysis revealed however a more
complex pattern. The estimated IQ alone did not predict any of the network’s characteristics.
However, we found a moderation effect of the group factor (patients vs. controls) on the
association between the estimated IQ and the network’s local processing efficiency in the left
hemisphere and at a trend level in the right hemisphere. Precisely, the estimated IQ was
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negatively related to the level of local processing efficiency in the patient’s group, while no
such relationship was identified for the control group. No moderation effect was found for
the clustering coefficient nor any of the global network metrics. Although current findings
from neurotypically developing children suggest that the direction of the association between
intellectual capacities and graph theoretical measures differs between cerebral regions (Gozdas
et al., 2019), network segregation generally decreases during childhood and adolescence
(Supekar et al., 2009). The association of a lower network segregation with higher cognitive
functioning may imply that compensatory mechanisms in the left hemisphere enabled a more
mature and therefore more efficient cerebral language network.

4.4. Strengths and limitations

This study has several methodological strengths that can be highlighted here. First, epilep-
tic activity can significantly affect hemodynamic fluctuations and mislead the interpretation
of cerebral language processing. The simultaneous acquisition of the electrophysiological data
(EEG) with the hemodynamic signal (fNIRS) thus allowed to monitor epileptic activity and
ensure a good quality of the hemodynamic signal without contamination of seizure activity.
In future studies, the joint multimodal analysis of EEG and fNIRS FC would certainly also
offer rich information to characterize language brain networks in individuals with epilepsy.
However, a task paradigm better adapted to both signals (slow fNIRS hemodynamic and
fast EEG neuronal signals) and a greater number of EEG electrodes should be used. This
nevertheless constitutes interesting paths for future research. Another methodological strength
of this study is the subtraction of the resting-state FC matrices from the task FC matrices
allowing to maximally isolate cerebral activation related to receptive language processing.
Finally, a third strength is the use of a graph theoretical approach to characterize brain
language networks in children with FLE and TLE, where such literature on this specific
group of patients is still scarce.

This study also has several limitations that must be considered when interpreting its
results. First, the heterogeneous clinical phenotype of epilepsy and the high number of
comorbidities makes the recruitment of a homogeneous sample challenging and resulted in
the current study in a relatively small sample. We carefully considered the sample size
while performing statistical analysis and emphasize the value of effect sizes. The impact
of clinical factors (e.g., epilepsy type and lateralization, age at onset, duration of epilepsy,
seizure frequency and control) on brain functional connectivity could only be addressed
in an explorative manner and the sample size precluded their consideration for advanced
analysis. Due to high heterogeneity, other clinical variables (e.g., etiologies, number, and
type of ASM, etc.) could not be considered for analyses. It has however been shown that
these clinical factors correlate with the extent and type of cognitive difficulties (Gallagher &
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Lassonde, 2005; Jambaqué et al., 1993; Verche et al., 2018). Therefore, their role for cerebral
language processing and the neuropsychological outcome should be specifically addressed
in upcoming research with larger samples. This will allow to shed light on differences in
brain network architecture of epilepsy patients and enhance the understanding of the role of
clinical characteristics on the association between neuropsychological profiles and cerebral
network organization. Finally, the current findings are deducted based on a story listening
task. Therefore, whether they represent specific cerebral characteristics of receptive language,
or rather a general effect of language processing must be analyzed in a study applying different
language task paradigms. This would for instance allow us to compare neuronal response
between receptive and expressive language processing or other distinct linguistic processes.

4.5. Conclusion

This is the first study that specifically focused on children with FLE and TLE, the most
common types of focal epilepsies where epileptogenic networks are more likely to interfere
with cerebral language processing. Another novelty is the use of graph theory measures to
characterize network architecture of brain language networks and identify their relationship
with cognitive measures. We found distinct patterns of FC for cerebral language processing
in children with FLE or TLE compared to typically developing children. Precisely, children
with FLE or TLE had decreased left frontotemporal connections, fewer inter-hemispheric
connections between homologous regions and increased right intra-hemispheric frontotemporal
connections compared to their healthy peers. This suggests an atypical cerebral representation
of language networks, with greater involvement of the right hemisphere and less left and
inter-hemispheric interactions in these children. The patients’ brain architecture was also
characterized by higher local processing efficiency predominantly in the right hemisphere.
These large-scale language network alterations in the epilepsy group were accompanied by a
reduction of cognitive capacities both in verbal and non-verbal domains. In children with
FLE or TLE, local efficiency in the left hemisphere was negatively associated with global
intellectual functioning. Reduced network segregation, i.e., the tendency to build locally
specialized clusters, especially in the left hemisphere, may thus be a specific aspect of cerebral
reorganization allowed by early brain plasticity that overall seems to favor a better cognitive
outcome. Future studies will allow to shed light on the associations between different measures
of brain network alterations and the neuropsychological profile, and particularly address the
complex impact of clinical factors on functional brain network organization, including factors
such as epilepsy lateralization and localization, the age of epilepsy onset, epilepsy duration,
seizure control or medication, on functional brain network organization. Understanding the
developing brain’s adaptive capacities in response to neuropathologies and the long-term
functional impact in the context of development has important fundamental and clinical
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implications. Our findings contribute to a better understanding of cerebral alterations in
response to pediatric FLE or TLE and their functional impact and pave the way for further
investigations. Epilepsy is a network disorder and understanding the broader picture of
cerebral and cognitive alterations would enable the installation of more adequate interventions
and individual support for these patients.
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10. Supplemental Material

Table 1 – Detailed clinical characteristics of patients with epilepsy.

EPILEPSY
LOCALIZATION ETIOLOGY STRUCTURAL

ABNORMALITIES
ASM AT TIME OF
TESTING

FRONTAL LEFT Auto immune Cerebral atrophy Phenytoin, Clobazam
TEMPORAL RIGHT Unknown None Carbamazepine, Levetiracetam
TEMPORAL LEFT Structural Hippocampal sclerosis Oxcarbazepine

TEMPORAL LEFT Structural Incomplete signs of
hippocampal sclerosis Carbamazepine

FRONTAL RIGHT Unknown None Levetiracetam
TEMPORAL RIGHT Unknown None Carbamazepine
FRONTAL RIGHT Unknown None Levetiracetam, Carbamazepine
FRONTAL BILATERAL Unknown None Levetiracetam
TEMPORAL BILATERAL Unknown Arachnoid cyst Acid valproic
TEMPORAL BILATERAL Unknown None Levetiracetam
TEMPORAL LEFT Unknown None Carbamazepine
FRONTAL RIGHT N/A N/A N/A
TEMPORAL RIGHT Structural White matter lesion, dysplasia Lamotrigine

ASM: antiseizure medication; N/A: not available.

103



Table 2 – Correlation analysis (r) on the association of cognitive measures and metrics of
brain network organization.

Cognitive measures Network organization

Estimated IQ 1.00
Receptive language 0.76 1.00
Expressive language 0.71 0.63 1.00
fNIRS task
performance 0.49 0.20 0.46 1.00

Clustering
coefficient

LH -0.19 -0.18 -0.15 -0.29 1.00
RH -0.28 -0.09 -0.20 -0.39 0.77 1.00

Local efficiency
LH -0.23 -0.19 -0.22 -0.36 0.93 0.75 1.00
RH -0.29 -0.07 -0.23 -0.43 0.74 0.95 0.81 1.00

Characteristic path
length 0.21 0.04 0.09 0.29 -0.53 -0.52 -0.63 -0.61 1.00

Global efficiency -0.18 0.02 -0.07 -0.24 0.25 0.25 0.44 0.43 -0.91 1.00
Small-world index -0.26 -0.11 -0.19 -0.37 0.91 0.92 0.91 0.91 -0.73 0.48 1.00
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Light gray: r = |0-0.29|, pale blue/orange: r = |0.30-0.49| medium, blue/orange: r = |0.50-
1.0| large, orange: positive correlations, blue: negative correlations. r, Pearson correlation
coefficient, LH, left hemisphere, RH, right hemisphere, fNIRS, functional near-infrared
spectroscopy, 1estimated as percentage of correct responses regarding the comprehension of
the storyline.
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Chapter 3

Discussion
Pediatric FLE and TLE are among the most common neuropediatric disorders (Behr

et al., 2016; Berg et al., 2013). Neuropsychological difficulties have long been reported in
these patients (e.g., Law et al., 2018; Wilson et al., 2015). Traditionally, certain difficulties,
i.e., impaired executive functions or memory capacities, are more common in patients with
FLE and TLE, respectively (Smith, 2016). The clinical phenotype of focal epilepsies and
the resulting neuropsychological profile is however very complex and it has been shown that
difficulties in distinct domains are often intertwined (Kellermann et al., 2016). Nevertheless, a
common concern in both groups is language (e.g., Metternich et al., 2014). Language functions
influence many other cognitive and social abilities, and are highly relevant for later academic
achievement (Berwick et al., 2013; Gervain, 2020). In case of atypical language capacities,
interventions should start early in order to maximally support the normal progression during
childhood and adolescence. Cerebral language processing in patients with FLE or TLE is
reportedly marked by an atypical hemispheric dominance, altered patterns of FC among
frontotemporal brain areas and distinct network topology such as reduced processing efficiency
(e.g., Gallagher et al., 2016; Law et al., 2018; Slinger et al., 2022), given the neurobiology of
the brain’s language network that involves large parts of the frontotemporal cortex (Hickok
& Poeppel, 2007; Skeide & Friederici, 2016). To date, there is however no clear consensus on
the exact pattern of cerebral alterations of language networks in children with FLE or TLE
and the brain-behavior relationship for language functioning remains speculative.

3.1. Recap of the main objectives
The broad objective of this thesis is to enhance the understanding of the neuropathological

impact of FLE and TLE on cerebral language processing and the association with cognitive
abilities during childhood and adolescence. Two methodological projects, preceded the
main investigation and contributed to optimizing the research protocol. The first study
aims to underline the value of the pediatric neuropsychological evaluation in estimating the
overall cognitive profile, identifying potential abnormalities and to contribute to a better
understanding of the brain-behavior relationship (Hüsser et al., 2020). The second study aims
to optimize the applied methods and data analysis techniques that will be used in article
three to improve fNIRS signal quality and increase characterization of brain networks (Hüsser
et al., 2022). The empirical study in children and adolescents with FLE and TLE represents
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the main project of this thesis and addresses cerebral language network organization and
its relationship with the neuropsychological profile (Hüsser et al., 2023). In this discussion,
the focus lies on summarizing and integrating the results of each article to derive a common
outlook. First, the main methodological (Sec. 3.2) advances (articles one and two) and the
findings on cerebral language networks as well as language and cognitive capacities in children
with FLE and TLE (article three, Sec. 3.2) will be summarized and embedded in the current
literature. The subsequent sections 3.3 will emphasize on the strengths and limitations of the
presented publications, which will subsequently allow to draw the main implications of this
doctoral thesis, provide directions for future research (Sec. 3.4), and a general conclusion. This
thesis also includes as appendices two additional publications: the first introduces important
concepts on research about the development of the brain’s language networks (Appendix I,
article four) and the second presents the fNIRS analysis toolbox that has been used for all
fNIRS processing steps and parts of the statistical analyses (Appendix II, article five).

3.2. Summary and interpretation of the main findings
Methodological advances

The first publication of this doctoral thesis is a book chapter that presents the pediatric
neuropsychological assessment as a tool to characterize the cognitive, behavioral and socioaf-
fective profile of children. In this chapter, we underline the integrative work of qualitative and
quantitative data to derive cognitive, motor, socioaffective and behavioral functioning. We
review specific applications of the neuropsychological evaluation and how its results contribute
to the diagnostic process, the planning of adequate interventions and monitoring of their pro-
gression, the surveillance of side effects related to pharmacotherapy and their prognostic value.
The neuropsychological assessment is an important basis to derive hypothesis regarding the
underlying cerebral correlates of cognitive functions and better understand the brain-behavior
relationship. The more that is known about this association, the better neuropathologies and
their clinical phenotype can be understood. In the context of this doctoral thesis, it guided
the acquisition of the neuropsychological data to estimate general cognitive and specifical
language abilities in children with FLE and TLE as well as in neurotypical children.

In the second publication, we investigate the use of PARAFAC for multidimensional data
analysis of the fNIRS signal. The validation, under controlled conditions in a simulated
fNIRS signal with simulated artifacts, allowed to refine the specific characteristics of artifact
correction with PARAFAC. We also corrected real artifacts in a data set acquired in healthy
adults during an expressive language task, which allowed to directly prove PARAFAC’s
use in a task paradigm mainly causing artifacts related to articulation. For simulated and
real data, PARAFAC leads to a significant improvement of the signal quality. Furthermore,
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compared to traditional 2D decomposition approaches (ICA and tPCA), it achieves similar
results for artifact correction when the signal’s dimensions, i.e., space (channels), time and
wavelengths, were orthogonal to each other, and leads to a better signal quality, such as a lower
signal-to-noise ratio, compared to two-dimensional decomposition methods when the signal’s
dimensions is not orthogonal. This thorough validation of PARAFAC as a multidimensional
data analysis tool supports its use for movement artifact correction in fNIRS. Exploiting
all three dimensions of the fNIRS signal rather than artificially unfolding them into two
dimensions represents a valuable advantage and increases fNIRS data quality.

Cerebral language networks and cognitive capacities in pediatric
FLE and TLE

The third publication consists of an empirical study on the organization of cerebral
language networks and their association with cognitive measures in children with FLE or TLE
in comparison to healthy controls. Hemodynamic fluctuations related to the brain’s language
processing were isolated and assessed by subtracting HbO FC matrices of the resting-state
signal from the HbO FC matrices of the signal obtained during a passive story listening task.
Residual FC matrices show a typical dominance of left hemispheric frontotemporal FC in the
control group, while between group comparisons reveal intra- and inter-hemispheric differences
of cerebral language networks. Precisely, stronger FC within right frontotemporal areas,
and fewer FC within homologous left hemispheric regions as well as less inter-hemispheric
connections are observed in the epilepsy group as compared to their healthy peers. Network
topology derived from task matrices in epilepsy patients further show increased local processing
efficiency in the right hemisphere compared to the control group. Global network metrics
appear comparable between study groups. These findings replicate previous results of altered
task-related FC in cerebral language networks (Baciu & Perrone-Bertolotti, 2015; Berl et al.,
2014; Marcelle et al., 2022; Vannest et al., 2019) and underline the higher prevalence of
atypical network organization in patients with FLE or TLE. Similarly to reports from adult
patients (Slinger et al., 2022), the current research supports local network architecture as
an important index of network alteration in response to pediatric FLE and TLE, though
the direction of difference is not the same across adult and pediatric patients. Explorative
subgroup analyses of FC patterns and network topology further support the relevance of
clinical factors such as the type of epilepsy (FLE vs. TLE), epilepsy lateralization (left vs.
right) and seizure control for the precise network alterations.

The differences in FC and the increased local processing efficiency within the right
hemisphere in the patients group reveal an altered cerebral organization. The cognitive profile
of children with FLE and TLE is characterized by reduced capacities in all assessed functions,
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i.e., verbal and non-verbal general intellectual capacities, as well as expressive and receptive
abilities, as compared to their healthy peers. This implies that the cerebral alterations do
not favor normal cognitive development but rather represent a characteristic of an atypical
development. Moreover, FLE and TLE further do not seem to have a specific impact on
language capacities but rather cause a general reduction of intellectual functioning. Despite
certain characteristics of the neuropsychological profile of children with FLE compared to
those with TLE and common vulnerabilities in language capacities, recent findings reveal
that their profile is often heterogeneous and complex (Hermann et al., 2021; Law et al., 2018;
Smith, 2016). Consequently, focusing on one specific cognitive domain does not catch the full
extent of the phenotype. This supports the notion of epilepsy as a network disorder, where
the impact goes beyond the epileptogenic zone and is in line with the results of this study.

Task performance reveals that epilepsy patients had worse comprehension of the story
presented during the fNIRS acquisition. This suggests that the above reported network
alterations go along with worse task related cognitive capacities. Analysis of the association
between indices of brain language network topology and cognitive measures allowed to refine
this relationship. We have found a negative association between left and to some extent also
right hemispheric local efficiency and general cognitive functioning in the epilepsy group, while
for the controls no specific association between these measures has been identified. Patients
with higher cognitive capacities thus present lower local processing efficiency compared to
a higher local efficiency in those with lower cognitive capacities. In neurotypical children,
network segregation, i.e., the level of local sub-networks, tends to decrease with age, while
network integration, i.e., distant connections across the brain, tends to increase (Gozdas et al.,
2019; Supekar et al., 2009). Local efficiency is one index of network segregation. Therefore,
the reduction of local efficiency may represent a compensatory mechanism for some patients
with FLE and TLE supporting a better cognitive development.

The current findings replicate and extend the current knowledge on cerebral and cognitive
alterations in children with FLE and TLE and increase the understanding of the brain-behavior
relationship. They show that FLE and TLE do have a broad impact on cerebral language
processing as well as the neuropsychological profile in these children but also reveal that
the developing brain is capable of adapting and partially compensating for the pathological
influence. To the best of our knowledge, this study is the first to use graph network analysis
to interpret functional brain network topology related to language processing in children with
FLE and TLE.

3.3. Strengths and limitations
This doctoral thesis integrates fundamental concepts, methodological work and an empirical

study. The extensive presentation of the neuropsychological assessment and its scope strongly
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guided its application in the empirical study. Moreover, PARAFAC has been validated
(article two) as a new methodological approach to correct movement artifacts in the fNIRS
signal and can be added to the catalogue of applicable analytic methods for fNIRS. The use
of PARAFAC for the correction of movement artifacts in the fNIRS signal allowed to increase
data quality and improve network analysis of the empirical study. By following a strict
acquisition protocol and assuring data quality during preprocessing analyses, the quality of the
statistical sample is maximized. The main strength of this dissertation lies thus in the solid
methodological foundation that leads to a refined approach for the principal study on pediatric
FLE and TLE. The combination of reliable brain network and neuropsychological measures
enhance robustness of the results on the brain-behavior relationship under neuropathological
conditions.

The main limitation of the empirical study of article three, is the rather small sample size.
This has been carefully considered for the choice of the statistical methods and results have
been interpreted in the context of effect sizes. The findings of the current thesis generalize
to all recruited patients with FLE and TLE independent of their clinical phenotype and
provide preliminary indices for subgroup differences. The sample size has however prevented
more advanced analysis to compare network alterations between patient subgroups, such
as between left and right lateralized epilepsy or between FLE and TLE, and investigation
of the precise role of different clinical factors. Although the role of clinical factors remains
speculative, the present research work unravels certain similarities across different patient
subgroups. Future studies with larger sample sizes will allow to address these issues and
provide further insights into subgroup differences in children with epilepsy as well as enhance
understanding of clinical factors.

A challenge of pediatric research is the dynamic cerebral and cognitive development.
Studies in children and adolescents either must control for age differences between participants
or recruit a large enough sample to provide a good representation of each developmental
stage. In the case of epilepsy research, this applies both for the age of epilepsy onset as well
as the age where cerebral processing and cognitive capacities are evaluated. There are reports
of critical windows for the establishment of cerebral networks, such that reorganization of
language networks differ depending on the age of epilepsy onset (Marcelle et al., 2022). In
article three, we did control for age differences and did not interpret differences between
younger or older patients. We explored how age of epilepsy onset relates to brain network
organization but did not find any relevant association. Moreover, effects identified at a certain
age may not persist, such that cerebral language networks change over time (Hertz-Pannier
et al., 2002; Vannasing et al., 2016). It is commonly assumed that cognitive measures derived
from a neuropsychological evaluation remain valid for at least a year, changes in patients
with FLE or TLE may however follow a different dynamic. The current findings represent
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a snapshot of brain network organization and neuropsychological performance and cannot
provide prognosis of the developmental time course. Longitudinal follow-up would provide
more insights into the dynamics of brain network organization and cognitive capacities in
children with FLE or TLE.

3.4. Implications and perspectives
The developing brain is marked by dynamic changes of the nervous system (e.g., Paus,

2022). Under these circumstances the association between brain development and neu-
ropsychological functioning is complex, and even more in the context of neuropathologies.
Numerous metrics of cognitive capacities and cerebral correlates exist and methods such as the
neuropsychological assessment, neuroimaging techniques, such as fNIRS, and advanced data
analysis tools, such as PARAFAC, are essential to obtain reliable data. Article one and two of
this thesis contribute to the continuous development of these tools and pave the way for more
comprehensive data sets that allow to reliably interpret the brain-behavior relationship, and
characterize the impact of pediatric FLE and TLE on neuronal and functional development.

Article one presents the neuropsychological evaluation in pediatric populations as a
powerful and yet fairly available tool to characterize the neuropsychological profile and
identify individual strengths and weaknesses in various pediatric populations. This chapter
also presents how the neuropsychological results and interpretation allow to derive assumptions
about cerebral correlates, which contributes to a better comprehension of the brain-behavior
relationship. The current thesis contributes to enhance awareness and knowledge of the
neuropsychological assessment and paves the way for its integration and appropriate use in
future research protocols.

Article two presents the first application and validation of PARAFAC for artifact correction
in fNIRS data and reveals its value for improving signal quality. The integration of PARAFAC
into the LIONirs toolbox (J. Tremblay et al., 2022), developed by our group, allows for a rather
straightforward application, where the decomposition can easily be adapted to the specific
needs, characteristics of the components can be investigated and the effect of the correction
can be monitored. As shown with other neuroimaging modalities (Martínez-Montes, Sánchez-
Bornot, et al., 2008; Martínez-Montes et al., 2004), artifact correction represents however only
one possible application of PARAFAC. Its potential to exploit the multidimensional structure
of the fNIRS signal could in the future be extended for the correction of the physiologic
signal, allowing to better isolate the relevant hemodynamic signal, and for network analysis,
which would represent a valuable data driven approach to extract different network properties.
Such data driven methods are particularly relevant for the identification of brain network
alterations related to neuropathologies, where predictions about specific patterns are often
challenging. PARAFAC could therefore complement currently used techniques such as FC

110



matrices and graph network analysis and provide a different perspective of network properties.
PARAFAC would also be beneficial for multimodal neuroimaging analyses, such as combined
fNIRS and EEG data, where the richness of both signals could be better exploited. Such
research will increase PARAFAC’s relevance for fNIRS data analysis and potentially allow
to obtain new perspectives on brain network characteristics based on different measures of
neuronal activity.

The investigations of characteristics of cerebral language networks and neuropsychological
profile in children with FLE and TLE (article three) enhance the understanding of the
pathological impact of focal epilepsy. Eventually, it could help clinicians to identify children
at higher risks for cognitive and language dysfunctions. From a clinical perspective it
would allow to provide appropriate interventions promoting long-term neuropsychological
development, which have been associated with better academic achievement, psychosocial
functioning and quality of life (Michaelis et al., 2018).

