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Sommaire 

En genie logiciel collaboratif, les systemes de contr6le de version (SCV) jouent un role cru-

cial dans la gestion des changements de code, la promotion de la collaboration et la garantie 

de l'integrite des projets partages. Cette importance s'etend a l'ingenierie dirigee par les 

modeles (IDM), ou les experts du domaine congoivent des modeles specifiques au domaine 

(MSD). Dans ce contexte, la collaboration avec les SCV permet de coordonner les change-

ments de modeles et de preserver l'integrite des MSD. Cependant, les solutions existantes 

se concentrent principalement sur des approches generiques, considerant les modeles comme 

du texte generique. Ces SCV rapportent les differences entre les versions des modeles d'une 

maniere abstraite et non intuitive pour les experts du domaine. Cela pose egalement des defis 

lors de la resolution des conflits et de la fusion des modeles, ce qui ajoute de la complexite 

au flux de travail des experts du domaine. 

L'objectif de cette these est de fournir des SCV specifiques a un domaine donne en se 

concentrant sur les deux principaux composants des SCV, a savoir la differenciation et la 

fusion. Nous presentons DSMCompare, un outil de comparaison de modeles specifique au 

domaine, integre avec des capacites de detection, de resolution et de fusion de conflits de 

triplets de versions. DSMCompare fournit des representations concises des differences et 

conflits a differents niveaux de granularite, tout en utilisant la syntaxe graphique des MSD 

originaux. Dans nos evaluations, DSMCompare a demontre des ameliorations notables par 

rapport aux solutions generiques de differenciation et de fusion, notamment une reduction 

de la verbosite des differences rapportee, des differences exprimee en utilisant la semantique 

du domaine, une detection precise des differences semantiques et des conflits entre differentes 

versions d'un modele, une resolution correcte des conflits, une diminution des interactions 

manuelles requises et une amelioration globale de l'efficacite pour les experts du domaine. 
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cifique au domaine , Systemes de gestion de version, Differenciation semantique, Conflits 
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Summary 

In the context of collaborative software engineering, version control systems (VCS) play a 

crucial role in managing code changes, promoting collaboration, and ensuring the integrity 

of shared projects. This significance extends to model-driven engineering (MDE) , where 

domain experts design domain-specific models (DSM). In this context, collaborating with 

VCS aids in coordinating model changes and preserving the integrity of DSMs. However, 

existing solutions primarily focus on generic approaches, considering models as generic text. 

VCS report the differences between model versions in an abstract and unintuitive way for 

domain experts. This also poses challenges when resolving conflicts and merging models , 

adding complexity to the workflow of domain experts. 

The goal of this thesis is to provide domain-specific VCS for domain experts, focus-

ing on the two main components of VCS, namely differencing and merging. We introduce 

DSMCompare, a domain-specific model comparison tool integrated with three-way conflict 

detection, resolution, and merging capabilities. DSMCompare provides concise representa-

tions of differences and conflicts at different levels of granularity, while using the graphical 

syntax of the original DSMs. In our evaluations, DSMCompare demonstrated significant 

improvements over generic differencing and merging solutions, including a reduction in re-

ported difference verbosity, differences expressed using the semantics of the domain, accurate 

detection of semantic differences and conflicts between different versions of a model, correct 

conflict resolution, a reduction in manual interactions needed, and an overall improvement 

in efficiency for domain experts. 

Keywords: Software engineering, Model-driven engineering, Domain-specific model-

ing, Version control systems, Semantic differencing, Semantic conflicts, Conflict detection, 

Conflict resolution, Domain-specific merging 
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Chapter 1 

Introduction 

1. Context 

Collaborative Software Engineering (Franzago et al, 2017) is an approach to software 

development where team members work together to design, develop, test, and maintain soft-

ware applications. It involves coordinating efforts , sharing resources, and contributing to the 

development process in a collaborative manner (David et al, 2021). In Collaborative Software 

Engineering, various artifacts related to software development can undergo changes. Changes 

can range from simple edits to more complex modifications that require coordination among 

team members. Collaborative Software Engineering aims to manage these changes effec-

tively, ensuring that team members can work together seamlessly. Moreover, Collaborative 

Software Engineering needs to ensure the artifacts remain consistent and aligned with the 

intended goals. 

Software modeling is an integral part of collaborative software engineering, helping teams 

in their understanding and decision-making processes. It helps to create abstract represen-

tations of a software system (Rumbaugh et al, 1991). These representations , called models, 

capture various aspects of the software's structure, behavior, and functionality. Software 

models help developers , designers , and stakeholders to visualize , analyze, and communicate 

different aspects of the software before the actual implementation begins. These models can 

range from high-level architectural diagrams to detailed representations of specific compo-

nents or processes. 

Model-Driven Engineering (MDE) (Kent , 2002) , is a methodology where models and 

software modeling techniques play a central role throughout the entire lifecycle of a project. 



MDE also involves using tools to automatically generate code and other parts of the software 

from these models, making the development process more efficient and increasing quality. 

Domain-specific modeling (DSM) is a key concept within MDE, emphasizing the practice 

of creating specialized modeling languages and tools tailored to specific problem domains 

(Kelly and Tolvanen, 2008). Unlike general-purpose modeling languages like UML, which are 

designed to cover a wide range of domains, domain-specific modeling languages (DSMLs) are 

customized to address the unique requirements and concepts of a particular domain. DSMs 

allow domain experts, who may not have extensive programming or software engineering 

backgrounds, to create and work with models that directly represent their domain knowledge. 

As DSMLs enable models to be expressed in a more intuitive and natural way, this enhances 

communication between domain experts and software developers. 

Since models are accessed and used collaboratively, they undergo changes and therefore 

need to be versioned (Brosch et al, 2012a; Paige et al, 2016). To address this requirement, 

Version Control Systems (VCS) play a pivotal role (Franzago et al, 2017).VCS provides a 

systematic way to manage changes in software projects, ensuring that collaboration remains 

coherent and effective (Mens, 2002). In the context of Collaborative Software Engineering, 

VCSs serve as tools to track changes in all kinds of artifacts from models to source code. 

Well-known VCSs such as Git (Git, last accessed 2023) or SVN (SVN, last accessed 

2023) report the differences in a line-by-line or block-by-block manner. The report shows 

additions , deletions, and modifications made to the files over time. On the other hand, model 

versioning refers to the practice of managing different versions of models throughout their 

lifecycle. Several tools are available for model versioning, each offering different features 

and capabilities to help manage and track changes to models. Some of the notable tools 

for generic model versioning include EMFStore (Koegel and Helming, 2010a) , EMFCompare 

(EMF Compare, accessed August 2023), and CDO (Connected Data Objects) (CDO Model 

repository, accessed August 2023). 

In addition to keeping a record of changes, VCS provides different functionalities such 

as Differencing, Branching, and Merging. Differencing refers to the process of identifying 

and highlighting the differences between two versions of a file ( code, model , or any file 

type) or a set of files. In two-way differencing, the comparison is performed between two 

distinct versions, while three-way differencing involves evaluating changes in three versions, 
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typically a common ancestor and two divergent branches, facilitating more sophisticated 

conflict resolution in collaborative development scenarios. 

The difference (Diff) refers to the changes between two versions of a file or code. Differ-

encing can produce one or multiple differences. Therefore, Differencing allows developers to 

review, understand, and manage changes efficiently. Branching, on the other hand, creates a 

snapshot of the project including models at a specific point in time. It allows teams to work 

on different features or aspects in isolation. Changes made within a branch do not impact 

other branches.Branches can later be merged to incorporate the changes seamlessly. 

2. Problem Statement 

Although certain VCSs have been specifically designed for models (Altmanninger et al, 

2008b; Koegel and Helming, 2010b), most practitioners opt for text-based VCSs like Git 

and SVN. However, these VCS are not ideal for effectively visualizing the changes in a 

model's versions in a way that is easily comprehensible (Zadahmad et al, 2019), as they do 

not grasp the syntax and semantics of the DSL. Generic model-based differencing tools, such 

as EMFCompare (Brun and Pierantonio, 2008) , provide results that highlight differences in 

classes, attributes, and associations. Nevertheless, these results are presented in the abstract 

syntax of the DSL, which might not be familiar to DSL users. Additionally, presenting the 

fine-grained differences of a large model can be overwhelming for DSL users, as they cannot 

perceive the semantics of the changes (Sharbaf et al, 2022b). Thus, there exists a need for 

model-based differencing tools capable of presenting difference results in a more user-friendly 

manner tailored to DSL users. 

In the context of domain-specific modeling, tools, languages, and methodologies are tai-

lored to suit the specific characteristics and requirements of a particular domain. The goal 

is to create modeling languages and tools that closely align with the concepts, terminology, 

and processes of the target domain. It makes it easier for domain experts to create models 

and collaborate effectively. 

However, tailoring DSM to a specific application domain presents unique challenges when 

using text-based VCSs (VCS) like SVN. DSM involves customizing modeling languages and 

tools to align with the domain's specific needs. However, SVN, as a text-based VCS, does 

not naturally understand the semantics and structure of DSM artifacts (Zadahmad et al, 
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2022). Generic model-based approaches also struggle with grasping the semantics of DSM 

artifacts (Langer et al, 2013b). This limitation hinders its ability to effectively detect and 

visualize domain-specific differences (Cicchetti et al, 2007). As a result, traditional methods 

can produce complex reports when there are small changes (Altmanninger etal, 2008a), 

making it difficult to notice important differences in meaning within the specific area. On 

the other hand, tools designed for versioning of domain-specific models do not provide a 

comprehensive solution for differencing and merging domain-specific models (Sharbaf et al, 

2022b ). 

Models' evolution naturally leads to conflicts (Hachemi and Ahmed-Nacer, 2020). In 

DSM, these conflicts often exceed syntax to involve complicated semantic differences (Sharbaf 

et al , 2020). In this case, generic model-based or test-based VCS can struggle with semantic 

conflicts because they often focus on tracking syntactic changes, such as code refactorings in 

the class diagram design, rather than understanding the meaning or semantics behind those 

changes. 

Semantic differences in a domain refer to changes that affect the underlying logic, struc-

ture, or meaning of code. These differences could involve various refactorings, such as method 

extractions, renamings, or changes in class hierarchies. The role of semantic differences is 

crucial because they can impact how the software functions , even if the syntactic changes 

are relatively small. For example, performing a method extraction might seem like a minor 

syntactic change, but it could significantly alter the organization and behavior of the code. 

This is particularly evident when the extracted method interacts differently with other parts 

of the code or when it leads to changes in the control flow. 

VCS struggles with these conflicts because they often lack the ability to understand the 

semantic implications of such refactorings. They treat them as syntactic changes and may 

not provide effective tools for detecting, visualizing, or resolving these conflicts in a way that 

aligns with the domain-specific semantics. 

Semantic conflicts, in this context , impact the core logic, structure, or meaning of the 

domain model. This can lead to incorrect conflict resolutions or missed conflicts, which 

can impact the reliability and quality of the software (Brosch et al, 2012f). To address 

these issues effectively, conflict resolution and merging tools should be equipped to recognize 

and manage these semantic differences, ensuring meaningful resolutions and maintaining 
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the overall integrity of the codebase (Hachemi and Ahmed-Nacer, 2020). The proposed 

approach also needs to leverage effective visualization to manage the requirements of semantic 

differences, semantic conflicts, resolution, and merging complexities in the DSM (Sharbaf 

et al, 2022a; Langer et al, 2013b). We formulate three pivotal Research Questions (RQs) 

that guide our investigation: 

RQl: How can semantic differencing and visualization be enhanced to extract mean-

ingful differences in a domain-specific manner, reduce verbosity, and provide DSL 

users with an intuitive understanding of changes? 

RQ2: How can the effective detection and visualization of semantic differences and 

semantic conflicts in three-way domain-specific differencing be achieved, enabling the 

identification and clear visualization of various types of conflicts for efficient resolution 

and decision-making? 

RQ3: How can conflict resolution in domain-specific contexts be empowered to as-

sist DSL users in navigating, resolving, and reversing conflict resolutions effectively, 

considering the unique aspects of domain-specific conflicts to enhance collaboration 

and project advancement? 

3. Contributions 

In this section, we provide a brief overview of our primary contributions. The compre-

hensive details regarding the challenges and contributions can be found in Chapter 3. This 

thesis follows a thesis by article format whereby the core contributions are articles published 

or submitted to journals. 

List of publications. The following scientific articles are integral to this thesis. 

(1) Zadahmad M, Syriani E , Alam 0 , Guerra E , de Lara J. DSMCompare: domain-

specific model differencing for graphical domain-specific languages. Software and 

Systems Modeling. 2022 Oct 1:1-30. Published. (Chapter 4) 

(2) Zadahmad M, Syriani E, Alam 0. From two-way to three-way: domain-specific model 

differencing and conflict detection. Journal of Object Technology. 2023, 1:1-29. 

Published. (Chapter 5) 

(3) Zadahmad M, Syriani E, Alam 0. Domain-specific conflict resolution and model 

merge. Journal of Systems and Software. To be submitted. (Chapter 6) 
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I have also published the following articles during my thesis. 

(1) Zadahmad M, Syriani E, Alam 0, Guerra E, de Lara J. Domain-specific model differ-

encing in visual concrete syntax. InProceedings of the 12th ACM SIGPLAN Inter-

national Conference on Software Language Engineering. 2019 Oct 20 (pp. 100-112). 

Published. 

(2) Jafarlou MZ. Domain-specific model differencing for graphical domain-specific lan-

guages. InProceedings of the 25th International Conference on Model Driven Engi-

neering Languages and Systems: Companion Proceedings. 2022 Oct 23 (pp. 205-

208). Published. 

We provide a brief overview of the main contributions of this thesis. 

3.1. Enhancing Semantic Differencing and Visualization 

In the initial phase, the goal is to advance techniques for extracting semantic differences 

and presenting them in a domain-specific manner. The proposed approach, DSMCompare, 

considers both abstract and concrete syntax of a DSL, supporting the definition of domain-

specific semantics for specific difference patterns. Contributions include representation of 

model differences within a single DSL, a domain-specific semantic differencing rule editor, 

automated representation of model differences using graphical concrete syntax, and prototype 

tool support. 

3.2. Effective Detection and Visualization of Semantic Conflicts 

The focus shifts to three-way domain-specific differencing and conflict detection, aiming 

to identify and visualize various semantic conflicts comprehensibly. DSMCompare transi-

tions from a two-way to a three-way model comparison, providing a domain-specific conflict 

detection mechanism, semantic differencing rule editor, visualization support with graphical 

concrete syntax, and tool implementation with extensive evaluation. 

3.3. Empowering Conflict Resolution in Domain-Specific Contexts 

In the final step, the objective is to empower DSL users with effective conflict resolution 

tools. The proposed domain-specific approach for three-way model merging includes a con-

flict resolution mechanism, algorithms for automated conflict resolution, user-friendly conflict 
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resolution interfaces, implementation in DSMCompare, effectiveness comparison with other 

merging techniques, and an applicability study in practical settings. 

4. Thesis Structure 

The structure of this document encompasses five chapters and a concluding section: 

Chapter II: The state-of-the-art (SOTA) section is outlined here. 

Chapter III: This chapter outlines the challenges and the contributed approaches. 

Chapter IV: In this chapter, the first article is presented. It introduces DSM-

Compare, our dedicated tool for domain-specific model differencing within graphical 

DSMLs. 

Chapter V: The focus of this chapter is the second article. It elaborates on the 

transition from two-way to three-way domain-specific tooling for differencing and 

discusses domain-specific model differencing and conflict detection within a three-

way context. 

Chapter VI: This chapter centers around the third article. It encompasses domain-

specific conflict resolution and model merging. 

Chapter VII: The concluding conclusion chapter offers a comprehensive overview 

of our work. 
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Chapter 2 

Background and state of the art 

In this chapter, we explore the state of the art regarding domain-specific model differencing 

and merging. We explore various aspects of MDE, DSML, VCS, and the existing litera-

ture on model versioning, comparison, conflict detection, resolution, and model merging. 

Our investigation highlights the challenges and shortcomings in current approaches , setting 

the stage for proposing novel techniques to enhance semantic model differencing, conflict 

management , and model merging tailored to specific domain needs. 

1. MDE 

These models serve as blueprints for generating executable code, documentation, and 

other artifacts, effectively bridging the gap between system design and implementation. In 

MDE, modeling languages play a crucial role as they provide the means to define and express 

these models effectively. Here are some of the modeling languages commonly used in MDE: 

• Unified Modeling Language (UML). UML (UML, 2023) is one of the most well-known 

modeling languages in MDE. It provides a standardized way to represent various 

aspects of software systems, including classes, objects, relationships, and behavior. 

UML diagrams, such as class diagrams, sequence diagrams, and state diagrams, are 

commonly used in software modeling. 

• DSMLs. DSMLs (Kelly and Tolvanen, 2008) are specialized modeling languages 

tailored to specific application domains. They are designed to capture domain-specific 

concepts, notations, and semantics. DSMLs allow developers to create models that 

closely align with the requirements and characteristics of a particular domain. 



1.1. Abstraction 

Abstraction is a fundamental concept in MDE. Software systems can be incredibly in-

tricate, involving numerous components, interactions, and details (Brambilla et al, 2012). 

Abstraction allows developers to create models that capture the essential features and be-

haviors of a system while omitting unnecessary details. This simplification makes it easier 

to understand, analyze, and communicate about the system. 

Abstraction raises the level of representation from the low-level details of code to higher-

level models. Instead of working directly with code, developers use models to represent 

system architecture, design patterns, business processes, and other aspects. These models 

are more intuitive for stakeholders who may not have a deep technical understanding. 

Moreover, abstraction allows different aspects of a system, such as its structure, be-

havior , and data, to be modeled independently. This separation enhances modularity and 

maintainability, as changes in one concern do not necessarily impact others. 

1.2. Automation 

Automation is a cornerstone of MDE, driving efficiency and precision in software develop-

ment (Frankel, 2002). In MDE, automation refers to the automatic generation of artifacts, 

such as code, from high-level models. This process streamlines development by reducing 

manual intervention, minimizing errors, and ensuring consistency across different stages of 

the software lifecycle. 

Code generation is a specific aspect of automation in MDE where software code is auto-

matically produced from higher-level models. This can include generating code for various 

programming languages, platforms, and technologies. 

1.3. Transformation 

Transformation enables the automatic conversion of models from one representation to 

another. In MDE, models serve as the central artifacts that capture system specifications 

(Volter and Kelly, 2013). However, to bring these specifications to life, they must be trans-

formed into executable code or other desired formats. Transformation processes ensure that 

the semantics of the high-level models are preserved while generating lower-level artifacts. 
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Model to model transformation refers to the process of converting one model into another 

model. Model to model transformation allows to express how information in one model 

relates to information in another, enabling the manipulation and synchronization of models. 

For example Henshin is an open-source model transformation language and toolset used in 

the field of MDE. 

Henshin (Struber et al, 2017) provides a DSL for specifying model transformations. It 

allows to define rules that describe how one model can be transformed into another model. 

These rules are typically expressed in a high-level, declarative manner. Henshin's conflict and 

dependency analysis (MultiCDA) feature and critical pair analysis (CPA) feature enables the 

detection of potential conflicts and dependencies of a set of rules 

Atlas Transformation Language (ATL) (Eclipse Foundation, 2023a) is another model 

transformation language that allows developers to define and execute transformations be-

tween different models. It helps automate tasks like code generation, data mapping, and 

model synchronization. 

But Henshin and ATL are two different kind of model to model languages. ATL is 

a declarative language. Developers specify what the transformation should achieve, and 

the ATL transformation engine determines how to achieve it. In contrast, Henshin is an 

pattern-based language. It allows developers to specify not only what should be transformed 

but also how the transformation should be performed in terms of actions and operations. 

ATL primarily uses rule-based transformations. Developers define transformation rules that 

specify how elements in the source model are mapped to elements in the target model. 

In contrast, Henshin uses a graph-based approach. Transformations are defined in terms 

of graph patterns that match elements in the source model, and these patterns are then 

replaced or modified to produce the target model. 

Model to Code transformation is a specific type of model transformation that focuses on 

generating executable code from a model. In this process, a high-level model is transformed 

into code in a programming language . This can significantly speed up the development 

process and help maintain consistency between the model and the code. 

For example, Epsilon Generation Language (Eclipse Foundation, 2023c) is a model to 

code language (model-to-text transformation in a broader view) that can be used to trans-

form models into various types of textual artefact , including code (e.g. Java) , reports (e.g. in 
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HTML/LaTeX), images (e.g. using Graphviz), formal specifications, or even entire applica-

tions comprising code in multiple languages (e.g. HTML, Javascript and CSS). Xtend (xtend, 

last accessed 2023) as a widely adopted model-to-text transformation language, frequently 

used in conjunction with Xtext (Xtext, last accessed 2023). While Xtext is utilized to de-

fine textual DSL, Xtend facilitates code generation from models defined using Xtext-defined 

DSLs, allowing developers to define templates and expressions that generate textual output 

based on input models. Another noteworthy tool in this domain is ATL (Eclipse Foun-

dation, 2023a) that supports model-to-model transformations. It is primarily a rule-based 

transformation language. Transformations are defined by specifying declarative transforma-

tion rules, which describe how elements in the source model are mapped to elements in the 

target model. 

Graph transformation is a technique used in MDE to manipulate models represented 

as graphs (Ehrig et al, 2006). In this context , a graph represents the elements of a model 

and their relationships. Graph transformation rules define how the graph can be modified. 

Graph transformation is versatile and can be used for various model manipulations, including 

refinement , refactoring, and analysis. For example, suppose you have a model representing 

a state machine. Using graph transformation rules, it is possible to define how transitions 

between states can be modified, added, or removed. This allows you to refactor and optimize 

the state machine model. 

1.4. Frameworks 

Frameworks play a crucial role in MDE, providing essential infrastructures and tools for 

modeling, transformation, and code generation. One of the prominent frameworks in the 

MDE ecosystem is the Eclipse Modeling Framework (EMF) (Eclipse Foundation, 2023b). 

EMF offers a comprehensive platform for developing and deploying model-based software 

applications. It provides a structured approach to defining data models and generating 

code, allowing developers to work at higher levels of abstraction. EMF is a part of the 

Eclipse Modeling Project. Main Components of EMF include: 

• Ecore: At the heart of EMF is Ecore (EMF Core) , which is a domain modeling tech-

nology. Ecore provides the foundation for defining and working with structured data 

models. Its main components include EClass (used to define the types of objects 
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in a model), EAttribute (represent the properties or attributes of EClasses) , ERef-

erence ( define relationships between EClasses, similar to associations in UML), and 

EPackage ( organize EClasses, EAttributes, and EReferences into logical containers). 

• Code Generation: EMF includes a code generation facility that can automatically 

generate Java classes from the Ecore models. 

• Edit Framework: EMF Edit is an additional component that automatically generates 

a user interface for the models . It generates editors , views, and property sheets for 

your models 

1.5. Domain-Specific Modeling Languages 

A DSML (Kelly and Tolvanen, 2008) is a specialized and tailored modeling language 

designed for a specific problem domain, application area, or industry. Unlike general-purpose 

modeling languages like the UML, which are intended to cover a wide range of modeling 

scenarios, DSMLs are created with a narrow focus on a particular domain or problem space. 

Key characteristics of DSMLs include: 

• Domain Specificity: DSMLs are specifically crafted to represent concepts, abstrac-

tions, and semantics that are relevant and meaningful within a particular domain. 

• Abstraction Level: DSMLs often provide higher-level abstractions that enable users 

to express complex domain-specific concepts more concisely and accurately. 

• Expressiveness: DSMLs are designed to be expressive enough to capture the essential 

aspects of the domain, using specialized constructs, notations, or modeling patterns. 

• Tool Support: DSMLs are typically accompanied by dedicated modeling tools or 

environments, offering features like modeling editors, code generators, and validation 

mechanisms. 

• Customization: DSMLs can be customized to adapt to variations within the domain, 

allowing users to extend or modify them as needed. 

A DSL is a programming or modeling language dedicated to a particular problem domain, 

a particular problem representation technique, and/ or a particular solution technique. DSLs 

encompass a broader category of specialized languages, including both text-based and mod-

eling languages, while DSMLs specifically refer to modeling languages used in the context of 
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MDE to represent domain-specific concepts and systems through models. For example, Hen-

shin is a DSML, specifically designed for model transformation, making it domain-specific 

to that particular aspect of modeling. 

The Language Engineering Process ensures that DSMLs are well-suited to their domains 

and empower domain experts to work effectively. 

1.5.1. Components of a DSML 

A DSML typically consists of several key components (Kelly and Tolvanen, 2008) that 

work together to provide a specialized modeling and problem-solving environment within a 

specific domain including: 

• Metamodel: A metamodel is a high-level, abstract representation that defines the 

structure and semantics of models within a particular domain. It serves as a blueprint 

or specification for creating instances of models that adhere to the rules, constraints, 

and concepts defined by the metamodel. The metamodel defines the abstract syntax 

of the language or domain it represents. This includes the types of elements (classes), 

their attributes , relationships (associations) , constraints , and the overall structure of 
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valid models. Ecore provides tools and libraries for creating metamodels and models 

in a standardized way, making it suitable for practical modeling tasks within the 

Eclipse ecosystem. The abstract syntax is represented in .ecore files. Figure 2.1 
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shows the metamodel for the Pacman game, including Pacman, GridNode, and other 

metaclasses and associations. 

• Concrete Syntax: Concrete syntax refers to the specific and tangible representation 

of models or code in a human-readable format. It focuses on how elements, relation-

ships, and other constructs in a modeling language or DSL are visually or textually 

represented. Concrete syntax defines how these elements are formatted, displayed, 

and structured, making it easier for users to interact with and understand models. 

Figure 2.2 shows the Concrete Syntax for the Pacman game designed using Sirius 

(Sirius, 2023a). Sirius is a platform for developing and using graphical model editors 

for any domain. It is based on the Eclipse Platform, and in particular the Eclipse 

Modeling stack based on EMF. 

• Mappings: Mappings in this context usually refer to the relationships and transforma-

tions between different representations of a language, such as between abstract syntax 

and concrete syntax. These mappings ensure that a DSL can be both understood by 

humans in its concrete syntax form and processed by machines in its abstract syntax 

form. This can involve parsing ( converting concrete syntax to abstract syntax) and 

pretty-printing (converting abstract syntax back to concrete syntax), among other 

transformations. Figure 2.2 also illustrates the mapping between abstract syntax and 

concrete syntax of the Pacman game designed using the Viewpoint Specification of 

Sirius ( oDesign file). 

• Semantics: Semantics of a language define the meaning or behavior of the language's 

constructs. It describes how the elements of the language should behave when inter-

preted or executed. The metamodel for semantics often includes formal rules, such 

as operational semantics or axiomatic semantics, which precisely define how language 

constructs are executed or evaluated. The semantics can also be derived from the 
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runtime behavior, which means observing how the language behaves when executed 

on a computer. For example, if the DSL is for specifying business rules, the seman-

tics could include how those rules are applied to real-world data during execution. 

Figure 2.3 shows the operational semantics of the eat rule using Henshin (Struber 

et al, 2017). 

• Editor: In the context of DSMLs, an editor refers to a software tool or environment 

that allows users to create, edit , view, and manipulate models conforming to the 

DSML. This editor is customized and designed specifically for the DSML and its 

associated metamodel (abstract syntax). The primary purpose of a DSML editor is 

to provide an intuitive and domain-specific interface for users to work with models 

in that particular domain. Figure 2.4 shows the editor created for the Pacman game 

using Sirius. 

As discussed, Xtext (Xtext , last accessed 2023) is an open-source framework developed 

by the Eclipse Foundation for creating DSLs with a strong focus on textual representations 

( concrete syntax). It provides a way to define the grammar and syntax of the DSML using a 

custom DSL and then generates an editor, parser, and other necessary components automat-

ically. In contrast, Sirius (Sirius, 2023a), developed by the Eclipse Foundation, is another 

powerful tool that focuses on creating graphical modeling environments for DSMLs. With 

Sirius, the DSL engineer can design the custom graphical editors for DSMLs, providing a 

visual way for domain experts to create, edit, and visualize models. 

1.5.2. Language engineering process in DSML 

The Language Engineering Process (Kelly and Tolvanen, 2008) in DSMLs involves a 

systematic approach to designing, defining, and implementing a DSML tailored to a specific 

domain. It encompasses several key steps which we provide five main steps: 

(1) Domain Analysis: It begin with a comprehensive analysis of the target domain, un-

derstanding its concepts, rules, processes, and specific requirements. Domain experts 

play a crucial role in providing insights during this phase. 

(2) Metamodel Definition: It needs to define a metamodel based on the domain analy-

sis. The metamodel serves as the abstract syntax of the DSML, specifying types of 

elements, relationships, and constraints using languages like EMF Ecore. 
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(3) Concrete Syntax Design: It refers to design the concrete syntax of the DSML, spec-

ifying visual or textual representations. This includes graphical diagrams, symbols, 

textual grammar, and syntax rules. 

(4) Editor and Tool Development: It means to develop tools and editors supporting the 

DSML, allowing users to create, edit, and manipulate models adhering to the DSML. 

(5) Transformation and Code Generation: It requires to develop transformation rules 

or code generation templates for generating code, documentation, or reports from 

DSML models. 

1.6. Model management 

Model management encompasses activities such as creating, manipulating, and evolving 

models (Kolovos et al, 2006a), with key abstractions being models and mappings between 

them (Bernstein, 2003). Operators like Match, Merge, Diff, Compose, Apply, Copy, Model-

Gen, and Enumerate facilitate operations such as creating, querying, updating, and deleting 

models and model elements, enabling the mapping (transformation) of models as bulk ob-

jects. The Meta-Object Facility (MOF) stands as a standard model management framework 

from the OMG (Object Management Group (OMG), last accessed 2023), providing core 

facilities for defining modeling languages. 

The most well-known framework for implementing model management is the EMF 

(Eclipse Foundation, 2023b). Atlas Model Management Architecture (AMMA), built on 

ATL (Jouault et al, 2008) atop EMF, serves as a model management framework, offering a 

virtual machine and infrastructural tools to support model management activities. Epsilon 

Object Language (EOL), another example, is built on Object Constraint Language (OCL) 

(Object Management Group (OMG) , 2023). EOL can function as a standalone generic 

model management language or as infrastructure for constructing task-specific languages. 

The FTG+PM language (Lucio et al, 2013), developed atop AToMPM (Mannadiar, 2012), 

comprises the Formalism Transformation Graph (FTG) and its complement, the Process 

Model (PM). The FTG includes formalisms (nodes) and transformations (edges), describing 

the languages used at each model development stage. Transformations model development 

activities, with the control flow and data flow between actions explicitly modeled in the PM. 
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2. VCS for programming 

VCS are software tools that help track changes to files and code over time in a col-

laborative development environment. They provide mechanisms for recording ( versioning) , 

comparing, and merging different versions of files , code, and other artifact types. Versioning 

refers to maintain a history of changes made to files or code. Each change is recorded as 

a version, allowing developers to track the evolution of a project over time. Based on how 

changes are tracked and represented in the VCS, comparisons in VCS are categorized as 

either state-based or operation-based. 

2.1. Differencing 

In VCSs, differencing or comparison refers to the process of analyzing and identifying 

the differences between two or more versions of the same file or set of files (Brosch et al, 

2012e). The goal of differencing is to understand how the content has changed over time 

or between different branches or contributors. The expected result of this process is a clear 

understanding of what has been added, modified, or deleted in each version, which is typically 

presented as a set of changes or differences. Based on the type of merging, we have categorized 

the results into three main types. In the following list , we outline results of each category: 

Comparisons in VCS are categorized as Line-Based, Model-Based, or Semantic/Domain-

Specific based on the type of content being managed and the level of abstraction at which 

they are performed (Mens , 2002). The outcome of each comparison includes lists of matches , 

differences, and conflicts. 

2 .1.1. Methods 

State-based comparison: VCS use state-based comparison to determine the differences 

between different versions or states of a file or code base (Mens, 2002). This comparison 

method identifies the final state of a file without considering the individual operations that 

led to that state. State-based comparison is useful for understanding the overall differences 

between versions. State-based comparison is conceptually simpler to understand and use 

since they need the final state of the files or models . However, state-based comparison 

may lose detailed information about individual changes or operations, making it harder to 

understand the history of modifications. 
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Operation-based comparison: In contrast, operation-based (change-based) comparison 

tracks individual changes or operations that occurred between versions (Mens, 2002). This 

level of granularity allows developers to see exactly what changes were made, such as code 

additions , deletions, and modifications. Operation-based comparison provides a detailed 

history of changes, making it easier to understand who made which changes and when. In 

addition, conflict resolution can be more precise, as the system has knowledge of individual 

changes and can provide better guidance. However, operation-based comparison depends on 

special editors to tracks individual changes or operations made to files or models over time. 

2.1.2. Line-based (textual) differencing 

Matching. In line-based textual merging, matching refers to identifying lines or characters 

in the source files that correspond to each other in the versions being compared. For example, 

a matching line in two versions of a file may have the same content or a similar content 

structure. 

Differences (Diff). Types of differences in line-based merging include: 

• Text addition: A line or character that exists in one version but not in another. 

• Text deletion: A line or character that exists in one version but has been removed in 

another. 

• Text Modification: A line or character that exists in both versions but with different 

content. 

Conflicts. Conflicts occur when there are conflicting changes made to the same lines or 

characters in different versions of a file. Types of conflicts in line-based merging include: 

• Equivalent Conflict: Occurs when multiple contributors make changes to the same 

lines or characters, but those changes are semantically equivalent and result in the 

same final content. 

• Contradicting Conflict: Occurs when multiple contributors modify the same lines or 

characters with conflicting content that cannot be automatically merged. 

2.2. Merge 

Merging is a fundamental process within VCSs that plays a pivotal role in coordinating 

collaborative software development efforts (Brosch et al, 2012e). It involves the integration of 

changes made by multiple contributors into a single, coherent version of a code base or dataset. 
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Merging ensures that the modifications made by different team members or branches are 

harmoniously combined, preventing conflicts and maintaining the integrity of the project's 

history. Merging can be categorized into three main types, each suited to specific use cases 

and data structures: 

2.2.1. Line-based merging 

Line-based merging, the simplest , is most suitable for text-based files like source code 

(Mens, 2002). It offers straightforward comparisons at the line or character level. This 

approach is fast and easy to understand, making it a popular choice for developers working 

with textual content. 

When conflicts are detected, the version control system marks the conflicting sections 

with special markers and prompts the user to resolve the conflicts manually. Users can 

employ merge tools or text editors to review and choose between conflicting changes (Git , 

last accessed 2023; SYN, last accessed 2023) , opting to keep changes from the current branch, 

the incoming branch, or manually edit the content for a custom resolution. After resolving 

conflicts, the user removes the conflict markers and marks the file as resolved, usually by 

executing a command such as 'git add' in Git. The merge operation is then completed 

with a commit, and it's advisable to review the merged file and perform testing, especially 

in software development, to ensure the successful integration of changes. The line-based 

merging process ensures that conflicting changes are addressed thoughtfully and that the 

resulting merge accurately reflects the intended modifications from both branches. 

However, its primary limitation is its lack of semantic awareness. It cannot handle 

domain-specific semantics or complex structural changes effectively, and it struggles when 

dealing with non-textual data formats (Brosch et al, 2012e). 

2.3. Line-Based (textual) merging tools 

• Git (with Di.ff and Merge Tools). Git (Git, last accessed 2023), a widely used dis-

tributed VCS, offers built-in support for line-based textual merging. Developers can 

use Git 's default merge tools or integrate third-party tools like Beyond Compare 

or KDiff3 to assist in line-based merging. While Git can support both state-based 

and operation-based merging, it is often used in a state-based manner. EGit is an 
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Eclipse-based plugin for version control, specifically designed for working with Git 

repositories. 

• SVN. SVN (SVN, last accessed 2023) is a widely used centralized VCS primarily 

focused on tracking changes to source code files and text-based files. It uses line-

based textual merging to manage code versions, compare differences between code 

changes, and merge changes made by multiple developers. SVN is primarily a state-

based VCS. 

• KDiff3. KDiff3 (kdiff3, 2023) is an open-source diff and merge tool that is especially 

useful for line-based textual merging. It offers a straightforward interface for com-

paring and merging text files , highlighting differences , and allowing users to resolve 

conflicts. is primarily a state-based VCS. 

3. Model Comparison 

In this section, we discuss model comparison from two different paradigm aspects , in-

cluding generic model comparison and semantic/ domain-specific model comparison. 

3.1. Generic model comparison 

The comparison results in generic model comparison include a fine-grained list of model 

element matches, differences, and conflicts. 

3 .1.1. Matching 

In model-based merging, matching involves identifying elements, attributes, or references 

in different versions of a model that correspond to each other in structure and semantics. 

Model matching can be: static identity-based, which assumes a unique identifier for ob-

jects (Kolovos et al, 2009a); signature-based, which compares objects based on a dynamic 

signature calculated from the objects' properties; similarity-based, which matches objects 

based on the weighted similarity of their properties but obviates the model semantics; and 

language-specific, developed ad-hoc for a modeling language and its semantics. For exam-

ple, EMFCompare is similarity-based but permits defining custom matching algorithms, and 

UMLDiff (Xing and Stroulia, 2005) is language-specific. 
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3.1.2. Differences (Diff) 

Types of differences include (Cicchetti et al, 2008a): 

• Model element addition: An element, attribute, or reference that exists in one version 

but not in another. 

• Model element deletion: An element, attribute, or reference that exists in one version 

but has been removed in another. 

• Model element modification: An element, attribute, or reference that exists in both 

versions but has different content or properties. 

3.1.3. Conflicts 

Conflicts in model-based merging occur when there are conflicting changes made to the 

same model elements, attributes, or references in different versions (Wieland et al, 2013). 

Types of conflicts in model-based merging include: 

• Equivalent Conflict: Occurs when multiple contributors make changes to the same 

model elements, attributes, or references, but those changes are semantically equiv-

alent and result in the same final model state (Brosch et al, 2012e). 

• Contradicting Conflict: Occurs when multiple contributors make changes to the same 

model elements, attributes, or references with conflicting content that cannot be 

automatically reconciled (Mens et al, 2005). 

3.2. Semantic/domain-specific model comparison 

The comparison results in semantic/domain-specific model comparison include a combi-

nation of fine-grained and coarse-grained lists of model matches, differences, and conflicts. 

3.2.1. Matching 

Depending on the domain or modeling language, matching in semantic/domain-specific 

merging involves identifying elements or constructs in different versions of a domain-specific 

artifact that correspond to each other in domain-specific semantics. Pattern matching plays 

a significant role in semantic/domain-specific merging, commonly employed to identify se-

mantic differences. This involves employing techniques to search for a specific set of model 

elements, known as a semantic pattern. Graph matching represents a specialized form of 
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pattern matching, where a semantic difference manifests as a match in graphs. In another 

approach, Schaathun and Rutle (2018) transforms model specifications into RDF graphs by 

scrutinizing RDF subgraphs conforming to the homomorphisms graph. 

3.2.2. Differences (Diff) 

The types of differences in semantic/domain-specific merging can vary widely, depending 

on domain-specific semantics, constraints, and rules. 

Expansion of generic model versioning approaches. 

The expansion of generic model versioning approaches to detect semantic differences in-

volves enhancing the capabilities of versioning techniques to identify and comprehend changes 

at a semantic level within models. Generic model versioning typically deals with managing 

different versions of models, tracking changes, and facilitating collaboration among multiple 

contributors. However, detecting semantic differences goes beyond mere syntactic changes 

and aims to capture alterations that have a meaningful impact on the semantics or interpre-

tation of the models. 

EMF Compare (EMF Compare, accessed August 2023) provides various extension points 

allowing the integration of custom behaviors throughout different stages of the model ver-

sioning process. Currently, specific editing dynamics are handled through manually crafted 

code that customizes generic behaviors within EMF Compare. While this serves as an initial 

solution, it proves to be neither scalable nor sustainable (Koegel and Langer, 2015; Zadah-

mad et al, 2022). Addressing numerous editing dynamics in a modeling language manually 

within EMF Compare becomes burdensome and may result in inconsistencies, particularly 

as these dynamics evolve over time. 

Moreover, editing dynamics can significantly vary from one modeling language to another 

or based on the application of a modeling language in different organizations or projects. 

Domain-specific modeling languages inherently possess unique editing dynamics, derived 

from the purpose and pragmatics of the respective language. The use of UML Profiles to 

define domain-specific modeling languages (Sharbaf and Zamani, 2017), adds an additional 

layer of complexity (Koegel and Langer, 2015), as the application of a UML Profile can 

substantially impact how a model is edited. 

24 



Even though the knowledge about editing dynamics is typically implemented in modeling 

editors, it lacks explicit availability in a reusable manner. Consequently, this knowledge 

needs to be redundantly re-implemented in model versioning systems, creating a gap between 

modeling editors and model versioning systems (Koegel and Langer, 2015). 

Schipper et al (2009) expanded EMFCompare to illustrate schematic differences in di-

agrams. However, their extension only allows for visualizing atomic changes and doesn't 

support coarse-grained modifications. 

Semantic lifting. 

Semantic lifting in the context of domain-specific model differencing refers to the process 

of abstracting or elevating the comparison and merging operations to a higher level of seman-

tic representation. This is done to enable a more meaningful and context-aware analysis of 

changes within models that adhere to a specific domain or modeling language. Semantic lift-

ing aims to improve the accuracy of model differencing by reducing false positives and false 

negatives. It helps in distinguishing between changes that are semantically significant within 

the domain and those that are merely syntactic. Kehrer et al (2011) employs a semantic lift-

ing approach to address the potential challenges associated with comprehending low-level 

differences provided by generic comparison tools. This method elevates these differences to 

the level of editing operations. To identify editing processes, the approach involves grouping 

relevant low-level changes. Subsequently, these groupings are utilized to describe low-level 

differences as models. An essential aspect of this approach is the automatic generation of 

rules from the rule-based description of the editing operations. 

In the pursuit of semantic lifting for domain-specific model differencing, domain experts 

play a critical role in providing specialized knowledge and insights. To initiate this process, 

experts are tasked with articulating domain-specific semantics and concepts, defining the 

meanings and relationships of elements within the models. Detailed information about the 

modeling language employed in the domain is essential, encompassing aspects such as syn-

tax, structure, and modeling rules. Furthermore, domain experts identify and communicate 

semantic constraints or rules that govern the models, ensuring that the lifting process aligns 

seamlessly with the expected behavior of the models. 

Additionally, domain experts contribute significantly to determining the significance of 

changes within the domain. Their input guides the specification of which alterations should 
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be emphasized during the semantic lifting process. Contextual knowledge about the domain 

and the models ' purpose is invaluable for making informed decisions during semantic lifting, 

allowing for a nuanced interpretation of semantics based on real-world implications. 

In terms of techniques, domain experts may be involved in the development and re-

finement of algorithms for semantic lifting. This may include specifying rules for grouping 

relevant low-level changes, a crucial step in identifying editing processes. Techniques for the 

automatic generation of rules from rule-based descriptions of editing operations are essential 

aspects of this approach. 

Furthermore, domain experts can contribute by providing specific use case scenarios 

or examples that illustrate how changes in the models may impact the overall system or 

application. These scenarios help guide the semantic lifting process, providing context for 

the development of techniques. 

As tools evolve for semantic lifting, continuous feedback from domain experts is crucial 

for refining techniques and algorithms. This collaborative effort ensures that the lifting 

process remains aligned with the evolving needs of the domain. Finally, domain experts 

may play a role in validating the results of semantic lifting, ensuring that the elevated 

semantics align with their understanding of the domain. This feedback loop contributes to 

ongoing improvements in the accuracy and relevance of the lifting process. The collaborative 

synergy between computer scientists and domain experts, coupled with the application of 

specialized techniques , is fundamental to achieving an effective and meaningful lifting of 

low-level differences to a higher semantic level in the domain-specific context. 

Two-way model differencing. 

Two-way model differencing involves comparing two versions of a model to determine 

the differences between them. Its primary goal is to detect and highlight changes, such 

as additions, deletions, and modifications, that have occurred between the two versions. 

However, the main shortcoming of two-way differencing is the lack of a common ancestor, 

which can make conflict resolution more challenging. This limitation results in a limited 

understanding of how changes relate to the overall development history. 

For instance, two-way comparison may not effectively identify conflicts , especially when 

the same element or piece of information has been modified in both versions being compared. 

Consequently, it might not provide sufficient information to determine how to merge such 
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parallel changes. Moreover, two-way differencing often interprets renames and moves as 

deletions in one version and additions in another, leading to potentially complex conflict 

resolution scenarios. As a result , two-way comparison may require more manual intervention 

and involve complex merge strategies. 

In the realm of DSM, Cicchetti et al. (Cicchetti et al, 2007) propose an approach to 

represent model differences that is metamodel independent and agnostic of the difference 

calculation method. Specifically, given two models conforming to the same metamodel , 

their difference is expressed as another model that conforms to a new metamodel. This new 

metamodel is derived from the original one by a transformation and allows representing model 

changes ( additions , deletions, and changes). Such difference models induce transformations 

to translate from one model version to the other and can be composed. The work only works 

at the abstract syntax level. 

(Kuhne et al, 2009) introduce an approach based on graph transformation rule patterns 

to express differences in a domain-specific way. The metamodel of the patterns is generated 

by transforming the metamodel of the input/output DSLs: relaxing cardinalities, adding 

transformation-specific attributes and other concepts, and modifying attribute types. 

Since low-level differences returned by generic comparison tools may be difficult to un-

derstand, Kehrer et al. (Kehrer et al, 2011) perform a semantic lifting of such differences 

to the level of editing operations. For this purpose, low-level differences are represented as 

models, so that the identification of editing operations consists of finding groups of related 

low-level changes. This search is performed by rules that are automatically derived from the 

rule-based specification of the editing operations. However, semantic lifting in this approach 

only deals with the abstract syntax of models. 

Semantic lifting approaches such as (Garcia et al, 2013; Vermolen et al, 2012) identify 

complex change patterns from low-level changes involved in a metamodel evolution. However, 

these patterns are generic and predefined. We need an approach allowing the DSL engineer 

to define the semantic differencing rules using a domain-specific editor. 

Three-way Model differencing. 

Three-way model differencing involves comparing three versions of a model, including 

branch Version one (left version, ours) , branch Version two (right version, theirs), and a 
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common ancestor (base version) for the other two versions. Its purpose is to identify, analyze, 

and highlight differences, conflicts, and similarities among these versions. 

Compared to two-way differencing, three-way differencing offers a more comprehensive 

view of changes. It excels in detecting conflicts, especially when both branches have made 

conflicting changes to the same elements or properties. Consequently, it allows for the uti-

lization of more sophisticated merging algorithms. Three-way differencing can automatically 

merge changes that do not conflict. 

However, it is important to note that three-way differencing still requires user intervention 

to resolve contradicting conflicts. Additionally, it is more complex to implement compared 

to two-way differencing, given the need to manage three versions and their relationships 

In the realm of DSM, Schipper et al (2009) extended EMFCompare to depict schematic 

differences in diagrams.However, they only enable the visualization of atomic changes and 

do not support more coarse-grained changes or conflict patterns. Similarly, Cicchetti et al 

(2010) generate model differences as model patches but do not conduct conflict analysis. 

Several approaches have been proposed to semantically lift low-level changes, e.g. , Kehrer 

et al (2011, 2013) use Henshin for semantic lifting and critical pairs for dependency analysis. 

Langer et al (2013a) post-processes atomic operations into complex operations using EMF-

Compare. However, to work with EMFCompare extension points effectively, a DSL engineer 

should possess strong Java programming skills and a solid understanding of the Eclipse Plat-

form and its extension mechanisms. Additionally, a good grasp of EMF core concepts, mod-

eling principles, and model comparison and merge concepts is essential. Knowledge of XML 

and Ecore metamodeling, debugging techniques, design patterns, and testing methodologies 

are also valuable to ensure the successful implementation and customization of EMFCom-

pare's comparison and merging capabilities. 

Addazi et al (2016) expanded the default matching process in EMFCompare to distin-

guish between linguistic and contextual notions, such as information-content based metrics. 

It provides a method for determining the semantic similarity between two given model ele-

ments. This somehow enables semantic reasoning over differences. Their solution managed 

to maintain fast time performance but did not deliver the best results in terms of precision 

and recall. 
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Maoz et al ( 2011 b) map models to a formally defined semantic domain in order to reason 

about the differences. 

3.2.3. Conflict Management 

Conflicts in semantic/domain-specific merging depend on domain-specific semantics, con-

straints, and rules (Brosch et al, 2010a). These conflicts may be resolved as equivalent con-

flicts ( changes are semantically equivalent) or contradicting conflicts ( changes conflict and 

cannot be automatically merged) (Altmanninger and Pierantonio, 2011). Constraint viola-

tion, pattern matching, change overlapping, and formal methods are the common categories 

of conflict detection techniques (Sharbaf et al, 2022b). Each approach may simultaneously 

benefit more than one technique to detect conflicts. The constraint violation techniques can 

check model and metamodel constraints (Trols et al, 2021), whereas the change overlapping 

techniques comprise contradicting changes and equivalent changes (Sabetzadeh and Easter-

brook, 2006). On the other hand, pattern matching can be utilized to find more complex 

conflicts involving multiple elements from different models (Fritsche et al, 2020). Finally, 

formal methods can be used to find conflicts through rigorous mathematical approaches 

(Zerrouk et al , 2018). 

Conflict Detection. 

In the context of VCS a conflict refers to a situation where two or more changes made 

by different contributors or branches are in conflict with each other and cannot be automat-

ically merged without human intervention (Booch et al, 2000). In model-based comparison, 

conflicts can manifest in various ways, leading to challenges in merging changes made by 

different contributors. Structural conflicts (syntactic or fine-grained) occur when multiple 

contributors modify the same structural elements within a model. For example, if one de-

veloper deletes a class that another developer 's class diagram references as a superclass, a 

dangling reference conflict arises. Another example is when two developers concurrently 

modify the attributes of a class, with one adding a new attribute and the other renaming an 

existing one, causing an overlapping changes conflict. 

The conflict arises because it is unclear whether the modification should apply to the 

deleted element or if the deletion should override the modification. Similarly, if one branch 

modifies an element or property in a way that is inconsistent with changes made in another 
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branch, a conflict occurs. For example, if one branch modifies the cardinality of a reference 

from "0 .. 1" to "1" while another branch changes it to "O .. n," an attribute or reference conflict 

arises. 

Semantic conflicts ( coarse-grained or domain-specific) (Brosch et al, 2012e), occur when 

changes to the model affect its semantics or behavior, potentially introducing inconsistencies 

or non-compliance with domain-specific rules. These conflicts are often complex to resolve, as 

they demand a deep understanding of the model's intended behavior and the domain-specific 

rules governing it. In a model-based environment, violations of constraints conflict may arise 

when changes made in different branches lead to violations of domain-specific constraints, 

model integrity rules, or behavioral constraints. For example, if one developer changes the 

state transition rules of a state machine model , and another developer modifies a related 

constraint that contradicts the new rules, a constraints violation conflict occurs. 

Another concepts is equivalent conflicts that happen when multiple contributors make 

changes to the same model elements, attributes, or references, but those changes are se-

mantically equivalent and result in the same final model state. For example, two modelers 

independently rename a set of classes to more descriptive names, and their changes are 

semantically equivalent because they result in the same model structure. 

To detect conflicts , four main approaches have been proposed, as discussed by Sharbaf 

and colleagues (Sharbaf etal, 2022b). These approaches include conflict pattern matching, 

which involves identifying model fragments representing conflict patterns; constraint viola-

tion checking, which assesses adherence to well-formedness rules for models and metamodels; 

change overlapping checking, which identifies equivalent conflicts; and formal methods, which 

rely on mathematical and formal logical principles. 

The conflict pattern language introduced by Sharbaf et al (2020) is used to express con-

flicts in different modeling languages written in Epsilon model validation language (EVL) 

(Kolovos et al, 2009b). However, it only detects conflicting semantics and ignores non-

conflicting semantics. Whereas, DSMCompare identifies all semantic differences, offering 

users a comprehensive overview of changes at a semantic level. This aids users in distin-

guishing the intended resolution when resolving conflicting semantic differences. Moreover , 

in our approach, we find semantic differences and investigate them for semantic conflicts. 

The pattern language is built on top of OCL which restricts its application to UML-based 
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languages only and forces the DSL engineer to be familiar with them. Morover, their pat-

terns are general and predefined, since they do not provide users with a domain-specific 

mechanism to define new rules. Yet, they resemble the rules in our method. Therefore, it 

lack flexibility for diverse conflicts across modeling languages, making managing semantic 

conflicts a challenge in model merging. 

An approach in (Altmanninger et al, 2010) focuses on modeling language semantics and 

can detect semantic conflict . However, it relies on defining semantic views and representing 

models to introduce specific semantic aspects (Altmanninger, 2007). Other methods (e.g., 

(Sharbaf and Zamani, 2020; Dam et al, 2016)) mainly address static semantic conflicts and 

are tailored to specific modeling languages, limiting their use. 

Taentzer et al (2014) use graph theory to formalize two syntax-based conflict concepts , 

including operation-and state-based conflicts in model versioning. Additionally, they use 

graph constraints to define multiplicity and ordered features. They detect conflicts using 

constraint violation checking. However, their approach disregards the effect of syntactic 

modifications on the semantics of the model as explained by Kautz and Rumpe (2018). 

