
Université de Montréal

Advances in uncertainty modelling : from epistemic

uncertainty estimation to generalized generative flow

networks

par

Salem Lahlou

Département d’informatique et de recherche opérationnelle

Faculté des arts et des sciences

Thèse présentée en vue de l’obtention du grade de

Philosophiæ Doctor (Ph.D.)

en Informatique

18 Août 2023

© Salem Lahlou, 2023

Université de Montréal
Faculté des arts et des sciences

Cette thèse intitulée

Advances in uncertainty modelling : from epistemic

uncertainty estimation to generalized generative flow networks

présentée par

Salem Lahlou

a été évaluée par un jury composé des personnes suivantes :

Simon Lacoste-Julien

(président-rapporteur)

Yoshua Bengio

(directeur de recherche)

Ioannis Mitliagkas

(membre du jury)

Christian Andersson Naesseth

(examinateur externe)

Lucas Benigni

(représentant du doyen de la FESP)

Résumé

Les problèmes de prise de décision se produisent souvent dans des situations d’incertitude,

englobant à la fois l’incertitude aléatoire due à la présence de processus inhérents aléatoires

et l’incertitude épistémique liée aux connaissances limitées. Cette thèse explore le concept

d’incertitude, un aspect crucial de l’apprentissage automatique et un facteur clé pour que les

agents rationnels puissent déterminer où allouer leurs ressources afin d’obtenir les meilleurs

résultats.

Traditionnellement, l’incertitude est encodée à travers une probabilité postérieure, ob-

tenue par des techniques d’inférence Bayésienne approximatives. Le premier ensemble de

contributions de cette thèse tourne autour des propriétés mathématiques des réseaux de

flot génératifs, qui sont des modèles probabilistes de séquences discrètes et des échantillon-

neurs amortis de distributions de probabilités non normalisées. Les réseaux de flot génératifs

trouvent des applications dans l’inférence Bayésienne et peuvent être utilisés pour l’estima-

tion de l’incertitude. De plus, ils sont utiles pour les problèmes de recherche dans de vastes

espaces compositionnels. Au-delà du renforcement du cadre mathématique sous-jacent, une

étude comparative avec les méthodes variationnelles hiérarchiques est fournie, mettant en

lumière les importants avantages des réseaux de flot génératifs, tant d’un point de vue théo-

rique que par le biais d’expériences diverses. Ces contributions incluent une théorie étendant

les réseaux de flot génératifs à des espaces continus ou plus généraux, ce qui permet de mo-

déliser la probabilité postérieure et l’incertitude dans de nombreux contextes intéressants.

La théorie est validée expérimentalement dans divers domaines.

Le deuxième axe de travail de cette thèse concerne les mesures alternatives de l’incer-

titude épistémique au-delà de la modélisation de la probabilité postérieure. La méthode

présentée, appelée Estimation Directe de l’Incertitude Épistémique (DEUP), surmonte une

faiblesse majeure des techniques d’inférence Bayésienne approximatives due à la mauvaise

spécification du modèle. DEUP repose sur le maintien d’un prédicteur secondaire des erreurs

du prédicteur principal, à partir duquel des mesures d’incertitude épistémique peuvent être

déduites.

Mots-clés : apprentissage automatique, incertitude épistémique, probabilité postérieure,

échantillonnage, réseaux de flot génératifs, inférence variationnelle.

5

Abstract

Decision-making problems often occur under uncertainty, encompassing both aleatoric

uncertainty arising from inherent randomness in processes and epistemic uncertainty due

to limited knowledge. This thesis explores the concept of uncertainty, a crucial aspect of

machine learning and a key factor for rational agents to determine where to allocate their

resources for achieving the best possible results.

Traditionally, uncertainty is encoded in a posterior distribution, obtained by approximate

Bayesian inference techniques. This thesis’s first set of contributions revolves around the

mathematical properties of generative flow networks, which are probabilistic models over

discrete sequences and amortized samplers of unnormalized probability distributions. Gen-

erative flow networks find applications in Bayesian inference and can be used for uncertainty

estimation. Additionally, they are helpful for search problems in large compositional spaces.

Beyond deepening the mathematical framework underlying them, a comparative study with

hierarchical variational methods is provided, shedding light on the significant advantages of

generative flow networks, both from a theoretical point of view and via diverse experiments.

These contributions include a theory extending generative flow networks to continuous or

more general spaces, which allows modelling the Bayesian posterior and uncertainty in many

interesting settings. The theory is experimentally validated in various domains.

This thesis’s second line of work is about alternative measures of epistemic uncertainty

beyond posterior modelling. The presented method, called Direct Epistemic Uncertainty

Estimation (DEUP), overcomes a major shortcoming of approximate Bayesian inference

techniques caused by model misspecification. DEUP relies on maintaining a secondary pre-

dictor of the errors of the main predictor, from which measures of epistemic uncertainty can

be deduced.

Keywords: machine learning, epistemic uncertainty, posterior, sampling, generative

flow networks, variational inference

7

Contents

Résumé . 5

Abstract . 7

List of Tables. 15

List of Figures. 17

List of Symbols. 19

Remerciements . 21

Introduction . 23

Chapter 1. Overview of the underlying publications . 27

1.1. Contributions of the author . 28

1.2. Excluded research. 29

Chapter 2. Background . 31

2.1. Machine Learning . 31

2.1.1. Probability and inference . 32

2.1.1.1. Probability notations . 32

2.1.1.2. Bayesian inference . 33

2.1.2. Bayesian Decision Theory . 34

2.1.3. Supervised learning . 35

2.1.3.1. Modelling the posterior . 37

2.1.3.2. Training parametric models . 38

2.1.3.3. The fully discriminative approach to supervised learning 39

2.1.3.4. The generalization problem . 40

2.1.3.5. Bayesian models . 41

2.1.4. Unsupervised learning . 42

2.1.4.1. Probabilistic graphical models . 46

9

2.1.5. Reinforcement Learning . 47

2.1.6. Deep Learning . 51

2.1.6.1. Neural networks . 51

2.1.6.2. Optimization and backpropagation . 54

2.1.7. Uncertainty Estimation . 55

2.2. Approximate Bayesian inference. 56

2.2.1. Variational inference . 56

2.2.2. Sampling as a stochastic approximation . 58

2.2.3. Dropout and Deep Ensembles . 60

Chapter 3. On generative flow networks . 61

3.1. Introduction . 61

3.2. Flow Networks and Markovian Flows. 64

3.2.1. Some elements of graph theory . 65

3.2.2. Trajectories and Flows . 67

3.2.3. Flow Induced Probability Measures . 68

3.2.4. Markovian Flows. 70

3.2.5. Flow-matching Conditions . 72

3.2.6. Backwards Transitions can be Chosen Freely . 73

3.2.7. Solving for the flows . 74

3.2.8. Equivalence Between Flows . 76

3.3. GFlowNets: Learning a Flow. 78

3.3.1. GFlowNets and flow-matching losses . 79

3.3.2. Training by stochastic gradient descent: . 84

3.3.3. Extensions . 84

3.3.3.1. Introducing Time Stamps to Allow Cycles. 85

3.3.3.2. Stochastic Rewards . 85

3.3.3.3. GFlowNets can be trained offline. 85

3.3.3.4. Exploiting Data as Known Terminating States . 86

3.4. Conditional Flows and Free energies . 86

3.4.1. Conditional flow networks . 87

3.4.2. Reward-conditional flow networks . 89

3.4.3. State-conditional flow networks . 89

3.4.4. Conditional GFlowNets . 91

10

3.5. GFlowNets are more than amortized samplers . 92

3.5.1. GFlowNets as amortized samplers . 92

3.5.2. GFlowNets as generative models . 93

3.5.3. GFlowNets for interactive learning . 94

3.5.4. GFlowNets as an alternative to Reinforcement Learning 95

3.6. GFlowNets and Variational Inference. 97

3.7. Theoretical analysis of the relation between GFlowNets and Hierarchical

Variational Inference . 99

3.7.1. GFlowNets: Notation and background . 99

3.7.2. Hierarchical variational models and GFlowNets . 101

3.7.3. Nested variational inference . 104

3.7.4. A variational objective for subtrajectories . 105

3.7.5. Analysis of gradients . 106

3.8. Experiments . 108

3.8.1. Practical details . 109

3.8.2. Hypergrid: Exploration of learning objectives . 109

3.8.3. Molecule synthesis . 112

3.8.4. Generation of DAGs in Bayesian structure learning. 114

Chapter 4. A theory of continuous generative flow networks 117

4.1. Introduction . 117

4.2. Stochastic sampling in continuous spaces . 118

4.3. A theory for generalized GFlowNets . 119

4.3.1. Practical summary . 119

4.3.2. Structured state space . 120

4.3.2.1. Background on measure theory and transition kernels 121

4.3.2.2. Measurable pointed graphs. 122

4.3.2.3. Trajectory and terminating state measures . 124

4.3.2.4. Properties of measurable pointed graphs . 125

4.3.3. Flows . 126

4.3.4. Detailed balance and trajectory balance . 127

4.3.5. Training losses for GFlowNets. 129

4.4. Experiments . 131

11

4.4.1. Approximating the Jensen-Shannon Divergence . 131

4.4.2. A synthetic continuous environment . 132

4.4.3. Low-dimensional stochastic control . 134

4.4.4. Stochastic control on a torus . 136

4.4.5. Posterior over continuous parameters in Bayesian structure learning 138

4.4.6. Connections with diffusion models . 139

Chapter 5. Direct Epistemic Uncertainty Prediction. 141

5.1. Introduction . 141

5.2. Excess Risk, Epistemic Uncertainty, and Model Misspecification 144

5.2.1. Notations and Background . 144

5.2.2. Sources of lack of knowledge . 145

5.2.3. Bayesian uncertainty under model misspecification . 148

5.3. Direct Epistemic Uncertainty Prediction . 150

5.3.1. Fixed Training Set . 151

5.3.2. Interactive Settings . 151

5.4. Related work on uncertainty estimation . 154

5.5. Experiments . 156

5.5.1. Sequential Model Optimization . 157

5.5.1.1. General remarks about the SMO experiments . 157

5.5.1.2. One-dimensional objective . 157

5.5.1.3. Ablation study for the stationarizing features . 158

5.5.1.4. Two-dimensional objective . 159

5.5.1.5. Multi-dimensional objective . 159

5.5.2. Reinforcement Learning . 161

5.5.3. Uncertainty Estimation . 162

5.5.3.1. Epistemic Uncertainty Estimation for Drug Combinations 162

5.5.3.2. Epistemic Uncertainty Predictions for Rejecting Difficult Examples. . . . 163

5.5.4. DEUP in the presence of aleatoric uncertainty . 165

Chapter 6. Conclusion and perspectives . 167

Summary . 167

Future research directions. 168

12

Scaling GFlowNets . 169

Off-policy GFlowNet training . 169

Scientific discovery . 169

Bayesian optimal experiment design. 170

Better representations for better generalization . 171

References . 173

Appendix A. Some mathematical concepts . 207

A.1. Reminders about probability . 207

A.1.1. Standard probability distributions . 207

A.2. Gaussian processes . 209

A.3. Kernel density estimation . 210

A.4. On MLE, ERM, and MAP . 210

Appendix B. torchgfn: A PyTorch GFlowNet library . 213

B.1. Installing the package . 213

B.2. Standalone example . 214

B.3. Details about the code base . 216

B.3.1. Defining an environment. 216

B.3.2. States . 217

B.3.3. Actions. 218

B.3.4. Containers . 218

B.3.5. Modules . 219

B.3.6. Samplers . 220

B.3.7. Losses . 220

B.4. Provided scripts . 221

Appendix C. On Bayesian Optimal Experiment Design 223

Appendix D. Appendix for Chapter 3 . 225

D.1. Conditional GFlowNets for entropy and mutual information estimation 225

D.2. Proofs . 226

D.3. Additional experimental details . 240

13

D.3.1. Hypergrid experiments . 240

D.3.2. Molecule experiments . 241

D.3.3. Bayesian structure learning experiments . 242

Appendix E. Appendix for Chapter 4 . 245

E.1. How to define a backward reference kernel . 245

E.2. Experimental details . 247

E.2.1. A synthetic continuous environment . 247

E.2.2. Low-dimensional stochastic control . 247

E.2.3. Stochastic control on a torus environment . 249

E.2.4. Posterior over continuous parameters in Bayesian structure learning. 251

E.2.5. Connections with diffusion models . 254

E.3. Proofs . 254

Appendix F. Appendix for Chapter 5 . 269

F.1. Sequential Model Optimization Experiments . 269

F.2. Reinforcement Learning Experiments . 269

F.3. Rejecting Difficult Examples . 270

F.3.1. Predicting Uncertainty under Distribution Shift . 273

F.4. Drug Combination Experiments . 273

14

List of Tables

3.1 A comparison of algorithms for approximating a target distribution in a

hierarchical variational model or a GFlowNet . 104

3.2 Results of the experiments comparing GFlowNets to HVI for Bayesian structure

learning . 115

4.1 Dictionary between discrete and generalized GFlowNets . 119

4.2 Results of the low-dimensional stochastic control experiments with GFlowNets . . 136

4.3 Comparison between continuous GFlowNets and other methods on the Bayesian

structure learning task . 138

4.4 ImageNet-32 results. 139

5.1 Comparison between DEUP and other methods for uncertainty estimation in the

drug combinations experiments . 163

5.2 Comparison between DEUP and other methods for out-of-distribution detection. 164

E.1 Extended results of the low-dimensional stochastic control experiments with

GFlowNets . 249

E.2 Comparison between GFlowNets and other methods on the Bayesian structure

learning task - Extended results . 254

F.1 SRCC between predicted uncertainty and the true generalization error on OOD

data, comparing DEUP to other methods . 270

F.2 Hyperparameters for training Deep Ensemble and MC-Dropout 272

F.3 Hyperparameters for training DUQ an DUE . 272

F.4 Hyperparameters for training DEUP. 272

F.5 Ablation study of the stationarizing features for the OOD task with DEUp. 273

F.6 Drug combinations experiment extended results with DEUP . 276

15

List of Figures

2.1 Classification task example . 36

2.2 Clustering task example . 43

2.3 Principal components analysis example . 44

2.4 Some images generated by the DALL-E model . 46

2.5 Illustration of the noising and denoising processes in a diffusion model 46

2.6 Directed acyclic graph example . 47

2.7 Asia network: example of a causal graph . 48

2.8 Illustration of a neural network . 52

3.1 Illustration of the generation process in a GFlowNet . 63

3.2 Illustration of the structure of a pointed directed acyclic graph and edge flows. . . 64

3.3 Example of a pointed DAG . 66

3.4 Example of a pointed DAG and the set of solutions to the flow-matching constraints 75

3.5 Equivalent flows and Markovian flows . 77

3.6 Example of a state-conditional flow network. 87

3.7 Illustration of the process by which a DAG can turn into a graded DAG. 103

3.8 Results of the experiments comparing GFlowNets to HVI in the hypergrid

environment . 110

3.9 Comparison of the local and the global baseline in HVI algorithms 111

3.10 Results of the experiments comparing GFlowNets to HVI in the smaller hypergrid

environment . 112

3.11 Results of the experiments comparing GFlowNets to HVI for molecule synthesis . 113

4.1 Results of the experiments in the synthetic continuous environment 132

4.2 Kernel density estimation plots for the synthetic continuous environment 133

4.3 GFlowNet state space for stochastic control tasks.. 134

17

4.4 Results of the stochastic control on torus experiments with GFlowNets 137

5.1 Illustration of the bias problem with Gaussian processes, and how DEUP measures

uncertainty . 143

5.2 Graphical representations of the two components of epistemic uncertainty 146

5.3 Comparison between DEUP and other methods for sequential model optimization

of a synthetic one-dimensional function . 158

5.4 Ablation study of the stationarizing features of DEUP for sequential model

optimization . 159

5.5 Sequential Model Optimization on the Levi N.13 function . 160

5.6 Comparison between DEUP and other methods for sequential model optimization

of the multi-dimensional Ackley function . 160

5.7 Comparison between DEUP and other methods for reinforcement learning on the

CartPole environment. 161

5.8 Predicted mean and uncertainty by DEUP and other methods for the task of drug

combinations . 163

5.9 DEUP in the presence of aleatoric uncertainty - A comparison to Gaussian

processes . 166

D.1 Comparison of edge marginals computed using GFlowNets and other methods. . . 244

E.1 Low dimensional stochastic control with GFlowNets and HVI methods 248

E.2 Alanine dipeptide 3D structure . 250

E.3 Generated samples from MLE-GFN on ImageNet-32 dataset. 255

F.1 Predicting uncertainty with DEUP and other methods under distribution shift . . 274

F.2 Predicted mean and uncertainty with DEUP and other methods for different

models on a separate test set. 278

18

List of Symbols

X, Y, Z, . . . Random variables

pX(x), p(x), P (x) Probability, or density, of the random variable X taking the value x

E Expectation of a distribution

H Entropy of a distribution

R The real line

R
+ The set of non-negative numbers, also denoted [0, ∞)

Ja, bK The discrete set {a, a + 1, . . . , b}, used when b > a are two integers

u ∈ R
d A real-valued vector u of d dimensions, seen as a column matrix in R

d×1

A
¦ ∈ R

m×n The transpose of the real-valued matrix A ∈ R
n×m

arg maxx∈X f(x) The subset of X that maximizes the function f : X → R

arg minx∈X f(x) The subset of X that minimizes the function f : X → R

P(U) The set of probability distributions over U
∥u∥1 The L1 norm of the vector u ∈ R

d:
∑

d

i=1 |ui|
∥u∥2 The L2 norm of the vector u ∈ R

d:
∑

d

i=1 |ui|2. It is also equal to
√

u¦u

1(condition) One when condition is satisfied, zero otherwise

1A(x) One when x ∈ A, zero otherwise, similar to 1(x ∈ A)

det(A) The determinant of the square matrix A

In The identity matrix of Rn×n

19

20

Remerciements

Je voudrais d’abord remercier mon directeur de thèse, Yoshua Bengio, qui m’a offert

l’opportunité de poursuivre mon doctorat à Mila. En plus de m’avoir communiqué sa passion

pour l’intelligence humaine et artificielle, de m’avoir donné la liberté d’explorer, Yoshua m’a

inspiré et motivé à maintes reprises. Je suis reconnaissant de l’avoir eu comme directeur de

thèse.

La recherche scientifique peut être frustrante à certains moments. Elle est naturelle-

ment plus ludique à plusieurs. Je suis reconnaissant envers mes collaborateurs, avec qui j’ai

énormément appris, et pris du plaisir à réfléchir à des problèmes non résolus et à écrire des

articles.

Je voudrais remercier les membres de ma famille, mon père Fouad, ma mère Raja, mes

soeurs Yasmine et Khadija, pour leur amour et soutien inconditionnels. Je remercie aussi

Salim, mon beau-frère. Une pensée particulière à mes mes nièces et mon neveu: Aya, Miya,

et Rhali, qui, par leur belle innocence, me rappelaient à quoi servait tout cela.

Je suis content d’avoir développé de belles amitiés et grandi avec certaines personnes

depuis mon arrivée à Montréal. Je remercie Adam, Adrien, Ahmed, Alex, Anne-marie,

António, Arnaud, Christos, David, Gabriel, Gabrielle, Gauthier, Ghait, Greta, Hugo, Jad,

Joseph, Julia, Karam, Laura, Léna, Mandana, Mariane, Marwa, Morgane, Nikolay, Nizar,

Oussama, Padideh, Rémi, Rim, Simo, Simon, Taha, Tigran, Tom, Tristan, Valentin, Victor,

Zhor, pour les magnifiques moments passés et discussions eues ensemble. Je suis aussi

heureux d’avoir croisé sur mon chemin des personnes inspirantes, par leur façon de voir

le monde, comme Léonard, Lucas, Moksh, Stefano, Théo, Xu, et Younesse. Je suis aussi

reconnaissant envers mes amis de longue date, Hachem, Omar, Nada et André, pour leur

soutien et pour les beaux moments passés ensemble avant et pendant la période de mon

doctorat.

Je remercie les membres du jury de ma thèse, Simon Lacoste-Julien, Ioannis Mitliagkas,

et Christian Andersson Naesseth, pour leur temps et leurs suggestions utiles pour mon

manuscrit.

Pour finir, je remercie l’Académie Hassan II des sciences et techniques du Maroc, pour

leur soutien pendant mes études, y compris mes premières années au doctorat.

Je dédie cette thèse à mon père, décédé pendant mon doctorat. Par ses valeurs et sa

soif de connaissances, il a su m’inspirer et m’encourager à suivre la voie de la recherche

scientifique. Je suis reconnaissant de l’avoir eu comme père.

21

Introduction

Perhaps the questions that most eluded humans throughout history, which will probably

remain evasive in the future, are those about intelligence and consciousness. Philosophy of

mind distinguishes the dualist view, in which the mind is seen as a separate entity from the

body (Robinson, 2023) 1, from the monist view, in which there is no fundamental division

between mind and body.

Functionalism (Levin, 2023) is a view that is popular among monists 2, which states that

every mental process is solely defined by the way it functions or the role it plays in the

larger system of which it is part. Early antecedents of functionalism include Aristotle’s (350

BCE) theory of the soul, which he identifies as “whichever powers and capacities enable a

natural, organized human body to fulfill its defining function”, and Hobbes’ argument in the

Leviathan that reasoning is “nothing but reckoning, that is adding and subtracting, of the

consequences of general names agreed upon for the marking and signifying of our thoughts.”

(Hobbes, 1651)

More recently, Turing proposed to replace the question “can machines think?” (Turing,

1950) with one where both machines and think are thoroughly defined. His seminal pa-

per introduced the now popular concepts of the Turing machine and the Turing test and

provided a fruitful functionalist theory: Machine state functionalism. The theory identifies

mental states with machine states of a probabilistic automaton, which are similar to Tur-

ing machines except that transitions between computational states are stochastic (Rescorla,

2020). The computational theory of mind sparked a cognitive revolution, with the emer-

gence of the cognitive science field (Miller, 2003), with the aim of understanding and

formulating the principles of intelligence, using experimental techniques from psychology to

construct testable theories of the human mind. It also prompted many scientists to dream

about building computers capable of thought, or more specifically, computing machines able

to solve decision-making problems, thus essentially replicating intelligence. The field of

artificial intelligence (AI) aims not only at understanding intelligence but also at building

1. The dualist view dates back at least to 650 BCE with the Sām. khya-Yoga school of Hindu philosophy
(Tuske, 2021), or more recently, in the 17th century, with René Descartes’s mind-body problem.

2. given that the underlying functions result from physical properties of the body.

intelligent entities. A complete history of the field is provided in Russell et al. (2010) and

Bringsjord and Govindarajulu (2022).

The past couple of decades have witnessed a bloom of artificial intelligence applications.

Success stories include game solving (Schrittwieser et al., 2020), self-driving cars (Liang

et al., 2018), medical applications (Yu et al., 2018) and the complex problem of protein

folding (Jumper et al., 2021). More recently, generative models for text (OpenAI, 2023) and

images (Ramesh et al., 2022) have gained much popularity amongst the large public, given

the ease of interaction and the appealing results. The years 2022 and 2023 have even seen

numerous experts trying to raise awareness about the substantial societal implications such

generative models, and probably future AI applications, will have in the short term (Bengio,

2023). The fast pace at which the field is advancing is hugely due to machine learning,

a sub-field of AI that aims at building systems, or agents, that improve their performance

on a task with repeated experience on the given task. A popular, more formal definition

of machine learning is presented in Mitchell (1997): “A computer program is said to learn

from experience E with respect to some class of tasks T, and performance measure P, if its

performance at tasks in T, as measured by P, improves with experience E.”. Machine learning

as a field has blossomed in the 90s thanks to works that use statistics to formally ground

ML (Boser et al., 1992; Cortes and Vapnik, 1995).

The classical computational theory of mind suggests that the mind is a computational

system similar in essential respects to a Turing machine, where the inputs and outputs

are symbols inscribed in memory locations. On the other hand, connectionism, which is a

movement in cognitive science that gained traction in the 1980s, hopes to explain intellectual

abilities using artificial neural networks, drawing inspiration from neurophysiology rather

than logic and computer science (Buckner and Garson, 2019). The increasing popularity of

connectionism is mainly due to the construction of connectionist models of object recognition,

speech recognition, sentence comprehension, and other phenomena (Rumelhart et al., 1987;

Mcclelland et al., 1987) and to the development of the backpropagation algorithm, a practical

and efficient solution to the central problem in connectionism: finding the correct set of

weights to accomplish a given task (Linnainmaa, 1970, 1976). This led to the emergence of

a sub-field of machine learning: deep learning (LeCun et al., 2015; Schmidhuber, 2015).

Deep neural networks are, in fact, central to all the examples cited above.

Even though deep learning has been labelled as the new wave of connectionism (Buckner

and Garson, 2019), to this day, computer scientists still debate whether the recent successes

of deep learning in artificial systems mark a clear superiority of connectionist models of com-

putationalism over the classical symbolic theory. The main critiques are that connectionists

do not model the variety of neurons in the brain and fail to provide a biologically plausible

yet efficient alternative to backpropagation for learning. Some unanswered criticisms remain

regarding high-level reasoning and language acquisition with connectionist models (Pinker

24

and Prince, 1988). This thesis does not attempt to directly address the ongoing debate nor

favour one position over the other but instead tackles a central concept common to both

views: uncertainty.

Uncertainty is a fundamental pillar of artificial intelligence, as most decision-making

problems are inherently characterized by uncertainty. Whether exploring the dynamics of

a game or unravelling the laws of physics, agents must measure the aspects of the model

they are most uncertain about. This process is essential for obtaining critical information

about a particular phenomenon. It allows agents to make informed and effective decisions

regarding where to allocate more modelling resources. Such a process is central to AI and

reminiscent of humans, especially babies building their world models, whose innate curiosity

propels them to explore their environment and acquire knowledge about the world.

Uncertainty is usually codified with probabilities. Thus, probability theory is paramount

when formalizing machine learning tasks. Bayesian inference, on the other hand, provides

an elegant formalism for updating prior subjective beliefs about hidden quantities. In most

practical settings, however, Bayesian inference is intractable, and approximations are re-

quired.

This thesis tackles the question of uncertainty in machine learning through two different

but complementary approaches. Following an introduction of machine learning, which we

provide in Chapter 2, with an emphasis on Bayesian inference and uncertainty, we study in

Chapter 3 the mathematical properties of generative flow networks, which are probabilistic

models useful not only for approximate Bayesian inference, but also for search problems in

large compositional spaces 3, and showcase through a series of experiments their superiority to

existing methods. In Chapter 4, we develop a theory that extends generative flow networks

to more general settings, bypassing the need for discrete structures, and we illustrate in

different simulated experiments that they retain their already proven advantages. In Chapter

5, we investigate a different approach to Bayesian inference for determining measures of

epistemic uncertainty 4. Through various experiments, we demonstrate that this alternative

method can produce more accurate uncertainty estimates valuable in downstream tasks. In

Appendix B, we present torchgfn, a recently developed open-source software that facilitates

research on generative flow networks.

Before delving into the core of the thesis, we give in Chapter 1 an overview of the

publications upon which it is based and mention the contributions of the author of the thesis

in them.

3. In this thesis, we say that a set is compositional if the meaning of an object within this set is entirely
determined by its structure and the meanings of its constituents.

4. a definition is available in Section 2.1.7

25

Chapter 1

Overview of the underlying publications

This manuscript is based on the following papers 1:

— Bengio et al. (2023): “GFlowNet Foundations“ - Yoshua Bengio∗, Salem Lahlou∗,

Tristan Deleu∗, Edward J. Hu, Mo Tiwari, Emmanuel Bengio, published in 2023 in

the Journal of Machine Learning Research (JMLR).

— Malkin et al. (2023): “GFlowNets and variational inference” - Nikolay Malkin∗, Salem

Lahlou∗, Tristan Deleu∗, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai Zhang,

Yoshua Bengio, published in 2023 in the proceedings of the International Conference

on Learning Representations (ICLR).

— Lahlou et al. (2023a): “A theory of continuous generative flow networks” - Salem

Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex

Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin, published

in 2023 in the proceedings of the International Conference on Machine Learning

(ICML).

— Lahlou et al. (2021): “DEUP: Direct Epistemic Uncertainty Prediction” - Salem

Lahlou∗, Moksh Jain∗, Hadi Nekoei, Victor I Butoi, Paul Bertin, Jarrid Rector-

Brooks, Maksym Korablyov, Yoshua Bengio, published in 2023 in Transactions on

Machine Learning Research (TMLR).

Additionally, Appendix B refers to the torchgfn code library: the author of this thesis

played a leading role in its development. The contents of the appendix are based on the

following:

— Lahlou et al. (2023b): “torchgfn: A PyTorch GFlowNet library” - Salem Lahlou,

Joseph Viviano, Victor Schmidt, Yoshua Bengio, available as a preprint.

1. A star next to an author’s name refers to an equal contribution among the authors with a star.

1.1. Contributions of the author

The main contributions of the author of this thesis in the four papers above are the

following:

(1) GFlowNet Foundations:

— formally defining GFlowNets and conditional GFlowNets as mathematical ob-

jects,

— writing and proving the lemmas and propositions that show the different prop-

erties of flow networks and GFlowNets,

— coming up with the equivalence relationship between flows that ascertains the

importance of Markovian flows,

— writing sections 2 and 3 of the paper and part of section 4, and making some

of the figures.

(2) GFlowNets and variational inference:

— coming up with the graded directed acyclic graph idea that bridges the gap

between GFlowNets and hierarchical variational models,

— extending the nested variational inference objective from transitions to sub-

trajectories,

— extending the equivalence between the trajectory balance objective and hier-

archical variational inference to the sub-trajectory balance objective and the

extended nested variational inference objective,

— interpreting the log partition function in the trajectory balance loss as a learned

quasi-optimal control variate in the score function estimator of the variational

objective gradient,

— performing the experiments in the hypergrid domain,

— contrasting generative flow networks to the Reverse KL, Forward KL, Wake-

sleep, Reverse Wake-sleep algorithms,

— writing parts of sections 2 and 4, the proofs, and the appendix.

(3) A theory of continuous generative flow networks:

— developing the theory and adjusting the assumptions as needed, with help from

Nikolay and Tristan,

— writing most of the paper, excluding the experimental section, and including

lemmas, propositions, theorems, and proofs,

— performing the experiments in the continuous square domain,

— leading the project, with help from Nikolay and Yoshua.

28

(4) DEUP: Direct Epistemic Uncertainty Prediction:

— performing the experiments showcasing the shortcomings of misspecified Gauss-

ian processes,

— performing the experiments related to sequential model optimization,

— iterating on the writing of the paper and adjusting to different reviewers’ com-

ments,

— coming up with section 2 as a formal motivation for the proposed method,

— writing most of sections 1, 2 and 3,

— leading the project, with help from Moksh and Yoshua.

1.2. Excluded research

To keep the thesis consistent and concise, the author has decided to exclude the following

publications or preprints produced during his Ph.D.:

(1) Chevalier-Boisvert et al. (2018): “Babyai: A platform to study the sample efficiency

of grounded language learning” - Maxime Chevalier-Boisvert, Dzmitry Bahdanau,

Salem Lahlou, Lucas Willems, Chitwan Saharia, Thien Huu Nguyen, Yoshua Bengio,

published in 2018 in the proceedings of the International Conference On Learning

Representations (ICLR):

— The author of this thesis wrote the code for the bot, an essential component for

the imitation learning experiments, and performed initial reinforcement learn-

ing, imitation learning, and transfer learning experiments.

(2) Willems et al. (2020): “Mastering rate based curriculum learning” - Lucas Willems∗,

Salem Lahlou∗, Yoshua Bengio, available as a preprint:

— The author of this thesis performed the experiments in the supervised setting

(addition of integers with a recurrent neural network) and wrote most of the

paper.

(3) Liu et al. (2023): “Gflowout: Dropout with generative flow networks” - Dianbo Liu,

Moksh Jain, Bonaventure Dossou, Qianli Shen, Salem Lahlou, Anirudh Goyal, Niko-

lay Malkin, Chris Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji, Kenji Kawaguchi,

Yoshua Bengio, published in 2023 in the proceedings of the International Conference

on Machine Learning (ICML):

— The author contributed to the mathematical formalism of the proposed ap-

proach and performed experiments in sequential model optimization that were

not included in the final version of the paper.

29

(4) Malik et al. (2023): “BatchGFN: Generative Flow Networks for Batch Active Learn-

ing” - Shreshth A. Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin,

Tristan Deleu, Yoshua Bengio, Yarin Gal, presented in 2023 in the workshop on Struc-

tured Probabilistic Inference & Generative Modeling (SPIGM - ICML):

— The author wrote the GFlowNet part of the code, participated in the choice of

experiments and figures to showcase the paper and helped write the paper.

(5) Chevalier-Boisvert et al. (2023): “Minigrid & Miniworld: Modular & Customizable

Reinforcement Learning Environments for Goal-Oriented Tasks” - Maxime Chevalier-

Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems, Salem

Lahlou, Suman Pal, Pablo Samuel Castro, Jordan Terry, submitted to the Datasets

and Benchmarks Track of the 2023 Conference on Neural Information Processing

Systems (NeurIPS), and available as a preprint:

— The author significantly contributed to the open-source minigrid software 2, by

simplifying the code and adapting to changes in the Gymnasium API (Towers

et al., 2023).

2. available in https://github.com/Farama-Foundation/Minigrid.

30

https://github.com/Farama-Foundation/Minigrid

Chapter 2

Background

In this chapter, we will lay down the foundations upon which the contributions of the

author are based. First, we will provide a brief overview of machine learning, highlighting a

probabilistic perspective, and focusing on the supervised learning problem. We will see that

the Bayesian inference problem is central to machine learning. Next, we will discuss neural

networks and algorithms to train them. We will then delve into the importance of modelling

uncertainty in machine learning. Finally, we will discuss the common mathematical tools

and algorithms used for approximate Bayesian inference. This chapter is inspired by Bishop

(2006b); Murphy (2022, 2023).

2.1. Machine Learning

Driven by the ultimate goal of replicating intelligence, by creating artificial agents capable

of efficiently solving decision-making problems, the field of machine learning emerged as a

natural candidate, as it aims to build systems that can not only predict observable patterns

in data but also represent the regularities and the latent structure behind the data. Indeed,

for a computationally limited artificial system tasked with solving a problem by repeatedly

interacting with an environment, the entire history of actions and sensory observations is the

essence of what can be used to understand the environment. “Data is holy” (Schmidhuber,

2009), and compressing it, by learning its underlying regular patterns, becomes necessary.

Furthermore, as the quest for achieving a general artificial intelligence continues, machine

learning plays a crucial role in building a better understanding of the structure behind

observed data in other sciences, such as healthcare (Beam and Kohane, 2018; Ghassemi

et al., 2020) and physics (VanderPlas et al., 2012; Tanaka et al., 2021; He et al., 2023).

The rest of this section is divided as follows:

— First, we will briefly motivate and introduce Bayesian inference, a core concept in

the probabilistic perspective on machine learning.

— We will then lay down the basics of Bayesian decision theory, a framework allowing

to turn inferred beliefs into actions and decisions.

— Next, we will discuss the three main learning paradigms, into which most machine

learning tasks could be categorized. The part on supervised learning will be ex-

panded upon the most, given that some of the core underlying concepts are referred

to extensively in the remainder of the thesis.

— Moving forward, we will delve into neural networks, a powerful class of models used

in most modern applications of machine learning.

— We will conclude the section by touching upon the importance of uncertainty esti-

mation in machine learning.

2.1.1. Probability and inference

We will adopt a probabilistic perspective on machine learning in this chapter and in the

remainder of the thesis, meaning that the unknown quantities, whether they represent the

predictions an agent is supposed to make or the parameters of the data-generating process

a system is supposed to infer, are treated as random variables endowed with probability

distributions. The probabilistic approach is adequate, not only because machine learning

ultimately deals with decision-making under uncertainty, but also because other sciences

heavily rely on probabilistic modelling, notably whenever there is an inverse problem

at hand (Tarantola and Valette, 1981; Murphy, 2022, 2023). We adopt a subjective inter-

pretation of probability (Hájek, 2019), where probabilities represent degrees of confidence

or credences of a given rational agent 1. This interpretation is central to the Bayesian ap-

proach to inference. It contrasts with the frequentist interpretation, which states 2 that “ the

probability of an attribute A in a finite reference class B is the relative frequency of actual

occurrences of A within B” (Hájek, 1997).

2.1.1.1. Probability notations

Throughout the thesis, we will be playing with probabilities. We will clarify here some

of the notational conventions used, which are common in the fields of machine learning and

statistics, similar to Gelman et al. (2013):

— A random variable, usually denoted by a capital letter such as X, is used to

represent any unknown quantity. Its sample space, denoted by X e.g., is the set

of the possible values the quantity can take. An event is a set of outcomes (e.g.,

X ∈ X1, where X1 is a subset of X). It can be either one of:

— Discrete: when X is finite or countably finite. The beliefs of a rational agent

are encoded in a probability mass function (pmf) x ∈ X 7→ pX(x) ∈ [0, 1]

1. i.e., one that follows the three Kolmogorov axioms of probability (Kolmogorov, 1950).
2. This is in fact called finite frequentism. For more details, refer to Hájek (2019).

32

that satisfies
∑

x∈X pX(x) = 1. pX will also be referred to as the distribution

of X.

— Continuous: when X is a measure space (e.g. the real n-space Rn endowed with

the Lebesgue measure, which we will consider hereafter, except in Chapter 4).

The beliefs of a rational agent are usually 3 encoded in a probability density

function (pdf) x ∈ X 7→ pX(x) ∈ R
+ that satisfies

∫

X p(x)dx = 1. pX will

also be referred to as the distribution of X.

— We will use the terms distribution and density interchangeably to refer to both

the pmf of a discrete random variable and the pdf of a continuous one 4.

— We will not be sub-scripting the densities, and will solely use the symbol p whenever

there is only one agent at play. The random variable the density is referring to can

be inferred from the symbol used in its argument, e.g. p(x) would refer to a random

variable X, and p(y) would refer to a random variable Y .

— We will use p(. | .) to denote a conditional probability distribution.

— When referring to parameterized distributions, we will use a semicolon inside p to

refer to the parameters. For example, p(y;θ) denotes the distribution parameterized

with θ, and p(y | x;θ) denotes the conditional distribution p(y | x) parameterized

with θ. However, if the parameters θ are treated as random variables, then usual

conditioning notations will be used (e.g. p(y | θ) and p(y | x,θ)).

— When referring to usual distributions, such as a univariate Gaussian with mean µ

and variance Ã2, we will write x ∼ N (µ, Ã2) or p(x) = N (x; µ, Ã2). The common

distributions used in this thesis are expanded upon in Appendix A.1.1.

— The subscript of the expectation symbol E will be either of the form “x ∼ p(x)”

or “p(x)”, and both notations will be used interchangeably. We will also use the

notation E[. | x ∼ p(x)].

2.1.1.2. Bayesian inference

The field of statistics deals with inference problems, where we essentially want to infer

unknown quantities h (e.g., parameters of a model θ, or predictions y) given some observables

o (e.g., an input x or a dataset of observations D), while still accounting for our uncertainty

about the unknowns. Frequentist, or classical statistics, which uses probability to refer

to limiting relative frequencies, use confidence intervals to represent uncertainty about a

predicted unknown. For instance, a 95 percent confidence interval should trap the value of

the parameter with limiting frequency at least 95 percent (Wasserman, 2004). The Bayesian

3. sometimes, no probability density function exists, in which case it is common to deal with the cumu-
lative distribution function (cdf) of the random variable.

4. In fact the pmf of a discrete random variable is its density with respect to the counting measure.

33

approach, on the other hand, treats h as a random variable and uses probability distributions

to encode all subjective knowledge an agent has about h: starting from a prior distribution

p(h) encoding initial beliefs, upon observing some data o, with likelihood p(o | h), the beliefs

can be updated into a posterior distribution p(h | o), using Bayes’ rule:

p(h | o) =
p(o | h)p(h)

p(o)
. (2.1)

As argued in Jaynes (2003), while there has been a long controversy over frequentist versus

Bayesian methods of inference, where both sides argued on the level of philosophy (Gelman

and Shalizi, 2013), there is now a plethora of numerical experiments proving the superiority

of the Bayesian approach to statistics when representing uncertainty:

— The Dutch book theorem (Skyrms, 1984; Hájek, 2008; Vineberg, 2022) ensures that

any non-Bayesian gambler is guaranteed to make a decision leading to money loss.

— De Finetti’s theorem and its extensions (De Finetti, 1929; Aldous, 1985; Kerns and

Székely, 2006; Kirsch, 2018) state that if a sequence of random variables (representing

the observed data) is exchangeable, then there is a variable θ, a prior p(θ), and a

likelihood function o 7→ p(o | θ), such that the observed data is independent and

identically distributed conditional on θ.

Another common argument is that if machine learning aims to replicate human intelligence,

and humans and other animals have been shown to be Bayesian to some extent (Valone, 2006;

Griffiths, 2020), then it makes sense to mimic this approach to knowledge representation as

well 5.

2.1.2. Bayesian Decision Theory

Ultimately, the goal of a machine learning agent is to take decisions, or actions to per-

form in their environment. In supervised learning (Section 2.1.3) for example, an action

corresponds to predicting the value or the class associated with some observation, whereas

in reinforcement learning (Section 2.1.5), an action leads to a transition in the agent’s state.

While Bayesian inference provides a principled way to update prior beliefs into a posterior

distribution, the framework of Bayesian decision theory (DeGroot, 2005; Kochenderfer et al.,

2022) turns such updated beliefs into actions, taking into account the uncertainty and the

unpredictability of the underlying environment.

Following the notations of Murphy (2023), an agent is endowed with an action set A, a

set H representing states of nature, and a loss function l : A × H → R
+. The loss l(a, h)

represents the cost of taking action a when the state of nature is h. More details about A
and H are provided in Section 2.1.3.

5. There are various psychological studies that show on the other hand that people commonly violate the
usual probability laws due to various cognitive biases (Kahneman et al., 1982).

34

Given a state or input x belonging to a set X , associated to a subset ofH via a probability

distribution p(h | x), each action a ∈ A induces a risk, or expected loss:

R(a | x) = Ep(h|x)[l(a, h)]. (2.2)

We say that an agent is rational if their goal is to always pick the risk minimizing action.

Such an agent is perpetually looking for an optimal policy, or a Bayes estimator, which is

a function Ã∗ : X → A defined by:

Ã∗(x) ∈ arg min
a∈A

R(a | x). (2.3)

2.1.3. Supervised learning

Typically, in supervised learning, an agent (also called the learner) is provided a dataset

D = {(xi, yi)}i∈J1,NK (2.4)

of input-output pairs from an unknown distribution p(x, y) over a set X × Y , called the

training set, and is tasked of predicting an unseen value y corresponding to a new input x.

To this end, the learner can choose to model a posterior distribution over the unknown y:

p(y | x) 6, and then use the decision theory framework (Section 2.1.2) to turn the posterior

into actions or unique predictions. The actions A and the states of nature H correspond to

the output space:

A = H = Y . (2.5)

In classification problems, the output space Y represents a set of class labels: Y =

J1, CK = {1, 2, . . . , C}, and the loss function is usually the zero-one loss defined by:

l0,1(ŷ, y) = 1(ŷ ̸= y), (2.6)

meaning that the learner incurs a cost of 1 when misclassifying a given input x, and a cost

of 0 otherwise. The risk (2.2) becomes:

R(ŷ | x) = 1− p(ŷ | x), (2.7)

and Bayes estimators (2.3) satisfy:

Ã∗(x) ∈ arg max
y∈Y

p(y | x), (2.8)

meaning that the learner should pick the mode of the posterior distribution if tasked with

making a decision at x. An example of a classification task is provided in Figure 2.1.

6. It is also sometimes called the likelihood. See e.g. Section 2.1.3.2. Note that this is different from
the posterior distribution p(y | x,D), and modelling the likelihood is agnostic to whether the approach is
Bayesian or not.

35

Figure 2.1 – From (Karpathy, 2023). An image classification model takes a single image
and assigns probabilities to 4 labels, (cat, dog, hat, mug). As shown in the image, to an
artificial agent, an image is represented as one large 3-dimensional array of numbers. In this
example, the cat image is 248 pixels wide, 400 pixels tall, and has three color channels Red,
Green, Blue (or RGB for short). Therefore, the image consists of 248 x 400 x 3 numbers,
or a total of 297,600 numbers. Each number is an integer that ranges from 0 (black) to 255
(white). The agent’s task is to turn this quarter of a million numbers into a single label,
such as “cat”.

In regression settings, the output space is the real line: Y = R or a subset thereof. The

most commonly used loss function is the l2 loss, or the squared error:

l2(ŷ, y) = (y − ŷ)2, (2.9)

meaning that the learner incurs a cost that grows quadratically with the distance to the

ground truth value. The risk becomes:

R(ŷ | x) = Ep(y|x)[y
2]− 2ŷEp(y|x)[y] + ŷ2. (2.10)

Because the risk is a quadratic function of ŷ, then it has a unique minimizer, and there is

thus a unique Bayes estimator:

Ã∗(x) = Ep(y|x)[y]. (2.11)

The remaining central question in supervised learning, is then how to obtain the posterior

distribution p(y | x). The inference problem can be tackled with two different approaches:

— The discriminative approach (also called the conditional approach (Jebara,

2004; Lacoste-Julien, 2016)), models the posterior p(y | x) directly.

36

— The generative approach models the joint distribution p(x, y), either directly, or

by separately infering the conditional densities p(x | y) and the prior p(y), then

use Bayes’ theorem (2.1) to obtain p(y | x). Such approaches are called generative

because sampling from the learned distribution p(x, y) allows to generate synthetic

data points.

While the generative approach is naturally more computationally expensive, an inherent ad-

vantage is their ability to provide approximations of the marginal density of the data p(x),

thus allowing the detection of new inputs with low density under the model, for which the

predictions may be of low accuracy. This problem is called outlier detection or out-of-

distribution detection. This approach is more relevant to unsupervised learning (Sec-

tion 2.1.4), and will be expanded upon later.

2.1.3.1. Modelling the posterior

Models of the posterior distribution p(y | x) fall into two categories:

— Parametric models have a fixed number of parameters, independent of the training

set size. They assume a fixed probability distribution for the data to model.

— Non-parametric models have a potentially infinite number of parameters. In prac-

tice, an infinite dimensional parameter is represented with finite parameters whose

dimensionality grows with the amount of training data. Put differently, such models

are distribution-free, as they make no strong distributional assumption on the data.

Many non-parametric models are based on comparing an input x to the inputs of the training

set D, using some distance or kernel-based similarity. Examples include models based on

classification and regression trees (Breiman, 1984), Gaussian processes (Appendix A.2), and

K nearest neighbours models (Kramer, 2013).

Most models discussed in this thesis are parametric and thus deserve a deeper dive. In

regression, it is common to assume p(y | x) to be a Gaussian distribution (Appendix A.1.1),

whereas in classification, the output is supposed to follow a conditional Categorical distribu-

tion (Appendix A.1.1). The parameters of those distributions (e.g., the mean or the logits 7)

are functions of the input x. Essentially, assuming the chosen distribution family for p(y | x)

can be parametrized with elements of a set U ¦ R
d, parametric models require the specifi-

cation of a function f : X → U . The function f itself usually has its own parameters θ ∈ Θ.

Here are two examples:

— θ can be a vector or a matrix, and f is a linear function of ϕ(x), a fixed feature

transformation of x: f(x;θ) = θ¦ϕ(x). Such models are called generalized linear

models.

7. the logit associated to a probability p is the logarithm of the corresponding odds, i.e., log p− log(1−p).

37

— θ can represent the parameters of a fixed-size neural network. More details are

provided in Section 2.1.6.

Finding the parameters θ of the function f is usually referred to as fitting or training the

model. Once the family of distributions and the family of functions f are chosen, it is

common to unambiguously denote the posterior with p(y | x;θ).

2.1.3.2. Training parametric models

For simplicity, we restrict the explanation in this section to the discriminative approach.

Several principles could be used to fit a model, the most popular of which is maximum

likelihood estimation. It aims at answering the question “which parameters θ were the

most likely to generate the observed data D?”. The likelihood of the dataset D (2.4), denoted

by L(D;θ) is:

L(D;θ) =
N∏

i=1

p(xi, yi;θ) (2.12)

=
N∏

i=1

p(xi)p(yi | xi;θ). (2.13)

Because the logarithm function is monotonically increasing, maximizing the likelihood (2.13)

amounts to maximizing the log likelihood:

logL(D;θ) =
N∑

i=1

log p(xi) +
N∑

i=1

log p(yi | xi;θ). (2.14)

As θ does not intervene in the first sum of (2.12), the maximum likelihood principle boils

down to finding the MLE estimate 8:

θMLE = arg max
θ∈Θ

1

N

N∑

i=1

log p(yi | xi;θ). (2.15)

On the other hand, maximum a posteriori estimation treats θ as a random variable

and aims at answering the question “Which parameters θ are the most probable given the

data D?”. It requires, however, the specification of some prior knowledge on θ via a prior

distribution p(θ). The logarithm of the posterior p(θ | D) can be obtained from Bayes’ rule

(2.1), using the likelihood p(D | θ) = L(D;θ) (2.12):

log p(θ | D) = log p(θ) +
N∑

i=1

log p(xi) +
N∑

i=1

log p(yi | xi;θ)− log p(D). (2.16)

8. arg max usually denotes the set of maximizers, and there could be many MLE estimates. However, for
simplicity, we use the notation θMLE = arg max instead of θMLE ∈ arg max. This notation shortcut will be
common hereafter.

38

Although the evidence 9 p(D) can be intractable, the maximization of (2.16) boils down to

finding the MAP estimate:

θMAP = arg max
θ∈Θ

N∑

i=1

log p(yi | xi;θ) + log p(θ). (2.17)

Note that, for example, if Θ is a bounded space on which a uniform distribution can be de-

fined, and the prior p(θ) is this uniform distribution, then the MAP estimate (2.17) coincides

with the MLE estimate.

It is noteworthy that neither the uniqueness of θMLE nor that of θMAP can be guaranteed,

in which case the arg max in (2.15) and (2.17) should be treated as sets.

2.1.3.3. The fully discriminative approach to supervised learning

A fully discriminative approach to supervised learning does not model a posterior

p(y | x), but aims at finding a function f : X → Y , called a discriminant function, that

minimizes a given overall risk. This approach combines both the inference and the decision

stages into a single learning problem. Given a loss function l : Y2 → R
+, the overall risk

associated with the function f is defined as:

R(f) = Ep(x,y)[l(y, f(x))]. (2.18)

However, the distribution p(x, y) is unknown to the learner, and can only be approximated

using the training set D, given that each (xi, yi) is supposed to be a sample from p(x, y).

The learner is then tasked with finding f that minimizes the empirical risk, and the whole

approach is often referred to as empirical risk minimization:

R̂(f) =
1

N

N∑

i=1

l(yi, f(xi)). (2.19)

Oftentimes, the function f is parametrized with a vector of parameters θ ∈ Θ, and the goal

is to find the ERM estimate:

θERM = arg min
θ∈Θ

R̂(fθ). (2.20)

The squared error (2.9) is commonly used in regression tasks. In classification tasks, however,

although the zero-one loss (2.6) should, in principle, be used, given that it is robust to outliers

(Nguyen and Sanner, 2013), minimizing the corresponding empirical risk is known to be an

NP-hard problem (Ben-David et al., 2003), and continuous convex surrogate losses to the

zero-one loss are used instead, such as the cross-entropy loss, also called the log loss,

for which the action set A corresponds to P(Y), the set of probability distributions over Y ,

usually represented with the C-simplex:

lCE(a, y) = − loga(y) (remember that a ∈ A is a probability distribution). (2.21)

9. term used in MacKay (1992) for example. It is also called the marginal likelihood.

39

It is worth observing that in regression, the ERM estimate associated with the squared

error (2.9) corresponds to the MLE estimate under the assumption of a Gaussian posterior

p(y | x) with fixed variance (Lemma A.4.1). Similarly, in classification, the ERM estimate

associated with the log loss (2.21) corresponds to the MLE estimate under the assumption

of a Categorical posterior (Lemma A.4.2). The quantity being minimized in (2.15), (2.17)

and (2.20) is also commonly called the training loss.

2.1.3.4. The generalization problem

Recalling that what we care about in supervised learning is making predictions on unseen

data, that is not part of the training set, it is natural to wonder whether the objectives (2.15)

and (2.20), which rely on the training set D only are adequate. The ability to accurately

make predictions on new examples is known as generalization. In fact, if the family of

distributions {p(. | .;θ), θ ∈ Θ} is expressive enough, MLE and ERM will try to pick a

value of θ that make the training loss zero, essentially interpolating the training data. This

problem is called overfitting.

Overfitting occurs when the trained model is too complex in the sense that it attempts to

capture the noise in the training dataset D, and thus generalize poorly. Explicitly shrinking

the parameter space Θ to exclusively represent simpler models might, on the other hand,

harm the training procedure and lead to underfitting: the trained model cannot capture

the structure of the training set. A common solution to overfitting that does not explicitly

shrinks Θ is to impose soft constraints on the parameters via an additive penalty term C(θ)

to the negative log-likelihood or the empirical risk. This approach is called regularization.

The term C(θ) should penalize values of θ that lead to complex models. For example if θ

is a vector, then a common penalty is its L2 norm: C(θ) = ∥θ∥2. A coefficient ¼ balances

the importance given to each term in the resulting loss. For example, the MLE objective

becomes:

max
θ∈Θ

1

N

N∑

i=1

log p(yi | xi;θ) + ¼C(θ). (2.22)

In MAP estimation, such soft constraints can be imposed through the prior p(θ). While

a uniform prior leads to a MAP estimate that coincides with the MLE one, other choices

of the prior can encode different constraints. For example, if θ is a vector, then a common

prior that penalizes large component values is an isotropic Gaussian centred at 0, with a

standard deviation controlling the penalty importance, N (0; Ã2I). In fact, such a prior is

equivalent to MLE estimation with L2 regularization.

Neither the coefficient ¼ in (2.22), nor the parameters of the prior p(θ), are parameters of

the resulting model, but rather a hyperparameter of the training procedure. Ideally, their

chosen value should lead to a model p(y | x;θ∗) (or fθ∗ for the fully discriminative approach)

40

with the lowest overall risk (2.18), seen as a function of θ 10. However, as we do not have

access to the actual distribution p(x, y), we can only approximate it using a validation set

Dval, which is a subset of D set apart, and not used for training, and it is common practice to

pick the value of ¼, or any other hyperparameter of the model or the learning procedure, or

even the family of models itself (this is called model selection), by minimizing the resulting

validation risk 11 for example:

R̂val =
1

|Dval|
∑

(x,y)∈Dval

l(y, fθ∗(x)). (2.23)

The final performance of the chosen model can be evaluated with a yet separate subset of

D, called the test set, Dtest, in a similar fashion.

Using a validation set for model selection and hyperparameter optimization might not be

sensible in limited data settings. A common alternative is k−fold cross validation, where

D is split into k subsets, called the folds, and k models are trained, one on each of the k

unions of k − 1 folds, and separately evaluated on the fold unused for training. The chosen

model and hyperparameters are those that maximize the average validation risk of the k

models.

2.1.3.5. Bayesian models

Going back to MAP estimation (2.16), that treats θ as a random variable, a Bayesian

treatment of θ involves not only finding the mode of the posterior but actually modelling

the whole posterior:

p(θ | D) =
p(D | θ)p(θ)

p(D)
, (2.24)

where the evidence is defined by:

p(D) =
∫

p(D | θ)p(θ)dθ. (2.25)

One advantage of modelling the posterior is their resulting probabilistic predictions.

Given a new input x, the posterior predictive distribution is available to the agent, by

marginalizing over all parameter settings, rather than maximizing:

p(y | x,D) =
∫

p(y | x,θ)p(θ | D)dθ. (2.26)

The posterior predictive can be used as a substitute p(y | x) in (2.8) and (2.11) for

decision making. However, there is a benefit in considering the whole predictive distribution

rather than its mode or its mean: it quantifies uncertainty about the unknown y.

At first glance, one might argue that even with parametric models of the posterior, the

distribution p(y | x;θ∗), where θ∗ is the MLE or the MAP estimate, also encodes uncertainty

10. Similar to ERM, we can define an overall risk with the MLE and MAP approaches, by replacing the
empirical distribution with a distribution over the unknown p(x, y).

11. or the log-likelihood of the validation set in the case of MLE or MAP.

41

about y. In fact, p(y | x;θ∗) can be seen as an approximation of the posterior predictive,

using the Dirac distribution at θ∗ (Appendix A.1.1) as a replacement for the actual posterior

p(θ | D) in (2.26):

p(y | x;θ∗) =
∫

p(y | x,θ)¶θ∗(θ)dθ. (2.27)

The MAP estimate is thus called a plugin approximation of the posterior predictive.

However, its encoded uncertainty is merely a result of the distributional choice for p(y |
x) (e.g., Gaussian for regression, and Categorical for classification), and only accounts for

aleatoric uncertainty, while completely disregarding the epistemic uncertainty of the

learner. More on this on Section 2.1.7.

By modelling uncertainty in the parameter space, rather than taking the risk of selecting

a unique value for model parameters which leads to a complex model, Bayesian models are

less prone to overfitting than ERM, MLE, or MAP estimation.

Note that, unlike MAP estimation, which disregards the evidence in the optimization,

evaluating the posterior (2.24) and (2.26) requires the evaluation of p(D).

There are scenarios in which exact posterior inference is tractable; this is when the prior

p(θ) is conjugate to the likelihood p(D | θ), meaning that the family of distributions F
the prior belongs to is closed under Bayesian updating (i.e., the posterior would also be

a member of F). This is the case, for example, when the prior and likelihood are of the

following form 12:

p(θ) ∝ eλ
¦

0 T (θ), (2.28)

p(y | x,θ) ∝ eλi(x,y)¦T (θ), (2.29)

for some sufficient statistics T : Θ→ R
s, and canonical parameters λ ∈ R

s.

In most interesting cases, however, we cannot compute posteriors exactly, and approxi-

mate inference techniques become necessary (Section 2.2).

Finally, it is worth noting that the Bayesian approach can also be applied to non-

parametric models. For example, this is commonplace for Gaussian processes (Appen-

dix A.2).

2.1.4. Unsupervised learning

Unlike supervised learning, in which a learner is provided with a labelled dataset, un-

supervised learning revolves around learning the regular structures of an unlabelled dataset

(2.4)

D = {xi}i∈J1,NK. (2.30)

12. We say that the prior and the likelihood belong to an exponential family.

42

The probabilistic perspective on unsupervised learning hinges on fitting an unconditional

model p(x). Examples of tasks that can be solved using unsupervised learning algorithms

include:

— Clustering: the goal is to partition the input space into regions containing similar

points. K-means (MacQueen, 1967; Lloyd, 1982) is a popular clustering algorithm

and relies on alternatively finding the cluster centers and assigning each point x ∈ D
to its closest center. K-means is illustrated in Figure 2.2. Other popular methods

are surveyed in Saxena et al. (2017); Ezugwu et al. (2022).

Figure 2.2 – From Géron (2022). An illustration of K-means clustering in two dimensions.
The crosses are cluster centers, and different colours refer to different clusters.

— Data compression and dimensionality reduction: the goal is to map each

input x ∈ X to a lower-dimensional vector z ∈ Z. Z is called the latent space, and

z is called the embedding of x. Principal components analysis (PCA)(Wold

et al., 1987) is the most popular form of dimensionality reduction when X ¦ R
D,

and relies on linearly projecting the data from R
D to a lower dimensional space R

L,

defined by the principal components of the data. An illustration of PCA is provided

in Figure 2.3. Autoencoders are an extension of this method that relies on using

neural networks (Section 2.1.6) to embed the data into a lower dimensional space,

trained by minimizing a reconstruction loss. It has been shown in Japkowicz et al.

(2000) that the learned representations are more useful than those obtained with

PCA, for example. Variational autoencoders (VAEs) (Kingma and Welling,

2014a; Rezende et al., 2014b) are a probabilistic version of the autoencoders, which

fits a distribution over latents p(z | x) rather than learning a deterministic mapping

43

from X to Z, and have the advantage of being a generative model, as they can be

used to create new samples from p(x).

Figure 2.3 – From Hastie et al. (2009). An illustration of PCA applied to MNIST digits
(Deng, 2012) from the class 3. Left: the first two principal components of the handwritten
threes. The circled points are the closest projected images to the vertices of a grid, defined
by the marginal quantiles of the principal components. Right: The images corresponding
to the circled points. These show the nature of the first two principal components (thickness
and curliness).

— Density estimation: the goal is to evaluate the probability mass or density p(x) of

a point x ∈ X , which can be useful for out-of-distribution detection for example. The

simplest approach to this problem in vector spaces is kernel density estimation

(KDE) (Węglarczyk, 2018), which is a non-parametric method that relies on a den-

sity kernel » : X → R
+ to define p(x). More details are provided in Appendix A.3.

Aggarwal et al. (2001) showed that it suffers from the curse of dimensionality,

meaning that as the dimensionality of the data grows, the number of examples re-

quired to generalize accurately grows exponentially. Parametric models are thus

preferred in higher dimensions. For example, in normalizing flows, the goal is to

learn an invertible transformation f : RD → R
D that transforms samples u from a

simple base distribution p(u) to samples x from the target distribution p(x). The

transformation f is made by composing different parametric building blocks, such as

coupling layers (Dinh et al., 2014). Two comprehensive reviews of normalizing flows

are provided in Papamakarios et al. (2021); Kobyzev et al. (2020). In energy-based

44

models, the target distribution uses a parametrized energy function Eθ : X → R
+:

pθ(x) =
e−Eθ(x)

Zθ
, (2.31)

where Zθ =
∫

e−Eθ(x)dx is called the partition function. Because the energy func-

tion does not need to integrate to one, it is common to use a variety of neural networks

(Section 2.1.6) to parametrize it. Maximum likelihood estimation is the standard

way of training energy-based models and hinges on maximizing, using gradient-based

optimization techniques Section 2.1.6.2, the expected log-likelihood over the data

distribution pdata(x):

L(θ) = Epdata(x)[log pθ(x)]. (2.32)

The gradient of (2.32) with respect to θ involves the term Epθ(x)[−∇θEθ(x)], which

can only be approximated, as long as we can draw random samples from the current

model pθ (see Section 2.2.2 for a discussion on sampling). Alternatives to MLE

training of energy-based models include the score matching objective (Hyvärinen,

2005), where the goal is to equalize the score of the EBM ∇x log pθ(x) and the score

of the data distribution ∇x log pdata(x).

— Generation: the goal is to create new data samples that would come from the same

distribution as that of a given dataset D (2.30). Examples include:

(1) Auto-regressive models, i.e., those that factorize as:

p(x1:T) = p(x1)
T∏

t=2

p(xt | x1:t−1), (2.33)

where we substituted x with x1:T to emphasize that the inputs have T compo-

nents. Auto-regressive models are also generative, as it would suffice to sequen-

tially sample from p(xt | x1:t−1) to obtain a sample from the target p(x1:T).

Usually, a restricted function form is imposed on the conditionals p(xt | x1:t−1).

Neural networks can be used, for example, leading to neural language mod-

els (Bengio et al., 2000), neural auto-regressive density estimators (NADE)

in Larochelle and Murray (2011), and the pixelCNN variants (van den Oord

et al., 2016). More recently, transformer decoders (Section 2.1.6) are becoming

increasingly popular in parameterizing autoregressive models and are the basis

of many popular generative models for sequences, such as the Generative pre-

training transformer (GPT) in Radford et al. (2018, 2019); Brown et al. (2020);

OpenAI (2023) for text generation, or DALLE-E (Ramesh et al., 2021, 2022)

for text-to-image generation, for which an example is provided in Figure 2.4.

(2) Diffusion models (Sohl-Dickstein et al., 2015a; Ho et al., 2020a; Kingma

et al., 2021; Song et al., 2020) are a recent and popular class of models that use a

45

Figure 2.4 – Some images generated by the DALL-E model from https://openai.com/

research/dall-e in response to the text prompt: “an illustration of a baby shark in a
Christmas sweater staring at its reflection in a mirror”.

diffusion process to gradually convert observed data, denoted by x0 into a noisy

version xT , by passing it through T steps of a stochastic encoder q(xt | xt−1),

and such that p(xT) = N (0, I). The core idea is to learn a reverse process to

undo the noising (forward) process, by passing the noise xT through T steps of a

stochastic decoder pθ(xt−1 | xt) until we generate x0. The process is illustrated

in Figure 2.5.

Figure 2.5 – From Ho et al. (2020a). Illustration of the noising (forward) and the denoising
(reverse) processes in a diffusion model.

2.1.4.1. Probabilistic graphical models

Another form of unsupervised learning is Bayes net structure learning, where the goal

is to estimate the structure of the directed graphical model that generated the data (2.30). In

fact, any distribution over T variables can be compactly represented with a directed acyclic

graph (DAG), encoding the conditional independences underlying the data, as illustrated

in Figure 2.6. Said differently, going back to (2.33), each conditional p(xt | x1:t−1) can be

rewritten as p(xt | xpa(t)), where pa(t) ¦ J1, t−1K is the largest set satisfying the conditional

independence property (Definition A.1.1):

xt § xJ1,t−1K\pa(t) | pa(t). (2.34)

pa(t) is called the parent set of the node t, where each of the indices 1, 2, . . . , T is represented

with a node. The set of parents {pa(t), t ∈ J1, T K}, with the convention pa(1) = ∅, essentially

defines a DAG.

46

https://openai.com/research/dall-e
https://openai.com/research/dall-e

1

2

3

4

5

Figure 2.6 – Illustration of a directed acyclic graph whose nodes represent 5 variables and
whose edges encode conditional independences. The network structure specifies a factoriza-
tion of the joint distribution:
p(x1,x2,x3,x4,x5) = p(x1)p(x2 | x1)p(x3 | x1)p(x4 | x1,x2,x3)p(x5 | x3,x4).

A simple example is that of Markov chains, where the Markov assumption is made:

∀t > 1, p(xt | x1:t−1) = p(xt | xt−1). (2.35)

Such probabilistic graphical models (PGMs) can also be used to encode causal relationships

between different variables. Additionally, one can be interested in learning both the DAG

structure and the parameters of the conditionals pθ(xt | xpa(t)) (assuming they are paramet-

ric). From a probabilistic perspective, this task amounts to learning a posterior over graphs

G and parameters θ from the observational data D:

p(G,θ | D) =
p(G)p(θ | G)p(D | G,θ)

p(D)
. (2.36)

Friedman and Koller (2000) provide an overview of the problem and Friedman et al. (2013)

provide a bootstrap approach to the problem.

There is, however, a fundamental problem to causal learning, i.e., learning the DAG

structure where each edge i→ j indicates that the variable xi casually influences the corre-

sponding value of xj, given that even with infinite data, it is only possible to know the DAG

up to its Markov equivalence class (Definition A.1.2). Identifying the right ground-truth

graph can be improved by performing interventions, i.e., experiments affecting the value of

the variables corresponding to a specific set of graph nodes, and observing how they change

the value of the other variables (Tong and Koller, 2001; Murphy, 2001). An example is

provided in Figure 2.7.

2.1.5. Reinforcement Learning

Reinforcement Learning (RL) deals with sequential decision-making in order to maximize

a specific utility function. Contrary to supervised Learning, RL agents aren’t trained by

observing a knowledgeable teacher’s actions. Instead, they must learn which actions lead

to the highest rewards by trying them and observing their effects on the environment. In

the usual framework, at each time step, an agent observes the environment state and then

47

Figure 2.7 – From Lauritzen and Spiegelhalter (1988). The Asia network, an example
of a causal network depicting causal relationships between 8 variables. The corresponding
dataset is a testbed for causal learning algorithms that select which interventions to perform
to discern the graph from its Markov equivalence class.

chooses an action that results in a reward and a transition to another state. Using trial-and-

error, the agent should learn how to optimize some cumulative reward in various scenarios:

the environment can be stochastic, the rewards can be delayed, or the agent may only observe

some partial information about the visited states, etc...

Recently, RL algorithms were successfully used to train agents to reach super-human

performances in different types of games: Atari games (Bellemare et al., 2013; Mnih et al.,

2015), Go (Silver et al., 2016, 2017b), Chess (Silver et al., 2017a), Poker (Moravčík et al.,

2017), etc... RL has also been shown to apply to real-world problems such as self-driving cars

(Pan et al., 2017), smart grids (François-Lavet et al., 2016), and robotics (Gu et al., 2017;

Nagabandi et al., 2019). More recently, RL techniques have been incorporated in GPT text

generators, using human feedback as a basis of a reward function (Christiano et al., 2017;

Ouyang et al., 2022).

RL agents face the exploration-exploitation dilemma: should they act in order to improve

their knowledge about the environment (explore) or in order to maximize the returns using

their current knowledge (exploit)?

Markov Decision Processes (MDPs) (Bellman, 1957) are a natural way to represent

the environment when formalizing the agent-environment interface. An MDP is a tuple

M := (S,A, P, R, µ), where S is a state space, A is an action space, P is a state probability

distribution that models the dynamics of the environment, R : S ×A → P(R) is the reward

function, where R ¦ R is the set of possible reward values and P(R) is the set of probability

48

distributions over reward values. (R(s, a) is a random variable that represents the reward

obtained when taking action a at state s), and µ ∈ [0, 1) is the discount rate determining

future rewards’ present value. P has to satisfy the Markov property that for any state st

and state-action history (s0, a0, . . . , st−1, at−1):

P (st+1 | s0, a0, . . . , st, at) = P (st+1 | st, at), (2.37)

which means that the future is independent of the past given the present, i.e., the agent has

no interest in looking at the full history to make decisions. Because of the Markov property, it

is sometimes useful to model the dynamics of the environment using a transition probability

function T : S × A × S → [0, 1] (T (s, a, s′) represents the probability of transitioning to

state s′ when taking action a from state s).

The behaviour of the agent can be described with a policy Ã : S × A → [0, 1]. For

simplicity, we will overload the notation and use both Ã(a | s) and Ã(s, a) to refer to the

probability assigned by the policy of taking action a at state s. The goal of the agent is to

find a policy function that maximizes the expected return, defined as the sum of discounted

future rewards when starting from its initial state s and following Ã:

V Ã(s) := E

[∞∑

t=0

µtR(st, at)

∣
∣
∣
∣
∣
s0 = s, at ∼ Ã(. | st), st+1 ∼ P (. | st, at)

]

. (2.38)

Similar to the state value function V Ã, we can define the state-action value function

QÃ, that represents the expected return when starting from a state s, taking action a, and

following the policy Ã:

QÃ(s, a) := E

[∞∑

t=0

µtR(st, at)

∣
∣
∣
∣
∣
(s0, a0) = (s, a), at ∼ Ã(. | st), st+1 ∼ P (. | st, at)

]

. (2.39)

Because of the Markov property, the value function (2.39) satisfies a recursive equation,

called the Bellman equation:

QÃ(s, a) = R(s, a) + µEs′∼P (.|s,a),s′∼Ã(.|s′) [QÃ(s′, a′)] , (2.40)

The goal of an RL agent is to find the optimal policy Ã∗ that maximizes the expected

return V Ã(s) at every state s. The value functions of Ã∗ are denoted by V ∗ and Q∗. These

optimal value functions satisfy the following equations, called the Bellman optimality equa-

tions:

V ∗(s) = max
a∈A

(

E [R(s, a)] + µEs′∼P (.|s,a)[V
∗(s′)]

)

, (2.41)

Q∗(s, a) = E [R(s, a)] + µEs′∼P (.|s,a)[max
a′∈A

Q∗(s′, a′)]. (2.42)

49

In the general case, there might exist more than one optimal policy. However, knowing

Q∗ is sufficient to define a deterministic optimal policy:

Ã∗(a | s) = 1(a = arg max
a′∈A

Q∗(s, a′)). (2.43)

Knowing the optimal state value function V ∗ is also sufficient to define an optimal policy

given that:

V ∗(s) = max
a∈A

Q∗(s, a). (2.44)

Value functions are crucial in RL since the Bellman equations are used to design algorithms

that solve the return maximization problem. Q-learning (Watkins and Dayan, 1992), for

example, is one of the earliest breakthroughs in RL and aims at learning the values Q(s, a),

stored in a lookup table. It relies on bootstrapping: at time step t, the value of the pair

(st, at) is updated according to the following rule:

Q(st, at)← Q(st, at) + ³(Rt+1 + µ max
a∈A

Q(st+1, a)−Q(st, at)). (2.45)

Watkins and Dayan (1992) prove that under the condition that each state-action pair is

visited infinitely often, these updates create a sequence of Q functions {Qt}tg0 that converges

almost surely to the optimal state-action value function Q∗.