Explorative analyses revealed certain differences of cerebral network organization between
patient subgroups, yet further investigation would require stronger statistical power with
an increased sample size of sub-groups. The literature suggest however that clinical factors
such as the type of epilepsy (Caciagli et al., 2023), epilepsy lateralization (Berl et al.,
2005; Hamberger & Cole, 2011; Rodríguez-Cruces et al., 2020; Tung et al., 2021), age of
epilepsy onset and disease duration (Ma et al., 2015; Marcelle et al., 2022), as well as seizure
frequency and control (Caciagli et al., 2023), may account for differences of brain network
organization between patients. The conditions and the extent to which early brain plasticity
can counter pathological influences and whether there is a critical age remains to date unclear.
Larger patient samples will allow to consider the influence of these clinical factors and better
investigate the complex construct of cerebral and cognitive metrics in the developing brain.
This is an important path for future research and will allow to better understand differences
between patient subgroups and ultimately refine the identification of those at risk for an
unfavorable development. Moreover, future studies should investigate whether the identified
local and global network alterations manifest in other facets of cerebral language processing,
i.e., expressive language.

Due to the high inter-individual variability in brain and cognitive development (Genon et
al., 2022; Hüsser et al., 2020), differentiation between a normal variation or aberrant cerebral
and cognitive maturation can thus sometimes be challenging. Moreover, an alteration may
represent either a deficit or a delay (Baron, 2010; Giedd, 2004; Hüsser et al., 2020; Paquette
et al., 2015; Skeide & Friederici, 2016), which cannot be differentiate in cross-sectional
study designs. Therefore, only longitudinal data will allow to draw a precise developmental
trajectory of cerebral organization in response to pathological influences such as in FLE and
TLE. A refined understanding of early signs of developmental deviations is essential to install
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appropriate interventions, support cerebral and cognitive maturation and optimize prognosis
of children with neurodevelopmental disorders such as FLE and TLE.

Article three focuses specifically on functional brain networks and did not include structural
brain data. In children with FLE, there has been evidence for increased cortical thinning
(Widjaja et al., 2011), abnormal white matter tracts (Widjaja et al., 2014) as well as large-
scale and specific functional network alterations (Braakman et al., 2013; Widjaja et al., 2013).
Similarly, both grey (Guimarães et al., 2007) and white matter (Gao et al., 2012; Meng
et al., 2010) abnormalities as well as structural brain network reorganizations have been
reported in children with TLE. In future studies, integrating these metrics with functional
network reorganization may provide more insights into the association between structural
and functional brain network characteristics as well as into the brain-behavior relationship.

Epilepsy has long been an important clinical model and has contributed to advances in
several domains of neuroscience beyond epilepsy. We believe the current findings further
promote its role to study the association of brain network topology and neuropsychological
functions under pathological conditions. Studies comparing cerebral alterations across different
clinical populations will allow to derive common indices of cerebral and cognitive alterations
across pathologies and provide further insights into the way the developing brain reacts
to pathological influences, which enhances the understanding of the remarkable adaptive
mechanisms related to early brain plasticity.

3.5. Conclusion
The development of language functions and cerebral language networks throughout

childhood and adolescence are highly dynamic processes. Neuropathologies such as pediatric
epilepsy have been shown to interfere with normal brain development and cause altered
network structures. The exact mechanisms leading to such alterations and the association
with the neuropsychological profile are however not yet fully understood. As shown in article
one, the neuropsychological assessment is an important tool to assess the functional impact
of neuropathologies such as pediatric FLE or TLE. Neuroimaging techniques allow to assess
cerebral functioning and complement the understanding of the brain-behavior relationship
by providing insights into the underlying brain architecture. Appropriate data analysis
methods are essential to derive reliable findings and especially motion artifact correction
techniques such as PARAFAC significantly improve the quality of data (article two). Empirical
data on children with epilepsy reveal that there exist large-scale alterations in FC patterns
that seem robust across studies. These lead to differences in local network structure, as
shown in article three, with children with FLE and TLE demonstrating more local network
segregation. The association between local processing efficiency further reveals that the
association with the neuropsychological profile varies within the epilepsy group. Precisely,
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lower local efficiency relates to better cognitive outcome, whereas higher local efficiency
was associated with below average performance. This suggests that adaptive mechanisms
have enabled network modifications that support a better neuropsychological outcome. The
specific role of clinical characteristics that may explain differences between children with FLE
and TLE remains unclear and needs to be addressed in future research. Overall, this thesis
contributes to the improvement of methods detecting cognitive (article one) and cerebral
(article two) alterations in children and to a better understanding of cerebral plasticity and
the brain-behavior relationship in the developing epileptic brain (article three). Continuous
research on patients with epilepsy will increase the understanding of this neuropathology,
sensitize the knowledge on its functional impact and allow to further demystify it and therefore
contribute to reduce its stigmatization.
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Abstract. The development of language functions is of great interest to neuroscientists, as
these functions are among the fundamental capacities of human cognition. For many years,
researchers aimed at identifying cerebral correlates of language abilities. More recently, the
development of new data analysis tools has generated a shift toward the investigation of
complex cerebral networks. In 2015, Weiss-Croft and Baldeweg published a very interesting
systematic review on the development of functional language networks, explored through the
use of functional magnetic resonance imaging (fMRI). Compared to fMRI and because of their
excellent temporal resolution, magnetoencephalography (MEG) and electroencephalography
(EEG) provide different and important information on brain activity. Both therefore constitute
crucial neuroimaging techniques for the investigation of the maturation of functional language
brain networks. The main objective of this systematic review is to provide a state of knowledge
on the investigation of language-related cerebral networks in children, through the use of
EEG and MEG, as well as a detailed portrait of relevant MEG and EEG data analysis
methods used in that specific research context. To do so, we have summarized the results
and systematically compared the methodological approach of 24 peer-reviewed EEG or MEG
scientific studies that included healthy children and children with or at high risk of language
disabilities, from birth up to 18 years of age. All included studies employed functional and
EC measures, such as coherence, phase locking value, and Phase Slope Index, and did so
using different experimental paradigms (e.g., at rest or during language-related tasks). This
review will provide more insight into the use of EEG and MEG for the study of language
networks in children, contribute to the current state of knowledge on the developmental path
of functional connectivity in language networks during childhood and adolescence, and finally
allow future studies to choose the most appropriate type of connectivity analysis.
Keywords: functional connectivity, cerebral networks, language, language development,
children, EEG, MEG, connectivity analysis

1. Introduction
Language is a highly complex function that is importantly involved in the development

of human cognition and social functions (Berwick et al., 2013). With major advances in
neuroimaging techniques, the language neural architecture has been increasingly studied in
the past 20 years. While several brain regions have been identified as key areas for expressive
and receptive language, it is now also widely recognized that the latter relies more on complex
neural networks, requiring coordination between distinct neuronal populations and less on
independent and specific brain areas (Ardila et al., 2016; P. Tremblay & Dick, 2016).

Over the past decades, functional brain connectivity (FC) has progressively captured the
interest of scientists and clinical researchers working in the field of cognitive neuroscience,
leading to the publication of numerous articles on the subject. On a general note, FC is defined
as the statistical relationships between cerebral signals over time and thus potentially allows
conclusions to be made regarding the functional interactions between two or more brain regions.
Effective connectivity (EC), on the other hand, goes beyond the correlations between cerebral
activity and aims at specifying causal relationships through the use of experimental paradigms
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or models. This allows for an interpretation of the direction of interactions between different
cerebral regions (Friston et al., 2011). With the sharp increase of studies on brain connectivity,
researchers have developed and applied increasingly sophisticated analytic strategies that
highlight functional or EC and that allow a more advanced exploration of interactions between
regional structures and networks involved in language development (Bastos & Schoffelen, 2016).
In the past few years, novel neuroimaging techniques and methods of analysis have enabled the
examination of FC patterns. Namely, functional magnetic resonance imaging (fMRI) was the
neuroimaging technique used in the first published study of brain spontaneous fluctuations,
measured at rest (Biswal et al., 1995). Functional magnetic resonance imaging is widely
used in brain connectivity studies, mostly due to its high spatial resolution (in millimeters).
However, because it relies on the coupling between cerebral blood flow (hemodynamic response)
and the underlying neuronal activation, this technique provides only an indirect measure
of brain activity. Moreover, even though neuronal events occur within milliseconds, the
induced blood-oxygenation changes spread out over several seconds, thereby severely limiting
fMRI’s temporal resolution (∼2–3 s). Techniques such as electroencephalography (EEG) and
magnetoencephalography (MEG), on the other hand, provide direct information on neuronal
electrical activity and offer higher temporal resolution (< 1 ms). This is particularly relevant
for the study of language functions, because auditory processing and language processing
occur within a short time interval of milliseconds (Skeide & Friederici, 2016).

So far, neuronal accounts of language system development largely rely on EEG data
(Skeide & Friederici, 2016). Traditionally, electrophysiological data have been examined
for vent-related potential (ERP), a method that reflects the brain’s activity in response
to a particular stimulus event. As of now, several metrics can be used to estimate FC
between electrodes. In order to perform FC analysis, MEG and EEG (M/EEG) data are
commonly transformed into the frequency domain. Measures are thus typically classified
by five fundamental frequency bands, mostly defined by their spectral boundaries: delta
(< 4 Hz), theta (4 to 7 Hz), alpha (8 to 12 Hz), beta (13 to 30 Hz), and gamma (< 30 Hz,
Cacioppo et al., 2007), each of which has different functional characteristics and cortical
topography (Herrmann et al., 2016). Despite the fact that the definitions of these bands may
vary between studies, and the boundaries used in studies of early childhood may be lower
(Saby & Marshall, 2012), the interpretation arising from the present systematic review is
based on the above definition by Cacioppo et al. (2007).

What is more, development and maturation affect the frequency and synchronization of
neural oscillations, both at rest and during a cognitive task. Globally, analyses of resting-state
networks reveal that slow-wave activity (delta and theta) tends to decrease throughout
childhood and adolescence, whereas oscillations in higher frequency (alpha, beta, and gamma)
show an increase with age (Uhlhaas et al., 2010). Moreover, FC in childhood is dominated by
short-distance local links, which are gradually replaced by long-distance functional connections
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in adulthood, thus forming mature cerebral networks (Meng & Xiang, 2016; Oldham &
Fornito, 2019; Vértes & Bullmore, 2015). The task-related developmental trajectory of neural
oscillations is, however, less clear and varies widely depending on the nature of the task.

When it comes to the functional meaning of different frequency bands, previous studies
have suggested that brain signals of each frequency band play a different role. First, the
coherence of local neuronal populations and bottom-up processing are associated with high-
frequency oscillations (Buzsáki et al., 2013; Friederici & Singer, 2015). Slower frequency
ranges, on the other hand, are understood to represent the cooperative activity of large-
scale neuronal networks and mediate top-down feedback information (Palva & Palva, 2018).
Regarding language processing, the use of FC in the spectral domain is certainly important,
but little is known about the association between frequency bands and language networks.
Nevertheless, distinctions have been made regarding language processing and frequency
band using spectral power analyses. It is argued that different stages of auditory and speech
processing, language comprehension, and active speech itself do not rely on the same frequency
bands (for an exhaustive review see Kösem & van Wassenhove, 2017; Meyer, 2018). More
specifically, delta range (< 4 Hz) has been associated with intonational processing and
syntactic comprehension (Kösem & van Wassenhove, 2017; Meyer, 2018). It plays a role
in top-down processing and seems to contribute to the organization of the cortical speech
system, which regulates auditory-cortical excitability. It is further implicated in language
comprehension, more precisely in the grouping of words into syntactic phrases (Meyer, 2018).
It has been pointed out that theta (4 to 7 Hz) synchronizes with syllabic rates (Giraud &
Poeppel, 2012; Meyer, 2018) and that theta coherence increases in tasks involving verbal
information retrieval and verbal working memory (Friederici & Singer, 2015; Meyer, 2018).
Alpha (8 to 12 Hz) oscillations may also play a role in verbal working memory (Friederici
& Singer, 2015; Meyer, 2018). Beta activity (13 to 30 Hz) in language processing has been
associated with semantic predictions (top-down mechanisms), as well as in syntactic and
semantic binding mechanisms. It has also been correlated with verbal memory processes
and language production (Weiss & Mueller, 2012). Finally, the gamma band (> 30 Hz) has
been associated with phonological perception and assessment of the contextual semantic fit of
incoming words (bottom-up; Meyer, 2018). The association of FC based on frequency bands
and the different stages of language processing are still subject to investigation.

Several techniques have been proposed in order to measure cerebral activity, thus allowing
for the interpretation of brain connectivity. Even though a large range of FC metrics is
available in the current literature, the present article is limited to those brain connectivity
approaches used in pediatric electrophysiological language research. Thus, FC analysis will
not be addressed exhaustively. Only the most commonly used metrics to quantify brain
connectivity, such as coherence, phase locking value (PLV), Phase Lag Index (PLI), correlation,
Granger causality, and Graph theory, will be briefly described in this review. Complementary
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reviews on more detailed mathematical analyses of connectivity methods can be consulted
elsewhere (e.g., Bastos & Schoffelen, 2016; Kida et al., 2016).

Connectivity analyses in M/EEG traditionally include the examination for changes in
coherence between sources or sensors. Coherence can be defined as the covariation in
amplitude and phase between two signals and quantifies the linear correlation between two
time series, and this on the frequency domain (Bowyer, 2016). It is assumed that the higher
the correlation, the more synchronized, and therefore integrated, the signals are. Thus,
coherence is sensitive to changes in both power and phase relationships but cannot provide
direct information on the true relationship between the two signals (Sakkalis, 2011).

As an alternative to traditional amplitude-based indices of coherence, metrics of phase
synchronization have been developed, such as PLV and PLI. Both PLV and PLI compute
the consistency of phase difference between two variables over a time period. They provide
a measure of the two signals’ temporal relationship, independent of their signal amplitude
(Lachaux et al., 1999). The PLV approach evaluates the instantaneous phase difference of
signals, assuming that the connected areas generate signals whose phases evolve together.
Therefore, the phases of the signals are considered synchronous or locked if the difference
between them is constant (Bruña et al., 2018). Similarly, PLI estimates the asymmetry of the
distribution of phase differences between two signals, but this method is designed to reduce
the effect of volume conduction (Stam et al., 2007). The central idea is that a consistent
phase difference between two times series (asymmetric distribution, PLI > 0), cannot result
from a single source (volume conduction). Overall, phase synchronization metrics are better
used for short-duration events such as in event-related studies, to determine the coupling of
two signals across trials (Aydore et al., 2013; Bowyer, 2016).

Recently, directed connectivity or EC metrics have been developed to determine the
nature of the neural interactions that enable information flux, such as Granger causality in
the time domain (Bressler & Seth, 2011) or phase slope index (PSI) in frequency domain
(Nolte et al., 2008). Based on phase differences, PSI is a weighted average measure of phase
coherency slope between two signals, over a frequency band (Bastos & Schoffelen, 2016; Nolte
et al., 2008). Some EC measures rely on the concept of Granger causality, whereby one time
series is said to “Granger cause” a second one if the past values of the first improve the
prediction of the second. Originally, the concept of Granger causality was applied to time
series, but this approach has been extended to the frequency domain (Geweke, 1982), and
many multivariate measures can be derived from this model (Sakkalis, 2011).

Similar to fMRI or other neuroimaging techniques, M/EEG data used along with connec-
tivity matrices can be used to construct brain networks from FC measures of the frequency
domain (PLI, PLV, coherence), the source space domain, or the EC models (Bullmore &
Sporns, 2009; Sporns et al., 2004; Stam, 2004). Subsequent connectivity metrics of all
paired electrodes can then be explored between regions, using the Graph theory approach
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(Stam & van Straaten, 2012). This method represents the brain as a collection of nodes,
corresponding to recording sites or brain regions, and the pairwise relationship between them
(edges). Taken together, nodes and edges enable the quantitative description of the local
and global topological organization of brain networks (van Diessen et al., 2015). It has been
shown that small-world topology is found at different frequency bands (Stam, 2004) and
can be associated with cognitive performance and developmental changes in functional brain
networks in young children (Boersma et al., 2013).

Despite the growing number of published studies on language brain connectivity, the
establishment of functional patterns of language networks during childhood and adolescence
is not yet fully understood. In 2015, Weiss-Croft and Baldeweg published the first and
only systematic review of studies that used fMRI to explore the development of functional
language networks. The authors identified both progressive (increasing) changes of FC
with age, associated with cerebral specialization, and regressive (decreasing) changes of FC
with age, associated with more automatized language processing and lower engagement of
control mechanisms (Weiss-Croft & Baldeweg, 2015). Specifically, their review highlights four
main findings. First, brain activity in regions that support semantic processing increased
throughout development, reflecting specialization of the brain. Second, with age, there
is an increased activation in sensory–motor regions, along with a decreased activation in
higher–order cognitive regions. Third, an age-related decreased activation was found in
regions implicated in the default mode network (posterior cingulate cortex and precuneus).
Finally, their results demonstrate the establishment of language lateralization by the age
of 5 years. Although this study is indeed interesting, there is currently in the literature no
systematic review that includes M/EEG studies. Because of the excellent temporal resolution
of MEG and EEG, such a study would greatly help to provide additional and important
information on the establishment of functional patterns of language networks. Therefore, the
main objectives of this article are to provide a state of knowledge on the investigation of
language-related cerebral networks in children, through the use of M/EEG, and a detailed
portrait of relevant M/EEG data analyses methods that have been used in the assessment of
language FC in children. To do so, we conducted this systematic review on functional, and
to some extent effective, connectivity patterns of spoken language in children, as revealed
by EEG or MEG. Given the multitude of metrics used to quantify oscillatory interactions
(e.g., coherence, phase locking, connectivity matrices, graph theory, PSI) and the diversity of
methodological designs (e.g., resting-state vs. task recording, large variety of language tasks,
longitudinal vs. cross-sectional study), the secondary objective is to synthesize and compare
various method of connectivity analysis in the context of different pediatric populations
(healthy and clinical) and a wide range of research objectives.
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2. Methods
2.1. Search Strategy

The literature review was conducted using five databases: PubMed, PsycINFO, Web of
Science, Scopus, and Linguistics and Language Behavior in order to find articles published
between January 1995 and June 2018 inclusively. The key terms used were as follows:
(magnetoencephalography OR electroencephalography OR MEG OR EEG) AND (resting
state OR functional connectivity OR synchron∗ OR network∗ OR effective connectivity OR
coherence) AND (Language OR Speech) AND (infant∗ OR infancy OR child OR children
OR youth∗ OR toddler∗ OR schoolchild∗ OR teenager∗ OR adolescent∗ OR kid OR kids
OR newborn). Additional reports were identified by handsearching the references cited in
the retrieved articles.

2.2. Selection Criteria

This review is limited to empirical studies published in peer- reviewed journals in English
or in French. Studies that adhered to the following inclusion criteria were considered: (1)
The study included children or adolescents (< 18 years old), although the age range may
extend into adulthood; (2) FC or EC analysis was performed based on EEG or MEG data.
We verified whether the described methods allowed actual interpretation of FC or applied
different techniques such as intertrial synchronization, ERP timing, or time-frequency analysis,
which were sometimes referred to as FC, but do not in fact fall in this category (Bastos
& Schoffelen, 2016; Sakkalis, 2011). (3) Studies that investigated language networks were
included if either one of the following two conditions was met: (a) the authors used a
behavioral assessment before or after the imaging acquisition, in order to evaluate language
abilities; or (b) the authors applied expressive or receptive language paradigms (e.g., speech
stimuli, story listening, or speech production) during MEG or EEG recording. In order to
provide an exhaustive view of the connectivity patterns associated with language in childhood,
this systematic review includes clinical pediatric samples as well as healthy children, as long
as the methodology fit our selection criteria. Articles about written language only (reading
or writing) without any association with verbal comprehension or expressions have been
excluded. The lists of references of the selected articles were searched manually for additional
relevant articles. The study selection process is summarized in Fig. 1.

2.3. Data Extraction

Following the database search, duplicates were removed. For all remaining articles, titles
and abstracts were reviewed by the first author (I.G.) and selected for a second revision if
they met at least one of the inclusion criteria. For the second revision, remaining articles were
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Figure 1 – PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses
flow diagram describing the paper selection process. Figure adapted from (Moher et al.,
2009).

reviewed independently by two authors (I.G. and A.H.), in order to determine whether they
matched the purpose of this study. When no consensus was reached, the consultation of a
third-party expert in the domain (P.V.) helped make the ultimate decision on eligibility. Fig. 1
shows the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses)
workflow diagram for study selection. Relevant information from each article was entered into
a spreadsheet that included: (1) sample characteristics: age, gender, IQ, language evaluation
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method, sample size; (2) experimental paradigms: resting-state, event-related experiments,
sleep studies; (3) brain recording technique (EEG or MEG); (4) connectivity metrics.

The wide variability in study characteristics along these methodological dimensions
precluded a meta-analysis. Instead, we synthesized and critically appraised findings made
through the use of FC in the study of spoken language in children.

3. Results
A total of 704 articles were screened in the first step. Of these, 507 were excluded on the

basis of their title or abstract, either because they were not experimental studies (e.g., review),
they were conducted with adult participants only, or they did not conduct connectivity analysis
using EEG or MEG. Following these exclusions, 197 articles were assessed for eligibility. Of
these, 173 were excluded because they did not meet at least one of the selection criteria.

A total of 24 articles met the selection criteria, passed interrater revision (79 % agreement),
and were confirmed by the third-party expert. All publications included in this work are
peer-reviewed studies about FC of language functions in children, as revealed by EEG or
MEG, and were published between 1999 and 2018. Detailed information was gathered about
each study’s population of interest, sample size, age of participants, design, imaging paradigm,
type of language assessment, frequency bands considered for analyses, use of source or sensor
analyses, and, finally, approach for connectivity analysis (Table 1 for studies including healthy
children and Table 2 for those addressing clinical populations). Each table begins with studies
using EEG followed by those employing MEG.
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Table 1 – Descriptive data and methodological outline of articles focusing on healthy children.

