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Résumé

L’hypothèse fondamentale guidant la pratique de l’apprentissage automatique est qu’en
phase de test, les données sont indépendantes et identiquement distribuées à la distribution
d’apprentissage. En pratique, les ensembles d’entraînement sont souvent assez petits pour
favoriser le recours à des biais trompeurs. De plus, lorsqu’il est déployé dans le monde réel,
un modèle est susceptible de rencontrer des données nouvelles ou anormales. Lorsque cela se
produit, nous aimerions que nos modèles communiquent une confiance prédictive réduite.
De telles situations, résultant de différentes formes de changement de distribution, sont
incluses dans ce que l’on appelle actuellement les situations hors distribution (OOD). Dans
cette thèse par article, nous discutons des aspects de performance OOD relativement à des
changement de distribution sémantique et non sémantique – ceux-ci correspondent à des
instances de détection OOD et à des problèmes de généralisation OOD.

Dans le premier article, nous évaluons de manière critique le problème de la détec-
tion OOD, en se concentrant sur l’analyse comparative et l’évaluation. Tout en soutenant
que la détection OOD est trop vague pour être significative, nous suggérons plutôt de
détecter les anomalies sémantiques. Nous montrons que les classificateurs entraînés sur des
objectifs auxiliaires auto-supervisés peuvent améliorer la sémanticité dans les représentations
de caractéristiques, comme l’indiquent notre meilleure détection des anomalies sémantiques
ainsi que notre meilleure généralisation.

Dans le deuxième article, nous développons davantage notre discussion sur le double
objectif de robustesse au changement de distribution non sémantique et de sensibilité au
changement sémantique. Adoptant une perspective de compositionnalité, nous décomposons
le changement non sémantique en composants systématiques et non systématiques, la
généralisation en distribution et la détection d’anomalies sémantiques formant les tâches
correspondant à des compositions complémentaires. Nous montrons au moyen d’évaluations
empiriques sur des tâches synthétiques qu’il est possible d’améliorer simultanément les
performances sur tous ces aspects de robustesse et d’incertitude. Nous proposons également
une méthode simple qui améliore les approches existantes sur nos tâches synthétiques.
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Dans le troisième et dernier article, nous considérons un scénario de boîte noire en
ligne dans lequel non seulement la distribution des données d’entrée conditionnées sur
les étiquettes change de l’entraînement au test, mais aussi la distribution marginale des
étiquettes. Nous montrons que sous de telles contraintes pratiques, de simples estimations pro-
babilistes en ligne du changement d’étiquette peuvent quand même être une piste prometteuse.

Nous terminons par une brève discussion sur les pistes possibles.

Mots-clés: Changement de distribution, détection d’anomalies
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Abstract

The fundamental assumption guiding practice in machine learning has been that test-time
data is independent and identically distributed to the training distribution. In practical
use, training sets are often small enough to encourage reliance upon misleading biases.
Additionally, when deployed in the real-world, a model is likely to encounter novel or
anomalous data. When this happens, we would like our models to communicate reduced
predictive confidence. Such situations, arising as a result of different forms of distributional
shift, comprise what are currently termed out-of-distribution (OOD) settings. In this
thesis-by-article, we discuss aspects of OOD performance with regards to semantic and
non-semantic distributional shift — these correspond to instances of OOD detection and
OOD generalization problems.

In the first article, we critically appraise the problem of OOD detection, with re-
gard to benchmarking and evaluation. Arguing that OOD detection is too broad to be
meaningful, we suggest detecting semantic anomalies instead. We show that classifiers trained
with auxiliary self-supervised objectives can improve semanticity in feature representa-
tions, as indicated by improved semantic anomaly detection as well as improved generalization.

In the second article, we further develop our discussion of the twin goals of robust-
ness to non-semantic distributional shift and sensitivity to semantic shift. Adopting a
perspective of compositionality, we decompose non-semantic shift into systematic and
non-systematic components, along with in-distribution generalization and semantic anomaly
detection forming the complementary tasks. We show by means of empirical evaluations on
synthetic setups that it is possible to improve performance at all these aspects of robustness
and uncertainty simultaneously. We also propose a simple method that improves upon
existing approaches on our synthetic benchmarks.

In the third and final article, we consider an online, black-box scenario in which
both the distribution of input data conditioned on labels changes from training to testing, as
well as the marginal distribution of labels. We show that under such practical constraints,
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simple online probabilistic estimates of label-shift can nevertheless be a promising approach.

We close with a brief discussion of possible avenues forward.

Keywords: Distributional shift, anomaly detection.
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Chapter 1

Introduction

In a famous article (Turing, 1950), Alan Turing asks “can machines think?”. An attempt
at answering this question calls for axiomatic definitions of what it means for something
to be a machine, and what it means to think. Since humans have varying opinions about
the constitution of thought (and if we are machines), Turing suggested substituting the
philosophical question with an empirical one: can an engineered, non-human entity confuse a
human interrogator trying to identify which of two participants – a real human and this entity
– is human, when conversing purely via text? This test, called the imitation game by Turing,
and since then, the Turing test in his honor, is somewhat less ambiguous than the original
question of thoughtfulness in machines, being an empirically resolvable problem statement.
This test has remained one of the cornerstones in the philosophy of artificial intelligence (AI),
with its critiques and endorsements, as is usual in philosophical discussions (Oppy and Dowe,
2021). The problem of AI, in this view, might then be simplified to be that of simulating
human-like cognition purely in an observed-behaviour sense without necessarily following the
same, precise mechanisms, or “experiencing” a relatable nature of subjectivity. Searle calls
this weak AI (Searle, 1980). While one might choose to argue that not much is practically
gained by attempting to replicate the complete human experience, the causal process by
which we generate data for training AI, and measure subsequent performance in deployment
are still intimately tied to the human perception and cognition of reality. This implies that
even for practical tasks we want solved, we might benefit from attempting to endow our AI
models with similar mechanisms, whether directly from biological inspiration, or indirectly
– for example, by encouraging consistent behaviour across multiple contexts and tasks. It
would also be pragmatic to evaluate model behavior on benchmarks that closely resemble the
real problems that concern us, and check for alignment with human cognitive output on such



tasks; although measuring the predictive behavior of AI systems on controlled, synthetic test
beds can provide useful insight for practical development.

Machine learning (ML), a term coined by Arthur Samuel, is considered a subfield of AI,
and began to receive wider attention in the late 50s and early 60s. Samuel’s prediction
was that “programming computers to learn from experience should eventually eliminate the
need for much of [existing] detailed programming effort” (Samuel, 1959). Machine learning
was understood to be the principle of learning from data. For example, for the game of
checkers, a learning machine could learn, from existing gameplay histories, the coefficients
of a polynomial that outputs checkers moves, instead of following rules explicitly coded
using expert-knowledge. An operational definition of the term, in the spirit of Turing, was
developed by Tom Mitchell (Mitchell, 1997), and is the most oft-quoted when it comes to a
definition of machine learning:

“A computer program is said to learn from experience E with respect to some class of tasks
T and performance measure P if its performance at tasks in T, as measured by P, improves
with experience E.”

One must track this improvement on new examples and not only on instances already
experienced by the program, since a machine can simply memorize its past experiences.
The underlying statistical assumption is that the training set consists of instances that are
independently and identically distributed (IID) according to the natural distribution of data.
The performance, if measured on a separate sampling of IID instances, tells us if the program
has meaningfully learned the task, i.e. it can generalize.

A common family of tasks comprises of supervised learning problems. Expressed nota-
tionally, our goal is to map inputs x to outputs y, given a set of training examples
D = {(x(i), y(i))}m

i=1, (x(i), y(i)) ∼ pD(x, y), where pD is the true data distribution. The
labels are typically provided by human annotators. We then learn to perform a transforma-
tion x 7→ f(x), such that we minimize the empirical risk for a specified loss function ℓ(., .),
given as

Rf (D) = 1
m

m∑
i=1

ℓ(y(i), f(x(i))). (1.0.1)

For the learned function to generalize beyond the training set, we would like the true risk,
EpD

[ℓ(y, f(x))], to be correspondingly minimized. Since we do not have access to the true
risk, the way we estimate generalization in practice is by holding out a test set of examples,
{(x(i), y(i))}mtrain+mtest

i=mtrain+1 , (x(i), y(i)) ∼ pD(x, y), from our collected dataset and evaluating the
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trained model on this test set. This maintains the assumption of IID sampling when testing
the model’s skill at performing its task on new instances of true experiences.

Let us consider a more concrete example: say we have access to a set of training examples
of pictures of various objects x, that have been labelled y by human labelers, and we wish
to learn how to recognize the object present in an image. Such an object recognition task
is a very common and practical task in applications of computer vision. Since the task
of interest is that of detecting the identity of the object in the foreground of the image x,
we can think of x as being a composition of the foreground object xf and the background
component xb. Further thought reveals that there are components from within the object
that are relatively less related to its identity. For example, most of us would agree that the
color of a chair is irrelevant for recognizing chairs1. A human who has seen a few chairs would
typically not struggle to recognize one if it had a novel color. Yet, if we only ever provided
examples of chairs that are red to a learning machine, without specifying any learning criteria
save that of minimizing categorization-errors, it is perfectly reasonable for such a learner
to assume that redness might be a defining characteristic of chairness. This undesirable
inference is particularly exacerbated if, in our training set, chairs were the only object that
was consistently red. Imagine a binary classification task where all chairs are red due to
selection bias, and the other object of interest, say bananas, never appears in red (for the sake
of this thought experiment, let us assume the background is always a bland white). Now “Is
it red?” can be used exclusively as a predictive rule, so much so that a learner does not even
need to learn anything about bananas. Equally worryingly, when such a program is presented
with a red object which is neither a chair nor a banana, the output can be a confident “chair!”.
Evidently, such a predictive rule is likely to be ineffective at large. If we present a learning
machine with an infinite data stream, such biases ought to be accounted for, since we can
expect accidental correlations to be minimized with richer sampling. However, acquiring large
datasets, labeling them, and then training for a correspondingly longer period of time are all
costly endeavours, and in some real-world situations, such as with problems in healthcare, a
small and potentially-biased training set is all we have at hand.

In the presence of such possibilities, it feels necessary to, at the very least, estimate gener-
alization beyond a sampling of a particular data collection process before deploying an AI
model in the wild. In development, a model might work reassuringly well, displaying excellent
test set performance. However, it might only have picked up on a bias, which continues to
transfer across to the similarly collected test set, but does not exist in general. Would we
trust such a learner out of the lab and in our lives, driving our self-driving cars or diagnosing
our diseases?
1In this thesis, we set aside deeper philosophical perspectives about what really makes for a chair.
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Compositional generalization. Cognitive scientists and philosophers have theorized that
humans are able to generalize well to novel contexts, and construct novel structures imag-
inatively because our internal representations are compositional in nature and based on
primitive concepts (Fodor and Pylyshyn, 1988; Marcus, 2001). These primitives can be
productively composed to generate new sentences, for example (and more controversially,
new thought (Fodor, 1975)). This “algebraic” compositionality is posited to be the expla-
nation for why humans excel at understanding a novel sentence by virtue of understanding
another. In the field of deep learning, this has primarily been discussed in the context of
languages (Lake and Baroni, 2018) following along the classic descriptions of systematicity2

in language (Chomsky, 1957) but we can presume similar ideology in other contexts, such
as with visual data, for example. We can consider an image x to be composed of an object
component ho, and all other components that are unrelated to the identity hu, such as the
background or object-color3. We can express this notationally, for a “composition function” C

x = C(ho, hu), such that ho ⊥ hu given y. (1.0.2)

Now we can consider the conditional marginals p(ho | y) and p(hu | y) and ask where the
sampling should be from at test time. Sampling outside of p(ho | y) can let us measure the
awareness of novelty, and sampling from outside p(hu | y) lets us estimate compositional
generalization at test time. All of this prudence about testing generalization applies especially
strongly for cases where few inductive biases have been applied, and where the major
driving force is that of a simple loss term, such as a misclassification penalty. With additional
constraints, we can implicitly bias learners to look for explanations with certain characteristics,
or explicitly discourage fits to confounding correlations – if we can identify specific biases, we
can discourage reliance on them. We can ask ourselves why some mappings or explanations
make more sense to us, and then try to encourage a proclivity towards such mappings in our
model-design phase.

In this thesis, we shall touch on such problems and perspectives through three articles.

• In the first article, we discuss one aspect of trusthworthy and robust AI models – they
ought to recognize novelty, and communicate reduced confidence when encountering
unfamiliar things. In the earlier example, we might come across an object which is
neither a chair nor a banana. We provide a critical appraisal of benchmarks in the
literature for such problems, recommending more realistic alternatives. Building upon
our arguments and intuitions, we propose a method to improve a classifier’s sense of

2a concept perhaps easier to intuit with the word “recombinability”
3assuming we would deem color as irrelevant for a particular object, and the background as being unrelated
to identity.
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uncertainty when facing novel objects, showing that it leads to better performance on
our benchmarks.

• In the second article, we adopt the compositional view and show that such awareness of
novelty is but one aspect of reliability – apart from sensitivity to unfamiliar objects, we
would also like to be robust to unfamiliar contexts. In the chair/banana example, one
might encounter a red or a purple banana, which are less common varieties of banana
than the popular Cavendish variant. In order to perform controlled experiments,
we create a set of synthetic benchmarks, reflecting tasks requiring different forms of
compositional generalization. We also propose a method for improving predictive
behavior at such compositional generalization problems.

• Finally, in the third article, we consider real-life problems encountered when deploying
models online across multiple locations under resource constraints, and potential
approaches to tackling them. Specifically, we consider adapting our predictions
from a black-box AI model to deployment contexts associated with particular target-
frequencies. For example, if our chair/banana classifier is deployed in a location with
vastly more bananas than chairs, we might be able to resolve ambiguous situations
taking this prior into account. We consider such label-shift problems combined with
a shift in the label-conditioned input distribution (e.g. chairs can look a bit different
across different regions of the world). We evaluate existing methods for a mix of
synthetic and realistic problems, suggesting some heuristics to potentially improve
performance in these deployment settings.

In the following chapter, we begin with an overview of relevant background information.
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Chapter 2

Background

In this chapter we provide background on deep learning (LeCun et al., 2015), a term used to
describe modern machine learning models that employ hierarchical processing of data, with
the adjective deep referring to depth in the layers of the hierarchy.

2.1. Deep learning

Deep neural networks (McCulloch and Pitts, 1943), are currently the most effective instanti-
ation of statistical models for mapping complex, high-dimensional input data to relatively
lower-dimensional outputs. For example, one might want to identify the objects present in an
image (Krizhevsky et al., 2012), identify the human action being performed in a video clip (Ji
et al., 2012), recognize speech from an audio clip (Bahdanau et al., 2016), or categorize
high-level meaning in a textual document (Wang et al., 2016).

Deep neural networks are typically trained end-to-end to learn a desired mapping, such
as in the tasks described above. In some cases, for example when there is too little data
in the domain of interest, we can initialize some components of complex models by pre-
training them on larger datasets in a related or different domain. For example, for problems
in medical imaging, one typically finds improvements when initializing the networks with
pre-training on large-scale object recognition datasets, which have little to do with medical
images (Raghu et al., 2019). Another way to improve performance can be by additional
pre-training with self-supervised objectives (Azizi et al., 2022; Lai et al., 2023), where one can
leverage unlabelled data (whether in the same, related, or even somewhat different domains)



by artificially creating prediction tasks. The most common form of this approach today
involves recognizing artificially-perturbed inputs as being identical in content.

Intuitively, one reason pre-training methods based on different datasets work so well is
because the higher-level similarity of the tasks1 implies that one can get closer to the task
of interest by learning on more data to perform a related task. To become a radiologist,
one must first learn to see. Additionally, training with self-supervised learning objectives
can achieve the goal of incorporating invariances into the feature extractors. For example,
if we train a model to identify contrast-altered images as being similar in content, we can
instill contrast-agnosticism in the feature extraction through this task. Thus, if we know
what invariances are likely to be useful for a downstream task (such as color-invariance), we
can get our networks started on learning such invariances on a larger, unlabelled dataset, or
even a less-related dataset. In Section 2.2, we shall discuss several self-supervised methods.

End-to-end training refers to the method by which an optimization process operates on
all model-parameters at the same time, all the way from input to output. A counter-
example would be training an image-caption generator by separately training the image-
feature extractor and the caption-from-features generation module. Stochastic gradient
descent (Robbins and Monro, 1951) (SGD) is typically used to learn model parameters over
the training set, and hyperparameters, such as the learning rate or number of layers in the
model, are tweaked by evaluating held-out performance on a validation set. A hitherto unseen
set called the test set is used for final evaluation. This procedure is fairly classical, however,
if one intends to deploy one’s model out in the world at large, having only trained on a set
that is not likely to have been statistically representative of fuller reality, models can behave
in unexpected ways due to the distributional shift (Amodei et al., 2016) in deployment. Even
if one develops methods that are capable of endowing robustness to aspects of distributional
shift, one must still tune hyper-parameters of their method using a validation set. In such
a setting, a validation set must also exhibit distributional shift in order to accommodate
meaningful hyper-parameter tuning or model-selection. However, at test-time, one may
encounter a significantly different data distribution that bears little resemblance to either
training or validation data. It is unclear at the moment how to best go about handling such
situations. We discuss some of the current thinking for handling such out-of-distribution
instances in Section 2.3.

