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Sommaire

En génie logiciel collaboratif, les systémes de contrdle de version (SCV) jouent un role cru-
cial dans la gestion des changements de code, la promotion de la collaboration et la garantie
de lintégrité des projets partagés. Cette importance s’étend a l'ingénierie dirigée par les
modeles (IDM), ou les experts du domaine congoivent des modeles spécifiques au domaine
(MSD). Dans ce contexte, la collaboration avec les SCV permet de coordonner les change-
ments de modeles et de préserver I'intégrité des MSD. Cependant, les solutions existantes
se concentrent principalement sur des approches génériques, considérant les modeles comme
du texte générique. Ces SCV rapportent les différences entre les versions des modeles d’une
maniere abstraite et non intuitive pour les experts du domaine. Cela pose également des défis
lors de la résolution des conflits et de la fusion des modeles, ce qui ajoute de la complexité
au flux de travail des experts du domaine.

L’objectif de cette these est de fournir des SCV spécifiques a un domaine donné en se
concentrant sur les deux principaux composants des SCV, a savoir la différenciation et la
fusion. Nous présentons DSMCompare, un outil de comparaison de modeles spécifique au
domaine, intégré avec des capacités de détection, de résolution et de fusion de conflits de
triplets de versions. DSMCompare fournit des représentations concises des différences et
conflits a différents niveaux de granularité, tout en utilisant la syntaxe graphique des MSD
originaux. Dans nos évaluations, DSMCompare a démontré des améliorations notables par
rapport aux solutions génériques de différenciation et de fusion, notamment une réduction
de la verbosité des différences rapportée, des différences exprimée en utilisant la sémantique
du domaine, une détection précise des différences sémantiques et des conflits entre différentes
versions d’un modele, une résolution correcte des conflits, une diminution des interactions

manuelles requises et une amélioration globale de 'efficacité pour les experts du domaine.



Mots clefs : Ingénierie logicielle, Ingénierie dirigée par les modeles, Modélisation spé-
cifique au domaine, Systemes de gestion de version, Différenciation sémantique, Conflits

sémantiques, Détection de conflits, Résolution de conflits, Fusion spécifique au domaine
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Summary

In the context of collaborative software engineering, version control systems (VCS) play a
crucial role in managing code changes, promoting collaboration, and ensuring the integrity
of shared projects. This significance extends to model-driven engineering (MDE), where
domain experts design domain-specific models (DSM). In this context, collaborating with
VCS aids in coordinating model changes and preserving the integrity of DSMs. However,
existing solutions primarily focus on generic approaches, considering models as generic text.
VCS report the differences between model versions in an abstract and unintuitive way for
domain experts. This also poses challenges when resolving conflicts and merging models,
adding complexity to the workflow of domain experts.

The goal of this thesis is to provide domain-specific VCS for domain experts, focus-
ing on the two main components of VCS, namely differencing and merging. We introduce
DSMCompare, a domain-specific model comparison tool integrated with three-way conflict
detection, resolution, and merging capabilities. DSMCompare provides concise representa-
tions of differences and conflicts at different levels of granularity, while using the graphical
syntax of the original DSMs. In our evaluations, DSMCompare demonstrated significant
improvements over generic differencing and merging solutions, including a reduction in re-
ported difference verbosity, differences expressed using the semantics of the domain, accurate
detection of semantic differences and conflicts between different versions of a model, correct
conflict resolution, a reduction in manual interactions needed, and an overall improvement
in efficiency for domain experts.

Keywords: Software engineering, Model-driven engineering, Domain-specific model-
ing, Version control systems, Semantic differencing, Semantic conflicts, Conflict detection,

Conflict resolution, Domain-specific merging
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Chapter 1

Introduction

1. Context

Collaborative Software Engineering (Franzago etal, 2017) is an approach to software
development where team members work together to design, develop, test, and maintain soft-
ware applications. It involves coordinating efforts, sharing resources, and contributing to the
development process in a collaborative manner (David et al, 2021). In Collaborative Software
Engineering, various artifacts related to software development can undergo changes. Changes
can range from simple edits to more complex modifications that require coordination among
team members. Collaborative Software Engineering aims to manage these changes effec-
tively, ensuring that team members can work together seamlessly. Moreover, Collaborative
Software Engineering needs to ensure the artifacts remain consistent and aligned with the
intended goals.

Software modeling is an integral part of collaborative software engineering, helping teams
in their understanding and decision-making processes. It helps to create abstract represen-
tations of a software system (Rumbaugh etal, 1991). These representations, called models,
capture various aspects of the software’s structure, behavior, and functionality. Software
models help developers, designers, and stakeholders to visualize, analyze, and communicate
different aspects of the software before the actual implementation begins. These models can
range from high-level architectural diagrams to detailed representations of specific compo-
nents or processes.

Model-Driven Engineering (MDE) (Kent, 2002), is a methodology where models and

software modeling techniques play a central role throughout the entire lifecycle of a project.



MDE also involves using tools to automatically generate code and other parts of the software
from these models, making the development process more efficient and increasing quality.

Domain-specific modeling (DSM) is a key concept within MDE, emphasizing the practice
of creating specialized modeling languages and tools tailored to specific problem domains
(Kelly and Tolvanen, 2008). Unlike general-purpose modeling languages like UML, which are
designed to cover a wide range of domains, domain-specific modeling languages (DSMLs) are
customized to address the unique requirements and concepts of a particular domain. DSMs
allow domain experts, who may not have extensive programming or software engineering
backgrounds, to create and work with models that directly represent their domain knowledge.
As DSMLs enable models to be expressed in a more intuitive and natural way, this enhances
communication between domain experts and software developers.

Since models are accessed and used collaboratively, they undergo changes and therefore
need to be versioned (Brosch etal, 2012a; Paige et al, 2016). To address this requirement,
Version Control Systems (VCS) play a pivotal role (Franzago etal, 2017).VCS provides a
systematic way to manage changes in software projects, ensuring that collaboration remains
coherent and effective (Mens, 2002). In the context of Collaborative Software Engineering,
VCSs serve as tools to track changes in all kinds of artifacts from models to source code.

Well-known VCSs such as Git (Git, last accessed 2023) or SVN (SVN, last accessed
2023) report the differences in a line-by-line or block-by-block manner. The report shows
additions, deletions, and modifications made to the files over time. On the other hand, model
versioning refers to the practice of managing different versions of models throughout their
lifecycle. Several tools are available for model versioning, each offering different features
and capabilities to help manage and track changes to models. Some of the notable tools
for generic model versioning include EMFStore (Koegel and Helming, 2010a), EMFCompare
(EMF Compare, accessed August 2023), and CDO (Connected Data Objects) (CDO Model
repository, accessed August 2023).

In addition to keeping a record of changes, VCS provides different functionalities such
as Differencing, Branching, and Merging. Differencing refers to the process of identifying
and highlighting the differences between two versions of a file (code, model, or any file
type) or a set of files. In two-way differencing, the comparison is performed between two

distinct versions, while three-way differencing involves evaluating changes in three versions,



typically a common ancestor and two divergent branches, facilitating more sophisticated
conflict resolution in collaborative development scenarios.

The difference (Diff) refers to the changes between two versions of a file or code. Differ-
encing can produce one or multiple differences. Therefore, Differencing allows developers to
review, understand, and manage changes efficiently. Branching, on the other hand, creates a
snapshot of the project including models at a specific point in time. It allows teams to work
on different features or aspects in isolation. Changes made within a branch do not impact

other branches.Branches can later be merged to incorporate the changes seamlessly.

2. Problem Statement

Although certain VCSs have been specifically designed for models (Altmanninger et al,
2008b; Koegel and Helming, 2010b), most practitioners opt for text-based VCSs like Git
and SVN. However, these VCS are not ideal for effectively visualizing the changes in a
model’s versions in a way that is easily comprehensible (Zadahmad et al, 2019), as they do
not grasp the syntax and semantics of the DSL. Generic model-based differencing tools, such
as EMFCompare (Brun and Pierantonio, 2008), provide results that highlight differences in
classes, attributes, and associations. Nevertheless, these results are presented in the abstract
syntax of the DSL, which might not be familiar to DSL users. Additionally, presenting the
fine-grained differences of a large model can be overwhelming for DSL users, as they cannot
perceive the semantics of the changes (Sharbaf etal, 2022b). Thus, there exists a need for
model-based differencing tools capable of presenting difference results in a more user-friendly
manner tailored to DSL users.

In the context of domain-specific modeling, tools, languages, and methodologies are tai-
lored to suit the specific characteristics and requirements of a particular domain. The goal
is to create modeling languages and tools that closely align with the concepts, terminology,
and processes of the target domain. It makes it easier for domain experts to create models
and collaborate effectively.

However, tailoring DSM to a specific application domain presents unique challenges when
using text-based VCSs (VCS) like SVN. DSM involves customizing modeling languages and
tools to align with the domain’s specific needs. However, SVN, as a text-based VCS, does

not naturally understand the semantics and structure of DSM artifacts (Zadahmad etal,



2022). Generic model-based approaches also struggle with grasping the semantics of DSM
artifacts (Langer etal, 2013b). This limitation hinders its ability to effectively detect and
visualize domain-specific differences (Cicchetti et al, 2007). As a result, traditional methods
can produce complex reports when there are small changes (Altmanninger etal, 2008a),
making it difficult to notice important differences in meaning within the specific area. On
the other hand, tools designed for versioning of domain-specific models do not provide a
comprehensive solution for differencing and merging domain-specific models (Sharbaf etal,
2022b).

Models’ evolution naturally leads to conflicts (Hachemi and Ahmed-Nacer, 2020). In
DSM, these conflicts often exceed syntax to involve complicated semantic differences (Sharbaf
etal, 2020). In this case, generic model-based or test-based VCS can struggle with semantic
conflicts because they often focus on tracking syntactic changes, such as code refactorings in
the class diagram design, rather than understanding the meaning or semantics behind those
changes.

Semantic differences in a domain refer to changes that affect the underlying logic, struc-
ture, or meaning of code. These differences could involve various refactorings, such as method
extractions, renamings, or changes in class hierarchies. The role of semantic differences is
crucial because they can impact how the software functions, even if the syntactic changes
are relatively small. For example, performing a method extraction might seem like a minor
syntactic change, but it could significantly alter the organization and behavior of the code.
This is particularly evident when the extracted method interacts differently with other parts
of the code or when it leads to changes in the control flow.

VCS struggles with these conflicts because they often lack the ability to understand the
semantic implications of such refactorings. They treat them as syntactic changes and may
not provide effective tools for detecting, visualizing, or resolving these conflicts in a way that
aligns with the domain-specific semantics.

Semantic conflicts, in this context, impact the core logic, structure, or meaning of the
domain model. This can lead to incorrect conflict resolutions or missed conflicts, which
can impact the reliability and quality of the software (Brosch etal, 2012f). To address
these issues effectively, conflict resolution and merging tools should be equipped to recognize

and manage these semantic differences, ensuring meaningful resolutions and maintaining



the overall integrity of the codebase (Hachemi and Ahmed-Nacer, 2020). The proposed
approach also needs to leverage effective visualization to manage the requirements of semantic
differences, semantic conflicts, resolution, and merging complexities in the DSM (Sharbaf
etal, 2022a; Langer etal, 2013b). We formulate three pivotal Research Questions (RQs)
that guide our investigation:
RQ1: How can semantic differencing and visualization be enhanced to extract mean-
ingful differences in a domain-specific manner, reduce verbosity, and provide DSL
users with an intuitive understanding of changes?
RQ2: How can the effective detection and visualization of semantic differences and
semantic conflicts in three-way domain-specific differencing be achieved, enabling the
identification and clear visualization of various types of conflicts for efficient resolution
and decision-making?
RQ3: How can conflict resolution in domain-specific contexts be empowered to as-
sist DSL users in navigating, resolving, and reversing conflict resolutions effectively,
considering the unique aspects of domain-specific conflicts to enhance collaboration

and project advancement?

3. Contributions

In this section, we provide a brief overview of our primary contributions. The compre-
hensive details regarding the challenges and contributions can be found in Chapter 3. This
thesis follows a thesis by article format whereby the core contributions are articles published
or submitted to journals.

List of publications. The following scientific articles are integral to this thesis.

(1) Zadahmad M, Syriani E, Alam O, Guerra E, de Lara J. DSMCompare: domain-
specific model differencing for graphical domain-specific languages. Software and
Systems Modeling. 2022 Oct 1:1-30. Published. (Chapter 4)

(2) Zadahmad M, Syriani E, Alam O. From two-way to three-way: domain-specific model
differencing and conflict detection. Journal of Object Technology. 2023, 1:1-29.
Published. (Chapter 5)

(3) Zadahmad M, Syriani E, Alam O. Domain-specific conflict resolution and model
merge. Journal of Systems and Software. To be submitted. (Chapter 6)



I have also published the following articles during my thesis.

(1) Zadahmad M, Syriani E, Alam O, Guerra E, de Lara J. Domain-specific model differ-
encing in visual concrete syntax. InProceedings of the 12th ACM SIGPLAN Inter-
national Conference on Software Language Engineering. 2019 Oct 20 (pp. 100-112).
Published.

(2) Jafarlou MZ. Domain-specific model differencing for graphical domain-specific lan-
guages. InProceedings of the 25th International Conference on Model Driven Engi-
neering Languages and Systems: Companion Proceedings. 2022 Oct 23 (pp. 205-
208). Published.

We provide a brief overview of the main contributions of this thesis.

3.1. Enhancing Semantic Differencing and Visualization

In the initial phase, the goal is to advance techniques for extracting semantic differences
and presenting them in a domain-specific manner. The proposed approach, DSMCompare,
considers both abstract and concrete syntax of a DSL, supporting the definition of domain-
specific semantics for specific difference patterns. Contributions include representation of
model differences within a single DSL, a domain-specific semantic differencing rule editor,
automated representation of model differences using graphical concrete syntax, and prototype

tool support.

3.2. Effective Detection and Visualization of Semantic Conflicts

The focus shifts to three-way domain-specific differencing and conflict detection, aiming
to identify and visualize various semantic conflicts comprehensibly. DSMCompare transi-
tions from a two-way to a three-way model comparison, providing a domain-specific conflict
detection mechanism, semantic differencing rule editor, visualization support with graphical

concrete syntax, and tool implementation with extensive evaluation.

3.3. Empowering Conflict Resolution in Domain-Specific Contexts

In the final step, the objective is to empower DSL users with effective conflict resolution
tools. The proposed domain-specific approach for three-way model merging includes a con-

flict resolution mechanism, algorithms for automated conflict resolution, user-friendly conflict



resolution interfaces, implementation in DSMCompare, effectiveness comparison with other

merging techniques, and an applicability study in practical settings.

4. Thesis Structure

The structure of this document encompasses five chapters and a concluding section:
Chapter II: The state-of-the-art (SOTA) section is outlined here.
Chapter III: This chapter outlines the challenges and the contributed approaches.
Chapter IV: In this chapter, the first article is presented. It introduces DSM-
Compare, our dedicated tool for domain-specific model differencing within graphical
DSMLs.
Chapter V: The focus of this chapter is the second article. It elaborates on the
transition from two-way to three-way domain-specific tooling for differencing and
discusses domain-specific model differencing and conflict detection within a three-
way context.
Chapter VI: This chapter centers around the third article. It encompasses domain-
specific conflict resolution and model merging.
Chapter VII: The concluding conclusion chapter offers a comprehensive overview

of our work.






Chapter 2

Background and state of the art

In this chapter, we explore the state of the art regarding domain-specific model differencing
and merging. We explore various aspects of MDE, DSML, VCS, and the existing litera-
ture on model versioning, comparison, conflict detection, resolution, and model merging.
Our investigation highlights the challenges and shortcomings in current approaches, setting
the stage for proposing novel techniques to enhance semantic model differencing, conflict

management, and model merging tailored to specific domain needs.

1. MDE

These models serve as blueprints for generating executable code, documentation, and
other artifacts, effectively bridging the gap between system design and implementation. In
MDE, modeling languages play a crucial role as they provide the means to define and express
these models effectively. Here are some of the modeling languages commonly used in MDE:

e Unified Modeling Language (UML). UML (UML, 2023) is one of the most well-known
modeling languages in MDE. It provides a standardized way to represent various
aspects of software systems, including classes, objects, relationships, and behavior.
UML diagrams, such as class diagrams, sequence diagrams, and state diagrams, are
commonly used in software modeling.

e DSMLs. DSMLs (Kelly and Tolvanen, 2008) are specialized modeling languages
tailored to specific application domains. They are designed to capture domain-specific
concepts, notations, and semantics. DSMLs allow developers to create models that

closely align with the requirements and characteristics of a particular domain.



1.1. Abstraction

Abstraction is a fundamental concept in MDE. Software systems can be incredibly in-
tricate, involving numerous components, interactions, and details (Brambilla et al, 2012).
Abstraction allows developers to create models that capture the essential features and be-
haviors of a system while omitting unnecessary details. This simplification makes it easier
to understand, analyze, and communicate about the system.

Abstraction raises the level of representation from the low-level details of code to higher-
level models. Instead of working directly with code, developers use models to represent
system architecture, design patterns, business processes, and other aspects. These models
are more intuitive for stakeholders who may not have a deep technical understanding.

Moreover, abstraction allows different aspects of a system, such as its structure, be-
havior, and data, to be modeled independently. This separation enhances modularity and

maintainability, as changes in one concern do not necessarily impact others.

1.2. Automation

Automation is a cornerstone of MDE, driving efficiency and precision in software develop-
ment (Frankel, 2002). In MDE, automation refers to the automatic generation of artifacts,
such as code, from high-level models. This process streamlines development by reducing
manual intervention, minimizing errors, and ensuring consistency across different stages of
the software lifecycle.

Code generation is a specific aspect of automation in MDE where software code is auto-
matically produced from higher-level models. This can include generating code for various

programming languages, platforms, and technologies.

1.3. Transformation

Transformation enables the automatic conversion of models from one representation to
another. In MDE, models serve as the central artifacts that capture system specifications
(Volter and Kelly, 2013). However, to bring these specifications to life, they must be trans-
formed into executable code or other desired formats. Transformation processes ensure that

the semantics of the high-level models are preserved while generating lower-level artifacts.
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Model to model transformation refers to the process of converting one model into another
model. Model to model transformation allows to express how information in one model
relates to information in another, enabling the manipulation and synchronization of models.
For example Henshin is an open-source model transformation language and toolset used in
the field of MDE.

Henshin (Stritber etal, 2017) provides a DSL for specifying model transformations. It
allows to define rules that describe how one model can be transformed into another model.
These rules are typically expressed in a high-level, declarative manner. Henshin’s conflict and
dependency analysis (MultiCDA) feature and critical pair analysis (CPA) feature enables the
detection of potential conflicts and dependencies of a set of rules

Atlas Transformation Language (ATL) (Eclipse Foundation, 2023a) is another model
transformation language that allows developers to define and execute transformations be-
tween different models. It helps automate tasks like code generation, data mapping, and
model synchronization.

But Henshin and ATL are two different kind of model to model languages. ATL is
a declarative language. Developers specify what the transformation should achieve, and
the ATL transformation engine determines how to achieve it. In contrast, Henshin is an
pattern-based language. It allows developers to specify not only what should be transformed
but also how the transformation should be performed in terms of actions and operations.
ATL primarily uses rule-based transformations. Developers define transformation rules that
specify how elements in the source model are mapped to elements in the target model.
In contrast, Henshin uses a graph-based approach. Transformations are defined in terms
of graph patterns that match elements in the source model, and these patterns are then
replaced or modified to produce the target model.

Model to Code transformation is a specific type of model transformation that focuses on
generating executable code from a model. In this process, a high-level model is transformed
into code in a programming language. This can significantly speed up the development
process and help maintain consistency between the model and the code.

For example, Epsilon Generation Language (Eclipse Foundation, 2023c) is a model to
code language (model-to-text transformation in a broader view) that can be used to trans-

form models into various types of textual artefact, including code (e.g. Java), reports (e.g. in

11



HTML/LaTeX), images (e.g. using Graphviz), formal specifications, or even entire applica-
tions comprising code in multiple languages (e.g. HTML, Javascript and CSS). Xtend (xtend,
last accessed 2023) as a widely adopted model-to-text transformation language, frequently
used in conjunction with Xtext (Xtext, last accessed 2023). While Xtext is utilized to de-
fine textual DSL, Xtend facilitates code generation from models defined using Xtext-defined
DSLs, allowing developers to define templates and expressions that generate textual output
based on input models. Another noteworthy tool in this domain is ATL (Eclipse Foun-
dation, 2023a) that supports model-to-model transformations. It is primarily a rule-based
transformation language. Transformations are defined by specifying declarative transforma-
tion rules, which describe how elements in the source model are mapped to elements in the
target model.

Graph transformation is a technique used in MDE to manipulate models represented
as graphs (Ehrig et al, 2006). In this context, a graph represents the elements of a model
and their relationships. Graph transformation rules define how the graph can be modified.
Graph transformation is versatile and can be used for various model manipulations, including
refinement, refactoring, and analysis. For example, suppose you have a model representing
a state machine. Using graph transformation rules, it is possible to define how transitions
between states can be modified, added, or removed. This allows you to refactor and optimize

the state machine model.

1.4. Frameworks

Frameworks play a crucial role in MDE, providing essential infrastructures and tools for
modeling, transformation, and code generation. One of the prominent frameworks in the
MDE ecosystem is the Eclipse Modeling Framework (EMF) (Eclipse Foundation, 2023b).
EMF offers a comprehensive platform for developing and deploying model-based software
applications. It provides a structured approach to defining data models and generating
code, allowing developers to work at higher levels of abstraction. EMF is a part of the
Eclipse Modeling Project. Main Components of EMF include:

e FEcore: At the heart of EMF is Ecore (EMF Core), which is a domain modeling tech-
nology. Ecore provides the foundation for defining and working with structured data

models. Its main components include EClass (used to define the types of objects
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in a model), EAttribute (represent the properties or attributes of EClasses), ERef-
erence (define relationships between EClasses, similar to associations in UML), and
EPackage (organize EClasses, EAttributes, and EReferences into logical containers).
Code Generation: EMF includes a code generation facility that can automatically
generate Java classes from the Ecore models.