Reference1 N
(M/F)

Age Design
EEG/MEG
paradigm

Language
assessment

Frequency
band(s)

Source/
sensor

Connectivity
analysis

EEG

Asano, 2015 13/6 11 mo Cross-sectional
Symbol-sound
mismatch

N/A Alpha, beta Sensor PLV

Hanlon, 1999 284/224 0-16.75 y Cross-sectional Resting N/A Theta Sensor Coherence

Kühn-Popp, 2016 15/17
14; 15 and
42 mo

Longitudinal Resting
Declarative pointing
and Verbal IQ

Theta-alpha Sensor Coherence

Marshall, 2008 48/42
30 and
42 mo

Longitudinal Resting RDLS
Theta, alpha,
beta

Sensor Coherence

Mundy, 2003 18/14 14-24 mo Longitudinal Resting MCDI Theta Sensor Coherence

Poblano, 2016 18/18 9-16 y Cross-sectional
Resting; Lexical
tonal discrimination

N/A Theta Sensor
Pearson
correlation

Whedon, 2016 153/147 6-34 mo Longitudinal Resting PPVT-III Theta-alpha Sensor Coherence

Yang, 2005 23 (N/A) 6-8 y Cross-sectional Resting Verbal IQ
Delta, theta,
alpha, beta

Sensor
Pearson
correlation

MEG

Doesburg, 2016 31/42 4-18 y Cross-sectional Word generation PPVT, EVT
Alpha, beta,
theta

Source
PLV, PLI,
graph theory

Doesburg, 2012 5/5 16-19 y Cross-sectional Word generation N/A Gamma, theta Source PLV
Kadis, 2016 13/8 5-18 y Retrospective Word generation N/A All Source PSI

Kikuchi, 2011 36/42 32-64 mo Cross-sectional Story listening
Expressive Vocabulary
and Riddles (K-ABC)

Delta, theta,
alpha, beta

Sensor Coherence

Youssofzadeh, 2017 13/16 4-18 y Cross-sectional Word generation N/A
Theta, alpha,
beta, gamma

Source PLV

Studies in the first and second part of the table used EEG and MEG, respectively. 1First author, year; M, male; F, female; N/A; not applicable; PLV,
phase locking value; PLI, phase lag index; PSI, phase slope index; RDLS, Reynell Developmental Language Scales; MCDI, Mac-Arthur communicative
developmental inventory; PPVT, Peabody Picture Vocabulary Test; EVT, Expressive Vocabulary Test; K-ABC, Kaufman Assessment Battery for
Children.
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Table 2 – Descriptive data and methodological outline of articles focusing on children with or at risk for different clinical
conditions.

Reference1 Population
N

(M/F)
Age Design

EEG/MEG
paradigm

Language
assessment

Frequency
band(s)

Source/
sensor

Connectivity
analysis

EEG

Righi, 2014 Risk of autism 54 (N/A)
6 and
12 mo

Longitudinal
Discrimination
of consonants

Subtest of MSEL Gamma Sensor Coherence

Njiokiktjien, 2001

Nonverbal
learning
disorder/
Language
disorder2

12/6
12/6

6-11 y Cross-sectional Resting N/A All Sensor Coherence

Zare, 2016
Risk of
language
disorder2

17/7 6 mo Cross-sectional Resting N/A
Delta, theta,
alpha1 and 2

Sensor
Connectivity
matrix,
graph theory

Kabdebon, 2015
Prematurity/
healthy

18/12
10/5

8m Cross-sectional
Syllabic
learning

N/A Alpha, beta Sensor Coherence

Vasil’yeva, 2013
Stammering/
healthy

47/0
59/0

Preschool Cross-sectional Resting N/A All Sensor Coherence

Williams, 2012 CHD 14/2 0-18 mo Longitudinal Unknown BSID Beta Sensor Coherence
MEG

Kovelman, 2015
Autism/
healthy

10 (N/A)
9 (N/A)

8-12y Cross-sectional
Discrimination
of native &
foreign language

N/A All Source Coherence

Mamashli, 2017
Autism/
healthy

29/0
17/0

9-15 y Cross-sectional
Tonal
discrimination

Social
communication
questionnaire

All Source Coherence
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Reference1 Population
N

(M/F)
Age Design

EEG/MEG
paradigm

Language
assessment

Frequency
band(s)

Source/
sensor

Connectivity
analysis

Molinaro, 2016
Dyslexia/
healthy

9/11
10/10

8-14 y Cross-sectional
Sentence
listening

Verbal fluency,
rapid automatized
naming, pseudo-
word repetition
and phonemic
deletion

Delta, theta
Sensor,
source

Coherence,
partial direct
coherence
based on
Granger
causality

Lizarazu, 2015
Language
disorder2/
healthy

6/4
5/5

8-14 y Cross-sectional
Listening of
sounds

Reading of word
and pseudoword
lists, pseudoword
repetition, and
phonemic deletion

Delta, theta,
beta, gamma

Source PLV

Barnes-Davis, 2018
Extreme
prematurity/
term born

9/6
7/8

4-6 y Cross-sectional Story listening PPVT, EVT Beta Sensor PSI, PLI

Studies in the first and second part of the table used EEG and MEG, respectively. 1First author, year; 2Language-based learning disorders (e.g.,
dyslexia, dysphasia). M, male; F, female; N/A, not applicable; MSEL, Mullen Scales of Early Learning; BSID, Bayley Scales of Infant Development;
CHD, congential heart disease; PLV, phase lock value; PSI, phase sloe index; PLI, phase lag index; PPVT, Peabody Picture Vocabulary Test, EVT,
Expressive Vocabulary Test.
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Thirteen of the articles covered in this review addressed FC and language functions in
healthy children, whereas 11 included children at risk of or suffering from various clinical
conditions. Table 3 shows the different populations included in these studies. The most
studied pathologies were related to language impairments such as dyslexia, language learning
disorders, and stuttering (20 %), as well as autism spectrum disorder (ASD, 13 %).

Table 3 – Overall composition of samples included in all studies.

Study population % (n)

Healthy 54 (13)
Autism spectrum disorder 13 (3)
Prematurity 9 (2)
Dyslexia 8 (2)
Language learning disorder 8 (2)
Stuttering 4 (1)
Congenital heart disease 4 (1)

Table 4 – Overview of all approaches applied to analyze functional or effective connectivity
in included studies.

Connectivity analysis % (n)∗

Coherence 45 (13)
Phase locking value 21 (6)
Pearson correlation 7 (2)
Graph theory 7 (2)
Phase slope index 7 (2)
Phase lag index 7 (2)
Connectivity matrices 3 (1)
Granger causality 3 (1)
∗Some studies applied multiple analysis;
hence the total n outrages the number of

studies included in this review.

Figure 2 shows the distribution of the number of participants per age group taken together
for all studies, both in healthy and clinical populations. Infancy includes the first year after
birth (0 to 12 months). Toddlers are children aged between 1 and 3 years; preschoolers include
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the period from 3 to 5 years of age, gradeschoolers from 5 to 12 years, and adolescents are
participants between 12 and 18 years of age. Each age group is subdivided into the number
of children included in the studies addressing various clinical populations (green bars) and
those interested in healthy children (blue bars), including those used as controls. Most of the
healthy children studied were toddlers (n > 350), whereas studies interested in the impact of
pathological conditions mostly included gradeschoolers (n > 150), although several studies
on clinical populations also included infants and preschoolers. No data were available for any
toddler or adolescent populations with clinical conditions. Overall, studies included in this
systematic review total together a sample size of 728 in studies of healthy children and 394
in studies of clinical populations.

Figure 2 – Number of participants per age group of all included studies (n = 24). Blue bars
represent number of participants included in the articles addressing healthy children; green
bars stand for the number of participants included in studies investigating clinical populations
(including control groups) such as autism spectrum disorder, dyslexia, language-learning
impairment, or prematurity (Table 3).

Different methods of connectivity analyses were used in these studies; they are summarized
in Table 4. Some studies combined or compared several methods for estimating cerebral
connectivity. Phase coherence analysis was the most common method used (45 %), followed
by PLV (21 %). The analyses were based on all frequency bands, as specified in Tables 1 and
2. The most studied frequency band was theta, and the least studied was gamma. Sixteen
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studies used sensor information, and seven applied a source analysis. One study reported
results for both source and sensor-based analyses.

Despite the fact that the scope of these studies differed, the aim of this review is to
capture common findings concerning language-related FC. Therefore, we first present an
overview of the results that emerged from the studies that investigated the association between
language functioning and connectivity patterns, regardless of the task used during the EEG
or MEG recording. Second, we illustrate, separately for healthy children and those in clinical
populations FC and EC findings, while an expressive or receptive task was performed during
the EEG and MEG recording. Finally, we display the results that emerge from all included
studies organized according to the types of connectivity analyses used, beginning with those
using FC, followed by those using EC. Again, the results will be indicated separately for
healthy children and children with various clinical conditions.

3.1. Overview of All Results

From the 24 articles included in the review, only nine attempted to associate FC or EC
patterns with objective measures of language functioning. Figure 3 shows the main results
from these nine studies, for healthy subjects (eight studies) and for a clinical population (one
study). Results are presented for each frequency band and organized according to age.

Only one study (Williams et al., 2012) investigated the relationship between FC networks
and language abilities in a clinical population, that is, children with congenital heart disease
(CHD), who are known to be at high risk of language delay (Fourdain et al., 2019; Hövels-
Gürich et al., 2008; Hövels-Gürich & Mccusker, 2016). The authors did not find any significant
association between FC during the neonatal period and their later language abilities as
measured at 18 months of age. Additionally, Marshall et al. (2008) found no significant
correlation between FC patterns and language performance in preschoolers under foster
care. However, seven studies found a significant relationship between FC in the theta band
and language performance. Positive correlations between FC and language score were also
found in higher frequency bands: alpha (Doesburg et al., 2016; Yang et al., 2005) and beta
(Doesburg et al., 2016; Yang et al., 2005). It should be noted that no study investigated the
relationship between language skills and FC patterns in the gamma band.

In addition to articles that included a behavioral assessment of language functions,
performed before or after an EEG or MEG recording, this systematic review also considers
studies that included an expressive or receptive language paradigm (e.g., speech stimuli or
speech production) during an MEG or EEG recording. The FC or EC patterns that arose
from language paradigms are summarized in Fig. 4 (for healthy children) and Fig. 5 (for
clinical populations).
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Figure 3 – Summary of studies investigating the association between language abilities,
assessed with standardized tools, and cerebral language networks. Results are presented for
each frequency band and organized regarding ages. Studies in healthy subjects (n = 8) and a
clinical population (n = 1) are included. Upper arrows (↑) indicate a positive correlation with
either receptive (simple solid line), expressive (dashed lines), or global language functioning
(solid double lines), whereas downward arrow (↓) indicates negative correlation with language.
Hatched areas represent non-significant correlations with language abilities.

In healthy children, the use of an expressive language paradigm (usually a verb generation
task) was favored in four studies, whereas three studies used a receptive language task in
order to examine the connectivity patterns that underlie language processing. These types of
research paradigms have been performed mostly in research pertaining to gradeschoolers and
adolescents, and the results are spread across all frequency bands.

In clinical populations, language tasks were mainly used to compare FC patterns between
vulnerable children and healthy children. Here, only receptive language paradigms were used
during M/EEG recording. Differences in FC between healthy and clinical subjects occur
predominantly in the higher frequency bands (beta and gamma). Again, more details on the
results of these studies are provided in section Results Derived From Connectivity Metrics.
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Figure 4 – Overview of task-related connectivity patterns in healthy subjects. Results
are organized regarding frequency bands and age groups investigated. Upwards arrows (↑)
indicate an increased connectivity during receptive (simple solid line) or expressive (dashed
lines) language task, whereas downwards arrows (↓) indicate decreased connectivity.

Finally, it should be noted that two studies (Njiokiktjien et al., 2001; Vasil’yeva &
Shmalei, 2013) done in resting-state FC in clinical populations were not presented in any
of these figures. One of these studies looked at FC in children who received a diagnosis
of language-based learning disorder (LLD), compared to children with non-verbal learning
disorders (Njiokiktjien et al., 2001). The other looked at the FC patterns in children who
stutter (Vasil’yeva & Shmalei, 2013). These studies did not use a language paradigm during
EEG recording and therefore do not directly correlate connectivity patterns with behavioral
language measures. The results of these two studies will nonetheless be discussed in section
Results From Coherence in Clinical Population.
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Figure 5 – Overview of task-related connectivity patterns in clinical populations compared to
healthy subjects. Upper arrows (↑) indicate an increased connectivity during either receptive
(simple solid line) or expressive (dashed lines) language task in this clinical population
compared to healthy children, whereas downward arrow (↓) indicates decrease FC correlation
in this clinical population compared to healthy children.

3.2. Results Derived From Connectivity Metrics

3.2.1. Results From Correlation and Coherence Analyses

The correlation coefficient and its analog in the frequency domain, coherence, are the
classic measures of interdependence between two signals (Hassan & Wendling, 2018; Sakkalis,
2011; van Mierlo et al., 2014). Based on the amplitudes of the signals, the cross-correlation
coefficient is a measure of the linear correlation between two time series and was utilized in
one study using a tonal discrimination task (Poblano et al., 2016). Coherence, on the other
hand, detects the linear relation between two electrophysiological signals at any particular
frequency (Bowyer, 2016; van Mierlo et al., 2014). It is mainly used at rest and appears
to be the most popular metric for M/EEG evaluation of functional language networks in
children (n = 13). One other study used coherence and Granger causality and will therefore
be discussed in the section on EC.
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Results from correlation in healthy children. In a study on adolescents (9 to
16 years old, Poblano et al., 2016), correlation analyses were performed between several
recording sites of the brain and were acquired during a lexical-tonal discrimination task of
bisyllabic words in the Zapotec language (a tonal language, spoken by the participants).
Results showed significant increases of interhemispheric and intrahemispheric correlations
of the theta-relative power during a word discrimination task, predominantly between left
frontal and right temporal sites.

Results from coherence in healthy children. In healthy infants, few studies (n = 6)
investigated the association between measures of coherence and later language abilities of
preschoolers (Kikuchi et al., 2011; Kühn-Popp et al., 2016; Marshall et al., 2008; Mundy et al.,
2003; Whedon et al., 2016) and gradeschoolers (Yang et al., 2005). Specifically, between
5 and 10 months of age, an increase in resting-state EEG coherence in the theta–alpha
band (6 to 9 Hz) within left frontal regions seems to be associated with higher cognitive
functioning, including receptive language at 3 years of age (Whedon et al., 2016). This
association, however, might not be specific to language functions because the authors reported
a mediating influence of the level of attentional control at the age of 2 years. Another
study showed that, in the theta band (4 to 6 Hz), a pattern of less proximal (left-frontal to
left-central) but more distal (left-frontal to left-occipital) resting-state FC at 14 months old is
negatively associated with the number of words expressed at the age of 2 years, as reported
by the parents (lower vocabulary group; determined by the median split of the MacArthur
Communicative Developmental Inventory (MCDI) results; (Mundy et al., 2003). The same
group also showed that at 18 months of age a ratio of higher proximal synchrony in the right
hemisphere (right-frontal to right-central) is positively associated with vocabulary outcome
(MCDI; total words) at 2 years old (Mundy et al., 2003).

At 14 months of age, a theta–alpha band (6 to 9 Hz), FC pattern of more proximal
and less distal coherence appears to be specifically and positively associated with later
language functioning, regardless of the child’s IQ (Kühn-Popp et al., 2016). Accordingly,
those results indicate that maturation of EEG coherence in the left hemisphere, established by
the ratio of short-distance/long-distance connections, is positively correlated with preverbal
communicative abilities at 15 months of age (e.g., pointing at objects) and with verbal
communication skills at 48 months of age (epistemic language; (Kühn-Popp et al., 2016).
Congruently, left short-distance (parietotemporal) connectivity dominance in the theta band of
preschoolers (32–64 months of age) during story listening shows exclusive positive correlation
with language performance (no correlation with nonverbal cognitive performance or with
chronological age), as assessed by the Kaufman Assessment Battery for Children at the same
age (Expressive Vocabulary and Riddles subtests; Kikuchi et al., 2011).

In older children (6 to 8 years old), participants with high language functioning (verbal
IQ > 110, as assessed by the Wechsler Intelligence Scale for Children III) had an increased
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chance of higher correlations between homologous hemispheric regions (homologous interhemi-
spheric correlations), compared to those who were classified as having a low verbal functioning
(verbal IQ < 90; Yang et al., 2005). This was apparent in several regions (frontal, parietal)
and mostly in the theta and alpha bands. In contrast, higher connectivity in interhemispheric
central regions (delta and beta) was associated with lower language abilities.

However, one study reported non-significant correlations between coherence indices and
language functioning. Marshall et al. (2008) highlighted environmental impacts on cerebral
connectivity in young children, even though no significant correlation with language or
cognitive functioning was found. They reported that EEG patterns in 42-month-old children
placed in foster care before the age of 24 months differed from those of children placed in
institutional care, the former showing lower short-distance connectivity. Specifically, in the
foster-care group, intrahemispheric connections between frontal-central and frontal-temporal
regions were characterized by lower connectivity in theta–alpha (6 to 10 Hz) and alpha–beta
(11 to 18 Hz) bands. The authors did not link this difference to language abilities (no
significant results) but instead to environmental conditions (foster care vs. institutional care).

Finally, an extensive longitudinal study including 508 children between 2 months and
16.5 years of age investigated developmental differences between sexes, using EEG coherence
(Hanlon et al., 1999). However, no behavioral data were used to associate coherence patterns
with language functioning. Results illustrated a sex difference in development, whereby girls
presented earlier development of comprehensive language networks in theta neural networks
than boys. Results also suggested that girls have more complex interconnection patterns
between paired sites, particularly in those involving the temporal lobes.

Results from coherence in clinical population. Coherence for FC analyses was also
used in several studies that included children with or at risk of neurodevelopmental conditions
and therefore known to have vulnerable language functions. More specifically, included in
this section are those studies using coherence as FC analyses and that focused on children
with ASD, CHD, language learning impairment (LLI), stuttering, and dyslexia.

Children with CHD are known to be at higher risk of speech and language delays (Fourdain
et al., 2019; Hövels-Gürich et al., 2008; Hövels-Gürich & Mccusker, 2016). It is in this context
that Williams et al. (2012) investigated the predictive value of neonatal EEG frequency power
analysis for later language development in children with CHD. Results revealed predictive value
of the delta-relative power for language skills at 18 months of age, as assessed by the Bayley
Scales of Infant Development (BSID). However, association between language functioning and
coherence measures did not achieve significant results, despite the high correlation between
BSID cognitive scores and beta’s interhemispheric (left frontal polar to right frontal polar)
and intrahemispheric (left frontal polar to left occipital) coherence. According to the authors,
this may have been due to the small sample size (n = 13 participants).
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Autism spectrum disorder is a neurodevelopmental disorder commonly associated with
verbal and communicative dysfunctions (McDaniel et al., 2018). In three studies identified in
this review, alteration of language task-related coherence was associated with ASD (Kovelman
et al., 2015; Mamashli et al., 2017; Righi et al., 2014). However, no direct association was
made with language functioning.

One publication aimed to identify an early electrophysiological biomarker for later ASD
diagnosis (Righi et al., 2014). Electroencephalography recordings were performed for 6-month-
old infants at high risk (HR, meaning siblings of children that were already diagnosed with
ASD) and low-risk (LR) for ASD, done while listening to speech sounds. A higher right
than left hemispheric coherence in the gamma band was observed in all children, with no
difference between groups (HR vs. LR). At 12 months of age, analyses in LR and HR groups
revealed no remaining hemispheric lateralization differences. Interestingly, HR infants showed
significantly reduced task-related FC between frontal and parietal regions, compared to LR
infants. Although these results must be replicated using a larger sample, this association
seems to identify a potential 12-month predictive marker for clinical outcomes (Righi et al.,
2014). These results also point out that genetic vulnerability for autism, that is, having a
full sibling diagnosed with ASD, can potentially be assessed in the first year of life, based on
differences in neural integration.

The two other published studies that used coherence involved older children with confirmed
ASD diagnosis. Important differences were identified in FC patterns between healthy children
and those diagnosed with ASD. Results of a preliminary study by Kovelman et al. (2015)
indicated differences in cerebral coherence between ASD and control groups (8 to 12 years old)
during a language task. In particular, EEG coherence measures during familiarization with
a new language, including statistical learning for discrimination between adjacent syllables,
were higher in children with ASD and had predictive value for ASD diagnosis. Coherence
measures during the familiarization phase showed improved identification of ASD diagnosis,
compared to coherence measure at rest, thus suggesting that language learning abilities are
different in children with ASD, compared to typically developing (TD) peers.

Finally, Mamashli et al. (2017) used an MEG tonal mismatch paradigm in children (9
to 15 years old) with ASD. The MEG recording revealed an increase in frontotemporal
coherence in the ASD group relative to the TD group, in response to both standard and
deviant stimuli. This manifested in the gamma band for the left hemisphere and in the alpha
and beta bands for the right hemisphere. When coherence was normalized with respect to
the standard condition, the differences between groups were no longer significant. However,
when the same stimuli were presented against a noisy background, the normalized coherence
remained greater in ASD group, and this for the beta band in the left frontotemporal regions
(not illustrated in Fig. 5). According to the authors, this may suggest that, for ASD children,
reduced speech comprehension in noisy surroundings is due to a lower involvement of frontal
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control mechanisms. These results imply that auditory processing, when done against a noisy
background, results in altered functional networks in this group of patients.

Overall, studies in children with ASD demonstrated several distinct characteristics of
functional neuronal networks associated with auditory and language processing, which are
in line with typical difficulties in language functions associated with ASD. Knowing the
characteristics of cerebral networks could potentially allow an early identification of children
at higher risk of developing ASD.

Two studies involved participants with oral language disabilities, such as language disorder
or childhood-onset fluency disorder (stuttering). Vasil’yeva and Shmalei (2013) were interested
in brain coherence of male preschoolers (3–5-year-old boys) with neurosis-like stammering.
These children showed generally stronger global coherence in delta and beta oscillations than
did healthy children. Compared to healthy controls, theta band synchrony in interhemispheric
frontal regions was also increased for the stammering group, although a smaller number of
connections was observed in children who stutter than in healthy children. Finally, in all
frequency bands, interhemispheric coherence was higher in preschoolers with neurosis-like
stammering than in the control group. These results suggest that, in children with this kind
of speech disturbance, the specialization of functions of the left and right hemispheres, as
well as the interhemispheric asymmetry, is less expressed.

Finally, for children (6 to 11 years old) with non-verbal learning disorders, Njiokiktjien
et al. (2001) reported a right lateralized decrease of intrahemispheric coherence, in contrast
with children with LLI, who showed reversed lateralization. This difference was higher in the
gamma band. Again, these M/EEG FC results suggest that hemispheric functional brain
alterations are related to specific language development disorders.

3.2.2. Results From Phase Synchronization

Instead of investigating the relation between the amplitudes of the signals, one could
also evaluate how the phases of the considered signals are coupled, the so-called phase
synchronization measures. Among the many phase synchronization measures proposed in the
literature, one of the most used is the PLV, which evaluates the phase difference between two
signals (Lachaux et al., 1999). When two brain areas are functionally connected, the phases
of their signals are assumed to evolve together; therefore, the difference in their phases should
be constant (Bruña et al., 2018).