In the next few subsections, we briefly describe some basic neural network architectures, and
the methods used to train them.

1for example, two different object recognition tasks can both be considered fundamentally visual discrimination.
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Fig. 1. A feedforward neural network with one hidden layer mapping a 2-
dimensional input to a scalar output. The +1 nodes correspond to the bias
terms in the affine transformations. The transformation being computed is
ŷ = W ⊤

2 h + b2, h = σ(W ⊤
1 x + b1), where σ is a non-linear function.

2.1.1. Multi-layer perceptrons

Let us assume our dataset consists of inputs x which we wish to map to the target y, where
x ∈ Rd, and y ∈ [C] for classification problems and y ∈ R for regression problems (with scalar
output dimension). If we model the mapping with a parameterized, hierarchical transform,
we would write

y = fL(fL−1(· · · f1(x) · · · )), (2.1.1)

where L is the number of layers in our model, and fl is the transformation in the l-th layer.
Since a composition of affine functions continues to be affine, such composition is particularly
useful when the functions are non-linear. A simple choice for implementing such a transform
would be

fl(x) = σ(W ⊤
l fl−1(x) + bl), (2.1.2)

where Wl is the weight matrix and bl is the bias term associated with the l-th layer, and
affinely transforms the input to the layer. The inputs to intermediate layers are referred
to as the activation vectors from the preceding layers. σ is the non-linearity, also called
the activation function, that is applied on top of the affine transform, and can take several
forms. This overall model is referred to as the multi-layer perceptron (MLP), since it can be
viewed as a hierarchical extension of the perceptron (McCulloch and Pitts, 1943), a linear
binary classifier using the rule y = I(w⊤x + b > 0), trained iteratively by correcting w on
mis-classifications by vector addition with x.
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Some of the choices for the activation function are

Heaviside(x) = I(x > 0), (2.1.3)

sigmoid(x) = 1
1 + exp(−x) , (2.1.4)

tanh(x) = exp(x) − exp(−x)
exp(x) + exp(−x) , (2.1.5)

ReLU(x) = x if x ≥ 0, and 0 otherwise, (2.1.6)

LeakyReLU(x) = x if x ≥ 0, and αx otherwise (α ≪ 1). (2.1.7)

While the Heaviside step function is most reminiscent of the perceptron, the non-
differentiability of the function renders gradient-based training futile. Hence, the other
activation functions, more amenable to gradient-based training, tend to be used – historically,
sigmoid and tanh were preferred (and tanh is still used in recurrent networks), but
the general non-linearity of choice in feedforward networks is the rectified linear unit, or
ReLU (Glorot et al., 2011). Recently, there have been softer approximates to the ReLU, such
as the Gaussian error linear units (GELU) (Hendrycks and Gimpel, 2016) which tend to be
useful in some modern architectures, such as transformer-based language models (Devlin
et al., 2018). Given that modern-day feedforward networks tend to avoid step functions,
perhaps the name “multi-layer perceptron” is something of a misnomer.

The final layer transforms the penultimate-layer activations into a format applicable for the
task being solved. If we are performing binary classification, i.e. we might be modelling a
conditional Bernoulli distribution P (y = 1 | x), we typically apply the sigmoid transform
to the scalar output of the last layer. When we are performing multi-class classification,
we need to transform the set of logits (of dimensionality equalling the number of target
categories) output by the final layer into a vector of probabilities corresponding to a conditional
Categorical distribution. This is typically performed by the analogue of the sigmoid function
for multiple categories, the softmax transform,

P (y = k | x) = exp ak∑
k′ exp ak′

, (2.1.8)

where ak is the k-th logit output by the model for the input x. When the task is regression to
an unconstrained scalar target, we can directly output our prediction. If there are constraints
on our output space, we can often bake them in: for example, if our outputs are always
positive, we can use a ReLU or a softplus (Dugas et al., 2000) activation at the end.

While MLP modelling seems sensible when there is no shared structure to a fixed-size input,
which encourages us to assign different weights to every dimension, we can do better when
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structure in the input allows us to share weights – this can improve efficiency, as well as help
induce prior knowledge into our model. In the next two sections, we discuss convolutional
neural networks, which share model parameters across spatial regions in image data, and
recurrent neural networks, which share parameters temporally for sequence data.

2.1.2. Convolutional neural networks

Let us consider the task of visual object recognition, i.e. we are presented with a natural
image, and we would like to identify the object present in it. The two main reasons why we
might not want to apply the MLP model of the previous section for such a task are that (1)
even slightly differently-sized images would render our model inapplicable, and (2) such input
modalities typically exhibit translation invariance, which means our understanding of the
contents in the image often does not vary at all if the contents are all spatially shifted. The
latter point in particular suggests that we might want to develop a model which searches for
the same features in all locations of an image, and final results are achieved by summing the
results of such searches across all spatial locations. This is what is most commonly done in
convolutional neural networks, with the intermediate layers consisting of filters shared across
spatial locations, and features finally being pooled globally to provide a feature vector (see
Fig. 2). This final vector is then transformed to provide logits. Convolutional operations
may also be said to characterize translation equivariance, meaning that as the input shifts
spatially, the corresponding feature map after performing a convolution operation also shifts
the same amount (modulo any striding of the filters).

The convolutional aspect in such models comes from the discrete convolution being performed:
a kernel (a small square matrix) slides over the input to a layer (or the image x in case of
the first layer of processing), producing a similarly-sized set of values, which when summed
over the number of input channels and transformed with an activation function yields the
activation map (see Fig. 2). The final layer of (flattened or pooled) features are typically
combined with one or more MLP layers to provide logits, which are processed similarly as for
MLPs in the previous section.

2.1.3. Recurrent neural networks

RNNs are models that map sequences to either non-sequential outputs or entire sequences as
well, for example, categorizing sentiment in a text-sequence, or translating a text-sequence
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Fig. 2. (top) Discrete convolutions are performed by sliding a kernel over the
input, at each step multiplying overlapping values and summing the products,
yielding the corresponding output value at the location where the kernel is
centered. Note that this leads to a loss in spatial dimensions, since the valid
position for the kernel-center starts at [⌊(K/2)⌋, ⌊(K/2)⌋] for a K × K-sized
kernel. To maintain the same spatial dimensions, we pad the edges of the input
so that the output dimensions match the input dimensions. (bottom) The basic
underlying structure in a convolutional neural network with global average
pooling. The input is 2-channel, the spatial analogue of the 2-dimensional
input in Fig. 1. Instead of scalar weights multiplying with the inputs, filters are
convolved with the spatial inputs, and summing the results of the convolutions
at every incoming intermediate node (h1, h2, h3) and applying a non-linearity
σ(.) element-wise yields a set of feature maps with spatial dimensions. Every
feature map can be averaged across their spatial dimensions, producing a vector
of average feature activations. This vector, h̃, can now be transformed to the
output as before. For a typical image classification problem, one would have
several convolutional layers in sequence, before average pooling and a mapping
to an output dimension equalling the number of categories. (Bias terms have
been omitted to reduce clutter.)
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Fig. 3. (left) A basic sequence-to-sequence RNN maps an input sequence
{x1, · · · , xT } to an output sequence {ŷ1, · · · , ŷT } in a stateful way. (right) For
a typical sequence classification task, the objective is to map a sequence to a
category. One may either transform the final hidden state, hT to the output,
or aggregate over all hidden states over the entire sequence.

from one language to another. This mapping is stateful, since there is a temporally evolving
hidden state within the network which also determines the output along with the input.

For the case where an input sequence {xt} is mapped to an output sequence {yt}, the typical
operations for a basic RNN run as follows:

ht = tanh(W ⊤ht−1 + U⊤xt + b), (2.1.9)

yt = softmax(V ⊤ht + c), (2.1.10)

where W, U, V are the weight matrices for the hidden-to-hidden, input-to-hidden, and hidden-
to-output connections respectively. Since the same weight matrices are used across all steps t

in the sequence, RNNs are the temporal analogue of CNNs in terms of parameter-sharing.
If the task is to map a sequence to a non-sequential output, one can simply transform the
final hidden activations, or aggregate over all hidden states in the sequence. See Fig. 3 for
illustrations. Other connectivity patterns exist, such as when generating a sequence from a
vector input, or when the predicted outputs at each step are fed back for the prediction at
the next step.

Such vanilla RNNs tend to under-perform at tasks requiring memory over longer time-
frames. A variant called the long short-term memory network, or LSTM (Hochreiter and
Schmidhuber, 1997), provides significant improvements, by maintaining a cell-state which can
hold information perfectly for as long as necessary, and (softly) erase held information when
it is not required anymore. This is performed by using a gating mechanism per dimension of
the cell-state which either overwrites in new information in specific locations, or preserves
older information.
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2.1.4. Recent advances

In this section, we discuss three modern, high-performing variants of the above “classical”
model families.

ResNets. ResNet (He et al., 2016) was a CNN model developed by a team at Microsoft
Research, winning the 2015 ImageNet classification challenge. The key idea was to add
short-cut connections across blocks of layers, enabling the learning of residual functions. More
precisely, while we have so far been computing activations of the l-th layer using hl = fl(hl−1),
ResNets instead compute hl = σ(hl−1 + fl(hl−1)), where σ is the activation function, and
fl now only needs to learn a residual signal over the input hl−1. fl can take the form of
an additional 2-3 “sub-layers” of processing. This trick enables training far deeper models
than was previously doable, because the short-cut connections can avoid issues of gradients
vanishing over deeper-layer training (we discuss vanishing gradients in Section 2.1.5).

While this flavor of ResNets make training deeper models easier, in a subsequent variant, He
et al. (2016) replaced the computation across a residual block to be hl = hl−1 + σ(fl(hl−1)).
This version, called a preactivation ResNet, makes for far longer short-cut connections –
theoretically, all residues can be set to zero, in effect copying the input to the last layer no
matter how deep the network, modulo downsamplings to match reduced spatial dimensions.
Using this trick enables effective training of much deeper models. An alternative model,
which increases layer-widths instead of network depth often performs better, and the wide
ResNet (Zagoruyko and Komodakis, 2016) is often a default choice for small-scale datasets
such as CIFAR-10 and STL-10.

DenseNets. Instead of summing inputs to the outputs of residual blocks, an alternative
connectivity pattern for preserving information is to simply concatenate all previous activations
for input to a specific layer, which in turn passes on its own activations to all subsequent
layers. Specifically, the activation at the l-th layer is computed as hl = fl([x, h1, · · · , hl−1].
This model is called DenseNet (Huang et al., 2017) due to the dense connectivity pattern.

Intuitively, such concatenation should enable easier information flow through layers than
summing inputs with residual information. Additionally, one can achieve similar results using
fewer parameters than competing models, possibly because useful earlier feature maps do not
need to be explicitly re-learned/retained in subsequent layers.

38



Transformers. A recent family of sequence-to-sequence models called transformers (Vaswani
et al., 2017) does away with the statefulness in RNN models, by instead learning features that
selectively attend to other features across the sequence dimension (termed self-attention).
This turns the mapping into a feedforward structure with flexible sequence-dimensionality,
enabling processing of arbitrary sequence lengths in parallel without the need for a hidden
state. This model family has found resounding success at a variety of tasks, such as
machine translation (Vaswani et al., 2017), music generation (Huang et al., 2018), protein
generation (Madani et al., 2020), and more.

Interestingly, such sequence models have also been shown to be highly performant at
data modalities not usually thought of as sequences. For example, the vision transformer
(ViT) (Dosovitskiy et al., 2020) carves out 16 × 16 patches from an image and treats the
flattened patches as elements of a sequence (rasterized order across the image). When such
a transformer model is trained on this sequence with relatively smaller sized datasets such
as Imagenet, the performance tends to be poorer than existing CNN-based models, a
failure attributed to the lack of equally powerful inductive biases. However, when trained on
much larger datasets, such as Google’s internal JFT-300M, the resulting model performs
competitively with, or outperforms, CNN models at transfer learning to smaller datasets like
CIFAR-100 or Imagenet.

2.1.5. Training

Training in deep models is performed using backpropagation2, a method derived from the
chain-rule in calculus that allows us to compute the gradients of the loss function wrt

parameters in hierarchical models. These gradients can then be used by a gradient-based
optimization method to (iteratively) update the parameters of the model, thereby minimizing
the loss.

As an example, consider the model ŷ(x) = fθ3(fθ2(fθ1(x))), where the composing functions
fi are parameterized with parameters θi

3. Given a loss function ℓ(y, ŷ), we would like to
compute ∂ℓ

∂θi
for all θi in the model. The method of backpropagation operates in two stages.

2http://people.idsia.ch/~juergen/who-invented-backpropagation.html.
3we use bold symbols in this chapter to emphasize when variables are non-scalar, but elsewhere in this thesis
we skip bolding when context is sufficient.
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Forward pass: Compute all activations, pushing forward the input x through the network
(consider x = h0),

hk = fθk
(hk−1). (2.1.11)

Backward pass: Moving backward from the output layer, using uL+1 = 1, compute

gl = u⊤
l+1

∂fθl
(hl)

∂θl

, (2.1.12)

u⊤
l = u⊤

l+1
∂fθl

(hl)
∂hl

. (2.1.13)

The gl terms are the gradients for the parameters θl. The forward pass is necessary because
the expression for the term ∂fθl

(hl)
∂θl

(and in nearly all cases, the accumulated terms in ul+1

as well) require the activation values corresponding to the input x. Thus, computing the
gradients usually requires storing activations as intermediates beforehand.

These gradients can be used to update parameters using gradient descent (Hadamard, 1908),

θnew
l := θold

l − α
1
N

N∑
i=1

∇θl
ℓ(y, ŷ(x))

∣∣∣
θold

l

, (2.1.14)

where α controls the length of the update step and is therefore called the learning rate. As
the formula suggests, given N training data-points, the update step is the average gradient
computed over all the points, with the model evaluated at the current state of the parameters.
Such an update step can be expensive to compute for large datasets, since we would need to
evaluate the entire dataset before every update. A more efficient approximation would be
to perform the update for every training point, or for mini-batches of training points. This
procedure is called stochastic gradient descent (SGD) (Robbins and Monro, 1951), and is an
approximation to the true gradient. Fortuitously, the noise induced by the approximation often
tends to be quite helpful when training neural networks. Per one intuition, the corresponding
loss surfaces can have non-robust optima, and noise can help sidestep these sharp minima
that are likely to correspond to poor generalization. Additionally, the learning procedure
can simply make quicker progress due to the efficiency of computing gradients on smaller
sample-sizes. Most modern implementations of SGD provide improvements by including
momentum terms that accumulate past gradients and/or adaptively scale gradients to avoid
instabilities (Tieleman and Hinton, 2012; Kingma and Ba, 2014).

Vanishing and exploding gradients. In Eq. 2.1.12, we saw that we need to use the
accumulated product of the terms Jl = ∂hl+1

∂hl
to compute the gradient for parameters. For

sake of understanding, if we assume Jl remains constant across layers, calling it J , we can
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see that the gradient gl is proportional to JL−l. This suggests that if the maximum absolute
value of the eigenvalues of J significantly exceeds 1, gradient magnitudes can explode when
training very deep networks. Similarly, they may vanish if the maximum absolute eigenvalue
is significantly smaller than 1. Exploding gradients can be managed by simply clipping large
gradient magnitudes (while retaining the direction). Shrinking gradients are harder to handle,
but certain advances have proven successful. For example, the use of non-saturating activation
functions such as the ReLU, or architectures with short-cut connections over longer ranges
(as in ResNets and DenseNets discussed earlier) have significantly ameliorated the issue
of vanishing gradients in modern feedforward networks. Careful initialization strategies,
parameterization choices, and architectural tweaks have been similarly useful for sequence
models.

2.2. Representation learning with self-supervision

An inspirational line of work for models of cognition and neural networks originated in the
PDP research group led by James McLelland and David Rumelhart in the 80s, promoting
parallel distributed processing in two volumes (Rumelhart et al., 1986). This view argues for
distributed representations computed in parallel (for example, a hidden layer in an MLP)
over localized, symbolic structure (for example, knowledge graphs with predefined entities
and relations). The intuitive advantage of a PDP representation scheme is that exponentially
many more “concepts” can be represented with the same number of units, since symbolic
representation only allows for individual concepts per unit. Deep learning is at its heart
largely PDP-based representation learning, with many levels of hierarchy.

Learning such representations is usually done in the context of a downstream task – we would
like to learn efficient representations that result in improved performance at the task. There
could be other desiderata: for example, if the task requires easy manipulation of underlying
factors, then encouraging the representation units to be independent of each other would
allow for easy slider-based adjustment. Representation learning can be performed in an
unsupervised manner as well. Learning to perform a task that does not require labels, such
as reconstruction of data, can often result in representations that are useful for classification,
as shown in Vincent et al. (2008), for example.