Edit Framework: EMF Edit is an additional component that automatically generates
a user interface for the models. It generates editors, views, and property sheets for

your models

1.5. Domain-Specific Modeling Languages

A DSML (Kelly and Tolvanen, 2008) is a specialized and tailored modeling language

designed for a specific problem domain, application area, or industry. Unlike general-purpose

modeling languages like the UML, which are intended to cover a wide range of modeling

scenarios, DSMLs are created with a narrow focus on a particular domain or problem space.

Key characteristics of DSMLs include:

Domain Specificity: DSMLs are specifically crafted to represent concepts, abstrac-
tions, and semantics that are relevant and meaningful within a particular domain.
Abstraction Level: DSMLs often provide higher-level abstractions that enable users
to express complex domain-specific concepts more concisely and accurately.
Expressiveness: DSMLs are designed to be expressive enough to capture the essential
aspects of the domain, using specialized constructs, notations, or modeling patterns.
Tool Support: DSMLs are typically accompanied by dedicated modeling tools or
environments, offering features like modeling editors, code generators, and validation
mechanisms.

Customization: DSMLs can be customized to adapt to variations within the domain,

allowing users to extend or modify them as needed.

A DSL is a programming or modeling language dedicated to a particular problem domain,

a particular problem representation technique, and/or a particular solution technique. DSLs

encompass a broader category of specialized languages, including both text-based and mod-

eling languages, while DSMLs specifically refer to modeling languages used in the context of
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MDE to represent domain-specific concepts and systems through models. For example, Hen-
shin is a DSML, specifically designed for model transformation, making it domain-specific
to that particular aspect of modeling.

The Language Engineering Process ensures that DSMLs are well-suited to their domains

and empower domain experts to work effectively.

1.5.1. Components of a DSML

A DSML typically consists of several key components (Kelly and Tolvanen, 2008) that
work together to provide a specialized modeling and problem-solving environment within a
specific domain including;:

e Metamodel: A metamodel is a high-level, abstract representation that defines the
structure and semantics of models within a particular domain. It serves as a blueprint
or specification for creating instances of models that adhere to the rules, constraints,
and concepts defined by the metamodel. The metamodel defines the abstract syntax
of the language or domain it represents. This includes the types of elements (classes),

their attributes, relationships (associations), constraints, and the overall structure of
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valid models. Ecore provides tools and libraries for creating metamodels and models
in a standardized way, making it suitable for practical modeling tasks within the

Eclipse ecosystem. The abstract syntax is represented in .ecore files. Figure 2.1
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shows the metamodel for the Pacman game, including Pacman, GridNode, and other
metaclasses and associations.

Concrete Syntax: Concrete syntax refers to the specific and tangible representation
of models or code in a human-readable format. It focuses on how elements, relation-
ships, and other constructs in a modeling language or DSL are visually or textually
represented. Concrete syntax defines how these elements are formatted, displayed,
and structured, making it easier for users to interact with and understand models.
Figure 2.2 shows the Concrete Syntax for the Pacman game designed using Sirius
(Sirius, 2023a). Sirius is a platform for developing and using graphical model editors
for any domain. It is based on the Eclipse Platform, and in particular the Eclipse
Modeling stack based on EMF.

Mappings: Mappings in this context usually refer to the relationships and transforma-
tions between different representations of a language, such as between abstract syntax
and concrete syntax. These mappings ensure that a DSL can be both understood by
humans in its concrete syntax form and processed by machines in its abstract syntax
form. This can involve parsing (converting concrete syntax to abstract syntax) and
pretty-printing (converting abstract syntax back to concrete syntax), among other
transformations. Figure 2.2 also illustrates the mapping between abstract syntax and
concrete syntax of the Pacman game designed using the Viewpoint Specification of
Sirius (oDesign file).

Semantics: Semantics of a language define the meaning or behavior of the language’s
constructs. It describes how the elements of the language should behave when inter-
preted or executed. The metamodel for semantics often includes formal rules, such
as operational semantics or axiomatic semantics, which precisely define how language

constructs are executed or evaluated. The semantics can also be derived from the
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runtime behavior, which means observing how the language behaves when executed
on a computer. For example, if the DSL is for specifying business rules, the seman-
tics could include how those rules are applied to real-world data during execution.
Figure 2.3 shows the operational semantics of the eat rule using Henshin (Striiber
etal, 2017).

e Fditor: In the context of DSMLs, an editor refers to a software tool or environment
that allows users to create, edit, view, and manipulate models conforming to the
DSML. This editor is customized and designed specifically for the DSML and its
associated metamodel (abstract syntax). The primary purpose of a DSML editor is
to provide an intuitive and domain-specific interface for users to work with models
in that particular domain. Figure 2.4 shows the editor created for the Pacman game
using Sirius.

As discussed, Xtext (Xtext, last accessed 2023) is an open-source framework developed
by the Eclipse Foundation for creating DSLs with a strong focus on textual representations
(concrete syntax). It provides a way to define the grammar and syntax of the DSML using a
custom DSL and then generates an editor, parser, and other necessary components automat-
ically. In contrast, Sirius (Sirius, 2023a), developed by the Eclipse Foundation, is another
powerful tool that focuses on creating graphical modeling environments for DSMLs. With
Sirius, the DSL engineer can design the custom graphical editors for DSMLs, providing a

visual way for domain experts to create, edit, and visualize models.

1.5.2. Language engineering process in DSML

The Language Engineering Process (Kelly and Tolvanen, 2008) in DSMLs involves a
systematic approach to designing, defining, and implementing a DSML tailored to a specific
domain. It encompasses several key steps which we provide five main steps:

(1) Domain Analysis: 1t begin with a comprehensive analysis of the target domain, un-
derstanding its concepts, rules, processes, and specific requirements. Domain experts
play a crucial role in providing insights during this phase.

(2) Metamodel Definition: It needs to define a metamodel based on the domain analy-
sis. The metamodel serves as the abstract syntax of the DSML, specifying types of

elements, relationships, and constraints using languages like EMF' Ecore.
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(3) Concrete Syntaz Design: It refers to design the concrete syntax of the DSML, spec-
ifying visual or textual representations. This includes graphical diagrams, symbols,
textual grammar, and syntax rules.

(4) Editor and Tool Development: It means to develop tools and editors supporting the
DSML, allowing users to create, edit, and manipulate models adhering to the DSML.

(5) Transformation and Code Generation: It requires to develop transformation rules
or code generation templates for generating code, documentation, or reports from

DSML models.

1.6. Model management

Model management encompasses activities such as creating, manipulating, and evolving
models (Kolovos etal, 2006a), with key abstractions being models and mappings between
them (Bernstein, 2003). Operators like Match, Merge, Diff, Compose, Apply, Copy, Model-
Gen, and Enumerate facilitate operations such as creating, querying, updating, and deleting
models and model elements, enabling the mapping (transformation) of models as bulk ob-
jects. The Meta-Object Facility (MOF) stands as a standard model management framework
from the OMG (Object Management Group (OMG), last accessed 2023), providing core
facilities for defining modeling languages.

The most well-known framework for implementing model management is the EMF
(Eclipse Foundation, 2023b). Atlas Model Management Architecture (AMMA), built on
ATL (Jouault et al, 2008) atop EMF, serves as a model management framework, offering a
virtual machine and infrastructural tools to support model management activities. Epsilon
Object Language (EOL), another example, is built on Object Constraint Language (OCL)
(Object Management Group (OMG), 2023). EOL can function as a standalone generic
model management language or as infrastructure for constructing task-specific languages.
The FTG+PM language (Lucio etal, 2013), developed atop AToMPM (Mannadiar, 2012),
comprises the Formalism Transformation Graph (FTG) and its complement, the Process
Model (PM). The FTG includes formalisms (nodes) and transformations (edges), describing
the languages used at each model development stage. Transformations model development

activities, with the control flow and data flow between actions explicitly modeled in the PM.
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2. VCS for programming

VCS are software tools that help track changes to files and code over time in a col-
laborative development environment. They provide mechanisms for recording (versioning),
comparing, and merging different versions of files, code, and other artifact types. Versioning
refers to maintain a history of changes made to files or code. Each change is recorded as
a version, allowing developers to track the evolution of a project over time. Based on how
changes are tracked and represented in the VCS, comparisons in VCS are categorized as

either state-based or operation-based.

2.1. Differencing

In VCSs, differencing or comparison refers to the process of analyzing and identifying
the differences between two or more versions of the same file or set of files (Brosch etal,
2012e). The goal of differencing is to understand how the content has changed over time
or between different branches or contributors. The expected result of this process is a clear
understanding of what has been added, modified, or deleted in each version, which is typically
presented as a set of changes or differences. Based on the type of merging, we have categorized
the results into three main types. In the following list, we outline results of each category:
Comparisons in VCS are categorized as Line-Based, Model-Based, or Semantic/Domain-
Specific based on the type of content being managed and the level of abstraction at which
they are performed (Mens, 2002). The outcome of each comparison includes lists of matches,

differences, and conflicts.

2.1.1. Methods

State-based comparison: VCS use state-based comparison to determine the differences
between different versions or states of a file or codebase (Mens, 2002). This comparison
method identifies the final state of a file without considering the individual operations that
led to that state. State-based comparison is useful for understanding the overall differences
between versions. State-based comparison is conceptually simpler to understand and use
since they need the final state of the files or models. However, state-based comparison
may lose detailed information about individual changes or operations, making it harder to

understand the history of modifications.
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Operation-based comparison: In contrast, operation-based (change-based) comparison
tracks individual changes or operations that occurred between versions (Mens, 2002). This
level of granularity allows developers to see exactly what changes were made, such as code
additions, deletions, and modifications. Operation-based comparison provides a detailed
history of changes, making it easier to understand who made which changes and when. In
addition, conflict resolution can be more precise, as the system has knowledge of individual
changes and can provide better guidance. However, operation-based comparison depends on

special editors to tracks individual changes or operations made to files or models over time.

2.1.2. Line-based (textual) differencing

Matching. In line-based textual merging, matching refers to identifying lines or characters
in the source files that correspond to each other in the versions being compared. For example,
a matching line in two versions of a file may have the same content or a similar content
structure.

Differences (Diff). Types of differences in line-based merging include:

e Text addition: A line or character that exists in one version but not in another.

e Text deletion: A line or character that exists in one version but has been removed in
another.

e Text Modification: A line or character that exists in both versions but with different
content.

Conflicts. Conflicts occur when there are conflicting changes made to the same lines or
characters in different versions of a file. Types of conflicts in line-based merging include:

e Fquivalent Conflict: Occurs when multiple contributors make changes to the same
lines or characters, but those changes are semantically equivalent and result in the
same final content.

e Contradicting Conflict: Occurs when multiple contributors modify the same lines or

characters with conflicting content that cannot be automatically merged.

2.2. Merge

Merging is a fundamental process within VCSs that plays a pivotal role in coordinating
collaborative software development efforts (Brosch et al, 2012e). It involves the integration of

changes made by multiple contributors into a single, coherent version of a codebase or dataset.
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Merging ensures that the modifications made by different team members or branches are
harmoniously combined, preventing conflicts and maintaining the integrity of the project’s
history. Merging can be categorized into three main types, each suited to specific use cases

and data structures:

2.2.1. Line-based merging

Line-based merging, the simplest, is most suitable for text-based files like source code
(Mens, 2002). It offers straightforward comparisons at the line or character level. This
approach is fast and easy to understand, making it a popular choice for developers working
with textual content.

When conflicts are detected, the version control system marks the conflicting sections
with special markers and prompts the user to resolve the conflicts manually. Users can
employ merge tools or text editors to review and choose between conflicting changes (Git,
last accessed 2023; SVN, last accessed 2023), opting to keep changes from the current branch,
the incoming branch, or manually edit the content for a custom resolution. After resolving
conflicts, the user removes the conflict markers and marks the file as resolved, usually by
executing a command such as ’'git add’ in Git. The merge operation is then completed
with a commit, and it’s advisable to review the merged file and perform testing, especially
in software development, to ensure the successful integration of changes. The line-based
merging process ensures that conflicting changes are addressed thoughtfully and that the
resulting merge accurately reflects the intended modifications from both branches.

However, its primary limitation is its lack of semantic awareness. It cannot handle
domain-specific semantics or complex structural changes effectively, and it struggles when

dealing with non-textual data formats (Brosch et al, 2012e¢).

2.3. Line-Based (textual) merging tools

e (it (with Diff and Merge Tools). Git (Git, last accessed 2023), a widely used dis-
tributed VCS, offers built-in support for line-based textual merging. Developers can
use Git’s default merge tools or integrate third-party tools like Beyond Compare
or KDiff3 to assist in line-based merging. While Git can support both state-based

and operation-based merging, it is often used in a state-based manner. EGit is an
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Eclipse-based plugin for version control, specifically designed for working with Git
repositories.

e SVN. SVN (SVN, last accessed 2023) is a widely used centralized VCS primarily
focused on tracking changes to source code files and text-based files. It uses line-
based textual merging to manage code versions, compare differences between code
changes, and merge changes made by multiple developers. SVN is primarily a state-
based VCS.

e KDiff3. KDiff3 (kdiff3, 2023) is an open-source diff and merge tool that is especially
useful for line-based textual merging. It offers a straightforward interface for com-
paring and merging text files, highlighting differences, and allowing users to resolve

conflicts. is primarily a state-based VCS.

3. Model Comparison

In this section, we discuss model comparison from two different paradigm aspects, in-

cluding generic model comparison and semantic/domain-specific model comparison.
3.1. Generic model comparison

The comparison results in generic model comparison include a fine-grained list of model

element matches, differences, and conflicts.
3.1.1. Matching

In model-based merging, matching involves identifying elements, attributes, or references
in different versions of a model that correspond to each other in structure and semantics.
Model matching can be: static identity-based, which assumes a unique identifier for ob-
jects (Kolovos etal, 2009a); signature-based, which compares objects based on a dynamic
signature calculated from the objects’ properties; similarity-based, which matches objects
based on the weighted similarity of their properties but obviates the model semantics; and
language-specific, developed ad-hoc for a modeling language and its semantics. For exam-
ple, EMFCompare is similarity-based but permits defining custom matching algorithms, and

UMLDIff (Xing and Stroulia, 2005) is language-specific.
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3.1.2. Differences (Diff)

Types of differences include (Cicchetti et al, 2008a):
e Model element addition: An element, attribute, or reference that exists in one version
but not in another.
e Model element deletion: An element, attribute, or reference that exists in one version
but has been removed in another.
e Model element modification: An element, attribute, or reference that exists in both

versions but has different content or properties.
3.1.3. Conflicts

Conflicts in model-based merging occur when there are conflicting changes made to the
same model elements, attributes, or references in different versions (Wieland et al, 2013).
Types of conflicts in model-based merging include:

e Fquivalent Conflict: Occurs when multiple contributors make changes to the same
model elements, attributes, or references, but those changes are semantically equiv-
alent and result in the same final model state (Brosch etal, 2012e).

e Contradicting Conflict: Occurs when multiple contributors make changes to the same
model elements, attributes, or references with conflicting content that cannot be

automatically reconciled (Mens et al, 2005).
3.2. Semantic/domain-specific model comparison

The comparison results in semantic/domain-specific model comparison include a combi-

nation of fine-grained and coarse-grained lists of model matches, differences, and conflicts.
3.2.1. Matching

Depending on the domain or modeling language, matching in semantic/domain-specific
merging involves identifying elements or constructs in different versions of a domain-specific
artifact that correspond to each other in domain-specific semantics. Pattern matching plays
a significant role in semantic/domain-specific merging, commonly employed to identify se-
mantic differences. This involves employing techniques to search for a specific set of model

elements, known as a semantic pattern. Graph matching represents a specialized form of
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pattern matching, where a semantic difference manifests as a match in graphs. In another
approach, Schaathun and Rutle (2018) transforms model specifications into RDF graphs by

scrutinizing RDF subgraphs conforming to the homomorphisms graph.

3.2.2. Differences (Diff)

The types of differences in semantic/domain-specific merging can vary widely, depending
on domain-specific semantics, constraints, and rules.

Expansion of generic model versioning approaches.

The expansion of generic model versioning approaches to detect semantic differences in-
volves enhancing the capabilities of versioning techniques to identify and comprehend changes
at a semantic level within models. Generic model versioning typically deals with managing
different versions of models, tracking changes, and facilitating collaboration among multiple
contributors. However, detecting semantic differences goes beyond mere syntactic changes
and aims to capture alterations that have a meaningful impact on the semantics or interpre-
tation of the models.

EMF Compare (EMF Compare, accessed August 2023) provides various extension points
allowing the integration of custom behaviors throughout different stages of the model ver-
sioning process. Currently, specific editing dynamics are handled through manually crafted
code that customizes generic behaviors within EMF Compare. While this serves as an initial
solution, it proves to be neither scalable nor sustainable (Koegel and Langer, 2015; Zadah-
mad etal, 2022). Addressing numerous editing dynamics in a modeling language manually
within EMF Compare becomes burdensome and may result in inconsistencies, particularly
as these dynamics evolve over time.

Moreover, editing dynamics can significantly vary from one modeling language to another
or based on the application of a modeling language in different organizations or projects.
Domain-specific modeling languages inherently possess unique editing dynamics, derived
from the purpose and pragmatics of the respective language. The use of UML Profiles to
define domain-specific modeling languages (Sharbaf and Zamani, 2017), adds an additional
layer of complexity (Koegel and Langer, 2015), as the application of a UML Profile can

substantially impact how a model is edited.
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Even though the knowledge about editing dynamics is typically implemented in modeling
editors, it lacks explicit availability in a reusable manner. Consequently, this knowledge
needs to be redundantly re-implemented in model versioning systems, creating a gap between
modeling editors and model versioning systems (Koegel and Langer, 2015).

Schipper etal (2009) expanded EMFCompare to illustrate schematic differences in di-
agrams. However, their extension only allows for visualizing atomic changes and doesn’t
support coarse-grained modifications.

Semantic lifting.

Semantic lifting in the context of domain-specific model differencing refers to the process
of abstracting or elevating the comparison and merging operations to a higher level of seman-
tic representation. This is done to enable a more meaningful and context-aware analysis of
changes within models that adhere to a specific domain or modeling language. Semantic lift-
ing aims to improve the accuracy of model differencing by reducing false positives and false
negatives. It helps in distinguishing between changes that are semantically significant within
the domain and those that are merely syntactic. Kehrer etal (2011) employs a semantic lift-
ing approach to address the potential challenges associated with comprehending low-level
differences provided by generic comparison tools. This method elevates these differences to
the level of editing operations. To identify editing processes, the approach involves grouping
relevant low-level changes. Subsequently, these groupings are utilized to describe low-level
differences as models. An essential aspect of this approach is the automatic generation of
rules from the rule-based description of the editing operations.

In the pursuit of semantic lifting for domain-specific model differencing, domain experts
play a critical role in providing specialized knowledge and insights. To initiate this process,
experts are tasked with articulating domain-specific semantics and concepts, defining the
meanings and relationships of elements within the models. Detailed information about the
modeling language employed in the domain is essential, encompassing aspects such as syn-
tax, structure, and modeling rules. Furthermore, domain experts identify and communicate
semantic constraints or rules that govern the models, ensuring that the lifting process aligns
seamlessly with the expected behavior of the models.

Additionally, domain experts contribute significantly to determining the significance of

changes within the domain. Their input guides the specification of which alterations should

25



be emphasized during the semantic lifting process. Contextual knowledge about the domain
and the models’ purpose is invaluable for making informed decisions during semantic lifting,
allowing for a nuanced interpretation of semantics based on real-world implications.

In terms of techniques, domain experts may be involved in the development and re-
finement of algorithms for semantic lifting. This may include specifying rules for grouping
relevant low-level changes, a crucial step in identifying editing processes. Techniques for the
automatic generation of rules from rule-based descriptions of editing operations are essential
aspects of this approach.

Furthermore, domain experts can contribute by providing specific use case scenarios
or examples that illustrate how changes in the models may impact the overall system or
application. These scenarios help guide the semantic lifting process, providing context for
the development of techniques.

As tools evolve for semantic lifting, continuous feedback from domain experts is crucial
for refining techniques and algorithms. This collaborative effort ensures that the lifting
process remains aligned with the evolving needs of the domain. Finally, domain experts
may play a role in validating the results of semantic lifting, ensuring that the elevated
semantics align with their understanding of the domain. This feedback loop contributes to
ongoing improvements in the accuracy and relevance of the lifting process. The collaborative
synergy between computer scientists and domain experts, coupled with the application of
specialized techniques, is fundamental to achieving an effective and meaningful lifting of
low-level differences to a higher semantic level in the domain-specific context.

Two-way model differencing.

Two-way model differencing involves comparing two versions of a model to determine
the differences between them. Its primary goal is to detect and highlight changes, such
as additions, deletions, and modifications, that have occurred between the two versions.
However, the main shortcoming of two-way differencing is the lack of a common ancestor,
which can make conflict resolution more challenging. This limitation results in a limited
understanding of how changes relate to the overall development history.

For instance, two-way comparison may not effectively identify conflicts, especially when
the same element or piece of information has been modified in both versions being compared.