Results from phase synchronization in healthy children. Three studies combined
phase synchronization metrics: two with an FC matrix (Doesburg et al., 2012; Youssofzadeh
et al., 2017) and one with EC metrics (Barnes-Davis et al., 2018). Results from these three
will be included in the sections on graph theoretical approaches and EC, respectively. Two
other studies drew on phase synchronization metrics (PLV) in healthy children: one in a
mismatch paradigm (receptive task) and the other in an expressive language task.
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At around 1 year of age, results during an audiovisual paradigm revealed an increased
large-scale communication between brain regions in the mismatch condition (a heard sound
does not match the previously presented symbol), compared to the match condition (sound
and symbol match; Asano et al., 2015). This occurred in the alpha–beta band (12 to 15 Hz)
and was more prominent in the left hemisphere. According to the authors, this indicates
that audiovisual integration requires a greater effort in the mismatch condition (Asano et al.,
2015).

In adolescents (17 years old), an expressive language task (verb generation) resulted in
an increased gamma-band synchronization among task-activated cortical regions (Doesburg
et al., 2012). Moreover, there was a theta modulation of interregional gamma synchrony
between several pairs of activated brain regions, mostly in the left frontal cortex. This reflects
the involvement of gamma-band synchronization in language production and the role of
low-frequency rhythms (theta), which modulate high-frequency connectivity in adolescents.

Results from phase synchronization in clinical population. One study used
phase synchronization metrics (PLV) in task-related paradigms, in a vulnerable population,
namely, children born prematurely. In fact, several studies report impairments of cognitive
and behavioral functions, including language abilities, related to premature birth (weeks of
gestation ≥ 37; e.g., Aarnoudse-Moens et al., 2009; de Kieviet et al., 2012). In our sample,
one study used PLV for FC analyses in prematurely born children (27–30 weeks of gestation).
Kabdebon et al. (2015) compared spatial synchrony and phase coincidence of EEG oscillations
during syllabic learning in 8-month-old preterm-born and term-born children (corrected age
for preterm-born). They did not find any differences between groups, suggesting similar
language processing at 8 months of age. In both groups, an increase in the PLV was observed
first in the beta band (13 to 18 Hz; during the first syllable) and later in alpha (8 to 12 Hz;
after the word) over the left and right temporal areas (Kabdebon et al., 2015).

Using auditory stimuli in children (8 to 14 years old) and adults with dyslexia, another
study found that, compared to a control group, dyslexic participants presented stronger
synchronization and an absence of right hemispheric neural synchronization, related to low
frequency (4 Hz; Lizarazu et al., 2015). On the other hand, for high frequencies (30 Hz),
adults but mainly children with dyslexia show a rightward, instead of bilateral hemispheric
lateralization. According to the authors, this may suggest that speech processing in dyslexic
children relies more heavily on syllabic-rate information, compared to skilled reader peers.

3.2.3. Results From Network Analysis

Graph theory analysis looks at the brain as a complex network consisting of a collection
of nodes connected by edges, in order to comprehend the topological organization of brain
networks (Tahmasian et al., 2015).
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Results from network analysis in healthy children. Two studies applied graph
theoretical analysis into MEG results to investigate the organization of expressive language
networks, from preschool age to adolescence (4 to 18 years old). Even though both used a
verb generation task during MEG, and derived networks from phase synchronization metrics,
their conclusions were not identical.

In the first of the two, results from a verb generation task revealed a developmental shift
of the beta band lateralization in language production when children (4 to 6 years old) were
compared to adolescents (16 to 18 years old): hubs were most lateralized in adolescents,
whereas younger children showed a more bilateral distribution, or even a right-hemispheric
pattern (Youssofzadeh et al., 2017).

The second study showed that connectivity within language-related areas (left angular
gyrus, left precentral gyrus, right inferior orbital gyrus, and right rolandic operculum)
increased with age (Doesburg et al., 2016). This was true for language production in the
theta band. Increased FC during an expressive language task was also observed in higher
frequency bands (alpha and beta). However, this increase was primarily found in brain areas
associated with visual processing and thus might rather be associated with processing of
the stimulus than to language-related task demands. Developmental analysis suggested
significant differences between age groups: larger connectivity networks in adolescents (14 to
18 years old), compared to younger children (4 to 9 years old), and a stronger task-dependent
increase of connectivity (expressed as theta coherence) in language-related areas, especially
in frontal regions. Finally, theta-band connectivity measures showed a significant association
with verbal language functioning (assessed with the Peabody Picture Vocabulary Test and the
Expressive Vocabulary Test). Thus, the strength of task-dependent network connectivity was
associated not only with a maturational pattern but also with language abilities (Doesburg
et al., 2016).

Results from graph theoretical analysis in clinical population. Zare and col-
leagues Zare et al. (2016) developed a machine learning approach based on EEG network
characteristics (efficiency and leaf number) in 6-month-old infants. They aimed at determining,
based on family history, the risk of LLDs. Relying on FC measures, this work allowed for
the accurate stratification of the children into low-risk (LR) and high-risk (HR) groups for
LLD. Early brain networks revealed a reduced cortical communication capacity in HR infants,
showing a network that was both decentralized (as revealed by the clustering index in the
delta and alpha) and less efficient (as revealed by a decreased efficiency in the delta, theta,
and alpha). Based on complex EEG patterns with support vector machine, it was possible to
classify the children into HR and LR groups with approximately 80 % accuracy (specificity
of 89 % and sensitivity of 92 %).
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3.2.4. Directionality of Language Networks (Effective Connectivity)

EC reveals the directionality of information flow in particular brain regions and the causal
and dynamic influences of one region on another (Friston et al., 2011; Stephan & Friston,
2010). Two methods of EC were used in the studies selected for review: partial directed
coherence, a frequency-domain representation of the concept of Granger causality (Baccalá
& Sameshima, 2001) and the PSI, a method based on phase differences in signals over a
specified frequency range (Nolte et al., 2008).

Effective connectivity in healthy children. Only one study used EC metrics to study
language networks in healthy children during an expressive language task. Kadis et al. (2016)
reported an increased number of effective connections (PSI) with age, between 5 and 18 years.
More importantly, different task-related EC patterns seemed to emerge among frequency
bands. Analysis of lower frequency bands revealed more local, rostrally directed connectivity
patterns in the left frontal region. At higher frequencies, EC increasingly involved distal and
interhemispheric nodes. In alpha and gamma, bidirectional information transfer was observed
between left and right frontal and posterior temporal nodes, whereas in the gamma band, the
right posterior temporal region emerged as an important driver of Wernicke (left posterior
temporal) and Broca (left frontal) regions.

Effective connectivity in clinical population. Phase slope index was also used to
compare EC (PSI) and FC patterns (PLI) between extremely prematurely born children (EPT;
< 28 weeks of gestation) and their term-born (TB) peers (37–42 weeks of gestation; Barnes-
Davis et al., 2018). At preschool age (4 to 6 years old), bilateral functional networks, including
temporal and parietal regions, were revealed in both EPT and TB children during a receptive
language task. On the other hand, the beta band indicated increased FC in language networks,
as well as a more diffused network in EPT children, compared to TB. Moreover, analysis of
EC suggested more bidirectional connections in EPT within bitemporal areas of the network,
compared to TB, where fewer bidirectional networks or more unidirectional networks were
identified. EC analysis also revealed that hyperconnectivity patterns in EPT were attributable
to a greater information flux drive from the right hemisphere. Nevertheless, because those
differences in connectivity patterns were not correlated with language performance, it was
reported to be an effect of the clinical condition only (i.e., prematurity). Consequently, the
authors assumed that their findings indicated an efficient reorganization of cerebral language
networks, allowing the maintenance of language abilities in EPT children (Barnes-Davis et al.,
2018).

Neuronal response while listening to low-frequency speech (< 10 Hz), in gradeschoolers (8
to 14 years old) with dyslexia, was overall less synchronized, compared to normal readers
(Molinaro et al., 2016). More specifically, during language stimulation (meaningful sentences),
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reduced delta synchronization and impaired feed forward functional coupling (partial directed
coherence) were found between the right auditory cortex and the left inferior frontal gyrus.

4. Discussion
We systematically reviewed 24 studies that assessed M/EEG functional networks associated

with language in children. The great variability in study populations, sample size, and
methodology precluded us from conducting a meta-analysis. Instead, we synthesized and
critically appraised findings on the use of functional or EC in the study of spoken language
in children.

4.1. Summary of the Main Observations

In order to characterize functional networks involved in language development, first
considered were results reported in 13 articles on the study of TD children, and which
used FC and EC analyses. The findings of most of the reviewed studies suggested that
theta neural oscillations play a crucial role in healthy language development. In the theta
band, a greater left resting-state coherence in early childhood seems to be associated with
higher language functioning, either at the time of M/EEG recording (Kikuchi et al., 2011)
or at a later age (Kühn-Popp et al., 2016; Mundy et al., 2003; Whedon et al., 2016). In
older children (gradeschoolers to adolescents), associations between connectivity patterns
and language abilities are not found only in theta, but in most frequency bands (delta,
theta, alpha, and beta). The differences in frequency bands in relation to age might reflect
typical brain maturation. Indeed, cerebral maturation in children has been associated with
a global decrease of slow-wave activity, including theta oscillations, and an increase in
higher frequencies (Uhlhaas et al., 2010). Thus, even though theta-band connectivity shows
significant correlation with language abilities at all ages (Fig. 3), it is critical to look at all
different frequency bands, especially in older children (gradeschoolers and adolescents).

Further, theta frequency band has been related to syllabic processing (Giraud & Poeppel,
2012; Meyer, 2018), and increases in theta activation have been found for tasks that include
verbal working memory (Friederici & Singer, 2015; Meyer, 2018). Syllabic processing of
human language constitutes one of the fundamental stages of bottom-up language processing,
and there is evidence that it is established in utero, before term age (Mahmoudzadeh et al.,
2013; Skeide & Friederici, 2016). The predictive value of theta coherence for early language
comprehension in infants may thus be explained by the fundamental role of syllabic processing
in later language acquisition. Given the assumed relation between theta band coherence and
working memory, studies addressing language networks should also apply language paradigms
that allow for the differentiation between higher-order cognitive functions and different stages
of language processing.
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The investigation of FC or EC networks using a language task during M/EEG recording
reveals results distributed across all frequency bands. The involvement of the various frequency
bands probably varies based on the nature of the task (e.g., active lexical discrimination vs.
passive oddball paradigm), the language modality (expressive vs. receptive), and the level of
language processing (e.g., syllabic vs. semantic). That being said, results from EC patterns
in expressive language paradigm vary considerably depending on the frequency bands (Kadis
et al., 2016). An age-related increase is shown in left effective connections, whereas higher
frequencies reveal more bilateral effective connections with increasing age (Kadis et al., 2016).

For healthy children, the majority of studies using task-dependent connectivity analysis
reveal increased left FC during receptive (Asano et al., 2015; Kikuchi et al., 2011) and
expressive (Doesburg et al., 2016; Doesburg et al., 2012; Youssofzadeh et al., 2017) language
paradigms. This occurs as early as 11 months of age (Asano et al., 2015) and appears to be
constant throughout development. Interestingly, when it comes to examining the pattern of
task-related FC in populations at risk of language disorders, in comparison with neurotypical
children, differences are prominently characterized by a tendency for greater FC in the right
hemisphere (Lizarazu et al., 2015; Mamashli et al., 2017; Righi et al., 2014).

Results from studies targeting clinical populations, mainly children at high risk of or
suffering from language disabilities, also contribute to the understanding of the interactions
between language abilities and the brain regions associated with language acquisition. In
this review, we included 11 studies that addressed FC and EC patterns of language networks
in different clinical populations. In children with speech disturbances (language learning
disorders or stuttering), the functional specialization in the left and right hemispheres and the
interhemispheric asymmetry typically seen in language networks seem altered (less hemispheric
asymmetry observed). However, in populations at risk of language disabilities, such as ASD,
preterm children, and infants with CHD, there are no clear or replicable FC profiles associated
with language functioning that arise from the current literature. Although differences are
observable between clinical and control groups, they seem to be more attributed to the
signature of the underlying clinical condition, rather than to language functioning itself. More
studies are needed to better understand the brain substrates of language alterations and
vulnerabilities in these populations.

These results are consistent with the conclusion from Weiss-Croft and Baldeweg (Weiss-
Croft & Baldeweg, 2015), who found that left language lateralization was well established
by the age of 5 years. However, our results suggest that, before the first birthday, left
lateralization is already apparent when a receptive language paradigm is performed (Asano
et al., 2015). Moreover, a greater left connectivity before 5 years of age has been correlated
with better language abilities (Kikuchi et al., 2011; Kühn-Popp et al., 2016; Mundy et al.,
2003; Whedon et al., 2016). Thus, M/EEG research points toward an earlier implementation
of left lateralization in language networks than was concluded from studies done with fMRI.

cxli



This is probably due to the suitability of electrophysiological techniques for studying young
children. Furthermore, the impaired left lateralization in populations at risk of language
impairments attests to the importance of the early development of left functional networks
(Barnes-Davis et al., 2018; Righi et al., 2014) and its maintenance in later development
(Lizarazu et al., 2015; Mamashli et al., 2017).

The developmental trajectory of FC of language networks evolves significantly with age,
with the presence of greater connectivity networks in adolescents, compared to younger
children (Doesburg et al., 2016; Kadis et al., 2016; Poblano et al., 2016; Youssofzadeh et al.,
2017), but also more local and less bilateral networks as age increases (Doesburg et al.,
2016; Kadis et al., 2016; Kikuchi et al., 2011). In line with findings of fMRI studies, strong
local networks may actually reflect both processes related to cerebral specialization and
automatized language processing, which require less top-down regulation and thus involves
fewer network interactions (Weiss-Croft & Baldeweg, 2015).

Nonetheless, the exact timeline of maturational processes in language networks is not yet
fully understood. This may be due in part to the great intervariability of typical development.
Also, many studies included only a limited age range or did not have sufficient participants per
age group to permit reliable conclusions regarding developmental changes. The importance of
accounting for age-related changes has previously been emphasized in fMRI studies, in order to
correctly interpret associations between network characteristics and language capacities (e.g,
Rimmele et al., 2018; Weiss-Croft & Baldeweg, 2015). On the other hand, the methodological
heterogeneity (e.g., language paradigms, cognitive assessments, connectivity algorithms)
between developmental studies on brain correlates of language processing do not allow the
drawing of a clear maturational timeline.

Finally, one should consider that sex differences may impact the development of FC
patterns, as stated by Hanlon et al. (1999). In fact, the importance of integrating sex analysis
in research is now well-established (Tannenbaum et al., 2019), and the sex differences of
brain development have been documented (R. E. Gur & Gur, 2016; R. C. Gur & Gur, 2017;
Kaczkurkin et al., 2019). In a recent systematic review, Etchell et al. (2018) highlighted sex
differences in brain language structure and function. However, they concluded that these
differences do not necessarily lead to differences in language task performance. It is therefore
possible that boys and girls employ different but equally effective cognitive strategies for
certain tasks, which leads to minor differences in performance as evidenced by brain function
but not in the behavioral performance itself. Consequently, it is important that subsequent
studies consider possible sex differences when characterizing language networks.

A better understanding of the association between language functions and the different
characteristics of brain networks should include normal variation patterns that are not re-
lated to language difficulties. Understanding the normal development of functional language
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networks would enable earlier identification of children at risk of language difficulties. Cur-
rently, language impairment is often detected only at an age at which evidence of healthy
language functions can be formally assessed (Prelock et al., 2008). When a pathology is
present, however, it could be crucial to initiate early intervention in order to support language
development and increase quality of life for these children.

4.2. Methodological Considerations

This review shines light on the heterogeneity of methodological approaches used in
the study of language functions in children, through the use of FC and EC. Beyond the
neuroimaging method used (EEG vs. MEG), the type of analyses and their nomenclature
vary greatly between research groups. Functional brain connectivity and EC analyses are
indeed still recent, and to date, there is no consensus on which methods are to be advocated,
highlighting the importance of summarizing the current state of knowledge and pursuing
further research in this field. This would not only describe the various methods available, but
also assess their respective pros and cons, in order to select the appropriate technique for
specific experimental conditions and samples. This will ultimately support the production of
more reliable and robust results and provide clear directions for future studies. Methodological
heterogeneity is not only an issue in EEG and MEG, but also poses an obstacle to reliable
conclusions about language networks estimated with other neuroimaging techniques, such as
fMRI (Weiss-Croft & Baldeweg, 2015), hence the need to establish common standards of best
practice.

Nevertheless, the number of M/EEG studies identified indicates that coherence and phase-
locking measures may have high utility in language research, because these metrics were used
in the majority of the published articles in the domain. These approaches achieved popularity
because of their simple algorithms and fast computation. However, although coherence has
been the most widely used FC method in this field, this does not necessarily mean it is the
preferred method, nor the most fruitful. In fact, coherence may cause false-positive results,
due to source leakage between local regions (Brookes et al., 2014; Kida et al., 2016). To
overcome these challenges, many algorithms have been developed in the last few years. The
Imaginary Part of Coherency (Nolte et al., 2008) and PLI are metrics that are less affected
by the influence of common sources and active reference electrodes. They were introduced to
facilitate the estimation of phase synchronization but have not been used much in the research
of language development (none for Imaginary Part of Coherency and twice for PLI). Yet, the
simplest method for reducing the influence of leakage on the estimation of connectivity is a
leakage-invariant metric (O’Reilly et al., 2017).

Conversely, the use of task-evoked EC metrics such as Granger causality and PLI in this
context is recent and remains limited, given that only three research teams have applied them
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since 2016. Thus, little is known about the directionality (EC) of oral language networks in
children.

To date, the use of EEG is more frequent than MEG for the investigation of language-
related brain connectivity in children (14 and 10 articles, respectively), certainly because of
the higher accessibility, lower cost, and ease of use of the EEG technique.

4.2.1. Methodological Limitations of Reviewed Studies

The primary methodological limitation of most studies reviewed was the failure to directly
examine the association between brain FC patterns and objective language skills as assessed by
standardized behavioral tests. In addition, in those studies that did evaluate language abilities,
assessment of overall cognitive functioning was not always performed. Thus, the observed
disturbance could indicate a lower global cognitive functioning, rather than a specific effect
of language difficulties. A clear distinction between language and global cognitive functioning
is therefore critical when investigating links between connectivity patterns and language
performance. Relationships between brain activity and behavior must be addressed, especially
in the context of clinical populations, where the disturbance in FC patterns associated with
the neurodevelopmental condition must be distinguished from the disturbance specific to
language functions alterations. For instance, in contrast to healthy children, M/EEG FC
differences in children with CHD or born prematurely are not always associated with actual
differences in language skills. The lack of attention to these relationships may be partially
explained by the small sample sizes of the studies, which led to poor statistical power.

Finally, the results from various studies emphasized the difficulty of applying FC analysis
derived from M/EEG data. Source localization of cerebral activity, captured on the surface
of the scalp, represents a particular challenge for sensor-space analysis. This is known as
the inverse problem, which may lead to inaccurate identification of cerebral networks (e.g.,
Abreu et al., 2018, 2019; Barzegaran & Knyazeva, 2017; Nunez et al., 1997; Sakkalis, 2011).
Also, the effect of volume conduction, which is a mix of several signals within one sensor,
and which originate from identical cerebral regions, makes critical a direct derivative from
sensors to cerebral representation. Source-space analysis tries to overcome this downside and
uses models that aim for a more accurate reconstruction of the true sources of the signal
(Schoffelen & Gross, 2009). The conduction of source analyses seems particularly important
when one is aiming to interpret FC, because the same cerebral activation is measured with
different sensors and may potentially result in false conclusions regarding connected regions.
Recently, it has been shown that source-space analyses seem accurate mostly when using
high-density EEG, but result in limited interpretation of the more common low-density EEG
(Barzegaran & Knyazeva, 2017). Also, some of the approaches to source analysis require
certain assumptions be made about the underlying network, which may not be accurate for
all data sets (Daunizeau & Friston, 2007). In particular, in children (where networks are
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developing) or in clinical populations (where networks may be altered), it can be risky to
assume a certain network composition. These limitations need to be taken into consideration
when interpreting some of the findings on functional networks that are reported in this review.
While studies that applied sensor-space analysis may overestimate FC, the interpretation of
findings based on source-space analysis, especially in low-density EEG, may be less susceptible
to this same overestimation. Finally, some studies might not have verified specific assumptions
for their source-model, which limits their interpretation. This issue may occur especially in
studies that include clinical populations, where characteristics of cerebral activation may be
altered.

4.2.2. General Utility of M/EEG Connectivity Analysis

By providing information about temporal coupling between cortical areas (milliseconds
time scale) and frequency bands of neural oscillations, both MEG and EEG are well-suited to
study the development of language networks. They offer a quiet testing environment, which
facilitates the use of language tasks. Moreover, they provide excellent temporal resolution,
allowing analyses that target an immediate response to specific tasks or stimuli.

Because EEG is less sensitive to movement than other techniques (e.g., fMRI), thus
allowing a certain mobility and tolerating articulatory movements, it is highly relevant for
language assessment in pediatric populations. Furthermore, the low cost of EEG justifies
its use for the investigation of developmental trajectories, which requires longitudinal design
with multiple recordings over time. On the other hand, spatial and temporal data available
from MEG allow the investigator to track both the neural timing and location associated
with language and thus to efficiently map the trajectories of language networks. Regardless of
the neuroimaging technique employed, the use of FC is highly relevant in research on children,
because it allows acquisition at rest, without requiring that a task be performed, as it is in
traditional ERP paradigms. Furthermore, the length of time required for data acquisition
can usually be shorter, compared to task paradigms. Finally, a better understanding of FC
M/EEG analysis and an evaluation of their usefulness are essential for future research and
for the potential use of these techniques in clinical contexts.

4.3. Limits of This Review

Although this systematic review goes beyond a simple revision of the literature, it does not
include any statistical analysis of the reviewed studies, as would have provided a meta-analysis.
The reader should therefore take into account the fact that the current findings represent
qualitative and not quantitative results. The methodological heterogeneity of the included
studies, with respect to their paradigms, the types of FC and EC analysis, as well as the
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large age range of the children investigated, is in itself a limitation for the generalization and
integration of the results.

Compared to other neuroimaging techniques, both MEG and EEG stand out because
of their high temporal resolution. This is of particular importance in language paradigms,
where tonal differences occur at a fast rate. However, both methods have a relatively low
spatial resolution, which leads to a rather large-scale localization of cerebral activity when
compared to techniques such as fMRI. Thus, the present findings about functional language
brain networks permit only limited spatial interpretation.