AMOR (Altmanninger et al, 2008a) provides a change overlapping checking using critical 

pair analysis examine whether a pair of operations, one of which contains a glue element, 

can be merged into a single operation. (Mougenot et al, 2009) propose an approach that 

utilizes description logics and logical inference techniques for automating conflict detection. 

However, it might have limitations in expressing complex domain-specific concepts and re-

lationships. As a result, it lacks a mechanism for easily incorporating and adapting to 

domain-specific rules. 

Brosch et al (2012b) create a separate difference model to represent different kinds and 

granularities of differences and conflicts. A difference is shown as a hierarchy divided into 

atomic changes (e.g., adding an element) and composite changes (e.g., refactoring). A con-

flict is shown as a hierarchy of overlapping conflicts and constraint violations. However, they 

are specific to UML class diagrams. 

Sharbaf and Zamani (2020) use UML profiles to model a conflicting case by defining 

examples of the conflict parties as a pattern. They also highlight the conflicts using different 

colors. However, their approach is only appropriate for UML models.Furthermore, the static 

31 



semantics of UML, which delegate model validation to the tools that process them, are 

currently insufficient to assure solid models (Berkenkotter, 2008). 

The tool PEACEMAKER is capable of loading XMI models with conflict sections, com-

puting and displaying fine-grained conflicts at the model level, and offering the necessary 

resolution steps (de la Vega and Kolovos, 2022). However, when using PEACEMAKER, 

DSL users must reason about differences and conflicts at the abstract syntax level rather 

than using the concrete syntax. 

Conflict awareness. 

Conflict awareness involves continuously monitoring changes made by different contrib-

utors to a shared model. It identifies situations where changes overlap, contradict, or are 

otherwise incompatible with each other. 

When a conflict is detected, the VCS system raises a notification to inform the relevant 

users about the conflict. This notification typically includes details about the conflicting 

changes, such as which elements or attributes are affected, who made the conflicting changes, 

and the specific nature of the conflict (e.g. , structural or semantic). For example, (Trols etal, 

2019) uses modeling approach to show warning messages. 

Conflict awareness often provides a visual or textual representation of the conflicting 

changes within the modeling environment. This representation helps users understand the 

nature of the conflict and the specific areas of the model that are affected. For instance, 

(Bartelt and Schindler, 2010) highlights the involved model elements when a conflict item is 

selected. While, (Baqasah et al, 2014) introduces a conflict view, which opens a new window 

providing additional details about conflicts, including descriptions and links to the conflicting 

elements. 

Conflict Resolution. 

Conflict resolution is the systematic approach of resolving conflicting changes made by 

multiple contributors when integrating different branches or versions of a shared resource. 

Conflict resolution can be categorized into several types , including manual, semi-automatic, 

and automatic methods, each with its strategies and components: 

Manual. 

Manual conflict resolution involves human intervention for conflict resolution. In this 

process, users actively participate by making decisions based on their understanding of the 

32 



model and the intentions behind the changes. They have several strategies at their disposal, 

including selecting one version over the other (Keep left / Keep right), applying changes from 

one version first and then the other (Apply left then right / Apply right then left), imple-

menting custom resolutions (modifying conflicting sections to achieve desired outcomes), or 

discarding all changes (Sharbaf et al, 2022a; Brosch et al, 2012e). For instance, in the work of 

( de la Vega and Kolovos, 2022), users are presented with the options to retain either the left 

or right version or to take no action in certain conflicting cases. The work also provides the 

capability to automate conflict resolution by automatically merging and removing conflicting 

elements. 

Semi-automatic. 

Semi-automatic conflict resolution combines human judgment with automated assistance, 

striking a balance between user involvement and streamlined conflict resolution. In this 

approach, the VCS offers tools and suggestions to aid users in the process. Users play an 

active role by reviewing and approving suggested resolutions, with the flexibility to make 

adjustments as needed (Debreceni et al , 2016). 

Semi-automatic resolution strategies encompass various techniques, including the auto-

matic merging of non-conflicting changes, the identification of potential conflicts with ac-

companying suggestions for resolution , and interactive conflict resolution interfaces. In the 

work of (Kuiter et al, 2021) , a conflict resolution process based on negotiation and voting 

among collaborators is employed to identify their preferred modifications. For instance, in 

the study by (Debreceni et al, 2016), possible resolution candidates are computed for each 

conflict, allowing users to select the most suitable one. 

Automatic. 

Automatic conflict resolution is designed to streamline the conflict resolution process 

by minimizing direct user intervention. In this approach, VCS employ predefined rules, 

algorithms, or heuristics to automatically merge changes whenever possible. Typically, de-

velopers only need to step in when conflicts cannot be resolved automatically or when the 

VCS requires input to make a decision. 

Automatic resolution components may include several features and strategies. For in-

stance, some VCS systems, like Git (Git, last accessed 2023), permit users to define conflict 

resolution priority rules. Users can specify that changes to specific files or sections of code 
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should consistently take precedence in case of conflicts, guiding the automatic resolution 

process. Organizations can also establish conflict resolution policies that outline how par-

ticular types of conflicts should be automatically handled. These policies can be based on 

coding standards, best practices, or project-specific requirements. For instance, when merg-

ing changes from the development branch into the release branch, policies may prioritize 

changes from the release branch for critical files associated with the release. 

Some methodologies ( e.g. , (Wieland et al, 2013) and (Trols et al, 2019)) fully support 

manual conflict resolution, involving users in making the final choices among suggestions 

during the resolution phase. However, a lack of insight into the intentions each user had 

during modeling can result in overlooked support for established requirements or even give 

rise to new conflicts (Chong et al, 2016; Brosch et al, 2012d) . 

Moreover, tools such as flake8 (flake8, 2023) in the context of Python can be employed to 

validate and format code according to predefined standards. Platforms like GitHub Actions 

(githubActions, 2023) and GitLab CI/CD (gitlabCICD, 2023) offer automation capabilities 

that can be integrated into the conflict resolution process, enhancing its efficiency. 

Additionally, other approaches involve operational transformation or the application of 

predefined conflict resolution patterns. For instance, (Nicolaescu et al, 2018) utilizes the op-

erational transformation algorithm to generate new operations consistently applicable across 

all versions for each conflict. Conversely, (Rossini et al, 2018) applies predefined conflict 

resolution patterns. 

Certain approaches (Hachemi and Ahmed-Nacer, 2020; Fritsche et al, 2020) perform res-

olution for limited conflict scenarios. DSL engineers can expand the repository of rules 

and tailor existing conflict specifications and resolution components. These rules are then 

translated into equivalent Henshin rules (Struber et al, 2017), enabling their utilization by 

external tools, such as machine learning applications, for enhanced effectiveness (Eisenberg 

et al, 2021). 

4. Model Merge 

Merging is a fundamental process within VCSs that plays a pivotal role in coordinating 

collaborative software development efforts (Brosch et al, 2012e). It involves the integration of 

changes made by multiple contributors into a single, coherent version of a code base or dataset. 
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Merging ensures that the modifications made by different team members or branches are 

harmoniously combined, preventing conflicts and maintaining the integrity of the project's 

history. 

Model merging, in the context of MDE, refers to the process of integrating changes and 

updates from multiple versions of models into a single coherent model (Mens, 2002). Model-

based merging often involves a high level of semantic awareness in addition to the structural 

aspects of models, such as classes, associations, and attributes. It considers the meaning 

and semantics of changes to ensure that the merged model remains consistent and adheres 

to domain-specific knowledge and constraints. 

If a change of structural or semantic types appears in more than one branch of the model 

( equivalent changes), only one copy of it should be included in the merged model. This 

property is known as non-redundancy. If a change of structural or semantic types contradicts 

other branches of the model ( contradicting changes), the conflict should be resolved before 

the merge. 

4.1. paradigm 

Merging can be categorized into three main types, each suited to specific use cases and 

data structures: 

4.1.1. Line-Based merging 

Line-based merging, the simplest , is most suitable for text-based files like source code 

(Mens, 2002). It offers straightforward comparisons at the line or character level. This 

approach is fast and easy to understand, making it a popular choice for developers working 

with textual content. 

When conflicts are detected, the version control system marks the conflicting sections 

with special markers and prompts the user to resolve the conflicts manually. Users can 

employ merge tools or text editors to review and choose between conflicting changes (Git, 

last accessed 2023; SYN, last accessed 2023), opting to keep changes from the current branch, 

the incoming branch, or manually edit the content for a custom resolution. After resolving 

conflicts, the user removes the conflict markers and marks the file as resolved, usually by 

executing a command such as 'git add' in Git. The merge operation is then completed 

with a commit, and it's advisable to review the merged file and perform testing, especially 
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in software development , to ensure the successful integration of changes. The line-based 

merging process ensures that conflicting changes are addressed thoughtfully and that the 

resulting merge accurately reflects the intended modifications from both branches. 

However, its primary limitation is its lack of semantic awareness. It cannot handle 

domain-specific semantics or complex structural changes effectively, and it struggles when 

dealing with non-textual data formats (Brosch et al, 2012e). 

4.1.2. Model-Bas ed Merging 

Model-based merging operates at a higher level of abstraction, making it well-suited for 

structured data represented as models, which is common in MDE. This approach excels in 

understanding the abstract-syntax of the model, making it suitable for complex structural 

changes. Model-Based Merging provides a detailed history of changes and supports precise 

conflict resolution, making it valuable for MDE scenarios. However , it struggle with semantic 

conflicts and can be more complex to implement and understand, particularly for domain 

experts who are not familiar with the underlying modeling languages. 

Upon conflict detection, the system marks the conflicting sections within the models , 

often using specialized annotations. A three-way comparison is conducted, considering the 

common ancestor, changes in the current branch, and changes in the incoming branch. 

Users are presented with a graphical user interface to navigate and visualize the abstract 

syntax of models (EMF Compare, accessed August 2023; Koegel and Helming, 2010b), with 

conflicts highlighted for resolution. Users make decisions on merging conflicting changes, 

such as accepting modifications from one branch, the other branch, or manually resolving 

discrepancies. The system then applies these decisions to create a merged model, potentially 

automating the merging of non-conflicting changes. After resolving conflicts, the system 

updates the models and removes any conflict markers or annotations. Users signal to the 

system that conflicts are resolved, finalizing the merge operation. In a version control context, 

users may commit the merged model. Subsequently, users review the merged model to ensure 

accurate conflict resolution, and additional testing or validation steps may be undertaken 

to confirm the integrity of the integrated changes. This process ensures that conflicts in 

higher-level abstractions are addressed systematically, reflecting the intended modifications 
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across shared entities in the model, and can be adapted to various model-based merging 

tools. 

The three-way merging of models has been approached through various methods. Bartelt 

(2008) proposed a generic three-way merge at a low level of abstraction, potentially result-

ing in inconsistent models concerning the metamodel and underlying meta-metamodel. To 

address this , a post-processing phase automatically detects and interactively resolves in-

consistencies. Blanc et al (2008) presents a general strategy for identifying inconsistencies 

in models based on pre-defined consistency rules and Prolog-based first-order logic. How-

ever, it does not consider the identification of semantic equivalences in cases of syntactic 

redundancies. 

In contrast , Kolovos et al (2006b) introduced the EML, a rule-based language for two-way 

model merging, providing customization of merge logic across diverse metamodels. However, 

EML lacks support for three-way merging and does not handle conflict management for 

several types of conflicts. Westfechtel (2014) offered a formal approach to three-way merging 

using set theory and predicate logic for Ecore models . This approach specifies merge rules 

managing additions, deletions, renaming, and movements of model elements, ensuring a well-

formed merged model. While it effectively detects and resolves conflicting modifications, it 

limits conflict detection to preconditions in subgraph transformation rules. 

On the other hand, Rossini et al (2010) explored category theory for three-way merging, 

representing models as graphs. Their approach involves creating a union graph with elements 

from all input versions. Conflicts are detected using generic rules that can be augmented 

with specific rules considering metamodel constraints. However, this method only identi-

fies conflicts and does not provide resolution, and the merge process stops upon detecting 

conflicts. It also operates at a more general level and would require adaptation for merging 

EMF models. 

4.1.3. Domain-Specific Merging 

Domain-specific merging is a specialized approach designed for contexts where data and 

models are inherently domain-specific (Sharbaf et al , 2022b; Brosch et al, 2012e). It focuses on 

preserving the relevance and validity of artifacts within a specific domain. This approach can 

incorporate features of model-based merging, providing a high level of precision in preserving 
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domain-specific context. However, domain-specific merging necessitates domain expertise for 

implementation and may introduce additional complexity based on the specific requirements 

of the domain. 

Semantic or domain-specific model merging is a specialized process for harmonizing 

changes within models that represent complex systems . In this context, the merging process 

is guided by the unique semantics, rules, and structures inherent in the domain-specific mod-

els (?). The first step involves the detection of conflicts, wherein specific rules and heuristics 

tailored to the characteristics of the domain are applied to identify discrepancies. Conflict 

resolution strategies are then crafted or applied, leveraging domain-specific knowledge to 

align changes based on the semantic meaning of entities within the models (Sharbaf et al, 

2022b; Brosch et al, 2012c). The merging tools employed are purpose-built for the nuances 

of the domain-specific models, often offering visualizations that aid users in understanding 

and resolving conflicts within the context of the model structure. 

The user interface for resolving conflicts is customized to the specifics of the domain, 

offering options that align with the semantics of model entities. Manual resolution may be 

required, and users are empowered to make decisions that reflect the intended semantics 

of the models. The validation and testing phase is critical, involving domain-specific tests 

to ensure the correctness of the merged model in accordance with the expected semantics 

(Sharbaf et al, 2022b ). A feedback mechanism is established, allowing domain experts to 

provide insights and corrections based on their specialized knowledge. This iterative process 

of user feedback contributes to the continuous improvement of domain-specific model merging 

algorithms and strategies over time, enhancing their alignment with the unique requirements 

of the specific domain. Ultimately, semantic/ domain-specific model merging ensures that the 

combined models accurately reflect the intended semantics and structures within the targeted 

domain. 

The proposal by Altmanninger et al (2010) aims to enhance the specification of modeling 

language semantics to facilitate accurate conflict detection. They highlight the importance 

of considering both syntax and semantics in conflict resolution, showcasing instances where 

models in syntactic conflict can be merged seamlessly based on their semantics, and vice 

versa. This tool enables rule definition for conflict detection and resolution but does not 
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consider syntactically different but semantically equivalent parts in concurrently modified 

models. 

Cicchetti et al (2008b) introduces a domain-specific language for specifying both syntactic 

and semantic conflicts using the difference model, which describes modifications in subse-

quent versions. However, this formalism cannot specify semantic equivalent conflicts. In 

the work of Kaufmann et al (2010), conflict detection characteristics are enhanced by user-

defined activities, and collaborative conflict resolution characteristics are provided. However, 

it lacks a formal treatment of conflict detection and resolution. 

The work by Altmanninger (2007) focuses on making semantic aspects of modeling lan-

guages explicit using semantic views. While it complements our work by aiming for more pre-

cise conflict detection through semantic views, it cannot detect semantic equivalent conflicts 

related to refactoring or complex equivalent concepts. Additionally, it eliminates syntactic 

redundancies but does not cover syntactic conflicts resulting from atomic and composite 

change operations. In the formal approach proposed by Taentzer et al (2010), conflicts are 

described based on graph transformations and the theory of categories. While they identify 

operation-based and state-based conflicts, their approach lacks consideration for the detec-

tion of operation sequences, semantic equivalent modifications, and resolution of detected 

conflicts. 

4.2. Merging methods 

There are two main methods for merging including state-based merging and operation-

based merging. The categorization is based on whether the merging strategy centers around 

comparing and merging entire states (state-based) or tracking and applying individual 

changes (operation-based). 

4.2.1. State-based merging 

State-based merging uses the match, difference, and equivalent list produced as a result 

of state-based differencing. It typically doesn't consider the history of changes but focuses 

on the final content. Advantage is simplicity and ease of use for scenarios where tracking 

individual operations is not necessary. However, the merge may lead to conflicts when 

multiple contributors make changes to the same parts of the model since it doesn't provide 

detailed insights into how conflicts arose. 

39 



4.2.2. Operation-based merging 

Operation-based merging considers the history of operations applied to models. It tracks 

the sequence of changes made by contributors, allowing for precise conflict detection and res-

olution. It tracks the sequence of changes made by contributors, allowing for precise conflict 

detection and resolution. Provides detailed insights into the evolution of models, allowing 

for more fine-grained conflict resolution. Well-suited for complex collaborative scenarios. 

However, It may be more complex to implement and use than state-based merging since it 

requires tracking and managing a history of operations. 

4.3. Merging techniques 

Raw merge, two-way merge, and three-way merge Fig. 2.5 are three distinct techniques 

used to integrate different versions of a model (Sharbaf et al, 2022b; Mens, 2002). 

4.3.l. Raw Merge 

refers to a straightforward approach of combining changes made to models without per-

forming sophisticated conflict resolution or considering the semantics of the models. In raw 

differencing, there may not be explicit versions or a common ancestor. The process involves 

comparing two sets of changes, often represented as patches or cliffs, and applying them to 

a base or original version to create a successive version. It may be employed in very simple 

cases where structural and semantic conflicts are unlikely, such as merging separate model 

fragments with minimal dependencies. 

4.3.2. Two-way Merge 

in model-based merging involves using the result produced by two-way differencing in 

order to integrate the changes of two models. In model-based two-way merge, the tool 

or system analyzes the differences between the base version (Vl or V2) and the modified 

Raw Merging 

Intermediate 
Version 

Successive 
Version 

Two-way Merging 

Successive 
Version 

Three-way Merging 

Figure 2.5. Merging Techniques 
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version (V2 or Vl) (Mens, 2002). It considers structural and semantic conflicts and attempts 

to automatically reconcile them based on predefined rules or user guidance. Two-way merge 

is useful in model-based merging scenarios where a base version and one modified version 

need to be integrated. It helps ensure that changes made in the modified version align 

correctly with the base version, particularly when there is a shared history of changes. 

4.3.3. Three-way Merge 

in model-based merging involves using the result produced by three-way differencing in 

order to integrate the successive model. Model-based three-way merge analyzes the differ-

ences between the common ancestor and both modified versions(Mens, 2002). It identifies 

structural and semantic conflicts and provides a structured approach to conflict resolution. 

Developers can review and manually resolve conflicts when necessary. Three-way merge is 

highly effective in merging non-conflicting fine-grained model-based merging for collabora-

tive MDE projects. It ensures that changes made by multiple contributors or branches are 

integrated systematically, maintaining the integrity and consistency of the models. 

5. Tools 

Based on the type of merging, we have categorized merging tools into three main types. 

In the following list, we outline examples of ( commercial) tools for each category. 

5.1. Focus 

In this section, we focus on existing generic model-based merging tools and 

semantic/ domain-specific merging tools. 

5.1.1. Model-Based Merging 

In this section, we discuss three popular model-based merging tools: EMFCompare, 

EMFStore, and the Epsilon Merging Language (EML). 

• EMFCompare. EMFCompare (EMF Compare, accessed August 2023) is an Eclipse-

based tool specifically designed for model-based merging in the context of the Eclipse 

Modeling Framework (EMF). It allows users to compare and merge EMF models, 

including UML diagrams, Ecore models, and other EMF-based artifacts. is primarily 
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a state-based VCS. CDO (Connected Data Objects) provides a powerful version con-

trol mechanism for managing models. However, it doesn't include a built-in model 

comparison and merging engine as robust as EMF Compare's. Instead, it relies on 

external tools like EMFCompare for these specific tasks. 

• EMF Store. EMFStore (Koegel and Helming, 2010b) is a VCS designed for models 

and model-based artifacts created using the Eclipse Modeling Framework (EMF). 

It supports model-based merging for various modeling languages and metamodels, 

making it a suitable choice for MDE projects. EMFStore is an operation-based SVN. 

• Epsilon Merging Language (EML). EML (epsilon, 2023) is a domain-specific language 

designed for model merging tasks. It can be used in conjunction with Epsilon's model 

management tools to perform model-based merging on various modeling languages 

and metamodels. EML is primarily a state-based merging approach. 

5.1.2. Semantic/Domain-Specific Merging 

In this section, we discuss two semantic merging tools: MetaEdit+ and AMOR. 

• MetaEdit+. MetaEdit+ (Kelly, 2018) is a modeling and DSM environment that 

includes semantic merging capabilities. It enables domain-specific merging for models 

created using the MetaEdit+ modeling language. MetaEdit+ is primarily a state-

based VCS. 

• AMOR. AMOR (Altmanninger et al, 2008b) is a tool used for managing versions 

and changes in the context of MDE. It specializes in model-based merging, allow-

ing users to merge changes made to models and diagrams, particularly in the DSM 

context.AMOR is primarily a state-based VCS. 

5.2. Techniques 

Model-based versioning tools, like text-based tools, include two merging techniques: two-

way versioning and three-way versioning. 

5.2.1. Two- Way VCSs for models 

Even though models are frequently persisted as text files, the use of traditional text-based 

VCSs is suboptimal, as we have argued in the introduction. This way, several model repos-

itories with support for version control have been proposed along the years (Altmanninger 

42 



et al, 2009). The ModelCVS (Kappel et al, 2006) and the AMOR projects (Altmanninger 

et al, 2008a) proposed dedicated VCSs for models with sophisticated functionalities, like a 

recommender of possible resolutions for model conflicts (Brosch et al, 2010d). In this setting, 

DSMCompare could be useful to help understand better the differences between the models, 

before choosing a resolution strategy. 

The model repository of Espinazo-Pagan and Garcia-Molina (Espinazo-Pagan and 

Garcia-Molina, 2010) uses a MySQL database for storage, and a special encoding of model 

versions to improve efficiency. For a better performance, the authors later proposed the use 

of NoSQL databases for persistence (Espinazo-Pagan et al , 2011). EMFStore (Koegel and 

Helming, 2010b) and CDO (CDO Model repository, accessed August 2023) are well-known 

model repositories for EMF, which support collaborative editing and versioning of models. 

DSMCompare could be used atop these repositories to enable the visualization of (semantic) 

diffs using the graphical concrete syntax of the DSL. 

Commercial modeling tools feature different levels of versioning and model differencing 

capabilities. LabView has a built-in revision control system that allows to compare two 

different models (Lab View, 2023) and provides a text-based results. MetaEdit+ (Kelly et al , 

1996) features a version control mechanism called Smart Model Versioning (SMV) (Kelly, 

2018), which allows comparing models - graphically, textually or by means of a tree - and 

storing them on any major version control system such as Git. Depending on the config-

urability of SMV in MetaEdit+, users may have the ability to customize conflict resolution 

strategies in fine-grained difference level to align with their specific modeling practices and 

collaboration workflows. MPS (MPS, last accessed 2023b) integrates with Git and Subver-

sion and provides some capabilities for viewing model differences , in a textual way (MPS, 

last accessed 2023a). Simulink supports comparing models and highlighting the differences 

in the original models. Simulink uses a scoring algorithm to determine if two model elements 

are a match (Simulink, 2023). Similarly, SystemWeaver (SystemWeaver, 2023) provides ver-

sioning capabilities at the model element level. This way, users can compare an element , 

view its history, and replace one version of an element with another. While these tools 

offer different ways to diff models , they are typically fixed and do not support extensive 
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customization or provide support for customization at a fine-grained level. Instead, our ap-

proach could be valuable here to provide domain-specific, customizable visualizations of the 

model differences, in a graphical way. 

Our approach is based on Eclipse Modeling Framework (EMF). This is a relevant tech-

nology, since Eclipse is widely used in MDE research and many companies use Eclipse and 

EMF tools (Akdur et al, 2018). Large companies such as IBM are spearheading MDE through 

EMF (Mohagheghi et al, 2013). 

Model differencing and collaborative modeling can lead to clones and duplicates. Some 

approaches have addressed this problem. Storrle has developed a number of heuristics and 

algorithms to detect clones in models (Storrle, 2010, 2017). Babur et al. (Onder Babur et al, 

2019) leveraged natural language processing, feature extraction and clustering techniques to 

detect clones in models. We have not focused on detecting model clones in our approach, 

which is left as future work. 

5.2.2. Three-way VCSs for models 

Throughout the years, a number of model repositories with capabilities for version control 

have been introduced (Altmanninger et al, 2009). ChronoSphere (Haeusler et al, 2019) deliv-

ers an open-source EMF model repository. Transactions, queries, versioned persistence, and 

metamodel development are all part of the essential data management stack. The authors 

suggest using NoSQL databases for persistence for greater performance (Espinazo-Pagan 

et al, 2011). These repositories can be used in conjunction with DSMCompare to make it 

possible to visualize (semantic) differences using the graphical concrete syntax of the DSL. 

Different levels of versioning and model differencing capabilities are available in com-

mercial modeling programs. MagicDraw1 provides controlled access to all artifacts, simple 

configuration management , and a mechanism to prevent version conflicts in this manner. 

Obeo Designer2 and CDO can integrate with EMFCompare to provide a generic model-based 

versioning service. Smart Model Versioning3 , a version control tool included in MetaEdit+ 

(Kelly et al, 1996) , allows the comparison of models visually and textually. It is compat-

ible with any significant VCS for storage, such as Git. Git and Subversion are integrated 

1https: //www. 3ds. com/products-services/ catia/products/no-magic/magicdraw/ last accessed Jul 
2022 
2https: / /www.obeodesigner.com/ last accessed Jul 2022 
3https: //www.metacase.com/news/smart_model_ versioning. html last accessed Jul 2022 

44 



with JetBrains MPS, which also offers some tools for examining model differences textually. 

While these tools offer different ways to compare models triplets, they are typically not cus-

tomizable to the DSL. DSMCompare provides domain-specific, customizable visualizations 

of the model differences, in a graphical way. 

5.3. Visualization 

Gleicher (Gleicher, 2018) provides general guidelines for visualizing comparisons. For 

many different domains, comparing artifacts is a common task and visualizing the compar-

ison often helps. Generally, the visual comparison is displayed using juxtaposition (e.g., as 

EMFCompare) , superposition, or explicit encoding. 

5.3.1. Juxtaposition 

Juxtaposition in visualization refers to the placement or arrangement of elements in close 

proximity to one another to create a contrast or comparison (Gleicher et al, 2011). In the con-

text of model comparison tools , it involves the comparison of different versions or instances 

of a model to highlight changes, differences, or similarities between them. Juxtaposition 

improve model comparison visualization in different aspects: 

• Element-Level Comparison: Juxtaposition occurs when the tool identifies elements 

that exist in one version of the model but not in another, or when the properties of 

elements differ. 

• Structural Differences Highlighting: The tool visually highlights structural differences 

between models. This can include added, deleted, or modified elements, making it 

easy for users to identify the changes at a glance. Juxtaposition in this aspect means 

use of visual cues such as colors, icons, or annotations to indicate the nature of the 

differences. 

• Three- Way Comparison: Juxtaposition in this context involves showing the differ-

ences between the common ancestor and the two versions, helping users understand 

the changes made in each branch. 

• Conflict Resolution: In collaborative environments, conflicts can arise when multi-

ple users modify the same part of a model independently. Juxtaposition in model 

comparison tools facilitates conflict resolution by presenting conflicting changes and 

allowing users to choose which changes to accept, merge, or override. 
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5.3.2. superposition 

Superposition, in the context of model comparison, refers to the ability to overlay or com-

bine multiple versions of a model to provide a comprehensive view that includes changes, 

additions, and deletions from each version. This technique is particularly useful when com-

paring multiple models or versions simultaneously. Superposition enables a unified repre-

sentation that incorporates the differences between models, making it easier for users to 

analyze and understand the changes. Below are some usages of superposition in the model 

comparison context along with examples of tools that leverage this concept: 

• Unified Model Visualization: Superposition allows users to view multiple model ver-

sions simultaneously in a single, unified visualization. Changes from different versions 

are overlaid or combined, providing a holistic view. 

• Conflict Resolution: Superposition aids in identifying and resolving conflicts by pre-

senting overlapping changes from different versions. 

5.3.3. Explicit encoding 

Explicit encoding in the context of model comparison visualization refers to the deliberate 

and clear representation of differences , additions , and deletions through visual elements. 

This technique enhances the interpretability of the comparison results by using visual cues 

to convey specific information. Here are some usages of explicit encoding in the visualization 

of model comparison: 

• Color-coded Differences: They uses different colors to represent different types of 

changes, such as additions, deletions, or modifications. This provides a quick and 

intuitive way for users to identify and understand the nature of differences. 

• Icons and Symbols: It means employing specific icons or symbols to represent different 

types of changes. Icons can be placed next to or within model elements to indicate 

whether they are added, deleted, or modified. 

• Annotation and Labels: It conveies adding textual annotations or labels to explicitly 

describe the nature of changes. This can include information such as the date of 

modification or the author who made the changes. 

• Line Markings for Relationships: When comparing models that include relationships 

between elements, it means using line markings or connectors to indicate changes in 
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relationships. This makes it clear which connections have been added, deleted , or 

modified. 

5.3.4. Challenges in the visualization of semantic/domain-specific model comparison 

An important drawback of current mode-based comparison approaches lies in their lack 

of adequate visualization techniques for domain-specific differencing and merge tasks. Vi-

sualizing conflicts in the concrete syntax of different models is a significant challenge that 

hasn't been addressed for any modeling language (Sharbaf et al, 2022b). 

Only a couple of existing methods ( e.g., (Wieland et al, 2013; Bartelt and Schindler, 

2010)) offer graphical support for conflict resolution, but they fall short of providing a clear 

overview of the model elements involved in conflict situations (Sharbaf et al, 2022b). Addi-

tionally, the visualization approach introduced in (Wieland et al, 2013) only supports manual 

resolution and focuses solely on fine-grained differences and conflicts. Moreover , the approach 

in (Bartelt and Schindler, 2010) lacks support for various conflict resolution strategies, and 

it doesn't provide detailed information on specifying and Visualizing the resolution. This in-

dicates a trend towards graphical domain-specific differencing and merge activities (Sharbaf 

et al, 2022b). Hence, a promising avenue for future research could involve visually guiding 

users in describing conflict specifications. 

Furthermore, adding a graphical representation of changes in the concrete syntax editor 

could enhance collaborators' awareness, helping them avoid conflicts during the modeling 

phase. However, there are only a few approaches that concentrate on conflict visualization 

(e.g., (Brosch etal, 2012f)) or provide user-friendly graphical editors (e.g. , (Mens etal, 2005; 

Barrett etal, 2011)) for managing conflicts during model merging. Nonetheless, (Brosch 

et al, 2012f) lacks an editor to specify and visualize conflict and semantic resolution pat-

terns. Moreover, the visualization method in (Mens et al, 2005) relies on cross tables, and 

the approach in (Barrett et al, 2011) utilizes text-based conflict reports . Thus, the ongo-

ing evolution of graphical and visual solutions for conflict management remains a central 

challenge in this field (Sharbaf et al, 20226). 
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Gleicher (Gleicher, 2018) provides general guidelines for visualizing comparisons. For 

many different domains, comparing artifacts is a common task and visualizing the compar-

ison often helps. Generally, the visual comparison is displayed using juxtaposition ( e.g. , as 

EMFCompare does in Fig. 4.3) , superposition, or explicit encoding (like we do in Fig. 4.10). 

Brosch et al. (Brosch et al, 2012b) visualize the changes and conflicts in concurrently 

evolved versions of the same UML model using UML profiles ( stereotypes and tagged values). 

This permits modelers to resolve the conflicts within the UML editor of their choice while 

using the concrete syntax of the manipulated language. However , this approach is only 

suitable for UML models whereas we pursue a general approach for arbitrary domain-specific 

languages. 

More similar to our work, the authors in (Schipper et al, 2009) focus on the visualization of 

diagram differences in the diagrams themselves. The rationale is to help users to understand 

the modifications immediately. Their proposed visualization includes pop-ups reporting the 

changes performed in the neighborhood, zooming to changes, collapsing irrelevant parts, 

and using different colors to represent additions (green) , deletions (red) , and changes (blue) , 

either in a single diagram or confronting two diagram versions. They have developed a tool 

that uses EMFCompare for model comparison, as we do. However, their tool only permits 

visualizing atomic changes, represented by different colors. Furthermore, this work aims 

to contribute to the field by providing both fine-grained and coarse-grained domain-specific 

patterns of change. While a detailed presentation of the thesis contributions is forthcoming, 

this statement serves as an overview of the scope and intentions of our approach. In addition, 

the visualization associated with each pattern is highly configurable. Other works , such as 

(Mehra et al, 2005; Ohst et al, 2003) , only permit showing changes using different colors or 

shape styles. 

A few works deal with the scalable visualization of differences in the case of large models. 

To solve this problem, van den Brand et al. (van den Brand et al, 2010) combine a generic 

visualization framework for metamodel-based languages to show the fine-grained differences , 

with polymetric views that provide support for zooming and filtering. Wenzel (Wenzel, 2008) 

also relies on polymetric views to support scalable visualization of differences based on model 

metrics. Both works are complementary to ours: whereas we provide domain-specificity to 

the visualization, these other works add a general visualization layer on top. 
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6. Synthesis 

In this section, we present a synthesis that encompasses the noticeable aspects from the 

literature concerning domain-specific differencing and model merge. 

6.1. Model Differencing 

Semantic Matching: Some approaches enrich EMFCompare's default matching process 

by introducing semantic distinctions , aligning with an emphasis on semantic reasoning over 

differences. Despite maintaining fast time performance, their precision and recall results fall 

short. Furthermore, they predominantly concentrate on synonymous terms in the changed 

model elements within the abstract syntax of DSL, as discussed by Addazi et al (2016). 

Semantic Lifting: Another approach to improving semantic differencing involves elevating 

a set of low-level differences to the level of meaningful editing operations. These operations 

rely on rule-based specifications. However, in this approach, semantic lifting exclusively 

addresses the abstract syntax of models, neglecting the concrete syntax (Kehrer et al, 2011). 

6.2. Semantic Conflict Management 

Pattern Languages and Semantic Conflicts: Some existing approaches create a difference 

model to represent conflicts only in UML class diagrams. The conflict pattern language is 

another method to specify conflict patterns. However, the languages used to formulate the 

pattern of conflicts are textual and hard to learn and use by DSL experts (Sharbaf et al, 

2020). Addressing this issue could help DSL users specify conflict patterns in a customizable 

and flexible manner. 

Dependency Analysis: Another shortcoming of existing approaches is the disregard or 

low attention to dependencies among conflicts of different granularity (Langer et al, 2013a). 

We believe that this concept needs to be addressed by dependency analysis approaches since 

it could enhance conflict resolution efficiency. 

Domain-Specific Conflict Resolution Rules: The shortage of tools for automatic conflict 

resolution is another aspect that forces DSL users to manually resolve conflicts in most 

cases. Addressing this issue would allow DSL engineers to expand and tailor rules, providing 

a comprehensive and customizable solution. 
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Insightful Manual Conflict Resolution: Although manual conflict resolution is inevitable, 

existing solutions offer limited options of "keeping left" or "keeping right" (EMF Compare, 

accessed August 2023; Koegel and Helming, 2010b ). Nevertheless , by offering diverse op-

tions, especially considering the overlapping between semantic conflicts, versioning tools can 

propose better manual resolution options. As a result, DSL users can make informed deci-

sions. This could ensure that conflicts are resolved in a way that aligns with the original 

intention and requirements of the authors. 

6.3. A Configurable Visualization 

Visualization plays a pivotal role in enhancing understanding, communication, and con-

ceptual clarity in DSMLs. Approaches for domain-specific versioning mainly utilize UML 

profiles for visualizing changes and formalized constraints using OCL. Therefore, it cannot 

be useful in DSLs that are limited to UML models and cannot help DSL engineers express 

complex change, conflict detection, and resolution patterns (Sharbaf and Zamani, 2020). In 

addition, most of the approaches are limited to atomic changes, lacking support for more 

coarse-grained difference or conflict patterns. 

Moreover, real-world models may have a huge number of model elements or an enormous 

number of conflicts (de la Vega and Kolovos , 2022). It may create challenges in loading all 

the difference models, resolving all conflicts at one time, and navigating among conflicts that 

need to be addressed. 

Graphical Support and User-Friendly Editors: Mentioning the gap in visualization tech-

niques for conflict management tasks, Sharbaf et al (2022b) notes the limited graphical sup-

port in existing methods. Therefore, there is a need for DSL editors, allowing DSL engineers 

to specify semantic differences, semantic conflicts , and resolution patterns visually using a 

comprehensible concrete syntax. 

6.4. Versioning Tools 

Current commercial versioning tools for models like MagicDraw, Obeo Designer, and 

JetBrains MPS come short in providing domain-specific aspects in core features of VCS. 

Addressing their shortages can offer tailored visualizations for any DSL, ensuring flexibility 

and ease of use for DSL engineers. 
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6.5. Conclusion 

In our examination of the existing literature, we have underscored the imperative of of-

fering domain-specific solutions for model differencing, semantic conflict management , and 

versioning. Our focus has particularly been on exploring approaches for semantic conflict 

definition, manual conflict resolution, and configurable visualization. Additionally, our find-

ings emphasize that there is a growing demand for managing the complexities of model 

evolution and version control not only in the level of abstract syntax but also in the context 

of concrete syntax, addressing to diverse Domain-Specific Languages (DSLs). 
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Chapter 3 

A Vision on domain-specific differencing and merging 

of models 

This thesis aims to provide a domain-specific approach for differencing, conflict detection, 

conflict resolution, and merging of domain-specific models. The majority of studies to date 

offer specific solutions for the model-based differencing and merging problems, mostly focused 

on abstract syntax without providing a holistic solut ion. In this thesis, we consider the 

problem as a whole, and we propose domain-specific differencing and merging solut ions for 

domain-specific models. In the remainder of this chapter, we explain this idea for the main 

challenges and related solutions explained in Chapter 1. 

We start with an overview of the general framework, and then relative to each main 

challenge, we present the proposed contributions within this framework. The details about 

each contribution will be given in the subsequent chapters as articles. 

Bob's Local Repository DSMComparec 

@ t-------+1@ - _ ~omain-~pecific 
d1fferenc1ng and 

: _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ merging of models 

• 
Merge 

Push 

Alice's Local Repository 

Figure 3.1. 3-way diff and merge in the domain-specific differencing and merging of models 



1. Overview 

Fig. 3.1 illustrates the primary goal of implementing DSMCompare. DSMCompare aims 

to assist DSL users in resolving and merging conflicts in a domain-specific manner. As you 

can see, Alice and Bob create branches to add new features. Alice finishes sooner and merges 

her changes, but Bob encounters conflicts because the base repository has changed after 

Alice's successful push. As a result, DSMCompare automatically pulls the latest changes 

and helps Bob resolve conflicts in a domain-specific way. Finally, it pushes the resolved 

changes ( commit number 6) to the base repository. 

The primary challenge in the domain-specific differencing and merging of models is to 

enhance semantic differencing and visualization. We address this problem by providing the 

DSL user with a set of two-way semantic/ domain-specific model differences that highlight 

the differences between two versions of a model at both the abstract and concrete syntax 

levels. We also enable the DSL engineer to create the rules for detecting semantic differences 

in a domain-specific way. 

The second main problem is to effectively detect and Visualize the semantic conflicts. We 

address this problem by providing the DSL user with a set of three-way semantic/domain-

specific model differences and conflicts that highlight the differences and different types of 

conflicts between three versions of a model at both the abstract and concrete syntax levels. 

We also enhance the visualization by providing the layering concepts to improve the user 

experience. 

The third main problem is to empower conflict resolution in domain-specific contexts. We 

address this problem by the DSL user with user-friendly conflict resolution mechanism that 

generates and highlights the conflict resolutions for each conflict. We also automate merging 

non-conflicting and equivalent differences , automate resolution for the semantic differences , 

and provide appropriate visualization and user interface for the DSL experts. 

We present in the following, three contributions that target detecting and visualizing 

semantic differences , semantic conflicts, and conflict resolution and merging. 

2. The Design Decisions for Domain-Specific Model Diff and Merge 

We outline the essential design decisions for effective domain-specific model differencing 

and merging. 
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2.1. Enhancing Semantic Differencing and Visualization 

In the first step, we aim to enhance semantic difference extraction to provide more mean-

ingful domain-specific insights. This involves aligning differencing rules with domain charac-

teristics to improve user understanding. The key design decisions for this step are detailed 

in the following list, and the details are given in Chapter 4, which also illustrates our first 

article. 

Automatic Extension of DSL Meta-model. The proposed solution needs to identify and im-

plement the necessary mechanisms to enable the representation of model differences within 

the DSL. 

Higher-level Representations of Lower-level Differences. This design decision involves defin-

ing semantic rules that can analyze and transform low-level differences into more meaningful 

and understandable representations. It also involves considering possible conflicts that may 

arise when multiple rules are applied to the same elements of a difference model (Altman-

ninger et al, 2008a). 

Automated Representation of Model Differences. This design decision involves adapting ex-

isting Sirius-based editors for model change visualization to automatically represent the 

differences in a visually intuitive manner. 

Prototype Tool Support. DSM Compare should be able to automatically extend the DSL meta-

model, apply semantic rules to create higher-level representations of differences and adapt 

Sirius-based editors for visualization. The tool should also be capable of handling model 

histories created by third parties and validating the approach on different DSLs and modeling 

projects (Zadahmad et al, 2022; David et al, 2021). 

2.2. Effective Detection and Visualization of Semantic Conflicts 

We explore three-way domain-specific differencing and conflict detection, aiming to iden-

tify and visualize semantic conflicts for user understanding. Our goal is to enhance conflict 

resolution and decision-making for future research. The key esign decisions for this step are 

detailed in the following list , and the details are given in Chapter 5, which also illustrates 

our second article. 

Meta-model Agnostic. The tool accommodates models conforming to any metamodel, ensur-

ing applicability across diverse DSLs. 

55 



Concrete Syntax Presentation. Differences are presented within the concrete syntax of the 

DSL, promoting user familiarity and understanding. 

User-Defined Semantics. The tool empowers DSL engineers to define meaningful differences 

through semantic patterns relevant to the domain. 

Fine-Grained Difference Detection. Proficiently detects fine-grained differences using ab-

stract syntax, capturing additions, deletions, modifications, and association rerouting. 

Semantic Difference Detection. Identifies semantic differences based on predefined rules, 

grouping fine-grained changes for meaningful insights. 

Equivalent Change Detection. Efficiently identifies identical changes across distinct model 

versions, reducing redundancy during merging. 

Fine-Grained Conflict Detection. Detects conflicts arising from contradicting fine-grained 

changes, aiding effective conflict resolution. 

Semantic Conflict Detection. Extends conflict detection beyond abstract syntax, supporting 

users in reconciling semantic conflicts. 

Explicit Difference Presentation. Explicitly presents differences and conflicts, offering in-

sights through dedicated structures, models, or traces. 

Headless API. The tool is accessible interactively or via API, enabling seamless integration 

with diverse tools and systems. 

Three- Way Differencing. Supports three-way comparisons, vital for collaborative scenarios, 

simplifying conflict reconciliation and merging. 

2.3. Empowering Conflict Resolution in Domain-Specific Contexts 

In the third step, we empower DSL users to navigate, resolve, and even undo conflict res-

olutions effectively, improving collaboration and project advancement by addressing domain-

specific conflict challenges. The key design decisions for this step are detailed in the following 

list, and the details are given in Chapter 6, which also illustrates our third article. 

DBL-Adapted Conflict Environment. DSL users are provided with an environment that aligns 

with their familiar DSL syntax, promoting intuitive conflict management. This design de-

cision stems from the realization that users are more efficient in resolving conflicts when 

presented with a context they are accustomed to. For instance, in our running example of 

a graphical DSL for designing floor plans, conflict resolution tools should present conflicts 
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within the graphical interface that designers are well-versed in, thereby streamlining the 

resolution process. 

Automated Resolution of Trivial Changes. The tool automatically resolves trivial changes 

that have been performed in one or both versions. Trivial changes, which are straightfor-

ward modifications with negligible impact , are a common occurrence during merging. By 

automating their resolution, developers are spared the effort of manually addressing these 

minor alterations, thus expediting the conflict resolution process. 

Automatic Resolution of Semantic Conflicts. When viable resolution strategies are available, 

the tool autonomously resolves semantic conflicts. This feature caters to situations where 

the nature of the conflict and its possible solutions are well-defined within the DSL's con-

text. For instance, if a DSL for financial modeling encounters a conflict between different 

interpretations of an interest rate, the tool could apply a predefined mathematical rule to 

harmonize the conflicting values. 

Manual Resolution Support. The tool accommodates manual resolution, granting users the 

autonomy to tailor conflict resolutions according to specific project problems. Manual inter-

vention is crucial when the nature of the conflict surpasses automated strategies, requiring 

domain-specific expertise or project-specific considerations for resolution. 

Fine-Grained Conflict Navigation. Users are empowered to navigate between conflicts , with 

the ability to delve into the underlying fine-grained conflicts that contribute to broader, 

coarse-grained conflicts. This navigation aids users in comprehending the root causes of 

conflicts, enabling more informed resolution decisions. 

Resolution Reversibility. Users can undo previously made resolution decisions for each con-

flict and modify their choices. This feature ensures flexibility and allows users to iterate on 

their resolution strategies, refining their approach as the merging process unfolds. 

Partial Resolution Saving. For scenarios involving large models or an extensive volume of 

conflicts, users can save partial resolutions. This functionality enables users to pause the 

merging process and later resume from where they left off, minimizing disruptions and facil-

itating effective conflict management. 
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3. Enhancing semantic differencing and visualization 

The first contribution of domain-specific differencing and merging of models is described 

in Chapter 4, DSMCompare: domain-Specific Model Differencing for Graphical Domain-

Specific Languages. 

The initial key issue involves improving semantic differencing and visualization. The se-

mantic differences show the intention of the contributor of the branch to make the changes. 

By understanding the contributor's intention during the merge time, the user responsible 

for resolving the conflicts can decide in a better way. In addition, semantic differencing can 

have other usages for a DSL expert. The detection of semantic differences is covered in the 

research. However, the mechanisms to specify semantic differences and the visualization of 

related editors to view differences and define rules are not available in a domain-specific 

manner. To provide a domain-specific approach for detecting and visualizing semantic dif-

ferences, we sought to generate a metamodel to represent and visualize model differences 

by extending the original DSL of the domain-specific model. It aims help to fill the com-

prehension gap required to understand the semantic and fine-grained differences since we 

provide higher-level representations of lower-level differences in the same concrete syntax. 

To enable DSL experts to create new rules and maintain the previously defined rules , we 

automatically generate domain-specific editors allowing DSL engineers to specify patterns 

for detecting semantic differences . However, the problem is that multiple semantic difference 

rules may be applicable at the same time, and they might conflict with each other. There-

fore , we provide an elaborate graph-based analysis of the rules based on heuristics to obtain 

a reasonable schedule of the rule application order. In this case, the ordering must be such 

that it reduces the verbosity of the presented difference, to favor semantic differences over 

syntactic differences . 

4. Effectively detecting and Visualize the semantic conflicts 

The second contribution of domain-specific differencing and merging of models, described 

in Chapter 5, is from two-way to three-way: domain-specific model differencing and conflict 

detection. 

The second primary challenge is to efficiently identify and visualize semantic conflicts. 

The detection of semantic conflicts is covered in the research. However, the visualization 
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support as well as the domain-specific rule editors is not addressed effectively. On the other 

hand, the solution we implemented for the first problem was focused on two-way differenc-

ing. As a result, we have further enhanced our practice, DSMCompare, to detect semantic 

differences and conflicts based on a three-way comparison. Through a domain-specific ap-

proach, we automatically extended both the abstract syntax and concrete syntax of DSL 

and generated a three-way difference DSL for abstract syntax and for concrete syntax to 

represent and visualize both fine-grained and semantic differences and conflicts using Sirius. 

To accomplish three-way difference and conflict detection, we rely on the preliminary results 

produced by the three-way merge service that EMFCompare offers. Then we extend the 

semantic differencing rule DSL and editor from the three-way difference DSL to enable the 

DSL engineer to specify the semantic difference patterns. The defined rules are transformed 

to Henshin; first to detect the semantic differences, second to determine an optimized or-

der for the rule application aimed at finding more semantic differences and filtering more 

fine-grained differences, and third to locate the potential conflict between fine-grained and 

semantic differences or two semantic differences using Henshin's MultiCDA feature. The re-

sult of the last step was a list of potential conflicts, including a minimal model fragment to be 

checked. We used the generated conflict information in run-time to ensure the performance 

and accuracy of finding semantic conflicts since we are only checking limited fragments of 

the difference model for conflicts. 

5. Empowering conflict resolution in domain-specific contexts 

The third contribution of domain-specific differencing and merging of models, described 

in Chapter 6, is domain-specific conflict resolution and model merge. 

The third primary challenge is to enable conflict resolution in domain-specific contexts. 

The conflict resolution mechanisms are covered in the research. However, the introduced 

approaches are mostly focused on abstract syntax, or the approaches to specifying the con-

flict resolution rules are not given in a way that is easily used by the domain expert. On 

the other hand, the strategies provided for conflict resolution are very limited and resolve 

the conflicts in a fine-grained manner and are not focused on resolving all the fine-grained 

conflicts associated with a semantic conflict at once. As a result, we introduce an approach 

for domain-specific conflict resolution and model merging based on a three-way comparison. 
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It automatically generates a domain-specific editor to create conflict resolution rules and en-

hances the concrete syntax to allow DSL users to visualize the three-way conflict resolutions 

more effectively. This solution enables DSL users to manage conflicts in an environment 

familiar to their DSL, navigate between conflicts, manually resolve conflicts that need user 

intervention, undo previous resolution decisions, and save partial resolutions. 

We plan to incorporate a conflict reconciliation mechanism that leverages artificial in-

telligence techniques to learn implicit user preferences. Additionally, we aim to integrate 

DSMCompare into domain-specific VCS systems using web-based editors. 
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DSMCompare: Domain-Specific Model Differencing 

for Graphical Domain-Specific Languages 1 
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Resume. Lors du developpement d'un projet logiciel, differents developpeurs collaborent 

pour creer et modifier des modeles. Ces modeles evoluent et besoin d 'etre versionne. Au 

cours des dernieres annees, des progres ont ete realises clans l'offre d'un support dedie a 
la gestion des versions de modeles, qui ameliore ce qui est pris en charge par les systemes 

de controle de version bases sur du texte. Cependant, il reste necessaire de comprendre 

les differences entre les modeles en termes de semantique du langage de modelisation et de 

visualiser les changements en utilisant sa syntaxe concrete. Pour resoudre ces problemes , 

nous proposons une approche globale - appelee DSMCompare - qui prend en compte a 
la fois la syntaxe abstraite et concrete d 'un langage specifique a un domaine (DSL) lors 

de l'expression des differences de modele, et qui prend en charge la definition de domaines 

-semantique specifique pour des modeles de differences specifiques. L'approche est basee sur 

l'extension automatique du DSL pour permettre la representation des changements et sur 

l'adaptation automatique de sa syntaxe graphique concrete pour visualiser les differences. 

De plus, nous permettons la definition de regles de differenciation semantique pour capturer 

des modeles de differences recurrents specifiques a un domaine. Puisque ces regles peuvent 

entrer en conflit les unes avec les autres, nous introduisons des algorithmes de resolution des 

conflits et de planification des regles. Pour demontrer l'applicabilite et l'efficacite de notre 

approche, nous rendons compte d'evaluations basees sur des modeles synthetiques et sur des 

historiques de versions de modeles developpes par des tiers. 

Abstract. 

During the development of a software project, different developers collaborate on creat-

ing and changing models. These models evolve and need to be versioned. Over the past 

several years, progress has been made in offering dedicated support for model versioning 

that improves on what is being supported by text-based version control systems. However, 

there is still need to understand model differences in terms of the semantics of the modeling 

language, and to visualize the changes using its concrete syntax. To address these issues, we 

propose a comprehensive approach-called DSMCompare--that considers both the abstract 
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and the concrete syntax of a domain-specific language (DSL) when expressing model differ-

ences, and which supports defining domain-specific semantics for specific difference patterns. 

The approach is based on the automatic extension of the DSL to enable the representation 

of changes and on the automatic adaptation of its graphical concrete syntax to visualize the 

differences. In addition, we allow for the definition of semantic differencing rules to cap-

ture recurrent domain-specific difference patterns. Since these rules can be conflicting with 

each other, we introduce algorithms for conflict resolution and rule scheduling. To demon-

strate the applicability and effectiveness of our approach, we report on evaluations based on 

synthetic models and on version histories of models developed by third parties. 

Keywords. Model-Driven Engineering, Model versioning, Model differencing, Graphical 

concrete syntax 

1. Introduction 

Model-driven Engineering (MDE) relies on models to conduct all phases of software 

development. Models can be built using general-purpose modeling languages, e.g. UML, 

but the use of domain-specific languages (DSLs) is also common (Kelly and Tolvanen, 2008; 

Schmidt, 2006). 

Like other software artifacts involved in a development process, models evolve (Paige 

et al, 2016) and, therefore, need to be versioned to have a record of their changes (Brosch 

et al, 2012a). Sometimes, models are persisted as text files (e.g., using the XML metadata 

interchange format , XMI (OMG, 2023)), which allows using code version control systems 

on them. However, text-differencing is not adequate for models as it may report irrelevant 

model differences (e.g., same objects that appear in different file positions). For this reason, 

the modeling community has proposed specific model versioning systems (Altmanninger 

et al, 2008a; CDO Model repository, accessed August 2023; Kappel et al, 2006; Koegel and 

Helming, 2010b) and approaches for model differencing (EMF Compare, accessed August 

2023), conflict resolution, and merging (Brosch et al, 2009; Schwagerl et al, 2015). 