Consequently, it might not provide sufficient information to determine how to merge such
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parallel changes. Moreover, two-way differencing often interprets renames and moves as
deletions in one version and additions in another, leading to potentially complex conflict
resolution scenarios. As a result, two-way comparison may require more manual intervention
and involve complex merge strategies.

In the realm of DSM, Cicchetti et al. (Cicchetti etal, 2007) propose an approach to
represent model differences that is metamodel independent and agnostic of the difference
calculation method. Specifically, given two models conforming to the same metamodel,
their difference is expressed as another model that conforms to a new metamodel. This new
metamodel is derived from the original one by a transformation and allows representing model
changes (additions, deletions, and changes). Such difference models induce transformations
to translate from one model version to the other and can be composed. The work only works
at the abstract syntax level.

(Kiihne et al, 2009) introduce an approach based on graph transformation rule patterns
to express differences in a domain-specific way. The metamodel of the patterns is generated
by transforming the metamodel of the input/output DSLs: relaxing cardinalities, adding
transformation-specific attributes and other concepts, and modifying attribute types.

Since low-level differences returned by generic comparison tools may be difficult to un-
derstand, Kehrer et al. (Kehrer etal, 2011) perform a semantic lifting of such differences
to the level of editing operations. For this purpose, low-level differences are represented as
models, so that the identification of editing operations consists of finding groups of related
low-level changes. This search is performed by rules that are automatically derived from the
rule-based specification of the editing operations. However, semantic lifting in this approach
only deals with the abstract syntax of models.

Semantic lifting approaches such as (Garcia etal, 2013; Vermolen etal, 2012) identify
complex change patterns from low-level changes involved in a metamodel evolution. However,
these patterns are generic and predefined. We need an approach allowing the DSL engineer
to define the semantic differencing rules using a domain-specific editor.

Three-way Model differencing.

Three-way model differencing involves comparing three versions of a model, including

branch Version one (left version, ours), branch Version two (right version, theirs), and a
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common ancestor (base version) for the other two versions. Its purpose is to identify, analyze,
and highlight differences, conflicts, and similarities among these versions.

Compared to two-way differencing, three-way differencing offers a more comprehensive
view of changes. It excels in detecting conflicts, especially when both branches have made
conflicting changes to the same elements or properties. Consequently, it allows for the uti-
lization of more sophisticated merging algorithms. Three-way differencing can automatically
merge changes that do not conflict.

However, it is important to note that three-way differencing still requires user intervention
to resolve contradicting conflicts. Additionally, it is more complex to implement compared
to two-way differencing, given the need to manage three versions and their relationships

In the realm of DSM, Schipper et al (2009) extended EMFCompare to depict schematic
differences in diagrams.However, they only enable the visualization of atomic changes and
do not support more coarse-grained changes or conflict patterns. Similarly, Cicchetti et al
(2010) generate model differences as model patches but do not conduct conflict analysis.

Several approaches have been proposed to semantically lift low-level changes, e.g., Kehrer
etal (2011, 2013) use Henshin for semantic lifting and critical pairs for dependency analysis.
Langer etal (2013a) post-processes atomic operations into complex operations using EMF-
Compare. However, to work with EMFCompare extension points effectively, a DSL engineer
should possess strong Java programming skills and a solid understanding of the Eclipse Plat-
form and its extension mechanisms. Additionally, a good grasp of EMF core concepts, mod-
eling principles, and model comparison and merge concepts is essential. Knowledge of XML
and Ecore metamodeling, debugging techniques, design patterns, and testing methodologies
are also valuable to ensure the successful implementation and customization of EMFCom-
pare’s comparison and merging capabilities.

Addazi etal (2016) expanded the default matching process in EMFCompare to distin-
guish between linguistic and contextual notions, such as information-content based metrics.
It provides a method for determining the semantic similarity between two given model ele-
ments. This somehow enables semantic reasoning over differences. Their solution managed
to maintain fast time performance but did not deliver the best results in terms of precision

and recall.
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Maoz et al (2011b) map models to a formally defined semantic domain in order to reason

about the differences.

3.2.3. Conflict Management

Conflicts in semantic/domain-specific merging depend on domain-specific semantics, con-
straints, and rules (Brosch et al, 2010a). These conflicts may be resolved as equivalent con-
flicts (changes are semantically equivalent) or contradicting conflicts (changes conflict and
cannot be automatically merged) (Altmanninger and Pierantonio, 2011). Constraint viola-
tion, pattern matching, change overlapping, and formal methods are the common categories
of conflict detection techniques (Sharbaf etal, 2022b). Each approach may simultaneously
benefit more than one technique to detect conflicts. The constraint violation techniques can
check model and metamodel constraints (Trols et al, 2021), whereas the change overlapping
techniques comprise contradicting changes and equivalent changes (Sabetzadeh and Easter-
brook, 2006). On the other hand, pattern matching can be utilized to find more complex
conflicts involving multiple elements from different models (Fritsche et al, 2020). Finally,
formal methods can be used to find conflicts through rigorous mathematical approaches
(Zerrouk et al, 2018).

Conflict Detection.

In the context of VCS a conflict refers to a situation where two or more changes made
by different contributors or branches are in conflict with each other and cannot be automat-
ically merged without human intervention (Booch et al, 2000). In model-based comparison,
conflicts can manifest in various ways, leading to challenges in merging changes made by
different contributors. Structural conflicts (syntactic or fine-grained) occur when multiple
contributors modify the same structural elements within a model. For example, if one de-
veloper deletes a class that another developer’s class diagram references as a superclass, a
dangling reference conflict arises. Another example is when two developers concurrently
modify the attributes of a class, with one adding a new attribute and the other renaming an
existing one, causing an overlapping changes conflict.

The conflict arises because it is unclear whether the modification should apply to the
deleted element or if the deletion should override the modification. Similarly, if one branch

modifies an element or property in a way that is inconsistent with changes made in another
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branch, a conflict occurs. For example, if one branch modifies the cardinality of a reference
from "0..1" to "1" while another branch changes it to "0..n," an attribute or reference conflict
arises.

Semantic conflicts (coarse-grained or domain-specific) (Brosch et al, 2012¢), occur when
changes to the model affect its semantics or behavior, potentially introducing inconsistencies
or non-compliance with domain-specific rules. These conflicts are often complex to resolve, as
they demand a deep understanding of the model’s intended behavior and the domain-specific
rules governing it. In a model-based environment, violations of constraints conflict may arise
when changes made in different branches lead to violations of domain-specific constraints,
model integrity rules, or behavioral constraints. For example, if one developer changes the
state transition rules of a state machine model, and another developer modifies a related
constraint that contradicts the new rules, a constraints violation conflict occurs.

Another concepts is equivalent conflicts that happen when multiple contributors make
changes to the same model elements, attributes, or references, but those changes are se-
mantically equivalent and result in the same final model state. For example, two modelers
independently rename a set of classes to more descriptive names, and their changes are
semantically equivalent because they result in the same model structure.

To detect conflicts, four main approaches have been proposed, as discussed by Sharbaf
and colleagues (Sharbaf et al, 2022b). These approaches include conflict pattern matching,
which involves identifying model fragments representing conflict patterns; constraint viola-
tion checking, which assesses adherence to well-formedness rules for models and metamodels;
change overlapping checking, which identifies equivalent conflicts; and formal methods, which
rely on mathematical and formal logical principles.

The conflict pattern language introduced by Sharbaf et al (2020) is used to express con-
flicts in different modeling languages written in Epsilon model validation language (EVL)
(Kolovos etal, 2009b). However, it only detects conflicting semantics and ignores non-
conflicting semantics. Whereas, DSMCompare identifies all semantic differences, offering
users a comprehensive overview of changes at a semantic level. This aids users in distin-
guishing the intended resolution when resolving conflicting semantic differences. Moreover,
in our approach, we find semantic differences and investigate them for semantic conflicts.

The pattern language is built on top of OCL which restricts its application to UML-based

30



languages only and forces the DSL engineer to be familiar with them. Morover, their pat-
terns are general and predefined, since they do not provide users with a domain-specific
mechanism to define new rules. Yet, they resemble the rules in our method. Therefore, it
lack flexibility for diverse conflicts across modeling languages, making managing semantic
conflicts a challenge in model merging.

An approach in (Altmanninger et al, 2010) focuses on modeling language semantics and
can detect semantic conflict. However, it relies on defining semantic views and representing
models to introduce specific semantic aspects (Altmanninger, 2007). Other methods (e.g.,
(Sharbaf and Zamani, 2020; Dam et al, 2016)) mainly address static semantic conflicts and
are tailored to specific modeling languages, limiting their use.

Taentzer etal (2014) use graph theory to formalize two syntax-based conflict concepts,
including operation-and state-based conflicts in model versioning. Additionally, they use
graph constraints to define multiplicity and ordered features. They detect conflicts using
constraint violation checking. However, their approach disregards the effect of syntactic
modifications on the semantics of the model as explained by Kautz and Rumpe (2018).

AMOR (Altmanninger et al, 2008a) provides a change overlapping checking using critical
pair analysis examine whether a pair of operations, one of which contains a glue element,
can be merged into a single operation. (Mougenot et al, 2009) propose an approach that
utilizes description logics and logical inference techniques for automating conflict detection.
However, it might have limitations in expressing complex domain-specific concepts and re-
lationships. As a result, it lacks a mechanism for easily incorporating and adapting to
domain-specific rules.

Brosch et al (2012b) create a separate difference model to represent different kinds and
granularities of differences and conflicts. A difference is shown as a hierarchy divided into
atomic changes (e.g., adding an element) and composite changes (e.g., refactoring). A con-
flict is shown as a hierarchy of overlapping conflicts and constraint violations. However, they
are specific to UML class diagrams.

Sharbaf and Zamani (2020) use UML profiles to model a conflicting case by defining
examples of the conflict parties as a pattern. They also highlight the conflicts using different

colors. However, their approach is only appropriate for UML models.Furthermore, the static
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semantics of UML, which delegate model validation to the tools that process them, are
currently insufficient to assure solid models (Berkenkétter, 2008).

The tool PEACEMAKER is capable of loading XMI models with conflict sections, com-
puting and displaying fine-grained conflicts at the model level, and offering the necessary
resolution steps (de la Vega and Kolovos, 2022). However, when using PEACEMAKER,
DSL users must reason about differences and conflicts at the abstract syntax level rather
than using the concrete syntax.

Conflict awareness.

Conflict awareness involves continuously monitoring changes made by different contrib-
utors to a shared model. It identifies situations where changes overlap, contradict, or are
otherwise incompatible with each other.

When a conflict is detected, the VCS system raises a notification to inform the relevant
users about the conflict. This notification typically includes details about the conflicting
changes, such as which elements or attributes are affected, who made the conflicting changes,
and the specific nature of the conflict (e.g., structural or semantic). For example, (Trols et al,
2019) uses modeling approach to show warning messages.

Conflict awareness often provides a visual or textual representation of the conflicting
changes within the modeling environment. This representation helps users understand the
nature of the conflict and the specific areas of the model that are affected. For instance,
(Bartelt and Schindler, 2010) highlights the involved model elements when a conflict item is
selected. While, (Baqasah et al, 2014) introduces a conflict view, which opens a new window
providing additional details about conflicts, including descriptions and links to the conflicting
elements.

Conflict Resolution.

Conflict resolution is the systematic approach of resolving conflicting changes made by
multiple contributors when integrating different branches or versions of a shared resource.
Conflict resolution can be categorized into several types, including manual, semi-automatic,
and automatic methods, each with its strategies and components:

Manual.

Manual conflict resolution involves human intervention for conflict resolution. In this

process, users actively participate by making decisions based on their understanding of the
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model and the intentions behind the changes. They have several strategies at their disposal,
including selecting one version over the other (Keep left / Keep right), applying changes from
one version first and then the other (Apply left then right / Apply right then left), imple-
menting custom resolutions (modifying conflicting sections to achieve desired outcomes), or
discarding all changes (Sharbaf et al, 2022a; Brosch et al, 2012¢). For instance, in the work of
(de la Vega and Kolovos, 2022), users are presented with the options to retain either the left
or right version or to take no action in certain conflicting cases. The work also provides the
capability to automate conflict resolution by automatically merging and removing conflicting
elements.

Semi-automatic.

Semi-automatic conflict resolution combines human judgment with automated assistance,
striking a balance between user involvement and streamlined conflict resolution. In this
approach, the VCS offers tools and suggestions to aid users in the process. Users play an
active role by reviewing and approving suggested resolutions, with the flexibility to make
adjustments as needed (Debreceni et al, 2016).

Semi-automatic resolution strategies encompass various techniques, including the auto-
matic merging of non-conflicting changes, the identification of potential conflicts with ac-
companying suggestions for resolution, and interactive conflict resolution interfaces. In the
work of (Kuiter etal, 2021), a conflict resolution process based on negotiation and voting
among collaborators is employed to identify their preferred modifications. For instance, in
the study by (Debreceni et al, 2016), possible resolution candidates are computed for each
conflict, allowing users to select the most suitable one.

Automatic.

Automatic conflict resolution is designed to streamline the conflict resolution process
by minimizing direct user intervention. In this approach, VCS employ predefined rules,
algorithms, or heuristics to automatically merge changes whenever possible. Typically, de-
velopers only need to step in when conflicts cannot be resolved automatically or when the
VCS requires input to make a decision.

Automatic resolution components may include several features and strategies. For in-
stance, some VCS systems, like Git (Git, last accessed 2023), permit users to define conflict

resolution priority rules. Users can specify that changes to specific files or sections of code
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should consistently take precedence in case of conflicts, guiding the automatic resolution
process. Organizations can also establish conflict resolution policies that outline how par-
ticular types of conflicts should be automatically handled. These policies can be based on
coding standards, best practices, or project-specific requirements. For instance, when merg-
ing changes from the development branch into the release branch, policies may prioritize
changes from the release branch for critical files associated with the release.

Some methodologies (e.g., (Wieland etal, 2013) and (Trols etal, 2019)) fully support
manual conflict resolution, involving users in making the final choices among suggestions
during the resolution phase. However, a lack of insight into the intentions each user had
during modeling can result in overlooked support for established requirements or even give
rise to new conflicts (Chong et al, 2016; Brosch etal, 2012d).

Moreover, tools such as flake8 (flake8, 2023) in the context of Python can be employed to
validate and format code according to predefined standards. Platforms like GitHub Actions
(githubActions, 2023) and GitLab CI/CD (gitlabCICD, 2023) offer automation capabilities
that can be integrated into the conflict resolution process, enhancing its efficiency.

Additionally, other approaches involve operational transformation or the application of
predefined conflict resolution patterns. For instance, (Nicolaescu et al, 2018) utilizes the op-
erational transformation algorithm to generate new operations consistently applicable across
all versions for each conflict. Conversely, (Rossini etal, 2018) applies predefined conflict
resolution patterns.

Certain approaches (Hachemi and Ahmed-Nacer, 2020; Fritsche et al, 2020) perform res-
olution for limited conflict scenarios. DSL engineers can expand the repository of rules
and tailor existing conflict specifications and resolution components. These rules are then
translated into equivalent Henshin rules (Striiber et al, 2017), enabling their utilization by
external tools, such as machine learning applications, for enhanced effectiveness (Eisenberg

etal, 2021).

4. Model Merge

Merging is a fundamental process within VCSs that plays a pivotal role in coordinating
collaborative software development efforts (Brosch et al, 2012e). It involves the integration of

changes made by multiple contributors into a single, coherent version of a codebase or dataset.
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Merging ensures that the modifications made by different team members or branches are
harmoniously combined, preventing conflicts and maintaining the integrity of the project’s
history.

Model merging, in the context of MDE, refers to the process of integrating changes and
updates from multiple versions of models into a single coherent model (Mens, 2002). Model-
based merging often involves a high level of semantic awareness in addition to the structural
aspects of models, such as classes, associations, and attributes. It considers the meaning
and semantics of changes to ensure that the merged model remains consistent and adheres
to domain-specific knowledge and constraints.

If a change of structural or semantic types appears in more than one branch of the model
(equivalent changes), only one copy of it should be included in the merged model. This
property is known as non-redundancy. If a change of structural or semantic types contradicts
other branches of the model (contradicting changes), the conflict should be resolved before

the merge.

4.1. paradigm

Merging can be categorized into three main types, each suited to specific use cases and

data structures:

4.1.1. Line-Based merging

Line-based merging, the simplest, is most suitable for text-based files like source code
(Mens, 2002). It offers straightforward comparisons at the line or character level. This
approach is fast and easy to understand, making it a popular choice for developers working
with textual content.

When conflicts are detected, the version control system marks the conflicting sections
with special markers and prompts the user to resolve the conflicts manually. Users can
employ merge tools or text editors to review and choose between conflicting changes (Git,
last accessed 2023; SVN, last accessed 2023), opting to keep changes from the current branch,
the incoming branch, or manually edit the content for a custom resolution. After resolving
conflicts, the user removes the conflict markers and marks the file as resolved, usually by
executing a command such as ’git add’ in Git. The merge operation is then completed

with a commit, and it’s advisable to review the merged file and perform testing, especially

35



in software development, to ensure the successful integration of changes. The line-based
merging process ensures that conflicting changes are addressed thoughtfully and that the
resulting merge accurately reflects the intended modifications from both branches.
However, its primary limitation is its lack of semantic awareness. It cannot handle
domain-specific semantics or complex structural changes effectively, and it struggles when

dealing with non-textual data formats (Brosch et al, 2012e).

4.1.2. Model-Based Merging

Model-based merging operates at a higher level of abstraction, making it well-suited for
structured data represented as models, which is common in MDE. This approach excels in
understanding the abstract-syntax of the model, making it suitable for complex structural
changes. Model-Based Merging provides a detailed history of changes and supports precise
conflict resolution, making it valuable for MDE scenarios. However, it struggle with semantic
conflicts and can be more complex to implement and understand, particularly for domain
experts who are not familiar with the underlying modeling languages.

Upon conflict detection, the system marks the conflicting sections within the models,
often using specialized annotations. A three-way comparison is conducted, considering the
common ancestor, changes in the current branch, and changes in the incoming branch.
Users are presented with a graphical user interface to navigate and visualize the abstract
syntax of models (EMF Compare, accessed August 2023; Koegel and Helming, 2010b), with
conflicts highlighted for resolution. Users make decisions on merging conflicting changes,
such as accepting modifications from one branch, the other branch, or manually resolving
discrepancies. The system then applies these decisions to create a merged model, potentially
automating the merging of non-conflicting changes. After resolving conflicts, the system
updates the models and removes any conflict markers or annotations. Users signal to the
system that conflicts are resolved, finalizing the merge operation. In a version control context,
users may commit the merged model. Subsequently, users review the merged model to ensure
accurate conflict resolution, and additional testing or validation steps may be undertaken
to confirm the integrity of the integrated changes. This process ensures that conflicts in

higher-level abstractions are addressed systematically, reflecting the intended modifications
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across shared entities in the model, and can be adapted to various model-based merging
tools.

The three-way merging of models has been approached through various methods. Bartelt
(2008) proposed a generic three-way merge at a low level of abstraction, potentially result-
ing in inconsistent models concerning the metamodel and underlying meta-metamodel. To
address this, a post-processing phase automatically detects and interactively resolves in-
consistencies. Blanc etal (2008) presents a general strategy for identifying inconsistencies
in models based on pre-defined consistency rules and Prolog-based first-order logic. How-
ever, it does not consider the identification of semantic equivalences in cases of syntactic
redundancies.

In contrast, Kolovos et al (2006b) introduced the EML, a rule-based language for two-way
model merging, providing customization of merge logic across diverse metamodels. However,
EML lacks support for three-way merging and does not handle conflict management for
several types of conflicts. Westfechtel (2014) offered a formal approach to three-way merging
using set theory and predicate logic for Ecore models. This approach specifies merge rules
managing additions, deletions, renaming, and movements of model elements, ensuring a well-
formed merged model. While it effectively detects and resolves conflicting modifications, it
limits conflict detection to preconditions in subgraph transformation rules.

On the other hand, Rossini et al (2010) explored category theory for three-way merging,
representing models as graphs. Their approach involves creating a union graph with elements
from all input versions. Conflicts are detected using generic rules that can be augmented
with specific rules considering metamodel constraints. However, this method only identi-
fies conflicts and does not provide resolution, and the merge process stops upon detecting

conflicts. It also operates at a more general level and would require adaptation for merging

EMF models.

4.1.3. Domain-Specific Merging

Domain-specific merging is a specialized approach designed for contexts where data and
models are inherently domain-specific (Sharbaf et al, 2022b; Brosch et al, 2012e). It focuses on
preserving the relevance and validity of artifacts within a specific domain. This approach can

incorporate features of model-based merging, providing a high level of precision in preserving
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domain-specific context. However, domain-specific merging necessitates domain expertise for
implementation and may introduce additional complexity based on the specific requirements
of the domain.

Semantic or domain-specific model merging is a specialized process for harmonizing
changes within models that represent complex systems . In this context, the merging process
is guided by the unique semantics, rules, and structures inherent in the domain-specific mod-
els (7). The first step involves the detection of conflicts, wherein specific rules and heuristics
tailored to the characteristics of the domain are applied to identify discrepancies. Conflict
resolution strategies are then crafted or applied, leveraging domain-specific knowledge to
align changes based on the semantic meaning of entities within the models (Sharbaf et al,
2022b; Brosch etal, 2012¢). The merging tools employed are purpose-built for the nuances
of the domain-specific models, often offering visualizations that aid users in understanding
and resolving conflicts within the context of the model structure.