Finally, given that we mainly reviewed studies that considered FC as a measure of
neuronal networks, we would like to acknowledge that FC bears an index of statistical
dependency. More precisely, it allows the estimation of the correlation between cerebral
activation, measured simultaneously with different electrodes or sensors located over different
cerebral locations. Thus, it does not allow causal conclusions about brain networks. Only
three studies (Barnes-Davis et al., 2018; Kadis et al., 2016; Molinaro et al., 2016) included
EC analysis that allowed causal conclusions about interactions within functional language
networks. Future studies should definitely include EC analysis that allows for more advanced
characterization of cerebral language networks.

5. Conclusion and Future Directions
The analysis of brain FC and EC through the use of M/EEG data is a common emphasis of

ongoing developmental research, but many unanswered questions remain regarding the brain
correlates of language development. To our knowledge, this is the first systematic review to
summarize the current state of knowledge on linguistic electrophysiological patterns of brain
connectivity in the pediatric population. It provides a detailed portrait of the relevant MEG
and EEG data analysis methods that have been used in that context. Future research should
consider the different FC analyses available, in order to choose the appropriate tools and
paradigms. Overall, the results of the reviewed studies are highly heterogeneous, precluding
the possibility of drawing clear and quantitative conclusions and showing the importance
of pursuing research in this field. Future work will enlighten on the brain substrates of
language development and may also have important clinical impacts, for example, leading to
the identification of early neuroimaging markers associated with altered language development
in populations at high risk of language disabilities. It would also allow the identification of
children at higher risk of language difficulties, in order to provide early and individualized
intervention (Jeste et al., 2015). However, studies with significantly larger sample sizes, as
well-normative data, are needed in order to be able to use these tools in a clinical context.
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Abstract.
Background. Functional near-infrared spectroscopy (fNIRS) is a suitable tool for

recording brain function in pediatric or challenging populations. As with other neuroimaging
techniques, the scientific community is engaged in an evolving debate regarding the most
adequate methods for performing fNIRS data analyses.

New method. We introduce LIONirs, a neuroinformatics toolbox for fNIRS data
analysis, designed to follow two main goals: (1) flexibility, to explore several methods in
parallel and verify results using 3D visualization; (2) simplicity, to apply a defined processing
pipeline to a large dataset of subjects by using the MATLAB Batch System.

Results. Within the graphical user interfaces (DisplayGUI), the user can reject noisy
intervals and correct artifacts, while visualizing the topographical projection of the data onto
the 3D head representation. Data decomposition methods are available for the identification
of relevant signatures, such as brain responses or artifacts. Multimodal data recorded
simultaneously to fNIRS, such as physiology, electroencephalography or audio-video, can be
visualized using the DisplayGUI. The toolbox includes several functions that allow one to
read, preprocess, and analyze fNIRS data, including task-based and functional connectivity
measures.

Comparison with existing methods. Several good neuroinformatics tools for fNIRS
data analysis are currently available. None of them emphasize multimodal visualization of
the data throughout the preprocessing steps and multidimensional decomposition, which are
essential for understanding challenging data. Furthermore, LIONirs provides compatibility
and complementarity with other existing tools by supporting common data format.

Conclusions. LIONirs offers a flexible platform for basic and advanced fNIRS data
analysis, shown through real experimental examples.
Keywords: Matlab toolbox, functional Near Infrared Spectroscopy (fNIRS), semi-automated
artifact correction, multimodal, task-based analysis, functional connectivity

Graphical abstract
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Highlights

— The LIONirs toolbox is designed for fNIRS data inspection and visualization
— Methods are integrated for isolation of relevant activity and correction of artifacts.
— Multimodal auxiliary, EEG or audio-video are visualized alongside the fNIRS data.
— Task-based and functional connectivity measure analysis tools are available.
— The code structure allows to automated and standardized analysis of large data set.

1. Introduction
Functional near-infrared spectroscopy (fNIRS) is a non-invasive neuroimaging technique.

Similar to functional magnetic resonance imaging (fMRI), it measures blood oxygenation
fluctuations related to neuronal processes in cortical regions, but with several practical
advantages. First, it is portable, allowing studies to be conducted in clinical settings where
bedside acquisition is necessary (Kassab et al., 2018). Second, fNIRS is relatively tolerant
to movement, which makes it suitable for language studies that require participants to
speak aloud. Third, fNIRS is child-friendly because it allows the researcher or a parent to
interact with the participant during data recording. Hence, it is a technique particularly
useful for challenging populations, such as infants and toddlers, or individuals with cognitive
or psychiatric conditions (Vannasing et al., 2016). Finally, fNIRS can easily be used in
multimodal contexts, such as during simultaneous fNIRS-EEG acquisitions, which could, for
example, contribute to a better understanding of neurovascular coupling and brain function
in patients with epilepsy (Wallois et al., 2012; Wallois et al., 2010).

Since fNIRS is a relatively young modality, there exists a wide variety of approaches for
the processing and analysis of its data, but no clear consensus on the best way to apply them.
For instance, it is not yet clear which are the most appropriate and standardized pipelines
through which to extract relevant information in specific experimental settings. Therefore,
flexible neuroinformatics tools are needed, in order to allow the exploration of several options
for the processing and handling of fNIRS data. It is important for such tools to provide
user-friendly approaches for dealing with theoretical issues (e.g., which artifact-correction or
data analysis method is the most appropriate), as well as practical concerns (e.g., definition
of optode and data locations, visualization, multimodal integration, the handling of large
datasets, performance of quality checks).

As with any other neuroimaging technique, a major challenge with fNIRS data analysis
is the separation of the relevant signal from confounding signals (e.g., movement artifacts,
physiological artifacts related to systemic fluctuations). Although a careful installation
of the cap that holds the optodes and good cooperation from the participant during data
acquisition can both significantly minimize artifacts, the fNIRS signal will always contain some
confounding signals. For instance, in pediatric populations, young children or participants
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with severe cognitive or behavioral deficits may be unable to stay still and focused for long
periods of time; although the experiment is often temporarily interrupted to allow the child
to move and relax, a large amount of data can sometimes be significantly corrupted by
movements. Should this occur, it is crucial to proceed to artifact detection, and to then
either correct or reject the contaminated data segments (Lorenzo et al., 2019). Appropriate
methods should be used to reliably and efficiently detect and/or correct artifacts resulting
from the participant’s movements or physiology (e.g., heartbeat, respiration, Mayer waves).
Compared to other neuroimaging techniques, fNIRS is still far from having standard data
analysis procedures, and inadequate signal processing could lead to incorrect interpretation
of the data and unreliable results (Brigadoi et al., 2014; Lorenzo et al., 2019).

Several methods have been suggested for dealing with motion or muscular artifacts in the
fNIRS signal (Schecklmann et al., 2017), none being ideal and each having their own pros and
cons (Hocke et al., 2018). Depending on the nature of the artifact itself, the mathematical
assumptions made within a method for isolating the artifact may not be appropriate. Some
methods reduce the interference caused by artifacts by using spline interpolation (Scholkmann
et al., 2010), while others decompose the data using target principal component analysis
(tPCA) and then remove the components related to the main artifacts (Yücel et al., 2014).
More recently, parallel factor analysis (PARAFAC, Hüsser et al., 2020) has been used for
decomposition, as this method takes advantage of the multidimensional nature of fNIRS
data (time, space and wavelength), and the fact that movement artifacts equally affect both
wavelengths at the same location (Cui et al., 2010). Independent component analysis (ICA)
has largely been used in EEG, and magnetoencephalography (MEG) and has proven to
be efficient for removing eye blinks, which generate systematic and reproducible artifacts
that can be considered statistically independent from brain activity (Hyvarinen, 1999). The
technique of ICA has also been used to unmix the independent components in fMRI and
fNIRS (Beckmann & Smith, 2004; Hiroyasu et al., 2013). The use of wavelet decomposition
has been proposed for reducing spike artifacts, by removing high-frequency outliers from
the data (Molavi & Dumont, 2012). Recently, a hybrid two-step approach combining spline
interpolation and wavelet decomposition has been applied to fNIRS data to correct artifacts
caused by jaw movements related to articulation during the performance of a language
paradigm (Novi et al., 2020). Finally, a least-squares regression method has also been used
to measure, estimate and subtract physiological artifacts caused by systemic fluctuations
(Pfeifer et al., 2018; Saager & Berger, 2005). It is not yet clear which method is best for
fNIRS artifact detection and correction, and the method chosen certainly depends on the
type of artifacts being dealt with.

Furthermore, many approaches can be applied for the subsequent analysis of the artifact-
free data. A task-based paradigm will assess the overlap between the recorded brain response
and the hemodynamic response function (HRF), which is modeled using a general linear
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model (GLM) (Peng et al., 2016; Scholkmann et al., 2014; Uga et al., 2014). According to
some studies, predefined theoretical HRF models can be problematic, notably in studies with
clinical populations, infants or the elderly, or when focusing on complex cognitive functions
(Buchsbaum et al., 2005; D. K. Nguyen et al., 2012, 2013; West et al., 2019). Moreover, there
are some nonlinearity effects on the HRF response that are not yet completely understood
(D.-Q. Zhang et al., 2014). The higher temporal resolution at the acquisition of ∼0.05 s for
fNIRS in comparison to ∼1 s for fMRI (Glover, 2011; Witt et al., 2016) could help describe
the HRF nonlinearity and bring additional information through its time course morphology.
Other avenues may explore functional connectivity measures to describe cognitive brain
function at rest. Considering this large range of existing methods, one could easily feel lost,
especially as few of the methods require advanced programming skills.

The development of more user-friendly tools, notably through graphical interfaces for the
processing and visualization of data, is critical for applied and clinical research teams. These
tools should offer several flexible methods and functionalities, allowing the user to create the
best pipeline for the analysis of their data set. Since the analysis of a sizeable number of
subjects may be extremely laborious, and even unrealistic in very large studies, some parts
of the process are best automated, once the ideal pipeline has been created. However, as
described above, a fully automated method for removing artifacts from fNIRS data may not
be the best option, as inadequate use of signal decomposition poses the risk of distorting or
even removing the signal of interest itself. It is therefore crucial that the user have access to
various artifact detection/correction methods, to be able to identify the most appropriate
one for a given data set. The chosen method would then be applied in a semi-automated
manner to the entire sample of subjects. However, a supervised application is especially
important for noisier data sets. The user should be able to assess the signal quality with a
visual inspection before, during, and after the application of artifact detection and correction.
The optimal tool would also allow the user to simultaneously access the data acquired from
multiple modalities (physiology, EEG, audio-video recording, etc.), which has been shown to
help with the identification of different events in fNIRS data (movements, epileptic events,
state of consciousness, etc. Louis et al., 2016). Finally, in fNIRS, the placement of optodes
is not standardized, but is instead customized in function of the cap used, the number of
optodes available in the equipment, and the experimental question being posed. A tool that
allows the projection of data onto either a brain or scalp reconstruction or a template can
therefore greatly help with the visualization of data.

Several good neuroinformatics toolboxes have been developed to help researchers perform
fNIRS data analysis. One of the first and best known is HomER, which is publicly available
on the NITRC website (Huppert et al., 2009). It is easy to use and offers a visual display
of various options for motion correction and preprocessing. As of 2015, it also includes an
external 3D interactive visualization of the data’s spatial distribution in AtlasViewer (Aasted
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et al., 2015). The Brain AnalyzIR toolbox is the most flexible tool available (Santosa et al.,
2018); it offers various statistical methods for addressing the specific features of fNIRS data
analysis (e.g., specific models for the noise covariance). However, AnalyzIR requires relatively
advanced programming skills, which are not typically available in applied and clinical research
teams. NIRS-SPM (Ye et al., 2009) applies the statistical GLM method, which leads to the
creation of activation maps, but it does not include modules for artifact rejection, which is
critical, especially in studies with infants and children. Finally, FC-NIRS focuses mainly on
the computation of functional connectivity matrices, based on temporal correlations of fNIRS
time series (Xu et al., 2015).

Table 1 – List of functionalities available (+) or not available (NA) in several popular
open-source fNIRS tools.

Functionalities Homer Atlas
viewer

NIRS-
SPM

NIR
Storm AnalyzIR FC

NIRS LIONirs

Batch processing + NA + + + + +
Motion correction + NA + + + + +
Quality control + NA + + + + +
GUI design for piecewise
artifact/data decomposition NA NA NA NA NA NA +
Preprocessing dOD, filter,
MBLL correction + + + + + + +

GLM model + NA + + + NA +
Window epoch averaging + NA NA + + NA +
3D topography overlap MRI NA + + + + NA +
2D datanavigation + NA NA NA + + NA
FC measures NA NA NA + + + +
Multimodal (EEG-video) NA NA NA + NA NA +
No coding required + + + + NA + +
Group level statistics + NA + + + + +
Tomographic reconstruction + + + + + NA NA

In summary, there is currently no available toolbox that provides transparency and
flexibility for data quality control, and a single solution for all the challenges faced when
performing fNIRS data analyses, such as the need for an interactive 3D visualization adapted
for a large number of channels, the flexibility to explore different methods for building
customized processing pipelines, and offering multimodal integration so as to fully benefit
from any additional source of information acquired simultaneously. These elements are all
crucial for data sets acquired from challenging populations, such as young children or patients,
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where understanding the signal’s structure requires efficient high-density data visualization
at each step of processing.

In this article, we introduce the LIONirs toolbox as a new tool for the analysis of fNIRS
data. LIONirs is intended to complement other existing software, by supporting compatible
file formats. It offers the flexibility to explore and visualize the data at each step of its
processing, and allows one to easily build a customized processing pipeline that can be applied
to a large number of subjects. For this purpose, the LIONirs toolbox is embedded in the
Matlab Batch System (http://sourceforge.net/projects/matlabbatch/), used in the SPM
toolbox (Friston et al., 2011). This allows the inclusion of various modules for data handling
and processing. It also provides the ability to easily standardize the analysis of large data
sets by the use of processing pipelines or templates. In this paper, the reader will be guided
through the organization of the LIONirs toolbox, and its applications are illustrated with
examples. The toolbox is available under the General Public Licence (GNU) and maintained
on the public github.com project (https://github.com/JulieTremblay3/LIONirs).

2. Methods and results
2.1. Software overview

The LIONirs toolbox is an open-source software written entirely in Matlab (The Math-
Works, Inc., Natick, Massachusetts, United States; compatible with releases from 2014a). It
was developed in Windows, using the batch data editor in SPM12, and offers a variety of
either basic or more sophisticated functions for handling and processing fNIRS data. It is
therefore a minimal requirement that the user install the Statistics and Machine Learning
Toolbox and SPM12.

An important characteristic of the LIONirs toolbox is its modularity. It offers the user the
possibility of performing data processing in a customized manner and to integrate all steps
into a processing pipeline. The pipeline can be saved as a template to be used for subsequent
analyses. The user can also prepare a hierarchical pipeline by creating different branches for
testing alternative processing approaches. Branches could, for instance, correspond to two
different conditions (e.g., resting state during different stages of alertness: sleep vs. awake)
or to different types of artifact correction (e.g., PCA vs. PARAFAC). The corresponding
Matlab structure for each branch is saved in separate subfolders, allowing the user to easily
assess the results of each individual processing approach. All these operations and their
corresponding parameters are codified and stored in a Matlab structure named NIRS.mat.

The main graphical interface in the toolbox is called DisplayGUI. This interface uses the
NIRS.mat structure to help the user modify artifact selection, and to easily and simultaneously
visualize fNIRS data and multimodal data (e.g., heartbeat, respiration, EEG, audio-video
recordings), using topographical projections onto the skin or cortical surface. Moreover,
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automatic script generation is available for creating a template, which can then be applied
for multiple subjects [https://sourceforge.net/projects/matlabbatch/].

Figure 1 gives an overview of the organization and functionalities of the LIONirs toolbox.
One of the first steps in fNIRS data analyses is to provide a 3D representation of the association
between the positions of the optodes and the anatomy of reference. The toolbox includes
the 3DMTG graphical interface, which allows the user to associate the raw fNIRS data with
the corresponding 3D representation of the montage and the anatomy. First and foremost,
LIONirs offers a flexible and semi-automated artifact correction strategy by use of various
data decomposition methods, such as tPCA or PARAFAC. Once the signal is considered
clean, or without artifacts, transformation of the light intensity into concentrations of oxy-
and deoxyhemoglobin is done using the Modified Beer-Lambert law (MBLL).

Hemodynamic analysis involves the identification of the task-related hemodynamic re-
sponse (HRF), by averaging the time-lock events or estimating of the relevant activities using
the HRF model in a GLM. Functional network organization can be estimated using several
brain functional connectivity (FC) measures such as Pearson correlation, Hilbert joint phase
probability distribution and magnitude squared coherence (Kida et al., 2016; Molavi et al.,
2014; Xu et al., 2015). Finally, some basic statistical analyses (e.g., student t-tests, ANOVA,
GLM) can be applied to task-based components or FC measures. A correction for multiple
comparisons using false discovery rate adjustment or permutation tests is also implemented.
These results can then be displayed as a topographical representation of all channels, or a
selection of them.

In the next sections (Secs. 2.2 to 2.7), the main analysis steps and functionalities will
be explained in detail and illustrated with examples. Several tutorials are available in the
toolbox documentation, offering a step-by-step guide for some processing tools, along with
data examples (https://github.com/JulieTremblay3/LIONirs).

Figure 1 – Overview of the organization and functionalities of the LIONirs toolbox.

2.2. Montage configuration: 3DMTG interface

In fNIRS, the position of each source and detector (optodes), commonly called the
montage, is not standardized and must be adjusted to fulfill the experimental requirements.
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It is up to the user to associate sources and detectors with 3D coordinates, according to the
specific montage of their study. Therefore, depending on the number of optodes available,
the type of caps that is used, and the head sizes of the participants, the configuration is
optimized in order to cover the regions of interest (ROIs). When determining a montage, it is
important to match brain anatomy with the position of the optodes, in order to obtain reliable
topographical and cortical projections. The optodes’ locations on the head of a subject are
recorded using a stereotactic system or a 3D localization system, and saved in a coordinates
file (.elp file). The 3DMTG interface reads the coordinates file, allowing the visualization
of the optodes’ registered position on the 3D representation of the scalp or cortical surface
(Fig. 2). The correspondence between optode location and anatomical representation is
done with a rigid body transform method, or on a real subject using anatomical markers
(nasion, inion, left and right pre-auricular points) identified through structural MRI images
(Friston et al., 2011). The anatomy can be defined by either an MRI template or the subject’s
images (Richards et al., 2016). Optionally, MRI images include anatomical atlases such as a
segmentation according to the Brodmann atlas or the automated anatomical labeling atlas
(AAL), used to label functional cortical regions over the surface of the brain (Alemán-Gómez
et al., 2006; Talairach, 1988; Tzourio-Mazoyer et al., 2002). The visualization of the atlas
helps the user ensure that the montage adequately covers the ROI of the cerebral cortex. If
the individual’s MRI images are available, the anatomy of the brain and skin surface can
be extracted using an external image processing software such as Neuronic Image Processor
(http://www.neuronicsa.com/modulos/producto/imagic.html) or Brainsuite (Dogdas et al.,
2005). The toolbox also provides a generic template in the required format for projection
onto the skin and cortical surface (Collins et al, 1994). When no MRI data is available for
an individual, the brain MRI template will likely require spatial rotation, translation, and
scaling adjustments, in order to match the individual’s optodes coordinates. Once all these
steps are completed, the experimental project file can be saved. This allows the user to access
the topographical representation of the data at any stage of the analysis and visualize the
entire or partial data on the skin or cortex.

2.3. Data organization

LIONirs supports many raw data formats, including ISS, NIRx, .nirs, and SNIRF. It
reads the data and uses the previously created 3DMTG anatomy to attribute each channel
to the correct location on the scalp. Simultaneously acquired multimodal data, such as
physiology, EEG, or audio-video recordings, can be integrated and synchronized, becoming
accessible through the DisplayGUI. A trigger sent simultaneously to all equipment (e.g.,
fNIRS system and EEG amplifier) is essential for the proper synchronization of multimodal
data. Any step of processing and adjustment taken in LIONirs can be saved to different
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Figure 2 – 3DMTG interface for creating and visualizing the fNIRS optode localization.
The skin (top image), cortical surface (bottom left image), or associated anatomical regions
(bottom right image) can be used as anatomical landmarks to dictate the placement of the
helmet holes. Each hole has a label that allows the identification of the physical holes on
the cap. The right panels allow the user to select the angle of visualization (top), adjust the
coordinates of the registered positions of hole(s) (middle) and provides information about
exact coordinates (bottom). (a) The position of sources (S) and detectors (D) can be projected
onto the head surface. (b) The three panels at the left list the associations between the labels
of detectors (top), sources (middle) and electrodes (for simultaneous NIRS-EEG recordings;
bottom) with the helmet holes. (c) The upper panel contains tools for moving the entire head,
adding or removing sources, detectors and electrodes, and accessing parameter adjustments.

folders, organized in a tree structure for each subject, as depicted in Fig. 3. The necessary
data and associated Matlab structure (NIRS.mat) are saved to each (sub)folder corresponding
to the various stages of processing. This NIRS.mat structure allows one to easily keep track
of all processed operations and apply modifications on one level, without having to start
from the very beginning. The data structure NIRS.mat will open one data file at a time
for visualization and processing. A computer with 8G Ram Memory should be sufficient to
analyze and visualize an hour of data fluidly. Analyzed data are save in binary format to
optimize speed and storage. It is possible to save intermediate analysis steps to review them
if needed. However, a good practice to reduce data storage resources is to use the option to
delete previous step by default. Folders and subfolders are also used to separate branches
of a processing pipeline for parallel analysis of multiple conditions or different analytical
approaches. Finally, at every stage, the data can be exported to the most common fNIRS
format (.nirs or SNIRF), thereby facilitating compatibility with other software.
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Figure 3 – Organization of the different stages of data analysis. A) The Matlab batch
editor gives access to the LIONirs functions menu (e.g., artifact detection, filtering, averaging,
etc.), allowing users to build up a processing pipeline for their specific needs. B) Example of
folder and subfolder organization of the various processing steps applied at the subject or
group-level. Each folder contains the NIRS.mat structure, to keep track of the operations
applied and the analyzed data files. Subfolders can include separate branches for different
parallel pipelines, for example, when analyzing multiple experimental conditions.