An important aspect of a versioning system is the ability to visualize matches and dif-

ferences of the history of a model in a comprehensible manner. However , many approaches, 

like EMFCompare (EMF Compare, accessed August 2023), represent the differences between 

two versions of a model using low-level generic traces that may be difficult to understand. 
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Moreover, these traces typically are at the abstract syntax level, which may further hinder 

their understanding, since users deal with models using their concrete syntax. 

Therefore, we propose to represent traces in a domain-specific way, assign domain-specific 

semantics to recurring model differences (by defining semantic differencing rules), and visu-

alize those differences at the concrete syntax level. Our approach lifts low level differences 

between two models to high level differences based on the semantics of the DSL and repre-

sents them by reusing the concrete syntax of the DSL. In this paper, we focus on graphical 

concrete syntaxes realized through the Sirius framework (Sirius, 2023a). Since different se-

mantic rules may conflict with each other, we propose an algorithm to assign priorities to 

rules, by their automated static analysis. To ensure the practicality of our proposal, we 

provide automated tool support to minimize the effort of applying the approach to arbitrary 

graphical DSLs. 

The contributions of this paper are the following. First, we propose a method to represent 

model differences within a single domain-specific model. This is achieved by automatically 

extending the DSL meta-model with domain-specific change operations. Second, we propose 

means to create higher-level representations of lower-level differences using semantic rules , 

provide mechanisms for analysing their possible conflicts, and propose scheduling policies 

for minimising those. Third, we provide an automated way to represent model differences 

using the graphical concrete syntax of the DSL. Finally, we provide a prototype tool support, 

able to adapt automatically Sirius-based editors for model change visualization, and use it 

to validate our approach on graphical DSLs and model histories created by third-parties. 

This article extends our preliminary work (Zadahmad et al, 2019) in several ways. First, 

we have made several improvements to the semantic differencing rules that encapsulate 

domain-specific differences. In Section 4.1, we explain how these rules can now express 

multiple negative application conditions. Also, the new Section 4.3 explains how the se-

mantic differencing rules can be mapped to graph transformation rules. We illustrate our 

implementation using Henshin. This generalizes our approach, which now can be ported to 

other modeling frameworks. Second, in (Zadahmad et al, 2019), we assumed that the rules 

are independent from each other and each rule is applied in isolation. However, in most 

scenarios, multiple semantic differencing rules may be applied on the same elements of a 

difference model. Therefore, we have devised an algorithm dedicated to resolving conflicting 
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rules when they are applied in combination, which is presented in Section 5. The algorithm 

is directed to optimize the verbosity of the domain-specific difference model by suggesting a 

prioritized list of the rules to the user. Third, we extended the evaluation of our approach 

in several ways in Section 6. We have refined and extended the research questions to assess 

the effectiveness of our approach. To answer these, we now include a synthetic experiment, 

and validate our approach on two modeling projects developed by third-parties: Arduino2 

designer models and evolution of Ecore metamodels. 

The rest of this paper is organized as follows. In Section 2, we overview the approach and 

introduce a running example. In Section 3, we describe how to represent model differences 

of a DSL. This is achieved by a semi-automated extension of the DSL metamodel and its 

concrete syntax. For the latter, we use Sirius as an illustration. In Section 4, we detail how 

to define high-level, domain-specific change descriptions in terms of semantic differencing 

rules. In Section 5, we explain how to resolve the conflicts when different rules are applied 

in combination. In Section 6, we evaluate the approach with one controlled experiment and 

two case studies. Finally, we discuss related works in Section 7 and conclude the paper in 

Section 8. 

2. Overview and running example 

In the following, we motivate our approach with a running example and present its overall 

rationale. 

2.1. Motivating example 

A typical model differencing tool compares two versions of a model based on the per-

formed editing steps (e.g. 7 added class or deleted reference). The result of this comparison 

is identified by low-level differences between the two versions, which includes at least two 

sets: match and diff The match set establishes a pair-wise correspondence between similar 

elements in both models. The cliff set computes the differences between each pair in the 

match set. The most popular generic model comparison tools, EMFCompare (EMF Com-

pare, accessed August 2023) for instance, produce three kinds of diffs: ADD, DELETE, and 

MODIFY. 

2https://www.arduino.cc/ 
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However, a DSL user works with an end-user tool and does not interact with the abstract 

syntax. Instead, she uses end-user features such as domain-specific views and diagrams 

to manipulate models. Any change in this level of abstraction (i.e., the domain-specific 

concrete syntax) can turn into several fine-grained changes in the model. Consequently, the 

comparison tool shows the user all low-level changes, such as a deleted reference between two 

objects , which may not make sense to a DSL user who is not familiar with the metamodel 

of the DSL. This creates a mismatch between what the comparison tool produces and what 

a DSL user would expect to understand: the differences in terms of domain-specific syntax 

rather than concepts of the abstract syntax. 

There have been approaches that tried to mitigate this issue, e.g., through the semantic 

lifting of the low-level changes (Kehrer et al, 2011) or by using a metamodel to represent 

§ Score 

• va lue : Elnt 

[1 .. 1] scoreboard 

§ Game 

[0 . .*] entities 

iJ PositionableEntity [0 . .*] gridnodes 

[1 .. 1] on § GridNode 

§ Food § Ghost § Pacman 
[0 .. 1] bottom 

Figure 4.1. Metamodel of the Pacman game DSL 
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Figure 4.2. Running example using DSMCompare 
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Figure 4.3. Representation of difference model in EMFCompare for the Pacman game DSL 

model differences ( Cicchetti et al, 2007). However, these approaches do not provide a com-

prehensive framework for handling domain-specific model differences. In particular, the ex-

isting approaches mostly focus on expressing model differences at the abstract syntax level 

and do not show differences at the concrete syntax level (i.e., the graphical notation of a 

DSL). Furthermore, the existing approaches do not take domain-specific model semantics3 

into consideration during the comparison process. 

To address these issues, we introduce an approach, called DSMCompare, which provides 

the DSL user with a set of semantic domain-specific model differences that highlight the 

differences between two versions of a model at both the abstract and concrete syntax levels. 

We explain how a DSL user uses DSMCompare using a running example of a simplified 

Pacman game, a well-known game where Pacman navigates through grid nodes searching 

for food to eat, while ghosts try to kill him. 

3In this paper, we use "domain-specific model semantics" to refer to the meaning that a human assigns to a 
model when looking at it , not to the execution semantics of the model. 
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We provide a modeling environment to define game configurations, based on (Syriani 

and Vangheluwe, 2013). Fig. 5.2 shows the metamodel of this game. Fig. 4.2 sketches 

what DSMCompare outputs given two versions (Ml followed by M2) of a Pacman game 

configuration. The black arrows pointing up over Pacman, food, and the ghost are the 

associations representing their position on a grid node. Comparing Ml and M2, we can 

easily conclude that Pacman has moved right to the middle grid node and ate the food on 

it. The score value is incremented accordingly. DSMCompare produces a domain-specific 

difference model Diff12 in two steps. First , in the middle of Fig. 4.2, Diff12 contains all the 

fine-grained diffs. The green arrow with a '+' denotes that an association is added to a 

grid node, the red arrow with an 'x' denotes a deleted association, and the blue arrow with 

a ~ ( on the scoreboard) denotes an attribute value change. Then, DSM Compare applies 

the provided semantic differencing rules on Diff12. In this case, two rules can be applied: 

Pacman Eats Food and Pacman Moves Right. For example, the former rule checks that 

Pacman is on a grid node that also has food on it which gets deleted, and the scoreboard 

value is incremented. The final difference model Diff12 is depicted at the right of Fig. 4.2 

(labelled as semantic diff). 

In contrast, using EMFCompare for comparison results in a list of low-level changes 

as presented in Fig. 4.3. The DSL user needs additional analytical effort to understand 

these changes to infer the difference in a meaningful way. For example, the user needs to 

understand that ( on the top panel of Fig. 4.3) "on changed" means that Pacman has moved 

to a different grid node (because the reference "on" has changed), and needs to inspect the 

lower juxtaposed panels to understand that food has disappeared. However, as the "on" 

reference is not shown on the tree editor, it becomes difficult to realize that this is because 

Pacman ate the food. 

2.2. Overview of DSMCompare 

Fig. 4.4 gives an overview of DSM Compare. The approach is useful for two types of users: 

DSL engineers (who build the DSL) and DSL users (who create models using the DSL). 

To define the DSL, the engineer creates a metamodel MM for the abstract syntax, and 

a model CS of the concrete syntax. In DSMCompare, we reuse both components to de-

fine the domain-specific model differences for that DSL and show any domain-specific diff 
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Figure 4.4. Overview of the approach 

Input 

Diff12 between two versions of a model Ml and M2. Concretely, the approach produces a 

domain-specific cliff metamodel DSDiff MM and concrete syntax model DSDiffCS, as shown 

in Fig. 4.4. DSDiffMM extends the language metamodel to define domain-specific cliffs, such 

as adding/removing a model element. DSDiffCS shows the corresponding concrete syntax 

elements: graphical elements that could be added, removed, or updated. 

DSMCompare also produces an environment to describe high-level semantic differences 

in the form of rules tailored to the DSL. Namely, it produces a semantic differencing rule 

metamodel SDRuleMM and concrete syntax model SDRuleCS, to allow the DSL engineer 

to define the set of rules to apply on Di.ff12- As discussed previously, having semantic 

differencing rules is important to faci litate reasoning about model differences. Without these 

rules, low-level differences may not convey the intention or the reason behind a change, 

and it may be difficult to understand for the user how changes relate to each other. For 
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example, the DSL engineer could define a rule for operation overriding in class diagrams, 

which matches an operation in one version of a model with a variant of that operation 

in a different version. Instead of showing that an operation is simply being added in the 

second version, DSMCompare uses the rule to represent this change as the second operation 

overriding the first one. 

The DSL user can use DSMCompare for different purposes. For example, in a version 

control system, the DSL user may want to understand high-level semantic differences be-

tween two versions of a class diagram. By using rules that represent refactorings, it would 

be possible to identify the places in the model that underwent refactoring. In a collabora-

tive development environment, a DSL user may identify the domain-specific changes that a 

collaborator introduced, by applying DSM Compare on the collaborator version of the model 

and the model at hand. 

DSM Compare produces a traditional diff of the two model versions by reusing a difference 

tool such as EMFCompare. This result is processed to generate Diff12, that conforms to 

DSDifjMM, and is represented according to DSDifjCS. At this point , Diffi2 contains the 

fine-grained differences in the concrete syntax of the DSL. With a library of rules predefined 

by the DSL engineer, the approach executes the applicable rules on Diff12 to produce a 

semantically lifted difference model. 

3. Fine-grained differencing 

To overcome the restrictions of generic approaches for model comparison, we propose to 

represent all model differences in a format tailored to the domain of the original metamodel. 

We also visualize the differences using domain-specific concrete syntax. 

Section 3.1 explains how to extend the domain meta-model (MM) to represent two model 

versions within one model. Then, Section 3.2 describes how the concrete syntax model ( CS) 

is extended to represent model changes (DSDiffCS). Finally, Section 3.3 introduces how a 

single cliff model Diff12 (instance of DSDiffMM) is generated out of two model versions (Ml 

and M2), and how this is represented using the cliff concrete syntax DSDiffCS. 
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Figure 4.5. Excerpt of the generated difference metamodel 

3.1. Domain-specific difference metamodel 

To represent model differences in a domain-specific way, the metamodel of model dif-

ferences should remain faithful to the original metamodel MM. Therefore, we create a new 

metamodel DSDiffMM for domain-specific differencing (see Fig. 4.5) based on MM (see 

Fig. 5.2). 

Algorithm 1 outlines the transformation from MM to DSDiffMM. It starts by cloning 

MM to ensure that DSDiffMM comprises all the structural features of the DSL. In Fig. 4.5, 

DSDiffMM includes all classes and associations that the MM metamodel possesses. The 

remaining steps extend the metamodel as follows. We create two enumerations that will 

be used to annotate each class and association with the kind of difference. To represent a 

difference in an object of a class, like Score, we create a subclass with an additional attribute 

diff_kind that states whether the object has been added, deleted, or that at least one of its 

attributes has been modified. In the subclass we also add, for each attribute in the class, 

a new attribute of the same type that will hold the new value. For example, the subclass 

of Score has an attribute new_ value. This is particularly useful when auditing changes in 

different versions of a same model. 

Note that this procedure does not transform the class inheritance hierarchies. If MM has 

a class A and a class B that inherits from A, then, in DSDiffMM, DiffA inherits from A and 

DiffB inherits from B, but there is no inheritance between DiffA and DiffB. We argue that this 
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Algorithm 1 Transformation from MM to DSDiffMM 

1: procedure GENERATEDSDIFFMM(MM) 
2: DSDiffMM +---- MM.clone( "DSDiffMM") 
3: DSDiffMM.createEnum( "ClsDiffKind ", {ADD, DEL, MOD}) 
4: DSDiffMM.createEnum( "AscDiffKind ", {ADD, DEL}) 
5: for all class C in DSDiffMM do 
6: if not C.isAbstract() then 
7: DiffC +---- DSDiffMM.createClass( "Diff"+C) 
8: DiffC.setSuperClass(C) 
9: DiffC.addAttribute( "diff_ kind", ClsDiffKind) 

10: end if 
11: for all attribute a in C.getAllUniqueAttributes() do 
12: DiffC.addAttribute( "new_ " +a, a.getType()) 
13: end for 
14: end for 
15: for all association S in DSDiffMM do 
16: Cl f---- S.getSource(), C2 f---- S.getTarget() 
17: if Cl i- DSDiffMM.getRootClass() then 
18: DiffC1_S +---- DSDiffMM.createClass( "Diff"+C1 + "_ "+S) 
19: DiffC1_S.addAttribute( "diff_ kind ", AscDiffKind) 
20: n f---- S.getTargetCardinalit ies().target().upperBound() 
21: if S.isComposition() then 
22: diffS +---- C1.addComposition( "diff"+S, DiffC1_S) 
23: else 
24: diffS +---- C1.addAssociation( "diff"+S, DiffC1_S) 
25: end if 
26: diffS .setCardinalities(1. .1 , 0 .. 2xn) 
27: target +---- DiffC1_S.addAssociation( "target", C2) 
28: target .setCardinalities(O .. 1, 1 .. 1) 
29: end if 
30: end for 
31: SDiff f---- DSDiffMM.createClass( "SemanticDiff ") 
32: SDiff .addAttribute( "name", String) 
33: for all class C in DSDiffMM do 
34: diff_C +---- SDiff .addAssociation( "diff_ "+C, C) 
35: diff _ C.setCardinalities( 1. . 1, 0 .. *) 
36: end for 
37: R +---- DSDiffMM.getRootClass() 
38: diffs +---- R.addComposition( "diff"+S, SDiff) 
39: diffs .setCardinalities( 1 .. 1, 0 .. *) 
40: return DSDiffMM 
41: end procedure 

decision is to a llow implementing our solution in frameworks where multiple inheritance is not 

supported. Therefore, on line 11 of Algorithm 1, C. getAllUniqueAttributes () retrieves a ll 

attributes of C and those inherited from its super classes transitively. Furthermore, abstract 
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classes have no corresponding Diff class since they cannot be instantiated in the compared 

models. 

As outlined in lines 15- 30 of Algorithm 1, for each association in MM, we create a class 

to reflect the kind of change (addition or deletion). We then connect this new class with the 

source and target classes of the association. In the Pacman example, the on association is 

transformed into the Diff Posi tionableEnti ty _on class. Since on is a composition, diffon is 

also a composition, to preserve the semantics of the association. Suppose that a difference 

model Diff12 needs to reflect that the Pacman object has moved from one grid node to 

another. Then, there will be two DiffPosi tionableEnti ty _on instances: one representing 

the deletion of the on relation to the old grid node and one for the addition of the on relation 

to the new grid node. This is why the upper bound of the cardinality of diffon in DSDiffMM 

must be doubled on line 26. 

The elements created up to now can only capture individual fine-grained differences 

in Diff12- To enable the representation of semantic differences, the procedure creates a 

SemanticDiff class ( cf. line 31) that holds the name of the semantic difference that a com-

bination of original and semantic diff classes represent. This will be used by DSMCompare 

in the second step when applying semantic differencing rules ( cf. Section 4). 

One benefit of this procedure is that a difference class, like DiffScore , still contains all 

attributes and relations with the same name, type, cardinalities, and constraints as in Score . 

The rationale is to allow an instance of MM to be a valid instance of DiffMM. This is useful 

in case Ml and M2 are identical, as their difference can be represented by Ml. Consequently, 

a difference model can contain both instances of Score and DiffScore if one is unchanged 

and the other is, say, deleted. 

3.2. Visualization of domain-specific differences 

Since the user of the DSL manipulates models in their concrete syntax representation, 

it makes no sense for her /him to analyze the difference model in its abstract syntax form. 

Therefore, the DSL to represent the difference model should also be assigned a concrete 

syntax, which we call DSDiffCS. Since the DSL engineer has defined a concrete syntax CS 

for the DSL, she should also provide one for DSDiffMM. However, instead of starting from 

scratch, we propose to generate a default DSDiffCS that reuses the style from CS to remain 
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in the spirit of the DSL. Then, the DSL engineer can customize it if so desired. In this 

subsection, we describe how to generate DSDiffCS from CS, assuming a graphical concrete 

syntax. 

Sirius (Sirius , 2023a) is one of the most popular frameworks to generate graphical model-

ing environments and to manipulate models graphically in the Eclipse ecosystem. Although 

our approach is applicable to other graphical language workbenches, such as GMF (GMF, 

last accessed 2023) , MetaEdit+ (Kelly et al, 1996) and AToMPM (Syriani et a l, 2013) , our 

description is based on Sirius because its wide use nowadays , and because it offers a model-

based approach for concrete syntax definition. 

In Sirius, the main component of the concrete syntax definition is a viewpoint specification 

model (odesign). It defines a mapping of graphical representations to elements of MM. For 

example, to render the visualization of the Pacman class, we define a NodeMapping that refers 

to an icon in an image file. The NodeMapping can be a combination of text , icons, shapes 

and style customizations, such as color and size. Similarly, associations are rendered by an 

EdgeMapping. As for compositions, the target class is rendered by a BorderedNodeMapping 

within the NodeMapping of the source class. Constraints expressed in the Acceleo Query 

Language (AQL), a variant of the Object Constraint Language (OCL) (Object Management 

Group (OMG), 2023) , can filter visualizations depending on a condition. Finally, it is possible 

to define a palette of buttons to instantiate MM classes and associations by customizing the 

ToolSection. 

We generate DSDiffCS by means of an outplace transformation4 that takes as input CS 

and outputs DSDiffCS. The overall logic of the transformation is to copy each component 

of CS onto DSDiffCS and create the representation of each Diff_ class by extending the 

representation of its corresponding MM class. This maximizes the reuse of CS to represent 

the difference model intuitively for the DSL user. For each NodeMapping, e.g., PacmanNode , we 

create three new ones for each difference kind: DiffPacmanNodeADD, DiffPacmanNodeDELETE, 

DiffPacmanNodeMODIFY. By default, the add node is the same as the original node annotated 

with a green '+' sign, the delete with a red 'x', and modify with a blue '~'. The latter 

indicates that at least one of the attribute values has changed. For example, the ScoreNode 

is a rectangle with the value of its value attribute displayed inside. We change the text 

4This is a transformation that takes as input a model and produces a different output model. This contrasts 
with inplace transformations, which are applied directly on the input model. 
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displayed in DiffScoreNodeM0DIFY by showing the value concatenated with an arrow '- > ', 
followed by the new_ value . One particularity of the mapping in Sirius is that if DiffPacman 

inherits from Pacman in DSDiffMM, Sirius displays the representation of the former for the 

latter. Therefore we need to add an AQL condition in DiffPacmanNodeADD to force it to 

represent DiffPacman instances only and not its super classes. 

EdgeNodes are treated slightly differently. Recall that an association S from class A to 

class B in MM is transformed into a class DiffA_S with an incoming composition diffS from 

A and an outgoing association target to B. Therefore, in DSDiffCS, DiffA_S is represented 

with a BorderedNodeMapping as a subnode of the NodeMapping of A. We create two Border-

edNodeMappings for each Edge , one for adding and one for deleting, annotated similarly to 

Nodes. The target association is rendered by an EdgeNode . 

The only element in DSDiffMM that does not have a visualization in CS is the 

SemanticDiff class ( cf. line 31 of Algorithm 1). By default , we represent it with a rec-

tangle with its name attribute value displayed inside. 

We implemented this transformation in ATL to help automate the process. If the con-

crete syntax makes use of icon files to render the elements of the metamodel, the DSL 

engineer must also provide a set of icon files for each Diff _ class and association. The trans-

formation assumes that the name of the icon is preserved, but suffixed with the DiffKind, 

e.g. , pacman.png ----+ pacman_add.png. Nevertheless , it is also possible to fully automate that 

part if the concrete syntax does not include external icons, but is built entirely with Sirius 

nodes. In this case, our transformation will automatically add a symbol on the top-left of the 

node indicating the DiffKind. This opens the door to a variety of visualizations to represent 

domain-specific semantic differences. 

left right 
; ; -Ct° ~ • X I x-diffOn DELE1E DElffi 

Legend: -----------------------

Ghost e Pacman - Food D GridNode diffScore 

Figure 4.6. Fine-grained difference model Diff12 of Ml and M2 
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Defining DSDiffMM along with DSDiffCS as a domain-specific difference language using 

frameworks such as Sirius, allows the DSL engineer to generate a domain-specific model 

environment to represent difference models Diff12. These can be inspected and manipulated 

like any other model (Ml and M2) in an environment familiar to the DSL user. Fig. 4.6 

illustrates the Di.ff12 model for the running example (cf. Fig. 4.2), presented in its concrete 

syntax as output by DSMCompare. 

3.3. Fine-grained domain-specific model comparison 

Given two models Ml and M2 of a DSL, we want to output a single model Di.ff12 

depicting the changes from Ml to M2, as an instance of DSDiffMM. Note that the two 

models are provided with their abstract and concrete syntax representations. Most current 

model comparison approaches detect changes at the abstract syntax level only. For instance, 

(Lin et al, 2007) dynamically computes an identifier for each model element based on their 

properties ( e.g., type and attribute values). Alternatively, metamodel-agnostic approaches, 

like (Brun and Pierantonio, 2008; Cicchetti et al, 2007) , compute the structural and attribute 

value similarities between Ml and M2. These tools produce a generic difference model that 

lists the changes between the two models. We chose to reuse these difference algorithms and 

then process the result to produce Di.ff12- In our implementation, we rely on the change list 

output by EMFCompare. 

To produce the Di.ff12 model, we first clone Ml since the differences will be expressed in 

terms of Ml. We assume that the result from a difference algorithm outputs a list ~c of 

differences for classes, and another one ~A for associations, such as the case in EMFCompare. 

We denote an element E' E ~c using primed uppercase letters. This way, if E' is a deletion 

or a modification, we identify E to be the corresponding element in Ml. For example, in 

Fig. 4.6, E' can be the score object with its value modified from 1 to 2. We replace E', 

the score object, in Ml by an instance of the DiffScore class as per Algorithm 1. This 

new object will hold all original attribute values, so score=1 , and all new attribute values, 

so new_score=2. If E' is an addition, we create an instance of the Diff class corresponding 

to E' and set all its new attribute values. Finally, we mark the new Diff element with its 

ClassDiffKind. 
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An association A' E ~A is treated a bit differently. If A' is a deletion, we remove the 

link A in Ml corresponding to A' and create an instance of the Diff class corresponding to 

it. For example, in Fig. 4.6, the on link from the Pacman to the first grid node is removed 

and an instance of DiffPosi tionableElement_on is created. In case A' is an addition, only 

the creation of the Diff class is needed. We then connect the Diff instance to the source and 

target elements of A. Finally, we mark it with its AscDiffKind. 

Our approach does not require additional manual effort to produce the concrete syntax 

of Diff12- Since Diff12 is an instance of DSDiffMM, then DSDiffCS is applied automatically 

on Diff12 to represent it visually, as shown in Fig. 4.6. 

4. Domain-specific semantic differencing 

In this section we introduce the approach to create semantic diff rules. This involves syn-

thesizing a metamodel SDRuleMM out of DSDiffMM, as we explain in Section 4.1. Then, 

in Section 4.2 we outline how to generate a graphical environment for the DSL engineer 

that supports the creation of semantic differencing rules , based on SDRuleMM. Finally, Sec-

tion 4.3 provides a semantics for domain-specific diff rules in terms of graph transformation 

rules (Ehrig et al, 2006). 

4.1. Rules for domain-specific differences 

As explained in Section 2, we automatically derive an environment for specifying semantic 

differencing rules. This enables the DSL engineer to define higher-level changes specifically 

tailored for the domain. A rule needs to detect a pattern of fine-grained differences and 

replace it with a SemanticDiff class that was created in Algorithm 1. Our semantic differ-

encing rules act similarly to inplace model transformation rules (Ehrig et al, 2006) with a 

precondition and a postcondition component. Algorithm 2 outlines the procedure to produce 

SDRuleMM from DSDiffMM and Fig. 4. 7 shows the result. It is inspired by (Kuhne et al , 

2009) where the authors produce domain-specific model transformation rule patterns from 

a DSL. 

Like Algorithm 1, this procedure starts by reusing all the elements of DSDiffMM, adapting 

them to the new needs. Every class and association is prefixed with Pattern_, except the 

SemanticDiff class. All attributes from DSDiffMM except diff_kind are removed, since 
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Figure 4. 7. Excerpt of the semantic differencing rule metamodel PacmanRuleMM 

they do not contribute to the rule. However , the connectivity of the associations remains as 

in DSDiffMM. This simplifies the det ection of patterns in the difference model Diff12-

We add two attributes to all pattern classes . First , a unique identifier distinguishes 

inst ances of the same classes to facilitat e writing constraints . Then, a filt er attribute is used 

to signify that the element in Diff12 should be removed when applying the rule. It is helpful 

to remove fine-grained differences when a domain-specific difference is more meaningful. 

Furthermore, the rule may contain negative application conditions (NACs) to forbid the 

presence of elements (Ehrig et al, 2006) . We add a NAC_group attribute to all classes prefixed 

with Pattern_. Similar to some t ransformation languages (Arendt et al, 2010) , one or more 
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Algorithm 2 Transformation from DSDiffMM to SDRuleMM 
1: procedure GENERATESDRULEMM(DSDiffMM) 
2: SDRuleMM +---- DSDiffMM.clone( "SDRuleMM") 
3: for all class C# SemanticDiff in SDRuleMM do 
4: C.keepDiffKindAttribute() 
5: Pattern_C f---- C.setName( "Pattern_ "+ C.getName()) 
6: Pattern_ C.addAttribute( "ID _ Pattern", int) 
7: Pattern_C.addAttribute( "filter", bool) 
8: Pattern_C.addAttribute( "NAC_ group", int) 
9: end for 

10: for all association S in SDRuleMM do 
11: S.setName( "Pattern_ " + S.getName()) 
12: end for 
13: Rule f---- SDRuleMM.createClass( "Rule") 
14: Rule .addAttribute("name", String) 
15: Rule .addAttribute("constraints", String[]) 
16: Rule .addAttribute("priority", int) 
17: R +---- SDRuleMM.getRootClass() 
18: pattern +---- Rule .addComposition( "pattern", R) 
19: pattern.setCardinalities( 1 .. 1, 1 .. 1) 
20: return SDRuleMM 
21: end procedure 

rule elements set with the same NAC_group value constitute a NAC. Multiple values of this 

attribute are used to represent several NACs in the rule, none of which can be matched for 

the rule to be applicable. 

Finally, lines 13- 16 of the algorithm add a new Rule class as the new root of the meta-

model. This enables the transformation engine to navigate easily t hrough t he elements of the 

rule. In addition, the Rule class allows specifying a list of constraints over attribute values. 

In practice, constraints are written in Java and executed dynamically using BeanShell5, an 

embedded interpreter to run Java scripts. Within constraints, pattern objects ( elements of 

the rule) can be accessed through the Item keyword, using their identifier and the desired 

attribute name in the form of Item(ID, [ATTR_NAME]) . Fig. 4.8 shows an example semantic 

rule called Eat (in concrete syntax) with a constraint . This constraint states that the new 

value of the score should be greater than the original value for the rule to be applicable. 
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Figure 4.8. The semantic differencing rule Eat , abstracting fine-grained differences to depict 
that P acman has eaten food 

4.2. Automatic generation of a graphical environment for semantic diff rules 

Our approach not only helps the DSL user to better understand the difference between 

two models, but it also assists the DSL engineer to design conveniently the semantic differ-

encing rules in the same language workbench. 

For this purpose, we automatically generat e a concrete syntax for rules ( called SD Rule CS) 

out of the DSDiffCS model by a transformation. The transformation is very similar to the 

one described in Section 3.2. First, we copy the viewpoint specification model and adapt 

it to SDRuleMM. Each NodeMapping displays «filter» if the filter attribute is set to true, 

as well as the ID_Pattern of the object. All other attribute values from their DSDiffMM 

counterparts are removed as they are no longer present in pattern classes, like in the Score. 

To create and edit a rule, the DSL designer is provided with a palette showing all rule-specific 

elements, including those from DSDiffCS. 

5https://github.com/beanshell/beanshell 
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Fig. 4.8 illustrates a rule in the generated domain-specific environment. The rule describes 

that a Pacman eat food change occurs when Pacman is on a grid node, a food is deleted 

from the same node, and the score is incremented. To reduce the amount of fine-grained 

differences reported to the DSL user, the rule also filters the on association from the food to 

the grid node. 

4.3. Executing the semantic diff rules 

As outlined in Fig. 4.4, we apply the semantic diff rules to enhance the fine-grained dif-

ference model Di.ff12 with semantic differences, and possibly remove fine-grained differences. 

Given the difference model Di.ff12 produced as described in Section 3.3, we apply the rules 

on Diff12 as an inplace model transformation. For this purpose, we express the semantics of 

our semantic diff rules as graph transformation rules. In particular , we use Henshin (Arendt 

et al , 2010) as the target transformation engine. Henshin is an inplace model transformation 

language implementing graph transformations for the Eclipse Modeling Framework. There-

fore , we opted to transform each SDRule into a semantically equivalent Henshin rule, which 

can then be applied on Diff12 . In practice, we implemented this higher-order transformation 

using an Xtend-based code generator. This takes a set of semantic differencing rules and 

produces a set of Henshin rules. We chose a code generator approach since Henshin rules 

can be specified in a textual notation (Struber et al, 2017). 

In a semantic differencing rule SDRule, the precondition consists of the constraints of 

the rule and the structure formed by the pattern objects (typed by a class prefixed with 

Pattern_) contained inside the rule except for the SemanticDiff object. The postcondition 

of the rule is specified by the SemanticDiff instance and its diff_ associations (see lines 

31- 36 of Algorithm 1), along with all filter attributes that are set to true in the pattern 

classes. 

For example, the Eat rule in Fig. 4.8 looks for a Pacman object and a deleted DiffFood 

on the same grid node. It also requires that the new value of DiffScore has increased. 

Then, it creates the SemanticDiff object named PacmanEatsFood and hides the deleted 

DiffPositionableElement_on link associated with DiffFood. Fig. 4.9 shows how this rule 

is encoded in Henshin. A Henshin rule HRule consists of nodes, edges, and conditions. 
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Figure 4.9. Rule Eat transformed into Henshin 

Nodes and edges can be assigned actions (preserve, create, delete, forbid) and are typed by 

a metamodel class or association respectively. Nodes can have attribute values. 

Algorithm 3 presents the transformation from SDRule to HRule. We briefly outline the 

transformation steps to create an HRule from a SDRule in what follows: 

(1) Create an HRule with the same name as the SDRule (line 2 of Algorithm 3). 

(2) Create a condition in HRule for every condition in SDRule. If a condition uses an 

attribute, add a parameter to the rule, then assign the parameter to the corresponding 

attribute and use the parameter instead of the attribute in the condition (lines 4- 8). 

(3) Create a node with action «preserve» in HRule for every pattern object with no filter 

and no NAC_group set in SDRule (lines 11- 13) . 

(4) Create a node with action «delete» in HRule for every pattern object with filter set 

to true in SDRule (lines 14- 15). 
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(5) Create a node with action «forbid» in HRule for every pattern object with a NAC_group 

set in SDRule. Set the forbid identifier to the value of the NAC group (lines 16- 18). 

(6) Create a node with action «create» in HRule for every SemanticDiff object in SDRule 

(lines 19- 20). 

(7) If a pattern object has a value for its attributes like diff_kind set in SDRule, create 

the same attribute with the same value in the corresponding Henshin node (lines 

22- 26). 

(8) Create an edge in HRule for each association in SD Rule. The type of the edge should 

correspond to the one of the association (lines 28- 41) as follows. All edges adjacent 

to a node of type SemanticDiff have the action «create» (lines 34- 35). All edges 

adjacent to a node with action «delete» or «forbid» have also the action «delete» or 

«forbid» respectively (lines 36- 39). Otherwise, the edge action is set to «preserve» 

(lines 40- 41). 

Thanks to the transformation to Henshin, our rules support matching a subclass of a 

pattern class (Biermann et al, 2012): in DSDiffMM, the DiffScore class inherits from the 

Score class. Furthermore, abstract classes from MM, like Posi tionableElement, can be used 

when specifying patterns, which can be useful to define fewer rules ( de Lara et al, 2007). 

To apply all the semantic differencing rules with Henshin, we must set the control flow 

of the transformation. For this purpose, we group all HRules inside an independent unit 

so that all rules are applied in an arbitrary order nondeterministically. Furthermore, each 

HRule is executed in a loop unit so that each rule is applied iteratively as long as matches 

are found before any other rule is applied. When the transformation execution concludes, all 

objects marked as filtered in the pattern are removed and objects semantically meaningful 

to the domain are added to the difference model. Altogether, the resulting DifJi2 model is 

semantically lifted to show higher-level differences that are deemed important and meaningful 

to the DSL user. Moreover, lower-level (fine-grained) differences may be deleted by the rule, 

hence reducing verbosity. Applying the rules on the abstract syntax of Diff12 automatically 

updates its concrete syntax. Therefore, the final difference model is provided to the DSL 

user in a representation tailored for the domain. 

Fig. 4.10 illustrates the final difference model provided by our approach. It shows the 

application of two rules, identifying that Pacman has moved right and eaten food. Altogether, 
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Algorithm 3 Transformation from SDRule to HRule 
1: procedure GENERATEHRULE(SDRule) 
2: HRule +--- createHenshinRule(SDRule) 
3: for all Condition c in SDRule.getConditions() do 
4: for all Attribute a in c .getAttributes() do 
5: p +--- createHenshinParameter(a) 
6: HRule .Parameters +--- p 
7: c.replaceAttributeByParameter(p) 
8: end for 
9: end for 

10: for all Pattern P in SDRule.getPatterns() do 
11: n +--- createHenshinNode(P) 
12: if not P.hasFilter() AND not P.isMemberOfNACGroup() then 
13: n.Action +--- "preserve" 
14: else if P.hasFilter() then 
15: n.Action +--- "delete" 
16: else if P.memberOfNACGroup() then 
17: n.Action +--- "forbid" 
18: n.forbidld +--- P.getNACGroupName() 
19: else if P.className() == "SemanticDiff" then 
20: n.Action +--- "create" 
21: end if 
22: for all Attribute a in P .getAttributes() do 
23: hAttr +--- createHenshinAttribute( a) 
24: hAttr .Value +--- a.getValue() 
25: n.Attributes +--- hAttr 
26: end for 
27: end for 
28: for all Node n in HRule.getNodes() do 
29: P +--- SDRule.getObject(n.getName()) 
30: for all Association asc in P.getAssociations() do 
31: edge +--- createHenshinEdge(asc.getName()) 
32: edge.Source +--- n 
33: edge .Target +--- HRule.getNode(asc .getTarget() 
34: .getName()) 
35: if edge.Source.getName() == "SemanticDiff" OR edge.Target.getName() == "SemanticD-

iff" then 
36: edge.Action +--- "create" 
37: else if edge.Source.getAction() == "delete" OR edge.Target.getAction() == "delete" then 
38: edge.Action +--- "delete" 
39: else if edge .Source.getAction() == "forbid" OR edge.Target.getAction() == "forbid" 

then 
40: edge.Action +--- "forbid" 
41: else 
42: edge.Action +--- "preserve" 
43: end if 
44: end for 
45: end for 
46: return HRule 
47: end procedure 
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Figure 4.10. The domain-specific difference of two models in the generated editor after 
applying two rules 

compared to Fig. 4.3, the DSL user can inspect the domain-specific changes in an editor that 

resembles the one she used to manipulate the original models Ml and M2. 

5. Conflicting rule application 

A rule may have more than one match in Diff12. However, care should be taken since 

applying a rule may remove filtered elements. In general, there is normally more than 

one semantic differencing rule specified for a DSL and different rules may have overlapping 

matches. In Section 4.3, the control flow of the transformation assumed the rules are sequen-

tially independent (Ehrig et al, 2006). However, if a rule filters an element that is required 

in the precondition of another rule, the latter will not find a match. One solution to avoid 

conflicts between rules is to use NACs. For example, we can prevent the application of a 

rule if another rule has been applied before. This can be achieved by adding a SemanticDiff 

object in the former rule as a NAC (see Section 4.1). However, this solution is limited be-

cause it alters the semantics of the rule, may prevent non-conflicting rules from applying, 

and requires modifying the semantic rule manually. Therefore, we propose a general solution 

that reduces conflicts between rules as much as possible. 

The problem is that multiple semantic difference rules may be applicable at the same 

time, and they might conflict with each other. Therefore, we extend DSMCompare with an 
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elaborate graph-based analysis of the rules based on heuristics to obtain a reasonable schedule 

of the rule application order. In this case, the ordering must be such that it reduces the 

verbosity of the presented difference, to favor semantic differences over syntactic differences. 

In the following, Section 5.1 introduces an example to illustrate the conflicts that can arise, 

Section 5.2 formalizes the problem, and Section 5.3 proposes an algorithm to assign rules a 

priority. 
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Figure 4.11. Semantic differencing rules for Pacman movement 
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5.1. Conflicting rules example 

Assume the engineer of the Pacman game DSL has defined the semantic differencing 

rules for the four cardinal movements of Pacman as shown in Fig. 4.11 (a)- (d). Note that 

we have slightly altered the rules for illustrative purposes. After a while, some DSL users 

report that DSMCompare fails to detect other kinds of movements, such as diagonally or 

further than one grid node away. Thus, the DSL engineer creates a new rule called Move 

as depicted in Fig. 4.11 ( e). This semantic differencing rule correctly detects any change in 

Pacman movements. However, later, a DSL user discovers that, for some difference models, 

DSMCompare reports Move instead of the more precise Right. This new problem arises 

because the two rules conflict with each other ( when Move is applied before Right): the 

former rule filters the old diff_on relation of Pacman which is required to apply the latter 

rule. Another situation occurs when Move and Up are both applicable, but the former is 

applied. In this case, the resulting Diff12 model will contain more fine-grained differences 

than if the latter was applied (because Move filters one association, while Up filters two), thus 

encumbering the DSL user with unnecessary differences reported. This problem is further 

aggravated when rules have many occurrences in Diff12- This example illustrates that , when 

a number of rules are in conflict, the DSL engineer should prioritize those that are more 

precise, remove more fine-grained differences, and create more domain-specific differences. 

The DSL engineer can assign a priority to each rule thanks to their priority attribute 

(see line 16 in Algorithm 2). Priorities define a partial ordering of rule application: the 

lower the priority value, the higher priority the rule has. In Henshin, this is represented 

with a priority unit; thus we define the control flow of the rules with this unit instead of 

the independent unit presented in Section 4.3. To assist the DSL engineer in assigning the 

optimal priority ordering of the rules, we have developed a DSL-agnostic algorithm that 

proposes the best rule ordering without knowledge of the difference model Diff12 on which 

they will be applied. 

5.2. Formalization of the problem 

We consider assigning priorities to the rules as an optimization problem where the ob-

jective is to maximize the number of semantic differences and minimize the number of fine-

grained differences in Diff12 after applying the rules. Intuitively, we can achieve this objective 
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by applying as many rules as possible. However, some rules may filter more fine-grained dif-

ferences than others and some rules may create more semantic difference objects than others. 

The latter may seem unusual because, typically, one rule creates a single semantic difference 

object that represents the intention of the rule. However, our framework allows the DSL 

engineer to define higher-order semantic differencing rules that refactor semantic difference 

objects created by other rules. 

Therefore, the solution should consider conflicts between the rules , the number of filtered 

elements they remove, the number of semantic difference objects they create, and the number 

of overlaps between them to favor more precise rules (like Right) over less precise ones (like 

Move). We represent this information in a conflict graph where vertices are rules and edges 

represent conflicts between them. The priority assignment solution comes down to sorting 

every vertex of the graph while optimizing our objective. 

5.2.1. Conflict graph 

We define the conflict graph as G = (V, E, sem, filter, elem, conj) with sem, filter, elem: 

V----+ N properties of vertices, E V x V irreflexive directed edges, and conj : E----+ N the 

weights of edges. 

In this representation, each vertex v EV corresponds to a rule. Vertices have the following 

properties: 

• sem is the number of semantic difference objects each match of the rule will create 

on Di.ff12-

• filter is the number of fine-grained differences each match of the rule will filter. 

• elem is the number of class and association instances to be matched by the pattern 

of the rule. 

The vertices of the conflict graph in Fig. 4.12 show the properties of each rule of the Pacman 

game presented in Fig. 4.11. An edge (v1,v2) EE represents a conflict that occurs if we 

apply the rule corresponding to v1 before the rule corresponding to v2. Since we assume that 

a rule is applied on all matches exhaustively before applying another one, edges cannot be 

reflexive. 

Edges are weighted by function conj, which gives the number of conflicts that arise 

when applying the rule of the source vertex before the rule of the target vertex. Following 
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the theory of graph transformation with NACs (Lambers et al, 2006), we consider two kinds 

of conflicts for rules: 

• Delete-use occurring when a rule deletes an element ( e.g. , a fine-grained diff) that 

another rule requires. An example of this conflict is when Move filters an association 

required by Up. 

• Produce-forbid occurring when a rule creates an element that another rule forbids in 

a NAC. An example of this conflict would be when a rule creates a semantic diff that 

another rule forbids. 

Finding an optimal solution to the problem is equivalent to finding an optimal vertex 

partial ordering according to our objective. The solution is a function priority : V -+ N 

such that if priority(v1) < priority(v2) , then DSMCompare should try to apply the rule 

corresponding to v1 before the rule corresponding to v2. If priority(v1) = priority(v2) then 

the rules are not in conflict and can be applied in any order. 

5.2.2. Conflict detection 

To compute the edges of the conflict graph and their weight , we perform a conflict 

analysis of the rules. Henshin offers a multi-granular conflict and dependency analysis tool 

(MultiCDA), a generalization of critical pair analysis (CPA) (Lambers et al, 2018). Conflicts 

need to be detected only once by the DSL engineer, thus the computation time of conflicts 

is not an issue for our problem. Nevertheless, MultiCDA is significantly faster than CPA 

(Lambers et al, 2018). Given a set of Henshin rules, MultiCDA outputs three levels of conflict 

granularity. To assign the conj weight to each edge of the conflict graph, we rely on the 

fine-granularity level that MultiCDA reports. It outputs a positive integer for each pair of 

rules representing the number of all model fragments whose presence leads to a conflict. 

MultiCDA presents the conflict results as a matrix. This serves as the adjacency matrix of 

our conflict graph (note that we assign Oto the main diagonal since edges are irreflexive). 

Applying conflict detection with MultiCDA on the Pacman game semantic differencing 

rules in Fig. 4.11 results in the edges of the graph in Fig. 4.12. The Eat rule has no con-

flicting model fragment with any other rules , thus it is disconnected. The edges outgoing 

from Move indicate that if we apply this rule before any of the other movement rules, there 

are six model fragments that lead to conflicts. In contrast, applying any of the cardinal 
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Up 
filter=2 
elem=lO 
sem=l 

Eat 
filter=l 
elem=7 
sem=l 

Right 
filter=l 
elem=lO 
sem=l 

Figure 4.12. The conflict graph for the rules in Fig. 4.11 

movement rules before any other movement rule causes conflicts only for two model frag-

ments. For example, one of them is: [Pacman]-(diffon)-[DiffPositionableEntity_on]-

(eType)-[GridNode]. Applying the Move rule on this model fragment will remove the three 

central elements, whereas all the other movement rules require this fragment to be applicable. 

5.3. Rule priority ordering 

To illustrate how to solve the rule priority ordering, consider the conflict graph in 

Fig. 4.13. It represents the conflicts between four semantic differencing rules A ,B,C, and D 

encoded by vertices with the same name. Intuitively, a solution to the problem is to sort the 

vertices of the conflict graph topologically. However, recall that the edge (B,D) means that 

when B is applied on a model fragment , D is no longer applicable on this fragment. There-

fore , we must consider reversing the edges before the topological sort. However, topological 

sorting algorithms are only applicable to directed acyclic graphs. Since conflict graphs are 

likely to contain cycles and vertices are weighted, only approximate algorithms exist in the 
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literature (Al-Herz and Pothen, 2019). Nonetheless, our goal is to assign a partial order to 

all vertices such that applying a rule with lower order will less likely prevent the application 

of other rules while maximizing filter,elem, and sem. Therefore, we propose an algorithm 

(Algorithm 4) that sorts weighted vertices and edges of a directed cyclic graph based on 

heuristics. 

Algorithm 4 Priority ordering of the vertices of a conflict graph 
1: procedure PRIORITY0RDER( G) 
2: L +---- G.clone() 
3: R +---- G.clone() 
4: L +---- ToDAG(L) 
5: sorted£+---- REVTOPOLOGICALSORT(L) 
6: R+----R-L 
7: if not IsDAG(R) then 
8: sortedR +---- PRIORITY0RDER(R) 
9: else 

10: sortedR +---- REVTOPOLOGICALSORT(R) 
11: end if 
12: sort +---- sorted£+ sortedR 
13: priority(v) +---- l ,'v'v E sort 
14: for all v in sort do 
15: before+----{u I (u,v)EEV(v,u)EE 
16: and u is before v in sort} 
17: if lbe f ore I > 0 then 
18: priority( v) +---- max{priority( u), Vu E before}+ 1 
19: end if 
20: end for 
21: return priority 
22: end procedure 

Algorithm 4 starts by partitioning the conflict graph G into two disjoint subgraphs. The 

left graph L contains the maximum subgraph of G that is acyclic. The right graph R is the 

graph induced by the remaining vertices. 

ToDAG() transforms a graph into a directed acyclic graph by iteratively removing ver-

tices from the strongly connected components. We implement Tarjan's algorithm (Tarjan, 

Figure 4.13. A sample conflict graph 
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1972) to find the strongly connected components of the graph in O(IVI + IEI) time complex-

ity. If G is the conflict graph in Fig. 4.13, then the strongly connected components are the 

subgraphs (A,D) , (B) , and (C). Thus, to make L acyclic, we should remove either vertex 

A or D. We define the following heuristics (in this order), to choose which vertex to remove 

from a strongly connected component ( we denote its set of vertices by S) until L has no 

more cycles: 

H1 =: maxI:vES L(v,u)EEconf(v ,u) maximizes the total weight of the outgoing edges of a 

vertex v, to choose the rule with the highest number of fine-grained conflicts. 

H2 =: maxI:vEs l{(u,w) EE Iv= u Vv = w}I maximizes the degree of a vertex v , to choose 

the rule with the highest number of conflicting rules. 

H3 =: min LvES sem( v) serves to choose the rule that creates the least number of semantic 

difference objects. 

H4 =: min LvES filter( v) serves to choose the rule that filters the least number of granular 

difference objects. 

H5 =: min LvES elem( v) serves to choose the rule that matches the lowest number of ele-

ments in the difference model, thus the least precise rule. 

Hence, L contains the vertices representing rules that are less likely to prevent the appli-

cation of other rules and optimize our objective. In the conflict graph of Fig. 4.13, heuristic 

H1 suffices to remove A from L. All vertices of L will be given a lower priority value than 

vertices of R. Thus, it is important that we minimize the size of R. In our example, R con-

sists only of vertex A. Since L is now acyclic, we apply REVTOPOLOGICALSORT() to sort 

the vertices of Lin reverse order of the edges using a O(IVI + IEI) time complexity algorithm 

based on depth-first search. During the traversal, we use the opposite of the five heuristics 

whenever we have a choice between more than one vertex (i.e., we minimize H1 ,H2,H5 and 

maximize H3,H4). 

On line 12, sort contains the sequence of vertices sorted topologically. In our example, 

sort= (D ,B,C,A) the first three from sortedL and the last one from sortedR. The algorithm 

constructs the priority function by following the order of the vertices in sort. However, this 

total order is overly conservative, e.g., C has no conflict with the other rules. On lines 15-

18, we ensure that if u is topologically before v and there is an edge between v and u, then 

priority(v) > priority(u). Otherwise, they can have the same order. The priority function 
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output for the conflict graph in Fig. 4.13 is presented in Table 4.1. The table also shows the 

initial value of the heuristics of each vertex. 

Table 4.1. Priority order of the sample conflict graph in Fig. 4.13 output by the algorithm 

Rule Priority H1 H2 H3 H4 H5 

C 1 10 3 1 2 8 

D 1 2 2 1 1 7 

B 2 0 0 1 1 8 

A 3 4 3 1 2 g 

When removing vertices from L to make it acyclic , we may end up with an induced graph 

R with the removed vertices that still contains cycles. For example, this happens if G is a 

complete graph, then L can only consist of one vertex that optimizes the heuristics. This is 

the case with the conflict graph of the Pacman game example in Fig. 4.12. Since its vertex 

is disconnected, Eat can be applied first and be part of L. All the rest of the vertices are in 

a clique, thus applying one would conflict with all others. However , we want to give as much 

chance as possible to apply as many rules as possible to optimize H3. Nevertheless, only one 

of the movement rules can remain in L. According to H1, Move has the highest number of 

conflict reasons, so it should be applied last and be part of R. All the other four vertices have 

the same conj value. According to H4 , Up should have the lowest priority value among them 

and be part of L. Thus, all remaining rules are part of R, still forming a clique. Therefore, on 

line 8, we recursively order R until it is acyclic. Rules Left , Right , and Down are structurally 

very similar, except the latter which has one more element (the scoreboard). Semantically, 

this means that Down is more precise than the other two rules because it requires matching 

more elements. Applying another rule may risk removing this additional element, and thus 

not allowing Down to be applicable anymore. Therefore, according to H5, Down should have 

a lower priority value than the other two rules. Left and Right rule cannot be further 

distinguished. Hence, any order between them will lead to the same chance of making the 

other inapplicable. Table 4.2 summarizes the order generated by Algorithm 4. The table 

also shows the initial value of the heuristics of each vertex. 
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Table 4.2. Priority order of the Pacman game rules output by the algorithm 

Rule Priority H1 H2 H3 H4 H5 

Eat 1 0 0 1 1 7 

Up 1 8 8 1 2 10 

Down 2 8 8 1 1 12 

Right 3 8 8 1 1 10 

Left 4 8 8 1 1 10 

Move 5 24 8 1 1 9 
Since our objective depends on the Di.ff12 model, but the conflict graph is agnostic from 

any model (i.e., it only depends on the rules), the priority order output may not be optimal 

for all Di.ff12 models. Nevertheless, it should be optimal for most models . If the conflict 

graph contains no cycle, applying the rules in the order output by Algorithm 4 essentially 

allows all rules to apply on any input models without conflict . However, if there are cycles, 

the order output does not prevent conflicts but minimizes their impact. Thus, this increases 

the probability of replacing a maximum number of fine-grained differences with semantic 

differences. 

5.4. Extensions 

Some extensions to the heuristics we present could be considered. In particular, the goal 

of H5 is to favor more precise rules as a last resort. Currently, elem only counts the elements 

to be matched in a rule. One could argue that a rule with NACs is more precise than one 

without, since it has fewer chances of matching. Thus it could be possible to count NAC 

elements in elem. One could also argue that a rule with abstract elements is less precise than 

a similar rule using one of its subclasses. For example, consider the Move rule in Fig. 4.11 (e). 

Suppose we had another rule MoveAny that relied on the Posi tionableEnti ty class instead 

of the Pacman class. Then Move can be considered more precise than MoveAny, since it has 

fewer chances of matching. Therefore elem could take into consideration abstract classes 

and inheritance relations. 

6. Evaluation 

Next, we evaluate DSMCompare using both synthetic models (Section 6.3) and model 

histories created by third parties (Section 6.4). We first briefly outline the implementation 
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of DSMCompare. Then we state the objectives of our evaluation in Section 6.2. We present 

the two sets of experiments (Sections 6.3 and 6.4), discuss the results in Section 6.5 and 

present limitations and threats to validity in Section 6.6. 

6.1. Implementation 

We implemented DSMCompare as an Eclipse plug-in running on the Eclipse Modeling 

Framework (Eclipse version 2020-09). It is available on the companion website6. 