The user interface for resolving conflicts is customized to the specifics of the domain,
offering options that align with the semantics of model entities. Manual resolution may be
required, and users are empowered to make decisions that reflect the intended semantics
of the models. The validation and testing phase is critical, involving domain-specific tests
to ensure the correctness of the merged model in accordance with the expected semantics
(Sharbaf etal, 2022b). A feedback mechanism is established, allowing domain experts to
provide insights and corrections based on their specialized knowledge. This iterative process
of user feedback contributes to the continuous improvement of domain-specific model merging
algorithms and strategies over time, enhancing their alignment with the unique requirements
of the specific domain. Ultimately, semantic/domain-specific model merging ensures that the
combined models accurately reflect the intended semantics and structures within the targeted
domain.

The proposal by Altmanninger et al (2010) aims to enhance the specification of modeling
language semantics to facilitate accurate conflict detection. They highlight the importance
of considering both syntax and semantics in conflict resolution, showcasing instances where
models in syntactic conflict can be merged seamlessly based on their semantics, and vice

versa. This tool enables rule definition for conflict detection and resolution but does not
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consider syntactically different but semantically equivalent parts in concurrently modified
models.

Cicchetti et al (2008b) introduces a domain-specific language for specifying both syntactic
and semantic conflicts using the difference model, which describes modifications in subse-
quent versions. However, this formalism cannot specify semantic equivalent conflicts. In
the work of Kaufmann et al (2010), conflict detection characteristics are enhanced by user-
defined activities, and collaborative conflict resolution characteristics are provided. However,
it lacks a formal treatment of conflict detection and resolution.

The work by Altmanninger (2007) focuses on making semantic aspects of modeling lan-
guages explicit using semantic views. While it complements our work by aiming for more pre-
cise conflict detection through semantic views, it cannot detect semantic equivalent conflicts
related to refactoring or complex equivalent concepts. Additionally, it eliminates syntactic
redundancies but does not cover syntactic conflicts resulting from atomic and composite
change operations. In the formal approach proposed by Taentzer etal (2010), conflicts are
described based on graph transformations and the theory of categories. While they identify
operation-based and state-based conflicts, their approach lacks consideration for the detec-
tion of operation sequences, semantic equivalent modifications, and resolution of detected

conflicts.

4.2. Merging methods

There are two main methods for merging including state-based merging and operation-
based merging. The categorization is based on whether the merging strategy centers around
comparing and merging entire states (state-based) or tracking and applying individual

changes (operation-based).

4.2.1. State-based merging

State-based merging uses the match, difference, and equivalent list produced as a result
of state-based differencing. It typically doesn’t consider the history of changes but focuses
on the final content. Advantage is simplicity and ease of use for scenarios where tracking
individual operations is not necessary. However, the merge may lead to conflicts when
multiple contributors make changes to the same parts of the model since it doesn’t provide

detailed insights into how conflicts arose.
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4.2.2. Operation-based merging

Operation-based merging considers the history of operations applied to models. It tracks
the sequence of changes made by contributors, allowing for precise conflict detection and res-
olution. It tracks the sequence of changes made by contributors, allowing for precise conflict
detection and resolution. Provides detailed insights into the evolution of models, allowing
for more fine-grained conflict resolution. Well-suited for complex collaborative scenarios.
However, It may be more complex to implement and use than state-based merging since it

requires tracking and managing a history of operations.

4.3. Merging techniques

Raw merge, two-way merge, and three-way merge Fig. 2.5 are three distinct techniques

used to integrate different versions of a model (Sharbaf et al, 2022b; Mens, 2002).

4.3.1. Raw Merge

refers to a straightforward approach of combining changes made to models without per-
forming sophisticated conflict resolution or considering the semantics of the models. In raw
differencing, there may not be explicit versions or a common ancestor. The process involves
comparing two sets of changes, often represented as patches or diffs, and applying them to
a base or original version to create a successive version. It may be employed in very simple
cases where structural and semantic conflicts are unlikely, such as merging separate model

fragments with minimal dependencies.

4.3.2. Two-way Merge

in model-based merging involves using the result produced by two-way differencing in
order to integrate the changes of two models. In model-based two-way merge, the tool

or system analyzes the differences between the base version (V1 or V2) and the modified
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Figure 2.5. Merging Techniques
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version (V2 or V1) (Mens, 2002). It considers structural and semantic conflicts and attempts
to automatically reconcile them based on predefined rules or user guidance. Two-way merge
is useful in model-based merging scenarios where a base version and one modified version
need to be integrated. It helps ensure that changes made in the modified version align

correctly with the base version, particularly when there is a shared history of changes.

4.3.3. Three-way Merge

in model-based merging involves using the result produced by three-way differencing in
order to integrate the successive model. Model-based three-way merge analyzes the differ-
ences between the common ancestor and both modified versions(Mens, 2002). It identifies
structural and semantic conflicts and provides a structured approach to conflict resolution.
Developers can review and manually resolve conflicts when necessary. Three-way merge is
highly effective in merging non-conflicting fine-grained model-based merging for collabora-
tive MDE projects. It ensures that changes made by multiple contributors or branches are

integrated systematically, maintaining the integrity and consistency of the models.

5. Tools

Based on the type of merging, we have categorized merging tools into three main types.

In the following list, we outline examples of (commercial) tools for each category.

5.1. Focus

In this section, we focus on existing generic model-based merging tools and

semantic/domain-specific merging tools.

5.1.1. Model-Based Merging

In this section, we discuss three popular model-based merging tools: EMFCompare,
EMFStore, and the Epsilon Merging Language (EML).
e EMFCompare. EMFCompare (EMF Compare, accessed August 2023) is an Eclipse-
based tool specifically designed for model-based merging in the context of the Eclipse
Modeling Framework (EMF). It allows users to compare and merge EMF models,

including UML diagrams, Ecore models, and other EMF-based artifacts. is primarily
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a state-based VCS. CDO (Connected Data Objects) provides a powerful version con-
trol mechanism for managing models. However, it doesn’t include a built-in model
comparison and merging engine as robust as EMF Compare’s. Instead, it relies on
external tools like EMFCompare for these specific tasks.

e EMFStore. EMFStore (Koegel and Helming, 2010b) is a VCS designed for models
and model-based artifacts created using the Eclipse Modeling Framework (EMF).
It supports model-based merging for various modeling languages and metamodels,
making it a suitable choice for MDE projects. EMFStore is an operation-based SVN.

e Epsilon Merging Language (EML). EML (epsilon, 2023) is a domain-specific language
designed for model merging tasks. It can be used in conjunction with Epsilon’s model
management tools to perform model-based merging on various modeling languages

and metamodels. EML is primarily a state-based merging approach.

5.1.2. Semantic/Domain-Specific Merging

In this section, we discuss two semantic merging tools: MetaFdit+ and AMOR.

o MetaEdit+. MetaEdit+ (Kelly, 2018) is a modeling and DSM environment that
includes semantic merging capabilities. It enables domain-specific merging for models
created using the MetaEdit+ modeling language. MetaEdit+ is primarily a state-
based VCS.

e AMOR. AMOR (Altmanninger etal, 2008b) is a tool used for managing versions
and changes in the context of MDE. It specializes in model-based merging, allow-
ing users to merge changes made to models and diagrams, particularly in the DSM

context. AMOR is primarily a state-based VCS.

5.2. Techniques

Model-based versioning tools, like text-based tools, include two merging techniques: two-

way versioning and three-way versioning.

5.2.1. Two-Way VCSs for models

Even though models are frequently persisted as text files, the use of traditional text-based
VCSs is suboptimal, as we have argued in the introduction. This way, several model repos-

itories with support for version control have been proposed along the years (Altmanninger
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etal, 2009). The ModelCVS (Kappel etal, 2006) and the AMOR projects (Altmanninger
etal, 2008a) proposed dedicated VCSs for models with sophisticated functionalities, like a
recommender of possible resolutions for model conflicts (Brosch et al, 2010d). In this setting,
DSMCompare could be useful to help understand better the differences between the models,
before choosing a resolution strategy.

The model repository of Espinazo-Pagan and Garcia-Molina (Espinazo-Pagan and
Garcia-Molina, 2010) uses a MySQL database for storage, and a special encoding of model
versions to improve efficiency. For a better performance, the authors later proposed the use
of NoSQL databases for persistence (Espinazo-Pagan etal, 2011). EMFStore (Koegel and
Helming, 2010b) and CDO (CDO Model repository, accessed August 2023) are well-known
model repositories for EMF, which support collaborative editing and versioning of models.
DSMCompare could be used atop these repositories to enable the visualization of (semantic)
diffs using the graphical concrete syntax of the DSL.

Commercial modeling tools feature different levels of versioning and model differencing
capabilities. LabView has a built-in revision control system that allows to compare two
different models (LabView, 2023) and provides a text-based results. MetaEdit+ (Kelly et al,
1996) features a version control mechanism called Smart Model Versioning (SMV) (Kelly,
2018), which allows comparing models — graphically, textually or by means of a tree — and
storing them on any major version control system such as Git. Depending on the config-
urability of SMV in MetaEdit+, users may have the ability to customize conflict resolution
strategies in fine-grained difference level to align with their specific modeling practices and
collaboration workflows. MPS (MPS, last accessed 2023b) integrates with Git and Subver-
sion and provides some capabilities for viewing model differences, in a textual way (MPS,
last accessed 2023a). Simulink supports comparing models and highlighting the differences
in the original models. Simulink uses a scoring algorithm to determine if two model elements
are a match (Simulink, 2023). Similarly, SystemWeaver (SystemWeaver, 2023) provides ver-
sioning capabilities at the model element level. This way, users can compare an element,
view its history, and replace one version of an element with another. While these tools

offer different ways to diff models, they are typically fixed and do not support extensive
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customization or provide support for customization at a fine-grained level. Instead, our ap-
proach could be valuable here to provide domain-specific, customizable visualizations of the
model differences, in a graphical way.

Our approach is based on Eclipse Modeling Framework (EMF). This is a relevant tech-
nology, since Eclipse is widely used in MDE research and many companies use Eclipse and
EMEF tools (Akdur et al, 2018). Large companies such as IBM are spearheading MDE through
EMF (Mohagheghi et al, 2013).

Model differencing and collaborative modeling can lead to clones and duplicates. Some
approaches have addressed this problem. Storrle has developed a number of heuristics and
algorithms to detect clones in models (Stérrle, 2010, 2017). Babur et al. (Onder Babur et al,
2019) leveraged natural language processing, feature extraction and clustering techniques to
detect clones in models. We have not focused on detecting model clones in our approach,

which is left as future work.

5.2.2. Three-way VCSs for models

Throughout the years, a number of model repositories with capabilities for version control
have been introduced (Altmanninger et al, 2009). ChronoSphere (Haeusler et al, 2019) deliv-
ers an open-source EMF model repository. Transactions, queries, versioned persistence, and
metamodel development are all part of the essential data management stack. The authors
suggest using NoSQL databases for persistence for greater performance (Espinazo-Pagdn
etal, 2011). These repositories can be used in conjunction with DSMCompare to make it
possible to visualize (semantic) differences using the graphical concrete syntax of the DSL.

Different levels of versioning and model differencing capabilities are available in com-
mercial modeling programs. MagicDraw! provides controlled access to all artifacts, simple
configuration management, and a mechanism to prevent version conflicts in this manner.
Obeo Designer? and CDO can integrate with EMFCompare to provide a generic model-based
versioning service. Smart Model Versioning®, a version control tool included in MetaEdit-+
(Kelly etal, 1996), allows the comparison of models visually and textually. It is compat-

ible with any significant VCS for storage, such as Git. Git and Subversion are integrated

1ht’(:ps ://www.3ds.com/products-services/catia/products/no-magic/magicdraw/ last accessed Jul
2022

"https://www.obeodesigner.com/ last accessed Jul 2022
3https://www.metacase.com/news/smart_model_versioning.html last accessed Jul 2022
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with JetBrains MPS, which also offers some tools for examining model differences textually.
While these tools offer different ways to compare models triplets, they are typically not cus-
tomizable to the DSL. DSMCompare provides domain-specific, customizable visualizations

of the model differences, in a graphical way.

5.3. Visualization

Gleicher (Gleicher, 2018) provides general guidelines for visualizing comparisons. For
many different domains, comparing artifacts is a common task and visualizing the compar-
ison often helps. Generally, the visual comparison is displayed using juxtaposition (e.g., as

EMFCompare), superposition, or explicit encoding.

0.3.1. Juxtaposition

Juxtaposition in visualization refers to the placement or arrangement of elements in close
proximity to one another to create a contrast or comparison (Gleicher et al, 2011). In the con-
text of model comparison tools, it involves the comparison of different versions or instances
of a model to highlight changes, differences, or similarities between them. Juxtaposition
improve model comparison visualization in different aspects:

e FElement-Level Comparison: Juxtaposition occurs when the tool identifies elements
that exist in one version of the model but not in another, or when the properties of
elements differ.

e Structural Differences Highlighting: The tool visually highlights structural differences
between models. This can include added, deleted, or modified elements, making it
easy for users to identify the changes at a glance. Juxtaposition in this aspect means
use of visual cues such as colors, icons, or annotations to indicate the nature of the
differences.

e Three-Way Comparison: Juxtaposition in this context involves showing the differ-
ences between the common ancestor and the two versions, helping users understand
the changes made in each branch.

e Conflict Resolution: In collaborative environments, conflicts can arise when multi-
ple users modify the same part of a model independently. Juxtaposition in model
comparison tools facilitates conflict resolution by presenting conflicting changes and

allowing users to choose which changes to accept, merge, or override.
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5.3.2. superposition

Superposition, in the context of model comparison, refers to the ability to overlay or com-
bine multiple versions of a model to provide a comprehensive view that includes changes,
additions, and deletions from each version. This technique is particularly useful when com-
paring multiple models or versions simultaneously. Superposition enables a unified repre-
sentation that incorporates the differences between models, making it easier for users to
analyze and understand the changes. Below are some usages of superposition in the model
comparison context along with examples of tools that leverage this concept:

e Unified Model Visualization: Superposition allows users to view multiple model ver-
sions simultaneously in a single, unified visualization. Changes from different versions
are overlaid or combined, providing a holistic view.

e Conflict Resolution: Superposition aids in identifying and resolving conflicts by pre-

senting overlapping changes from different versions.

5.3.3. Explicit encoding

Explicit encoding in the context of model comparison visualization refers to the deliberate
and clear representation of differences, additions, and deletions through visual elements.
This technique enhances the interpretability of the comparison results by using visual cues
to convey specific information. Here are some usages of explicit encoding in the visualization
of model comparison:

e (Color-coded Differences: They uses different colors to represent different types of
changes, such as additions, deletions, or modifications. This provides a quick and
intuitive way for users to identify and understand the nature of differences.

e [cons and Symbols: It means employing specific icons or symbols to represent different
types of changes. Icons can be placed next to or within model elements to indicate
whether they are added, deleted, or modified.

e Annotation and Labels: It conveies adding textual annotations or labels to explicitly
describe the nature of changes. This can include information such as the date of
modification or the author who made the changes.

e Line Markings for Relationships: When comparing models that include relationships

between elements, it means using line markings or connectors to indicate changes in
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relationships. This makes it clear which connections have been added, deleted, or

modified.

5.3.4. Challenges in the visualization of semantic/domain-specific model comparison

An important drawback of current mode-based comparison approaches lies in their lack
of adequate visualization techniques for domain-specific differencing and merge tasks. Vi-
sualizing conflicts in the concrete syntax of different models is a significant challenge that
hasn’t been addressed for any modeling language (Sharbaf et al, 2022b).

Only a couple of existing methods (e.g., (Wieland et al, 2013; Bartelt and Schindler,
2010)) offer graphical support for conflict resolution, but they fall short of providing a clear
overview of the model elements involved in conflict situations (Sharbaf et al, 2022b). Addi-
tionally, the visualization approach introduced in (Wieland et al, 2013) only supports manual
resolution and focuses solely on fine-grained differences and conflicts. Moreover, the approach
in (Bartelt and Schindler, 2010) lacks support for various conflict resolution strategies, and
it doesn’t provide detailed information on specifying and Visualizing the resolution. This in-
dicates a trend towards graphical domain-specific differencing and merge activities (Sharbaf
etal, 2022b). Hence, a promising avenue for future research could involve visually guiding
users in describing conflict specifications.

Furthermore, adding a graphical representation of changes in the concrete syntax editor
could enhance collaborators’ awareness, helping them avoid conflicts during the modeling
phase. However, there are only a few approaches that concentrate on conflict visualization
(e.g., (Brosch et al, 2012f)) or provide user-friendly graphical editors (e.g., (Mens et al, 2005;
Barrett etal, 2011)) for managing conflicts during model merging. Nonetheless, (Brosch
etal, 2012f) lacks an editor to specify and visualize conflict and semantic resolution pat-
terns. Moreover, the visualization method in (Mens et al, 2005) relies on cross tables, and
the approach in (Barrett etal, 2011) utilizes text-based conflict reports. Thus, the ongo-
ing evolution of graphical and visual solutions for conflict management remains a central

challenge in this field (Sharbaf et al, 2022b).
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Gleicher (Gleicher, 2018) provides general guidelines for visualizing comparisons. For
many different domains, comparing artifacts is a common task and visualizing the compar-
ison often helps. Generally, the visual comparison is displayed using juxtaposition (e.g., as
EMFCompare does in Fig. 4.3), superposition, or explicit encoding (like we do in Fig. 4.10).

Brosch et al. (Brosch etal, 2012b) visualize the changes and conflicts in concurrently
evolved versions of the same UML model using UML profiles (stereotypes and tagged values).
This permits modelers to resolve the conflicts within the UML editor of their choice while
using the concrete syntax of the manipulated language. However, this approach is only
suitable for UML models whereas we pursue a general approach for arbitrary domain-specific
languages.

More similar to our work, the authors in (Schipper et al, 2009) focus on the visualization of
diagram differences in the diagrams themselves. The rationale is to help users to understand
the modifications immediately. Their proposed visualization includes pop-ups reporting the
changes performed in the neighborhood, zooming to changes, collapsing irrelevant parts,
and using different colors to represent additions (green), deletions (red), and changes (blue),
either in a single diagram or confronting two diagram versions. They have developed a tool
that uses EMFCompare for model comparison, as we do. However, their tool only permits
visualizing atomic changes, represented by different colors. Furthermore, this work aims
to contribute to the field by providing both fine-grained and coarse-grained domain-specific
patterns of change. While a detailed presentation of the thesis contributions is forthcoming,
this statement serves as an overview of the scope and intentions of our approach. In addition,
the visualization associated with each pattern is highly configurable. Other works, such as
(Mehra et al, 2005; Ohst et al, 2003), only permit showing changes using different colors or
shape styles.

A few works deal with the scalable visualization of differences in the case of large models.
To solve this problem, van den Brand et al. (van den Brand etal, 2010) combine a generic
visualization framework for metamodel-based languages to show the fine-grained differences,
with polymetric views that provide support for zooming and filtering. Wenzel (Wenzel, 2008)
also relies on polymetric views to support scalable visualization of differences based on model
metrics. Both works are complementary to ours: whereas we provide domain-specificity to

the visualization, these other works add a general visualization layer on top.
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6. Synthesis

In this section, we present a synthesis that encompasses the noticeable aspects from the

literature concerning domain-specific differencing and model merge.

6.1. Model Differencing

Semantic Matching: Some approaches enrich EMFCompare’s default matching process
by introducing semantic distinctions, aligning with an emphasis on semantic reasoning over
differences. Despite maintaining fast time performance, their precision and recall results fall
short. Furthermore, they predominantly concentrate on synonymous terms in the changed
model elements within the abstract syntax of DSL, as discussed by Addazi etal (2016).

Semantic Lifting: Another approach to improving semantic differencing involves elevating
a set of low-level differences to the level of meaningful editing operations. These operations
rely on rule-based specifications. However, in this approach, semantic lifting exclusively

addresses the abstract syntax of models, neglecting the concrete syntax (Kehrer etal, 2011).

6.2. Semantic Conflict Management

Pattern Languages and Semantic Conflicts: Some existing approaches create a difference
model to represent conflicts only in UML class diagrams. The conflict pattern language is
another method to specify conflict patterns. However, the languages used to formulate the
pattern of conflicts are textual and hard to learn and use by DSL experts (Sharbaf etal,
2020). Addressing this issue could help DSL users specify conflict patterns in a customizable
and flexible manner.

Dependency Analysis: Another shortcoming of existing approaches is the disregard or
low attention to dependencies among conflicts of different granularity (Langer et al, 2013a).
We believe that this concept needs to be addressed by dependency analysis approaches since
it could enhance conflict resolution efficiency.

Domain-Specific Conflict Resolution Rules: The shortage of tools for automatic conflict
resolution is another aspect that forces DSL users to manually resolve conflicts in most
cases. Addressing this issue would allow DSL engineers to expand and tailor rules, providing

a comprehensive and customizable solution.
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Insightful Manual Conflict Resolution: Although manual conflict resolution is inevitable,
existing solutions offer limited options of "keeping left" or "keeping right" (EMF Compare,
accessed August 2023; Koegel and Helming, 2010b). Nevertheless, by offering diverse op-
tions, especially considering the overlapping between semantic conflicts, versioning tools can
propose better manual resolution options. As a result, DSL users can make informed deci-
sions. This could ensure that conflicts are resolved in a way that aligns with the original

intention and requirements of the authors.

6.3. A Configurable Visualization

Visualization plays a pivotal role in enhancing understanding, communication, and con-
ceptual clarity in DSMLs. Approaches for domain-specific versioning mainly utilize UML
profiles for visualizing changes and formalized constraints using OCL. Therefore, it cannot
be useful in DSLs that are limited to UML models and cannot help DSL engineers express
complex change, conflict detection, and resolution patterns (Sharbaf and Zamani, 2020). In
addition, most of the approaches are limited to atomic changes, lacking support for more
coarse-grained difference or conflict patterns.

Moreover, real-world models may have a huge number of model elements or an enormous
number of conflicts (de la Vega and Kolovos, 2022). It may create challenges in loading all
the difference models, resolving all conflicts at one time, and navigating among conflicts that
need to be addressed.