Self-supervised methods may be considered a subset of unsupervised learning (no labels), where
labels are auto-generated from the data using the context of a pretext task. Training can now
be done using latest developments in supervised learning methods. These representations,
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initially developed by a model for meeting the labelling goals of the pretext task, can
subsequently be evaluated for a downstream task such as object recognition. This evaluation
is most commonly done by learning a linear classifier on top of the learned representation.
Research in this direction has seen a rising wave of attention in the past years, with compelling
successes in problems such as language (Devlin et al., 2018) and object recognition in
images (Doersch et al., 2015; Pathak et al., 2016; Noroozi and Favaro, 2016; Zhang et al.,
2017; van den Oord et al., 2018; Gidaris et al., 2018; Caron et al., 2018). The gap between
test set performances using fully supervised methods vs linear classification on self-supervised
representations has been drawing ever closer (Tomasev et al., 2022).

Most of self-supervised learning research in the context of image classification started gaining
prominence 2015 onwards, and for the next two years or so, most methods mostly involved
predictions on patches or autoencoding. For example, Doersch et al. (2015) predicts the
relative location of a patch in an image with respect to another; Pathak et al. (2016) trains
autoencoders to inpaint images; Noroozi and Favaro (2016) solve jigsaw puzzles by cutting
up an image into patches, shuffling them and learning how to put them back together; Zhang
et al. (2017) autoencodes across channels – given channels of the input, predict the other
channels. Gidaris et al. (2018) showed that tasking a neural network to predict the angle by
which an image has been rotated results in learning features significantly useful for object
classification, detection, and segmentation. In the next few sections, we will briefly discuss
contrastive methods, which boosted performances significantly over these earlier approaches.
We will also briefly cover newer non-contrastive methods, which are currently on par with
contrastive methods, while removing some of the difficulties inherent in contrastive approaches.

2.2.1. Contrastive predictive coding (CPC)

A patch-prediction method, CPC (van den Oord et al., 2018; Hénaff et al., 2019) combined
several deep learning techniques to demonstrate very compelling performance on a wide range
of tasks: speech recognition, image classification, object detection, classification tasks with
natural language data, and reinforcement learning. We will focus on the application to image
classification in our discussion, since that is our use-case in the first article.

The goal is to extract patch-encodings from an image in a way that optimizes mutual
information between related patches, for a specified notion of relatedness. This encourages
an implicit understanding of how things “fit together”, in the spirit of Doersch et al. (2015);
Noroozi and Favaro (2016), leading to representations that have been shown to be very useful
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for downstream tasks. More concretely, a neural network encoder genc produces encodings of
regularly spaced-out, overlapping patches in an image,

zij = genc(xij), (2.2.1)

where i and j are row and column indices of the patch (for example, a 256 × 256 image might
be broken into a 7 × 7 grid of overlapping patches). A masked convolutional network, the
context network gcontext, provides context vectors per location 4, which are linearly transformed
to predict encodings further down. The context network, being fully convolutional without
subsampling, outputs a 7 × 7 grid,

cij = gcontext(zij). (2.2.2)

A matrix Wk is used to linearly transform the context vectors into predictions for patches k

rows down,

ẑi+k,j = W ⊤
k cij. (2.2.3)

InfoNCE. Let us assume that for a context c, we are given a positive sample from p(x | c),
and N −1 negative samples from p(x). In this case, the positive sample would be an encoding
of a patch at the right location in the image, and the negative samples are encodings of
patches from elsewhere, both within the same image as well as different images.

Given the set of samples X = {xj}N
j=1 such that the i-th one is positive, while the remaining

(N − 1) are negative, the probability of classifying the positive sample correctly is given by

p(d = i | X, c) = p(d = i, X | c)∑
j p(d = j, X | c) (2.2.4)

=
∏

j p(d = i, xj | c)∑
j

∏
l p(d = j, xl | c) (2.2.5)

=
p(xi | c)∏j ̸=i p(xj)∑
j p(xj | c)∏l ̸=j p(xl)

(2.2.6)

=
p(xi|c)
p(xi)∑N

j=1
p(xj |c)
p(xj)

(2.2.7)

Line 2.2.6 follows from x being independent of c when it is a negative sample, and line 2.2.7
follows from dividing the numerator and denominator by ∏i p(xi). Now if we want a classifier
to correctly identify the positive sample in X = {xi} given a context c, we would optimize the

4The context is all the information deemed necessary to identify the related patch correctly, which here is the
collection of all patches up to the patch of interest, traversed in raster order.
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categorical cross entropy of the classifier, assuming its output is f(x, c), ∀x ∈ X, expressed as

LN = −E

 log f(x, c)∑
xj∈X f(xj, c)

. (2.2.8)

Since the optimal value of the loss is achieved when
f(xi, c)∑

xj∈X f(xj, c) = p(d = i | X, c), (2.2.9)

learning to classify the positive sample amounts to learning the density ratio with f(x, c) ∝
p(x | c)/p(x) (comparing Equation 2.2.9 and Equation 2.2.7). Note that this density ratio
appears in the computation of mutual information between x and c,

I(x; c) =
∫

x

∫
c
p(x, c) log p(x | c)

p(x) dxdc. (2.2.10)

f in Equation 2.2.8 is defined as the exponential of an inner product between the predicted
code ẑ, as defined in Equation 2.2.3, and the true code z,

f(x, c) = exp(ẑ⊤z). (2.2.11)

Armed with all this, we can write out the InfoNCE loss, so-called since it is inspired by noise
contrastive estimation (Gutmann and Hyvärinen, 2010) and the Infomax principle (Linsker,
1988).

LInfoNCE = −
∑
ijk

log
exp(ẑ⊤

i+k,jzi+k,j)
exp(ẑ⊤

i+k,jzi+k,j) +∑
l exp(ẑ⊤

i+k,jzl)
, (2.2.12)

where i, j are spatial location indices, k is the number of rows we are looking ahead for
predicting codes, and l indexes negative samples. The negative patches are taken from within
other locations in the image, and from other images. One can recognize from the above
formulation that the loss is straightforward to implement with a classifier which has a softmax
layer at the output with the similarity terms as logits, and an objective that only requires
correct identification of the positive sample.

2.2.2. Improved contrastive representation learning

Two follow-up methods for contrastive representation learning introduced useful mechanisms
to improve performance further.

SimCLR. Chen et al. (2020) introduced two key ideas: one, they showed that introducing a
learnable non-linear transform termed a projection head on the representation being learned
is useful for the contrastive loss; and two, normalizing the projections to unit norm, followed
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by scaling the inner product by a temperature also improves downstream classification.
SimCLR is not a patch-based method, rather it aims to map two different augmentations of
the same image to the same projection, and different images to different projections. The
choice of augmentations plays an important role5, since it prevents short-cuts for fulfilling
the contrastive objective, instilling useful invariances in the feature extractor.

MoCo. He et al. (2020) introduced a dictionary-based perspective on self-supervised con-
trastive learning. If we view the similarity and dissimilarity between encodings as a dictionary
lookup, we can imagine a memory bank of representations from which we aim to recall the
value for a matching key. In a more practical instantiation, the method MoCo, short for
momentum contrast, maintains a queue of examples that are transformed on-the-fly by a copy
of the encoder using momentum-updated weights. A later improvement, MoCo-v2 (Chen
et al., 2020), borrows ideas from SimCLR to further improve performance, in particular the
ideas of using projection heads and stronger data augmentation schemes.

2.2.3. Non-contrastive self-supervised methods

While it certainly makes sense that contrastive learning as instantiated by the above methods
might be expected to extract representations from images that are to do with the object-
concepts in them, surprisingly, it turns out that we might not require a contrastive aspect at
all – merely pulling together representations for similar data suffices. Naturally, this would
not work naively, since a trivial solution would be to map everything to the same place.
However, with certain architectural and training choices, it has been shown to be an effective
representation learning strategy.

Bootstrap Your Own Latents (BYOL). Grill et al. (2020) show that it is possible to
learn semantic representations by training an online network to yield features that are close
to the features produced by a target network for the same input with different augmentations.
The weights of the target network are a momentum-updated copy of the online network’s
parameters, which is reminiscent of MoCo. Crucially, a stop-gradient operation prevents any
updating in the target network, which helps prevent trivial, constant solutions. The target
network’s momentum is annealed so that as training proceeds, the target network’s weights
are updated with smaller changes.

5the augmentations typically applied are random cropping+resizing, random color distortions, and random
Gaussian blurring.
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SimSiam. Chen and He (2021) go even further, showing that there is no need to perform a
moving average in the target network; it can simply be a mirror of the online network (with
the stop-gradient operation preventing collapsed solutions). SimSiam was shown to perform
competitively or better than the above methods.

2.3. Out-of-distribution (OOD) settings

As we briefly discussed in the Introduction, it is often the case that models are trained on a
dataset that does not capture some of the variations that are subsequently encountered at
test-time. The models might also have learned to rely on a feature that only happened to
correlate with the target due to bias in the training set. Such problems are broadly referred to
in the contemporary literature as OOD generalization problems. Yet another aspect one must
be aware of, in real life deployments, is the possibility of encountering unfamiliar objects. One
can choose to filter out any inputs that are deemed to come from a distribution dissimilar to
the training distribution, flagging them down for human intervention. This problem is broadly
termed OOD detection. In the next two sections, we briefly describe these two problems.

2.3.1. Out-of-distribution detection

Machine learning models have been known to under-perform when they encounter test-
time distributions that differ from the training distribution, raising concerns about AI
safety (Amodei et al., 2016) when such models are deployed in the real world. With this
motivation, Hendrycks and Gimpel (2017) proposed the task of OOD detection, since we
could then potentially flag down any examples that could lead to potentially unsafe behavior.

There are several related precedents to the problem of OOD detection, developed with specific
applications in mind. For example, open-set recognition (Scheirer et al., 2012; Bendale and
Boult, 2016; Liu et al., 2018; Dhamija et al., 2018) considers classifiers that have been trained
with K categories, but encounter categories outside of this set at test-time, and must not
mis-identify them as a seen category. The terms anomaly detection (Chandola et al., 2009)
or novelty detection (Pimentel et al., 2014) are often used interchangeably, and are typically
applied to settings where the in-distribution data consists of one type of concept, although
they have been more generally applied as well. For example, whereas open-set recognition
tends to include multiple object categories in the in-distribution, an anomaly detection
problem would more typically involve only one object category or type in the normal set. This

46



Example

iSUN

Tiny-Imagenet (crop)
Tiny-Imagenet (resize)

LSUN (crop)

LSUN (resize)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10 (in distribution)

Standard out-of-distribution datasets !34

Example

iSUN

Tiny-Imagenet (crop)
Tiny-Imagenet (resize)

LSUN (crop)

LSUN (resize)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10 (in distribution)

Standard out-of-distribution datasets !34

Example

iSUN

Tiny-Imagenet (crop)
Tiny-Imagenet (resize)

LSUN (crop)

LSUN (resize)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10 (in distribution)

Standard out-of-distribution datasets !34

Example

iSUN

Tiny-Imagenet (crop)
Tiny-Imagenet (resize)

LSUN (crop)

LSUN (resize)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10 (in distribution)

Standard out-of-distribution datasets !34

Example

iSUN

Tiny-Imagenet (crop)
Tiny-Imagenet (resize)

LSUN (crop)

LSUN (resize)

airplane

automobile

bird

cat

deer

dog

frog

horse

ship

truck

CIFAR-10 (in distribution)

Standard out-of-distribution datasets !34CIFAR-10

Tiny ImageNet (crop)

LSUN (crop)

Tiny ImageNet (resize)

LSUN (resize)

In-distribution Out-of-distribution

7

Fig. 4. Examples of typical benchmarks for OOD detection in the literature
with CIFAR-10 as the in-distribution set.

is because the motivations in the literature for anomaly detection are more aligned towards
that of recognizing deviations from a specific normal type, such as identifying manufacturing
defects in samples of the same type of product on a factory production line (Bergmann et al.,
2019), or intrusion detection in electronic security systems (Lazarevic et al., 2003). Such
problems may be approached with techniques developed for one-class classification (Moya
and Hush, 1996; Schölkopf et al., 2001). A related problem framework is that of outlier
detection (Rousseeuw and Hubert, 2011) which presumes a given dataset (collected for some
arbitrary downstream task) to contain deviant observations, termed outliers, that are to
be identified and discarded before analysis or training on the data. The goal is different
from anomaly detection in that one wishes to remove observations assumed to arise due
to measurement errors or rare extremes in natural variability in order to promote robust
estimation of parameters or statistics.

The benchmarks initially proposed for OOD detection in Hendrycks and Gimpel (2017) involve
detecting examples from different datasets, i.e. if a model is trained on a particular dataset,
say, CIFAR-10, then samples from a different dataset, for example the Scene Understanding
Dataset, ought to be detected as OOD for the model (see Fig. 4 for examples). In this
thesis, we adopt the perspective that in practical situations – be it evaluating reliability of
classifiers, performing anomaly detection as a task, or detecting distributional shift – the
deviations that concern us are context-driven. Within a specified context, such as object
recognition, one is naturally interested in developing AI models that are sensitive to specific
deviations and robust to others. This is especially true when dealing with high-dimensional
data possessing low-dimensional meaning, as for object recognition in images. When building
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trustworthy classifiers that can operate usefully under distributional shift, we would like our
models to indicate reduced predictive confidence when encountering semantic anomalies but
be robust to non-semantic distributional shift, where the semanticity is necessarily context-
dependent. This suggests that benchmarking and evaluation must take into account the task
of interest and the nature of the test dataset. Otherwise we might implicitly encourage the
inadvertent development of models that perform worse at generalization to non-semantic
distributional shift, i.e. are less robust. As an example, consider the popular method of
outlier exposure (Hendrycks et al., 2019), which has been shown to improve OOD detection
by training a classifier to assign a uniform predictive distribution to a different dataset from
the training set. However, if the exposure-data differs mildly from the in-distribution training
data in terms of, say, image brightness, then it is quite possible that we would end up with a
classifier which is undesirably sensitive to brightness. We expand upon such perspectives in
our first and second articles.

2.3.2. Out-of-distribution generalization

Around a decade ago, in 2011, Torralba and Efros (2011) suggested that there was “something
rotten in the state” of the Vision datasets and benchmarking at the time, as manifested in
the absence of any reporting of cross-dataset generalization results. Their reasoning was: if
vision datasets and benchmarks are representatives of the real world, then two datasets are
not really different domains in a broader sense. They are both equal representatives of the
visual world, and a truly effective Vision algorithm trained on one dataset ought to generalize
on another one which is related by task. Yet, they found that there were strong drops in
performance when methods were evaluated in a cross-dataset fashion. The usual suspects
behind such results are selection bias – datasets tend to reflect their collection modalities;
capture bias – certain objects may be captured in a particular way in a specific dataset; label
bias – where the labelling of objects are a function of the annotation process; and negative
set bias, where the negative examples for a category in the training set heavily influence how
a decision boundary is drawn by a discriminative learning algorithm.

In the years that followed, with the deep learning revolution occurring shortly thereafter, not
much has changed with regards to evaluating the robustness of algorithms in a cross-dataset
fashion. Leading benchmarks for fundamental tasks such as object recognition have largely
continued to remain “worlds unto themselves”. However, rising attention to the issue of
generalization-failures on unfamiliar but similar test sets resulted in the development of
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two families of approaches – domain adaptation and domain generalization. The two differ
primarily in terms of assumptions on data availability at training-time.

Domain adaptation. In the problem of (unsupervised) domain adaptation, one assumes
access to a labeled training set belonging to the source domain, and an upfront access to an
unlabeled test set belonging to the target domain (Pan and Yang, 2009). The objective is to
learn model parameters using the labels on the source domain, but in a manner that is likely
to generalize to the target domain, by using the unlabeled samples only.

A popular bound in Ben-David et al. (2006) expresses the target domain risk, Rf(DT ), in
terms of the empirical source domain risk, Rf (D̂S), and an estimate of discrepancy between
the source and target domains. The discrepancy between two domains, measured by the
so-called H-divergence (Kifer et al., 2004) is given as

dH(DS, DT ) = 2 supf∈H

∣∣∣∣∣Px∼DS

[
f(x) = 1

]
− Px∼DT

[
f(x) = 1

]∣∣∣∣∣, (2.3.1)

implying that the difference between two domains can be estimated by the capacity of the
hypothesis class H to tell apart source domain samples from target domain ones. Using this,
the bound in Ben-David et al. (2006) is derived as follows.

Rf (DT ) ≤ Rf (D̂S) + dH(D̂S, D̂T ) + β + λ. (2.3.2)

The term β subsumes other terms to do with sample-size, capacity of the hypothesis class H,
and probability of sampling the empirical data. λ is a term lower-bounded by the minimum
sum of source and target domain risks.

This suggests one might improve domain adaptation by constructing feature spaces that
make it harder for a classifier to tell the source domain from the target domain. This idea
was developed in Ganin et al. (2016) for deep neural networks, showing that one can improve
generalization to a target domain by backpropagating the error from a domain-discriminator
but with a flipped-sign gradient. This effectively trains the feature extractor to learn invariant
features, promoting generalization. Another alternative is to minimize the maximum mean
discrepancy (MMD) (Gretton et al., 2012) between the features extracted from the source
and target domains, as done in Tzeng et al. (2014). Other simpler alternatives have been
developed, such as CORAL (Sun et al., 2016) which only matches second-order statistics
across source and target domains; deep CORAL (Sun and Saenko, 2016) subsequently
showed that this method was also effective when applied to the features extracted by a deep
neural network. Simpler distribution-matching strategies can sometimes be more effective in
practice, particularly in small-sample regimes, where one does not have sufficient information
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to attempt a more precise match, and low-order moment-matching can be more stable and
robust than adversarial approaches.