Q-learning becomes impractical when dealing with large state spaces and action spaces.

In this context, we may learn the state-action values using a parameterized value function

(s, a) 7→ Q(s, a;θ), where θ is a vector of parameters. Riedmiller (2005) propose to mini-

mize an error of the form (Q(st, at;θ)− (Rt+1 + µ maxa∈A Q(st+1, at+1;θ)))2 with respect to

θ instead, using gradient descent techniques (Section 2.1.6.2), and using multilayer percep-

trons (Section 2.1.6.1) as function approximators. However, as shown in Boyan and Moore

(1995) and Sutton and Barto (2018), combining Q-learning and function approximators with

extrapolation capabilities leads to instabilities during learning. This problem is known as

the deadly triad of reinforcement learning.

The Deep Q-Network (DQN) algorithm introduced in Mnih et al. (2015) tries to limit

the instabilities introduced by the usage of neural networks as function approximators by

relying on two heuristics: using a replay memory (Lin, 1992) from which the transitions

will be sampled uniformly at random to make updates to the Q-Network, and periodically

updating the target network that is used to define (Rt+1 + µ maxa∈A Q(st+1, at+1;θ)), called

the temporal difference (TD) target. These modifications made it possible to train agents

that reach super-human performances in dozens of Atari games. This work paved the way

for more research in Deep Reinforcement Learning (DRL): the combination of reinforcement

learning and deep learning techniques.

A popular alternative to DQN-based algorithms in DRL is the family of algorithms based

on policy gradients, which model the optimal policy Ã directly, as they can be used to learn

50

stochastic policies, which is necessary, for example, in partially observable environments.

They rely on the policy gradient theorem (Sutton and Barto, 2018), which gives an analytic

formula for the gradient of the expected return at the initial state as a function of the

parameters θ of the policy Ã being learned. The REINFORCE (Williams, 1992) algorithm

was the precursor to many recent improvements that include actor-critic algorithms (Konda

and Tsitsiklis, 2000), the asynchronous advantage actor-critic (A3C) algorithm (Schulman

et al., 2015), the trust region policy optimization (TRPO) algorithm (Mnih et al., 2016),

and the proximal policy optimization (PPO) algorithm (Schulman et al., 2017).

2.1.6. Deep Learning

2.1.6.1. Neural networks

As previously mentioned, most recent successes in machine learning rely in one way or

another on using neural networks as discriminative functions to model posteriors p(y | x).

Neural networks, which have their origins in attempts to formalize information processing

in brains (Rosenblatt et al., 1962), bypass the need of manually specifying feature transfor-

mations, as in generalized linear models x 7→ f(x;θ) = θ¦ϕ(x). The basic neural network

model uses a series of transformations relying on D1 transformations of the D input variables

x1, . . . ,xD (we assume here that X ¦ R
D) of the form:

a
(1)
j =

D∑

i=1

θ
(1)
j,i xi + θ

(1)
j,0 , ∀j ∈ J1, D1K, (2.46)

where the superscript (1) indicates that the parameters θ(1) ∈ R
D1(D+1) are in the first

layer of the network. The quantities a(1)
j are called pre-activations, and are transformed

using a differentiable non-linear function h, called the activation function, leading to the

activations z(1) ∈ R
D1 :

z
(1)
j = h(a

(1)
j), ∀j ∈ J1, D1K. (2.47)

Multiple layers can be composed. For example, a second layer of D2 units, with parameters

θ(2) ∈ R
D2(D1+1), can be used similarly, leading to activations z(2) in R

D2 . After the L-th

layer, leading to activations z(L) in R
DL , an output layer transforms z(L) to outputs in

z(o) ∈ R
Do using an output function that depends on the task at hand. For example, in

regression problems, it is common to use the identity function:

z(o) = z(L). (2.48)

In multi-class classification problems, with C classes, DL is chosen to be equal to C, and the

softmax function is used in the output layer:

z(o) = softmax(z(L)), (2.49)

51

x1

x2

x3

x4

z
(1)
1

z
(1)
2

z
(1)
3

z
(1)
4

z
(1)
5

z
(2)
1

z
(2)
2

z
(2)
3

z
(o)
1

z
(o)
2

z
(o)
3

input
layer

hidden layers

output
layer

Figure 2.8 – Illustration of a feedforward neural network with 2 hidden layers of size 5 and
3 respectively.

which means that for every i ∈ J1, CK:

z
(o)
i =

ez
(L)
i

∑C
j=1 ez

(L)
j

, (2.50)

thus efficiently representing a probability distribution over Y = J1, CK.

Usual activation functions are the sigmoid function, the hyperbolic tangent function, or

the rectifier linear unit:

h1(x) = Ã(x) =
1

1 + e−x
(2.51)

h2(x) = tanh(x) =
ex − e−x

ex + e−x
(2.52)

h3(x) = ReLU(x) = max(0, x). (2.53)

The neural network described thus far is called a feedforward neural network, or a mul-

tilayer perceptron (MLP). Its parameters θ(1), . . . ,θ(L) are often compactly represented

as a large vector θ. A visual illustration is provided in Figure 2.8.

Feedforward neural networks have been shown to be universal function approximators

(Funahashi, 1989; Cybenko, 1989; Hornik et al., 1989), in the sense that any continuous

function on a compact space can be uniformly approximated with a linear two-layer network

(i.e., one hidden layer, and a linear output layer) with some given parameters θ, up to any

desired level. However, multiple works (Håstad, 1986; Bengio et al., 2006; Montúfar et al.,

2014; Raghu et al., 2016) have shown that deep networks, i.e., those with a higher number

of layers, work better than shallow ones, given that they can leverage the features learned

in earlier layers.

52

Besides the linear layer (2.46), different building blocks can be used to construct a neural

network. For example, with image data, applying the same weight matrix to each patch of

the image is common, thus essentially reducing the number of parameters. This can be done

with a convolutional layer, parametrized with a kernel matrix θ ∈ R
h×w, and used for

input images x ∈ R
H×W leading to pre-activations:

ai,j =
h−1∑

u=0

w−1∑

v=0

xi+u,j+vθu,v. (2.54)

Convolutional layers, along with pooling layers, which are parameter-free layers that com-

pute the maximum or average value in each local patch of an input matrix, are the basis of

convolutional neural networks (CNNs), which are at the heart of all modern image classifiers

(Yalniz et al., 2019).

Attention layers (Bahdanau et al., 2015; Vaswani et al., 2017), on the other hand, are

central to the transformer architectures, that are popular for sequence processing. Denoting

by X = (x1, . . . ,xT) a sequence of T vectors of size D, and representing X as a matrix of

size D × T , three matrices, called the query, key, and value matrices, are evaluated:

Q = WqX + bq1
¦, (2.55)

K = WkX + bk1
¦, (2.56)

V = WvX + bv1
¦, (2.57)

where Wq,Wk ∈ R
dattn×D and Wv ∈ R

dout×D, leading to the score matrix S ∈ R
T ×T and the

output matrix Ṽ ∈ R
dout×T :

S = K¦Q, (2.58)

Ṽ.,j =
T∑

i=1

softmax

(

1√
dattn

S.,j

)

i

V.,i, ∀j ∈ J1, T K. (2.59)

Details about efficiently implementing attention are provided in Phuong and Hutter (2022).

Other layers are commonly used, such as the residual or skip connections (He et al., 2016)

that allow the signal to skip one more layer, thus preventing a potential waste of information

in deep networks, normalization layers (Ioffe and Szegedy, 2015; Ba et al., 2016; Ulyanov

et al., 2016; Wu and He, 2018) that ensure that the magnitude of the weights across layers

and dimensions are comparable, dropout layers (Srivastava et al., 2014) that introduce a

specific stochasticity in the training procedure that helps prevent overfitting, and recurrent

layers (Chung et al., 2015) that augment the input x with an updatable state s, in order to

account for temporality in the input (e.g., if x is a sequence x1:T).

In the next section, we discuss how the parameters θ or W of neural network layers can

be fit from data.

53

2.1.6.2. Optimization and backpropagation

Optimizing a loss function θ 7→ L(θ) such as (2.15), (2.17) and (2.20), when it is a

differentiable objective of its parameters θ can be done using gradient-based methods.

Such methods require the specification of a starting point θ0, and then perform iterative

updates of the form:

θt+1 = θt − ¸tdt, (2.60)

where dt is a descent direction, and ¸t is called the learning rate, which is a hyperparameter

of the training procedure.

The gradient-descent algorithm uses the gradient as a descent direction:

dt = ∇θL(θ)|θt
, (2.61)

and the updates are done until reaching a stationary point, at which the gradient is zero.

In many practical applications however, computing the gradient of the loss function is too

computationally expensive, as that would require the evaluation of a loss or log-likelihood

at each point of a potentially large training set. When the loss is a finite sum objective of

the form:

L(θ) =
1

N

N∑

i=1

Li(θ), (2.62)

it is common to use an unbiased estimate of the gradient, evaluated on a minibatch Bt ¦
J1, NK of size B = |Bt|:

d̂t =
1

B

∑

i∈Bt

∇θLi(θt). (2.63)

This method is called stochastic gradient descent (SGD), is central to all optimiza-

tion methods used in modern machine learning. SGD can be improved by incorporating

momentum (Bertsekas, 1997) to move faster along known good directions, or Nesterov

momentum (Nesterov, 2003) to perform a one-step look ahead when deciding the descent

direction, or RMSProp (Tieleman et al., 2012) to automatically scale the effective learning

rate, or a combination of some of these elements, called the Adam method (Kingma and

Ba, 2014).

Backpropagation (Bryson, 1975; Werbos, 1974; Rumelhart et al., 1985) is the algorithm

used to evaluate the gradient of a loss function θ 7→ L(θ), or a part of it ,θ 7→ Li(θ), with

respect to the parameters of each layer of the neural network. At its core, it relies on repeated

applications of the chain rule of calculus, which states that for functions f : Rm → R
k and

g : Rn → R
m and a point x ∈ R

n, the Jacobian matrix of f ◦ g at x, Jf◦g(x) satisfies:

Jf◦g(x)
︸ ︷︷ ︸

∈Rk×n

= Jf (g(x))
︸ ︷︷ ︸

∈Rk×m

Jg(x)
︸ ︷︷ ︸

∈Rm×n

. (2.64)

54

The deep learning revolution hinges on open-source software libraries such as Tensorflow

(Abadi et al., 2015) and PyTorch (Paszke et al., 2019), which support automatic differen-

tiation, i.e., the evaluation of gradients of a differentiable loss with respect to the parameters

of a neural network automatically using the backpropagation algorithm.

2.1.7. Uncertainty Estimation

This section uses content from Lahlou et al. (2021), which is at the heart of Chapter 5.

A remaining challenge in machine learning research is purposeful knowledge-seeking by

learning agents, which can benefit from the estimation of epistemic uncertainty, a measure

of lack of knowledge that an active learner should minimize. Unlike aleatoric uncertainty,

which refers to an intrinsic notion of randomness and is irreducible by nature, epistemic un-

certainty can potentially be reduced with additional information (Kiureghian and Ditlevsen,

2009; Hüllermeier and Waegeman, 2019).

In machine learning, epistemic uncertainty estimation is already a key ingredient in in-

teractive decision-making settings such as:

— Active learning (Settles, 1994; Aggarwal et al., 2014; Gal et al., 2017), where the

goal is to select which training examples the agent should train on in order to reach

the best performances the fastest,

— Sequential model optimization (Frazier, 2018; Garnett, 2022), where the goal is

to optimize an objective function f : X → R that is expensive to evaluate,

— Causal learning (He and Geng, 2008; Agrawal et al., 2019), which can be seen

as a form of active learning, where the learner needs to select which variables to

intervene on in order to discern the ground truth DAG from other DAGs in its

Markov equivalence class (Definition A.1.2),

— Exploration in RL (Kocsis and Szepesvári, 2006; Tang et al., 2017), which is of

paramount importance in sparse reward environments,

given that epistemic uncertainty estimators can inform the learner about the potential in-

formation gain from collecting data around a particular area of state-space or input data

space.

In the subjective interpretation of probability (De Morgan, 1847; Ramsey, 1926), proba-

bilities are representations of an agent’s subjective degree of confidence (Hájek, 2019). It is

thus unsurprising that probabilities have been widely used to represent uncertainty. In su-

pervised learning, Bayesian methods (Section 2.1.3.5), which aim at predicting the posterior

predictive (2.26), are natural candidates for providing uncertainty estimates that account for

both the aleatoric and epistemic uncertainties. As previously mentioned, however, Bayesian

55

inference is usually intractable. We will discuss in Section 2.2 and Chapters 3 and 4 ap-

proximate inference techniques, and in Chapter 5, an alternative way of evaluating epistemic

uncertainty that does not rely on the Bayesian posterior.

2.2. Approximate Bayesian inference

In Bayesian inference, we are interested in modelling the posterior over the parameters

θ ∈ Θ of a probabilistic model (e.g., p(y | x,θ) in supervised learning), upon observing a

dataset D:

p(θ | D) =
p(D | θ)p(θ)

p(D)
. (2.65)

For most probabilistic models, only approximate inference is possible, given the intractability

of p(D) in (2.65). We have seen in Section 2.1.3.5 that a Dirac distribution at the MAP

estimate is itself an approximation to the posterior.

Another simple approximation can be obtained by discretizing Θ into a finite set of

regions Θ1, . . . , ΘK , each of which contains a point θk. Instead of evaluating the integral in

(2.25), it suffices to evaluate p(D | θk) for k ∈ J1, KK, leading to the grid approximation

of the posterior:

p̃(θ ∈ Θk) =
p(D | θk)p(θk)

∑K
k′=1 p(D | θk′)p(θk′)

. (2.66)

This approach, however, suffers from the curse of dimensionality and is usually only appli-

cable when θ is of dimension 1 or 2.

In the remainder of this section, we will discuss alternative ways of approximating the

Bayesian posterior that scale to higher dimensions.

2.2.1. Variational inference

In variational inference (VI) (Jordan et al., 1999; Jaakkola and Jordan, 2000;

Jaakkola, 2000; Wainwright et al., 2008; Blei et al., 2017; Zhang et al., 2018), the poste-

rior p(θ | D) is approximated with a tractable distribution q(θ) by minimizing a discrep-

ancy D (usually the Kullback-Leibler divergence DKL) between the two distributions, over

a tractable family of distributions:

q∗ = arg min
q∈Q

DKL(q(θ)∥p(θ | D)). (2.67)

When applied to the problem of modelling the posterior, variational inference is also referred

to as Variational Bayes (Tran et al., 2021).

It is common to parameterize the distributions in Q using variational parameters

ψ ∈ Ψ, in which case the problem is called fixed-form variational inference (Salimans and

56

Knowles, 2013), and the inference problem reduces to the following optimization problem:

ψ∗ = arg min
ψ∈Ψ

DKL(qψ(θ)∥p(θ | D)) (2.68)

= arg min
ψ∈Ψ

Eqψ(θ)

[

log qψ(θ)− log

(

p(D | θ)p(θ)

p(D)

)]

(2.69)

= arg min
ψ∈Ψ

−L(ψ | θ,D) + log p(D), (2.70)

where

L(ψ | θ,D) = Eqψ(θ)






log p(D | θ) + log p(θ)− log qψ(θ)
︸ ︷︷ ︸

lψ(θ)







, (2.71)

is the evidence lower bound (ELBO), given that it is a lower bound on the log-evidence

log p(D):

L(ψ | θ,D) f log p(D), (2.72)

given that the KL divergence is non-negative.

The variational free energy is defined as L(ψ | θ,D) = −L(ψ | θ,D). The name is

due to:

L(ψ | θ,D) = Eqψ(θ)[E(θ)]−H(qψ(θ)), (2.73)

where E(θ) = − log p(θ,D) is the energy and H(qψ(θ)) is the entropy of q. There are two

interpretations of the ELBO:

L(ψ | θ,D) = Eqψ(θ) [log p(θ,D)]
︸ ︷︷ ︸

expected log joint

+ H(qψ(θ))
︸ ︷︷ ︸

entropy of posterior

(2.74)

L(ψ | θ,D) = Eqψ(θ) [log p(D | θ)]
︸ ︷︷ ︸

expected log likelihood

− DKL(qψ(θ)∥p(θ))
︸ ︷︷ ︸

KL from posterior to prior

(2.75)

Black-box variational inference (BBVI) is a fixed form VI algorithm that assumes

we can evaluate lψ(θ) (2.71) point-wise, but that we cannot obtain the gradients of lψ

(the model is thus called black-box). The gradient of the ELBO uses the score function

estimator, also called the REINFORCE estimator (Williams, 1992):

∇ψL(ψ | D) = Eqψ(θ)[lψ(θ)∇ψ log qψ(θ)], (2.76)

which can be estimated using Monte-Carlo samples Section 2.2.2.

If the evaluation of lψ is intractable because the dataset size N is too large, an unbiased

minibatch approximation l̂ψ can be used instead. This is called stochastic VI.

An alternative to BBVI is the Reparametrized VI, where we assume lψ(θ) is a dif-

ferentiable function of θ, and sampling θ ∼ qψ(θ) is equivalent to sampling ϵ ∼ q0(ϵ) and

57

applying a deterministic mapping z = r(ψ, ϵ). In such settings, the gradient of the ELBO

can be evaluated by pushing the gradient operator inside the expectation (over ϵ). This is

common in training VAEs (Kingma and Welling, 2014a; Rezende et al., 2014b), introduced

in Section 2.1.4.

Automatic Differentiation VI, or ADVI, takes away the burden of specifying the

variational family qψ, by considering inherently expressive variational families, such as nor-

malizing flows posteriors Section 2.1.4, or hierarchical posteriors, and directly estimating

the gradients with respect to the underlying parameters. Hierarchical posteriors use auxiliary

latent variables a such that qψ(θ | D,a) is conditionally factorized, but when we marginal-

ize out a, we induce dependencies between the elements of θ. This is called hierarchical

variational inference, and will be expanded upon in Chapter 3.

2.2.2. Sampling as a stochastic approximation

Although variational inference techniques do not suffer from the curse of dimensionality,

a specific form of the variational family Q might lead to a biased posterior approximation.

An alternative is to resort to a non-parametric approximation of the form:

q(θ) =
1

K

K∑

k=1

¶θk
, (2.77)

where θk ∼ p(θ | D) for k ∈ J1, KK. This is called a Monte Carlo approximation.

With such an approximation, it is possible to approximate the posterior predictive (2.26)

as:

p(y | x,D) ≈ 1

K

K∑

k=1

p(y | x,θk), (2.78)

and still obtain uncertainty estimates.

The key issue is how to create samples from the posterior p(θ | D) without having to

evaluate the evidence p(D) 13. The remainder of this section will present some of the standard

techniques.

There are other reasons, beyond Bayesian posterior approximation, one might care about

sampling from a probability distribution

p(θ) =
R(θ)

Z
(2.79)

with unknown partition Z =
∫

R(θ)dθ. For instance, we might want to sample objects θ

from a large search space Θ proportionally to a given positive score or reward R(θ). This is

in contrast to the RL problem, which cares about finding a reward function’s mode without

13. If θ is a high-dimensional object, then even the knowledge of p(D) does not entail straightforward

sampling schemes.

58

incentivizing the generated modes’ diversity. This prompted research on generative flow

networks, which we will delve into in Chapter 3.

Rejection sampling (Neumann, 1951; Good, 1960) is a simple method for sampling

from unnormalized distributions (2.79). It requires a proposal distribution q(θ) that satisfies

∀θ ∈ Θ, Cq(θ) g R(θ) for some constant C, from which it is easy to sample and evaluate

the probability mass or density q(θ). The difficulty lies in finding such a distribution q, with

a small enough constant C. Adaptive rejection sampling (Gilks and Wild, 1992) adaptively

builds such a distribution. A fundamental weakness of such methods, however, is the curse

of dimensionality, making them useless for high-dimensional target distributions, such as

learning the posterior over the parameters of a neural network.

Annealed importance sampling (Neal, 2001a) is an alternative sampling scheme for

high dimensional distributions. It requires building a sequence of distributions pj(θ) for

j ∈ J0, nK, such that hence p0 = p, and pn = Rn

Zn
is easy to sample from, and such that, for

every j ∈ J0, nK, pj ∝ Rj where:

Rj(θ) = R(θ)´j Rn(θ)1−´j , (2.80)

where 0 = ´n < · · · < ´0 = 1. The technique relies on sampling iteratively from pn, pn−1, . . .

until we eventually sample from p0 = p. Sampling from each fj requires the specification of

a Markov chain kernel pj(x
′ | x) that leaves p0 invariant, i.e.,

∫

pj(x
′ | x)p0(x)dx = p0(x

′). (2.81)

Markov Chain Monte Carlo (MCMC, Metropolis et al., 1953; Hastings, 1970; Geman

and Geman, 1984; Gelfand and Smith, 1990) is a popular method for sampling from high-

dimensional distributions using Markov chains. It hinges on building a Markov chain on the

sample space Θ whose stationary distribution is the target distribution p(θ). The simplest

MCMC algorithm is the Metropolis Hastings (MH) algorithm. It relies on a kernel

q(θ′ | θ) and builds a chain by moving from the current state θ to a new state θ′ with

probability q(θ′ | θ). The new state θ′ is accepted with probability

A = min

(

1,
p(θ′)q(θ | θ′)

p(θ)q(θ′ | θ)

)

, (2.82)

and if rejected, θ′ is set to θ. Note that the ratio in (2.82) only requires the knowledge

of R. As the chain grows, the samples θ approach those that would come from the target

distribution p. The initial samples, however, should be discarded. The number of time steps

required to reach the target distribution is called the mixing time or the burn-in time,

and ideally, one would choose the kernel q that leads to the lowest possible mixing time.

MCMC-based methods have already found some amount of success with learned deep neural

networks used to drive sampling (Grathwohl et al., 2021; Dai et al., 2020; Xie et al., 2021;

59

Nash and Durkan, 2019; Seff et al., 2019). More details about MCMC, and some extensions

are provided in Barbu et al. (2020); Lao et al. (2020); Andrieu and Thoms (2008); Neal

(2003); Neal et al. (2011); Betancourt (2017); Welling and Teh (2011); Zhang et al. (2020);

Vadera et al. (2020a). Some drawbacks of MCMC methods are discussed in Section 3.5.

2.2.3. Dropout and Deep Ensembles

Deep neural networks Section 2.1.6 can represent many functions that fit the training

data well but generalize differently. This phenomenon is usually called the underspecifi-

cation of neural networks (D’Amour et al., 2022). Bayesian deep learning, which revolves

around learning the posterior over the parameters θ of a neural network, tackles the under-

specification problem by considering all possible models together. However, Bayesian deep

learning is naturally intractable, and besides the approximate Bayesian inference techniques

presented thus far, there are approximate inference schemes specific to neural networks. We

will discuss two of them in the remainder of this section.

Monte Carlo dropout (MC-Dropout) (Gal and Ghahramani, 2016a; Kendall and

Gal, 2017) is a simple method for approximating the posterior predictive (2.26). It hinges on

adding dropout layers to both the training procedure, but also at inference time (i.e., when

doing forward passes in the network): each hidden unit in the neural network is “turned

off” by sampling from a Bernoulli distribution (Appendix A.1.1) with probability r. By

repeating the procedure K times, we obtain K models with weights θ1, . . . ,θK , in which the

proportion of zeros is close to r. The posterior predictive is thus approximated with:

p̃(y | x,D) =
1

K

K∑

k=1

p(y | x,θk). (2.83)

Another simple approximation is to only be Bayesian about the weights in the final

layer and use MAP estimates for other layers. This technique is called the neural-linear

approximation (Riquelme et al., 2018) and has been shown to provide reasonable uncertainty

estimates in Kristiadi et al. (2020).

Deep ensembles is an approximation scheme that trains multiple models, differing in

terms of their random seed used for initialization (Lakshminarayanan et al., 2017a), or hy-

perparameters (Wenzel et al., 2020), or architecture (Zaidi et al., 2021), or by using different

subsets of D to train each member of the ensemble, leading to MLE or MAP parameters θk

for k ∈ J1, KK. The posterior is thus approximated with the following:

p̃(θ | D) =
1

K

K∑

k=1

¶θk
. (2.84)

60

Chapter 3

On generative flow networks

This chapter is based on the two following papers:

— Bengio et al. (2023): “GFlowNet Foundations“ - Yoshua Bengio∗, Salem Lahlou∗,

Tristan Deleu∗, Edward J. Hu, Mo Tiwari, Emmanuel Bengio, published in 2023 in

the Journal of Machine Learning Research (JMLR).

— Malkin et al. (2023): “GFlowNets and variational inference” - Nikolay Malkin∗, Salem

Lahlou∗, Tristan Deleu∗, Xu Ji, Edward J Hu, Katie E Everett, Dinghuai Zhang,

Yoshua Bengio, published in 2023 in the proceedings of the International Conference

on Learning Representations (ICLR).

Sections 3.1 to 3.4 are shortened versions of Sections 1 to 4 of Bengio et al. (2023), with a

focus on the contributions of the author of this thesis to the paper, to avoid repetitions of

the content discussed in Chapter 2 and to improve the reading flow. Section 3.2.7, however

is novel and unpublished. Section 3.4.4, on the other hand, is loosely based on Appendix

B of the preprint version of Bengio et al. (2023). Section 3.5, which discusses related work,

merges content from Sections 3.1, 4.6 and 7 of Bengio et al. (2023). Section 3.6 is based

on Sections 1 and 3 of Malkin et al. (2023). Section 3.7 merges content from Section 3 and

Appendices A and C of Malkin et al. (2023). Finally, Section 3.8 is a mix of Section 4 and

Appendix D of Malkin et al. (2023).

3.1. Introduction

Building upon the introduction of Generative Flow Networks (GFlowNets) by Bengio

et al. (2021), we provide here an in-depth formal foundation and expansion of the set of

theoretical results in ways that may be of interest for the active learning scenario of Bengio

et al. (2021) but also much more broadly. We also relate generative flow networks to hier-

archical variational inference and highlight some critical differences that make GFlowNets

more appealing in many scenarios.

GFlowNets tackle the problem of sampling from a space X , given an energy function E ,

or an unnormalized probability mass function, also called the reward function R, such that

the objects X can be constructed sequentially by combining multiple primitive blocks, that

share some structure. Examples of such objects are graphs, whose primitive blocks are the

nodes and edges. A sequential graph creation process step is depicted in Figure 3.1. Other

examples include molecules, DNA sequences, and arbitrary sets of objects.

The key property of GFlowNets is that their sampling policy is trained to make the

probability P¦(x) of sampling an object x ∈ X approximately proportional to the value

R(x) of the given reward function applied to that object.

This conversion of an energy function or unnormalized probability function to a sampler

is similar to what MCMC methods (Section 2.2.2) achieve. Still, once trained, GFlowNets

will generate a sample in one shot instead of generating a long sequence of samples whose

distribution would gradually approach the desired one. GFlowNets thus avoid the lengthy

stochastic search in the space of such objects and the associated mode-mixing intractability

challenge of MCMC methods (Jasra et al., 2005; Bengio et al., 2013; Pompe et al., 2020).

Multiple independent and identically distributed samples can be obtained from the GFlowNet

by calling the sampler several times. GFlowNets exchange that intractability of sampling

with MCMC for the challenge of amortized training of the generative policy, which will be

expanded upon in Section 3.5. The latter problem would be equally intractable if the modes

of the reward function did not have an inherent (but not necessarily known) structure over

which the learner could generalize, i.e., the learner had almost no chance to correctly guess

where to find new modes based on (i.e., training on) those it had already visited.

The energy function or reward function (exponential of minus energy) is evaluated only

at the end of the sequential construction process for objects x, in what we call a terminating

state. Every such constructive sequence starts in the single initial state s0 and ends in a

terminating state. As illustrated in Figure 3.2, we can visualize the set of all trajectories

starting from s0 and ending in a terminal state s. The term “flow” in “generative flow

network” refers to unnormalized probabilities that GFlowNet learning procedures can learn.

The flow in an intermediate state s is a weighted sum of the non-negative rewards of the

terminating states reachable from s. Those weights are such as to avoid double-counting: if

we were to inject a fixed flow of liquid in s0 and dispatch that liquid in each child of any state

s proportionally to the GFlowNet policy for choosing a child of s, we would obtain the flow

at each state, and the flow at terminating states would match the reward function at those

states. As shown in greater detail here and for the first time in the first GFlowNet paper

(Bengio et al., 2021), this can be achieved with a flow constraint at each state: the sum of

incoming flows must match the sum of outgoing flows. This constraint will be explained and

justified later on in this chapter.

62

asdf

st = 1

2

3

GFlowNet PF π(A|st)
draw at ∼ π(A|st)

at = “Add a new node
connected to node 2”

T (st, at) determines st+1

st+1 = 1

2

3

4 GFlowNet PF π(A|st+1)
draw at+1 ∼ π(A|st+1)

at+1 = “. . . ”

Figure 3.1 – A diagram of how a GFlowNet iteratively constructs an object. We adopt
a notation that is common in the reinforcement learning literature: st represents the state
of the partially constructed object (in this case, a graph) at time t, at represents the action
taken by the GFlowNet at time t to transition to state st+1 = T (st, at). In this diagram, the
GFlowNet takes a 3-node graph as input and determines an action. The action, combined
with the environment transition function T (st, at), determines st+1: a four-node graph. This
process repeats until an exit action is sampled and the sample is complete.

Amortized probabilistic inference is an interesting application of GFlowNets: if the re-

ward function is set to be a prior over some random variable p(θ), multiplied by a likelihood

p(D | θ) that tells how well the dataset D is fit given θ, then the GFlowNet policy learns to

sample from the corresponding Bayesian posterior p(θ | D) 1.

The remainder of this chapter is structured into the following sections:

— In Section 3.2, we start with some essential elements of graph theory, from which

we define the notions of flows and flow networks. A particular class of flows called

Markovian flows is highlighted. We derive the conditions a network needs to satisfy

to become a flow network, from which a sampler can be defined. These conditions

correspond to the flow-matching conditions, initially described in Bengio et al. (2021),

but also to the novel set of constraints called the detailed balance conditions. We

provide a dynamic programming-based algorithm to find the edge flows given a reward

function.

— In Section 3.3, we formalize GFlowNets as mathematical objects and relate them

to flow networks. The constraints presented in Section 3.2 are turned into training

losses that make the GFlowNets correct samplers if minimized.

— In Section 3.4, we extend flow networks and GFlowNets to conditional ones, which

enable the estimation of intractable sums corresponding to marginalization over many

1. This is a direct consequence of Bayes’ rule (2.1).

63

s0 s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

F
(s

0

→

s
2)

sf

sf sf

sf

sf

sf

s0 s1

s2

s3

s4

s5

s6

s7

s8

s9

s10

sf

sf sf

sf

sf

sf

R(s9)

R(s4)

Terminating state

s ∈ Sf

Initial state

Terminal

state

Figure 3.2 – Illustration of the structure of a Generative Flow Network (GFlowNet), as a
pointed DAG (defined more formally in Section 3.2.1) over states s, with particles flowing
along edges to represent the flow function. Any object sampled by the GFlowNet policy
can be obtained by starting from the initial state s0 and then, at each step, choosing a
child with probability proportional to the GFlowNet policy’s transition probability. This
process stops when a terminating action is chosen from a terminating state x (yielding the
terminal state sf , also called the sink state, and also denoted §), at which point a reward
R(x) is obtained. The figure shows a tiny GFlowNet and the possible trajectories from s0

to any terminal state. It illustrates that, in general, a state can be reached through several
trajectories. GFlowNet algorithms learn a policy such that the probability of sampling
terminating state x is proportional to R(x). It can e.g., learn a flow function s 7→ F (s)
and (s → s′) 7→ F (s → s′) over all states (including intermediate states) s and transitions
s → s′, with F (x → sf) = R(x) at terminating states, and F (s0) being the sum of rewards
over all terminal states. A sufficient property to achieve this is that the sum of incoming
flows at each state equals the sum of outgoing flows (Section 3.2.5).

steps of object construction. Conditional GFlowNets can also be used to compute

free energies over different types of joint distributions.

— We discuss related work in Section 3.5, including MCMC, generative models, and

interactive learning.

— In Section 3.6, we discuss how hierarchical variational methods can efficiently define

samplers in compositional spaces and contrast them to GFlowNets.

— In Section 3.7, we delve into the theoretical connection between hierarchical varia-

tional models and GFlowNets, highlighting some key differences and advantages of

GFlowNets.

— In Section 3.8, we show some experiments that empirically demonstrate that in many

interesting settings, GFlowNets lead to more accurate approximate samplers than

their variational counterpart.

3.2. Flow Networks and Markovian Flows

All lemmas, propositions and corollaries of this section are proved in Appen-

dix D.2.

64

3.2.1. Some elements of graph theory

In this section, we recall some basic definitions and properties of graphs, which are the

basis of flow networks and GFlowNets.

Definition 3.2.1 (Directed acyclic graphs and Trajectories). A directed graph is a

tuple G = (S,A), where S is a finite set of states, and A is a subset of S×S representing

directed edges. Elements of A are denoted s→s′ and called edges or transitions.

A trajectory in such a graph is a sequence Ä = (s1, . . . , sn) of elements of S such that

every transition st→st+1 ∈ A and n > 1.

A directed acyclic graph (DAG) is a directed graph in which there is no trajectory

Ä = (s1, . . . , sn) satisfying sn = s1.

For a trajectory Ä , we denote s ∈ Ä to mean that s is in the trajectory Ä , i.e., ∃t ∈
{1, . . . , n} st = s, and similarly s→s′ ∈ Ä to mean that ∃t ∈ {1, . . . , n− 1} st = s, st+1 = s′.

We also use the notation Ä = s1 → · · · → sn for convenience. The length of a trajectory is

the number of edges in it (the length of Ä = (s1, . . . , sn) is thus n− 1).

Given a DAG G = (S,A), and two states s, s′ ∈ S, if there exists a trajectory in G

starting in s and ending in s′, then we write s < s′. The binary relationship “<” defines a

strict partial order (i.e., it is irreflexive, asymmetric and transitive). We write s f s′ if

s < s′ or s = s′. The binary relation “f” is a (non-strict) partial order (i.e., it is reflexive,

antisymmetric and transitive).

Definition 3.2.2 (Parent and child sets). Given a DAG G = (S,A), the parent set

of a state s ∈ S, which we denote Par(s), contains all of the direct parents of s in G,

i.e., Par(s) = {s′ ∈ S : s′→s ∈ A}; similarly, the child set Child(s) contains all of

the direct children of s in G, i.e., Child(s) = {s′ ∈ S : s→s′ ∈ A}.

Definition 3.2.3 (Pointed DAGs). Given a DAG G = (S,A). G is called a pointed

DAG if there exist two states s0, sf ∈ S that satisfy:

∀s ∈ S \ {s0} s0 < s and ∀s ∈ S \ {sf} s < sf . (3.1)

s0 is called the source state or initial state. sf is called the sink state or final

state. These two states are unique because “<” is a strict partial order.

A complete trajectory in such a DAG is any trajectory starting in s0 and ending in

sf . We denote such a trajectory as Ä = (s0, s1, . . . , sn, sn+1 = sf) or Ä = s0 → s1 . . .→
sn → sn+1 = sf .

65

We denote by T the set of all complete trajectories in G, and by T partial the set of (possibly

incomplete) trajectories in G. For any state s ∈ S \ {sf}, we denote by Ts,f ¦ T partial the

set of trajectories in G starting in s and ending in sf ; and for any state s ∈ S \ {s0}, we

denote by T0,s ¦ T partial the set of trajectories in G starting in s0 and ending in s.

A state s ∈ S is called a terminating state if it is a parent of the sink state, i.e.,

s→ sf ∈ A. The transition s→ sf is called a terminating edge. We denote by:

— A
−f = {s→ s′ ∈ A, s′ ̸= sf}, the set of non-terminating edges in G,

— A
f = {s→ s′ ∈ A, s′ = sf} = A \ A−f , the set of terminating edges in G,

— Sf = {s ∈ S, s→ sf ∈ A
f} = Par(sf), the set of terminating states in G.

In Figure 3.3, we visualize the concepts introduced in the previous definitions.

s0

s1

s2

s3

s4

s5

s6

s7

sf

s0 Initial state

sf Sink state

Terminating state (Sf)

Terminating edge (Af)

Non-terminating edge (A−f)

Figure 3.3 – Example of a pointed DAG G illustrating the notions of initial state (s0),
final or sink state (sf), terminating states in Sf , with a transition to sf called a terminating
edge, in A

f . A terminating state may have other children different from the sink state (e.g.,
the terminating state s7).

Note that the constraint of a single source state and single sink state is only a mathemat-

ical convenience since a bijection exists between general DAGs and those with this constraint

(by adding a unique source/sink state connected to all the other source/sink states).

Definition 3.2.4 (Probability functions consistent with a DAG). Let G be a pointed

DAG with source state s0 and sink state sf . A forward (resp. backward)

probability function consistent with G is any non-negative function P̂F (resp.

P̂B) defined on A that satisfies ∀s ∈ S \ {sf},
∑

s′∈Child(s) P̂F (s′ | s) = 1 (resp.

∀s ∈ S \ {s0},
∑

s′∈P ar(s) P̂B(s′ | s) = 1).

With pointed DAGs, consistent forward and backward probability functions, which are

probabilities over states, can be used to define probabilities over trajectories, i.e., probability

measures on some subsets of T partial. The following lemma shows how to construct such

factorized probability measures:

66

Lemma 3.2.5 (Probabilities over partial trajectories). Let G = (S,A) be a pointed

DAG, and consider a forward probability function P̂F , and a backward probability func-

tion P̂B both consistent with G.

Consider the extensions of P̂F and P̂B on T partial defined by:

∀Ä(s1, . . . , sn) ∈ T partial P̂F (Ä) :=
n−1
∏

t=1

P̂F (st+1 | st) (3.2)

∀Ä = (s1, . . . , sn) ∈ T partial P̂B(Ä) :=
n−1
∏

t=1

P̂B(st | st+1) (3.3)

We have the following:

∀s ∈ S \ {sf}
∑

Ä∈Ts,f

P̂F (Ä) = 1 (3.4)

∀s′ ∈ S \ {s0}
∑

Ä∈T0,s′

P̂B(Ä) = 1 (3.5)

3.2.2. Trajectories and Flows

We augment pointed DAGs with a function F called a flow. An analogy which helps to

picture flows is a stream of particles flowing through a network where each particle starts at

s0 and flows through some trajectory terminating in sf . The flow F (Ä) associated with each

complete trajectory Ä contains the number of particles sharing the same path Ä .

Definition 3.2.6 (Flows and flow networks). Given a pointed DAG, a trajectory

flow (or “flow”) is any non-negative function F : T 7→ R
+ defined on the set of

complete trajectories T . F induces a measure over the Ã-algebra Σ = 2T , the power

set on the set of complete trajectories T . In particular, for every subset A ¦ T , we

have

F (A) =
∑

Ä∈A

F (Ä). (3.6)

The pair (G, F) is called a flow network.

This definition ensures that (T , 2T , F) is a measure space. We abuse the notation here,

using F to denote both a function of complete trajectories, and its corresponding measure

over (T , 2T). A special case is when the event A is the singleton trajectory {Ä}, where we

just write its measure as F (Ä). We also abuse the notation to define the flow through either

a particular state s or through a particular edge s→s′ in the following way.

67

Definition 3.2.7 (State flows and edge flows). The flow through a state (or state

flow) F : S 7→ R
+ corresponds to the measure of the set of complete trajectories going

through a particular state:

F (s) := F ({Ä ∈ T : s ∈ Ä}) =
∑

Ä∈T : s∈Ä

F (Ä). (3.7)

Similarly, the flow through an edge (or edge flow) F : A 7→ R
+ corresponds to the

measure of the set of complete trajectories going through a particular edge:

F (s→s′) := F ({Ä ∈ T : s→s′ ∈ Ä}) =
∑

Ä∈T : s→s′∈Ä

F (Ä). (3.8)

Note that with this definition, we have F (s→s′) = 0 if s→s′ /∈ A is not an edge in the

pointed DAG (since F (∅) = 0). We call the flow of a terminating transition F (s→sf) a

terminating flow. The following proposition relates the state flows and the edge flows:

Proposition 3.2.8. Given a flow network (G, F). The state flows and edge flows

satisfy:

∀s ∈ S \ {sf} F (s) =
∑

s′∈Child(s)

F (s→ s′) (3.9)

∀s′ ∈ S \ {s0} F (s′) =
∑

s∈P ar(s′)

F (s→ s′) (3.10)

3.2.3. Flow Induced Probability Measures

Definition 3.2.9 (Total flow). Given a flow network (G, F), the total flow Z is the

measure of the whole set T , corresponding to the sum of the flows of all the complete

trajectories:

Z := F (T) =
∑

Ä∈T
F (Ä). (3.11)

Proposition 3.2.10. The flow through the initial state equals the flow through the

final state equals the total flow Z.

Intuitively, Proposition 3.2.10 justifies the use of the term “flow”, introduced by Bengio

et al. (2021), by analogy with a stream of particles flowing from the initial state to the final

states.

68

We use the letter Z in Definition 3.2.9, often used to denote the partition function in

probabilistic models and statistical mechanics, because it is a normalizing constant which

can turn the measure space (T , 2T , F) defined above into the probability space (T , 2T , P):

Definition 3.2.11 (Flow probability). Given a flow network (G, F), the flow proba-

bility is the probability measure P over the measurable space (T , 2T) associated with

F :

∀A ¦ T P (A) :=
F (A)

F (T)
=

F (A)

Z
. (3.12)

For two events A, B ¦ T , the conditional probability P (A | B) thus satisfies:

P (A | B) :=
F (A∩B)

F (B)
. (3.13)

Similar to the flow F , we abuse the notation P to define the probability of going through

a state:

∀s ∈ S P (s) :=
F (s)

Z
, (3.14)

and similarly for the probability of going through an edge. Note that P (s) does not corre-

spond to a distribution over states, in the sense that
∑

s∈S P (s) ̸= 1; in particular, it is easy

to see that P (s0) = 1 (in other words, the probability of a trajectory passing through the

initial state s0 is 1). Additionally, for a trajectory Ä ∈ T , we also use the abuse of notation

P (Ä) instead of P ({Ä}) to denote the probability of going through a specific trajectory Ä .

Definition 3.2.12 (Transition probabilities). Given a flow network (G, F), the for-

ward transition probability operator PF is a function on S × S, that is a special

case of the conditional probabilities induced by F ((3.13)):

∀s→ s′ ∈ A PF (s′ | s) := P (s→s′ | s) =
F (s→s′)

F (s)
. (3.15)

Similarly, the backwards transition probability is the operator defined by:

∀s→ s′ ∈ A PB(s | s′) := P (s→s′ | s′) =
F (s→s′)

F (s′)
. (3.16)

Note how PF and PB are consistent with G (in the sense of Definition 3.2.4), as a

consequence of Proposition 3.2.8.

Because flows define probabilities over states and edges, they can be used to define

probability distributions over the terminating states of a graph (denoted by Sf = Par(sf)) 2

as follows:

2. The set Sf is also denoted by X throughout this chapter.

69

Definition 3.2.13 (Terminating state probability). Given a flow network (G, F), the

terminating state probability P¦ is the probability over terminating states Sf

under the flow probability P :

∀s ∈ Sf P¦(s) := P (s→ sf) =
F (s→ sf)

Z
(3.17)

Contrary to the probability P (s) of going through a state s, the terminating state prob-

ability P¦ is a well-defined distribution over the terminating states s ∈ Sf , in the following

sense:

Proposition 3.2.14. The terminating state probability P¦ is a well-defined distribu-

tion over the terminating states s ∈ Sf , in that P¦(s) g 0 for all s ∈ Sf , and
∑

s∈Sf

P¦(s) = 1. (3.18)

The terminating state probability is particularly important in the context of estimating

flow networks (see Section 3.3), as it shows that a flow network (G, F) induces a probability

distribution over terminating states which is proportional to the terminating flows F (s→ sf),

the normalization constant Z being given by initial flow F (s0).

3.2.4. Markovian Flows

Defining a flow requires the specification of |T | non-negative values (one for every trajec-

tory Ä ∈ T), which is generally exponential in the number of graph edges. Markovian flows,

however have the remarkable property that they can be defined with much fewer “numbers”,

given that trajectory flows factorize according to G.

Definition 3.2.15 (Markovian flows). Let (G, F) be a flow network, with flow proba-

bility measure P . F is called a Markovian flow (or equivalently (G, F) a Markovian

flow network) if, for any state s ̸= s0, outgoing edge s→s′, and for any trajectory

Ä = (s0, s1, . . . , sn = s) ∈ T partial starting in s0 and ending in s:

P (s→s′ | Ä) = P (s→s′ | s) = PF (s′ | s). (3.19)

Note that the Markovian property does not hold for all of the flows as defined in the

previous sections (e.g., Figure 3.5). Intuitively, a flow can be considered non-Markovian if

a particle in the “flow stream” can remember its past history; if not, its future behaviour

can only depend on its current state and the flow must be Markovian. In this work, we will

primarily be concerned with Markovian flows, though later we will re-introduce a form of

70

memory via state-conditional flows that allow each flow “particle” to remember parts of its

history. The following proposition shows that Markovian flows have the property that the

flows at (or the probabilities of) complete trajectories factorize according to the graph, and

that it is a sufficient condition for defining Markovian flows.

Proposition 3.2.16. Let (G, F) be a flow network, and P is the corresponding flow

probability. The following three statements are equivalent:

(1) F is a Markovian flow

(2) There exists a unique probability function P̂F consistent with G such that for

all complete trajectories Ä = (s0, . . . , sn+1 = sf):

P (Ä) =
n+1
∏

t=1

P̂F (st | st−1). (3.20)

Moreover, the probability function P̂F is exactly the forward transition proba-

bility associated with the flow probability P : P̂F = PF .

(3) There exists a unique probability function P̂B consistent with G such that for

all complete trajectories Ä = (s0, . . . , sn+1 = sf):

P (Ä) =
n+1
∏

t=1

P̂B(st−1 | st). (3.21)

Moreover, the probability function P̂B is exactly the backwards transition prob-

ability associated with the flow probability P : P̂B = PB.

The decomposition of (3.20) shows how Markovian flows can be used to draw terminating

states from the terminating state probability P¦ ((3.17)). Namely, we have the following

result:

Corollary 3.2.17. Let (G, F) be a Markovian flow network, and PF the correspond-

ing forward transition probability. Consider the procedure starting from s = s0, and

iteratively drawing one sample from PF (. | s) until reaching sf . Then the probability

of the procedure terminating in a state s is P¦(s).

The following proposition shows that, as a consequence of the Proposition 3.2.16, we

obtain three different parameterizations of Markovian flows.

71

Proposition 3.2.18. Given a pointed DAG G = (S,A), a Markovian flow on G is

completely and uniquely specified by one of the following:

(1) the combination of the total flow Ẑ and the forward transition probabilities

P̂F (s′ | s) for all edges s→ s′ ∈ A,

(2) the combination of the total flow Ẑ and the backward transition probabilities

P̂B(s | s′) for all edges s→ s′ ∈ A.

(3) the combination of the terminating flows F̂ (s→sf) for all terminating edges

s → sf ∈ A
f and the backwards transition probabilities P̂B(s | s′) for all non-

terminating edges s→ s′ ∈ A
−f ,

3.2.5. Flow-matching Conditions

In Proposition 3.2.18, we saw how forward and backward probability functions can be

used to define a Markovian flow uniquely. We will show in the next proposition how non-

negative functions of states and edges can be used to define a Markovian flow. Such functions

cannot be unconstrained (as P̂F and Ẑ in Proposition 3.2.18 e.g.), as we have seen in Propo-

sition 3.2.8.

Proposition 3.2.19. Let G = (S,A) be a pointed DAG. Consider a non-negative

function F̂ taking as input either a state s ∈ S or a transition s→s′ ∈ A. Then F̂

corresponds to a flow if and only if the flow-matching conditions:

∀s′ > s0, F̂ (s′) =
∑

s∈P ar(s′)

F̂ (s→s′)

∀s′ < sf , F̂ (s′) =
∑

s′′∈Child(s′)

F̂ (s′→s′′) (3.22)

are satisfied. More specifically, F̂ uniquely defines a Markovian flow F matching F̂ on

states and transitions:

∀Ä = (s0, . . . , sn+1 = sf) ∈ T F (Ä) =

∏n+1
t=1 F̂ (st−1→st)
∏n

t=1 F̂ (st)
. (3.23)

Note how (3.22) can be used to recursively define the flow in all the states if Z is given

and either the forward or the backwards transition probabilities are given. Either way,

we would start from the flow at one of the extreme states s0 or sf and then distribute it

recursively through the directed acyclic graph of the flow network, either going forward or

going backward. A setting of particular interest that will be central in Section 3.3, is when we

72

are given all the terminal flows F (s→sf), and we would like to deduce a state flow function

F (s) and a forward transition probability function PF (s′ | s) for the rest of the flow network.

Next, we will see how to parameterize Markovian flows using forward and backward prob-

ability functions consistent with the DAG. Interestingly, the resulting condition is analogous

to the detailed balance condition of Monte-Carlo Markov chains.

Definition 3.2.20 (Compatible transition probability functions). Given a pointed

DAG G = (S,A), a forward transition probability function P̂F and a backward tran-

sition probability function P̂B consistent with G, P̂F and P̂B are compatible if there

exists an edge flow function F̂ : A→ R
+ such that

∀s→ s′ ∈ A P̂F (s′ | s) =
F̂ (s→s′)

∑

s′∈Child(s) F̂ (s→s′)
, P̂B(s | s′) =

F̂ (s→s′)
∑

s′′∈P ar(s′) F̂ (s′′→s′)

(3.24)

Proposition 3.2.21. Let G = (S,A) be a pointed DAG. Consider a non-negative

function F̂ over states, a forward transition probability function P̂F and a backwards

transition probability function P̂B consistent with G. Then, F̂ , P̂B, and P̂F jointly

correspond to a flow if and only if the detailed balance conditions holds:

∀s→s′ ∈ A F̂ (s)P̂F (s′ | s) = F̂ (s′)P̂B(s | s′). (3.25)

More specifically, F̂ , P̂F , and P̂B uniquely define a Markovian flow F matching F̂ on

states, and with transition probabilities matching P̂F and P̂B. Furthermore, when this

condition is satisfied, the forward and backward transition probability functions P̂F and

P̂B are compatible.

At first glance, it may seem that when P̂B is unconstrained, the detailed balance condition

can trivially be achieved by setting

∀s→ s′ ∈ A P̂B(s | s′) =
P̂F (s′ | s)F̂ (s)

F̂ (s′)
(3.26)

However, because we also have the constraint
∑

s∈P ar(s′) P̂B(s | s′) = 1, then (3.26) can only

be satisfied if the flows are consistent with the forward transition:
∑

s∈P ar(s′)

P̂F (s′ | s)F̂ (s) = F̂ (s′).

3.2.6. Backwards Transitions can be Chosen Freely

Consider the setting in which we are given terminating flows to be matched, i.e., where

the goal is to find a flow function with the right terminating flows. This is the setting

73

introduced in Bengio et al. (2021), and that will be studied in Section 3.2.7 and Section 3.3.

In this case, Proposition 3.2.18 tells us that in order to fully determine the forward transition

probabilities and the state or state-action flows, it is not sufficient in general to specify only

the terminating flows; it is also necessary to specify the backwards transition probabilities

on the edges other than the terminal ones (the latter being given by the terminating flows).

What this means is that the terminating flows do not specify the flow completely, e.g.,

because many different paths can land in the same terminating state. The preference over

such different ways to achieve the same final outcome is specified by the backwards transition

probability PB (except for PB(s | sf) which is a function of the terminating flows and Z).

For example, we may want to give equal weight to all parents of a node s, or we may prefer

shorter paths, which can be achieved if we keep track in the state s of the length of the

shortest path to the node s, or we may let a learner discover a PB that makes learning PF

or F easier.

3.2.7. Solving for the flows

Going back to the flow-matching conditions of Proposition 3.2.19, consider a scenario

where an agent is provided a reward function R : Sf → R
+, and is tasked of finding a

function F̂ : S ∪ A → R
+ that satisfies (3.22). This is equivalent to finding a function

F̂ : A→ R
+ satisfying the following constraints:























∀s′ ∈ S \ {s0, sf},
∑

s∈P ar(s′) F̂ (s→ s′) =
∑

s′′∈Child(s′) F̂ (s′ → s′′),

∀s→ s′ ∈ A, F̂ (s→ s′) g 0,

∀s′ ∈ Sf , F̂ (s′ → sf) = R(s′),

(3.27)

then extending F̂ to S as in (3.22). If such a function F̂ is found, then according to

Propositions 3.2.16 and 3.2.19 and Corollary 3.2.17, a sampler from the terminating state

probability P¦ ∝ R (3.17), using the forward policy P̂F , defined as in (3.24). The sampling

procedure is summarized in Algorithm 1. (3.27) shows that finding the edge flow function

corresponds to solving a linear system of equations with non-negativity constraints.

An illustration of pointed DAG with the solution space to the corresponding system of

constraints (3.27) is provided in Figure 3.4. Incidentally, this example shows that there are

many solutions for the edge flow function, as argued for in Section 3.2.6. This can also be

seen by analyzing (3.27): there are |S|+ |Sf |−2 equality constraints for |A| unknowns. Each

solution F̂ corresponds to a particular choice of the backward probability function PB.

Interestingly, the structure of the pointed DAG implies that the system of constraints

(3.27) can be solved efficiently, using dynamic programming. The process is detailed in

Algorithm 2, with theoretical guarantees summarized in Proposition 3.2.22.

74

Algorithm 1 Sampling terminating states given edge flows

Input: A function F̂ : A → R
+ satisfying (3.27) in a pointed DAG G = (S,A) for a given

reward function R : Sf → R
+.

Output: An object s ∈ Sf , sampled with probability P¦(s) = R(s)
∑

s′∈Sf R(s′)
.

s← s0

s′ ← ∅
while s′ ̸= sf do

Sample s′ ∼ P̂F (. | s), where P̂F (s′ | s) = F̂ (s→s′)
∑

s′′∈Child(s)
F̂ (s→s′′)

if s′ ̸= sf then
s→ s′

end if
end while
Return: s

s0

s1

s2

s3

s4

s5

sf

R(s3)

R(s4)

R(s5)

Figure 3.4 – An example of a pointed DAG with 3 terminating states, with a given reward
function R. There is an infinite number of functions F̂ : A → R

+ satisfying (3.27) for
this pointed DAG. Besides the imposed values on F̂ (s → sf) for s ∈ {s3, s4, s5}, each
x ∈ [0, R(s4)] defines a solution function as: F̂ (s0 → s1) = R(s3) + x, F̂ (s0 → s2) =

R(s5) + R(s4) − x, F̂ (s1 → s4) = x, F̂ (s2 → s4) = R(s4) − x, F̂ (s1 → s3) = R(s3),
F̂ (s2 → s5) = R(s5).

Proposition 3.2.22. Algorithm 2 runs in O(|A|) time, and produces an edge flow

function F̂ that satisfies (3.27).

While Proposition 3.2.22 shows that Algorithm 2 provides an exact flow function for

each given PB in linear time (rather than cubic, for solutions to generic linear systems of

equations), the computational cost O(|A|) might still be restrictive for very large pointed

DAGs. In fact, it is for such large DAGs that finding an edge flow function, or an approx-

imation thereof is interesting for the sampling problem. Therefore, in practice, we resort

75

Algorithm 2 Solving for the edge flow function using dynamic programming

Input: A pointed DAG G = (S,A), a given reward function R : Sf → R
+, and a given

backward probability function s→ s′ ∈ A 7→ PB(s | s′).
Output: A function F̂ : A→ R

+ satisfying (3.27).
Y ← ∅, a set representing states s ∈ S that do not need revisiting.
U ← ∅, a queue of tuples (s, t) ∈ S × R, representing states with all outgoing edge flows
known, and their corresponding state flows.
F̂ ← {s→ s′ : ∅, s→ s′ ∈ A}, a dictionary representing the final edge flow values.
V ← {x : R(x), x ∈ Sf}, a dictionary representing intermediate values of the state flows.
for x ∈ Sf do

if Child(x) = {sf} then
(Enqueue) Add the tuple (x, R(x)) to the queue U .

end if
F̂ (s→ sf)← R(s)

end for
while U ̸= ∅ do

(Dequeue) Pick and remove the first tuple (s′, t) from the queue U .
Y ← Y ∪ {s′}.
for s ∈ Par(s′) do

F̂ (s→ s′)← tPB(s | s′).
if s /∈ V then

V (s)← F̂ (s→ s′).
else

V (s)← V (s) + F̂ (s→ s′).
end if
if Child(s) ¦ Y then

(Enqueue) Add the tuple (s, V (s)) to the queue U .
end if

end for
end while
Return: F̂ .

to approximating the edge flow function only, via function approximators such as neural

networks, trained to minimize a non-negative loss that is zero only when the flow-matching

conditions are satisfied. This is the core idea behind GFlowNets and will be expanded upon

in Section 3.3, and more specifically in Section 3.3.2.

3.2.8. Equivalence Between Flows

In the previous sections, we have seen that Markovian flows have the property that tra-

jectory flows or probabilities factorize according to the DAG, and we have seen different ways

of characterizing Markovian flows. In Section 3.3, we show how to approximate Markovian

flows in order to define probability measures over terminating states. In this section, through

76

an equivalence relation between trajectory flows, we justify the focus on Markovian flows.

Given a pointed DAG G = (S,A), we denote by:

— F(G): the set of flows on G, i.e., the set of functions from T , the set of complete

trajectories in G, to R
+,

— FMarkov(G): the set of flows in F(G) that are Markovian.

Definition 3.2.23 (Equivalent flows). Let G = (S,A) be a pointed DAG, and F1, F2 ∈

F(G) two trajectory flow functions. We say that F1 and F2 are equivalent if they

coincide on edge-flows, i.e.,

∀s→ s′ ∈ A F1(s→ s′) = F2(s→ s′). (3.28)

Figure 3.5 shows four flow functions in a simple pointed DAG that are pairwise equivalent.

s0

s1

s2

s3

sf

Ä F1(Ä) F2(Ä) F3(Ä) F4(Ä)

s0, s2, sf 1 4/5 1 6/5
s0, s1, s2, sf 1 6/5 1 4/5
s0, s2, s3, sf 1 6/5 2 9/5

s0, s1, s2, s3, sf 2 9/5 1 6/5

Figure 3.5 – Equivalent flows and Markovian flows. Flows F1 and F2 are equivalent. F3

and F4 are equivalent, but not equivalent to F1 and F2. F2 and F4 are Markovian. F1 and
F3 are not Markovian. F1, F2, F3 and F4 coincide on the terminating flows, i.e., at s2 → sf

and s3 → sf .

This defines an equivalence relation (i.e., a relation that is reflexive, symmetric, and

transitive). Hence, each flow F belongs to an equivalence class, and the set of flows F(G)

can be partitioned into equivalence classes. Note that if two flows are equivalent, then the

corresponding state flow functions also coincide (as a direct consequence of Proposition 3.2.8).

Proposition 3.2.24. Given a pointed DAG G. If two flow function F1, F2 ∈

FMarkov(G) are equivalent, then they are equal. Additionally, for any flow function

F ′ ∈ F(G), there exists a unique Markovian flow function F ∈ FMarkov(G) such that

F and F ′ are equivalent.

The previous proposition shows that in each equivalence class stands out a particular

flow function, that has a property the other flows in the same equivalence class don’t have:

it is Markovian.

A consequence of this is that, if we care essentially about state and edge flows, instead of

dealing with the full set of flows F(G), it suffices to restrict any flow learning problem to the

77

set of Markovian flows FMarkov(G). The advantage of this restriction is that defining a flow

requires the specification of F (Ä) for all trajectories Ä ∈ T , whereas defining a Markovian

flow requires the specification of F (s → s′) for all edges s → s′ ∈ A, which is generally

exponentially smaller than T (note that the edge flows still need to satisfy the flow-matching

conditions in Proposition 3.2.19). Thus, in order to approximate or learn a flow function

that satisfies some conditions on its edge or state values, it suffices to approximate or learn

a Markovian flow, by learning the edge flow function, which is a much smaller object than

the actual flow function.

3.3. GFlowNets: Learning a Flow

All propositions and corollaries of this section are proved in Appendix D.2.

With the theoretical preliminaries established in Section 3.2, we now consider the general

class of problems introduced by Bengio et al. (2021) where some constraints or preferences

over flows are given. Our goal is to find functions such as the state flow function F (s)

or the transition probability function P (s→s′ | s) that best match these desiderata using

corresponding estimators F̂ (s) and P̂ (s→s′ | s) which may not correspond to a proper flow.

Such learning machines are called Generative Flow Networks (or GFlowNets for short). We

focus on scenarios where we are given a target reward function R : Sf → R
+, and aim at

estimating flows F that satisfy:

∀s ∈ Sf F (s→ sf) = R(s), (3.29)

such that the corresponding sampler, given by Algorithm 1, is with probability masses pro-

portional to the reward R.

We assume that the pointed DAG is too large for Algorithm 2 to be practical, and we

resort to the humbler goal of only approximating the edge flows (or the transition probability

functions).

Because of the equivalences that exist in the set of flows, then without loss of generality,

we choose GFlowNets to approximate Markovian flows only. We are thus interested in the

following set of flows:

FMarkov(G, R) = {F ∈ FMarkov(G), ∀s ∈ Sf F (s→ sf) = R(s)} (3.30)

For now, we informally define a GFlowNet as an estimator of a Markovian flow function

F ∈ FMarkov(G, R). We provide a more formal definition later-on.

With an estimator F̂ of such a Markovian flow F , we can define an approximate forward

transition probability function P̂F , as in Proposition 3.2.16, in order to draw trajectories

Ä ∈ T (the set of complete trajectories in G) by iteratively sampling each state given the

78

previous one, starting at s0 and then with st+1 ∼ P̂F (. | st) until we reach the sink state

sn+1 = sf for some n, as explained in Algorithm 1.

Next, we will clarify how such an estimator can be obtained.

3.3.1. GFlowNets and flow-matching losses

We have seen in Section 3.2.4 and Section 3.2.5 different ways of parameterizing a flow.

For example, with a partition function and forward transition probabilities, or with edge flows

that satisfy the flow-matching conditions. Because there are many ways to parameterize

GFlowNets, we start with an abstract formulation for them, where o ∈ O represents a

parameter configuration (e.g., resulting from or while training of a GFlowNet), Π(o) gives

the corresponding probability measure over trajectories Ä ∈ T , and H maps a Markovian

flow F to its parameterization o. In the following definition, we show what conditions should

be satisfied in order for such a parameterization to be valid.

Definition 3.3.1 (Flow parameterization). Given a pointed DAG G = (S,A), with

an initial and sink states s0 and sf respectively, and a target reward function R : Sf →

R
+, we say that the triplet (O, Π,H) is a flow parameterization of (G, R) if:

(1) O is a non-empty set,

(2) Π is a function mapping each object o ∈ O to an element Π(o) ∈ P(T), the

set of probability distributions on T ,

(3) H is an injective functional from FMarkov(G, R) to O,

(4) For any F ∈ FMarkov(G, R), Π(H(F)) is the probability measure associated

with the flow F (Definition 3.2.11).

To each object o ∈ O, the distribution Π(o) implicitly defines a terminating state

probability measure:

∀s ∈ Sf P¦(s) :=
∑

Ä∈T :s→sf ∈Ä

Π(o)(Ä), (3.31)

where the dependence on o in P¦ is omitted for clarity.

The intuition behind the introduction of (O, Π,H) is that we can define a probability

measure over T for each object o ∈ O, but only some of these objects correspond to a

Markovian flow with the right terminating flows. For such objects o (i.e., those that can

be written as o = H(F) for some flow F ∈ FMarkov(G, R)), the probability measure P¦

corresponds to the distribution of interest, according to Definition 3.2.13, i.e.,

∀s ∈ Sf P¦(s) ∝ R(s). (3.32)

79

GFlowNets thus provide a solution to the generally intractable problem of sampling from a

target reward function R, or its associated energy function:

∀s ∈ Sf E(s) := − log R(s) (3.33)

Directly approximating flows F ∈ FMarkov(G, R) is a hard problem, whereas with some sets

O, searching for an object o ∈ H(FMarkov(G, R)) ¦ O is a simpler problem that can be

tackled with function approximation techniques.

Note that the set O cannot be arbitrary, as there needs to be a way to define an injective

function from FMarkov(G, R) to O. Below, for a given DAG G, we show three examples

clarifying the abstract concept of parameterization:

Example 3.3.2 (Edge-flow parameterization). Consider Oedge = F(A−f ,R+), the set of

functions from A
−f to R

+, and the functionals Hedge : FMarkov(G, R) → Oedge and Πedge :

Oedge → P(T) defined by:

Hedge(F) : (s→ s′) ∈ A
−f 7→ F (s→ s′), (3.34)

∀Ä = (s0, . . . , sn = sf) ∈ T Πedge(F̂)(Ä) ∝
n
∏

t=1

PF̂ (st | st−1), (3.35)

where PF̂ is defined for every s→ s′ ∈ A by:

PF̂ (s′ | s) =















F̂ (s→s′)
∑

s′′∈Child(s)\{sf }
F̂ (s→s′′)+1(sf ∈Child(s))R(s)

if s′ ̸= sf

1(sf ∈Child(s))R(s)
∑

s′′∈Child(s)\{sf }
F̂ (s→s′′)+1(sf ∈Child(s))R(s)

if s′ = sf

(3.36)

The injectivity of Hedge follows directly from Proposition 3.2.24 (two Markovian flows

that coincide on both their terminating and non-terminating edge flow values are equal). And

for any Markovian flow F ∈ FMarkov(G, R), Πedge(Hedge(F)) equals the probability measure

associated with F , as is shown in Proposition 3.2.16.

(Oedge, Πedge,Hedge) is thus a valid flow parameterization of (G, R).

Example 3.3.3 (Forward transition probability parameterization). Consider the set OP F =

O1 × O2, where O1 = F(S \ {sf},R
+) is the set of function from S \ {sf} to R

+ and

O2 is the set of forward probability functions P̂F consistent with G , and the functionals

HP F : FMarkov(G, R)→ OP F and ΠP F : OP F → P(T) defined by:

HP F (F) = (s ∈ S \ {sf} 7→ F (s), (s→ s′) ∈ A 7→ PF (s′ | s)) , (3.37)

∀Ä = (s0, . . . , sn = sf) ∈ T ΠP F (F̂ , P̂F)(Ä) ∝
n
∏

t=1

P̂F (st | st−1), (3.38)

where PF is the forward transition probability function associated with F ((3.15)). To verify

that HP F is injective, consider F1, F2 ∈ FMarkov(G, R) such that HP F (F1) = HP F (F2). It

80

means that ∀s ∈ Sf , F1(s) = F2(s), and ∀s → s′ ∈ A, F1(s→s′)
F1(s)

= F2(s→s′)
F2(s)

. It follows that

∀s → s′ ∈ A, F1(s → s′) = F2(s → s′). Which, according to Proposition 3.2.24, means

that F1 = F2. And for any Markovian flow F ∈ FMarkov(G, R), ΠP F (HP F (F)) equals the

probability measure associated with F , as is shown in Proposition 3.2.16.

(OP F , ΠP F ,HP F) is thus a valid flow parameterization of (G, R).

Example 3.3.4 (Transition probabilities parameterization). Similar to Example 3.3.3, we

can parameterize a Markovian flow using the state-flow function and both its forward and

backward transition probabilities, i.e., with OP F B = OP F ×O3, HP F B, and ΠP F B defined as:

HP F B(F) =
(

HP F (F), (s→ s′) ∈ A
−f 7→ PB(s | s′),

)

, (3.39)

∀Ä = (s0, . . . , sn = sf) ∈ T ΠP F B(F̂ , P̂F , P̂B)(Ä) ∝
n
∏

t=1

P̂F (st | st−1), (3.40)

where PB is the function defined by (3.16). and O3 is the set of backward probability functions

P̂B consistent with G. The injectivity of HP F B is a direct consequence of that of HP F . And

for any Markovian flow F , ΠP F B(HP F B(F)) equals the probability measure associated with

F , as is shown in Prop.3.

(OP F B, ΠP F B,HP F B) is thus a valid flow parameterization of (G, R).

We now have all the ingredients to formally define a GFlowNet:

Definition 3.3.5 (GFlowNets). A GFlowNet is a tuple (G, R,O, Π,H), where:

— G = (S,A) is a pointed DAG with initial state s0 and sink state sf ,

— R : Sf → R
+ a target reward function,

— (O, Π,H) a flow parameterization of (G, R).

Each object o ∈ O is called a GFlowNet configuration. When it is clear from con-

text, we will use the term GFlowNet to refer to both (G, R,O, Π,H) and a particular

configuration o; similar to how the term “Neural Network” refers to both the class of

functions that can be represented with a particular architecture, and to a particular

element of that class or weight configuration.

If o ∈ H(FMarkov(G, R)), then the corresponding terminating state probability measure

((3.31)) is proportional to the target reward R.

Once we have a GFlowNet (G, R,O, Π,H), we still need a way to find objects o ∈

H(FMarkov(G, R)) ¦ O. To this end, it suffices to design a loss function L on O that

equals zero on objects o ∈ H(FMarkov(G, R)) and only on those objects. If our loss function

L is chosen to be non-negative, then an approximation of the target distribution (on Sf) is

obtained by approximating the minimum of the function L. This provides a recipe for casting

81

the search problem of interest to a minimization problem, as we typically do in machine

learning. Such loss functions can be easily designed for the natural parameterizations we

considered in Example 3.3.2, Example 3.3.3, and Example 3.3.4, as we will illustrate below.

Definition 3.3.6 (Flow-matching losses). Let (G, R,O, Π,H) be a GFlowNet. A

flow-matching loss is any function L : O → R
+ such that:

∀o ∈ O L(o) = 0 ô ∃F ∈ FMarkov(G, R) o = H(F) (3.41)

We say that L is edge-decomposable, if there exists a function L : O × A → R
+

such that:

∀o ∈ O L(o) =
∑

s→s′∈A

L(o, s→ s′), (3.42)

We say that L is state-decomposable, f there exists a function L : O × S → R
+

such that:

∀o ∈ O L(o) =
∑

s∈S
L(o, s), (3.43)

We say that L is trajectory-decomposable if there exists a function L : O×T → R
+

such that:

∀o ∈ O L(o) =
∑

Ä∈T
L(o, Ä) (3.44)

As mentioned above, with a such a loss function, our search problems can be written as

minimization problems of the form

min
o∈O
L(o), (3.45)

which can be tackled with gradient-based learning if the function L is differentiable. Note

that with an edge-decomposable flow-matching loss, the minimization problem in (3.45) is

equivalent to:

min
o∈O

E(s→s′)∼ÃT
[L(o, s→ s′)], (3.46)

where ÃT is any full support probability distribution on A, i.e., a probability distribution such

that ∀s→ s′ ∈ A ÃT (s→ s′) > 0. A similar statement can be made for state-decomposable

or trajectory-decomposable flow-matching losses.

Example 3.3.7 (Flow-matching loss). Consider the edge-flow parameterization

(Oedge, Πedge,Hedge), and the function LF M : Oedge × S → R
+ defined for each F̂ ∈ Oedge

and s′ ∈ S as

LF M(F̂ , s′) =















(

log

(

¶+
∑

s∈P ar(s′)
F̂ (s→s′)

¶+R(s′)+
∑

s′′∈Child(s′)\{sf }
F̂ (s′→s′′)

))2

if s′ ̸= sf ,

0 otherwise

(3.47)

82

where ¶ g 0 is a hyper-parameter. The function LF M mapping each F̂ ∈ Oedge to

LF M(F̂) =
∑

s∈S
LF M(F̂ , s) (3.48)

is a flow-matching loss that is (by definition) state-decomposable.