Graphical Support and User-Friendly Editors: Mentioning the gap in visualization tech-
niques for conflict management tasks, Sharbaf et al (2022b) notes the limited graphical sup-
port in existing methods. Therefore, there is a need for DSL editors, allowing DSL engineers
to specify semantic differences, semantic conflicts, and resolution patterns visually using a

comprehensible concrete syntax.

6.4. Versioning Tools

Current commercial versioning tools for models like MagicDraw, Obeo Designer, and
JetBrains MPS come short in providing domain-specific aspects in core features of VCS.
Addressing their shortages can offer tailored visualizations for any DSL, ensuring flexibility

and ease of use for DSL engineers.
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6.5. Conclusion

In our examination of the existing literature, we have underscored the imperative of of-
fering domain-specific solutions for model differencing, semantic conflict management, and
versioning. Our focus has particularly been on exploring approaches for semantic conflict
definition, manual conflict resolution, and configurable visualization. Additionally, our find-
ings emphasize that there is a growing demand for managing the complexities of model
evolution and version control not only in the level of abstract syntax but also in the context

of concrete syntax, addressing to diverse Domain-Specific Languages (DSLs).
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Chapter 3

A Vision on domain-specific differencing and merging

of models

This thesis aims to provide a domain-specific approach for differencing, conflict detection,
conflict resolution, and merging of domain-specific models. The majority of studies to date
offer specific solutions for the model-based differencing and merging problems, mostly focused
on abstract syntax without providing a holistic solution. In this thesis, we consider the
problem as a whole, and we propose domain-specific differencing and merging solutions for
domain-specific models. In the remainder of this chapter, we explain this idea for the main
challenges and related solutions explained in Chapter 1.

We start with an overview of the general framework, and then relative to each main
challenge, we present the proposed contributions within this framework. The details about

each contribution will be given in the subsequent chapters as articles.
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1. Overview

Fig. 3.1 illustrates the primary goal of implementing DSMCompare. DSMCompare aims
to assist DSL users in resolving and merging conflicts in a domain-specific manner. As you
can see, Alice and Bob create branches to add new features. Alice finishes sooner and merges
her changes, but Bob encounters conflicts because the base repository has changed after
Alice’s successful push. As a result, DSMCompare automatically pulls the latest changes
and helps Bob resolve conflicts in a domain-specific way. Finally, it pushes the resolved
changes (commit number 6) to the base repository.

The primary challenge in the domain-specific differencing and merging of models is to
enhance semantic differencing and visualization. We address this problem by providing the
DSL user with a set of two-way semantic/domain-specific model differences that highlight
the differences between two versions of a model at both the abstract and concrete syntax
levels. We also enable the DSL engineer to create the rules for detecting semantic differences
in a domain-specific way.

The second main problem is to effectively detect and Visualize the semantic conflicts. We
address this problem by providing the DSL user with a set of three-way semantic/domain-
specific model differences and conflicts that highlight the differences and different types of
conflicts between three versions of a model at both the abstract and concrete syntax levels.
We also enhance the visualization by providing the layering concepts to improve the user
experience.

The third main problem is to empower conflict resolution in domain-specific contexts. We
address this problem by the DSL user with user-friendly conflict resolution mechanism that
generates and highlights the conflict resolutions for each conflict. We also automate merging
non-conflicting and equivalent differences, automate resolution for the semantic differences,
and provide appropriate visualization and user interface for the DSL experts.

We present in the following, three contributions that target detecting and visualizing

semantic differences, semantic conflicts, and conflict resolution and merging.

2. The Design Decisions for Domain-Specific Model Diff and Merge

We outline the essential design decisions for effective domain-specific model differencing

and merging.
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2.1. Enhancing Semantic Differencing and Visualization

In the first step, we aim to enhance semantic difference extraction to provide more mean-
ingful domain-specific insights. This involves aligning differencing rules with domain charac-
teristics to improve user understanding. The key design decisions for this step are detailed
in the following list, and the details are given in Chapter 4, which also illustrates our first
article.

Automatic Extension of DSL Meta-model. The proposed solution needs to identify and im-
plement the necessary mechanisms to enable the representation of model differences within
the DSL.

Higher-level Representations of Lower-level Differences. This design decision involves defin-
ing semantic rules that can analyze and transform low-level differences into more meaningful
and understandable representations. It also involves considering possible conflicts that may
arise when multiple rules are applied to the same elements of a difference model (Altman-
ninger et al, 2008a).

Automated Representation of Model Differences. This design decision involves adapting ex-
isting Sirius-based editors for model change visualization to automatically represent the
differences in a visually intuitive manner.

Prototype Tool Support. DSMCompare should be able to automatically extend the DSL meta-
model, apply semantic rules to create higher-level representations of differences and adapt
Sirius-based editors for visualization. The tool should also be capable of handling model
histories created by third parties and validating the approach on different DSLs and modeling
projects (Zadahmad et al, 2022; David et al, 2021).

2.2. Effective Detection and Visualization of Semantic Conflicts

We explore three-way domain-specific differencing and conflict detection, aiming to iden-
tify and visualize semantic conflicts for user understanding. Our goal is to enhance conflict
resolution and decision-making for future research. The key esign decisions for this step are
detailed in the following list, and the details are given in Chapter 5, which also illustrates
our second article.

Meta-model Agnostic. The tool accommodates models conforming to any metamodel, ensur-

ing applicability across diverse DSLs.
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Concrete Syntax Presentation. Differences are presented within the concrete syntax of the
DSL, promoting user familiarity and understanding.

User-Defined Semantics. The tool empowers DSL engineers to define meaningful differences
through semantic patterns relevant to the domain.

Fine-Grained Difference Detection. Proficiently detects fine-grained differences using ab-
stract syntax, capturing additions, deletions, modifications, and association rerouting.
Semantic Difference Detection. Identifies semantic differences based on predefined rules,
grouping fine-grained changes for meaningful insights.

FEquivalent Change Detection. Efficiently identifies identical changes across distinct model
versions, reducing redundancy during merging.

Fine-Grained Conflict Detection. Detects conflicts arising from contradicting fine-grained
changes, aiding effective conflict resolution.

Semantic Conflict Detection. Extends conflict detection beyond abstract syntax, supporting
users in reconciling semantic conflicts.

Ezxplicit Difference Presentation. Explicitly presents differences and conflicts, offering in-
sights through dedicated structures, models, or traces.

Headless API. The tool is accessible interactively or via API, enabling seamless integration
with diverse tools and systems.

Three-Way Differencing. Supports three-way comparisons, vital for collaborative scenarios,

simplifying conflict reconciliation and merging.

2.3. Empowering Conflict Resolution in Domain-Specific Contexts

In the third step, we empower DSL users to navigate, resolve, and even undo conflict res-
olutions effectively, improving collaboration and project advancement by addressing domain-
specific conflict challenges. The key design decisions for this step are detailed in the following
list, and the details are given in Chapter 6, which also illustrates our third article.
DSL-Adapted Conflict Environment. DSL users are provided with an environment that aligns
with their familiar DSL syntax, promoting intuitive conflict management. This design de-
cision stems from the realization that users are more efficient in resolving conflicts when
presented with a context they are accustomed to. For instance, in our running example of

a graphical DSL for designing floor plans, conflict resolution tools should present conflicts
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within the graphical interface that designers are well-versed in, thereby streamlining the
resolution process.

Automated Resolution of Trivial Changes. The tool automatically resolves trivial changes
that have been performed in one or both versions. Trivial changes, which are straightfor-
ward modifications with negligible impact, are a common occurrence during merging. By
automating their resolution, developers are spared the effort of manually addressing these
minor alterations, thus expediting the conflict resolution process.

Automatic Resolution of Semantic Conflicts. When viable resolution strategies are available,
the tool autonomously resolves semantic conflicts. This feature caters to situations where
the nature of the conflict and its possible solutions are well-defined within the DSL’s con-
text. For instance, if a DSL for financial modeling encounters a conflict between different
interpretations of an interest rate, the tool could apply a predefined mathematical rule to
harmonize the conflicting values.

Manual Resolution Support. The tool accommodates manual resolution, granting users the
autonomy to tailor conflict resolutions according to specific project problems. Manual inter-
vention is crucial when the nature of the conflict surpasses automated strategies, requiring
domain-specific expertise or project-specific considerations for resolution.

Fine-Grained Conflict Navigation. Users are empowered to navigate between conflicts, with
the ability to delve into the underlying fine-grained conflicts that contribute to broader,
coarse-grained conflicts. This navigation aids users in comprehending the root causes of
conflicts, enabling more informed resolution decisions.

Resolution Reversibility. Users can undo previously made resolution decisions for each con-
flict and modify their choices. This feature ensures flexibility and allows users to iterate on
their resolution strategies, refining their approach as the merging process unfolds.

Partial Resolution Saving. For scenarios involving large models or an extensive volume of
conflicts, users can save partial resolutions. This functionality enables users to pause the
merging process and later resume from where they left off, minimizing disruptions and facil-

itating effective conflict management.
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3. Enhancing semantic differencing and visualization

The first contribution of domain-specific differencing and merging of models is described
in Chapter 4, DSMCompare: domain-Specific Model Differencing for Graphical Domain-
Specific Languages.

The initial key issue involves improving semantic differencing and visualization. The se-
mantic differences show the intention of the contributor of the branch to make the changes.
By understanding the contributor’s intention during the merge time, the user responsible
for resolving the conflicts can decide in a better way. In addition, semantic differencing can
have other usages for a DSL expert. The detection of semantic differences is covered in the
research. However, the mechanisms to specify semantic differences and the visualization of
related editors to view differences and define rules are not available in a domain-specific
manner. To provide a domain-specific approach for detecting and visualizing semantic dif-
ferences, we sought to generate a metamodel to represent and visualize model differences
by extending the original DSL of the domain-specific model. It aims help to fill the com-
prehension gap required to understand the semantic and fine-grained differences since we
provide higher-level representations of lower-level differences in the same concrete syntax.
To enable DSL experts to create new rules and maintain the previously defined rules, we
automatically generate domain-specific editors allowing DSL engineers to specify patterns
for detecting semantic differences. However, the problem is that multiple semantic difference
rules may be applicable at the same time, and they might conflict with each other. There-
fore, we provide an elaborate graph-based analysis of the rules based on heuristics to obtain
a reasonable schedule of the rule application order. In this case, the ordering must be such
that it reduces the verbosity of the presented difference, to favor semantic differences over

syntactic differences.

4. Effectively detecting and Visualize the semantic conflicts

The second contribution of domain-specific differencing and merging of models, described
in Chapter 5, is from two-way to three-way: domain-specific model differencing and conflict
detection.

The second primary challenge is to efficiently identify and visualize semantic conflicts.

The detection of semantic conflicts is covered in the research. However, the visualization
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support as well as the domain-specific rule editors is not addressed effectively. On the other
hand, the solution we implemented for the first problem was focused on two-way differenc-
ing. As a result, we have further enhanced our practice, DSMCompare, to detect semantic
differences and conflicts based on a three-way comparison. Through a domain-specific ap-
proach, we automatically extended both the abstract syntax and concrete syntax of DSL
and generated a three-way difference DSL for abstract syntax and for concrete syntax to
represent and visualize both fine-grained and semantic differences and conflicts using Sirius.
To accomplish three-way difference and conflict detection, we rely on the preliminary results
produced by the three-way merge service that EMFCompare offers. Then we extend the
semantic differencing rule DSL and editor from the three-way difference DSL to enable the
DSL engineer to specify the semantic difference patterns. The defined rules are transformed
to Henshin; first to detect the semantic differences, second to determine an optimized or-
der for the rule application aimed at finding more semantic differences and filtering more
fine-grained differences, and third to locate the potential conflict between fine-grained and
semantic differences or two semantic differences using Henshin’s MultiCDA feature. The re-
sult of the last step was a list of potential conflicts, including a minimal model fragment to be
checked. We used the generated conflict information in run-time to ensure the performance
and accuracy of finding semantic conflicts since we are only checking limited fragments of

the difference model for conflicts.

5. Empowering conflict resolution in domain-specific contexts

The third contribution of domain-specific differencing and merging of models, described
in Chapter 6, is domain-specific conflict resolution and model merge.

The third primary challenge is to enable conflict resolution in domain-specific contexts.
The conflict resolution mechanisms are covered in the research. However, the introduced
approaches are mostly focused on abstract syntax, or the approaches to specifying the con-
flict resolution rules are not given in a way that is easily used by the domain expert. On
the other hand, the strategies provided for conflict resolution are very limited and resolve
the conflicts in a fine-grained manner and are not focused on resolving all the fine-grained
conflicts associated with a semantic conflict at once. As a result, we introduce an approach

for domain-specific conflict resolution and model merging based on a three-way comparison.
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It automatically generates a domain-specific editor to create conflict resolution rules and en-
hances the concrete syntax to allow DSL users to visualize the three-way conflict resolutions
more effectively. This solution enables DSL users to manage conflicts in an environment
familiar to their DSL, navigate between conflicts, manually resolve conflicts that need user
intervention, undo previous resolution decisions, and save partial resolutions.

We plan to incorporate a conflict reconciliation mechanism that leverages artificial in-
telligence techniques to learn implicit user preferences. Additionally, we aim to integrate

DSMCompare into domain-specific VCS systems using web-based editors.
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Résumé. Lors du développement d’un projet logiciel, différents développeurs collaborent
pour créer et modifier des modeles. Ces modeles évoluent et besoin d’étre versionné. Au
cours des dernieres années, des progres ont été réalisés dans l'offre d’un support dédié a
la gestion des versions de modeles, qui améliore ce qui est pris en charge par les systemes
de controle de version basés sur du texte. Cependant, il reste nécessaire de comprendre
les différences entre les modeles en termes de sémantique du langage de modélisation et de
visualiser les changements en utilisant sa syntaxe concrete. Pour résoudre ces problemes,
nous proposons une approche globale — appelée DSMCompare — qui prend en compte a
la fois la syntaxe abstraite et concréte d’un langage spécifique & un domaine (DSL) lors
de I'expression des différences de modele, et qui prend en charge la définition de domaines
-sémantique spécifique pour des modeles de différences spécifiques. L’approche est basée sur
Iextension automatique du DSL pour permettre la représentation des changements et sur
I’adaptation automatique de sa syntaxe graphique concréte pour visualiser les différences.
De plus, nous permettons la définition de regles de différenciation sémantique pour capturer
des modeles de différences récurrents spécifiques a un domaine. Puisque ces regles peuvent
entrer en conflit les unes avec les autres, nous introduisons des algorithmes de résolution des
conflits et de planification des regles. Pour démontrer ’applicabilité et 'efficacité de notre
approche, nous rendons compte d’évaluations basées sur des modeles synthétiques et sur des
historiques de versions de modeles développés par des tiers.

Abstract.

During the development of a software project, different developers collaborate on creat-
ing and changing models. These models evolve and need to be versioned. Over the past
several years, progress has been made in offering dedicated support for model versioning
that improves on what is being supported by text-based version control systems. However,
there is still need to understand model differences in terms of the semantics of the modeling
language, and to visualize the changes using its concrete syntax. To address these issues, we

propose a comprehensive approach—called DSMCompare—that considers both the abstract
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and the concrete syntax of a domain-specific language (DSL) when expressing model differ-
ences, and which supports defining domain-specific semantics for specific difference patterns.
The approach is based on the automatic extension of the DSL to enable the representation
of changes and on the automatic adaptation of its graphical concrete syntax to visualize the
differences. In addition, we allow for the definition of semantic differencing rules to cap-
ture recurrent domain-specific difference patterns. Since these rules can be conflicting with
each other, we introduce algorithms for conflict resolution and rule scheduling. To demon-
strate the applicability and effectiveness of our approach, we report on evaluations based on
synthetic models and on version histories of models developed by third parties.
Keywords. Model-Driven Engineering, Model versioning, Model differencing, Graphical

concrete syntax

1. Introduction

Model-driven Engineering (MDE) relies on models to conduct all phases of software
development. Models can be built using general-purpose modeling languages, e.g. UML,
but the use of domain-specific languages (DSLs) is also common (Kelly and Tolvanen, 2008;
Schmidt, 2006).

Like other software artifacts involved in a development process, models evolve (Paige
etal, 2016) and, therefore, need to be versioned to have a record of their changes (Brosch
etal, 2012a). Sometimes, models are persisted as text files (e.g., using the XML metadata
interchange format, XMI (OMG, 2023)), which allows using code version control systems
on them. However, text-differencing is not adequate for models as it may report irrelevant
model differences (e.g., same objects that appear in different file positions). For this reason,
the modeling community has proposed specific model versioning systems (Altmanninger
et al, 2008a; CDO Model repository, accessed August 2023; Kappel et al, 2006; Koegel and
Helming, 2010b) and approaches for model differencing (EMF Compare, accessed August
2023), conflict resolution, and merging (Brosch et al, 2009; Schwégerl et al, 2015).

An important aspect of a versioning system is the ability to visualize matches and dif-
ferences of the history of a model in a comprehensible manner. However, many approaches,
like EMFCompare (EMF Compare, accessed August 2023), represent the differences between

two versions of a model using low-level generic traces that may be difficult to understand.
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Moreover, these traces typically are at the abstract syntax level, which may further hinder
their understanding, since users deal with models using their concrete syntax.

Therefore, we propose to represent traces in a domain-specific way, assign domain-specific
semantics to recurring model differences (by defining semantic differencing rules), and visu-
alize those differences at the concrete syntax level. Our approach lifts low level differences
between two models to high level differences based on the semantics of the DSL and repre-
sents them by reusing the concrete syntax of the DSL. In this paper, we focus on graphical
concrete syntaxes realized through the Sirius framework (Sirius, 2023a). Since different se-
mantic rules may conflict with each other, we propose an algorithm to assign priorities to
rules, by their automated static analysis. To ensure the practicality of our proposal, we
provide automated tool support to minimize the effort of applying the approach to arbitrary
graphical DSLs.

The contributions of this paper are the following. First, we propose a method to represent
model differences within a single domain-specific model. This is achieved by automatically
extending the DSL meta-model with domain-specific change operations. Second, we propose
means to create higher-level representations of lower-level differences using semantic rules,
provide mechanisms for analysing their possible conflicts, and propose scheduling policies
for minimising those. Third, we provide an automated way to represent model differences
using the graphical concrete syntax of the DSL. Finally, we provide a prototype tool support,
able to adapt automatically Sirius-based editors for model change visualization, and use it
to validate our approach on graphical DSLs and model histories created by third-parties.

This article extends our preliminary work (Zadahmad et al, 2019) in several ways. First,
we have made several improvements to the semantic differencing rules that encapsulate
domain-specific differences. In Section 4.1, we explain how these rules can now express
multiple negative application conditions. Also, the new Section 4.3 explains how the se-
mantic differencing rules can be mapped to graph transformation rules. We illustrate our
implementation using Henshin. This generalizes our approach, which now can be ported to
other modeling frameworks. Second, in (Zadahmad etal, 2019), we assumed that the rules
are independent from each other and each rule is applied in isolation. However, in most
scenarios, multiple semantic differencing rules may be applied on the same elements of a

difference model. Therefore, we have devised an algorithm dedicated to resolving conflicting
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rules when they are applied in combination, which is presented in Section 5. The algorithm
is directed to optimize the verbosity of the domain-specific difference model by suggesting a
prioritized list of the rules to the user. Third, we extended the evaluation of our approach
in several ways in Section 6. We have refined and extended the research questions to assess
the effectiveness of our approach. To answer these, we now include a synthetic experiment,
and validate our approach on two modeling projects developed by third-parties: Arduino?
designer models and evolution of Ecore metamodels.

The rest of this paper is organized as follows. In Section 2, we overview the approach and
introduce a running example. In Section 3, we describe how to represent model differences
of a DSL. This is achieved by a semi-automated extension of the DSL metamodel and its
concrete syntax. For the latter, we use Sirius as an illustration. In Section 4, we detail how
to define high-level, domain-specific change descriptions in terms of semantic differencing
rules. In Section 5, we explain how to resolve the conflicts when different rules are applied
in combination. In Section 6, we evaluate the approach with one controlled experiment and

two case studies. Finally, we discuss related works in Section 7 and conclude the paper in

Section 8.

2. Overview and running example

In the following, we motivate our approach with a running example and present its overall

rationale.

2.1. Motivating example

A typical model differencing tool compares two versions of a model based on the per-
formed editing steps (e.g., added class or deleted reference). The result of this comparison
is identified by low-level differences between the two versions, which includes at least two
sets: match and diff. The match set establishes a pair-wise correspondence between similar
elements in both models. The diff set computes the differences between each pair in the
match set. The most popular generic model comparison tools, EMFCompare (EMF Com-
pare, accessed August 2023) for instance, produce three kinds of diffs: ADD, DELETE, and
MODIFY.

2https ://www.arduino.cc/
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However, a DSL user works with an end-user tool and does not interact with the abstract
syntax. Instead, she uses end-user features such as domain-specific views and diagrams
to manipulate models. Any change in this level of abstraction (i.e., the domain-specific
concrete syntax) can turn into several fine-grained changes in the model. Consequently, the
comparison tool shows the user all low-level changes, such as a deleted reference between two
objects, which may not make sense to a DSL user who is not familiar with the metamodel
of the DSL. This creates a mismatch between what the comparison tool produces and what
a DSL user would expect to understand: the differences in terms of domain-specific syntax
rather than concepts of the abstract syntax.