Matching marginal distributions between source and targets domains can lead to poor
performance when the label distributions are significantly different. Most works implicitly
assume that the label distribution P(y) stays similar across source and target domains,
and that only the conditional distributions P(x | y) change. The problem of target shift,
where the label distribution changes without any conditional shift in unsupervised domain
adaptation has been approached by estimating label proportions across the source and target
domains (Zhang et al., 2013; Li et al., 2019; Garg et al., 2020). The case where both the
label as well as the conditional distribution changes is referred to as generalized target shift
(GeTarS) and has been considered in Zhang et al. (2013); Gong et al. (2016); Tachet des
Combes et al. (2020). Arguably the most realistic problem setting, GeTarS has received
relatively little attention in the literature. In our third article, we consider a special instance
of GeTarS, where the conditional shift is encountered in online deployment of a black-box
AI model in different locations, each associated with a particular label-distribution.

Domain generalization. The primary difference between domain generalization and domain
adaptation is that one does not presume access to an unlabeled test set up front. Instead,
we assume access to multiple domains at training time, each with its unique characteristics,
but such that the underlying task relies upon specific features that are invariant across all
training domains (Blanchard et al., 2011). These invariant features are presumed to also
exist in any new test domain, thus justifying the learning of a predictor that learns invariant
features across all training domains. Although the problem settings are somewhat different,
one can usually extend the approaches from the domain adaptation literature to the problems
in domain generalization. For example, while in domain adaptation we were concerned with
learning similar features across the source and target domains, now we can modify this
objective to that of learning similar features across the multiple training domains.

Datasets in domain generalization benchmarks for Vision tasks have broadly fallen into two
categories. In one type, the domains correspond to different datasets with the same objects
represented in the same “style” – for example, the VLCS dataset collection (Fang et al., 2013)
curates images from four different datasets of web-crawled images for five objects. In another
type, the domains correspond to different stylistic representations. For example, in PACS (Li
et al., 2017), Office-Home (Venkateswara et al., 2017), and DomainNet (Peng et al.,
2019), the different domains in each benchmark consist of the same objects but captured
in different image domains, for example, art, sketches, cartoons, or real images. These two
types of benchmarks correspond to different real-world problems, and might call for different
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approaches. When the difference lies only in the data collection scheme, the distributional-
shift issues tend to be a combination of lower-level factors like the particular image processing
methods used to downsample the images, as well as higher-level factors such as the selection
and capture biases discussed previously. Depending on the application one is interested in,
one might prefer one type or the other (or both) for evaluation. Apart from these, there
are also some synthetic datasets with specific goals, such as the MNIST-r/s, ETH80p/y
datasets developed in Ghifary et al. (2015), for the purpose of testing generalization to novel
poses. Another example of a synthetic dataset is ImageNet-C (Hendrycks and Dietterich,
2019), where the goal is to learn to be robust to artificial corruptions added to Imagenet
images, for example, through blurring or noise-addition.

One can consider several other types of distributional shifts, aligned with real life circum-
stances. For example, one can encounter sub-population shift, where a particular subset in
a heterogeneous dataset can change in relative frequency in the test-set (group shifts, as
in Oren et al. (2019)) or undergo a change in “sub-type” – for example, in the training
set dogs might have been represented by poodles, but at test-time, they could be German
shepherds (Santurkar et al., 2020). Depending on the specific downstream application in
mind, data from such sub-type shifts might either be treated as anomalies or not. One
might argue that while a classifier trained on poodles should recognize German Shepherds
as a form of dog (assuming there are no closer categories in the training set), this classifier
ought to exhibit reduced confidence for this prediction, so that one can set a threshold for
predictive confidence that allows for either anomaly detection or generalization, depending
on intended use. Distributionally robust optimization (DRO) (Ben-Tal et al., 2013) has
been shown to be useful at handling certain group-shifts, where an unstable feature-label
correlation, existing in the larger subgroup in training data, does not manifest in a much
smaller subgroup. At test-time, performance on samples from the smaller subgroup can be
far worse relatively (Sagawa et al., 2020). DRO aims to reduce expected loss over worst-case
distributions, by searching for worst-performing distributions in a ball around the training
distribution, for example. However, this can lead to overly pessimistic models, optimizing for
unrealistic distributional shifts (Duchi and Namkoong, 2018). Group DRO (Hu et al., 2018;
Oren et al., 2019; Sagawa et al., 2020) instead approximately minimizes worst-group risk
among training sub-groups, instantiated practically as a mixture over the sub-groups, such
that the mixture weights are a function of training losses. Another alternative is to simply
reweight losses over the groups in inverse proportion of their frequencies (King, 2014), if one
were aware of the sub-groups of interest. We shall revisit these techniques in our second
article.
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Causality and invariance. Domain generalization can also be viewed through the lens of
causality. Peters et al. (2016) discussed that a model’s predictions can be expected to be
more robust to potential interventions when the model makes predictions based on causal
covariates. With the presumption that causal mechanisms are invariant across environments
associated with different interventions (and an invariant noise variable, if any), one can
expect the conditional distribution of the target variable given the immediate parent causes
to remain invariant under interventions on other covariates. A predictor that represents such
a conditional distribution is called an invariant predictor. While their discussion was for
linear models, more recently, Arjovsky et al. (2019) extend such ideas to the deep learning
context, proposing invariant risk minimization (IRM). If we consider a deep predictor to
consist of two “stages” – a feature-extractor stage fθ(x), followed by a linear predictor w –
IRM specifies the objective of a deep feature extractor to be that of learning features that
leads to a predictor which is simultaneously optimal across all training environments. This
is equivalent to learning features fθ(x) that correlate in a stable manner with the target
variable across different environments (i.e. E[Y e | fθ(xe) = h] = E[Y e′ | fθ(xe′) = h] for any
pair of data-environments e, e′), since capturing stable feature-target correlations corresponds
to modelling the presumed invariant conditional distribution P(Y | fθ(x)).

One might wonder what the advantage of IRM is over the methods discussed earlier for
matching feature distributions across environments, especially if such matching is performed
after conditioning upon labels. One possible advantage is that IRM can be more resistant to
label-noise. For example, if we assume significantly high label-noise in our data, then matching
features conditioned on these noisy labels can promote confusing feature representations. Since
IRM seeks to match the invariant conditional output distribution, it can account for invariant
label-noise as well. We ought to note that: (1) the presumption of invariant label-noise across
environments can be unrealistic in a lot of real-life data collection schemes, i.e. label-noise
can very much be a function of the environment; (2) current empirical evidence seems to
suggest that existing instantiations of IRM under-perform at most domain generalization
tasks (Gulrajani and Lopez-Paz, 2020; Koh et al., 2021). This failure could be due to multiple
reasons, such as undesirable behavior in the non-asymptotic regime of training, or due to
difficulties in optimization for the specific instantiations of the objectives (Zhang et al., 2022).

More generally, causal inference from purely observational data (i.e. a static dataset without
any controlled intervention) is only achievable under several specific assumptions (Hernan and
Robins, 2023). Two such key assumptions are ignorability (Rubin, 1978), which means there
are no unmeasured confounders in the data, and positivity (Rosenbaum and Rubin, 1983),
which implies that all possible interventions have a non-zero probability of being administered
for all possible values of covariates. Note that it is not possible to test for ignorability, given
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an observational dataset. While positivity can be estimated by analyzing the dataset, for a
specified set of covariates and interventions, in high-dimensional feature-learning settings,
one does not really have a clear sense of what the covariates are, in order to reliably perform
such tests.

In this thesis, we are concerned with classification problems on static datasets (more par-
ticularly visual object recognition problems), while the discussions in the classical causal
inference literature are framed within the nomenclature and structure of problems involving
the estimation of average treatment effects of a drug. While analogies between the two
experimental setups are not immediate, one can intuitively sense connections, which have
been developed more formally in the literature (Chalupka et al., 2014; Schölkopf et al., 2012;
Arjovsky et al., 2019; Ilse et al., 2021). In such settings, an intervention can correspond
to the choice of environment to collect data from, which can involve curating images from
a different location of origin or via different collection schemes, or simply performing data
transformations. The assumption of ignorability would now correspond to the notion that
there is no latent confounding variable in the data generating and collection process. The
assumption of positivity implies that all possible environments have been sampled, for all
object categories. One can imagine that such assumptions are less likely to be satisfied in a
high-dimensional problem of the sort deep learning applications are concerned with, given
the prevalence of the dataset biases discussed previously. Large-scale curation spanned across
multiple diverse environments can potentially improve the likelihood of satisfying some of
these assumptions.

Since we are concerned with static datasets in the deep learning context, with no guarantees
of key assumptions being met or being testable, we do not discuss causal inference further
in our articles, although recovering a true and complete causal model might be expected to
provide optimal behavior under distributional shift (Schölkopf et al., 2012). Our perspective
is rather that one can make useful predictions in many real-life applications based on robust
observational associations, without necessarily communicating a causal interpretation. We
shall interpret “robust associations” to imply that feature-label correlations are observed to
be stable across environments of interest. Environments of interest may be inferred from
existing datasets (Creager et al., 2020), or provided by meta-data (Koh et al., 2021), or
artificially introduced through data transformations (Gulrajani and Lopez-Paz, 2020).

Hyper-parameter selection. The final aspect we will touch upon in this chapter is the
question of hyper-parameter tuning (or model selection) when developing methods for OOD
generalization. As mentioned in the introductory chapter, the standard recipe for IID settings
is to hold out a fraction of training data to estimate test error upon. When we wish to
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estimate OOD error, we have the problem of not quite knowing what the OOD data would
look like. This problem seems somewhat ill-posed, but one sensible approach can be to collect
an OOD validation set which we believe changes in ways from the training set that might
be considered representative of similar, but likely different, changes at deployment. While
one still cannot reliably estimate OOD test error, one can adopt a pragmatic perspective
and assume that if, given data from a set of environments, average generalization improves
on held-out environments (one at a time), then it is intuitively likely that corresponding
improvements may be achieved on another yet-unseen environment. Evidently, none of
this reasoning can come with any guarantees or formal development without placing strong
assumptions on the available data distributions, and the ones likely to be encountered in the
wild, which we have presumed to be unknown or difficult to anticipate in the problem setting.

54



Prologue to the first article

Detecting semantic anomalies. Faruk Ahmed and Aaron Courville. Proceedings of the
34th AAAI Conference on Artificial Intelligence, 2020 (presented as a Spotlight Talk).

Abstract. We critically appraise the recent interest in out-of-distribution (OOD) detection and question

the practical relevance of existing benchmarks. While the currently prevalent trend is to consider different

datasets as OOD, we argue that out-distributions of practical interest are ones where the distinction is

semantic in nature for a specified context, and that evaluative tasks should reflect this more closely. Assuming

a context of object recognition, we recommend a set of benchmarks, motivated by practical applications.

We make progress on these benchmarks by exploring a multi-task learning based approach, showing that

auxiliary objectives for improved semantic awareness result in improved semantic anomaly detection, with

accompanying generalization benefits.

Key Words: out-of-distribution detection, systematic generalization, anomaly detection.

Context. At ICLR 2017, Hendrycks and Gimpel (2017) introduced the task of OOD detection,
along with a set of benchmarks which were (and to an extent still are) widely adopted by
the community. The motivation behind the task was that being able to detect when inputs
to an AI model come from a distribution different to the training distribution would allow
us to screen such inputs which could potentially lead to unpredictable predictive behavior.
The proposed benchmarks involved a selection of different datasets for every in-distribution
training set; for example, one typical test-suite involved CIFAR-10 as the in-distribution
set while the OOD sets were {Scene Understanding Dataset (SUN), Gaussian noise}. This
style of dataset-shift detection rapidly became widely adopted as standard, receiving some
augmentations of the OOD set in later works such as Liang et al. (2018), which added
Tiny-Imagenet to the set.

Article contributions. We suggested that one ought to take into account the different
ways distributions might be different. In particular, distributional shift might be semantic in



nature or non-semantic. While semantic differences should be acknowledged, non-semantic
shifts are typically ones we wish our models to be robust to, otherwise we start to move
away from the desired ML goal of generalization. Non-semantic differences (such as low-level
differences in images) are also typically easier to detect, perhaps the reason behind the
flattering performances reported in the literature. Arguing for the relevance of detecting
semantic shift, we recommended restricting the OOD suite to held-out categories, as in
the open-set recognition framework. While the previous benchmarks did involve semantic
differences, they also included overwhelming non-semantic differences, due to the use of
differently curated datasets for different tasks. By way of supporting arguments, (1) we found
existing high-performant methods to significantly under-perform on our benchmarks compared
to dataset-shift detection, and (2) we showed that a trivial baseline consisting of a pixel-wise
Gaussian likelihood model performed competitively with SOTA methods on dataset-shift
detection for CIFAR-10. We also curated a set of small-scale, fine-grained semantic anomaly
detection benchmarks based off of ImageNet. We showed how one might improve performance
at these proposed benchmarks by using auxiliary self-supervised tasks during training, both
at detecting semantic distributional shift as well as improving generalization. Source code is
available at https://github.com/Faruk-Ahmed/detecting_semantic_anomalies.

Subsequent developments. Our critiques have motivated subsequent development of OOD
detection benchmarks more aligned with detecting semantic distributional shift, along with
adoption of our recommended evaluation settings. New benchmarks and evaluation protocols
focused on semantic distributional shift citing our arguments appear in Hendrycks et al.
(2021); Arora et al. (2021); Doorenbos et al. (2022); Yang et al.; Bhaskhar et al. (2022).
Our benchmarks were used for evaluating methods in Sastry and Oore (2020); Deecke et al.
(2020; 2021). Furthermore, while we had demonstrated that auxiliary self-supervised tasks
can improve semantic anomaly detection by potentially improving semanticity of feature
spaces, Deecke et al. (2021) show how performance can be improved significantly further if
one adopts large-scale pre-training followed by training with parameter-drift penalties.

Author contributions. The contributions of the authors are the following.

• Aaron Courville had initially suggested using held-out categories to evaluate se-
mantic understanding in generative models, which we had explored in my Masters
thesis (Ahmed, 2018). Aaron supervised the project at all stages.

• I developed further context and motivation for such benchmarks with regards to build-
ing reliable classifiers, proposed the idea for multi-task training with self-supervised
objectives, designed and implemented the experiments, and wrote the paper.
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Chapter 3

Detecting semantic anomalies

3.1. Introduction

In recent years, concerns have been raised about modern neural network based classification
systems providing incorrect predictions with high confidence (Guo et al., 2017). A possibly-
related finding is that classification-trained CNNs find it much easier to “overfit" to low-level
properties such as texture (Geirhos et al., 2019), canonical pose (Alcorn et al., 2019), or
contextual cues (Beery et al., 2018) rather than learning globally coherent characteristics of
objects. A subsequent worry is that such classifiers, trained on data sampled from a particular
distribution, are likely to be misleading when encountering novel situations in deployment.
For example, silent failure might occur due to equally confident categorization of unknown
objects into known categories (due to shared texture, for example). This last concern is one of
the primary motivating reasons for wanting to be able to detect when test data comes from a
different distribution than that of the training data. This problem has been recently dubbed
out-of-distribution (OOD) detection (Amodei et al., 2016; Hendrycks and Gimpel, 2017),
but is also referred to as anomaly/novelty/outlier detection in the contemporary machine
learning context. Evaluation is typically carried out with benchmarks of the style proposed
in Hendrycks and Gimpel (2017), where different datasets are treated as OOD after training
on a particular in-distribution dataset. This area of research has been steadily developing,
with some additions of new OOD datasets to the evaluation setup (Liang et al., 2018), and
improved results.

Current benchmarks are ill-motivated. Despite such tasks rapidly becoming the standard
benchmark for OOD detection in the community, we suggest that, taken as a whole, they are
not very well-motivated. For example, the object recognition dataset CIFAR-10 (consisting



of images of objects placed in the foreground), is typically trained and tested against noise,
or different datasets such as downsampled LSUN (a dataset of scenes), or SVHN (a dataset
of house numbers), or tiny-Imagenet (a different dataset of objects). For the simpler cases
of noise, or datasets with scenes or numbers, low-level image statistics are sufficient to tell
them apart. While choices like tiny-Imagenet might seem more reasonable, it has been
noted that particular datasets have particular biases related to specific data collection and
curation quirks (Torralba and Efros, 2011; Tommasi et al., 2017), which renders the problem
of treating different datasets for OOD detection questionable. It is possible we are only
getting better at distinguishing such idiosyncrasies. As an empirical illustration, we show in
Appendix A.3 that very trivial baselines can perform reasonably well at existing benchmarks.