Given a DSL, DSM Compare automatically generates out of the box all required artefacts 

to support the visualization of model differences for the DSL (i.e., diff metamodel, fine-

grained diffs , and extended concrete syntax). Then, if so desired, the DSL designer can 

provide domain-specific semantic diff rules , as these rules cannot be inferred automatically. 

If the DSL evolves, the DSL designer would have to evolve the semantic diff rules as well, 

but the rest of artefacts can be regenerated again with no effort. 

To perform the model comparison, DSMCompare consists of three main modules. The 

Comparison module takes as input two model versions and produces the corresponding fine-

grained Diff12 model. This module relies on the EMF-Compare model comparison tool 

(version 3.3.9). The Ordering module computes the priority order of the SDRules to be 

applied. It first transforms the SDRules into Henshin rules. Then, it invokes Henshin's 

MultiCDA tool (version 1. 7) to retrieve the potential conflicts among the rules. The ordering 

module takes the conflicts and the SDRules to produce the scheduling units of Henshin 

transformation. Finally, the Lifting module applies this transformation on the Diff12 model 

to obtain the semantically lifted Diff12 model. The difference model is then fed to generated 

Sirius editor (version 6.3.0) to present the semantic Diff12 model in concrete syntax. 

To use DSMCompare for a given DSL, the DSL Engineer needs to perform two manual 

tasks. The first one is to assign an appropriate concrete syntax representation to the classes 

and relationships generated in the DSDiff metamodel. The engineer only needs to consider 

the elements prefixed with "Diff". For each Diff class, she needs to create three versions 

(ADD, DELETE, MODIFY) of the concrete syntax for the diff class corresponding to the 

original metamodel of the DSL. For example, as depicted in Figure 10, we created three 

additional icons representing Pacman by adding a + / x / ~ symbol respectively. Similarly, 

6https://github.com/geodes-sms/DSMCompare/ 
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the engineer needs to create two versions (ADD, DELETE) of the concrete syntax for the 

diff association corresponding in the original metamodel of the DSL. The second task is to 

create the SDRules for the DSL. The number of SDRules to create depends on the DSL; for 

example, Pacman required 12 rules , Arduino (cf. Section 6.4.1) 24 rules, and Class Diagram 

Refactoring ( cf. Section 6.4.2) 20 rules. In general, writing a SD Rule is advantageous over 

writing the equivalent Henshin rule. The generated domain-specific editor (e.g. , in Figure 

8) and the abstraction level that deals directly with concepts of the DSL reduce the effort 

compared to creating Henshin rules using generic nodes and edges, and adding explicitly 

graph transformation inscriptions (e.g., NAC groups as shown in Algorithm 3). 

6.2. Objectives 

Our first goal is to evaluate if DSMCompare improves the readability and understand-

ability of differences between model versions. To this end, we characterize the verbosity of 

the differences formulated by two research questions: 

RQl Are fine-grained differences more verbose than semantic differences? 

RQ2 Does assigning priorities to semantic differencing rules yield less verbose difference 

models? 

Our assumption is that the more differences are presented to a domain user, the harder it 

is for her to comprehend the changes that differentiate two models from a semantic point 

of view. Therefore, RQl investigates whether presenting more semantic differences rather 

than fine-grained differences, reduces the verbosity of the difference model. RQ2 focuses 

on the impact of the priority ordering of the semantic differencing rules in decreasing the 

verbosity. The metrics we use to answer both research questions are the number of remaining 

fine-grained differences and the number of discovered semantic differences in the difference 

model. To answer RQ2, we use synthetic models from two scenarios (the Pacman game and 

metamodel refactorings) as we will detail in Section 6.3. 

The second goal is to evaluate the applicability of our approach in finding semantic 

differences between model versions. We concentrate on the following two research questions: 

RQ3 Can we extract semantic differences from fine-grained diffs? 

RQ4 Are semantic differences recurring? 
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RQ3 assesses whether semantic differencing rules are applicable in practice. However, these 

rules must be applicable to any difference model of a particular DSL. If a rule is rarely 

applicable on a set of models , then the rule is too specific to certain classes of models of the 

DSL and general enough to the DSL. Therefore, we must ensure that semantic differencing 

rules are recurring. The metric we use to answer these latter two research questions is the 

number of occurrences of semantic differences over model histories created by third parties, 

as we will detail in Section 6.4. 

6.3. Reducing the verbosity with semantic differencing 

We present the first experiment to evaluate if DSM Compare yields less verbose difference 

models. 

6.3.1. Experimental setting 

In this experiment, we consider two cases: the Pacman game configuration DSL (Pac-

Man) presented in previous sections, and the refactoring of Ecore metamodels (MM-

Refactoring). We choose these two cases to vary the size of the difference models, the 

number of semantic differencing rules, and the topology of the conflict graph. Moreover, the 

reasons for the selection of the second case are twofold. On the one hand, it illustrates that 

our approach works for both models and metamodels, by just looking at Ecore metamodels 

as instances of (i.e. , models of) the Ecore meta-metamodel. On the other hand, GitHub con-

tains many Ecore metamodels, which increases the chances of finding interesting metamodel 

version histories for our experiment. 

For the Pac-Man case, we have specified 12 semantic diff rules: five for Pac-Man move-

ments (up, down, left , right , and the general move), five similar rules for ghost movements, 

one for Pac-Man eating food, and one for a ghost killing Pac-Man. Every rule has one filter 

and creates one semantic difference object. The conflict graph of the rules forms three discon-

nected cliques: one for ghost movements , one for Pac-Man movements with the Pacman-Die 

rule , and the disconnected Pacman-Eat rule . All rules are composed of eight elements, except 

the Pacman-Die rule which is composed of seven. The Pac-Man case represents situations 

where the semantic difference rules are uniform. 
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For the MM-Refactoring case, we have specified 20 semantic difference rules adapted from 

the metamodel and object-oriented refactoring catalogs7, such as Extract-Superclass, Split-

References, and Rename-Attribute. The conflict graph of the rules forms two disconnected 

graphs. The first graph contains four rules, three of them (for method movement) forming a 

strongly connected component. The second graph comprises strongly connected components 

of 13 rules: eight for references and five for attributes. All rules filter one or two elements, 

except the three renaming rules, which have no filter. They are all composed of five to nine 

elements. As opposed to the Pac-Man case, the MM-Refactoring case represents situations 

where there is more variability between the semantic differencing rules. 

For both cases, we used DSMCompare to generate the corresponding DSDifJMM and 

SDRuleMM metamodels. We specified the semantic differencing rules with the generated 

editor and automatically transformed them into Henshin to apply them on a set of difference 

models. All the material such as models, data, rules and conflict graphs are available on the 

companion website. 

Table 4.3. Results of applying the semantic differencing rules in different orders on the 
difference models. The numbers in the form x I y represent x semantic difference objects 
and y fine-grained differences remaining in the difference model after applying all semantic 
differencing rules in the corresponding order. 

DSL Diff #fine- Without I O d d Reverse Random Random Random Random Random Random Random 
d order order order order d 5 model cliffs conflicts r ere or er 1 2 3 4 or er order 6 order 7 

Ml 90 77 0 60 30 28 45 34 40 45 29 55 42 60 23 

Pac- M2 52 42 0 28 24 22 15 23 15 24 15 28 20 28 16 

Man 
M3 49 41 0 32 17 16 24 16 24 27 14 27 15 32 17 
M4 68 67 0 44 24 23 29 28 24 38 16 39 17 44 19 
M5 62 46 0 32 30 16 31 16 31 24 24 29 27 32 30 

MM- Ml 337 219 I 90 111 I 92 I 230 111 I 100 I 99 I 235 95 I 221 117 I 234 111 I 228 111 I 234 228 229 226 Re- M2 262 88 183 57 223 53 217 54 223 55 222 55 223 53 219 57 223 57 I 222 57 223 fac-
tor- M3 266 88 188 71 188 66 210 69 212 66 210 69 213 66 211 71 213 11 I 213 71 212 

ing M4 248 65 175 53 195 48 192 51 194 48 192 48 193 48 192 48 193 53 I 195 53 194 
M5 277 139 123 79 197 71 195 73 195 73 191 72 200 71 197 79 200 79 I 194 79 200 

Model generation. To address RQ2, we want to verify that applying DSMCompare to a 

difference model maximizes the number of semantic difference objects and minimizes the 

number of fine-grained differences. Since it is not tractable to test exhaustively all possible 

difference models of each DSL, we derive a representative set of difference models covering 

most cases. Therefore, we construct five difference models (Ml to M5) by varying the number 

7https: / /www.metamodelrefactoring .org and https: //refactoring . com respectively 
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of occurrences of each rule when applied in isolation, i.e., assuming there are no conflicts 

between rules. 

We constructed Ml by hand, ensuring that all semantic differencing rules have an almost 

equal number of matches when applied in isolation ( an average of 6 ± 1 matches for Pac-

Man and 10 ± 3 for MM-Refactoring). Therefore, Ml represents models where the number 

of matches of each rule is uniformly distributed, regardless of any priority order. For the 

remaining models, we randomly varied the skewness and kurtosis of the number of matches 

of each rule depending on their priority order output by Algorithm 4. 

In M2 of the MM-Refactoring, we favor the number of matches of the 10 highest and 

lowest priority rules to cover 90% of all the matches. Similarly for Pac-Man, we favor the 

number of matches of the 6 highest and lowest priority rules covering 84% of all the matches. 

For example, the Pacman-Eat (top priority) and Pacman-Move (lowest priority) rules have 

six and eight matches, whereas Ghost-Left has only one match. Since lower priority rules 

have many conflicts with higher ones, M2 represents difference models where the priority 

ordering is least optimal: the lower priority rules will likely not be applicable. 

In M3, we favor the 6 and 10 highest priority rules for Pac-Man and MM-Refactoring 

respectively. All remaining rules have at most one match. Therefore, M3 represents difference 

models where the priority ordering is optimal. 

In M4, we favor the same number of lowest priority rules as in M3, while all higher 

priority rules have at most one match. For example, in the MM-Refactoring, the Merge-

Reference rule (top priority) has no match, whereas Remove-Middle-Man (lowest priority) 

has five matches. 

Finally, in M5, the highest and lowest priority rules have at most one match while favoring 

the matches of all other rules. 

The first four columns of Table 4.3 summarize the setup of each case. The #.fine-diffs 

column shows the total number of fine-grained differences in each difference model before 

applying the semantic differencing rules. For instance, there are 90 fine-grained differences 

for Ml of the Pac-Man DSL, among which 76 are association differences and 14 are class 

differences. To better characterize each model, the next column (labelled Without conflicts) 

shows the total number of matches8 of all semantic differencing rules when run in isolation, 

8Since each rule creates a single semantic difference object , this number is the same as the number of matches. 
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assuming there are no conflicts between the rules. This gives an idea of how many times the 

rules are applicable; though this number is not reachable when there are conflicts between 

rules. For example, for Ml of the Pac-Man DSL, if all rules were to be applied on all 

their matches, the resulting difference model would contain 77 semantic differences, and 

all of the 90 fine-grained differences would be filtered. Note that the difference models for 

MM-Refactoring are on average 4.5 times larger than those for Pac-Man. 

Priority orderings. The first independent variable of this experiment is the difference model 

(Ml- M5) to avoid a bias in the priority order output by our approach. Furthermore, to 

answer RQ2, we must compare the order output by DSMCompare with other orders. One 

interesting order we can compare with is the reverse order. This allows the rules with 

most conflicts to be applied first . Other orders to compare to are obtained through random 

sampling from all possible permutations. However, it is intractable to test against all possible 

permutation of rule ordering. One property of Algorithm 4 is that rules with the same priority 

have no conflict between them. We denote rules sharing the same priority as a cluster. Thus, 

the order within each cluster does not have an impact on the other rules. Therefore, we can 

ignore the permutations within clusters. For the Pac-Man case, we obtain 6 clusters for 

the 12 rules and for the MM-Refactoring case, we obtain 9 clusters for the 20 rules. Still, 

manually testing all these possible permutations is not feasible (720 and 362 880 for the Pac-

Man and MM-Refactoring cases respectively). In the random sampling, we generated orders 

such that no cluster has the same priority twice. Therefore, there are as many orders as 

there are clusters. After excluding the order output by Algorithm 4 and the reverser order, 

we end up with 4 additional random orders for Pac-Man and 7 for MM-Refactoring cases. 

6.3.2. Results 

Table 4.3 shows the results of this experiment. In bold, we highlighted the cases where 

the metrics are optimized: maximizing the number of semantic differences and minimizing 

the number of fine-grained differences. For example, for the Ml model of Pac-Man, applying 

the rules in a priority ordering output by DSMCompare results in 60 semantic differences 

with 30 fine-grained differences remaining. In all the tested cases, the results show that 

the priority order output by Algorithm 4 maximizes the number of semantic differences. 

Nevertheless, for Pac-Man, one of the random orderings filters more fine-grained differences 
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than our order in three difference models. After manual inspection, we identified that this is 

because, in this ordering, the Pacman-Move rule has a higher priority than Pacman-Right. 

However, this means that a more general semantic difference takes precedence over a more 

specific semantic difference. This contradicts our heuristic Hs, which favors the latter over 

the former. This is a desirable property of our ordering since, in practice, if the Pac-Man 

moved to the right , then we would like that the difference model depicts the direction in 

which it moved. 

For MM-Refactoring, our priority order produces the best results in terms of the metrics 

collected. We notice that two random orders obtain slightly fewer fine-grained differences. 

Like for Pac-Man, they also give lower priority order to more general rules, such as Move-

Reference. However, since they filter more fine-grained differences than more specialized 

rules, the same number of fine-grained differences are filtered overall. 

Regarding RQl , we can conclude that the fine-grained differences are more verbose since 

semantic differences aggregate multiple fine-grained differences. Regarding RQ2, we find 

that assigning priorities has a significant influence on the verbosity of the difference model. 

Furthermore, we notice that most of the time, our ordering results in less verbose difference 

models. Although it does not always optimize the number of fine-grained differences, it 

reports more precise semantic differences. We believe maximizing this aspect improves the 

readability of the model on top of reducing the number of fine-grained differences. 

6.4. Case studies 

We now validate our approach on two real-life case studies developed by third-parties. 

The first case we choose is a DSL with a graphical concrete syntax and a few model versions 

on which we apply DSMCompare. In the second case, we focus on larger models with many 

versions available. 

6.4.1. Arduino Designer 

Description. Arduino Designer is an environment specially tailored to young children, to 

create simple programs for Arduino9, an open-source electronics platform based on easy-

to-use hardware and software. The Arduino Designer language is a DSL built to model 

Arduino configurations and programs graphically, based on Sirius. The DSL has two parts: 

9https://www.arduino.cc/ 

101 



one for the configuration of devices and another for sketching programs. The configuration 

part contains primitives for placing hardware devices on the appropriate pins of the Arduino 

board. In Arduino, the code is placed and executed within a main loop. The sketch part 

models the code within the loop. It is a graphical programming language with arithmetic 

expressions, loops, and conditional instructions. 

Just like code, these models evolve in new versions. For example, in a GitHub repos-

itory10, we can find a history of different models that underwent bug fixes , improvements, 

and migrations to a new framework. Understanding complex changes that have occurred 

from one version to another may be hard for Arduino developers , especially if they are chil-

dren. Our approach can help these developers visualize the changes in the same graphical 

language and environment they used for development. Furthermore, we report the changes 

as semantic differences. For the sketch part, we reuse known code refactoring patterns and 

model them as semantic differencing rules. The changes in the configuration part typically 

consist of adding or replacing devices in appropriate pins of the board. 

Domain-specific comparison of Arduino models. We have applied DSMCompare on different 

versions of Arduino models available in the repository. The original metamodel ArduinoMM 

consists of 36 classes, 33 associations, and 17 attributes. The concrete syntax ArduinoCS as-

signs an icon for every class and association. With DSMCompare, we generate the difference 

metamodel ArduinoDif!MM with 96 classes, 137 associations, and 110 attributes. The rule 

metamodel ArduinoRuleMM contains one more class and association, with 219 attributes. 

The generated concrete syntax definitions are of a similar scale. 

The Arduino GitHub repository includes 13 working example projects. We filtered 6 of 

them, since they had an initial empty model, and just another version adding all model 

elements. We applied DSMCompare on all remaining 7 projects, and Table 5.1 summarizes 

the results. Each model has between 2 and 4 versions in the repository. The commit message 

associated with a version helped us to identify the purpose of the model changes (shown in 

the Version n and Version n+ 1 columns). The fourth column ( Fine Diffs) shows the total 

number of fine-grained differences found by DSMCompare. For example, in the fadelight 

project, when comparing the version While and the version Sub instructions (versions 1 and 

2 of this project) , DSMCompare reported 21 fine-grained differences. The column Semantic 

10https://github.com/mbats/arduino/ 
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Table 4.4. Comparison of model versions in the Arduino Designer examples repository 
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Diff Rules shows the name of the semantic differencing rules recognized among the fine-

grained differences, and column Occurrences represents the number of occurrences of each 

rule. Finally, the last column shows the number of remaining fine-grained differences after 

some differences were removed (filtered) by applying the semantic diff rules . 

Results. Table 5.1 clearly shows that DSMCompare is able to extract semantic differences 

from fine-grained differences, being able to report one or more semantic differences across all 
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versions of the considered projects. Moreover, most semantic diff rules (13 out of 24, 54%) 

where applied several times, and 29% of them were applied across different projects. 

As an illustration, for the fadelight project, DSMCompare reported two semantic dif-

ferences of type "Ref actor a while loop", representing a while-loop refactoring ( cf. Fig. 4.14). 

The first while-loop sets the device for a specific time in the on state, and the second loop 

models the off state of a "FadeLight ". In addition to one class difference, each of the two 

semantic diffs has also two diffs of associations. One of them represents the "condition" of 

the while-loop, and the other a link to the ((next" instruction after the loop. 

As expected, the fine-grained Diff12 models contain fewer changes ( cf. last column of 

Table 5.1) after applying the semantic diff rules. For example, the tigger. tail model adds 

an infrared sensor to a digital pin, and a servo motor to another digital pin in the Arduino 

board. The board also adds instructions to the end of the main loop. In this case, the 

fine-grained Diff12 model shows the removal of six fine-grained differences and the addition 

of 14 fine-grained differences (a total of 20 changes). These changes can be encapsulated in 

l (brightness<255) J l (brightness>1) J 

'= 
~B~0 f 
'= I= ---------+--

While brightness< 255 + +------+--l While brightness> 1 J + 
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-----------
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¢.Q 
·- - - _, 
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Refactor a While Loop Refactor a While Loop 

Figure 4.14. Domain-specific differences in Arduino designer for the fadelight project 
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five semantic differencing rules, i.e., "Add an Output Module ", "Add Connector ", "Replace an 

If condition", "Add a Status", and "Move Delay". These rules correspond to the intention 

of the change i.e., "add miaou sound to the cat". Meanwhile, seven fine-grained differences 

have been removed. 

Most of the identified semantic differences in Table 5.1 are additions to an already de-

signed Arduino model related to fix bugs, make improvements, or migrate to a new frame-

work. Due to the nature of the Arduino DSL, any insertion of a device in the configuration 

part also requires changes in the sketch part. In fadelight , only the sketch part of the model 

is affected as we are inserting a while-loop to turn the LED light on and off gradually. 

6.4.2. Class Diagram Refactoring 

Description. The second case study is about refactoring class diagram models. We focused 

particularly on refactoring metamodels defined in Ecore from two repositories. The first 

repository contains three versions of the UML metamodel11. The second repository comes 

from the Graphical Modeling Framework (GMF) 12
, an open source project for developing 

graphical modeling editors. GMF consists of two main metamodels , namely gmfgraph that 

defines the graphical notations and gmfmapping that maps domain models , graphical nota-

tions, and tool definitions. A description of GMF and its history can be found at (Herrmanns-

doerfer et al, 2009). We extracted the metamodel versions from the version control system 

of GMF as previously performed in (Herrmannsdoerfer et al, 2009). The repository contains 

11 versions of the gmfgraph metamodel and 16 versions of the gmfmapping metamodel. The 

metamodels for UML and GMF are of similar sizes with 44 classes, 61 associations, and 29 

attributes on average. 

Domain-specific comparison of Class Diagram Refactoring. We applied DSMCompare on 

the Ecore metamodel to compare different versions of the Ecore models for UML and GMF. 

The original metamodel EcoreMM consists of 20 classes, 48 associations, and 33 attributes. 

With DSMCompare, we generated the difference metamodel EcoreDiffMM with 85 classes, 

165 associations, and 174 attributes. The rule metamodel EcoreRuleMM contains one more 

class and association, with 346 attributes. 

11https://git.eclipse.org/c/uml2/org.eclipse.uml2.git/tree/plugins/org.eclipse . uml2.uml/ 
model 
12https://www.eclipse.org/modeling/gmp/ 
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Results. Table 4.5 reports the results of applying DSMCompare in a similar fashion as for 

the Arduino case study. For example, the fine-grained Diff12 model between the Ecore 

models of gmfgraph versions 1.29 and 1.30 reports 59 fine-grained differences. We found nine 

applicable semantic differencing rules. Among them, the /(extractSuperClass" rule, which 

removes attributes from a class and creates a new parent class containing these attributes, 

occurs in three consecutive model versions, on a total of five matches. 

Like for the Arduino case, we see that the fine-grained Diff12 model contains fewer changes 

( cf. last column in Table 4.5) after applying the semantic differencing rules . For example, in 

the UML project , Diff12 shows that one association is added, while another one is removed, 

and the type of the association is modified. These fine-grained changes can be encapsulated 

in the SD Rule /(mergeReference" which corresponds to the intention of the change. As a 

result of this rule application, fine-grained differences are filtered. 

Table 4.5 shows that DSMCompare is able to extract semantic differences from fine-

grained differences. In some cases, it reports more than one match of the same seman-

tic difference, e.g., /(moveAttribute" (10 times in UML) or "specializeSuperType" (6 times in 

GMFgraph) . In the latter case the rule filters a fine-grained difference at every match, thus 

presenting less irrelevant information to the user. However, not all rules have filters. For 

example, "replaceEnum" does not filter elements. Nevertheless, by adding semantic differ-

ence objects, DSMCompare lifts the user 's understanding of changes closer to her intentions: 

attributes are replaced by enumerations. DSMCompare is also able to find the expected 

semantic differences (according to the commit messages). For example, it detected the "ex-

tractSuperClass" rule in both the GMFgraph and the GMFmappings projects. 

As the results of these two case studies show, reporting domain-specific semantic differ-

ences reduces verbosity. To better understand this effect, we calculate the verbosity reduction 

VR as the percentage of diffs eliminated: 

VR = 1 _ RemainingDiffs 
FineDiffs 

where FineDiffs is the number of fine-grained diffs, and RemainingDiffs is the number of 

remaining diffs after applying DSMCompare. 

The box-plot in Fig. 4.15 reports standard descriptive statistics that can be read as 

follows: the lower bound of the rectangle is the first quartile, the upper bound is the third 
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Figure 4.15. Verbosity reduction for each case study 

quartile, the middle bar within the rectangle is the median, the cross is the average, and the 

top and bottom vertical lines denote the amplitude of the data. Fig. 4.15 reports averages 

(28% and 16%), medians (28% and 18%), and standard deviations (17%) for both case studies 

respectively. ArduinoDesigner models contain fewer elements and the differences reported 

fewer fine-grained differences, which may explain higher verbosity reductions overall. We note 

that VR E [0,0.5] in these projects; thus, using SDRules reduces the fine-grained differences 

reported by up to a factor of two. 

Fig. 4.16 reports the ratio of SDRules per occurrence. For example, 17% of t he Arduino 

and Refactoring SDRules recur four times. We counted a rule as recurring if it matches 

multiple times on the same model or if it is present in multiple versions. We notice that 

SDRules occur multiple times and across different projects in each case study. On average, 

each rule occurs around three times. Also, the majority of the SDRules occur at least twice 

for each case study (52% for Arduino and 61 % for Refactoring). This justifies that the chosen 

rules are appropriate for these DSLs. 

6.5. Discussion 

Next, we discuss the results by answering the four research questions. 
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Verbosity (RQl). In general, when a SDRule, is applied, at least one semantic difference 

object is created (and its relations) , thus increasing the number of elements in the difference 

model. If the rule specifies filters, then the number of fine-grained differences decreases. 

Therefore, the size of the resulting Diff12 model varies significantly depending on which rules 

are applicable. Quantitatively, verbosity is related to the number of fine-grained differences 

remaining. However, semantic difference objects reduce the verbosity of the difference model 

qualitatively. They add a higher level of abstraction by providing a precise meaning, which 

expresses the exact semantic difference for a collection of low-level generic modifications. 

The domain expert can then better understand the changes that occurred from one version 

to another, especially when the differences are reported using the same concrete syntax as 

the DSL. For example, this is particularly peculiar for the Arduino models where the users 

are young developers with no notion of object-orientation embedded in the abstract syntax. 

Showing differences using the hardware notations and code sketches can certainly improve 

their comprehension of the changes and, ultimately, their productivity. 

Semantic differencing rule priorities (RQ2) . Overall , the priorities assigned to DSRules by 

DSMCompare yields relatively good results. The order of application of the rules has a 

significant impact on the verbosity, since the more rules are applied, the more semantic 
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difference objects are added and fewer fine-grained differences remain. Furthermore, our 

results have shown that when two rules are applicable, DSMCompare favors more precise 

rules. Ultimately, the difference models presented are more meaningful to domain experts. 

We have seen that the priority order is not always optimal for all model instances of 

a DSL. DSMCompare assigns priorities based on static analysis of the metamodel of the 

DSL. Finding the optimal ordering would require to analyze the given fine-grained Diff12 

model. We would pre-compute all the matches of each SDRule and add this information as 

a heuristic to maximize. This must be performed for every difference model of the DSL. In 

DSMCompare, we opted to provide a solution that is independent from the Diff12 model , 

thus it needs to be computed only once per DSL. One possible use case is to treat the 

priorities output by DSMCompare as a default suggestion. The pre-computation could then 

be offered as a suggestion to the user who could decide to manually modify the priorities. 

Ability to extract semantic differences (RQ3). The premise of this work relies on the ability 

to report semantic differences in the difference models. The case studies, based on models 

developed by third-parties, validate that it is possible to find such semantic differences. In 

DSMCompare, semantic differences are specified by semantic differencing rules . If every rule 

only occurred once in the case studies, then they would be too specific for each difference 

model which means they would have to be specified by the end-users almost every time they 

use DSMCompare. However, our results have shown that the rules we have extracted from 

the case studies occur multiple times (cf. Fig. 4.16). This strengthens the view that it is 

possible to extract semantic differences in practice and that the rules can be specified only 

once per DSL. Nevertheless, with more Diff12 models, the set of SDRules may grow. Domain 

experts can modify or add more rules incrementally thanks to the generated SDRule editor 

that uses the same environment and notations as the modeling editor used for the DSL. 

Applicability of semantic differencing rules (RQ4). We found that SDRules occur in different 

Diff12 models (cf. Fig. 4.16). This means that they are not specific to a given Diff12 model, 

but generally applicable to any Diff12 model of the DSL. The semantic difference rules must 

come from a piece of knowledge within the DSL. Therefore, they cannot be invented and need 

to be semantically meaningful. This knowledge can originate from the operational semantics 

if it is an executable model, or refactoring patterns, or some DSL-related knowledge-base. 

From our experience with DSMCompare, SDRules come from the operational semantics of 
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the DSL (as in Pacman) or known refactoring patterns in the DSL: e.g., code-level (like 

the sketch in Arduino), class-level (like in Ecore models) , or model-level (like in feature 

models (Tanhaei et al, 2016)). Additionally, in practice, when the DSL designer observes 

that specific differences are often recurring, this is a good indicator that this may be elevated 

to a semantic difference rule, to simplify the comprehension of the cliffs by the DSL users. 

Hence, overall, DSM Compare supports both top-down (i.e., based on known refactorings of 

the DSL, or its semantics) and bottom-up (i.e. , mined from actual changes) approaches to 

specify SDRules. Finally, our approach is agnostic of the meta-level of the input artifact. 

As demonstrated in the evaluations, the input can be the metamodel of a DSL (like Pacman 

and Arduino) or it can be a meta-metamodel (like Ecore). 

6.6. Threats to validity 

For the controlled experiment , the main limitation is that there were 12 rules in the 

Pac-Man case and 20 rules in the MM-Refactoring case. Therefore, it was not possible to 

generate all the 12! and 20! possible permutations. This limitation prevents us to test 

all possible combinations of rules for the cases. However , to mitigate this threat , we have 

selected different orderings. One of the selected orders was generated by the Algorithm 4, 

another one was the reverse of that order, and a collection of five random orders created so 

that none have the rules placed in the same position and positioned in a way to maximize 

the diversity. However, testing manually all the possible permutations was not possible. 

Another limitation is related to the models used. We created five models, but maybe 

there are other models in which the application of the rules in the generated order produce 

a worse result. We did not test all possible models; instead, we created five models in a 

way that the matches of rules were diversified. In this way, we emphasize the higher-order , 

middle-order, and lower-order rules by increasing their number of matches, which covers 

most of the possible opportunities that can happen in any Diff12 model. We expect that 

most Diff12 models will fall in one category of the five Diff12 models which we have created, 

i.e., either have a uniform number of matches, maximize some rules, or minimize other 

rules . 

The third limitation was that the way we built the models and we have created the 

orderings was based on the order generated by Algorithm 4. What we varied in the algorithm 
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was the position of the rules in the priority order. Other algorithms or heuristics may perform 

better, for instance taking into account NACs, type hierarchies or the number of matches of 

each rule on the given difference model. Nevertheless, the algorithm constantly shows good 

performance for the five models with respect to different orderings. 

With respect to the case studies, another threat is the way we have computed the ver-

bosity reduction V R of the difference models. The current formula does not take into account 

the size of models. For example, while the servo project has small models, V R = 40%. In 

contrast , the models in trigger. all are larger, yet V R = 4%. There are also other examples 

of the opposite effect between model size and V R. In general, V R highly depends on the 

number of matches of SD Rules. Therefore, a better value of V R should take into account 

the occurrences of the rules. However, since this number is very small and similar (0-3) in 

our dataset, this would not influence our results. 

Finally, we created the semantic diff rules for Arduino, since (naturally) these were not 

available from its developers. We compared each two consecutive commits to abstract the 

multiple atomic changes to a meaningful semantic difference. However , the SDRules we 

derived may not have been the intention of the original modification. We mitigated this 

threat by relying on the commit messages, which may indicate that it was the intention 

of the modeler. Finally, we were able to use DSMCompare on two languages and model 

histories built by third parties. However, the use of other case studies is required for a 

stronger validation of our approach. 

7. Related work 

This section reviews related works on model differencing. The survey in (Stephan and 

Cordy, 2013) presents several model comparison approaches and applications. Model dif-

ferencing involves calculation of the matching model elements, representation of their differ-

ences, and visualization of the differences. Hence, we structure this section paying attention 

to these three aspects, and also review control version systems for modelling artefacts. 

Model matching calculation. Kolovos et al. (Kolovos et al, 2009a) survey current approaches 

for model matching. These can be: static identity-based, which assume a unique identifier 

for objects; signature-based, which compare objects based on a dynamic signature calculated 

from the objects' properties; similarity-based, which match objects based on the weighted 
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similarity of their properties, but obviates the model semantics; and language-specific, devel-

oped ad-hoc for a modeling language and its semantics. For example, using signifiers (Langer 

et al, 2012) (i.e., combinations of features of a metamodel class) as a comparison criterion 

falls in the signature-based category, EMFCompare is similarity-based but permits defining 

custom matching algorithms, and UMLDiff (Xing and Stroulia, 2005) is language-specific. 

In general, each solution is a better fit for certain kinds of problems: a language-specific 

matching algorithm may be faster and more accurate than a generic algorithm, but its im-

plementation requires more effort. 

Maoz et al. (Maoz et al, 2011a) argue that existing model differencing approaches are 

purely syntactic and challenge the community to develop semantic diff operators. These 

calculate a set of diff witnesses that give proof of the real change between two models and 

the effect on their semantics. Two models may be syntactically different but have no diff 

witnesses, meaning that they are semantically equivalent. For example, a diff witness of two 

class diagrams would be an object diagram that is an instance of one of the class diagrams 

but not of the other, while for activity diagrams, it would be an execution trace admitted 

by only one of the diagrams. Diff witnesses also allow deciding whether the semantics of two 

versions of a model are equivalent, incomparable, or one refines the other. This approach was 

later realized in the Diffuse framework (Maoz and Ringert , 2018). Extending our approach 

to deal with model diffs concerned with the instantiability or executability of models as a 

comparison criterion is left for future work. 

Some researchers have dealt with N-way matching (Holthusen et al, 2014; Reuling et al, 

2019), especially in the context of extracting a product line out of a set of structurally similar 

model variants. In this case, N-way matching is needed to identify the common parts of the 

involved artefacts. We plan to extend DSMCompare to capture changes between more than 

two models, and so in this context, it could be used to better understand the (semantic) 

differences between several model variants. 

Representation of model differences. Cicchetti et al. ( Cicchetti et al, 2007) propose an ap-

proach to represent model differences that is metamodel independent and agnostic of the 

difference calculation method. Specifically, given two models conforming to the same meta-

model, their difference is expressed as another model that conforms to a new metamodel. 
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This new metamodel is derived from the original one by a transformation and allows rep-

resenting model changes ( additions, deletions, and changes). Such difference models induce 

transformations to translate from one model version to the other and can be composed. 

While this approach to represent model differences is similar to our proposal, it only works 

at the abstract syntax level, whereas we also deal with the concrete syntax and support 

domain-specific patterns to visualize the model differences. 

Our approach extends the metamodel of the DSL to represent semantic differencing rules 

for domain-specific model differences. A related technique is the ramification of metamodels 

for domain-specific model transformations (Kuhne et al, 2009). In this approach, graph 

transformation rule patterns are expressed in a domain-specific way. The metamodel of the 

patterns is generated by transforming the metamodel of the input/output DSLs: relaxing 

cardinalities, adding transformation-specific attributes and other concepts, and modifying 

attribute types. 

Since low-level differences returned by generic comparison tools may be difficult to un-

derstand, Kehrer et al. (Kehrer et al, 2011) perform a semantic lifting of such differences 

to the level of editing operations. For this purpose, low-level differences are represented as 

models, so that the identification of editing operations consists of finding groups of related 

low-level changes. This search is performed by rules that are automatically derived from the 

rule-based specification of the editing operations. Hence, the notion of semantic lifting is 

similar to our rules for expressing domain-specific semantic differences. However, semantic 

lifting only deals with the abstract syntax of models, whereas we consider the concrete syntax 

as well. Similar to semantic lifting approaches such as (Garcia et al, 2013; Vermolen et al, 

2012) we identify complex change patterns from low-level changes involved in a metamodel 

evolution. Although these patterns resemble the rules in our approach, they are generic 

and predefined. In contrast, our approach allows the DSL engineer to define the semantic 

differencing rules. 

Visualization of model differences. Gleicher (Gleicher, 2018) provides general guidelines for 

visualizing comparisons. For many different domains, comparing artifacts is a common task 

and visualizing the comparison often helps. Generally, the visual comparison is displayed us-

ing juxtaposition ( e.g., as EMFCompare does in Fig. 4.3), superposition, or explicit encoding 

(like we do in Fig. 4.10). 
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Brosch et al. (Brosch et al, 2012b) visualize the changes and conflicts in concurrently 

evolved versions of the same UML model using UML profiles ( stereotypes and tagged values). 

This permits modelers to resolve the conflicts within the UML editor of their choice while 

using the concrete syntax of the manipulated language. However, this approach is only 

suitable for UML models whereas we pursue a general approach for arbitrary domain-specific 

languages. 

More similar to our work, the authors in (Schipper et al, 2009) focus on the visualization of 

diagram differences in the diagrams themselves. The rationale is to help users to understand 

the modifications immediately. Their proposed visualization includes pop-ups reporting the 

changes performed in the neighborhood, zooming to changes, collapsing irrelevant parts, 

and using different colors to represent additions (green) , deletions (red) , and changes (blue) , 

either in a single diagram or confronting two diagram versions. They have developed a 

tool that uses EMFCompare for model comparison, as we do. However, their tool only 

permits visualizing atomic changes, represented by different colors. Instead, we support 

both fine-grained and coarse-grained domain-specific patterns of change. Furthermore, the 

visualization associated with each pattern is highly configurable. Other works, such as 

(Mehra et al, 2005; Ohst et al, 2003) , only permit showing changes using different colors or 

shape styles. 

A few works deal with the scalable visualization of differences in the case of large models. 

To solve this problem, van den Brand et al. (van den Brand et al, 2010) combine a generic 

visualization framework for metamodel-based languages to show the fine-grained differences, 

with polymetric views that provide support for zooming and filtering. Wenzel (Wenzel, 2008) 

also relies on polymetric views to support scalable visualization of differences based on model 

metrics. Both works are complementary to ours: whereas we provide domain-specificity to 

the visualization, these other works add a general visualization layer on top. 

Version control systems for models. Even though models are frequently persisted as text files, 

the use of traditional text-based version control systems is suboptimal, as we have argued 

in the introduction. This way, several model repositories with support for version control 

have been proposed along the years (Altmanninger et al, 2009). The ModelCVS (Kappel 

et al, 2006) and the AMOR projects (Altmanninger et al, 2008a) proposed dedicated version 

control systems for models with sophisticated functionalities, like a recommender of possible 
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resolutions for model conflicts (Brosch et al, 2010d). In this setting, DSMCompare could 

be useful to help understand better the differences between the models, before choosing a 

resolution strategy. 

The model repository of Espinazo-Pagan and Garcia-Molina (Espinazo-Pagan and 

Garcia-Molina, 2010) uses a MySQL database for storage, and a special encoding of model 

versions to improve efficiency. For a better performance, the authors later proposed the use 

of NoSQL databases for persistence (Espinazo-Pagan et al, 2011). EMFStore (Koegel and 

Helming, 2010b) and CDO (CDO Model repository, accessed August 2023) are well-known 

model repositories for EMF, which support collaborative editing and versioning of models. 

DSMCompare could be used atop these repositories to enable the visualization of (semantic) 

diffs using the graphical concrete syntax of the DSL. 

Commercial modeling tools feature different levels of versioning and model differencing 

capabilities. Lab View has a built-in revision control system that allows to programmatically 

compare different models (LabView, 2023). MetaEdit+ (Kelly etal, 1996) features a version 

control mechanism called Smart Model Versioning (MetaEdit, last accessed 2023) , which al-

lows comparing models - graphically, textually or by means of a tree - and storing them on 

any major version control system such as Git. MPS (MPS, last accessed 2023b) integrates 

with Git and Subversion and provides some capabilities for viewing model differences, in a 

textual way (MPS, last accessed 2023a). Simulink supports comparing models and highlight-

ing the differences in the original models. Simulink uses a scoring algorithm to determine if 

two model elements are a match (Simulink, 2023). Similarly, SystemWeaver (SystemWeaver, 

2023) provides versioning capabilities at the model element level. This way, users can com-

pare an element, view its history, and replace one version of an element with another. While 

these tools offer different ways to diff models, these are typically fixed and not customiz-

able. Instead, our approach could be valuable here to provide domain-specific, customizable 

visualizations of the model differences, in a graphical way. 

Our approach is based on Eclipse Modeling Framework (EMF). This is a relevant tech-

nology, since Eclipse is widely used in MDE research and many companies use Eclipse and 

EMF tools (Akdur et al, 2018). Large companies such as IBM are spearheading MDE through 

EMF (Mohagheghi et al, 2013). 
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Model differencing and collaborative modeling can lead to clones and duplicates. Some 

approaches have addressed this problem. Storrle has developed a number of heuristics and 

algorithms to detect clones in models (Storrle, 2010, 2017). Babur et al. (Onder Babur et al, 

2019) leveraged natural language processing, feature extraction and clustering techniques to 

detect clones in models. We have not focused on detecting model clones in our approach, 

which is left as future work . 

. Altogether, to the best of our knowledge, ours is the first comprehensive approach that 

handles both fine-grained and coarse-grained domain-specific model differences both at the 

abstract and concrete syntax levels. Moreover, our approach supports the visualization of 

changes on an automatically modified editor that reuses the graphical concrete syntax of the 

DSL. 

8. Conclusion 

We have presented a comprehensive approach to represent domain-specific model differ-

ences at the abstract and concrete syntax levels. The approach is based on the automated 

modification of the DSL metamodel to represent fine-grained differences, on the specifica-

tion of semantic differencing rules to model recurring changes (based on an automatically 

generated editor), and on the graphical representation of changes using the DSL syntax (by 

automatically modifying the DSL concrete syntax specification). We have realized our ap-

proach in a tool, DSMCompare, that integrates within the Eclipse Modeling Framework and 

is able to deal with graphical concrete syntaxes specified with Sirius. 

Our experience on multiple case studies (Pacman game configuration, Arduino modeling, 

and metamodel refactoring) and experiments have shown the practicality of our approach 

to representing meaningful model differences in a domain-specific fashion. With DSMCom-

pare, domain experts can visualize changes using the concrete syntax of the DSL as well 

as semantically meaningful changes to the domain. This results in less verbose differences 

that are of tremendous value to the domain experts. We plan to validate this claim with a 

controlled experiment with users. 

We are also considering extending the approach to capture changes between more than 

two models. To support three-way differencing, we can rely on the three-way merge function-

ality that EMFCompare offers. We would then extend the DiffMM to support the provenance 
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of each difference. For the SDRules, we need to consider the conflicting situations that may 

arise when a diff element has at least three different values. The rest of the infrastruc-

ture of DSMCompare would only require minimal adaptation when matching and applying 

SDRules. Although DSMCompare could theoretically support comparing more than three 

model versions, EMFCompare does not support it. Thus we would need to explore other 

solutions to address this challenge. 

On the tooling side, we will improve the visualization of differences organizing them in 

layers ( e.g., to hide fine-grained differences and visualize only semantic differences). We also 

plan to incorporate our approach within model repositories, like MDEForge (Basciani et al , 

2014), or version control systems for code, like GitHub. 
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Resume. Dans le travail collaboratif, les developpeurs font evoluer leurs modeles en 

parallele, ce qui entraine des differences et des conflits substantiels. Pour mieux consolider 

ces changements, les developpeurs doivent comprendre les differences en termes de syntaxe et 

de semantique des modeles. Malgre une myriade d 'efforts , les systemes de contr6le de version 

et les outils de comparaison de modeles existants se concentrent sur les modeles generiques, 

sont difficilement adaptables a un langage specifique a un domaine (DSL) et presentent prin-

cipalement des changements syntaxiques au developpeur. De plus, ils signalent les differences 

et les conflits de modeles specifiques a un domaine sur la base de leur syntaxe abstraite plut6t 

que de la syntaxe concrete du DSL. Pour resoudre ces problemes, nous avons precedemment 

introduit DSMCompare pour detecter les differences fines et semantiques entre les paires 

de versions de modele et presenter les changements clans la syntaxe concrete du DSL. Dans 

cet article, nous avons encore ameliore notre pratique en considerant une comparaison de 

modeles a trois voies, typique clans le contexte des systemes de contr6le de version. DSM-

Compare peut desormais signaler les differences provenant des deux versions ainsi que les 

conflits. Pour detecter les differences et les conflits semantiques, notre approche s'appuie sur 

la specification par l'ingenieur DSL de modeles de differenciation semantique clans un editeur 

adapte au DSL. Pour evaluer DSMCompare, nous avons procede a une retro-ingenierie de 

l'historique des validations de plusieurs projets open source clans lesquels des modifications 

de refactorisation de code basees sur Java se produisent. Nous montrons que DSMCompare 

trouve efficacement ces differences et conflits semantiques avec une grande precision. 
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Abstract. 

In collaborative work, developers evolve their models in parallel, leading to substantial 

differences and conflicts. To better consolidate these changes, developers need to understand 

the differences in terms of syntax and semantics of the models. Despite myriad efforts, the 

existing version control systems and model comparison tools focus on the generic models, 

are hardly adaptable to a domain-specific language (DSL), and primarily present syntactical 

changes to the developer. Furthermore, they report differences and conflicts of domain-

specific models based on their abstract syntax instead of the concrete syntax of the DSL. 

To address these issues, we previously introduced DSMCompare to detect fine-grained and 

semantic differences between pairs of model versions and present the changes in the concrete 

syntax of the DSL. In this paper, we have further enhanced our practice by considering a 

three-way model comparison, typical in the context of version control systems. DSMCom-

pare can now report differences coming from either version as well as conflicts. To detect 

semantic differences and conflicts, our approach relies on the DSL engineer specifying se-

mantic differencing patterns in an editor adapted to the DSL. To evaluate DSMCompare, 

we reverse-engineered the commit history of several open-source projects where Java-based 

code refactoring changes occur. We show that DSMCompare effectively finds these semantic 

differences and conflicts with high accuracy. 

Keywords. Model-Driven Engineering, Model versioning, Model differencing, Graphical 

concrete syntax 

1. Introduction 

In model-driven engineering (MDE) projects, models are considered essential building 

blocks. Developers utilize domain-specific languages (DSL) to create models of the sys-

tem (Kelly and Tolvanen, 2008). Throughout the collaborative development process, mul-

tiple developers may modify the models (David et al, 2021). To manage these changes, 

MDE developers rely on version control systems (VCS) to store the models in a repository, 

track the change history, manage simultaneous changes, and view the differences between 

different model versions. Although some VCS have been designed specifically for mod-

els (Kappel et al, 2006; Altmanninger et al, 2008b; Brosch et al, 2010a; Koegel and Helming, 

2010b), most practitioners use text-based VCS like Git and SVN. However, these VCS are 
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not ideal for visualizing the differences in the history of a model in a way that is easily 

understandable Zadahmad et al (2019). Generic model-based differencing tools, such as EM-

FCompare (Brun and Pierantonio, 2008), provide differences results for classes, attributes, 

and association changes. But, these results are presented in the abstract syntax of the DSL, 

which may not be familiar to DSL users. Additionally, for large models with many elements, 

the fine-grained differences presented can be overwhelming for DSL users who can not track 

the semantics of the changes (Zadahmad et al, 2022). Therefore, there is a need for model-

based differencing tools that can present difference results in a way that is more user-friendly 

for DSL users. 

Previously, Zadahmad et al (2019) introduced DSM Compare to address the aforemen-

tioned issues. It presents all differences between two model versions in terms of their con-

crete syntax. Additionally, it aggregates fine-grained differences into semantically meaningful 

coarser differences expressed in the DSL semantics. However, DSMCompare uses two-way 

differencing, which is inadequate for many usage scenarios of VCS. When branching is used 

extensively, committing to the main branch must consider at least three versions of the 

model: the previous common version from the master branch, any version from already 

committed branches, and the version of the current branch. A two-way differencing tool 

produces different model differences based on which version is used as the base, making it 

inappropriate for collaborative modeling settings using VCS. For example, suppose a devel-

oper deleted an element in one version, and no change occurred in another. In this situation, 

the two-way differencing tool cannot determine whether a developer added an element or 

another developer deleted it. The answer will depend on which version is used as the base 

model. 

Three-way differencing and merging are fundamental techniques in modern VCS (Alt-

manninger et al, 2009). Changes introduced concurrently by two versions must be merged 

using a common ancestor version. This is achieved by identifying the differences between two 

versions by comparing them with their common ancestor, which produces correct difference 

sets. The VCS reports changes specific to each version and conflicts where both versions have 

modified the same parts. After the conflicts have been resolved, the changes are merged into 

a single new version. This paper presents a novel approach for three-way domain-specific 

model differencing and conflict detection, which can be applied to existing two-way model 
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differencing tool. In particular, we implemented this approach in DSMCompare (Zadahmad 

et al, 2019, 2022). Although n-way differencing (Owhadi-Kareshk et al, 2019; Lef3enich et al, 

2018) is also possible, we focus on three-way differencing because it occurs more frequently in 

practice. However, we discuss the possible adaptations needed to support n-way differencing. 

To summarize, the contributions of this paper include: 

• We provide a comprehensive solution for moving from a two-way to three-way model 

differencing. 

• We provide a comprehensive conflict detection mechanism that can identify both fine-

grained and semantic conflicts, such as equivalent changes and contradicting conflicts 

that may arise from three-way differencing. 

• We enable DSL engineers to define semantic differencing rules for handling conflicts. 

• To aid users in understanding three-way differences and conflicts, we offer visualiza-

tion support with a graphical concrete syntax. 

• Our approach is implemented in an EMF-based tool, which we openly share, along 

with a dataset of 288 Ecore models annotated with semantic differences and conflicts. 

The rest of this paper is structured as follows. In Section 2, we provide an overview of 

the approach and introduce a running example. In Section 3, we present the necessary fea-

tures for a three-way domain-specific differencing tool and justify our use of DSMCompare 

by comparing existing tools. In Section 4, we explain how we extend existing two-way differ-

encing tools to the three-way approach and discuss how it generates fine-grained three-way 

diffs. Section 5 discusses how rules are used to semantically lift the fined-grained differences. 

We also explain how the concrete syntax of the original DSL can be leveraged to present the 

difference model in Section 6. Section 7 and Section 8 present the different types of conflicts 

and the algorithms we use to identify them in the difference model. In Section 9, we eval-

uate the effectiveness of our approach on the commit history of many open-source projects. 

Finally, we discuss related work in Section 10 and conclude the paper in Section 11. 

2. Running example 

We illustrate three-way domain-specific model differencing using the following running 

example. In the context of an e-commerce company, business experts, Alice and Bob, are 

tasked with defining the process of purchase orders and payments. To formally model this 
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VO V1 (Alice) 
OnlinePayReceived 

payCOD 

CODChoice payCOD checkcash 

Diff_012 model with fine-grained differences 

Final difference model presented to user 
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Step2 
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Component 

i ____ _ 

PayChoice <- OnlineChoice OnlinePayReceived 

Diff_012 model with semantic conflicts 

Diff_012 model with semantic differences 

Legend : Alice's Bob's Equivalent changes + Add element X Delete element "1 Modify element - > Value change Q+-- Semantic change ~-- t>Contradicting conflict 

Figure 5.1. Domain-specific three-way comparison of WN with DSMCompare 
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Figure 5.2. Metamodel of t he Workflow WN DSL 

process and ensure crucial properties, such as process completeness, they model workflows 

using Workflow Nets (WN) (van der Aalst , 1998). WN is a part icular class of Petri Nets 

where there is a single source place, a single sink place, and all t ransit ions are on a path 
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from the source to the sink. In WN, transitions represent workflow tasks, places represent 

their pre/postconditions, and tokens represent the resources used in the workflow. The VO 

model in Fig. 5.1 shows an example of a WN model. 

Charlie, the DSL engineer of the company, has built an Eclipse-based graphical modeling 

editor for WN that she generated from an Ecore metamodel of the DSL and a graphical 

concrete syntax using Sirius (Sirius, 2023a). Fig. 5.2 shows the Ecore metamodel of the WN 

DSL used in the company. She also mounted the editor with EGit (Eclipse EGit , 2023) 

to enable the business experts to collaborate with a Git version control system installed in 

Eclipse. Since Alice and Bob can work simultaneously on the same WN model, they are 

likely to encounter conflicts when integrating their work together. However, EGit reports 

differences and conflicts at the XMI level of models in terms of abstract syntax concepts. As 

Alice and Bob are not software engineers acquainted with these concepts, Charlie wishes to 

offer them a domain-specific model comparison tool. 

2.1. Customizing DSMCompare for WN 

Unlike tools like EMF Compare (Brun and Pierantonio, 2008) and EMF DiffMerge 

(DiffMerge, 2023), DSMCompare (Zadahmad et al, 2022) is an Eclipse-based tool that re-

ports differences using the same concrete syntax as the original DSL. Furthermore, it can 

report more coarse-grained differences (i.e., semantic differences) and hide fine-grained dif-

ferences that are irrelevant to the business experts. However, up to now, DSMCompare only 

supported two-way differencing, which is not suitable for most collaboration scenarios like 

the example above. Therefore, we continue the running example with the new DSMCompare 

that is presented in this paper. 

To integrate DSMCompare in the WN editor, Charlie provides as input the Ecore meta-

model and the odesign representation description of the concrete syntax of WN into DSM-

Compare. Then, DSMCompare automatically generates a domain-specific model comparison 

tool tailored to compare WN models, we will call WNCompare. 

WNCompare offers two editors. One editor is used by Alice and Bob to present and edit 

the differences between WN models. To visually present differences, WNCompare provides 

three default icons to each concrete syntax representation, annotated with a + / X / ~ 
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symbol to represent additions , deletions, and modifications, respectively. Additionally, WN-

Compare offers a default concrete syntax to depict semantic differences, which pertains to 

editing semantics (i.e., we do not map to the semantic domain as in Maoz etal (2011b)). 

Charlie can modify these graphics as she sees fit for WN. 

The second editor in WNCompare enables Charlie to design the semantic difference rules 

specific to WN models. She designs three known refactoring patterns for WN, formalized 

in Toyoshima et al (2015). They improve the execution of the WN by removing redundant 

elements in a way that does not change the observable behavior of the net . The Remove 

Implicit Place pattern removes a place connected to two transitions if there is already a path 

between these transitions. In the Remove extended free-choice (EFG) structures pattern, if 

a set of places are all connected to the same set of transitions, we introduce an intermediate 

transition and place to direct the flow from the set of places to the set of transitions. The 

third pattern is called Remove TP-cross structures where, if a set of transitions are all 

connected to the same set of places, we introduce an intermediate place and transition to 

direct the flow from the set of transitions to the set of places. Due to the complexity of these 

three refactoring patterns , Toyoshima et al (2015) provide an algorithm to execute them in 

that order. 