2.4. Visualization of the data (DisplayGUI)

One of the main objectives of this toolbox is to offer as much flexibility and transparency as
possible, so that the user need not have programming skills in order to interact with the data.
For this purpose, the DisplayGUI interface allows one to visualize the data at any step of the
analysis. Figure 4 shows an overview of the DisplayGUI, including the multimodal display,
different decomposition techniques, and the 3DMTG navigation. After synchronization with
fNIRS, multimodal data such as respiratory signal, cardiac pulse, or other auxiliary channels
are displayed in the upper window of the DisplayGUI. Video, EEG or 3DMTG topographic
representation can be displayed on demand for a selected time interval. Specific spatial ROI
can be selected in the 3DMTG interface to restrict visualization in the DisplayGUI and,
inversely, channels of interest can be selected in the DisplayGUI, leading to a restricted
visualization in the 3DMTG.

The user can either look at individual channels, select a group of channels based on the
correlation of their time courses, or choose channels based on their amplitude or spatial
localization. Subsequently, the user selects a specific time interval, such as the duration
of an artifact or a task. Specific processing steps, such as rejection of noisy intervals or
correction of artifacts, can be performed for the selected time interval and specific channels.
Various data decomposition techniques are implemented in such a way that the user has
the possibility to first extract one or several specific components, which will then be stored
in the component list [Extract]. Because many of the decompositions can be influenced
by the presence of outliers in the data, the customized time and channel selection within
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the DisplayGUI is a particular advantage of the LIONirs toolbox, favoring a superior and
more targeted decomposition. Visualization of the components’ signatures in all considered
dimensions, i.e., time, space, or wavelength, allows for easy identification of the components
of interest. For instance, when aiming to correct an artifact, the user can identify those
specific components with characteristics related to that artifact, and subtract it from the
data. When decomposing a cerebral activation pattern, the visualization of the components
allows for easy identification of those components that contain characteristics known to be
related to a hemodynamic response, and should therefore be exported for statistical analysis
(Sec. 2.7). If one has reason to exclude some or all channels of a specific interval, for example
due to noise contamination, the DisplayGUI allows a manual rejection to be applied. Even
though the DisplayGUI can visualize data from previous processing steps, the operations are
done in a sequential manner. This means that any manual editing (e.g., artifact correction)
is applied to the latest data stored to memory. However, the user has the option to overlay
the data from the previous step onto the signal of the current module, to fully appreciate
the effect of the procedure. This is, for example, useful during artifact correction, when
overlaying the original onto the corrected one provides a better picture of the correction’s
effect on improving the signal’s quality. If the corrections do not lead to satisfying results, it
is possible to restore the previous data in the DisplayGUI.

2.5. Preprocessing tools

2.5.1. Channel quality check

In fNIRS data analysis, a common way to ensure signal quality is to detect the cardiac
pulse, which is an easy-to-monitor physiological marker (Fekete et al., 2011; J. R. Goodwin
et al., 2014; Pinti et al., 2019). Hence, in the absence of a cardiac pulse due to poor contact
of the optodes with the skin, specific channels should be excluded. The frequency of the
cardiac pulse varies with age, from 2 Hz at birth (Mortensen et al., 2017) to around 1 Hz in
healthy adults (Fekete et al., 2011). In the software implementation, the user can adjust the
sensitivity criteria in order to discard those channels that are without evidence of cardiac
pulse, and thus ensure the quality of the fNIRS data. The toolbox offers the possibility
to save a report that provides information about the peak frequency identified and which
channels were excluded.

2.5.2. Automated artifact detection and correction

Abrupt variations in the raw fNIRS signal due to motion or muscular artifacts are often
easy to detect (Schecklmann et al., 2017; Scholkmann & Wolf, 2013). The batch system has
an artifact detection module that can automatically identify intervals and channels affected
by a suspected artifact. The detection is performed using three criteria, whose sensitivity
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Figure 4 – Overview of the DisplayGUI interface for visualization of data at each processing
stage. A) The upper panel shows the various multimodal recordings that can be synchronized
with the fNIRS data, e.g., auxiliary for respiratory belt trace (purple line). The large panel
below shows the fNIRS data at a specific stage, with different colors for each channel. Within
this large panel, the right column includes different functions allowing the user to choose
which fNIRS signal to display [Display NIRS mat], navigate between different blocks [File]
and processing steps [Module], options to visualize channels using a butterfly or a standard
view [View mode], and overlay the signal of a previous step with the current module [Overlay].
The user can also define [Get] and save a list [Save] of regions of interest [ROI zone], and use
these to display a subset of channels. In the lower part of the large fNIRS data panel, one can
access different data decomposition techniques, such as GLM, PARAFAC, and PCA, in order
to identify components corresponding to artifacts or relevant physiological activities. The
component of interest can subsequently be extracted for further analysis or, in case of artifacts,
be subtracted from the data. Finally, the lower part of the panel at the right provides options
to display [Trigger] or adjust [Scale]. B) Using the time start (blue vertical line) and time stop
(red vertical line) options on the displayed fNIRS data (in A), one can select a window of time
for which to quickly access the simultaneous EEG, audio-video recording, reject a section of
data or apply a decomposition technique. C) Topographic visualization of the fNIRS signal
using the [3DMTG]. The channels and hemodynamic activity can be projected onto a 3D
representation of the skin (as shown on the figure), the helmet or the cortical surface. (For
interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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can be fine-tuned by the user. A first criterion uses a moving average technique to detect
abrupt variations of amplitude that are abnormal; those intervals are identified when the
variation is higher than a predefined normalized z-score threshold, computed on the channel’s
whole recording (Weinberg & Abramowitz, 2008). This method avoids over-sensitivity to
background noise and, more specifically, detects excessively high variations of amplitude. A
second criterion marks any artifact-free data segment that is between two artifacted segments,
and shorter than a minimal time interval specified by the user. A third criterion uses the
temporal correlation between channels with artifacted segments (detected using the two
previous criteria) and any other channels. This implies that if the correlation between the
time courses of a channel that contains an artifacted segment and another channel is higher
than the threshold defined by the user, then the time interval of this other channel is also
identified as containing an artifact. It is then up to the user to conduct a manual verification
of the artifact detection and potentially apply adjustments to either reject the identified
segments, or to proceed to one of the artifact-correction techniques provided in the toolbox.
These corrections aim to minimize the overall effect of artifacts on the fNIRS signal, by
avoiding the rejection of too many trials and thus maintaining adequate statistical power for
further analyses.

LIONirs toolbox offers two data decomposition techniques specifically for artifact cor-
rection: the 2D PCA and the multidimensional PARAFAC. For both approaches, LIONirs
allows the user to conduct an automated decomposition of segments previously identified
as containing artifacts. Both have been proven to perform well for correcting movement
artifacts in fNIRS (Hüsser et al., 2022; Yücel et al., 2014). The implementation of PCA uses
a Matlab function to decompose time and channel into components that represent most of the
variance, and classify these by percent of variability explained. With PCA, we assume that
the component that explains most of the variance will reflect the artifact, and the user can
remove the component up to a total percentage of variance explained (Brigadoi et al., 2014;
Cooper et al., 2012). The implementation of PARAFAC is done by means of the external
open-source package Nway Toolbox (Andersson & Bro, 2000). In PARAFAC, an automated
decomposition selects the optimal number of components, based on the lowest residual error
and the highest Concordia criteria (Andersson & Bro, 2000). The artifact component(s)
retained for correction are the one(s) that explain the highest variance in the time course
(similar to PCA) and also the lowest difference between wavelength, assuming that both
wavelengths from the same site will perceive the artifact conjointly (Cui et al., 2010).

For both decomposition techniques, the user can choose between an automated subtraction
using the batch system or a manual one using the DisplayGUI. Once the decomposition
completed, the final effect of the correction can be reviewed visually in the DisplayGUI. There
is also an offset adjustment available to force light intensity to return to the level it was at
before the movement artifact, and thus avoid discontinuity in the signal. This procedure
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greatly improves data quality, as illustrated in Fig. 5. In this case, the uncorrected artifact
shows both wavelengths equally affected by an articulatory movement and an abnormal strong
variation, while the corrected one shows the slow pattern of the HRF time-lock with the task
event.

Although this article has laid out the different options for detecting, correcting and
rejecting artifacts in the order in which they are typically performed for movement artifact
correction, the LIONirs toolbox offers the flexibility to change that order, and to apply each
method at any stage of processing.

Figure 5 – Example of a movement artifact correction. A) The proposed sequence for the
automated detection and correction of artifacts in the LIONirs toolbox. B) 15-s segment (black
horizontal line) of raw fNIRS data recorded during a verbal fluency task, where the participant
has to say out loud as many words as possible belonging to a given category during a specific
time interval (Paquette et al., 2015). This task typically induces an articulatory movement
artifact, expressed as an abrupt change in the fNIRS signal (shown on B between the two
vertical blue lines). C) The same data segment after the subtraction of the artifact-related
component, identified with PARAFAC decomposition. D) Concentration changes in HbO
(solid lines) and HbR (dotted lines) from the channel which most prominently showed the
artifact in the raw data, before correction (red lines) and after correction (black lines). HbO
and HbR signals are both equally affected by the artifact (red lines) as they both show a
strong abnormal variation, while the corrected data (black lines) reveals the slow pattern of
the HRF time-locked with the task event in the Broca ROI typically recruited by the verbal
fluency task.

2.5.3. Systemic physiology artifacts

fNIRS measures light attenuation as deep as a few centimeters under the surface of the
skin (Haeussinger et al., 2011). Light absorption, however, is not specific to the cortex, as
photons travel through skin, skull, and other superficial tissues. Thus, systemic hemodynamic
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variations related to other physiological phenomena not directly related to cerebral activation,
such as cardiac pulse, respiration, or slow-wave fluctuations around 0.1 Hz also known as
Mayer waves (Julien, 2006), are part of the acquired signal and distort the hemodynamic
response. Signals related to cardiac pulse or respiration can be filtered out, as their frequencies
are not in the range of the hemodynamic activity (Fekete et al., 2011).

However, systemic slow hemodynamic fluctuations such as Mayer waves could be con-
founded with the hemodynamic response associated with brain activity. Multi-distance
optodes, global average of all channels or PCA of the entire signal that includes the slow
systemic fluctuations, can be used to identify and correct this type of noise (Erdoğan et al.,
2016; Gagnon et al., 2012; J. R. Goodwin et al., 2014; Kirilina et al., 2012; Saager & Berger,
2005; Y. Zhang et al., 2005). The GLM (Sec. 2.6.1) can be applied, to estimate the regression
coefficient corresponding to the slow systemic physiological noise, which can then be sub-
tracted from the data. Regressing the confounding physiology increases the sensitivity of the
subsequent analysis, thus improving the reliability of the results (Huppert, 2016; Y. Zhang
et al., 2005). Figure 6 illustrates an example of such a regression using globally averaged data
(all channels averaged) to estimate the effect of physiology artifact as a regressor (Fig. 6B).
The HRF response is more stable after (Fig. 6C), compared to before (Fig. 6A) the extraction
of the physiology.

Figure 6 – Regressing out the effects of the physiology, as applied to a single trial of a
fNIRS data set recorded during a 30-seconds visual stimulation (black horizontal bold line)
with a flipping checkerboard. A) The raw data from the 54 fNIRS channels covering the
occipital area; B) The extracted physiology artifact using a GLM regression in the same
fNIRS channels. Slow-wave fluctuations around 0.1 Hz are clearly visible in the physiology
extraction. C) fNIRS data after subtraction of the physiology artifact.

2.6. Hemodynamic analyses

Once data is corrected, by subtracting or rejecting confounding artifacts, the task-related
brain activity or functional connectivity (FC) measures can be identified for each participant.
LIONirs preprocessing modules handle the basic transformation of the data, such as delta
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optical density (dOD), filtering, and transformation of light intensity into hemodynamic
concentrations using the Modified Beer-Lambert law (MBLL) (Delpy et al., 1988). The
differential pathlength factor (DPF) can be adjusted according to the participant’s age
(Duncan et al., 1995; Duncan et al., 1996; Scholkmann & Wolf, 2013) or be fixed manually.
When the signal has been transformed into hemodynamic fluctuations, there are different
ways of proceeding to the interpretation of cerebral activation. For example, it is possible to
process task-based data in order to identify the specific characteristics of the task-related
hemodynamic response. Functional connectivity data acquired at rest or during a specific
task can also be processed in order to investigate brain network organization. In the next
two sections, we will present task-related and functional connectivity analyses, respectively,
using the LIONirs toolbox.

2.6.1. Task-related hemodynamic response

A typical way to estimate the HRF response is through a regression approach, namely
the GLM, that allows the researcher to determine how well the data points match a set of
predictions (Friston et al., 2011; Friston et al., 1995; Poline & Brett, 2012). A multiple
linear regression based on the least-squares estimation has been implemented into the current
toolbox, where the user must define the regressors to be considered (Draper, 1998). A tool
is provided to convolve the modeled HRF based on the applied paradigm (Glover, 1999)
and to create an event-related regressor. To improve performance of the GLM, the user has
the flexibility to add relevant regressors to the model, i.e., factors that might be correlated
with each other, such as auxiliary data (e.g., cardiac fluctuations or respiration) (Hillenbrand
et al., 2016) or low-frequency oscillations (Tong and Frederick, 2010). For example, one
or several short-distance channels (Gagnon et al., 2012), or the global average (Y. Zhang
et al., 2005) can be used to estimate the physiological noise. Once the GLM estimation of
the HRF response is obtained at the subject-level, individual regression weights, typically
called beta coefficients, can be exported for use in group statistics. Decomposition using
PCA or PARAFAC to extract the hemodynamic time course, could be explored as well. As a
visual example, Fig. 7 shows a typical processing pipeline (7A) for data acquired during a
visual stimulation (7B) and a data set acquired during a passive story listening paradigm
(7C). Data were recorded using an Imagent Oxymeter (ISS, Champaign, Illinois, USA) on a
healthy adult subject, at a sampling rate of 20 Hz. Experiments were approved by the ethical
committee at the Sainte-Justine University Hospital. The following modules were applied
to the data (see also Fig. 7A): read data, add multimodal data (e.g., HRF model response,
video), segmentation to synchronize multimodal data, semi-automated artifact detection, and
rejection, dOD, low-pass filtering at 0.1 Hz, and MBLL. Then, a GLM model, including
global average (Y. Zhang et al., 2005) and the modeled HRF as regressors (Glover, 1999), was
applied. The estimated physiology artifact was subtracted from the data, before averaging
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across trials to obtain the time-locked response. The estimation of the HRF response was
followed by a simple Student t-test against zero, applied to all coefficients that were estimated
from multiple sessions for each channel (Uga et al., 2014). False discovery rate (FDR) was
used to correct for multiple comparisons (Benjamini & Yekutieli, 2001). The response that
differed significantly from zero was projected onto the cortical surface.

2.6.2. Functional connectivity measures

Functional connectivity (FC) is usually defined as the correlation between the time series
of hemodynamic fluctuations measured at different locations on the scalp (Friston et al., 2011)
FC has been largely studied in fMRI, and assumes that there is a direct relationship between
neuronal activity and the hemodynamic fluctuations, measured as the BOLD signal. Research
in this field has allowed the description of several consistent functional brain networks during
resting state, including the default mode network, the somatosensory network, the dorsal
attention network, the ventral attention network, and the auditory and visual networks (Bellec
et al., 2010; Bijsterbosch et al., 2017; Damoiseaux et al., 2006; Raichle et al., 2001).

Many of the mathematical measures that are used to estimate FC from neuroimaging time
series are also frequently applied in other modalities, such as fMRI or EEG (Friston et al.,
2011; Smitha et al., 2017). Most of these approaches can be applied straightforwardly to the
time series of fNIRS data (Gallagher et al., 2016; Molavi et al., 2014; T. Nguyen et al., 2018;
Xu et al., 2015). However, fNIRS is limited to measuring hemodynamic fluctuations that occur
in the cortical surface, thus precluding fNIRS data from informing about functional brain
networks in deeper areas. Importantly, depending on the level of coverage of the montage
used and duration of the recording, connectivity measures derived from fNIRS data should
be interpreted carefully (Sun et al., 2018; Wang et al., 2017). Despite these limitations, FC
measures can be applied to fNIRS data in order to answer specific questions regarding the
characteristics of cortical functional networks in a specific population and/or condition.

The LIONirs toolbox allows the computation of functional brain connectivity measures
within the predefined channels or ROIs, using Pearson’s correlations (Xu et al., 2015), Hilbert
joint phase probability (Molavi et al., 2014), and magnitude squared coherence (Kida et al.,
2016). Figure 8A shows a typical processing pipeline for performing a FC analysis. In this
example, we applied the magnitude squared coherence approach to fNIRS data recorded in
14 healthy adults during a 12-minutes resting-state period. Based on the 10-20 system (Klem
et al., 1999) several ROIs were created in the DisplayGUI by assigning each channel to a
specific ROI (Fig. 8B). For each participant, magnitude squared coherence measures are
computed between the time series of each pair of channels and are presented by ROIs in a FC
matrix (Fig. 8C) or a circular connectogram (Fig. 8D) using LIONirs GUI_LookMatrices and
user-defined thresholds. FC measures could also be computed between each group of channel(s)
representing ROIs (not illustrated in Fig. 8). The results of the resting-state coherence matrix
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Figure 7 – Examples of subject-level analyses. In both cases, the results concord with
previous fMRI analysis of similar experiments (Toronov et al., 2007; Vannest et al., 2009). A)
Detailed hierarchical diagram of the different steps included in the processing pipeline. B)
Visual stimulation. Fifty-four fNIRS channels covered the occipital cortex, measuring the
cerebral activation in a healthy adult. Visual stimulation consisted of a flipping checkerboard
that appeared for 30 s in the bottom-left corner of the stimulation screen (Bastien et al.,
2012). The task included a total of 10 blocks. Averaged time courses of all blocks are shown
by a solid line for HbO and a dotted line for HbR concentrations. The color of each curve
associates with a channel(s) at a specific location on the head topography. The duration
of stimulation for each paradigm is shown with a horizontal blue line below the timeline
curve. The black line displays the expected HRF model. The significant response for HbO
variations were projected onto the cortical surface (right panel). A strong statistical response
was found in the right visual cortex (FDR corrected q < 0.001). C) Passive story listening
task. One hundred ten channels covered the bilateral frontal, temporal and parietal areas.
Hemodynamic fluctuations were recorded while the subject listened to a story presented in
its native language. The story was presented in 18 individual blocks of 20 s each (Paquette
et al., 2010). Note that the description used in B is also used here to illustrate HbO and HbR
concentrations (solid and dotted lines, respectively), the duration of the task (horizontal blue
line) and the expected HRF model (black line). Temporal anterior and temporal medial areas
of both hemispheres showed significant responses related to the auditory response, while the
temporal posterior area in the left hemisphere revealed cerebral activation most likely related
to receptive language processing in Wernicke’s area (FDR corrected q < 0.05).
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for all healthy adults include the averaged coherence values for all subjects. Some connectivity
clusters are observed in the prefrontal areas (FP1 and FP2), the somatosensory areas (F3,
C3 and F4, C4) as well as the left-hemisphere language areas (F7 and T3, T5).

2.7. Statistical analyses

Statistical tools included in the LIONirs toolbox can be applied to specific channels or
ROIs. Hence, prior to the analysis, it is essential that the user identifies homologous channels
or ROIs for all subjects, to allow for proper inter-subject comparisons. Statistics can be
applied to the averaged time course, to the components identified with a decomposition
technique (e.g., the estimation of the hemodynamic response with the GLM model), or to FC
measures.

2.7.1. Task-related statistic

Parametric statistical tools (one-sample, paired, unpaired student test and multiway anal-
ysis of variance (ANOVAN) are implemented using Matlab Statistics and Machine Learning
Toolbox. The statistic is apply on exported components such as average hemodynamic ampli-
tude or GLM estimate. In the case using a list of channels a statistical map are save and could
be open in a 3DMTG to be visualized as a heatmap of the results: average contrast, Tmap
or Fmap. These result maps are available uncorected or using FDR correction for multiple
comparisons (Benjamini & Yekutieli, 2001) available in the Matlab bioinformatics toolbox.
Export of predefine ROI or channels could be use in external specialized statistic softwares
such as the Statistical Package for the Social Sciences (SPSS) or R (www.r-project.org).

2.7.2. Functional connectivity

Connectivity matrices statistics can be applied to specific channels or ROIs. First,
a Fisher transform are implemented to be apply on brain connectivity measures. Non
parametric permutation tests have been implemented using t statistic, which establishes the
null distribution based on experimental data shuffle test repeated multiple times (Galán et al.,
1997). A quick visualisation of these result and average groups matrices are available in the
GUI_LookMatrices. Data could also be export to the specialized Network-Based Statistic
(NBS) toolbox (Zalesky et al., 2010).
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Figure 8 – Functional connectivity (FC) analysis for a fNIRS data set of 14 healthy adults
during a resting-state data acquisition (eyes open, 12 min). A) A typical processing pipeline
used to calculate FC using magnitude squared coherence of HbO hemodynamic concentrations.
B) Regions of interest (ROIs) were defined manually using the DisplayGUI (the montage
was identical for both hemispheres and the same for all participants). These ROIs were
used to compute the connectivity matrix (shown in C). Red channels (B and C) are located
around Fp1 and Fp2 from the 10–20 system; orange channels around F3 and F4; black
channels around C3 and C4; gray channels around P3 and P4; cyan channels around Fp7
and Fp8; blue channels around T3 and T4; and green channels around T5 and T6. C) A
coherence matrix between all pairs of ROIs is averaged for all 14 subjects (average matrix
shown in this figure). In this matrix, the upper left quadrant corresponds to ROIs in the left
hemisphere, the lower right part corresponds to the right hemisphere, while the lower left
and upper right quadrants reflect inter-hemispheric connections. The color scale ranges from
blue to red, where blue means there is no or weak functional connectivity and red suggests
highly functionally connected regions. D) The connectogram reveals the stronger connections
(COH > 0.3) across the ROIs.
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3. Discussion
LIONirs is a new open-source toolbox for the analysis of fNIRS data. The toolbox includes

a variety of techniques and methods for data processing that have been used for fNIRS data
analysis in many previous studies. Since there is currently no consensus on the standard
procedures for fNIRS data recording, preprocessing and processing, one of the main objectives
of this work was to design a toolbox that is as flexible as possible, and allows for easy
handling of the data without requiring programming skills. Hence, the LIONirs toolbox
makes it possible for the user to choose between several tools, explore and compare various
methodological approaches, and easily build a customized data analysis pipeline adapted
to their specific needs and data set characteristics. Most of the analysis modules need few
seconds to compute. However, few modules such those allowing to compute connectivity
measure, data decomposition, and artifact detection could take up to few minutes. The
pipeline can subsequently be applied in either a fully or semi-automated manner to a large
number of subjects. The second goal of the LIONirs toolbox was to provide an open-access
and transparent tool for fNIRS data processing, thus avoiding the black-box phenomenon.
To that end, two graphical interfaces (DisplayGUI and 3DMTG) provide 3D visualization
of the fNIRS montage and the data at any stage of processing. It is thus possible to track
each intermediate result across the entire data analysis process, allowing the user to modify,
explore and compare the applied methods if necessary. fNIRS data acquired in children
or clinical populations often includes a large number of movement artifacts that can rarely
be fully corrected using an entirely automated procedure. A careful artifact detection and
correction is critical for obtaining an interpretable fNIRS signal. The LIONirs toolbox enables
a semi-automated artifact detection, correction, and rejection, allows the user to verify the
quality of the preprocessing, make adjustments if needed, and combine different methods
when applicable. LIONirs includes two data decomposition techniques for artifact correction,
namely tPCA and PARAFAC, which are powerful tools for minimizing the impact of artifacts
and increasing the quality of data (Hüsser et al., 2022; Yücel et al., 2014) A quality report
can be produced to summarize the number and duration of the corrections applied for each
subject. In some cases, poor signal quality may require the rejection of a channel or time
interval instead of trying to correct it; an advantage of LIONirs is that it offers the user the
flexibility to choose between either correction or rejection. Figure 5 illustrates the impact of
non-corrected artifacts on the hemodynamic response, which could lead to misinterpretation
of the data. The detection and correction or the rejection of artifacts are therefore crucial
steps in fNIRS data analyses.