Semantic distributional shift is relevant. We call into question the practical relevance
of these evaluative tasks which are currently treated as standard by the community. While
they might have some value as very preliminary reliability certification or as a testbed for
diagnosing peculiar pathologies (for example, undesired behaviours of unsupervised density
models, as in Nalisnick et al. (2019)), their significance as benchmarks for practical OOD
detection is less clear. The implicit goal for the current style of benchmarks is that of
detecting one or more of a wide variety of distributional shifts, which mostly consist of
irrelevant factors when high-dimensional data has low-dimensional semantics. We argue
that this is misguided; in a realistic setting, distributional shift across non-semantic factors
(for example, camera and image-compression artefacts) is something we want to be robust
to, while shift in semantic factors (for example, object identity) should be flagged down as
anomalous or novel. Therefore, OOD detection is well-motivated only when the distributional
shift is semantic in nature.

Context determines semantic factors. In practical settings, OOD detection becomes
meaningful only after acknowledging context, which identifies relevant semantic factors of
interest. These are the factors of variation whose unnatural deviation are of concern to
us in our assumed context. For example, in the context of scene classification, a kitchen
with a bed in the middle is an anomalous observation. However, in the context of object
recognition, the primary semantic factor is not the composition of scene-components anymore,
but the identity of the foreground object. Now the unusual context should not prevent correct
object recognition. If we claim that our object recognition models should be less certain
of identifying an object in a novel context, it amounts to saying that we would prefer our
models to be biased. In fact, we would like our models to systematically generalize (Fodor
and Pylyshyn, 1988) in order to be trustworthy and useful. We would like them to form
predictions from a globally coherent assimilation of the relevant semantic factors for the task,
while being robust to their composition with non-semantic factors.
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Without context, OOD detection is too broad to be meaningful. The problem of OOD
detection then, as currently treated by the community, suffers from imprecision due to context-
free presumption and evaluation. Even though most works assume an underlying classification
task, the benchmark OOD datasets include significant variation over non-semantic factors.
OOD detection with density models are typically presented as being unaware of a downstream
module, but we argue that such a context must be specified in order to determine what
shifts are of concern to us, since we typically do not care about all possible variations. Being
agnostic of context when discussing OOD detection leads to a corresponding lack of clarity
about the implications of underlying methodologies in proposed approaches. The current
benchmarks and methods therefore carry a risk of potential misalignment between evaluative
performance and field performance in practical OOD detection problems. Henceforth, we
shall refer to such realistic OOD detection problems, where the concerned distributional shift
is a semantic variation for a specified context, by the term anomaly detection.

Contributions and overview. Our contributions in this paper are summarized as follows.

1. Semantic shifts are interesting, and benchmarks should reflect this more closely: We
provided a grounded discussion about the relevance of semanticity in the context of a task
for realistic OOD (anomaly) detection. Under the view of regarding distributional shifts as
being either semantic or non-semantic for a specified context, we concluded that semantic
shifts are of practical interest. If we want to deploy reliable models in the real world, we
typically wish to achieve robustness against non-semantic shift.

2. More practical benchmarks for anomaly detection: Although our discussion applies
generally, in this paper we assume the common context of object recognition. In this context,
unseen object categories may be considered anomalous at the “highest level” of semanticity.
Anomalies corresponding to intermediate levels of semantic decomposition can also be relevant;
for example, a liger should result in 50-50 uncertainties if the training data contains only
lions and tigers. However, such anomalies are significantly harder to curate, requiring careful
interventions at collection-time. Since detection of novel categories is a compelling anomaly
detection task in itself, we recommend benchmarks that reflect such applications in section 2.

3. Auxiliary objectives for improved semantic representation improves anomaly detection:
Following our discussion about the relevance of semanticity, in sections 4 and 5 we investigate
the effectiveness of multi-task learning with auxiliary self-supervised objectives. These have
been shown to result in semantic representations, measured through linear separability by
object categories. Our experimental results are indicative that such augmented objectives
lead to improved anomaly detection, with accompanying improvements in generalization.
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Table 1. Sizes of proposed benchmark subsets from ILSVRC2012. The training
set consists of roughly 1300 images per member, and 50 images per member in the
test set (which come from the validation set images in the ILSVRC2012 dataset).

Subset Number of members Total training images Total test images

Dog (hound dog) 12 14864 600
Car 10 13000 500
Snake (colubrid snake) 9 11700 450
Spider 6 7800 300
Fungus 6 7800 300

3.2. Motivation and proposed tasks

In order to develop meaningful benchmarks, we begin by considering some practical applica-
tions where being able to detect anomalies, in the context of classification tasks, would find
use.

Nature studies and monitoring: Biodiversity scientists want to keep track of variety and
statistics of species across the world. Online tools such as iNaturalist 1 enable photo-based
classification and subsequent cataloguing in data repositories from pictures uploaded by
naturalists. In such automated detection tools, a potentially novel species should result in a
request for expert help rather than misclassification into a known species, and detection of
undiscovered species is in fact a task of interest. A similar practical application is camera-trap
monitoring of members in an ecosystem, notifying caretakers upon detection of invasive
species (Fedor et al., 2009; Willi et al., 2019). Taxonomy of collected specimens is often
backlogged due to the human labour involved. Automating digitization and identification can
help catch up, and often new species are brought to light through the process (Carranza-Rojas
et al., 2017), which obviously depends on effective detection of novel specimens.

Medical diagnosis and clinical microbiology: Online medical diagnosis tools such as
Chester (Cohen et al., 2019) can be impactful at improving healthcare levels worldwide. Such
tools should be especially adept at being able to know when faced with a novel pathology
rather than categorizing into a known subtype. Similar desiderata applies to being able to
quickly detect new strains of pathogens when using machine learning systems to automate
clinical identification in the microbiology lab (Zieliński et al., 2017).

AI safety: Amodei et al. (2016) discuss the problem of distributional shift in the context of
autonomous agents operating in our midst, with examples of actions that do not translate well
1https://www.inaturalist.org
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across domains. A similar example in that vein, grounded in a computer vision classification
task, is the contrived scenario of encountering a novel vehicle (that follows different dynamics
of motion), which might lead to a dangerous decision by a self-driving car which fails to
recognize unfamiliarity.

Having compiled the examples above, we can now try to come up with an evaluative setting
more aligned with realistic applications. The basic assumptions we make about possible
evaluative tasks are: (i) that anomalies of practical interest are semantic in nature; (ii)
that they are relatively rare events whose detection is of more primary relevance than
minimizing false positives; and (iii) that we do not have access to examples of anomalies.
These assumptions guide our choice of benchmarks and evaluation.

Recommended benchmarks A very small number of recent works (Akcay et al., 2018;
Zenati et al., 2018) have considered a case that is more aligned with the goals stated above.
Namely, for a choice of dataset, for example MNIST, train as many versions of classifiers as
there are classes, holding out one class every time. At evaluation time, score the ability of
being able to detect the held out class as anomalous. This is a setup more clearly related to
the task of being able to detect semantic anomalies, holding dataset-bias factors invariant to
a significantly greater extent. In this paper, we shall explore this setting with CIFAR-10 and
STL-10, and recommend this as the default benchmark for evaluating anomaly detection in
the context of object recognition. Similar setups apply to different contexts. We discourage
the recently-adopted practice of treating one category as in-distribution and many other
categories as out-distributions (as in Pidhorskyi et al. (2018) and Golan and El-Yaniv (2018),
for example). While this setting is not aligned with the context of multi-object classification,
it relies on a dataset constructed for such a purpose. Moreover, practical situations calling
for one-class modelling typically consider anomalies of interest to be (often subtle) variations
of the same object, and not a set of very distinct categories.

While the hold-out-class setting for CIFAR-10 and STL-10 is a good setup for testing
anomaly detection of disparate objects, a lot of applications, including some of the ones we
described earlier, require detection of more fine-grained anomalies. For such situations, we
propose a suite of tasks comprised of subsets of ILSVRC2012 (Russakovsky et al., 2015), with
fine-grained subcategories. For example, the spider subset consists of members tarantula,
Argiope aurantia, barn spider, black widow, garden spider, wolf spider. We also propose
fungus, dog, snake, and car subsets. These subsets have varied sizes, with some of
them being fairly small (see table 1). Although this is a significantly harder task, we believe
this setting aligns with the practical situations we described above, where sometimes large
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quantities of labelled data are not always available, and a particular fine-grained selection of
categories is of interest. See Appendix A.1 for more details about our construction.

Evaluation Current works tend to mainly use both Area under the Receiver-Operator-
Characteristics (AUROC) and Area under Precision-Recall curve (AUPRC) to evaluate
performance on anomaly detection. In situations where positive examples are not only much
rarer, but also of primary interest for detection, AUROC scores are a poor reflection of
detection performance; precision is more relevant than the false positive rate (Fawcett, 2006;
Davis and Goadrich, 2006; Avati et al., 2018). We shall not inspect AUROC scores because
in all of our settings, normal examples significantly outnumber anomalous examples, and
AUROC scores are insensitive to skew, thus resulting in optimistic scores (Davis and Goadrich,
2006). Precision and recall are calculated as

precision = true positives
true positives + false positives , (3.2.1)

recall = true positives
true positives + false negatives , (3.2.2)

and a precision-recall curve is then defined as a set of precision-recall points, for a varying
threshold, t,

PR curve ≜ {recall(t), precision(t), −∞ < t < ∞}. (3.2.3)

The area under the precision-recall curve is calculated by varying the threshold t over a range
spanning the data, and creating a finite set of points for the PR curve. One alternative is
to interpolate these points, producing a continuous curve as an approximation to the true
curve, and computing the area under the interpolation by, for example, the trapezoid rule.
Interpolation in a precision-recall curve can sometimes be misleading, as studied in Boyd
et al. (2013), who recommend a number of more robust estimators. Here we use the standard
approximation to average precision as the weighted mean of precisions at thresholds, weighted
by the increase in recall from the previous threshold.

average precision =
∑

k

precisionk(recallk − recallk−1). (3.2.4)

3.3. Related work

Evaluative tasks As discussed earlier, the style of benchmarks widely adopted today follows
the recommendation in Hendrycks and Gimpel (2017). Among follow-ups, the most significant
successor has been Liang et al. (2018) which augmented the suite of tests with slightly more
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reasonable choices: for example, tiny-Imagenet is considered as out-of-distribution for
in-distribution datasets such as CIFAR-10. However, on closer inspection, we find that
tiny-Imagenet shares semantic categories with CIFAR-10, such as species of {dogs, cats,
frogs, birds}, so it is unclear how such choices of evaluative tasks correspond to realistic
anomaly detection problems. Work in the area of open-set recognition is closer to a realistic
setup in terms of evaluation; in Bendale and Boult (2016), detection of novel categories
is tested with a set of images corresponding to different classes that were discontinued in
subsequent versions of Imagenet, but later work (Dhamija et al., 2018) relapsed into treating
very different datasets as novel. We do not encourage using one particular split of a collection
of unseen classes as anomalous. This is because such a one-time split might favour implicit
biases in the predefined split, and the chances of this happening is reduced with multiple
hold-out trials. As mentioned earlier, a small number of works have already used the hold-out-
class style of tasks for evaluation. Unfortunately, due to a lack of a motivating discussion, the
community at large continues to adopt the tasks in Hendrycks and Gimpel (2017) and Liang
et al. (2018).

Approaches to OOD detection In Hendrycks and Gimpel (2017), the most natural
baseline for a trained classifier is presented, where the detection score is simply given by the
predictive confidence of the classifier (MSP). Follow-up work in Liang et al. (2018) proposed
adding a small amount of adversarial perturbation, followed by temperature scaling of the
softmax (ODIN). Methodologically, the approach suffers from having to pick a temperature
and perturbation weight per anomaly-dataset. Complementary methods such as confidence
calibration of DeVries and Taylor (2018), have been shown to improve performance of MSP
and ODIN.

Using auxiliary datasets as surrogate anomalies has been shown to improve performance
on existing benchmarks in Hendrycks et al. (2019). This approach is limited, due to its
reliance on other datasets, but a more practical variant in Lee et al. (2018) uses a GAN to
generate negative samples. However, Lee et al. (2018) suffers from the methodological issue
of hyperparameters being optimized per anomaly-dataset. We believe that such contentious
practices arise from a lack of a clear discussion of the nature of the tasks we should be
concerned with, and a lack of grounding in practical applications which would dictate proper
methodology. The primary goal of our paper is to help fill this gap.

Shalev et al. (2018) augment the training set with semantically similar labels, but it is not
always practical to assume access to a corpora providing such labels. In the next part of
the paper, we explore a way to potentially induce more semantic representation, with the
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Table 2. Multi-task augmentation with the self-supervised objective of predicting
rotation improves generalization.

CIFAR-10 STL-10

Classification only 95.87 ± 0.05 85.51 ± 0.17
Classification+rotation 96.54 ± 0.08 88.98 ± 0.30

Fig. 1. Plots of costs, accuracies, and average precision for hold-out-class experi-
ments with 3 categories each from CIFAR-10 (top) and STL-10 (bottom), using the
MSP method (Hendrycks and Gimpel, 2017). While classification performance is not
correlated with performance at anomaly detection (compare test accuracy numbers
with average precision scores), the “pattern” of improvement at anomaly detection
appears roughly related to generalization (compare the coarse shape of test accuracy
curves with that of average precision curves).

hope that this would lead to corresponding improvements in semantic anomaly detection and
generalization.

3.4. Encouraging semantic representations with auxiliary
self-supervised objectives

We hypothesize that classifiers that learn representations which are more oriented toward
capturing semantic properties would naturally lead to better performance at detecting
semantic anomalies. “Overfitting” to low-level features such as colour or texture without
consideration of global coherence might result in potential confusions in situations where
the training data is biased and not representative. For a lot of existing datasets, it is quite
possible to achieve good generalization performance without learning semantic distinctions, a
possibility that spurs the search for removing algorithmic bias (Zemel et al., 2013), and which
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is often exposed in embarrassing ways. As a contrived example, if the training and testing
data consists of only one kind of animal which is furry, the classifier only needs to learn
about fur-texture, and can ignore other meaningful characteristics such as the shape. Such a
system would fail to recognize another furry, but differently shaped creature as novel, while
achieving good test performance. Motivated by this line of thinking, we ask the question of
how we might encourage classifiers to learn more meaningful representations.

Multi-task learning with auxiliary objectives. Caruana (1993) describes how sharing
parameters for learning multiple tasks, which are related in the sense of requiring similar
features, can be a powerful tool for inducing domain-specific inductive biases in a learner.
Hand-design of inductive biases requires complicated engineering, while using the training
signal from a related task can be a much easier way to achieve similar goals. Even when
related tasks are not explicitly available, it is often possible to construct one. We explore such
a framework for augmenting object recognition classifiers with auxiliary tasks. Expressed
in notation, given the primary loss function, ℓprimary, which is the categorical cross-entropy
loss in the case of classification, and the auxiliary loss ℓauxiliary corresponding to the auxiliary
task, we aim to optimize the combined loss

ℓcombined(θ; D) = ℓprimary(θ; D) + λℓauxiliary(θ; D), (3.4.1)

where θ are the shared parameters across both tasks, D is the dataset, λ is a hyper-parameter
we learn by optimizing for classification accuracy on the validation set. In practice, we
alternate between the two updates rather than taking one global step; this balances the
training rates of the two tasks.

Auxiliary tasks. Recently, there has been strong interest in self-supervision applied to
vision (Doersch et al., 2015; Pathak et al., 2016; Noroozi and Favaro, 2016; Zhang et al.,
2017; van den Oord et al., 2018; Gidaris et al., 2018; Caron et al., 2018), exploring tasks that
induce representations which are linearly separable by object categories. These objectives
naturally lend themselves as auxiliary tasks for encouraging inductive biases towards semantic
representations. First, we experiment with the recently introduced task in Gidaris et al.
(2018), which asks the learner to predict the orientation of a rotated image. In table 2, we show
significantly improved generalization performance of classifiers on CIFAR-10 and STL-10
when augmented with the auxiliary task of predicting rotation. Details of experimental
settings, and performance on anomaly detection, are in the next section. We also perform
experiments on anomaly detection with contrastive predictive coding (van den Oord et al.,
2018) as the auxiliary task and find that similar trends continue to hold. The addition of
such auxiliary objectives is complementary to the choice of scoring anomalies. Additionally,
it enables further augmentation with more auxiliary tasks (Doersch and Zisserman, 2017).
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Table 3. We train ResNet classifiers on CIFAR-10 holding out each class per run,
and score detection with average precision for the maximum softmax probability
(MSP) baseline in (Hendrycks and Gimpel, 2017) and ODIN (Liang et al., 2018). We
find that augmenting with rotation results in improved anomaly detection as well as
generalization (contrast columns in the right half with the left).