To see this, let F̂ ∈ Oedge such that LF M(F̂) = 0, and extend it to terminating edge:

∀s ∈ Sf F̂ (s→ sf) := R(s) (3.49)

Now that F̂ is defined for all edges in G, we can write that

∀s′ ∈ S
∑

s∈P ar(s′)

F̂ (s→ s′) =
∑

s′′∈Child(s)

F̂ (s′ → s′′). (3.50)

Which, according to Proposition 3.2.19, means that there exists a Markovian flow F ∈

FMarkov(G, R) such that Hedge(F) = F̂ . The converse

∀F ∈ FMarkov(G, R) LF M(Hedge(F)) = 0 (3.51)

is a trivial consequence of Proposition 3.2.19.

This is the loss function proposed in Bengio et al. (2021). ¶ allows to reduce the impor-

tance given to small flows (those smaller than ¶), and the usage of the square of the log-ratio

is justified as a way to ensure that states with large flows do not contribute to the gradients

of LF M much more than states with small flows.

Example 3.3.8 (Detailed-balance (DB) loss). Consider the transition probabilities param-

eterization (OP F B, ΠP F B,HP F B), and the function LDB : OP F B × A→ R
+ defined for each

(F̂ , P̂F , P̂B) ∈ OP F B and s→ s′ ∈ A as

LDB(F̂ , P̂F , P̂B, s→ s′) =















(

log
(

¶+F̂ (s)P̂F (s′|s)

¶+F̂ (s′)P̂B(s|s′)

))2

if s′ ̸= sf ,
(

log
(

¶+F̂ (s)P̂F (s′|s)
¶+R(s)

))2

otherwise,
(3.52)

where ¶ g 0 is a hyper-parameter. The function LDB mapping each (F̂ , P̂F , P̂B) ∈ OP F B to

LDB(F̂ , P̂ , P̂B)) =
∑

s→s′∈A

LDB(F̂ , P̂ , P̂B, s→ s′) (3.53)

is a flow-matching loss that is (by definition) edge-decomposable. The proof of this statement

is similar to the one of the example above, using Proposition 3.2.21.

According to Section 3.2.6, the reward function does not completely specify the flow.

Thus, the detailed-balance loss of Example 3.3.8 can be used with the (OP F , ΠP F ,HP F)

parameterization, using any function P̂B ∈ O3 as input to the detailed-balance loss.

Example 3.3.9 (Trajectory-balance (TB) loss). This loss has been introduced in Malkin

et al. (2022) for the parameterization (OT B, ΠT B,HT B), where OT B = O1 × O2 × O3, with

O1 = R
+ parameterizes the partition function Ẑ, and O2 and O3 introduced in Example 3.3.3

83

and Example 3.3.4 (the set of forward and backward probabilities consistent with G). HT B

maps a Markovian flow in FMarkov(G, R) to the corresponding triplet (Z, PF , PB), and ΠT B

maps a parameterization (Ẑ, P̂F , P̂B) to a probability over trajectories defined by P̂F as in

Example 3.3.3. Proposition 3.2.18 justifies the validity of this parameterization. The loss

LT B maps each (Ẑ, P̂F , P̂B) ∈ OT B to:

LT B(Ẑ, P̂F , P̂B) =
∑

Ä∈T
LT B(Ẑ, P̂F , P̂B, Ä), (3.54)

where

∀Ä = (s0, . . . , sn+1 = sf) ∈ T LT B(Ẑ, P̂F , P̂B, Ä) =

(

log
Ẑ
∏n+1

t=1 P̂F (st | st−1)

R(sn)
∏n

t=1 P̂B(st−1 | st)

)2

. (3.55)

Malkin et al. (2022) prove that LT B is a flow-matching loss and call it trajectory balance.

It is trajectory-decomposable by definition.

3.3.2. Training by stochastic gradient descent:

In the examples of the previous section, given a GFlowNet (G, R,O, Π,H) and a flow-

matching loss L, objects o ∈ O are themselves functions or combinations of functions, and

we can thus parameterize O with function approximators such as neural networks. However,

most of the times, the evaluation (let alone the minimization) of L(o) is intractable, given

that even with a full support distribution, only a subset of edges (or states or trajectories)

can be visited in finite time. In practice, with an edge-decomposable loss e.g., we resort to

a stochastic gradient, such as

∇oL(o, s→ s′), s→ s′ ∼ Ão (3.56)

for edge-decomposable losses, or

∇oL(o, Ä), Ä ∼ Ão (3.57)

for trajectory-decomposable losses, where Ão, called the training distribution, is a dis-

tribution over edges or trajectories that can be associated with Π(o), corresponding to the

online setting in RL, or defined in other ways, corresponding to the behavior policy in offline

RL, see Section 3.3.3.3 below.

3.3.3. Extensions

In this section, we discuss possible relaxations to the GFlowNet training paradigm intro-

duced thus far.

84

3.3.3.1. Introducing Time Stamps to Allow Cycles

Note that the state space of a GFlowNet can easily be modified to accommodate an

underlying state space for which the transitions do not form a DAG, e.g., to allow cycles. Let

S be such an underlying state-space. Define the augmented state space S ′ = S ×{0, . . . , T},

and s′
t = (st, t) is the augmented state, where t is the position of the state st in the trajectory.

With this augmented state space, we automatically avoid cycles. Furthermore, we may

design or train the backwards transition probabilities PB(s′
t | s′

t+1 = (st+1, t + 1)) to create

a preference for shorter paths towards st+1, as discussed in Section 3.2.6. Note that we can

further generalize this setup by replacing {0, . . . , T} with any finite totally ordered indexing

set; the augmented state space will still have an associated DAG. The ordering “<” in the

original state-space is lifted to the augmented state-space: (st, t) < (s′
t′ , t′) if and only if

t < t′ and st < s′
t.

3.3.3.2. Stochastic Rewards

We also consider the setting in which the given reward is stochastic rather than being a

deterministic function of the state, yielding training procedures based on stochastic gradient

descent. For example, with the trajectory balance loss of (3.55), if R(s) is stochastic (even

when given s), we can think of what is being really optimized is the squared loss with log R(s)

replaced by its expectation (given s) 3. This is a straightforward consequence of minimizing

the expected value of a squared error loss, as for example in neural networks trained with a

squared error loss and a stochastic target output, where the neural network effectively tries

to estimate the expected value of that target.

3.3.3.3. GFlowNets can be trained offline

As discussed in Section 3.3.2, we do not need to train a GFlowNet using samples from

its own trajectory distribution P̂ = Π(o). Those training trajectories can be drawn from

any training distribution ÃT with full support, as already shown by Bengio et al. (2021). It

means that a GFlowNet can be trained offline, as in offline reinforcement learning (Ernst

et al., 2005; Riedmiller, 2005; Lange et al., 2012).

It should also be noted that with a proper adaptive choice of ÃT , and assuming that

computing R is cheaper or comparable in cost to running the GFlowNet on a trajectory, it

should be more efficient to continuously draw new training samples from ÃT than to rehearse

the same trajectories multiple times. An exception would be rehearsing the trajectories

leading to high rewards if these are rare.

How should one choose the training distribution ÃT ? It needs to cover the support of R,

but if it were uniform it would be very wasteful, and if it were equal to the current GFlowNet

policy Ã it might not have sufficient effective support and thus miss modes of R. Hence the

3. In this case, the resulting terminating state distribution would be proportional to exp(E[log R(s)]).

85

training distribution should be sampled from an exploratory policy that visits places that

have not been visited yet and may have a high reward. High epistemic uncertainty around

the current policy would make sense and the literature on acquisition functions for Bayesian

optimization (Srinivas et al., 2010) may be a good guide. More generally, this means the

training distribution should be adaptive. For example, ÃT could be the policy of a second

GFlowNet trained mostly to match a different reward function that is high when the losses

observed by the main GFlowNet are large. It would also be good to regularly visit those

trajectories corresponding to known large R, i.e., according to samples from Ã, to make sure

those are not forgotten, even temporarily.

3.3.3.4. Exploiting Data as Known Terminating States

In some applications we may have access to a dataset of (s, R(s)) pairs and we would like

to use them in a purely offline way to train a GFlowNet, or we may want to combine such data

with queries of the reward function R to train the GFlowNet. For example, the dataset may

contain examples of some of the high-reward terminating states s which would be difficult to

obtain by sampling from a randomly initialized GFlowNet. How can we compute a gradient

update for the GFlowNet parameters using such (s, R(s)) pairs?

If we choose to parameterize the backwards transition probabilities PB (which is nec-

essary for implementing the detailed balance loss), then we can just sample a trajectory

Ä leading to s using PB and use these trajectories to update the flows and forward tran-

sition probabilities along the traversed transitions. However, this alone is not guaranteed

to produce the correct GFlowNet sampling distribution because the empirical distribution

over training trajectories Ä defined as above does not have full support. Suppose for ex-

ample that the dataset only contains high-reward terminating states with R(s) = 1. The

GFlowNet could then just sample trajectories uniformly (which would be wrong, we would

like the probability of most states not in the training set to be very small). On the other

hand, if we combine the distribution of trajectories leading to terminal transitions in the

dataset with a training distribution whose support covers all possible trajectories, then the

offline property of GFlowNet guarantees that we can recover a flow-matching model.

3.4. Conditional Flows and Free energies

A remarkable property of flow networks is that we can recover the normalizing constant

Z from the initial state flow F (s0) (Proposition 3.2.10). Z also gives us the partition function

associated with a given terminal reward function R specifying the terminating flows.

What about internal states s with s0 < s < sf? If we had something like a normalizing

constant for only the terminating flows achievable from s, we would be able to obtain a form

of marginalization given state s, i.e., a conditional probability for terminating states s′ g s,

given s. Naturally, one could ask: does the flow F (s) through a state s give us that kind of

86

marginalization over only the downstream terminating flows? Unfortunately in general, the

answer to this question is no, as illustrated in Figure 3.6: in this example F (s2) = 4, whereas

the sum of terminating flows achievable from s2 is 6 (the terminating states reachable from

s2 are {s5, s6, s7}). The discrepancy is caused by the flow through (s0, s1, s5) that contributes

to the terminating flow F (s5→sf), but not to F (s2) since there is no order relation between

s1 and s2.

0

1

2

3

4

5

6

7

5

3

2

1

2

2

1

1

2

12

2

3

2

1

(a)

0

1

2

3

4

5

6

7

2

1

1

2

1

3

2

1

(b)

0

1

2

3

4

5

6

7

3

1

2

1

3

2

1

(c)

Figure 3.6 – Example of a state-conditional flow network. (a) The original (Markovian)
flow network. (b) The subgraph of states reachable from s2; there is a flow through (s0, s1, s5)
that contributed to F (s5→sf), but not to F (s2), showing that F (s2) does not marginalize
the rewards of its descendant. (c) State-conditional flow network Fs2 , which differs from the
original flow F on the subgraph, but satisfies the desired marginalization property.

This motivates the following definition:

Definition 3.4.1 (Free energies). Given a pointed DAG G = (S,A), the corresponding

partial order denoted by g, and a function E : S → R, called the energy function,

we define the free energy F(s) of a state s as:

e−F(s) :=
∑

s′:s′gs

e−E(s′). (3.58)

Free energies are generic formulations for the marginalization operation (i.e., summing

over a large number of terms) associated with energy functions, and their estimation opens

the door to interesting applications where expensive MCMC methods would typically be the

main approach otherwise.

3.4.1. Conditional flow networks

In Section 3.2.2, we defined a flow network as a DAG, augmented with some function F

over the set of complete trajectories T . We can extend this notion of flow networks by con-

ditioning each component on some information x. In general, this conditioning variable can

87

represent any conditioning information, either external to the flow network (but influencing

the terminating flows), or internal (e.g., x can be a property of complete trajectories over

another flow network, like passing through a particular state).

Definition 3.4.2 (Conditional flow networks). Let X be a set of conditioning variables.

We consider a family of DAGs Gx = (Sx,Ax) indexed by x ∈ X, along with a family of

initial and terminal states denoted by (s0 | x) ∈ Sx and (sf | x) ∈ Sx respectively. For

each DAG Gx, we denote by Tx the set of complete trajectories in Gx, and we denote

by T their union:

T =
⋃

x∈X

Tx. (3.59)

A conditional flow network is the specification of X, the family {Gx, x ∈ X},

along with a conditional flow function F , i.e., a function F : X × T → R
+ such that

F (x, Ä) = 0 if Ä /∈ Tx. For clarity, we will denote, for each x ∈ X, by Fx the function

mapping each Ä ∈ Tx to F (x, Ä). Similar to Section 3.2.2, Fx induces a measure of the

Ã-algebra 2Tx for each x.

Conditional flow networks effectively represent a family of flow networks, indexed by the

value of x. Since conditional flow networks are defined using the same components as an

unconditional flow network, they inherit from all the properties of flow networks for all DAGs

Gx and flow functions Fx. In particular, we can directly extend the notion of probability

distribution over flows, state and edge flows, forward and backward transition probabilities

(Section 3.2.3), of Markovian flows (Section 3.2.4), and any flow-matching condition (Sec-

tion 3.2.5) to conditional flows; the only difference is that now every term explicitly depends

of the conditioning variable x.

In Section 3.4.2 and Section 3.4.3, we will elaborate two important examples of conditional

flow networks: flow networks conditioned on external information that changes the reward

R(s | x), and state-conditional flow networks that depend on internal information, i.e.,

previously visited states.

88

3.4.2. Reward-conditional flow networks

Definition 3.4.3 (Reward-conditional flow networks). Let X be a set of conditioning

variables. Consider a flow network given by a pointed DAG G = (S,A) and a flow func-

tion F . Consider a family R of non-negative functions of S: {Rx : Sf → R
+, x ∈ X}.

A reward-conditional flow network compatible with the family R is a conditional

flow network (Definition 3.4.2), with Gx = G for every x ∈ X, such that the edge-flow

functions induced by the conditional flow function F satisfy:

∀x ∈ X ∀s ∈ Sf Fx(s→ sf) = Rx(s). (3.60)

We will use the notations Rx(s) and R(s | x) interchangeably.

Note that the definition above implies that all the DAGs of a reward-conditional flow

network are identical, and only the terminating flows differ amongst the members of the

family.

Example 3.4.4. We will see in Section 3.4.4 that we can estimate a conditional flow network

using a GFlowNet (Section 3.3), given a reward function R(s | x). In an Energy-Based

Model, the model P¹(s) is associated with a given energy function E¹(s), parameterized by ¹,

with

P¹(s) =
exp(−E¹(s))

Z(¹)
. (3.61)

This model can be parameterized using a reward-conditional flow network, conditioned on ¹

with the reward function R(s | ¹) = exp(−E¹(s)).

3.4.3. State-conditional flow networks

Definition 3.4.5 (State-conditional flow networks). Consider a flow network given

by a DAG G = (S,A) and a flow function F . For each state s ∈ S, let Gs be the

subgraph of G containing all the states s′ such that s′ g s. A state-conditional flow

network is given by the family {Gs, s ∈ S}, along with a conditional flow function

F : S × T → R
+, where T =

⋃

s∈S Ts, and Ts the set of complete trajectories in Gs,

that satisfies:

Fs(s
′ → sf) = F (s′ → sf). (3.62)

Note that in the definition above, we abused the notation F to refer to both flow functions

and edge flow functions, but also used Fs to refer to the conditional flow function (or the

corresponding edge flow function) Ä 7→ F (s, Ä). Unlike the reward-conditional flow networks

defined in Section 3.4.2, the structure of the DAG in a state-conditional flow network depends

89

on the anchor state s. In particular, this means that the initial state (s0 | s) = s changes,

but the final state (sf | s) = sf remains unchanged, for any state s.

Since the definition of a state-conditional flow network depends on an original flow net-

work, we must ensure that this definition is indeed correct, i.e., that such a state-conditional

flow network that satisfies the conditions in (3.62) exists.

Proposition 3.4.6. For any flow network given by a DAG G = (S,A) and a flow F,

we can define a state-conditional flow network as per Definition 3.4.5.

While we saw in Proposition 3.2.10 that the initial flow F (s0) was equal to the partition

function, the initial state-conditional flow also benefit from a marginalizing property, and is

now related to the free energy at s.

Proposition 3.4.7. Given a state-conditional flow network (G, F) as in Defini-

tion 3.4.5, for any state s, the initial flow of the state-conditional flow network corre-

sponds to marginalizing the terminating flows F (s′ → sf) for s′ g s:

Fs(s0 | s) = Fs(s) =
∑

s′ : s′gs

F (s′ → sf) = exp(−F(s)), (3.63)

where F(s) is the free energy associated to the energy function E(s′) = − log F (s′→sf).

Note that the definition of state-conditional flow networks is consistent with our original

definition of (unconditional) flow networks in Section 2.1, in the sense that the original flow

network is a valid state-conditional flow networks anchored at the initial state.

Another quantity of interest that state-conditional flow networks allow us to evaluate,

is the probability of terminating a trajectory in a state s′ if all terminating edge flows were

diverted towards an earlier state s < s′:

Corollary 3.4.8. Consider a flow network given by a DAG G = (S,A) and a flow

F , from which we define any state-conditional flow network, as per Definition 3.4.5.

Given a state s, the flow function Fs induces a probability distribution over {s′′ ∈ Sf :

s′′ g s} ¦ Sf , that we denote by P¦(. | s).

Under this measure, the probability of terminating a trajectory in Gs in a state s′ (i.e.,

the last edge of the trajectory is s′ → sf) is:

P¦(s′ | s) = 1(s′ g s)e−E(s′)+F(s), (3.64)

where E is the energy function mapping each state s′ that is parent of sf to − log F (s′ →

s), and F is the corresponding free energy function.

90

3.4.4. Conditional GFlowNets

Similar to the way we used a GFlowNet to estimate the flow of a flow network, we

can also use a (conditional) GFlowNet in order to estimate a conditional flow network, with

given target reward functions. A conditional GFlowNet follows the construction presented in

Section 3, with the exception that all quantities to be learned now depend on the conditioning

variable x ∈ X (e.g., x is an additional input of the neural network).

Definition 3.4.9. Consider a set of conditioning information X, a family of DAGs

G = {Gx = (Sx,Ax), x ∈ X}, a family of target reward functions R = {Rx : Sf
x →

R
+, x ∈ X}, and a flow parameterization (Ox, Πx,Hx) of (Gx, Rx) for every x ∈ X. The

three functions O : x ∈ X 7→ Ox, Π : x ∈ X 7→ Πx, and H : x ∈ X 7→ Hx parameterize

the family of DAGs and target reward functions, and we say that (O, Π,H) form a

conditional flow parameterization of (X,G,R). The tuple (X,G,R,O, Π,H) is

called a conditional GFlowNet.

For clarity, for an object o ∈ O, we will use ox and o(x) interchangeably.

All parameterizations and losses presented in Section 3.3.1 could, in principle be used

to train a conditional GFlowNet, regardless of the conditioning set. Below we discuss yet

another loss, first presented in Deleu et al. (2022), that could be used to train both GFlowNets

and conditional GFlowNets.

Example 3.4.10. Given a family of DAGs Gx and reward functions Rx indexed by x ∈ X,

where each state s ∈ Gx is terminating (i.e., is a parent of sf), and following Examples 3.3.3

and 3.3.4, we consider a parameterization given by the forward and backward transition

probabilities Ox
P = Ox

2 × O
x
3 , where Ox

2 (resp. Ox
3) is the set of forward (resp. backward)

probability functions P̂F (resp. P̂B) consistent with Gx for every x ∈ X, and (Πx
P ,Hx

P) defined

as in Example 3.3.4. Each (Ox
P , Πx

P ,Hx
P) is a flow parameterization of (Gx, Rx), which can

be trained with an edge-decomposable flow-matching loss, as proved in Deleu et al. (2022),

and defined for every s→ s′ ∈ A
−f :

LDB(P̂F , P̂B, s→ s′, x) =

(

log
Rx(s′)PB(s | s′, x)PF (sf | s, x)

Rx(s)PF (s′ | s, x)PF (sf | s′, x)

)2

(3.65)

In Appendix D.1, we show how conditional GFlowNets can be used to estimate entropies,

conditional entropies, and the mutual information between two random variables.

91

3.5. GFlowNets are more than amortized samplers

3.5.1. GFlowNets as amortized samplers

The main established methods to approximately sample from the distribution associated

with an energy function E , or an unnormalized probability mass function or reward R, are

MCMC methods, already discussed in Section 2.2.2.

Instead, the GFlowNet approach amortizes upfront computation to train a generator that

yields efficient computation for each new sample without requiring any chain.

In contrast, GFlowNets belong to the family of amortized sampling methods (which

includes VAEs, Kingma and Welling, 2013), where we train a machine learning system to

produce samples: we have exchanged the complexity of sampling through long chains for the

complexity of training the sampler.

For example, Bengio et al. (2021) build a GFlowNet that constructs a molecule via a small

sequence of actions, each adding an atom or a molecular substructure to an existing molecule

represented by a graph, starting from an empty graph. Only one such configuration needs

to be considered, in contrast with MCMC methods, which require potentially very long

chains of such configurations, and suffer from the challenge of mode-mixing (Jasra et al.,

2005; Bengio et al., 2013; Pompe et al., 2020): the chances of going from one mode to

a neighbouring one may become exponentially small (and thus require exponentially long

chains) if a long sequence of low-probability configurations separates the modes. This can be

alleviated by burning more computation (sampling longer chains) but becomes exponentially

unsustainable with increased mode separation. The issue can also be reduced by introducing

random sampling (e.g., drawing multiple chains) and simulated annealing (Andrieu et al.,

2003) to facilitate jumping between modes. However, this becomes less effective in high

dimensions and when the modes occupy a tiny volume, which can become an exponentially

small fraction of the total space as its dimension increases, since random sampling is unlikely

to land in the neighbourhood of a mode.

The potential advantage of such amortized samplers is when the distribution of inter-

est has a generalizable structure: when it is possible to guess reasonably well where high-

probability samples can be found based on the knowledge of a set of known high-probability

samples (the training set). Consider, for instance, having already constructed some config-

urations x and obtained their unnormalized probability or reward R(x). With these pairs

(x, R(x)), a machine learning system could potentially generalize about the value of R else-

where, and if it is a generative model, sample new x’s in places of large R(x). Hence, if

there is an underlying statistical structure in how the modes of R are related to each other,

a generative learner that generalizes could guess the presence of modes it has not visited yet,

92

taking advantage of the patterns it has already uncovered from the (x, R(x)) pairs it has

seen.

Amortization is what makes deep generative models (Sections 2.1.4 and 3.5.2) work in

the first place and thus suggests that in such high-dimensional settings where modes occupy

tiny volumes (as per the manifold hypothesis, Cayton, 2005; Narayanan and Mitter, 2010;

Rifai et al., 2011), one can capitalize on the already observed (x, R(x)) pairs (where x is

an already visited configuration and R(x) its reward) to “jump” from known modes to yet

unvisited ones, even if these are far from the ones already visited.

In the case of no structure (and thus no possibility to generalize when learning about the

distribution), there is no reason to expect that amortized ML methods will fare better than

MCMC.

Another factor to consider (independent of the mode mixing issue) is the amortization

of the computational costs: GFlowNets pay a hefty price upfront to train the network and

then a tiny price (sampling once from P¦) to generate each new sample. Instead, MCMC

has no upfront cost but pays a lot for each independent sample. Hence, if we want to only

sample once, MCMC may be more efficient, whereas if we want to generate a lot of samples,

amortized methods may be advantageous. One can imagine settings where GFlowNets and

MCMC could be combined to achieve some of the advantages of both approaches.

3.5.2. GFlowNets as generative models

The main difference between GFlowNets and established deep generative models is that

whereas the latter are trained by being provided with a finite set of examples sampled from

the distribution of interest, a GFlowNet is usually trained by being provided with an energy

function or a reward function.

This reward function tells us not just about the samples that are likely under the distri-

bution of interest but also about those that are unlikely and those in-between, whose reward

is not large but is not zero. Let’s think of the maximum likelihood training objective in those

terms. It is like a reward function that gives a high reward to every training example and

a zero reward everywhere else. However, other reward functions are possible, as seen in the

application of GFlowNets to the discovery of new molecules (Bengio et al., 2021), where the

reward is not binary and increases monotonically as a function of the value of a desirable

property of the candidate molecule.

Note, however, that the difference with other generative modelling approaches blurs when

we include the learning of the energy function along with the learning of the GFlowNet sam-

pler, as is done in Zhang et al. (2022b), who simultaneously train an energy-based model and

a GFlowNet: the energy function is trained with samples from a GFlowNet, which, in turn,

uses the energy function to form its reward. Their method results in a generative model

93

for binary vectors in high dimensions, e.g., binarized digits. More specifically, consider the

model P¹(s) associated with a given parameterized energy function E¹(s) with parameters

¹: P¹(s) = e−Eθ(s)

Z
. Sampling from P¹(s) could be approximated by sampling from the ter-

minating probability distribution P¦(s) of a GFlowNet trained with target terminal reward

R(s) = e−Eθ(s) (see (3.31)). In practice, P̂T would be an estimator for the true P¹ because the

GFlowNet training objective is not zeroed (insufficient capacity or finite training time). The

GFlowNet samples drawn according to P̂T could then be used to obtain a stochastic gradient

estimator for the negative log-likelihood of observed data x with respect to parameters ¹ of

an energy function E¹:

∂ − log P¹(x)

∂¹
=

∂E¹(x)

∂¹
−
∑

s

P¹(s)
∂E¹(s)

∂¹
. (3.66)

An approximate stochastic estimator of the second term could thus be obtained by sam-

pling one or more terminating states s ∼ P̂T (s), i.e., from the trained GFlowNet’s sampler.

Furthermore, if the GFlowNet’s loss is 0, i.e., P̂T = P¹, the gradient estimator would be

unbiased.

Zhang et al. (2022b) jointly train an energy function E¹ and a corresponding GFlowNet

by alternating updates of ¹ using the above equation (with sampling from P¹ replaced by

sampling from P̂T) and updates of the GFlowNet using the updated energy function for the

target terminal reward.

Note, however, that GFlowNets have been designed for generating discrete variable-

size compositional structures (like sets or graphs), for both latent and observed variables,

whereas many generative models start from the point of view of modelling real-valued fixed-

size vectors using real-valued fixed-size latent variables. The extension of GFlowNets to

continuous domains (Chapter 4) was only introduced later on.

An interesting difference between GFlowNets and most generative model training frame-

works is in the very nature of the training objective for GFlowNets, which came about in

the context of active learning scenarios. Whereas the GFlowNet training pairs (s, R(s)) can

come from any distribution over s (any full-support training policy ÃT), which does not

have to be stationary (and indeed will generally not be, in an active learning setting), the

maximum likelihood framework is very sensitive to changes in the distribution of the data

it sees. This is connected to the “offline learning” property of the flow-matching objective

(Sections 3.3.3.3 and 3.3.3.4)).

3.5.3. GFlowNets for interactive learning

An interesting variant on Section 3.5.2’s scheme is one where the GFlowNet sampler is

used not just to produce negative examples for the energy function but also to actively explore

the environment. Jain et al. (2022a) use an active learning scheme where the GFlowNet is

94

used to sample candidates x for which we expect the reward R(x) to be generally large

(since the GFlowNet approximately samples proportionally to R(x)). The challenge is that

evaluating the true reward R for any x is computationally expensive and can potentially be

noisy (for example, a biological assay to measure the binding energy of a drug to a given

target protein). Thus, instead of using the true reward directly, the authors introduce a proxy

f̂ (which approximates the true reward function f), which is used to train the GFlowNet.

This would lead to a setup similar to Section 3.5.2, with an inner loop where a GFlowNet is

trained to match the proxy f̂ and an outer loop where the proxy f̂ is learned in a supervised

fashion using (x, y) pairs, where x is proposed by the GFlowNet, and y is the corresponding

true reward from the environment (for example, outcome of a biological of chemical assay).

It is important to note here that the GFlowNet and the proxy are intricately linked since the

coverage of proxy f̂ over the domain of x relies on diverse candidates from the GFlowNet.

And similarly, since the GFlowNet matches a reward distribution defined by the proxy reward

function f̂ , it also depends on the quality of the true reward function f .

This setup can be further extended by incorporating information about how novel a

given candidate is, or how much epistemic uncertainty, u(x, f), there is in the prediction

of f̂ (Section 2.1.7). We can use the acquisition function heuristics (like Upper Confidence

Bound (UCB) or Expected Improvement (EI)) from Bayesian optimization (Močkus, 1975;

Srinivas et al., 2010) to combine the predicted usefulness f̂(x) of configuration x with an

estimate of the epistemic uncertainty around that prediction. Using this as the reward can

allow the GFlowNet to explore areas where the predicted usefulness is high (f̂(x) is large)

and, at the same time, explore areas where there is more information to be gathered about

useful configurations of x. The uncertainty over the predictions of f̂ with the appropriate

acquisition function can provide more control over the exploratory behaviour of GFlowNets.

As discussed by Bengio et al. (2021) when comparing GFlowNets with return-maximizing

reinforcement learning methods, an interesting property of sufficiently trained GFlowNets

is that they will sample from all the modes of the reward function, which is particularly

desirable in a setting where exploration is required, as in active learning. The experiments

in the paper also demonstrate this advantage experimentally in terms of the diversity of the

solutions sampled by the GFlowNet compared with PPO, an RL method that had previously

been used for generating molecular graphs and that tends to focus on a single mode of the

reward function.

3.5.4. GFlowNets as an alternative to Reinforcement Learning

The flow-matching loss of GFlowNets (Bengio et al., 2021) arose from the inspiration

of the temporal-difference training (Sutton and Barto, 2018) objectives associated with the

Bellman equation. The flow-matching equations are analogous to the Bellman equation in the

95

sense that the training objective is local (in time and states), credit assignment propagates

through a bootstrap process and tries to fix the parameterization so that these equations are

satisfied, knowing that if they were (everywhere), we would obtain the desired properties.

However, these desired properties are different, as elaborated in the next paragraph. The

context in which GFlowNets were developed is also different from the typical way of thinking

about agents learning in some environment: we can think of the deterministic environments

of GFlowNets as involving internal actions typically needed by a cognitive agent that needs

to perform some kind of inference through a sequence of steps (predict or sample some

things given other things), i.e., through actions internal to the agent and controlling its

computation. This is in contrast with the origins of RL, focused on the actions of an agent

in an external and unknown stochastic environment.

An alternative perspective on RL than that provided in Section 2.1.5, that emerged out

of both the probabilistic inference literature (Toussaint and Storkey, 2006) and the bandits

literature (Auer et al., 2002), is concerned with finding policies of the form Ã(a | s) ∝

f(s, a). It turns out that maximizing both return and entropy (Ziebart et al., 2008) of

policies in a control setting yields policies such that the probability of a trajectory Ä =

(s0a0, s1, a1, . . . , sT) is

p(Ä) =

[

p(s0)
T −1
∏

t=0

P (st+1 | st, at)

]

exp

(

¸
T −1
∑

t=0

R(st, at)

)

, (3.67)

where ¸ can be seen as a temperature parameter. This result can also be found under

the control-as-inference framework (Haarnoja et al., 2017; Levine, 2018). In deterministic

MDPs with terminal rewards and no discounting of future rewards, this simplifies to p(Ä) ∝

exp(¸Ä(Ä)), where Ä is the return.

In recent literature, this entropy maximization (MaxEnt) is often interpreted as a reg-

ularization scheme (Nachum et al., 2017), entropy being used either as an intrinsic reward

signal or as an explicit regularization objective to be maximized. Another way to understand

this scheme is to imagine ourselves in an adversarial bandit setting (Auer et al., 2002) where

each arm corresponds to a unique trajectory, drawn with probability ∝ exp(Ä(Ä)).

An important distinction to make between MaxEnt RL and GFlowNets is that, in the

general case, they do not find the same result. A GFlowNet learns a policy such that P¦(s) ∝

R(s), whereas MaxEnt RL (with appropriately chosen temperature and R) learns a policy

such that P¦(s) ∝ n(s)R(s), where n(s) is the number of paths in the DAG of all trajectories

that lead to s (a proof is provided in Bengio et al., 2021). An equivalence only exists if the

DAG minus sf is a tree rooted at s0, which has been found to be useful (Buesing et al., 2019).

What this overweighting by a factor n(s) means practically is that states corresponding to

longer sequences (which typically will have exponentially more paths to them) will tend to

be sampled much more often (typically exponentially more often) than states corresponding

96

to shorter sequences. Clearly, this breaks the objective of sampling terminating states in

proportion to their reward and provides a strong motivation for considering GFlowNets

instead.

Another perspective on maximizing entropy in RL is that one can also maximize entropy

on the states’ stationary distribution dÃ (Ziebart et al., 2008), rather than the policy. In fact,

one can show that the objective of training a policy such that P¦(s) ∝ R(s) is equivalent to

training a policy that maximizes r(s, a) = log R(s, a)−log dÃ(s, a). Unfortunately, computing

stationary distributions, although possible (Nachum et al., 2019; Wen et al., 2020a), is not

always tractable nor precise enough for purposes of reward regularization.

3.6. GFlowNets and Variational Inference

Many probabilistic generative models produce a sample through a sequence of stochastic

choices. Non-neural latent variable models (e.g., Blei et al., 2003), autoregressive models,

hierarchical variational autoencoders (Sønderby et al., 2016), and diffusion models (Ho et al.,

2020b) can be said to rely upon a shared principle: richer distributions can be modelled by

chaining together a sequence of simple actions, whose conditional distributions are easy to

describe, than by performing generation in a single sampling step. When many intermedi-

ate sampled variables could generate the same object, making exact likelihood computation

intractable, hierarchical models are trained with variational objectives that involve the pos-

terior over the sampling sequence (Ranganath et al., 2016b).

In this section and in the remainder of this chapter, we connect variational inference (VI)

methods for hierarchical models (i.e., sampling through a sequence of choices conditioned

on the previous ones) with GFlowNets. Although GFlowNets appear to have different foun-

dations (Sections 3.1 to 3.5) and applications than hierarchical VI algorithms, we will show

here that the two are closely connected.

Expanding on Section 2.2.1, VI (Zhang et al., 2019a) techniques originate from graphical

models (Saul et al., 1996; Jordan et al., 1999), which typically include an inference machine

and a generative machine to model the relationship between latent variables and observed

data. The line of work on black-box VI (Ranganath et al., 2014) focuses on learning the

inference machine given a data-generating process, i.e., inferring the posterior over latent

variables. Hierarchical modelling exhibits appealing properties under such settings as dis-

cussed in Ranganath et al. (2016b); Yin and Zhou (2018); Sobolev and Vetrov (2019). On the

other hand,VAEs (Kingma and Welling, 2014b; Rezende et al., 2014a) focus on generative

modelling, where the inference machine – the estimated variational posterior – is a tool to

assist the optimization of the generative machine or decoder. Hierarchical construction of

multiple latent variables has also been shown to be beneficial (Sønderby et al., 2016; Maaløe

et al., 2019; Child, 2021).

97

While earlier works simplify the variational family with mean-field approximations

(Bishop, 2006a), modern inference methods rely on amortized stochastic optimization (Hoff-

man et al., 2013). One of the oldest and most commonly used ideas is REINFORCE

(Williams, 1992; Paisley et al., 2012) which gives unbiased gradient estimation. Follow-

up work (Titsias and Lázaro-Gredilla, 2014; Gregor et al., 2014; Mnih and Gregor, 2014;

Mnih and Rezende, 2016) proposes advanced estimators to reduce the high variance of RE-

INFORCE. The log-variance loss proposed by Richter et al. (2020) is equivalent, in terms of

the expected gradient of PF , to the on-policy TB loss for a GFlowNet with a batch-optimal

value of log Z. On the other hand, path-wise gradient estimators (Kingma and Welling,

2014b) have much lower variance but have limited applicability. Later works combine these

two approaches for particular distribution families (Tucker et al., 2017; Grathwohl et al.,

2018).

Beyond the evidence lower bound (ELBO) objective used in most variational inference

methods, more complex objectives have been studied. Tighter evidence bounds have proved

beneficial to the learning of generative machines (Burda et al., 2016; Domke and Sheldon,

2018; Rainforth et al., 2018; Masrani et al., 2019). As KL divergence optimization suffers

from issues such as mean-seeking behaviour and posterior variance underestimation (Minka

et al., 2005), other divergences are adopted as in expectation propagation (Minka, 2001;

Li et al., 2015), more general f -divergences (Dieng et al., 2017; Wang et al., 2018; Wan

et al., 2020), their special case ³-divergences (Hernández-Lobato et al., 2016), and Stein

discrepancy (Liu and Wang, 2016; Ranganath et al., 2016a). GFlowNets could be seen as

providing a novel pseudo-divergence criterion, namely the trajectory-balance (TB) loss, as

discussed below.

Another branch of work, called wake-sleep, starting with Hinton et al. (1995), pro-

poses to avoid issues from stochastic optimization (such as REINFORCE) by alternatively

optimizing the generative and inference (posterior) models. Modern versions extending this

framework include reweighted wake-sleep Bornschein and Bengio (2015); Le et al. (2019) and

memoized wake-sleep (Hewitt et al., 2020; Le et al., 2022). It was shown in Le et al. (2019)

that wake-sleep algorithms behave well for tasks involving stochastic branching.

As our main theoretical contributions of the remainder of this chapter, we show in Sec-

tion 3.7 that special cases of variational algorithms and GFlowNets coincide in their expected

gradients. In particular, hierarchical VI (Ranganath et al., 2016b) and nested VI (Zimmer-

mann et al., 2021) are related to the trajectory balance and detailed balance objectives for

GFlowNets (Malkin et al., 2022; Bengio et al., 2023). We also point out the differences be-

tween VI and GFlowNets: notably, that GFlowNets automatically perform gradient variance

reduction by estimating a marginal quantity (the partition function) that acts as a baseline

and allow off-policy learning without the need for reweighted importance sampling.

98

Our theoretical results are accompanied by experiments, in Section 3.8, that examine

what similarities and differences emerge when one applies hierarchical VI algorithms to dis-

crete problems where GFlowNets have been used before. These experiments serve two pur-

poses. First, they supply a missing hierarchical VI baseline for problems where GFlowNets

have been used in past work. The relative performance of this baseline illustrates the afore-

mentioned similarities and differences between VI and GFlowNets. Second, the experiments

demonstrate the ability of GFlowNets, not shared by hierarchical VI, to learn from off-policy

distributions without introducing high gradient variance. We show that this ability to learn

with exploratory off-policy sampling is beneficial in discrete probabilistic modelling tasks,

especially in cases where the target distribution has many modes.

Note that a connection of the theoretical foundations of GFlowNets (Bengio et al., 2021,

2023) with variational methods was first mentioned by Malkin et al. (2022) and expanded

in Zhang et al. (2022a).

A closely related paper (Zimmermann et al., 2022), published a few days after Malkin

et al. (2023) (upon which this section and the remainder of this chapter is based), theoreti-

cally and experimentally explores interpolations between forward and reverse KL objectives.

3.7. Theoretical analysis of the relation between

GFlowNets and Hierarchical Variational Infer-

ence

All lemmas and propositions of this section are proved in Appendix E.3.

3.7.1. GFlowNets: Notation and background

We consider the setting studied thus far, where we are given a pointed DAG G = (S,A),

a subset X of S called the set of terminating states, an unnormalized density or reward

function, R : X → R
+, and we are tasked with learning a functional approximation of the

target distribution P¦ ∝ R. While there exist different parameterizations and loss functions

for GFlowNets (Section 3.3.1), they all define a forward transition probability function, or a

forward policy, PF (− | s), which is a distribution over the children of every state s ∈ S. The

forward policy is typically parameterized by a neural network that takes a representation of

s as input and produces the logits of a distribution over its children. Any forward policy PF

induces a distribution over complete trajectories Ä ∈ T (denoted by PF as well), which in

99

turn defines a marginal distribution over terminating states x ∈ X (denoted by P¦):

PF (Ä = (s0 → . . .→ sn → sn+1 = sf)) =
n
∏

i=0

PF (si+1 | si) ∀Ä ∈ T , (3.68)

P¦(x) =
∑

Ä∈T :xτ =x

PF (Ä) ∀x ∈ X , (3.69)

where we use xÄ ∈ X to denote the terminating state of a trajectory Ä .

Given a forward policy PF , terminating states x ∈ X can be sampled from P¦ by sampling

trajectories Ä from PF (Ä) and taking their final states xÄ , as in Algorithm 1.

GFlowNets aim to find a forward policy PF for which P¦(x) ∝ R(x). Because the sum in

(3.69) is typically intractable to compute exactly, training objectives for GFlowNets intro-

duce auxiliary objects into the optimization. For example, the trajectory balance objective

(TB; Malkin et al., 2022) introduces an auxiliary backward policy PB, which is a learned

distribution PB(− | s) over the parents of every state s ∈ S, and an estimated partition

function Z, typically parameterized as exp(log Z) where log Z is the learned parameter. The

TB objective for a complete trajectory Ä is defined as

LTB(Ä ; PF , PB, Z) =

(

log
Z · PF (Ä)

R(xÄ)PB(Ä | xÄ)

)2

, (3.70)

where

PB(Ä | xÄ) =
∏

(s→s′)∈Ä,s′ ̸=sf

PB(s | s′). (3.71)

If LTB is made equal to 0 for every complete trajectory Ä , then P¦(x) ∝ R(x) for all

x ∈ X and Z is the inverse constant of proportionality: Z =
∑

x∈X R(x).

The objective (3.70) is minimized by sampling trajectories Ä from some distribution and

making gradient steps on (3.70) with respect to the parameters of PF , PB, and log Z. The

distribution from which Ä is sampled amounts to a choice of scalarization weights for the

multi-objective problem of minimizing (3.70) over all Ä ∈ T . If Ä is sampled from PF (Ä)

– note that this is a nonstationary scalarization – we say the algorithm runs on-policy. If

Ä is sampled from another distribution, the algorithm runs off-policy; typical choices are

to sample Ä from a tempered version of PF to encourage exploration (Bengio et al., 2021;

Deleu et al., 2022) or to sample Ä from the backward policy PB(Ä | x) starting from given

terminating states x (Zhang et al., 2022b). By analogy with the RL nomenclature, we call

the behaviour policy the one that samples Ä for the purpose of obtaining a stochastic gradient,

e.g, the gradient of the objective LTB in (3.70) for the sampled Ä .

We also consider here the detailed balance (DB) loss that parameterizes a GFlowNet using

its forward and backward policies PF and PB, respectively, along with a state flow function

F , which is a positive function of the states, that matches the target reward function on the

100

terminating states. It decomposes as a sum of transition-dependent losses:

∀s→ s′ ∈ A
−f LDB(s→ s′; PF , PB, F) =

(

log
F (s)PF (s′ | s)

F (s′)PB(s | s′)

)2

. (3.72)

Both the DB and TB objectives can be seen as special instances of the subtrajectory

balance (SubTB; Malkin et al., 2023; Madan et al., 2022b). Malkin et al. (2022) suggested

instead of defining the state flow function F for every state s, a state flow function could be

defined on a subset of the state space S, called the hub states. The loss can be decomposed

into a sum of subtrajectory-dependent losses:

∀Ä = (s1, . . . , sn) ∈ T partial LSubTB(Ä ; PF , PB, F) =

(

log
F (s1)PF (Ä)

F (sn)PB(Ä | st)

)2

, (3.73)

where PF (Ä) is defined for partial trajectories similarly to complete trajectories (3.69), PB(Ä |

s) =
∏

(s→s′)∈Ä PB(s | s′), and we again fix F (x) = R(x) for terminating states x ∈ X). The

SubTB objective reduces to the DB objective for subtrajectories of length 1 and to the TB

objective for complete trajectories, in which case we use Z to denote F (s0).

In the next sections, we will show how the TB objective relates to hierarchical variational

objectives and, more generally, how the SubTB loss relates to a special form of hierarchical

variational losses.

3.7.2. Hierarchical variational models and GFlowNets

Variational methods provide a way of sampling from distributions by means of learning an

approximate probability density. Hierarchical variational models (HVMs; Ranganath et al.,

2016b; Sobolev and Vetrov, 2019; Vahdat and Kautz, 2020; Zimmermann et al., 2021))

typically assume that the sample space is a set of sequences (z1, . . . , zn) of fixed length,

with an assumption of conditional independence between zi−1 and zi+1 conditioned on zi,

i.e., the likelihood has a factorization q(z1, . . . , zn) = q(z1)q(z2 | z1) . . . q(zn | zn−1). The

marginal likelihood of zn in a hierarchical model involves a possibly intractable sum,

q(zn) =
∑

z1,...,zn−1

q(z1)q(z2 | z1) . . . q(zn | zn−1). (3.74)

The goal of VI algorithms is to find the conditional distributions q that minimize some

divergence between the marginal q(zn) and a target distribution. The target is often given

as a distribution with intractable normalization constant: a typical setting is a Bayesian

posterior (used in VAEs, variational EM, and other applications), for which we desire q(zn) ∝

plikelihood(x | zn)pprior(zn).

Before delving deeper into the connections, we need to define graded DAGs.

101

Definition 3.7.1 (Graded DAG). A pointed graded DAG is a pointed DAG in which

all complete trajectories have the same length. Pointed graded DAGs G are also

characterized by the following equivalent property: the state space S can be partitioned

into disjoint sets S =
⊔L+1

l=0 Sl, with S0 = {s0}, SL = X and SL+1 = {sf}, called layers,

such that all edges s → s′ are between states of adjacent layers (s ∈ Si,s′ ∈ Si+1 for

some i).

The GFlowNet corresponding to a HVM:. Sampling sequences (z1, . . . , zn) from a

hierarchical model is equivalent to sampling complete trajectories in a certain pointed graded

DAG G. The states of G at a distance of i from the initial state are in bijection with possible

values of the variable zi, and the action distribution is given by q. Sampling from the

HVM is equivalent to sampling trajectories from the policy PF (zi+1 | zi) = q(zi+1 | zi) (and

PF (z1 | s0) = q(z1), PF (sf | zn) = 1), and the marginal distribution q(zn) is the terminating

distribution P¦. Only the states at a distance n are connected to the sink node sf , and only

have sf as a child.

The HVM corresponding to a GFlowNet: Conversely, suppose G = (S,A) is a graded

pointed DAG with L + 2 layers and that a forward policy PF on G is given. Sampling

trajectories Ä = (s0 → s1 → . . . → sL → sL+1 = sf) in G is equivalent to sampling from an

HVM in which the random variable zi is the identity of the (i + 1)-th state si in Ä and the

conditional distributions q(zi+1 | zi) are given by the forward policy PF (si+1 | si). Specifying

an approximation of the target distribution in a hierarchical model with L layers is thus

equivalent to specifying a forward policy PF in a graded DAG.

The correspondence can be extended to non-graded DAGs. Every pointed DAG G =

(S,A) can be canonically transformed into a graded pointed DAG by the insertion of dummy

states that have one child and one parent. To be precise, every edge s→ s′ ∈ A is replaced

with a sequence of ℓ′ − ℓ(s) edges, where ℓ(s) is the length of the longest trajectory from

s0 to s, ℓ′ = ℓ(s′) if s′ /∈ X , and ℓ′ = maxx∈X ℓ(s′′) otherwise. This process is illustrated

in Figure 3.7. We thus restrict our analysis in this section, without loss of generality, to

graded DAGs.

The meaning of the backward policy: Typically, the target distribution is over the ob-

jects X of the last layer of a graded DAG, rather than over complete sequences or trajectories.

Any backward policy PB on the DAG turns an unnormalized target distribution R over X

into an unnormalized distribution over complete trajectories T :

∀Ä ∈ T PB(Ä) ∝ R(xÄ)PB(Ä | xÄ), with unknown partition function Ẑ =
∑

x∈X
R(x).

(3.75)

102

s0

s1

s2

s3

s4

s5

s6

s7 s8

s0

s1

s2

s7

s5

s4

s8

s6

s3

Figure 3.7 – Illustration of the process by which a DAG (left) can turn into a graded DAG
(right). For simplicity, the sink node sf is omitted. It is the only child of the terminating
states (those with a double border). Nodes with a dashed border represent dummy states
added to make the DAG graded. Note that the operation of converting a DAG into a graded
one is idempotent: applying it to a graded DAG yields the same graded DAG.

The marginal distribution of PB over terminating states is equal to R(x)/Ẑ by construction.

Therefore, if PF is a forward policy that equals PB as a distribution over trajectories, then

P¦(x) = R(x)/Ẑ ∝ R(x).

VI training objectives: In its most general form, the hierarchical variational objective

(‘HVI objective’ in the remainder of the paper) minimizes a statistical divergence Df between

the learned and the target distributions over trajectories:

LHVI,f (PF , PB) = Df (PB∥PF) = EÄ∼PF

[

f

(

PB(Ä)

PF (Ä)

)]

. (3.76)

Two common objectives are the forward and reverse Kullback-Leibler (KL) divergences (Mnih

and Gregor, 2014), corresponding to f : t 7→ t log t for DKL(PB∥PF) and f : t 7→ − log t for

DKL(PF∥PB), respectively. Other f -divergences have been used, as discussed in Zhang et al.

(2019b); Wan et al. (2020). Note that, similar to GFlowNets, (3.76) can be minimized

with respect to both the forward and backward policies or can be minimized using a fixed

backward policy.

Divergences between two distributions over trajectories and divergences between their two

marginal distributions over terminating states distributions are linked via the data processing

inequality, assuming f is convex (see, e.g., Zhang et al. (2019b)), making the former a sensible

surrogate objective for the latter:

Df (R/Ẑ∥P¦) f Df (PB∥PF) (3.77)

When both PB and PF are learned, the divergences with respect to which they are opti-

mized need not be the same, as long as both objectives are 0 if and only if PF = PB. For

103

Surrogate loss

Algorithm PF (sampler) PB (posterior)

Reverse KL DKL(PF∥PB) DKL(PF∥PB)
Forward KL DKL(PB∥PF) DKL(PB∥PF)
Wake-sleep (WS) DKL(PB∥PF) DKL(PF∥PB)
Reverse wake-sleep DKL(PF∥PB) DKL(PB∥PF)
On-policy TB DKL(PF∥PB) see Section 3.7.5

Table 3.1 – A comparison of algorithms for approximating a target distribution in a hier-
archical variational model or a GFlowNet. The gradients used to update the parameters of
the sampling distribution and of the auxiliary backward policy approximate the gradients of
various divergences between distributions over trajectories.

example, wake-sleep algorithms (Hinton et al., 1995) optimize the generative model PF using

DKL(PB∥PF) and the posterior PB using DKL(PF∥PB). A summary of common combinations

is shown in Table 3.1.

We remark that tractable unbiased gradient estimators for objectives such as (3.76) may

not always exist, as we cannot exactly sample from or compute the density of PB(Ä) when its

normalization constant Ẑ is unknown. For example, while the REINFORCE estimator gives

unbiased estimates of the gradient with respect to PF when the objective is Reverse KL

(see Section 3.7.5), other objectives, such as Forward KL, require importance-weighted

estimators. Such estimators approximate sampling from PB by sampling a batch of trajecto-

ries {Äi} from another distribution Ã (which may equal PF) and weighting a loss computed

for each Äi by a scalar proportional to PB(Äi)
Ã(Äi)

. Such reweighted importance sampling is helpful

in various variational algorithms, despite its bias when the number of samples is finite (e.g.,

Bornschein and Bengio, 2015; Burda et al., 2016), but it may also introduce variance that

increases with the discrepancy between PB and Ã.

3.7.3. Nested variational inference

From now on, we work with a graded DAG G = (S,A), in which the state space S is

decomposed into layers: S =
⊔L+1

l=0 Sl, with S0 = {s0} and SL = X 4.

HVI provides a class of algorithms to learn forward and backward policies on G. Rather

than learning these policies (PF and PB) using a variational objective requiring distributions

over complete trajectories, nested variational inference (NVI; Zimmermann et al., 2021)),

which combines nested importance sampling and variational inference, defines an objective

dealing with distributions over transitions, or edges. To this end, it makes use of positive

functions Fk of the states sk ∈ Sk, for k = 0, . . . , L− 1, to define two sets of distributions p̌k

4. SL+1 always corresponds to the singleton {sf}, and can be omitted for clarity and conciseness.

104

and p̂k over edges from Sk to Sk+1:

p̂k(sk → sk+1) ∝ Fk(sk)PF (sk+1 | sk) p̌k(sk → sk+1) ∝











R(sL)PB(sk | sL) k = L− 1

Fk+1(sk+1)PB(sk | sk+1) otherwise
.

(3.78)

Learning the policies PF , PB and the functions Fk is done by minimizing losses of the form:

LNVI(PF , PB, F) =
L−1
∑

k=0

Df (p̌k∥p̂k) (3.79)

The positive function Fk plays the same role as the state flow function in GFlowNets (in the

DB objective in particular). Before drawing the links between DB and NVI, we first propose

a natural extension of NVI to subtrajectories.

3.7.4. A variational objective for subtrajectories

Consider a graded DAG G = (S,A) where S =
⊔L+1

l=0 Sl, S0 = {s0}, SL = X . Amongst

the L + 1 layers l = 0, . . . , L, we consider K + 1 f L + 1 special layers, that we call junction

layers, of which the states are called hub states. We denote by m0, . . . , mK the indices of these

layers, and we constrain m0 = 0 to represent the layer comprised of the source state only,

and mK = L representing the terminating states X . On each non-terminating junction layer

mk ̸= L, we define a state flow function Fk : Smk
→ R

∗
+. Given any forward and backward

policies PF and PB respectively, consistent with the DAG G, the state flow functions define

two sets of distributions p̌k and p̂k over partial trajectories starting from a state smk
∈ Smk

and ending in a state smk+1
∈ Smk+1

(we denote by Tk the set comprised of these partial

trajectories, for k = 0 . . . K − 1):

∀Äk = (smk
→ . . .→ smk+1

) ∈ Tk p̂k(Äk) ∝ Fk(smk
)PF (Äk), (3.80)

∀Äk = (smk
→ . . .→ smk+1

) ∈ Tk p̌k(Äk) ∝ Fk+1(smk+1
)PB(Äk | smk+1

), (3.81)

where FK is fixed to the target reward function R.

Lemma 3.7.2 (Nested variational objective for subtrajectories). If p̂k = p̌k for all

k = 0 . . . K − 1, then the forward policy PF induces a terminating state distribution

P¦ that matches the target unnormalized distribution (or reward function) R.

Similar to NVI, we can use Lemma 3.7.2 to define objective functions for PF , PB, Fk, of

the form:

LSubNVI,f (PF , PB, F0:K−1) =
K−1
∑

k=1

Df (p̌k∥p̂k) (3.82)

Note that the SubNVI objective of (3.82) matches the NVI objective (Zimmermann et al.,

2021) when all layers are junction layers (i.e., K = L, and mk = k for all k f L), and matches

105

the HVI objective of (3.76) when only the first and last layers are junction layers (i.e., K = 1,

m0 = 0, and m1 = L).

3.7.5. Analysis of gradients

The following proposition summarizes our main theoretical claim, relating the GFN ob-

jective of (3.70) and the variational objective of (3.76).

Proposition 3.7.3. Given a graded DAG G, and denoting by ¹, ϕ the parameters of

the forward and backward policies PF , PB respectively, the gradients of the TB objective

(3.70) satisfy:

∇ϕDKL(PB∥PF) =
1

2
EÄ∼PB

[∇ϕLTB(Ä)], (3.83)

∇¹DKL(PF∥PB) =
1

2
EÄ∼PF

[∇¹LTB(Ä)]. (3.84)

This result can be extended to the subtrajectory balance objective and the SubNVI

objective of Section 3.7.4. A special case of this equivalence is between the Detailed Balance

objective and the nested VI objective (Zimmermann et al., 2021).

Proposition 3.7.4. Given a graded DAG G as in Section 3.7.1, with junction layers

m0 = 0, m1, . . . , mK = L as in Section 3.7.4. For any forward and backward policies,

and for any positive function Fk defined for the hubs, consider p̂k and p̌k defined in

(3.80) and (3.81). The subtrajectory variational objectives of (3.82) are equivalent

to the subtrajectory balance objective (3.73) for specific choices of the f -divergences.

Namely, denoting by ¹, ϕ the parameters of PF , PB respectively:

EÄk∼p̌k
[∇ϕLSubTB(Äk; PF , PB, F)] = 2∇ϕDf1

(p̌k∥p̂k) (3.85)

EÄk∼p̂k
[∇¹LSubTB(Äk; PF , PB, F)] = 2∇¹Df2

(p̌k∥p̂k) (3.86)

where F = F0:K−1, and f1 : t 7→ t log t and f2 : t 7→ − log t.

As a special case of Proposition 3.7.4, when the state flow function is defined for s0 only

(and for the terminating states, at which it equals the target reward function), i.e., when

K = 1, the distribution p̂0(Ä) and PF (Ä) are equal, and so are the distributions p̌0(Ä) and

PB(Ä). We thus obtain the first two equations of Proposition 3.7.3 as a consequence of

Proposition 3.7.4.

In the remainder of this chapter, we will focus on the equivalence with TB, provided by

Proposition 3.7.3.

106

While (3.84) is the on-policy TB gradient with respect to the parameters of PF , (3.83)

is not the on-policy TB gradient with respect to the parameters of PB, as the expectation

is taken over PB, not PF . The on-policy TB gradient can, however, be expressed through a

surrogate loss:

Lemma 3.7.5 (On-policy TB gradient with respect to PB). Denoting by Dlog2 the

pseudo-f -divergence defined by f(x) = log(x)2, which is not convex for large x.

EÄ∼PF
[∇ϕLTB(Ä)] = ∇ϕ

[

Dlog2(PB∥PF) + 2(log Z − log Ẑ)DKL(PF∥PB)
]

, (3.87)

where Ẑ =
∑

x∈X R(x), the unknown true partition function.

The loss in (3.83) is not possible to optimize directly unless using importance weighting

(cf. the end of Section 3.7.2), but optimization of PB using (3.83) and PF using (3.84) would

yield the gradients of Reverse wake-sleep in expectation.

Score function estimator and variance reduction: Optimizing the reverse KL loss

DKL(PF∥PB) with respect to ¹, the parameters of PF , requires a likelihood ratio (also known

as REINFORCE) estimator of the gradient (Williams, 1992), using a trajectory Ä (or a batch

of trajectories), which takes the form:

∆(Ä) = ∇¹ log PF (Ä ; ¹)c(Ä), where c(Ä) = log
PF (Ä)

R(xÄ)PB(Ä | xÄ)
(3.88)

(Note that the term ∇¹c(Ä) that is typically present in the REINFORCE estimator is 0 in

expectation, since EÄ∼PF
[∇¹ log PF (Ä)] =

∑

Ä
PF (Ä)
PF (Ä)

∇¹PF (Ä) = 0.) The estimator of (3.88) is

known to exhibit a high variance norm, thus slowing down learning. A common workaround

is to subtract a baseline b from c(Ä), which does not bias the estimator. The value of the

baseline b (also called control variate) that most reduces the trace of the covariance matrix

of the gradient estimator is

b∗ =
EÄ∼PF

[c(Ä)∥∇¹ log PF (Ä ; ¹)∥2]

EÄ∼PF
[∥∇¹ log PF (Ä ; ¹)∥2]

, (3.89)

commonly approximated with EÄ∼PF
[c(Ä)] (see, e.g., Weaver and Tao (2001); Wu et al.

(2018)). This approximation is itself often approximated with a batch-dependent local

baseline, from a batch of trajectories {Äi}
B
i=1:

blocal =
1

B

B
∑

i=1

c(Äi) (3.90)

A better approximation of the expectation EÄ∼PF
[c(Ä)] can be obtained by maintaining a

running average of the values c(Ä), leading to a global baseline. After observing each batch

107

of trajectories, the running average is updated with step size ¸:

bglobal ← (1− ¸)bglobal + ¸blocal. (3.91)

This coincides with the update rule of log Z in the minimization of LTB(PF , PB, Z) with a

learning rate ¸

2
for the parameter log Z (with respect to which the TB objective is quadratic).

Consequently, (3.84) of Proposition 3.7.3 shows that the update rule for the parameters of

PF , when optimized using the Reverse KL objective, with (3.91) as a control variate for

the score function estimator of its gradient, is the same as the update rule obtained by

optimizing the TB objective using on-policy trajectories.

While learning a backward policy PB can speed up convergence (Malkin et al., 2022), the

TB objective can also be used with a fixed backward policy, in which case the Reverse KL

objective and the TB objective differ only in how they reduce the variance of the estimated

gradients, if the trajectories are sampled on-policy. In Section 3.8, we experimentally explore

the differences between the two learning paradigms that arise when PB is learned or when

the algorithms run off-policy.

3.8. Experiments

The goal of the experiments is to empirically investigate two main observations consistent

with the theoretical analysis provided in Section 3.7:

Observation 1. On-policy VI and TB (GFlowNet) objectives can behave similarly in

some cases, when both can be stably optimized, while in others, on-policy TB strikes a better

compromise than either the (mode-seeking) Reverse KL or (mean-seeking) Forward KL

VI objectives. This claim is supported by the experiments on all three domains below.

However, in all cases, notable differences emerge. In particular, HVI training becomes

more stable near convergence and is sensitive to learning rates, which is consistent with the

hypotheses about gradient variance in Section 3.7.5.

Observation 2. When exploration matters, off-policy TB outperforms both on-policy

TB and VI objectives, avoiding the possible high variance induced by importance sampling

in off-policy VI. GFlowNets are capable of stable off-policy training without importance

sampling. This claim is supported by experiments on all domains but is especially well

illustrated on the realistic domains in Section 3.8.3 and Section 3.8.4. This capability provides

advantages for capturing a more diverse set of modes.

Observation 1 and Observation 2 provide evidence that off-policy TB is the best

method among those tested in terms of both accurately fitting the target distribution and

effectively finding modes, where the latter is particularly important for the challenging mol-

ecule graph generation and causal graph discovery problems studied below.

108

Code for these experiments can be found at https://github.com/GFNOrg/GFN_

vs_HVI/.

3.8.1. Practical details

Evaluation of the terminating state distribution P¦: When the state space is small

enough, we can propagate the flows in order to compute the terminating state distribution

P¦ from the forward policy PF . This is done using a flow function F defined recursively:

F (s′) =











1 if s′ = s0

∑

s∈P ar(s′) F (s)PF (s′ | s) otherwise
(3.92)

P¦ is then given by:

P¦(s) ∝ F (s)PF (sf | s), (3.93)

The recursion can be carried out by dynamic programming by enumerating the states in any

topological ordering consistent with the graded DAG G. In particular, computation of the

flow at a given terminating state s is linear in the number of states and actions that lie on

trajectories leading to s, and computation of the full distribution P¦ is linear in |S|+ |A|.

Evaluation of the Jensen-Shannon divergence (JSD). Similarly, when the state space

is small enough, the target distribution P ¦ = R/Z∗ can be evaluated exactly, given that the

marginalization is over X only. The JSD is a symmetric divergence, thus motivating our

choice. The JSD can directly be evaluated as:

JSD(P ¦∥P¦) =
1

2

(

DKL(P ¦∥M) + DKL(P¦∥M)
)

where M = (P ¦ + P¦)/2 (3.94)

=
1

2

∑

s∈So

(

P ¦(s) log
2P ¦(s)

P ¦(s) + P¦(s)
+ P¦(s) log

2P¦(s)

P ¦(s) + P¦(s)

)

(3.95)

3.8.2. Hypergrid: Exploration of learning objectives

In this section, we comparatively study the ability of the variational objectives and the

GFlowNet objectives to learn a multimodal distribution given by its unnormalized density,

or reward function, R. We use the synthetic hypergrid environment introduced by Bengio

et al. (2021) and further explored by Malkin et al. (2022).

Details about the environment. In a D-dimension hypergrid of side length H, the state

space satisfies S = X ∪ {sf}, where X = {0, . . . , H − 1}D. All states, besides the sink state,

are thus terminating. The initial state is 0RD = (0, . . . , 0) ∈ X , and in addition to the

transitions from a non-sink state to another (by incrementing one coordinate of the state),

an “exit” action is available for all s ∈ X , that leads to the sink state sf . The reward at a

109

https://github.com/GFNOrg/GFN_vs_HVI/
https://github.com/GFNOrg/GFN_vs_HVI/

0k 200k 400k 600k 800k 1000k
Trajectories sampled

10 4

10 3

10 2

10 1

100

JS
D

TB
WS
Forward KL
Reverse KL
Reverse WS

0k 200k 400k 600k 800k 1000k
Trajectories sampled

On
 P

ol
icy

Reverse KL Reverse WS WS Forward KL TB

Of
f P

ol
icy

Target Distribution

Figure 3.8 – Top: The evolution of the JSD between the learned sampler P¦ and the target
distribution on the 128×128 grid, as a function of the number of trajectories sampled. Shaded
areas represent the standard error evaluated across 5 different runs (on-policy left, off-policy
right). Bottom: The average (across 5 runs) final learned distribution P¦ for the different
algorithms, along with the target distribution. To amplify variation, the plot intensity at
each grid position is resampled from the Gaussian approximating the distribution over the 5
runs. Although WS, Forward KL, and Reverse WS (off-policy) find the 4 target modes,
they do not model them with high precision and produce a textured pattern at the modes,
where it should be flat.

terminating state s = (s1, . . . , sD)¦ is:

R(s) = R0 + 0.5
D
∏

d=1

1

(∣

∣

∣

∣

∣

sd

H − 1
− 0.5

∣

∣

∣

∣

∣

∈ (0.25, 0.5]

)

+ 2
D
∏

d=1

1

(∣

∣

∣

∣

∣

sd

H − 1
− 0.5

∣

∣

∣

∣

∣

∈ (0.3, 0.4)

)

,

(3.96)

where R0 is an exploration parameter (lower values indicate harder exploration). The states

form a D-dimensional hypergrid with side length H, and the reward function has 2D flat

modes near the corners of the hypergrid. The states form a pointed DAG, where the source

state is the origin s0 = 0, and each edge corresponds to the action of incrementing one

coordinate in a state by 1 (without exiting the grid).

We focus on the case where PB is learned, which has been shown to accelerate convergence

(Malkin et al., 2022).

In Figure 3.8, we compare how fast each learning objective discovers the 4 modes of a 128×

128 grid, with an exploration parameter R0 = 0.001 in the reward function. The gap between

the learned distribution P¦ and the target distribution is measured by the Jensen-Shannon

110

divergence (JSD) between the two distributions to avoid giving a preference to one KL or

the other. Additionally, we show graphical representations of the learned 2D terminating

states distribution, along with the target distribution. We provide in Section 3.8.1 details

on how P¦ and the JSD are evaluated and how hyperparameters were optimized separately

for each learning algorithm.

Exploration poses a challenge in this environment, given the distance that separates the

different modes. We thus include in our analysis an off-policy version of each objective,

where the behaviour policy is different from, but related to, the trained sampler PF (Ä). The

GFlowNet behaviour policy used here encourages exploration by reducing the probability of

terminating a trajectory at any state of the grid. This biases the learner towards sampling

longer trajectories and helps with faster discovery of farther modes. When off-policy, the

HVI gradients are corrected using importance sampling weights.

For the algorithms that use a score function estimator of the gradient (Forward KL,

Reverse WS, and Reverse KL), we found that using a global baseline, as explained

in Section 3.7.2, was better than using the more common local baseline in most cases. In

Figure 3.9, we illustrate the differences between the two types of baselines considered (global

and local) for the 3 algorithms that use a score function estimator of the gradient, both on-

policy and off-policy.

3 × 10 1

4 × 10 1

On
 P

ol
icy

Reverse KL

10 1

2 × 10 1

3 × 10 1

4 × 10 1
Reverse WS

10 2

10 1

Forward KL
local
global

2.25 × 10 1
2.5 × 10 1

2.75 × 10 1
3 × 10 1

3.25 × 10 1
3.5 × 10 1

3.75 × 10 1

Of
f P

ol
icy

10 2

10 1

10 2

10 1

Figure 3.9 – A comparison of the type of baseline used (local or global) for the three HVI
algorithms that use a score function estimator of the gradient.

By using global baselines, we bring the VI methods closer to GFlowNets and thus factor

out this issue from the comparison with the GFlowNet objectives.

We see from Figure 3.8 that while Forward KL and WS – the two algorithms that

use DKL(PB∥PF) as the objective for PF – discover the four modes of the distribution faster,

they converge to a local minimum and do not model all the modes with high precision. This

is due to the mean-seeking behaviour of the forward KL objective, requiring that P¦ puts

non-zero mass on terminating states x where R(x) > 0. Objectives that use the reverse KL

to train the forward policy (Reverse KL and Reverse WS) are mode-seeking and can

thus have a low loss without finding all the modes. The TB GFlowNet objective offers the

111

best of both worlds, as it converges to a lower value of the JSD, discovers the four modes, and

models them with high precision. This supports Observation 1. Additionally, in support of

Observation 2, while both the TB objective and the HVI objectives benefit from off-policy

sampling, TB benefits more, as convergence is greatly accelerated.

Smaller environments: The environment studied thus far (128 × 128, with R0 = 10−3)

already illustrates some key differences between the Forward and Reverse KL objectives. As

a sanity check for the HVI methods that failed to converge in this challenging environment,

we consider two alternative grids: 64× 64 and 8× 8× 8× 8, both with an easier exploration

parameter (R0 = 0.1), and compare the 5 algorithms on-policy on these two extra domains.

Additionally, for the two-dimensional domain (64× 64), we illustrate in Figure 3.10 a visual

representation of the average distribution obtained after sampling 106 trajectories for each

method separately. Interestingly, unlike the hard exploration domain, the two algorithms

with the mode-seeking KL (Reverse KL and Reverse WS) converge to a lower JSD than

the mean-seeking KL algorithms (Forward KL and WS), and are on par with TB.

0k 200k 400k 600k 800k 1000k
Trajectories sampled

10 5

10 4

10 3

10 2

10 1

100

JS
D

8x8x8x8
TB
Reverse KL
WS
Forward KL
Reverse WS

0k 200k 400k 600k 800k 1000k
Trajectories sampled

64x64

Reverse KL Reverse WS WS Forward KL TB Target Distribution

Figure 3.10 – Top: The evolution of the JSD between the learned sampler P¦ and the
target distribution on the 8× 8× 8× 8 grid left and the 64× 64 grid right. Trajectories are
sampled on-policy. Shaded areas represent the standard error evaluated across 5 different
runs Bottom: The average (across 5 runs) final learned distribution P¦ for the different
algorithms, along with the target distribution. To amplify variation, the plot intensity at
each grid position is resampled from the Gaussian approximating the distribution over the
5 runs.

Implementation details for the Hypergrid experiments are provided in Appendix D.3.1.

3.8.3. Molecule synthesis

We study the molecule synthesis task from Bengio et al. (2021), in which molecular graphs

are generated by sequential addition of subgraphs from a library of blocks (Jin et al., 2020;

112

4 8 10 16
reward exponent

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

lo
gP

T F
(x

) t
o

lo
gR

(x
) c

or
re

la
tio

n

Reverse KL on-policy
TB on-policy

Reverse KL off-policy
TB off-policy

10 4 10 3

learning rate

Figure 3.11 – Correlation between marginal sampling log-likelihood and log-reward on
the molecule generation task for different learning algorithms, showing the advantage of off-
policy TB (red) against on-policy TB (orange) and both on-policy (blue) and off-policy HVI
(green). For each hyperparameter setting on the x-axis (³ or ´), we take the optimal choice
of the other hyperparameter (´ or ³, respectively) and plot the mean and standard error
region over three random seeds.

Kumar et al., 2012). The reward function is expressed in terms of a fixed, pretrained graph

neural network f that estimates the strength of binding to the soluble epoxide hydrolase

protein (Trott and Olson, 2010). To be precise, R(x) = f(x)´, where f(x) is the output of

the binding model on molecule x, and ´ is a parameter that can be varied to control the

entropy of the sampling model.

Because the number of terminating states is too large to exactly compute the target

distribution, we use a performance metric from past work on this task (Bengio et al., 2021)

to evaluate sampling agents. Namely, for each molecule x in a held-out set, we compute

log P¦(x), the likelihood of x under the trained model (tractably computable by dynamic

programming, see Section 3.8.1), and evaluate the Pearson correlation of log P¦(x) and

log R(x). This value should equal 1 for a perfect sampler, as log P¦(x) and log R(x) would

differ by a constant, the log-partition function log Ẑ.