The top right model in Fig. 5.1 shows a difference model produced by WNCompare, 

reporting fine-grained differences, semantic differences , and semantic conflicts. The semantic 

differences and conflicts they indicate refer directly to these refactoring patterns. 

2.2. Collaboration scenario 

Powered with WNCompare, Alice and Bob can use the WN editor and collaborate. 

Fig. 5.4 shows their development timeline, working on their respective branch forked from 

the master branch using EGit. Assume the initial version in the master branch is the VO 

model in Fig. 5.1. This WN model models the payment process for a delivery service (this 

is a simplification of the example used in Toyoshima etal (2015)). There are two pending 

deliveries represented by the tokens in the Pending place. When the customer receives the 

package, he can either pay online or cash at delivery (COD) . Each payment option has its 

specific checkpoints before the delivery is completed. The structure of this WN ensures that 

each delivery is paid by only one method. 
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Figure 5.3. Differences and conflicts reported by EMFCompare for the running example 

Alice 

Master 

Bob 

Figure 5.4. Collaboration scenario where three-way differencing is needed 

Alice and Bob branch from this version and build versions Vl and V2 , respectively 

shown at the top of Fig. 5.1. Alice refactors VO by removing the implicit place CODChoice 

and renames the place Onl ineChoice to PayChoice. Her change simplifies the WN model by 
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reducing the number of places and arcs, while still ensuring a mutually exclusive payment 

method. In the meantime, Bob refactors VO by removing the EFC of the places for online 

and COD choices, and introduces the intermediate choosePay transition and PayChoice place. 

While his changes also ensure the mutual exclusive property, it reduces the coupling of the 

places modeling the choice. Alice is the first to push her work to EGit and requests a merge. 

EGit accepts the request and merges her model to the master branch because there has not 

been any change to base model VO since Alice branched out. Now, the head in EGit is Alice's 

version and points to version Vl. Later , Bob finishes his work and requests a push to the 

master branch. EGit rejects this merge request because Bob's model is incompatible with 

the latest version of the base model since Alice has already changed it . To handle this issue, 

Bob pulls the latest version from the VCS , i.e., requests Vl to his local machine. Bob then 

needs a three-way differencing engine to understand where and why a conflict has occurred. 

More specifically, they are in conflict because Alice has removed the CODChoice place while 

Bob changed its outgoing arc. 

At this point, suppose Bob used EMFCompare, a common model-based three-way com-

parison tool, instead of DSMCompare to understand the differences between his version V2 , 

the common ancestor VO, and Alice's version Vl. He would be presented with fine-grained 

differences and conflicts , as shown in Fig. 5.3. As an expert in WN, he would have had a 

hard time making sense of abstract details such as "inArcs delete ", "out Arcs add", "places 

add" , or "transitions add". To him, these are implementation details of the tool that lack 

meaning. 

Now suppose Bob uses WNCompare. He selects the three model versions (his, Alice's, 

and their common ancestor) and launches WNCompare. After processing the differences, 

WNCompare presents the final difference model Diffo12 in the editor. As shown at the last 

step of Fig. 5 .1 , the differences are expressed using the original concrete syntax of WN. It also 

outlines the two semantic changes stating that Alice removed the implicit place CODChoice 

and that Bob removed the EFC structure by introducing the choosePay transition. Thanks 

to WNCompare, Bob can now comprehend the reason for this conflict at the same level of 

abstraction as the WN models , a familiar level to Bob. Then, he can reconcile the conflict 

by himself or discussing it with Alice. Note that this paper only focuses on the detection 
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and representation of differences and conflicts to DSL users in a domain-specific way, not 

their reconciliation and merge. 

3. Features for three-way domain-specific model differencing 

The comparison stage produces a list of differences and similarities by comparing two 

or three versions of the same artifact. There are two approaches for model comparison 

including operation-based and state-based comparison (Brosch et al, 2012e). Operation-

based comparison relies on specific tools to edit and collect the changes from the user. In 

contrast , state-based operation does not restrict users to any specific tools to manipulate 

the models and does not need any module to collect the changes. In practice, state-based 

comparison is more popular and, thus, the focus of this paper. There are several state-based 

model comparison engines able to process models from any DSL (Stephan and Cordy, 2013), 

such as EMFCompare (EMF Compare, accessed August 2023) , DiffMerge (DiffMerge, 2023) , 

DSMCompare (Zadahmad et al, 2022), Maudeling (Rivera and Vallecillo, 2008) , DSMDiff 

(Lin et al, 2007), and Epsilon-based Three-way Merging Process (E3MP) which uses the 

Epsilon Comparison Language (Sharbaf and Zamani, 2020; Sharbaf et al , 2022a). 

The two-way comparison in state-based approaches includes a matching step and a diffing 

step. The matching step finds matching elements between the two model versions. Matching 

identical elements can be done via identifiers, similarity algorithms, or other heuristics. The 

diffing step uses the matched elements to find the differences between the two models. 

Three-way differencing usually combines the results of two pairwise two-way differencing 

of each model with their common ancestor. Rubin and Chechik (2013) and Schultheif3 

et al (2021) introduce novel approaches that are faster than the pairwise method, though 

Schultheif3 et al (2021) preferred a pairwise comparison over a straight rating of entire matches 

to evaluate almost correct matches better than completely incorrect matches. 

In what follows, we list the requirements for a domain-specific three-way comparison tool. 

We discuss to what extent existing model comparison tools satisfy these requirements. 

The first three requirements are necessary for domain-specific comparison. Meeting these 

requirements allows for the systematic use of DSLs to represent the various aspects of a 

domain-specific comparison tool. As a result , it allows the tool to use DSLs to support 

higher-level model comparison abstractions than generic fine-grained differencing. 
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Table 5.1. Model comparison tools satisfying the requirements: • satisfied, - partially 
satisfied, O not satisfied, ® satisfied in this paper. 

Requirement / Tool DSMDiff Maudeling DiffMerge E3MP EMFCompare DSM Compare 

Meta-model agnostic • • • • • • Concrete syntax 0 0 0 0 0 • User-defined semantics 0 0 0 0 - • 
Fine-grained difference 
detection • • • • • • Semantic difference 
detection 0 0 0 0 - • Fine-grained equivalent 
change detection 0 0 • • • ® 

Fine-grained conflict 
detection 0 0 • • • ® 

Semantic conflict 
detection 0 0 0 • 0 ® 

Explicit difference 
presentation • • • • • • Headless API 0 • • • • • Two-way differencing • • • 0 • • Three-way differencing 0 0 • • • ® 

3.1. Meta-model agnostic. 

The tool can compare models conforming to any metamodel. This is necessary for the 

domain-specific difference so that models in any DSL can be compared. 

3.2. Concrete syntax. 

The tool presents differences in the concrete syntax of the DSL. This improves the user 

experience and allows users to understand differences in the notations they are accustomed 

to while using the DSL. 

3.3. User-defined semantics. 

The tool provides features to define differences meaningful to the DSL. Semantic differ-

ences are often defined in terms of rule patterns by the DSL engineer. This feature requires 

proper management of semantic rules , such as an editor and the possibility to infer them. 

This is necessary for semantic difference rule management so that new semantic rule patterns 

can be defined and existing rules can be updated by a DSL engineer. 
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The next five requirements are specific to three-way comparison. They enable the tool 

to detect fine-grained and semantic differences and conflicts. 

3.4. Fine-grained difference detection. 

The tool can detect fine-grained differences based on the abstract syntax of the models 

provided. This is a fundamental requirement for any comparison tool. These differences cap-

ture editing changes, such as additions, deletions, modifications or rerouting of associations. 

3.5. Semantic difference detection. 

The tool can detect semantic differences based on a predefined semantic rules for the 

DSL. A semantic difference is a coarsed-grained difference that groups fine-grained differences 

satisfying certain conditions. Semantic differences enhance the DSL user understanding when 

the changes are reported. This feature exposes meaningful differences in terms of the DSL. 

It also reduces the verbosity of the reported changes by hiding the fine-grained differences 

encapsulated in a semantic difference. 

3.6. Equivalent change detection. 

The tool can detect the same changes performed in different model versions. This is 

applicable to fine-grained and semantic differences. It prevents duplicating changes and 

reduces the number of elements to ultimately merge. This feature is exclusive to three-way 

differencing. 

3. 7. Fine-grained conflict detection. 

The tool can detect conflicts between contradicting fine-grained changes in different model 

versions. Ultimately, conflicts will have to be resolved to create a valid merged model. This 

feature is exclusive to three-way differencing. 

3.8. Semantic conflict detection. 

The tool can detect conflicts between contradicting semantic differences in different model 

versions. This features allows to reason beyond the abstract syntax of the model and facilitate 

the work of the DSL user when reconciling the conflicts. 
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Finally, the last four requirements focus on the degree of interaction with the model 

comparison tool. They enable the tool to present the differences, the DSL user to interact 

with the report, and to be integrated with other related tools. 

3.9. Explicit difference presentation. 

The tool explicitly presents the results of the comparison, including the differences and 

conflicts. The differences can be represented in a dedicated data structure, a distinct model, 

or with traces showing matchings and differences. DSL users can query and visualize the 

results. Some tools only show the excerpt of the model involved in the differences, while 

others show the whole model. 

3.10. Headless APL 

The tool can be used interactively with the user or through APL This makes the com-

parison tool accessible via an API for display on any device. It enabled its integrated with 

other tools, such as VCS or enable extensions. 

3.11. Two-way differencing. 

The tool can compute two-way comparison and produce differences. This feature allows 

the DSL user to use the tool when comparing two models. 

3.12. Three-way differencing. 

The tool can compute three-way comparison and produce differences and conflicts. This 

feature allows DSL users to use the tool when they are collaborating together, like in Sec-

tion 2. Ultimately, the conflicts can be reconciled and the differences merged into a single 

valid model. 

Table 5.1 shows to what extent different comparison tools support each requirement of 

a model comparison tool. All the tools we consider in the table are meta-model agnostic 

and can thus be used for any DSL. DSMCompare is the only tool supporting the reuse of 

the DSL's concrete syntax when presenting differences. EMFCompare provides extension 

points to manually program coarse-grained domain-specific differences (EMFCompare, last 

accessed 2023). The scope of the newly added difference types is limited to the functionalities 

that existing difference types provide. E3MP does not support semantic difference detection 
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and only focuses on conflict detection (Sharbaf and Zamani, 2020; Sharbaf et al, 2022a). 

However, by default , it only outputs a list of fine-grained matches and differences using 

Epsilon Comparison Language (Kolovos, 2009). To describe conflict detection patterns, the 

user must define them in Epsilon-based scripts , such as the Epsilon Validation Language 

(EVL), Epsilon Pattern Language (EPL) , or Epsilon Object Language (EOL). They are 

imperative languages that combine object-oriented programming and OCL constraints. Also, 

for EMFCompare, updating the semantic rules can be problematic since it is not tailored to 

the DSL's syntax. In contrast , DSMCompare supports this feature by providing a generated 

domain-specific editor to define new semantic difference rules. 

With no surprise, all tools can detect the fine-grained differences. DSMCompare can 

detect semantic differences that are defined as rule pattern models tailored to the DSL. 

EMFCompare support semantic difference detection but requires to program the rules in 

Java. But it needs expert software engineers to develop the domain-specific semantic rules. 

Maudeling, DSMDiff, and DSMCompare do not support three-way differencing; thus, they 

cannot detect equivalent and conflicting changes. E3MP only supports three-way differenc-

ing and does not focus on two-way differencing, although the underlying Epsilon Compare 

Language supports it. DiffMerge, and EMFCompare can detect equivalent and conflicting 

fine-grained differences. 

All the tools represent the comparison results (differences or conflicts when applicable) 

as an explicit fine-grained difference model. Moreover, DSMCompare also represents the 

semantic differences in the model. EMFCompare models semantic differences as a sub-

category of fine-grained differences. E3MP only creates a report for semantic conflicts but 

does not model semantic differences explicitly. The other tools do not model semantic 

differences. Finally, all the tools, except DSMDiff, offer API that may be used interactively 

with the user or other tools. 

From this comparison, we deduce that DiffMerge, EMFCompare, and E3MP already 

support three-way differencing, while DSMDiff, Maudeling, and DSMCompare could be ex-

tended to three-way differencing. However, only EMFCompare partially supports semantic 

differences. 

As DSM Compare is the only tool that fully supports two-way domain-specific differencing 

(comparison) , we chose this tool to transform a two-way differencing tool into a three-way 
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differencing tool in our study. The process can be applied on any other tool listed, but it 

would require to make it domain-specific in the first place. 

4. Three-way differencing support in DSMCompare 

Our implementation of DSMCompare relies on EMFCompare to detect fine-grained differences 

and conflicts. We could have chosen another model differcing tool as long as it follows a 

certain APL The following list shows the minimum features that such a tool must provide 

to be plugged in DSMCompare: 

• Match list is composed of a set of pairs of identical fine-grained model elements from 

the two versions. Their identification is determined via unique identifiers or similarity 

heuristics. 

• Diff list is composed of a set of differences between a pair of elements in the match 

list. The difference is regarding attribute or reference value changes. 

• Equivalent diff list is composed of a set of pairs from the diff list where the two 

elements have made the same modifications, showing an equivalent user intention. 

• Conflict list is composed of a set of pairs from the diff list where the changes in both 

elements have a contradicting user intention. 

In the rest of this section, we explain how we adapt DSMCompare to support three-way 

domain-specific model differencing. We illustrate it with WNCompare from the running 

example presented in Section 2. 

4.1. Generating a three-way differencing metamodel 

First , we outline the generation of the difference metamodel in the context of two-way 

differencing. Then, we present the new extension to three-way differencing. Finally, we 

discuss how to handle semantic differences and conflicts. 

4.1.1. Generated metamodel for two-way differencing 

DSMCompare supports two-way differencing by creating a new metamodel DSDiffMM from 

the original metamodel of the DSL MM. We refer to Diff12 as an instance of DSDiffMM that 

contains the results of domain-specific two-way differencing. The approach begins by creating 

a clone of MM that inherits all the DSL structural features. We then add new structural 

features that allow us to perform two-way differencing. In particular, for each meta-class 
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C of MM, we create a corresponding difference class DiffC in DSDiffMM that extends it with 

ADD, DELETE, or MODIFY values to denote changes for objects. Each attribute of C 

is duplicated in DiffC to hold the new value in the case of a MODIFY. Each association Ase 

between meta-classes Cl and C2 in MM is refined into an intermediate class DiffAsc to hold 

ADD and DELETE values to denote changes for links. 

4.1.2. Generated metamodel for three-way differencing 

To transition from two-way to three-way differencing, we expand the original metamodel 

MM in the DSL to incorporate semantic changes and conflicts in a three-way manner. The 

idea is to reuse the structural features and style from the original DSL to remain in the spirit 

of the DSL. A related technique is the ramification of metamodels for domain-specific model 

transformations (Kuhne et al, 2009). This technique emphasizes the importance of aligning 
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Figure 5.5. An excerpt of three-way Domain-Specific Difference metamodel (DSD-
iffMM_ 3Way) 
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meta-models with the specific domain, facilitating effective model transformations within 

that context. By maintaining fidelity to the original metamodel, we ensure compatibility 

and coherence with the underlying model, enabling meaningful representation of model dif-

ferences in a domain-specific way. This involves creating a new metamodel, DSDiffMM_3Way, 

which replaces the DSDiffMM used for two-way differencing. The DSDiffMM_3Way metamodel 

allows us to capture specific data that is unique to three-way differencing, such as authorship 

information, changes in single- and multi-valued attributes and associations, fine-grained and 

semantic differences, as well as fine-grained and semantic conflicts, including the types of 

conflicts. 

The process of generating the three-way DSDiffMM involves duplicating all the classes in 

the MM metamodel, similar to generating the two-way version, and adding new classes that en-

able three-way differencing and conflict detection. We refer to this resulting difference model 

as Diffo12- To illustrate this, we use the WN metamodel MM shown in Fig. 5.2. Fig. 5.5 shows 

an excerpt of the generated DSDiffMM_3Way, which includes some classes that DSDiffMM_3Way 

adds to MM. The DSDiffMM_3Way metamodel creates a detailed comparison model between 

three versions of the original model: Vl, V2, and the common ancestor. Changes made by 

Vl and V2 to the common ancestor are stored in new Diff C classes. These classes indicate 

the type of modification made by each version using an array of DiffKind values. In a three-

way comparison, the size of the array is 2, with indices ranging from LEFT to RIGHT. 

An index with a NIL value indicates that the corresponding version did not modify that 

particular element. Each DiffC class is also assigned a ConflictKind value, which identifies 

the type of conflict. 

In the two-way process, DSMCompare needed to use an intermediate class called Dif-

f Ase to represent each original association Ase. In the WN example, the DSDiffMM_3Way 

metamodel in Fig. 5.5 inserts an intermediate class called DiffTransi tion_outArcs for the 

outArcs association from a transition to an intermediate place. However, if this intermediate 

class only points to the target of outArcs, we cannot track situations where both versions 

move the association to different targets. Therefore, we add a new outgoing association 

called target CA to keep a record of the original target in the common ancestor. 

The target outgoing association of DiffAsc records the change of one version. If both 

versions modify the target, then two instances of DiffAsc would be present in the Diff012, 
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as indicated by the [O .. 2] cardinality of diffoutarcs in Fig. 5.5. To extend this to n-way 

differencing, we would need to change the cardinality to [O .. n] . 

The same DiffKind enumeration is used for these intermediate classes, where a MODIFY 

value indicates that the target of the association has been modified, i.e., a move change 

as reported in EMFCompare. It is important to note that unlike class-level conflicts, an 

association can be conflicting with another association and is not bound within a single 

object. Therefore, we extend DiffAsc with a ConflictGroup attribute, where all DiffAsc 

instances having the same conflict group value are conflicting with each other. 

The new attributes generated for two-way differencing also need to be adapted. The new 

generated attributes new_A from the original attributes A are now typed as an array of 

the type of A. The array size is 2 for three-way differencing (dynamic for n-way), indexed 

from LEFT to RIGHT order. For each attribute A, we also add a new attribute A + 
'ConfiictKind' to track if the value modified in Vl and V2 results in a conflict. In addition, 

one of the improvements we made is the ability to trace changes to multi-valued items, 

i.e., arrays of values or associations. 

4.1.3. Tracking conflicts and provenance 

In three-way differencing, we must consider that differences come from different versions 

and authors. This raises different situations depicted by the new ConflictKind enumeration 

with three values, as shown in Fig. 5.5. CONTRADICTING changes indicate that two 

versions made different changes to the same element. Therefore, the changes on the two 

versions contradict each other and both changes cannot be applied. EQUIVALENT changes 

indicate that two versions made similar change edits to the same element. Therefore, we 

need to link them together and mark them as equivalent. NIL indicates that only one version 

made a change to an element. 

We define an Author enumeration to keep track of the version accountable for each change. 

The values LEFT and RIGHT each of the two versions, say Vl and V2 respectively. We use 

the value BOTH to indicate that both versions applied the same change. NIL is reserved 

for an initial and default value. 

Extending to n-way differencing would require replacing this enumeration with a key-

value dictionary added to each class in DSDiffMM_3Way. In this case, the key represents the 
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class or attribute name, and the value holds a list of integers. We assign each version to 

a positive number. If the change comes from a single version, the list contains its unique 

number. The list enumerates all the corresponding numbers if it comes from two or more 

versions. 

4.1.4. Identifying semantic differences and conflicts 

Three-way differencing requires a proper representation of conflicts. In DSDiffMM_3Way, we 

revise the SemanticDiff class to have a provenance (the Author enumeration), a meaningful 

description (the name attribute) of the differences, and keep track of any object it involves. 

The newly added SemanticConflict class in Fig. 5.5 must also keep track of any semantic 

difference since conflicts can occur between fine-grained and semantic differences, like after 

step 3 of Fig. 5.1. Each SemanticDiff object represents a coarse-grained difference that 

groups fine-grained differences into a singular difference that is domain-specific. The object 

is created by applying its corresponding semantic difference rule on the Di.ffo12 model. The 

SemanticConflict object represents a contradicting conflict between Vl and V2 involving at 

least one semantic difference. 

4.2. Three-way comparison 

As shown in Fig. 5.1, we organize DSMCompare into three components. Here, we discuss 

the Comparison component (Step 1 in Fig. 5.1). This component relies on the output that 

EMFCompare produces. It calls the three-way difference API by providing the VO, Vl, and 

V2 models. 

The Comparison component builds the Di.ffo12 model by creating the diff classes and 

associations, and setting the new values of attributes by querying the output of EMFCom-

pare. Like EMFCompare , the Di.ff012 model contains only the elements subject to change 

and their context. However, it should be noted that the output of EMFCompare primarily 

focuses on providing information regarding conflicts between fine-grained differences. Thus, 

we developed a four-stage procedure in the Comparison component. 

First, we group the fine-grained differences produced by EMFCompare using similarity 

factors. For example, all changes to attributes of the same class are grouped together. The 

same goes for associations. Second, we collect additional information for each group. For 

example, we gather the attribute values shared between Vl and V2, such as the class type and 
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original value from VO. For multi-valued attributes, EMFCompare returns one difference for 

each item modified in the list. Thus, we aggregate all the changes reported for that attribute 

and divide them into two lists: one for each version. At this point, we can already compare 

the values between VO, Vl, and V2 and determine if the modification of the attribute is 

equivalent. 

Third, we calculate the inter- and intra-dependencies of each group to determine the order 

in which DSMCompare will create the elements in Diff012- For example, if both an attribute 

and its class change, DSMCompare must first create the corresponding cliff class before 

setting its attributes. Thus, we set the attribute to depend on its class. If a class is deleted 

in one version, its outgoing associations are also. Therefore, associations depend on their 

source object within their group. Associations with the same conflictGroup value are also 

grouped together. We then sort each group according to the number of their dependencies 

in ascending order. 

Lastly, we transform the fine-grained difference groups into the relevant instances of 

DSMDiffMM elements, and construct the Diffo12 model. DSMCompare transforms one group 

at a time instead of processing each difference individually to consider the changes from all 

versions in a single cliff object, thus reducing verbosity. The process starts by creating a cliff 

element ( class cliff or association cliff). Then, we copy the associations and the values of all 

attributes from the common ancestor to the cliff element. Finally, according to the type of 

difference ( class, association, or attribute) and the kind of change ( add, delete, or modify) 

applied to the element in each version, we set the diffKind and conflictKind attributes 

according to Section 4.1.3. 

5. Semantic differencing 

First, we define what semantic differences are. Then, we outline the specification of the 

semantic difference rules in the context of two-way differencing. We then present the new 

extension to three-way semantic differencing. We also outline how semantic rules can be 

generated automatically. 
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5.1. Semantic differences 

In DSM Compare, a semantic difference is defined as SD= (Meaning, Constraints, Context ,Filters). 

Constraints is a set of constraints over a list of fine-grained differences. For example, Fig. 5.7a 

shows the constraints defined as a graph as well as a condition that the graph pattern 

must satisfy. Filters is a list of fine-grained differences that are present in Constraints. It 

is used to hide the fine-grained differences that are encapsulated in the semantic difference. 

Context is a list of fine-grained differences that are present in Constraints. They are the 

fine-grained differences related to the semantic difference after lifting to provide a context 

to the semantic difference meaning. Meaning is a string expressed in the vocabulary of the 

semantic of the DSL and the editing semantics of the Constraints. It is the interpretation 

of semantically-lifting the fine-grained differences. 

We implement semantic differences in DSMCompare in three steps. 

5.1.1. Aggregation of fine-grained differences 

Fundamentally, computing the difference between models investigates syntactic changes 

of what has been added, deleted, or modified. As we have shown in (Zadahmad et al, 

2022), the difference report tends to be very verbose in the case of domain-specific models. 

Therefore, one way to simplify the differences reported is to encapsulate them into a coarse-

grained difference that groups related fine-grained differences. This relation between a coarse-

grained difference and its fine-grained differences is specified in a semantic difference rule. 

For example, Fig. 5. 7a illustrates the "Remove Implicit Place" SD Rule. The aggregation 

of fine-grained differences is stated in the pattern of the semantic difference rule as a set 

of constraints ( c.f. the Constraints component of the definition of SD). In this example, a 

transition (labeled 1) must have at least two outgoing arcs to two places (labeled 3 and 4). 

One of these places (labeled 4) must be an implicit place: there is already a path from the 

other place to its outgoing transition ( depicted in the constraint). The implicit place and 

its adjacent arcs must have been deleted in one version. In conclusion, the aggregation step 

encapsulated fine-grained differences. 

140 



5.1.2. Hiding verbose differences 

The encapsulated fine-grained differences can be hidden from the user to reduce the 

verbosity of the reported differences. However, not all fine-grained differences should be 

hidden to help the user understand the semantic difference with additional context. In the 

example, only the arc labeled 5 is filtered, while the deleted arc and place (labeled 2 and 4) 

are persisted. 

5.1.3. Assigning a meaning and a context 

The name of the semantic difference is essential to be meaningful in terms of the editing 

semantics of the aggregated fine-grained differences. Typically, the name represents common 

patterns in the DSL, such as refactoring or behavioral patterns. In the example, the concept 

of "implicit place" is not part of the syntax of WPN but of the semantics of a refactoring 

pattern. Moreover, a context is needed to understand which place plays the role of the 

implicit place and which transition ends the common path in the model. Thus, the semantic 

difference is associated with the place labeled 3 and the transition labeled 6. 

According to Jackson and Ladd (1994), a semantic difference must use the vocabulary of 

the semantics, not the syntax: it must relate to the behavior of the changes. In DSMCom-

pare, the name of the semantic difference must appropriately refer to the meaning of the 

changes (the Meaning component fulfills that). They also state that referring to a slice of 

the syntactic change is useful. In DSMCompare, the Context component fulfills that. They 

also argue that it must be automatically identified by the tool, which DSMCompare does by 

applying transformations automatically on the Di.ff012 model. 

5.2. Two-way semantic difference rules 

In two-way, DSMCompare requires a set of domain-specific difference rules called SDRule. 

Each SDRule creates a semantic difference pattern to lift the fine-grained differences in Di.ff12 

semantically. To define these rules, we create a semantic differencing rule metamodel called 

SDRuleMM, along with its concrete syntax and editor. We generate a new editor for the 

DSL engineer to define SDRules based on a DSL for semantic differencing rules. This DSL 

consists of a metamodel SDRuleMM that is automatically generated from the DSDiffMM, 

and a concrete syntax SDRuleCS that is automatically generated from the DSDiffCS. Each 
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class C in DSDiffMM corresponds to a pattern class Pattern_ C in SDRuleMM, which includes 

additional attributes to uniquely identify objects, filter differences, and support negative 

patterns. The SDRule has a root class called Rule, which contains a constraint to restrict the 

applicability of a pattern rule based on attribute value changes. It also includes semantic 

difference objects that can refer to elements in DSDiffMM to encapsulate semantic differences. 

Using graph-based model transformation, we transform SDRules into semantically equiv-

alent Henshin rules (Struber et al, 2017). These rules create semantic difference objects, 

delete objects with a filter attribute set to true, and preserve the rest of the pattern to be 

matched in the Diff12 model. The SDRule constraint is also converted to Henshin conditions. 

As multiple SDRules may be applicable simultaneously, DSMCompare uses a heuristic-

based algorithm to schedule their application order. The priority order aims to reduce the 

verbosity of the presented differences and maximize the presence of semantic differences over 

fine-grained differences. Finally, the resulting Henshin transformation is executed on the 

fine-grained Diff12 model to detect semantic differences. 

We represent three-way semantic differences similarly to the previous two-way method. 

In three-way, the SemDiff component additionally generates a DSL to specify semantic dif-

ferencing rules (SDRule) and applies them to the Diff012 model. 

5.3. Synthesis of three-way semantic difference rules 

The SemDiff component automatically generates the rule metamodel SDRuleMM from the 

DSDiffMM metamodel. Fig. 5.6 shows a fragment of the result for the WN example, which 

extends the process outlined in Section 5.2. One improvement in the generation process is 

that the Rule root class of the SDRuleMM metamodel can now contain multiple instances of 

the root class of the DSL (Pattern_PetriNet in our example) in case more than one version 

modified it. It can also contain an instance of any other class to keep the patterns as compact 

as possible. One particularity for the three-way SDRules is that they should define patterns 

over the fine-grained differences pertaining to the same author. 

To apply the SDRules, we transform them into Henshin graph transformation rules that 

can then be applied to the Diff012 model. Fig. 5. 7a shows the Remove Implicit Place rule 

that is defined using the automatically generated SDRule concrete syntax and editor for 

the WN domain in WNCompare, along with its equivalent rule in Henshin Fig. 5.7b. The 
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graph transformation rule modifies the Di.ff012 model to show semantic differences and filters 

unnecessary fine-grained differences. This rule matches a Transition object conneted to a 

Intermediate (place) object labeled n3, with outArcs association from one side, and conneted 

to a DiffTransition_ outArcs object with diffoutArcs association from another side. The rule 

makes sure that, DiffTransition_ outArcs object is connected to Diffintermediate object , the 

Diffintermediate object is connected to Diffintermediate_ inArcs object, and Diffinterme-

diate_inArcs object is connected to the final Transition object labeled n6. The rule, also 

calls pathExistBtw method by passing n3 and n6 parameters, as an additional constraint , to 

check if there is an alternative path between n3 and n6 transitions. 

When the rule finds this pattern in the Di.ff012 model, it creates a SemanticDiff object 

named "Remove Implicit Place" associated with Intermediate and Transition objects. Note 

here that, since the current version of Henshin does not support attributes of an array type, 

we generate two variables (one for left and one for right) to split the values of the array for 

three-way differencing. 

We now outline the transformation processes to generate a Henshin graph transformation 

rule HRule from an SDRule. As an example, we use the Remove Implicit Place rule depicted 

in Fig. 5.7. 

(1) Create an HRule with the same name as the SD Rule. 

(2) Create a node in HRule with the action preserve for every pattern object in SDRule 

that has no filter and no NAC_group (e.g., node n5 in the example). 

(3) Create a node with the action delete in HRule for every pattern object with filter set 

to true in SDRule. 

( 4) Create a node with the action forbid in HRule for every pattern object with a 

NAC_group set in SDRule. Set the forbid identifier to the value of the NAC_group. 

(5) Create a node with the action create in HRule for each SemanticDiff object in SDRule 

( e.g., node n7). 

(6) Create a condition in HRule with the OR operand that duplicates the conditions 

defined in SDRule for both left and right versions. For example, n4diff_kind is 

separated into n4diff _kind_Left and n4diff _kind_Right for node n4 to cover both 

versions. 
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(7) Create an edge with action create in HRule for each association adjacent to a Seman-

ticDiff node in SDRule ( e.g., SemanticDbject_NamedElement between nodes n7 and 

n3). 

(8) Create an edge with action delete in HRule for each association adjacent to a pattern 

object with filter attribute set to a true in SDRule ( e.g., diffinArcs between nodes 

n4 and n5). 

(9) Create an edge with action forbid in HRule for each association adjacent to a pattern 

object with NAC_group attribute set to a value in SDRule. 

(10) Create an edge with action preserve in HRule for each association adjacent to a 

pattern object with NAC_group and filter attributes not set to a value in SDRule. 

The SemDiff component generates the Henshin rules from the repository of domain-

specific SD Rules. The algorithm found in Zadahmad et al (2022) schedules their order of 

application. This algorithm optimizes the verbosity of the displayed fine-grained differences 

and emphasizes semantic differences over syntactic differences. Therefore, the final Diffo12 

model output from the SemDiff component contains semantic differences and fine-grained 

differences not involved in semantic difference patterns. 

5.4. Generating SDRules from examples 

The DSMCompare graphical editor allows the DSL engineer to create a new SDRule. 

DSMCompare also provides a new feature to reduce the time and effort to define a seman-

tic difference rule. When the difference between two consecutive versions shows a semantic 

change (operational semantic), the DSL engineer can turn it into an SDRule. She simply 

needs to provide the fragment of each model version showing the semantic change and DSM-

Compare creates the corresponding SDRule following these steps. First, it produces the 

Diff012 model to get the differences between the two model versions. Then, it transforms the 

model into a draft of an SDRule model. In this step, it roughly processes every structural 

feature and transforms each element to its corresponding element in the SDRuleMM. Finally, 

the DSL engineer can manually set the filters and the NAC_groups in the pattern. She 

must also set the name, constraints, and creates the semantic difference object that the rule 

encapsulating. She can then test the new SDRule by applying its Henshin equivalent on the 
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given Diffo12 model. Our experience has shown that this reduces the effort required to create 

SDRules. 

6. Tailoring the concrete syntax of difference models and semantic 

rules 

DSMCompare provides a concrete syntax to display the Diffo12 model. We implement 

this feature using Sirius (Sirius, 2023b), one of the most popular frameworks to generate 

graphical modeling environments in the Eclipse ecosystem. As explained in Section 2, the 

DSL engineer needs to provide a concrete syntax, CS, of her DSL using Sirius. However, she 

does not need to supply a new one for DSDiffMM. To maintain the DSL's soul, DSMCompare 

automatically creates a default version of the domain-specific difference concrete syntax, 

DSDiffCS, that reuses the style from CS. The foundation of Sirius' definition of concrete 

syntax is a viewpoint specification model, also known as odesign. It establishes a mapping 

between graphical representations and MM elements. 

For instance, we define a NodeMapping in Sirius that references an icon in an image file to 

render the graphical representation of the Place class. A combination of text , icons, shapes, 

and style adjustments, such as size and color, can be used in the "Code Node Mapping". 

Similarly, an EdgeMapping produces associations. In terms of compositions, a BorderedNode-

Mapping is used to render the target class inside of the NodeMapping of the source class. Sirius 

uses, the Acceleo Query Language, a subset of OCL, to express the constraints that can filter 

graphic representations according to a condition. We also automatically generate a palette 

of buttons to instantiate the classes and relationships of MM. 

6.1. Automatic synthesis of the concrete syntax 

We create DSDiffCS using an outplace transformation that accepts CS as input and 

produces DSDiffCS as output. By doing so, we are able to reuse the properties and styles of 

similar concrete syntax elements from the CS within DSDiffCS. We implemented this trans-

formation in ATL to help automate the process. The general logic of the transformation is to 

extend the representation of each related MM class to construct the representation of each 

Diff_ class, then duplicate each component of CS onto DSDiffCS. This maximizes the usage 

of CS to represent the difference model in a way that makes sense to DSL users. For each 
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NodeMapping, e.g., PlaceNode , we create nine diff nodes that each represent a combination 

of two difference kind pairs from two versions of an element such as: DiffPlaceNodeADD_ADD , 

DiffPlaceNodeADD_DELETE , DiffPlaceNodeADD_MODIFY, etc. By default , the diff node is iden-

tical to the original node marked with a pair accompanied by a symbol as shown in the 

legend of Fig. 5.1. 

Assume that the diff class DiffA_S corresponds to the association with an incoming 

composition diffS from class A and outgoing associations target and targetCA to B. For ex-

ample class DiffTransition_outArcs corresponds to the association with an incoming com-

position diffoutarcs from class Transition and outgoing associations target and targetCA 

to Intermediate. In DSDif!CS, DiffA_S is represented with a BorderedNodeMapping as a 

subnode of the NodeMapping of A, and we create BorderedNodeMappings for each Edge . DS-

Dif!CS uses a BorderedNodeMapping to represent DiffA_S as a subnode of A. We also build 

BorderedNodeMappings for each Edge. 

6.2. Layering the differences 

The three-way difference model has more elements than in two-way, increasing the com-

plexity of understanding it. Therefore, we implemented a layering system provided by Sirius 

to organize the graphical difference model elements better. Each diagram element is a mem-

ber of a Layer. The user can enable or disable each layer to only visualize the elements of 

interest and decrease the verbosity of the reported differences. 

We create three layers for the Dif!o12 model. The first layer groups all fine-grained differ-

ences, including details such as the kinds of differences. The second layer shows all semantic 

differences, more specifically, the semantic difference objects and their associations. The 

third layer shows all conflicts between semantic and/or fine-grained differences. Associations 

are only visible in their specific layer; e.g., the conflicts between related objects only appear 

in the third layer. 

6.3. Themed provenance of the differences 

We also use distinct themes to distinguish between the changes made by the VO and Vl 

authors. For example, we can play with the color darkness or assign a specific set of colors 

to distinguish between them. The user can customize the concrete syntax at will. 
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The editor generated to define SDRules also reuses DSDiffCS. This allows the DSL en-

gineer to define a rule in a concrete syntax with which DSL users are familiar. 

7. Detecting equivalent changes 

The utilization of three-way differencing can lead to conflicts, which are addressed in this 

section and the subsequent one. Specifically, in this section, we delve into equivalent changes 

while the next section discusses contradicting conflicts. These conflicts are identified in Step 

3 in Figure 5.1. When two versions, Vl and V2, make alterations to the same element 

relative to VO, it results in a conflict. An equivalent change arises when Vl and V2 make 

identical modifications. DSMCompare provides the necessary features to detect equivalent 

changes and visualize them to the DSL user by reusing the concrete syntax of the DSL. 

7.1. Equivalent fine-grained conflicts 

Four kinds of equivalent changes can occur for class differences. Vl and V2 add a new 

class instance, delete an existing object , or modify an attribute with the same value. If the 

attribute is multi-valued ( e.g. , an array), the changed values must also occur on the same 

index. In addition, four kinds of equivalent changes can occur for association differences. 

Vl and V2 add a new association instance between two objects, delete an existing link from 

the source object, or modify a link by redirecting it to the same the target object. If the 

association has a cardinality greater than one, an equivalent MODIFY conflict occurs if all 

target objects are the same in both versions. 

Detecting fine-grained equivalent changes is straightforward in DSMCompare, thanks to 

the enumerations explained in Section 4.1. When the DiffKind array in an object or link has 

the same values (ADD/ADD, DELETE/DELETE, MODIFY/MODIFY) and their values 

are the same, it assigns the EQUIVALENT value to the ConflictKind of the element in the 

Diff012 model. 

The concrete syntax for equivalences is adapted automatically thanks to the 

DiffMM_ 3way metamodel and DiffCS. As depicted in Fig. 5.1, the Di.ffo12 model 

only displays one symbol for the equivalent change using a predefined color for equivalence 

(green in this case). 
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7.2. Equivalent semantic changes 

An equivalent semantic change occurs when both versions accomplish identical semantic 

differences. For example, consider the case both of left and right authors working on a WN 

model apply a Remove Implicit Place semantic change on an identical place. In both versions, 

a place is connected to two transitions. EMFCompare displays six fine-grained equivalent 

changes with three equivalent differences for each side. In DSMCompare, we show the three 

equivalent fine-grained conflicts: the place object, the inArcs link, and the outArcs link are 

deleted. After applying the SemDiff component, the semantic difference rule Remove Implicit 

Place is applied, which assigns a single SemanticDiff object with the same name. 

Then, the SemConf component proceeds as follows. For all the association targets con-

nected to the SemanticDiff object, e.g., Remove Implicit Place, we check the values for the 

diffKind and ConflictKind attributes. If in all the connected objects , the values in the 

diffKind array are all equal and the value for the ConflictKind is EQUIVALENT, we set 

the value of the author attribute (recall from Fig. 5.5) in the SemanticDiff object to BOTH. 

It indicates that both versions have made equivalent semantic changes. If in all the objects 

connected to the SemanticDiff object, the first value in the diffKind array is not NIL, but 

the other value is NIL, we set the LEFT value for the author attribute. In the opposite case, 

we set the value of the author attribute to RIGHT. This results in a single SemanticDiff 

object for both versions and is connected to the target fine-grained difference objects for 

both versions. 

Please note that equivalent semantic changes do not necessarily cover all fine-grained/fine-

grained equivalent differences because some fine-grained differences may not contribute to 

any semantic difference. 

8. Detecting contradicting conflicts 

A contradicting conflict occurs when Vl and V2 have made different changes to the same 

element with respect to VO. Fine-grained contradicting conflicts arise when the diffKind 

array of a specific element has either MODIFY /MODIFY or MODIFY /DELETE values. 

A fine-grained change may also conflict with a fragment of a semantic change. Semantic 

conflicts can result in a semantically unacceptable model, meaning that the model is syntat-

ically valid but violates some semantics of the domain. For example, in Fig. 5.1, a Remove 
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Implicit Place semant ic difference is detected in Vl and V2 deleted the source transit ion in 

the semantic difference: the two changes are syntactically valid. A naive reconciliation of 

these differences would merge the two versions by applying the fine-grained differences of 

Remove Implicit Place and removing the source transit ion . However, semant ically, t hey are 

contradicting because either t he source transition should deleted or t he modifications related 

to Remove Implicit Place should be applied . Therefore, DSMCompare detects contradicting 

conflicts for fine-grained/ fine-grained , fine-grained/semant ic, and semantic/semantic differ-

ences. It also visualizes these conflicts t o t he DSL user. 

8.1. Fine-grained conflicts 

As explained in Section 4.2 , we divide fine-grained differences into similarity groups, 

aggregate the required properties, and process each group separat ely. After processing each 

difference group, we set t he value of t he conflictKind attribute to CON TRADICTIN G if 

the values in the diffKind array have different values other t han NIL. 

The first column in Fig. 5.8 demonst rates a MODIFY / DELE TE contradicting conflict on 

object s, where Vl changed the token value of a place, while V2 removed the place. Visually, 

DSMCompare labels the contradictions with user-specific colors to quickly distinguish them . 

It also sets the ConflictKind of the place object to CON TRA DICTIN G. 

I. MODIFY - DELETE 
(class-level) 

I VO 

I V1 

I V2 

I e 
Pending 

0 
Pending 

[ EMFCompare J 
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Figure 5.8. Examples of fine-grained contradicting conflict 
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The second column in Fig. 5.8 demonstrates a MODIFY /DELETE contradicting conflict 

on links. Here, Vl rerouted the arc outgoing from the Pending place to the pay•nline 

transition, while V2 removed this arc. EMFCompare reports that Vl has unset the arc and 

V2 has set it. In contrast, DSMCompare post-processes this information and reports these 

two links as conflicting with visual cues. Additionally, it assigns the same ConflictGroup 

value (recall from Fig. 5.5) to both diff objects representing the links. 

The last column in Fig. 5.8 shows a contradicting MODIFY /MODIFY conflict with 

the same situation as in the secund column, except that, now, V2 has also rerouted the 

arc to another transition checkCredit. EMFCompare does not report the move from the 

initial target link. In contrast, DSMCompare computes this information showing that the 

original target of the arc has changed ( as an equivalent change x) to different targets in 

each version ( as two contradicting modifications ~). In this case, all three links share 

the same ConflictGroup value. Note that DSMCompare treats multi-valued attributes and 

associations similarly for these contradicting conflicts. 

8.2. Potential conflicts between fine-semantic and semantic-semantic differences 

A semantic difference typically involves changes on multiple fine-grained difference el-

ements, encapsulating them in a common change intention. Unlike contradicting conflicts 

0 OnlineChoice payOnline OnlinePayReceived checkCredit 

V1 

I EMFCompare J 

> Petri Net 
• > Transition receive 

{ I> Intermediate COOChoice [outArcs delete] 
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I --------------1 I Remove Implicit I 
- 7 Place/CODChoice conflict 1 , _____________ , DSMCompare (Semantic Differences) 

Figure 5.9. Example of contradicting semantic-fine conflict 
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between fine-grained differences, conflicts involving semantic differences can overlap across 

multiple elements and must be carefully identified. For example, in Fig. 5.9, suppose Vl's 

changes represent that the implicit place CDDChoice is removed (i.e., deleting the redundant 

place object and removing all links connected to it), while V2 only reroutes the arc of that 

place to a different transition checkCredi t. Then, there is a contradicting fine-semantic con-

flict because of the overlap on the inArcs change. Furthermore, like in Fig. 5.1, suppose that 

Vl 's changes represent removal of a place ( deleted while there is another alternate path) and, 

in V2, there is a change of the target transition of COD Choice place's inArcs link, i.e. , re-

moving an EFC structure. Then, there is a contradicting semantic-semantic conflict between 

Remove Implicit Place and Remove EFG structures semantic difference objects because of 

the overlap on the CODChoice object and the inArcs link. 

Thanks to its rule-based approach, DSMCompare can detect these situations automat-

ically and report them to the DSL user to facilitate conflict reconciliation. Detecting over-

lapping conflicts can be time-consuming with respect to the number of SDRules available 

and the number of occurrences of these conflicts. Therefore, DSM Compare pre-computes the 

potential conflicts between fine-grained and semantic differences at design-time (i.e. , when 

DSL engineers produce their SDRules); thus, it only requires computing them once. 

To find the potential conflicts between semantic differences , we compute the conflicts 

and dependencies between SDRules. Since SDRules are transformed into Henshin graph 

transformation rules , we perform a critical pair analysis (CPA) (Lambers et al, 2008) and 

multi-granular conflict and dependency analysis (Multi-CDA) (Lambers et al, 2018) on these 

rules. To detect potential conflicts between fine-grained and semantic differences, we synthe-

size a Henshin rule for every possible DiffKind of the DSDiffMM_3Way metamodel elements. 

We generate a rule for adding, removing, and modifying classes and associations. We also 

generate a rule for every attribute modification. For example, the generated rule DiffTran-

sition_ outArcs encapsulates the removal of an outArcs association from a transition. 

Henshin offers support for Multi-CDA through its APL It detects all potential conflicts 

between the rules, such as a rule creating an element that another one forbids or a rule 

deleting an element that another one modifies. For example, it can detect the conflict 

between the Remove Implicit Place semantic rule and the place deleted fine-grained rule 

because the former rule uses the place object. However, Henshin's API for Multi-CDA does 
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not detect attribute-level conflicts; therefore, we use its CPA feature for these situations. 

It can detect that a change in an attribute value, like the tokens , potentially conflicts with 

another rule that uses it. CPA returns the pair of rules in conflict because of the attribute 

change. 

Multi-CDA returns a matrix in which each entry shows a value indicating the number of 

potential conflicts between two rules. The pair consists of either a fine-grained or a semantic 

rule. A non-zero value in the matrix indicates a potential conflict between the rules. We 

can deduce the reason for each conflict from the resulting matrix. For example, it shows 

a 1 for the pair deleteintermediate_inArcs and Remove Implicit Place rules. This means 

that deleting the inArcs association from an intermediate place object to a transition object 

in one version has one potential conflict with the Remove Implicit Place rule in the other 

version. 

For the WN DSL, we generate 28 fine-grained Henshin rules. Together with the 3 semantic 

difference rules, computing all the potential conflicts between 31 rules is time-consuming due 

to the exponential time complexity of CPA and Multi-CDA. Therefore, pre-computing them 

at design-time saves a significant amount of time for the DSL user exploring the conflicts. 

8.3. Computing actual conflicts for fine-semantic differences 

Multi-CDA and CPA indicate only potential conflicts between rules. Therefore, we need 

to verify if they effectively occur in the Di.ff012 model. 

Algorithm 5 shows how the SemConf component calculates the actual conflicts between 

fine-grained and semantic differences. Given the list of potential conflicts (see Section 8.2), it 

creates a SemanticConflict object. It links it to the SemanticDiff and fine-grained difference 

elements if the conflict really exists in the Di.ff012 model. The algorithm starts by collect-

ing all the SemanticDiff objects in the Di.ff012 model. The function GETSEMANTICDIFFS 

returns a list of the names of all these objects corresponding to the SDRule that created 

them. For example, in Fig. 5.9, this function returns "Remove Implicit Place". Then, the 

algorithm searches through the list of potential conflicts to identify all fine-grained rules that 

conflict with each of these SDRules (line 4). It then verifies if these potential fine-grained 

rules have effectively been used in the Di.ff012 model. For a given SemanticDiff object, the 

function FINDINSTANCEOF returns the fine-grained difference object that is linked to it. 
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Algorithm 5 Calculate all actual conflicts between fine-grained and semantic differences 
Input: conflicts list of potential conflicts, diff012 difference model 

1: procedure SETCONFLICTFINESEM( conflicts, diff012) 
2: semDiffList +--- GET8EMANTICDIFFS(di./J012) 
3: for all sem in semDiffList do 
4: potConflicts +--- GETCONFLICTSFS(sem, conflicts) 
5: actualConflictList +--- (/J 

6: for all pc in potConflicts do 
7: fine +--- FINDlNSTANCEOF(sem ,pc,diff012) 
8: if fine. conflictKind = c•NTRA• rcnNG then 
9: actualConflictList +--- actualConflictList U {fine} 

10: end if 
11: end for 
12: if lactualConflictListl > 0 then 
13: semConflict +--- CREATESEMCONFLICT( sem) 
14: for all fineConflict in actualConflictList do 
15: CREATEASSOCIATION(semConflict, fineConflict) 
16: end for 
17: end if 
18: end for 
19: end procedure 

Again, a mapping by name corresponds fine-grained objects to their fine-grained rules. On 

line 9, the actualConfiictList set stores all fine-grained difference objects that are in con-

tradicting conflict and overlapping with a semantic difference object. In the example, the 

set contains Difflntermediate and Diffintermediate_inArcs as the contradicting conflicting 

fine-grained differences with the "Remove Implicit Place" semantic difference ( USE-DELETE 

and DELETE-MODIFY respectively). Finally, lines 10- 13 create a SemanticConflict object 

for each of these instances and link it to the semantic difference object and all fine-grained 

difference objects in the actualConfiictList set. 

The conflict list input to Algorithm 5 results from the Multi-CDA findings, which com-

putes potential conflicts involving class-level or association-level changes. However , as ex-

plained in Section 8.2, we rely on CPA to compute potential conflicts involving attribute-level 

changes. Therefore, we devise a modified version of Algorithm 5 to determine the actual con-

flicts between attribute modifications and semantic differences. The main changes are on 

lines 7- 9 to find the corresponding attribute. In this case, the function FINDINSTANCEOF 

searches for a DiffClass instance where the attribute corresponding to the fine-grained rule 

has been modified by both versions. It also checks that the conflict kind of the DiffClass in-

stance is contradicting. Furthermore, this attribute must be involved in one of the constraints 
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of the SD Rule. If this situation occurs in the Di.ff012 model, the algorithm adds the DiffClass 

instance to the actualConfiictList. Like in Algorithm 5, it then creates a SemanticConflict 

object and links it to the semantic and the fine-grained difference objects. The first row in 

Fig. 5.9 illustrates this situation. 

8.4. Computing actual conflicts for semantic-semantic differences 

Algorithm 6 Calculate all actual conflicts between semantic differences 
Input: conflicts list of potential conflicts, diff0i2 difference model 

1: procedure SETCONFLICTSEMSEM( conflicts, diff0i2) 
2: semDiffList +--- GETSEMANTICDIFFS( diff0i2) 
3: for all (semi ,sem2) in semDiffList do 
4: potConflicts +--- GETCONFLICTSSS(semi ,sem2,conflicts) 
5: for all pc in potConflicts do 
6: finel +--- FINDINSTANCEOF(semi ,pc,diff0i2) 
7: fine2 +--- FINDINSTANCEOF(sem2,pc,diff0i2) 
8: if finel = fine2 Afi,nel . conflictKind=CDNTRADICTING then 
9: semConflict +--- CREATESEMCONFLICT( semi ,sem2) 

10: CREATEASSOCIATION(semConflict,semi) 
11: CREATEASSOCIATION( semConflict,sem2) 
12: end if 
13: end for 
14: end for 
15: end procedure 

Algorithm 6 shows how the SemConf component calculates the actual conflicts between 

semantic differences. Given the list of potential conflicts (see Section 8.2), it creates a 

SemanticConflict object and links it to the SemanticDiff elements if the conflict really ex-

ists in the Di.ff012 model. Like in Algorithm 5, it starts by collecting all the SemanticDiff 

objects in the Di.ff012 model. However , now it only considers pairs of semantic-semantic 

conflicts (semi and sem2 on line 3). The function GETCONFLICTSSS searches through the 

list of potential conflicts to identify all fine-grained rules that conflict with both semi and 

sem2. For example, let us consider the D i.ffo12 model in Fig. 5.1. The function GETSE-

MANTICDIFFS returns the two SDRules: Remove Implicit Place and Remove Efc Structures. 

Both have semantic conflicts between them. Thus, the function GETCONFLICTSSS returns 

Diffintermediate and Diffintermediate_inArcs objects as the contradicting conflicting fine-

grained differences between them ( USE-DELETE and DELETE-MODIFY, respectively) . 

Lines 6- 7 return the actual fine-grained difference object involved in these semantic differ-

ence objects in the Di.ff012 model. The algorithm then verifies that it is really the same 
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fine-grained difference object that these semantic difference objects share. It also checks 

that it is in a contradicting status For the example, the algorithm actually determines that 

the Diffintermediate_inArcs object is in a contradicting conflict state. Finally, lines 10- 11 

create a SemanticConflict object and link it to the semantic difference objects. It is shown 

in dashed lines in Fig. 5.1. 

9. Evaluation and discussion 

We evaluate DSMCompare using model histories created by third parties. We first give 

implementation details on the three-way DSMCompare. Then, we present our experiment 

and discuss the results. We also outline some limitations of our approach. 