Another type of noise that often affects hemodynamic signals are slow-waves related to
systemic physiological fluctuations (Chaddad et al., 2013; Masataka et al., 2015; Yücel et al.,
2014). Several studies have shown that removing these slow-waves leads to a significant

clxviii



increase of the specificity of the fNIRS signal (Erdoğan et al., 2016; Gagnon et al., 2012;
J. R. Goodwin et al., 2014; Kirilina et al., 2012; Saager & Berger, 2005; von Lühmann et al.,
2020; Y. Zhang et al., 2005). This correction is even more important when the hemodynamic
response shows small amplitudes, due to a low signal to noise ratio (Tachtsidis & Scholkmann,
2016). To deal with this physiological noise, the LIONirs toolbox offers a simple regression
of either short-distance channels or a global average of all channels. We have illustrated
how useful a GLM regression is for extracting physiological noise, thereby improving the
interpretability of the hemodynamic response (Fig. 6; Peng et al., 2016; Scholkmann et al.,
2014; Uga et al., 2014).

Although the debate is ongoing as to which of the current methods is best, LIONirs
incorporates some of the commonly applied techniques for analyzing hemodynamic response.
They include epoch averaging (illustrated in Fig. 7) and multiple regression, which are mainly
intended for task-related data sets. Several measures of functional connectivity, which can be
applied to both resting-state and task-related data, are also available in the toolbox, namely
Pearson’s correlation, Hilbert joint probability distribution of the phase, and magnitude
squared coherence (illustrated in Fig. 8, Kida et al., 2016; Molavi et al., 2014; Xu et al.,
2015). Measures can be calculated to obtain individual and then group functional connectivity
matrices (Xu et al., 2015). The LIONirs toolbox therefore offers a variety of hemodynamic
responses and functional connectivity measures, which can be selected according to the
research question.

In some studies, fNIRS acquisition is conducted simultaneously with other modalities
such as physiologic measures (e.g., cardiac pulse, respiration), EEG, or audio-video recording.
The LIONirs toolbox allows the integration and synchronization of multimodal signals, which
can increase the fNIRS signal quality, help with fNIRS data interpretation, and provide rich
information on neurovascular coupling. For instance, physiologic measures can significantly
help detect physiological artifacts and remove them from the fNIRS signal. The movements of
the participant during the fNIRS recording can be captured on audio-video monitoring, which
can contribute to the identification of movement artifacts. EEG recorded simultaneously
with fNIRS may provide precious information on the participants’ state of consciousness (e.g.,
asleep, awake, drowsy or alert), or detect pathological alterations (e.g., epileptogenic activity)
that can contaminate the fNIRS signal. Multimodal data acquisition is an important source
of information for a better understanding of the neurovascular coupling (Lecrux et al., 2019).
Extensive work on multimodal analysis in EEG and fMRI has shown that even if the electric
signal from the EEG and the hemodynamic variations from the fMRI both evolve over a
different time scale, subject-specific cerebral responses from both modalities can be useful
for identifying relevant neuronal activity. Single-trial discrimination has also been used to
construct EEG-derived fMRI activation maps (Philiastides & Heekeren, 2009), which could
be applied to fNIRS. The concurrent analysis of these data can be helpful for the detection
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of artifacts and the control of data quality, as variations in experimental design has been
shown to cause complexities in the hemodynamic response (Issard & Gervain, 2018). Thus,
multimodal data can contribute to a better understanding of the relationship between the
time series and the evolution across time of EEG rhythmic activity such as alpha, theta and
gamma frequency bands, and has provided important insights into the characteristics of brain
activity (Goldman et al., 2002; Martínez-Montes et al., 2004).

LIONirs can be viewed as a complementary tool to currently available software packages.
As described in the introduction, other well-designed and highly useful tools such as HomER
TM (Huppert et al., 2009), NIRS-SPM (Ye et al., 2009), Brain AnalyzIR (Santosa et al.,
2018) and FC-NIRS (Xu et al., 2015) have been publicly released in the last decades. While it
also integrates some of the methods proposed by other toolboxes, LIONirs’ development was
mainly driven by the specific needs of processing artifacted data acquired from challenging
populations (very young children or clinical populations), which are the populations we
typically recruit in our lab. In these contexts, the signal’s characteristics may be influenced
by ongoing development or pathological phenomena, which have to be taken into account
when processing and interpreting data. We therefore developed a highly flexible toolbox,
allowing the user to apply various methods and visualize the data at any stage of the analysis.
In addition, LIONirs includes PARAFAC, a new method for artifact correction and the
extraction of relevant activities in fNIRS (Hüsser et al., 2022). Its integration into the Matlab
Batch System, where processing pipelines can be customized, further contributes to this
flexibility and enables the user to generate scripts that facilitate the automated analysis
of large data sets. The DisplayGUI permits the visualization of data at any processing
stage, thus contributing to both the transparency of the toolbox and to its flexibility, since
alternative approaches can be explored and compared visually. Since montages are often not
standardized across studies that use fNIRS, the 3DMTG GUI serves to create customized
montages and associate them with a reconstruction of the brain’s anatomy, using the subject’s
(or template) MRI images. Consequently, the user can, at any step during processing, organize
the data by ROI. As do other fNIRS data processing toolboxes, LIONirs supports reading in
and exporting to several data formats (e.g., .nirs, SNIRF, binary files), which allows the use
of methods from other software packages.

As with other publicly available fNIRS data processing packages, LIONirs is in constant
evolution, with new features and methods being continually added and improved. Novel
functionalities will be progressively integrated into LIONirs and made publicly available.
In its current version, the toolbox is designed to study the slow hemodynamic signal, not
the Event-related optical signal (EROS) or the fast signal, which can help to understand
interactions at different time scales between specific brain areas and the electrophysiological
signal (Gratton, 2010; Gratton et al., 1997). Algorithms allowing to analyze the fast optical
signal could be implemented in an upcoming version of the toolbox. LIONirs is also limited to
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the visualization of the brain cortex by use of a simple radial projection from the corresponding
channel position, because this provides an easy and fast (< 1 sec) representation. Complete
forward modeling and inverse estimation (diffusion optical tomography) are not yet supported,
although they could be useful in studies that include high-density data acquisition. In a
previous study, several methods were compared in a fNIRS context (J. Tremblay et al., 2018)
and will be included in one of the upcoming versions of LIONirs. Nevertheless, the current
version supports and provides several data formats; the integration of additional formats
is planned, in order to make the toolbox available to a larger range of users. Finally, we
also intend to integrate a technique for quantitative analysis of multimodal data, such as the
N-way partial least-squares technique for a data-driven combination of neurophysiological
EEG information and the hemodynamic response measured with fNIRS (Martínez-Montes
et al., 2004)

Despite the examples used in this article to illustrate how a processing pipeline in LIONirs
can be applied to real experimental data, we do not claim to establish a best-practice guideline
for the analysis of fNIRS. The aim was rather to provide different options, so that researchers
can build the processing pipeline that best suits their specific experiment and research
question.

4. Conclusion
LIONirs is a new Matlab-integrated toolbox for fNIRS data analyses. It allows the user

to deal with fNIRS data acquired with a wide range of optode montages, various correcting
artifact methods, and multimodal data. The toolbox stands out because of its flexibility
and transparency throughout the entirety of analysis processing. The user can explore and
compare different methodological approaches and select the most appropriate technique for
a particular data set. The toolbox provides the flexibility to build a customized processing
pipeline, whereby the methods and order of analysis are completely determined by the
user. Transparency is achieved via the DisplayGUI, that which allows one to visualize the
continuous time series of the signal and a 3D projection of the data onto the scalp or cortex.
The proposed semi-automated approach for artifact detection and data decomposition helps
to efficiently reduce artifact contamination and promote quality of the fNIRS signal. LIONirs
includes several techniques for the analysis of the hemodynamic signal, such as averaging,
multiple regression, and FC measures, as well as a module for certain statistical analyses.
The program is distributed under the GNU license and is open for further development
and use in any third-party study, as long as this publication is cited. The current version,
as well as detailed documentation on all its functionalities, can be downloaded from https:
//github.com/JulieTremblay3/LIONirs.
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meyer, M., Villringer, A., & Cramon, D. Y. V. (2004). Towards a standard analysis
for functional near-infrared imaging. NeuroImage, 21 (1), 283–290. https://doi.org/10.
1016/j.neuroimage.2003.09.054

Sepeta, L. N., Croft, L. J., Zimmaro, L. A., Duke, E. S., Terwilliger, V. K., Yerys, B. E., You, X.,
Vaidya, C. J., Gaillard, W. D., & Berl, M. M. (2015). Reduced language connectivity
in pediatric epilepsy. Epilepsia, 56, 273–282. https://doi.org/10.1111/epi.12859

Sidiropoulos, N. D., & Bro, R. (2000). On the uniqueness of multilinear decomposition of n-
way arrays. Journal of Chemometrics, 14 (3), 229–239. https://doi.org/10.1002/1099-
128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N

Skeide, M. A., & Friederici, A. D. (2016). The ontogeny of the cortical language network.
Nature Reviews Neuroscience, 17, 323–332. https://doi.org/10.1038/nrn.2016.23

Slinger, G., Otte, W. M., Braun, K. P., & van Diessen, E. (2022). An updated systematic
review and meta-analysis of brain network organization in focal epilepsy: looking back
and forth. Neuroscience & Biobehavioral Reviews, 132, 211–223. https://doi.org/10.
1016/j.neubiorev.2021.11.028

Smith, M. L. (2010). Neuropsychology in epilepsy: children are not small adults. Epilepsia,
51, 68–69. https://doi.org/10.1111/j.1528-1167.2009.02451.x

Smith, M. L. (2016). Rethinking cognition and behavior in the new classification for childhood
epilepsy: examples from frontal lobe and temporal lobe epilepsies. Epilepsy & Behavior,
64, 313–317. https://doi.org/10.1016/j.yebeh.2016.04.050

Smitha, K., Raja, K. A., Arun, K., Rajesh, P., Thomas, B., Kapilamoorthy, T., & Kesavadas,
C. (2017). Resting state fmri: a review on methods in resting state connectivity
analysis and resting state networks. The Neuroradiology Journal, 30, 305–317. https:
//doi.org/10.1177/1971400917697342

Snyder, P. J., Nussbaum, P. D., & Robins, D. L. (2006). Clinical neuropsychology (P. J.
Snyder, Ed.; 2nd). American Psychological Association.

Songjiang, L., Tijiang, Z., Heng, L., Wenjing, Z., Bo, T., Ganjun, S., Maoqiang, T., & Su, L.
(2021). Impact of brain functional network properties on intelligence in children and
adolescents with focal epilepsy: a resting-state mri study. Academic Radiology, 28,
225–232. https://doi.org/10.1016/j.acra.2020.01.004

Specchio, N., Wirrell, E. C., Scheffer, I. E., Nabbout, R., Riney, K., Samia, P., Guerreiro,
M., Gwer, S., Zuberi, S. M., Wilmshurst, J. M., Yozawitz, E., Pressler, R., Hirsch,
E., Wiebe, S., Cross, H. J., Perucca, E., Moshé, S. L., Tinuper, P., & Auvin, S.
(2022). International league against epilepsy classification and definition of epilepsy
syndromes with onset in childhood: position paper by the ilae task force on nosology
and definitions. Epilepsia, 63, 1398–1442. https://doi.org/10.1111/epi.17241

ccix

https://doi.org/10.1016/j.neuroimage.2003.09.054
https://doi.org/10.1016/j.neuroimage.2003.09.054
https://doi.org/10.1111/epi.12859
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1002/1099-128X(200005/06)14:3<229::AID-CEM587>3.0.CO;2-N
https://doi.org/10.1038/nrn.2016.23
https://doi.org/10.1016/j.neubiorev.2021.11.028
https://doi.org/10.1016/j.neubiorev.2021.11.028
https://doi.org/10.1111/j.1528-1167.2009.02451.x
https://doi.org/10.1016/j.yebeh.2016.04.050
https://doi.org/10.1177/1971400917697342
https://doi.org/10.1177/1971400917697342
https://doi.org/10.1016/j.acra.2020.01.004
https://doi.org/10.1111/epi.17241


Sporns, O., Chialvo, D., Kaiser, M., & Hilgetag, C. (2004). Organization, development
and function of complex brain networks. Trends in Cognitive Sciences, 8, 418–425.
https://doi.org/10.1016/j.tics.2004.07.008

Sporns, O. (2018). Graph theory methods: applications in brain networks. Dialogues in
Clinical Neuroscience, 20, 111–121. https://doi.org/10.31887/DCNS.2018.20.2/osporns

Stam, C. J. (2004). Functional connectivity patterns of human magnetoencephalographic
recordings: a ‘small-world’ network? Neuroscience Letters, 355, 25–28. https://doi.
org/10.1016/j.neulet.2003.10.063

Stam, C. J., Nolte, G., & Daffertshofer, A. (2007). Phase lag index: assessment of functional
connectivity from multi channel eeg and meg with diminished bias from common
sources. Human Brain Mapping, 28, 1178–1193. https://doi.org/10.1002/hbm.20346

Stam, C. J., & van Straaten, E. (2012). The organization of physiological brain networks.
Clinical Neurophysiology, 123, 1067–1087. https://doi.org/10.1016/j.clinph.2012.01.011

Staudt, M., Lidzba, K., Grodd, W., Wildgruber, D., Erb, M., & Krägeloh-Mann, I. (2002).
Right-hemispheric organization of language following early left-sided brain lesions:
functional mri topography. NeuroImage, 16, 954–967. https://doi.org/10.1006/nimg.
2002.1108

Staudt, M., Grodd, W., Niemann, G., Wildgruber, D., Erb, M., & Krägeloh-Mann, I. (2001).
Early left periventricular brain lesions induce right hemispheric organization of speech.
Neurology, 57, 122–5. https://doi.org/10.1212/WNL.57.1.122

Stephan, K. E., & Friston, K. J. (2010). Analyzing effective connectivity with functional
magnetic resonance imaging. WIREs Cognitive Science, 1, 446–459. https://doi.org/
10.1002/wcs.58

Sun, P.-P., Tan, F.-L., Zhang, Z., Jiang, Y.-H., Zhao, Y., & Zhu, C.-Z. (2018). Feasibility of
functional near-infrared spectroscopy (fnirs) to investigate the mirror neuron system:
an experimental study in a real-life situation. Frontiers in Human Neuroscience, 12,
86. https://doi.org/10.3389/fnhum.2018.00086

Suo, X., Lei, D., Li, K., Chen, F., Li, F., Li, L., Huang, X., Lui, S., Li, L., Kemp, G. J.,
& Gong, Q. (2015). Disrupted brain network topology in pediatric posttraumatic
stress disorder: a resting-state fmri study. Human Brain Mapping, 36, 3677–3686.
https://doi.org/10.1002/hbm.22871

Supekar, K., Musen, M., & Menon, V. (2009). Development of large-scale functional
brain networks in children (K. J. Friston, Ed.). PLoS Biology, 7, e1000157. https:
//doi.org/10.1371/journal.pbio.1000157

Sweeney, K. T., Ayaz, H., Ward, T. E., Izzetoglu, M., McLoone, S. F., & Onaral, B. (2012).
A methodology for validating artifact removal techniques for physiological signals.

ccx

https://doi.org/10.1016/j.tics.2004.07.008
https://doi.org/10.31887/DCNS.2018.20.2/osporns
https://doi.org/10.1016/j.neulet.2003.10.063
https://doi.org/10.1016/j.neulet.2003.10.063
https://doi.org/10.1002/hbm.20346
https://doi.org/10.1016/j.clinph.2012.01.011
https://doi.org/10.1006/nimg.2002.1108
https://doi.org/10.1006/nimg.2002.1108
https://doi.org/10.1212/WNL.57.1.122
https://doi.org/10.1002/wcs.58
https://doi.org/10.1002/wcs.58
https://doi.org/10.3389/fnhum.2018.00086
https://doi.org/10.1002/hbm.22871
https://doi.org/10.1371/journal.pbio.1000157
https://doi.org/10.1371/journal.pbio.1000157


IEEE Transactions on Information Technology in Biomedicine, 16 (5), 918–926. https:
//doi.org/10.1109/TITB.2012.2207400

Szaflarski, J. P., & Allendorfer, J. B. (2012). Topiramate and its effect on fmri of language
in patients with right or left temporal lobe epilepsy. Epilepsy & Behavior, 24, 74–80.
https://doi.org/10.1016/j.yebeh.2012.02.022

Tachtsidis, I., & Scholkmann, F. (2016). False positives and false negatives in functional
near-infrared spectroscopy: issues, challenges, and the way forward. Neurophotonics,
3 (3), 031405. https://doi.org/10.1117/1.NPh.3.3.031405

Tahmasian, M., Bettray, L. M., van Eimeren, T., Drzezga, A., Timmermann, L., Eickhoff,
C. R., Eickhoff, S. B., & Eggers, C. (2015). A systematic review on the applications
of resting-state fmri in parkinson’s disease: does dopamine replacement therapy play
a role? Cortex, 73, 80–105. https://doi.org/10.1016/j.cortex.2015.08.005

Tak, S., Kempny, A. M., Friston, K. J., Leff, A. P., & Penny, W. D. (2015). Dynamic
causal modelling for functional near-infrared spectroscopy. NeuroImage, 111, 338–349.
https://doi.org/10.1016/j.neuroimage.2015.02.035

Tak, S., & Ye, J. C. (2014). Statistical analysis of fnirs data: a comprehensive review.
NeuroImage, 85, 72–91. https://doi.org/10.3389/fnins.2012.00147

Talairach, J. (1988). Co-planar stereotaxic atlas of the human brain. 3-D proportional system
: An approach to cerebral imaging. https://cir.nii.ac.jp/crid/1572261551238025472

Tannenbaum, C., Ellis, R. P., Eyssel, F., Zou, J., & Schiebinger, L. (2019). Sex and
gender analysis improves science and engineering. Nature, 575, 137–146. https :
//doi.org/10.1038/s41586-019-1657-6

Tavakol, S., Royer, J., Lowe, A. J., Bonilha, L., Tracy, J. I., Jackson, G. D., Duncan,
J. S., Bernasconi, A., Bernasconi, N., & Bernhardt, B. C. (2019). Neuroimaging
and connectomics of drug-resistant epilepsy at multiple scales: from focal lesions to
macroscale networks. Epilepsia, 60, 593–604. https://doi.org/10.1111/epi.14688

Tavano, A., Grasso, R., Gagliardi, C., Triulzi, F., Bresolin, N., Fabbro, F., & Borgatti, R.
(2007). Disorders of cognitive and affective development in cerebellar malformations.
Brain, 130, 2646–2660. https://doi.org/10.1093/brain/awm201

Teixeira, J., & Santos, M. E. (2018). Language skills in children with benign childhood
epilepsy with centrotemporal spikes: a systematic review. Epilepsy & Behavior, 84,
15–21. https://doi.org/10.1016/j.yebeh.2018.04.002

Téllez-Zenteno, J. F., & Hernández-Ronquillo, L. (2012). A review of the epidemiology
of temporal lobe epilepsy. Epilepsy Research and Treatment, 2012, 1–5. https :
//doi.org/10.1155/2012/630853

Toronov, V. Y., Zhang, X., & Webb, A. G. (2007). A spatial and temporal comparison
of hemodynamic signals measured using optical and functional magnetic resonance

ccxi

https://doi.org/10.1109/TITB.2012.2207400
https://doi.org/10.1109/TITB.2012.2207400
https://doi.org/10.1016/j.yebeh.2012.02.022
https://doi.org/10.1117/1.NPh.3.3.031405
https://doi.org/10.1016/j.cortex.2015.08.005
https://doi.org/10.1016/j.neuroimage.2015.02.035
https://doi.org/10.3389/fnins.2012.00147
https://cir.nii.ac.jp/crid/1572261551238025472
https://doi.org/10.1038/s41586-019-1657-6
https://doi.org/10.1038/s41586-019-1657-6
https://doi.org/10.1111/epi.14688
https://doi.org/10.1093/brain/awm201
https://doi.org/10.1016/j.yebeh.2018.04.002
https://doi.org/10.1155/2012/630853
https://doi.org/10.1155/2012/630853


imaging during activation in the human primary visual cortex. NeuroImage, 34,
1136–1148. https://doi.org/10.1016/j.neuroimage.2006.08.048

Tremblay, J., Martinez-Montes, E., Vannasing, P., Nguyen, D. K., Sawan, M., Lepore, F., &
Gallagher, A. (2018). Comparison of source localization techniques in diffuse optical
tomography for fnirs application using a realistic head model. Biomedical Optics
Express, 9 (7), 448–454. https://doi.org/doi:10.1364/BOE.9.002994

Tremblay, J., Martínez-Montes, E., Hüsser, A. M., Caron-Desrochers, L., Lepage, C., Pouliot,
P., Vannasing, P., & Gallagher, A. (2022). Lionirs: flexible matlab toolbox for fnirs
data analysis. Journal of Neuroscience Methods, 370, 109487. https://doi.org/10.
1016/j.jneumeth.2022.109487

Tremblay, P., & Dick, A. S. (2016). Broca and wernicke are dead, or moving past the
classic model of language neurobiology. Brain and Language, 162, 60–71. https:
//doi.org/10.1016/j.bandl.2016.08.004