In Malkin et al. (2022), GFlowNet samplers using the DB and TB objectives, with the

backward policy PB fixed to a uniform distribution over the parents of each state, were

trained off-policy. Specifically, the trajectories used for DB and TB gradient updates were

sampled from a mixture of the (online) forward policy PF and a uniform distribution at

each sampling step, with a special weight depending on the trajectory length used for the

termination action.

We wrote an extension of the published code of Malkin et al. (2022) with an imple-

mentation of the HVI (Reverse KL) objective, using a reweighted importance sampling

113

correction. We compare the off-policy TB from past work with the off-policy Reverse KL,

as well as on-policy TB and Reverse KL objectives. (Note that on-policy TB and Re-

verse KL are equivalent in expectation in this setting since the backward policy is fixed.)

Each of the four algorithms was evaluated with four values of the inverse temperature pa-

rameter ´ and of the learning rate ³, for a total of 4 × 4 × 4 = 64 settings. (We also

experimented with the off-policy Forward KL / WS objective for optimizing PF , but none

of the hyperparameter settings resulted in an average correlation greater than 0.1.)

The results are shown in Figure 3.11, in which, for each hyperparameter (³ or ´), we

plot the performance for the optimal value of the other hyperparameter. We make three

observations:

• In support of Observation 2, off-policy Reverse KL performs poorly compared to its

on-policy counterpart, especially for smoother distributions (smaller values of ´) where

more diversity is present in the target distribution. Because the two algorithms agree in

the expected gradient, this suggests that importance sampling introduces unacceptable

variance into HVI gradients.

• In support of Observation 1, the difference between on-policy Reverse KL and on-

policy TB is quite small, consistent with their gradients coinciding in the limit of descent

along the full-batch gradient field. However, Reverse KL algorithms are more sensitive

to the learning rate.

• In support of Observation 2, off-policy TB gives the best and lowest-variance fit to the

target distribution, showing the importance of an exploratory training policy, especially

for sparser reward landscapes (higher ´).

3.8.4. Generation of DAGs in Bayesian structure learning

Finally, we consider the problem of learning the (posterior) distribution over the structure

of Bayesian networks, as studied in Deleu et al. (2022). The goal of Bayesian structure

learning is to approximate the posterior distribution p(G | D) over DAGs G, given a dataset

of observations D. Following Deleu et al. (2022), we treat the generation of a DAG as a

sequential decision problem, where directed edges are added one at a time, starting from the

completely disconnected graph. Since our goal is to approximate the posterior distribution

p(G | D), we use the joint probability R(G) = p(G,D) as the reward function, which is

proportional to the former up to a normalizing constant. Details about how this reward

is computed, as well as the parameterization of the forward policy PF , are available in

Appendix D.3.3. Note that similarly to Section 3.8.3, and following Deleu et al. (2022), we

leave the backward policy PB fixed to uniform.

We only consider settings where the true posterior distribution p(G | D) can be computed

exactly by enumerating all the possible DAGs G over d nodes (for d f 5). This allows us to

114

Number of nodes

Objective 3 4 5

(Modified) Detailed Balance 5.32± 4.15× 10−6 2.05± 0.70× 10−5
4.65± 1.08× 10

−4

Off-Policy Trajectory Balance 3.70± 2.51× 10
−7

9.35± 2.99× 10
−6 5.44± 2.47× 10−4

On-Policy Trajectory Balance 0.022± 0.007 0.123± 0.028 0.277± 0.040
On-Policy Reverse KL (HVI) 0.022± 0.007 0.125± 0.027 0.306± 0.042
Off-Policy Reverse KL (HVI) 0.014± 0.008 0.605± 0.019 0.656± 0.009

Table 3.2 – Comparison of the Jensen-Shannon divergence for Bayesian structure learning,
showing the advantage of off-policy TB over on-policy TB and on-policy or off-policy HVI.
The JSD is measured between the true posterior distribution p(G | D) and the learned
approximation P¦(G).

exactly compare the posterior approximations, found either with the GFlowNet objectives or

HVI, with the target posterior distribution. The state space grows rapidly with the number

of nodes (e.g., there are 29k DAGs over d = 5 nodes). For each experiment, we sampled

a dataset D of 100 observations from a randomly generated ground-truth graph G⋆; the

size of D was chosen to obtain highly multimodal posteriors. In addition to the (Modified)

DB objective introduced by Deleu et al. (2022), we also study the TB (GFlowNet) and the

Reverse KL (HVI) objectives, both on-policy and off-policy.

In Table 3.2, we compare the posterior approximations found using these different objec-

tives in terms of their Jensen-Shannon divergence (JSD) to the target posterior distribution

P (G | D). We observe that on the easiest setting (graphs over d = 3 nodes), all meth-

ods accurately approximate the posterior distribution. But as we increase the complexity

of the problem (with larger graphs), we observe that the accuracy of the approximation

found with Off-Policy Reverse KL degrades significantly, while the ones found with the

off-policy GFlowNet objectives ((Modified) DB & TB) remain very accurate. We also note

that the performance of On-Policy TB and On-Policy Reverse KL degrades too, but not

as significantly; furthermore, both of these methods achieve similar performance across all

experimental settings, confirming our Observation 1, and the connection highlighted in

Section 3.7.2. The consistent behaviour of the off-policy GFlowNet objectives compared to

the on-policy objectives (TB & Reverse KL) as the problem increases in complexity (i.e.,

as the number of nodes d increases, requiring better exploration) also supports our Obser-

vation 2. These observations are further confirmed when comparing the edge marginals

P (Xi → Xj | D) in Figure D.1 (Appendix D.3.3), computed either with the target posterior

distribution or with the posterior approximations.

115

Chapter 4

A theory of continuous generative flow

networks

This chapter is based upon the following paper:

— Lahlou et al. (2023a): “A theory of continuous generative flow networks“ - Salem

Lahlou, Tristan Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex

Hernández-García, Léna Néhale Ezzine, Yoshua Bengio, Nikolay Malkin, published

in 2023 in the proceedings of the International Conference on Machine Learning

(ICML).

Sections 4.1 and 4.2 are shortened versions of Sections 1 and 2 of Lahlou et al. (2023a), to

avoid repetition of content discussed in Chapter 3. The rest of the chapter is identical to

Lahlou et al. (2023a), except for some content that was moved from the appendix to the

main body of text to improve the reading flow and to highlight the contributions of the

author of the thesis.

4.1. Introduction

We have introduced in the previous chapter generative flow networks (GFlowNets), an

increasingly popular class of methods that amortize sampling from intractable distributions

over spaces with a compositional structure by learning a sequential sampling policy. Their

applications include the design of biological structures such as molecules (Bengio et al.,

2021; Jain et al., 2022b), Bayesian structure learning (Deleu et al., 2022; Nishikawa-Toomey

et al., 2022), and robust combinatorial optimization (Zhang et al., 2023a). Naturally, their

development and theoretical foundations, delved into in Chapter 3, have been geared towards

environments with discrete structures.

As many probabilistic inference and modelling problems involve continuous variables,

it is natural to ask whether the advantages of GFlowNets, which include stable off-policy

learning and the ability to capture many modes of the target distribution, extend to gen-

eral spaces. For example, molecule design implies specifying relative spatial positions of

atoms and benefits from modelling continuous variables, such as torsion angles (Jing et al.,

2022), and Bayesian structure learning requires the discovery of not only the structure of the

graphical model but also its parameters.

As an attempt at using GFlowNet losses to train an amortized sampler of an unnormalized

continuous density, Li et al. (2023) presented an extension of the flow-matching conditions

(Bengio et al., 2021) to continuous domains; however, this extension relies upon several

invalid assumptions, as we expand on in Section 4.3.1.

This chapter presents a theory extending all known GFlowNet training objectives to ar-

bitrary spaces. It relies on measurable pointed graphs, a generalization of directed acyclic

graphs (DAGs) to measurable spaces based on Markov kernels. Our main theoretical

contributions are an extension of the flow-matching (FM), detailed balance (FB), and

trajectory balance (TB) conditions, and a theorem proving that the learned forward kernel

samples from the target distribution when any of these conditions is satisfied. These condi-

tions lead to training losses involving density functions and allowing gradient-based learning.

Existing losses for discrete GFlowNets are special cases of the ones we state.

Additionally, we provide experimental results in multiple domains with different struc-

tures, some of which include action spaces with both discrete and continuous components.

These experiments serve both to validate the theoretical claims and to inform practitioners

of caveats that are specific to continuous domains. Our comparative experiments confirm

that the already-proven advantages of discrete GFlowNets transfer to more general state

spaces.

The remainder of the chapter is structured as follows:

Section 4.2 reviews work on stochastic sampling;

Section 4.3 presents the theoretical results and a practical summary;

Section 4.4 is devoted to empirically validating the theory and comparing generalized

GFlowNets with baselines.

4.2. Stochastic sampling in continuous spaces

Sequential sampling in continuous spaces has a long history. Specialized MCMC methods

(Section 2.2.2) exist for sampling from continuous or differentiable densities, such as Langevin

and Hamiltonian MCMC Coffey and Kalmykov (2012); Neal (2012); Hoffman and Gelman

(2011).

Another line of work considers stochastic sampling in a finite number of steps. The family

of sequential Monte Carlo methods (Doucet et al., 2001) and the closely related annealed

importance sampling Neal (2001b), already introduced in Section 2.2.2, specify a sequence

118

of intermediate target densities with respect to which samplers aim to approximately satisfy

detailed balance, but the transition kernel is typically not a learned neural network policy.

More recently, learnable-kernel sampling methods, formulated as score-based or stochastic

differential equation modelling, have been used for maximum-likelihood generative modelling

(e.g., Sohl-Dickstein et al., 2015b; Song and Ermon, 2019; Ho et al., 2020b; Dockhorn et al.,

2022), as well as for learning to sample from an intractable target density (Zhang and Chen,

2022). As we show in our experiments, such algorithms can be seen as special cases of

GFlowNets where the state space is of a particular form (Section 4.4.3, Section 4.4.6).

Another related direction is stochastic normalizing flows (Wu et al., 2020), which have

been interpreted with a Markov chain perspective (Hagemann et al., 2022), relying on Markov

kernels and Radon-Nikodym derivatives just as our theory of generalized GFlowNets.

4.3. A theory for generalized GFlowNets

All lemmas, propositions and theorems of this section are proved in Appen-

dix E.3.

4.3.1. Practical summary

Discrete GFlowNet Generalized GFlowNet Reference

The state space is a finite set with distin-
guished source and sink states

The state space is a topological space with
distinguished source and sink states and may
consist of both continuous and discrete com-
ponents

Definition 4.3.3

Children and parents of a state s Supports of the measures »(s,−), »b(s,−) Definition 4.3.3

All states are reachable from s0 All open sets are reachable from s0 with
nonzero likelihood

(4.5)

The state § has no outgoing edges The state § is absorbing (4.6)

The state graph is acyclic (⇒ trajectory
lengths are bounded)

The measurable pointed graph is finitely ab-
sorbing

(4.11)

State flow F , forward policy PF , backward
policy PB

Flow measure µ, forward kernel PF , backward
kernel PB

Definitions 4.3.12 and 4.3.17

Transition likelihoods PF (− | s) only positive
along edges

Transition kernels PF (s,−) absolutely contin-
uous with respect to »

Definition 4.3.12

Terminating distribution P¦ Terminating state measure P¦ Definition 4.3.6 and Theorem 4.3.14

Flow-matching implies sampler matches re-
ward function R

Flow-matching implies sampler matches re-
ward measure R

Definition 4.3.12 and Theorem 4.3.14

Detailed balance: F (s)PF (s′ | s) =
F (s′)PB(s | s′)

Detailed balance: µ(ds)PF (s, ds′) =
µ(ds′)PB(s′, ds)

Definition 4.3.17

Trajectory balance: ZPF (Ä) = R(xÄ)PB(Ä |
xÄ)

Trajectory balance: ZPF (s0, ds1) . . . PF (sn, {§}) =
R(dsn)PB(sn, dsn−1) . . . PB(s1, {s0})

Definition 4.3.19

Table 4.1 – Dictionary between discrete and generalized GFlowNets

A summary of the key differences and analogies between discrete and generalized

GFlowNets is provided in Table 4.1, and the precise way in which discrete GFlowNets are

119

special cases of generalized GFlowNets is stated in Example 4.3.4. Most importantly, the

soundness of the theory relies upon the following assumptions, which need to be carefully

verified when training a GFlowNet in an infinite space:

(1) The structure of the state space must allow all states to be reachable from the source

state s0 (4.5);

(2) The structure must ensure that the number of steps required to reach any state from s0

is bounded (4.11);

(3) The learned probability measures need to be expressed through densities over states,

rather than over actions.

On previous attempts to train continuous GFlowNets. While Li et al. (2023) pro-

posed to train continuous GFlowNets by writing the flow matching conditions as integrals

rather than sums, assumptions (1) and (3) are violated in a critical way. First, the envi-

ronments considered in Li et al. (2023)’s experiments violate assumption (1), without which

the main GFlowNet training theorems do not hold. Second, regarding (3), Li et al. (2023)

implicitly assumes that for a state s and flow function F (s→ s),
∫

s′:s→s′

F (s→ s′) ds′ =
∫

a
F (s→ T (s, a)) da,

where the second integral is taken over actions and T (s, a) is the state reached by taking

action a from s. This change of variables is invalid in general: the integrand on the right side

is missing the Jacobian term dT (s,a)
da

, which need not equal 1. In particular, it does not equal

1 in the environments studied by Li et al. (2023) (although it may hold in special cases, such

as sampling in Euclidean spaces where T (s, a) = s + a). These issues are concerning for the

scope of that method’s applicability.

4.3.2. Structured state space

Note. To help the reader form a mental picture, we list the concepts introduced and their

discrete analogues in Table 4.1 and formally state the connection in Example 4.3.4. Para-

graphs marked (⋆) explain the meaning of the technical results.

(⋆) How could one describe a structure in general spaces, similar to DAGs on

finite sets? In finite sets, it would suffice to enumerate the child sets and parent sets of all

states, with the constraint that s′ is a child of s if and only if s is a parent of s′. In general

state spaces, however, enumeration is replaced by measure. One could thus define, for each

state, a measure on the state space describing what states can be accessed in one step.

The structured state spaces we consider will be called measurable pointed graphs and rely

on transition kernels (Nummelin, 2004; Cappé et al., 2009; Petritis, 2012). Before delving

into measurable pointed graphs in Section 4.3.2.2, we recall some definitions and important

notations in Section 4.3.2.1.

120

4.3.2.1. Background on measure theory and transition kernels

Notation

Given a measurable space (S̄, Σ), we denote by Σ|U the restriction of Σ to any subset

U of S̄.

Definition 4.3.1 (Transition kernel). Let (S̄, Σ) be a measurable (state) space. A

function » : S̄ × Σ→ [0, +∞) is called a positive Ã-finite transition kernel if

(1) For any B ∈ Σ, the mapping s 7→ »(s, B) is measurable, where the space

[0, +∞) is associated with the Borel Ã-algebra B([0, +∞));

(2) For any s ∈ S̄, the mapping B 7→ »(s, B) is a positive Ã-finite measure on

(S̄, Σ).

A transition kernel such that the mappings B 7→ »(s, B) are probability measures is

called a Markov kernel.

Products of kernels. Given a measurable space (S̄, Σ), a positive measure ¿ on (S̄, Σ),

and a transition kernel » on (S̄, Σ), we denote by ¿» (resp. ¿ ¹ ») the measure on (S̄, Σ)

(resp. (S̄ × S̄, Σ¹ Σ)) defined for B ∈ Σ (resp. B ∈ Σ¹ Σ) as:

¿»(B) =
∫

S̄
¿(ds)»(s, B). (4.1)

¿ ¹ »(B) =
∫∫

S̄2

1B(s, s′)¿(ds)»(s, ds′) (4.2)

In particular, for any state s ∈ S̄, the n-step measure »n(s,−) is recursively defined by

»0(s,−) = ¶s, the Dirac at s, and:

»n+1(s,−) = »n(s,−)». (4.3)

Notation

Given two measures µ, ¿ on (S̄, Σ), we say that µ is absolutely continuous with respect

to ¿, and write µj ¿, if for every B ∈ Σ satisfying ¿(B) = 0, we have µ(B) = 0.

The following lemma ensures that absolute continuity between transition kernels transfers

to n-step measures

Lemma 4.3.2. Let », PF be two transition kernels on (S̄, Σ) such that PF (s,−) j

»(s,−) for every s ∈ S̄. Then for every n g 1, P n
F (s,−) and s ∈ S is absolutely

continuous with respect to »n(s,−).

121

Equality between measures. Given two measures p and q on (S̄, Σ), and a function

g : S̄ → R, we use the notation:

p(ds) = g(s)q(ds)

to say that for any measurable bounded function f : S̄ → R:
∫

S̄
f(s)p(ds) =

∫

S̄
f(s)g(s)q(ds). (4.4)

Throughout the paper, we use the two notations interchangeably when the context allows

it. Our proofs rely mostly on writing the equality with measurable bounded functions.

4.3.2.2. Measurable pointed graphs

Definition 4.3.3 (Measurable pointed graph). A measurable pointed graph G =

(S̄, T , Σ, s0,§, », »b, ¿) consists of:

— A topological space (S̄, T), where T is the set of open subsets of S̄ and Σ is the

Borel Ã-algebra associated to the topology on S̄;

— A pair of distinct distinguished states s0 ∈ S̄ and § ∈ S̄, called the source state

and sink state, such that {s0} and {§} are both open and closed sets. We define

S = S̄ \ {§} and S◦ = S \{s0}, so the topology on S̄ is the disjoint union topology

on {s0}, {§}, and S◦.

— A Ã-finite transition kernel » on (S̄, Σ), called the reference kernel,

— A Ã-finite transition kernel »b on (S̄, Σ), called the backward reference kernel,

— A strictly positive Ã-finite measure ¿ on (S̄, Σ), called the reference measure,

such that the following conditions hold:

∀B ∈ T \ {∅} ∃n g 0 : »n(s0, B) > 0, (4.5)

»(§,−) = ¶§, (4.6)

∀B ∈ Σ, s 7→ »(s, B) is continuous, (4.7)

∀f : S̄ × S̄ → R measurable bounded, satisfying f(s0, s0) = f(§,§) = 0 :
∫∫

S̄×S̄
f(s, s′)¿(ds)»(s, ds′) =

∫∫

S̄×S̄
f(s, s′)¿(ds′)»b(s′, ds), (4.8)

∀B ∈ Σ, »b(s0, B) = 0, (4.9)

∀s ∈ S, »(s, {§}) > 0⇒ »(s, {§}) = 1. (4.10)

The measurable pointed graph is called finitely absorbing if

∃N > 0 : supp(»N(s0,−)) = {§}, (4.11)

where supp denotes the support of a measure, in which case the minimal such N is

called the maximal trajectory length.

122

(⋆) The reference transition kernel » provides a notion of “structure” of the state space.

The support of »(s,−) (resp. »b(s,−)) can be thought of as the child set (resp. parent set)

of the state s. For example, in a discrete graph, »(s,−) could be uniform over the children

of s. The reference kernel is not a policy to be sampled, but an object needed to define

probability densities of policies. The measure ¿, the reference with respect to which flows

and rewards are defined, is typically a simple measure, such as the counting measure on a

discrete set or the standard Lebesgue measure on a Euclidean space.

In practice, if the structure is only defined by the reference kernel », then ¿ and »b satis-

fying the conditions of Definition 4.3.3 can be defined from » under some mild assumptions,

as we discuss in Proposition E.1.2 in Appendix E.1.

The following example shows that pointed directed acyclic graphs (Bengio et al., 2023)

are a special case of finitely absorbing measurable pointed graphs.

Example 4.3.4. Finite state spaces are special cases of measurable pointed graphs. Let

G = (V, E, s0,§) be a pointed directed acyclic graph, where V is the finite set of vertices,

E ¢ V × V is the set of directed edges, s0 ∈ V is the initial state, and § ∈ V is the sink

state.

The set of vertices V with the discrete topology corresponds to the state space. We can

define a transition kernel » such that for any vertex s ∈ V , and any B ∈ P(V), with P(V)

the power set of V , containing all subsets of V :

»(s, B) =
∑

s′∈B

1E(s→s′) + 1(s = §)1B(§)

Using this transition kernel, the measure B 7→ »n(s, B) over (V,P(V)) counts the number of

trajectories of length n starting at s that ends at a vertex in B in the pointed graph G.

The reverse kernel can be defined for any vertex s′ ∈ V and any B ∈ P(V) as:

»b(s′, B) =
∑

s∈B

1E(s→ s′),

and the reference measure ¿ can be defined as the counting measure (that counts the number

of elements in any B ∈ P(V)).

Since (V,P(V)) is a discrete space, the condition of accessibility in (4.5) can be verified

for only singletons B = {s}. This condition then corresponds to having a positive number of

trajectories of any length n > 0 starting at s0 and ending in s, which is exactly the notion

of accessibility in G. The continuity condition is trivially satisfied because the topology is

discrete, and (4.8) is trivially satisfied. Finally, (4.11) is satisfied given the acyclicity of G.

From now on, we fix a finitely absorbing measurable pointed graph G =

(S̄, T , Σ, s0,§, », »b, ¿) with maximal trajectory length N .

123

Definition 4.3.5 (Terminating states). The set of terminating states X is defined by:

X = {s ∈ S : »(s, {§}) > 0}. (4.12)

(⋆) Terminating states are ones from which one can transition to § with positive prob-

ability. Any transition kernel can be sampled for n steps, yielding a measure over n-step

trajectories and a marginal measure over states reached after n steps, as described in Sec-

tion 4.3.2.3, this can be used to define the marginal terminating measure P¦ of a transition

kernel PF , used in Sections 4.3.3 and 4.3.4.

4.3.2.3. Trajectory and terminating state measures

Definition 4.3.6. Let PF be a transition kernel on (S̄, Σ). For any n g 0 and s ∈ S̄,

PF induces a measure P ¹n
F (s,−) over the product space (S̄n+1, Σ¹(n+1)). P ¹n

F (s,−),

called the n-step trajectory measure at s recursively defined by

P ¹0
F (s,−) = ¶s, (4.13)

P ¹n+1
F (s,−) = P ¹n

F (s,−)¹ PF , (4.14)

where, as a generalization of (4.2), (4.14) means that for all B ∈ Σ¹(n+2):

P ¹n+1
F (s, B) =

∫

S̄n+2

1B(s1, . . . , sn+2)P
¹n
F (s, ds1 . . . dsn+1)PF (sn+1, dsn+2).

Notation

We use −→s1:n to denote (s1, . . . , sn) and
−−→
ds1:n to denote ds1 . . . dsn. We can

write for example: P ¹1
F (s, ds′ ds1) = ¶s(ds′)PF (s′, ds1) and P ¹2

F (s, ds′ ds1 ds2) =

¶s(ds′)PF (s′, ds1)PF (s1, ds2), and more generally:

P ¹n
F (s, ds′−−→ds1:n) = P ¹n−1

F (s, ds′−−−−→ds1:n−1)PF (sn−1, dsn)

Terminating state measure. Given a measurable pointed DAG G = (S̄, T , Σ, s0,§, », »b, ¿),

any transition kernel PF on (S̄, Σ) induces a terminating state measure P¦, which is the

sum of the n-step terminating state measures defined as follows:

124

Definition 4.3.7. Let PF be a transition kernel on (S̄, Σ). For any n g 0 we define

the n-step terminating state measure P n
¦ over (X , Σ|X), for any B ∈ Σ|X as:

P n
¦(B) =

∫

S̄n+1

P ¹n
F (s0, ds1 . . . dsn+1)1B(sn)1(sn+1 = §). (4.15)

The terminating state measure is defined as:

P¦ : B ∈ Σ|X 7→
∞
∑

n=1

P n
¦(B) (4.16)

The following lemma, relates the n-step terminating measures to the n-step measures

P n
F (s0,−):

Lemma 4.3.8. Let PF be a transition kernel on (S̄, Σ). For every n g 1, we have:

P n
¦(dx) = PF (x, {§})P n−1

F (s0, dx) (4.17)

Its proof relies on the following intermediary result, which relates the n-step trajectory

measures P ¹n
F (s,−) to the n-step measures P n

F (s,−) defined by (4.3).

Lemma 4.3.9. Let PF be a transition kernel on (S̄, Σ). For every s ∈ S̄, n g 0, and

for any bounded measurable function f : S̄ → R, we have:
∫

S̄n+1

f(s′)P ¹n
F (s, ds1 . . . dsnds′) =

∫

S̄
f(s′)P n

F (s, ds′) (4.18)

4.3.2.4. Properties of measurable pointed graphs

The following lemma ensures that in a measurable pointed graph, {s0} is not accessible.

Lemma 4.3.10. ∀s ∈ S, »(s, {s0}) = 0

The following lemma ensures a compatibility between the definition of the terminating

states X and »b(§,−):

Lemma 4.3.11. The support of »b(§,−) is the closure of X .

125

4.3.3. Flows

Definition 4.3.12 (Flows and flow-matching conditions). Given a Ã-finite measure µ

over (S̄, Σ) that is absolutely continuous with respect to ¿ (we write µ j ¿), and a

Ã-finite Markov kernel PF on (S̄, Σ) (i.e., a transition kernel such that each PF (s,−)

is a probability measure) satisfying:

(1) PF (s,−)j »(s,−) for every s ∈ S̄,

(2) s 7→ PF (s, B) is continuous for every B ∈ Σ,

PF is said to be a forward kernel over G. We say that the tuple F = (µ, PF) satisfies

the flow-matching (FM) conditions if for any bounded measurable function f :

S̄ → R satisfying f(s0) = 0, we have
∫

S̄
f(s′)µ(ds′) =

∫∫

S×S̄
f(s′)µ(ds)PF (s, ds′). (4.19)

In which case, we say that F is a flow over G.

(⋆) The condition of absolute continuity with respect to the reference kernel » indicates

that the flow F must follow the “structure” of the measurable pointed graph, by assigning

positive measure only to parts of the space where the measure induced by » is also positive.

The kernel PF can be represented through a density function with respect to », which

represents a probability mass (if the action space is discrete) or a probability density (if it is

continuous). This allows to write conditions such as (4.19) using densities (Radon-Nikodym

derivatives), thus providing practical loss functions to train GFlowNets. We expand on this

point in Section 4.3.5.

Definition 4.3.13 (Reward-matching conditions). Let F = (µ, PF) be a flow over G.

Given a positive and finite measure R over X , called the reward measure, satisfying

Rj ¿, the flow F is said to satisfy the reward-matching condition with respect to R

if we have:

R(dx) = µ(dx)PF (x, {§}). (4.20)

The following theorem ascertains that, similar to discrete GFlowNets, when the flow and

reward matching conditions are satisfied, then recursively sampling from the Markov kernel

PF starting from s0 (until reaching §) yields samples from the normalized reward.

126

Theorem 4.3.14. If F = (µ, PF) is a flow over G, that satisfies the reward matching

conditions (4.20) with respect to a measure R, then the corresponding terminating state

measure P¦ (Definition 4.3.7) is a probability measure and satisfies for all B ∈ Σ|X :

P¦(B) =
1

R(X)
R(B). (4.21)

(⋆) R(X), the reward measure taken over the set of all terminating states X , corresponds

to the total reward or partition function Z of GFlowNets. Certain conditions (Def. 4.3.12

and 4.3.13) on µ, which represents a state flow, and PF , which represents a policy, imply

that the marginal terminating distribution of the policy is proportional to the reward. These

conditions correspond to the “flow in = flow out” condition at vertices of a discrete DAG.

The proof of the theorem relies on the following interesting result:

Proposition 4.3.15. Let F = (µ, PF) be a flow over G (i.e., F satisfies the flow-

matching conditions (4.19)), then the measure u defined by:

u : B ∈ Σ|S 7→
∞
∑

n=0

P n
F (s0, B), (4.22)

is finite, and satisfies for all B ∈ Σ|S

µ({s0})u(B) = µ(B) (4.23)

The following lemma, relates the flow measures at the source and sink states to the

reward measure and shows that the source and sink flows correspond to the "total reward"

R(X) (called the partition function with discrete GFlowNets):

Lemma 4.3.16. Let F = (µ, PF) be a flow over G satisfying reward-matching condi-

tions in (4.20) with respect to a measure R, then

µ({s0}) = µ({§}) = R(X). (4.24)

4.3.4. Detailed balance and trajectory balance

In finite GFlowNets, the detailed balance conditions (Bengio et al., 2023) and the trajec-

tory balance conditions (Malkin et al., 2022) were converted into training objectives in order

127

to sample from a target unnormalized distribution. In this section, we present analogous

conditions for general measurable pointed graphs.

Definition 4.3.17. Let µ be a Ã-finite measure over (S̄, Σ) such that µ j ¿, PF a

forward kernel over G, and PB a transition kernel on (S̄, Σ) such that:

(1) PB(s,−)j »b(s,−) for every s ∈ S̄,

(2) s 7→ PB(s, B) is continuous for every B ∈ Σ,

(3) PB(s,−) is a probability measure for every s ̸= s0,

PB is then said to be a backward kernel over G. We say that (µ, PF , PB) satisfy

the detailed balance (DB) conditions if for any bounded measurable function

f : S × S̄ → R satisfying f(s, s0) = 0 for every s ∈ S, we have
∫∫

S×S̄
f(s, s′)µ(ds)PF (s, ds′) (4.25)

=
∫∫

S×S̄
f(s, s′)µ(ds′)PB(s′, ds).

The following proposition shows an equivalence between the DB and FM conditions.

Proposition 4.3.18. If (µ, PF , PB) satisfy the detailed balance conditions in Def-

inition 4.3.17, then F = (µ, PF) satisfies the flow-matching conditions in Defini-

tion 4.3.12 and is thus a flow.

Definition 4.3.19. Let PF be a forward kernel over G, PB a backward kernel over G,

and Z ∈ R+. Let R be a positive finite measure on X . The triple (Z, PF , PB) satisfies

the trajectory balance (TB) conditions with respect to R if for any n g 0 and

any bounded measurable function f : S̄n+2 → R:
∫

S̄n+2

Zf(s,−−−→s1:n+1)1(sn ̸= §, sn+1 = §)P ¹n+1
F (s0, ds

−−−−→
ds1:n+1) (4.26)

=
∫

S̄n+1

1(s = s0)f(s,−→s1:n,§)R(dsn)P ¹n
B (sn, ds′−−−−→dsn−1:1 ds),

where −→s1:n denotes (s1, . . . , sn) and
−−→
ds1:n denotes ds1 . . . dsn.

The following proposition shows an equivalence between the TB and both the FM and

reward matching conditions.

128

Proposition 4.3.20. If (Z, PF , PB) satisfy the TB conditions (4.26) with respect to a

measure R, then F = (µ, PB), where µ is defined by:

(1) µ({§}) = µ({s0}) = Z

(2) ∀B ∈ Σ|S : µ(B) = µ({s0})
∑∞

n=0 P n
F (s0, B)

satisfies both the flow-matching conditions (4.19) and the reward matching conditions

(4.20) with respect to R.

Its proof relies on the following lemma and proposition, which is an extension of

Lemma 3.2.5 to measurable pointed graphs:

Lemma 4.3.21. If (PF , PB, Z) satisfy the trajectory balance conditions with respect to

R, then for any n ∈ {0, ..., N}, and for any measurable bounded function f : S → R:

Z
∫

S
f(s)P n

F (s0, ds)PF (s, {§}) =
∫

S
f(s)P n

B(s, {s0})R(ds) (4.27)

Proposition 4.3.22. Let PB be a backward kernel over G. Let PB,T be the measure

defined by:

PB,T (s) =
∞
∑

n=0

P n
B(s, {s0}) (4.28)

We have ∀s ∈ S:

PB,T (s) = 1 (4.29)

(⋆) Analogues of the DB and TB conditions for discrete GFlowNets were stated and

shown to imply the FM conditions. In the next section, they will be used to construct

training objectives for parametric policies.

4.3.5. Training losses for GFlowNets

Above, we have presented three conditions under which a sampler based on a Markov

kernel PF samples from the normalized version of a given reward measure. In practice,

similar to discrete GFlowNets, the objects of interest (µ, PF , PB, Z) are parameterized by a

vector ¹, and the goal is to learn ¹ using gradient-based learning. In this section, we derive

losses corresponding to the previous objectives.

We recall the Radon-Nikodym theorem that states that for any two given Ã-finite mea-

sures p and q on a measurable space (U,U) satisfying p j q, there exists a measurable

function f : U → R+, which is unique up to a set of measure zero under q, called the density

129

or the Radon-Nikodym derivative of p with respect to q, such that:

∀A ∈ U , p(A) =
∫

A
f(u)q(du). (4.30)

This theorem is convenient as it allows to bypass the need to define the measures µ,

PF (s,−), PB(s,−) on every measurable set, and only requires parameterizing the corre-

sponding densities (with respect to ¿, »(s,−), and »b(s,−) respectively).

Definition 4.3.23 (Losses). Let u : S → R+, pF : S×S̄ → R+, and pB : S×S → R+

be three functions, and Z ∈ R+ a scalar, all parameterized by a vector ¹, and satisfying

for every ¹:

∀s ∈ S̄,
∫

S̄
pF (s, s′; ¹)»(s, ds′) = 1 (4.31)

∀s′ ∈ S̄,
∫

S̄
pB(s′, s; ¹)»b(s′, ds) = 1 (4.32)

The flow-matching (FM) loss is defined for every s′ ∈ S as:

LF M(s′; ¹) =

(

log

∫

S u(s; ¹)pF (s, s′; ¹)»b(s′, ds)

u(s′; ¹)

)2

The detailed balance (DB) loss is defined for every (s, s′) ∈ S × S as:

LDB(s, s′; ¹) =

(

log
u(s; ¹)pF (s, s′; ¹)

u(s′; ¹)pB(s′, s; ¹)

)2

Denoting by r the density of the reward measure R with respect to the reference

measure ¿, the reward-matching (RM) loss is defined for any x ∈ X as:

LRM(x; ¹) =

(

log
u(x; ¹)pF (x,§; ¹)

r(x)

)2

Finally, the trajectory balance (TB) loss is defined for every complete trajectory

Ä = (s0, s1, . . . , sn, sn+1) ∈ {s0} × S
n × {§} (also denoted −−−→s0:n+1) where sn ∈ X and

sn+1 = § as:

Ln
T B(Ä ; ¹) =

(

log
Z(¹)

∏n
t=0 pF (st, st+1; ¹)

r(sn)
∏n−1

t=0 pB(st+1, st; ¹)

)2

.

Note that one could derive in a similar fashion a subtrajectory balance loss, similar to

the one used in discrete GFlowNets (Madan et al., 2022a).

(⋆) The above losses resemble discrete GFlowNet losses. When the action space is dis-

crete, and the reference measures are the counting measures over vertices of a DAG, pF (s, s′)

is a transition probability PF (s′ | s). When it is continuous, it represents a conditional

probability density over s′, given s.

130

Conversely, from functions u(−; ¹), pF (−; ¹), pB(−; ¹), we can define a measure µ(−; ¹)

on (S̄, Σ) whose density with respect to ¿ is u and forward and backward kernels

PF (−; ¹), PB(−; ¹) such that pF (s,−; ¹) and pB(s′,−; ¹) are their densities of with respect

to »(s,−) and »b(s,−), respectively 1.

(⋆) The following theorem ensures that similar to the discrete case, minimizing the losses

above leads to samplers of the right probability measure.

Theorem 4.3.24. (1) If LF M(−; ¹) = 0 ¿-almost surely, then F = (µ, PF) is a flow

(i.e., satisfies the flow-matching conditions in Definition 4.3.12).

(2) If LDB(−; ¹) = 0 ¿ ¹ »-almost surely, then (µ, PF , PB) satisfy the detailed balance

conditions in Definition 4.3.17.

(3) If LRM(−; ¹) = 0 ¿|X -almost surely, then (µ, PF) satisfies the reward matching

conditions in (4.20).

(4) If Ln
T B(−; ¹) = 0 ((¿ ¹ »¹n+1)|{s0}×Sn×{§})-almost surely for every n g 0, then

(Z¿({s0}), PF , PB) satisfy the trajectory balance condition in Definition 4.3.19.

An important consequence of Theorem 4.3.24 is that if we can find density functions

that achieve zero loss using any of the above objectives almost surely, in addition to the

reward-matching loss, then we obtain a way to sample terminating states (i.e., elements of

X) proportionally to the reward measure R, according to Theorem 4.3.14.

Training generalized GFlowNets. The FM, DB, and TB losses can be minimized us-

ing states (resp. pairs of subsequent states, trajectories) obtained from trajectories sampled

from a training policy Ã, which can be PF itself (on-policy), or a modification of it to encour-

age exploration (off-policy). Thm. 4.3.24 suggests that the parameters ¹ could be updated

with stochastic gradients EÄ=−−−−→s0:n+1∼Ã[∇¹L], where L is
∑n

t=1 LF M(st; ¹) + ³LRM(sn; ¹), or
∑n

t=0 LDB(st, st+1; ¹) + ³LRM(sn; ¹) or LT B(Ä ; ¹).

4.4. Experiments

4.4.1. Approximating the Jensen-Shannon Divergence

Given an unnormalized target reward measure r with respect to the Lebesgue measure on

a bounded space X , and a GFlowNet sampler P¦ of terminating states, we approximate the

JSD between the learned sampler and the normalized distribution R(dx) = 1
∫

X
r(x′)dx′

r(x)dx

as follows:

(1) We sample N points from the target distribution using rejection sampling, with a uniform

distribution as a proposal,

1. The measures at § are irrelevant.

131

s0

⊥

0 106 2.106

10 3

10 2

10 1

 = 0.25
TB Uniform PB
TB Learned PB

0 106 2.106

 = 0.1

DB Uniform PB
DB Learned PB

Figure 4.1 – (a) Measurable pointed graph structure of the environment in Section 4.4.2:
starting at s0, the first action makes a step within the grey quarter-disc, and subsequent
actions make steps of a fixed size or terminate. (b) Evolution of the JSD during training of
TB and DB, with both a uniform PB and a learned PB, for Ä = 0.25; (c) Ä = 0.1. The x-axis
is the number of sampled trajectories. Shaded areas represent standard deviations across 6
runs.

(2) We fit a kernel density estimator (KDE, Section 2.1.4) on the above samples,

(3) We fit a second KDE on N samples from P¦,

(4) We use both KDEs to score a fixed set of points defining a discretization of the sample

space X ,

(5) We normalize both sets of scores in order to obtain valid probability mass functions on

the grid,

(6) We evaluate the JSD between the two probability mass functions.

4.4.2. A synthetic continuous environment

Code for these experiments can be found at https://github.com/saleml/

continuous-gfn.

In this section, we study a synthetic environment inspired by the hypergrid environment

(Bengio et al., 2021; Malkin et al., 2022, 2023), with varying trajectory lengths and a pointed

graph structure imposing a mixed discrete and continuous probability measure for the policy

PF .

Structure of the state space. The measurable pointed graph is specified by S = [0, 1]2,

and s0 = (0, 0). A hyperparameter Ä, called the step size, controls the maximal trajectory

length. »(s0,−) is the Lebesgue measure on D0, the northeastern quarter disk of radius Ä

centered at s0. When s ̸= s0, and ∥s∥ < 1 − Ä, »(s,−) is the sum of the one-dimensional

Lebesgue arclength measure on C+
s (the intersection of the northeastern quarter circle of

radius Ä centered at s and S) and the Dirac measure ¶§. Finally, when ∥s∥ > 1 − Ä,

132

https://github.com/saleml/continuous-gfn
https://github.com/saleml/continuous-gfn

0 1 0 1 0 0 0

Figure 4.2 – (a) Reward density in [0, 1]2. (b) KDE fit on terminating states of the models
trained with TB, Ä = 0.25. (c) KDE fit on samples from the reward, brought back to D0

using a uniform PB, corresponding to what PF (s0,−) needs to be in order to satisfy DB or
TB. A richer search space for the densities pF (s,−) is required to fit this distribution. (d)
PF (s0,−) for a trained model with learnable PB. (e) The measure induced by a trained PB

on D0, which matches the learned PF (s0,−) in (d).

»(s,−) = ¶§. The forward structure is depicted in Figure 4.1(a). The backward reference

kernel »b is defined similarly.

The reference measure ¿ is the sum of the Lebesgue measure on S, ¶s0
, and ¶§. All states

besides s0 are terminating.

The reward measure R on X is specified by a density function r depicted in Figure 4.2(a).

The densities pF and pB are parameterized with mixtures of Beta distributions for the con-

tinuous components.

The forward and backward kernels PF , PB are defined by their densities pF and pB with

respect to the reference kernels », »b.

», ¿, »b satisfy the requirements of a finitely absorbing measurable pointed graph. More

notably, all states can be reached from s0 within 1 +
⌈√

2
Ä

⌉

steps.

The topology T on S̄ = S ∪ {§} is the disjoint union topology on {s0,§} and S.

We parameterized pF (s0,−) using a mixture of four Beta distributions for both the radius

r ∈ (0, Ä) and the angle ¹ ∈ (0, Ã
2
). We used a mixture of two Beta distributions for the

angle ¹ ∈ (¹min(s), ¹max(s)) when modelling pF (s,−) and pB(s,−). The forward policy

neural network has an extra output head corresponding to the probability of terminating

the trajectory, i.e., pF (s0,§). The learned probabilities were effectively multiplied by the

right Jacobians to account for the support of the Beta distributions ([0, 1]) being different

from that of ¹ or r.

Reward density. The reward measure R was specified using a density r with respect to the

Lebesgue measure ¼ on X = (0, 1)2. Following Bengio et al. (2021) and Malkin et al. (2022),

the (unnormalized) density is defined for every x = (x1, x2) ∈ X , similar to (3.96), as:

r(x) = 0.1 + 0.5
2
∏

i=1

1(|xi − 0.5| ∈ (0.25, 5]) + 2
2
∏

i=1

1(|xi − 0.5| ∈ (0.3, 0.4)). (4.33)

133

s0

s1 s2 s99 s100

⊥

Figure 4.3 – The GFlowNet state space for stochastic control tasks. The solid arrows show
a possible sampling trajectory and the dashed arrows show other possible actions, i.e., point
to other states in the support of the reference kernel ».

In Figure 4.1(b,c), we compare DB and TB on two versions of the environment (Ä ∈

{0.1, 0.25}), with both a uniform and a learned PB, using the Jensen-Shannon divergence

(JSD, Section 4.4.1) between the learned terminating state distribution and the target dis-

tribution as an evaluation metric. The results confirm the findings of Malkin et al. (2022)

on the discrete grid domain: the TB loss is more efficient in terms of credit assignment, as it

learns to model the target distribution faster and more precisely than DB, and the environ-

ment with longer trajectory lengths is harder to model. Additionally, learning a backward

policy significantly improves the learning curves of both methods. A justification of the

importance of learning in a backward policy is provided in Figure 4.2(c,d,e). Figure 4.2(b)

shows a KDE plot fit on terminating states sampled from the model trained with TB on the

Ä = 0.25 domain. We provide more details in Appendix E.2.1.

4.4.3. Low-dimensional stochastic control

In this section, we show how generalized GFlowNets with a state space of a particular

form can be used to learn (discretizations of) stochastic differential equations so as to sample

from a black-box target density. We bridge two recent works: Zhang and Chen (2022), from

which we borrow the datasets and many parts of the experimental setup, and Malkin et al.

(2023), where various algorithms for training stochastic samplers in discrete spaces were

considered and whose claims we validate in the continuous case.

We restate the problem considered by Zhang and Chen (2022) in GFlowNet terms. A

reward density is given on a Euclidean space R
n (e.g., the plane in Figure 4.3). The state

space is S = {s0}∪ (Rn×{1, 2, . . . , T}), where T is the number of moves an agent will make

before terminating (here, T = 100). Thus the noninitial states are pairs (xt, t) where xt ∈ R
n

and 1 f t f T ; we identify s0 with (0, 0). Trajectories begin at s0 and make successive steps

134

through the copies of Rn until reaching the sink state. 2 Learning a forward policy amounts

to learning a conditional probability density p(xt+1 | xt, t) over R
n. In particular, if this

density is Gaussian, then the policy is the T -step Euler-Maruyama discretization of an Itô

stochastic differential equation (SDE).

Zhang and Chen (2022) studied this problem in the case where the backward policy is

fixed to be the discretization of a Brownian motion with fixed variance Ã
T

pinned at (0, 0),

and the forward policy is constrained to be Gaussian with the same variance Ã
T

but with

learned mean. (The theory of SDEs implies that in the T →∞ limit, the forward policy PF

that minimizes the GFlowNet loss is indeed Gaussian with the same variance as the fixed

PB.) We thus aim to learn a function µ(xt, t), the mean of the forward policy, that makes

the policy sample from the target reward density.

The path integral sampler (PIS) training objective proposed by Zhang and Chen (2022)

minimizes the reverse KL divergence between two measures over trajectories: that defined

by PF and that defined by R and PB. By Theorem 1 of Malkin et al. (2023) (the proof of

which trivially generalizes to the continuous case), the gradient of this objective with respect

to the parameters of PF is proportional, in expectation, to that of the TB gradient when

trained on-policy. A critical difference between PIS and the on-policy TB objective is that

the latter does not require access to the gradient of the reward distribution but treats it as

a black box.

Datasets, algorithms, and baselines. We evaluate GFlowNets and baselines on two

synthetic densities: a 2-dimensional mixture of 9 Gaussians and the 10-dimensional funnel

from MCMC literature (Hoffman and Gelman, 2011).

In addition to GFlowNet TB, we evaluate the two algorithms for minimizing divergences

between trajectory measures studied by Malkin et al. (2023): the reverse KL optimized via

policy gradient – equivalent in expectation to TB – and the forward KL, for which gradient

estimation requires importance weighting. We also evaluate the algorithms in an off-policy

setting, where the training trajectories are sampled with additional variance injected into

the policy to encourage exploration (see Appendix E.2 for details). We include baselines

from Zhang and Chen (2022) as well.

All algorithms use the same model architecture as the PIS baseline for µ(xt, t) and are

evaluated using two metrics as defined in Zhang and Chen (2022): the log-partition func-

tion estimation bias using simple and importance-weighted variational bounds, as defined in

Appendix E.2.2.

Results and discussion. From the results in Table 4.2, and the extended results in

Table E.1, we conclude that the two main observations of Malkin et al. (2023) continue to

2. To be precise, the reference measure ν is the Lebesgue measure on each copy of Rn and the counting
measure on {s0}. If si is a state in the i-th copy of Rn (if i > 0) or the initial state s0 (if i = 0), the reference
kernel κ(si,−) is Lebesgue on the (i + 1)-st copy of Rn if i < T and δ⊥ if i = T ; κb is defined similarly.

135

Black box? Gaussian mixture Funnel

✓ Off-policy GFlowNet TB −0.003± 0.011 −0.026± 0.020
✓ Off-policy Reverse KL∗ −1.609± 0.546 –
✓ Off-policy Forward KL∗ −0.001± 0.013 −0.087± 0.081

✓ On-policy GFlowNet TB −1.301± 0.434 −0.012± 0.108
✓ On-policy Reverse KL −1.237± 0.413 −0.040± 0.023
✓ On-policy Forward KL∗ −0.007± 0.023 −0.034± 0.143

✓ Non-SDE SMC −0.362± 0.293 −0.216± 0.157

× On-policy PIS-NN −1.192± 0.482 −0.018± 0.020

× Non-SDE HMC −1.876± 0.527 −0.835± 0.257

Table 4.2 – Log-partition function estimation bias using importance-weighted bound BRW

(mean and standard deviation over 10 runs). The bold value in each column shows the best
result and all those statistically equivalent to it (p > 0.1 under a Welch’s t-test). Algorithms
assuming access to the gradient of the reward (non-black-box) are shown for comparison.
Rows marked with ∗ require importance weighting for gradient estimation. Cells with – were
unstable to optimize. Last three rows from Zhang and Chen (2022).

hold in this continuous setting. First, as expected, on-policy TB and reverse KL perform

similarly when both can be stably optimized. Second, in settings where off-policy exploration

is important, TB is more stable and achieves a better fit to the target than the other

objectives, which require importance weighting for gradient estimation. Figure E.1 shows

that exploration is necessary to discover modes. Finally, we note that TB is competitive

with the PIS objective despite not having access to gradients of the reward density.

4.4.4. Stochastic control on a torus

We consider a variant of the samplers discussed in Section 4.4.3 to model reward densities

on the surface of a 2D torus. Distributions over tori are helpful to model torsion angles in

molecular conformations, as we illustrate in Appendix E.2.3 and Figure E.2 with the alanine

dipeptide molecule.

To model the surface of a torus, the measurable pointed graph is defined by S = {s0} ∪

[0, 2Ã)2 × {t ∈ N, 1 f t f T}, where t denotes the step number and T the trajectory length,

and s0 = ((0, 0), 0). Note that here [0, 2Ã) has the topology of the circle, not that induced

from the real line.

We consider two reward densities: a synthetic multimodal density and a density based

on the energy E of the alanine dipeptide molecule as a function of two of the angles defining

136

Figure 4.4 – KDEs fit on samples from the reward functions (a: synthetic multimodal
reward function, c: Boltzmann distribution of principal torsion angles of the alanine dipep-
tide molecule – details in Appendix E.2.3) and on samples from the corresponding trained
GFlowNets (b, d). The topology of the torus imposes periodic boundary conditions on
[0, 2Ã)2.

the molecule’s conformation. More details are provided in Appendix E.2.3. We visually

represent learned and reward distributions in Figure 4.4.

137

Number of variables (d)

3 4 5
G

ra
ph

s BCD Nets – 2.13× 10−1 2.61× 10−1

DiBS 3.28× 10−1 2.95× 10−1 3.15× 10−1

GFlowNet 1.50× 10
−2

1.61× 10
−2

1.80× 10
−2

P
ar

am
s. BCD Nets – 2.17× 102 2.63× 102

DiBS 5.87× 102 1.12× 103 2.12× 103

GFlowNet −1.75× 10
0 −3.06× 10

0 −5.17× 10
0

Table 4.3 – Comparison between GFlowNets and other methods based on variational infer-
ence on the Bayesian structure learning task. (Graphs) RMSE between the estimated edge
marginals and the exact edge marginals. (Params.) Average negative log probability of the
parameter samples under the exact posterior P (¹ | G,D).

4.4.5. Posterior over continuous parameters in Bayesian structure

learning

To show the capacity of GFlowNets to model a distribution over a mixed space of discrete

and continuous quantities, we study the problem of learning the structure of a Bayesian

network and its parameters from a Bayesian perspective. Extending the work of Deleu et al.

(2022), our goal here is to approximate the (joint) posterior distribution P (G, ¹ | D) over the

directed acyclic graph (DAG) structure G of the Bayesian Network (discrete component) and

the parameters ¹ of its conditional probability distributions (continuous component), given

a dataset of observations D.

We use a GFlowNet structured as follows: starting from the empty graph, the DAG

G is first generated one edge at a time, following the structure of DAG-GFlowNet (Deleu

et al., 2022). Once the graph G has been entirely generated, we sample the parameters ¹

associated with it to reach a valid terminating state (G, ¹). Details about the state space and

the forward transition probability are given in Appendix E.2.4. We use the subtrajectory

balance loss (Madan et al., 2022a) to train the GFlowNet with R(G, ¹) = P (D | ¹, G)P (¹, G)

as a reward function.

To evaluate our approximation against the target distribution, we consider problems

where the true posterior P (G, ¹ | D) may be computed in closed form. More precisely, we

assume the Bayesian network follows a linear-Gaussian model and the number of random

138

Method FID³ NLL³

Baseline 17.65 4.57
MLE-GFN 16.36 4.47

Table 4.4 – ImageNet-32 results.

variables d f 5. Additional details about the experimental settings and metrics are avail-

able in Appendix E.2.4. In Section 4.4.5, we compare the performance of the GFlowNet

with two baseline methods based on variational inference: DiBS (Lorch et al., 2021) and

BCD Nets (Cundy et al., 2021). In Section 4.4.5 (top), we report the root-mean-square

error (RMSE) between the edge marginals computed with the approximation and the ex-

act posterior P (G | D); we observe that the model learned by the GFlowNet is signifi-

cantly more accurate on the discrete component, supporting the observation made in Malkin

et al. (2023). Moreover, in Section 4.4.5 (bottom), we observe that the sampled ¹ from the

GFlowNet are significantly more likely under the exact posterior P (¹ | G,D), suggesting

that the GFlowNet’s approximation of the continuous component is also more accurate.

4.4.6. Connections with diffusion models

We show how the generalized GFlowNet framework can be applied beyond the setting

of fitting a sampler to a target reward function. As established in Zhang et al. (2023b),

GFlowNets can also be trained to maximize likelihood of a given set of terminating states

with an algorithm called MLE-GFN. Here we apply MLE-GFN to generalized GFlowNets

to improve denoising diffusion probabilistic models (DDPMs; Ho et al., 2020b).

The generative process in a DDPM can be seen as a particular case of the sampling

process in a generalized GFlowNet of the same form as in Section 4.4.3 and Figure 4.3. A

fixed number of steps T is made through a sequence of copies of a high-dimensional space

R
n (with the i-th state in the trajectory representing, e.g., an image at noise level T − i).

The policy at the first step, from s0 to (x1, 1), is constrained to be unit Gaussian, while

subsequent steps are conditional Gaussians with a known variance.

While DDPMs typically fix the noising process – corresponding to the backward policy

PB in the GFlowNet – and learn only the denoiser (forward process), MLE-GFN allows

learning both PF and PB as Gaussian policies. The description and proof of the soundness

of MLE-GFN, as well as details of the parameterization of means and variances, can be found

in Zhang et al. (2023b).

We train a GFlowNet as described above on the ImageNet-32 dataset (treated as a set of

terminating states) with T = 100 steps. Table 4.4 demonstrates the efficacy of our method

compared to the DDPM baseline in terms of both the sample quality (FID) and density

modelling (NLL). We defer other details and example images to Appendix E.2.5.

139

Chapter 5

Direct Epistemic Uncertainty Prediction

This chapter is based upon the following paper:

— Lahlou et al. (2021): “DEUP: Direct Epistemic Uncertainty Prediction“ - Salem

Lahlou∗, Moksh Jain∗, Hadi Nekoei, Victor Ion Butoi, Paul Bertin, Jarrid Rector-

Brooks, Maksym Korablyov, Yoshua Bengio, published in 2023 in Transactions on

Machine Learning Research (TMLR).

Sections 5.1 and 5.4 are shortened versions of Sections 1 and 4 of Lahlou et al. (2021), to

avoid repetitions of content discussed in Chapter 2. The rest of the chapter is identical to

Lahlou et al. (2021), except for some content that was moved from the appendix to the main

body of text, to improve the reading flow, and to highlight the contributions of the author

the thesis.

5.1. Introduction

Expanding on Section 2.1.7, we study in this chapter alternative ways of quantifying

uncertainty. While probabilities have been widely used to represent uncertainty, there is not a

generally agreed upon definition of uncertainty, let alone a way of quantifying it as a number,

as confirmed by a meta-analysis performed by Zidek and Van Eeden (2003). In supervised

learning, Bayesian methods, which aim at predicting a conditional probability distribution

on the variable to predict, called the posterior predictive, are natural candidates for providing

uncertainty estimates. Bayesian learning is however more computationally expensive than its

frequentist counterpart, and generally relies on approximations such as MCMC (Brooks et al.,

2011) and Variational Inference (Blei et al., 2017) methods, both introduced in Section 2.2.

Prominent uncertainty estimation methods, such as MC-Dropout (Gal and Ghahramani,

2016b) and Deep Ensembles (Lakshminarayanan et al., 2017b), introduced in Section 2.2.3,

both of which are approximate Bayesian methods (Hoffmann and Elster, 2021), use the

posterior predictive variance as a measure of uncertainty: if multiple neural nets that are

all compatible with the data make different predictions at x, the discrepancy between these

predictions is a strong indicator of epistemic uncertainty at x.

Pitfalls of using the Bayesian posterior to estimate uncertainty: Epistemic uncer-

tainty in a predictive model, seen as a measure of lack of knowledge, consists of approximation

uncertainty - due to the finite size of the training dataset, and model uncertainty - due to

model misspecification (Hüllermeier and Waegeman, 2019), also called bias. The latter is

not accounted for when using variance or entropy as a measure of EU, but has been shown

to be important for generalization (Masegosa, 2020) as well as within interactive learning

settings like optimal design (Zhou et al., 2003). Approximate Bayesian methods that are

widely used in machine learning often suffer from model misspecification, for instance due

to the implicit bias induced by SGD (Kale et al., 2021) and the finite computational time.

Figure 5.1 illustrates with a Gaussian Process (GP) the suboptimal behavior of the GP to

estimate EU under model misspecification. The confidence intervals provided by the GP

are underestimated when the model is misspecified, which can lead to confidently wrong

predictions and poor decisions (see Figure 5.1, bottom left).

As a first contribution, we systematically analyze the sources of uncertainty and mis-

specification, and analyze the pitfalls of using discrepancy-based measures of EU (such as

variance of the Bayesian posterior predictive), given that they miss out on model uncer-

tainty, which we define as a component of the excess risk, i.e., the gap between the risk (or

out-of-sample loss) of the predictor at a point x and that of the Bayes predictor at x (the

one with the lowest expected loss, that no amount of additional data could reduce).

As a second contribution, we take a step back by considering the fundamental notion

of epistemic uncertainty as lack of knowledge, and based on this, we propose to estimate

the excess risk as a measure of EU. This leads us to our proposed framework DEUP, for

Direct Epistemic Uncertainty Prediction, where we train a secondary model, called the

error predictor, with an appropriate objective and appropriate data, to estimate the point-

wise generalization error (the risk), and then subtract an estimate of aleatoric uncertainty if

available, or provide an upper bound on EU otherwise. Figure 5.1 illustrates in a toy task in

which held-out data is available, that the epistemic uncertainty estimated by DEUP is more

useful to an interactive learner than those provided by a misspecified GP. It is important to

note that, in these settings of interest, DEUP does not use any additional held-out data.

Accounting for bias when measuring EU is particularly useful to an interactive learner

whose effective capacity depends on the training data, for instance a neural network, as it can

reduced with additional training data, especially in regions of the input space we care about,

i.e., where EU is large. DEUP is agnostic to the type of predictors used, and in interactive

settings, it is agnostic to the particular search method still needed to select points with high

EU in order to propose new candidates for active learning (Aggarwal et al., 2014; Nguyen

142

Figure 5.1 – Top. A GP is fit on (dark blue) points in [0, 0.5] ∪ [1.5, 2]. The shaded area
represents the GP standard deviation, often used as a measure of epistemic uncertainty: note
how it fails badly to enclose the ground function in [0.5, 1.5]. Bottom left. A second GP fit
on the same points, with 5 extra points (green crosses). This second GP predicts almost 0
standard deviation everywhere, even though the first GP significantly underestimated the
uncertainty in [0.5, 1.5], because no signal is given to the learner that the region [0.5, 1.5]
should be explored more. Bottom right. DEUP learns to map the underestimated variances
of the first GP to the L2 errors made by that GP, and yields more reasonable uncertainty
estimates that should inform the learner of what area to explore.

et al., 2019; Bengio et al., 2021), SMO (Kushner, 1964; Jones et al., 1998; Snoek et al., 2012)

or exploration in RL (Kocsis and Szepesvári, 2006; Osband et al., 2016; Janz et al., 2019).

A unique advantage of DEUP, compared with discrepancy-based measures of EU, is that

it can be explicitly trained to care about, and calibrate for estimating the uncertainty for

examples which may come from a distribution slightly different from the distribution of most

of the training examples. Such distribution shifts (referred to as feedback covariate shift in

Fannjiang et al. (2022)) arise naturally in interactive contexts such as RL, because the learner

explores new areas of the input space. In these non-stationary settings, we typically want to

retrain the main predictor as we acquire new training data, not just because more training

data is generally better but also to better track the changing distribution and generalize to

yet unseen but upcoming out-of-distribution (OOD) inputs. This setting makes it challenging

to train the main predictor but it also entails a second non-stationarity for the training data

seen by the error predictor: a large error initially made at a point x before x is incorporated

in the training set (along with an outcome y) will typically be greatly reduced after updating

the main predictor with (x, y). To cope with this non-stationarity in the targets of the error

predictor, we propose, as a third contribution, to use additional features as input to the

error predictor, that are informative of both the input point and the dataset used to obtain

143

the current predictor. We mainly use density estimates and model variance estimates, that

sometimes come at no additional cost.

The remainder of this chapter is divided as follows:

— In Section 5.2, we describe a theoretical framework for analysing sources of uncertainty

and describe a pitfall of discrepancy-based measures of epistemic uncertainty.

— In Section 5.3, we present DEUP, a principled model-agnostic framework for estimating

epistemic uncertainty, and describe how it can be applied in a fixed dataset as well as

interactive learning settings, and propose means to address the non-stationarities arising

in the latter.

— In Section 5.4, we discuss related work on uncertainty estimation as well as error predictors

in machine learning.

— In Section 5.5, we experimentally validate that EU estimates from DEUP can improve

upon existing SMO methods, drive exploration in RL, and evaluate the quality of these

uncertainty estimates in probabilistic image classification and in a regression task pre-

dicting synergies of drug combinations.

5.2. Excess Risk, Epistemic Uncertainty, and Model

Misspecification

In this section, we analyze the sources of lack of knowledge through the lens of the

excess risk of a predictor, define model misspecification, and discuss the pitfall of using

discrepancy-based measures of uncertainty when the model is misspecified. The section is

divided as follows:

— In Section 5.2.1, we define the mathematical framework and notations used in the analysis.

— In Section 5.2.2, we characterize the sources of lack of knowledge, and argue that esti-

mating the excess risk is a sound measure of epistemic uncertainty. This is the main

rationale behind our framework, DEUP, presented in Section 5.3.

— In Section 5.2.3, we briefly analyze the sub-optimal behavior of the Bayesian posterior

when the model is misspecified, and explain why in practice models are generally biased,

even non-parametric ones.

5.2.1. Notations and Background

Predictive models tackle the problem of learning to predict outputs y ∈ Y given in-

puts x ∈ X ¦ R
d using a function f : X → A estimated from a training dataset

zN := (z1, . . . , zN) ∈ ZN , where Z = X ×Y and zi = (xi, yi), and the unknown ground-truth

generative model is defined by P (X, Y) = P (X)P (Y | X). In decision theory, the set A

is called the action space, and is typically either equal to Y for regression problems, or to

144

∆(Y), the set of probability distributions on Y , for classification problems. Given a loss

function l : Y ×A → R
+ (e.g., l(y, a) = ∥y − a∥2 for regression, and l(y, a) = − log a(y) for

classification), the point-wise risk (or expected loss) of a predictor f at x ∈ X is defined

as:

R(f, x) = EP (Y |X=x)[l(Y, f(x))]. (5.1)

We define the risk (or total expected loss) of a predictor as the marginalization of (5.1) over

x:

R(f) = EP (X,Y)[l(Y, f(X))]. (5.2)

Given a hypothesis space H, a subset of F(X ,A), the set of functions f : X → A, the

goal of any learning algorithm (or learner) L is to find a predictive function h∗ ∈ H with the

lowest possible risk:

h∗ = arg min
h∈H

R(h). (5.3)

Naturally, the search for h∗ is elusive given that P (X, Y) is usually unknown to the learner.

Instead, the learner L maps a finite training dataset zN to a predictive function L(zN) =

hzN ∈ H minimizing an approximation of (5.2), called the empirical risk:

RzN (h) =
1

N

N
∑

i=1

l(yi, h(xi)) where zi = (xi, yi) (5.4)

hzN = arg min
h∈H

RzN (h). (5.5)

The dataset zN need not be used solely to define the empirical risk as in (5.4). The learner

can for example use a subset of zN as a validation set to tune its hyperparameters and thus

its effective capacity (Arpit et al., 2017).

5.2.2. Sources of lack of knowledge

Clearly, a high value of R(hzN , x) indicates lack of knowledge around x. Similar to Hüller-

meier and Waegeman (2019), we characterize the three sources of this lack of knowledge,

illustrated in Figure 5.2, as follows:

— (5.1) has a fundamental limiting lower bound, usually reached at a function f ∗ called the

Bayes predictor 1:

f ∗(x) = arg min
a∈A

EP (Y |X=x)[l(Y, a)]. (5.6)

R(f ∗, x) > 0 indicates an irreducible risk due to the inherent randomness of P (Y | X =

x). R(f ∗, x) is thus a measure of aleatoric uncertainty at x. Note that there might be

1. An equivalent definition is f∗ = arg minf∈F(X ,A) R(f).

145

Figure 5.2 – Graphical representations of the two components of epistemic uncertainty.
Inspired by Fig. 4 of Hüllermeier and Waegeman (2019).

more than one Bayes predictor, but by definition, they all have the same point-wise risk,

which we denote as A:

A(x) = R(f ∗, x) (5.7)

— Minimizing the risk over H rather than F(X ,A) induces a discrepancy between the

predictor that is optimal in H, h∗, and the Bayes predictor f ∗, usually referred to as

model uncertainty (our hypothesis space could be improved). This can be seen as a

form of bias, as the optimization is limited to functions in H.

— Minimizing the empirical risk instead of the risk induces a discrepancy between hzN and

h∗, called the approximation uncertainty, due both to the finite training set and finite

computational resources for training.

Borrowing terminology from Futami et al. (2022), we use the Bayes predictor to define

the excess risk as follows:

Definition 5.2.1. The excess risk of a predictor f : X → A at x is the gap between

the point-wise risk and its fundamental limit:

ER(f, x) = R(f, x)− A(x). (5.8)

146

Both model uncertainty and approximation uncertainty are indicative of the epistemic

state of the learner, and can be reduced with better choices (ofH) and more data respectively.

This implies that an estimator of the excess risk of f at x (Definition 5.2.1) can be used as a

measure of epistemic uncertainty. ER is intimately linked to the minimum excess risk (Xu

and Raginsky, 2020), a measure of the gap between the minimum expected loss attainable

by learning from data and A(x), which was shown to decrease and converge towards 0 as

the training dataset size grows to infinity, which is a desirable property for EU measures.

Using an estimator of ER as a measure of EU is the main idea behind DEUP, and will be

expanded upon in Section 5.3.

The following examples illustrate the concepts introduced thus far:

Example 5.2.2. Consider a univariate regression problem with Gaussian ground truth, i.e.,

Y = R and there exist functions µ and Ã such that P (Y | X = x) = N (Y ; µ(x), Ã2(x)),

with the squared loss l(y, a) = (y − a)2. Then, the Bayes predictor is f ∗ = µ, which has a

point-wise risk x 7→ A(x) = Ã2(x), and for any predictor f : X → R, and for every x ∈ X :

R(f, x) = Ã2(x) + (f(x)− µ(x))2

ER(f, x) = (f(x)− µ(x))2

Example 5.2.3. Consider a classification problem with K classes, i.e., Y = {1, . . . , K} and

there exists a function µ : X → ∆K, where ∆K is probability simplex of dimension K − 1,

such that P (Y | X = x) is the categorical distribution with probability mass function µ(x),

with the log loss l(y, a) = − log a(y). Then, the Bayes predictor is f ∗ = µ, which has a point-

wise risk x 7→ A(x) = HP (Y |X=x)[Y | x], the entropy of the ground-truth label distribution,

and for any predictor f : X → ∆K, and for every x ∈ X :

R(f, x) = H(µ(x), f(x))

ER(f, x) = DKL(µ(x), f(x)),

where H(. , .) and DKL(. , .) denote respectively the cross entropy and the Kullback-Leibler

(KL) divergence between two distributions.

It is clear from the definitions above, and from Figure 5.2 that the choice of the subset H

can contribute to higher epistemic uncertainty, as it introduces misspecification (Masegosa,

2020; Hong and Martin, 2020; Cervera et al., 2021):

Definition 5.2.4. A learner with hypothesis spaceH ¦ F(X ,A) is said to be learning

under model misspecification if f ∗ /∈ H, where f ∗ is the Bayes predictor.

While there is no agreed upon measure of misspecification, some authors (Masegosa,

2020; Hong and Martin, 2020) focus on Bayesian or approximate Bayesian learners, which

maintain a distribution over predictors, and use a discrepancy measure between the best

147

reachable posterior predictive p(Y | X) defined by functions h ∈ H, and the ground-truth

likelihood P (Y | X). Alternatively, and assuming the function space F(X ,A) is endowed

with a metric, misspecification (or bias) can be defined as the distance between h∗ and f ∗.

Additionally, and as argued by many authors (see e.g., Cervera et al. (2021); Knoblauch

et al. (2022)), a common implicit assumption in (approximate) Bayesian methods is correct

model specification (i.e., there is no bias). In the next subsection, we will briefly review why

this assumption is rarely satisfied in practice, and what it entails in terms of uncertainty

modelling.

5.2.3. Bayesian uncertainty under model misspecification

Consider a parametric model p(Y | X; ¹) and a learner maintaining a distribution over

parameters ¹ ∈ Θ, each corresponding to a predictor h in a parametric set of functions H,

possibly starting from a prior p(¹) that would lead to a posterior distribution p(¹ | zN)

upon observing data zN . Clearly, the fact that multiple ¹’s and corresponding values of h

are compatible with the data and the prior indicates lack of knowledge. Because the lack

of knowledge indicates where an interactive learner should acquire more information, this

justifies the usage of dispersion measures, such as the variance or the entropy of the posterior

predictive, as measures of EU.

While such dispersion measures are indicative of approximation uncertainty, they do not

account for model misspecification, or bias. The sub-optimal behavior of Bayesian methods

with misspecified models has already been studied in terms of the quality of predictions

(Grünwald, 2012; Walker, 2013; Grünwald and Van Ommen, 2017) as well as their gener-

alization properties (Masegosa, 2020). These works show that even though the Bayesian

posterior predictive concentrates around the best model p(Y | X; ¹̃) with minimum KL

divergence to the ground truth P (Y | X) within H, it does not fit the data distribution

perfectly. Additionally, Kleijn and van der Vaart (2012) provide a theoretical analysis of the

sub-optimality of the uncertainty estimates under model misspecification. More specifically,

the authors derive a misspecified version of the Bernstein-Von Mises theorem, which implies

that the Bayesian credible sets are valid confidence sets when the model is well specified, but

prove that under misspecification, the credible sets may over-cover or under-cover, and are

thus not valid confidence sets. More recently, Cervera et al. (2021) showed that a Bayesian

treatment of a misspecified model leads to unreliable epistemic uncertainty estimates in re-

gression settings, while D’Angelo and Henning (2021) showed that uncertainty estimates in

misspecified models lead to undesirable behaviors when used to detect OOD examples.

Sources of model misspecification: In the Bayesian framework, the hypothesis class H

and the corresponding set of posterior predictive distributions p(Y | X) are only implicitly

defined, through the choices of the prior p(¹), the likelihood functions p(Y | X; ¹), and the

148

computation budget. Even if in theory, the model is well specified, in the sense that that

there exists ¹∗ ∈ Θ such that p(Y | X; ¹∗) = P (Y | X) 2, in practice, the combination of

the prior and the finite computational budget limits the set of reachable ¹, resulting in a

systematic bias (Knoblauch et al., 2022). This behavior is exacerbated in low data regimes,

even with modern machine learning models such as neural networks, because the learner

may not use all of its capacity due to the implicit (and not fully understood) regularization

properties of stochastic gradient descent (SGD, Kale et al. (2021)), explicit regularization,

early stopping, or a combination of these. “All models are wrong, but some are useful” -

Box (1976).