CIFAR-
10

Classification-only Rotation-augmented

Anomaly MSP ODIN Accuracy MSP ODIN Accuracy

airplane 43.30 ± 1.13 48.23 ± 1.90 96.00 ± 0.16 46.87 ± 2.10 49.75 ± 2.30 96.91 ± 0.02
automobile 14.13 ± 1.33 13.47 ± 1.50 95.78 ± 0.12 17.39 ± 1.26 17.35 ± 1.12 96.66 ± 0.03
bird 46.55 ± 1.27 50.59 ± 0.95 95.90 ± 0.17 51.49 ± 1.07 54.62 ± 1.10 96.79 ± 0.06
cat 38.06 ± 1.31 38.97 ± 1.43 97.05 ± 0.12 53.12 ± 0.92 55.80 ± 0.76 97.46 ± 0.07
deer 49.11 ± 0.53 53.03 ± 0.50 95.87 ± 0.12 50.35 ± 2.57 52.82 ± 2.96 96.76 ± 0.09
dog 25.39 ± 1.17 24.41 ± 1.05 96.64 ± 0.13 32.11 ± 0.82 32.46 ± 1.39 97.36 ± 0.06
frog 40.91 ± 0.81 42.21 ± 0.48 95.65 ± 0.09 52.39 ± 4.58 54.44 ± 5.80 96.51 ± 0.12
horse 36.18 ± 0.77 36.78 ± 0.82 95.64 ± 0.08 39.93 ± 2.30 39.65 ± 4.31 96.27 ± 0.07
ship 28.35 ± 0.81 30.61 ± 1.46 95.70 ± 0.15 29.36 ± 3.16 28.82 ± 4.63 96.66 ± 0.17
truck 27.17 ± 0.73 28.01 ± 1.06 96.04 ± 0.24 29.22 ± 2.87 29.93 ± 3.86 96.91 ± 0.12

Average 34.92 ± 0.41 36.63 ± 0.61 96.03 ± 0.00 40.22 ± 0.16 41.56 ± 0.15 96.83 ± 0.02

3.5. Evaluation

We study the two existing representative baselines of maximum softmax probability
(MSP) (Hendrycks and Gimpel, 2017), and ODIN (Liang et al., 2018) on the proposed
benchmarks. For ODIN, it is unclear how to choose the hyperparameters for temperature
scaling and the weight for adversarial perturbation without assuming access to anoma-
lous examples, an assumption we consider unrealistic in most practical settings. We fix
T = 1000, ϵ = 5e-5 for all experiments, following the most common setting.

3.5.1. Experimental settings

Settings for CIFAR-10 and STL-10. Our base network for all CIFAR-10 experiments is
a Wide ResNet (Zagoruyko and Komodakis, 2016) with 28 convolutional layers and a widening
factor of 10 (WRN-28-10) with the recommended dropout rate of 0.3. Following Zagoruyko
and Komodakis (2016), we train for 200 epochs, with an initial learning rate of 0.1 which is
scaled down by 5 at the 60th, 120th, and 160th epochs, using stochastic gradient descent with
Nesterov’s momentum at 0.9. We train in parallel on 4 Pascal V100 GPUs with batches of
size 128 on each. For STL-10, we use the same architecture but append an extra group of 4
residual blocks with the same layer widths as in the previous group. We use a widening factor
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Table 4. Average precision scores for hold-out-class experiments with STL-10. We
observe that the same trends in improvements hold as with the previous experiments
on CIFAR-10.

STL-10 Classification-only Rotation-augmented
Anomaly MSP ODIN Accuracy MSP ODIN Accuracy

airplane 19.21 ± 1.05 23.46 ± 1.65 85.18 ± 0.20 22.21 ± 0.76 23.37 ± 1.71 89.24 ± 0.12
bird 29.05 ± 0.69 33.51 ± 0.36 85.91 ± 0.36 36.12 ± 2.08 40.08 ± 3.30 89.91 ± 0.29
car 14.52 ± 0.37 16.14 ± 0.83 84.32 ± 0.55 15.95 ± 2.20 16.87 ± 2.94 89.52 ± 0.44
cat 25.21 ± 0.93 27.92 ± 0.84 86.95 ± 0.36 29.34 ± 1.30 31.35 ± 1.88 90.89 ± 0.26
deer 24.29 ± 0.53 25.94 ± 0.49 85.34 ± 0.35 27.60 ± 2.22 29.71 ± 2.55 89.20 ± 0.17
dog 23.42 ± 0.60 23.44 ± 1.18 87.78 ± 0.45 26.78 ± 0.71 26.14 ± 0.62 91.37 ± 0.33
horse 21.31 ± 1.01 22.19 ± 0.75 85.52 ± 0.21 23.79 ± 1.46 23.59 ± 1.63 89.60 ± 0.11
monkey 23.67 ± 0.83 21.98 ± 0.91 86.66 ± 0.31 28.43 ± 1.67 28.32 ± 1.20 90.07 ± 0.23
ship 14.61 ± 0.12 13.78 ± 0.63 84.65 ± 0.21 16.79 ± 1.20 15.37 ± 1.22 89.33 ± 0.15
truck 15.43 ± 0.17 14.35 ± 0.12 85.34 ± 0.17 17.05 ± 0.50 16.59 ± 0.60 90.08 ± 0.38

Average 21.07 ± 0.25 22.27 ± 0.29 85.77 ± 0.13 24.41 ± 0.23 25.14 ± 0.45 89.92 ± 0.08

Table 5. Averaged average precisions for the proposed subsets of Imagenet, with
rotation-prediction as the auxiliary task. Each row shows averaged performance
across all members of the subset. A random detector would score at the skew rate.

Classification-only Rotation-augmented
Subset Skew MSP ODIN Accuracy MSP ODIN Accuracy

dog 8.33 23.92 ± 0.49 25.85 ± 0.09 85.09 ± 0.14 24.66 ± 0.58 25.73 ± 0.87 85.25 ± 0.17
car 10.00 21.54 ± 0.62 22.49 ± 0.54 77.17 ± 0.10 21.66 ± 0.19 22.38 ± 0.46 76.72 ± 0.19
snake 11.11 18.62 ± 0.93 19.18 ± 0.79 69.74 ± 1.63 20.23 ± 0.18 21.17 ± 0.12 70.51 ± 0.48
spider 16.67 21.20 ± 0.56 24.15 ± 0.72 68.40 ± 0.21 22.90 ± 1.29 25.10 ± 1.78 68.68 ± 0.77
fungus 16.67 42.56 ± 0.49 44.59 ± 1.46 88.23 ± 0.45 44.19 ± 1.86 46.86 ± 1.13 88.47 ± 0.43

of 4 instead of 10, and batches of size 64 on each of the 4 GPUs, and train for twice as long.
We use the same optimizer settings as with CIFAR-10. In both cases, we apply standard
data augmentation of random crops (after padding) and random horizontal reflections.

Settings for Imagenet. For experiments with the proposed subsets of Imagenet, we
replicate the architecture we use for STL-10, but add a downsampling average pooling layer
after the first convolution on the images. We do not use dropout, and use a batch size of 64,
train for 200 epochs; otherwise all other details follow the settings for STL-10. The standard
data augmentation steps of random crops to a size of 224 × 224 and random horizontal
reflections are applied.

Predicting rotation as an auxiliary task. For adding rotation-prediction as an auxiliary
task, all we do is append an extra linear layer alongside the one that is responsible for object
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Table 6. Averaged average precisions for the proposed subsets of Imagenet where
CPC is the auxiliary task.

Classification-only CPC-augmented
Subset Skew MSP ODIN Accuracy MSP ODIN Accuracy

dog 8.33 20.84 ± 0.50 22.77 ± 0.74 83.12 ± 0.26 21.43 ± 0.63 24.08 ± 0.63 84.16 ± 0.07
car 10.00 19.86 ± 0.21 21.42 ± 0.48 75.42 ± 0.11 22.21 ± 0.44 23.61 ± 0.57 78.88 ± 0.15
snake 11.11 18.20 ± 0.76 18.67 ± 1.07 66.15 ± 1.89 18.78 ± 0.40 20.39 ± 0.60 68.02 ± 0.85
spider 16.67 22.03 ± 0.68 24.08 ± 0.70 66.65 ± 0.42 22.28 ± 0.60 23.37 ± 0.68 68.67 ± 0.36
fungus 16.67 39.19 ± 1.26 41.71 ± 1.94 87.05 ± 0.06 42.08 ± 0.57 45.05 ± 1.11 88.91 ± 0.46

recognition. λ is tuned to 0.5 for CIFAR-10, 1.0 for STL-10, and a mix of 0.5 and 1.0 for
Imagenet. The optimizer and regularizer settings are kept the same, with the learning rate
decayed along with the learning rate for the classifier at the same scales.

We emphasize that this procedure is not equivalent to data augmentation, since we do not
optimize the linear classification layer for rotated images. Only the rotation prediction
linear layer gets updated for inputs corresponding to the rotation task, and only the linear
classification layer gets updated for non-rotated, object-labelled images. Asking the classifier
to be rotation-invariant would require the auxiliary task to develop a disjoint subset in the
shared representation that is not rotation-invariant, so that it can succeed at predicting
rotations. This encourages an internally split representation, thus diminishing the potential
advantage we hope to achieve from a shared, mutually beneficial space.

CPC as an auxiliary task. We also experimented with contrastive predictive coding van den
Oord et al. (2018) as an auxiliary task. Since this is a patch-based method, the input spaces
are different across the two tasks: that of predicting encodings of patches in the image,
and that of predicting object category from the entire image. We found that two tricks
are very useful for fostering co-operation: (i) replacing the normalization layers with their
conditional variants de Vries et al. (2017) (conditioning on the task at hand), and (ii) using
symmetric-padding instead of zero-padding. Since CPC induces significant computational
overhead, we resorted to a lighter-weight base network. While this comes at the cost of a
drop in performance, we still find, in table 6, that similar patterns of improvements continue
to hold. We provide further details in Appendix A.2.
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Table 7. Improving test set performance might not help.

Method Accuracy Av. Prec. with MSP

Base model 96.03 ± 0.00 34.92 ± 0.41
Random-center-masked 96.27 ± 0.05 34.41 ± 0.74
Rotation-augmented 96.83 ± 0.02 40.22 ± 0.16

3.5.2. Discussion

Self-supervised multi-task learning is effective. In tables 3 and 4 we report average
precision scores on CIFAR-10 and STL-10 for the baseline scoring methods MSP (Hendrycks
and Gimpel, 2017) and ODIN (Liang et al., 2018). We note that ODIN, with fixed hyperpa-
rameter settings across all experiments, continues to outperform MSP most of the time. When
we augment our classifiers with the auxiliary rotation-prediction task, we find that anomaly
detection as well as test set accuracy are markedly improved for both scoring methods. As
we have remarked earlier, a representation space with greater semanticity should be expected
to bring improvements on both fronts. All results report mean ± standard deviation over 3
trials. In table 5, we repeat the same process for the much harder Imagenet subsets. Taken
together, our results indicate that multi-task learning with self-supervised auxiliary tasks can
be an effective approach for improving anomaly detection, with accompanying improvements
in generalization.

Improved test set accuracy is not enough. Training methods developed solely to improve
generalization, without consideration of the affect on semantic understanding, might perform
worse at detecting semantic anomalies. This is because it is often possible to pick up on
low-level or contextual discriminatory patterns, which are almost surely biased in relatively
small datasets for complex domains such as natural images, and perform reasonably well on
the test set. To illustrate this, we run an experiment where we randomly mask out a 16 × 16
region in CIFAR-10 images from within the central 21 × 21 region. In table 7, we show that
while this leads to improved test accuracies, anomaly detection suffers (numbers are averages
across hold-out-class trials). This suggests that while the masking strategy is effective as a
regularizer, it might come at the cost of less semantic representation. Certain choices can
therefore result in models with seemingly improved generalization but which have poorer
representation for tasks that require a more coherent understanding. For comparison, the
rotation-augmented network achieves both a higher test set accuracy as well as an improved
average precision. This example serves as a caution toward developing techniques that might
achieve reassuring test set performance, while inadvertently following an internal modus
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operandi that is misaligned with the pattern of reasoning we hope they discover. This can
have unexpected consequences when such models are deployed in the real world.

3.6. Conclusion

We provided a critical review of the current interest in OOD detection, concluding that
realistic applications involve detecting semantic distributional shift for a specified context,
which we regard as anomaly detection. While there is significant recent interest in the area,
current research suffers from questionable benchmarks and methodology. In light of these
considerations, we suggested a set of benchmarks which are better aligned with realistic
anomaly detection applications in the context of object classification systems.

We also explored the effectiveness of a multi-task learning framework with auxiliary objectives.
Our results demonstrate improved anomaly detection along with improved generalization
under such augmented objectives. This suggests that inductive biases induced through such
auxiliary tasks could have an important role to play in developing more trustworthy neural
networks.

We note that the ability to detect semantic anomalies also provides us with an indirect view
of semanticity in the representations learned by our mostly opaque deep models.
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Prologue to the second article

Systematic generalisation with group invariant predictions. Faruk Ahmed, Yoshua
Bengio, Harm van Seijen, and Aaron Courville. Proceedings of the 9th International Conference
on Learning Representations, 2021 (presented as a Spotlight Talk).

Abstract. We consider situations where the presence of dominant simpler correlations with the target variable

in a training set can cause an SGD-trained neural network to be less reliant on more persistently correlating

complex features. When the non-persistent, simpler correlations correspond to non-semantic background

factors, a neural network trained on this data can exhibit dramatic failure upon encountering systematic

distributional shift, where the correlating background features are recombined with different objects. We

perform an empirical study on three synthetic datasets, showing that group invariance methods across inferred

partitionings of the training set can lead to significant improvements at such test-time situations. We also

suggest a simple invariance penalty, showing with experiments on our setups that it can perform better than

alternatives. We find that even without assuming access to any systematically shifted validation sets, one can

still find improvements over an ERM-trained reference model.

Key Words: systematic generalization, out-of-distribution, invariance, semantic anomaly
detection.

Context. In the previous article, we suggested that under a compositional perspective of data
with semantic and non-semantic factors, anomaly detection and systematic generalisation
were two sides of the same coin. Specifically, while anomaly detection requires sensitivity to
semantic distributional shift, generalization requires robustness to non-semantic distributional
shift, and we would ideally aim for feature extraction to improve at both tasks simultaneously
in order to build trustworthy classifiers. Building on this perspective, I had subsequently
developed the notion of viewing non-semantic distributional shift as being compositional either
in systematic or non-systematic ways – where systematic composition is a recombination of
seen factors, and non-systematic composition is a combination of seen factors with unseen
ones.



At the same time, Arjovsky et al. (2019) released their draft on Invariant Risk Minimization,
sparking off a strong and renewed interest in OOD generalization within the ML community.
The time was ripe for contributing to a conversation about all things OOD.

Article contributions. In order to perform controlled experiments, we created three syn-
thetic setups where we could create four test sets for every training set – in-distribution,
systematically-shifted, non-systematically-shifted, and semantically-shifted (corresponding to
semantic anomaly detection). We used colors or scene backgrounds to bias a majority group
of a training set with a high degree of background-label correlations. The key difference
between the synthetic construction in Arjovsky et al. (2019) and ours was that we used
no label-noise to amplify failure modes of ERM; rather, we excluded any counterfactuals
to biases in the training set, under which condition ERM sees no reason to promote the
unlearning of majority-group biases in later stages of training. We believe this to be a more
plausible model of ERM-failure in real life datasets.

We also proposed a simple new invariance penalty based on matching average predictive
distributions across majority and minority groups with a KL-divergence. We found this
simple alternative to perform better than, or competitively with, existing invariance penalties
on our synthetic testbeds.

Source code is available at https://github.com/Faruk-Ahmed/predictive_group_
invariance.

Subsequent developments. Our synthetic datasets and the general framework of construc-
tion have been adopted in a number of recent papers, such as in Zhang et al. (2021); Zhou
et al. (2022;); Xu and Jaakkola (2021); Shrestha et al. (2022); Saranrittichai et al. (2022).
Citing our perspectives about controlling for semantic and non-semantic shift separately when
assessing robustness to non-semantic shifts as well as sensitivity to semantic shift, Deecke
et al. (2021) used a similar framework of synthetic experiments in the context of semantic
anomaly detection.

Creager et al. (2021) pointed out that our KL penalty is closely related to the objective of
equalized odds in the fairness literature (Hardt et al., 2016), a connection we were unaware
of when writing the paper. Hu et al. (2022) also used our trick of freezing the last layer when
applying an invariance penalty on the output space, in work about encouraging robustness to
spurious correlations in a multi-task learning setting.

Author contributions. The contributions of the authors are the following.
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• With the motivation of providing a compositional perspective, I conceptualized and
created the novel experimental setup, developed the invariance penalty, performed
the experiments, and wrote the paper.

• Yoshua Bengio had initially suggested exploring the question of recovering useful
partitions of a dataset for invariant learning. Yoshua Bengio and Harm van Seijen
participated in discussions and provided feedback on the draft.

• Aaron Courville supervised and provided feedback at all stages of the project.
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Chapter 4

Systematic generalisation with group invariant
predictions

4.1. Introduction

If a training set is biased such that an easier-to-learn feature correlates with the target
variable throughout the training set, a modern neural network trained with SGD will use
that factor to perform predictions, ignoring co-occurring harder-to-learn complex predictive
features (Shah et al., 2020). Without any other criteria, this is arguably desirable behaviour,
reflecting Occam’s razor. We consider the situation where although such a simpler correlation
is a dominant bias in the training set, a minority group exists within the dataset where the
bias does not manifest. In such cases, relying on more complex predictive features which
more pervasively explain the data can be preferable to simpler ones that only explain most
of it. For example, if all chairs are red, redness ought to be a predictive rule for chairhood
(without any other criteria for predictions). However, if some chairs are not red, and all chairs
have backs and legs, then one can infer that redness is less relevant.