There have been approaches that tried to mitigate this issue, e.g., through the semantic

lifting of the low-level changes (Kehrer etal, 2011) or by using a metamodel to represent
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Figure 4.3. Representation of difference model in EMFCompare for the Pacman game DSL

model differences (Cicchetti et al, 2007). However, these approaches do not provide a com-
prehensive framework for handling domain-specific model differences. In particular, the ex-
isting approaches mostly focus on expressing model differences at the abstract syntax level
and do not show differences at the concrete syntax level (i.e., the graphical notation of a
DSL). Furthermore, the existing approaches do not take domain-specific model semantics®
into consideration during the comparison process.

To address these issues, we introduce an approach, called DSMCompare, which provides
the DSL user with a set of semantic domain-specific model differences that highlight the
differences between two versions of a model at both the abstract and concrete syntax levels.
We explain how a DSL user uses DSMCompare using a running example of a simplified
Pacman game, a well-known game where Pacman navigates through grid nodes searching

for food to eat, while ghosts try to kill him.

3In this paper, we use “domain-specific model semantics” to refer to the meaning that a human assigns to a
model when looking at it, not to the execution semantics of the model.
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We provide a modeling environment to define game configurations, based on (Syriani
and Vangheluwe, 2013). Fig. 5.2 shows the metamodel of this game. Fig. 4.2 sketches
what DSMCompare outputs given two versions (M1 followed by M2) of a Pacman game
configuration. The black arrows pointing up over Pacman, food, and the ghost are the
associations representing their position on a grid node. Comparing M1 and M2, we can
easily conclude that Pacman has moved right to the middle grid node and ate the food on
it. The score value is incremented accordingly. DSMCompare produces a domain-specific
difference model Diffi2 in two steps. First, in the middle of Fig. 4.2, Diffis contains all the
fine-grained diffs. The green arrow with a ‘+’ denotes that an association is added to a
grid node, the red arrow with an ‘x’ denotes a deleted association, and the blue arrow with
a ~ (on the scoreboard) denotes an attribute value change. Then, DSMCompare applies
the provided semantic differencing rules on Diffi2. In this case, two rules can be applied:
Pacman FEats Food and Pacman Moves Right. For example, the former rule checks that
Pacman is on a grid node that also has food on it which gets deleted, and the scoreboard
value is incremented. The final difference model Diffi2 is depicted at the right of Fig. 4.2
(labelled as semantic diff).

In contrast, using EMFCompare for comparison results in a list of low-level changes
as presented in Fig. 4.3. The DSL user needs additional analytical effort to understand
these changes to infer the difference in a meaningful way. For example, the user needs to
understand that (on the top panel of Fig. 4.3) “on changed” means that Pacman has moved
to a different grid node (because the reference “on” has changed), and needs to inspect the
lower juxtaposed panels to understand that food has disappeared. However, as the “on”
reference is not shown on the tree editor, it becomes difficult to realize that this is because

Pacman ate the food.

2.2. Overview of DSMCompare

Fig. 4.4 gives an overview of DSMCompare. The approach is useful for two types of users:
DSL engineers (who build the DSL) and DSL users (who create models using the DSL).

To define the DSL, the engineer creates a metamodel MM for the abstract syntax, and
a model C§ of the concrete syntax. In DSMCompare, we reuse both components to de-

fine the domain-specific model differences for that DSL and show any domain-specific diff
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Figure 4.4. Overview of the approach

Diff12 between two versions of a model M1 and M2. Concretely, the approach produces a
domain-specific diff metamodel DSDiffMM and concrete syntax model DSDiffCS, as shown
in Fig. 4.4. DSDiff MM extends the language metamodel to define domain-specific diffs, such
as adding/removing a model element. DSDiffCS shows the corresponding concrete syntax
elements: graphical elements that could be added, removed, or updated.

DSMCompare also produces an environment to describe high-level semantic differences
in the form of rules tailored to the DSL. Namely, it produces a semantic differencing rule
metamodel SDRuleMM and concrete syntax model SDRuleCS, to allow the DSL engineer
to define the set of rules to apply on Diffis. As discussed previously, having semantic
differencing rules is important to facilitate reasoning about model differences. Without these
rules, low-level differences may not convey the intention or the reason behind a change,

and it may be difficult to understand for the user how changes relate to each other. For
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example, the DSL engineer could define a rule for operation overriding in class diagrams,
which matches an operation in one version of a model with a variant of that operation
in a different version. Instead of showing that an operation is simply being added in the
second version, DSMCompare uses the rule to represent this change as the second operation
overriding the first one.

The DSL user can use DSMCompare for different purposes. For example, in a version
control system, the DSL user may want to understand high-level semantic differences be-
tween two versions of a class diagram. By using rules that represent refactorings, it would
be possible to identify the places in the model that underwent refactoring. In a collabora-
tive development environment, a DSL user may identify the domain-specific changes that a
collaborator introduced, by applying DSMCompare on the collaborator version of the model
and the model at hand.

DSMCompare produces a traditional diff of the two model versions by reusing a difference
tool such as EMFCompare. This result is processed to generate Diffi2, that conforms to
DSDiffMM, and is represented according to DSDiffCS. At this point, Diffis contains the
fine-grained differences in the concrete syntax of the DSL. With a library of rules predefined
by the DSL engineer, the approach executes the applicable rules on Diffi2 to produce a

semantically lifted difference model.

3. Fine-grained differencing

To overcome the restrictions of generic approaches for model comparison, we propose to
represent all model differences in a format tailored to the domain of the original metamodel.
We also visualize the differences using domain-specific concrete syntax.

Section 3.1 explains how to extend the domain meta-model (MM) to represent two model
versions within one model. Then, Section 3.2 describes how the concrete syntax model (CS)
is extended to represent model changes (DSDiffCS). Finally, Section 3.3 introduces how a
single diff model Diff1s (instance of DSDiffMM) is generated out of two model versions (M1
and M2), and how this is represented using the diff concrete syntax DSDiffCS.
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Figure 4.5. Excerpt of the generated difference metamodel

3.1. Domain-specific difference metamodel

To represent model differences in a domain-specific way, the metamodel of model dif-
ferences should remain faithful to the original metamodel MM. Therefore, we create a new
metamodel DSDiff MM for domain-specific differencing (see Fig. 4.5) based on MM (see
Fig. 5.2).

Algorithm 1 outlines the transformation from MM to DSDiffMM. 1t starts by cloning
MM to ensure that DSDiffMM comprises all the structural features of the DSL. In Fig. 4.5,
DSDiffMM includes all classes and associations that the MM metamodel possesses. The
remaining steps extend the metamodel as follows. We create two enumerations that will
be used to annotate each class and association with the kind of difference. To represent a
difference in an object of a class, like Score, we create a subclass with an additional attribute
diff_kind that states whether the object has been added, deleted, or that at least one of its
attributes has been modified. In the subclass we also add, for each attribute in the class,
a new attribute of the same type that will hold the new value. For example, the subclass
of Score has an attribute new_value. This is particularly useful when auditing changes in
different versions of a same model.

Note that this procedure does not transform the class inheritance hierarchies. If MM has
a class A and a class B that inherits from A, then, in DSDiffMM, DiffA inherits from A and

DiffB inherits from B, but there is no inheritance between DiffA and DiffB. We argue that this
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Algorithm 1 Transformation from MM to DSDiffMM

1: procedure GENERATEDSDIFFMM (MM)

2: DSDiffMM <« MM.clone( “DSDiffMM?”)

3:  DSDiffMM.createEnum(“ClsDiffKind”, {ADD,DEL,MOD})
4: DSDiffMM.createEnum( “AscDiffKind”, {ADD,DEL})

5: for all class C in DSDiffMM do
6
7
8
9

if not C.isAbstract() then
DiffC «+ DSDiffMM.createClass( “Diff "4C)
DiffC.setSuperClass(C)
DiffC.addAttribute( “diff _kind”, ClsDiffKind)

10:  end if

11:  for all attribute a in C.getAllUniqueAttributes() do
12: DiffC.addAttribute( “new "+a, a.getType())

13:  end for

14: end for

15:  for all association S in DSDiffMM do

16:  Cl1 < S.getSource(), C2 < S.getTarget()

17:  if C1 # DSDiffMM.getRootClass() then

18: DiffC1_S < DSDiffMM.createClass( “Diff "+C1+“_7+8)
19: DiffC1_S.addAttribute( “diff kind”, AscDiffKind)

20: n + S.getTargetCardinalities().target().upperBound()
2 if S.isComposition() then

22 diffS < Cl.addComposition( “diff "+S, Dif£C1_S)
23: else

24: diffS < Cl.addAssociation( “diff "+S, DiffC1_S)
25: end if

26: diffS.setCardinalities(1..1, 0..2Xn)

27: target < DiffC1_S.addAssociation( “target”, C2)
28: target.setCardinalities(0. .1, 1..1)

29:  end if

30: end for

31: SDiff < DSDiffMM.createClass(“SemanticDiff”)
32: SDiff.addAttribute( “name”, String)

33: for all class C in DSDiffMM do

34:  diff_C <« SDiff.addAssociation( “diff "+C, C)
35:  diff_C.setCardinalities(1..1, 0. .%)

36: end for

37: R <« DSDiffMM.getRootClass()

38: diffs «+ R.addComposition( “diff "+8S, SDiff)
39: diffs.setCardinalities(1..1, 0..%)

40: return DSDiffMM

41: end procedure

decision is to allow implementing our solution in frameworks where multiple inheritance is not
supported. Therefore, on line 11 of Algorithm 1, C.getAl1UniqueAttributes() retrieves all

attributes of C and those inherited from its super classes transitively. Furthermore, abstract
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classes have no corresponding Diff class since they cannot be instantiated in the compared
models.

As outlined in lines 15-30 of Algorithm 1, for each association in MM, we create a class
to reflect the kind of change (addition or deletion). We then connect this new class with the
source and target classes of the association. In the Pacman example, the on association is
transformed into the DiffPositionableEntity_on class. Since on is a composition, diffon is
also a composition, to preserve the semantics of the association. Suppose that a difference
model Diffio needs to reflect that the Pacman object has moved from one grid node to
another. Then, there will be two DiffPositionableEntity_on instances: one representing
the deletion of the on relation to the old grid node and one for the addition of the on relation
to the new grid node. This is why the upper bound of the cardinality of diffon in DSDiffMM
must be doubled on line 26.

The elements created up to now can only capture individual fine-grained differences
in Diffi2. To enable the representation of semantic differences, the procedure creates a
SemanticDiff class (cf. line 31) that holds the name of the semantic difference that a com-
bination of original and semantic diff classes represent. This will be used by DSMCompare
in the second step when applying semantic differencing rules (cf. Section 4).

One benefit of this procedure is that a difference class, like DiffScore, still contains all
attributes and relations with the same name, type, cardinalities, and constraints as in Score.
The rationale is to allow an instance of MM to be a valid instance of DiffMM. This is useful
in case M1 and M2 are identical, as their difference can be represented by M1. Consequently,
a difference model can contain both instances of Score and DiffScore if one is unchanged

and the other is, say, deleted.

3.2. Visualization of domain-specific differences

Since the user of the DSL manipulates models in their concrete syntax representation,
it makes no sense for her/him to analyze the difference model in its abstract syntax form.
Therefore, the DSL to represent the difference model should also be assigned a concrete
syntax, which we call DSDiffCS. Since the DSL engineer has defined a concrete syntax CS
for the DSL, she should also provide one for DSDiffMM. However, instead of starting from
scratch, we propose to generate a default DSDiffCS that reuses the style from CS to remain
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in the spirit of the DSL. Then, the DSL engineer can customize it if so desired. In this
subsection, we describe how to generate DSDiffCS from CS, assuming a graphical concrete
syntax.

Sirius (Sirius, 2023a) is one of the most popular frameworks to generate graphical model-
ing environments and to manipulate models graphically in the Eclipse ecosystem. Although
our approach is applicable to other graphical language workbenches, such as GMF (GMF,
last accessed 2023), MetaEdit+ (Kelly etal, 1996) and AToMPM (Syriani etal, 2013), our
description is based on Sirius because its wide use nowadays, and because it offers a model-
based approach for concrete syntax definition.

In Sirius, the main component of the concrete syntax definition is a viewpoint specification
model (odesign). It defines a mapping of graphical representations to elements of MM. For
example, to render the visualization of the Pacman class, we define a NodeMapping that refers
to an icon in an image file. The NodeMapping can be a combination of text, icons, shapes
and style customizations, such as color and size. Similarly, associations are rendered by an
EdgeMapping. As for compositions, the target class is rendered by a BorderedNodeMapping
within the NodeMapping of the source class. Constraints expressed in the Acceleo Query
Language (AQL), a variant of the Object Constraint Language (OCL) (Object Management
Group (OMG), 2023), can filter visualizations depending on a condition. Finally, it is possible
to define a palette of buttons to instantiate MM classes and associations by customizing the
ToolSection.

We generate DSDiffCS by means of an outplace transformation® that takes as input CS
and outputs DSDiffCS. The overall logic of the transformation is to copy each component
of CS onto DSDiffCS and create the representation of each Diff_ class by extending the
representation of its corresponding MM class. This maximizes the reuse of C'S to represent
the difference model intuitively for the DSL user. For each NodeMapping, e.g., PacmanNode, we
create three new ones for each difference kind: DiffPacmanNodeADD, DiffPacmanNodeDELETE,
DiffPacmanNodeMODIFY. By default, the add node is the same as the original node annotated
with a green ‘4’ sign, the delete with a red ‘x’, and modify with a blue ‘~”. The latter
indicates that at least one of the attribute values has changed. For example, the ScoreNode

is a rectangle with the value of its value attribute displayed inside. We change the text

4This is a transformation that takes as input a model and produces a different output model. This contrasts
with inplace transformations, which are applied directly on the input model.
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displayed in DiffScoreNodeMODIFY by showing the value concatenated with an arrow ‘—>’,
followed by the new_value. One particularity of the mapping in Sirius is that if DiffPacman
inherits from Pacman in DSDiffMM, Sirius displays the representation of the former for the
latter. Therefore we need to add an AQL condition in DiffPacmanNodeADD to force it to
represent DiffPacman instances only and not its super classes.

EdgeNodes are treated slightly differently. Recall that an association S from class A to
class B in MM is transformed into a class DiffA_S with an incoming composition diffS from
A and an outgoing association target to B. Therefore, in DSDiffCS, DiffA_S is represented
with a BorderedNodeMapping as a subnode of the NodeMapping of A. We create two Border-
edNodeMappings for each Edge, one for adding and one for deleting, annotated similarly to
Nodes. The target association is rendered by an EdgeNode.

The only element in DSDiffMM that does not have a visualization in CS is the
SemanticDiff class (cf. line 31 of Algorithm 1). By default, we represent it with a rec-
tangle with its name attribute value displayed inside.

We implemented this transformation in ATL to help automate the process. If the con-
crete syntax makes use of icon files to render the elements of the metamodel, the DSL
engineer must also provide a set of icon files for each Diff_ class and association. The trans-
formation assumes that the name of the icon is preserved, but suffixed with the DiffKind,
e.g., pacman.png — pacman_add.png. Nevertheless, it is also possible to fully automate that
part if the concrete syntax does not include external icons, but is built entirely with Sirius
nodes. In this case, our transformation will automatically add a symbol on the top-left of the
node indicating the DiffKind. This opens the door to a variety of visualizations to represent

domain-specific semantic differences.

diffOn

Legend:

n Ghost ePacman @ Food D GridNode ™~ diffScore

Figure 4.6. Fine-grained difference model Diffj2 of M1 and M2
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Defining DSDiffMM along with DSDiffCS as a domain-specific difference language using
frameworks such as Sirius, allows the DSL engineer to generate a domain-specific model
environment to represent difference models Diffio. These can be inspected and manipulated
like any other model (M and M2) in an environment familiar to the DSL user. Fig. 4.6
illustrates the Diffio model for the running example (cf. Fig. 4.2), presented in its concrete

syntax as output by DSMCompare.

3.3. Fine-grained domain-specific model comparison

Given two models M1 and M2 of a DSL, we want to output a single model Diffio
depicting the changes from M1 to M2, as an instance of DSDiffMM. Note that the two
models are provided with their abstract and concrete syntax representations. Most current
model comparison approaches detect changes at the abstract syntax level only. For instance,
(Lin etal, 2007) dynamically computes an identifier for each model element based on their
properties (e.g., type and attribute values). Alternatively, metamodel-agnostic approaches,
like (Brun and Pierantonio, 2008; Cicchetti et al, 2007), compute the structural and attribute
value similarities between M1 and M2. These tools produce a generic difference model that
lists the changes between the two models. We chose to reuse these difference algorithms and
then process the result to produce Diffi2. In our implementation, we rely on the change list
output by EMFCompare.

To produce the Diffis model, we first clone M1 since the differences will be expressed in
terms of M1. We assume that the result from a difference algorithm outputs a list Ag of
differences for classes, and another one A 4 for associations, such as the case in EMFCompare.
We denote an element E' € A¢ using primed uppercase letters. This way, if £’ is a deletion
or a modification, we identify E to be the corresponding element in M. For example, in
Fig. 4.6, E' can be the score object with its value modified from 1 to 2. We replace E’,
the score object, in M1 by an instance of the DiffScore class as per Algorithm 1. This
new object will hold all original attribute values, so score=1, and all new attribute values,
so new_score=2. If F’ is an addition, we create an instance of the Diff class corresponding
to E' and set all its new attribute values. Finally, we mark the new Diff element with its

ClassDiffKind.
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An association A’ € A4 is treated a bit differently. If A’ is a deletion, we remove the
link A in M1 corresponding to A’ and create an instance of the Diff class corresponding to
it. For example, in Fig. 4.6, the on link from the Pacman to the first grid node is removed
and an instance of DiffPositionableElement_on is created. In case A’ is an addition, only
the creation of the Diff class is needed. We then connect the Diff instance to the source and
target elements of A. Finally, we mark it with its AscDiffKind.

Our approach does not require additional manual effort to produce the concrete syntax
of Diffi2. Since Diffis is an instance of DSDiffMM, then DSDiffCS is applied automatically

on Diffis to represent it visually, as shown in Fig. 4.6.

4. Domain-specific semantic differencing

In this section we introduce the approach to create semantic diff rules. This involves syn-
thesizing a metamodel SDRuleMM out of DSDiffMM, as we explain in Section 4.1. Then,
in Section 4.2 we outline how to generate a graphical environment for the DSL engineer
that supports the creation of semantic differencing rules, based on SDRuleMM. Finally, Sec-
tion 4.3 provides a semantics for domain-specific diff rules in terms of graph transformation

rules (Ehrig et al, 2006).

4.1. Rules for domain-specific differences

As explained in Section 2, we automatically derive an environment for specifying semantic
differencing rules. This enables the DSL engineer to define higher-level changes specifically
tailored for the domain. A rule needs to detect a pattern of fine-grained differences and
replace it with a SemanticDiff class that was created in Algorithm 1. Our semantic differ-
encing rules act similarly to inplace model transformation rules (Ehrig etal, 2006) with a
precondition and a postcondition component. Algorithm 2 outlines the procedure to produce
SDRuleMM from DSDiffMM and Fig. 4.7 shows the result. It is inspired by (Kiihne et al,
2009) where the authors produce domain-specific model transformation rule patterns from

a DSL.

Like Algorithm 1, this procedure starts by reusing all the elements of DSDiffMM, adapting
them to the new needs. Every class and association is prefixed with Pattern_, except the

SemanticDiff class. All attributes from DSDiffMM except diff_kind are removed, since
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Figure 4.7. Excerpt of the semantic differencing rule metamodel PacmanRule MM

they do not contribute to the rule. However, the connectivity of the associations remains as
in DSDiffMM. This simplifies the detection of patterns in the difference model Diffis.

First, a unique identifier distinguishes
instances of the same classes to facilitate writing constraints. Then, a filter attribute is used
to signify that the element in Diffi2 should be removed when applying the rule. It is helpful
to remove fine-grained differences when a domain-specific difference is more meaningful.
Furthermore, the rule may contain negative application conditions (NACs) to forbid the
presence of elements (Ehrig et al, 2006). We add a NAC_group attribute to all classes prefixed

with Pattern_. Similar to some transformation languages (Arendt et al, 2010), one or more



Algorithm 2 Transformation from DSDiffMM to SDRuleMM

1: procedure GENERATESDRULEMM (DSDiffMM)

2: SDRuleMM < DSDiffMM.clone(“SDRuleMM”)

3: for all class C#SemanticDiff in SDRuleMM do

4:  C.keepDiffKindAttribute()

5:  Pattern_C <« C.setName( “Pattern_” + C.getName())
6.

7

8

9

Pattern_C.addAttribute( “ID__ Pattern”, int)
Pattern_C.addAttribute( “filter”, bool)
Pattern_C.addAttribute( “NAC _group”, int)
: end for

10:  for all association S in SDRuleMM do

11:  S.setName( “Pattern__” + S.getName())

12: end for

13:  Rule < SDRuleMM.createClass( “Rule”)

14: Rule.addAttribute(“name”, String)

15:  Rule.addAttribute(“constraints”, String[])

16: Rule.addAttribute(“priority”, int)

17: R < SDRuleMM.getRootClass()

18: pattern + Rule.addComposition( “pattern”, R)

19: pattern.setCardinalities(1..1, 1..1)

20: return SDRuleMM

21: end procedure

rule elements set with the same NAC_group value constitute a NAC. Multiple values of this
attribute are used to represent several NACs in the rule, none of which can be matched for
the rule to be applicable.