9.1. Implementation 

We implemented DSMCompare as an Eclipse plug-in that runs on the Eclipse Model-

ing Framework (EMF version 2022-03). The tool is downloadable through the open-source 

repository2. To find the generic model-based matches and differences, we instantiate the 

CDOCompare engine3, one of the default EMFCompare engines in Eclipse. We rely on 

the API of EMFCompare to retrieve the difference set between the three versions. Using 

Java, the Comparison component transforms these generic differences into an instance of the 

DSDiffMM_3Way metamodel using the EMF APL For the SemDiff component, we use Xtend4 

to transform domain-specific rules into Henshin textual format. Then, using Henshin's API, 

we find potential conflicts among semantic and fine-grained differences (using Multi-CDA). 

With this information, we calculate the optimal order of execution of the rules. Then, we ex-

ecute the rules to enhance the Diffo12 model with semantic differences. Finally, the SemConf 

component calls the Multi-CDA and CPA Java APis and finds the conflicts between semantic 

and fine-grained differences following the algorithms presented in Section 8. 

2https://github.com/geodes-sms/DSMCompare/ 
3https: / /www.eclipse .org/ cdo/ last accessed Jul 2022 
4https: / /www.eclipse .org/xtend/ index. html last accessed Jul 2022 
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9.2. Objectives 

We now present the evaluation of DSMCompare following an experiment we conducted. 

We already demonstrated that two-way DSMCompare reduces verbosity, improves the de-

tection of semantic differences, and is effective in practice (Zadahmad et al, 2022). Here, 

we evaluate the accuracy of DSMCompare in finding semantic differences and conflicts in a 

three-way differencing setting. We do not explicitly consider fine-grained differences because 

they were covered in the previous evaluation and are used to populate semantic differences 

and conflicts. Furthermore, we do not evaluate the graphical features of the tool that are 

related to visualizing conflicts, as such an evaluation would require conducting a user study, 

which is beyond the scope of this paper. 

Therefore, in this experiment, we evaluate three-way DSMCompare with respect to the 

following research questions: 

RQl Does DSMCompare correctly detect three-way semantic differences? 

RQ2 Does DSMCompare correctly detect three-way semantic conflicts? 

9.3. Experiment setup 

We explain the process of collecting the data required for the experiment and the evalu-

ation procedure. 

9. 3 .1. Data collection. 

Due to the lack of existing repositories of domain-specific models and their associated 

semantic difference rules, the subject of our experiment is Java programs reverse-engineered 

into Ecore models. As explained in (Zadahmad et al, 2022) , we consider a refactoring pattern 

as a semantic difference if it has been applied in a new version of a model. Similarly, we 

consider a refactoring pattern as a semantic conflict if it is involved in the conflict between 

three model versions. Furthermore, GitHub is a source of a significant number of code-based 

projects that may be transformed into Ecore models, allowing us to assess their histories for 

refactoring changes and domain-specific differences and conflicts. 

Fig. 5.10 describes the process we followed to build a dataset of labeled Ecore model ver-

sions for three-way differencing and conflict detection. The initial step is to select the GitHub 

repositories on which we conduct our study. GitHub, the predominant host of open-source 
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Figure 5.10. Evaluation setup to execute DSMCompare on Java code from GitHub repos-
itories 

projects, reports having over 42 million public repositories5 in June 2022. Munaiah et al 

(2017) examined GitHub repositories and offered Score-based and Random Forest classifiers 

to identify well-engineered software repositories. They have shown that the latter classifier 

has a greater accuracy rate. Therefore, we filter out projects not identified as well-engineered 

by the Random Forest classifier using their dataset of 1857 423 repositories.As suggested by 

Pinto et al (2018), we further assure the quality of the repositories by using the number of 

stars and community involvement as repository selection metrics. Thus, we only consider 

repositories with communities of two or more people and 500 or more stars on GitHub. Fur-

thermore , we choose only Java-based repositories given the toolset we use. We now have a 

dataset of 104 repositories for our experiment. However, we discovered that nine of these 

repositories are not available via the GitHub URL supplied; therefore , we excluded them 

from the study. This leads us to a total of 95 repositories to consider. 

To answer both research questions, we must consider repositories with merge conflicts 

involving object-oriented refactorings in their history. To this end, we use the RefConfMiner 

project (Shen et al, 2019), which is forked from RefactoringsinMergeCommits (Mahmoudi 

et al, 2019). It uses the RefactoringMiner project , a popular refactoring detection tool that 

currently can detect 87 distinct refactoring types in Java repositories (Tsantalis et al, 2020). 

The output is stored in a database containing the commit IDs of refactoring-related merge 

5https: / / gi thub . com/ search?q=is: public retrieved on 12 June 2022 . 
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conflicts. For each commit , it also records the identifiers of the version triplet (VO, Vl, V2) 

and the detected refactoring type. From the 95 repositories, only 13 projects include at least 

three refactoring-related merge conflicts that can be processed with RefactoringMiner and 

downloaded successfully. The project names are android, closure-compiler , error-prone , 

jabref , junit4, mcMMO , POSA-14 , querydsl , realm-java, redpen, storm, syncany, and titan. 

Label © in Fig. 5. 10 marks the 96 conflicting commits produced by Re/Con/Miner that 

involve at least one refactoring. 

From these commits, we use the output of Re/Con/Miner in MergeScenarioMiner (Shen 

et al, 2021) to collect the Java files involved in conflicting merge commits. It produces a 

folder for each conflicting commit ID , containing three sub-folders: the parts of the project 

involved in VO, the changed parts of the project in Vl , and those in V2. However, the folders 

only contain Java files that DSMCompare is unable to manage. 

Therefore, in the third step, we convert the source code to the corresponding Ecore model 

representations, using Eclipse's MoDisco framework (Bruneliere et al, 2014). The result is 

an instance of Knowledge Discovery Metamodel (KDM) which represents the structure and 

behavior of an entire software. With MoDisco , we transform t he KDM model of t he t hree 

versions (VO, Vl , V2) into Ecore models. 

§ EPackage § Model 

• name : ESbing 10 .• •1 packages • id : ESbing 
• name : ES!ring 

• I • project_Name : ESlring 
• commitld : ESlring 
• author : ES!ring 

10 •• •1 edassifiers 10 •. •1 esupertypes 

10 •. •1 interfaces ! ! 
§ EClass 

§ Interface 
ro. • 1 .......... + .... .-1 • ... + .... .4-.. .-.... .,. 

rn • 1 ;~•~-- ---~- • name : ESbing 
• name : EString • isAbstract : EBoolean = false 

=:::::J 10 .. •1 esupertypes 7 •, • f l 10 .. •1 eoperations § EOperation 10 .• •1 eoperations 10 •• •1 nested_d asse 
• name : EString 
• eparameters : ESlring 10 .. •1 eatlributes 

§ EReference • etype : ES!ring 
• method Body : ES Iring § EAtlribute 

• name : ES!ring 
• etype : ES!ring [0 .. •1 ereferences • name : EString 

• etype : ESlring 

Figure 5.11. The MiniJava metamodel 
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We built a simplified MiniJava metamodel in Ecore, shown in Fig. 5.11, to represent 

packages, classes, attributes with their type and cardinality, methods with their signature, 

and method bodies as one string. The MiniJ ava models represent the source code we collected 

in label @ in Fig. 5.10. Each MiniJava model includes all the Java files (i.e., packages, 

and classes) for one of the three versions involved in the merge commit. Since we have 

96 merge commits , we end up with 288 MiniJava models in Ecore. Additionally, we have 

manually prepared 17 semantic difference rules to encapsulate the refactorings. We reused 

those from the experiment in (Zadahmad et al, 2022) and adapted them to our MiniJava 

metamodel. Fig. 5.12 shows the Pull-up Method semantic differencing rule, which encodes 

that the method of a sub-class is moved to its super-class. 

9.3.2. Methodology. 

We compare the collected data from RefConfMiner with the MiniJava models processed 

by DSM Compare. Given the three instances of the MiniJava metamodel for each conflicting 

commit, we call the API of EMFCompare and produce the three-way fine-grained generic 

model-based differences. Then, we pass the differences through the Comparison and SemDiff 

components and generate Diffo12 models, including the semantic three-way differences shown 

Super_Class 

Sub_Class 

Q Pulled_Operation() 

-S- Pull-up Method pulled Operation() ....... -

Legend: 

Class I :£ Semantic difference I 
Q Operation() 

Figure 5.12. The Pull-up Method semantic differencing rule 
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by label $ in Fig. 5.10. Finally, we pass the Diff012 model produced by the SemDiff com-

ponent through the SemConf component and populate Diffo12 model with semantic conflicts 

(label@ in Fig. 5.10). 

To answer RQl, we compare the refactorings found by RefConfMiner (label©), with 

the three-way semantic refactoring differences reported by DSMCompare (label$). We use 

semantic differences and conflicts found by ReJConfMiner as the baseline for DSMCompare. 

We denote the two sets ADi and Bi for each commit i, respectively. We rely on precision 

and recall measures for the comparison. In Equation (9.1), we define precision as the ratio 

between the correctly found differences in DSMCompare and the total number of differences 

it finds. We define recall as the ratio between the correctly found differences in DSMCompare 

and the expected number of differences found by RefConfMiner. 

(9.1) 

To answer RQ2, we compare the conflicts found by RefConfMiner (label©) with the 

fine-grained and semantic conflicts reported by DSMCompare (label @ ). We denote the 

set ACi of conflicts found by RefConfMiner for each commit i. We also rely on precision 

and recall measures for the comparison. In Equation (9.2), we define precision as the ratio 

between the correctly found conflicts in DSMCompare and the total number of conflicts it 

finds. We define recall as the ratio between the correctly found conflicts in DSMCompare 

and the expected number of conflicts found by RefConfMiner. 

(9.2) 

We manually perform compare each difference output in DSMCompare with Ref-

ConfMiner. For each refactoring or conflict reported by RefConfMiner, we analyze the 

report , including the Java file and the name of the involved elements ( e.g., package, class, 

method, attribute). We then manually compare it with the results in the corresponding 

Diff012 model output by DSMCompare. 
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9.4. Characterization of the resulting dataset 

We first present some key findings in the result ing dataset produced by DSMCompare. 
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9.4.1. Description of the resulting dataset. 

Table 5.2. Summary of the results after applying DSMCompare 

Number of 

Projects 

Commits 

MiniJava models in Ecore 

Semantic difference ( refactoring) rules 

Total number of 

Fine-grained differences 

Fine-grained diffs involved in semantic diffs 

Semantic differences 

Remaining fine-grained differences 

Fine-grained conflicts 

Semantic differences involved in conflicts 

Diffo12 elements per commit 

13 

96 
288 

14 

11287 

7342 

3059 

3945 

657 

474 

Median 

135 

Average Standard dev. 

Median 

13 

266 318 

Semantic differences per commit 

Average Standard dev. 

32 60 

Fine-grained differences per commit 

Median Average Standard dev. 

37 

Median 

3 

118 206 

Semantic conflicts per commit 

Average Standard dev. 

5 6 

Fine-grained conflicts per commit 

Median Average Standard dev. 

4 7 8 
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In total, we produced 96 triplets of Ecore models representing the three versions of each 

commit. They are accompanied by 96 Ecore models representing the three-way differences 

and conflicts ( Diff012) annotated with all the refactoring operations. Out of the 87 refactoring 

types (Tsantalis et al, 2020), we only found occurrences of 14 semantic difference rules on 

these models. The complete dataset is available online6. Table 5.2 presents a summary of 

the results that DSMCompare has found. 

The results show that DSMCompare can find a considerable amount of semantic and 

fine-grained differences in a large collection of projects and related conflicting commits. 

Note that since we downloaded only the Java files involved in the conflicting commits for 

all three versions, the Diff012 model only presents the minimal model needed to understand 

the context of the changes in each version, as opposed to showing the complete models. 

Therefore, we consider that Diffo12 models with an average size of 266 elements are quite 

large. In this metric , we count the different MiniJava model elements: package, class, 

interface, association, attribute, and method objects. We do not include the number of 

attributes for each element, such as the method body of method objects. 

We also note that fine-grained differences account for around half of the Diff012 model 

sizes, which means that almost half of each minimal model is changed. Semantic differences 

cover 65% of all fine-grained differences. Therefore, thanks to the semantic differences, the 

DSL user is left with only 35% of fine-grained differences to interpret and investigate. This 

drastic reduction in verbosity concurs with the results in (Zadahmad et al, 2022) and helps 

the DSL user better understand the differences. We observe that, on average, 16% of the 

semantic differences are in conflict (semantic-semantic and semantic-fine conflicts), while 6% 

of the fine-grained differences are in conflict. These ratios show that semantic conflicts do 

occur in practice and, in this dataset, they occur more often than fine-grained conflicts. 

Fig. 5.13 categorizes the number of refactorings that DSMCompare has found per com-

mit per project. For each project, we sort the commits by decreasing number of semantic 

differences it contains. For example, project syncany has 14 commits ranging from 80 se-

mantic differences in commit 1 to two in commit 12. Most refactorings are found in project 

realm-j ava with 432 semantic differences in a single commit. It also consistently has the 

6https://doi.org/10.5281/zenodo.7386968 
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1 OOO Number of semantic di fferences 

100 

10 Number of commits 

10 II 12 13 14 
• rcalm-java • titan • jabrcf • mcMMO • stom1 • sync any • junit4 • closure-compiler • error-prone • rcdpcn • querydsl • POSA-14 • android 

Figure 5.13. Number of semantic differences per commit 

100 
Number of semantic confl icts 

h .Ii~ ,II~ ,I" h h ,lj1 ,ii , I , I ,"t "''"""" 
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• closure-compiler • mcMMO • titan • realm-java • syncany • jabref • junit4 • stonn • error-prone • rcdpcn • POSA-14 • android • querydsl 

Figure 5.14. Number of semantic conflicts per commit 

most refactoring differences in nine commits. With only five commits, project ti tan is sec-

ond in this order with the most refactoring differences (174) in commit 3. Project jabref 

arrives third, topping 128 refactoring differences in a single commit . Interestingly, project 

closure-compiler consistently contains an average of 21 semantic differences across its 10 

commits. Project syncany has the most number of commits (14) with at least 31 semantic 

differences. Table 5.2 shows an average of 32 refactoring differences found in each of the 

96 commits across all projects. The chart Fig. 5.13 characterizes the vast diversity of the 

dataset under study. 

Fig. 5.14 shows a similar chart but for conflicting refactorings , i. e., semantic differences 

involved in a contradicting conflict. In this case, project closure-compiler has most of the 

conflicts with 42 in a single commit . It also has the most number of conflicts in nine commits. 

Interestingly, 53% of the semantic differences are involved in conflicts for this project, whereas 

the average across all commits of all projects is 36%. In comparison, project realm-java had 

the most refactoring differences (Fig. 5.13) , but only 20% of them are involved in conflicts. 

We notice fewer variations in the number of conflicts than in the number of differences across 

the commits, given that there are five conflicting refactorings on average per commit. 
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9.4.2. Example output. 

Fig. 5.15 illustrates the kind of results that DSMCompare outputs for the dataset. It 

shows a fragment of a Diffo12 model related to a conflicting three-way merge commit. The 

visualization is generated from the concrete syntax we defined in Sirius for the MiniJava DSL. 

In the excerpt of this difference model , DSMCompare captures the contradicting conflict in 

which Vl (in blue, authored by HeartSa VioR in GitHub) moved the method MultiPut from 

class RedisClusterMapState to its base class AbstractRedisMapState. Following the SDRule 

"Pull-up Method ", DSMCompare creates a Pull-up Method semantic difference object and 

associates it with the MultiPut method and the AbstractRedisMapState class. However, V2 

(in red, authored by ptgoetz in GitHub) modified the body of this method. Therefore, DSM-

Compare recognizes this conflict between fine-grained (V2) and semantic (Vl) differences 

and annotates the MultiPut method a MODIFY/DELETE icon (blue x and red~). In 

addition, it creates a contradicting semantic conflict object and associates it with "Pull-up 

Method" semantic difference and MultiPut method. 

lo 11768ba202Sc89ec6cccc232f682c50a46865dc8 X 

•~ • :!: • ;"i'i • 111 • C'!i"! o'I • - • -.,t";\\ IC lfc B / A • l1!l i,. • -' • - • l!li :[!] 

org.apache.storm.redis.trident.state 

AbstractRedisMapState 

Q AbstractRedisMapStateQ 

Red isClusterMapState 

+ X 
X""' 0 multiPutfjava.util.List<java.util.List<java.lang.Object> >:keys, java.util.List<T>:vals):void 

• Properties X 

........ IWYs Pull-up Method MultiPut. MODIFY S Pull -up Method multiPut ...••• •. ..• ••• ...• Method MultiPut (CONTRADICTING) ...... 

• Semantic Conflict Pull-up Method MultiPut - MODIFY Method Multi Put (CONTRADICTING) 

Property Value 
v Semantic Conflict Pull-up Method MultiPut - MODIFY Method MultiPul 

= El g~ Outline X 

Main 

Semantic Name Q'Pull-up Method MultiPut - MODIFY Method MultiPut (CONTRADICTING) 
Style Semanticconflictsemanticdiffs 

Semantic Object EClass 
Semantic Object EOperation 
Semantic Object Diff EClass ereferences 
Semantic Object Diff ECloss implements 
Semantic Object Diff EClass nested classes 

• Semantic Diff Pull-up Method 
• EClass AbstractRedisMapState 
• Diff EOperation multiPut 

Figure 5.15. Excerpt of the difference model showing semantic differences and conflicts in 
the Sirius for commit 11768ba in the storm project 
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This particular commit includes eight refactorings that are involved in seman-

tic conflicts. Conflicts mainly occur in two Java files: RedisMapState. j ava and 

RedisClusterMapState. j ava. Each file comprises one class, three nested classes, and 

one nested interface. The outline on the right of Fig. 5.15 shows the complete Diffo12 model 

to enable the DSL user to navigate to the desired location of the model. In the bottom-right 

of the figure , a panel shows the different properties of the selected conflict, including its 

name and the associated elements. 

9.4.3. Types of refactorings. 

DSM Compare has found a similar distribution of the refactoring differences and conflicts 

as in (Mahmoudi et al, 2019). Fig. 5.16 shows the frequency of each refactoring type across 

all commits of the dataset. For each type of refactoring, the chart presents the distribution 

of semantic differences in black and refactorings involved in contradicing conflicts (semantic-

semantic and semantic-fine conflicts) in white. This figure shows that DSMCompare can find 

various types of semantic differences from difference patterns. For example, simple patterns , 

like the Rename class rule, identify a single attribute change. Patterns like the Move class 

rule identify associations between classes and packages. Patterns like the Pull-up method rule 

rely on the properties of methods, associations between classes and methods, and constraint 

checking. 

The chart in Fig. 5.16 is sorted in terms of the frequency of the semantic differences 

(refactorings). The most common refactoring differences found in the dataset (more than 

30% 

25% 

20% 

15% 

10% 

5% 

0% 

• Differences • Conflicts 

lo I •• .~ •• l::J .o -• .I]-• _ _(] 

Figure 5.16. Frequency of refactoring types reported by DSMCompare compared to those 
involved in a conflict 
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10%) include Extract and move method, Extract method, Move class, and Rename method. 

Whereas the most common refactorings involved in conflicts include Rename method, Extract 

method, and Extract and move method. This is expected because renaming a method causes 

multiple conflicts, such as Rename/Delete method, Rename/ Add Method, and Rename/Re-

name method. Similarly, extracting a method from its original class causes conflicts when 

another version modifies the same method. We also observe that renaming an element and 

modifying a property of a method generates more conflicts, whereas moving a method, class, 

or attribute generates fewer conflicts. 

9.5. Effectiveness of DSMCompare 

We now evaluate the results in terms of precision and recall. Fig. 5.17 shows the overall 

precision and recall of refactorings differences and conflicting refactorings that DSM Compare 

found from the dataset. The results are calculated according to Equations (9.1) and (9.2) 

using RefConfMiner as the baseline of comparison. Recall that, in this experiment, finding 

semantic differences means finding differences where a refactoring type is involved. Finding 

semantic conflicts includes conflicts between semantic-semantic and semantic-fine differences , 

thus any conflict involving a refactoring. 

The overall trends of a ll four box plots are very high, with an average of at least 96%. 

There is almost no variation in the precision of differences and conflicts and in the recall of 

conflicts: the standard deviation and variance coefficient are under 5%, and the interquartile 

range is 0. The near-perfect scores indicate that DSMCompare correctly found almost all the 

semantic differences and conflicts identified by RefConfMiner. Note that true negatives are 

100% 9 ¥ X X 
95% 0 

90% 

85% 

80% 

75% 

70% 

65% 

• Differences-Precision • Differences-Recall • Conflicts-Precis ion • Confl icts-Recall 

Figure 5.17. Precision and recall for detecting the semantic differences and conflicts 
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not possible in this experiment since we only look for refactorings. Therefore, the accuracy 

of DSMCompare is also near perfect. 

The only exception to these observations is the recall of the differences with a standard 

deviation and variance coefficient of 7.5%, and an interquartile range is 6%. Nevertheless, 

the average recall of differences is still very high at 96%. Some false negatives occur when 

DSMCompare misses one or two differences in some Diffo12 models containing very few 

differences. For example, in commit 2b59ffd of project syncany, RefConfMiner finds three 

refactoring differences , while DSM Compare only finds two, leading to a precision and recall of 

67%. In the rare situations where DSMCompare incorrectly identified a semantic difference 

(false positives), the refactorings are related to the body of the method, which is captured as 

an unstructured string in our dataset of MiniJava models. For example , the Inline method 

refactoring type transfers the content of a method to a method calling it. Most of the 

situations where DSMCompare missed a semantic difference (false negative) were because the 

files involved in the semantic differences were not available to be downloaded. Nevertheless, 

the Fl-score for both semantic differences and conflicts is 97%, showing the high accuracy 

and effectiveness of DSMCompare. 

9.6. Discussion 

With these results, we can now answer our two research questions. 

9.6.1. RQl: DSMCompare effectiveness to find semantic differences. 

According to the results, DSMCompare can find almost all semantic differences across 

all commits. It finds fine-grained and semantic differences of different types across different 

model sizes and various projects. 

DSMCompare detects different kinds of SDRule patterns. It effectively detects semantic 

differences for rules focusing on simple attribute changes, relying on structural patterns, and 

requiring complex constraints to check. It also successfully detects semantic difference rules 

applied multiple times in the same and multiple versions of different projects. However, 

DSMCompare was unable to find a few refactoring patterns that require investigating struc-

tural content encoded as strings. It also incorrectly detected a few refactorings when the 

models were missing parts of the original source code. 

169 



9.6.2. RQ2: DSMCompare effectiveness to find semantic conflicts. 

DSMCompare can find almost all semantic conflicts across all conflicting commits. It 

finds different types and granularities of conflicts, including between semantic differences 

and fine-grained differences. Note that all missed conflicts correspond to missed differences. 

DSMCompare also finds conflicts that occur in the same project and across different 

projects. For example, all projects have a conflict involving the Extract Method refactoring 

type. Some refactorings tend to be more conflicting even though they occur less often 

than other refactoring types. For example, as illustrated in Fig. 5.16, Rename Method is 

responsible for 13% of all differences but contributes to 28% of all the conflicts. 

9.6.3. Advantages of DSMCompare. 

DSMCompare offers a more tailored display of differences that is specific to the relevant 

domain, and it is less verbose compared to RefConfMiner and EMFCompare. Additionally, 

it is important to mention that DSMCompare does not necessitate developers to create an 

ad-hoc metamodel. They can readily provide the metamodel of their DSL to utilize the tool. 

It visualizes the effect of syntactic differences on semantic changes. It also explicitly links 

the semantic difference instances to changed model elements. It reports the differences using 

the original DSL concrete syntax. Therefore, DSMCompare helps to understand and locate 

the exact problematic model elements conflicting with a semantic change. Our assumption is 

that all these advantages help DSL users resolve conflicts more easily, save time, and increase 

the quality of the merged models. 

As an indicator, the computation time of DSMCompare takes around one second for 

small MiniJava models (1- 500 model elements), less than three seconds for medium models 

( 500- 1 000 model elements), and around nine seconds for large models ( over 1 000 model 

elements). We ran the experiments on a Windows 10 machine with an i5-6300U processor 

clocked at 2.4 GHz, 8 GB of RAM on Eclipse version 4.24.0 with JDK 1.8 and the heap size 

set to 24 GB. 

9.6.4. Multi-view Visualization. 

As shown in Fig. 5.15, the Di.ff012 model is very cluttered visually when there are many 

model elements, fine-grained and semantic differences, and conflicts of different types, like in 
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Figure 5.18. Visualization by Sirius, Tree-View presentation 

our dataset. To manage t his problem, we use a layering mechanism (see Section 6) that DSL 

users can ut ilize to fo cus only on a specific part of the visualized differences and conflicts. 

However , sometimes, the number of differences and conflict s is just t oo large, and the adapted 

concrete syntax of the DSL needs to scale better in terms of readability. For example, if the 

DSL user wants to see the relations between models and the related differences and conflicts, 

the user will be presented with a disordered collection of graphical ent ities and associations 

among them. As a result , it obscures the semant ics present in the Diff012 model. 

To overcome this problem, we use a tree-view presentation to manage the complexity 

of visualizing when the number of differences and conflicts are very high. Fig. 5. 18 shows 

this alternative visualization of the same difference model presented in Fig. 5. 15. Here, we 

cat egorize t he Diff012 model for MiniJava into three containers: the package container , the 

semantic difference container , and the conflict container. Under the package container , we 

collect all the packages and the hierarchy of the classes and sub-elements. The semantic 

difference container includes the list of all semantic differences and a description based on 

the type of the difference. The conflict container list s all t he conflicts. 
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We integrate this view as an alternative representation using multiple views with a rich 

client platform7 to visualize the Diff012 model. Using multiple views, the DSL user can 

search for semantic differences or conflicts on the tree-view and highlight the relevant model 

elements involved in the selected semantic difference or conflict. In this way, we enhance 

search time, search accuracy, perceived ease of use, and perceived usefulness ( Adi pat et al, 

2011). 

9.6.5. Comparing DSMCompare to other tools. 

Unlike DSMCompare, EMFCompare is not able to detect semantic differences by default. 

However, the tailor-made model comparison of EMFCompare provides custom filtering and 

domain-specific grouping features8. In addition, developers can add a new kind of difference, 

including a single fine-grained difference, to the comparison model of the EMFCompare. 

To have tailor-mode EMFCompare features, developers must manually add Java code as 

the plug-in extension points. However, it does not support creating semantic difference 

patterns referencing multiple elements and changes in the metamodel of the DSL. To the 

best of our knowledge, it is not possible to detect semantic conflicts in the current version 

of EMFCompare, even by adding custom code. 

Both RefactoringMiner and RefConfMiner are text-based and can investigate refactoring 

changes in Java projects. RefactoringMiner reports refactorings, and RefConfMiner uses it 

to find refactorings involved in conflicts across the history of a Java project. They both 

provide high accuracy, especially when refactorings include text-based changes in method 

bodies, which is why we use them as the baseline for our assessment. In comparison, DSM-

Compare introduces mechanisms to find both semantic differences and conflicts. It also 

associates conflicts with relevant semantic differences and conflicts. The DSL engineer does 

not need to program how to find each refactoring type. Instead, she describes the patterns 

needed to specify the semantic differencing rule using the concrete syntax of the original 

DSL. DSMCompare also provides multiple domain-specific views to visualize the differences 

7https://www.eclipsecon.org/europe2019/sessions/make-your-transition-cloud-tooling-now-thanks-hybrid-rc 
last accessed Jul 2022 
8https: //techconf .me/talks/35768 last accessed Jul 2022 
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and conflicts between DSL users. Moreover, DSMCompare is agnostic of the programming/-

modeling language at hand. Like in our experiment, it can be used to work on models 

extracted from any programming language, not only Java projects. 

9. 7. Limitations and threats to validity 

We outline some limitations of the experiment and our approach. 

9.7.1. Threats to internal validity. 

Threats to the internal validity of this experiment are related to the assumptions we rely 

on. 

We rely on the findings of EMFCompare to detect fine-grained differences and assume 

they are correct. As a result, any inaccurate preparatory information produced by EM-

FCompare influences the outcomes of both semantic differences and conflicts output by 

DSMCompare. However, EMFCompare is a trusted tool used by many model-based VCS, 

such as CDO, to benefit from its fine-grained comparison reports. 

We manually checked all the outputs to ensure the semantic differences and conflicts we 

found by DSMCompare correspond to those found by RefConfMiner. However, this manual 

process can lead to human errors, which may threaten validity. Nevertheless, this process 

helped fix bugs in different parts of DSM Compare, which gives us confidence that the dataset 

is correct. 

9.7.2. Threats to construct validity. 

Threats to the construct validity of this experiment are related to some of the tools we 

used in the experiment setup (see Fig. 5.10). As we have explained earlier, there are three 

reasons to explain the presence of very few false positives and negatives in our results. 

First, when transforming the Java source code into Ecore models, MoDisco creates a sin-

gle string for each method body by concatenating the structure of the method. Therefore, 

refactorings affecting the internal structure of a method body, like Inline Method, cannot 

be captured in SDRule patterns for the MiniJava DSL. This prevents DSMCompare from 

correctly detecting these refactoring (false negatives). Switching to a different reverse engi-

neering tool may help explicitly model the missing data. 
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Second, the same issue with MoDisco also resulted in some false positives in refactorings 

that are very similar, like Extract Method and Extract and Move Method. The strings used 

representing the extracted and added method bodies might occasionally be mistaken for 

one another. Every flow inside the extracted method body resembles a flow within another 

inserted method, though they differ in the finer details of their content. Because of this lack 

of information, DSMCompare mistakenly perceives the creation of a new method as other 

refactoring types. 

The source code of the projects in our experiment consists of a large number of files and 

lines of code. To keep the dataset as concise as possible, we retrieved only the files involved 

in the merge conflicts. Thus, we relied on MergeScenarioMiner to download exclusively the 

Java files involved in the merge conflicts for all three versions of a conflicting three-way merge 

commit. However, this tool occasionally fails to download all the relevant files or downloads 

only parts of the linked files. This also prevents DSM Compare from correctly detecting some 

refactorings (false negatives). Fixing MergeScenarioMiner to obtain all the pertinent Java 

files or downloading the whole repository of all the involved versions in the conflicting merge 

commit may improve the results. 

Nevertheless , as the overall results show, DSMCompare can find every other refactoring 

type and conflict related to classes, associations, methods, and attribute changes. 

9.7.3. Threats to external validity. 

Threats to the external validity of this experiment are related to the generalization of 

the results. 

The results we present are specific to the dataset we created. Therefore, the results may 

be different for other datasets of refactoring commits or even on DSLs other than MiniJava. 

However, this dataset presents a wide diversity of cases with respect to SDRules, model sizes, 

semantic difference occurrences, and semantic/fine-grained conflicts. Moreover, the dataset 

originates from third-party programs. In Zadahmad et al (2022), we evaluated DSMCompare 

on other DSLs as well. 

Furthermore, there is a lack of openly accessible repositories of models with a commit 

history and, in particular, three-way difference conflicts. Our solution was to consider source 

code as models by reverse engineering repositories with these specificities. 
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9.7.4. Limitations. 

Currently, DSMCompare generates editors for graphical DSLs only. Thus, it presents 

differences and conflicts in a graphical way only. Adaptations are needed to deal with textual 

concrete syntax. As we have seen in this experiment, graphical visualization of differences 

hits its limits when the models have a lot of elements. 

The semantic differences that DSMCompare finds strongly depend on the SDRules pro-

vided by the DSL engineer. Thus, DSMCompare is only effective in providing semantic 

differences and conflicts if the rules are diverse enough to cover a variety of rule patterns, 

comprehensive enough to include all changes and conflicts at all granularities, and semanti-

cally relevant to the domain. Nevertheless, DSMCompare generates a domain-specific editor 

to enable DSL engineers to specify patterns for semantic differences. It also provides func-

tionality to automatically create SDRules from two successive versions exhibiting a semantic 

change, which further helps DSL engineers. 

We do not claim that the results of the experiment show that DSMCompare presents 

Java code refactoring better than existing tools (Dig et al, 2007). It is also not optimized 

to solve identify refactoring opportunities in programs. Nevertheless, in the given dataset , 

DSMCompare can detect refactoring instances and refactoring-induced conflicts on Ecore 

models that represent Java code. 

10. Related work 

10.1. Model differencing 

Stephan and Cordy (2013) present a survey of several model comparison tools and 

methodologies. Some are specific to a modeling languages and others are metamodel-agnostic 

like DSMCompare. In that survey, EMFCompare uses a static identity-based comparison, 

is metamodel-agnostic and is applicable in real-world model versioning scenarios. This jus-

tifies our decision to rely on EMFCompare for the model matching phase and detection of 

fine-grained differences. 

Schipper et al (2009) extended EMFCompare to depict schematic differences in diagrams, 

which is comparable to our work. However, They only enable the visualization of atomic 
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changes and do not support more coarse-grained changes or conflict patterns. Similarly, Ci-

cchetti et al (2010) generate model differences as model patches, but do not conflict analysis. 

Several approaches have been proposed to semantically lift low-level changes, e.g., Kehrer 

et al (2011, 2013) use Henshin for semantic lifting and critical pairs for dependency analysis. 

Langer et al (2013a) post-processes atomic operations into complex operations using EMF-

Compare. However, to work with EMFCompare extension points effectively, a DSL engineer 

should possess strong Java programming skills and a solid understanding of the Eclipse Plat-

form and its extension mechanisms. Additionally, a good grasp of EMF core concepts, mod-

eling principles, and model comparison and merge concepts is essential. Knowledge of XML 

and Ecore metamodeling, debugging techniques, design patterns, and testing methodologies 

are also valuable to ensure the successful implementation and customization of EMFCom-

pare's comparison and merging capabilities. Our approach semantically lifts and conducts 

dependency analysis using multiCDA. We also visualize the differences and conflicts in con-

crete syntax. 

Addazi et al (2016) expanded the default matching process in EMFCompare to distin-

guish between linguistic and contextual notions, such as information-content based metrics. 

It provides a method for determining the semantic similarity between two given model ele-

ments. This somehow enables semantic reasoning over differences. Their solution managed 

to maintain fast time performance but did not deliver the best results in terms of precision 

and recall. 

It should be noted that, we do not map models to a formally defined semantic domain in 

order to reason about the differences as done in Maoz et al (2011 b). Rather, in the context 

of this paper, the term semantics pertains to editing semantics. 

10.2. Conflict detection 

Like DSM Compare, Brosch et al (2012b) create a separate Diff012 model to represent dif-

ferent kinds and granularities of differences and conflicts. A difference is shown as a hierarchy 

divided into atomic changes (e.g., adding an element) and composite changes (e.g., refactor-

ing). A conflict is shown as a hierarchy of overlapping conflicts (e.g., DELETE/MODIFY 

conflict) and constraint violations. However, they are specific to UML class diagrams. 
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Sharbaf et al (2020) provide a conflict pattern language to specify conflicts in different 

modeling languages. In some sense, this is similar to the SDRules in DSMCompare. How-

ever, it only detects conflicting semantics and ignores non-conflicting semantics. Whereas, 

DSMCompare identifies all semantic differences, offering users a comprehensive overview of 

changes at a semantic level. This aids users in distinguishing the intended resolution when 

resolving conflicting semantic differences. Moreover, in our approach, we find semantic dif-

ferences and investigate them for semantic conflicts. In their approach, the DSL engineer 

can express the changes in the metamodel elements between the different versions that lead 

to a conflict. The pattern language is built on top of OCL which restricts its application 

to UML-based languages only and forces the DSL engineer to be familiar with them. In 

DSMCompare, we extract complex change patterns from low-level model evolutions, much 

as semantic lifting techniques, similar to (Garda et al, 2013; Vermolen et al, 2012). However, 

their patterns are general and predefined, since they do not provide users with a domain-

specific mechanism to define new rules. Yet, they resemble the rules in our method. 

Sharbaf and Zamani (2020) use UML profiles to visualize changes and formalized con-

straints using OCL for UML models defined in Papyrus. They also highlight the conflicts 

using different colors. However, their approach is only appropriate for UML models, whereas 

DSM Compare supports any DSL. Furthermore, the static semantics of UML, which delegate 

model validation to the tools that process them, are currently insufficient to assure solid 

models (Berkenkotter, 2008). 

The tool PEACEMAKER is capable of loading XMI models with conflict sections, com-

puting and displaying fine-grained conflicts at the model level, and offering the necessary 

resolution steps (de la Vega and Kolovos, 2022). DSMCompare also load only conflicting 

parts of each three versions involved in the conflicting commits. Calculating potential con-

flicts a priori also improves the time performance. However, when using PEACEMAKER, 

DSL users must reason about differences and conflicts at the abstract syntax level rather 

than using the concrete syntax of the DSL like in DSMCompare. Nevertheless, PEACE-

MAKER is able to resolve conflicts and merge the differences, which is not yet supported in 

DSM Compare. 

Taentzer et al (2014) use graph theory to formalize two syntax-based conflict concepts, 

including operation-and state-based conflicts in model versioning. Additionally, they use 
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graph constraints to define multiplicity and ordered features. They detect conflicts using a 

set of conflicting operations such as DELETE/MODIFY. However, their approach disregards 

the effect of syntactic modifications on the semantics of the model as explained by Kautz and 

Rumpe (2018). Internally, DSMCompare also relies on the theory of graph transformation 

by executing Henshin rules. It also relies on MultiCDA (Lambers et al, 2019) to analyzing 

their dependencies and find potential conflicts between semantic and fine-grained differences. 

To evaluate our approach, we utilized a sizable dataset of 288 Ecore models, which we have 

made publicly accessible. It is worth noting that there is a scarcity of existing repositories 

for domain-specific models, as noted in (Zadahmad et al, 2022). Brosch et al. (Brosch et al, 

2010c) proposed a web-based, collaborative conflict lexicon named Colex. However, we have 

found that the weblink associated with their proposal appears to be broken. 

10.3. Versioning tools 

Throughout the years, a number of model repositories with capabilities for version control 

have been introduced (Altmanninger et al, 2009). ChronoSphere (Haeusler et al, 2019) deliv-

ers an open-source EMF model repository. Transactions, queries, versioned persistence, and 

metamodel development are all part of the essential data management stack. The authors 

suggest using NoSQL databases for persistence for greater performance (Espinazo-Pagan 

et al, 2011). These repositories can be used in conjunction with DSMCompare to make it 

possible to visualize (semantic) differences using the graphical concrete syntax of the DSL. 

Different levels of versioning and model differencing capabilities are available in com-

mercial modeling programs. MagicDraw9 provides controlled access to all artifacts, simple 

configuration management, and a mechanism to prevent version conflicts in this manner. 

Obeo Designer10 and CDO can integrate with EMFCompare to provide a generic model-

based versioning service. Smart Model Versioning11 , a version control tool included in 

MetaEdit+ (Kelly, 2018) , allows the comparison of models visually and textually. It is 

compatible with any significant VCS for storage, such as Git. Git and Subversion are in-

tegrated with JetBrains MPS, which also offers some tools for examining model differences 

9https: //www. 3ds. com/products-services/ catia/products/no-magic/magicdraw/ last accessed Jul 
2022 
10https: //www.obeodesigner.com/ last accessed Jul 2022 
11https: / /www.metacase.com/news/ smart_model_ versioning. html last accessed Jul 2022 
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textually. While these tools offer different ways to compare models triplets, they are typ-

ically not customizable to the DSL. DSMCompare provides domain-specific, customizable 

visualizations of the model differences, in a graphical way. 

11. Conclusion 

This paper introduces an approach for detecting fine-grained and semantic differences 

and conflicts based on a three-way comparison. Our solution is integrated into a new ver-

sion of DSMCompare that previously only handled two-way domain-specific differences. It 

supports detecting and representing equivalent and contradicting conflicts between model 

versions. DSMCompare allows users to create semantic rules that automatically aggregate 

fine-grained differences and give domain-specific meaning to conflicts. Finally, we enhanced 

the concrete syntax to let DSL users visualize the three-way conflicts and differences more 

effectively. We evaluated our approach on multiple well-known open-source projects. The 

results demonstrate that DSMCompare is very effective at detecting semantic differences and 

conflicts with high accuracy. The large dataset of model versions involved in the commit 

history of several open-source projects and their labeled fine-grained and semantic differences 

and conflicts are also available for future research. 

We plan to incorporate a conflict reconciliation mechanism in DSMCompare to auto-

matically resolve the conflicts in the difference model and help the DSL user resolve them 

manually when needed. This would lead to a final merged model free of conflicts that can be 

committed to a VCS repository. We also plan to integrate DSMCompare in domain-specific 

VCS to provide a fully-integrated system to DSL users. Another future line of research is to 

investigate how to represent domain-specific differences and conflicts for a textual DSL. 
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Resume. 

L'integration de modeles elabores grace a un travail d'equipe collaboratif necessite sou-

vent des activites de resolution de conflits pour parvenir a une version successive coherente. 

La resolution des conflits peut etre effectuee manuellement ou automatiquement. Dans les 

deux approches, il est crucial de comprendre la semantique des changements et des conflits. 

Malgre des recherches precieuses clans ce domaine, les systemes de contr6le de version ex-

istants se concentrent principalement sur la syntaxe abstraite des modeles specifiques a un 

domaine et sur les conflits a granularite fine. De plus, le mecanisme permettant de definir 

les regles de resolution des conflits n 'est souvent pas convivial pour les experts du domaine. 

De plus, ils visualisent les concepts de resolution de conflits pour des modeles specifiques a 
un domaine sur la base de leur syntaxe abstraite plut6t que de la syntaxe concrete du DSL. 

Pour relever ces defis, nous avons precedemment introduit DSMCompare, un outil congu 

pour comparer des modeles specifiques a un domaine, detecter les differences et visualiser les 

conflits en utilisant la syntaxe concrete du DSL. Dans cet article, nous avons encore ameliore 

notre approche pour parvenir a une resolution des conflits avec un degre eleve d 'automatisa-

tion. Nous avons 6galement ajout6 des fonctionnalites g6ner6es automatiquement pour aider 

les experts du domaine au cas ou !'intervention de l'utilisateur serait requise. De plus, nous 

generons automatiquement des editeurs specifiques au domaine pour que les ingenieurs DSL 

puissent definir et maintenir des regles de resolution de conflits. 

Pour evaluer DSMCompare, nous avons procede a une retro-ingenierie de l'historique des 

validations de plusieurs projets open source impliquant des modifications de refactorisation 

de code basees sur Java. Nos resultats demontrent que DSMCompare est efficace a la fois 

clans la resolution automatique des conflits avec une grande precision et clans la reduction 

du besoin d'interventions manuelles de l'utilisateur. 
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Abstract. 

Integrating models evolved through collaborative teamwork often requires conflict resolu-

tion activities to achieve a consistent successive version. Conflict resolution can be performed 

manually or automatically. In both approaches, it is crucial to understand the semantics of 

changes and conflicts. Despite valuable research in this area, existing version control systems 

mainly focus on the abstract syntax of domain-specific models and fine-grained conflicts. Ad-

ditionally, the mechanism for defining conflict resolution rules is often not user-friendly for 

domain experts. Furthermore, they visualize conflict resolution concepts for domain-specific 

models based on their abstract syntax rather than the concrete syntax of the DSL. 

To address these challenges, we previously introduced DSMCompare, a tool designed to 

compare domain-specific models, detect differences , and visualize conflicts using the concrete 

syntax of the DSL. In this paper, we have further enhanced our approach to achieve conflict 

resolution with a high degree of automation. We have also added automatically generated 

features to assist domain experts in case user intervention is required. Additionally, we 

automatically generate domain-specific editors for DSL engineers to define and maintain 

conflict resolution rules. 

To evaluate DSMCompare, we reverse-engineered the commit history of several open-

source projects that involved Java-based code refactoring changes. Our results demonstrate 

that DSMCompare is effective in both automatic conflict resolution with high accuracy and 

reducing the need for manual user interventions. 

Keywords. Model-Driven Engineering, Model versioning, Model differencing, Graphical 

concrete syntax 

1. Introduction 

During collaborative development activities, developers often work simultaneously on 

shared models pulled from version control systems (VCS) to their respective branches (Zadah-

mad et al, 2022). These models are manipulated, and the changes made by developers are 

pushed back to integrate them with the modifications of other team members (David et al , 

2021). However, this widely adopted practice suffers from contradicting conflicts during 

the merge process, which poses a significant challenge that needs to be addressed (Shen 

183 



et al, 2019). Resolving these conflicts requires custom and elaborate solutions for each 

case (Brindescu et al, 2020), leading to delays in software development timelines. 

While automatic conflict management is necessary, the existing practices are not yet 

mature enough to handle the complexities effectively (Sharbaf et al, 2022a). The approach 

to conflict management depends on how version control systems treat artifacts under version 

control. Popular tools like Subversion and Git use an unstructured approach that treats 

artifacts as textual documents (Mens, 2002). However, this approach does not consider the 

underlying meta-information of the artifacts , resulting in imprecise conflict reports that lack 

information about the type of conflicts and how to handle them. Moreover, these reports 

may include false positives due to the neglect of the artifact's meta-model (Sharbaf et al, 

2022a). 

Structured merging approaches, which focus on a single programming language like Java, 

are more precise but expensive to implement and often fail to represent program structures at 

an abstract level (Mahmoudi et al, 2019). Semi-structured merging treats artifacts partially 

as trees but sacrifices precision compared to structured merging. To overcome the limitations 

of tree-based approaches , graph-based structured merging approaches have been proposed, 

using conditional graph rewriting to manage the evolution of software artifacts (Mens, 2002). 

However, these approaches are more complex to implement due to the need for sophisticated 

program analysis and representation. Current works, such as EMFCompare (EMF Compare, 

accessed August 2023), focus on merging software models rather than programs. Neverthe-

less, they fall short to represent conflicts in a domain-specific manner, as the reports they 

provide use general object-oriented terminology that may not be understandable for DSL 

users (Zadahmad et al, 2022). Additionally, existing domain-specific works are limited to 

predefined modeling languages, cover only specific types of conflicts, or are challenging for 

DSL users to utilize in defining conflict resolution patterns (Sharbaf et al, 2022a). A recent 

survey on conflict management for model merging identified semantic conflict management 

and their visualization as crucial challenges to be addressed ( Shar baf et al, 2022b). 

In this paper, we introduce a novel approach for domain-specific three-way model merg-

ing. Our approach offers a mechanism for specifying conflict resolution patterns and applying 

them to resolve merge conflicts. Additionally, we provide an algorithm for automatically re-

solving conflicts and tools for DSL users to navigate, resolve conflicts, and generate merged 
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versions for any DSL, regardless of its abstract or graphical concrete syntax. To illustrate 

the feasibility of our approach, we have implemented it within DSMCompare (Zadahmad 

et al, 2022, 2019) , a tool that already supports domain-specific conflict detection in three-

way differencing. Furthermore, we assess the effectiveness of our domain-specific merging 

approach in comparison to model-based and line-based merging. 

The structure of this paper is as follows. In Section 2.1, we the motivation behind 

our approach and introduce a running example. In Section 3, we focus on the conflict 

resolution model, while in Section 4 we explain the specifics of the domain-specific model 

merge algorithm. We explain automatic conflict resolution in Section 5. In Section 6, we 

describe how to tailor the concrete syntax of difference models and conflict resolution rules. 

In Section 7, we discuss the manual resolution process and in Section 8 we address the model 

merge process. We evaluate our approach in Section 9. Finally, we discuss related work in 

Section 10 and conclude in Section 11. 

2. Motivation and conflict detection 

We introduce a practical running example to motivate our approach and provide a brief 

overview of domain-specific conflict detection already supported in DSMCompare. 

2.1. Running example 

We illustrate three-way domain-specific model merging using the following running exam-

ple. Consider a DSL to represent the structure of Java-based software supporting packages, 

classes, interfaces, attributes, references ( attributes other than primitive data types), and op-

erations. The relations considered between classes (and interfaces) are nesting and sub-typing 

(realization). Operations store the details of the signature as well as a string concatenating 

the entire body. A software engineer Charlie has defined the metamodel of Mini-Java im-

plemented in Ecore. It is depicted in Fig. 6. la. She has chosen a graphical concrete syntax 

inspired from UML class diagrams to represent Mini-Java models visually. Fig. 6.lb shows 

an example using the concrete syntax, that he has implemented in an Eclipse-based graph-

ical modeling editor with Sirius (Sirius, 2023a). The legend outlines the mapping between 

the graphical symbols and the metamodel concepts. He has integrated EGit (Eclipse EGit, 
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[0 .. *) nested_classes - [0 .. *I superclass El Library El Member 

n § Attribute 
u 

o name : EString [0 .. *] attributes § Class • type : EString -
o name : EString 

--- users:Member[O ... *] - id:String 

---books:Book[O ... *] 
0 borrow():void 

0 
isAbstract : EBoolean § Package = false 

[0 .. *] classifiers 
--- 1 o name: EString 

0 searchSpecialEdition():void 

---- borrowed:Book[O ... *] 
[0 .. *I interfaces 

[0 .. *] nested_interfaces l 

§ Interface - El CorporateMember 

(0 .. *I interfaces o name : EString 

u 0 reserve():void 

(0 .. *I operations 
(0 .. *I supertype El eook 

El PremiumMember 

[0 .. *] references [0 .. *I operations 
- title:String __ reserved:Book[O ... *] 

§ Operation § Reference 

o name : EString o name : EString 

[0 .. *] type o LowerBound : Elnt o parameters : EString 

• UpperBound : Elnt • type : EString 
• methodBody : EString 

- author:String 0 reserve():void 

updateBook(book:Book):void 0 renewBook():void 

(a) Metamodel of the Mini-Java DSL (b) The initial library model ( VO) 

Figure 6.1. The definition and an instance of Mini-Java 

2023) in the editor to foster collaboration using a Git-based version control system within 

the Eclipse environment. 

Consider the following collaboration scenario between two Mini-Java modelers, Alice and 

Bob. Suppose they are provided with the initial version ( VO) of a library system shown in 

Fig. 6.lb. A library has books and members. The library can update the title and authors 

of a book. A member can borrow books and search for special editions. There are two 

special types of members who can benefit from additional features. Corporate and premium 

members can reserve books. The latter can also renew book loans. 

Alice and Bob check out the VO model and modify it locally. Fig. 6.2 depicts their 

resulting versions. Alice removes the possibility to update books. She decides that searching 

is no longer restricted to special editions but to all books. To this end, she modifies the 

searchSpecialEdi tion operation accordingly and moves it to the Book class under the name 

search. She pulls up the reserve operation so that reserving books is now enabled to all 

members . Finally, she renames the renewBook operation to bookRenew. After making her 

changes, Alice commits them through EGit and requests a merge. EGit accepts the request 

and merges her model making it the new version VJ. 
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15 Library 15 Member 

users:Member[O ... *] - id:String 

El Library El Member 
- books:Book[O ... '] 0 borrow():void 

-- users:Member[O ... *] - id:String - reserved:Book[O ... *] 

--books:Book[O ... *] 

0 borrow():void 

I 0 reserve():void 

l 

EEJ Maintainable -- borrowed:Book[O ... *] --,-----I:= 

0 update(T):void 

El sook 
-. reserved:Book[O ... '] .a. 15 PremiumMember I 

I - borrowed:Book[O ... * ] 
- title:String ,i) 

-- 15 sook reserve():void 

- author:String 
El PremiumMember 

- title:String - 0 premiumRenew{):void 

search() :List< Book> - 0 bookRenew():void 
- author:String 

update(book:Book):void 15 CorporateMember 

El Corporate Member 
--

..... 0 reserve():void 

15 BasicMember - 0 searchSpecialEdition():void 

(a) Vl (b) V2 

Figure 6.2. Alice (VJ) and Bob's ( V2) versions of the library system 

As shown in Fig. 6.2b, Bob refactors the model differently. Member is now a generic 

abstract class that comprises a third type of basic members. Consequently, he pushes downs 

the searchSpecialEdi tion operation to be available to corporate members only. He creates 

a Maintainable interface to update books and renames the updateBook operation to conform 

to the new interface. Since renewing loans is specific to premium members , he renames 

the operation renameBook accordingly. After completing his work, Bob requests a merge. 

However, EGit rejects this merge request because Bob's model is incompatible with the latest 

version, Alice's Vl. Being a line-based version control system, EGit reports the differences 

and conflicts at the XMI level. Consequently, comprehending, resolvling various conflict 

types, and merging models become challenging for Bob. To resolve this issue, Charlie aims 

to provide them with a domain-specific model comparison and merging tool to alleviate these 

challenges. 
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2.2. Detecting differences with DSMCompare 

DSM Compare (Zadahmad et al, 2022) is a tool that compares and detects conflicts in 

domain-specific models. It sets itself apart from tools like EMFCompare (Brun and Pieran-

tonio, 2008) and EMF DiffMerge (DiffMerge, 2023) by using a domain-specific approach. 

Unlike these tools, DSMCompare utilizes the same concrete syntax as the original DSL 

when presenting differences and conflicts. Furthermore, it can identify conflicts between 

coarse-grained differences (i.e., semantic differences) and between semantic differences and 

fine-grained differences. As a result, it hides fine-grained differences or conflicts between 

fine-grained differences that are irrelevant to domain experts. 

To seamlessly integrate DSMCompare into the Mini-Java editor, Charlie supplies as in-

puts to DSMCompare the Ecore metamodel of the DSL and odesign representation de-

scription, which defines the concrete syntax of Mini-Java in Sirius. DSMCompare then 

automatically generates a domain-specific model comparison tool designed specifically for 

comparing Mini-Java models , a.k.a. MiniJavaCompare. 