In this paper, we will study object recognition tasks, where the objects correlate strongly
with simpler non-semantic background information for a majority of the images, but not for
a minority group. There is evidence in the literature that modern CNNs tend to fixate on
simpler features such as texture (Geirhos et al., 2019; Brendel and Bethge, 2019), canonical
pose (Alcorn et al., 2019), or contextual background cues (Beery et al., 2018). We are
assuming that semantic features in a classification context (ones that humans would agree
contribute to their labelling of objects) are more likely to persistently correlate with the
target variable, while simpler non-semantic background biases are more likely to exhibit



Table 1. For a coloured MNIST dataset with every digit correlated with a
colour 80% of the time, we see poor performance at systematically varying
tasks. Performance improves if the minority group combines colours from other
biased digits - this provides corrective gradients that promote invariance to
colour. Non-systematic shifts are when unseen colours are used, and anomaly
detection is measured by decreased predictive confidence for an unseen digit
(see Section 2 for more details).

Minority colours In-distribution Non-systematic shift Systematic shift Anomaly detection

Different 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23
Recombinations 98.67 ± 0.39 85.05 ± 1.89 97.56 ± 0.05 46.59 ± 6.93

non-persistent correlations in real-life data collection processes. Based on this assumption,
we will use combinations of objects and backgrounds to compare test-time performances
corresponding to particular distributional shifts.

Consider coloured MNIST digits such that there is a dominant, but not universal, correlation
between colour and digit identity for a majority of the images. In the situation we are
considering, if the biasing colours in the majority group are not recombined with different
digits in the minority group, then there is no signal for the model to disregard these biasing
factors, which are retained as important predictive rules. This can lead to poor performance
at systematic generalisation (Lake and Baroni, 2018), where an object occurs with another
object’s biasing factor, and at semantic anomaly detection (Ahmed and Courville, 2020),
where a novel object appears with one of the biasing factors. In our example with coloured
MNIST, if we colour the minority group digits with the colours used to bias (different) digits
in the majority group, we find a marked improvement at systematically shifted tests over the
case when the colours in the minority group are different colours altogether (see Table 1).

We investigate the role of encouraging robust predictive behaviour across such groups in
terms of improved performance at tasks with such distributional shifts. Our experiments
suggest that training with cross-group invariance penalties can result in models that have
learned to be more reliant on persistent complex correlations without being overwhelmed
by simpler, yet less stable features, as indicated by improved performance at systematic
generalisation and semantic anomaly detection on our synthetic setups.

We find that a recently proposed method (Creager et al., 2020) can be effective at inferring
the majority and minority groups along a learned feature-bias, and we use this inferred
partition to provide us with groups in the training set in our comparative study. We also
suggest a new method for encouraging predictions that rely on persistent correlations across
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(a) Tr (b) Tg (c) Ts (d) Tn (e) Ta

Fig. 1. Coloured MNIST training and test sets for evaluating generalisation
under non-semantic marginal shift and systematic shift, and anomaly detection.
(a) Training set; (b) In-distribution generalisation set Tg, where the test set is
coloured following the same scheme as for Tr; (c) Systematic-shift generalisation
set Ts, where we colour the test set with the biasing colours, but such that
no digit is coloured with its own biasing colour; (d) Non-systematic-shift
generalisation set Tn, where the test is coloured with random colours that are
different from any of the colours seen in the training set; and (e) Semantic
anomaly detection set Ta, where we colour the held-out digits of the test set
randomly with the biasing colours.

such groups, with the intuition that similar predictive behaviour across the groups should be
promoted throughout training. With experiments on three synthetic datasets, we compare
the performance of recently proposed invariance penalties and methods, and find that our
variant can often perform better at tasks involving such test-time distributional shifts.

4.2. Systematic and non-systematic generalisation

If we assume that data x is generated via a composition C of semantic factors hs and non-
semantic factors hn, we can use this decomposition, x = C(hs, hn), to generate test datasets
to capture different scenarios. While hn is actually independent of y, we shall have the
independence property pD(hn | y) = pD(hn) to not hold when there is bias in the dataset D
due to hn – y correlations.

We can evaluate, for a particular target y and our system’s prediction of the target ŷ(x), the
average accuracy E

[
1{ŷ(C(hs, hn)) = y}

]
, as a measure of generalisation for the following

different cases.

In-distribution generalisation. hs ∼ p(hs | y) and hn ∼ p(hn | y): The validation and test
sets are assumed to possess the same biases as the training set, in that the class-conditional
distribution of non-semantic features in the test set match that of the training set, p(hn | y).
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Generalisation under non-systematic-shift. hs ∼ p(hs | y) and hn ̸∼ p(hn)1: This
estimates a form of generalisation under distributional shift, where the non-semantic factors
are sampled from outside the marginal distribution of hn as present in the training set.

Generalisation under systematic-shift. hs ∼ p(hs | y) and hn ∼ p(hn | y′) where
y′ ∼ p(y) s.t. y′ ̸= y: This estimates another form of generalisation under distributional
shift but one where non-semantic factors are sampled with intent to confuse: non-semantic
factors for x are sampled from the marginal distribution of a randomly picked different target,
y′ ̸= y. Although systematicity, as discussed in Fodor and Pylyshyn (1988), and systematic
generalisation, as discussed in the NLP literature (Lake and Baroni, 2018; Bahdanau et al.,
2019) consider recombinations of intra-semantic factors as well, here, in the context of
background-agnostic object recognition tasks, we only consider hs − hn recombinations.

Semantic anomaly detection. hs ̸∼ p(hs) and hn ∼ p(hn): Such a datapoint should not be
confidently categorised as a known y, even if non-semantic features are shared (Ahmed and
Courville, 2020). We can use these x to evaluate anomaly detection, as indicated by decreased
predictive confidence, and measured by the area under the precision-recall curve (Hendrycks
and Gimpel, 2017).

coloured MNIST: Consider an illustrative dataset with coloured MNIST digits. For the
training set, Tr, MNIST digits are coloured with a set of digit-correlated “biasing” colours
80% of the time, and with ten random colours that are different from the biasing colours the
remaining 20% of the time. One digit is held out, for testing semantic anomaly detection. See
Figure 1 for examples of the four test sets corresponding to this setting, and also Appendix B.1
for more details on the construction.

Improving performance for such scenarios involving distributional shift might come at a cost
for in-distribution performance, since more robust features might be harder to learn than
simpler dominant correlations that hold in-distribution. In real-world deployments where
one is likely to encounter unexpected situations, such as in a self-driving car, it can often be
preferable to find appropriate trade-offs such that classifiers can indicate reduced confidence
upon encountering anomalous objects, or continue to operate in changing environments, while
continuing to achieve a desirable degree of in-distribution predictive performance.

1In this paper, we imply sampling from outside the support of p when we say h ̸∼ p(h).
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4.3. Predictive group invariance across inferred splits

In general, we do not expect to have direct knowledge of majority and minority groups
corresponding to the biasing non-semantic features in a dataset. We will later show how one
might infer such groups from the data, but we first describe an invariance penalty assuming
we have access to the groups.

Learning features that are group invariant would require us to match the (class-conditioned)
distribution of features from the majority and minority groups (Ganin et al., 2016; Li
et al., 2018). In terms of predictive performance, we can alternatively ask for the class-
conditioned distributions of features to match in the sense that they lead to the same softmax
distributions on average as training progresses, without modifying the last linear layer. This
implementation has the advantage of doing away with an adversarial network, and the issues
that tend to accompany the training of such models. We shall refer to this objective as
predictive group invariance (PGI). Intuitively, encouraging matched predictive distributions
across the groups with a fixed last layer pushes for over-emphasis on minority-group features
in the representation, thus acting as an implicit re-weighting of features in both groups
(leading to demoting the relevance of colour in the MNIST case, for example). When a
persistent feature does exist in both groups, using that feature can lead to equal training
rates in regularised networks, satisfying the penalty.

Consider a classifier that extracts a feature vector fθ(x), where θ are the parameters of
a convolutional neural network for example, with a linear layer w on top. The predictive
distribution is then

pw(y | x) = σ(w⊤fθ(x)), (4.3.1)

where σ is a softmax, and predictions are made by performing an arg max.

Given a partition scheme for splitting the images x in our dataset D such that every i-th
image x(i) is associated with a partition-label α(i), we define distributions Pc,Qc for the
subsets in class c:

x(i) ∼ Pc if α(i) = 0, y(i) = c, (4.3.2)

x(j) ∼ Qc if α(j) = 1, y(j) = c. (4.3.3)

We want to minimize empirical risk under the constraint that our feature extractor causes
similar predictive distributions on average for pictures of the same object in both partitions.
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Formally, we want to optimise

min
θ,w

ℓ(θ, w | D), (4.3.4)

s.t. θ ∈ arg min
Θ

d
(
Ex∼Pc [pw(y | x)],Ex∼Qc [pw(y | x)]

)
, ∀ c, (4.3.5)

where ℓ is the standard loss function for ERM training, for example, the categorical cross-
entropy. A softened objective for stochastic optimisation can be approximated as

L(w, θ|D, α) = ℓ(θ, w | D) + λ

∑
c

d
(
Ex∼Pc [pw̃(y | x)],Ex∼Qc [pw̃(y | x)]

)
w̃=w (fixed)

. (4.3.6)

Since we are comparing distributions, we make the simplest natural choice of d to be the
KL-divergence,

d
(
Ex∼Pc [pw̃(y | x)],Ex∼Qc [pw̃(y | x)]

)
=
∑

Ex∼Qc [pw̃(y | x)] log Ex∼Qc [pw̃(y | x)]
Ex∼Pc [pw̃(y | x)] . (4.3.7)

We use this particular ordering of Q∥P because with our grouping, P consists of examples
that are “easy” due to a particular bias, and so the mean predictive distribution for P tends
to be correct and low-entropy, while that for Q is more high-entropy and inaccurate. We
take advantage of the zero-forcing property of this KL divergence, encouraging the mean
predictive distribution for Q to closely match that of P. It is likely that different choices for
d would be better suited for different settings.

Partitioning the dataset Recently, Creager et al. (2020) have considered the question
of finding worst-case partitions for invariant learning given a collection of data. The key
intuition is that an invariant learning objective, as formulated by IRM (Arjovsky et al.,
2019), is maximally violated by splitting along a spurious correlation when predictions rely
exclusively on it in a reference model (see Theorem 1 in Creager et al. (2020) for details). In
our case, this would consist of partitioning into the majority and minority groups given our
ERM-trained model early on in training as reference.

A soft-partition predicting network is used, g(x, y), conditioned on the input and the target, to
maximise the IRMv1 penalty (Arjovsky et al., 2019), which gives us soft partition-predictions,
β̂, for the examples,

β̂ = max
β

∑
e∈{0,1}

1∑
i′ β(i)(e)

∑
i

β(i)(e)ℓ(σ(Φ(x(i))), y(i))

+
∑

e∈{0,1}
γ

∣∣∣∣∣∣∣∣∇µ|µ=1.0
1∑

i′ β(i)(e)
∑

i

β(i)(e)ℓ(σ(µ ◦ Φ(x(i))), y(i))
∣∣∣∣∣∣∣∣2, (4.3.8)
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where Φ(xi) = w⊤fθ(x) are the logits from the reference model, e ∈ {0, 1} indexes the
partition, β(i)(e) ∈ [0, 1] signifies the predicted probability for the i-th example being in
partition e, such that β(i)(e = 0) + β(i)(e = 1) = 1, and γ is a hyper-parameter. We can
then compute the partition α(i) = arg maxe β(i)(e). In our implementation, we condition
the partition predicting network g on the features fθ(x) instead of the input x, and use
separate networks for each category, i.e. β(i) = gy(i)(fθ(x(i))). We find this to perform better
in preliminary experiments, improving training and enabling more light-weight g networks.
This also ensures that the same features as the ones used by our ERM-trained reference
model are used to predict partitions, resulting in partitions corresponding to more consistent
learned-feature biases. We provide more details in Appendix B.2.3.

4.4. Related work

The dominant perspective towards the issue of unreliable behaviour in novel domains has
consisted of treating the problem as that of domain generalisation (Blanchard et al., 2011).
One hopes to recover stable features by encouraging invariance across data sampled from
different domains, so that performance at test-time out-of-distribution (OoD) scenarios is less
likely to be unstable.

Approaches along such lines typically resemble a cross-domain distribution-matching penalty
applied to the features being learned, augmenting the usual ERM term (Ganin et al., 2016;
Sun and Saenko, 2016; Heinze-Deml and Meinshausen, 2017; Li et al., 2018; Li et al., 2018;),
and evaluated on datasets that consist of data in different modalities (Li et al., 2017; Peng
et al., 2019; Venkateswara et al., 2017), or collected through different means (Fang et al.,
2013), or in different contexts (Beery et al., 2018).

Works with the perspective of distributionally robust optimisation (DRO) have generally
considered using uncertainty sets around training data (Ben-Tal et al., 2013; Duchi and
Namkoong, 2018) to minimise worst-case losses, which can often have a regularising effect
by effectively up-weighting harder examples. More relevant to our discussion, group DRO
methods have considered uncertainty sets in terms of different groups of data, for example
with different cross-group distributions of labels (Hu et al., 2018), or groups collected
differently (Oren et al., 2019), similarly to domain generalisation datasets.

More recently, methods promoting the learning of stable features across data from different
environments, or sources, have been proposed by using gradient penalties (Arjovsky et al.,
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Fig. 2. (left) COCO-on-Colours; left block is the majority group, right
block is the “unbiased” minority group; (right) COCO-on-Places.

2019), risk-based extrapolation (Krueger et al., 2020), and masking gradients with opposing
signs (Parascandolo et al., 2020).

The typical datasets in such existing works are not curated with testing performance under
systematic distributional shift in mind, most often not characterising the specific shift in
distribution. In recent times, a commonly adopted synthetic dataset is the coloured MNIST
variant used in Arjovsky et al. (2019) – since this particular dataset uses flipped colours for
the minority group, which is less of a problem with ERM-training, the true digit labels were
flipped at a sufficiently high frequency to incapacitate ERM performance by forcing reliance
on colour. We believe setups such as ours can be better synthetic testbeds for developing
ideas, where it is not necessary to alter ground truth labels to expose a failure mode. In
general, using better models of dataset bias implies a narrower disconnect with realistic
settings, with higher chances of the conclusions carrying over.

4.5. Experiments

We compare performance with our four test sets - in-distribution, non-systematically shifted,
systematically shifted, semantic anomalies - for a range of recently proposed methods for a
set of three synthesised datasets. Appendix B.2 describes architectural details and training
choices.

4.5.1. Methods

We compare recent methods aimed at robust predictions across groups, and which do not
require changes to network capacity or additional adversaries to impose invariance penalties.
We also do not include methods based on advances in self-supervised feature learning, such
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as Carlucci et al. (2019), since such methods are developed with prior knowledge of the
desired invariances, and are thus limited in their generality.

Baseline: This is our reference model, trained via ordinary (regularised) empirical risk
minimisation (ERM) without any invariance penalties added. The choices for architecture
and regularisers were made to conform to the way modern networks are typically trained
with in-distribution performance in mind (details in Appendix B.2).

IRMv1, REx, GroupDRO: IRMv1 (Arjovsky et al., 2019) and REx (Krueger et al., 2020)
are two methods that augment the standard ERM term with invariance penalties across data
from different sources. GroupDRO (Sagawa et al., 2020) is an algorithm for distributional
robustness, which works by weighting groups of data as a function of their relative losses.
See Appendix B.3 for more details about these methods.

cIRMv1, cREx, cGroupDRO: We implement label-conditional variants of the above
algorithms, which, to our knowledge, has not been explored. In the context of multi-class
classification it is reasonable to expect that performances might have multi-modal distributions
along different categories earlier in training, which suggests stratification by class might
improve performance.

Reweight: We weight the losses in the biased group down. This is a heuristic form of
re-balancing the dataset, while choosing a hyper-parameter for the weight using the validation
set, with the weight serving to downweight the losses for the biased group. In preliminary
experiments we found this re-weighting variant (King and Zeng, 2001) to significantly
outperform oversampling the minority group, as suggested in Buda et al. (2018), or weighting
the grouped losses using their population ratios, as performed for imbalanced classes in Cui
et al. (2019).

cMMD: Following Li et al. (2018), we match the MMD (Gretton et al., 2012) of the
distribution of features. In preliminary experiments, we find a conditional version (as done
with adversarial models in (Li et al., 2018)) to perform significantly better, so we only report
cMMD results here.
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Table 2. Generalisation results on Coloured MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.47 ± 0.05 63.24 ± 3.04 55.19 ± 1.07 11.54 ± 1.18
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 89.47 ± 4.52 70.53 ± 1.79 79.17 ± 1.64 35.15 ± 10.83
Reweight 98.51 ± 0.12 75.01 ± 1.28 84.85 ± 0.61 28.60 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 98.56 ± 0.12 74.35 ± 2.09 80.01 ± 2.11 22.02 ± 2.52
cGroupDRO 95.65 ± 3.23 75.41 ± 3.45 81.14 ± 2.41 26.61 ± 6.61
cMMD 99.40 ± 0.03 97.17 ± 0.59 97.86 ± 0.16 78.32 ± 4.15

PGI 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95

4.5.2. Datasets

Evaluating performance in an unambiguous manner for the specific kinds of generalisation
that we aim to study necessitates controlled test-beds. In order to model these tasks, we use
3 synthetic datasets of progressively higher complexity, approaching photo-realism.