The importance of bias in interactive settings: Naturally, bad uncertainty estimates

also have adverse effects on the performances of interactive learners, that use said estimates

to guide the acquisition and evaluation of more inputs (Zhou et al., 2003). In fact, it has

long been known (Box and Draper, 1959) that model uncertainty (also called bias in Box

and Draper (1959)) is just as important as, if not more than, approximation uncertainty

(interestingly referred to as variance in Box and Draper (1959)), for the problem of optimal

design. Therefore, a learner using approximation uncertainty alone, measured by the variance

of the posterior predictive, can be confidently wrong. When the acquisition of more inputs

is guided by these predictions, this can slow down the interactive learning process. In Deep

Ensembles (Lakshminarayanan et al., 2017b) for example, if all the networks in the ensemble

tend to fail in a systematic (i.e., potentially reducible) way, this aspect of prediction failure

will not be captured by variance, or approximation uncertainty. With flexible models like

neural networks however, the hypothesis space H is defined not only through the chosen

architecture of the network, but also through the pre-defined training procedure (e.g., the

hyperparameters of the optimizer, the stopping criterion based on the performance on a

validation set chosen from the training data...). This means that even though the learning

strategy is data-independent, the hypothesis space H depends on the training data. Arpit

et al. (2017) formalized this subtle distinction using the notion of “effective capacity”. As a

consequence, the learner can incorporate new training examples in areas of the input space

where the bias is large, in order to change the hypothesis space H to H′, which can be closer

to the Bayes predictor, thus reducing the bias, and de facto the excess risk ER.

As a consequence of the ubiquity of misspecified models, it is important to question the

status quo of relying on discrepancy-based measures of epistemic uncertainty in machine

learning, and explore alternative ways of measuring EU, such as DEUP, which we introduce

in the next section.

2. Note how we use upper case P for the ground truth posterior and lower case p for the likelihood and

the Bayesian posterior predictive estimator.

149

5.3. Direct Epistemic Uncertainty Prediction

As argued in the previous section, the excess risk (5.8) of a predictor f at a point x can

be used as a measure of EU that is robust against model misspecification. Estimating the

excess risk ER(f, x) requires an estimate of the expected loss R(f, x), and an estimate of the

aleatoric uncertainty A(x) (5.7).

DEUP (Direct Epistemic Uncertainty Prediction) uses observed out-of-sample errors

in order to train an error predictor x 7→ e(f, x) estimating x 7→ R(f, x). These may be

in-distribution or out-of-distribution errors, depending on what we care about and the kind

of data that is available. Given a predictor x 7→ a(x) of aleatoric uncertainty, u(f, x) defined

by:

u(f, x) = e(f, x)− a(x), (5.9)

becomes an estimator of ER(f, x) and as a consequence, an estimator of the epistemic un-

certainty of f at x. Before delving into the details of DEUP, we briefly discuss how one can

obtain an estimator a of aleatoric uncertainty.

How to estimate aleatoric uncertainty? We consider three possible scenarios for the

aleatoric uncertainty:

(1) If we know that A(x) = 0, i.e., that the data-generating process is noiseless, then u(f, x)

is an estimate of R(f, x), and a(x) can safely be set to 0. This is the case in the

experiments we present in Section 5.5.1.

(2) In regression settings with the squared loss, where A(x) equals the variance of P (Y |

X = x) (Example 5.2.2), if we have access to an oracle that samples Y given a query

x from the environment P (Y | x) (e.g., in active learning or SMO), then A(x) can be

estimated using the empirical variance of different outcomes of the oracle at the same

input x. It is common practice for example to perform replicate experiments in biological

assays and use variation across replicates to estimate aleatoric uncertainty (Lee et al.,

2000; Schurch et al., 2016).

More formally, if we have multiple independent outcomes y1, . . . , yK ∼ P (Y | x) for

each input point x, then training a predictor a with the squared loss on (input, target)

examples
(

x, K
K−1

V ar(y1, . . . , yK)
)

, where V ar denotes the empirical variance, yields an

estimator of the aleatoric uncertainty.

Naturally, this estimator is asymptotically unbiased if the learning algorithm ensures

asymptotic convergence to a Bayes predictor. This is due to the known fact that

Ey1,...,yK∼P (Y |x)

[

K

K − 1
V ar(y1, . . . , yK)

]

= V arP (Y |x)[Y | x]. (5.10)

We illustrate how such an estimator could be used to obtain EU estimates from the error

predictor in Section 5.5.4.

150

(3) In cases where it is not possible to estimate the aleatoric uncertainty, we can use the

expected loss estimate e(f, x) as a pessimistic (i.e., conservative) proxy for u(f, x), i.e.,

set a(x) to 0 in (5.9). This is particularly relevant for settings when uncertainty estimates

are used only to rank different data-points, and in which there is no reason to suspect that

there is a significant variability in aleatoric uncertainty across the input space. This is

actually the implicit assumption made whenever the variance or entropy of the posterior

predictive (which, in principle, accounts for aleatoric uncertainty) is used to measure

epistemic uncertainty. This is the case in the experiments we present in Section 5.5.3.

In real life settings, an estimator x 7→ a(x) of aleatoric uncertainty can be available (e.g.,

margins of errors of instruments used in a wet lab experiment), and can thus readily be

plugged into (5.9). In the following subsections, we thus assume that x 7→ a(x) is available,

whether it is identically equal to 0 or not, and focus on estimating the point-wise risk or

expected loss R(f, x). In Section 5.3.1, we present DEUP in a fixed training set setting,

when the learner has access to a held-out validation set. In Section 5.3.2, we demonstrate

how the challenges brought about by interactive settings actually bypass the need for the

validation set required to train the error predictor.

5.3.1. Fixed Training Set

Using the notations introduced in Section 5.2, we first consider the scenario where we

are interested in estimating EU for one predictor hzN , trained on a given training set zN of a

certain size N , and a held-out validation set z′K is available. Recall that the goal is to obtain

an estimator x 7→ e(hzN , x) of the point-wise risk x 7→ R(hzN , x) = EP (Y |x)[l(Y, hzN (x))].

Each z′
i = (x′

i, y′
i) in the validation dataset can be used to compute an out-of-sample

error e′
i = l(y′

i, hzN (x′
i)). Training a secondary predictor e on input-target pairs (x′

i, e′
i), for

i ∈ {1, . . . , K} yields the desired estimator x 7→ e(hzN , x). The procedure is summarized in

Algorithm 3. It is used for the example provided in Figure 5.1

Algorithm 3 DEUP with a fixed training set

Input: h = hzN , a trained predictor; a, an estimator of aleatoric uncertainty; z′K =
{(x′

i, y′
i)}i∈{1,...,K}; a validation set.

Output: u : X → R, an estimator of the EU of h.
Create input-error dataset De = {(x′

i, l(y′
i, h(x′

i))}i∈{1,...,K}
Fit an estimator x 7→ e(x) on De, using the squared loss l(e, e′) = (e− e′)2

Return: The predictor x 7→ u(x) = e(x)− a(x).

5.3.2. Interactive Settings

Interactive settings, in which EU estimates are used to guide the acquisition of new

examples, provide a more interesting use case for DEUP. However, they bring their own

151

challenges, as the main predictor is retrained multiple times with the newly acquired points.

We discuss these challenges below, along with simple ways to mitigate them.

First, as the growing training set zN = {(xi, yi)}i∈{1,...,N} for the main predictor hzN

changes at each acquisition step (as zN becomes zN+1 by incorporating the pair (xN+1, yN+1)

for example), it is necessary to view the risk estimate e(hzN , x) as a function of the pair

(x, zN), rather than a function of x only, unlike the fixed training set setting. The error

predictor e, used to guide acquisition, needs to provide accurate uncertainty estimates as

soon as the main predictor changes from hzN to hzN+1 (for clarity, we assume that only

one point is acquired at each step, but this is not a requirement for DEUP). This means

that e needs to generalize not only over input data x but also over training datasets zN . e

should thus be trained using a dataset De of input-target pairs ((x, zN), l(y, hzN (x))), where

(x, y) is not part of zN . This would make the error predictor robust to feedback covariate

shift (Fannjiang et al., 2022), i.e., the distribution shift resulting from the acquired points

being a function of the training data. Conditioning on the dataset explicitly also addresses

concerns from Bengs et al. (2022), which shows that directly estimating uncertainty using a

second-order predictor trained simply with input data using L2 error yields poor uncertainty

estimates. A learning algorithm with good generalization properties (such as modern neural

networks) would in principle be able to extrapolate from De and estimate the errors made

by a predictor h on points x ∈ X not seen so far, i.e., belonging to what we call the frontier

of knowledge.

Second, the learner usually does not have the luxury of having access to a held-out

validation set, given that the goal of such an interactive learner is to learn the Bayes predictor

f ∗ using as little data as possible. This makes Algorithm 3 inapplicable to this setting. While

it might be tempting to replace the held-out set z′K in Algorithm 3 with the training set zN ,

this would lead to an error predictor trained with in-sample errors rather than out-of-sample

errors, thus severely limiting its ability to generalize its resulting uncertainty estimates out-

of-sample and generally underestimating EU.

Denoting by N0 g 0 the number of initially available training points before any acqui-

sition, and observing that for i > N0, the pair (xi, yi) is not used to train the predictors

hzN0 , hzN0+1 , . . . , hzi−1 , we propose to use the future acquired points as out-of-sample exam-

ples for the past predictors, in order to build the training dataset De for the error estimator.

At step M > N0, i.e., after acquiring (M − N0) additional input-output pairs (x, y) and

obtaining the predictor hzM , De is equal to:

De =
M
⋃

i=N0+1

i−1
⋃

N=N0

{((xi, zN), l(yi, hzN (xi)))}. (5.11)

Using De (5.11) requires storing in memory all versions of the main predictor h (i.e.,

hzN0 , . . . , hzM), which is impractical. Additionally, it requires using predictors that take as

152

input a dataset of arbitrary size, which might lead to overfitting issues as the dataset size

grows. Instead, we propose the following two approximations of De:

(1) We embed each input pair (xi, zN) in a feature space Φ, and replace each such pair

in De with the feature vector ϕzN (x), hereafter referred to as the stationarizing

features of the dataset zN at x.

(2) To alleviate the need of storing multiple versions of h, we make each pair (xi, yi)

contribute to De once rather than i−N0 times, by replacing the inner union of (5.11)

with the singleton {((xi, zi−1), l(yi, hzi−1(xi)))}. Said differently, for each predictor

hzN , only the next acquired point (xN+1, yN+1) is used to populate De.

These approximations result in the following training dataset of the error estimator at step

M :

De = {(ϕzi−1(xi), l(yi, hzi−1(xi)))}i∈{N0+1,...,M}. (5.12)

In this paper, we explored ϕzN (x) =
(

x, s, q̂(x | zN), V̂ (L̃, zN , x)
)

or a subset of these

four features, where q̂(x | zN) is a density estimate from data zN at x, s = 1 if x is part

of zN and otherwise 0, L̃ a learner that produces a distribution over predictors, e.g., a GP

or an ensemble of neural networks (Lakshminarayanan et al., 2017b)), and V̂ (L̃, zN , x) is an

estimate of the model variance of L̃(zN) at x. Note that L̃ can be chosen to be the same as

L (Section 5.2). For numerical reasons, we found it preferable to use log q̂ and log V̂ instead

of q̂ or V̂ as input features. q̂ can be obtained by training a density estimator (such as a

Kernel Density Estimator or a flow-based deep network (Rezende and Mohamed, 2015)).

Like the other predictors, the density estimator must also be fine-tuned when new data is

added to the training set. While these features are not required per se to train DEUP, they

provide clues to help train the uncertainty estimator, and one can play with the trade-off of

computational cost versus usefulness of each clue. They also provide DEUP the flexibility

to incorporate useful properties. For instance, the density can help in incorporating distance

awareness which Liu et al. (2020) show is critical for uncertainty estimation. They sometimes

come at no greater cost, if our main predictor is the mean prediction of the learner’s output

distribution, and if we use the corresponding variance as the only extra feature, as is the

case in the experiments of Section 5.5.1 with GPs. As (5.12) is merely an approximation of

(5.11), not all subsets of features are expected to be useful in all settings. In the ablations

presented in Appendices F.1 and F.3, we experimentally confirm that x alone is not sufficient,

and the stationarizing features are critical for reliable uncertainty estimates. Additionally,

we observe that having x as part of ϕzN can help in some tasks and hurt in others. We note

that the choice of features here is a design choice, and the usage of other features could be

investigated in future work.

153

Pre-training the error predictor: If the learner cannot afford to wait for a few rounds

of acquisition in order to build a dataset De large enough to train the error predictor (e.g.,

when the prediction target y is the output of a costly oracle), it is possible to pre-fill De using

the N0 initially available training points zN0 only, following a strategy inspired by K−fold

cross validation. We present one such strategy in Algorithm 4. The procedure stops when

the training dataset for the secondary learner, Du, contains at least Npretrain elements. In

our experiments, we choose Npretrain to be a small multiple of the number of initial training

points.

Algorithm 4 Pre-filling the uncertainty estimator training dataset De

Input: zN0 , the initial training set; Npretrain, the required size of the training dataset De

Output: De, a training dataset for the uncertainty estimator.
De ← ∅
while |De| < Npretrain do

Split Dinit = zN0 into K random subsets D1, . . . ,DK of equal size. Define D̃ =
⋃K−1

k=1 Dk

Fit a new predictor hD̃ on D̃, and fit the features ϕD̃ on D̃
De ← De ∪

⋃

(x,y)∈DK
{(ϕD̃(x), l(y, hD̃(x)))}

end while
Return: De.

Putting all these things together yields the pseudo-code for DEUP in interactive learning

settings provided in Algorithm 5. In practice, in addition to out-of-sample errors, the sec-

ondary predictor can be trained with in-sample errors, which inform the error predictor that

the uncertainty at the training points should be low. The stopping criterion is defined by

the interactive learning task. It can be a fixed number of iterations for example, a criterion

defined by a metric evaluated on a validation set or a criterion defined by the optimal value

reached (maximum or minimum) in SMO. The algorithm is agnostic to the acquisition func-

tion or policy Ã(. | h, u), the acquisition machinery that proposes new input points from X ,

using the current predictor h and its corresponding EU estimator u. Examples of acquisition

functions in the context of SMO include Expected Improvement (Močkus, 1975) and Upper

Confidence Bound (UCB, Srinivas et al. (2010)).

5.4. Related work on uncertainty estimation

Bayesian Learning. We have seen in Section 2.1.3.5 and Section 2.2 how Bayesian

approaches provide a natural way of representing epistemic uncertainty in the form of the

Bayesian posterior distributions.

In the deep learning context, we have already discussed in Section 2.2.3 MC Dropout

(Gal and Ghahramani, 2016b), that interprets Dropout (Hinton et al., 2012) as a variational

inference technique and in Bayesian Neural Networks (BNNs) and Deep Ensembles (Laksh-

minarayanan et al., 2017b), who share some similarities with ensemble-based methods, that

154

Algorithm 5 Training procedure for DEUP in an Interactive Learning setting

Input: Dinit = zN0 = {(xi, yi)}i∈{1,...,N0}; a, an estimator of aleatoric uncertainty; Φ, the
embedding space (i.e., the chosen stationarizing features); Ã, the acquisition machinery.

Output: D, a dataset populated with the acquired examples.
De ← ∅, training dataset for the error predictor e
D ← Dinit, dataset of training points for the main predictor
xacq ← ∅, yacq ← ∅
Optional: Pre-fill De using Algorithm 4
while stopping criterion not reached do

Fit predictor hD and features ϕD on D
Fit a predictor ϕ 7→ e(ϕ) on De

xacq ∼ Ã(. | hD, x 7→ e(ϕD(x))− a(x)) ▷ can be a single point or a batch of points
Sample outcomes from the ground truth distribution: yacq ∼ P (. | xacq)
De ← De ∪ {(ϕD(xacq), l(yacq, hD(xacq)))}
D ← D ∪ {(xacq, yacq)}

end while
Return: D.

include bagging (Breiman, 1996) and boosting (Efron and Tibshirani, 1994), where multiple

predictors are trained, and their outputs are averaged to make a prediction. Deep Ensembles

are closer to the Bayesian approach, using an ensemble of neural networks that differ because

of randomness in initialization and training. Wen et al. (2020b) present a memory-efficient

way of implementing deep ensembles by using one shared matrix and a rank-1 matrix for

the parameters per member, while Vadera et al. (2020b); Malinin et al. (2020) improve the

efficiency of ensembles by distilling the distribution of predictions rather than the average,

thus preserving the information about the uncertainty captured by the ensemble.

Another line of work for approximate Bayesian learning includes SWAG (Maddox et al.,

2019), which fits a Gaussian distribution on the first moments of SGD iterates, building

upon SWA (Izmailov et al., 2018) to define the posterior over the neural network weights.

This distribution is then used as a posterior over the neural network weights. Dusenberry

et al. (2020) parametrize the BNN with a distribution on a rank-1 subspace for each weight

matrix.

Classical work on Query by committee (Seung et al., 1992; Freund et al., 1992; Gilad-

Bachrach et al., 2005; Burbidge et al., 2007) also studied the idea of using discrepancy as

a measure for information gain for the design of experiments. Tagasovska and Lopez-Paz

(2019) propose using orthonormal certificates, which capture the distance between a test

sample and the dataset. Liu et al. (2020) further establish the importance of this notion

of distance awareness for uncertainty estimation, and along with proceeding methods DUE

(van Amersfoort et al., 2021), and DDU (Mukhoti et al., 2021) combine feature representa-

tions learned by deep neural networks with exact Bayesian inference methods like GPs and

Gaussian Discriminant Analysis. This line of work falls under the umbrella of Deep Kernel

155

Learning (DKL, Wilson et al., 2016). DUN (Antoran et al., 2020) uses the disagreement

between the outputs from intermediate layers as a measure of uncertainty.

Distribution-Free Uncertainty Estimation. Conformal prediction (Vovk et al., 2005;

Shafer and Vovk, 2008; Angelopoulos and Bates, 2021) is an alternative to Bayesian meth-

ods for uncertainty estimation. Conformal prediction involves building statistically rigorous

uncertainty sets and intervals for model predictions, which are guaranteed to contain the

ground truth with a specified probability. It is also closely linked to the statistical paradigm

of hypothesis testing (Angelopoulos and Bates, 2021). Conformal prediction is an appealing

alternative to Bayesian approaches as it can be applied on top of existing models and does

not require any particular training procedure. Recent work has demonstrated the efficacy

of using conformal prediction with neural network models for time series (Lin et al., 2022;

Zaffran et al., 2022) and image data (Angelopoulos et al., 2020). Fannjiang et al. (2022)

study conformal prediction within an active learning setting. While DEUP can broadly be

categorized as a distribution-free uncertainty estimation method, it differs from conformal

predictions as it does not require a pre-defined degree of confidence before outputting a

prediction set.

Loss Prediction. Yoo and Kweon (2019) propose a loss prediction module for learning

to predict the value of the loss function. Hu et al. (2020) also propose using a separate

network that learns to predict the variance of an ensemble. These methods, however, are

trained only to capture the in-sample error and do not capture the out-of-sample error,

which is more relevant for scenarios like active learning where we want to pick x where the

reducible generalization error is large. EpiOut (Umlauft et al., 2020; Hafner et al., 2019)

propose learning a binary output that distinguishes between low or high EU.

5.5. Experiments

Code for these experiments can be found at https://github.com/MJ10/DEUP.

Through the experiments described below, we aim to provide evidence for the following

key claims: (C1) Epistemic uncertainty measured by DEUP leads to significant improve-

ments in downstream decision-making tasks compared to established baselines, and (C2)

The error predictor learned by DEUP can generalize to unseen samples. We emphasize that

in order to make fair comparisons, DEUP does not have access to any additional

OOD data during training in all experiments presented in this section. Instead, when

required, we use Algorithm 4 to generate the OOD data used for training the error predictor.

Finally, note that in terms of computational cost, training DEUP with density and model

variance as stationarizing features is on par with training an ensemble of 5 networks.

156

https://github.com/MJ10/DEUP

5.5.1. Sequential Model Optimization

Sequential model optimization, also called Bayesian optimization, is a form of interactive

learning where the learner chooses query examples to label at each stage, looking for samples

with a high value of the unknown oracle function. Such examples are selected to have a high

predicted value (to maximize the unknown oracle function) and a considerable predicted

uncertainty (offering the opportunity to discover yet higher values). Acquisition functions,

such as Expected Improvement (EI, Močkus (1975)), trade-off exploration and exploitation,

and one can select the next candidate by looking for x’s maximizing the acquisition function.

We combine EI with DEUP (and call the method DEUP-EI, by analogy to GP-EI, a common

SMO baseline), treating the primary predictor and DEUP EU predictions at x respectively

as mean and standard deviation of a Gaussian distribution for the learner’s guess of the value

of the oracle at x. Similarly, when using MC-Dropout or Deep Ensembles as predictors, we

refer to the resulting methods as MCDropout-EI and Ensembles-EI, respectively.

5.5.1.1. General remarks about the SMO experiments

For all our Sequential Optimization algorithms, we use Algorithm 5 to train DEUP un-

certainty estimators. We found that the optional step of pre-filling the uncertainty estimator

dataset De was necessary given the low number of available training points. We used half

the initial training set (randomly chosen) as in-sample examples (used to train the primary

predictor and an extra-feature generator) and the other half as out-of-sample examples to

provide instances of high epistemic uncertainty to train an uncertainty predictor; we repeated

the procedure by alternating the roles of the two halves of the dataset. We repeated the

whole process twice using a new random split of the dataset, thus ending up with 4 training

points in De for every initial training point in Dinit.

The error predictor is trained with the log targets (i.e., log MSE between predicted

and observed error). This helps since the scale of the errors varies over multiple orders of

magnitude.

Computationally, the training time of DEUP-EI depends on various choices (e.g., the

features used to train the epistemic uncertainty predictor, the dimension of the input, the

learning algorithms, etc..). Additionally, the training time for the uncertainty predictor

varies at each step of the optimization. In total, the sequential optimization experiments

took about 1 CPU day.

We use BoTorch 3 (Balandat et al., 2020) as the base framework for our experiments.

5.5.1.2. One-dimensional objective

We first consider in Figure 5.3 (Left) a synthetic one-dimensional function with multiple

local maxima, and starting from an initial dataset of 6 pairs (x, y), we compare the maximum

3. https://botorch.org/

157

https://botorch.org/

values reached by each of DEUP-EI, GP-EI, MCDropout-EI, and Ensembles-EI to a random

acquisition strategy.

For random acquisition, we sampled for different seeds 56 points and used the (average

across the seeds of the) maximum of the first 6 values as the first value in the plots (Figures 5.3

and 5.6). Because the function is specifically designed to have multiple local maxima, GP-EI

also required more optimization steps and performed worse than random acquisition.

Because MCDropout and Ensembles are trained on in-sample data only, they are unable

to generalize their uncertainty estimates, which makes them bad candidates for Sequential

Model Optimization, because they are easily stuck in local minima and require many itera-

tions before the acquisition function gives more weight to the predicted uncertainties than

the current maximum.

For DEUP-EI, the main predictor is a neural network, and the error predictor is a GP

regressor. The stationarizing features ϕz(x) used are the input x itself, and the variance of a

GP fit on the available data at every step. In Section 5.5.1.3, we provide an ablation study

of different subsets of the features ϕz(x), confirming the necessity of extra features and the

usefulness of the input x.

1.0 0.5 0.0 0.5 1.0 1.5 2.0
x

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

f(x
)

0 10 20 30 40 50
Number of additional function calls

0.4

0.5

0.6

0.7

0.8

0.9

M
ax

im
um

 v
al

ue
 re

ac
he

d

GP-EI
Random acquisition
DEUP-EI
MCDropout-EI
Ensemble-EI
True maximum

Figure 5.3 – Left. Synthetic function to optimize. Right. Maximum value reached by the
different methods on the synthetic function. The shaded areas represent the standard error
across five different runs, with different initial sets of 6 pairs. For clarity, the shaded areas
are omitted for the two worst-performing methods. In each run, all the methods start with
the same initial set of 6 points. GP-EI tends to get stuck in local optima and requires more
than 50 steps, on average, to reach the global maximum.

5.5.1.3. Ablation study for the stationarizing features

To study the usefulness of each subset of the “xdvb” features (respectively representing

the input x, a density estimate, a variance estimate, and a bit indicating whether x was

part of the training set), we compare in Figure 5.4 the different subsets of the features ϕz(x)

used as input to the error predictor. Most notably, this confirms the importance of the

stationarizing features besides the input x and shows that incorporating x to the features

can help improve the performances of an interactive learner.

158

x xb d xd v xv db xdb vb xvb dv xdv dvb xdvb

0.4

0.5

0.6

0.7

0.8

0.9

M
ax

im
um

 v
al

ue
 re

ac
he

d

0 10 20 30 40 50
Number of additional function calls

0.5

0.6

0.7

0.8

0.9

M
ax

im
um

 v
al

ue
 re

ac
he

d

dvb
dv
xd
xdvb
xvb
xdb
xv
True maximum

Figure 5.4 – We train DEUP-EI to optimize the synthetic function of Figure 5.3, with
different subsets of the stationarizing features as inputs to the error predictor, for 50 itera-
tions. All the algorithm instances start with an initial set of 6 (x, y) pairs, (Left) Maximum
value reached at the 40th iteration for each subset of the stationarizing features. The box
plots represent the resulting distributions across five different runs. (Right) Evolution of the
mean (across the five runs) of the maximum value reached at each iteration for the subsets
of features that surpassed the 0.9 threshold.

We found that the binary (in-sample/out-of-sample) feature and density estimates were

redundant with the variance feature and didn’t improve the performance as captured by the

number of additional function calls.

5.5.1.4. Two-dimensional objective

To showcase DEUP’s usefulness for Sequential Model Optimization with dimensions

greater than 1, we consider optimizing the Levi N.13 function, a known benchmark for

optimization. The function f takes a point (x, y) in 2D space and returns:

f(x, y) = −
(

sin2(3Ãx) + (x− 1)2(1 + sin2(3Ãy)) + (y − 1)2(1 + sin2(2Ãy))
)

We use the box [−10, 10]2 as the optimization domain. In this domain, the function’s

maximum is 0, reached at (1, 1). The function has multiple local maxima, as shown in

Section 5.5.1.4 4.

Similar to the previous one-dimensional function, MCDropout and Ensemble provided

bad performances and are omitted from the plot in Section 5.5.1.4. We used the same setting

and hyperparameters for DEUP as the previous function. DEUP-EI is again the only method

that reaches the global maximum consistently in under 56 function evaluations.

5.5.1.5. Multi-dimensional objective

Next, we showcase how using DEUP to calibrate GP variances (the only input for the error

predictor) allows for better performance in higher-dimensional optimization tasks. Specifi-

cally, we compare DEUP-EI to TuRBO-EI (Eriksson et al., 2019), a state-of-the-art method

for sequential optimization that fits a collection of local GP models instead of a global one,

to perform efficient high-dimensional optimization, on the Ackley function (Ackley, 2012), a

4. Plot of the function copied from https://www.sfu.ca/ ssurjano/levy13.html

159

https://www.sfu.ca/~ssurjano/levy13.html

(a) Visualization of (x, y) 7→ −f(x, y)

0 10 20 30 40 50
Number of additional function calls

60

50

40

30

20

10

0

M
ax

im
um

 v
al

ue
 re

ac
he

d

GP-EI
Random acquisition
DEUP-EI
True maximum

(b) Comparisons with GP-EI and Random acquisition

Figure 5.5 – Sequential Model Optimization on the Levi N.13 function

standard benchmark for optimization algorithms. This function can be defined for arbitrary

dimensions and has many local minima.

The Ackley function of dimension d is defined as:

Ackleyd : B → R

x 7→ A exp



−B

√

√

√

√

1

d

d
∑

i=1

x2
i



+ exp

(

1

d

d
∑

i=1

cos(cxi)

)

− A− exp(1)

where B is a hyperrectangle of Rd. (0, . . . , 0) is the only global optimizer of Ackleyd, at which

the function is equal to 0. We use BoTorch’s default values for A, B, c, which are 20, 0.2, 2Ã,

respectively.

In our experiments, we used B = [−10, 15]d for all dimensions d.

0 50 100 150 200 250
Number of additional function calls

14

12

10

8

6

4

2

0

M
ax

im
um

 v
al

ue
 re

ac
he

d

GP-EI
DEUP-EI
TuRBO-EI
TuRBO-DEUP-EI
True maximum

2 5 10 20 100
Dimension of Ackley function

16

14

12

10

8

6

4

2

0

M
ax

im
um

 re
ac

he
d

af
te

r 1
00

 it
er

at
io

ns

GP-EI
DEUP-EI
TuRBO-EI
TuRBO-DEUP-EI

Figure 5.6 – Left. Max. value reached by the different optimization methods for the ten-
dimensional Ackley function. In each run, all the methods start with the same initial 20
points. Shaded areas represent the standard error across three runs. Right. Max. value
reached in the budget-constrained setting on the Ackley functions of different dimensions.
Error bars represent the standard error across three different runs, with different initial sets
of 20 pairs. The budget is 120 function calls in total. Higher is better, and TuRBO-DEUP-EI
is less hurt by dimensionality.

160

In Figure 5.6 (Left), we compare the different methods on the 10-D Ackley function and

observe that while GP-EI gets stuck in local optima, DEUP-EI can reach the global maxi-

mum consistently. In Figure 5.6 (Right), we show that for budget-constrained optimization

problems, adapting DEUP to TuRBO (called TuRBO-DEUP-EI) consistently outperforms

regular TuRBO-EI, especially in higher dimensions. More details about this experiment are

provided Appendix F.1.

For fair comparisons, for DEUP, we use a Gaussian Process as the primary model and its

variance as the only input of the epistemic uncertainty predictor. This means we calibrate

the GP variance to match the out-of-sample squared error, using another GP to perform

the regression. TurBO-DEUP is a combination of both, in which we perform the variance

calibration task for the local GP models of TurBO. The uncertainty predictor, i.e., the GP

regressor, is trained with log targets, as in Section 5.5.1.2, but also with log variances as

inputs.

Only the stationarizing feature is used as input for the uncertainty predictor. When we

used the input x as well, we found that the GP error predictor overfits the x part of the

input (x, v), which was detrimental to the final performances. For all experiments, we used

20 initial points.

The experiments presented in this section thus validate our experimental claim C1.

5.5.2. Reinforcement Learning

Figure 5.7 – Average regret on CartPole task. Error bars represent standard error across
five runs.

Similar to SMO, a key challenge in RL is efficient exploration of the input state space. To

investigate the effectiveness of DEUP’s uncertainty estimates in the context of RL, we present

a proof-of-concept for incorporating epistemic uncertainties predicted by DEUP to DQN

(Mnih et al., 2013), which we refer to as DEUP-DQN. Specifically, we train the uncertainty

predictor to predict the TD error, using log-density estimates as a stationarizing feature. The

161

predicted uncertainties are then used as an exploration bonus in the Q-values. As explained

in Section 5.3.2, it is the acquired points, before they are used to retrain the main predictor,

that act as the out-of-sample examples to train DEUP. In RL, because the targets (e.g., of Q-

Learning) are themselves estimates and moving, data seen at any particular point is typically

out-of-sample and can inform the uncertainty estimator when the inputs are used with the

stationarizing features. Details of the experimental setup are in Appendix F.2. We evaluate

DEUP-DQN on CartPole, a classic RL task from bsuite (Osband et al., 2020), against DQN

+ ϵ-greedy, DQN + MC-Dropout (Gal and Ghahramani, 2016b) and Bootstrapped DQN

(Osband et al., 2016). Figure 5.7 shows that DEUP achieves lower regret faster than all

the baselines, demonstrating the advantage of DEUP’s uncertainty estimates for efficient

exploration, confirming our claim C1. Future work should investigate ways to scale this

method to more complex environments.

5.5.3. Uncertainty Estimation

5.5.3.1. Epistemic Uncertainty Estimation for Drug Combinations

We validate DEUP’s ability to generalize its uncertainty estimate (claim C2) in a real-

world regression task predicting the synergy of drug combinations. While much effort in

drug discovery is spent on finding novel small molecules, a potentially cheaper method is

identifying combinations of pre-existing drugs which are synergistic (i.e., work well together).

However, every possible combination cannot be tested due to the high monetary cost and

time required to run experiments. Therefore, developing good estimates of the EU can

help practitioners select informative and promising experiments. we used the DrugComb

and LINCS L1000 datasets (Zagidullin et al., 2019; Subramanian et al., 2017). DrugComb

is a dataset of pairwise combinations of anti-cancer compounds tested on various cancer

cell lines. The dataset provides access to several synergy scores for each combination, each

indicating whether the two drugs have a synergistic or antagonistic effect on cancerous cell

death. LINCS L1000 contains differential gene expression profiles for various cell lines and

drugs. Differential gene expressions measure the difference in the amount of mRNA related

to a set of influential genes before and after the application of a drug. Because of this,

gene expressions are a powerful indicator of the effect of a single drug at the cellular level.

As shown in Section 5.5.3.1, the out-of-sample error predicted by DEUP correlates better

with residuals of the model on the test set compared to several other uncertainty estimation

methods. Moreover, DEUP better captured the order of magnitude of the residuals as

shown in Figure 5.8, confirming the claim C2. Details on experiments and metrics are in

Appendix F.4.

162

(a) Ensemble (b) DEUP

Figure 5.8 – Drug Combinations. Predicted mean and uncertainty (error bars) on 50 test
examples ordered by increasing value of true synergy score (orange). Model predictions and
uncertainties in blue. Ensemble (a) (and MC-dropout, not shown) consistently underesti-
mate uncertainty while DEUP (b) captures the right order of magnitude.

Model Corr. w. res. U. Bound Ratio Log Likelihood
MC-Dropout 0.14± 0.07 0.56± 0.05 0.25± 0.12 −20.1± 6.8
Deep Ensemble 0.30± 0.09 0.59± 0.04 0.50± 0.13 −14.3± 4.7
DUE 0.12± 0.12 0.15± 0.03 0.80 ± 0.79 −13.0± 0.52
DEUP 0.47 ± 0.03 0.63± 0.05 0.75 ± 0.07 −3.5 ± 0.25

Table 5.1 – Drug Combinations. Corr. w. res. shows correlation between model residuals
and predicted uncertainties Ã̂. A best-case Upper Bound on Corr. w. res. is obtained
from the correlation between Ã̂ and true samples from N (0, Ã̂). Ratio is the ratio between
col. 1 and 2 (larger is better). Log-likelihood: average over 3 seeds of per sample predictive
log-likelihood.

5.5.3.2. Epistemic Uncertainty Predictions for Rejecting Difficult Examples

Epistemic uncertainty estimates can be used to reject difficult examples where the pre-

dictor might fail, such as OOD inputs 5. We thus consider a standard OOD Detection task

(Liu et al., 2020; van Amersfoort et al., 2021; Nado et al., 2021), where we train a ResNet

(He et al., 2016) model for CIFAR-10 classification (Krizhevsky, 2009) and reject OOD ex-

amples using the estimated uncertainty in the prediction. To facilitate rejection of classes

other than those in the training set, we use a Bernoulli Cross-Entropy Loss for each class

following van Amersfoort et al. (2020): l(f̂(x), y) = −
∑

i yi log f̂i(x) + (1− yi) log(1− f̂i(x)),

where y is a one-hot vector (yi = 1 if i is the correct class, and 0 otherwise), and f̂i(x) =

predicted probability for class i. The target for out-of-distribution data (from other classes)

5. e.g., rare but challenging inputs can be directed to a human, avoiding a costly mistake

163

Model SRCC AUROC
MC-Dropout 0.287± 0.002 0.894± 0.008
Deep Ensemble 0.381± 0.004 0.933 ± 0.008

DUQ 0.376± 0.003 0.927± 0.013
DUE 0.378± 0.004 0.929± 0.005
DEUP (D+V) 0.426 ± 0.009 0.933 ± 0.010

Table 5.2 – Spearman Rank Correlation Coefficient (SRCC) between predicted uncertainty
and OOD generalization error (SVHN); Area under ROC Curve (AUROC) for OOD Detec-
tion (SVHN) with CIFAR-10 ResNet-18 models (3 seeds). DEUP significantly outperforms
baselines in terms of SRCC and is equivalent to Deep Ensembles but scoring better than the
other methods in terms of the coarser AUROC metric.

can be represented as y = {0, . . . , 0}. We use Algorithm 3 with stationarizing features from

Section 5.3.2 for training DEUP on this task. At inference time, we can reject an example

based on the estimated epistemic uncertainty. To ascertain how well an epistemic error esti-

mate sorts unseen examples by the above NLL loss, we consider the rank correlation between

the predicted uncertainty and the observed generalization error. Note that we can compute

the generalization error for OOD examples with y = {0, . . . , 0} directly since we are using a

Binary Cross-Entropy loss. We use examples from SVHN (Netzer et al., 2011) as the OOD

examples. This metric focuses on the quality of the uncertainty estimates rather than just

their ability to simply classify in- vs out-of-distribution examples. This metric is also an

indicator of how accurate the uncertainty estimates are for out-of-distribution examples. We

also report the standard AUROC for the OOD detection task. We use MC-Dropout (Gal

and Ghahramani, 2016b), Deep Ensembles (Lakshminarayanan et al., 2017b), DUE (van

Amersfoort et al., 2021) and DUQ (van Amersfoort et al., 2020) as the baselines. As the

primary focus of our work is estimating epistemic uncertainty, we do not consider specialized

methods for OOD detection (Morningstar et al., 2021; Haroush et al., 2021). Additionally,

to study the effect of model capacity we consider ResNet-18 and ResNet-50 as the main

predictors for all the methods. Additional training details along with results for ResNet-50

are presented in Appendix F.3.

Table 5.2 shows, supporting experimental claim C2, that with the variance from DUE

(van Amersfoort et al., 2021) and the density from MAF (Papamakarios et al., 2017) as

stationarizing features, DEUP provides uncertainty estimates that have high rank correlation

with the underlying generalization error on OOD data. We also achieve competitive AUROC

with the strong baselines, demonstrating that uncertainty estimates from DEUP result in

better performance on the downstream task of OOD detection. Additionally, since the error

predictor is trained separately from the main predictor, there is no explicit trade-off between

the accuracy of the main predictor and the quality of uncertainty estimates. We achieve

competitive accuracy of 93.89% for the main predictor. We ignore the effect of aleatoric

164

uncertainty (due to inconsistent human labelling), which would require a human study to

ascertain. We note that we choose the DUE baseline as it is representative of related methods

such as SNGP (Liu et al., 2020) and DDU (Mukhoti et al., 2021), and performs best in our

experiments. We present additional results in a distribution shift setting in Appendix F.3.

Note that in the pretraining phase of the uncertainty estimator (Algorithm 4), we obtain

the subsets by splitting the data based on classes, with each split containing +n/K, classes.

So when we train on K − 1 subsets, the +n/K, classes from the remaining subset become

out-of-distribution.

5.5.4. DEUP in the presence of aleatoric uncertainty

We consider a scenario similar to that of Figure 5.1, but in which Gaussian noise is added

to the ground truth oracle before providing training examples. Because of the noisy training

dataset, GP conflates epistemic and aleatoric uncertainty, which makes the gap between the

predicted epistemic uncertainty (as measured by the GP variance) and the true epistemic

uncertainty (as measured by the mean squared error between the GP mean and the noiseless

ground truth function) higher than in the deterministic setting of Figure 5.1. The goal of

this experiment is to illustrate that using the noisy training set allows learning an estimator

of aleatoric uncertainty (AU), which could be subtracted from DEUP’s error predictor e to

obtain an estimator of epistemic uncertainty. The estimator of AU is obtained using (5.10).

A simple linear regressor is used to estimate AU, to ovoid overfitting issues.

A key distinction of this setting, is that DEUP’s training data (the errors of the main

predictor) are themselves noisy, which makes it important to use more out-of-sample data to

obtain reasonable total uncertainty estimates (from which we subtract the estimates of the

aleatoric uncertainty).

165

0.5 0.0 0.5 1.0 1.5 2.0 2.5

2

0

2
Ground truth
GP mean

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

5

10 Epistemic uncertainty
GP variance

0.5 0.0 0.5 1.0 1.5 2.0 2.5
0

10

Epistemic uncertainty
DEUP's prediction

Figure 5.9 – Top. A GP is trained to regress a function using noisy samples. GP uncertainty
(model standard deviation) is shaded in blue. Bottom left. Using GP variance as a proxy
for epistemic uncertainty misses out on more regions of the input space, when compared to
Figure 5.1 . Bottom right. Using additional out-of-sample data in low density regions, a
second GP is trained to predict the generalization error of the first GP (total uncertainty).
Using second samples from the oracle for each of the training points, a linear regressor fits
the training pairs (x, 1

2
(y1− y2)

2) to estimate the point-wise aleatoric uncertainty. Note that
no constraint is imposed on DEUP’s outputs, which explains the predicted negative values
for uncertainties. In practice, if these predicted uncertainties were to be used, (soft) clipping
should be used.

166

Chapter 6

Conclusion and perspectives

Over the past decade, the field of machine learning has experienced significant growth,

marked by substantial investments from various organizations aiming to expand the capabil-

ities of artificial intelligence and address complex challenges. While one can only speculate

about the real motivations 1 behind the technological revolution we are witnessing, it is be-

coming harder by the day to dismiss thoughts about the potentially substantial societal

implications of the democratization of AI and its widespread usage. Perhaps an existential

revolution is underway, where the nature of intelligence and the pedestalization of human

creativity are being massively questioned. At best, the escalating entropy caused by genera-

tive models (De Angelis et al., 2023) is met with synchronized efforts to steer human progress

(Meek Lange, 2023) in well-defined directions over the upcoming years. The multitude of

global challenges confronting humanity (UnitedNations, 2022) can be further exacerbated

by the widespread proliferation of AI tools, or conversely, these challenges can be partially

addressed through the thoughtful and conscientious utilization of AI.

Admittedly, this thesis does not directly tackle the pressing questions mentioned earlier.

Nevertheless, the author of this thesis hopes that the work presented in this manuscript at

least sheds light on some of the shortcomings of machine learning algorithms deployed in

various environments and, at best, contributes to the process of scientific discovery in fields

that could have a positive impact in the face of today’s challenges.

Summary

In Chapter 3, we deepened generative flow networks’ mathematical framework and math-

ematical properties. More specifically, we formally defined GFlowNets and contrasted them

to flow networks. We studied Markovian flows and the different sets of constraints that must

1. if any (Smith and Marx, 1994; Wyatt, 2008), and if there is actually such a thing as motivation (Jacob,
2023; Kalis, 2019).

be satisfied to define one, and we extended the framework to conditional generative flow

networks. .

Beyond search problems, for which GFlowNets have already shown significant im-

provements compared to more traditional techniques, we emphasized their applicability to

Bayesian inference of discrete structures. Estimating the Bayesian posterior, or the posterior

predictive, is paramount for uncertainty-aware predictions, as we argued for in Chapter 2.

Additionally, the theory and experiments presented in the second half of the chapter place

GFlowNets in the family of variational methods. They suggest that off-policy GFlowNet

objectives may be an advantageous replacement to previous variational objectives, especially

when the target distribution is highly multimodal, striking an interesting balance between

the mode-seeking (Reverse KL) and mean-seeking (Forward KL) variational variants.

In Chapter 4, we developed a theory for generalized GFlowNets and illustrated it through

various experiments. The theory opened the door to Bayesian inference of mixed contin-

uous and discrete variables, which we showcased in an embryonic set of experiments on

Bayesian structure learning, and to search problems in continuous spaces, similar to the pre-

sented molecular conformer generation experiments. A natural application of the theory is

simulation-based inference for inverse problems in the natural sciences, which could benefit

from the already proven advantages of GFlowNets, in terms of sample efficiency and quality

of obtained posteriors.

We developed torchgfn, an open-source software for generative flow networks, both in

the discrete and the general setting. It is presented in Appendix B.

Chapter 5 delved into exploring alternative measures of epistemic uncertainty beyond

Bayesian posteriors. We argued that the bias introduced by the ineluctable model misspec-

ification should be accounted for to obtain epistemic uncertainty estimates that are reliable

enough for decision-making in interactive learning settings. Our proposed method, DEUP,

relies on maintaining a secondary predictor, perpetually trained on the errors of the main

one, and on deducing from the secondary predictions measures of epistemic uncertainty that

could be used for decision-making in downstream tasks. We addressed the non-stationarity

challenges raised by interactive learning by using stationarizing features as extra inputs to

the secondary predictor.

Future research directions

The work presented in this manuscript prompts many important open questions and

paves the way for several applications.

168

Scaling GFlowNets

In the proven successes of GFlowNets, the trajectories used for learning the sampler have

limited lengths. In many interesting applications, the generation process relies on combin-

ing many primitive blocks (e.g. large causal graphs, parameters of a large neural network,

and large molecules), leading to much longer trajectories. Recent efforts (Madan et al.,

2022a; Pan et al., 2017) have attempted to address this limitation of GFlowNets by learning

from partial trajectories. However, a promising future research avenue for GFlowNets lies

in exploring alternative training objectives that accurately attribute credit to essential com-

ponents within longer trajectories. Additionally, while the theory presented in Chapter 4

has been experimentally validated, scaling up the experiments to more complex and high-

dimensional spaces will bring new challenges, and more research effort into stabilizing the

training of GFlowNets is called for.

Off-policy GFlowNet training

Experiments in Chapter 3 and other studies (Deleu et al., 2022; Zhang et al., 2023a; Jain

et al., 2022b; Nishikawa-Toomey et al., 2022; Shen et al., 2023) motivate further research

into optimizing the choice of behaviour policy during GFlowNet training to enhance sample

efficiency. Our work provides both theoretical justifications and experimental validation,

establishing that GFlowNets are more suitable for off-policy training than widely-used al-

ternative inference methods. A natural question is how to obtain trajectories or training

samples that are most informative. Notably, this aligns with the exploration problem en-

countered in reinforcement learning (Section 2.1.5). Inspired by random network distillation

(Burda et al., 2018), a well-known exploration technique in RL, Pan et al. (2022) adapted it

to enhance exploration in GFlowNets. Leveraging ideas from the field of Bayesian optimal

experiment design, for which a summary of ideas is provided in Appendix C, to guide the

selection of transitions or trajectories for efficient learning, as was done in RL in Mehta et al.

(2021), is a direction worth exploring.

Scientific discovery

The fourth paradigm of scientific discovery (Hey et al., 2009) revolves around the idea that

scientific breakthroughs can be powered by advanced computing capabilities that help re-

searchers manipulate, explore, and exploit large datasets. This contrasts with the traditional

slow cycle of experimental science. Machine learning has already contributed to accelerating

the pace of scientific discovery in various domains (MacLeod et al., 2020; Stärk et al., 2022;

Angermueller et al., 2019; Kim et al., 2021). In fact GFlowNets (Chapters 3 and 4) were

initially motivated by the need of designing drugs in an active learning loop. Bengio et al.

(2021); Jain et al. (2022b) successfully used them for biological sequence design, albeit in

169

controlled simulated environments. Closely related is the exploration of material discov-

ery, encompassing insulating materials (Verichev et al., 2021) to reduce energy-intensive air

conditioning, carbon-capture materials (Lin et al., 2012), catalysts and chemical processes

for converting earth-abundant molecules into fuels (Tabor et al., 2018), and energy storage

solutions (Agarwal et al., 2021).

Bayesian optimization, also known as sequential model optimization (Section 5.5.1),

plays a central role in machine learning-based scientific discovery, especially when optimizing

costly-to-evaluate physical properties. Inquiries like “Which synthetizable molecule, safe for

animals and humans, binds most effectively to a specific target protein?” or “How can abun-

dant molecules be combined to create an insulating material?”, while involving at least one

non-negative reward function, require exploration of large-sized search spaces 2. Accelerated

scientific discovery could thus benefit from:

— better search procedures in large spaces,

— efficient epistemic uncertainty estimation methods that are central to acquisition

functions in Bayesian optimization,

While GFlowNets are natural candidates for the former, as explained in detail in Jain et al.

(2023), DEUP (Chapter 5) has the potential of addressing the latter. We have shown how

the provided epistemic uncertainty estimates are helpful in toy tasks, but more research

is needed in order to scale the method to higher-dimensional spaces, especially those in

which Bayesian posterior learning is inapplicable. A challenging task is finding informative

stationarizing features that do not require potentially large models on the side.

Bayesian optimal experiment design.

In fact, our research on GFlowNets and epistemic uncertainty estimation could be ad-

vantageous for Bayesian optimal experiment design (BOED, Appendix C), which is at the

core of scientific discovery, as it addresses questions of the type “what experiment should

I perform in order to learn the most about the scientific process at hand?”. Additionally,

BOED finds applications in causal structure discovery (Greenewald et al., 2019; Scherrer

et al., 2021; Tigas et al., 2022; Toth et al., 2022), a vital aspect of scientific exploration that

seeks to comprehend the causes and effects of diverse phenomena based on observational and

interventional data. The central question is that of finding what variables to intervene on

and how (i.e., what experiment to perform) in order to obtain interventional data that is the

most informative about the sought-for causal structure.

Jain et al. (2023) show how conditional GFlowNets can be used to obtain amortized

predictors, taking datasets as inputs, which, as explained in Appendix C, is essential to

further improve the performances of sequential experimental design algorithms. The future

2. the pharmacological chemical space is estimated to be of size around 10
60 (Bohacek et al., 1996).

170

research directions on scaling and improving GFlowNets discussed above could therefore be

of great benefit to BOED.

An interesting open question is whether mutual information-based objectives, such as

the popular EIG, can be replaced by other utility functions (Ryan et al., 2016), drawing

inspiration from the ideas developed in DEUP (Chapter 5) especially when Bayesian inference

is intractable.

Better representations for better generalization

To build more intelligent systems, we need to build systems that are able to generalize.

There is a wide gap between the amount of resources (data and computation) that animals

need in order to adapt to a new environment and generalize their knowledge for better

decision-making and that of machine learning agents in out-of-distribution settings.

The ability to generalize is intimately linked with the ability to compress (Schmidhu-

ber, 2009). In the coming years, increased research focus is expected on developing data

representations that leverage the compositionality of the physical world, enabling efficient

compression of any given scene.

GFlowNets hold substantial promise for this pursuit, as showcased in the work of Hu

et al. (2023), where they were utilized to learn posteriors over latent variables in diverse

contexts. Drawing inspiration from the adage “If you want to master something, teach it.”,

we can posit that agents capable of efficiently generating data from the distribution of a

given dataset have likely acquired efficient data compression techniques, revealing essential

building blocks and reusable elements. An agent trained to identify these building blocks

and evaluate their quality through a generative process could potentially acquire abstract

representations that enhance out-of-distribution generalization.

Better representations would pave the way for longer reasoning sequences, a missing

component in today’s large language models and RL algorithms, and would bring us one step

closer to training agents that are capable of high-level reasoning. Nonetheless, the question

of whether this aligns with our societal goals remains open for further consideration.

171

References

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro,

Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian

Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefow-

icz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga,

Sherry Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens, Benoit Steiner,

Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Vanhoucke, Vijay Vasudevan, Fer-

nanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg, Martin Wicke, Yuan Yu,

and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on heterogeneous sys-

tems, 2015. Software available from tensorflow.org.

David Ackley. A connectionist machine for genetic hillclimbing, volume 28. Springer Science;

Business Media, 2012.

Garvit Agarwal, Hieu A Doan, Lily A Robertson, Lu Zhang, and Rajeev S Assary. Discov-

ery of energy storage molecular materials using quantum chemistry-guided multiobjective

bayesian optimization. Chemistry of Materials, 33(20):8133–8144, 2021.

Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim. On the Surprising Behavior

of Distance Metrics in High Dimensional Space. In Jan Van den Bussche and Victor

Vianu, editors, Database Theory — ICDT 2001, Lecture Notes in Computer Science,

pages 420–434, Berlin, Heidelberg, 2001. Springer. ISBN 978-3-540-44503-6. doi: 10.1007/

3-540-44503-X_27.

Charu C Aggarwal, Xiangnan Kong, Quanquan Gu, Jiawei Han, and S Yu Philip. Active

learning: A survey. In Data Classification: Algorithms and Applications, pages 571–605.

CRC Press, 2014.

Raj Agrawal, Chandler Squires, Karren Yang, Karthikeyan Shanmugam, and Caroline Uhler.

Abcd-strategy: Budgeted experimental design for targeted causal structure discovery. In

The 22nd International Conference on Artificial Intelligence and Statistics, pages 3400–

3409. PMLR, 2019.

David J. Aldous. Exchangeability and related topics. In David J. Aldous, Illdar A. Ibragimov,

Jean Jacod, and P. L. Hennequin, editors, École d’Été de Probabilités de Saint-Flour XIII

— 1983, Lecture Notes in Mathematics, pages 1–198, Berlin, Heidelberg, 1985. Springer.

ISBN 978-3-540-39316-0. doi: 10.1007/BFb0099421.

Christophe Andrieu and Johannes Thoms. A tutorial on adaptive mcmc. Statistics and

computing, 18:343–373, 2008.

Christophe Andrieu, Nando De Freitas, Arnaud Doucet, and Michael I Jordan. An intro-

duction to mcmc for machine learning. Machine learning, 50(1):5–43, 2003.

Anastasios N Angelopoulos and Stephen Bates. A gentle introduction to conformal prediction

and distribution-free uncertainty quantification. arXiv preprint arXiv:2107.07511, 2021.

Anastasios Nikolas Angelopoulos, Stephen Bates, Michael Jordan, and Jitendra Malik. Un-

certainty sets for image classifiers using conformal prediction. In International Conference

on Learning Representations, 2020.

Christof Angermueller, David Dohan, David Belanger, Ramya Deshpande, Kevin Murphy,

and Lucy Colwell. Model-based reinforcement learning for biological sequence design. In

International conference on learning representations, 2019.

Javier Antoran, James Allingham, and José Miguel Hernández-Lobato. Depth uncertainty

in neural networks. In Neural Information Processing Systems (NeurIPS), 2020.

Devansh Arpit, Stanisław Jastrzębski, Nicolas Ballas, David Krueger, Emmanuel Bengio,

Maxinder S. Kanwal, Tegan Maharaj, Asja Fischer, Aaron Courville, Yoshua Bengio, and

Simon Lacoste-Julien. A closer look at memorization in deep networks. In Doina Precup

and Yee Whye Teh, editors, Proceedings of the 34th International Conference on Machine

Learning, volume 70 of Proceedings of Machine Learning Research, pages 233–242. PMLR,

06–11 Aug 2017.

Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E Schapire. The nonstochastic

multiarmed bandit problem. SIAM journal on computing, 32(1):48–77, 2002.

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization. arXiv

preprint arXiv: 1607.06450, 2016.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural Machine Translation

by Jointly Learning to Align and Translate. In Proceedings of the 2015 International

Conference on Learning Representations, 2015.

Maximilian Balandat, Brian Karrer, Daniel R. Jiang, Samuel Daulton, Benjamin Letham,

Andrew Gordon Wilson, and Eytan Bakshy. BoTorch: A Framework for Efficient Monte-

Carlo Bayesian Optimization. In Advances in Neural Information Processing Systems 33,

2020.

Pedro J Ballester and John BO Mitchell. A machine learning approach to predicting protein–

ligand binding affinity with applications to molecular docking. Bioinformatics, 26(9):

1169–1175, 2010.

S Banerjee and AE Gelfand. On smoothness properties of spatial processes. Journal of

Multivariate Analysis, 84(1):85–100, 2003.

Adrian Barbu, Song-Chun Zhu, et al. Monte Carlo Methods, volume 35. Springer, 2020.

174

Peter W Battaglia, Jessica B Hamrick, Victor Bapst, Alvaro Sanchez-Gonzalez, Vinicius

Zambaldi, Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan

Faulkner, et al. Relational inductive biases, deep learning, and graph networks. arXiv

preprint 1806.01261, 2018.

Andrew L. Beam and Isaac S. Kohane. Big Data and Machine Learning in Health Care.

JAMA, 319(13):1317–1318, April 2018. ISSN 0098-7484. doi: 10.1001/jama.2017.18391.

Marc G Bellemare, Yavar Naddaf, Joel Veness, and Michael Bowling. The arcade learning

environment: An evaluation platform for general agents. Journal of Artificial Intelligence

Research, 47:253–279, 2013.

Richard Bellman. A markovian decision process. Journal of mathematics and mechanics,

pages 679–684, 1957.

Shai Ben-David, Nadav Eiron, and Philip M. Long. On the difficulty of approximately

maximizing agreements. Journal of Computer and System Sciences, 66(3):496–514, May

2003. ISSN 00220000. doi: 10.1016/S0022-0000(03)00038-2.

Bengio. How rogue ais may arise, 2023. https://yoshuabengio.org/2023/05/22/

how-rogue-ais-may-arise/,.

Emmanuel Bengio, Moksh Jain, Maksym Korablyov, Doina Precup, and Yoshua Bengio.

Flow network based generative models for non-iterative diverse candidate generation.

NeurIPS’2021, arXiv:2106.04399, 2021.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A Neural Probabilistic Language

Model. In T. Leen, T. Dietterich, and V. Tresp, editors, Advances in Neural Information

Processing Systems, volume 13. MIT Press, 2000.

Yoshua Bengio, Pascal Lamblin, Dan Popovici, and Hugo Larochelle. Greedy Layer-

Wise Training of Deep Networks. In B. Schölkopf, J. Platt, and T. Hoffman, ed-

itors, Advances in Neural Information Processing Systems, volume 19. MIT Press,

2006. URL https://proceedings.neurips.cc/paper_files/paper/2006/file/

5da713a690c067105aeb2fae32403405-Paper.pdf.

Yoshua Bengio, Grégoire Mesnil, Yann Dauphin, and Salah Rifai. Better mixing via deep

representations. In International conference on machine learning, pages 552–560. PMLR,

2013.

Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward Hu, Mo Tiwari, and Emmanuel Ben-

gio. Gflownet foundations. Journal of Machine Learning Research, 2023.

Viktor Bengs, Eyke Hüllermeier, and Willem Waegeman. On the difficulty of epistemic

uncertainty quantification in machine learning: The case of direct uncertainty estimation

through loss minimisation. arXiv preprint arXiv:2203.06102, 2022.

Herman Bergwerf. Molview, 2014.

Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research Society,

48(3):334–334, 1997.

175

https://yoshuabengio.org/2023/05/22/how-rogue-ais-may-arise/
https://yoshuabengio.org/2023/05/22/how-rogue-ais-may-arise/
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2006/file/5da713a690c067105aeb2fae32403405-Paper.pdf

Michael Betancourt. A conceptual introduction to hamiltonian monte carlo. arXiv preprint

arXiv: Arxiv-1701.02434, 2017.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006a.

Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer, 2006b.

David M. Blei, Michael I. Jordan, Thomas L. Griffiths, and Joshua B. Tenenbaum. Hi-

erarchical topic models and the nested Chinese restaurant process. Neural Information

Processing Systems (NIPS), 2003.

David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for

statisticians. Journal of the American statistical Association, 112(518):859–877, 2017.

Regine S Bohacek, Colin McMartin, and Wayne C Guida. The art and practice of structure-

based drug design: a molecular modeling perspective. Medicinal research reviews, 16(1):

3–50, 1996.

Jörg Bornschein and Yoshua Bengio. Reweighted wake-sleep. International Conference on

Learning Representations (ICLR), 2015.

Bernhard E Boser, Isabelle M Guyon, and Vladimir N Vapnik. A training algorithm for

optimal margin classifiers. In Proceedings of the fifth annual workshop on Computational

learning theory, pages 144–152, 1992.

George EP Box. Science and statistics. Journal of the American Statistical Association, 71

(356):791–799, 1976.

George EP Box and Norman R Draper. A basis for the selection of a response surface design.

Journal of the American Statistical Association, 54(287):622–654, 1959.

Justin A Boyan and Andrew W Moore. Generalization in reinforcement learning: Safely

approximating the value function. In Advances in neural information processing systems,

pages 369–376, 1995.

Leo Breiman. Classification and Regression Trees. Routledge, New York, 1984. ISBN 978-

1-315-13947-0. doi: 10.1201/9781315139470.

Leo Breiman. Bagging predictors. Machine learning, 24(2):123–140, 1996.

Selmer Bringsjord and Naveen Sundar Govindarajulu. Artificial Intelligence. In Edward N.

Zalta and Uri Nodelman, editors, The Stanford Encyclopedia of Philosophy. Metaphysics

Research Lab, Stanford University, fall 2022 edition, 2022.

Steve Brooks, Andrew Gelman, Galin Jones, and Xiao-Li Meng. Handbook of markov chain

monte carlo. CRC press, 2011.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D. Kaplan, Prafulla

Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini

Agarwal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya

Ramesh, Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric

Sigler, Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner,

Sam McCandlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language Models are

176

Few-Shot Learners. Advances in Neural Information Processing Systems, 33:1877–1901,

2020.

Arthur Earl Bryson. Applied optimal control: optimization, estimation and control. CRC

Press, 1975.

Cameron Buckner and James Garson. Connectionism. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall

2019 edition, 2019.

Lars Buesing, Nicolas Heess, and Theophane Weber. Approximate inference in discrete

distributions with monte carlo tree search and value functions, 2019.

Robert Burbidge, Jem J Rowland, and Ross D King. Active learning for regression based

on query by committee. In International conference on intelligent data engineering and

automated learning, pages 209–218. Springer, 2007.

Yuri Burda, Roger Baker Grosse, and Ruslan Salakhutdinov. Importance weighted autoen-

coders. International Conference on Learning Representations (ICLR), 2016.

Yuri Burda, Harrison Edwards, Amos Storkey, and Oleg Klimov. Exploration by random

network distillation. arXiv preprint arXiv:1810.12894, 2018.

Olivier Cappé, Eric Moulines, and Tobias Rydén. Inference in hidden markov models. In

Proceedings of EUSFLAT conference, 2009.

Lawrence Cayton. Algorithms for manifold learning. Univ. of California at San Diego Tech.

Rep, 12(1-17):1, 2005.

Maria R. Cervera, Rafael Dätwyler, Francesco D’Angelo, Hamza Keurti, Benjamin F. Grewe,

and Christian Henning. Uncertainty estimation under model misspecification in neural

network regression, 2021.

Maxime Chevalier-Boisvert, Dzmitry Bahdanau, Salem Lahlou, Lucas Willems, Chitwan

Saharia, Thien Huu Nguyen, and Yoshua Bengio. Babyai: First steps towards grounded

language learning with a human in the loop. arXiv preprint arXiv:1810.08272, 2018.

Maxime Chevalier-Boisvert, Bolun Dai, Mark Towers, Rodrigo de Lazcano, Lucas Willems,

Salem Lahlou, Suman Pal, Pablo Samuel Castro, and Jordan Terry. Minigrid & mini-

world: Modular & customizable reinforcement learning environments for goal-oriented

tasks. arXiv preprint arXiv: 2306.13831, 2023.

Rewon Child. Very deep VAEs generalize autoregressive models and can outperform them

on images. International Conference on Learning Representations (ICLR), 2021.

Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario Amodei.

Deep reinforcement learning from human preferences. Advances in neural information

processing systems, 30, 2017.

Junyoung Chung, Kyle Kastner, Laurent Dinh, Kratarth Goel, Aaron C Courville, and

Yoshua Bengio. A recurrent latent variable model for sequential data. Advances in neural

information processing systems, 28, 2015.

177

Youngseog Chung, Willie Neiswanger, Ian Char, and Jeff Schneider. Beyond pinball

loss: Quantile methods for calibrated uncertainty quantification. arXiv preprint

arXiv:2011.09588, 2020.

Tomas Cihlar and Marshall Fordyce. Current status and prospects of hiv treatment. Current

opinion in virology, 18:50–56, 2016.

William Coffey and Yu P Kalmykov. The Langevin equation: with applications to stochastic

problems in physics, chemistry and electrical engineering, volume 27. World Scientific,

2012.

Corinna Cortes and Vladimir Vapnik. Support-vector networks. Machine learning, 20:273–

297, 1995.

Chris Cundy, Aditya Grover, and Stefano Ermon. BCD Nets: Scalable variational approaches

for Bayesian causal discovery. Neural Information Processing Systems (NeurIPS), 2021.

G. Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of

Control, Signals and Systems, 2(4):303–314, December 1989. ISSN 1435-568X. doi: 10.

1007/BF02551274.

Hanjun Dai, Rishabh Singh, Bo Dai, Charles Sutton, and Dale Schuurmans. Learning dis-

crete energy-based models via auxiliary-variable local exploration. In Neural Information

Processing Systems (NeurIPS), 2020.

Alexander D’Amour, Katherine Heller, Dan Moldovan, Ben Adlam, Babak Alipanahi, Alex

Beutel, Christina Chen, Jonathan Deaton, Jacob Eisenstein, Matthew D Hoffman, et al.

Underspecification presents challenges for credibility in modern machine learning. The

Journal of Machine Learning Research, 23(1):10237–10297, 2022.

Francesco D’Angelo and Christian Henning. On out-of-distribution detection with bayesian

neural networks. arXiv preprint arXiv: Arxiv-2110.06020, 2021.

Luigi De Angelis, Francesco Baglivo, Guglielmo Arzilli, Gaetano Pierpaolo Privitera, Paolo

Ferragina, Alberto Eugenio Tozzi, and Caterina Rizzo. Chatgpt and the rise of large

language models: the new ai-driven infodemic threat in public health. Frontiers in Public

Health, 11:1166120, 2023.

Bruno De Finetti. Funzione caratteristica di un fenomeno aleatorio. In Atti del Congresso

Internazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pages 179–190,

1929.

Augustus De Morgan. Formal logic: or, the calculus of inference, necessary and probable.

Taylor and Walton, 1847.

Morris H DeGroot. Optimal statistical decisions. John Wiley & Sons, 2005.

Tristan Deleu, António Góis, Chris Emezue, Mansi Rankawat, Simon Lacoste-Julien, Stefan

Bauer, and Yoshua Bengio. Bayesian structure learning with generative flow networks. In

Uncertainty in Artificial Intelligence, pages 518–528. PMLR, 2022.

178

Li Deng. The mnist database of handwritten digit images for machine learning research [best

of the web]. IEEE signal processing magazine, 29(6):141–142, 2012.

Adji Bousso Dieng, Dustin Tran, Rajesh Ranganath, John William Paisley, and David M.

Blei. Variational inference via Ç upper bound minimization. Neural Information Processing

Systems (NIPS), 2017.

Laurent Dinh, David Krueger, and Yoshua Bengio. Nice: Non-linear independent compo-

nents estimation. International Conference On Learning Representations, 2014.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with

critically-damped langevin diffusion. International Conference on Learning Representa-

tions (ICLR), 2022.

Justin Domke and Daniel Sheldon. Importance weighting and variational inference. Neural

Information Processing Systems (NeurIPS), 2018.

Arnaud Doucet, Nando Freitas, and Neil Gordon. An Introduction to Sequential Monte Carlo

Methods, pages 3–14. Springer New York, 2001.

Michael W. Dusenberry, Ghassen Jerfel, Yeming Wen, Y. Ma, Jasper Snoek, K. Heller,

Balaji Lakshminarayanan, and Dustin Tran. Efficient and scalable bayesian neural nets

with rank-1 factors. In International Conference on Machine Learning (ICML), 2020.

Morris L Eaton. Multivariate statistics: a vector space approach. (No Title), 1983.

Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap. CRC press, 1994.

David Eriksson, Michael Pearce, Jacob R Gardner, Ryan Turner, and Matthias

Poloczek. Scalable global optimization via local bayesian optimization. arXiv preprint

arXiv:1910.01739, 2019.

Damien Ernst, Pierre Geurts, and Louis Wehenkel. Tree-based batch mode reinforcement

learning. Journal of Machine Learning Research, 6:503–556, 2005.

Absalom E. Ezugwu, Abiodun M. Ikotun, Olaide O. Oyelade, Laith Abualigah, Jeffery O.

Agushaka, Christopher I. Eke, and Andronicus A. Akinyelu. A comprehensive survey

of clustering algorithms: State-of-the-art machine learning applications, taxonomy, chal-

lenges, and future research prospects. Engineering Applications of Artificial Intelligence,

110:104743, April 2022. ISSN 0952-1976. doi: 10.1016/j.engappai.2022.104743.

Clara Fannjiang, Stephen Bates, Anastasios Angelopoulos, Jennifer Listgarten, and Michael I

Jordan. Conformal prediction for the design problem. arXiv preprint arXiv:2202.03613,

2022.

Valerii Vadimovich Fedorov. Theory of optimal experiments. Academic Press, New York,

1972.

Adam Foster, Martin Jankowiak, Elias Bingham, Paul Horsfall, Yee Whye Teh, Thomas

Rainforth, and Noah Goodman. Variational bayesian optimal experimental design. Ad-

vances in Neural Information Processing Systems, 32, 2019.

179

Adam Foster, Martin Jankowiak, Matthew O’Meara, Yee Whye Teh, and Tom Rainforth.

A unified stochastic gradient approach to designing bayesian-optimal experiments. In

International Conference on Artificial Intelligence and Statistics, pages 2959–2969. PMLR,

2020.

Adam Foster, Desi R Ivanova, Ilyas Malik, and Tom Rainforth. Deep adaptive design: Amor-

tizing sequential bayesian experimental design. In International Conference on Machine

Learning, pages 3384–3395. PMLR, 2021.

Vincent François-Lavet, David Taralla, Damien Ernst, and Raphaël Fonteneau. Deep rein-

forcement learning solutions for energy microgrids management. In European Workshop

on Reinforcement Learning (EWRL 2016), 2016.

P. Frazier. A tutorial on bayesian optimization. ArXiv, abs/1807.02811, 2018.

Yoav Freund, H Sebastian Seung, Eli Shamir, and Naftali Tishby. Information, prediction,

and query by committee. Advances in neural information processing systems, 5, 1992.

Nir Friedman and Daphne Koller. Being bayesian about network structure. In Craig Boutilier

and Moisés Goldszmidt, editors, UAI ’00: Proceedings of the 16th Conference in Uncer-

tainty in Artificial Intelligence, Stanford University, Stanford, California, USA, June 30

- July 3, 2000, pages 201–210. Morgan Kaufmann, 2000.

Nir Friedman, Moises Goldszmidt, and Abraham Wyner. Data analysis with bayesian net-

works: A bootstrap approach. arXiv preprint arXiv: 1301.6695, 2013.

Ken-Ichi Funahashi. On the approximate realization of continuous mappings by neural

networks. Neural Networks, 2(3):183–192, January 1989. ISSN 0893-6080. doi: 10.1016/

0893-6080(89)90003-8.

Futoshi Futami, Tomoharu Iwata, Naonori Ueda, Issei Sato, and Masashi Sugiyama. Excess

risk analysis for epistemic uncertainty with application to variational inference. arXiv

preprint arXiv: Arxiv-2206.01606, 2022.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In Maria-Florina Balcan and Kilian Q. Weinberger,

editors, Proceedings of the 33nd International Conference on Machine Learning, ICML

2016, New York City, NY, USA, June 19-24, 2016, volume 48 of JMLR Workshop and

Conference Proceedings, pages 1050–1059. JMLR.org, 2016a.

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing

model uncertainty in deep learning. In International Conference on Machine Learning

(ICML), pages 1050–1059. PMLR, 2016b.

Yarin Gal, Riashat Islam, and Zoubin Ghahramani. Deep bayesian active learning with

image data. In International Conference on Machine Learning, pages 1183–1192. PMLR,

2017.

Roman Garnett. Bayesian Optimization. Cambridge University Press, 2022. in preparation.

180

Dan Geiger and David Heckerman. Learning Gaussian networks. In Uncertainty Proceedings

1994, pages 235–243. Elsevier, 1994.

Alan E Gelfand and Adrian FM Smith. Sampling-based approaches to calculating marginal

densities. Journal of the American statistical association, 85(410):398–409, 1990.

Andrew Gelman and Cosma Rohilla Shalizi. Philosophy and the practice of Bayesian statis-

tics. The British journal of mathematical and statistical psychology, 66(1):8–38, February

2013. ISSN 0007-1102. doi: 10.1111/j.2044-8317.2011.02037.x.

Andrew Gelman, John B Carlin, Hal S Stern, David B Dunson, Aki Vehtari, and Donald B

Rubin. Bayesian data analysis. CRC press, 2013.

Stuart Geman and Donald Geman. Stochastic relaxation, gibbs distributions, and the

bayesian restoration of images. IEEE Transactions on pattern analysis and machine in-

telligence, pages 721–741, 1984.

Aurélien Géron. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow. "

O’Reilly Media, Inc.", 2022.

Marzyeh Ghassemi, Tristan Naumann, Peter Schulam, Andrew L. Beam, Irene Y. Chen, and

Rajesh Ranganath. A Review of Challenges and Opportunities in Machine Learning for

Health. AMIA Summits on Translational Science Proceedings, 2020:191–200, May 2020.

ISSN 2153-4063.

Ran Gilad-Bachrach, Amir Navot, and Naftali Tishby. Query by committee made real.