Finally, lines 13-16 of the algorithm add a new Rule class as the new root of the meta-
model. This enables the transformation engine to navigate easily through the elements of the
rule. In addition, the Rule class allows specifying a list of constraints over attribute values.
In practice, constraints are written in Java and executed dynamically using BeanShell®, an
embedded interpreter to run Java scripts. Within constraints, pattern objects (elements of
the rule) can be accessed through the Item keyword, using their identifier and the desired
attribute name in the form of Item(ID, [ATTR_NAME]). Fig. 4.8 shows an example semantic
rule called Eat (in concrete syntax) with a constraint. This constraint states that the new

value of the score should be greater than the original value for the rule to be applicable.
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Figure 4.8. The semantic differencing rule Eat, abstracting fine-grained differences to depict
that Pacman has eaten food

4.2. Automatic generation of a graphical environment for semantic diff rules

Our approach not only helps the DSL user to better understand the difference between
two models, but it also assists the DSL engineer to design conveniently the semantic differ-
encing rules in the same language workbench.

For this purpose, we automatically generate a concrete syntax for rules (called SDRuleCS)
out of the DSDiffCS model by a transformation. The transformation is very similar to the
one described in Section 3.2. First, we copy the viewpoint specification model and adapt
it to SDRuleMM. Each NodeMapping displays «filter» if the filter attribute is set to true,
as well as the ID_Pattern of the object. All other attribute values from their DSDiffMM
counterparts are removed as they are no longer present in pattern classes, like in the Score.
To create and edit a rule, the DSL designer is provided with a palette showing all rule-specific

elements, including those from DSDiffCS.

5https ://github.com/beanshell/beanshell
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Fig. 4.8 illustrates a rule in the generated domain-specific environment. The rule describes
that a Pacman eat food change occurs when Pacman is on a grid node, a food is deleted
from the same node, and the score is incremented. To reduce the amount of fine-grained
differences reported to the DSL user, the rule also filters the on association from the food to

the grid node.

4.3. Executing the semantic diff rules

As outlined in Fig. 4.4, we apply the semantic diff rules to enhance the fine-grained dif-
ference model Diffio with semantic differences, and possibly remove fine-grained differences.
Given the difference model Diffi2 produced as described in Section 3.3, we apply the rules
on Diffi2 as an inplace model transformation. For this purpose, we express the semantics of
our semantic diff rules as graph transformation rules. In particular, we use Henshin (Arendt
etal, 2010) as the target transformation engine. Henshin is an inplace model transformation
language implementing graph transformations for the Eclipse Modeling Framework. There-
fore, we opted to transform each SDRule into a semantically equivalent Henshin rule, which
can then be applied on Diff;5. In practice, we implemented this higher-order transformation
using an Xtend-based code generator. This takes a set of semantic differencing rules and
produces a set of Henshin rules. We chose a code generator approach since Henshin rules
can be specified in a textual notation (Stritber etal, 2017).

In a semantic differencing rule SDRule, the precondition consists of the constraints of
the rule and the structure formed by the pattern objects (typed by a class prefixed with
Pattern_) contained inside the rule except for the SemanticDiff object. The postcondition
of the rule is specified by the SemanticDiff instance and its diff_ associations (see lines
31-36 of Algorithm 1), along with all filter attributes that are set to true in the pattern
classes.

For example, the Eat rule in Fig. 4.8 looks for a Pacman object and a deleted DiffFood
on the same grid node. It also requires that the new value of DiffScore has increased.
Then, it creates the SemanticDiff object named PacmanEatsFood and hides the deleted
DiffPositionableElement_on link associated with DiffFood. Fig. 4.9 shows how this rule

is encoded in Henshin. A Henshin rule HRule consists of nodes, edges, and conditions.
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Figure 4.9. Rule Eat transformed into Henshin

Nodes and edges can be assigned actions (preserve, create, delete, forbid) and are typed by
a metamodel class or association respectively. Nodes can have attribute values.

Algorithm 3 presents the transformation from SDRule to HRule. We briefly outline the

transformation steps to create an HRule from a SDRule in what follows:

(1) Create an HRule with the same name as the SDRule (line 2 of Algorithm 3).

(2) Create a condition in HRule for every condition in SDRule. If a condition uses an
attribute, add a parameter to the rule, then assign the parameter to the corresponding
attribute and use the parameter instead of the attribute in the condition (lines 4-8).

(3) Create a node with action «preserve» in HRule for every pattern object with no filter
and no NAC_group set in SDRule (lines 11-13).

(4) Create a node with action «delete» in HRule for every pattern object with filter set

to true in SDRule (lines 14-15).
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(5) Create a node with action «forbid» in HRule for every pattern object with a NAC_group
set in SDRule. Set the forbid identifier to the value of the NAC group (lines 16-18).

(6) Create a node with action «create» in HRule for every SemanticDiff object in SDRule
(lines 19-20).

(7) If a pattern object has a value for its attributes like diff_kind set in SDRule, create
the same attribute with the same value in the corresponding Henshin node (lines
22-26).

(8) Create an edge in HRule for each association in SDRule. The type of the edge should
correspond to the one of the association (lines 28-41) as follows. All edges adjacent
to a node of type SemanticDiff have the action «create» (lines 34-35). All edges
adjacent to a node with action «delete» or «forbid» have also the action «delete» or
«forbid» respectively (lines 36-39). Otherwise, the edge action is set to «preservey
(lines 40-41).

Thanks to the transformation to Henshin, our rules support matching a subclass of a
pattern class (Biermann etal, 2012): in DSDiffMM, the DiffScore class inherits from the
Score class. Furthermore, abstract classes from MM, like PositionableElement, can be used
when specifying patterns, which can be useful to define fewer rules (de Lara et al, 2007).

To apply all the semantic differencing rules with Henshin, we must set the control flow
of the transformation. For this purpose, we group all HRules inside an independent unit
so that all rules are applied in an arbitrary order nondeterministically. Furthermore, each
HRule is executed in a loop unit so that each rule is applied iteratively as long as matches
are found before any other rule is applied. When the transformation execution concludes, all
objects marked as filtered in the pattern are removed and objects semantically meaningful
to the domain are added to the difference model. Altogether, the resulting Diffio model is
semantically lifted to show higher-level differences that are deemed important and meaningful
to the DSL user. Moreover, lower-level (fine-grained) differences may be deleted by the rule,
hence reducing verbosity. Applying the rules on the abstract syntax of Diffio automatically
updates its concrete syntax. Therefore, the final difference model is provided to the DSL
user in a representation tailored for the domain.

Fig. 4.10 illustrates the final difference model provided by our approach. It shows the

application of two rules, identifying that Pacman has moved right and eaten food. Altogether,
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Algorithm 3 Transformation from SDRule to HRule

1: procedure GENERATEHRULE(SDRule)

2: HRule < createHenshinRule(SDRule)

3: for all Condition ¢ in SDRule.getConditions() do
4 for all Attribute a in c.getAttributes() do

5: p < createHenshinParameter(a)

6 HRule.Parameters < p

7 c.replaceAttributeByParameter(p)

8 end for

9: end for

10: for all Pattern P in SDRule.getPatterns() do

11:  n < createHenshinNode(P)

12:  if not P.hasFilter() AND not P.isMemberOfNACGroup() then
13: n.Action <+ “preserve”

14:  else if P.hasFilter() then

15: n.Action < “delete”

16:  else if P.memberOfNACGroup() then

1z n.Action < “forbid”

18: n.forbidld <— P.getNACGroupName()

19:  else if P.className() == “SemanticDiff” then
20: n.Action < “create”

21:  end if

22:  for all Attribute a in P.getAttributes() do
23: hAttr < createHenshinAttribute(a)

24: hAttr.Value < a.getValue()

25: n.Attributes <— hAttr

26:  end for

27:  end for

28: for all Node n in HRule.getNodes() do
29: P < SDRule.getObject(n.getName())

30:  for all Association asc in P.getAssociations() do

31 edge < createHenshinEdge(asc.getName())

32: edge.Source < n

33 edge.Target «+ HRule.getNode(asc.getTarget()

34: .getName())

35: if edge.Source.getName() == “SemanticDiff” OR edge.Target.getName() == “SemanticD-
iff” then

36: edge.Action <+ “create”

37 else if edge.Source.get Action() == “delete” OR edge.Target.get Action() == “delete” then

38: edge.Action < “delete”

39: else if edge.Source.getAction() == “forbid” OR edge.Target.getAction() == “forbid”
then

40: edge.Action <+ “forbid”

41: else

42: edge.Action + “preserve”

43: end if

44:  end for

45: end for

46: return HRule
47: end procedure
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Figure 4.10. The domain-specific difference of two models in the generated editor after
applying two rules

compared to Fig. 4.3, the DSL user can inspect the domain-specific changes in an editor that

resembles the one she used to manipulate the original models M1 and M2.

5. Conflicting rule application

A rule may have more than one match in Diffis. However, care should be taken since
applying a rule may remove filtered elements. In general, there is normally more than
one semantic differencing rule specified for a DSL and different rules may have overlapping
matches. In Section 4.3, the control flow of the transformation assumed the rules are sequen-
tially independent (Ehrig etal, 2006). However, if a rule filters an element that is required
in the precondition of another rule, the latter will not find a match. One solution to avoid
conflicts between rules is to use NACs. For example, we can prevent the application of a
rule if another rule has been applied before. This can be achieved by adding a SemanticDiff
object in the former rule as a NAC (see Section 4.1). However, this solution is limited be-
cause it alters the semantics of the rule, may prevent non-conflicting rules from applying,
and requires modifying the semantic rule manually. Therefore, we propose a general solution
that reduces conflicts between rules as much as possible.

The problem is that multiple semantic difference rules may be applicable at the same

time, and they might conflict with each other. Therefore, we extend DSMCompare with an
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elaborate graph-based analysis of the rules based on heuristics to obtain a reasonable schedule
of the rule application order. In this case, the ordering must be such that it reduces the
verbosity of the presented difference, to favor semantic differences over syntactic differences.
In the following, Section 5.1 introduces an example to illustrate the conflicts that can arise,
Section 5.2 formalizes the problem, and Section 5.3 proposes an algorithm to assign rules a

priority.
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Figure 4.11. Semantic differencing rules for Pacman movement
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5.1. Conflicting rules example

Assume the engineer of the Pacman game DSL has defined the semantic differencing
rules for the four cardinal movements of Pacman as shown in Fig. 4.11 (a)—(d). Note that
we have slightly altered the rules for illustrative purposes. After a while, some DSL users
report that DSMCompare fails to detect other kinds of movements, such as diagonally or
further than one grid node away. Thus, the DSL engineer creates a new rule called Move
as depicted in Fig. 4.11 (e). This semantic differencing rule correctly detects any change in
Pacman movements. However, later, a DSL user discovers that, for some difference models,
DSMCompare reports Move instead of the more precise Right. This new problem arises
because the two rules conflict with each other (when Move is applied before Right): the
former rule filters the old diff_on relation of Pacman which is required to apply the latter
rule. Another situation occurs when Move and Up are both applicable, but the former is
applied. In this case, the resulting Diffi2 model will contain more fine-grained differences
than if the latter was applied (because Move filters one association, while Up filters two), thus
encumbering the DSL user with unnecessary differences reported. This problem is further
aggravated when rules have many occurrences in Diffi2. This example illustrates that, when
a number of rules are in conflict, the DSL engineer should prioritize those that are more
precise, remove more fine-grained differences, and create more domain-specific differences.

The DSL engineer can assign a priority to each rule thanks to their priority attribute
(see line 16 in Algorithm 2). Priorities define a partial ordering of rule application: the
lower the priority value, the higher priority the rule has. In Henshin, this is represented
with a priority unit; thus we define the control flow of the rules with this unit instead of
the independent unit presented in Section 4.3. To assist the DSL engineer in assigning the
optimal priority ordering of the rules, we have developed a DSL-agnostic algorithm that
proposes the best rule ordering without knowledge of the difference model Diffi2 on which

they will be applied.

5.2. Formalization of the problem

We consider assigning priorities to the rules as an optimization problem where the ob-
jective is to maximize the number of semantic differences and minimize the number of fine-

grained differences in Diff;2 after applying the rules. Intuitively, we can achieve this objective
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by applying as many rules as possible. However, some rules may filter more fine-grained dif-
ferences than others and some rules may create more semantic difference objects than others.
The latter may seem unusual because, typically, one rule creates a single semantic difference
object that represents the intention of the rule. However, our framework allows the DSL
engineer to define higher-order semantic differencing rules that refactor semantic difference
objects created by other rules.

Therefore, the solution should consider conflicts between the rules, the number of filtered
elements they remove, the number of semantic difference objects they create, and the number
of overlaps between them to favor more precise rules (like Right) over less precise ones (like
Move). We represent this information in a conflict graph where vertices are rules and edges
represent conflicts between them. The priority assignment solution comes down to sorting

every vertex of the graph while optimizing our objective.

5.2.1. Conflict graph

We define the conflict graph as G = (V, E, sem, filter,elem,conf) with sem, filter,elem :
V — N properties of vertices, F C V x V irreflexive directed edges, and conf : E — N the
weights of edges.
In this representation, each vertex v € V' corresponds to a rule. Vertices have the following
properties:
e sem is the number of semantic difference objects each match of the rule will create
on Diffio.
e filter is the number of fine-grained differences each match of the rule will filter.
e clem is the number of class and association instances to be matched by the pattern
of the rule.
The vertices of the conflict graph in Fig. 4.12 show the properties of each rule of the Pacman
game presented in Fig. 4.11. An edge (v1,v2) € E represents a conflict that occurs if we
apply the rule corresponding to v; before the rule corresponding to ve. Since we assume that
a rule is applied on all matches exhaustively before applying another one, edges cannot be
reflexive.
Edges are weighted by function conf, which gives the number of conflicts that arise

when applying the rule of the source vertex before the rule of the target vertex. Following
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the theory of graph transformation with NACs (Lambers et al, 2006), we consider two kinds
of conflicts for rules:

e Delete-use occurring when a rule deletes an element (e.g., a fine-grained diff) that
another rule requires. An example of this conflict is when Move filters an association
required by Up.

e Produce-forbid occurring when a rule creates an element that another rule forbids in
a NAC. An example of this conflict would be when a rule creates a semantic diff that
another rule forbids.

Finding an optimal solution to the problem is equivalent to finding an optimal vertex
partial ordering according to our objective. The solution is a function priority : V — N
such that if priority(vi) < priority(ve), then DSMCompare should try to apply the rule
corresponding to v; before the rule corresponding to ve. If priority(vi) = priority(ve) then

the rules are not in conflict and can be applied in any order.

5.2.2. Conflict detection

To compute the edges of the conflict graph and their weight, we perform a conflict
analysis of the rules. Henshin offers a multi-granular conflict and dependency analysis tool
(MultiCDA), a generalization of critical pair analysis (CPA) (Lambers et al, 2018). Conflicts
need to be detected only once by the DSL engineer, thus the computation time of conflicts
is not an issue for our problem. Nevertheless, MultiCDA is significantly faster than CPA
(Lambers et al, 2018). Given a set of Henshin rules, MultiCDA outputs three levels of conflict
granularity. To assign the conf weight to each edge of the conflict graph, we rely on the
fine-granularity level that MultiCDA reports. It outputs a positive integer for each pair of
rules representing the number of all model fragments whose presence leads to a conflict.
MultiCDA presents the conflict results as a matrix. This serves as the adjacency matrix of
our conflict graph (note that we assign 0 to the main diagonal since edges are irreflexive).

Applying conflict detection with MultiCDA on the Pacman game semantic differencing
rules in Fig. 4.11 results in the edges of the graph in Fig. 4.12. The Eat rule has no con-
flicting model fragment with any other rules, thus it is disconnected. The edges outgoing
from Move indicate that if we apply this rule before any of the other movement rules, there

are six model fragments that lead to conflicts. In contrast, applying any of the cardinal
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Figure 4.12. The conflict graph for the rules in Fig. 4.11

movement rules before any other movement rule causes conflicts only for two model frag-
ments. For example, one of them is: [Pacman]-(diffon)-[DiffPositionableEntity_on]-
(eType)-[GridNode]. Applying the Move rule on this model fragment will remove the three

central elements, whereas all the other movement rules require this fragment to be applicable.

5.3. Rule priority ordering

To illustrate how to solve the rule priority ordering, consider the conflict graph in
Fig. 4.13. It represents the conflicts between four semantic differencing rules A,B,C, and D
encoded by vertices with the same name. Intuitively, a solution to the problem is to sort the
vertices of the conflict graph topologically. However, recall that the edge (B,D) means that
when B is applied on a model fragment, D is no longer applicable on this fragment. There-
fore, we must consider reversing the edges before the topological sort. However, topological
sorting algorithms are only applicable to directed acyclic graphs. Since conflict graphs are

likely to contain cycles and vertices are weighted, only approximate algorithms exist in the
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literature (Al-Herz and Pothen, 2019). Nonetheless, our goal is to assign a partial order to

all vertices such that applying a rule with lower order will less likely prevent the application

of other rules while maximizing filter,elem, and sem. Therefore, we propose an algorithm

(Algorithm 4) that sorts weighted vertices and edges of a directed cyclic graph based on

heuristics.

Algorithm 4 Priority ordering of the vertices of a conflict graph

!
2
3
4:
o:
6.
7
8

9:
10:
11:
12:
13:
14:
15:

else

end if

16:

17
18:
19:
20:
21
22:

: procedure PRIORITYORDER(G)
: L < G.clone()
R + G .clone()
L + ToDaG(L)
sortedL <— REVTOPOLOGICALSORT(L)
R+ R—-L
if not ISDAG(R) then
sortedR < PRIORITYORDER(R)

sortedR < REVTOPOLOGICALSORT(R)

sort < sortedL + sortedR
priority(v) < 1,Yv € sort
for all v in sort do

before + {u | (u,v) € EV(v,u) € E

and wu is before v in sort}

if |before| >0 then
priority(v) < max{priority(u),Vu € before} +1
end if
end for
return priority
end procedure

Algorithm 4 starts by partitioning the conflict graph G into two disjoint subgraphs. The

left graph L contains the maximum subgraph of G that is acyclic. The right graph R is the

graph induced by the remaining vertices.

ToDAG() transforms a graph into a directed acyclic graph by iteratively removing ver-

tices from the strongly connected components. We implement Tarjan’s algorithm (Tarjan,
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Figure 4.13. A sample conflict graph
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1972) to find the strongly connected components of the graph in O(|V|+ |E|) time complex-

ity. If G is the conflict graph in Fig. 4.13, then the strongly connected components are the

subgraphs (A,D), (B), and (C). Thus, to make L acyclic, we should remove either vertex

A or D. We define the following heuristics (in this order), to choose which vertex to remove

from a strongly connected component (we denote its set of vertices by S) until L has no

more cycles:

Hy =: max},e5 > (vu)ek conf(v,u) maximizes the total weight of the outgoing edges of a
vertex v, to choose the rule with the highest number of fine-grained conflicts.

Hs =: max ,cs|{(u,w) € E | v=uVv=w}| maximizes the degree of a vertex v, to choose
the rule with the highest number of conflicting rules.

Hz =: min}_,cgsem(v) serves to choose the rule that creates the least number of semantic
difference objects.

Hy=: min)_, cg filter(v) serves to choose the rule that filters the least number of granular
difference objects.

Hs =: min)_,cgelem(v) serves to choose the rule that matches the lowest number of ele-
ments in the difference model, thus the least precise rule.

Hence, L contains the vertices representing rules that are less likely to prevent the appli-
cation of other rules and optimize our objective. In the conflict graph of Fig. 4.13, heuristic
H; suffices to remove A from L. All vertices of L will be given a lower priority value than
vertices of R. Thus, it is important that we minimize the size of R. In our example, R con-
sists only of vertex A. Since L is now acyclic, we apply REVTOPOLOGICALSORT() to sort
the vertices of L in reverse order of the edges using a O(|V |+ |E|) time complexity algorithm
based on depth-first search. During the traversal, we use the opposite of the five heuristics
whenever we have a choice between more than one vertex (i.e., we minimize Hy,Hy,Hs and
maximize Hg,Hy).

On line 12, sort contains the sequence of vertices sorted topologically. In our example,
sort = (D,B,C,A) the first three from sortedL and the last one from sortedR. The algorithm
constructs the priority function by following the order of the vertices in sort. However, this
total order is overly conservative, e.g., C' has no conflict with the other rules. On lines 15—
18, we ensure that if u is topologically before v and there is an edge between v and u, then

priority(v) > priority(u). Otherwise, they can have the same order. The priority function
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output for the conflict graph in Fig. 4.13 is presented in Table 4.1. The table also shows the

initial value of the heuristics of each vertex.

Table 4.1. Priority order of the sample conflict graph in Fig. 4.13 output by the algorithm

Rule Priority Hy He Hs Hy Hs

C | 00 3 1 2 8
D 1 2 2 1 1 7
B 2 o o0 1 1 8
A 3 4 3 1 2 9

When removing vertices from L to make it acyclic, we may end up with an induced graph
R with the removed vertices that still contains cycles. For example, this happens if G is a
complete graph, then L can only consist of one vertex that optimizes the heuristics. This is
the case with the conflict graph of the Pacman game example in Fig. 4.12. Since its vertex
is disconnected, Eat can be applied first and be part of L. All the rest of the vertices are in
a clique, thus applying one would conflict with all others. However, we want to give as much
chance as possible to apply as many rules as possible to optimize Hs. Nevertheless, only one
of the movement rules can remain in L. According to Hy, Move has the highest number of
conflict reasons, so it should be applied last and be part of R. All the other four vertices have
the same con f value. According to Hy, Up should have the lowest priority value among them
and be part of L. Thus, all remaining rules are part of R, still forming a clique. Therefore, on
line 8, we recursively order R until it is acyclic. Rules Left, Right, and Down are structurally
very similar, except the latter which has one more element (the scoreboard). Semantically,
this means that Down is more precise than the other two rules because it requires matching
more elements. Applying another rule may risk removing this additional element, and thus
not allowing Down to be applicable anymore. Therefore, according to Hs, Down should have
a lower priority value than the other two rules. Left and Right rule cannot be further
distinguished. Hence, any order between them will lead to the same chance of making the
other inapplicable. Table 4.2 summarizes the order generated by Algorithm 4. The table

also shows the initial value of the heuristics of each vertex.
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Table 4.2. Priority order of the Pacman game rules output by the algorithm

Rule Priority Hy Hy Hs Hy Hs

Eat 1 @ @ 1 1 7
Up 1 8§ 8 1 2 10
Down 2 &8 8 1 1 12
Right 3 § & 1 1 10
Left 4 8§ 8 1 1 10
Move 5 24 8 1 1 9

Since our objective depends on the Diffio model, but the conflict graph is agnostic from
any model (7.e., it only depends on the rules), the priority order output may not be optimal
for all Diffio models. Nevertheless, it should be optimal for most models. If the conflict
graph contains no cycle, applying the rules in the order output by Algorithm 4 essentially
allows all rules to apply on any input models without conflict. However, if there are cycles,
the order output does not prevent conflicts but minimizes their impact. Thus, this increases
the probability of replacing a maximum number of fine-grained differences with semantic

differences.