Trimmel, K., van Graan, A. L., Caciagli, L., Haag, A., Koepp, M. J., Thompson, P. J., &
Duncan, J. S. (2018). Left temporal lobe language network connectivity in temporal
lobe epilepsy. Brain, 141, 2406–2418. https://doi.org/10.1093/brain/awy164

Tucker, L. R. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika,
31 (3), 279–311. https://doi.org/10.1007/BF02289464

Tung, H., Lin, W.-H., Lan, T.-H., Hsieh, P. F., Chiang, M.-C., Lin, Y.-Y., & Peng, S.-J.
(2021). Network reorganization during verbal fluency task in fronto-temporal epilepsy:
a functional near-infrared spectroscopy study. Journal of Psychiatric Research, 138,
541–549. https://doi.org/10.1016/j.jpsychires.2021.05.012

Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., Delcroix, N.,
Mazoyer, B., & Joliot, M. (2002). Automated anatomical labeling of activations in
spm using a macroscopic anatomical parcellation of the mni mri single-subject brain.
NeuroImage, 15, 273–289. https://doi.org/10.1006/nimg.2001.0978

Uga, M., Dan, I., Sano, T., Dan, H., & Watanabe, E. (2014). Optimizing the general linear
model for functional near-infrared spectroscopy: an adaptive hemodynamic response
function approach. Neurophotonics, 1, 015004. https://doi.org/10.1117/1.NPh.1.1.
015004

Uhlhaas, P. J., Roux, F., Rodriguez, E., Rotarska-Jagiela, A., & Singer, W. (2010). Neural
synchrony and the development of cortical networks. Trends in Cognitive Sciences,
14, 72–80. https://doi.org/10.1016/j.tics.2009.12.002

Vanasse, C., Béland, R., Carmant, L., & Lassonde, M. (2005). Impact of childhood epilepsy
on reading and phonological processing abilities. Epilepsy & Behavior, 7, 288–296.
https://doi.org/10.1016/j.yebeh.2005.05.008

ccxii

https://doi.org/10.1016/j.neuroimage.2006.08.048
https://doi.org/doi: 10.1364/BOE.9.002994
https://doi.org/10.1016/j.jneumeth.2022.109487
https://doi.org/10.1016/j.jneumeth.2022.109487
https://doi.org/10.1016/j.bandl.2016.08.004
https://doi.org/10.1016/j.bandl.2016.08.004
https://doi.org/10.1093/brain/awy164
https://doi.org/10.1007/BF02289464
https://doi.org/10.1016/j.jpsychires.2021.05.012
https://doi.org/10.1006/nimg.2001.0978
https://doi.org/10.1117/1.NPh.1.1.015004
https://doi.org/10.1117/1.NPh.1.1.015004
https://doi.org/10.1016/j.tics.2009.12.002
https://doi.org/10.1016/j.yebeh.2005.05.008


Vanderploeg, R. D. (2000). Clinican’s guide to neuropsychological assessment (R. D. Vander-
ploeg, Ed.; 2nd). Routledge.

van Diessen, E., Numan, T., van Dellen, E., van der Kooi, A., Boersma, M., Hofman,
D., van Lutterveld, R., van Dijk, B., van Straaten, E., Hillebrand, A., & Stam,
C. J. (2015). Opportunities and methodological challenges in eeg and meg resting
state functional brain network research. Clinical Neurophysiology, 126, 1468–1481.
https://doi.org/10.1016/j.clinph.2014.11.018

van Diessen, E., Zweiphenning, W. J. E. M., Jansen, F. E., Stam, C. J., Braun, K. P. J.,
& Otte, W. M. (2014). Brain network organization in focal epilepsy: a systematic
review and meta-analysis (S. Doesburg, Ed.). PLoS ONE, 9, e114606. https://doi.
org/10.1371/journal.pone.0114606

van Mierlo, P., Papadopoulou, M., Carrette, E., Boon, P., Vandenberghe, S., Vonck, K., &
Marinazzo, D. (2014). Functional brain connectivity from eeg in epilepsy: seizure
prediction and epileptogenic focus localization. Progress in Neurobiology, 121, 19–35.
https://doi.org/10.1016/j.pneurobio.2014.06.004

Vannasing, P., Florea, O., González-Frankenberger, B., Tremblay, J., Paquette, N., Safi,
D., Wallois, F., Lepore, F., Béland, R., Lassonde, M., & Gallagher, A. (2016).
Distinct hemispheric specializations for native and non-native languages in one-day-old
newborns identi fi ed by fnirs. Neuropsychologia, 84, 63–69. https://doi.org/10.1016/j.
neuropsychologia.2016.01.038

Vannest, J., Karunanayaka, P. R., Schmithorst, V. J., Szaflarski, J. P., & Holland, S. K.
(2009). Language networks in children: evidence from functional mri studies. American
Journal of Roentgenology, 192, 1190–1196. https://doi.org/10.2214/AJR.08.2246

Vannest, J., Maloney, T. C., Tenney, J. R., Szaflarski, J. P., Morita, D., Byars, A. W., Altaye,
M., Holland, S. K., & Glauser, T. A. (2019). Changes in functional organization
and functional connectivity during story listening in children with benign childhood
epilepsy with centro-temporal spikes. Brain and Language, 193, 10–17. https://doi.
org/10.1016/j.bandl.2017.01.009

Vargha, A., & Delaney, H. D. (2000). A critique and improvement of the cl common language
effect size statistics of mcgraw and wong. Journal of Educational and Behavioral
Statistics Summer, 25, 101–132. https://doi.org/10.3102/107699860250021

Vasil’yeva, N. O., & Shmalei, S. V. (2013). Coherent relations in ongoing encephalograms of
preschool boys with neurosis-like stammering. Neurophysiology, 45, 468–476. https:
//doi.org/10.1007/s11062-013-9396-z

Verche, E., Luis, C. S., & Hernández, S. (2018). Neuropsychology of frontal lobe epilepsy in
children and adults: systematic review and meta-analysis. Epilepsy & Behavior, 88,
15–20. https://doi.org/10.1016/j.yebeh.2018.08.008

ccxiii

https://doi.org/10.1016/j.clinph.2014.11.018
https://doi.org/10.1371/journal.pone.0114606
https://doi.org/10.1371/journal.pone.0114606
https://doi.org/10.1016/j.pneurobio.2014.06.004
https://doi.org/10.1016/j.neuropsychologia.2016.01.038
https://doi.org/10.1016/j.neuropsychologia.2016.01.038
https://doi.org/10.2214/AJR.08.2246
https://doi.org/10.1016/j.bandl.2017.01.009
https://doi.org/10.1016/j.bandl.2017.01.009
https://doi.org/10.3102/107699860250021
https://doi.org/10.1007/s11062-013-9396-z
https://doi.org/10.1007/s11062-013-9396-z
https://doi.org/10.1016/j.yebeh.2018.08.008


Vértes, P. E., & Bullmore, E. T. (2015). Annual research review: growth connectomics –
the organization and reorganization of brain networks during normal and abnormal
development. Journal of Child Psychology and Psychiatry, 56, 299–320. https :
//doi.org/10.1111/jcpp.12365

Villringer, A., & Dirnagl, U. (1995). Coupling of brain activity and cerebral blood flow:
basis of functional neuroimaging. Cerebrovascular and brain metabolism reviews, 7 (3),
240–76.

Vissiennon, K., Friederici, A. D., Brauer, J., & Wu, C.-Y. (2017). Functional organization of
the language network in three- and six-year-old children. Neuropsychologia, 98, 24–33.
https://doi.org/10.1016/j.neuropsychologia.2016.08.014

von Lühmann, A., Li, X., Müller, K.-R., Boas, D. A., & Yücel, M. A. (2020). Improved
physiological noise regression in fnirs: a multimodal extension of the general linear
model using temporally embedded canonical correlation analysis. NeuroImage, 208,
116472. https://doi.org/10.1016/j.neuroimage.2019.116472

Wallois, F., Mahmoudzadeh, M., Patil, A., & Grebe, R. (2012). Usefulness of simultaneous
eeg–nirs recording in language studies. Brain and Language, 121, 110–123. https:
//doi.org/10.1016/j.bandl.2011.03.010

Wallois, F., Patil, A., Héberlé, C., & Grebe, R. (2010). Eeg-nirs in epilepsy in children and
neonates. Neurophysiologie Clinique/Clinical Neurophysiology, 40, 281–292. https:
//doi.org/10.1016/j.neucli.2010.08.004

Wang, J., Dong, Q., & Niu, H. (2017). The minimum resting-state fnirs imaging duration
for accurate and stable mapping of brain connectivity network in children. Scientific
Reports, 7, 6461. https://doi.org/10.1038/s41598-017-06340-7

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature,
393, 440–442. https://doi.org/10.1038/30918

Wechsler, D. (1944). The measurement of adult intelligence (D. Wechsler, Ed.; 3rd). The
Williams & Wilkings Company.

Wechsler, D. (2005). L’échelle d’intelligence de wechsler pour enfants® – quatrième édition
– version pour francophones du canada (wisc®-iv cdn–f) (4e éd.). Pearson Canada
Assessment, Inc.

Wechsler, D. (2010). L’échelle d’intelligence de wechsler pour adultes – quatrième édition:
édition de recherche–version pour francophones du canada (wais-iv cnd-f) (4é éd.).
Pearson Canada Assessment, Inc.

Wechsler, D. (2011). Wechsler abbreviated scale of intelligence®–second edition (wais®-ii)
(D. Wechsler, Ed.; Second Ed.). NCS Pearson.

Weinberg, S., & Abramowitz, S. (2008). Statistics using spss: an integrative approach.
Cambridge University Press.

ccxiv

https://doi.org/10.1111/jcpp.12365
https://doi.org/10.1111/jcpp.12365
https://doi.org/10.1016/j.neuropsychologia.2016.08.014
https://doi.org/10.1016/j.neuroimage.2019.116472
https://doi.org/10.1016/j.bandl.2011.03.010
https://doi.org/10.1016/j.bandl.2011.03.010
https://doi.org/10.1016/j.neucli.2010.08.004
https://doi.org/10.1016/j.neucli.2010.08.004
https://doi.org/10.1038/s41598-017-06340-7
https://doi.org/10.1038/30918


Weiss, S., & Mueller, H. M. (2012). “too many betas do not spoil the broth”: the role
of beta brain oscillations in language processing. Frontiers in Psychology, 3. https:
//doi.org/10.3389/fpsyg.2012.00201

Weiss-Croft, L. J., & Baldeweg, T. (2015). Maturation of language networks in children: a
systematic review of 22 years of functional mri. NeuroImage, 123, 269–281. https:
//doi.org/10.1016/j.neuroimage.2015.07.046

Wernicke, C. (1969). The symptom complex of aphasia: a psychological study on anatomical
basis. In R. S. Cohen & M. W. Wartofsky (Eds.). D. Reidel. https://doi.org/10.1007/
978-94-010-3378-7_2

West, K. L., Zuppichini, M. D., Turner, M. P., Sivakolundu, D. K., Zhao, Y., Abdelkarim, D.,
Spence, J. S., & Rypma, B. (2019). Bold hemodynamic response function changes
significantly with healthy aging. NeuroImage, 188, 198–207. https://doi.org/10.1016/
j.neuroimage.2018.12.012

Whedon, M., Perry, N. B., Calkins, S. D., & Bell, M. A. (2016). Changes in frontal eeg
coherence across infancy predict cognitive abilities at age 3: the mediating role of
attentional control. Developmental Psychology, 52, 1341–1352. https://doi.org/10.
1037/dev0000149

WHO (Ed.). (1992). The icd-10 classification of mental and behavioural disorsers: clinical
descriptions and diagnostic guidelines (10th). World Health Organization [WHO].

Widjaja, E., Kis, A., Go, C., Snead, O. C., & Smith, M. L. (2014). Bilateral white matter
abnormality in children with frontal lobe epilepsy. Epilepsy Research, 108, 289–294.
https://doi.org/10.1016/j.eplepsyres.2013.12.001

Widjaja, E., Mahmoodabadi, S. Z., Snead, O. C., Almehdar, A., & Smith, M. L. (2011).
Widespread cortical thinning in children with frontal lobe epilepsy. Epilepsia, 52,
1685–1691. https://doi.org/10.1111/j.1528-1167.2011.03085.x

Widjaja, E., Zamyadi, M., Raybaud, C., Snead, O. C., & Smith, M. L. (2013). Abnormal
functional network connectivity among resting-state networks in children with frontal
lobe epilepsy. American Journal of Neuroradiology, 34, 2386–2392. https://doi.org/
10.3174/ajnr.A3608

Wiebe, S. (2000). Epidemiology of temporal lobe epilepsy. Canadian Journal of Neurological
Sciences, 27, 6–10. https://doi.org/10.1017/S0317167100000561

Williams, I. A., Tarullo, A. R., Grieve, P. G., Wilpers, A., Vignola, E. F., Myers, M. M., &
Fifer, W. P. (2012). Fetal cerebrovascular resistance and neonatal eeg predict 18-month
neurodevelopmental outcome in infants with congenital heart disease. Ultrasound in
Obstetrics & Gynecology, 40, 304–309. https://doi.org/10.1002/uog.11144

Wilson, S. J., Baxendale, S., Barr, W., Hamed, S., Langfitt, J., Samson, S., Watanabe, M.,
Baker, G. A., Helmstaedter, C., Hermann, B. P., & Smith, M.-L. (2015). Indications

ccxv

https://doi.org/10.3389/fpsyg.2012.00201
https://doi.org/10.3389/fpsyg.2012.00201
https://doi.org/10.1016/j.neuroimage.2015.07.046
https://doi.org/10.1016/j.neuroimage.2015.07.046
https://doi.org/10.1007/978-94-010-3378-7_2
https://doi.org/10.1007/978-94-010-3378-7_2
https://doi.org/10.1016/j.neuroimage.2018.12.012
https://doi.org/10.1016/j.neuroimage.2018.12.012
https://doi.org/10.1037/dev0000149
https://doi.org/10.1037/dev0000149
https://doi.org/10.1016/j.eplepsyres.2013.12.001
https://doi.org/10.1111/j.1528-1167.2011.03085.x
https://doi.org/10.3174/ajnr.A3608
https://doi.org/10.3174/ajnr.A3608
https://doi.org/10.1017/S0317167100000561
https://doi.org/10.1002/uog.11144


and expectations for neuropsychological assessment in routine epilepsy care: report
of the ilae neuropsychology task force, diagnostic methods commission, 2013-2017.
Epilepsia, 56, 674–681. https://doi.org/10.1111/epi.12962

Witt, S. T., Warntjes, M., & Engström, M. (2016). Increased fmri sensitivity at equal data
burden using averaged shifted echo acquisition. Frontiers in Neuroscience, 10, 544.
https://doi.org/10.3389/fnins.2016.00544

Wolf, P. (2014). History of epilepsy: nosological concepts and classification. Epileptic
Disorders, 16, 261–269. https://doi.org/10.1684/epd.2014.0676

Xu, J., Liu, X., Zhang, J., Li, Z., Wang, X., Fang, F., & Niu, H. (2015). Fc-nirs: a
functional connectivity analysis tool for near-infrared spectroscopy data. BioMed
Research International, 2015, 1–11. https://doi.org/10.1155/2015/248724

Yang, C.-C., Yang, C.-C., & Chaou, W.-T. (2005). Functional correlations of spatial
quantitative eeg and intelligences in a nonalphabetical language group. Applied
Neuropsychology, 12, 151–157. https://doi.org/10.1207/S15324826AN1203_5

Ye, J., Tak, S., Jang, K., Jung, J., & Jang, J. (2009). Nirs-spm: statistical parametric
mapping for near-infrared spectroscopy. NeuroImage, 44, 428–447. https://doi.org/10.
1016/j.neuroimage.2008.08.036

Yeates, K. O., Ris, M. D., Taylor, H. G., & Pennington, B. F. (2010). Pediatric neuropsychol-
ogy (K. O. Yeates, M. D. Ris, H. G. Taylor, & B. F. Pennington, Eds.; 2nd). Guilford
Press.

Youssofzadeh, V., Williamson, B. J., & Kadis, D. S. (2017). Mapping critical language sites
in children performing verb generation: whole-brain connectivity and graph theoretical
analysis in meg. Frontiers in Human Neuroscience, 11. https://doi.org/10.3389/
fnhum.2017.00173

Yu, R., Yoon, J.-R., Eun, B.-L., Kwon, S. H., Lee, Y. J., Eun, S.-H., Lee, J. S., Kim, H. D.,
Nam, S. O., Kim, G.-H., et al. (2015). Neuropsychological effects of levetiracetam
and carbamazepine in children with focal epilepsy. Neurology, 84 (23), 2312–2319.
https://doi.org/10.1212/WNL.0000000000001661

Yücel, M. A., Selb, J., Cooper, R. J., & Boas, D. A. (2014). Targeted principle component
analysis: a new motion artifact correction approach for near-infrared spectroscopy.
Journal of Innovative Optical Health Sciences, 07 (2), 1350066. https://doi.org/10.
1142/S1793545813500661

Yücel, M. A., v. Lühmann, A., Scholkmann, F., Gervain, J., Dan, I., Ayaz, H., Boas, D.,
Cooper, R. J., Culver, J., Elwell, C. E., Eggebrecht, A., Franceschini, M. A., Grova,
C., Homae, F., Lesage, F., Obrig, H., Tachtsidis, I., Tak, S., Tong, Y., . . . Wolf,
M. (2021). Best practices for fnirs publications. Neurophotonics, 8 (01), 012101.
https://doi.org/10.1117/1.nph.8.1.012101

ccxvi

https://doi.org/10.1111/epi.12962
https://doi.org/10.3389/fnins.2016.00544
https://doi.org/10.1684/epd.2014.0676
https://doi.org/10.1155/2015/248724
https://doi.org/10.1207/S15324826AN1203_5
https://doi.org/10.1016/j.neuroimage.2008.08.036
https://doi.org/10.1016/j.neuroimage.2008.08.036
https://doi.org/10.3389/fnhum.2017.00173
https://doi.org/10.3389/fnhum.2017.00173
https://doi.org/10.1212/WNL.0000000000001661
https://doi.org/10.1142/S1793545813500661
https://doi.org/10.1142/S1793545813500661
https://doi.org/10.1117/1.nph.8.1.012101


Zalesky, A., Fornito, A., & Bullmore, E. T. (2010). Network-based statistic: identifying
differences in brain networks. NeuroImage, 53, 1197–1207. https://doi.org/10.1016/j.
neuroimage.2010.06.041

Zare, M., Rezvani, Z., & Benasich, A. A. (2016). Automatic classification of 6-month-old
infants at familial risk for language-based learning disorder using a support vector
machine. Clinical Neurophysiology, 127, 2695–2703. https://doi.org/10.1016/j.clinph.
2016.03.025

Zhang, D.-Q., Li, F.-H., Zhu, X.-B., & Sun, R.-P. (2014). Clinical observations on attention-
deficit hyperactivity disorder (adhd) in children with frontal lobe epilepsy. Journal of
Child Neurology, 29, 54–57. https://doi.org/10.1177/0883073812470004

Zhang, H., Zhang, Y.-J., Duan, L., Ma, S.-Y., Lu, C.-M., & Zhu, C.-Z. (2011). Is resting-state
functional connectivity revealed by functional near-infrared spectroscopy test-retest
reliable? Journal of Biomedical Optics, 16 (6), 067008. https://doi.org/10.1117/1.
3591020

Zhang, H., Zhang, Y.-J., Lu, C.-M., Ma, S.-Y., Zang, Y.-F., & Zhu, C.-Z. (2010). Functional
connectivity as revealed by independent component analysis of resting-state fnirs
measurements. NeuroImage, 51, 1150–1161. https://doi.org/10.1016/j.neuroimage.
2010.02.080

Zhang, X., Noah, J. A., Dravida, S., & Hirsch, J. (2017). Signal processing of functional nirs
data acquired during overt speaking. Neurophotonics, 4 (04), 1. https://doi.org/10.
1117/1.NPh.4.4.041409

Zhang, Y., Brooks, D. H., Franceschini, M. A., & Boas, D. A. (2005). Eigenvector-based
spatial filtering for reduction of physiological interference in diffuse optical imaging.
Journal of Biomedical Optics, 10, 011014. https://doi.org/10.1117/1.1852552

ccxvii

https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.neuroimage.2010.06.041
https://doi.org/10.1016/j.clinph.2016.03.025
https://doi.org/10.1016/j.clinph.2016.03.025
https://doi.org/10.1177/0883073812470004
https://doi.org/10.1117/1.3591020
https://doi.org/10.1117/1.3591020
https://doi.org/10.1016/j.neuroimage.2010.02.080
https://doi.org/10.1016/j.neuroimage.2010.02.080
https://doi.org/10.1117/1.NPh.4.4.041409
https://doi.org/10.1117/1.NPh.4.4.041409
https://doi.org/10.1117/1.1852552

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Acronyms and Abbreviations
	Acknowledgments
	Preface
	Chapter 1. Theoretical background
	1.1. Language
	1.2. Epilepsy
	1.3. Functional neuroimaging

	Chapter 2. Research objectives and hypotheses
	First Article. Neuropsychologic Assessment
	1. General Aspects of Pediatric Neuropsychologic Assessments
	2. Specific Stages and Considerations of the Pediatric Neuropsychologic Assessment
	3. Pediatric Neuropsychologic Assessment in Specific Situations
	4. Conclusion

	Second Article. Parallel factor analysis for multidimensional decomposition of functional near-infrared spectroscopy data
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusion
	6. Disclosures
	7. Acknowledgments/Funding sources
	8. Code, Data, and Materials Availability
	9. Supplemental Material

	Third Article. Brain language networks and cognitive outcomes in children with frontotemporal lobe epilepsy
	1. Introduction
	2. Materials and methods
	3. Results
	4. Discussion
	5. Conflict of interest and disclosures
	6. Funding
	7. Acknowledgments
	8. Contribution to the field statement
	9. Code, Data and Materials Availability
	10. Supplemental Material

	Chapter 3. Discussion
	3.1. Recap of the main objectives
	3.2. Summary and interpretation of the main findings
	3.3. Strengths and limitations
	3.4. Implications and perspectives
	3.5. Conclusion

	Appendix A. Additional articles
	Fourth Article. Functional brain connectivity of language functions in children revealed by EEG and MEG: A systematic review
	1. Introduction
	2. Methods
	3. Results
	4. Discussion
	5. Conclusion and Future Directions

	Fifth Article. LIONirs: flexible Matlab toolbox for fNIRS data analysis.
	1. Introduction
	2. Methods and results
	3. Discussion
	4. Conclusion
	5. Acknowledgments
	6. Funding
	7. Declaration of competing interest

	Bibliography