Advances in neural information processing systems, 18, 2005.

Walter R Gilks and Pascal Wild. Adaptive rejection sampling for gibbs sampling. Journal

of the Royal Statistical Society: Series C (Applied Statistics), 41(2):337–348, 1992.

Irving J Good. Monte carlo method. ErIcyc/Oneok Qt SCI’er2ce ond Teohrlo/Ogy, 17th

edn. vol. Vn (MCGraw-Hill, 1992), pages 414–416, 1960.

Will Grathwohl, Dami Choi, Yuhuai Wu, Geoffrey Roeder, and David Kristjanson Duvenaud.

Backpropagation through the void: Optimizing control variates for black-box gradient

estimation. International Conference on Learning Representations (ICLR), 2018.

Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris J. Maddison.

Oops i took a gradient: Scalable sampling for discrete distributions, 2021.

Kristjan Greenewald, Dmitriy Katz, Karthikeyan Shanmugam, Sara Magliacane, Murat Ko-

caoglu, Enric Boix Adsera, and Guy Bresler. Sample efficient active learning of causal

trees. Advances in Neural Information Processing Systems, 32, 2019.

Karol Gregor, Ivo Danihelka, Andriy Mnih, Charles Blundell, and Daan Wierstra. Deep

AutoRegressive networks. International Conference on Machine Learning (ICML), 2014.

Thomas L. Griffiths. Understanding Human Intelligence through Human Limitations, Sep-

tember 2020. arXiv:2009.14050 [cs].

Peter Grünwald. The safe bayesian. In International Conference on Algorithmic Learning

Theory, pages 169–183. Springer, 2012.

181

Peter Grünwald and Thijs Van Ommen. Inconsistency of bayesian inference for misspecified

linear models, and a proposal for repairing it. Bayesian Analysis, 12(4):1069–1103, 2017.

Shixiang Gu, Ethan Holly, Timothy Lillicrap, and Sergey Levine. Deep reinforcement learn-

ing for robotic manipulation with asynchronous off-policy updates. In 2017 IEEE inter-

national conference on robotics and automation (ICRA), pages 3389–3396. IEEE, 2017.

Tuomas Haarnoja, Haoran Tang, Pieter Abbeel, and Sergey Levine. Reinforcement learning

with deep energy-based policies. In International Conference on Machine Learning, pages

1352–1361. PMLR, 2017.

Danijar Hafner, Dustin Tran, Timothy Lillicrap, Alex Irpan, and James Davidson. Noise

contrastive priors for functional uncertainty. In Conference on Uncertainty in Artificial

Intelligence (UAI), 2019.

Paul Hagemann, Johannes Hertrich, and Gabriele Steidl. Stochastic normalizing flows for

inverse problems: A Markov chains viewpoint. SIAM/ASA Journal on Uncertainty Quan-

tification, 10(3):1162–1190, 2022.

Matan Haroush, Tzviel Frostig, Ruth Heller, and Daniel Soudry. A statistical framework for

efficient out of distribution detection in deep neural networks. In International Conference

on Learning Representations, 2021.

Johan Håstad. Computational limitations for small depth circuits. PhD thesis, Massachusetts

Institute of Technology, 1986.

Trevor Hastie, Robert Tibshirani, Jerome H Friedman, and Jerome H Friedman. The ele-

ments of statistical learning: data mining, inference, and prediction, volume 2. Springer,

2009.

WK Hastings. Monte carlo sampling methods using markov chains and their applications.

Biometrika, pages 97–109, 1970.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for

image recognition. In Proceedings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

Yang-Bo He and Zhi Geng. Active learning of causal networks with intervention experiments

and optimal designs. Journal of Machine Learning Research, 9(Nov):2523–2547, 2008.

Yang-Hui He, Elli Heyes, and Edward Hirst. Machine Learning in Physics and Geometry,

March 2023. arXiv:2303.12626 [hep-th, physics:math-ph].

Dan Hendrycks and Thomas Dietterich. Benchmarking neural network robustness to common

corruptions and perturbations. Proceedings of the International Conference on Learning

Representations, 2019.

José Miguel Hernández-Lobato, Yingzhen Li, Mark Rowland, Thang D. Bui, Daniel

Hernández-Lobato, and Richard E. Turner. Black-box alpha divergence minimization.

International Conference on Machine Learning (ICML), 2016.

182

Luke B. Hewitt, Tuan Anh Le, and Joshua B. Tenenbaum. Learning to learn generative

programs with memoised wake-sleep. Uncertainty in Artificial Intelligence (UAI), 2020.

Tony Hey, Stewart Tansley, Kristin Tolle, and Jim Gray. The Fourth Paradigm: Data-

Intensive Scientific Discovery. Microsoft Research, October 2009. ISBN 978-0-9825442-0-

4.

Charles Robert Hicks. Fundamental Concepts in the Design of Experiments. New York,:

Holt, Rinehart and Winston, 1964.

Geoffrey E. Hinton, Peter Dayan, Brendan J. Frey, and R M Neal. The “wake-sleep” algo-

rithm for unsupervised neural networks. Science, 268 5214:1158–61, 1995.

Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan R

Salakhutdinov. Improving neural networks by preventing co-adaptation of feature de-

tectors. arXiv preprint arXiv:1207.0580, 2012.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Ad-

vances in neural information processing systems, 33:6840–6851, 2020a.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Neural

Information Processing Systems (NeurIPS), 2020b.

Thomas Hobbes. Leviathan. Routledge, 1651. ISBN 978-1-315-50760-6. Google-Books-ID:

Twk3DAAAQBAJ.

Matthew D. Hoffman and Andrew Gelman. The No-U-turn sampler: adaptively setting path

lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Research (JMLR), 15:

1593–1623, 2011.

Matthew D. Hoffman, David M. Blei, Chong Wang, and John William Paisley. Stochastic

variational inference. Journal of Machine Learning Research (JMLR), 14:1303–1347, 2013.

Lara Hoffmann and Clemens Elster. Deep ensembles from a bayesian perspective. arXiv

preprint arXiv:2105.13283, 2021.

Liang Hong and Ryan Martin. Model misspecification, bayesian versus credibility estimation,

and gibbs posteriors. Scandinavian Actuarial Journal, 2020(7):634–649, 2020.

Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward networks are

universal approximators. Neural Networks, 2(5):359–366, January 1989. ISSN 0893-6080.

doi: 10.1016/0893-6080(89)90020-8.

Edward J Hu, Nikolay Malkin, Moksh Jain, Katie E Everett, Alexandros Graikos, and Yoshua

Bengio. Gflownet-em for learning compositional latent variable models. In International

Conference on Machine Learning, pages 13528–13549. PMLR, 2023.

S. Hu, Nicola Pezzotti, and M. Welling. A new perspective on uncertainty quantification of

deep ensembles. arXiv, 2020.

Aapo Hyvärinen. Estimation of Non-Normalized Statistical Models by Score Matching.

Journal of Machine Learning Research, 6(24):695–709, 2005. ISSN 1533-7928.

183

Alan Hájek. “Mises Redux” — Redux: Fifteen Arguments Against Finite Frequentism.

In Domenico Costantini and Maria Carla Galavotti, editors, Probability, Dynamics and

Causality: Essays in Honour of Richard C. Jeffrey, pages 69–87. Springer Netherlands,

Dordrecht, 1997. ISBN 978-94-011-5712-4. doi: 10.1007/978-94-011-5712-4_5.

Alan Hájek. Dutch Book Arguments. In Paul Anand, Prasanta Pattanaik, and Clemens

Puppe, editors, The Oxford Handbook of Rational and Social Choice. Oxford University

Press, 2008.

Alan Hájek. Interpretations of Probability. In Edward N. Zalta, editor, The Stanford Ency-

clopedia of Philosophy. Metaphysics Research Lab, Stanford University, Fall 2019 edition,

2019.

E. Hüllermeier and W. Waegeman. Aleatoric and epistemic uncertainty in machine learn-

ing: An introduction to concepts and methods. Mach. Learn., 2019. doi: 10.1007/

s10994-021-05946-3.

Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network training

by reducing internal covariate shift. International Conference On Machine Learning, 2015.

Desi R Ivanova, Adam Foster, Steven Kleinegesse, Michael U Gutmann, and Thomas Rain-

forth. Implicit deep adaptive design: policy-based experimental design without likelihoods.

Advances in Neural Information Processing Systems, 34:25785–25798, 2021.

Pavel Izmailov, D. Podoprikhin, T. Garipov, D. Vetrov, and A. Wilson. Averaging weights

leads to wider optima and better generalization. In Conference on Uncertainty in Artificial

Intelligence (UAI), 2018.

Tommi S Jaakkola. Tutorial on variational approximation methods. Advanced mean field

methods: theory and practice, pages 129–159, 2000.

Tommi S Jaakkola and Michael I Jordan. Bayesian parameter estimation via variational

methods. Statistics and Computing, 10:25–37, 2000.

Pierre Jacob. Intentionality. In Edward N. Zalta and Uri Nodelman, editors, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Spring 2023

edition, 2023.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaventure

F P Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Michael Kilgour, Dinghuai Zhang,

Lena Simine, Payel Das, and Yoshua Bengio. Biological sequence design with gflownets.

International Conference on Machine Learning (ICML), 2022a.

Moksh Jain, Emmanuel Bengio, Alex Hernandez-Garcia, Jarrid Rector-Brooks, Bonaven-

ture F.P. Dossou, Chanakya Ekbote, Jie Fu, Tianyu Zhang, Micheal Kilgour, Dinghuai

Zhang, Lena Simine, Payel Das, and Yoshua Bengio. Biological sequence design with

GFlowNets. International Conference on Machine Learning (ICML), 2022b.

184

Moksh Jain, Tristan Deleu, Jason Hartford, Cheng-Hao Liu, Alex Hernandez-Garcia, and

Yoshua Bengio. Gflownets for ai-driven scientific discovery. Digital Discovery, 2(3):557–

577, 2023.

David Janz, Jiri Hron, Przemysław Mazur, Katja Hofmann, José Miguel Hernández-Lobato,

and Sebastian Tschiatschek. Successor uncertainties: Exploration and uncertainty in tem-

poral difference learning. In Neural Information Processing Systems (NeurIPS), 2019.

N. Japkowicz, null Jos, and M. A. Gluck. Nonlinear autoassociation is not equivalent to

PCA. Neural Computation, 12(3):531–545, March 2000. ISSN 0899-7667. doi: 10.1162/

089976600300015691.

Ajay Jasra, Chris C Holmes, and David A Stephens. Markov chain monte carlo methods

and the label switching problem in bayesian mixture modeling. Statistical Science, pages

50–67, 2005.

E. T. Jaynes. Probability Theory: The Logic of Science. Cambridge University Press, Cam-

bridge, UK ; New York, NY, annotated edition edition, April 2003. ISBN 978-0-521-59271-

0.

Tony Jebara. Generative Versus Discriminative Learning. In Tony Jebara, editor, Machine

Learning: Discriminative and Generative, The International Series in Engineering and

Computer Science, pages 17–60. Springer US, Boston, MA, 2004. ISBN 978-1-4419-9011-

2. doi: 10.1007/978-1-4419-9011-2_2.

Wengong Jin, Regina Barzilay, and Tommi Jaakkola. Chapter 11. junction tree variational

autoencoder for molecular graph generation. Drug Discovery, page 228–249, 2020. ISSN

2041-3211.

Bowen Jing, Gabriele Corso, Regina Barzilay Jeffrey Chang, and Tommi Jaakkola. Tor-

sional diffusion for molecular conformer generation. Neural Information Processing Sys-

tems (NeurIPS), 2022.

Donald R Jones, Matthias Schonlau, and William J Welch. Efficient global optimization of

expensive black-box functions. Journal of Global optimization, 13(4):455–492, 1998.

Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An

introduction to variational methods for graphical models. Machine learning, 37:183–233,

1999.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ron-

neberger, Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al.

Highly accurate protein structure prediction with alphafold. Nature, 596(7873):583–589,

2021.

Daniel Kahneman, Paul Slovic, and Amos Tversky. Judgment under uncertainty: Heuristics

and biases. Cambridge university press, 1982.

Satyen Kale, Ayush Sekhari, and Karthik Sridharan. Sgd: The role of implicit regularization,

batch-size and multiple-epochs. In NeurIPS, 2021.

185

Annemarie Kalis. No Intentions in the Brain: A Wittgensteinian Perspective on the Science

of Intention. Frontiers in Psychology, 10, 2019. ISSN 1664-1078.

Andrej Karpathy. CS231n Convolutional Neural Networks for Visual Recognition, 2023.

URL https://cs231n.github.io/classification/.

Alex Kendall and Yarin Gal. What uncertainties do we need in bayesian deep learning for

computer vision? Advances in neural information processing systems, 30, 2017.

G. Jay. Kerns and Gábor J. Székely. Definetti’s Theorem for Abstract Finite Exchangeable

Sequences. Journal of Theoretical Probability, 19(3):589–608, December 2006. ISSN 1572-

9230. doi: 10.1007/s10959-006-0028-z.

Samuel Kim, Peter Y Lu, Charlotte Loh, Jamie Smith, Jasper Snoek, and Marin Soljacic.

Deep learning for bayesian optimization of scientific problems with high-dimensional struc-

ture. arXiv preprint arXiv:2104.11667, 2021.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models.

Advances in neural information processing systems, 34:21696–21707, 2021.

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. Interna-

tional Conference On Learning Representations, 2014.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In

International Conference for Learning Representations, 2015.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint

arXiv:1312.6114, 2013.

Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In Yoshua Bengio

and Yann LeCun, editors, 2nd International Conference on Learning Representations,

ICLR 2014, Banff, AB, Canada, April 14-16, 2014, Conference Track Proceedings, 2014a.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. International

Conference on Learning Representations (ICLR), 2014b.

Werner Kirsch. An elementary proof of de Finetti’s Theorem, September 2018.

arXiv:1809.00882 [math].

Armen Der Kiureghian and Ove Ditlevsen. Aleatory or epistemic? does it matter? Structural

Safety, 31(2):105–112, 2009. ISSN 0167-4730. doi: https://doi.org/10.1016/j.strusafe.2008.

06.020. Risk Acceptance and Risk Communication.

Bas JK Kleijn and Aad W van der Vaart. The bernstein-von-mises theorem under misspec-

ification. Electronic Journal of Statistics, 6:354–381, 2012.

Steven Kleinegesse and Michael U Gutmann. Efficient bayesian experimental design for

implicit models. In The 22nd International Conference on Artificial Intelligence and Sta-

tistics, pages 476–485. PMLR, 2019.

Steven Kleinegesse and Michael U Gutmann. Gradient-based bayesian experimental

design for implicit models using mutual information lower bounds. arXiv preprint

arXiv:2105.04379, 2021.

186

https://cs231n.github.io/classification/

NP Klepikov and SN Sokolov. Analysis and design of experiments by the maximum likelihood

method, 1964.

Jeremias Knoblauch, Jack Jewson, and Theodoros Damoulas. An optimization-centric view

on bayes’ rule: Reviewing and generalizing variational inference. Journal of Machine

Learning Research, 23(132):1–109, 2022.

Ivan Kobyzev, Simon JD Prince, and Marcus A Brubaker. Normalizing flows: An introduc-

tion and review of current methods. IEEE transactions on pattern analysis and machine

intelligence, 43(11):3964–3979, 2020.

Mykel J Kochenderfer, Tim A Wheeler, and Kyle H Wray. Algorithms for decision making.

MIT press, 2022.

Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In In: ECML-06.

Number 4212 in LNCS, pages 282–293. Springer, 2006.

AN Kolmogorov. Foundations of the theory of probability. Chelsea Publishing Co., 1950.

Vijay R Konda and John N Tsitsiklis. Actor-critic algorithms. In Advances in neural infor-

mation processing systems, pages 1008–1014, 2000.

Oliver Kramer. K-Nearest Neighbors. In Oliver Kramer, editor, Dimensionality Reduc-

tion with Unsupervised Nearest Neighbors, Intelligent Systems Reference Library, pages

13–23. Springer, Berlin, Heidelberg, 2013. ISBN 978-3-642-38652-7. doi: 10.1007/

978-3-642-38652-7_2.

Agustinus Kristiadi, Matthias Hein, and Philipp Hennig. Being bayesian, even just a bit,

fixes overconfidence in relu networks. International Conference On Machine Learning,

2020.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report,

University of Toronto, 2009.

Jack Kuipers, Giusi Moffa, and David Heckerman. Addendum on the scoring of Gaussian

directed acyclic graphical models. The Annals of Statistics, 42(4):1689–1691, 2014.

Ashutosh Kumar, Arnout Voet, and Kam Y.J. Zhang. Fragment based drug design: from

experimental to computational approaches. Current medicinal chemistry, 19(30):5128–

5147, 2012.

H. J. Kushner. A new method of locating the maximum point of an arbitrary multipeak

curve in the presence of noise. Journal of Basic Engineering, 86:97–106, 1964.

Simon Lacoste-Julien. IFT 6269 : Probabilistic Graphical Models - Fall 2022, 2016. URL

https://www.iro.umontreal.ca/~slacoste/teaching/ift6269/A16/.

Salem Lahlou, Moksh Jain, Hadi Nekoei, V. Butoi, Paul Bertin, Jarrid Rector-Brooks,

Maksym Korablyov, and Yoshua Bengio. Deup: Direct epistemic uncertainty prediction.

Trans. Mach. Learn. Res., 2021.

Salem Lahlou, T. Deleu, Pablo Lemos, Dinghuai Zhang, Alexandra Volokhova, Alex

Hernández-García, L’ena N’ehale Ezzine, Y. Bengio, and Nikolay Malkin. A theory of

187

https://www.iro.umontreal.ca/~slacoste/teaching/ift6269/A16/

continuous generative flow networks. International Conference on Machine Learning

(ICML), 2023a.

Salem Lahlou, Joseph D. Viviano, and Victor Schmidt. torchgfn: A pytorch gflownet library.

arXiv preprint arXiv: 2305.14594, 2023b.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable

predictive uncertainty estimation using deep ensembles. Advances in neural information

processing systems, 30, 2017a.

Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable

predictive uncertainty estimation using deep ensembles. In Neural Information Processing

Systems (NeurIPS), 2017b.

Sascha Lange, Thomas Gabel, and Martin Riedmiller. Batch reinforcement learning. In

Reinforcement learning, pages 45–73. Springer, 2012.

Junpeng Lao, Christopher Suter, Ian Langmore, Cyril Chimisov, Ashish Saxena, Pavel

Sountsov, Dave Moore, Rif A Saurous, Matthew D Hoffman, and Joshua V Dillon. tfp.

mcmc: Modern markov chain monte carlo tools built for modern hardware. arXiv preprint

arXiv:2002.01184, 2020.

Hugo Larochelle and Iain Murray. The neural autoregressive distribution estimator. In Pro-

ceedings of the fourteenth international conference on artificial intelligence and statistics,

pages 29–37. JMLR Workshop and Conference Proceedings, 2011.

Steffen L Lauritzen and David J Spiegelhalter. Local computations with probabilities on

graphical structures and their application to expert systems. Journal of the Royal Statis-

tical Society: Series B (Methodological), 50(2):157–194, 1988.

Tuan Anh Le, Adam R. Kosiorek, N. Siddharth, Yee Whye Teh, and Frank Wood. Revisiting

reweighted wake-sleep for models with stochastic control flow. Uncertainty in Artificial

Intelligence (UAI), 2019.

Tuan Anh Le, Katherine M. Collins, Luke B. Hewitt, Kevin Ellis, N. Siddharth, Samuel J.

Gershman, and Joshua B. Tenenbaum. Hybrid memoised wake-sleep: Approximate infer-

ence at the discrete-continuous interface. International Conference on Learning Represen-

tations (ICLR), 2022.

Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–

444, May 2015. ISSN 1476-4687. doi: 10.1038/nature14539. Number: 7553 Publisher:

Nature Publishing Group.

Mei-Ling Ting Lee, Frank C Kuo, GA Whitmore, and Jeffrey Sklar. Importance of replication

in microarray gene expression studies: statistical methods and evidence from repetitive

cdna hybridizations. Proceedings of the National Academy of Sciences, 97(18):9834–9839,

2000.

Janet Levin. Functionalism. In Edward N. Zalta and Uri Nodelman, editors, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, summer 2023

188

edition, 2023.

Sergey Levine. Reinforcement learning and control as probabilistic inference: Tutorial and

review. arXiv preprint arXiv:1805.00909, 2018.

Yinchuan Li, Shuang Luo, Haozhi Wang, and Jianye Hao. CFlowNets: Continuous control

with generative flow networks. International Conference on Learning Representations

(ICLR), 2023.

Yingzhen Li, José Miguel Hernández-Lobato, and Richard E. Turner. Stochastic expectation

propagation. Neural Information Processing Systems (NIPS), 2015.

Xiaodan Liang, Tairui Wang, Luona Yang, and Eric Xing. Cirl: Controllable imitative rein-

forcement learning for vision-based self-driving. In Proceedings of the European conference

on computer vision (ECCV), pages 584–599, 2018.

Vincent Lim, Ellen Novoseller, Jeffrey Ichnowski, Huang Huang, and Ken Goldberg. Policy-

based bayesian experimental design for non-differentiable implicit models. arXiv preprint

arXiv:2203.04272, 2022.

Li-Chiang Lin, Adam H Berger, Richard L Martin, Jihan Kim, Joseph A Swisher, Kuldeep

Jariwala, Chris H Rycroft, Abhoyjit S Bhown, Michael W Deem, Maciej Haranczyk, et al.

In silico screening of carbon-capture materials. Nature materials, 11(7):633–641, 2012.

Long-Ji Lin. Self-improving reactive agents based on reinforcement learning, planning and

teaching. Machine learning, 8(3-4):293–321, 1992.

Zhen Lin, Shubhendu Trivedi, and Jimeng Sun. Conformal prediction with temporal quantile

adjustments. ArXiv, abs/2205.09940, 2022.

Seppo Linnainmaa. The representation of the cumulative rounding error of an algorithm as

a Taylor expansion of the local rounding errors. PhD thesis, Master’s Thesis (in Finnish),

Univ. Helsinki, 1970.

Seppo Linnainmaa. Taylor expansion of the accumulated rounding error. BIT Numerical

Mathematics, 16(2):146–160, June 1976. ISSN 1572-9125. doi: 10.1007/BF01931367.

Yaron Lipman, Ricky T. Q. Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow

matching for generative modeling. arXiv preprint 2210.02747, 2022.

Dianbo Liu, Moksh Jain, Bonaventure F. P. Dossou, Qianli Shen, Salem Lahlou, Anirudh

Goyal, Nikolay Malkin, Chris Chinenye Emezue, Dinghuai Zhang, Nadhir Hassen, Xu Ji,

Kenji Kawaguchi, and Yoshua Bengio. GFlowOut: Dropout with generative flow net-

works. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan

Sabato, and Jonathan Scarlett, editors, Proceedings of the 40th International Conference

on Machine Learning, volume 202 of Proceedings of Machine Learning Research, pages

21715–21729. PMLR, 23–29 Jul 2023.

Jeremiah Zhe Liu, Zian Lin, Shreyas Padhy, Dustin Tran, Tania Bedrax-Weiss, and Balaji

Lakshminarayanan. Simple and principled uncertainty estimation with deterministic deep

learning via distance awareness. In Neural Information Processing Systems (NeurIPS),

189

2020.

Qiang Liu and Dilin Wang. Stein variational gradient descent: A general purpose Bayesian

inference algorithm. Neural Information Processing Systems (NIPS), 2016.

S. Lloyd. Least squares quantization in PCM. IEEE Transactions on Information Theory,

28(2):129–137, March 1982. ISSN 1557-9654. doi: 10.1109/TIT.1982.1056489. Conference

Name: IEEE Transactions on Information Theory.

Lars Lorch, Jonas Rothfuss, Bernhard Schölkopf, and Andreas Krause. Dibs: Differen-

tiable bayesian structure learning. In Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N.

Dauphin, Percy Liang, and Jennifer Wortman Vaughan, editors, Advances in Neural In-

formation Processing Systems 34: Annual Conference on Neural Information Processing

Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pages 24111–24123, 2021.

Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient descent with warm restarts.

International Conference on Learning Representations (ICLR), 2017.

Lars Maaløe, Marco Fraccaro, Valentin Liévin, and Ole Winther. BIVA: A very deep hier-

archy of latent variables for generative modeling. Neural Information Processing Systems

(NeurIPS), 2019.

David JC MacKay. The evidence framework applied to classification networks. Neural

computation, 4(5):720–736, 1992.

Benjamin P MacLeod, Fraser GL Parlane, Thomas D Morrissey, Florian Häse, Loïc M Roch,

Kevan E Dettelbach, Raphaell Moreira, Lars PE Yunker, Michael B Rooney, Joseph R

Deeth, et al. Self-driving laboratory for accelerated discovery of thin-film materials. Science

Advances, 6(20):eaaz8867, 2020.

J. MacQueen. Some methods for classification and analysis of multivariate observations. In

Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability,

Volume 1: Statistics, volume 5.1, pages 281–298. University of California Press, January

1967.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,

Andrei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from

partial episodes for improved convergence and stability. arXiv preprint 2209.12782, 2022a.

Kanika Madan, Jarrid Rector-Brooks, Maksym Korablyov, Emmanuel Bengio, Moksh Jain,

Andrei Nica, Tom Bosc, Yoshua Bengio, and Nikolay Malkin. Learning GFlowNets from

partial episodes for improved convergence and stability. arXiv preprint 2209.12782, 2022b.

Wesley Maddox, Timur Garipov, Pavel Izmailov, Dmitry Vetrov, and Andrew Gordon Wil-

son. A simple baseline for bayesian uncertainty in deep learning. In Neural Information

Processing Systems (NeurIPS), 2019.

Shreshth A. Malik, Salem Lahlou, Andrew Jesson, Moksh Jain, Nikolay Malkin, Tristan

Deleu, Yoshua Bengio, and Yarin Gal. Batchgfn: Generative flow networks for batch

active learning. arXiv preprint arXiv: 2306.15058, 2023.

190

Andrey Malinin, Bruno Mlodozeniec, and Mark Gales. Ensemble distribution distillation.

In International Conference on Learning Representations, 2020.

Nikolay Malkin, Moksh Jain, Emmanuel Bengio, Chen Sun, and Yoshua Bengio. Trajectory

balance: Improved credit assignment in gflownets. arXiv preprint arXiv:2201.13259, 2022.

Nikolay Malkin, Salem Lahlou, Tristan Deleu, Xu Ji, Edward Hu, Katie Everett, Dinghuai

Zhang, and Yoshua Bengio. GFlowNets and variational inference. International Conference

on Learning Representations (ICLR), 2023.

Alina Malyutina, Muntasir Mamun Majumder, Wenyu Wang, Alberto Pessia, Caroline A

Heckman, and Jing Tang. Drug combination sensitivity scoring facilitates the discovery of

synergistic and efficacious drug combinations in cancer. PLoS computational biology, 15

(5):e1006752, 2019.

Andres Masegosa. Learning under model misspecification: Applications to variational and

ensemble methods. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin,

editors, Advances in Neural Information Processing Systems, 2020.

Vaden Masrani, Tuan Anh Le, and Frank D. Wood. The thermodynamic variational objec-

tive. Neural Information Processing Systems (NeurIPS), 2019.

James L. Mcclelland, David E. Rumelhart, and PDP Research Group. Parallel Distributed

Processing, Volume 2: Explorations in the Microstructure of Cognition: Psychological and

Biological Models. MIT Press, July 1987. ISBN 978-0-262-63110-5. Google-Books-ID:

davmLgzusB8C.

Margaret Meek Lange. Progress. In Edward N. Zalta and Uri Nodelman, editors, The Stan-

ford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, Summer

2023 edition, 2023.

Viraj Mehta, Biswajit Paria, Jeff Schneider, Stefano Ermon, and Willie Neiswanger. An

experimental design perspective on model-based reinforcement learning. arXiv preprint

arXiv:2112.05244, 2021.

Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H Teller, and

Edward Teller. Equation of state calculations by fast computing machines. The journal

of chemical physics, 21(6):1087–1092, 1953.

George A. Miller. The cognitive revolution: a historical perspective. Trends in Cogni-

tive Sciences, 7(3):141–144, March 2003. ISSN 1364-6613, 1879-307X. doi: 10.1016/

S1364-6613(03)00029-9. Publisher: Elsevier.

Thomas P. Minka. Expectation propagation for approximate Bayesian inference. arXiv

preprint 1301.2294, 2001.

Tom Minka et al. Divergence measures and message passing. Technical report, Citeseer,

2005.

Vladimir Mironov, Yuri Alexeev, Vikram Khipple Mulligan, and Dmitri G. Fedorov. A

systematic study of minima in alanine dipeptide. Journal of Computational Chemistry,

191

40(2):297–309, 2018.

Tom M. Mitchell. Machine Learning. McGraw-Hill series in computer science. McGraw-Hill,

New York, 1997. ISBN 978-0-07-042807-2.

Andriy Mnih and Karol Gregor. Neural variational inference and learning in belief networks.

International Conference on Machine Learning (ICML), 2014.

Andriy Mnih and Danilo Jimenez Rezende. Variational inference for Monte Carlo objectives.

International Conference on Machine Learning (ICML), 2016.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis Antonoglou, Daan

Wierstra, and Martin Riedmiller. Playing atari with deep reinforcement learning. arXiv

preprint arXiv:1312.5602, 2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G

Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.

Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.

Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-

crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep

reinforcement learning. In International conference on machine learning, pages 1928–1937,

2016.

Jonas Močkus. On bayesian methods for seeking the extremum. In Optimization techniques

IFIP technical conference, pages 400–404. Springer, 1975.

Reza Bayat Mokhtari, Tina S Homayouni, Narges Baluch, Evgeniya Morgatskaya, Sushil

Kumar, Bikul Das, and Herman Yeger. Combination therapy in combating cancer. Onco-

target, 8(23):38022, 2017.

Guido Montúfar, Razvan Pascanu, Kyunghyun Cho, and Yoshua Bengio. On the number of

linear regions of deep neural networks. NIPS, 2014.

Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard, Trevor

Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack: Expert-level

artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–513, 2017.

Harry L Morgan. The generation of a unique machine description for chemical structures-a

technique developed at chemical abstracts service. Journal of Chemical Documentation, 5

(2):107–113, 1965.

Warren Morningstar, Cusuh Ham, Andrew Gallagher, Balaji Lakshminarayanan, Alex Alemi,

and Joshua Dillon. Density of states estimation for out of distribution detection. In

International Conference on Artificial Intelligence and Statistics, pages 3232–3240. PMLR,

2021.

Jishnu Mukhoti, Andreas Kirsch, Joost van Amersfoort, Philip H. S. Torr, and Yarin Gal.

Deep deterministic uncertainty: A simple baseline, 2021.

Peter Müller. Simulation based optimal design. Handbook of Statistics, 25:509–518, 2005.

192

Kevin P Murphy. Active learning of causal bayes net structure. Technical report, technical

report, UC Berkeley, 2001.

Kevin P. Murphy. Probabilistic Machine Learning: An introduction. MIT Press, 2022.

Kevin P. Murphy. Probabilistic Machine Learning: Advanced Topics. MIT Press, 2023.

Ofir Nachum, Mohammad Norouzi, Kelvin Xu, and Dale Schuurmans. Bridging the gap

between value and policy based reinforcement learning. arXiv preprint arXiv:1702.08892,

2017.

Ofir Nachum, Yinlam Chow, Bo Dai, and Lihong Li. Dualdice: Behavior-agnostic estimation

of discounted stationary distribution corrections. arXiv preprint arXiv:1906.04733, 2019.

Zachary Nado, Neil Band, Mark Collier, Josip Djolonga, Michael Dusenberry, Sebastian

Farquhar, Angelos Filos, Marton Havasi, Rodolphe Jenatton, Ghassen Jerfel, Jeremiah

Liu, Zelda Mariet, Jeremy Nixon, Shreyas Padhy, Jie Ren, Tim Rudner, Yeming Wen,

Florian Wenzel, Kevin Murphy, D. Sculley, Balaji Lakshminarayanan, Jasper Snoek, Yarin

Gal, and Dustin Tran. Uncertainty Baselines: Benchmarks for uncertainty & robustness

in deep learning. arXiv preprint arXiv:2106.04015, 2021.

Anusha Nagabandi, Kurt Konoglie, Sergey Levine, and Vikash Kumar. Deep dynamics

models for learning dexterous manipulation. arXiv preprint arXiv:1909.11652, 2019.

Vasili Vasilevich Nalimov and Nataliia Andreevana Chernova. Statistical methods for design

of extremal experiments. Technical report, FOREIGN TECHNOLOGY DIV WRIGHT-

PATTERSON AFB OHIO, 1968.

Hariharan Narayanan and Sanjoy Mitter. Sample complexity of testing the manifold hy-

pothesis. In NIPS’2010, pages 1786–1794, 2010.

Charlie Nash and Conor Durkan. Autoregressive energy machines. In International Confer-

ence on Machine Learning, pages 1735–1744. PMLR, 2019.

Radford M Neal. Annealed importance sampling. Statistics and computing, 11:125–139,

2001a.

Radford M. Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–139,

2001b.

Radford M Neal. Slice sampling. The annals of statistics, 31(3):705–767, 2003.

Radford M. Neal. MCMC using Hamiltonian dynamics. arXiv preprint 1206.1901, 2012.

Radford M Neal et al. Mcmc using hamiltonian dynamics. Handbook of markov chain monte

carlo, 2(11):2, 2011.

Yurii Nesterov. Introductory lectures on convex optimization: A basic course, volume 87.

Springer Science & Business Media, 2003.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng.

Reading digits in natural images with unsupervised feature learning. In Advances in Neural

Information Processing Systems (NIPS), 2011.

193

Von Neumann. Various techniques used in connection with random digits. Notes by GE

Forsythe, pages 36–38, 1951.

Tan T. Nguyen and Scott Sanner. Algorithms for direct 0-1 loss optimization in binary

classification. In Proceedings of the 30th International Conference on International Con-

ference on Machine Learning - Volume 28, ICML’13, pages III–1085–III–1093, Atlanta,

GA, USA, 2013. JMLR.org.

Vu-Linh Nguyen, Sébastien Destercke, and Eyke Hüllermeier. Epistemic uncertainty sam-

pling. In International Conference on Discovery Science, pages 72–86. Springer, 2019.

Mizu Nishikawa-Toomey, Tristan Deleu, Jithendaraa Subramanian, Yoshua Bengio, and Lau-

rent Charlin. Bayesian learning of causal structure and mechanisms with GFlowNets and

variational bayes. arXiv preprint 2211.02763, 2022.

Esa Nummelin. General irreducible Markov chains and non-negative operators. Cambridge

University Press, 2004.

OpenAI. Gpt-4 technical report. PREPRINT, 2023.

World Health Organization and Stop TB Initiative. Treatment of tuberculosis: guidelines.

World Health Organization, 2010.

Ian Osband, Charles Blundell, Alexander Pritzel, and Benjamin Van Roy. Deep exploration

via bootstrapped dqn. arXiv preprint arXiv:1602.04621, 2016.

Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva,

Katrina McKinney, Tor Lattimore, Csaba Szepesvári, Satinder Singh, Benjamin Van Roy,

Richard Sutton, David Silver, and Hado van Hasselt. Behaviour suite for reinforcement

learning. In International Conference on Learning Representations, 2020.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida, Carroll Wainwright, Pamela Mishkin,

Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, John Schulman, Jacob

Hilton, Fraser Kelton, Luke Miller, Maddie Simens, Amanda Askell, Peter Welinder,

Paul F. Christiano, Jan Leike, and Ryan Lowe. Training language models to follow in-

structions with human feedback. Advances in Neural Information Processing Systems, 35:

27730–27744, December 2022.

Yaniv Ovadia, Emily Fertig, Jie Ren, Zachary Nado, D. Sculley, Sebastian Nowozin, Joshua

Dillon, Balaji Lakshminarayanan, and Jasper Snoek. Can you trust your model's un-

certainty? evaluating predictive uncertainty under dataset shift. In Advances in Neural

Information Processing Systems, 2019.

John William Paisley, David M. Blei, and Michael I. Jordan. Variational Bayesian inference

with stochastic search. International Conference on Machine Learning (ICML), 2012.

Ling Pan, Dinghuai Zhang, Aaron Courville, Longbo Huang, and Yoshua Bengio. Generative

augmented flow networks. International Conference on Learning Representations (ICLR),

2022.

194

Xinlei Pan, Yurong You, Ziyan Wang, and Cewu Lu. Virtual to real reinforcement learning

for autonomous driving. arXiv preprint arXiv:1704.03952, 2017.

George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for

density estimation. In Neural Information Processing Systems (NeurIPS), 2017.

George Papamakarios, Eric Nalisnick, Danilo Jimenez Rezende, Shakir Mohamed, and Balaji

Lakshminarayanan. Normalizing flows for probabilistic modeling and inference. Journal

of Machine Learning Research, 22(57):1–64, 2021.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,

Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, An-

dreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chil-

amkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An

Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Infor-

mation Processing Systems, volume 32. Curran Associates, Inc., 2019.

Dimitri Petritis. Markov chains on measurable spaces. Université de Rennes, UFR Mathé-

matiques. perso. univ-rennes1. fr/dimitri. petritis/.../markov/markov. pdf, 2012.

Mary Phuong and Marcus Hutter. Formal algorithms for transformers. ARXIV.ORG, 2022.

doi: 10.48550/arXiv.2207.09238.

Steven Pinker and Alan Prince. On language and connectionism: Analysis of a parallel

distributed processing model of language acquisition. Cognition, 28:73–193, 1988. ISSN

1873-7838. doi: 10.1016/0010-0277(88)90032-7. Place: Netherlands Publisher: Elsevier

Science.

Emilia Pompe, Chris Holmes, and Krzysztof Łatuszyński. A framework for adaptive mcmc

targeting multimodal distributions. The Annals of Statistics, 48(5):2930–2952, 2020.

Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language

understanding by generative pre-training. Technical report, OpenAI, 2018.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.

Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

M. Raghu, Ben Poole, J. Kleinberg, S. Ganguli, and Jascha Narain Sohl-Dickstein. On the

expressive power of deep neural networks. International Conference On Machine Learning,

2016.

Tom Rainforth, Adam R. Kosiorek, Tuan Anh Le, Chris J. Maddison, Maximilian Igl, Frank

Wood, and Yee Whye Teh. Tighter variational bounds are not necessarily better. Inter-

national Conference on Machine Learning (ICML), 2018.

Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford,

Mark Chen, and Ilya Sutskever. Zero-Shot Text-to-Image Generation. In Proceedings of

the 38th International Conference on Machine Learning, pages 8821–8831. PMLR, July

2021. ISSN: 2640-3498.

195

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical

text-conditional image generation with clip latents. arXiv preprint arXiv: 2204.06125,

2022.

FP Ramsey. Truth and probability. reprinted in. Studies in subjective probability, pages

61–92, 1926.

Rajesh Ranganath, Sean Gerrish, and David Blei. Black box variational inference. Artificial

Intelligence and Statistics (AISTATS), 2014.

Rajesh Ranganath, Dustin Tran, Jaan Altosaar, and David M. Blei. Operator variational

inference. Neural Information Processing Systems (NIPS), 2016a.

Rajesh Ranganath, Dustin Tran, and David Blei. Hierarchical variational models. Interna-

tional Conference on Machine Learning (ICML), 2016b.

Michael Rescorla. The Computational Theory of Mind. In Edward N. Zalta, editor, The

Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall

2020 edition, 2020.

Danilo Rezende and Shakir Mohamed. Variational inference with normalizing flows. In

International Conference on Machine Learning (ICML), pages 1530–1538. PMLR, 2015.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropaga-

tion and approximate inference in deep generative models. International Conference on

Machine Learning (ICML), 2014a.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic Backpropagation

and Approximate Inference in Deep Generative Models. In Proceedings of the 31st Inter-

national Conference on Machine Learning, pages 1278–1286. PMLR, June 2014b. ISSN:

1938-7228.

Lorenz Richter, Ayman Boustati, Nikolas Nüsken, Francisco J. R. Ruiz, and Ömer Deniz

Akyildiz. VarGrad: A low-variance gradient estimator for variational inference. Neural

Information Processing Systems (NeurIPS), 2020.

Martin Riedmiller. Neural fitted q iteration–first experiences with a data efficient neural

reinforcement learning method. In European Conference on Machine Learning, pages

317–328. Springer, 2005.

Salah Rifai, Yann N Dauphin, Pascal Vincent, Yoshua Bengio, and Xavier Muller. The

manifold tangent classifier. Advances in neural information processing systems, 24:2294–

2302, 2011.

C. Riquelme, G. Tucker, and Jasper Snoek. Deep bayesian bandits showdown: An empirical

comparison of bayesian deep networks for thompson sampling. International Conference

On Learning Representations, 2018.

Howard Robinson. Dualism. In Edward N. Zalta and Uri Nodelman, editors, The Stanford

Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, spring 2023

edition, 2023.

196

Frank Rosenblatt et al. Principles of neurodynamics: Perceptrons and the theory of brain

mechanisms, volume 55. Spartan books Washington, DC, 1962.

David E Rumelhart, Geoffrey E Hinton, Ronald J Williams, et al. Learning internal repre-

sentations by error propagation, 1985.

David E. Rumelhart, James L. Mcclelland, and PDP Research Group. Parallel Distributed

Processing, Volume 1: Explorations in the Microstructure of Cognition: Foundations. MIT

Press, July 1987. ISBN 978-0-262-68053-0. Google-Books-ID: lOSMEAAAQBAJ.

Stuart J. Russell, Peter Norvig, and Ernest Davis. Artificial intelligence: a modern approach.

Prentice Hall series in artificial intelligence. Prentice Hall, Upper Saddle River, 3rd ed

edition, 2010. ISBN 978-0-13-604259-4.

Elizabeth G Ryan, Christopher C Drovandi, James M McGree, and Anthony N Pettitt. A

review of modern computational algorithms for bayesian optimal design. International

Statistical Review, 84(1):128–154, 2016.

Tim Salimans and David A. Knowles. Fixed-Form Variational Posterior Approximation

through Stochastic Linear Regression. Bayesian Analysis, 8(4):837–882, December 2013.

ISSN 1936-0975, 1931-6690. doi: 10.1214/13-BA858. Publisher: International Society for

Bayesian Analysis.

Lawrence K. Saul, T. Jaakkola, and Michael I. Jordan. Mean field theory for sigmoid belief

networks. Journal of Artificial Intelligence Research, 4:61–76, 1996.

Amit Saxena, Mukesh Prasad, Akshansh Gupta, Neha Bharill, Om Prakash Patel, Aruna

Tiwari, Meng Joo Er, Weiping Ding, and Chin-Teng Lin. A review of clustering techniques

and developments. Neurocomputing, 267:664–681, December 2017. ISSN 0925-2312. doi:

10.1016/j.neucom.2017.06.053.

Nino Scherrer, Olexa Bilaniuk, Yashas Annadani, Anirudh Goyal, Patrick Schwab, Bern-

hard Schölkopf, Michael C Mozer, Yoshua Bengio, Stefan Bauer, and Nan Rosemary Ke.

Learning neural causal models with active interventions. arXiv preprint arXiv:2109.02429,

2021.

Bernhard Schiilkopf. The kernel trick for distances. Advances in neural information process-

ing systems, 13:301–307, 2001.

Juergen Schmidhuber. Driven by Compression Progress: A Simple Principle Explains Essen-

tial Aspects of Subjective Beauty, Novelty, Surprise, Interestingness, Attention, Curiosity,

Creativity, Art, Science, Music, Jokes, April 2009. arXiv:0812.4360 [cs].

Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:

85–117, January 2015. ISSN 0893-6080. doi: 10.1016/j.neunet.2014.09.003.

Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent Sifre,

Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel, et al.

Mastering atari, go, chess and shogi by planning with a learned model. Nature, 588(7839):

604–609, 2020.

197

John Schulman, Philipp Moritz, Sergey Levine, Michael Jordan, and Pieter Abbeel. High-

Dimensional Continuous Control Using Generalized Advantage Estimation. In Advances

in Neural Information Processing Systems 30, June 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal

policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Nicholas J Schurch, Pietá Schofield, Marek Gierliński, Christian Cole, Alexander Sherstnev,

Vijender Singh, Nicola Wrobel, Karim Gharbi, Gordon G Simpson, Tom Owen-Hughes,

et al. How many biological replicates are needed in an rna-seq experiment and which

differential expression tool should you use? Rna, 22(6):839–851, 2016.

Ari Seff, Wenda Zhou, Farhan Damani, Abigail Doyle, and Ryan P Adams. Discrete object

generation with reversible inductive construction. arXiv preprint arXiv:1907.08268, 2019.

Burr Settles. Active learning literature survey. Machine Learning, 15(2):201–221, 1994.

H Sebastian Seung, Manfred Opper, and Haim Sompolinsky. Query by committee. In

Proceedings of the fifth annual workshop on Computational learning theory, pages 287–

294, 1992.

Glenn Shafer and Vladimir Vovk. A tutorial on conformal prediction. Journal of Machine

Learning Research, 9(3), 2008.

Max W. Shen, Emmanuel Bengio, Ehsan Hajiramezanali, Andreas Loukas, Kyunghyun Cho,

and Tommaso Biancalani. Towards understanding and improving gflownet training. arXiv

preprint arXiv: 2305.07170, 2023.

David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc

Lanctot, et al. Mastering the game of go with deep neural networks and tree search.

nature, 529(7587):484, 2016.

David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,

Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al.

Mastering chess and shogi by self-play with a general reinforcement learning algorithm.

arXiv preprint arXiv:1712.01815, 2017a.

David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang, Arthur

Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mastering the

game of go without human knowledge. Nature, 550(7676):354, 2017b.

B. Skyrms. Pragmatics and Empiricism. Yale University Press, 1984. ISBN 978-0-300-03174-

4.

Merritt Roe Smith and Leo Marx. Does technology drive history?: The dilemma of techno-

logical determinism. Mit Press, 1994.

Jasper Snoek, Hugo Larochelle, and Ryan P Adams. Practical bayesian optimization of

machine learning algorithms. In Neural Information Processing Systems (NeurIPS), 2012.

198

Artem Sobolev and Dmitry Vetrov. Importance weighted hierarchical variational inference.

Neural Information Processing Systems (NeurIPS), 2019.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsu-

pervised learning using nonequilibrium thermodynamics. In International conference on

machine learning, pages 2256–2265. PMLR, 2015a.

Jascha Narain Sohl-Dickstein, Eric A. Weiss, Niru Maheswaranathan, and S. Ganguli. Deep

unsupervised learning using nonequilibrium thermodynamics. International Conference

on Machine Learning (ICML), 2015b.

Casper Kaae Sønderby, Tapani Raiko, Lars Maaløe, Søren Kaae Sønderby, and Ole Winther.

Ladder variational autoencoders. Neural Information Processing Systems (NIPS), 2016.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data

distribution. Neural Information Processing Systems (NeurIPS), 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon,

and Ben Poole. Score-based generative modeling through stochastic differential equations.

arXiv preprint arXiv:2011.13456, 2020.

Niranjan Srinivas, Andreas Krause, Sham M Kakade, and Matthias Seeger. Gaussian process

optimization in the bandit setting: No regret and experimental design. In International

Conference on Machine Learning (ICML), 2010.

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhut-

dinov. Dropout: A simple way to prevent neural networks from overfitting. Journal of

Machine Learning Research, 15(56):1929–1958, 2014.

Hannes Stärk, Dominique Beaini, Gabriele Corso, Prudencio Tossou, Christian Dallago,

Stephan Günnemann, and Pietro Liò. 3d infomax improves gnns for molecular property

prediction. In International Conference on Machine Learning, pages 20479–20502. PMLR,

2022.

Aravind Subramanian, Rajiv Narayan, Steven M Corsello, David D Peck, Ted E Natoli,

Xiaodong Lu, Joshua Gould, John F Davis, Andrew A Tubelli, Jacob K Asiedu, et al. A

next generation connectivity map: L1000 platform and the first 1,000,000 profiles. Cell,

171(6):1437–1452, 2017.

Richard S Sutton and Andrew G Barto. Reinforcement learning: An introduction. MIT

press, 2018.

Daniel P Tabor, Loic M Roch, Semion K Saikin, Christoph Kreisbeck, Dennis Sheberla,

Joseph H Montoya, Shyam Dwaraknath, Muratahan Aykol, Carlos Ortiz, Hermann

Tribukait, et al. Accelerating the discovery of materials for clean energy in the era of

smart automation. Nature reviews materials, 3(5):5–20, 2018.

Natasa Tagasovska and David Lopez-Paz. Single-model uncertainties for deep learning. In

Neural Information Processing Systems (NeurIPS), 2019.

199

Akinori Tanaka, Akio Tomiya, and Koji Hashimoto. Deep Learning and Physics. Mathemati-

cal Physics Studies. Springer, Singapore, 2021. ISBN 978-981-336-107-2 978-981-336-108-9.

doi: 10.1007/978-981-33-6108-9.

Haoran Tang, Rein Houthooft, Davis Foote, Adam Stooke, Xi Chen, Yan Duan, John

Schulman, Filip De Turck, and Pieter Abbeel. # exploration: A study of count-based

exploration for deep reinforcement learning. In Neural Information Processing Systems

(NeurIPS), 2017.

A. Tarantola and B. Valette. Inverse problems = Quest for information. Journal of Geo-

physics, 50(1):159–170, October 1981. ISSN 2643-9271.

Luca Thiede, Santiago Miret, Krzysztof Sadowski, Haoping Xu, Mariano Phielipp, and Alan

Aspuru-Guzik. Conformer search using SE3-transformers and imitation learning. NeurIPS

2022 AI for Accelerated Materials Design Workshop, 2022.

Tijmen Tieleman, Geoffrey Hinton, et al. Lecture 6.5-rmsprop: Divide the gradient by

a running average of its recent magnitude. COURSERA: Neural networks for machine

learning, 4(2):26–31, 2012.

Panagiotis Tigas, Yashas Annadani, Andrew Jesson, Bernhard Schölkopf, Yarin Gal, and

Stefan Bauer. Interventions, where and how? experimental design for causal models at

scale. arXiv preprint arXiv:2203.02016, 2022.

Michalis K. Titsias and Miguel Lázaro-Gredilla. Doubly stochastic variational Bayes for

non-conjugate inference. International Conference on Machine Learning (ICML), 2014.

Simon Tong and Daphne Koller. Active learning for structure in bayesian networks. In

International joint conference on artificial intelligence, volume 17, pages 863–869. Citeseer,

2001.

Christian Toth, Lars Lorch, Christian Knoll, Andreas Krause, Franz Pernkopf, Robert Pe-

harz, and Julius von Kügelgen. Active bayesian causal inference. arXiv preprint arXiv:

Arxiv-2206.02063, 2022.

Marc Toussaint and Amos Storkey. Probabilistic inference for solving discrete and continuous

state markov decision processes. In Proceedings of the 23rd international conference on

Machine learning, pages 945–952, 2006.

Mark Towers, Jordan K. Terry, Ariel Kwiatkowski, John U. Balis, Gianluca de Cola, Tristan

Deleu, Manuel Goulão, Andreas Kallinteris, Arjun KG, Markus Krimmel, Rodrigo Perez-

Vicente, Andrea Pierré, Sander Schulhoff, Jun Jet Tai, Andrew Tan Jin Shen, and Omar G.

Younis. Gymnasium, March 2023.

Minh-Ngoc Tran, Trong-Nghia Nguyen, and Viet-Hung Dao. A practical tutorial on Varia-

tional Bayes, March 2021. arXiv:2103.01327 [stat].

Oleg Trott and Arthur J Olson. AutoDock Vina: improving the speed and accuracy of

docking with a new scoring function, efficient optimization, and multithreading. Journal

of Computational Chemistry, 31(2):455–461, 2010.

200

George Tucker, Andriy Mnih, Chris J. Maddison, John Lawson, and Jascha Narain Sohl-

Dickstein. REBAR: Low-variance, unbiased gradient estimates for discrete latent variable

models. Neural Information Processing Systems (NIPS), 2017.

A. M. Turing. Computing Machinery and Intelligence. Mind, 59(236):433–460, 1950. ISSN

0026-4423. Publisher: [Oxford University Press, Mind Association].

Joerg Tuske. The Concept of Emotion in Classical Indian Philosophy. In Edward N. Zalta,

editor, The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford

University, fall 2021 edition, 2021.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The miss-

ing ingredient for fast stylization. arXiv preprint arXiv: 1607.08022, 2016.

Jonas Umlauft, Armin Lederer, T. Beckers, and S. Hirche. Real-time uncertainty decompo-

sition for online learning control. ArXiv, abs/2010.02613, 2020.

UnitedNations. Global leaders agree on the challenges facing humanity – why can’t we agree

on action? | United Nations Secretary-General, 2022.

Meet P. Vadera, Adam D. Cobb, Borhan Jalaeian, and Benjamin M Marlin. Ursabench:

Comprehensive benchmarking of approximate bayesian inference methods for deep neural

networks. ArXiv, abs/2007.04466, 2020a.

Meet P. Vadera, Borhan Jalaeian, and Benjamin M Marlin. Generalized bayesian posterior

expectation distillation for deep neural networks. In UAI, 2020b.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Neural

Information Processing Systems (NeurIPS), 2020.

Thomas J. Valone. Are Animals Capable of Bayesian Updating? An Empirical Review.

Oikos, 112(2):252–259, 2006. ISSN 0030-1299. Publisher: Nordic Society Oikos, Wiley.

Joost van Amersfoort, Lewis Smith, Andrew Jesson, Oscar Key, and Yarin Gal. Improv-

ing deterministic uncertainty estimation in deep learning for classification and regression.

CoRR, abs/2102.11409, 2021.

Joost R. van Amersfoort, L. Smith, Y. Teh, and Yarin Gal. Simple and scalable epistemic

uncertainty estimation using a single deep deterministic neural network. In International

Conference on Machine Learning (ICML), 2020.

Aaron van den Oord, Nal Kalchbrenner, Lasse Espeholt, koray kavukcuoglu, Oriol Vinyals,

and Alex Graves. Conditional Image Generation with PixelCNN Decoders. In Advances

in Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

Jacob T. VanderPlas, Andrew J. Connolly, Zeljko Ivezic, and Alex Gray. Introduction to as-

troML: Machine Learning for Astrophysics. In 2012 Conference on Intelligent Data Under-

standing, pages 47–54, October 2012. doi: 10.1109/CIDU.2012.6382200. arXiv:1411.5039

[astro-ph].

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,

Łukasz Kaiser, and Illia Polosukhin. Attention is All you Need. In Advances in Neural

201

Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Konstantin Verichev, Montserrat Zamorano, Armin Fuentes-Sepulveda, Nadia Cardenas, and

Manuel Carpio. Adaptation and mitigation to climate change of envelope wall thermal

insulation of residential buildings in a temperate oceanic climate. Energy and Buildings,

235:110719, 2021.

Susan Vineberg. Dutch Book Arguments. In Edward N. Zalta and Uri Nodelman, editors,

The Stanford Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University,

fall 2022 edition, 2022.

Vladimir Vovk, Alexander Gammerman, and Glenn Shafer. Algorithmic learning in a random

world. Springer Science & Business Media, 2005.

Martin J Wainwright, Michael I Jordan, et al. Graphical models, exponential families, and

variational inference. Foundations and Trends® in Machine Learning, 1(1–2):1–305, 2008.

Stephen G Walker. Bayesian inference with misspecified models. Journal of Statistical

Planning and Inference, 143(10):1621–1633, 2013.

Neng Wan, Dapeng Li, and Naira Hovakimyan. f-divergence variational inference. Neural

Information Processing Systems (NeurIPS), 2020.

Dilin Wang, Hao Liu, and Qiang Liu. Variational inference with tail-adaptive f-divergence.

Neural Information Processing Systems (NeurIPS), 2018.

Larry Wasserman. All of statistics: a concise course in statistical inference, volume 26.

Springer, 2004.

Christopher JCH Watkins and Peter Dayan. Q-learning. Machine learning, 8(3-4):279–292,

1992.

Lex Weaver and Nigel Tao. The optimal reward baseline for gradient-based reinforcement

learning. Uncertainty in Artificial Intelligence (UAI), 2001.

Max Welling and Yee Whye Teh. Bayesian learning via stochastic gradient langevin dynam-

ics. In Proceedings of the 28th International Conference on International Conference on

Machine Learning, 2011.

Junfeng Wen, Bo Dai, Lihong Li, and Dale Schuurmans. Batch stationary distribution

estimation. arXiv preprint arXiv:2003.00722, 2020a.

Yeming Wen, Dustin Tran, and Jimmy Ba. Batchensemble: An alternative approach to

efficient ensemble and lifelong learning. In International Conference on Learning Repre-

sentations, 2020b.

Florian Wenzel, Jasper Snoek, Dustin Tran, and Rodolphe Jenatton. Hyperparameter en-

sembles for robustness and uncertainty quantification. Advances in Neural Information

Processing Systems, 33:6514–6527, 2020.

Paul Werbos. Beyond regression: New tools for prediction and analysis in the behavioral

sciences. PhD thesis, Committee on Applied Mathematics, Harvard University, Cambridge,

MA, 1974.

202

Lucas Willems, Salem Lahlou, and Yoshua Bengio. Mastering rate based curriculum learning.

arXiv preprint arXiv: 2008.06456, 2020.

Christopher Williams and Carl Rasmussen. Gaussian Processes for Regression. In Advances

in Neural Information Processing Systems, volume 8. MIT Press, 1995.

Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-

forcement learning. Machine learning, 8(3-4):229–256, 1992.

Andrew Gordon Wilson, Zhiting Hu, Ruslan Salakhutdinov, and Eric P Xing. Deep kernel

learning. In Artificial intelligence and statistics, pages 370–378. PMLR, 2016.

Svante Wold, Kim Esbensen, and Paul Geladi. Principal component analysis. Chemometrics

and Intelligent Laboratory Systems, 2(1):37–52, August 1987. ISSN 0169-7439. doi: 10.

1016/0169-7439(87)80084-9.

Cathy Wu, Aravind Rajeswaran, Yan Duan, Vikash Kumar, Alexandre M. Bayen, Sham M.

Kakade, Igor Mordatch, and Pieter Abbeel. Variance reduction for policy gradient with

action-dependent factorized baselines. International Conference on Learning Representa-

tions (ICLR), 2018.

Hao Wu, Jonas Köhler, and Frank Noé. Stochastic normalizing flows. Neural Information

Processing Systems (NeurIPS), 2020.

Yuxin Wu and Kaiming He. Group normalization. In Proceedings of the European conference

on computer vision (ECCV), pages 3–19, 2018.

Sally Wyatt. Technological determinism is dead; long live technological determinism. The

handbook of science and technology studies, 3:165–180, 2008.

Stanisław Węglarczyk. Kernel density estimation and its application. ITM Web of Confer-

ences, 23:00037, 2018. ISSN 2271-2097. doi: 10.1051/itmconf/20182300037.

Yutong Xie, Chence Shi, Hao Zhou, Yuwei Yang, Weinan Zhang, Yong Yu, and Lei Li.

{MARS}: Markov molecular sampling for multi-objective drug discovery. In International

Conference on Learning Representations, 2021.

Aolin Xu and M. Raginsky. Minimum excess risk in bayesian learning. ieee transactions on

information theory, 2020. doi: 10.1109/tit.2022.3176056.

I Zeki Yalniz, Hervé Jégou, Kan Chen, Manohar Paluri, and Dhruv Mahajan. Billion-scale

semi-supervised learning for image classification. arXiv preprint arXiv:1905.00546, 2019.

Mingzhang Yin and Mingyuan Zhou. Semi-implicit variational inference. International

Conference on Machine Learning (ICML), 2018.

Donggeun Yoo and I. Kweon. Learning loss for active learning. 2019 IEEE/CVF Conference

on Computer Vision and Pattern Recognition (CVPR), pages 93–102, 2019.

Kun-Hsing Yu, Andrew L Beam, and Isaac S Kohane. Artificial intelligence in healthcare.

Nature biomedical engineering, 2(10):719–731, 2018.

Margaux Zaffran, Aymeric Dieuleveut, Olivier F’eron, Yannig Goude, and Julie Josse. Adap-

tive conformal predictions for time series. In ICML, 2022.

203

Bulat Zagidullin, Jehad Aldahdooh, Shuyu Zheng, Wenyu Wang, Yinyin Wang, Joseph Saad,

Alina Malyutina, Mohieddin Jafari, Ziaurrehman Tanoli, Alberto Pessia, et al. Drugcomb:

an integrative cancer drug combination data portal. Nucleic acids research, 47(W1):W43–

W51, 2019.

Sheheryar Zaidi, Arber Zela, Thomas Elsken, Chris C Holmes, Frank Hutter, and Yee Teh.

Neural ensemble search for uncertainty estimation and dataset shift. Advances in Neural

Information Processing Systems, 34:7898–7911, 2021.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in vari-

ational inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):

2008–2026, 2018.

Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in vari-

ational inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 41:

2008–2026, 2019a.

David Zhang, Corrado Rainone, Markus Peschl, and Roberto Bondesan. Robust scheduling

with GFlowNets. International Conference on Learning Representations (ICLR), 2023a.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative

models with GFlowNets. arXiv preprint 2209.02606v1, 2022a.

Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron Courville, and

Yoshua Bengio. Generative flow networks for discrete probabilistic modeling. International

Conference on Machine Learning (ICML), 2022b.

Dinghuai Zhang, Ricky T. Q. Chen, Nikolay Malkin, and Yoshua Bengio. Unifying generative

models with GFlowNets and beyond. arXiv preprint 2209.02606, 2023b.

Mingtian Zhang, Thomas Bird, Raza Habib, Tianlin Xu, and David Barber. Variational

f-divergence minimization. arXiv preprint 1907.11891, 2019b.

Qinsheng Zhang and Yongxin Chen. Path integral sampler: a stochastic control approach

for sampling. International Conference on Learning Representations (ICLR), 2022.

Ruqi Zhang, Chunyuan Li, Jianyi Zhang, Changyou Chen, and Andrew Gordon Wilson.

Cyclical stochastic gradient mcmc for bayesian deep learning. In ICLR, 2020.

Shuxing Zhang, Alexander Golbraikh, Scott Oloff, Harold Kohn, and Alexander Tropsha. A

novel automated lazy learning qsar (all-qsar) approach: method development, applications,

and virtual screening of chemical databases using validated all-qsar models. Journal of

chemical information and modeling, 46(5):1984–1995, 2006.

Xiaojie Zhou, Lawrence Joseph, David B Wolfson, and Patrick Bélisle. A bayesian a-optimal

and model robust design criterion. Biometrics, 59(4):1082–1088, 2003.

James V Zidek and Constance Van Eeden. Uncertainty, entropy, variance and the effect of

partial information. Lecture Notes-Monograph Series, pages 155–167, 2003.

Brian D Ziebart, Andrew L Maas, J Andrew Bagnell, Anind K Dey, et al. Maximum entropy

inverse reinforcement learning. In Aaai, volume 8, pages 1433–1438. Chicago, IL, USA,

204

2008.

Heiko Zimmermann, Hao Wu, Babak Esmaeili, Sam Stites, and Jan-Willem van de Meent.

Nested variational inference. Neural Information Processing Systems (NeurIPS), 2021.

Heiko Zimmermann, Fredrik Lindsten, Jan-Willem van de Meent, and Christian A. Naesseth.

A variational perspective on generative flow networks. arXiv preprint 2210.07992, 2022.

205

Appendix A

Some mathematical concepts

A.1. Reminders about probability

Definition A.1.1 (Independence of random variables). Two random variables X and Y on

X and Y respectively are said to be independent, which is denoted by X § Y , if:

∀(x, y) ∈ X × Y , p(x, y) = p(x)p(y) (A.1)

They are said to be conditionally independent given a third random variable Z on Z if:

∀(x, y, z) ∈ X × Y × Z, p(x, y | z) = p(x | z)p(y | z) (A.2)

Definition A.1.2 (Markov equivalence). (From Murphy (2001)) Two DAGs are said to be

equivalent if they entail the same set of conditional independences. For example, the graphs

X → Y → Z, X ← Y → Z, and X ← Y ← Z are Markov equivalent since they all represent

X § Z | Y .

A.1.1. Standard probability distributions

We describe in this section some common probability distributions used throughout the

thesis:

The Dirac distribution, or the Dirac delta function, of parameter θ ∈ Θ, is a distribution

on Θ, defined for every measurable subset A of Θ by:

¶θ(A) = 1A(x) =







0 if x /∈ A,
1 if x ∈ A

(A.3)

The Bernoulli distribution, of parameter r ∈ [0, 1] models random variables on {0, 1}.
Its pmf is given by:

Ber(x; r) = rx(1− r)1−x =







1− r if x = 0

r if x = 1.
(A.4)

The Categorical distribution models random variables on a finite set of labels c ∈ J1, CK.

It is a generalization of the Bernoulli distribution to C > 2 values. It is parameterized by a

vector θ ∈ [0, 1]C that is constrained to satisfy ∥θ∥1 =
∑C

c=1 θc = 1. Its pmf is given by:

Cat(c; θ) = θc (A.5)

The univariate Gaussian distribution, also called normal distribution, models real-

valued random variables. It is parameterized with its mean µ and variance Ã2 (or standard

deviation Ã). Its pdf is given by:

N (x;µ, Ã2) =
1√

2ÃÃ2
e− 1

2σ2
(x−µ)2

(A.6)

The Beta distribution models random variables with values in [0, 1]. It is determined by

two parameters ³, and ´ called the concentration parameters. Its pdf is given by:

B(x;³, ´) =
1

B(³, ´)
x³−1(1− x)´−1, (A.7)

where B is the Beta function defined by:

B(³, ´) =
Γ(³)Γ(´)

Γ(³+ ´)
, (A.8)

where Γ is the Gamma function defined by:

Γ(³) =
∫ ∞

0
x³−1e−xdx (A.9)

The multivariate Gaussian distribution models vectors x ∈ R
n. It is parameterized

by its mean vector µ ∈ R
n and its covariance matrix Σ ∈ R

n×n that is required to be

symmetric. It admits a pdf when Σ is positive definite (in which case we say the distribution

is non-degenerate), which is given by:

N (x; µ,Σ) =
1

√

(2Ã)n det(Σ)
e− 1

2
(x−µ)¦

Σ
−1(x−µ). (A.10)

It is common to use Gaussians with diagonal covariance matrices. An isotropic Gaussian

is one with a spherical covariance matrix, i.e.there is some positive number Ã2 such that

Σ = Ã2I, where I is the identity matrix of Rn×n.

To create more complex probability distributions and to model more interesting phenom-

ena (e.g., those with multiple modes), it is common to use a mixture model. Such a model

requires K base distributions p1, . . . , pK , along with mixture weights represented in a vector

π ∈ [0, 1]K satisfying ∥π∥1 = 1. The resulting density is given by:

p(x; π,θ1, . . . ,θK) =
K∑

k=1

πkpk(x; θk). (A.11)

208

A.2. Gaussian processes

Definition A.2.1. (Gaussian processes) A Gaussian process (GP) is a stochastic process,

i.e.a collection of random variables, indexed by a continuous domain X , any finite number of

which have a joint Gaussian distribution. It is parameterized by a mean function m : X → R

and a positive definite kernel » : X 2 → R, i.e.one that satisfies:

∀n g 1, ∀x1, . . . , xn, y1, . . . , yn ∈ X ,∀c1, . . . , cn ∈ R,
n∑

i=1

n∑

j=1

cicj»(xi, xj) g 0. (A.12)

Samples from a Gaussian process GP (m,») are essentially functions from X to R, and for

any finite set of points X = (x1, . . . , xn), we have:

p(f(x1), . . . , f(xn) | X) = N (f(x1), . . . , f(xn);µX , »
X,X), (A.13)

where µX = (m(x1), . . . ,m(xn)), and »X,X
i,j = »(xi, xj).

It should be noted that a sum or a product of positive definite kernels is positive defi-

nite, and other transformations or combinations are possible (Schiilkopf, 2001). The most

commonly used kernels are transformations and combinations of these basic kernels:

— Constant Kernel: k(x, x′) = C, where C is a constant value. It is often used as part

of a product kernel, where it scales the magnitude of the other kernel, or as a part

of a sum kernel, where it modifies the mean of the GP.

— RBF kernel (squared exponential): k(x, x′) = exp
(

−∥x−x′∥2

2¹2

)

. It is parameterized

by its length-scale ¹ that defines the extent to which the value of the function at

a particular point influences other points. Some variants consider an anisotropic

variant of the kernel, where the length-scale ¹ is a vector of the same dimension as

x: k(x, x′) = exp
(

−1
2

∑d
i=1

|xi−x′
i
|2

¹2
i

)

.

— Matérn kernel: it is a generalization of the RBF kernel, but with an additional

parameter that controls the smoothness of the resulting function. Gaussian processes

with such kernels are popular choices for learning functions that are not infinitely

differentiable, as is the case for the RBF kernel. The two most famous ones are

Matern-3/2 and Matern-5/2, which model functions differentiable at least once and

twice, respectively (Banerjee and Gelfand, 2003).

— Matern-3/2: k(x, x′) =
(

1 +
√

3∥x1−x2∥
¹

)

exp
(

−
√

3∥x1−x2∥2

2¹2

)

— Matern-5/2: k(x, x′) =
(

1 +
√

5∥x1−x2∥
¹

+ 5
3

∥x1−x2∥2

¹2

)

exp
(

−
√

5∥x1−x2∥
¹

)

Gaussian processes are a popular tool for regression when the likelihood is Gaussian,

given that all computations can be performed in closed form (Williams and Rasmussen,

1995). The kernel’s parameters, or the kernel’s choice, are hyperparameters that can be

optimized using a gradient-based optimizer on the marginal likelihood of the training set.

209

Regression with Gaussian likelihood in the noise-free setting. Assume we have access

to a labelled dataset D as in (2.4), where X ¦ R
d and Y = R, and denote by X the N × d

matrix representing the training inputs, and denote by y the vector in RN describing the

training set labels.

Given a test set X ′, a matrix of size N ′ × d, we want to infer y′ ∈ RN ′
.

The joint distribution of the joint vector




y

y′



 ∈ R
N+N ′

conditioned on X,X ′ is:




y

y′



 ∼ N







µX

µX′



 ,




»X,X »X,X′

»X′,X »X′,X′







 . (A.14)

Obtaining the posterior p(y′ | X ′,D) amounts to performing Gaussian conditioning, a

proof of which is given in Eaton (1983), in (A.14):

p(y′ |X ′,D) = p(y′ |X ′,X,y) = N (y′;µX′|X ,ΣX′|X), (A.15)

where

µX′|X = µX′ + »X′,X
(

»X,X
)−1

(y − µX) (A.16)

ΣX′|X = »X′,X′ − »X′,X
(

»X,X
)−1

»X,X′

(A.17)

A.3. Kernel density estimation

A density kernel is a function » : R→ R
+ such that

∫

»(x)dx = 1 and ∀x ∈ R, »(−x) =

»(x). An example is the Gaussian kernel:

»N (x) =
1√
2Ã
e− x2

2 . (A.18)

From a kernel », we can define the kernel with bandwidth h > 0:

»h(x) :=
1

h
»

(
x

h

)

. (A.19)

Given a dataset D = {xi}i∈J1,NK, we can define a non-parametric density estimate of the

form:

p(x | D) =
1

N

N∑

i=1

»h(x− xi). (A.20)

A.4. On MLE, ERM, and MAP

Lemma A.4.1. The ERM estimate associated with the squared error (2.9) corresponds to

the MLE estimate, assuming a Gaussian posterior p(y | x), with fixed variance.

210

Proof.

θERM = arg min
θ∈Θ

R̂(fθ) (A.21)

= arg min
θ∈Θ

N∑

i=1

(yi − fθ(xi))
2. (A.22)

Under the assumption of a Gaussian p(y | x) with fixed variance Ã2, i.e.p(y | x) =

N (y; fθ(x), Ã2) we have:

p(y | x; θ) ∝ e− 1

2σ2
(y−fθ(x))2

. (A.23)

Hence,

θMLE = arg max
θ∈Θ

N∑

i=1

log p(yi | xi; θ) (A.24)

= arg max
θ∈Θ

N∑

i=1

− 1

2Ã2
(y − fθ(x))2 (A.25)

= arg min
θ∈Θ

N∑

i=1

(yi − fθ(xi))
2 (A.26)

= θERM (A.27)

□

Lemma A.4.2. The ERM estimate associated with the log loss (2.21) corresponds to the

MLE estimate, assuming a Categorical posterior p(y | x).