5.4. Extensions

Some extensions to the heuristics we present could be considered. In particular, the goal
of Hj is to favor more precise rules as a last resort. Currently, elem only counts the elements
to be matched in a rule. One could argue that a rule with NACs is more precise than one
without, since it has fewer chances of matching. Thus it could be possible to count NAC
elements in elem. One could also argue that a rule with abstract elements is less precise than
a similar rule using one of its subclasses. For example, consider the Move rule in Fig. 4.11 (e).
Suppose we had another rule MoveAny that relied on the PositionableEntity class instead
of the Pacman class. Then Move can be considered more precise than MoveAny, since it has
fewer chances of matching. Therefore elem could take into consideration abstract classes

and inheritance relations.

6. Evaluation

Next, we evaluate DSMCompare using both synthetic models (Section 6.3) and model
histories created by third parties (Section 6.4). We first briefly outline the implementation
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of DSMCompare. Then we state the objectives of our evaluation in Section 6.2. We present
the two sets of experiments (Sections 6.3 and 6.4), discuss the results in Section 6.5 and

present limitations and threats to validity in Section 6.6.

6.1. Implementation

We implemented DSMCompare as an Eclipse plug-in running on the Eclipse Modeling
Framework (Eclipse version 2020-09). It is available on the companion websiteS.

Given a DSL, DSMCompare automatically generates out of the box all required artefacts
to support the visualization of model differences for the DSL (i.e., diff metamodel, fine-
grained diffs, and extended concrete syntax). Then, if so desired, the DSL designer can
provide domain-specific semantic diff rules, as these rules cannot be inferred automatically.
If the DSL evolves, the DSL designer would have to evolve the semantic diff rules as well,
but the rest of artefacts can be regenerated again with no effort.

To perform the model comparison, DSMCompare consists of three main modules. The
Comparison module takes as input two model versions and produces the corresponding fine-
grained Diffis model. This module relies on the EMF-Compare model comparison tool
(version 3.3.9). The Ordering module computes the priority order of the SDRules to be
applied. It first transforms the SDRules into Henshin rules. Then, it invokes Henshin’s
MultiCDA tool (version 1.7) to retrieve the potential conflicts among the rules. The ordering
module takes the conflicts and the SDRules to produce the scheduling units of Henshin
transformation. Finally, the Lifting module applies this transformation on the Diffj2 model
to obtain the semantically lifted Diffi2 model. The difference model is then fed to generated
Sirius editor (version 6.3.0) to present the semantic Diffia model in concrete syntax.

To use DSMCompare for a given DSL, the DSL Engineer needs to perform two manual
tasks. The first one is to assign an appropriate concrete syntax representation to the classes
and relationships generated in the DSDiff metamodel. The engineer only needs to consider
the elements prefixed with “Diff”. For each Diff class, she needs to create three versions
(ADD, DELETE, MODIFY) of the concrete syntax for the diff class corresponding to the
original metamodel of the DSL. For example, as depicted in Figure 10, we created three

additional icons representing Pacman by adding a +/ x / ~ symbol respectively. Similarly,

6https ://github.com/geodes-sms/DSMCompare/
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the engineer needs to create two versions (ADD, DELETE) of the concrete syntax for the
diff association corresponding in the original metamodel of the DSL. The second task is to
create the SDRules for the DSL. The number of SDRules to create depends on the DSL; for
example, Pacman required 12 rules, Arduino (cf. Section 6.4.1) 24 rules, and Class Diagram
Refactoring (cf. Section 6.4.2) 20 rules. In general, writing a SDRule is advantageous over
writing the equivalent Henshin rule. The generated domain-specific editor (e.g., in Figure
8) and the abstraction level that deals directly with concepts of the DSL reduce the effort
compared to creating Henshin rules using generic nodes and edges, and adding explicitly

graph transformation inscriptions (e.g., NAC groups as shown in Algorithm 3).

6.2. Objectives

Our first goal is to evaluate if DSMCompare improves the readability and understand-
ability of differences between model versions. To this end, we characterize the verbosity of
the differences formulated by two research questions:

RQ1 Are fine-grained differences more verbose than semantic differences?

RQ2 Does assigning priorities to semantic differencing rules yield less verbose difference

models?

Our assumption is that the more differences are presented to a domain user, the harder it
is for her to comprehend the changes that differentiate two models from a semantic point
of view. Therefore, RQ1 investigates whether presenting more semantic differences rather
than fine-grained differences, reduces the verbosity of the difference model. RQ2 focuses
on the impact of the priority ordering of the semantic differencing rules in decreasing the
verbosity. The metrics we use to answer both research questions are the number of remaining
fine-grained differences and the number of discovered semantic differences in the difference
model. To answer RQ2, we use synthetic models from two scenarios (the Pacman game and
metamodel refactorings) as we will detail in Section 6.3.

The second goal is to evaluate the applicability of our approach in finding semantic
differences between model versions. We concentrate on the following two research questions:

RQ3 Can we extract semantic differences from fine-grained diffs?

RQ4 Are semantic differences recurring?
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RQ3 assesses whether semantic differencing rules are applicable in practice. However, these
rules must be applicable to any difference model of a particular DSL. If a rule is rarely
applicable on a set of models, then the rule is too specific to certain classes of models of the
DSL and general enough to the DSL. Therefore, we must ensure that semantic differencing
rules are recurring. The metric we use to answer these latter two research questions is the
number of occurrences of semantic differences over model histories created by third parties,

as we will detail in Section 6.4.

6.3. Reducing the verbosity with semantic differencing

We present the first experiment to evaluate if DSMCompare yields less verbose difference

models.

6.3.1. Experimental setting

In this experiment, we consider two cases: the Pacman game configuration DSL (Pac-
Man) presented in previous sections, and the refactoring of Ecore metamodels (MM-
Refactoring). We choose these two cases to vary the size of the difference models, the
number of semantic differencing rules, and the topology of the conflict graph. Moreover, the
reasons for the selection of the second case are twofold. On the one hand, it illustrates that
our approach works for both models and metamodels, by just looking at Ecore metamodels
as instances of (i.e., models of) the Ecore meta-metamodel. On the other hand, GitHub con-
tains many Ecore metamodels, which increases the chances of finding interesting metamodel
version histories for our experiment.

For the Pac-Man case, we have specified 12 semantic diff rules: five for Pac-Man move-
ments (up, down, left, right, and the general move), five similar rules for ghost movements,
one for Pac-Man eating food, and one for a ghost killing Pac-Man. Every rule has one filter
and creates one semantic difference object. The conflict graph of the rules forms three discon-
nected cliques: one for ghost movements, one for Pac-Man movements with the Pacman-Die
rule, and the disconnected Pacman-Eat rule. All rules are composed of eight elements, except
the Pacman-Die rule which is composed of seven. The Pac-Man case represents situations

where the semantic difference rules are uniform.
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For the MM-Refactoring case, we have specified 20 semantic difference rules adapted from
the metamodel and object-oriented refactoring catalogs’, such as Extract-Superclass, Split-
References, and Rename-Attribute. The conflict graph of the rules forms two disconnected
graphs. The first graph contains four rules, three of them (for method movement) forming a
strongly connected component. The second graph comprises strongly connected components
of 13 rules: eight for references and five for attributes. All rules filter one or two elements,
except the three renaming rules, which have no filter. They are all composed of five to nine
elements. As opposed to the Pac-Man case, the MM-Refactoring case represents situations
where there is more variability between the semantic differencing rules.

For both cases, we used DSMCompare to generate the corresponding DSDiffMM and
SDRuleMM metamodels. We specified the semantic differencing rules with the generated
editor and automatically transformed them into Henshin to apply them on a set of difference
models. All the material such as models, data, rules and conflict graphs are available on the

companion website.

Table 4.3. Results of applying the semantic differencing rules in different orders on the
difference models. The numbers in the form x | y represent z semantic difference objects
and y fine-grained differences remaining in the difference model after applying all semantic
differencing rules in the corresponding order.

Random Random Random Random

DSL D #ﬁne- Wlth.OUt Ordered Hevenss order order order order Haundom Fandam Ramdom
model diffs conflicts order 1 2 3 4 order 5 order 6 order 7
M1 90 7710 60 | 30 28 |45 34140 45|29 55|42 60|23
Pac- M2 52 4210 28 | 24 22|15 23|15 24|15 28|20 28|16
Moy M3 49 4110 32|17 16|24 16|24 27|14 27|15 32|17 — = -
an

M4 68 67 | 0 44|24 23|29 28|24 38|16 39|17 44|19
M5 62 46 | 0 3230 16(31 16]31 24[24 29]27 32|30

MM- M1 337 21990 12127s| 92 | 230 121219| 120206| 99235 95|227 117]234 117|228 117|234
g‘z; M2 262 88|183 | 57(223 53|217 54|223 55222 55|223 53|219 57|223 57222 57|223
o, M3 266 88]188 | 71]188 66|210 69]212 66]210 69]213 66|211 71|213 71[213 71212

SO M4 248 65175 | 53195 48192 51|194 48[192 48]193 48[192 48]193 53|195 53| 194
& Ms 277 139|123 | 79197 71195 73|195 73|191 72[200 71[197 79200 79 |194 79 | 200

Model generation. To address RQ2, we want to verify that applying DSMCompare to a
difference model maximizes the number of semantic difference objects and minimizes the
number of fine-grained differences. Since it is not tractable to test exhaustively all possible
difference models of each DSL, we derive a representative set of difference models covering

most cases. Therefore, we construct five difference models (M1 to M5) by varying the number

7https ://www.metamodelrefactoring.org and https://refactoring.com respectively
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of occurrences of each rule when applied in isolation, i.e., assuming there are no conflicts
between rules.

We constructed M1 by hand, ensuring that all semantic differencing rules have an almost
equal number of matches when applied in isolation (an average of 6 £+ 1 matches for Pac-
Man and 10+ 3 for MM-Refactoring). Therefore, M1 represents models where the number
of matches of each rule is uniformly distributed, regardless of any priority order. For the
remaining models, we randomly varied the skewness and kurtosis of the number of matches
of each rule depending on their priority order output by Algorithm 4.

In M2 of the MM-Refactoring, we favor the number of matches of the 10 highest and
lowest priority rules to cover 90% of all the matches. Similarly for Pac-Man, we favor the
number of matches of the 6 highest and lowest priority rules covering 84% of all the matches.
For example, the Pacman-Eat (top priority) and Pacman-Move (lowest priority) rules have
six and eight matches, whereas Ghost-Left has only one match. Since lower priority rules
have many conflicts with higher ones, M2 represents difference models where the priority
ordering is least optimal: the lower priority rules will likely not be applicable.

In M3, we favor the 6 and 10 highest priority rules for Pac-Man and MM-Refactoring
respectively. All remaining rules have at most one match. Therefore, M3 represents difference
models where the priority ordering is optimal.

In M4, we favor the same number of lowest priority rules as in M3, while all higher
priority rules have at most one match. For example, in the MM-Refactoring, the Merge-
Reference rule (top priority) has no match, whereas Remove-Middle-Man (lowest priority)
has five matches.

Finally, in M5, the highest and lowest priority rules have at most one match while favoring
the matches of all other rules.

The first four columns of Table 4.3 summarize the setup of each case. The #fine-diffs
column shows the total number of fine-grained differences in each difference model before
applying the semantic differencing rules. For instance, there are 90 fine-grained differences
for M1 of the Pac-Man DSL, among which 76 are association differences and 14 are class
differences. To better characterize each model, the next column (labelled Without conflicts)

shows the total number of matches® of all semantic differencing rules when run in isolation,

8Since each rule creates a single semantic difference object, this number is the same as the number of matches.
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assuming there are no conflicts between the rules. This gives an idea of how many times the
rules are applicable; though this number is not reachable when there are conflicts between
rules. For example, for M1 of the Pac-Man DSL, if all rules were to be applied on all
their matches, the resulting difference model would contain 77 semantic differences, and
all of the 90 fine-grained differences would be filtered. Note that the difference models for
MM-Refactoring are on average 4.5 times larger than those for Pac-Man.

Priority orderings. The first independent variable of this experiment is the difference model
(M1-M5) to avoid a bias in the priority order output by our approach. Furthermore, to
answer RQ2, we must compare the order output by DSMCompare with other orders. One
interesting order we can compare with is the reverse order. This allows the rules with
most conflicts to be applied first. Other orders to compare to are obtained through random
sampling from all possible permutations. However, it is intractable to test against all possible
permutation of rule ordering. One property of Algorithm 4 is that rules with the same priority
have no conflict between them. We denote rules sharing the same priority as a cluster. Thus,
the order within each cluster does not have an impact on the other rules. Therefore, we can
ignore the permutations within clusters. For the Pac-Man case, we obtain 6 clusters for
the 12 rules and for the MM-Refactoring case, we obtain 9 clusters for the 20 rules. Still,
manually testing all these possible permutations is not feasible (720 and 362 880 for the Pac-
Man and MM-Refactoring cases respectively). In the random sampling, we generated orders
such that no cluster has the same priority twice. Therefore, there are as many orders as
there are clusters. After excluding the order output by Algorithm 4 and the reverser order,

we end up with 4 additional random orders for Pac-Man and 7 for MM-Refactoring cases.

6.3.2. Results

Table 4.3 shows the results of this experiment. In bold, we highlighted the cases where
the metrics are optimized: maximizing the number of semantic differences and minimizing
the number of fine-grained differences. For example, for the M1 model of Pac-Man, applying
the rules in a priority ordering output by DSMCompare results in 60 semantic differences
with 30 fine-grained differences remaining. In all the tested cases, the results show that
the priority order output by Algorithm 4 maximizes the number of semantic differences.

Nevertheless, for Pac-Man, one of the random orderings filters more fine-grained differences
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than our order in three difference models. After manual inspection, we identified that this is
because, in this ordering, the Pacman-Move rule has a higher priority than Pacman-Right.
However, this means that a more general semantic difference takes precedence over a more
specific semantic difference. This contradicts our heuristic Hs, which favors the latter over
the former. This is a desirable property of our ordering since, in practice, if the Pac-Man
moved to the right, then we would like that the difference model depicts the direction in
which it moved.

For MM-Refactoring, our priority order produces the best results in terms of the metrics
collected. We notice that two random orders obtain slightly fewer fine-grained differences.
Like for Pac-Man, they also give lower priority order to more general rules, such as Move-
Reference. However, since they filter more fine-grained differences than more specialized
rules, the same number of fine-grained differences are filtered overall.

Regarding RQ1, we can conclude that the fine-grained differences are more verbose since
semantic differences aggregate multiple fine-grained differences. Regarding RQ2, we find
that assigning priorities has a significant influence on the verbosity of the difference model.
Furthermore, we notice that most of the time, our ordering results in less verbose difference
models. Although it does not always optimize the number of fine-grained differences, it
reports more precise semantic differences. We believe maximizing this aspect improves the

readability of the model on top of reducing the number of fine-grained differences.

6.4. Case studies

We now validate our approach on two real-life case studies developed by third-parties.
The first case we choose is a DSL with a graphical concrete syntax and a few model versions
on which we apply DSMCompare. In the second case, we focus on larger models with many

versions available.

6.4.1. Arduino Designer

Description. Arduino Designer is an environment specially tailored to young children, to

9 an open-source electronics platform based on easy-

create simple programs for Arduino
to-use hardware and software. The Arduino Designer language is a DSL built to model
Arduino configurations and programs graphically, based on Sirius. The DSL has two parts:

9https ://www.arduino.cc/
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one for the configuration of devices and another for sketching programs. The configuration
part contains primitives for placing hardware devices on the appropriate pins of the Arduino
board. In Arduino, the code is placed and executed within a main loop. The sketch part
models the code within the loop. It is a graphical programming language with arithmetic
expressions, loops, and conditional instructions.

Just like code, these models evolve in new versions. For example, in a GitHub repos-

itory'®, we can find a history of different models that underwent bug fixes, improvements,
and migrations to a new framework. Understanding complex changes that have occurred
from one version to another may be hard for Arduino developers, especially if they are chil-
dren. Our approach can help these developers visualize the changes in the same graphical
language and environment they used for development. Furthermore, we report the changes
as semantic differences. For the sketch part, we reuse known code refactoring patterns and
model them as semantic differencing rules. The changes in the configuration part typically
consist of adding or replacing devices in appropriate pins of the board.
Domain-specific comparison of Arduino models. We have applied DSMCompare on different
versions of Arduino models available in the repository. The original metamodel ArduinoMM
consists of 36 classes, 33 associations, and 17 attributes. The concrete syntax ArduinoCS as-
signs an icon for every class and association. With DSMCompare, we generate the difference
metamodel ArduinoDiffMM with 96 classes, 137 associations, and 110 attributes. The rule
metamodel ArduinoRuleMM contains one more class and association, with 219 attributes.
The generated concrete syntax definitions are of a similar scale.

The Arduino GitHub repository includes 13 working example projects. We filtered 6 of
them, since they had an initial empty model, and just another version adding all model
elements. We applied DSMCompare on all remaining 7 projects, and Table 5.1 summarizes
the results. Each model has between 2 and 4 versions in the repository. The commit message
associated with a version helped us to identify the purpose of the model changes (shown in
the Version n and Version n+1 columns). The fourth column (Fine Diffs) shows the total
number of fine-grained differences found by DSMCompare. For example, in the fadelight
project, when comparing the version While and the version Sub instructions (versions 1 and

2 of this project), DSMCompare reported 21 fine-grained differences. The column Semantic

Onhttps://github. com/mbats/arduino/
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Table 4.4. Comparison of model versions in the Arduino Designer examples repository

Project

Version n

Version n+1

Fine Diffs

Semantic Diff Rules

Occurrences Remaining Fine Diffs

alarmlight

Repeat

Fiz generation for alarm light ezample

32

Change Digital Pin
Change Next instruction
Delete a Status
Delete a loop
Replace a loop
Refactor a Repeat loop
Add a Status

Fiz generation for alarm light example

Fiz alarm light ezample

Change Next instruction
Delete a Status

Fiz alram light example

Migrate alarmlight example to sirius

31

Change Repeat Iteration
Delete a Status
Add a Status
Replace a loop
Change Next instruction
Change Delay Value

24

fadelight

While

Sub instructions

21

Change Next instruction
Refactor a While loop

Sub instructions

Crreate variable, constant, math operator

Change While
Refactor a While loop

24

Crreate variable, constant, math operator

Generate while

Change Next instruction
Delete a loop

infrared

Support infrared and servo

Migrate infrared sensor example

Change Digital Pin

Migrate infrared sensor example

Migrate examples to sirius 2.0.3

servo

Support infrared and servo

Migrate servo ezample to sirius

tigger.all

Add Tigger example

Update the tigger example

25

Refactor an If condition
Add a Status
Set Repeat condition
Add a Level
Add a Sensor

add tigger bubble exzample

Fiz issue on bubble example

tigger.tail

1 Output Module
ge Connector

Update tail example

Update cat tail example to add miaou sound

20

Add an Output Module
Add C ctor
Replace an If condition
Add a Status
Move Delay

R e e L i i e I B N B B I O B S B L Gl il I I R CR U

Diff Rules shows the name of the semantic differencing rules recognized among the fine-

grained differences, and column Occurrences represents the number of occurrences of each

rule. Finally, the last column shows the number of remaining fine-grained differences after

some differences were removed (filtered) by applying the semantic diff rules.

Results. Table 5.1 clearly shows that DSMCompare is able to extract semantic differences

from fine-grained differences, being able to report one or more semantic differences across all
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versions of the considered projects. Moreover, most semantic diff rules (13 out of 24, 54%)
where applied several times, and 29% of them were applied across different projects.

As an illustration, for the fadelight project, DSMCompare reported two semantic dif-
ferences of type “Refactor a while loop”, representing a while-loop refactoring (cf. Fig. 4.14).
The first while-loop sets the device for a specific time in the on state, and the second loop
models the off state of a “FadeLight”. In addition to one class difference, each of the two
semantic diffs has also two diffs of associations. One of them represents the “condition” of
the while-loop, and the other a link to the “next” instruction after the loop.

As expected, the fine-grained Diffj2 models contain fewer changes (cf. last column of
Table 5.1) after applying the semantic diff rules. For example, the tigger.tail model adds
an infrared sensor to a digital pin, and a servo motor to another digital pin in the Arduino
board. The board also adds instructions to the end of the main loop. In this case, the
fine-grained Diffi2 model shows the removal of six fine-grained differences and the addition

of 14 fine-grained differences (a total of 20 changes). These changes can be encapsulated in
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Figure 4.14. Domain-specific differences in Arduino designer for the fadelight project
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five semantic differencing rules, i.e., “Add an Output Module”, “Add Connector”, “Replace an
If condition”, “Add a Status”, and “Move Delay”. These rules correspond to the intention
of the ch<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>