MiniJavaCompare is tailored to the unique characteristics of Mini-Java models and allows 

for efficient and accurate model comparisons. Moreover , it provides two editors generated 

sf Semantic conflict 

·-·-·-·-·-5 i Push-down Method - Move And Rename Method 
,...f. 
··-..: 

·-·-·-5 i Extract Interface - DELETE update Book() 
,...f. 
··-..: §?!:-----~ 

; 

0 BasicMember t El Member 

- id:String 
r=------,L__,J 
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borrowed:[O ... •] 

0 reserve():void 0 borrow():void 

El Library 

~ booksc[O ... •J 

~ users:[O ... *] 

I._ ~ Pull-up Method - Add lnhedtance 

J_ Semantic difference I j 
------;.;, ~:~;~~~;:~;:;;~;~;~~;;,~~;~···· ·········~·~~;~~~·i~~~;~······· 

.. .!+. j 
1--------P-ull--up_ M_et-ho---;d 1~ J--••••••••••••••••••1 
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.. • •• 
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• .. .!+. -------
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Move And Rename Method • 5 :, ................................. •••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• ................................... .. 

:.,r.;-,1' 
~---------------;~.!+: j 
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Figure 6.3. The three-way difference model Diffo12 between VO, Vl, and V2 
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based on the original DSL. The first editor, the Diff012 model editor, facilitates the represen-

tation of differences, including semantic differences. Fig. 6.3 displays a portion of the editor 

for the running example. We notice that the concrete syntax of the difference model is sim-

ilar to the original DSL, making it easier to comprehend the differences. MiniJavaCompare 

enhances clarity by using three default icons: + for additions, x for deletions, and ~ for 

modifications which are color-coded to distinguish the provenance of the changes (Vl in blue 

and V2 in purple in Fig. 6.3) . Charlie, in her role as the DSL engineer, has the flexibility 

to customize these graphical representations according to the specific needs and preferences 

of the Mini-Java domain. Apart from visualizing the differences , the editor provides mech-

anisms to edit and resolve differences between Mini-Java models. Additionally, it catalogs 

semantic differences. A semantic difference semantically lifts fine-grained differences by ag-

gregating them, hiding some of them, and assigning an interpretation to this encapsulation 

tailored to the semantic domain of the DSL. For Mini-Java, the semantic of changes can 

be interpreted as a refactoring pattern. For example, it reports that Alice (Vl in blue) has 

pulled-up the method reserve . To report these semantic differences , MiniJavaCompare must 

be aware of how to detect them. 

The second editor available in MiniJavaCompare enables Charlie to define custom se-

mantic differencing rules, SDRules, tailored specifically to the DSL. Fig. 6.4 displays the 

Pull-up Method SDRule. This rule is triggered when an operation is removed from a sub-

class and added to its superclass. If such a situation occurs in the Diff012 model, the rule 

creates a semantic difference object with a descriptive name that reflects the intent of the 

semantic change. It also filters the deleted association from the subclass to the operation. 

Filtering is applied at the concrete syntax level to decrease the verbosity of the reported 

5 Semanf c difference - 2 5 

1 !!,!!,_,.. 3 . s • Pull-up Method • ii. . . . . . . . ·• 
6 

< <fi'llter>> 

,Legend: 
LJ Class O Ojpenrtion 

Figure 6.4. Pull-up Method semantic differencing rule 
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differences. Using this editor, Charlie defines 18 SDRules corresponding to object-oriented 

refactoring patterns within the Mini-Java domain. Fig. 6.3 shows that Alice has performed 

three semantic differences: Pull-up Method of operation reserve from CorporateMember and 

PremiumMember , and Move and Rename Method of operation searchSpecialEdition. Mini-

JavaCompare reports two semantic differences from Bob: Push-down Method of operation 

searchSpecialEdi tion, and Extract Interface of Maintainable. Both users also performed 

Pull-up Reference of reserveds from PremiumMember shown in green. 

2.3. Detecting conflicts with DSMCompare 

Recall the collaboration scenario when Bob's merge request failed because of conflicting 

changes. Upon requesting a merge, EGit utilizes the API to call upon MiniJavaCompare. 

It passes the versions the latest version (Vl), the new version (V2) , and t heir common 

ancestor (VO) of the library model as arguments. MiniJavaCompare, in turn, invokes the 

calculation of the domain-specific differences and conflicts. If there are conflicts that require 

user intervention, MiniJavaCompare reports the Diff012 model to Bob in a dedicated editor. 

Equivalent changes (not requiring user intervention) are shown in green. 

Out of the six semantic differences shown in Fig. 6.3, MiniJavaCompare identifies three 

conflicts among them. One conflict shows that Bob's Extract Interface semantic difference 

contradicts Alice 's deletion of the update operation. This is an example of a conflict between 

a semantic difference and a fine-grained difference (a.k.a. semantic-fine conflict). Another 

conflict shows that Alice's Pull-up Method contradicts Bob's addition of inheritance to from 

the BasicMember to the Member classes. This is also a semantic-fine conflict. The third 

conflict shows that Alice 's Push-down Method contradicts Bob's Move and Rename Method 

of the searchSpecialEdi tion operation. This is a conflict between semantic differences 

( a .k.a. semantic-semantic conflict). Lastly, conflicts between fine-grained differences 

( a .k.a. fine-fine conflict) are surrounded with a red box in Fig. 6.3. One of the fine-fine 

conflicts indicates that Alice and Bob have renamed differently he renewBook operation. The 

other fine-fine conflict indicates that Alice has deleted the update operation whereas Bob 

has renamed it. 
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2.4. How DSMCompare detects differences and conflicts 

We highlight the main internal workings of DSMCompare to explain how it computes 

three-ways differences and conflicting changes (see (Zadahmad et al, 2022) for a detailed 

explanation). DSMCompare expands the original DSL metamodel, referred to as MM, to 

incorporate semantic changes and conflicts in a three-way context. The core concept is 

to retain the inherent structural features and style of the original DSL, aligning with the 

fundamental essence of the DSL (Zadahmad et al, 2019). This process involves creating a 

new metamodel, labeled DSDiffMM, designed to capture specific data elements essential for 

three-way comparison. These elements encompass authorship details, changes in single- and 

multi-valued attributes and associations, detailed fine-grained and semantic differences , and 

various types of conflicts. Similarly, DSMCompare expands the original DSL concrete syn-

tax, referred to as CS , to visualize the differences and conflicts in a graphical form. It creates 

a new concrete syntax definition DSDiffCS adapted to the DSDiffMM metamodel. This con-

crete syntax introduces a layering mechanism to view all differences , semantic differences , or 

conflicts, as well as layouting algorithm to group semantic differences and semantic conflicts. 

To compute differences , DSMCompare relies initially on the EMFCompare API to report 

all fine-grained differences. With this information, it can construct the Diffo12 model as an 

instance of DSDiffMM. It consolidates the changes from both versions in each model element. 

For example, each class of DSDiffMM holds a couple indicating the change operation performed 

in Vl and V2 (e.g., MODIFY-DELETE). Each attribute of DSDiffMM has a triplet holding 

the old value (from VO) , the latest value (from Vl), and the working value (from V2). 

To apply semantic differencing, the user defines SDRules graphically in a dedicated editor 

generated to specify the structural pattern that needs to be found in Diff012 model, the 

name of the semantic difference, and the fine-grained differences related to the semantic 

difference that can be hidden. SDRules are subsequently transformed into Henshin graph 

transformation rules (Struber et al, 2017) , facilitating their application to the Diffo12 model. 

Since multiple SDRules may overlap on the same fine-grained differences , a strategic ordering 

of the application of the transformation rules maximizes the number of SD Rules to be applied 

while minimizing the number of remaining fine-grained differences (Zadahmad et al, 2019). 

Computing contradicting conflicts between fine-grained differences is trivial with DSM-

Compare. For each model element, it simply compares the changes from each version and, if 
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they are different, they are marked as CONTRADICTING. To detect semantic-semantic and 

semantic-fine conflicts, DSMCompare uses a more advanced conflict and dependency anal-

ysis of the Henshin rules (Zadahmad et al, 2022). All these operations update the Diff012 

model incrementally until the final model is presented to the user, like in Fig. 6.3. 

2.5. Requirements for domain-specific model merging 

To merge the changes into the successive version, Bob needs to resolve all the semantic 

and fine-grained conflicts. We list the following requirements to handle conflict resolution 

and model merging in the context of three-way model versioning for domain-specific models. 

The list stems from our experience in using line-based (de la Vega and Kolovos, 2022) and 

model-based (EMF Compare, accessed August 2023; Sharbaf and Zamani , 2020) version con-

trol systems, model merging techniques (Brosch et al, 2012c; Mansoor et al, 2015) , research 

opportunities identified in a recent survey (Sharbaf et al, 2022b) , and the feedback from users 

of an early version of DSMCompare. 

Req 1. DSL users manage conflicts in an environment familiar to their DSL. It provides 

DSL users with a conflict management environment that aligns with their DSL's 

syntax and semantics, ensuring a familiar and intuitive experience. By doing so, 

we aim to enhance user productivity and reduce cognitive overhead, as users can 

leverage their domain-specific knowledge to efficiently resolve conflicts. Consequently, 

we anticipate that this tailored conflict resolution environment will lead to more 

accurate and context-aware conflict resolutions, ultimately improving the quality and 

reliability of the merged models. 

Req 2. The tool manages fine-grained and semantic conflicts. It addresses conflicts at 

various levels of granularity within the models. 

Req 3. The tool resolves automatically trivial changes performed by one or both ver-

sions. It reduces manual effort and expediting merging. This feature streamlines 

conflict resolution for straightforward modifications. 

Req 4. The tool resolves automatically semantic conflicts when the appropriate reso-

lution strategy is available. It enables automatic semantic conflict resolution, relying 

on predefined conflict resolution rules for efficient and accurate conflict handling. 
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Req 5. The tool proposes semi-automatic resolutions offering predefined choices to the 

user. This approach simplifies the decision-making process by providing structured 

choices, reducing the manual effort required. 

Req 6. The tool supports manual resolution of unresolved conflicts to enable custom 

changes during the merge process. This capability allows users to intervene when 

necessary, ensuring flexibility in handling unique conflict scenarios during the merg-

ing process. 

Req 7. Users navigate between conflicts and explore fine-grained conflicts underlying 

coarse-grained conflicts. It provides a comprehensive view of the conflict resolution 

process, empowering the user to navigate and understand the main intentions of 

changes at different levels of granularity. As a result , it enhances the user's control 

and confidence in the merging process. 

Req 8. Users undo previous resolution decisions for each conflict and modify their resolution 

choices. This feature empowers users to align conflict resolutions more closely with 

evolving requirements or unanticipated changes in project goals. 

Req 9. To handle conflicts in large models or when there is a significant amount of conflicts, 

users save partial resolutions, allowing them to resume the merge process at their 

convenience. It enables the user to effectively manage and prioritize their conflict 

resolution efforts. 

Among the currently available tools compatible with the Eclipse Modeling Framework 

that we have evaluated (DSMDiff (Lin et al, 2007), DiffMerge (DiffMerge, 2023), E3MP 

(Sharbaf and Zamani, 2020), EMFCompare (EMF Compare, accessed August 2023), and 

DSMCompare) , DSMCompare stands out as the only tool supporting domain-specific three-

way comparisons that can be interactively manipulated through an APL Therefore, we choose 

DSMCompare to showcase our domain-specific approach for conflict resolution and merg-

ing. In particular, the remaining sections elaborate on how to address the abovementioned 

requirements. 

3. Conflict resolution model 

In this section, we present the data structure needed to resolve conflicts and merge the 

differences in a domain-specific way. To support the resolution of conflicts, we adapt the 
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model used to track three-way differences and detect conflicts in DSMCompare according to 

the requirements in Section 2.5. First, we review the existing difference metamodel generated 

with DSM Compare, then we explain how we extend it to support conflict resolutions. Finally, 

we describe how we create a conflict resolution rule metamodel to automatically resolve 

conflicts involving semantic differences. 

3.1. Domain-specific difference metamodel 

As explained in Section 2.4, the Di.ff012 model conforms to a metamodel DSDiffMM that 

captures the differences between three model versions tailored to the original DSL. Fig. 6.5 

depicts a fragment of the DSDiffMM metamodel that DSMCompare generates for the Mini-

Java example. Based on the original metamodel of Mini-Java, it adds the following elements 

to create DSDiffMM. To keep track of changes made by Vl and V2 to a class C with respect 

to the common ancestor, it adds a new DiffC class. For example, in Fig. 6.5 , DiffClass 

inherits from Class . 

Furthermore, it creates a DiffAsc class to denote changes associated with the original 

association Ase. This is the case with the DiffClass_superclass intermediate class repre-

senting differences related to the superclass association. The outgoing targetCA association 

ResolutionStatus 

§ SemanticDiff I - Pending 
- Resolved 7 Cy> author: AUTHOR "' NIL I 

[O .. *) semanticdiffs 

§ SemanticConflict 

- Cjl conflictType: ConflictType = NIL 
? conflictGranularity: conflictGranularity = NIL 

[O .. *] semanticconflict 

§ ConflictResolution 

- ? status : ResolutionStatus = Pending 
? strategy: ConflictResolutionStrategy = NIL 

SemanticObjed [O .. • ] SemanticObject_OiffClass_superclass 

? name : EString [O .. "] SemanticObject_ Class 

AUTHOR ConflictType conflictGranularity MergeKind ConflictResolutionStrategy 

- NIL - NIL - NIL - NIL - Nil 
- LEFT - EQUIVALENT - Semantic-Semantic - MERGE-ADD - Keep Left 
- RIGHT - CONTRADICTING - Semantic-Fine - MERGE-DELETE - Keep Right 
- EQUAL ~---~ ~----~ - MERGE-MODIFY - Keepsemanticdifference 

§ OiffClass_superclass 

19, diffKind : OiffKind = NIL 

7' conflictType: ConflictType = NIL 
r-------t 7' isMerged : EBoolean = false 

? diff_Group: EString 

o7.'n mergeKind : MergeKind = NIL 

- Discard all 
DiffKind - Apply Left then Right 

- Apply Right then Left 
- NIL - Automatk 
- ADO - Custom 
- DELETE 

- MODIFY 

[0 .. 1 I tugetCA l l [1 .. 1 I ta,get 

§ Class 

[0 .. "J diffsuperclass 

c:::J name : EString 
c:::J isAbstract: EBoolean = false 

l 
[O .. "J superclass 

§ DiffClass 

1~ n diffKind: OiffKind = NIL 
1<1-----1 'T conflictType: ConflictType = NIL 

7' isMerged: EBoolean = false 

1~n new_name: EString 
? nameConflictType: ConflictType = NIL 

1~ n new_isAbstract : EBoolean 

l---10._.•1_••_m_••-tic-Ob-1ect ___ oif_lC_
1
• •_• ------------------- ? isAbstractConflictType: ConflictType"' NIL 

,__ ___ _, o7.'n mergeKind: MergeKind = NIL 

Figure 6.5. A fragment of the domain-specific difference metamodel DSDiffMM for Mini-
Java. The adaptations to handle conflict resolutions are in blue (modified) and red (new). 
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denotes the original target in the common ancestor and the target association denotes the 

changed target of association. 

To track changes in attribute values, DSMCompare creates a new array of size two 

typed with the original attribute type. For example, in DiffClass, the isAbstract attribute 

holds the value from CA and the new_isAbstract attribute holds the value from Vl in 

the first index and from V2 in the second index. Both DiffC and DiffAsc classes have an 

attribute of type conflictType to represent the conciliation of the changes from Vl and V2: 

CONTRADICTING means that the changes are conflicting and EQUIVALENT means the 

changes are compatible or similar. 2 Similarly, each attribute A is also associated with a new 

attribute AConflictType to track the change status of its value modified in Vl and V2. To 

store how each version has changed a model element, the DSDiffMM uses an array of size two 

called DiffKind indexed from left (Vl) to right (V2) order. The kind of changes can be ADD 

if a new element is created in a version, DELETE if an element is removed from a version, 

or MODIFY if an attribute value or an association has changed. 

To represent semantic differences , DSMCompare uses the SemanticDiff class. It employs 

an Author enumeration to keep track of the version accountable for each change. The values 

LEFT and RIGHT represent the two versions, while EQUAL indicates that both versions 

applied the same semantic change. The SemanticDiff class is also associated with all DiffC 

classes, thereby tracking which fine-grained differences are involved in a semantic difference. 

Finally, the SemanticConflict class tracks all contradicting and equivalent semantic-semantic 

and semantic-fine conflicts. 

This data structure enables the Diff012 model to capture all differences and conflicts. 

However, it is not capable of handling the resolution of those conflicts and merging the 

differences. 

3.2. Support for conflict resolution 

There are various solutions to support automatic and manual conflict resolution due 

to concurrent changes (Sharbaf et al, 2022b). One viable approach is to isolate individual 

conflicting fine-grained differences from Diffo12 and apply a dedicated mechanism for their 

2In all the enumerations of the DSDiffMM metamodel, NIL is used as default value or when there is no change 
in one of the versions. 
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resolution and merge independently from the context (Westfechtel, 2014). However, particu-

lar scenarios necessitate a deeper contextual understanding beyond the scope of structurally 

related elements. Consequently, we opt to enhance the DSDiffMM metamodel by incorporat-

ing conflict resolution management concepts. This augmentation ensures the comprehensive 

consolidation of all pertinent information within a unified framework (Req 1). 

3.2.1. Conflict granularity 

Fig. 6.5 depicts the main concepts we have introduced in the DSDiffMM metamodel related 

to conflict resolution management. We augment the DSDiffMM with a conflict resolution object 

that can be associated with semantic conflicts and fine grained conflicts (DiffC and DiffAsc 

classes). This way, semantic-semantic, semantic-fine and fine-fine conflicts can be resolved 

individually (Req 2). 

In order to facilitate effective conflict resolution and access for users, it becomes impera-

tive to represent conflict resolution through an object. In response to this requirement, we've 

introduced the ConfiictResolution class, designed to encapsulate a conflict resolution object. 

This class specializes from SemanticObject and inherits a name attribute, which serves the 

purpose of assigning a meaningful name to represent the semantic resolution. 

Furthermore, the class incorporates attributes such as status, categorized under Resolu-

tionStatus, and strategy, classified as ConfiictResolutionStrategy. Additionally, a multi-valued 

association links it with SemanticConfiict, effectively annotating the engaged semantic con-

flicts. 

3.2.2. Resolution strategies 

The primary requirement is to offer the adoption of appropriate strategies for resolving 

conflicting elements (Req 3)- (Req 6). Common strategies in version control systems and 

model-based tools, like EMFCompare, offer to choose between the changes from one version 

or the other, thereby prioritizing one version's intention over the other. This typically applies 

when there are conflicts at a fine-grained granularity. However, we also need to support 

scenarios involving semantic differences. For example, as shown in Fig. 6.1 , the conflict 

Push-down Method - Move And Rename Method occurs between two semantic differences. 

In this case, favoring one of the semantic differences entails resolving all the conflicting 
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fine-grained differences associated with it. Therefore, we introduce eight conflict resolution 

strategies (see the ConflictResolutionStrategy enumeration in Fig. 6.5). 

Alongside preferring left or right versions, users can adjust the sequence of change appli-

cation with, e.g., Keep Left then Right (Req 5). In some cases, users may want to fall back to 

the common ancestor version and Discard all choice is provided. In addition, DSMCompare 

supports advanced scenarios where frequent conflicts occur within a domain, and established 

resolutions exist. DSL engineers , like Charlie in our example, can specify these recurrent 

conflicts and define Automatic resolutions (Req 4). DSMCompare supports heuristic-based 

resolutions. For instance, in the case of a semantic-fine conflict , a semantic difference in one 

version contradicts a fine-grained difference in another. One heuristic is to interpret that a 

semantic change reflects a more carefully though intention, whereas a conflicting fine-grained 

change by the other user may have been a mistake, an oversight, or a corrective patch. There-

fore, the user may decide to Keep semantic difference, in which case the semantic change 

prevails. Finally, some conflicts can only be resolved with a given context and the resolution 

is specific to a particular change in the given model. In such cases, the user needs to preform 

manual adjustment with a Custom resolution during merge time (Req 6). 

3.2.3. Tracking modifications to merge 

When a conflict is resolved automatically or manually ( automatic and custom resolution), 

DSMCompare needs to keep track of the new changes in the Diff012 model to perform the 

merge properly (Req 6). Therefore, every element of the DSDiffMM includes a conflictType 

that tracks if the conflict is equivalent or contradicting. In addition, every element of the 

DSDiffMM includes a MergeKind that tracks the the kind of change for the merge: MERGE-

ADD for additions of DiffC and DiffAsc classes, MERGE-DELETE for their deletion, and 

MERGE-MODIFY for their modification as well as modifications of attributes and associa-

tions. 

3.2.4. Partial merge 

Dealing with a difference model containing an extensive amount of conflicting situation 

between versions is not uncommon, for example as a result of a major refactoring of the 

model. The model, such as Alice, may not have the time to resolve all conflicts during one 
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contiguous session, and only resolve some conflicts and leave others for a later time. There-

fore, DSMCompare must offer the ability to resume the merge process and, more specifically, 

to distinctly discern between resolved and pending conflicts (Req 9). The ResolutionStatus 

enables to track whether each individual conflict is Resolved or still Pending. 

The ResolutionStatus addresses conflict resolutions associated with a conflict of different 

granularity. However, we also need to effectively annotate the merge status of fine-grained 

conflicting differences within the broader scope of conflict resolution. To address this re-

quirement, for each diff class like DiffC or Di.ff Ase, we have added two new attributes. The 

attribute isMerged is included to indicate whether the changes have already been integrated 

into the final merge model ( Vo12). 

3.3. Conflict resolution rule metamodel CRRuleMM 

With the new extension, the DSDiffMM metamodel can now effectively represent con-

flict resolution concepts. However, in specific domains , conflicting patterns frequently arise, 

and proven solutions exist for their automatic detection and resolution. DSL users require 

domain-specific practices to specify and automatically resolve conflicts. Thus, we define a 

ConflictResolutionStrategy C: MergeKind DiffKind ConflictGranularity ConflictType AUTHOR ResolutionStatus 

- Pending 

- Keep Left - MERGE-ADD - ADD - Semantic-Semantic - EQUIVALENT - LEFT - Resolved 

- Keep Right - MERGE-DELETE - DELETE - Sem;mtic-Fine - CONTRADICTING - RIGHT 

- Keep semantic difference - MERGE-MODIFY - MODIFY - EQUAL 

- Discardall 
- Apply Left hen Right 
- Apply Right then Left 
- Automatic 

§ Pattern_SemanticDiff I (0 .. "J SemanticObject_Class (0 .. •( SemaatkObject_Opmt;oa l (0 .. "J SemanticObject_DiffClass_operations [0 .. "] SemanticObject_DiffOperation 

-I '? author : AUTHOR= NIL I r [O .. *] semanticd ifu 

§ Pattern_SemanticConflict I 

1,....-,~-§-,-,tt,-m-_Op_m_do-a -----,I 

I
~ IDPattern:Elnt 
c N;C_Group: Elnt = - 1 I 

n cp conflictType: ConflictType = NIL I 
? conflictGranularity: Confl ictGranularity = Nil (O •• *) operations l (0 •• •( ,emaatk,oamct, 

(1 .. 1]target [0 .. 1] targetCA 

§ Pattem_ConflictResolution 

? status : ResolutionStatus = Pending 
? strategy: ConflictResolutionStrategy = Nil 

l,__ ___ §_Pa_tt_,m __ c_,.,_, __ ___,I [0 .. 2] diffoperations 

l ? IDPattern: Elnt • ----....i-;::;-:;:-:=-:::-::;:::---------j 
c N;C_Group: Elnt = -1 I ~;~::::~ = - 1 

? filter: EBoolean = false i 

§ Pattem_DiffClass_operations 

§ Pattern_DiffClass I [0 .. "] rulePattern_Pattern_C1ass 
L.....t:i Pottern_SemonticObjed (O .. *]SemanticObject_DiffClass 
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Figure 6.6. A fragment of Min-Java Conflict Rule Resolution metamodel (CRRuleMM) 
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conflict resolution rule as a predefined strategy governing the identification and resolution 

of conflicts. The details of conflict resolution rules are provided in section 5.2.1. This rule 

encompasses two components: the conflict specification pattern and the conflict resolution 

pattern. To fulfill this need, we automatically generate a DSL that includes the Conflict Res-

olution Rule metamodel ( CRRuleMM) and its corresponding concrete syntax ( CRRuleCS) 

from the DSDiffMM metamodel and its concrete syntax (DSDiffCS). We proceed as follows: 

Fig. 6.6 illustrates essential components and relationships within the generated conflict 

resolution metamodel ( CRRuleMM) for the Mini-Java DSL. This generation is an automatic 

process facilitated by DSMCompare. The purpose of this metamodel is to provide a structured 

framework for defining and applying conflict resolution rules. 

The DSL engineer needs to easily recognize and associate specific conflict scenarios 

with their intended resolution patterns. Therefore, we need to align meta-elements in 

DSDiffMM with corresponding elements in CRRuleMM. Therefore, each class C in DSDiffMM 

corresponds to a pattern class Pattern_ C in CRRuleMM. As depicted in figure 6.6, 

Pattern_DiffClass_operations generated shows the pattern class for the operations 

association and Pattern_DiffClass represents Class. To uniquely identify objects, we create 

for each Pattern_C additional attributes depicted by ID_Pattern. 

To satisfy the user's need for a structured mechanism to define conflict resolution rules , 

we include in the CRRuleMM a root class called Rule. It contains a constraint to restrict 

the applicability of a conflict resolution pattern based on attribute value changes. It is 

also associated with all elements in DSDiffMM to encapsulate flexible and robust conflict 

specification and conflict resolution patterns. 

Since the DSL engineer user may also want to filter some unnecessary fine-grained dif-

ferences to decrease the verbosity. To address this, for each Pattern_ C we introduced 

an attribute filter when set to true, results in hiding the applied fine-grained difference. 

Additionally, the rule could encompass negative application conditions (NACs) aimed at 

prohibiting the existence of certain elements (Ehrig et al, 2006). We introduce a NAC_group 

attribute to all classes prefixed with Pattern_. Much like certain transformation languages 

(Arendt et al, 2010), a set of rule elements assigned the same NAC_group value collectively 

forms a NAC. Several values of this attribute are employed to denote multiple NACs within 

the rule, each of which must remain unmatched for the rule to be deemed applicable. 
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4. The domain-specific model merge algorithm 

Algorithm 7 The domain-specific model merge workflow 
1: procedure CONFLICTRESOLUTION(Diff012, Vo12) 
2: if Diff012 = 0 then 
3: Choose Vo, Vi, Vi / /Three versions of a domain-specific model 
4: Diffo12 f---- calculateDiff( Vo, Vi, Vi) 
5: end if 
6: if Vo12 = 0 then 
7: Vo +---- Load( "VO") 
8: V012 +---- CLONE( Vo) 
9: Diffo12 f---- MERGETRIVIALCHANGES(Diffo12, Vo) 

10: Diff012 f---- ApplyPrio(Diffo12 , HCRRules) //Priority: pre-defined rules 
11: Diffo12 f---- Resolve(Diffo12) / /Resolve and Merge 
12: end if 
13: Conj f---- GetNextConfiict(Diffo12) 
14: while Conj=/=- r/J do 
15: Manually choose a strategy for a Conj (conflict) or do custom changes 
16: Conj +---- GetNextConfiict(Diffo12) 
17: end while 
18: Diffo12 f---- Resolve(Diffo12) 
19: end procedure 

The workflow presented in Algorithm 1 outlines our domain-specific approach to conflict 

resolution and merging, catering to the needs of users in handling version differences and 

model updates. The process involves two primary inputs: DifjD12, representing differences 

between versions, and V012, denoting the resulting merged version. 

The workflow starts by checking if there are any differences in Di.ffo12- In case there 

are not, the algorithm guides the user through selecting three versions of their domain-

specific model: Vo, Vi, and V2, with VO serving as a common ancestor. These versions are 

then compared using calculateDiff, which produces the DifjD12 file detailing fine-grained and 

semantic differences, conflicts, and equivalences. 

If DifjD12 is not empty but V012 is, the algorithm assists the user in loading VO and 

creating the initial V012. It further streamlines the process by merging non-conflicting and 

equivalent differences through the application of the MergeTrivialChanges method to DifjD12. 

The specifics are elaborated in Section 5.1. Furthermore, it calls the ApplyPrio method to 

enforce the predefined (i.e., priority) conflict resolution rules. The ApplyPrio function applies 

all the predetermined HCRRules, updating the DifjD12 model. The details are explained in 
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Section 5.2. With the Diff012 model incorporating all the changes resulting from automatic 

conflict resolution, the Resolve method is employed to generate the subsequent version, V012 

Upon integrating these resolutions, the algorithm enters a user-guided loop to address 

remaining conflicts. It systematically retrieves conflicts using GetNextConfiict, allowing the 

user to choose strategies or introduce custom changes via MiniJavaCompare until either all 

conflicts are resolved or the user decides to stop. This iterative process empowers users to 

maintain control over conflict resolution, ensuring a tailored approach. Additionally, the user 

can restart the workflow when convenient without losing outcomes or repeating completed 

tasks. Details are available in Section 7. 

Ultimately, after resolving all conflicts, the algorithm concludes with a final resolve and 

merge operation invoked through the Resolve method. Additional details are furnished in 

Section 8. 

5. Automatic conflict resolution 

Automatic resolution includes two parts: merging the trivial changes, Section 5.1, and 

resolving the conflicts with priorities, Section 5.2. 

5.1. Initial merged version from trivial differences 

To construct the Vo12 model from trivial changes, DSMCompare needs to integrate the 

trivial changes from both branches ( VJ and V2). The Algorithm 8 outlines the procedure. 

The Merge Trivial Changes algorithm iterates through the sorted list of differences. The 

sorting of differences ensures that changes are applied based on their dependencies, prevent-

ing inconsistencies and errors. For instance, changes to classes should be applied before 

changes to attributes , associations, or contained objects , preserving the intended relation-

ships and preventing conflicts. 

Then, it checks for conflicting contradictions and applies or removes differences accord-

ingly. The algorithm ensures that only non-conflicting and equivalent changes are merged 

into the successive version, while contradicting conflicts are excluded. An equivalent change 

indicates similar change edits to the same element done by both branches. 

The IsRealConflicting function examines conflicting dependencies, while the 

IsRealContradicting function confirms if a conflicting difference is contradictory. As 
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Algorithm 8 Merge Trivial Changes 

1: procedure MERGETRIVIALCHANGES(Diffo12 , V012) 
2: sortedDifferences f---- SORTDIFFERENCES(Diffo12) 
3: for each di.ff in sortedDifferences do 
4: if not IsREALCONFLICTING( di.ff) then 
5: if diff.diffKind = ADD or diff.diffKind = MODIFY then 
6: diff.applyTo( Vo12) //Merge 
7: else if diff.diffKind = DELETE then 
8: Remove( di.ff) 
9: end if 

10: end if 
11: end for 
12: end procedure 
13: function IsREALCONFLICTING( di.ff) 
14: for each dependency in diff.getDependency() do 
15: if dependency.confiictKind = CONFLICTING then 
16: if IsRealContradicting( dependency) then 
17: return true 
18: end if 
19: end if 
20: end for 
21: return false 
22: end function 
23: function ISREALCONTRADICTING( confiictingDiff) 
24: if confiictingDiff.diffKind = MODIFY and confiictingDiff.getConfiict() != null and 

confiictingDiff.getConfiict().confiictKind = CONTRADICTING then 
25: return true 
26: end if 
27: return false 
28: end function 
29: function SORT DIFFERENCES( differences) 
30: sortedDifferences +- Copy( differences) 
31: sortedDifferences.sort( Comparator(>-.diffl, diff2: 
32: return 1 if HasDependency( diffl, diff2) else 
33: if HasD ependency( diff2, diffl) else 0)) 
34: return sortedDifferences 
35: end function 
36: function HASDEPENDENCY( sourceDiff, targetDiff) 
37: return sourceDiff.getDependancy().contains(targetDiff) 
38: end function 

shown in figure 6.1, only Bob's introduction of the new class BasicMember and inter-

face Maintainable is not contradictory. All other changes have syntactic or semantic 

contradictions. Consequently, at this stage, only these specific changes are eligible for 

merging. 
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5.2. Manage priorities 

In Section 3, we described how DSMCompare automatically generates CRRuleMM. In 

this section, we elaborate on how DSMCompare users can utilize the DSL generated from 

CRRuleMM to formulate conflict resolution rules and apply them for conflict resolution. 

Initially, we establish a clear definition of conflict resolution. Subsequently, we delineate the 

specification of automatic resolution rules within the context of three-way domain-specific 

model differencing. Additionally, we expound upon the process of Synthesis of automatic 

resolution rules. Furthermore, we explain how DSMCompare supports automatic resolution 

for different kind of semantic conflicts. 

5.2.1. Definition of conflict resolution 

In DSMCompare, a conflict resolution is defined as 
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SD= (Meaning, Constraints , Context,DiffKind). 

Constraints represent a collection of constraints applied to a list of elements within the 

Di.ff012 model. For instance, as illustrated in Fig. 6. 7a, these constraints are visualized as a 

graph, accompanied by a condition that the graph pattern must adhere to. 

DiffKind consists of a list of fine-grained differences present in Constraints. This list is 

used to specify the fine-grained differences that are created, removed, or modified during the 

application of a conflict resolution pattern. 

Context denotes a list of elements within Constraints. These elements pertain to the con-

flict resolution after the lifting process, providing a contextual backdrop to the interpretation 

of the conflict resolution's meaning. 

Meaning is a string expressed in the vocabulary of the conflict resolution of the DSL and 

the conflicts in the editing semantics of the Constraints. It is the interpretation of solving 

the semantic conflicts. 

- Semantic conflict pattern (Conflict Specification) 

Conflicts involving semantic differences can encompass multiple fine-grained elements 

that contradict each other (Zadahmad et al, 2022). A semantic conflict can arise between two 

semantic differences or between a semantic difference and a fine-grained difference. More-

over, we also categorize cases as semantic conflicts in which a semantic variation doesn't 

include any fine-grained contradictory difference but still violates the domain 's semantics. 

For instance, as shown in Fig. 6.1, Pull-up Method - Add Inheritance represents a semantic-

fine conflict, whereas Push-down Method - Move And Rename Method is a semantic-semantic 

conflict. Additionally, in this example, the latter conflict cannot be identified through syntax. 

We define conflicts using a graph composed of elements from a DSDiffMM metamodel. 

These elements fulfill a combination of relations between elements and constraints, where 

each constraint outlines the satisfaction of a precise condition among the elements of the 

conflict pattern. The elements can cover various types , including fine-grained differences, 

semantic differences , and semantic conflicts. The presence of the defined specification within 

the DSDiffMM metamodel designates a semantic conflict pattern. 

The aggregation of fine-grained differences , semantic differences, fine-grained conflicts , 

and semantic conflicts is stated in the pattern of the conflict resolution rule as a set of 

constraints ( c.f. the Constraints component of the definition of SD). 
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For instance, Fig. 6. 7a illustrates the Pull-up Method - Add inheritance conflict resolution 

rule CRRule. In this example, the conflicting situation can be described as follows: In one 

version, a method (M) is pulled up from subclasses to the parent class. In another version, 

an inheritance relationship to the parent class is introduced from a separate class (D), which 

does not initially contains the method (M) (Brosch et al, 2010b). 

As illustrated in Fig. 6. 7a, we specify the semantic conflict pattern of the CRRule as 

follows: A semantic conflict should have the name Pull-up Method - Add inheritance (labeled 

2). The semantic conflict must have an outgoing association to a semantic difference with the 

name Pull-up Method (labeled 3). It must also have another association with an instance of 

DiffClass_ supertypes (labeled 14) which represents the contradictory Add inheritance part. 

The semantic difference must be associated with the pulled method (labeled 5) and it should 

be contained in the subclass (labeled 4). The DiffClass_ supertypes must be associated with 

the superclass (labeled 12). 

The superclass must contain an instance of DiffClass_ operations (labeled 11) associated 

with the pulled method. As depicted in the condition, both DiffClass_ supertypes and Diff-

Class_operations should be added from different versions based on the value of the author 

in the semantic difference. 

- Conflict resolution pattern 

The conflict resolution pattern forms a graph ( Cicchetti et al, 2008b; Sharbaf and Zamani, 

2020). The root element within the graph represents a conflict resolution with a meaningful 

name and a conflict resolution strategy. Typically, the name conveys the semantic pattern 

and the solution provided for it. The resolution strategy specifies the decision made either 

by the DSL user or automatically by DSMCompare (based on the resolution pattern) to 

resolve the conflict. The root element generally links to one or more semantic conflicts and 

other related elements in the DSDiffMM metamodel. 

We describe the conflict resolution aspect of the Pull-up Method - Add Inheritance rule 

as follows: To resolve the conflict, we introduce an intermediary class (I) that inherits from 

the parent class. The method (M) is then removed from the parent class and added to (I). 

Subclasses that initially had (M) will now inherit from (I) instead of the parent class, and 

their direct inheritance from the parent class is eliminated. This guarantees that the (M) 
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method remains inaccessible to the (D), thus preventing any incorrect usage of the method 

in the merged version. Additionally, it ensures the proper inheritance for (D). 

Please note that, as illustrated in Fig. 6. 7a, MiniJavaCompare employs distinct sym-

bols (M+, M x, and M-) to differentiate between additions, deletions, and modifications, 

respectively, throughout the merging process. 

We also specify the semantic conflict pattern of the CRRule as follows: The conflict 

resolution object at the root should bear the name Pull-up Method - Add inheritance (labeled 

1) , with the resolution strategy set to "Automatic" implying it will be executed automatically. 

The root element connects to a single semantic conflict in the graph (labeled 2). Additionally, 

the root element connects to a newly created class added to the Diff012 model (labeled 9). 
This class serves as an intermediary between the superclass and subclass, annotated with 

MERGE-ADD. The class's name will be automatically generated using the generateName() 

method, relying on the name of the subclass from which the method will be pulled up. The 

new class must encompass an instance of DiffClass_ supertypes (labeled 11), annotated with 

MERGE-ADD to enable specialization from the superclass. It must also include an instance 

of DiffClass_ operations (labeled 6) , annotated with MERGE-ADD to incorporate the pulled 

method. 

Furthermore, a context is essential to rectify the inheritance relationships tied to the sub-

class. Consequently, the conflict resolution introduces an instance of DiffClass_ supertypes 

(labeled 7), annotated with MERGE-ADD, to the subclass, permitting specialization from 

the new class. Similarly, another instance of DiffClass_ supertypes (labeled 8), annotated 

with MERGE-DELETE, is added to the subclass, allowing the removal of inheritance from 

the superclass as it now inherits from the new class. 

5.2.2. Synthesis of automatic resolution rules 

To apply the CRRules, we convert each CRRule into a Henshin graph transformation rule 

that maintains semantic equivalence, known as an HCRRule. These generated HCRRules are 

then executed on the Diffo12 model to implement conflict resolutions. Fig. 6. 7a demonstrates 

the corresponding Henshin rule, HCRRule for the Pull-up Method - Add Inheritance rule. 
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We now outline the transformation processes to generate a Henshin graph transforma-

tion rule CRRule from an HCRRule. As an example, we use the Pull-up Method and Add 

inheritance rule depicted in Fig. 6. 7. 

(1) Create an HCRRule with the same name as the CRRule. 

(2) Create a node in HCRRule with the action preserve for every pattern object in 

CRRule that is not a ConfiictResolution object or any Diff object with mergeKind 

assigned to merge-related value (such as MERGE-ADD) (e.g., node n4 in the exam-

ple). 

(3) Create a node with the action create in HCRRule for each ConfiictResolution object 

or any Diff object with mergeKind assigned to merge-related value (such as MERGE-

ADD) in CRRule (e.g. , node n1). 

(4) Create a node with the action delete in HCRRule for every pattern object with filter 

set to true in CRRule. 

(5) Create a node with the action forbid in HCRRule for every pattern object with a 

NAC_group set in CRRule. Set the forbid identifier to the value of the NAC_group. 

(6) Create a condition in HCRRule for each condition defined in CRRule. 

(7) Create an edge with action create in HCRRule for each association adja-

cent to a ConfiictResolution node in CRRule or merge-related Diff objects 

(e.g., DiffClass_esupertypes between nodes n10 and n12) . 

(8) Create an edge with action delete in HCRRule for each association adjacent to a 

pattern object with filter attribute set to a true in CRRule . 

(9) Create an edge with action forbid in HCRRule for each association adjacent to a 

pattern object with NAC_group attribute set to a value in CRRule. 

(10) Create an edge with action preserve in HCRRule for each association adjacent to a 

pattern object with NAC_group and filter attributes not set to a value in CRRule. 

5.2.3. Support for different kind of semantic conflicts 

We describe the support of DSM Compare for different kinds of conflicts using the running 

example. 

In the case of a conflicting commit, MiniJavaCompare opens the Diff012 model using an 

automatically generated editor, as shown in Figure 6.8. This editor not only displays the 
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Figure 6.8. Domain-specific three-way Merge with DSMCompare - conflict resolut ion 

content of t he Di.ff012 model but also provides tools and commands to facilitate t he conflict 

resolut ion and merging process. 

MiniJavaCompare automatically resolved the second and third conflicts by applying pre-

defined conflict resolution patterns and updating the V012 model accordingly. It suggested 

a pre-defined Keep Semantic Difference approach for the first conflict (subfigure c) and 
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generated a resolution pointer to a fine-grained conflict not associated with any semantic 

conflict ( subfigure d). 

To address the second conflict (subfigure a) , MiniJavaCompare automatically applied 

the Pull-up Method - Add Inheritance CRRule, as depicted in Figure 6.7a. As a result, it 

introduced an intermediary class named PremiumMember~CorporatedMember between the 

superclass Member, and the subclasses PremiumMember and CorporatedMember. The name 

of this intermediary class was generated using the generateName method. Additionally, it 

moved the method reserved to PremiumM ember~ CorporatedM ember. 

For the resolution of the third conflict (subfigure b) , MiniJavaCompare once again au-

tomatically applied another pre-defined CRRule called Move and Rename Method / Push 

Down Method Transitivity, inspired from (Ellis et al, 2023) and defined by Charlie. This 

conflict resolution recognizes the situation as a transitive relationship between the move and 

rename operation and the push-down operation. It ensures that the method is correctly 

moved to the target class while retaining its renamed name. In this example, MiniJavaCom-

pare applied the CRRule, ensuring that searchSpecialEdition is properly moved to Book and 

retains its renamed name as search for the method. 

As depicted in Figure 6.8, Bob accepts MiniJavaCompare 's suggestion to Keep Semantic 

Difference for the first conflict ( sub figure c). Consequently, the deletion of the method 

from the other branch is rejected, and in the subsequent version, the method updateBook is 

renamed to update, where it implements the method update( <T> ):void in the Maintainable 

interface. 

The last conflict (subfigure d) represents a fine-fine conflict where the name of the method 

renewBook changed to different values in both versions. Bob customarily resolves this conflict 

by renaming the method to the general name renew. After resolving all conflicts, he commits 

and pushes the changes. 

MiniJavaCompare successfully resolves the remaining two conflicts and updates the V012 

model. The merged model of Vo12 is illustrated in Figure 6.1. As evident in Figure 6.8 

(V012) , all decisions are incorporated into the final model. 

It's worth emphasizing that the rules created by Charlie deal with the initial range of 

conflicts. However, MiniJavaCompare allows Charlie to incorporate new conflict resolution 

rules when necessary. 
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6. Tailoring the concrete syntax of difference models and conflict 

resolution rules 

To generate graphical modeling workbench, DSM Compare employs Sirius (Sirius, 2023b) 

that is a well-known framework renowned for its capability to create graphical modeling en-

vironments within Eclipse. Sirius uses the viewpoint specification model ( odesign) to define 

concrete syntax and establish connections between graphical representations and elements 

in the Metamodel (MM). 

DSL engineers contribute their DSL's Concrete Syntax ( CS) using Sirius, which DSM-

Compare leverages to automatically generate the other editors. Across these editors, DSM-

Compare maintains the core characteristics of the DSL by generating a default domain-

specific difference Concrete Syntax ( DSDif!CS), which inherits styles from CS. Additionally, 

( CRRuleCS) extends from DSDif!CS, ensuring continuity and consistency throughout the 

editing experience. 

The odesign provides different meta-classes to visualize DSL elements. DSMCompare 

intelligently selects the appropriate meta-class from odesign based on the structural features 

of the elements. Charlie can further customize these representations. For instance, within 

the MiniJava metamodel, the Class element contains other meta-classes such as Attribute. 

MiniJavaCompare automatically employs a ContainerNodeMapping to represent the Class 

element and allows Charlie to provide a suitable icon for it. 

However, since Attribute lacks contained elements, MiniJavaCompare automatically uti-

lizes NodeMapping from odesign to represent it. The default style theme, encompassing 

properties like size and color, can be adjusted by Charlie. In terms of compositions, Mini-

JavaCompare employs a BorderedNode_Mapping within a NodeMapping to display a target 

class within the container class. For example, Dif!Class_ supertypes is generated using a 

BorderedNode_Mapping, with different icons and themes assigned based on conditions. 

MiniJavaCompare harnesses the Acceleo Query Language (AQL) to automatically define 

distinct conditional graphic representations and themes. These queries are shaped using 

predefined themes and structural features of meta-classes. For instance, it generates a query 

to dynamically alter the color and icon of a ContainerNodeMapping representing a Confiic-

tResolution to green when status changes to Resolved. 
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Automation extends to the creation of palettes that provides tools for DSL users to 

instantiate DSL elements. Additionally, different properties pages are generated, offering 

users a platform to precisely tailor element appearance and behavior. MiniJavaCompare 

further organizes semantic differences, conflicts, and resolutions into distinct containers, 

applying specific group themes and actions. This architecture enables users to conveniently 

manage elements within the group, such as hiding or showing all of them. 

6.1. Automated Synthesis of Concrete Syntax 

We provide some details on how DSMCompare enables the synthesis of Concrete Syn-

taxes. DSDiffCS includes styles for all the meta-classes of CS. For each class c, we 

reuse the same styling for the corresponding Diff_C class. For instance, for Class and 

DiffClass in DSDiffCS, and Pattern_Class and Pattern_DiffClass in CRRuleCS, we 

use the same styling of Class in CS. However, the Diff _ classes have extended styling 

since they carry differencing properties. Therefore, MiniJavaCompare creates conditional 

styling, especially based on diffKind, mergeKind, and conflictType. As a result, for each 

NodeMapping, ContainerNodeMapping, and BorderedNode_Mapping, we generate 21 conditional 

styles. For instance, an AQL query such as "aql:(self.diffKind_ Left.toString() = 'MODIFY' 

or self. diffKind_ Right. toString() = 'MODIFY') and self. conflict Type. toString() = 'CON-

TRADICTING"' is used to assign an appropriate style when both versions modify an element 

to contradictory values. 

MiniJavaCompare supports styling further by automatically generating custom icons 

for meta-classes in DSDiffCS and CRRuleCS from an original icon in CS to support 

each condition. For each style of 21 conditional styles generated for NodeMapping and 

ContainerNodeMapping, it creates a unique icon. For example, as illustrated in Fig. 6.1 , 

the icon used for the method renewBook has a red border to represent that it contains con-

tradictory changes generated based on confiictType. It also contains tilde signs on both sides 

to show that both users have modified the values in the object, which is generated based on 

diffKind. Moreover, it uses blue color to show the operation of the left author and purple 

color to show the operation of the right author. 

Similarly, for each EdgeMapping, we create nine conditional styles. These conditional 

edge styles define suitable colors and styles for the edges. The number of edge conditional 
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styles is fewer than node conditional styles due to the fact that an edge cannot express a 

contradictory situation, and we use association diff classes for this purpose. 

For the property page of the root meta-class of the CS, Package in Mini-Java, we au-

tomatically incorporate three commands and actions: Save for saving changes, Close for 

closing the model, and Commit for invoking Algorithm 7 to address conflicts and perform 

merging. 

However , for the property page of the root meta-class of the DSDiffCS, we automatically 

incorporate five commands: Save for saving changes, Close for closing the model, Merge 

for invoking the merge algorithm ( Algorithm 9) to address conflicts and perform merging, 

Hide details to conceal fine-grained differences, and Show details to reveal fine-grained differ-

ences. Additionally, we introduce a List input to the properties page, which displays conflict 

resolution objects that are Pending and require attention from the DSL user. 

Furthermore, on the property page of the conflict resolution meta-class within DSDif-

JCS, we automatically include a Select input. This input allows the DSL user to choose 

a resolution strategy, and a Clear resolution command is provided to undo any previously 

selected resolution made by the DSL user. When an option other than NIL is chosen from the 

resolution strategy Select, the associated conflict resolution object's color changes to Green, 

and the resolution type is set to Resolved. Selecting NIL or activating the Clear resolution 

command sets the resolution type back to Pending and changes the color to orange. 

6.2. Layering the differences 

One of the main concerns is to manage complexity when the number of elements in the 

Di.ff012 model arises. To tackle this issue, we have introduced the layering mechanism pro-

vided by Sirius. In contrast to show /hide functions which deals with fine-grained differences, 

the layering function address the complexity and cognitive demands by hiding/showing the 

group of conflict resolutions, semantic differences, and semantic conflicts. 

This allows DSL user to have focused visualization of elements of interest while reducing 

the verbosity associated with reported conflict resolutions. This division, also simplifies the 

maintenance and updating of specific layers for DSL users, all without exerting any influence 

on other layers, thereby enhancing the overall system's adaptability. Each layer possesses the 
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capacity to concentrate on distinct facets or perspectives of the DSDiffCS model, thereby 

contributing to a more manageable and comprehensible representation. 

7. Manual resolution 

Some conflicts cannot be resolved without user intervention. However , effective manual 

conflict resolution requires certain features to be provided. DSMCompare offers a user in-

terface mechanism and APis designed to facilitate the manual resolution of conflicts that 

cannot be automatically resolved. 

One of the main requirements is conflict visualization. Users need a clear and comprehen-

sive representation of the conflicts present in the model. DSMCompare detects all conflicts 

and creates a conflict resolution object attached to each one. It provides visual cues by 

displaying pending conflict resolutions in orange and highlighting conflicting areas in red, 

helping users quickly identify areas of conflict. 

For each conflict , users should be able to view the conflict description and access de-

tailed information about the conflicting elements. DSMCompare automatically generates 

meaningful titles describing the conflicts. For example, DSMCompare connects each con-

flict resolution object to related semantic or fine-grained conflicts. In the case of semantic 

conflicts, users can also see the related semantic differences. This assists in better reasoning 

about the correct intention and, consequently, conflict resolution. In the case of fine-grained 

conflicts, users can see details such as the kind of differences and changed values from each 

side. 

Users should be presented with various options for resolving conflicts. By selecting in-

dividual conflict resolution objects within the Diff012 model, DSL users are provided with 

options for conflict resolution. These options include: "Keep Left", "Keep Right", "Apply Left 

Then Right", "Apply Right Then Left", "Discard All changes", "Keep Semantic Difference", 

and "Custom". The "Keep Left" operation prioritizes differences from the "LEFT" version 

while ignoring differences from the "Right" version. Similarly, the "Keep Right" operation 

follows a similar pattern but prioritizes the "Right" version. Operations like "Apply Left Then 

Right II combine the actions of "Keep Left" and "Keep Right", effectively resolving differences 

between both versions. The "Apply Right Then Left" operation mirrors this process. The 

"Discard All changes" operation, as the name implies, simply ignores all differences. On the 
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other hand, the "Keep Semantic Difference" operation suggests resolving differences associ-

ated with the version where a semantic difference occurred, while ignoring changes related 

to the version with fine-grained differences. 

The ability to undo is crucial in case a user changes their mind or realizes that the chosen 

resolution is not suitable. DSMCompare saves the user decisions in the Diffo12 model and 

does not apply them to the Vo12 model until all conflicts are marked as resolved. When the 

user changes the status of a conflict resolution object from Resolved to Pending, all changes 

are rolled back in the Diffo12 model. Additionally, Sirius inherits the built-in undo/redo 

functionality for the modeling workbench. 

It is also important that users be able to apply custom changes to resolve conflicts. 

DSMCompare provides users with flexibility in resolving complex cases by allowing modi-

fications to the Diff012 model to accurately represent the intentions of both parties. This 

option allows changes to any desired element within the Diffo12 model, enabling the cre-

ation of specific changes. For existing unmerged Diff elements (where isMerged is set to 

false) , users can apply modifications and set the mergeKind element to one of the values: 

MERGE-ADD, MERGE-DELETE, or MERGE-MODIFY, based on the custom change they 

have implemented. 

Another significant feature is conflict marking, which DSMCompare offers through the 

use of isMerged and islgnore attributes, along with relevant processes in Algorithm 9 and 

Algorithm 10. This ensures that once a conflict is resolved, it is marked as such to prevent 

unnecessary re-evaluation in subsequent manual resolution iterations. 

Furthermore, DSMCompare provides conflict navigation. Users can navigate between 

conflicts efficiently through the conflict resolution group pane. Additionally, the list of re-

maining conflict resolution objects is available through a list on the properties page. 