Proof. In the discriminative approach to classification, fθ(x) is a probability distribution

over Y = J1, CK, which can also be seen as a vector of [0, 1]C

θERM = arg min
θ∈Θ

R̂(fθ)

= arg min
θ∈Θ

N∑

i=1

− log fθ(xi)y.

Under the assumption of a Categorical p(y | x), i.e.p(y | x) = Cat(y; fθ(x)) we have:

p(y | x; θ) = fθ(x)y.

211

Hence,

θMLE = arg max
θ∈Θ

N∑

i=1

log p(yi | xi; θ)

= arg max
θ∈Θ

N∑

i=1

log fθ(xi)y

= arg min
θ∈Θ

N∑

i=1

− log fθ(xi)y

= θERM

□

212

Appendix B

torchgfn: A PyTorch GFlowNet library

This chapter is based on the following paper:

— Lahlou et al. (2023b): “torchgfn: A PyTorch GFlowNet library” - Salem Lahlou,

Joseph D. Viviano, Victor Schmidt, Yoshua Bengio, available as a preprint, and

submitted to the Journal of Machine Learning Research (JMLR).

The increasing popularity of generative flow networks (GFlowNets or GFNs) is accom-

panied by a proliferation of code sources. This hinders the implementation of new fea-

tures, such as training losses, that can readily be compared to existing ones on a set of

common environments. In addition to slowing down research in the field of GFlowNets,

different code bases use different conventions that might confuse newcomers. torchgfn

is a library built on top of PyTorch that aims at addressing both problems. It provides

users with a simple API for environments and useful abstractions for samplers and losses.

Multiple examples are provided, replicating published results. The code is available in

https://github.com/saleml/torchgfn.

The library aims to accompany researchers and engineers in learning about GFlowNets,

and in developing new algorithms.

Currently, the library is shipped with three environments: two discrete environments

(Discrete Energy Based Model and Hyper Grid) and a continuous box environment. The

library is designed to allow users to define their own environments.

B.1. Installing the package

The codebase requires Python 3.10 or higher. To install the latest stable version:

pip install torchgfn

Optionally, to be able to run the attached scripts:

https://github.com/saleml/torchgfn

pip install torchgfn[scripts]

To install the cutting edge version (from the main branch of the code repository):

git clone https://github.com/saleml/torchgfn.git

conda create -n gfn python=3.11

conda activate gfn

cd torchgfn

pip install.

B.2. Standalone example

This example, which shows how to use the library for a simple discrete environ-

ment, requires the tqdm 1 package to run. The users need to install it via pip install

tqdm or install all extra requirements with pip install .[scripts] or pip install

torchgfn[scripts].

1. https://github.com/tqdm/tqdm.

214

https://github.com/tqdm/tqdm

import torch

from torch.optim import Adam

from tqdm import tqdm

from gfn.gflownet import TBGFlowNet # We use the Trajectory Balance (TB) loss

from gfn.gym import HyperGrid # We use the hyper grid environment

from gfn.modules import DiscretePolicyEstimator

from gfn.samplers import Sampler

from gfn.utils import NeuralNet # NeuralNet is a simple MLP

env = HyperGrid(ndim=4, height=8, R0=0.01) # Grid of size 8x8x8x8

The environment has a preprocessor attribute,

which is used to preprocess the state before feeding it to the policy estimator

module_PF = NeuralNet(

input_dim=env.preprocessor.output_dim,

output_dim=env.n_actions

) # Neural network for the forward policy, with n_actions outputs

module_PB = NeuralNet(

input_dim=env.preprocessor.output_dim,

output_dim=env.n_actions - 1,

torso=module_PF.torso # We share all the parameters of P_F and P_B, except for the last layer

)

pf_estimator = DiscretePolicyEstimator(module_PF, env.n_actions, is_backward=False,

preprocessor=env.preprocessor)

pb_estimator = DiscretePolicyEstimator(module_PB, env.n_actions, is_backward=True,

preprocessor=env.preprocessor)

gfn = TBGFlowNet(init_logZ=0., pf=pf_estimator, pb=pb_estimator)

sampler = Sampler(estimator=pf_estimator)

Policy parameters have their own LR.

non_logz_params = [v for k, v in dict(gfn.named_parameters()).items() if k != "logZ"]

optimizer = torch.optim.Adam(non_logz_params, lr=1e-3)

LogZ gets a dedicated learning rate (typically higher).

logz_params = [dict(gfn.named_parameters())["logZ"]]

optimizer.add_param_group({"params": logz_params, "lr": 1e-1})

for i in (pbar := tqdm(range(1000))):

trajectories = sampler.sample_trajectories(env=env, n_trajectories=16)

optimizer.zero_grad()

loss = gfn.loss(env, trajectories)

loss.backward()

optimizer.step()

if i % 25 == 0:

pbar.set_postfix({"loss": loss.item()})

215

B.3. Details about the code base

B.3.1. Defining an environment

To define an environment, the user needs to define the tensor s0 representing the initial

state s0, from which the state_shape attribute is inferred, and optionally a tensor represent-

ing the sink state sf , which is only used for padding incomplete trajectories. If not specified,

sf is set to a tensor of the same shape as s0 filled with −∞.

If the environment is discrete, in which case it is an instance of DiscreteEnv, the total

number of actions should be specified as an attribute.

Suppose the states (as represented in the States class) need to be transformed to an-

other format before being processed (by neural networks, for example). In that case, the

environment should define a preprocessor attribute, which should be an instance of the

base preprocessor class. If no preprocessor is specified, the states are used as is (actu-

ally transformed using the IdentityPreprocessor, which converts the state tensors to

FloatTensors). Implementing a specific preprocessor requires defining the preprocess

function and the output_shape attribute, which is a tuple representing the shape of one

preprocessed state.

The user needs to implement the following two abstract functions:

— The method make_States_class, that creates the corresponding subclass of States.

For discrete environments, the resulting class should be a subclass of DiscreteStates

that implements the update_masks method specifying which actions are available at

each state.

— The method make_Actions_class, that creates a subclass of Actions simply by

specifying the required class variables (the shape of an action tensor, the dummy

action, and the exit action). This method is implemented by default for all

DiscreteEnvs.

The logic of the environment is handled by the methods maskless_step and

maskless_backward_step, which need to be implemented, and specify how an action

changes a state (going forward and backward). These functions do not need to handle

masking for discrete environments, checking whether actions are allowed, checking whether a

state is the sink state, etc... These checks are handled in Env.step and Env.backward_step

functions that do not need to be implemented. Non-discrete environments need to imple-

ment the is_action_valid function taking a batch of states and actions and returning

True only if all actions can be taken at the given states.

The environment needs to implement the log_reward function, that assigns the logarithm

of a non-negative reward to every terminating state (i.e., a state with only sf as a child in

the DAG). If log_reward is not implemented, reward needs to be.

216

For DiscreteEnvs, the user can define a get_states_indices method that assigns

a unique integer number to each state, and a n_states property that returns an in-

teger representing the number of states (excluding sf) in the environment. The func-

tion get_terminating_states_indices can also be implemented and serves the purpose

of uniquely identifying terminating states of the environment, which is helpful for tabu-

lar GFNModules. Other properties and functions can also be implemented, such as the

log_partition or the true_dist_pmf properties.

For reference, it might be useful to look at one of the following provided environments:

— Hypergrid is an example of a discrete environment where all states are terminating

states.

— DiscreteEBM is an example of a discrete environment where all trajectories are of

the same length, but only some states are terminating.

— Box is an example of a continuous environment with a specific is_action_valid

function.

B.3.2. States

States are the primitive building blocks for GFlowNet objects, such as transitions and

trajectories, on which losses operate.

An abstract States class is provided. But a States subclass is needed for each envi-

ronment. A States object is a collection of multiple states (nodes of the DAG). A tensor

representation of the states is required for batching. If a state is represented with a ten-

sor of shape (*state_shape), a batch of states is represented with a States object, with

the attribute tensor of shape (*batch_shape, *state_shape). Other representations are

possible (e.g., a state as a string, a numpy array, a graph, etc...). Still, these representations

cannot be batched unless the user specifies a function that transforms these raw states into

tensors.

The batch_shape attribute is required to keep track of the batch dimension. A tra-

jectory can be represented by a States object with batch_shape = (n_states,). Mul-

tiple trajectories can be represented by a States object with batch_shape = (n_states,

n_trajectories).

Because multiple trajectories can have different lengths, batching requires appending a

dummy tensor to trajectories shorter than the longest trajectory. The dummy state is the sf

attribute of the environment (e.g., [−1, . . . ,−1], or [−∞, . . . ,−∞], etc...). Which is never

processed and is used to pad the batch of states only.

For discrete environments, the action set is represented with the set {0, . . . , nactions− 1},
where the (nactions)-th action always corresponds to the exit or terminate action, i.e.,

that results in a transition of the type s → sf , but not all actions are possible at all

217

states. For discrete environments, each States object is endowed with two extra at-

tributes: forward_masks and backward_masks, representing which actions are allowed at

each state and which actions could have led to each state, respectively. Such states are in-

stances of the DiscreteStates abstract subclass of States. The forward_masks tensor is

of shape (*batch_shape, n_actions), and backward_masks is of shape (*batch_shape,

n_actions - 1). Each subclass of DiscreteStates needs to implement the update_masks

function that uses the environment’s logic to define the two tensors.

B.3.3. Actions

Actions should be thought of as internal actions of an agent building a compositional

object. They correspond to transitions s → s′. An abstract Actions class is provided. It

is automatically subclassed for discrete environments but needs to be manually subclassed

otherwise.

Similar to States objects, each action is a tensor of shape (*batch_shape,

*action_shape). For discrete environments for instances, action_shape = (1,),

representing an integer between 0 and nactions − 1.

Additionally, each subclass needs to define two more class variable tensors:

— dummy_action: A tensor padded to sequences of actions in the shorter trajectories

of a batch of trajectories. It is [−1] for discrete environments.

— exit_action: A tensor corresponding to the termination action. It is [nactions − 1]

of discrete environments.

B.3.4. Containers

Containers are collections of States, along with other information, such as reward values

or densities p(s′ | s). Two containers are available:

— Transitions, representing a batch of transitions s→ s′.

— Trajectories, representing a batch of complete trajectories Ä = s0 → s1 → · · · →
sn → sf .

These containers can either be instantiated using a States object or can be initialized as

empty containers that can be populated on the fly, allowing the usage of the ReplayBuffer

class.

They inherit from the base Container class, indicating some helpful methods.

In most cases, one needs to sample complete trajectories. From a batch of

trajectories, a batch of states and a batch of transitions can be defined using

Trajectories.to_transitions() and Trajectories.to_states(), in order to train

GFlowNets with losses that are edge-decomposable or state-decomposable. These exclude

218

meaningless transitions and dummy states that were added to the batch of trajectories to

allow for efficient batching.

B.3.5. Modules

Training GFlowNets requires one or multiple estimators, called GFNModules. GFNModule

is an abstract subclass of torch.nn.Module. In addition to the usual forward function,

GFNModules need to implement a required_output_dim attribute to ensure that the outputs

have the required dimension for the task at hand; and some of them need to implement a

to_probability_distribution function.

— DiscretePolicyEstimator is a GFNModule that defines the policies PF (. | s) and

PB(. | s) for discrete environments. When is_backward=False, the required

output dimension is n = env.n_actions, and when is_backward=True, it is n =

env.n_actions - 1. These n numbers represent the logits of a Categorical dis-

tribution. The corresponding to_probability_distribution function transforms

the logits by masking illegal actions (according to the forward or backward masks),

then return a Categorical distribution. The masking is done by setting the corre-

sponding logit to −∞. The function also includes exploration parameters, in order

to define a tempered version of PF , or a mixture of PF with a uniform distribu-

tion. DiscretePolicyEstimator with is_backward=False can be used to represent

log-edge-flow estimators logF (s→ s′).

— ScalarModule is a simple module with required output dimension 1. It is useful to

define log-state flows logF (s).

For non-discrete environments, the user needs to specify their own policies PF and PB. The

module, taking as input a batch of states (as a States) object, should return the batched

parameters of a torch.Distribution. The distribution depends on the environment. The

to_probability_distribution function handles the conversion of the parameter outputs to

an actual batched Distribution object that implements at least the sample and log_prob

functions. An example is provided for the box environment in which the forward policy has

support either on a quarter disk or an arc-circle, such that the angle and the radius (for the

quarter disk part) are scaled samples from a mixture of Beta distributions. The provided

example shows an intricate scenario, and user-defined environments are not expected to need

this much detail.

In all GFNModules, note that the input of the forward function is a States object, which

means that they first need to be transformed into tensors. However, states.tensor does

not necessarily include the structure a neural network can use to generalize. It is common

in these scenarios to have a function that transforms these raw tensor states to ones where

the structure is more apparent via a preprocessor object that is part of the environment

219

Appendix B.3.1. The default preprocessor of an environment is the identity preprocessor.

The forward pass thus first calls the preprocessor attribute of the environment on States

before performing any transformation. The preprocessor is thus an attribute of the module.

If it is not explicitly defined, it is set to the identity preprocessor.

For discrete environments, a Tabular module is provided, where a lookup table is used

instead of a neural network. A UniformPB module is also provided, implementing a uniform

backward policy.

B.3.6. Samplers

Sampler objects define how actions are sampled at each state. They require a GFNModule

that implements the to_probability_distribution function.

They include a sample_trajectories method that samples a batch of trajectories start-

ing from a given set of initial states or s0.

For off-policy sampling, the parameters of to_probability_distribution can be di-

rectly passed when initializing the Sampler.

B.3.7. Losses

GFlowNets can be trained with different losses, each requiring a different parametrization,

which we call in this library a GFlowNet. A GFlowNet is a GFNModule that includes one or

multiple GFNModules, at least one of which implements a to_probability_distribution

function. They need to implement a loss function that takes either states, transitions, or

trajectories as input, depending on the loss.

Currently, the implemented losses are:

— Flow Matching, introduced in Bengio et al. (2021).

— Detailed Balance, introduced in Chapter 3, and its modified variant, introduced in

Deleu et al. (2022).

— Trajectory Balance, introduced in Malkin et al. (2022).

— Sub-Trajectory Balance. By default, each sub-trajectory is weighted geometrically

(within the trajectory) depending on its length. This corresponds to the strategy

defined in Madan et al. (2022a). Other strategies exist and are implemented in the

corresponding class.

— Log Partition Variance loss, introduced in Zhang et al. (2023a).

220

B.4. Provided scripts

Example scripts and notebooks for the three environments shipped with the library are

provided. For the Hypergrid and the Box environments, the provided scripts are supposed

to reproduce published results in Malkin et al. (2022), Chapter 3, and Chapter 4.

221

Appendix C

On Bayesian Optimal Experiment Design

The Bayesian Optimal Experiment Design (BOED) field has historical roots dating back

to at least 1964 with pioneering contributions by Hicks (1964); Klepikov and Sokolov (1964);

Nalimov and Chernova (1968). Fedorov (1972) provided a defining perspective, describing

experimental design as a “broad class of methods which would give not only the means of

reduction of experimental data but also would permit the organization of the experiment

in an optimal manner”. For Ryan et al. (2016), “statistical experimental design provides

rules for the allocation of resources in an information gathering exercise in which there is

variability that is not under control of the experimenter”.

Following the setting of Müller (2005), Ryan et al. (2016) defines the design criterion

as a function U(d,θ,y) that describes the worth of choosing the design d from the design

space D yielding observable y, with model parameter values θ. This function requires a

probabilistic model p(θ,y | d), consisting of a likelihood p(y | d,θ) and a prior distribution

p(θ). The experimenter’s goal in Bayesian experimental design is to find the optimal design

d∗ that maximizes an expected utility. Several utility functions U have been proposed in

the literature (Ryan et al., 2016), and different utility functions lead to different optimal

designs. A principled choice for this expected utility function is the mutual information

between parameters θ and the observables y at design d, more commonly referred to as the

Expected Information Gain (EIG):

EIG(d) :=Ep(y|d)[H(p(θ))−H(p(θ | y,d))] (C.1)

This objective is suitable for sequential experimental design, where the prior p(θ) is updated

at each step and is replaced in (C.1) with p(θ | Dk−1), where Dk−1 := {d∗
1:k−1,y

∗
1:k−1} is the

historical dataset at step k − 1.

While maximizing the EIG is intractable, most modern approaches rely on approximate

optimization. Foster et al. (2019, 2020); Kleinegesse and Gutmann (2019, 2021) propose

using different variational lower bounds on the EIG. Unfortunately, the sequential experi-

mental design process requires significant computations at each step to update the posterior

and optimize an estimator of a lower bound on the EIG. The sequential approach is tack-

led differently in Foster et al. (2021), where the concept of design function or policy Ã is

introduced, mapping the set of all previous design-observation pairs D to the next optimal

design. The authors propose to amortize the cost of sequential experiment design, “perform-

ing upfront training before the start of the experiment to allow very fast design decisions at

deployment when time is at a premium”, which is useful when deploying the same adaptive

sequential experimental design framework numerous times. The standard myopic BOED ap-

proaches correspond to a specific choice of the (implicit) policy Ã that is myopically optimal.

The proposed approach, called Deep Adaptive Design (DAD), eliminates the need for esti-

mating posterior distributions or intermediate EIGs, while also allowing to learn non-myopic

policies. It considers the total expected information gain of a policy Ã over a sequence of T

experiments:

EIGT (Ã) := Ep(θ)p(DT |θ,Ã)

[
T∑

t=1

EIGDt−1
(dt)

]

, (C.2)

which is shown to be equal to

EIGT (Ã) = Ep(θ)p(DT |θ,Ã) [log p(DT | θ, Ã)− log p(DT | Ã)] , (C.3)

where, as before, Dt denotes the historical dataset of design-observation pairs up to step

t, EIGD is the EIG of Eq. C.1 with the prior p(θ) replaced with the posterior p(θ | D),

p(DT | θ, Ã) :=
∏T

t=1 p(yt | dt,θ), and p(DT | Ã) := Ep(θ)[p(DT | θ,π)]. Ivanova et al. (2021);

Lim et al. (2022) extend the DAD approach and bypass its need for explicit models.

224

Appendix D

Appendix for Chapter 3

D.1. Conditional GFlowNets for entropy and mutual in-

formation estimation

Definition D.1.1 (Entropic reward function). Given a reward function R with 0 f
R(s) < 1 ∀s, we define the entropic reward function R′ associated with R as:

R′(s) = −R(s) logR(s). (D.1)

In this section, we show that we can estimate entropies by training two GFlowNets:

one that estimates flows as usual for a target terminal reward function R(s), and one that

estimates flows for the corresponding entropic reward function. We show below that we

obtain an estimator of entropy by looking up the flow in the initial state, and if we do this

exercise with conditional flows, we get conditional entropy. Once we have the conditional

entropy, we can also estimate the mutual information.

Proposition D.1.2. Consider a flow network (G,F) such that the terminating flows

match a given reward function R, i.e., ∀s ∈ Sf , F (s → sf) = R(s), with R(s) < 1

for all s, and a second flow network (G,F ′) with the same pointed DAG, but with a

flow function for which the terminating flows match the entropic reward function R′

((D.1)), then the entropy H[S] associated with the terminating state random variable

S ∈ Sf with distribution P¦(S = s) = R(s)
Z

((3.17)) is

H[S] := −
∑

s

P¦(s) logP¦(s) =
F ′(s0)

F (s0)
+ logF (s0). (D.2)

As a consequence of Proposition D.1.2, if we are given a set X of conditioning variables,

consider a conditional flow network defined by a conditional flow function F , for which the

terminating flows match a target reward R family (conditioned on x ∈ X) that satisfies

Rx(s) < 1 for all s, and a second conditional flow network defined by a conditional flow

function F ′, for which the terminating flows match the entropic reward functions R′
x ((D.1)),

then the conditional entropy H[S | x] of random terminating states S ∈ Sf consistent with

condition x is given by

H[S | x] =
F ′(s0 | x)

F (s0 | x)
+ logF (s0 | x). (D.3)

In particular, for a state-conditional GFlowNet (X = S is the state space of the DAG), we

obtain

H[S | s] =
F ′(s | s)
F (s | s) + logF (s | s). (D.4)

More generally, the mutual information MI(S;X) between the random draw of a terminating

state S = s according to P¦(s | x) and the conditioning random variable X is

MI(S;X) = H[S]− EX [H[S | X]] =
F ′(s0)

F (s0)
+ logF (s0)− EX

[

F ′(s0 | X)

F (s0 | X)
+ logF (s0 | X)

]

(D.5)

where F (s) and F ′(s) indicate the unconditional flows (trained with no condition x given)

while F (s | x) and F ′(s | x) are their conditioned counterparts.

If we have a sampling mechanism for P (X), we can thus approximate the expectation

in (D.5) by a Monte-Carlo average with draws from P (X).

D.2. Proofs

Lemma 3.2.5.

Proof. For convenience, we will use Ts→s′,sf
to denote the set of trajectories starting with

s→ s′ and ending in sf , and T0,s→s′ to denote the set of trajectories starting in s0 and ending

with s→ s′. This allows us to write:

∀s ̸= sf Ts,f =
⋃

s′∈Child(s)

Ts→s′,sf
, {Ts→s′,sf

, s′ ∈ Child(s)} pairwise disjoint, (D.6)

∀s′ ̸= s0 T0,s′ =
⋃

s∈P ar(s′)

T0,s→s′ , {T0,s→s′ , s ∈ Par(s′)} pairwise disjoint. (D.7)

Additionally, for any s ̸= sf , we denote by ds,f the maximum trajectory length in Ts,f ; and

for any s′ ̸= s0, we denote by d0,s′ the maximum trajectory length in T0,s.

We will prove (3.4) by strong induction on ds,f and (3.5) by strong induction on d0,s′ .

Base cases: If ds,f = 1 and d0,s′ = 1, then Ts,f = {(s → sf)} and T0,s′ = {(s0 → s′)}.
Hence,

∑

Ä∈Ts,f
P̂F (Ä) = P̂F (s → sf) = P̂F (sf | s) = 1 given that sf is the only child of s

(otherwise ds,f cannot be 1), and
∑

Ä∈T0,s′
P̂B(Ä) = P̂B(s0 | s′) = 1 given that s0 is the only

parent of s′ (otherwise d0,s′ cannot be 1).

226

Induction steps: Consider s ̸= sf such that ds,f > 1 and s′ ̸= s0 such that d0,s′ > 1.

Because of the disjoint unions written above, we have:
∑

Ä∈Ts,f

P̂F (Ä) =
∑

s̃∈Child(s)

∑

Ä∈Ts→s̃,f

P̂F (Ä) =
∑

s̃∈Child(s)

P̂F (s̃ | s)
∑

Ä∈Ts̃,f

P̂F (Ä) = 1, (D.8)

∑

Ä∈T0,s′

P̂B(Ä) =
∑

s̃′∈P ar(s′)

∑

Ä∈T0,s̃′→s

P̂B(Ä) =
∑

s̃′∈P ar(s′)

P̂B(s̃′ | s′)
∑

Ä∈T0,s̃′

P̂B(Ä) = 1, (D.9)

where we used the induction hypotheses in the third equality of each line. □

Proposition 3.2.8.

Proof. Given s ̸= sf , the set of complete trajectories going through s is the (disjoint) union

of the sets of trajectories going through s→ s′, for all s′ ∈ Child(s):

{Ä ∈ T : s ∈ Ä} =
⋃

s′∈Child(s)

{Ä ∈ T : s→ s′ ∈ Ä}. (D.10)

Therefore, it follows that:

F (s) =
∑

Ä : s∈Ä

F (Ä) =
∑

s′∈Child(s)

∑

Ä : s→s′∈Ä

F (Ä) =
∑

s′∈Child(s)

F (s→ s′) (D.11)

Similarly, (3.10) follows by writing the set of complete trajectories going through s′ ̸= s0 as

the (disjoint) union of the sets of trajectories going through s→ s′ for all s ∈ Par(s′). □

Proposition 3.2.10.

Proof. Since ∀Ä ∈ T , s0, sf ∈ Ä , applying (3.7) to s0 and sf yields

F (s0) =
∑

Ä∈T

F (Ä) = Z, (D.12)

F (sf) =
∑

Ä∈T

F (Ä) = Z. (D.13)

□

Proposition 3.2.14.

Proof. Since the flow F (s→ sf) is non-negative, it is easy to see that PT (s) g 0. Moreover,

using the definition of Sf = Par(sf), Proposition 3.2.8 (relating the edge flows and the state

flows), and Proposition 3.2.10 (F (sf) = Z), we have

∑

s∈Sf

PT (s) =
1

Z

∑

s∈Sf

F (s→ sf) =
1

Z

∑

s∈P ar(sf)

F (s→ sf) =
F (sf)

Z
= 1. (D.14)

□

Proposition 3.2.16.

227

Proof. Recall from Lemma 3.2.5 the notations T0,s to denote the set of partial trajectories

from s0 to s, and Ts′,f to denote the set of partial trajectories from s′ to sf . We will prove

the equivalences 1ô 2 and 1ô 3.

— 1 ⇒ 2: Suppose that F is a Markovian flow. Then using the laws of probability,

the Markov property in (3.19), and P (s0) = 1, for some complete trajectory Ä =

(s0, . . . , sn+1 = sf):

P (Ä) = P (s0 → s1 → . . .→ sn+1) = P (s0 → s1)
n∏

t=1

P (st → st+1 | s0 → . . .→ st) (D.15)

= P (s0 → s1)
n∏

t=1

P (st → st+1 | st) (D.16)

= P (s0)PF (s1 | s0)
n∏

t=1

PF (st+1 | st) (D.17)

=
n+1∏

t=1

PF (st | st−1), (D.18)

where the second line uses to Markov property, and the third line uses the definition

of the forward transition probability PF . PF thus satisfies (3.20) for all complete

trajectories.

To show the uniqueness of PF , assume (3.20) is satisfied by some P̂F for all complete

trajectories. By definition of the forward transition probability:

PF (s′ | s) := P (s→ s′ | s) =
P (s→ s′)

P (s)
. (D.19)

Any complete trajectory Ä going through a state s can be (uniquely) decomposed

into a partial trajectory Ä ′ ∈ T0,s from s0 to s, and a partial trajectory Ä ′′ ∈ Ts,f from

s to sf . Using the definition of P (s), we have:

P (s) =
∑

Ä : s∈Ä

P (Ä) =
∑

Ä : s∈Ä

∏

(st→st+1)∈Ä

P̂F (st+1 | st) (D.20)

=




∑

Ä ′∈T0,s

∏

(st→st+1)∈Ä ′

P̂F (st+1 | st)








∑

Ä ′′∈Ts,f

∏

(st→st+1)∈Ä ′′

P̂F (st+1 | st)





︸ ︷︷ ︸

= 1 (Lemma 3.2.5)

(D.21)

=
∑

Ä ′∈T0,s

∏

(st→st+1)∈Ä ′

P̂F (st+1 | st). (D.22)

Similarly, any complete trajectory going through s → s′ can be (uniquely) decom-

posed into a partial trajectory Ä ′ ∈ T0,s from s0 to s, and a partial trajectory Ä ′′ ∈ Ts′,f

228

from s′ to sf . Again, using the definition of P (s→ s′):

P (s→ s′) =
∑

Ä : (s→s′)∈Ä

P (Ä) =
∑

Ä : (s→s′)∈Ä

∏

(st→st+1)∈Ä

P̂F (st+1 | st) (D.23)

=




∑

Ä ′∈T0,s

∏

(st→st+1)∈Ä ′

P̂F (st+1 | st)





︸ ︷︷ ︸

= P (s)

P̂F (s′ | s)



∑

Ä ′′∈Ts′,f

∏

(st→st+1)∈Ä ′′

P̂F (st+1 | st)





︸ ︷︷ ︸

= 1 (Lemma 3.2.5)

(D.24)

= P (s)P̂F (s′ | s). (D.25)

Combining the two results above, we get:

PF (s′ | s) =
P (s→ s′)

P (s)
= P̂F (s′ | s). (D.26)

— 2 ⇒ 1: Suppose that there exists a probability function P̂F consistent with G such

that for some complete trajectory Ä = (s0, . . . , sn+1 = sf)

P (Ä) =
n+1∏

t=1

P̂F (st | st−1). (D.27)

For the same reasons as those used to justify the uniqueness in the 1⇒ 2 proof, P̂F

is necessarily equal to the forward transition probability PF , associated with P .

We now want to show that the flow F associated with P is Markovian, by showing

the Markov property from (3.19). Let Ä ′ ∈ T0,s be any partial trajectory from s0 to

s; using the definition of conditional probability:

P (s→ s′ | Ä ′) =
P (s0 → . . .→ s→ s′)

P (s0 → . . .→ s)
. (D.28)

Following the same idea as above, we will now rewrite P (s0 → . . .→ s) as a sum over

complete trajectories that share the same prefix trajectory Ä ′. Any such complete

trajectory Ä can be (uniquely) decomposed into this common prefix Ä ′, and a partial

trajectory Ä ′′ ∈ Ts,f from s to sf .

P (s0 → . . .→ s) =
∑

Ä : Ä ′¦Ä

P (Ä) =
∑

Ä : Ä ′¦Ä

∏

(st→st+1)∈Ä

PF (st+1 | st) (D.29)

=




∏

st−1→st∈Ä ′

PF (st | st−1)








∑

Ä ′′∈Ts,f

∏

(st→st+1)∈Ä ′′

PF (st+1 | st)





︸ ︷︷ ︸

= 1 (Lemma 3.2.5)

(D.30)

=
∏

st−1→st∈Ä ′

PF (st | st−1). (D.31)

Similarly, any complete trajectory Ä that share the same prefix trajectory

(s0, . . . , s, s
′) can be (uniquely) decomposed into this common prefix, and a partial

229

trajectory Ä ′′ ∈ Ts′,f from s′ to sf , leading to:

P (s0 → . . .→ s→ s′) = P (s0 → . . .→ s)PF (s′ | s) (D.32)

Combining the two results above, we can conclude that P satisfies the Markov prop-

erty and therefore that the flow F is Markovian:

P (s′ → s | Ä ′) =
P (s0 → . . .→ s→ s′)

P (s0 → . . .→ s)
= PF (s′ | s) = P (s′ → s | s) (D.33)

— {1, 2} ⇒ 3: Suppose that F is a Markovian flow. We have shown above that this is

equivalent to P being decomposed into a product of forward transition probabilities

PF . For some complete trajectory Ä = (s0, . . . , sn+1 = sf):

P (Ä) =
n+1∏

t=1

PF (st | st−1) =
n+1∏

t=1

P (st−1 → st)

P (st−1)
=

n+1∏

t=1

P (st−1 → st)

P (st)
=

n+1∏

t=1

PB(st−1 | st),

(D.34)

where the third equality uses the fact that P (s0) = P (sf) = 1, and using the definition

of the backwards transition probability PB. The proof of uniqueness of PB is similar

to that of PF in 1⇒ 2, and uses:

P (s→ s′) =
∑

Ä : (s→s′)∈Ä

P (Ä) =
∑

Ä : (s→s′)∈Ä

∏

(st→st+1)∈Ä

P̂B(st | st+1) (D.35)

=




∑

Ä ′∈T0,s

∏

(st→st+1)∈Ä ′

P̂B(st | st+1)





︸ ︷︷ ︸

= 1 (Lemma 3.2.5)

P̂B(s | s′)




∑

Ä ′′∈Ts′,f

∏

(st→st+1)∈Ä ′′

P̂B(st | st+1)





︸ ︷︷ ︸

= P (s′)

(D.36)

= P (s′)P̂B(s | s′), (D.37)

— 3 ⇒ 1: Similar to the proof of 2 ⇒ 1, P̂B is necessarily equal to the backwards

transition probability PB associated with P . Additionally, PB is related to the forward

transition probability PF :

P (s→ s′) = PB(s | s′)P (s′) = PF (s′ | s)P (s). (D.38)

We can therefore write the decomposition of P in terms of PF instead of PB. For

some complete trajectory Ä = (s0, . . . , sn+1 = sf):

P (Ä) =
n+1∏

t=1

PB(st−1 | st) =
n+1∏

t=1

P (st−1)

P (st)
PF (st+1 | st) =

P (s0)

P (sf)

n+1∏

t=1

PF (st+1 | st) (D.39)

=
n+1∏

t=1

PF (st+1 | st), (D.40)

230

where we used the fact that P (s0) = P (sf) = 1. Using “2 ⇒ 1”, we can conclude

that F is a Markovian flow.

□

Proposition 3.2.19.

Proof. Necessity is a direct consequence of Proposition 3.2.8. Let’s show sufficiency. Let

P̂F be the forward probability function defined by:

∀s→ s′ ∈ A P̂F (s′ | s) :=
F̂ (s→ s′)

F̂ (s)
. (D.41)

P̂F is consistent with G given that F̂ satisfies the flow matching conditions ((3.22)). Let

Ẑ = F̂ (s0). According to Proposition 3.2.18, there exists a unique Markovian flow F with

forward transition probability function PF = P̂F and partition function Z = Ẑ, and such

that for a trajectory Ä = (s0, . . . , sn+1 = sf) ∈ T :

∀Ä = (s0, . . . , sn+1 = sf) ∈ T F (Ä) = Ẑ
n+1∏

t=1

P̂F (st | st−1) =

∏n+1
t=1 F̂ (st−1→st)

∏n
t=1 F̂ (st)

. (D.42)

Additionally, similar to the proof of Proposition 3.2.16, we can write for any state s′ ̸= s0:

F (s′) = Ẑ
∑

Ä∈T0,s′

∏

(st→st+1)∈Ä

P̂F (st+1 | st) (D.43)

= Ẑ
F̂ (s′)

F̂ (s0)

∑

Ä∈T0,s′

∏

(st→st+1)∈Ä

P̂B(st | st+1)

︸ ︷︷ ︸

=1 , according to Lemma 3.2.5

(D.44)

= F̂ (s′), (D.45)

where P̂B(s′ | s) := F̂ (s→s′)

F̂ (s′)
defines a backward probability function consistent with G. And

because ∀s → s′ ∈ A PF (s′ | s) = P̂F (s′ | s), it follows that ∀s → s′ ∈ A F (s → s′) =

F̂ (s→ s′).

To show uniqueness, let’s consider a Markovian flow F ′ that matches F̂ on states and

edges. Following Proposition 3.2.16, for any trajectory Ä = (s0, . . . , sn+1 = sf) ∈ T

F ′(Ä) = Ẑ
n+1∏

t=1

P̂F (st | st−1) =

∏n+1
t=1 F̂ (st−1→st)

∏n
t=1 F̂ (st)

= F (Ä). (D.46)

□

Corollary 3.2.17.

Proof. First, note that the procedure terminates with probability 1, given that G is acyclic.

For the procedure to terminate in a state s, it means that the trajectory Ä ∈ T implicitly

constructed during the procedure contains the edge s→ sf . The probability of the procedure

231

terminating in s is thus:
∑

Ä∈T :s→sf ∈Ä

∏

s′→s′′∈Ä

PF (s′′ | s′)

︸ ︷︷ ︸

P (Ä), according to (3.20)

= P (s→ sf) = P¦(s) (D.47)

□

Proposition 3.2.18.

Proof. In the first two settings, we define a flow function F : T → R
+, at a trajectory

Ä = (s0, s1, . . . , sn, sn+1 = sf) as:

(1) F (Ä) := Ẑ
∏n+1

t=1 P̂F (st | st−1),

(2) F (Ä) := Ẑ
∏n+1

t=1 P̂B(st−1 | st)

We need to prove that it is the only Markovian flow that can be defined for both settings.

The proof for the third setting will follow from that of the second setting.

First setting:

First, we need to show that the total flow Z associated with the flow function F ((3.11))

matches Ẑ. This is a consequence of Lemma 3.2.5:

Z =
∑

Ä∈T

F (Ä) = Ẑ
∑

Ä=(s0,s1,...,sn+1=sf)∈T

n+1∏

t=1

P̂F (st | st−1)

︸ ︷︷ ︸

=1 , according to Lemma 3.2.5

= Ẑ (D.48)

Then, we need to show that the forward transition probability function PF associated

with F ((3.15)) matches P̂F and that the flow F is Markovian. To this end, note that the cor-

responding flow probability P satisfies (3.20). Thus, as a consequence of Proposition 3.2.16,

F is a Markovian flow, and its forward transition probability function is P̂F .

As a last requirement, we need to show that if a Markovian flow F ′ has a partition function

Z ′ = Ẑ and a forward transition probability function P ′
F = P̂F , then it is necessarily equal to

F . This is a direct consequence of Proposition 3.2.16, given that for any Ä = (s0, . . . , sn+1 =

sf) ∈ T :

F ′(Ä) = Z ′
n+1∏

t=1

P ′
F (st | st−1) = Ẑ

n+1∏

t=1

P̂F (st | st−1) = F (Ä) (D.49)

Second setting:

First, we show that as a consequence of Lemma 3.2.5, the total flow Z associated with

F matches Ẑ:

Z =
∑

Ä∈T

F (Ä) = Ẑ
∑

Ä=(s0,s1,...,sn+1=sf)∈T

n+1∏

t=1

P̂B(s−1 | st)

︸ ︷︷ ︸

=1 , according to Lemma 3.2.5

= Ẑ (D.50)

232

Second, we note that the flow probability P associated with F satisfies (3.21). Thus,

as a consequence of Proposition 3.2.16, F is a Markovian flow, and its backward transition

probability function is P̂B.

Finally, if a Markovian flow F ′ has a partition function Z ′ = Ẑ and a backward transition

probability function P ′
B = P̂B, then following Proposition 3.2.16, ∀Ä ∈ T , F ′(Ä) = F (Ä).

Third setting:

From the terminating flows F̂ (s→ sf) and the backwards transition probabilities P̂B(s |
s′) for non-terminating edges, we can uniquely define a total flow Ẑ, and extend P̂B to all

edges as follows:

Ẑ :=
∑

s∈P ar(sf)

F̂ (s→ sf) (D.51)

P̂B(s | s′) :=







P̂B(s | s′) if s′ ̸= sf

F̂ (s→sf)

Ẑ
otherwise.

(D.52)

This takes us back to the second setting, for which we have already proven that with Ẑ and

P̂B defined for all edges, a Markovian flow is uniquely defined.

□

Proposition 3.2.21.

Proof. For necessity, consider a flow F , with state flow function denoted F , and forward

and backward transitions PF and PB. It is clear from the definition of PF and PB (Defini-

tion 3.2.12) that (3.25) holds. We prove the sufficiency of the condition by first defining the

edge flow

∀s→ s′ ∈ A F̂ (s→s′) := F̂ (s)P̂F (s′ | s). (D.53)

We then sum both sides of (3.25) over s, yielding

∀s′ > s0
∑

s∈P ar(s′)

F̂ (s)P̂F (s′ | s) = F̂ (s′)
∑

s∈P ar(s′)

P̂B(s | s′) = F̂ (s′) (D.54)

where we used the fact that P̂B is a normalized probability distribution. Combining this

with (D.53), we get

∀s′ > s0 F̂ (s′) =
∑

s∈P ar(s′)

F̂ (s→s′) (D.55)

which is the first equality of the flow-matching condition ((3.22)) of Proposition 3.2.19. We

can obtain the second equality by first using the normalization of P̂ and then using our

233

definition of the edge flow ((D.53)):

∀s′ > s0 F̂ (s′) = F̂ (s′)
∑

s′′∈Child(s′)

P̂F (s′′ | s′)

=
∑

s′′∈Child(s′)

F̂ (s′)P̂F (s′′ | s′)

=
∑

s′′∈Child(s′)

F̂ (s′→s′′). (D.56)

Following Proposition 3.2.19, there exists a unique Markovian flow F with state and edge

flows given by F̂ . Using (D.53) and (3.25), it follows that F has transition probabilities P̂F

and P̂B as required. The uniqueness is also a consequence of (D.53). This proves sufficiency.

To show that P̂F and P̂B are compatible (Definition 3.2.20), we first combine (D.53)

and (D.56) (with relabeling of variables) to obtain

∀s→ s′ ∈ A P̂F (s′ | s) =
F̂ (s→s′)

∑

s′∈Child(s) F̂ (s→s′)
,

we then isolate P̂B in (3.25), yielding

∀s→ s′ ∈ A P̂B(s | s′) =
F̂ (s)

F̂ (s′)
P̂F (s′ | s) =

F̂ (s→s′)

F̂ (s′)
=

F̂ (s→s′)
∑

s′′∈P ar(s′) F̂ (s′′ → s′)
,

We thus get (3.24) of Definition 3.2.20, as desired. □

Proposition 3.2.22.

Proof. First, note that before the main loop (the while loop), the queue U contains at

least one element. Indeed, there has to be at least one x ∈ Sf such that sf is its only child,

otherwise, the acyclicity constraint would be broken.

Let d(s) be the maximal distance from sf to a node s. For example, if there are two

(incomplete) trajectories from s to sf : s→ s′ → sf , and s→ s′′ → s′′′ → sf , then d(s) = 3.

Initially, before the while loop, U is filled with all states s ∈ S such that d(s) = 1. They

will thus be processed before any state s with d(s) > 1.

After all states s′ satisfying d(s′) = 1 are dequeued from U , Y contains all such states.

Additionally, all edges s→ s′ with d(s′) = 1 would have been assigned an edge flow F̂ (s→
s′), and for each corresponding parent state s, V (s) would be equal to

∑

s′∈Child(s) F̂ (s →
s′). Similarly, because for each corresponding s′,

∑

s∈P ar(s′) PB(s | s′) = 1, we get that
∑

s∈P ar(s′) F̂ (s → s′) = R(s′) = V (s′). The obtained edge flows thus satisfy the constraints

(3.27). At this point, U is filled with states s satisfying d(s) = 2.

Such states would be processed (dequeued from U) iteratively, after which U would be

filled with states s satisfying d(s) = 3, and the obtained edge flows satisfy the constraints

(3.27). This will go on until U contains s0, at which point the algorithm terminates.

234

Every edge s → s′ is visited once, and only once, leadign to an algorithm complexity of

O(|A|). □

Proposition 3.2.24.

Proof. Because F1 and F2 are Markovian, then for any trajectory Ä = (s0, . . . , sn+1 = sf):

F1(Ä) =

∏n+1
t=1 F1(st−1 → st)

∏n
t=1 F1(st)

(D.57)

=

∏n+1
t=1 F2(st−1 → st)

∏n
t=1 F2(st)

(D.58)

= F2(Ä), (D.59)

where we combined the definition of equivalent flows and Proposition 3.2.16.

Given a flow function F ′, because its state and edge flow functions satisfy the flow match-

ing conditions (as a consequence of Proposition 3.2.8), then according to Proposition 3.2.19,

the flow F defined by:

∀Ä := (s0, . . . , sn+1 = sf) ∈ T F (Ä) =

∏n+1
t=1 F

′(st−1 → st)
∏n

t=1 F
′(st)

(D.60)

is Markovian, and coincides with F ′ on state and edge flows. Combining this with the

statement above, we conclude that F is the unique Markovian flow that is equivalent to

F ′. □

Proposition 3.4.6.

Proof. Let s ∈ S be a state. Since the structure of the DAG Gs is clearly well-defined, we

just need to show that there exists a flow function Fs : Ts → R
+ that satisfies (3.62). If such

a function exists for every s ∈ S, then it would suffice to define the conditional flow function

F : S × T → R
+ as:

F (s, Ä) =







Fs(Ä) if Ä ∈ Ts

0 otherwise.
(D.61)

Let As′|s be the set of complete trajectories in Ts terminating in s′ g s; the condition in

(3.62) then reads:

Fs(s
′→sf) = Fs(As′|s) =

∑

Ä∈As′|s

Fs(Ä) = F (s′→sf). (D.62)

Note that in (D.62), F (s′→sf) is a given quantity because the flow F is known. Since the

sets of trajectories {As′|s, , s
′ g s} form a partition of all the complete trajectories Ts, (D.62)

is a system of linear equations, whose unknowns are Fs(Ä) for all Ä ∈ Ts, where each equation

involves separate sets of unknowns. Therefore there exists at least a solution Fs(Ä) of this

system.

235

We can construct such a solution in the following way. For some Ä ∈ Ts, we can first

start by selecting the complete trajectories Ǟ ∈ T that contain Ä :

CÄ = {Ǟ ∈ T : Ä ¦ Ǟ}. (D.63)

The key difference between the DAG G and the subgraph Gs though is that G may contain

trajectories that terminate in some s′ g s but do not pass through s, and those are therefore

not covered by the trajectories of Gs. Let Us′|s be the set of complete trajectories of G defined

as

Us′|s = {Ǟ ∈ T : ∃s′′ > s, s′′ ∈ Ǟ , s′ ∈ Ǟ , s /∈ Ǟ}. (D.64)

For all Ä ∈ Ts such that Ä terminates in some s′ g s, we can therefore construct the flow

Fs(Ä) as

Fs(Ä) := F (CÄ) +
1

n
F (Us′|s), (D.65)

where n = |As′|s| is the number of trajectories Ä ′ ∈ Ts that terminate in s′. It is easy to

verify that Fs(Ä) is a solution of (D.62). □

Proposition 3.4.7.

Proof. This is a direct consequence of Proposition 3.2.10, applied to the state-conditional

flow function Fs, along with Definition 3.4.1.

Fs(s0 | s) =
∑

Ä∈Ts

Fs(Ä) =
∑

s′ : s′gs

Fs(s
′→sf) (D.66)

=
∑

s′ : s′gs

F (s′→sf) =
∑

s′ : s′gs

e−E(s′) (D.67)

□

Corollary 3.4.8.

Proof. Because Fs is a flow function, Definition 3.2.11 and Proposition 3.2.10 tell us that:

P¦(s′ | s) =







Fs(s
′ → sf)

Fs(s)
if s′ g s

0 otherwise
(D.68)

Combining this with Proposition 3.4.7, and (3.62), we obtain for s′ g s:

P¦(s′ | s) = 1s′gs
F (s′ → sf)

e−F(s)
(D.69)

= 1s′gs
e−E(s′)

e−F(s)
(D.70)

□

236

Proposition D.1.2.

Proof. First apply the definition of P¦(s), then (D.12) on both flows:

−
∑

s

P¦(s) logP¦(s) = −
∑

s

R(s)

F (s0)
(logR(s)− logF (s0)) (D.71)

=

(

−∑s R(s) logR(s)
)

+
(

logF (s0)
∑

s R(s)
)

F (s0)
(D.72)

=
F ′(s0)

F (s0)
+ logF (s0). (D.73)

Note that we need R(s) < 1 to make sure that the rewards R′(s) (and thus the flows) are

positive. □

Lemma 3.7.2.

Proof. Consider a complete trajectory Ä = (sm0
→ . . . → sm1

→ . . . → . . . sm2
→ . . . →

. . .→ smK
). And let Äk = (smk

→ . . .→ smk+1
), for every k < K.

Denote by Ẑk and Žk the partition functions (constant of proportionality in (3.78)) of p̂k

and p̌k respectively, for every k < K. It is straightforward to see that for every 0 < k < K:

Ẑk+1 = Žk =
∑

smk+1
∈Smk+1

Fk+1(smk+1
) (D.74)

K−1∏

k=0

p̂k(Äk) =

∏K−1
k=0 Fk(smk

)
∏K−1

k=0 Ẑk

PF (Ä), (D.75)

K−1∏

k=0

p̌k(Äk) =

∏K−1
k=0 Fk+1(smk+1

)
∏K−1

k=0 Žk

PB(Ä | smK
). (D.76)

Because p̂k = p̌k for all k = 0 . . . K − 1, then both right-hand sides of (D.75) and (D.76) are

equal. Combining this with (D.74), we obtain:

∀Ä ∈ T F0(s0)

Ẑ0
︸ ︷︷ ︸

=1

PF (Ä) =
R(xÄ)

∑

x∈X R(x)
PB(Ä | x), (D.77)

which implies the TB constraint is satisfied for all Ä ∈ T . Malkin et al. (2022) shows that

this is a sufficient condition for the terminating state distribution induced by PF to match

the target reward function R, which completes the proof. □

Proposition 3.7.3.

237

Proof. For a complete trajectory Ä ∈ T , denote by c(Ä) = log PF (Ä)
R(xτ)PB(Ä |xτ)

. We have the

following:

∇¹c(Ä) = ∇¹ logPF (Ä) (D.78)

∇ϕc(Ä) = −∇ϕ logPB(Ä | xÄ) = −∇ϕ logPB(Ä) (D.79)

Denoting by f1 : t 7→ t log t and f2 : t 7→ − log t, which correspond to the forward and reverse

KL divergences, respectively, and starting from

LHVI,f2
(PF , PB) = DKL(PF∥PB) = EÄ∼PF

[

log
PF (Ä)

PB(Ä)

]

= EÄ∼PF
[c(Ä)] + log Ẑ,

LHVI,f1
(PF , PB) = DKL(PB∥PF) = EÄ∼PB

[

log
PB(Ä)

PF (Ä)

]

= −
(

EÄ∼PB
[c(Ä)] + log Ẑ

)

,

we obtain:

∇¹LHVI,f2
(PF , PB) = ∇¹EÄ∼PF

[c(Ä)] = EÄ∼PF
[∇¹ logPF (Ä)c(Ä) +∇¹c(Ä)],

∇ϕLHVI,f1
(PF , PB) = −∇ϕEÄ∼PB

[c(Ä)] = −EÄ∼PB
[∇ϕ logPB(Ä)c(Ä) +∇ϕc(Ä)].

From (D.78) and (D.79), we obtain:

EÄ∼PF
[∇¹c(Ä)] = EÄ∼PF

[∇¹ logPF (Ä)] =
∑

Ä∈T

PF (Ä)∇¹ logPF (Ä) =
∑

Ä∈T

∇¹PF (Ä) = ∇¹1 = 0

Hence, for any scalar Z > 0, we can write:

EÄ∼PF
[∇¹c(Ä)] = 0 = EÄ∼PF

[∇¹ logPF (Ä) logZ]

and similarly

Eϕ∼PF
[∇ϕc(Ä)] = 0 = EÄ∼PB

[∇ϕ logPB(Ä) logZ].

Plugging these two equalities back in the HVI gradients above, we obtain:

∇¹LHVI,f2
(PF , PB) = EÄ∼PF

[∇¹ logPF (Ä) log
ZPF (Ä)

R(xÄ)PB(Ä | xÄ)
]

∇ϕLHVI,f1
(PF , PB) = −EÄ∼PB

[∇¹ logPB(Ä) log
ZPF (Ä)

R(xÄ)PB(Ä | xÄ)
]

The last two equalities hold for any scalar Z (that does not depend on the parameters of

PF , PB, and does not depend on any trajectory). In particular, the equations hold for the

238

parameter Z of the Trajectory Balance objective. It thus follows that:

∇¹LHVI,f2
(PF , PB) =

1

2
EÄ∼PF



∇¹

(

log
ZPF (Ä)

R(xÄ)PB(Ä | xÄ)

)2


 =
1

2
EÄ∼PB

[∇¹LTB(Ä ;PF , PB, Z)]

∇ϕLHVI,f1
(PF , PB) =

1

2
EÄ∼PB



∇¹

(

log
ZPF (Ä)

R(xÄ)PB(Ä | xÄ)

)2


 =
1

2
EÄ∼PB

[∇ϕLTB(Ä ;PF , PB, Z)]

As an immediate corollary, we obtain that the expected on-policy TB gradient does not

depend on the estimated partition function Z. □

Lemma 3.7.5.

Proof. The RHS of (3.87) equals

∇ϕ



EÄ∼PF





(

log
PB(Ä | xÄ)R(xÄ)

ẐPF (Ä)

)2

+ 2(logZ − log Ẑ) log
PF (Ä)Ẑ

PB(Ä | xÄ)R(xÄ)









=EÄ∼PF



∇ϕ





(

log
PB(Ä | xÄ)R(xÄ)

ẐPF (Ä)

)2

+ 2(logZ − log Ẑ) log
PF (Ä)Ẑ

PB(Ä | xÄ)R(xÄ)









=EÄ∼PF

[

2∇ϕ logPB(Ä | xÄ) log
PB(Ä | xÄ)R(xÄ)

ẐPF (Ä)
− 2(logZ − log Ẑ)∇ϕ logPB(Ä | xÄ)

]

=2EÄ∼PF

[

∇ϕ logPB(Ä | xÄ) log
PB(Ä | xÄ)R(xÄ)

ZPF (Ä)

]

=EÄ∼PF
[∇ϕLTB(Ä)] □

Proposition 3.7.4.

Proof. For a subtrajectory Äk = (smk
→ . . . → smk+1

) ∈ Tk, let c(Äk) =

log
Fk(smk

)PF (Äk)

Fk+1(smk+1
)PB(Äk|smk+1

)
.

First, note that because Ẑk and Žk are not functions of ϕ, ¹ ((D.75)):

∇ϕc(Äk) = −∇ϕ log
Fk+1(smk+1

)PB(Äk | smk+1
)

Žk

= −∇ϕ log p̌k(Äk) (D.80)

∇¹c(Äk) = ∇¹ log
Fk(smk

)PF (Äk)

Ẑk

= ∇ϕ log p̂k(Äk) (D.81)

239

We will prove (3.85). The proof of (3.86) follows the same reasoning and is omitted for

conciseness.

Df1
(p̌k∥p̂k) = DKL(p̌k∥p̂k)

∇ϕDf1
(p̌k∥p̂k) = ∇ϕ

∑

Äk∈Tk

p̌k(Äk) log
p̌k(Äk)

p̂k(Äk)

= −∇ϕ

∑

Äk∈Tk

p̌k(Äk)c(Äk) + ∇ϕ log
Ẑk

Žk
︸ ︷︷ ︸

=0, according to (D.75)

= −
∑

Äk∈Tk

(∇ϕp̌k(Äk)c(Äk) + p̌k(Äk)∇ϕc(Äk))

= −
∑

Äk∈Tk

(p̌k(Äk)∇ϕ log p̌k(Äk)c(Äk) + p̌k(Äk)∇ϕc(Äk))

= −EÄk∼p̌k
[∇ϕ log p̌k(Äk)c(Äk)] +

∑

Äk∈Tk

p̌k(Äk)∇ϕ log p̌k(Äk) following (D.80)

= −EÄk∼p̌k
[∇ϕ logPB(Äk | smk+1

)c(Äk)] +∇ϕ

∑

Äk∈Tk

p̌k(Äk)

︸ ︷︷ ︸

=0

= EÄk∼p̌k

[

∇ϕ logPB(Äk | smk+1
) log

Fk+1(smk+1
)PB(Äk | smk+1

)

Fk(smk
)PF (Äk)

]

=
1

2
EÄk∼p̌k



∇ϕ

(

log
Fk(smk

)PF (Äk)

Fk+1(smk+1
)PB(Äk | smk+1

)

)2




=
1

2
EÄk∼p̌k

[∇ϕLSubTB(Äk;PF , PB, F)] □

D.3. Additional experimental details

D.3.1. Hypergrid experiments

Architectural details. The forward and backward policies are parameterized as neural

networks with two hidden layers of 256 units each. The neural networks take as input a

one-hot representation of a state (also called K-hot or multi-hot representations), which is a

H×D vector including exactly D ones and (H− 1)D zeros, and output the logits of PF and

PB respectively. Forbidden actions (e.g., when a coordinate is already maxed out at H − 1)

are masked out by setting the corresponding logits to −∞ after the forward pass. Unlike

Malkin et al. (2022), we do not tie the parameters of PF and PB.

Behavior policy. The behaviour policy is obtained from the forward policy PF by subtract-

ing a scalar ϵ from the logits output by the forward policy neural network. The value of ϵ is

decayed from ϵinit to 0 following a cosine annealing schedule (Loshchilov and Hutter, 2017),

240

and the value ϵ = 0 is reached at an iteration Tmax. The values of ϵinit and Tmax were treated

as hyperparameters.

Hyperparameter optimization. Our experiments have shown that HVI objectives were

brittle to the choice of hyperparameters (mainly learning rates) and that the ones used for

Trajectory Balance in Malkin et al. (2022) do not perform as well in the larger 128 × 128

grid we considered. To obtain a fair comparison between GFlowNets and HVI methods,

particular care was given to optimizing hyperparameters in this domain. The optimization

was performed in two stages:

(1) We use a batch size of 64 for all learning objectives, whether on-policy or off-policy,

and the Adam optimizer with secondary parameters set to their default values, for the

parameters of PF , the parameters of PB, and logZ (which is initialized at 0). The learning

rates of PF , PB, logZ, along with a schedule factor µ < 1 by which they are multiplied

when the JSD plateaus for more than 500 iterations (i.e., 500×64 trajectories sampled),

were sought after separately for each combination of learning objective and sampling

method (on-policy or off-policy), using a Bayesian search with the JSD evaluated at

200K trajectories as an optimization target. The choice of the baseline for HVI methods

(except WS, which does not have a score function estimator of the gradient) was also

treated as a hyperparameter.

(2) All objectives were then trained for 106 trajectories using all the combinations of hyper-

parameters found in the first stage for 5 seeds each. The final set of hyperparameters for

each objective and sampling mode was chosen as the one that leads to the lowest area

under the JSD curve (approximated with the trapezoids method).

For off-policy runs, Tmax was defined as a fraction 1/n of the total number of iterations

(equal to 106/64). The value of n and ϵinit was optimized like the learning rate and the

schedule, as described above.

D.3.2. Molecule experiments

Most experiment settings were identical to those of Malkin et al. (2022), in particular, the

reward model f the held-out set of molecules used to compute the performance metric, the

GFlowNet model architecture (a graph neural network introduced by Bengio et al. (2021)),

and the off-policy exploration rate. All models were trained with the Adam optimizer and

batch size 4 for a maximum of 50000 batches. The metric was computed after every 5000

batches, and the last calculated value was reported, which was sometimes not the value after

50000 batches when the training runs terminated early because of numerical errors.

241

D.3.3. Bayesian structure learning experiments

Bayesian Networks. A Bayesian Network is a probabilistic model where the joint distri-

bution over d random variables {X1, . . . , Xd} factorizes according to a directed acyclic graph

(DAG) G:

p(X1, . . . , Xd) =
d∏

i=1

p(Xi | PaG(Xi)),

where PaG(Xi) is the set of parent variables of Xi in the graph G. Each conditional dis-

tribution in the factorization above is also associated with a set of parameters ¹ ∈ Θ. The

structure G of the Bayesian Network is often assumed to be known. However, when the

structure is unknown, we can learn it based on a dataset of observations D: this is called

structure learning.

Structure of the state space. We use the same structure of graded DAG G as the one

described in (Deleu et al., 2022), where each state of G is itself a DAG G, and where actions

correspond to adding one edge to the current graph G to transition to a new graph G′. Only

the actions maintaining the acyclicity of G′ are considered valid; this ensures that all the

states are well-defined DAGs, meaning that all the states are terminating here (we define

a distribution over DAGs). Similar to the hypergrid environment, the action space also

contains an extra action “stop” to complete the generation process and return the current

graph as a sample of our distribution; this “stop” action is denoted G→ sf .

Reward function. Our objective in Bayesian structure learning is to approximate the pos-

terior distribution over DAGs p(G | D), given a dataset of observations D. Since our goal is

to find a forward policy PF for which P¦(G) ∝ R(G) (see Section 3.7.1), we can define the

reward function as the joint distribution R(G) = p(G,D) = p(D | G)p(G), where p(G) is a

prior over graphs (assumed to be uniform throughout the paper), and p(D | G) is the mar-

ginal likelihood. Since the marginal likelihood involves marginalizing over the parameters of

the Bayesian Network

p(D | G) =
∫

Θ
p(D | ¹,G)p(¹ | G) dΘ,

it is, in general intractable. We consider here a special class of models, called linear-Gaussian

models, where the marginal likelihood can be computed in closed form; for this class of

models, the log-marginal likelihood is also called the BGe score (Geiger and Heckerman,

1994; Kuipers et al., 2014) in the structure learning literature.

For each experiment, we sampled a dataset D of 100 samples from a randomly generated

Bayesian network. The (ground truth) structure of the Bayesian Network was generated

following an Erdős-Rényi model, with about d edges on average (to encourage sparsity on

such small graphs with d f 5). Once the structure is known, the parameters of the linear-

Gaussian model were sampled randomly from a standard Normal distribution N (0, 1). See

(Deleu et al., 2022) for more details about the data generation process. For each setting

242

(different values of d) and each objective, we repeated the experiment over 20 different

seeds.

Forward policy. Deleu et al. (2022) parameterized the forward policy PF using a linear

transformer, taking all the d2 possible edges in the graph G as input and returning a proba-

bility distribution over those edges, where the invalid actions were masked out. We param-

eterized PF using a simpler neural network architecture based on a graph neural network

(Battaglia et al., 2018). The GNN takes the graph G as an input, where each node of the

graph is associated with a (learned) embedding, and it returns for each node Xi a pair of

embeddings ui and vi. The probability of adding an edge Xi → Xj to transition from G to

G′ (given that we do not terminate in G) is then given by

PF (G′ | G,¬sf) ∝ exp(u¦
i vj),

assuming that Xi → Xj is a valid action (i.e., it doesn’t introduce a cycle in G) and where

the normalization depends only on all the valid actions. We then use a hierarchical model

to obtain the forward policy PF (G′ | G), following (Deleu et al., 2022):

PF (G′ | G) = (1− PF (sf | G))PF (G′ | G,¬sf).

Recall that the backward policy PB is fixed here, as the uniform distribution over the parents

of G (i.e., all the graphs were exactly one edge has been removed from G).

(Modified) Detailed Balance objective. For completeness, we recall here the modified

Detailed Balance (DB) objective (Deleu et al., 2022) as a particular case of the DB objective

(Bengio et al., 2023; see also (3.72)) when all the states of G are terminating (which is the

case in our Bayesian structure learning experiments):

L(M)DB(G→ G′;PF , PB) =

(

log
R(G′)PB(G | G′)PF (sf | G)

R(G)PF (G′ | G)PF (sf | G′)

)2

.

Optimization. Following (Deleu et al., 2022), we used a replay buffer for all our off-policy

objectives ((Modified) DB, TB, and Reverse KL). All the objectives were optimized using

a batch size of 256 graphs sampled either on-policy from PF or from the replay buffer. We

used the Adam optimizer, with the best learning rate found among {10−6, 3×10−6, 10−5, 3×

10−5, 10−4}. For the TB objective, we learned logZ using SGD with a learning rate of 0.1

and momentum 0.8.

Edge marginals. In addition to the Jensen-Shannon divergence (JSD) between the true

posterior distribution p(G | D) and the posterior approximation P¦(G) (see Section 3.8.1

for details about how this divergence is computed), we also compare the edge marginals

computed with both distributions. That is, for any edge Xi → Xj in the graph, we compare

p(Xi → Xj | D) =
∑

G|Xi∈PaG(Xj)

p(G | D) and P¦(Xi → Xj) =
∑

G|Xi∈PaG(Xj)

P¦(G).

243

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
M

S
E

Number of nodes: d = 3

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

Number of nodes: d = 4

(Modified)
DB

Off-Policy
TB

On-Policy
TB

On-Policy
HVI

Off-Policy
HVI

Number of nodes: d = 5

Edge marginals

Figure D.1 – Comparison of edge marginals computed using the target posterior distribu-
tion and using the posterior approximations found either with the GFlowNet objectives or
Reverse KL. Performance is reported as the Root Mean Square Error (RMSE) between
the marginals (lower is better).

The edge marginal quantifies how likely an edge Xi → Xj is to be present in the structure

of the Bayesian Network and is of particular interest in the (Bayesian) structure learning

literature. To measure how accurate the posterior approximation P¦ is for the different

objectives considered here, we use the Root Mean Square Error (RMSE) between p(Xi →

Xj | D) and P¦(Xi → Xj), for all possible pairs of nodes (Xi, Xj) in the graph.

Figure D.1 shows the RMSE of the edge marginals for different GFlowNet objectives

and Reverse KL (denoted as HVI here for brevity). The results on the edge marginals

largely confirm the observations made in Section 3.8.4: the off-policy GFlowNet objectives

((Modified) DB & TB) consistently perform well across all experimental settings; On-Policy

TB & On-Policy Reverse KL perform similarly and degrade as the complexity of the

experiment increases (as d increases); and Off-Policy Reverse KL has a performance that

degrades the most as the complexity increases, where the edge marginals given by P¦(Xi →

Xj) do not match the true edge marginals p(Xi → Xj | D) accurately.

244

Appendix E

Appendix for Chapter 4

E.1. How to define a backward reference kernel

Given a reference kernel », designing a backward reference kernel »b can be done using

reverse kernels (Cappé et al., 2009), of which we recall a definition below:

Definition E.1.1 (Reverse kernel). Let (S̄,Σ) be a measurable space, » be a transition

kernel on (S̄,Σ), and ¿ be a positive measure on (S̄,Σ). A reverse kernel »r
¿ associated

to ¿ and » is a transition kernel over (S̄,Σ) such that:

¿ ¹ » = (¿»)¹ »r
¿ (E.1)

Note how (E.1) is different from the condition of the backward reference kernel (4.8).

Conveniently, there is a reference measure ¿ for which the two conditions are equivalent,

meaning that the backward reference kernel can be defined as the reverse kernel associated

to ¿ and ». While there is no guarantee that the reverse kernel exists or is unique in general,

existence is guaranteed if (S̄, T) is a Polish space (e.g., a discrete space, the Euclidian

space R
n, hyperrectangles or balls in R

n, or products or disjoint unions of countable families

thereof) (Cappé et al., 2009). The following proposition shows that.

Proposition E.1.2. Given a Polish space (S̄, T), with source and sink states s0,§ ∈ S̄

such that {s0} and {§} are both open and closed sets, and a transition kernel » on

(S̄,Σ) satisfying (4.5), (4.6) and (4.11). Let ¿ be the measure defined by:

¿ =
N∑

n=0

»n(s0,−), (E.2)

and let »r
¿ be any reverse kernel associated to » and ¿ that satisfies the following two

conditions:

»r
¿(s0,−) = 0 i.e., it’s the trivial measure (E.3)

∀s ∈ S, »r
¿(s, {§}) = 0. (E.4)

Let »b be a transition kernel on (S̄,Σ) defined by:

∀s ̸= §, »b(s,−) = »r
¿(s,−),

∀B ∈ Σ|S , »
b(§, B) =

1

¿({§})
¿ ¹ »(B × {§}),

»b(§, {§}) = 0.

¿ is strictly positive and »b satisfies (4.8). Note that the existence of a reverse kernel

satisfying (E.3) and (E.4) is guaranteed by Lemma E.1.3 below.

Lemma E.1.3. Given a Polish space (S̄, T), with source and sink states s0,§ ∈ S̄

such that {s0} and {§} are both open and closed sets, and a transition kernel » on

(S̄,Σ) satisfying (4.5), (4.6) and (4.11). Then the measure ¿ defined by:

¿ =
N∑

n=0

»n(s0,−), (E.5)

If »b is a reverse kernel associated to ¿ and », then the kernel »′ defined by:

»′(s0,−) = 0, (E.6)

»′(§,−) = »b(§,−), (E.7)

∀s′ ∈ S \ {s0}, »
′(s′, {§}) = 0 (E.8)

∀s′ ∈ S \ {s0}, ∀B ∈ Σ, § /∈ B ⇒ »′(s′, B) = »b(s, B), (E.9)

is also a reverse kernel associated to ¿ and ».

246

E.2. Experimental details

E.2.1. A synthetic continuous environment

Hyperparameters. We learned the concentration parameters of the Beta distributions,

which were restrained to the interval [0.1, 5.1], using a three-layered neural network with 128

units per layer, and leaky ReLU activation for s ̸= s0. The parameters corresponding to

pF (s0,−) were learned separately.

Each iteration consisted of sampling 128 trajectories from the forward policy, and eval-

uating the TB or the DB loss (with ³ = 1), before taking a gradient step on the learned

parameters. We trained the models for 20,000 iterations.

For both the DB and TB losses, we used a learning rate of 10−3 for the parameters of

pF , pB, pF (s0,−) (and logZ for TB). The learning rate used for u is 10−2. The learning rate

was annealed using a discount factor of 0.5 every 2500 iterations.

In experiments with learned pB, both pF and pB shared parameters except in the output

layer. In DB, pF and u did not share parameters except in the output layer.

Evaluation metric. We approximated the JSD between the learned the terminating state

distribution and the target distribution following the scheme described in Section 4.4.1.

E.2.2. Low-dimensional stochastic control

The neural network computing µ(xt, t) had the same architecture as in Zhang and Chen

(2022): a pair of 2-layer MLP processing xt and a 128-dimensional Fourier feature represen-

tation of t, followed by a 3-layer MLP on the concatenation of the features derived from xt

and from t. We set Ã = 5 for the Gaussians density and Ã = 1 for funnel density. Exploration

algorithms added a constant ϵ2

T
to the sampling policy variance at each step; we used a value

of ϵ = 0.1 linearly annealed to 0 over the course of training. All models are trained for 1500

batches of 300 samples with a learning rate of 10−2 for the policy and 10−1 for logZ (in

the case of GFlowNet algorithms); we found that higher learning rates made optimization

unstable. We also observed that the off-policy forward KL and TB algorithms continue to

improve with longer training, unlike the on-policy algorithms, which experience mode col-

lapse and cease to discover new areas of the density landscape. Figure E.1 shows samples

from models trained with various algorithms and highlights the importance of exploration.

247

GFlowNet TB Reverse KL Forward KL

No exploration

Fixed exploration ϵ = 0.1

Annealed exploration ϵ = 0.1¸ 0

Target

Figure E.1 – The target density for 9 Gaussians and samples from models trained with
various algorithms trained for 1500 batches. (When trained longer, GFlowNet TB policies
with exploration learn to model the modes with higher precision.)

The simple and importance-weighted estimates of the log-partition function from Zhang

and Chen (2022) are defined, in GFlowNet terms, as

B =
1

K

K∑

i=1

log
R(x

(i)
T)p¹T

B (Ä (i)|x(i)
T)

p¹T
F (Ä (i))

,

BRW = log
1

K

K∑

i=1

R(x
(i)
T)p¹T

B (Ä (i)|x(i)
T)

p¹T
F (Ä (i))

,

where the Ä (i) are K trajectories sampled from PF , the x(i) are their terminating states, and

p¹T
F (Ä (i)), p¹T

B (Ä (i)|x(i)
T) are the products of forward (resp. backward) Gaussian policy densities

along the trajectories. Note that both estimates would equal the true integral of the reward

248

Gaussian mixture (d = 2) Funnel (d = 10)

Black box? B BRW B BRW

✓ Off-policy GFlowNet TB −0.150± 0.019 −0.003± 0.011 −0.219± 0.020 −0.026± 0.020
✓ Off-policy Reverse KL∗ −1.706± 0.537 −1.609± 0.546 – –
✓ Off-policy Forward KL∗ −0.306± 0.036 −0.001± 0.013 −2.822± 0.576 −0.087± 0.081

✓ On-policy GFlowNet TB −1.409± 0.427 −1.301± 0.434 −0.265± 0.026 −0.012± 0.108
✓ On-policy Reverse KL −1.348± 0.397 −1.237± 0.413 −0.259± 0.018 −0.040± 0.023
✓ On-policy Forward KL∗ −0.254± 0.032 −0.007± 0.023 −1.384± 0.284 −0.034± 0.143

✓ Non-SDE SMC −0.362± 0.293 −0.216± 0.157

× On-policy PIS-NN −1.691± 0.370 −1.192± 0.482 −0.098± 0.005 −0.018± 0.020

× Non-SDE HMC −1.876± 0.527 −0.835± 0.257

Table E.1 – Estimation bias of the log-partition function using simple (B) and importance-
weighted (BRW) bounds (mean and standard deviation over 10 runs). The bold value in
each column shows the best result and all those statistically equivalent to it (p > 0.1 under
a Welch’s t-test). Algorithms assuming access to the gradient of the reward (non-black-box)
are shown for comparison. Rows marked with ∗ require importance weighting for gradient
estimation. Cells with – were unstable to optimize. Last three rows from Zhang and Chen
(2022).

density for a perfect sampler. Identically to Zhang and Chen (2022), we use K = 2000 for

the 2-dimensional Gaussian mixture dataset and K = 6000 for the 10-dimensional funnel

dataset.

We show extended results, including both simple and importance-weighted variational

bounds, in Table E.1.

E.2.3. Stochastic control on a torus environment

The transition kernel »(s,−) for any s = (s̃, t) when t < T is the product of the Lebesgue

measure on [0, 2Ã)2 with the Dirac measure at t + 1, and »((s̃, T),−) = ¶§ for every s̃ ∈

[0, 2Ã)2. Similar to Section 4.4.3, the reference measure is ¿ = ¶s0
+
∑T

t=1 ¼¹ ¶t, where ¼ is

the Lebesgue measure on each copy of the torus [0, 2Ã)2.

We parameterized the densities pF and pB with mixtures of independent von Mises distri-

butions defined by a measure of location µ and a measure of concentration ». We considered

two tasks in the torus environment defined by different reward functions.

Synthetic multimodal task. For this task, we designed a reward density with six modes

on the torus surface:

R6(È, φ) = (sin(3È) + cos(2φ) + 2)3.

Molecule conformation task. In this task, we define the reward function using the energy

E of an alanine dipeptide molecule, which depends on the conformation of the molecule C

(spatial arrangement of its atoms). This conformation can be efficiently parameterized using

internal coordinates: bond lengths, bond angles, and torsion angles (Jing et al., 2022; Thiede

249

Figure E.2 – Alanine dipeptide 3D struc-
ture. Torsion angles È, φ, ¹1, ¹2 have the
biggest impact on the energy of the mole-
cule. A pair of torsion angles φ and È can
take any values ∈ [0, 2Ã], while ¹1 and ¹2 can
be either close to 0 or Ã due to energy bar-
riers (Mironov et al., 2018). The image is
rendered using MolView Bergwerf (2014)

et al., 2022). For alanine dipeptide, there are four torsion angles largely influencing the energy

(see Figure E.2). In our experiments, the GFlowNet generates values for the angles È and

φ while keeping all other coordinates fixed. In this way, the support of the reward function

remains a torus, and its values are proportional to the Boltzmann distribution with energy

E :

RAD(È, φ) = exp(−E(C(È, φ))),

The plots in Figure 4.4 show the results of training a GFlowNet on a toroidal space

with a continuous synthetic multimodal reward function R6 (see text) and a reward function

defined by the Boltzmann distribution of the alanine dipeptide molecule RAD. The images

represent the density over a discretization of the space [0, 2Ã)2, obtained after fitting KDE

with 100,000 samples. The samples to fit the reward densities (Figure 4.4(a-c)) were obtained

via rejection sampling, and the GFlowNet densities (Figure 4.4b-d) use GFlowNet samples

from the learned distribution over terminating states P¦.

Results. To evaluate the performance of the GFlowNet trained with the TB loss, we cal-

culated the Jensen-Shannon divergence (see Section 4.4.1 for details about its estimation)

between the learned terminating state distribution P¦ and the normalized reward distribu-

tion. We provide a visual representation of learned and reward distributions in Figure 4.4.

Quantitatively, the GFlowNet achieved a JSD of 0.063 for the synthetic multimodal task and

0.009 for the molecule conformation task. These results show that the generalized GFlowNet

can model probability densities over non-Euclidean spaces.

Hyperparameters. We modeled both pF and pB with 5-layer perceptrons with 512 hidden

units per layer, training the full set of parameters of each model separately. These models

output, for each angle È and φ, the location µi and concentration »i of 5 independent von

Mises distributions, mixed with learned weights wi. To take into account the topology of

the torus, we encoded input angles with trigonometric transformations (sin(kÈ), cos(kÈ),

k = 1, . . . , 5, for both angles È and φ). We used a learning rate of 10−5 for the model

parameters and 10−2 for logZ, updating the parameters with batches of 100 trajectories of

250

length T = 10. With the synthetic reward, the model converged in about 5,000 iterations;

in the molecular conformation task, we trained for 40k iterations.

E.2.4. Posterior over continuous parameters in Bayesian structure

learning

Bayesian Networks. Recall that a Bayesian Network is a probabilistic model, where the

joint distribution over d random variables {X1, . . . , Xd} factorizes according to a directed

acyclic graph (DAG) G as:

P (X1, . . . , Xd; ¹,G) =
d∏

i=1

P (Xi | PaG(Xi); ¹i),

where PaG(Xi) is the set of parents of Xi in G, and ¹i is the set of parameters for the

conditional probability distribution of Xi. We denote by ¹ = {¹1, . . . , ¹d} the set of all the

parameters of this model.

We assume that ¹ ∈ ΘG, where ΘG is the space of all parameters for the Bayesian

Network. Note that this space of parameters depends on the structure G of the Bayesian

Network. For example, the Bayesian Network where all the random variables are mutually

independent (corresponding to G being empty) has fewer parameters than another Bayesian

Network that encodes dependencies between those random variables. We will also denote

by G the space of DAG over d nodes; the number of elements in this space grows super-

exponentially with d.

Linear Gaussian model. In order to compute the exact posterior distribution P (G, ¹ | D)

in closed-form, we consider here a linear-Gaussian model for the parameterization of the

conditional probability distributions appearing in the Bayesian Network. More precisely, the

conditional probability distribution is given by

P (Xi | PaG(Xi); ¹i) = N (Xi | µi, Ã
2) where µi =

∑

Xj∈PaG(Xi)

¹ijXj.

In other words, Xi follows a Normal distribution, whose mean µi is given by a linear combi-

nation of its parents, and with fixed variance Ã2. For this class of models,

ΘG ≃
d�

i=1

R
|PaG(Xi)|

GFlowNet over a mixed state space. We are using the GFlowNet in order to approxi-

mate the joint posterior distribution P (G, ¹ | D), and therefore its terminating states have

the form (G, ¹), where G ∈ G is a DAG, and ¹ ∈ ΘG are the associated parameters. Unlike

Nishikawa-Toomey et al. (2022), which uses Variational Bayes to update the distribution

over parameters ¹, we model the distribution over both the graphs and parameters using a

single GFlowNet.

251

The generation of a terminating state follows 2 phases: during the first phase, the DAG

G is constructed by adding one edge at a time, starting from the empty graph, following

the structure of DAG-GFlowNet (Deleu et al., 2022). To reach a graph G with k edges, we

therefore are taking k steps in the GFlowNet. The states traversed during this first phase

have no parameters associated to them; we denote by (G, q) ∈ S such an (intermediate)

state, where q /∈ ΘG′ for any G′ ∈ G is a symbol indicating that G has no corresponding

parameters.

Then once we have finished adding edges (in practice, this decision is made by selecting

a special “stop” action), we sample the parameters ¹ ∈ ΘG associated to G by taking a

final step in the GFlowNet to reach the terminating state (G, ¹) ∈ X . Since the space of

parameters depends on the graph G, we define the state space of the GFlowNet as

S =
⋃

G∈G

{G} × Θ̄G and X =
⋃

G∈G

{G} ×ΘG,

where Θ̄G = ΘG ∪{q} indicates the space of parameters, augmented with the special symbol

q. All the states in this state space are guaranteed to be accessible from the initial state

(G0, q), where G0 is the empty graph.

Reference kernel. Given a DAG G, the measure »((G, q),−) is the sum of a discrete

measure (to transition to another intermediate state (G′, q)) and a continuous measure (to

transition to a terminating state (G, ¹)). We can write this measure as

»((G, q),−) =
∑

G′∈Ch(G)

¶(G′,q) + (¶G ¹ ¼ΘG
),

where Ch(G) represents the children of G in DAG-GFlowNet (Deleu et al., 2022), i.e., the

graphs G′ obtained by adding an edge to G, and ¼ΘG
is the Lebesgue measure over ΘG.

Moreover, we also have »((G, ¹),−) = ¶§ for all terminating state (G, ¹) ∈ X ; in other

words, there is no transition from a terminating state other than to the sink state.

The backward reference kernel »b on the other hand is simpler: it is always a discrete

transition kernel, regardless of the state. We have

»b((G, ¹),−) = ¶(G,q) and »b((G′, q),−) =
∑

G∈Pa(G′)

¶(G,q),

where Pa(G′) are the parents of G′ in DAG-GFlowNet, i.e., they are the graphs obtained by

removing a single edge from G′.

Forward transition probability. In order to define the PF , we consider 2 cases: either we

have a distribution of the form PF (G′ | G), where G′ is the result of adding an edge to G, or

a distribution of the form PF (¹ | G). Note that here we are using a slight abuse of notation,

where PF (G′ | G) (resp. PF (¹ | G)) represents PF ((G′, q) | (G, q)) (resp. PF ((G, ¹) | (G, q))).

The distribution PF (¹ | G) is parameterized by a Normal distribution, whose mean and

252

(diagonal) covariance are returned by a neural network. Similar to (Deleu et al., 2022), PB

is fixed to the uniform distribution.

Data generation. We sampled a datasetD as follows: (1) we first generated a DAG G∗ from

an Erdös-Renyi model, then (2) we sampled the parameters ¹∗ of the conditional probability

distributions from a Normal distribution, each edge having a weight ¹∗
ij ∼ N (0, 1), and

finally (3) we sampled N = 100 datapoints from the Bayesian Network described above with

(G∗, ¹∗), using ancestral sampling. Note that the ground-truths G∗ and ¹∗ are unknown to

the GFlowNet, and it only uses the observations from D.

Evaluations. To evaluate the quality of the approximation learned by the GFlowNet, and to

compare it against the baseline methods based on variational inference (Lorch et al., 2021;

Cundy et al., 2021), we study the distribution over graphs (discrete component) and the

distribution over graphs (continuous component) separately. Recall that since we assume

that our model is linear-Gaussian over small graphs (d f 5), we can compute the exact

posterior distribution P (G, ¹ | D) in closed form.

In Section 4.4.5, we compared the edge marginals estimated using the posterior approxi-

mations to the exact edge marginals. For any pair of random variables (Xi, Xj), this means

evaluating the following marginals

P (Xi → Xj | D) =
∑

G|Xi∈PaG(Xj)

P (G | D).

To estimate this marginal using samples {(Gk, ¹k)}K
k=1 from the GFlowNet (or from the

variational inference methods), we can simply use the sample graphs Gk in order to get an

empirical approximation of the maginal posterior P (G | D). In other words,

P̂ (Xi → Xj) =
1

K

K∑

k=1

1(Xi → Xj ∈ Gk)

We then report the root mean-square error (RMSE) between the edge marginals estimated

using the posterior approximations, and those computed using the exact posterior:

RMSE(P̂ , P) =




1

d(d− 1)

∑

i̸=j

(

P̂ (Xi → Xj)− P (Xi → Xj | D)
)2





1/2

.

In Appendix E.2.4, we also report the RMSE for other marginals: the marginal of having

a directed path between two nodes P (Xi ⇝ Xj | D), as well as the marginal of node Xi

being in the Markov blanket of Xj P (Xi ∈ MarkovBlanket(Xj) | D). In addition to the

RMSE between those marginals, we also report the Pearson correlation coefficient, as in

(Deleu et al., 2022). Note that no metric is reported on graphs over d = 3 nodes for BCD

Nets (Cundy et al., 2021) due to technical reasons (the method is not applicable for graphs

smaller than 4 nodes).

253

RMSE Pearson’s r

Number of variables (d) 3 4 5 3 4 5

Edges
BCD Nets – 2.13× 10−1 2.61× 10−1 – 0.8578 0.7886
DiBS 3.28× 10−1 2.95× 10−1 3.15× 10−1 0.6903 0.7085 0.7170
GFlowNet 1.50× 10

−2
1.61× 10

−2
1.80× 10

−2
0.9993 0.9990 0.9990

Paths
BCD Nets – 2.59× 10−1 3.08× 10−1 – 0.8378 0.7500
DiBS 3.50× 10−1 3.35× 10−1 3.48× 10−1 0.6951 0.7080 0.7020
GFlowNet 3.39× 10

−3
1.07× 10

−2
1.99× 10

−2
1.0000 0.9996 0.9989

Markov
blanket

BCD Nets – 3.02× 10−1 3.49× 10−1 – 0.8831 0.7864
DiBS 3.88× 10−1 3.80× 10−1 4.45× 10−1 0.7840 0.7892 0.6888
GFlowNet 2.14× 10

−2
2.38× 10

−2
2.83× 10

−2
0.9986 0.9982 0.9980

Table E.2 – Comparison between GFlowNets and other methods based on variational
inference on the Bayesian structure learning task, for different marginals of interest of the
distribution over graphs P (G | D).

To evaluate the accuracy of the approximation on the continuous part of the distribution,

we report in Section 4.4.5 the (average) negative log-probability of the sampled parameters

¹k from the different approximations (GFlowNet, DiBS (Lorch et al., 2021), and BCD Nets

(Cundy et al., 2021)) against the exact posterior distribution P (¹ | G,D). More precisely,

we compute

Measure¹(P̂ , P) = −
1

K|D|

K∑

k=1

logP (¹k | Gk,D)

In other words, the lower this metric is, the more likely the samples ¹k from those approxi-

mations are under the exact posterior distribution over parameters.

E.2.5. Connections with diffusion models

We train a diffusion model-specified GFlowNet with T = 100 for 200, 000 steps. This

is much shorter than other state-of-the-art work (such as Lipman et al. (2022)) and takes

less than 3 days on a single V100 GPU. All NLL results are computed in bits per dimension

(BPD). We use 50, 000 generated samples to compute the FID score for evaluating the

sample quality. The Adam learning rate is 2 × 10−4 for the forward policy and 2 × 10−5

for the backward policy. The parameter of backward policy is {ϕi}
T
i=1, where the variance

coefficient ´i satisfies ´i = ¯́
i · exp (ϕi) and ¯́

i is the original variance coefficient used in Ho

et al. (2020b). For details about the MLE-GFN algorithm, we refer to Zhang et al. (2023b).

Figure E.3 shows examples of images generated by the algorithm.

E.3. Proofs

Lemma 4.3.2.

254

Figure E.3 – Generated samples from MLE-GFN on ImageNet-32 dataset.

Proof. We prove the lemma by induction on n. The base case (n = 1) is trivially satisfied.

Assuming the property holds for some n g 0, let s ∈ S̄ and B ∈ Σ such that »n+1(s, B) = 0.

P n+1
F (s, B) =

∫

S̄
P n

F (s, ds′)PF (s′, B).

If P n+1
F (s, B) > 0, that would mean there exists an open set B′ ∈ T such that P n

F (s, B′) > 0

and PF (s′, B) > 0 for all s′ ∈ B′. From the induction hypothesis, it would follow that

»n(s, B′) > 0 and »(s′, B) > 0 for all s′ ∈ B′, meaning that:

»n+1(s, B) =
∫

S̄
»n(s, ds′)»(s′, B) g

∫

B′

»n(s, ds′)»(s′, B) > 0.

A contradiction! Hence, P n+1
F (s, B) = 0 □

Lemma 4.3.8.

Proof. Starting from the definition of P n
¦:

∫

X
f(x)P n

¦(dx) =
∫

S̄
f(sn)1X (sn)P n

¦(dx) =
∫

S̄n+1

1X (sn)f(sn)P¹n
F (s0, ds1 . . . dsn+1)1(sn+1 = §)

255

Hence, using the recursive definition of P¹n
F in (4.14):

∫

X
f(x)P n

¦(dx) =
∫

S̄n+1

1X (sn)f(sn)P¹n−1
F (s0, ds1 . . . dsn)PF (sn, dsn+1)1(sn+1 = §)

=
∫

S̄n
1X (sn)f(sn)PF (sn, {§})
︸ ︷︷ ︸

g(sn)

P¹n−1
F (s0, ds1 . . . dsn)

=
∫

S̄n
g(sn)P¹n−1

F (s0, ds1 . . . dsn)

=
∫

S̄
g(sn)P n−1

F (s0, dsn) =
∫

X
f(x)PF (x, {§}P n−1

F (s0, dsn),

where we applied Lemma 4.3.9 to the bounded and measurable function g. □

Lemma 4.3.9.

Proof. We prove the lemma by induction on n. First, for n = 0, using (4.13)
∫

S̄
f(s′)P¹0

F (s, ds′) = f(s) =
∫

S̄
f(s′)P 0

F (s, ds′).

Then, assuming that (4.18) is satisfied for some n g 0, we get:
∫

S̄n+2

f(s′)P¹n+1
F (s, ds1 . . . dsn+1ds

′) =
∫

S̄n+2

f(s′)P¹n
F (s, ds1 . . . dsn+1)PF (sn+1, ds

′)

=
∫

S̄n+1

∫

S̄
f(s′)PF (sn+1, ds

′)
︸ ︷︷ ︸

≜g(sn+1)

P¹n
F (s, ds1 . . . dsn+1)

=
∫

S̄
g(sn+1)P

n
F (s, dsn+1) =

∫∫

S̄×S̄
f(s′)PF (sn+1, ds

′)P n
F (s, dsn+1)

=
∫

S̄
f(s′)P n+1

F (s, dsn+1),

where we applied the inductive hypothesis to a new bounded and measurable 1 function g,

and applied the recursive definition of P n+1
F . □

Lemma 4.3.10.

Proof. We will present a proof by contradiction.

Let N = {s ∈ S̄, »(s, {s0}) > 0}, and assume that N ≠ ∅. (0,∞) being an open set, and

s 7→ »(s, {s0}) continuous, this means that N ∈ T̄ (i.e., it is open). From (4.5), it follows

that there is some n g 0 such that »n(s0,N) > 0.

Applying (4.3), we obtain:

»n+1(s0, {s0}) =
∫

S̄
»n(s0, ds

′)»(s′, {s0}) g
∫

N
»n(s0, ds

′)»(s′, {s0}) > 0.

1. This can be seen by writing f = f+ − f−, where f+, f− are non-negative, writing each of f+, f− as a

limit of step functions, and using the monotone convergence theorem.

256

Writing, for all m > 1:

»m(n+1)(s0, {s0}) =
∫

S̄
»(m−1)(n+1)(s0, ds

′)»n+1(s′, {s0}) g
∫

{s0}
»(m−1)(n+1)(s0, ds

′)»n+1(s′, {s0})

= »(m−1)(n+1)(s0, {s0})»
n+1(s0, {s0}),

it follows from a simple induction that ∀m g 1, »m(n+1)(s0, {s0}) > 0, which contradicts

(4.11).

N is thus necessarily empty. □

Lemma 4.3.11.

Proof. Let s be an element in the support of »b(§,−). By definition of the support, it

means that for any B ∈ T containing s, there is some B′ ¦ B such that B′ ¦ X . In

particular, B ∩ X ̸= ∅. This means that s is a point of closure of X .

Conversely, let s be a point of closure of X . Given any open set B ∈ T containing s,

s being a closure point means that B ∩ X (which is measurable) is non-empty. Following

(4.8), we get:

¿({§})»b(§, B ∩ X) =
∫

S̄
1B∩X (s′)¿(ds′)»(s′, {§})

The RHS of the previous equality is positive because ¿ is a strictly positive measure and

»(s′, {§}) > 0 for every s′ ∈ X , following Definition 4.3.5. Hence »b(§, B ∩ X) > 0. It

follows that »b(§, B) g »b(§, B ∩ X) > 0. Meaning that s is indeed within the support of

»b(§,−). □

Theorem 4.3.14.

Proof. Using Lemma 4.3.8, the terminating state measure PT satisfies for any bounded

measurable function f : X → R:
∫

X
f(x)PT (dx) =

∫

X
f(x)PF (x,§)

∞∑

n=0

P n
F (s0, dx).

It follows from Proposition 4.3.15 that

µ({s0})
∫

X
f(x)PT (dx) =

∫

X
f(x)PF (x,§)µ(dx).

Following Lemma 4.3.16, and the positivity assumption on R that:
∫

X
f(x)PT (dx) =

1

R(X)

∫

X
f(x)PF (x,§)µ(dx).

Finally, using (4.20), we obtain:
∫

X
f(x)PT (dx) =

1

R(X)

∫

X
f(x)R(dx).

257

PT being a probability measure follows by applying the last equality to the function f : x 7→

1. □

Proposition 4.3.15.

Proof. First, using a simple recursion, we show that ∀n g N, P n
F (s0,−) = ¶§. The base

case (n = N) is satisfied as a consequence of Lemma 4.3.2, and the fact that the measurable

pointed graph is finitely absorbing. Assuming it holds for some n g N , going back to the

definition of the n-step measure, we have for every B ∈ Σ:

P n+1
F (s0, B) =

∫

S̄
P n

F (s0, ds)PF (s, B) =
∫

S̄
¶§(ds)PF (s, B) = PF (§, B) = ¶§(B),

where the last equality stems from the absolute continuity of PF (§,−) with respect to

»(§,−) and (4.11).

This shows that for every B ∈ Σ|S :

u(B) =
N−1∑

n=0

P n
F (s0, B).

Which shows the measure u is finite.

Next, we partition S into N disjoint sets S0, . . . ,SN−1, where:

s ∈ Sn ô n = max{m ∈ N0 : ∀B ∈ T , s ∈ B ⇒ Pm
F (s0, B) > 0}

Sn ∈ Σ given that Sn = S ′
n\
⋃∞

k=1 S
′
n+k, where S ′

n is the support of P n
F (s0,−), which is known

to be a closed set, and hence measurable.

Writing any B ∈ Σ|S as:

B =
N−1⋃

n=0

B ∩ Sn,

and using the additivity property of the measures u and µ, then proving (4.23) for allB ∈ Σ|S ,

amounts to proving it for all B ∈ Σ|Sn
for all n ∈ {0, . . . , N − 1}, given that the sets Si are

themselves measurable. We prove this by strong induction on n.

Base case: For n = 0, S0 = {s0}, and Σ|S0
= {{s0}}.

u({s0}) = P 0
F (s0, {s0}) = ¶s0

({s0}) = 1,

Hence (4.23) is satisfied for B = {s0}.

Induction step: Assume that for some n g 0, (4.23) is satisfied for all B ∈ Σ|Sm
for all

m f n, and let B ∈ Σ|Sn+1
.

Define B′ = {s′ ∈ S : PF (s′, B) > 0}. We first show that B′ ¦
⋃n

m=0 Sm. If there is

s′ ∈ B′ and n′ > n such that s′ ∈ Sn′ , then for any open set B̃ (i.e., B̃ ∈ T) containing s′,

P n′

F (s0, B̃) > 0. s̃ 7→ PF (s̃, B) being a continuous function, it follows that B′ itself is open.

258

Hence P n′

F (s0, B
′) > 0. And noting that:

P n′+1
F (s0, B) =

∫

S̄
P n′

F (s0, ds
′)PF (s′, B) g

∫

B′

P n′

F (s0, ds
′)PF (s′, B) > 0,

which would contradict the fact that B ¦ Sn+1, given that n′ + 1 > n+ 1. This shows that

B′ ¦
⋃n

m=0 Sm.

Hence:

µ({s0})u(B) = µ({s0})
n+1∑

m=0

Pm
F (s0, B) = µ({s0}) ¶s0

(B)
︸ ︷︷ ︸

=0

+µ({s0})
n∑

m=0

Pm+1
F (s0, B)

= µ({s0})
n∑

m=0

∫

B′

Pm
F (s0, ds

′)PF (s′, B) =
∫

B′

µ({s0})u(ds′)PF (s′, B)

=
∫

B′

µ(ds′)PF (s′, B) = µ(B),

where the last two equalities stem from the induction hypothesis and the flow matching

conditions respectively. □

Lemma 4.3.16.

Proof. Applying (4.20) to the function f : x ∈ X 7→ 1, we get:
∫

X
R(dx) =

∫

X
µ(dx)PF (x, {§}). (E.10)

Additionally, from (4.12), we get ∀s ∈ S \ X , »(s, {§}) = 0. It follows from the absolute

continuity requirements of PF that ∀s ∈ S \ X , PF (s, {§}) = 0. Hence:
∫

X
R(dx) =

∫

S
µ(ds)PF (s, {§}) =

∫∫

S×S̄
1(s′ = §)µ(ds)PF (s, ds′) =

∫

S̄
1(s′ = §)µ(ds′) = µ({§}),

where the last line follows from (4.19). This shows that µ({§}) = R(X).

Note that as a consequence of Lemma 4.3.10 and the absolute continuity requirement, a

PF satisfies:

∀s ∈ S̄, PF (s, {s0}) = 0 (E.11)

Next, following (4.19) and (E.11), we have:
∫∫

S×S̄
µ(ds)PF (s, ds′) =

∫∫

S×S̄
1(s′ ̸= s0)µ(ds)PF (s, ds′) =

∫

S̄
1(s′ ̸= s0)µ(ds′) = µ(S̄)− µ({s0}).

(E.12)

On the other hand, because each PF (s,−) is a probability measure on S̄:
∫∫

S×S̄
µ(ds)PF (s, ds′) =

∫

S

(∫

S̄
PF (s, ds′)

)

µ(ds) =
∫

S
µ(ds) = µ(S) (E.13)

Subtracting (E.12) from (E.13), we get:

µ({s0}) = µ(S̄)− µ(S) = µ({§}) = R(X)

259

□

Proposition 4.3.18.

Proof. For any bounded measurable function f : S̄ → R satisfying f(s0) = 0, we can

define a function g : S × S̄ → R such that for all (s, s′) ∈ S × S̄, g(s, s′) = f(s′). Note

that g satisfies g(s, s0) = 0 for every s ∈ S. Applying the detailed balance conditions to the

function g, we have
∫∫

S×S̄
g(s, s′)µ(ds)PF (s, ds′) =

∫∫

S×S̄
f(s′)µ(ds)PF (s, ds′)

On the other hand, using the RHS of (4.25) in the detailed balance conditions, we get
∫∫

S×S̄
g(s, s′)µ(ds′)PB(s′, ds) =

∫∫

S×S̄
f(s′)µ(ds′)PB(s′, ds) =

∫

S̄
f(s′)µ(ds′)

∫

S
PB(s′, ds),

Following (4.6) and the the absolute continuity conditions of PB with respect to »b, we have:

∀s′ ∈ S, PB(s′, {§}) = 0,

from which it follows that:
∫∫

S×S̄
g(s, s′)µ(ds′)PB(s′, ds) =

∫

S̄
f(s′)µ(ds′)

∫

S̄
PB(s′, ds)

︸ ︷︷ ︸

=1

This shows that (µ, PF) satisfy the flow matching conditions. □

Proposition 4.3.20.

Proof. First we show that µ satisfies the flow-matching condition. for any bounded mea-

surable function f : S̄ → R satisfying f(s0) = 0, we have :
∫∫

S×S̄
f(s′)µ(ds)PF (s, ds′) =

∫∫

S×S̄
f(s′)µ(s0)

∞∑

n=0

P n
F (s0, ds)PF (s, ds′)

=
∫

S̄
f(s′)µ(s0)

∞∑

n=0

P n+1
F (s0, ds

′)

=
∫

S̄
f(s′)µ(s0)

∞∑

n=0

P n
F (s0, ds

′) (because f(s0) = 0)

=
∫

S̄
f(s′)µ(ds′)

260

Now, we will show the reward matching condition. For any bounded measurable function

f : X → R

∫

X
f(s)µ(ds)PF (s,§) =

∫

S
1X (s)f(s)µ({s0})

︸ ︷︷ ︸

=Z

∞∑

n=0

P n
F (s0, ds)PF (s,§)

=
∞∑

n=0

∫

S
1X (s)f(s)R(ds)P n

B(s, {s0})

=
∫

S
1X (s)f(s)R(ds)

∞∑

n=0

P n
B(s, {s0}) =

∫

X
f(s)R(ds)

where we used Proposition 4.3.22 and Lemma 4.3.21.

□

Lemma 4.3.21.

Proof. Using Lemma 4.3.9, we have:

Z
∫

S
f(s)P n

F (s0, ds)PF (s, {§}) = Z
∫

S̄n+1

1(s ̸= §)f(s)PF (s, {§})P¹n
F (s0, ds

′ds1 . . . dsn−1ds)

= Z
∫

S̄n+2

1(s ̸= §, sn+1 = §)f(s)P¹n+1
F (s0, ds

′ds1 . . . dsn−1dsdsn+1)

=
∫

S̄n+2

1(s ̸= §)1(s′′ = s0)f(s)R(ds)P¹n
B (s, ds′dsn−1 . . . ds1, ds

′′)

=
∫

S̄
f(s)1(s ̸= §)R(ds)

∫

S̄n+1

1(s′′ = s0)P
¹n
B (s, ds′dsn−1 . . . ds1, ds

′′)

=
∫

S̄
f(s)1(s ̸= §)R(ds)

∫

S̄
1(s′′ = s0)P

n
B(s, ds′′)

=
∫

S
f(s)R(ds)P n

B(s, {s0})

□

Proposition 4.3.22.

Proof. First, using a simple recursion, we show that ∀n g N, P n
B(s, {s0}) = 0. The base

case (n = N) is trivially satisfied because the measurable pointed graph has maximal trajec-

tory length N and PB(s0,−) is the trivial measure (i.e., it assigns zero to every measurable

set), given that it is absolutely continuous with respect to »b(s0,−). Assuming it holds for

some n g N , we have:

P n+1
B (s, s0) =

∫

S̄
PB(s, ds′)P n

B(s′, {s0}) =
∫

S̄
PB(s, ds′).0 = 0

This shows that for every s ∈ S:

PB,T (s) =
N−1∑

n=0

P n
B(s, ds0).

Which shows the measure PB,T is finite.

261

Next, we partition S into N disjoint sets S0, . . . ,SN−1, where:

s ∈ Sn ô n = max{m ∈ N0 : Pm
B (s, {s0}) > 0}

Sn ∈ Σ given that Sn = S ′
n \

⋃∞
k=0 S

′
n+k, where S ′

n is the support of P n
B(−, {s0}), which is

known to be a closed set, and hence measurable.

Writing :

S =
N−1⋃

n=0

Sn,

Then proving (4.29) for all s ∈ S, amounts to proving it for all s ∈ Sn for all n ∈ {0, . . . , N−

1}. We prove this by strong induction on n.

Base case: For n = 0, S0 = {s0}, and

PB,T (s0) = P 0
B(s0, {s0}) = ¶s0

({s0}) = 1,

Hence it is satisfied for n = 0.

Induction step: Assume that for some n g 0, (4.29) is satisfied for all s ∈ Sm for all

m f n, and let s ∈ Sn+1.

Define Bs = {s′ ∈ S : ∀B ∈ T , s′ ∈ B => PB(s, B) > 0}. We first show by contradiction

that Bs ¦
⋃n

m=0 Sm. If there is s′ ∈ Bs and n′ > n such that s′ ∈ Sn′ , then P n′

B (s′, {s0}) > 0,

and by continuity of s̃ 7→ P n′

B (s̃, {s0}), there exists an open set B̃ (i.e., B̃ ∈ T) containing s′

such that P n′

B (s̃, {s0}) > 0 for all s̃ ∈ B̃. Hence:

P n′+1
B (s, {s0}) =

∫

S̄
PB(s, ds′)P n′

B (s′, {s0}) g
∫

B̃
PB(s, ds′)P n′

B (s′, {s0}) > 0,

which would contradict the fact that s ∈ Sn+1, given that n′ + 1 > n+ 1.

Hence:

PB,T (s) =
n+1∑

m=0

Pm
B (s, {s0}) =

n+1∑

m=1

Pm
B (s, {s0}) given that s ̸= s0

=
n+1∑

m=1

∫

s′∈Bs

PB(s, ds′)Pm−1
B (s′, {s0}) =

∫

s′∈Bs

PB(s, ds′)
n∑

m=0

Pm
B (s′, {s0})

︸ ︷︷ ︸

=1

=
∫

s′∈Bs

PB(s, ds′) = 1

□

Theorem 4.3.24.

Proof. We will first show the result for the flow-matching loss. Let the function v : S̄ → R+

be the function, depending on the parameter ¹, defined by ∀s′ ∈ S̄:

v(s′; ¹) :=
∫

S
u(s; ¹)pF (s, s′; ¹)»b(s′, ds).

If we assume that LF M(−; ¹) = 0 ¿-almost surely, then we have equivalently u(−; ¹) = v(−; ¹)

¿-almost surely. Let f : S̄ → R be a bounded measurable function such that f(s0) = 0, we

262

then have
∫

S̄
f(s′)u(s′; ¹)¿(ds′) =

∫

S̄
f(s′)v(s′; ¹)¿(ds′)

=
∫

S̄
f(s′)

∫

S
u(s; ¹)pF (s, s′; ¹)»b(s′, ds)¿(ds′)

=
∫∫

S̄×S
f(s′)u(s; ¹)pF (s, s′; ¹)»(s, ds′)¿(ds),

where we used the fact that ¿ ¹ » = ¿ ¹ »b (from (4.8) in Definition 4.3.3) in the last

equality. Replacing the densities (and reference measures) in the equality above with their

corresponding measures µ and PF , we get
∫

S̄
f(s′)µ(ds′) =

∫∫

S×S̄
f(s′)µ(ds)PF (s, ds′).

Since this equality is valid for any bounded measurable function f satisfying f(s0) = 0, this

is the definition of F = (µ, PF) satisfying the flow-matching conditions (Definition 4.3.12).

The proof for the detailed balance loss is similar. Let the functions g : S̄ × S̄ → R+ and

h : S̄ × S̄ → R+ defined as

g(s, s′; ¹) := u(s; ¹)pF (s, s′; ¹)

h(s, s′; ¹) := u(s′; ¹)pB(s′, s; ¹).

If LDB(−; ¹) = 0 ¿ ¹ »-almost surely, then we have equivalently g(−; ¹) = h(−, ¹). Let

f : S × S̄ → R be a bounded measurable function such that f(s, s0) = 0 for all s ∈ S. We

have
∫∫

S×S̄
f(s, s′)g(s, s′; ¹)(¿ ¹ »)(ds, ds′)

=
∫∫

S×S̄
f(s, s′)u(s; ¹)pF (s, s′; ¹)(¿ ¹ »)(ds ds′)

=
∫∫

S×S̄
f(s, s′)h(s, s′; ¹)(¿ ¹ »)(ds ds′)

=
∫∫

S×S̄
f(s, s′)h(s, s′; ¹)(¿ ¹ »b)(ds′ ds)

=
∫∫

S×S̄
f(s, s′)u(s′; ¹)pB(s′, s; ¹)(¿ ¹ »b)(ds′ ds),

where we used ¿ ¹ » = ¿ ¹ »b in the 3rd inequality. Note that while the equalities between

functions are valid ¿¹»-almost surely over the whole space S̄ × S̄, we only used the equality

restricted to S × S̄. Moreover, since u, pF , and pB are the densities of the respective

measures µ, PF , and PB (with respect to the appropriate reference measures), we know that

263

for B ∈ Σ̄¹ Σ̄

(µ¹ PF)(B) =
∫∫

B
u(s; ¹)pF (s, ds′)(¿ ¹ »)(ds ds′)

(µ¹ PB)(B) =
∫∫

B
u(s′; ¹)pB(s′, ds)(¿ ¹ »b)(ds′ ds).

Replacing these measures in the equality above, we obtain
∫∫

S×S̄
f(s, s′)µ(ds)PF (s, ds′) =

∫∫

S×S̄
f(s, s′)µ(ds′)PB(s′, ds).

Since this equality is valid for any bounded measurable function f such that f(s, s0) = 0

for all s ∈ S, this corresponds to (µ, PF , PB) satisfying the detailed balance conditions

(Definition 4.3.17).

Now, for the trajectory balance loss: for a trajectory (s, s1, .., sn+1) ∈ S
n+2, we define:

p¹n+1
F (s,−−−→s1:n+1) = pF (s, s1, ¹)

n∏

t=1

pF (st, st+1, ¹)

p¹n
B (−→sn:1, s) = pB(s1, s, ¹)

n−1∏

t=1

pB(st+1, st, ¹)

For any bounded measurable function f : S̄n+2 → R, assuming Ln
T B = 0 almost surely for

every n g 0:
∫

Sn+2

Z(¹)f(s,−−−→s1:n+1)1(s = s0, sn ̸= §, sn+1 = §)p¹n+1
F (s,−−−→s1:n+1)¿ ¹ »

¹n+1(ds
−−−−→
ds1:n+1)

=
∫

{s0}×Sn−1×X ×{§}
Z(¹)f(s,−−−→s1:n+1)p

¹n+1
F (s,−−−→s1:n+1)¿ ¹ »

¹n+1(ds
−−−−→
ds1:n+1)

=
∫

{s0}×Sn×{§}
f(s,−−−→s1:n+1)r(sn)p¹n

B (−→sn:1, s)¿ ¹ »
¹n+1(ds

−−−−→
ds1:n+1)

=
∫

{s0}×Sn
f(s,−→s1:n,§)r(sn) »(sn, {§})

︸ ︷︷ ︸

=1 (see (4.10))

p¹n
B (−→sn:1, s)¿ ¹ »

¹n(ds
−−→
ds1:n)

=
∫

{s0}×Sn
f(s,−→s1:n,§)r(sn)p¹n

B (−→sn:1, s)¿ ¹ »
b,¹n(
−−→
dsn:1 ds)

=
∫

Sn+1

f(s,−→s1:n,§)1(s = s0)r(sn)¿(dsn)p¹n
B (−→sn:1, s)»

b,¹n(sn,
−−−−→
dsn−1:1 ds)

Replacing the measures in the last equality obtained, we recover the TB condition in

Definition 4.3.19 with (Z¿({s0}), PF , PB).

Here, we used ¿ ¹ »¹n = ¿ ¹ »b,¹n, ∀n ∈ {0, ..N}. We can show this by simple induction

: for n = 0, it is trivially satisfied . Now suppose it is true for a given n f N − 1, using

(4.8). We have :

264

¿ ¹ »¹n+1(ds
−−−−→
ds1:n+1) = ¿ ¹ »¹n(ds

−−→
ds1:n)»(sn, dsn+1)

= ¿ ¹ »b,¹n(
−−→
dsn:1 ds)»(sn, dsn+1)

= ¿(dsn)»(sn, dsn+1)»
b,¹n(sn,

−−→
dsn:1 ds)

= ¿(dsn+1)»
b(sn+1, dsn)»b,¹n(sn,

−−→
dsn:1 ds)

= ¿(dsn+1)»
b,¹n+1(sn+1,

−−→
dsn:1 ds)

= ¿ ¹ »b,¹n+1(
−−−−→
dsn+1:1 ds)

Which proves the claim above.

□

Proposition E.1.2.

Proof. First, note that (4.6) and (4.11) imply that ∀n g N, »n(s0,−) = ¶§. This can be

shown by a simple induction on n, writing for any B ∈ Σ:

»n+1(s0, B) =
∫

S̄
»n(s0, ds)»(ds,B).

This entails that (4.5) could be rewritten as:

∀B ∈ T \ {∅}, ∃n ∈ {0, . . . , N} : »n(s0, B) > 0.

Hence,

∀B ∈ T \ {∅}, ¿(B) > 0.

The measure ¿ is thus strictly positive.

Note that for any B in Σ|S such that s0 /∈ B.

¿»(B) =
∫

S̄
¿(ds)»(s, B)

=
∫

S̄

N∑

n=0

»n(s0, ds)»(s, B) =
N∑

n=0

∫

S̄
»n(s0, ds)»(s, B)

=
N∑

n=0

»n+1(s0, B) =
N+1∑

n=1

»n(s0, B).

Because B ¦ S, then »N+1(s0, B) = ¶§(B) = 0. And because s0 /∈ B, »0(s0, B) = ¶s0
(B) =

0. From this it follows that:

¿»(B) = ¿(B)

265

Then, let B ∈ Σ|S¹Σ|S such that (s0, s0) /∈ B. Using the definition of the reverse kernel,

we obtain:
∫

S̄×S̄
1B(s, s′)¿(ds)»(ds, ds′) =

∫

S̄×S̄
1B(s, s′)¿»(ds′)»r

¿(ds′, ds)

=
∫

S×(S\{s0})
1B(s, s′) ¿»(ds′)

︸ ︷︷ ︸

=¿(ds)

»r
¿(ds′, ds) +

∫

S
1B(s, s0) ¿»({s0})

︸ ︷︷ ︸

=0

»r
¿(s0, ds)

=
∫

S×(S\{s0})
1B(s, s′)¿(ds′)»r

¿(ds′, ds)

=
∫

S×(S\{s0})
1B(s, s′)¿(ds′)»r

¿(ds′, ds) +
∫

S\{s0}
1B(s, s0)»(s0)»

r
¿(s0, ds)
︸ ︷︷ ︸

=0

=
∫

S̄×S̄
1B(s, s′)¿(ds′)»r

¿(ds′, ds)

Finally, if B ∈ Σ|S :
∫

S
1B(ds)¿(ds)»(s, {§}) =

∫

S
1B(ds)¿({§})»b(§, ds)

¿({§})»(§, B)
︸ ︷︷ ︸

=0

=
∫

S
1B(s′)¿(ds′)»b(s′, {§})

︸ ︷︷ ︸

=0

□

Lemma E.1.3.

Proof. Let f : S̄2 → R be a bounded measurable function.
∫

S̄2

f(s, s′)¿»(ds′)»′(s′, ds) =
∫

S̄
f(s, s0) ¿»({s0})

︸ ︷︷ ︸

=0

»′(s0, ds) +
∫

S

∫

S̄\{s0}
f(s, s′)¿»(ds′)»′(s′, ds)

+
∫

S\{s0}
f(§, s′)¿»(ds′)»′(s′, {§})

︸ ︷︷ ︸

=0

+f(§,§)¿»({§})»′(§, {§})

=
∫

S

∫

S̄\{s0}
f(s, s′)¿»(ds′)»b(s′, ds) +

∫

S̄
f(s, s0) ¿»({s0})

︸ ︷︷ ︸

=0

»b(s0, ds)

+ f(§,§)¿»({§})»b(§, {§}) (E.14)

On the other hand, let B be the largest open set within Ssuch that ∀s′ ∈ B, »b(s′, {§}) > 0.

Applying the definition of the reverse kernel (E.1) to the function f : (s, s′) 7→ 1(s =

§)1B(s′), we get:
∫

S̄
1B(s′)¿({§})»(§, s′) =

∫

S̄
1B(s′)¿»(s′)»b(s′, {§})

266

The LHS of the previous equality is 0, following (4.6). It follows from the assumption that

∀s′ ∈ B, »b(s′, {§}) > 0 that ¿»(B) = 0. Hence:
∫

S\{s0}
f(§, s′)¿»(ds′)»b(s′, {§})

=
∫

S̄\{s0}
1S\B(s′)f(§, s′)¿»(ds′)»b(s′, {§})

+
∫

S̄\{s0}
1B(s′)f(§, s′)¿»(ds′)»b(s′, {§})

The first summand of the RHS of the last equality is zero by the definition of B. The second

summand is zero because ¿»(B) = 0. Going back to (E.14), we obtain:
∫

S̄2

f(s, s′)¿»(ds′)»′(s′, ds) =
∫

S̄2

f(s, s′)¿»(ds′)»b(s′, ds) =
∫

S̄2

f(s, s′)»(ds)»(s, ds′)

□

267

Appendix F

Appendix for Chapter 5

F.1. Sequential Model Optimization Experiments

We used a GP for the DEUP uncertainty estimator. Using a neural net provided similar

results but was computationally more expensive in this 1-D case with few data points. We

used a 3-hidden layer neural network, with 128 neurons per layer and a ReLU activation

function, with Adam (Kingma and Ba, 2015) and a learning rate of 10−3 (and default values

for the other hyperparameters) to train the main predictor for DEUP-EI (in order to fit

the available data). The Dropout and Ensemble baselines used the same network architec-

ture and learning rate. We used three networks for the Ensemble baseline and a dropout

probability of 0.3 for the Dropout baseline, with 100 test-time forward passes to compute

uncertainty estimates.

For the TurBO baseline, we use BoTorch’s default implementation, with Expected Im-

provement as an acquisition function and a batch size of 1 (i.e., acquiring one point per

step).

F.2. Reinforcement Learning Experiments

For RL experiments, we used bsuite (Osband et al., 2020), a collection of carefully de-

signed RL environments. bsuite also comes with a list of metrics that evaluate RL agents

from different aspects. We compare the agents based on the basic metric and average regret

as they capture both sample complexity and final performance. The default DQN agent is

used as the base of our experiments with a three-layer fully connected (FC) neural network

as its Q-network. For the Bootstrapped DQN baseline, we used the default implementation

provided by bsuite. To implement DQN + MC-Dropout, following the implementation from

Gal and Ghahramani (2016b), two dropout layers with a dropout probability of 0.1 are used

before the second and the third FC layers. In order to take an action, the agent performs a

single stochastic forward pass through the Q-network, which is equivalent to taking a sam-

ple from the posterior over the Q-values, as done in Thompson sampling, an alternative to

ϵ−greedy exploration. The pseudo-code for DEUP-DQN is provided in Algorithm 6.

As a density estimator, we used a Kernel Density Estimator (KDE) with a Gaussian

kernel and bandwidth of 1 to map states to densities. This KDE is fit after every 10000

steps (actions) with a batch of samples from the replay buffer (which is of size 10000). The

uncertainty estimator network (E-network) has the same number of layers as the Q-network,

with an additional Softplus layer at the end. All other hyperparameters are the same as the

default implementation by Osband et al. (2020). One complete training run for the DEUP-

DQN with five seeds experiments takes about 0.04-0.05 GPU days on a V100 GPU. In total

RL experiments took about 0.15 GPU days on a Nvidia V100 GPU.

F.3. Rejecting Difficult Examples

We adapt the standard OOD rejection task (van Amersfoort et al., 2020; Liu et al., 2020)

and measure the Spearman Rank Correlation of the predicted uncertainty with the actual

generalization error, in addition to the OOD Detection AUROC. MC-Dropout and Deep En-

semble baselines are based on https://github.com/google/uncertainty-baselines, DUQ based

on https://github.com/y0ast/deterministic-uncertainty-quantification and DUE based on

https://github.com/y0ast/DUE. Note that for the ResNet50 DEUP model, we continue us-

ing the ResNet-18-based DUE as a variance source.

Model ResNet-50
MC-Dropout 0.312± 0.003
Deep Ensemble 0.401± 0.004
DUQ 0.399± 0.003
DEUP (D+V) 0.465 ± 0.002

Table F.1 – Spearman Rank Correlation between predicted uncertainty and the true gener-
alization error on OOD data (SVHN) with ResNet-50 models (3 seeds) trained on CIFAR-10.

Training. The baselines were trained with the CIFAR-10 training set with 10% set aside

as a validation set for hyperparameter tuning. The hyperparameters are presented in Ta-

ble F.2 and Table F.3. The hyperparameters not specified are set to the default values.

For DEUP, we consider the log-density, model-variance estimate and the seen-unseen bit as

the features for the error predictor. The density estimator we use is Masked-Autoregressive

Flows (Papamakarios et al., 2017), and the variance estimator used is DUE (van Amersfoort

et al., 2021). Note that, as indicated earlier, x, the input image, is not used as a feature

for the error predictor. We present those ablations in the next sub-section. For training

DEUP, the CIFAR-10 training set is divided into five folds, each containing eight unique

classes. For each fold, we train an instance of the main predictor, density estimator and

270

https://github.com/google/uncertainty-baselines
https://github.com/y0ast/deterministic-uncertainty-quantification
https://github.com/y0ast/DUE

Algorithm 6 DEUP-DQN algorithm

Input: Environment; ϵ, the probability of taking a random action; K, KDE fitting frequency;
W, Number of warm-up episodes; gN , replay buffer capacity.

Output: Q-network Q.
Initialize replay buffer D with capacity N
Q¹(s, a): state-action value predictor
Eϕ(log d): uncertainty estimator network, which takes the log density of the states as the
input
d(s): Kernel density estimator (KDE)
for episode=1 to M do

set s0 as the initial state
for t=1 to max-steps-per-episode do

Sample r uniformly between 0 and 1
if r < ϵ then

Set at to a random action
else if episode f W then

at = maxaQ¹(st, a)
else

at = maxa

[

Q¹(st, a) + »× Eϕ(log d(st))(a)
]

end if
Observe rt and st+1 and store (st, at, rt, st+1) in D
Sample random minibatch B of transitions (sj, aj, rj, sj+1) from D
if sj is a final state then

yj = rj

else
yj = rj + µmaxaQ(st, a)

end if
Update Q-network:

¹ ← ¹ + ³Q.∇¹ E(s,a)∼B

[(

yj −Q¹(s, a)
)2
]

Update E-network:

ϕ← ϕ+ ³E.∇ϕ E(s,a)∼B





[(

yj −Q¹(s, a)
)2
− Eϕ(log d(st))(a)

]2




if mod(total-steps, K) = 0 then
fit the KDE d on the states of D

end if
st ← st+1

end for
end for
Return: Q¹

model variance estimator on only the corresponding eight classes. The remaining two classes

act as the out-of-distribution examples for training the error predictor. Using these folds,

we construct a dataset for training the error predictor, a simple feed-forward network. The

error predictor is trained with the log targets (i.e., log MSE between predicted and observed

271

error). This helps since the scale of the errors varies over multiple orders of magnitude. We

then train the main predictor, density estimator and the variance estimator on the entire

CIFAR-10 dataset, for evaluation. The hyperparameters are presented in Table F.3. For all

models, we train the main predictor for 75 and 125 epochs for ResNet-18 and ResNet-50,

respectively. We use SGD with Momentum (set to 0.9), with a multi-step learning schedule

with a decay of 0.2 at epochs [25, 50] and [45, 90] for ResNet-18 and ResNet-50, respectively.

One complete training run for DEUP takes about 1.5-2 GPU days on a V100 GPU. In total,

this set of experiments took about 31 GPU days on a Nvidia V100 GPU.

Parameters
Model

ResNet-18 ResNet-50
Number of members 5 5
Learning Rate 0.05 0.01

Parameters
Model

ResNet-18 ResNet-50
Number of samples 50 50
Dropout Rate 0.15 0.1
L2 Regularization Coefficient 6e-5 8e-4
Learning Rate 0.05 0.01

Table F.2 – Left: Hyperparameters for training Deep Ensemble (Lakshminarayanan et al.,
2017b). Right: Hyperparameters for training MC-Dropout (Gal and Ghahramani, 2016b).

Parameters
Model

ResNet-18 ResNet-50
Gradient Penalty 0.5 0.65
Centroid Size 512 512
Length scale 0.1 0.2
Learning Rate 0.05 0.025

Parameters
Model
ResNet-18

Inducing Points 50
Kernel RBF
Lipschitz Coefficient 2
BatchNorm Momentum 0.99
Learning Rate 0.05
Weight Decay 0.0005

Table F.3 – Left: Hyperparameters for training DUQ (van Amersfoort et al., 2020). Right:
Hyperparameters for training DUE (van Amersfoort et al., 2021).

Ablations. We also perform some ablation experiments to study the effect of each feature

on the error predictor. The Spearman rank correlation coefficient between the generalization

error and the variance feature, V , from DUE (van Amersfoort et al., 2021) alone is 37.84 ±

0.04, and the log-density, D, from MAF (Papamakarios et al., 2017) alone is 30.52 ± 0.03.

With only the image (x) the SRCC is 36.58± 0.16

Appendix F.3 presents the results for these experiments. We observe that combining all

the features performs the best. Also note that using the log density and variance as features

Parameters
Model

ResNet-18 ResNet-50
Uncertainty Predictor Architecture [1024] x 5 [1024] x 5
Uncertainty Predictor Epochs 100 100
Uncertainty Predictor LR 0.01 0.01
Main Predictor Learning Rate 0.05 0.01

Table F.4 – Hyperparameters for training DEUP.

272

of the error predictor, we observe better performance than using them directly, indicating

that the error predictor perhaps captures a better target for the epistemic uncertainty. The

boolean feature (B) showing seen examples, discussed in Section 5.3.2, also leads to noticeable

improvements.

Features
Model

ResNet-18 ResNet-50
D+V+B 0.426 ± 0.009 0.465 ± 0.002
D+V 0.419 ± 0.003 0.447 ± 0.003
V+B 0.401 ± 0.004 0.419 ± 0.004
D+B 0.403 ± 0.003 0.421 ± 0.002
x 0.352 ± 0.004 0.376 ± 0.001
x + D + V 0.382 ± 0.006 0.397 ± 0.002

Table F.5 – Spearman Rank Correlation between predicted uncertainty and the true gen-
eralization error on OOD data (SVHN) with variants of DEUP with different features as
input for the uncertainty predictor. D indicates the log-density from MAF (Papamakarios
et al., 2017), V indicates variance from DUQ (van Amersfoort et al., 2020) and B indicates
a bit indicating if the data is seen.

F.3.1. Predicting Uncertainty under Distribution Shift

We also consider the task of uncertainty estimation in the setting of shifted distributions

(Ovadia et al., 2019; Hendrycks and Dietterich, 2019). We evaluate the uncertainty predic-

tions of models trained with CIFAR-10, on CIFAR-10-C (Hendrycks and Dietterich, 2019),

which consists of images from CIFAR-10 distorted using 16 corruptions like Gaussian blur

and impulse noise, among others. Figure F.1 shows that even in the shifted distribution

setting, the uncertainty estimates of DEUP correlate much better with the error made by

the predictor than the baselines.

F.4. Drug Combination Experiments

To validate DEUP’s uncertainty estimates in a real-world setting, we measured its perfor-

mance on a regression task predicting the synergy of drug combinations. While much effort

in drug discovery is spent on finding novel small molecules, a potentially cheaper method is

identifying combinations of pre-existing drugs which are synergistic (i.e., work well together).

Indeed, drug combinations are the current standard of care for several diseases, including

HIV, tuberculosis, and some cancers (Cihlar and Fordyce, 2016; Organization and Initiative,

2010; Mokhtari et al., 2017).

However, due to the combinatorial nature of drug combinations, identifying pairs ex-

hibiting synergism is challenging. Compounding this problem is the high monetary cost of

273

ga
uss

ian
_no

ise

bri
gh

tne
ss

con
tra

st

pix
ela

te

spe
ckl

e_n
ois

e

sho
t_n

ois
e

im
pu

lse
_no

ise

de
foc

us_
blu

r

ga
uss

ian
_bl

ur

zoo
m_bl

ur fog

ela
stic

_tr
an

sfo
rm

jpe
g_c

om
pre

ssi
on
spa

tte
r

sat
ura

te
fro

st

Corruption Type

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Sp
ea

rm
an

 R
an

k
Co

rre
la

tio
n

Co
ef

fic
ie

nt

Ensembles
MC Dropout
DUE
DEUP

Figure F.1 – Spearman Rank Correlation Coefficient between the predicted uncertainty
and true error for models trained with CIFAR-10 and evaluated on CIFAR-10-C. DEUP
outperforms the baselines on all types of corruptions.

running experiments on promising drug combinations and the length of time the experi-

ments take to complete. Practitioners could use uncertainty models to help accelerate drug

combination treatment discoveries and reduce involved development costs.

To test DEUP’s performance on this task, we used the DrugComb and LINCS L1000

datasets (Zagidullin et al., 2019; Subramanian et al., 2017). DrugComb is a dataset of pair-

wise combinations of anti-cancer compounds tested on various cancer cell lines. The dataset

provides several synergy scores for each combination, indicating whether the two drugs have

a synergistic or antagonistic effect on cancerous cell death. LINCS L1000 contains differ-

ential gene expression profiles for various cell lines and drugs. Differential gene expressions

measure the difference in the amount of mRNA related to a set of influential genes before

and after the application of a drug. Because of this, gene expressions are a powerful indicator

of the effect of a single drug at the cellular level.

In our experiments, each drug is represented by its Morgan fingerprint (Morgan, 1965) 1

(with 1,024 bits and a radius of 3) as well as two differential gene expression profiles (each of

dimension 978) from two cell lines (PC-3 and MCF-7). To use gene expression features for

every drug, we only used drug pairs in DrugComb, where both drugs had differential gene

expression data for cell lines PC-3 and MCF-7.

1. The Morgan fingerprint represents a molecule by associating a boolean vector specifying its chemical
structure with it. Morgan fingerprints have been used as a signal of various molecular characteristics to great
success (Ballester and Mitchell, 2010; Zhang et al., 2006).

274

We first compared the quality of DEUP’s uncertainty estimations to other uncertainty

estimation methods on the task of predicting the combination sensitivity score (Malyutina

et al., 2019) for drug pairs tested on the cell line PC-3 (1,385 examples). We evaluated the

uncertainty methods using a train, validation, test split of 40%, 30%, and 30%, respectively.

The underlying model used by each uncertainty estimation method consisted of a single drug

fully connected neural network (2 layers with 2048 hidden units and output of dimension

1024) and a combined drug fully connected neural network (2 layers, with 128 hidden units).

The embeddings of an input drug pair’s drugs produced by the single drug network are

summed and passed to the combined drug network, which then predicts final synergy. By

adding the embeddings produced by the single drug network, we ensure that the model is

invariant to permutations in order of the two drugs in the pair. The models were trained

with Adam (Kingma and Ba, 2015), using a learning rate of 10−4 and weight decay of 10−5.

For MC-Dropout, we used a dropout probability of 0.1 on the two layers of the combined

drug network and 3 test-time forward passes to compute uncertainty estimates. The ensemble

used three constituent models for its uncertainty estimates. Both Ensemble and MC-Dropout

models were trained with the MSE loss.

We also compared against DUE (van Amersfoort et al., 2021), which combines a neural

network feature extractor with an approximate Gaussian process. Spectral normalization

was added to all the layers of the combined drug network and of the single drug network.

Let demb denote the dimension of the output of the combined drug network, which is also

the input dimension of the approximate Gaussian process. We conducted a grid search over

different values of demb (from 2 to 100), the number of inducing points (from 3 to 200),

the learning rate, and the kernel used by the Gaussian process. The highest correlation of

uncertainty estimates with residuals was attained with demb = 10, 100 inducing points, a

learning rate of 0.01, and the Matern12 kernel.

The DEUP model we used outputs two heads
[

µ̂
Ã̂

]

and is trained with the NLL
log(Ã̂2)

2
+

(µ̂−y)2

2Ã̂2 in a similar fashion as in (Lakshminarayanan et al., 2017b). To obtain a predictor of

the out-of-sample error, we altered our optimization procedure so that the µ and Ã heads

were not backpropagated through at all times. Specifically, we first split the training set

into two halves, terming the former the in-sample set Din and the latter the out-of-sample

set Dout. We denote as f in
Ã the in-sample error predictor and f out

Ã the out-of-sample error

predictor. f out
Ã is used to estimate total uncertainty. Note that in this setting, f out

Ã predicts

the square root of the epistemic uncertainty (Ã̂out) rather than the epistemic uncertainty

itself (Ã̂2
out).

In our experiments, an extra bit is added as input to the model in order to indicate

whether a given batch is from Din or Dout. Through this, the same model is used to estimate

f in
Ã and f out

Ã with the model estimating f in
Ã when the bit indicates an example is drawn from

Din and f out
Ã otherwise. When the batch is drawn from Din, both heads are trained using

275

Algorithm 7 DEUP for Drug Combinations

Input: D dataset of pairwise drug combinations, along with synergy scores ((d1, d2), y)
Output: fµ synergy score predictor; f in

Ã in-sample error predictor, f out
Ã out-of-sample error

predictor
Split training set into two halves, in-sample Din and out-of-sample Dout

fµ(d1, d2): µ̂ predictor which takes a pair of drugs as input
f in

Ã (d1, d2): In-sample Ã̂in error predictor
f out

Ã (d1, d2): Out-of-sample Ã̂out error predictor
while training not finished do

In-sample update

Get an in-sample batch (d1,in, d2,in, yin) ∼ Din

Predict µ̂ = fµ(d1,in, d2,in) and in-sample error Ã̂in = f in
Ã (d1,in, d2,in)

Compute NLL: log(Ã̂2
in

)

2
+ (µ̂−yin)2

2Ã̂2
in

Backpropagate through fµ and f in
Ã and update.

Out-of-sample update

Get an out-of-sample batch (d1,out, d2,out, yout) ∼ Dout

Estimate µ̂ = fµ(d1,out, d2,out) and out-of-sample error Ã̂out = f out
Ã (d1,out, d2,out)

Compute NLL: log(Ã̂2
out

)

2
+ (µ̂−yout)2

2Ã̂2
out

Backpropagate through f out
Ã and update.

end while
Return: fµ, f

in
Ã , f

out
Ã

NLL using a single forward pass. However, when the data is drawn from Dout only the Ã̂

head is trained. To do this, we must still predict µ̂ in order to compute the NLL. But the

µ̂ predictor fµ must be agnostic to the difference between Din and Dout. To solve this, we

perform two separate forward passes. The first pass computes µ̂ and sets the indicator bit

to 0 so fµ has no notion of Dout, while the second pass computes Ã̂, setting the bit to 1 to

indicate the true source of the batch. Finally, we backpropagate through the Ã̂ head only.

The training procedure is described in Algorithm 7

We report several measures for the quality of uncertainty predictions on a separate test

set in Table F.6.

Model Corr. w. res. U. Bound Ratio Log Likelihood Coverage Probability CI width
MC-Dropout 0.14± 0.07 0.56± 0.05 0.25± 0.12 −20.1± 6.8 11.4± 0.2 3.1± 0.1
Deep Ensemble 0.30± 0.09 0.59± 0.04 0.50± 0.13 −14.3± 4.7 10.8± 1.4 3.4± 0.6
DUE 0.12± 0.12 0.15± 0.03 0.80 ± 0.79 −13.0± 0.52 15.2± 1.0 3.5± 0.1
DEUP 0.47 ± 0.03 0.63± 0.05 0.75 ± 0.07 −3.5 ± 0.25 36.1 ± 2.5 13.1 ± 0.9

Table F.6 – Drug combinations: quality of uncertainty estimates from different methods.
Corr. w. res. shows correlation between model residuals and predicted uncertainties Ã̂. A
best-case Upper Bound on Corr. w. res. is obtained from the correlation between Ã̂ and
true samples from N (0, Ã̂). Ratio is the ratio between col. 1 and 2 (larger is better). Log-

likelihood: average over 3 seeds of per sample predictive log-likelihood. Coverage Probability:
Percentage of test samples which are covered by the 68% confidence interval. CI width: width
of the 86% confidence interval.

276

For each model, we report the per sample predictive log-likelihood, coverage probability

and confidence interval width, averaged over 3 seeds.

We also computed the correlation between the residuals of the model |µ̂(xi)− yi| and the

predicted uncertainties Ã̂(xi). We noted that the different uncertainty estimation methods

lead to different distributions p(Ã̂(x)). For example, predicted uncertainties obtained with

DUE always have a similar magnitude. By contrast, DEUP yields a wide range of different

predicted uncertainties.

These differences between the distributions p(Ã̂(x)) obtained with the different methods

may have an impact on the correlation metric, possibly biasing the comparison of the different

methods. In order to account for differences in the distribution p(Ã̂(x)) across methods, we

report another metric which is the ratio between the observed correlation Corr(|µ̂(x) −

y|, Ã̂(x)) and the maximum achievable correlation given a specific distribution p(Ã̂(x)).

This maximum achievable correlation (referred to as the upper bound) is not per se a

comparison metric, and is estimated (given a specific p(Ã̂(x))) as follows: we assume that,

for each example (xi, yi), the predictive distribution of the modelN (µ̂(xi), Ã̂(xi)) corresponds

exactly to the distribution of the target, i.e., yi ∼ N (µ̂(xi), Ã̂(xi)). Under this assumption,

the residual of the mean predictor follows a distribution N (0, Ã̂(xi)). We can then estimate

the upper bound by computing the correlation between the predicted uncertainties Ã̂(xi)

and samples from the corresponding Gaussians N (0, Ã̂(xi)). 5 samples were drawn from

each Gaussian for our evaluation. This upper bound is reported in the Table.

Finally, we reported our comparison metric: the ratio between the correlation

Corr(|µ̂(x)− y|, Ã̂(x)) and the upper bound. The higher the ratio is, the closer the observed

correlation is to the estimated upper bound and the better the method is doing.

It is interesting to note that the upper bound is much lower for DUE compared to other

methods, as its predicted uncertainties lie within a short range of values.

Predicted µ̂ and uncertainty estimates can be visualized in Figure F.2 for different mod-

els. MC-dropout, Ensemble and DUE consistently underestimate uncertainty, while the

out-of-sample uncertainties predicted by DEUP are much more consistent with the order of

magnitude of the residuals. Moreover, we observed that DUE predicted very similar uncer-

tainties for all samples, resulting in a lower upper-bound for the correlation between residuals

and predicted uncertainties compared to other methods. We observed a similar pattern when

experimenting with the other kernels available in the DUE package, including the standard

Gaussian kernel.

Finally, we note that in the context of drug combination experiments, aleatoric uncer-

tainty could be estimated by having access to replicates of a given experiment (c.f. Sec-

tion 5.3), allowing us to subtract the aleatoric part from the out-of-sample uncertainty,

leaving us with the epistemic uncertainty only.

277

Figure F.2 – Predicted mean and uncertainty for different models on a separate test set.
50 examples from the test set are ordered by increasing value of true synergy score (orange).
Model predictions and uncertainties are visualized in blue. MC-Dropout, Ensemble and DUE
consistently underestimate the uncertainty while DEUP seems to capture the right order of
magnitude. Figures made using The Uncertainty Toolbox (Chung et al., 2020).

One complete training run for the drug combination experiments takes about 0.01 GPU

days on a V100 GPU. In total these set of experiments took about 0.2 GPU days on a Nvidia

V100 GPU.

278

	Résumé
	Abstract
	Contents
	List of Tables
	List of Figures
	List of Symbols
	Remerciements
	Introduction
	Chapter 1. Overview of the underlying publications
	1.1. Contributions of the author
	1.2. Excluded research

	Chapter 2. Background
	2.1. Machine Learning
	2.1.1. Probability and inference
	2.1.1.1. Probability notations
	2.1.1.2. Bayesian inference

	2.1.2. Bayesian Decision Theory
	2.1.3. Supervised learning
	2.1.3.1. Modelling the posterior
	2.1.3.2. Training parametric models
	2.1.3.3. The fully discriminative approach to supervised learning
	2.1.3.4. The generalization problem
	2.1.3.5. Bayesian models

	2.1.4. Unsupervised learning
	2.1.4.1. Probabilistic graphical models

	2.1.5. Reinforcement Learning
	2.1.6. Deep Learning
	2.1.6.1. Neural networks
	2.1.6.2. Optimization and backpropagation

	2.1.7. Uncertainty Estimation

	2.2. Approximate Bayesian inference
	2.2.1. Variational inference
	2.2.2. Sampling as a stochastic approximation
	2.2.3. Dropout and Deep Ensembles

	Chapter 3. On generative flow networks
	3.1. Introduction
	3.2. Flow Networks and Markovian Flows
	3.2.1. Some elements of graph theory
	3.2.2. Trajectories and Flows
	3.2.3. Flow Induced Probability Measures
	3.2.4. Markovian Flows
	3.2.5. Flow-matching Conditions
	3.2.6. Backwards Transitions can be Chosen Freely
	3.2.7. Solving for the flows
	3.2.8. Equivalence Between Flows

	3.3. GFlowNets: Learning a Flow
	3.3.1. GFlowNets and flow-matching losses
	3.3.2. Training by stochastic gradient descent:
	3.3.3. Extensions
	3.3.3.1. Introducing Time Stamps to Allow Cycles
	3.3.3.2. Stochastic Rewards
	3.3.3.3. GFlowNets can be trained offline
	3.3.3.4. Exploiting Data as Known Terminating States

	3.4. Conditional Flows and Free energies
	3.4.1. Conditional flow networks
	3.4.2. Reward-conditional flow networks
	3.4.3. State-conditional flow networks
	3.4.4. Conditional GFlowNets

	3.5. GFlowNets are more than amortized samplers
	3.5.1. GFlowNets as amortized samplers
	3.5.2. GFlowNets as generative models
	3.5.3. GFlowNets for interactive learning
	3.5.4. GFlowNets as an alternative to Reinforcement Learning

	3.6. GFlowNets and Variational Inference
	3.7. Theoretical analysis of the relation between GFlowNets and Hierarchical Variational Inference
	3.7.1. GFlowNets: Notation and background
	3.7.2. Hierarchical variational models and GFlowNets
	3.7.3. Nested variational inference
	3.7.4. A variational objective for subtrajectories
	3.7.5. Analysis of gradients

	3.8. Experiments
	3.8.1. Practical details
	3.8.2. Hypergrid: Exploration of learning objectives
	3.8.3. Molecule synthesis
	3.8.4. Generation of DAGs in Bayesian structure learning

	Chapter 4. A theory of continuous generative flow networks
	4.1. Introduction
	4.2. Stochastic sampling in continuous spaces
	4.3. A theory for generalized GFlowNets
	4.3.1. Practical summary
	4.3.2. Structured state space
	4.3.2.1. Background on measure theory and transition kernels
	4.3.2.2. Measurable pointed graphs
	4.3.2.3. Trajectory and terminating state measures
	4.3.2.4. Properties of measurable pointed graphs

	4.3.3. Flows
	4.3.4. Detailed balance and trajectory balance
	4.3.5. Training losses for GFlowNets

	4.4. Experiments
	4.4.1. Approximating the Jensen-Shannon Divergence
	4.4.2. A synthetic continuous environment
	4.4.3. Low-dimensional stochastic control
	4.4.4. Stochastic control on a torus
	4.4.5. Posterior over continuous parameters in Bayesian structure learning
	4.4.6. Connections with diffusion models

	Chapter 5. Direct Epistemic Uncertainty Prediction
	5.1. Introduction
	5.2. Excess Risk, Epistemic Uncertainty, and Model Misspecification
	5.2.1. Notations and Background
	5.2.2. Sources of lack of knowledge
	5.2.3. Bayesian uncertainty under model misspecification

	5.3. Direct Epistemic Uncertainty Prediction
	5.3.1. Fixed Training Set
	5.3.2. Interactive Settings

	5.4. Related work on uncertainty estimation
	5.5. Experiments
	5.5.1. Sequential Model Optimization
	5.5.1.1. General remarks about the SMO experiments
	5.5.1.2. One-dimensional objective
	5.5.1.3. Ablation study for the stationarizing features
	5.5.1.4. Two-dimensional objective
	5.5.1.5. Multi-dimensional objective

	5.5.2. Reinforcement Learning
	5.5.3. Uncertainty Estimation
	5.5.3.1. Epistemic Uncertainty Estimation for Drug Combinations
	5.5.3.2. Epistemic Uncertainty Predictions for Rejecting Difficult Examples

	5.5.4. DEUP in the presence of aleatoric uncertainty

	Chapter 6. Conclusion and perspectives
	Summary
	Future research directions
	Scaling GFlowNets
	Off-policy GFlowNet training
	Scientific discovery
	Bayesian optimal experiment design.

	Better representations for better generalization

	References
	Appendix A. Some mathematical concepts
	A.1. Reminders about probability
	A.1.1. Standard probability distributions

	A.2. Gaussian processes
	A.3. Kernel density estimation
	A.4. On MLE, ERM, and MAP

	Appendix B. torchgfn: A PyTorch GFlowNet library
	B.1. Installing the package
	B.2. Standalone example
	B.3. Details about the code base
	B.3.1. Defining an environment
	B.3.2. States
	B.3.3. Actions
	B.3.4. Containers
	B.3.5. Modules
	B.3.6. Samplers
	B.3.7. Losses

	B.4. Provided scripts

	Appendix C. On Bayesian Optimal Experiment Design
	Appendix D. Appendix for chap:gflownets
	D.1. Conditional GFlowNets for entropy and mutual information estimation
	D.2. Proofs
	D.3. Additional experimental details
	D.3.1. Hypergrid experiments
	D.3.2. Molecule experiments
	D.3.3. Bayesian structure learning experiments

	Appendix E. Appendix for chap:contgfn
	E.1. How to define a backward reference kernel
	E.2. Experimental details
	E.2.1. A synthetic continuous environment
	E.2.2. Low-dimensional stochastic control
	E.2.3. Stochastic control on a torus environment
	E.2.4. Posterior over continuous parameters in Bayesian structure learning
	E.2.5. Connections with diffusion models

	E.3. Proofs

	Appendix F. Appendix for chap:deup
	F.1. Sequential Model Optimization Experiments
	F.2. Reinforcement Learning Experiments
	F.3. Rejecting Difficult Examples
	F.3.1. Predicting Uncertainty under Distribution Shift

	F.4. Drug Combination Experiments