Moreover, DSMCompare offers guidance and documentation on conflict resolution strate-

gies and different resolution options, helping users make informed decisions. 

8. Model Merge 

DSMCompare employs a systematic merge approach to resolve conflicting differences 

during domain-specific model integration. The process involves strategic decision-making to 

address conflicts that arise when combining model changes from various sources. A variety 
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of conflict resolution strategies are utilized to ensure a seamless integration process. These 

strategies encompass retaining changes from one version while discarding conflicting ones, 

as well as applying modifications sequentially to maintain compatibility. 

In addition to fine-grained conflicts, DSMCompare incorporates semantic conflicts into 

the evaluation process. The tool distinguishes between automated and custom conflict res-

olution. While automated mechanisms handle straightforward conflicts, complex scenarios 

often require human intervention. The inclusion of custom resolution strategies empowers 

DSL users to tailor conflict resolution to the unique needs of their projects. 

8.1. Algorithm 

Algorithm 9 The Resolve and Merge Algorithm 
1: procedure RESOLVE(Di.ff012) 
2: Vo12 +---- LoadV012() 
3: for all resolution in Di.ffo12 do 
4: if resolution.status = Resolved then 
5: di.ff List f---- getConfiictsN otM ergedN otlgnored( resolution) 
6: switch resolution.Strategy do 
7: case "Keep Left" 
8: Merge( V012, di.ffList, LEFT) 
9: case "Keep Right" 

10: Merge( V012, di.ffList, RIGHT) 
11: case "Apply Left Then Right" 
12: Merge( V012, di.ffList, LEFT) 
13: Merge( V012, di.ffList, RIGHT) 
14: case "Apply Right Then Left" 
15: Merge( Vo12, di.ffList, RIGHT) 
16: Merge( V012, di.ffList, LEFT) 
17: case "Discard All changes" 
18: break 
19: case "Keep Semantic Difference" 
20: semDi.ff f---- findSemDi.ff (resolution) 
21: di.ffListlnSemDi.ff f---- getConfiictsN otM ergedN otlgnored( semDi.ff) 
22: Merge( Vo12, di.ffListlnSemDi.ff, semDi.ff.author) 
23: case "Automatic" OR "Custom" 
24: di.ffListM erge f---- findDi.ffListM erge( resolution) 
25: Merge( V012 , di.ff List.Append( di.ffList + di.ffListMerge)) 
26: SetMerged(di.ffList) 
27: end if 
28: end for 
29: end procedure 
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Algorithm 10 The General Merge Algorithm 
Input: Vo12 successive model version, dif!List list of diffs, author the version 

1: procedure MERGE( Vo12, dif!List) 
2: sortedDifferences f--- SORTDIFFERENCES(Diffo12) 
3: for all diff in sortedDifferences do 
4: if not IsREALCONFLICTING( diff) OR (IsRESOLVED( diff)) then 
5: diff.applyTo( V012, author) 
6: end if 
7: end for 
8: end procedure 

Algorithm 9 outlines forms the cornerstone of the DSMCompare conflict resolution and 

merging process. It operates by harnessing the insights and decisions embedded within 

the Dijj012 model to address conflicts and seamlessly incorporate changes into the evolving 

V012 model. This procedure embodies a comprehensive set of tasks, seamlessly transitioning 

through the steps guided by user choices. 

The algorithm starts by initializing the model version V012 and traverses through each 

resolution stored within Dijj012. The algorithm distinguishes between resolved resolutions 

and other instances. Upon encountering a resolved resolution, the algorithm endeavors to 

select appropriate strategies for conflict resolution. 

The algorithm continues with identifying conflicts that remain unresolved, unmerged, 

and not ignored using the getConflictsNotMergedNotignored() function. Employing a 

switch-case structure, various strategies are selected. These strategies involve preserving 

either the left or right version, applying changes first in the left-then-right or in reverse order, 

discarding changes, addressing fine-semantic conflicts by preserving semantic differences, or 

handling automatic and custom resolutions. 

To execute these strategies, specific functions are employed. findSemDiff () identifies 

semantic differences for a resolution, especially when the strategy focuses on maintaining 

semantic differences. getConflictsNotMergedNotignored() collects unresolved conflicts. 

The Merge () function calls Algorithm 10 to introduces changes to the V012 model, guided 

by the chosen strategies. 

Subsequently, the algorithm is applied to all resolutions in Diff012 , using strategies as 

required. At the end of each iteration, the SetMerged () functions is called to assign a true 

to the isMerged attribute of the difference object. This prevents resolved conflicts from being 

reconsidered in subsequent iterations or function calls. 
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The algorithm described in Algorithm 10 outlines the process of merging changes within 

a model, incorporating a series of modifications from a given list of differences, diffList, into 

a final merged model, V012- The algorithm iterates through each difference, denoted as diff, 

within the provided list. 

For each diff in diffList, the algorithm checks if the diff should be ignored, as determined 

by the condition diff. isignore = False. If the condition is met , the algorithm proceeds to 

determine whether the diff is in conflict or has already been resolved. 

If the diff is either not in conflict ( diff. conflict = null) or is in conflict but has already 

been resolved ( diff. conflict = "RESOLVED"), the algorithm proceeds to apply the changes 

introduced by the diff to the V012 model. Using the applyTo method, it modifies the V012 

model based on the information stored within the diff object associated with the respective 

author. If the author is RIGHT the changes are applied to the right version, otherwise, it 

applies to the left version. This process ultimately results in a final merged model, ensuring 

that conflicts are appropriately managed and resolved changes are applied to the merged 

result. 

9. Evaluation 

We assess the performance of our approach using model histories created by third parties. 

The breakdown of the evaluation setup for domain-specific conflict resolution and model 

merge is as follows: Section 9.1 delves into the technical details of how the project was 

executed, including the tools and methodologies used. Section 9.2 defines the intended 

goals and objectives. Section 9.3 outlines the methodology for any experiments conducted 

during the evaluation. Section 9.4 presents the findings and outcomes of these experiments. 

Section 9.6 discusses potential limitations and challenges in the evaluation process, and 

Section 9.5 provides a critical analysis and interpretation of the results and their implications. 

9.1. Implementation 

We implemented DSMCompare as an Eclipse plug-in designed to run on the Eclipse 

Modeling Framework (EMF version 2022-06) and Sirius (version 7). The tool is available for 

download through the open-source repository.3 To identify generic model-based matches and 

3https://github.com/geodes-sms/DSMCompare 

217 



differences, we instantiate the CDOCompare engine,4 which is one of the default EMFCom-

pare engines in Eclipse. We rely on the API of EMFCompare to retrieve the difference set 

between the three versions. Using Java, DSMCompare transforms these generic differences 

into an instance of the DSDiffMM metamodel using the EMF APL To create an executable 

form of SDRules and CRRules, we use Xtend to transform domain-specific rules into Hen-

shin textual format. 5 Next, we execute the Henshin version of the SDRules to enhance the 

Diff012 model with semantic differences. Following that, we calculate the semantic conflicts. 

Finally, we resolve conflicts according to Algorithm 7 as presented in Section 4. 

9.1.1. Merge editor 

Fig. 6.9 displays the Diff012 model editor. This editor illustrates fine-grained conflicts, se-

mantic conflicts, fine-grained differences, semantic differences, and conflict resolutions. The 

editor also contains a palette including all the elements that can be added to the Diff012 

model. Using the palette, DSMCompare accommodates manual (custom) resolution, grant-

ing users the autonomy to tailor conflict resolutions according to specific requirements. 

4https : / /www.eclipse.org/ cdo , last accessed August 2023 
5https: / /www.eclipse . org/xtend/ index. html , last accessed August 2023 
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The properties view allows the DSL expert to navigate between conflict resolutions 

through the list box that shows remaining conflict resolutions. By clicking on the Save 

and Close button, users can save partial resolutions. This functionality enables users to 

pause the merging process and later resume from where they left off, minimizing disrup-

tions and facilitating effective conflict management. The Merge button starts the conflict 

resolution and merges the procedure if the list of remaining conflict resolutions is empty; 

otherwise, it shows a message asking the user to resolve all the conflicts before proceeding to 

merge. Users can also use the Hide details option to filter out fine-grained details or Show 

details to investigate the details of semantic changes or semantic conflicts. 

Additionally, the Layers mechanism shown on top of the figure allows hiding and showing 

entire layers of semantic differences , conflicts , or conflict resolutions . Each layer has the 

capacity to focus on distinct facets or perspectives of the Di.ffo12 model, contributing to a 

more manageable and comprehensible representation. 

Fig. 6.9 displays the resolution reversibility mechanism that appears when the DSL user 

selects a conflict resolution object in the editor. The Clear Resolution button undoes pre-

viously made resolution decisions (sets the resolution strategy to NIL value) and all the 

fine-grained changes associated with the resolution. The editor also allows iterating on the 

available resolution strategies, refining the resolution as the merging process unfolds. 

9.1.2. Usage scenario 

Whenever conflicts require user intervention to resolve them during the process of push-

ing changes to merge, DSMCompare automatically triggers and automatically initiates and 

displays the content of the Di.ff012 model, which contains automatically generated pending 

conflict resolution objects organized in a dedicated list. Users can seamlessly select pending 
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conflict resolution objects either directly from the model or from the list. These pending 

conflict resolution objects are initially highlighted with an orange theme, making them easily 

identifiable. When the user selects a conflict resolution strategy, it becomes completed and 

changes to a green theme. 

If the user clears a previously selected resolution, DSMCompare undoes all the relevant 

changes required to resolve the conflict. Consequently, the conflict resolution theme turns 

back to orange, and the conflict resolution is added back to the pending list. DSMCompare 

does not proceed with the merge until all conflicts are resolved, and the list of pending 

conflict resolutions is empty. Any attempt to merge prompts the user with an appropriate 

notification. 

Once all the conflicts are resolved, the user initiates the merge process. DSMCompare 

applies all the changes related to conflict resolutions in the Diff012 to the V012 model. 

Subsequently, it creates a new commit incorporating the resolved changes and pushes the 

new commits back to the shared repository. 

9.2. Objectives 

As we have already evaluated, DSMCompare effectively detects differences and conflicts 

(Zadahmad et al, 2019, 2022). Here, we evaluate the effectiveness of DSMCompare when 

resolving merge conflicts. Therefore, in this experiment, we assess DSM Compare with respect 

to the following research questions: 

RQl Does DSMCompare resolve conflicts correctly'? 

Using a public dataset as benchmark, we verify if DSMCompare resolves conflicts 

similarly to the baseline, misses resolutions and incorrectly resolves conflicts. 

RQ2 To what extent does DSMCompare reduce the amount of manual user interactions'? 

DSMCompare is uses computes differences and merges between models at the model-

level rather than lines of code and uses semantic rules. Our hypothesis is that users 

using such an approach will face fewer conflicts to resolve and merge models with 

fewer steps than approaches not using semantic (like EMFCompare) and not using 

model-based (like Git) differencing/merging. 
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9.3. Experiment setup 

We explain the process of collecting the data required for the experiment and the evalu-

ation procedure. 

9.3.l. Data collection 

In the absence of existing repositories containing domain-specific models and their asso-

ciated semantic difference rules, our experiment focuses on Ecore models reverse-engineered 

from Java programs. As described in (Zadahmad et al, 2022), we define a refactoring pattern 

as a semantic difference. If the refactoring pattern plays a role in a conflict, it is consid-

ered as a semantic conflict. The conflict resolution objects generated automatically for both 

fine-grained and semantic conflicts. Whenever a conflict needs to be resolved, we create a 

conflict resolution object for both fine-grained and semantic conflicts. 

We use open-source code-based projects developed in Java as our reference and convert 

them into Ecore models. This allows us to analyze their histories for refactoring modifications 

and run our domain-specific conflict resolution and merge experiments. 

We have selected a total of 95 Java-based software repositories from GitHub using Ran-

dom Forest classifiers, as described in (Munaiah et al, 2017). The selection criteria for these 

repositories are: they needed to have (i) communities consisting of two or more contribu-

tors and (ii) a minimum of 500 stars on GitHub. To narrow our focus to repositories with 

merge conflicts, we employ the RefConfMiner project (Shen et al, 2019). This helps us create 

a database that includes commit IDs related to refactoring-induced merge conflicts, along 

with identifiers for version triplets (VO, Vl, V2) and the detected refactoring types. 

Out of the initial 95 repositories, only 13 projects met the criteria, containing at least 

three refactoring-related merge conflicts that could be processed with RefactoringMiner 

and downloaded successfully. These final selected projects are: android, closure-compiler , 

error-prone , jabref , junit4,mcMMO,POSA-14,querydsl,realm-java,redpen, storm, syncany, 

and titan. 

Subsequently, we use MergeScenarioMiner (Shen et al , 2021) to collect the Java files 

involved in conflicting merge commits. This process generates a separate folder for each 

conflicting commit ID, with five sub-folders: one containing the parts of the project related 

to VO, another containing the changed parts in Vl , a third one for the changes in V2, a 
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fourth one for the result of the Git merge, and a fifth one for the manual merge done by the 

user. We refer to the latter two results gitMerged and manualMerged, respectively. 

Next, we convert the source codes in each folder into instances of the Knowledge Discovery 

Metamodel (KDM) using Eclipse's MoDisco framework (Bruneliere et al, 2014). These KDM 

instances are subsequently transformed into instances of MiniJava models. Note that conflict 

markers are ignored when creating the model for gitM erged. 

In addition, we manually prepare 1 7 semantic difference rules to encapsulate the refac-

torings. These rules are adapted from the experiment in (Zadahmad et al , 2022) and tailored 

to fit the MiniJava metamodel. An example of such an SDRule designed for this experiment 

is depicted in Fig. 6.4. We also manually prepare nine CRRules to automatically or semi-

automatically resolve conflicts. These rules are adapted from different recent researches on 

the domain of refactoring (Ellis et al, 2023) and tailored to fit the MiniJava metamodel. An 

example of such an SDRule designed for this experiment is depicted in Fig. 6.7a. 

9.3.2. Methodology 

To answer RQ1 , we compare the conflict resolutions found manually in the dataset , 

with the conflict resolution performed by DSMCompare. For each commit i, we calculate 

the difference between gitMerged and manualMerged using DSMCompare. This difference 

encompasses a collection of fine-grained and semantic changes made by the user to resolve 

the conflicts manually. We refer to this difference as the set crGi. It is the baseline to 

address RQJ. 

We follow a specific workflow for each conflicting commit as outlined in Algorithm 7 

in Section 4. We begin by obtaining three instances of the MiniJava metamodel (VO, Vl , 

V2) for each conflicting commit and subsequently calculate differences and conflicts with 

DSMCompare. In cases where all changes are trivial or can be resolved by predefined conflict 

resolution rules, DSMCompare generates the successive model (Diff012 model). However, 

if there are remaining conflicts that require user intervention, DSMCompare initiates the 

Diff012 model , which contains automatically generated pending conflict resolution objects 

organized in a dedicated list. We open the Diff012 model whenever we feel comfortable 

resolving conflicts. 
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We can select pending conflict resolution objects directly from the model. These pending 

conflict resolution objects are initially highlighted with an orange theme, making them easily 

identifiable. If we choose a conflict resolution strategy and clear it , DSMCompare undoes 

all the relevant changes required to resolve the conflict. As a result, the conflict resolution 

theme reverts to orange from green, and the conflict resolution is added back to the pending 

list for further user attention. 

DSMCompare does not proceed with the merge until all conflicts are resolved, and the list 

of pending conflict resolutions becomes empty. Any attempt to merge prompts us with an 

appropriate notification, explaining the need to address the remaining conflicts beforehand. 

Once all the conflicts are resolved, we initiate the merge process. DSMCompare applies 

all the changes in the Difj012 model related to conflict resolutions to create the successive 

merged version, the V012 model. 

We refer to the set of conflict resolutions applied by DSMCompare as crD. Finally, we 

compare the results of crG with those of crD to evaluate the effectiveness of DSMCompare 

in conflict resolution. 

We denote the two sets crGi and crDi for each commit i , respectively. We rely on 

precision and recall measures for the comparison. We define four variables as follows for 

each commit i: 

• Correct resolutions CRi = crDi n crGi is when DSM Compare resolves conflicts in 

the same way as in Git. 

• Incorrect resolutions IRi = crDi \ crGi is when DSMCompare incorrectly resolves 

conflicts with respect to Git. The correct conflict is resolved, but not in the same 

way. 

• Missed resolutions MRi = crGi \ er Di but only for those that DSM Compare ommits 

to resolve a conflict that it should have as indicated in Git. 

• Correct misses CMi = crDi \ crGi but only for those that DSMCompare correctly 

ommits to resolve conflcits because they do not occur in a model-based differenc-

ing/merging scenarios. 

It follows that precision and recall are defined for each commit i as: 

(9.1) 
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CRi 
recalli = C + (9.2) 

In Equation (9.1), we define precision as the ratio between the correctly found semantic 

resolutions in DSMCompare for each conflicting commit and the total number of semantic 

conflict resolutions it finds across those conflicting commits. In Equation (9.2), we define 

recall as the ratio between the correctly found semantic resolutions in DSMCompare for each 

conflicting commits and the expected number of semantic conflict resolutions found manually 

across those conflicting commits. 

To address RQ2, we estimate the amount of manual work required to resolve conflicts 

using DSMCompare, EMFCompare, and Git on the same dataset. 

We denote mDi as the amount of resolutions (merge) performed manually when using 

DSMCompare for each commit i. We consider all resolution strategies presented in Section 3: 

when users (i) select the appropriate resolution strategy and when they (ii) resort to a custom 

resolution. In mDi, we consider both resolutions of semantic and fine-grained conflicts. For 

(i), we count each selection individually. For (ii) , we count the number of changes the user 

performs: the number of elements with change status MERGE-ADD, MERGE-DELETE, 

and MERGE-MODIFY 

Similarly, we denote mEi as the amount of resolutions performed manually when us-

ing EMFCompare for each commit i. EMFCompare offers two main strategies to resolve 

conflicts: Keep Left and Keep Right. We include in mEi the selection of a strategy for (i) 

fine-grained conflicts and (ii) any custom or manual edits made outside of EMFCompare on 

the subsequent version, since EMFCompare does not permit editing during the conflict res-

olution process. For (i), we count each selection individually. For (ii), we count the number 

of changes the user performs. 

Finally, we denote mGi as the amount of resolutions performed manually for each commit 

i when using a textual diff/merge tool (Git). It is unclear which tool users employed to 

resolve the conflicts manually in the dataset we collected. Therefore, we assume that they 

performed only one manual action to resolve each textual conflict , representing the minimum 

number of actions. This assumption implies that we are providing a significant discount to 

textual merging: in practice, users may need to perform multiple custom edits to resolve 

each conflict. 
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To answer RQ2, we compute the reduction of manual merges needed as follows: 

. mEi-mDi 
merge_reductwnnE = E 

mi 
(9.3) 

. mGi-mDi 
merge_ reductwnnc = G (9.4) 

mi 
Equation (9.3) , calculates the reduction in work when using DSMCompare compared to 

EMFCompare for each commit. Equation (9.4), calculates the reduction in work when using 

DSMCompare compared to manual conflict resolution during the text-based merging for 

each commit. 

It is noteworthy to express that, we manually compare each resolution output in DSM-

Compare with those in EMFCompare and with manually resolved conflicts. For each refac-

toring or conflict reported by DSMCompare, we analyze the report , which includes the 

Java file, the gitMerged model, the manualMerged model, the EMFCompare results, and 

the names of the involved elements (e.g., package, class, method, attribute). Subsequently, 

we manually compare this information with the results in the corresponding Diffo12 model 

generated by DSMCompare. 

9.4. Experiment results 

9.4.1. Characterization of the resulting dataset 

We first present some key findings in the resulting dataset produced by DSMCompare. 
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Table 6.1. Characteristics of dataset 

Number of 

Projects 

MiniJava models in Ecore 

Semantic difference ( refactoring) rules 

Commits 

Commits without model-based semantic conflicts 

Commits without manualMerged folder 

Total number of 

Semantic Difference 

Semantic Conflicts 

Fine-grained diffs 

Conflicting fine-grained diffs 

DSM Compare 

Semantic conflict resolutions - Automatic 

Semantic conflict resolutions - Manual 

Fine-grained conflicting Diffs - Automatically resolved 

Fine-grained conflicting Diffs - Manually resolved 

- by applying Semantic conflict resolutions - Manual 

Fine-grained conflicting Diffs - Manually resolved 

Semantic conflict resolutions - Manual strategy choice 

Semantic conflict resolutions - Manual custom 

Fine-grained conflict resolutions - Manual strategy choice/custom 

EMFCompare 

Fine-grained conflict resolutions - Manual strategy choice 

Fine-grained conflict resolutions - Manual custom (edit) 

Text-based 

13 

444 

14 

96 

22 

6 

2472 

533 

12006 

1531 

426 

34 

657 

60 

814 

34 

12 

814 

1857 

46 

Fine-grained conflict resolutions - Manual strategy choice/ custom 2 091 
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Table 6.2. Distributions per commit across all projects 

Text 

Conflicting fine-grained diffs 

Semantic conflict resolutions 

- Automatic 

Semantic conflict resolutions 

- Manual 

Fine-grained conflicting Diffs 

- Automatically resolved 

Semantic conflict resolutions 

- Manual strategy choice 

Semantic conflict resolutions 

- Manual custom (edit) 

Fine-grained conflict resolutions 

- Manual strategy choice/custom 

Fine-grained conflict resolutions 

- Manual strategy choice 

Fine-grained conflict resolutions 

- Manual custom (edit) 

Fine-grained conflict resolutions 

- Manual strategy choice/custom 

Median 

DSM Compare 

6 

2 

0 

3 

0 

0 

3.50 

EMFCompare 

6 

0 

Text-based 

8 

Mean Std. Dev. 

20.41 33.59 

6.26 9.62 

0.5 1 

8.76 14.04 

0.53 1.02 

0.19 0.39 

12.72 23.57 

24.76 39.53 

0.53 1.24 

27.88 44.79 

In total, we generate 96 sets of six Ecore models : the three model versions of every 

commit (VO, Vl , V2) , the gitMerged model, the manualMerged model, and the Di.ffo12 model 

including the differences, conflicts, and conflict resolutions. Out of the 87 refactoring types 

(Tsantalis et al, 2020), we found only 14 semantic difference rules repeated in the Di.ff012 
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models. The complete dataset is available online 6. Table 6.1 provides a comprehensive 

overview of the characteristics of the dataset used in the evaluation, as well as the conflict 

resolution results obtained from DSMCompare, EMFCompare, and the text-based manual 

approach. 

The results demonstrate that DSMCompare can automatically resolve a large number 

of semantic and fine-grained conflicts. Note that, since we downloaded only the Java files 

involved in the conflicting commits for all three versions, the Diff012 model represents only 

the minimal model needed to comprehend the context of the changes in each version, as 

opposed to displaying the complete models of the entire Java code. 

We excluded six commits and their associated models from our calculations because we 

were unable to download the related manualM erged folder. Additionally, we omitted 22 

commits and their associated models from our semantic-related calculations due to inherent 

differences in how text-based and model-based VCS systems operate and how they interpret 

and detect conflicts. DSMCompare correctly identifies cases that are incorrectly reported 

as conflicts, often attributed to flaws in text-based merging tools, such as changes to the 

organization of code ( e.g., moving methods or classes). We also excluded commits in which 

all of their refactoring types contributing to the conflicts were related to changes in method 

bodies that are not explicitly modeled in MiniJava (e.g., Inline method) . 

The total number of semantic differences identified in the dataset is 2472 and the to-

tal number of semantic conflicts is 533. Additionally, fine-grained differences amount to 

12 006, with 1531 of them being conflicting. These numbers demonstrate the complexity 

and diversity of changes and conflicts present in the dataset. 

DSMCompare automatically resolved 426 semantic conflicts (81% of semantic conflicts) 

and 657 fine-grained conflicting differences (55% of conflicting fine-grained differences). 

Moreover, DSMCompare's manual conflict resolution feature was used to resolve 34 seman-

tic conflicts ( 6% of semantic conflicts) which leads to resolving 60 fine-grained conflicts ( 4 % 

of conflicting fine-grained differences) manually. Moreover, an additional 814 fine-grained 

conflicts were resolved manually, emphasizing the tool's efficacy in handling both automatic 

and manual conflict resolution scenarios. In contrast, EMFCompare successfully handled 

6https://zenodo.org/deposit/8333378 
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the equivalent of 1857 generic model-based fine-grained conflicts using manual choice of res-

olution strategy and 46 using custom edits in the successive version model. Text-based tools 

were also employed, resulting in the manual resolution of 2 091 equivalent textual fine-grained 

conflicts using a combination of manual strategy choice and custom edits. 

Table 6.2 provides a detailed breakdown of conflict resolution statistics across different 

tools, with a focus on median, mean, and standard deviation values. When comparing the 

performance of DSMCompare, EMFCompare, and Text-based tools, it is evident that DSM-

Compare generally requires fewer manual interventions for conflict resolution. For instance, 

DSMCompare shows a median of O for both Semantic conflict resolutions - Manual and 

Semantic conflict resolutions - Manual strategy choice, indicating a significant reduction in 

manual resolution efforts compared to EMFCompare and Text-based tools. 

In contrast , EMFCompare exhibits slightly higher median values for fine-grained con-

flict resolutions , suggesting a relatively higher manual intervention requirement compared to 

DSMCompare. Text-based tools, on the other hand, have the highest median values among 

the three tools, indicating a greater reliance on manual conflict resolution strategies. Fur-

thermore , DSMCompare boasts a lower standard deviation across various conflict resolution 

categories, implying a more consistent and predictable performance in handling conflicts. 

EMFCompare and Text-based tools exhibit higher standard deviations, suggesting greater 

variability in their conflict resolution outcomes. 

Overall, these statistics highlight that DSMCompare tends to outperform EMFCompare 

and Text-based tools in terms of efficiency and consistency in conflict resolution, with sig-

nificantly fewer manual interventions required. 

9.4.2. Correctness of DSMCompare semantic conflict resolutions 

Fig. 6.lla presents the distribution of the precision and recall of conflict resolutions for 

semantic conflicts identified by DSMCompare across the 68 commits of the dataset. These 

results are computed in accordance with equations (9.1) and (9.2), as the reference baseline 

for comparison. These equations specifically focus on semantic conflict resolutions, encom-

passing conflicts that involve semantic and semantic-fine differences, including refactorings. 

The overall trends reflected in the box plots exhibit almost perfect scores, consistently 

hovering at a minimum of 98%. Notably, there is minimal variability in both precision and 
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Figure 6.11. Box-plots showing the distributions of the metrics across all commits 

recall of conflict resolutions. The standard deviations stand at 4% and 5%, respectively, 

while the interquartile range is 0. These near-perfect scores demonstrate DSMCompare's 

ability to accurately resolve nearly all the semantic conflicts reported by Git. 

Occasionally, false negatives (M Ri) do arise when DSMCompare misses one or two dif-

ferences within some Diff012 models containing a sparse number of conflict resolut ions. For 

instance, in t he case of commit 84094c7 of t he realm-j ava project , Manual conflict resolu-

tion identifies four conflict resolutions, whereas DSMCompare detects only three, resulting 

in a precision and recall of 75%. Most of these situations pertain to text-based refactorings, 

where the refactoring is init ially recognized inaccurately, leading to an erroneous resolution. 

In rare instances where DSM Compare erroneously identifies a conflict resolution (I Ri), 

these situations typically involve refactorings associated with the body of a method, which 

our dataset records as unstructured strings. As an example, the Inline method refactoring 

type entails transferring the content of one method to another calling it. 
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9.4.3. Reducing user intervention during merge 

Fig. 6.llb reveals substantial reductions in the amount of user intervention required to re-

solve conflicts when using DSMCompare. When compared to EMFCompare, DSMCompare 

acheives at least 50% reduction in half of the commits. Notably, in projects such as mamute, 

error-prone, and redpen, DSMCompare achieved 96% reduction in user involvement, under-

lining its proficiency in automating conflict resolution tasks. These findings suggest that 

DSMCompare, built upon a model-based version control system, is particularly adept at 

handling conflicts in a manner that minimizes manual effort, offering a significant advantage 

over generic model-based approaches. 

Moreover, when comparing with manual text-based conflict resolution as illustrated in 

Fig. 6.llb, DSMCompare reduces even better results with at least 58% merge reduction. 

This indicates that DSMCompare presents a compelling alternative to the labor-intensive 

manual conflict resolution process. 

9.5. Discussion 

With these results , we can now answer our two research questions. 

9.5.l. RQJ: DSMCompare effectiveness to resolve semantic conflicts 

According to the results, DSMCompare can find almost all conflict resolutions across all 

commits. It produces conflict resolutions for fine-grained and semantic conflicts of different 

types across different conflicting commits and model sizes in various projects. 

However, DSMCompare was unable to find a few textual refactoring patterns that require 

investigating structural content encoded as strings that misled the conflict resolution. For 

the same reason , it also incorrectly detected a few refactorings which misled the conflict 

resolution. 

9.5.2. RQ2: DSMCompare effectiveness to reduce manual intervention 

According to the results, DSMCompare can reduce manual intervention compared to 

generic model-based and text-based VCS substantially. The data analysis reveals the re-

markable efficiency of DSM Compare in simplifying conflict resolution processes across diverse 

software projects. 
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These findings underscore DSMCompare's capability to effectively automate conflict res-

olution tasks. This suggests that DSMCompare not only outperforms EMFCompare but also 

provides a valuable alternative to labor-intensive manual conflict resolution processes, po-

tentially enhancing collaboration efficiency and reducing users' workloads in various software 

development projects. 

9.5.3. Advantage of using domain-specific model merging 

DSM Compare produced some true negatives ( CMi) because of structural changes which 

led to a decrease in conflict resolution efforts. For example, if one user moves a block of 

code to a different location within a file, and another user modifies that same block in 

the same file, a conflict is likely to occur in text-based VCS. However, in a DSMCompare, 

structural changes are often represented as higher-level operations ( e.g., pull-up, push-down, 

and moving) , and DSMCompare understands that these changes are compatible, as they do 

not directly overlap in terms of model elements. Another example is when, in text-based 

VCS, if two users work on the same method and simultaneously extract a portion of the 

code into a new method, a conflict occurs in the shared method. However, in DSMCompare, 

when users extract methods in separate branches, DSMCompare recognizes the extraction 

operations and applies them without conflicts. 

DSMCompare also prevents some conflicts regarding high-level abstractions using transi-

tive conflict resolution rules. For example, if one user performs a pull-up method refactoring 

to move a method from a subclass to a superclass, and another user modifies the same 

method in the subclass, a conflict arises in text-based VCS due to the method relocation. 

However, DSMCompare recognizes the transitive change and handles it without flagging it 

as a conflict. As a result of the true negatives , in this evaluation, 22 conflicting commits 

are completely removed from conflict resolution activities and in the remaining conflicting 

commits, we have a decrease in the amount of effort needed for conflict resolution. 

Furthermore, DSMCompare offers a more tailored display of conflict resolutions, and it 

is less verbose compared to Git and EMFCompare. Additionally, it is important to mention 

that DSMCompare does not necessitate users to create an ad-hoc metamodel. They can 

readily provide the metamodel of their DSL to utilize the tool. It explicitly associates 

the semantic conflict resolution instances to relevant conflicts and differences providing a 
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comprehensive view of conflict and its resolution. It reports the conflict resolution using the 

original DSL concrete syntax. Therefore, DSMCompare helps to understand and locate the 

resolution that need to be done to the exact problematic model elements conflicting with a 

semantic change. We claim that all these advantages help DSL users resolve conflicts more 

easily, save time, and increase the quality of the merged models. 

9.6. Threats to validity 

We outline some limitations of the experiment and our approach. 

9.6.l. Threats to internal validity 

Threats to the internal validity of this experiment are related to the assumptions we rely 

on. The reliance on multiple tools, including EMFCompare, for various stages of the conflict 

resolution process, introduces complexity. If the choice of projects or commits was influenced 

by the availability or compatibility of these tools, it could create selection bias. For instance, 

if certain projects were chosen because they work well with the toolchain, they might not be 

representative of cases where the toolchain is less effective. 

However, EMFCompare is a trusted tool used by many model-based VCS, such as CDO, 

to benefit from its fine-grained comparison reports. We manually checked all the outputs 

to ensure the semantic differences and conflicts we found with DSMCompare correspond 

to those found in ReJConfMiner. However, this manual process can lead to human errors, 

which may threaten validity. Nevertheless, this process helped fix bugs in different parts of 

DSMCompare, which gives us confidence that the dataset is correct. 

To mitigate selection bias, we also carefully selected a diverse range of software projects 

from different domains and commits for evaluation, ensuring that our choices were not in-

fluenced solely by tool compatibility. 

9.6.2. Threats to construct validity 

Depending on DSL users to define SDRules for detecting semantic differences and conflict 

resolution introduces potential construct validity challenges. Variability in how users define 

these rules can affect the operationalization of conflict resolution outcomes. Inconsistent rule 

definitions may lead to ambiguous or subjective measurements. 
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The editors automatically generated by DSMCompare for the DSL engineers to specify 

SDRules completely reuse the abstract and concrete syntaxes of the DSL. Therefore, the 

editors are very familiar with the DSL expert to define the rules that mitigate the threat. 

One could also provide comprehensive guidelines and templates to DSL users for SDRule 

and CRRule definition. 

Moreover, relying on user-defined rules and inputs, such as concrete syntax, can introduce 

measurement bias. If users' inputs are inconsistent or incomplete, it may impact the accuracy 

of conflict resolution metrics. Additionally, if there's a lack of clarity in how rules are defined, 

it can introduce measurement bias. Such problems particularly are likely, when the user deals 

with rules based on textual attributes such as method body like Inline Method which are 

hard to capture in the rules. This prevents DSMCompare from correctly detecting these 

refactoring (false negatives). Nevertheless, as the overall results show, DSMCompare can 

propose effective resolutions for every other refactoring type and conflict related to classes, 

associations, methods, and attribute changes. 

9.6.3. Threats to external validity 

The results we present are specific to the dataset we created. Therefore, the results may 

be different for other datasets of refactoring commits or even on DSLs other than MiniJava. 

However, this dataset presents a wide diversity of cases with respect to SDRules and CRRules, 

model sizes, semantic difference occurrences, and semantic/fine-grained conflicts. Moreover, 

the dataset originates from third-party programs. In Zadahmad et al (2022), we evaluated 

DSMCompare on other DSLs as well. 

Furthermore, there is a lack of openly accessible repositories of models with a commit his-

tory and, in particular, three-way difference conflicts and their resolution. Our solution was 

to consider source code as models by reverse engineering repositories with these specificities. 

Currently, DSMCompare generates editors for graphical DSLs only. Thus, it presents 

differences and conflicts in a graphical way only. Adaptations are needed to deal with textual 

concrete syntax. Graphical visualization of differences hits its limits when the models have 

a lot of elements. 
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The conflict resolution that DSMCompare finds strongly depends on the CRRules pro-

vided by the DSL engineer. Thus, DSMCompare is only effective in providing conflict res-

olutions if the rules are diverse enough to cover a variety of rule patterns, comprehensive 

enough to include all changes and conflicts at all granularities, and semantically relevant to 

the domain. Nevertheless, DSMCompare generates a domain-specific editor to enable DSL 

engineers to specify patterns for semantic differences. It also provides functionality to auto-

matically create CRRules from two successive versions exhibiting a semantic change, which 

further helps DSL engineers. 

We do not claim that the results of the experiment optimized to identify refactoring 

opportunities in programs. Nevertheless , in the given dataset , DSMCompare can provide 

refactoring conflict resolutions on Ecore models that represent Java code. 

10. Related Work 

Sharbaf et al (2022b) conducted a systematic mapping study on conflict management 

techniques, versioning, and merging models. It discusses open issues and directions for future 

work which we found overlapping with our current work that we present in the following 

subsections. 

10.1. Semantic Conflict Management 

The conflict pattern language introduced by Sharbaf et al (2020) is used to express con-

flicts in different modeling languages. However, it relies on OCL and is limited to UML-based 

languages, which might be difficult for DSL engineers not familiar with them. Some methods 

(e.g. , (Sharbaf etal, 2015)) handle specific instances of semantic conflicts , but lack flexibil-

ity for diverse conflicts across modeling languages, making managing semantic conflicts a 

challenge in model merging. 

An approach in (Altmanninger et al, 2010) focuses on modeling language semantics and 

can detect semantic conflict. However, it relies on defining semantic views and representing 

models to introduce specific semantic aspects (Altmanninger, 2007) . Other methods (e.g., 

(Sharbaf and Zamani, 2020; Dam et al, 2016)) mainly address static semantic conflicts and 

are tailored to specific modeling languages, limiting their use. 
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In DSMCompare, we extract complex change patterns from low-level model changes, 

similar to semantic lifting techniques like those in (Garcia etal, 2013; Vermolen etal, 2012). 

However, their patterns are predefined and general, unlike our method's rules. DSMCompare 

generates an editor for the DSL, allowing DSL engineers to define semantic conflicts.This 

doesn 't require expertise in complex languages like OCL, offering a domain-specific way to 

define constraints. 

10.2. Visualization for Conflict Management Activities 

An important drawback of current approaches lies in their lack of adequate visualization 

techniques for various conflict management tasks. Visualizing conflicts in the concrete syntax 

of different models is a significant challenge that hasn't been addressed for any modeling 

language (Sharbaf et al, 2022b). 

Only a couple of existing methods ( e.g., (Wieland et al, 2013; Bartelt and Schindler, 

2010)) offer graphical support for conflict resolution, but they fall short of providing a clear 

overview of the model elements involved in conflict situations (Sharbaf et al, 2022b). Addi-

tionally, the visualization approach introduced in (Wieland et al, 2013) only supports manual 

resolution and focuses solely on fine-grained conflicts. Moreover, the approach in (Bartelt 

and Schindler, 2010) lacks support for various conflict resolution strategies, and it doesn't 

provide detailed information on specifying and Visualizing the resolution. This indicates 

a trend towards graphical support in conflict management (Sharbaf et al, 2022b). Hence, 

a promising avenue for future research could involve visually guiding users in describing 

conflict specifications. 

Furthermore, adding a graphical representation of changes in the concrete syntax editor 

could enhance collaborators' awareness, helping them avoid conflicts during the modeling 

phase. However, there are only a few approaches that concentrate on conflict visualization 

(e.g., (Brosch etal, 2012f)) or provide user-friendly graphical editors (e.g., (Mens etal, 2005; 

Barrett etal, 2011)) for managing conflicts during model merging. Nonetheless, (Brosch 

et al, 2012f) lacks an editor to specify and visualize conflict and semantic resolution pat-

terns. Moreover, the visualization method in (Mens et al, 2005) relies on cross tables, and 
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the approach in (Barrett et al, 2011) utilizes text-based conflict reports. Thus, the ongo-

ing evolution of graphical and visual solutions for conflict management remains a central 

challenge in this field (Sharbaf et al, 2022b). 

DSMCompare offers a solution by generating a DSL editor. This enables DSL engineers 

to specify both semantic conflicts and conflict resolution patterns, all visualized using the 

DSL's original concrete syntax. DSMCompare visualizes both automatic and manual conflict 

resolution types. Clear styling distinguishes between automatic and custom changes, aiding 

in understanding the logic behind changes. DSMCompare also allows users to hide unrelated 

fine-grained differences when needed, streamlining the focus on resolution. Additionally, the 

layering mechanism (section 6) enables the hiding of semantic differences, conflicts, and 

resolutions, ensuring that consolidated changes adhere to DSL semantics. 

10.3. Automatic Resolution of Conflicts 

An ongoing challenge is the scarcity of existing conflict resolution techniques and tools ca-

pable of automatically addressing all conflict situations. While certain approaches (Hachemi 

and Ahmed-Nacer , 2020; Fritsche et al, 2020) perform resolution for limited conflict scenar-

ios , they remain constrained. To enhance this, the domain-specific conflict resolution rule 

editor of DSMCompare empowers users to define conflict resolution rules including conflict 

specifications and relevant resolution patterns. DSL engineers can expand the repository 

of rules and tailor existing conflict specifications and resolution components. These rules 

are then translated into equivalent Henshin rules (Struber et al, 2017), enabling their uti-

lization by external tools, such as machine learning applications, for enhanced effectiveness 

(Eisenberg et al, 2021). 

Some methodologies ( e.g. , (Wieland et al, 2013) and (Trols et al, 2019)) fully support 

manual conflict resolution, involving users in making the final choices among suggestions 

during the resolution phase. However, a lack of insight into the intentions each user had 

during modeling can result in overlooked support for established requirements or even give 

rise to new conflicts (Chong et al, 2016; Brosch et al, 2012d). To aid DSL users in proper 

conflict resolution, DSMCompare offers diverse options explained in Section 7. Moreover, 

we provide enriched domain-specific and semantical information about the conflicts. For 

instance, utilizing domain-specific concrete syntax, we pinpoint the origin of conflicts. With 
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appropriate styling, we denote the nature of conflicts. In semantic conflicts, users can address 

multiple fine-grained conflicts related to a single semantic conflict by making just one deci-

sion. This avoids incompatible choices for the fine-grained differences that cause semantic 

conflict, ensuring the original intention is preserved. 

10.4. Support of Ordered Features 

An ongoing research challenge pertains to the incorporation of ordered features , such as 

arrays of values or associations, into conflict management activities (Sharbaf et al, 2022b). 

In such cases, the ordering property assigns absolute indices to each value in collections and 

multi-valued features. However, merging two versions can lead to conflicts due to differing 

indices for features with identical values. Only three approaches, including (Koshima and 

Englebert, 2015; Dam et al, 2016; Schropfer et al, 2019) , have been fully implemented the 

ordered features, underscoring the necessity for further empirical research (Sharbaf et al, 

2022b ). 

Our DSDiffMM metamodel is designed to encompass both ordered and unordered multi-

valued features.This capability allows us to track changes in multi-valued features. As 

detailed in section 3, DSMCompare automatically generates the Conflict Resolution Rule 

metamodel ( CRRuleMM) from the DSDiffMM metamodel. Consequently, DSL engineers are 

empowered to create conflict resolution rules based on changes to multi-valued elements. 

11. Conclusion 

This paper introduces an approach for domain-specific conflict resolution and model 

merging based on a three-way comparison. Our solution is integrated into a new version of 

DSMCompare that previously handled two-way and three-way domain-specific differencing 

and conflict detection. It automatically generates a domain-specific editor to create conflict 

resolution rules and enhances the concrete syntax to allow DSL users to visualize the three-

way conflict resolutions more effectively. It supports merging trivial changes and resolving 

semantic conflicts when a predefined conflict resolution rule is available. This solution enables 

DSL users to manage conflicts in an environment familiar to their DSL, navigate between 

conflicts, manually resolve conflicts that need user intervention, undo previous resolution 

decisions, and save partial resolutions. 
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We evaluated our approach on multiple open-source projects. The results demonstrate 

that DSMCompare is highly effective at resolving fine-grained and semantic conflicts with 

a high degree of accuracy. The dataset of model versions involved in the commit history of 

several open-source projects, along with their labeled fine-grained and semantic conflicts and 

resolutions, is also available for future research. 

We plan to incorporate a conflict reconciliation mechanism that leverages artificial intel-

ligence techniques to learn implicit user preferences, such as in (Sharbaf et al, 2022a). This 

will lead to a final merged model free of conflicts that can be committed to a VCS repository. 

Additionally, we aim to integrate DSMCompare into domain-specific VCS systems using web-

based editors. Another avenue of future research is the investigation of consistency checking 

after applying automatic conflict resolution. 
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Chapter 7 

Conclusion 

The main objective of VCS is to track and manage changes in project assets for effective 

collaboration and version control. 

The primary objective of this thesis is to focus on the domain-specific aspects of differ-

encing and merging within the context of MDE. 

We focused on three main aspects including enhancing semantic differencing and visu-

alization, effective detection and visualization of semantic conflicts and empowering conflict 

resolution in domain-specific contexts. 

1. Summary 

We summarize our three main contributions. 

1.1. Enhancing semantic differencing and visualization 

We have presented a comprehensive approach aimed at representing domain-specific 

model differences across both abstract and concrete syntax levels. Our methodology relies on 

automated modifications to the DSL metamodel, enabling the representation of fine-grained 

differences. Additionally, it involves the specification of semantic differencing rules, which 

capture recurring changes and are generated automatically through an editor. Furthermore, 

our approach includes the graphical representation of changes utilizing the DSL's syntax, 

achieved by automatically adjusting the DSL's concrete syntax specification. The practical 

implementation of our approach is realized through the DSMCompare tool , which seamlessly 

integrates into the Eclipse Modeling Framework and effectively handles graphical concrete 

syntaxes specified with Sirius. 



Our approach's practicality has been validated through extensive experience with mul-

tiple case studies, including the configuration of the Pacman game, Arduino modeling, and 

metamodel refactoring, along with various experiments. These experiences have demon-

strated the effectiveness of our approach in representing meaningful model differences in a 

domain-specific context. With DSMCompare, domain experts can visualize changes using 

the DSL's concrete syntax, allowing for the interpretation of semantically significant alter-

ations within the domain. This approach results in concise, yet valuable differences that 

greatly benefit domain experts. 

1.2. Effective detection and visualization of semantic conflicts 

We have introduced an innovative approach focused on the detection of fine-grained and 

semantic differences and conflicts through a comprehensive three-way comparison frame-

work. This advancement builds upon the previous version of DSM Compare, which primarily 

accommodated two-way domain-specific differences. The enhanced version now encompasses 

the capability to identify and represent both equivalent and contradicting conflicts that may 

arise between model versions. 

DSMCompare empowers users to create semantic rules that automate the aggregation 

of fine-grained differences while attributing domain-specific significance to conflicts, stream-

lining the conflict resolution process. Additionally, we have refined the concrete syntax to 

provide DSL users with improved visualizations of three-way conflicts and differences , facil-

itating more effective comprehension. 

Our approach 's effectiveness was rigorously evaluated across various well-known open-

source projects, yielding highly accurate results in the detection of semantic differences and 

conflicts. Furthermore, to facilitate future research endeavors, we have collected a sub-

stantial dataset comprising model versions from the commit history of several open-source 

projects, complete with labeled fine-grained and semantic differences and conflicts, which is 

now readily available for further exploration and analysis. 

1.3. Empowering conflict resolution in domain-specific contexts 

We have introduced an approach for domain-specific conflict resolution and model merg-

ing through a three-way comparison framework. This solution is seamlessly integrated into a 

242 



new version of DSM Compare, which previously handled both two-way and three-way domain-

specific differencing and conflict detection. 

The enhanced version of DSMCompare now offers automatic generation of domain-

specific editors for creating conflict resolution rules, alongside improvements in concrete 

syntax to facilitate more effective visualization of three-way conflict resolutions for DSL 

users. This solution is designed to handle tasks like merging trivial changes and resolving 

semantic conflicts when predefined conflict resolution rules are available. 

Our approach empowers DSL users to efficiently manage conflicts within their familiar 

DSL environment. Users can navigate between conflicts, manually resolve conflicts requiring 

user intervention, undo previous resolution decisions, and save partial resolutions. 

Through extensive evaluations conducted on various well-known open-source projects, we 

have demonstrated that DSMCompare excels in resolving fine-grained and semantic conflicts 

with a remarkable level of accuracy. Furthermore, we have made available a comprehensive 

dataset comprising model versions from the commit history of several open-source projects, 

complete with labeled fine-grained and semantic conflicts and their corresponding resolutions, 

fostering opportunities for future research and exploration. 

2. Limitations of DSMCompare and Potential Areas for Improve-

ment 

In this section, we provide an overview of the limitations of DSMCompare and highlight 

the main areas for enhancing its functionalities 

2.1. Technical Tooling 

• Underlying Technologies: DSMCompare relies exclusively on EMF and Sirius. This 

exclusive reliance limits interoperability with other modeling technologies, potentially 

hindering integration with diverse tools and systems. 

• Performance Concerns: Background processing for conflict detection in SDRules 

(Henshin, (CPA)) is slow, despite fast runtime for features like diff and merge. 

• Java Dependency: Developed in Java, DSMCompare has limited integration with 

related technologies to VCS. The tool's development in Java restricts integration 
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with various version control systems, potentially limiting its adaptability to different 

development environments. 

2.2. Semantics Diffs 

• Limited Behavioral Detection: DSMCompare only detects coarse-grained structural 

differences, not behavioral differences. The tool may not capture nuanced behavioral 

changes, potentially overlooking important aspects of model evolution. 

• Expressiveness of SDRules: Model transformation patterns in SDRule do not work 

For All quantifier. They only work Exists plus constraints. 

• Rule Creation Process: Manual creation of the rules is tedious, although DSMCom-

pare tries to streamline it with an example-based rule definition approach. 

• Dependency on Rules: DSMCompare highly depends on the availability of rules; 

without them, it may not identify semantic differences or conflicts even if they exist. 

2.3. Visualization 

• Graphical Syntax Limitation: DSMCompare supports only graphical concrete syntax. 

Limited support for non-graphical syntax may constrain users who prefer alternative 

representation methods. 

• Scalability Challenges: It does not scale well to very large models , despite attempts 

to address it with techniques like Juxtaposition, explicit encoding, superposition, and 

multiple layers. 

• Resolution Consequence Understanding: The tool needs more UI mechanisms to help 

users understand the consequences of resolution decisions. It may lead to uncertain-

ties in decision-making during conflict resolution. 

2.4. Metamodel 

• Local Resolution Impact: Local resolution by a DSL user may create conflicts or 

an invalid model, and DSMCompare cannot detect if it invalidates the system as a 

whole. Local resolutions may inadvertently introduce conflicts or invalidate the entire 

model, potentially impacting overall model consistency. 

• Metamodel Evolution: Metamodel evolution does not automatically coevolve gener-

ated artifacts in DSMCompare. Changes in the metamodel may not automatically 
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propagate to existing artifacts, leading to inconsistencies between the metamodel and 

generated models. 

• Static Semantics Constraints: Constraints in static semantics (OCL) are not sup-

ported. The absence of support for static semantics constraints may limit the tool's 

ability to enforce certain modeling constraints , potentially leading to non-compliance. 

• Well-Formedness Guarantee: DSMCompare cannot guarantee that a merged model 

is well-formed with respect to the metamodel, although it depends on EMF APis to 

check well-formedness. 

3. Future Outlook of DSMCompare 

In this section, we present a future outlook for DSMCompare. 

Current Development and Integration Efforts: Currently, we are conducting a controlled 

experiment with users to assess the practical usability and performance of DSMCompare in 

real-world scenarios. The study aims to address crucial questions , such as whether domain-

specific differencing and merging enhance usability compared to generic approaches. 

Applications in DSM: DSMCompare lays the foundation for advancing domain-specific 

modeling by providing a robust platform for semantic differencing, conflict detection, and 

conflict resolution (Sharbaf et al, 2022b). Its future applications could extend to a broader 

range of DSM scenarios, contributing to enhanced model evolution and version control across 

diverse domains. 

Configuration Management Systems: DSMCompare's capabilities align with the needs of 

configuration management systems. Future integration with these systems can streamline 

versioning processes and enhance collaboration in software development (Mehmood et al, 

2020). The tool 's proficiency in handling fine-grained differences and semantic conflicts can 

contribute to the efficiency and reliability of configuration management in complex projects. 

Advancements in Semantic Conflict Management: The success of DSMCompare in em-

powering domain experts to define and manage semantic conflicts hints at future enhance-

ments. Potential developments may include more sophisticated conflict pattern languages, 

and advanced visualization techniques in domain-specific languages (Reiter et al, 2007). 

Extended Support for Multi-Domain Modeling: DSMCompare's flexibility in supporting 

various DSLs positions it for future extensions into multi-domain modeling scenarios (Liu 
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et al, 2011). The tool could evolve to handle cross-domain differences, conflicts, and reso-

lutions, catering to the growing complexity of modern software systems that often involve 

diverse modeling languages. 

Enhanced Visualization Techniques: The configurable visualization approach of DSM-

Compare sets the stage for future advancements in graphical representations (Rautek et al, 

2014). Enhanced visualizations, such as 3D modeling of conflicts, animated visual cues for 

semantic changes, and immersive interfaces, could provide users with more intuitive and 

informative views of model differences and conflicts. 

Auditing Potential in DSMCompare: DSMCompare, with its robust conflict resolution 

framework tailored for domain-specific contexts, holds significant potential for integrating 

auditing capabilities into the model evolution process (CDO Model repository, accessed Au-

gust 2023). Future developments could focus on enhancing audit trails, ensuring traceability 

of conflict resolution decisions, and exploring integrations with external auditing tools. By 

automating auditing processes, visualizing audit trails, and offering customizable workflows, 

DSMCompare could become a valuable asset for industries where compliance and audit-

ing are critical components of model management. The tool 's foundation in domain-specific 

conflict resolution positions it as a promising solution for maintaining transparency, account-

ability, and adherence to compliance standards throughout the model lifecycle. 

Machine Learning and AI Integration: The wealth of labeled data in the dataset com-

piled by DSMCompare opens avenues for leveraging machine learning and artificial intelli-

gence techniques. Future developments may explore the integration of intelligent algorithms 

for automated conflict resolution suggestions, adaptive conflict pattern recognition, and per-

sonalized conflict resolution strategies based on historical user interactions (Sharbaf et al, 

2022a). Furthermore, ensuring the quality and integrity of the final merged model is another 

challenge, requiring consistency checking after automatic conflict resolution. 
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