Coloured MNIST: This is the simplest setting, where the background information exists
as part of the object.

COCO-on-Colours: We superimpose 10 segmented COCO (Lin et al., 2014) objects on
coloured backgrounds. The training set has 800 images per category, with nine in-distribution
categories and one held-out category for anomaly detection. Validation and test sets have
100 each images per category. See Figure 2 (left). This is the most extreme dataset in our
experiments in terms of the contrast in complexity between the non-semantic correlating
factor (background colour) vs. stable features (objects).

COCO-on-Places: Here we superimpose the same COCO objects on scenes from the
Places dataset (Zhou et al., 2017), with the place-scenes acting as the bias (figure 2, right).
See Appendix B.1 for more details about how these datasets are constructed. While the
backgrounds in this dataset are more complex than colour, they still act as biasing factors, as
indicated in the relatively poorer performance at systematic generalisation, and were selected
due to visually obvious and distinct colour or texture.
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4.5.3. Results

In all cases, we have used the partition predictor to infer the two groups. The partition
accuracies for the three datasets at the end of one epoch of training the base models are in
the table below. We tested a more naïve approach by applying K-Means clustering to the
losses, but found it to under-perform, possibly because it cannot account for a consistent
feature bias learned by our reference model.

Coloured MNIST COCO-on-Colours COCO-on-places

97.26 ± 0.71 98.22 ± 1.05 80.43 ± 1.41

In Tables 2,3,4, we find that significant improvements can be achieved using group invariance
methods. All hyper-parameters for the results in this set are picked on a validation set
consisting of a subset of colours or backgrounds that are different from both the training and
test sets, and an equally sized subset of systematically varying colours or backgrounds from
the biased majority group. In all cases, the split is learned after one epoch of training, and
the various penalties dropped in at this point with a linearly ramped-in penalty co-efficient.
Details about hyper-parameter selection are in Appendix B.3.

While conditional variants perform better at systematic generalisation for coloured MNIST,
perhaps owing to our hyper-parameter selection procedure of using a mixed-shift validation
set, performance at systematic shift appears to be traded off with non-systematic shift in
some cases for the more complex datasets. All aggregates are over 5 trials.

4.5.4. Practical considerations for hyper-parameter selection

While we find that with the use of group invariance penalties it is possible to encourage
reliance upon complex persistent correlations in the presence of dominant simple biases, this
can sometimes come at a cost to in-distribution performance when picking hyper-parameters
using validation sets with specific distributional shift. One might reasonably expect that this
can be mis-aligned with real-life situations: in practice, one typically does not have access
to data corresponding exactly to unexpected scenarios, besides not expecting to encounter
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Table 3. Generalisation performance on COCO-on-Colours.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 43.06 ± 2.26 41.32 ± 4.39 43.24 ± 2.89 20.05 ± 3.08
Reweight 42.42 ± 3.47 47.56 ± 2.27 49.12 ± 1.63 18.15 ± 3.81

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 74.75 ± 14.14 32.29 ± 7.71 29.75 ± 5.16 19.77 ± 14.98
cGroupDRO 41.10 ± 2.37 41.83 ± 2.96 42.10 ± 2.15 21.81 ± 5.40
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11

Table 4. Generalisation performance on COCO-on-Places.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.55 ± 0.70 45.35 ± 0.92 29.56 ± 0.77 9.46 ± 0.51
GroupDRO 76.05 ± 0.87 43.72 ± 0.43 31.83 ± 0.54 9.61 ± 0.55
Reweight 81.14 ± 0.80 45.84 ± 0.70 30.37 ± 1.16 9.75 ± 0.69

cIRMv1 80.08 ± 1.90 44.96 ± 2.88 30.06 ± 2.07 9.64 ± 0.94
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45

PGI 75.00 ± 0.85 46.10 ± 0.79 36.25 ± 0.42 11.12 ± 0.85

cMMD (oracle split) 75.05 ± 0.98 47.88 ± 1.03 37.40 ± 1.07 10.76 ± 0.61
PGI (oracle split) 70.63 ± 0.48 48.11 ± 0.82 42.69 ± 0.84 12.56 ± 1.20

situations outside the training distribution nearly as often as situations for which a model
has been trained and deployed. A practitioner might wish to aim for a clearer trade-off
with such situations, with prior knowledge of how often they might arise compared to in-
distribution situations, and with a surrogate validation set to model distributional shift. Here,
we will simply show that picking hyper-parameters without assuming access to validation sets
consisting of systematic distributional shift can still provide improvements over the baseline
reference model. We consider three cases.

NS: Hyper-parameters are picked using only the validation set for non-systematic distribu-
tional shift (which consists of backgrounds that are different from those in the training set
and test sets). This models the situation where we have access to some data that is different
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Table 5. Hyper-parameters with different validation sets for Coloured
MNIST

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 99.05 ± 0.08 98.58 ± 0.06 98.48 ± 0.05 89.42 ± 1.95
NS (PGI) 99.31 ± 0.05 98.21 ± 0.26 97.54 ± 0.41 76.00 ± 4.06
NS+ID (PGI) 99.30 ± 0.07 98.31 ± 0.27 97.48 ± 0.45 76.07 ± 5.67
ID only (PGI) 99.69 ± 0.03 63.62 ± 2.05 58.18 ± 2.05 11.81 ± 1.89

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

from our training data, and is also considered somewhat representative of any shifts we might
encounter.

NS + ID: Hyper-parameters are picked using an (equally-weighted) average of the NS and the
in-distribution validation sets. If we have prior knowledge of the likelihood of encountering
data from out-distributions in the wild, we could use this prior to use an appropriately
sampled validation set for hyper-parameter optimisation.

ID only: Hyper-parameters are picked using only the in-distribution validation set.

We show results for the different schemes for our method in Tables 5, 6, 7. While the
accuracies under distributional shift are, as expected, less strong than in the previous set of
results (NS+S in the tables), we still find improvements over the reference model, indicating
that one can still achieve an improved classifier.

In Appendix B.4, we show similar results with all methods, and include only the best perform-
ing method for both generalisation under systematic and non-systematic shift corresponding
to the different validation strategies in the tables in this section.

Table 6. Hyper-parameters with different validation sets for COCO-on-
Colours

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (PGI) 78.23 ± 2.01 55.57 ± 4.60 51.62 ± 3.09 18.84 ± 2.11
NS (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
NS+ID (PGI) 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
ID only (cMMD) 92.51 ± 0.41 44.59 ± 3.28 10.48 ± 0.98 6.05 ± 0.23

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08
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Table 7. Hyper-parameters with different validation sets for COCO-on-
Places

Validation In-distribution Non-systematic shift Systematic shift Anomaly detection

NS+S (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
NS+ID (cMMD) 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
ID only (PGI) 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

4.6. Conclusion

Our experiments investigate the potential usefulness of invariance penalties and methods
at improving performance under distributional shift, such as systematic generalisation and
semantic anomaly detection.

While our exploratory experiments are conducted in disambiguated synthetic setups, next
steps would involve investigating the potential for extending these approaches to real datasets
used in the field. Since such methods cannot work when spurious correlations are completely
pervasive, it is important to include sufficient diversity of data sources and curation in order
to be able to reap the advantages such techniques can afford us in real world applications.
We note that peculiarities in datasets and problems might give rise to different potential
failings at robustness, calling for more targeted invariance methods.

We find that our method of learning features that result in matched predictive behaviour
throughout training appears to hold promise at handling certain distributional shifts, although
it does not always perform best across different validation schemes. A practical line of inquiry
would be the question of how to make trade-offs in performance between in-distribution and
unexpected situations.
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Prologue to the third article

Online adaptation to black-box label-shift in the presence of conditional-shift.
Faruk Ahmed and Aaron Courville. Unpublished.

Abstract. We consider an out-of-distribution setting where trained predictive models are deployed online in

new locations (inducing conditional-shift), such that these locations are also associated with differently skewed

target distributions (label-shift). While approaches for online adaptation to label-shift have recently been

discussed by Wu et al. (2021), the potential presence of concurrent conditional-shift has not been considered

in the literature, although one might anticipate such distributional shifts in realistic deployments. In this

article, we empirically explore the effectiveness of online adaptation methods in such situations on three

synthetic and two realistic datasets, comprising both classification and regression problems. We show that it

is possible to improve performance in these settings by learning additional hyper-parameters to account for

the presence of conditional-shift by using appropriate validation sets.

Key words: label-shift, generalized target-shift, out-of-distribution generalization, Bayesian.

Context. In this article, we adopt a somewhat narrow focus, based on considerations of
how AI applications are used in the real world, and some of the practical constraints that
accompany this usage. While adapting to distributional-shift in a particular test location
using techniques such as domain adaptation is likely to improve performance, doing this at
scale is challenging. For example, a company servicing tens of thousands of clients with large
proprietary models over an API (for example, the cloud-based AI services provided by tech
companies) would find it impractical to make and re-train multiple copies of such models
in order to personally adapt to every client during online usage. However, adjusting the
predictive distribution for a black-box model in a particular deployment location can provide
an efficient way to adapt to changes in label-distributions (Lipton et al., 2018). Such practical
motivations have resulted in significant exploration in the literature for black-box label-shift
adaptation, and recently extended to an online setting by Wu et al. (2021).



Existing work on black-box label-shift estimation and correction has relied on a crucial
assumption: that there is no conditional shift accompanying the label-shift, i.e. P(x | y) does
not change across training to test environments. We suggest that this is unlikely to be satisfied
in practice – in realistic OOD scenarios, everything can, and likely will, change. Another
assumption made in a significant portion of later literature in this area involves the ability
to reliably estimate a confusion matrix, used in recent approaches to label-shift problems.
Specifically, the literature holds out significantly large-sized validation sets to estimate such
confusion matrices. In real life settings, one often ends up with highly imbalanced datasets,
and it is not always feasible to hold out a large fraction of training data, particularly in a
post-hoc settings when a model has already been trained. Given such considerations, it seems
relevant to revisit approaches to label-shift under less presumptive experimental settings.

Article contributions. We consider an online, post-hoc, novel-deployment setting, which
includes both label-shift (per unique test-time deployment location) as well as a distributional
shift in features (due to the change in location). We conduct an empirical study of the
methods introduced in Wu et al. (2021), with the positive finding that the methods generally
continue to improve numbers over a base classifier. We explore some heuristic modifications
to these methods – particularly in terms of selection of a validation set for estimating
confusion matrices and scaling hyper-parameters – and find that we are often able to improve
performance further in our experimental settings. Finally, we reinterpret one of the existing
baselines under a Bayesian perspective, allowing us to derive an equivalent method for
analogous regression problems.

Author contributions. The contributions of the authors are the following.

• I proposed the online black-box experimental setup, derived the adaptation method,
implemented the experiments, and wrote the draft.

• Aaron Courville supervised and provided feedback on the project.
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Chapter 5

Online black-box adaptation to label-shift in
the presence of conditional-shift

5.1. Introduction

We consider a setting where we have black-box access to a predictive model which we are
interested in deploying online in different places with skewed label distributions. For example,
such situations can arise when a cloud-based, proprietary service trained on large, private
datasets (like the Vision APIs served by tech companies) serves several clients real-time in
different locations. Every new deployment can be associated with label-shift. Recently, Wu
et al. (2021) discuss the problem of online adaptation to label-shift, proposing two variants
based on classical adaptation strategies – Online Gradient Descent (OGD) and Follow The
Leader (FTH). Adapting the output of a model to a new label-distribution without an
accompanying change in the label-conditioned input distribution only requires an adjustment
to the predictive distribution (in principle). Therefore, both methods lend themselves to
online black-box adaptation to label-shift, which makes on-device, post-hoc adjustments to
the predictive distribution feasible under resource constraints.

In this article, we empirically explore such methods when the underlying assumption of an
invariant conditional distribution is broken. Such situations are likely to arise in reality. For
example, in healthcare settings there are often differing rates of disease-incidence (label-shift)
across different regions (Vos et al., 2020) accompanied by conditional-shift in input features
at different deployment locations, for example in diagnostic radiology Cohen et al. (2021).
In notation, for input variable x and target variable y, we have that P new(x | y) ̸= P (x | y)



and P new(y) ̸= P (y), for a training distribution P and a test distribution P new in a new
deployment location.

Contributions. Our contributions are as follows.

• We conduct an empirical study of the FTH and OGD methods introduced by Wu et al.
(2021) in black-box label-shift settings with concurrent conditional-shift, a situation
likely to arise in realistic deployments.

• We explore the question of how to potentially improve performance in such practical
settings by computing confusion matrices on OOD validation sets, and show that
adding extra hyper-parameters can contribute to further improvements.

• We reinterpret a simplified variant of FTH under a more general Bayesian perspective,
enabling us to develop an analogous baseline for online adaptation in regression
problems.

5.2. Background

We begin with a brief review of online adaptation methods for label-shift for classification
problems, based on the recent discussion in Wu et al. (2021). While their motivation is
temporal drift in label-distributions, we consider the case where a single model is serving
several clients online in different locations, each with their own skewed label-distribution that
does not change even further with time. Windowed or temporally-attenuated versions of
the methods can be expected to be applicable for temporal shifts in label-distributions. If
the training set label-distribution is P (y) and the label-distribution in the new location is
P new(y), and if we assume P new(x | y) = P (x | y), then the following holds

P new(y | x) = P (x | y)P new(y)
P new(x) = P (y | x)P (x)

P (y)
P new(y)
P new(x) ∝ P new(y)

P (y) P (y | x), (5.2.1)

i.e., the location-adjusted output distribution is simply a reweighting of the output distribution
from the base underlying predictive model. Wu et al. (2021) follow along past work on label-
shift adaptation by restricting the hypothesis space for f to be that of re-weighted classifiers,
since Eq. 5.2.1 implies that one only needs to re-weight the predictive distribution to account
for label-shift. The parameter vector for this classifier is simply the vector of probabilities in
P new(y), henceforth referred to as p, and we will similarly use q to represent the training-set
probability distribution, P (y). Given an underlying predictive model f , the adjusted classifier
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rule is therefore given by

g(x; f, q, p) = arg max
y∈[K]

p[y] Pf (y | x)
q[y] , (5.2.2)

where Pf(y | x) is the predictive distribution produced by an underlying base model f ; for
example, a softmax distribution produced by a neural network, and there are K classes in
our dataset.

5.2.1. Online adaptation algorithms

Wu et al. (2021) present two online updating methods to estimate p – Online Gradient
Descent (OGD) and Follow The History (FTH).

If we assume knowledge of a confusion matrix for a classifier f in a new location, Cnew(f) ∈
RK×K , such that Cnew

f [i, j] = Px∼P new(x|y=i)(f(x) = j), then Wu et al. (2021) show that the
expected error rate in this new location can be derived as a function of the label-distribution
P new(y). If we represent P new(y) as a K-dimensional probability vector qnew, the expected
error rate is given as

ℓnew(f) =
K∑

i=1

(
1 − Px∼P new(x|y=i)(f(x) = i)

)
· qnew[i] = ⟨1 − diag(Cnew

f ), qnew⟩, (5.2.3)

where 1 is the all-ones vector. Since we have assumed no conditional-shift so far, Cnew
f = Cf ,

i.e. the confusion matrix remains invariant under label-shift. This implies one can optimize
the expected error rate in the new deployment location using a confusion matrix estimated
from a large in-distribution validation set, Cf , in place of Cnew

f in Eq. 5.2.3.

Online Gradient Descent (OGD). Assuming that diag(Cf) is differentiable wrtf , we
can update f to minimize the expected error rate. We would typically not be aware of
the true label-distribution in the new deployment location. However, when the confusion
matrix Cf is invertible, we can compute an unbiased estimate of this distribution, given as
q̂new =

(
C⊤

f

)−1
e, where e is a one-hot vector for the predicted category. Using this, Wu et al.

(2021) present an unbiased gradient of ℓnew(f),

∇f ℓ̂new(f) = EP new

[ ∂

∂f
[1 − diag(Cf )]⊤ · q̂new

]
. (5.2.4)

When the hypothesis space is restricted to the space of re-weighted classifiers g (Eq. 5.2.2) this
gradient is only over p. Wu et al. (2021) show how we might use effective numerical methods
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to estimate this gradient. In the online setting, p is updated after seeing new examples, hence
the t + 1-th gradient update is performed by computing the gradient at the current point pt,
followed by a projection to the probability simplex,

∇pℓ̂new(p)
∣∣∣∣
p=pt

= EP new

[ ∂

∂p
[1 − diag(Cg)]⊤ · q̂new

]∣∣∣∣
p=pt

(5.2.5)

pt+1 = Proj∆K−1

(
pt − η · ∇pℓ̂new(p)

∣∣∣∣
p=pt

)
, (5.2.6)

where η is the learning rate and Proj is the projection operator.

Follow The History (FTH). The update rule for pt in FTH is simpler and more efficient
(in terms of memory and time complexity), given by

pt+1 = 1
t

t∑
τ=1

q̂new
τ , (5.2.7)

where q̂new
τ is the estimate for the label distribution at the τ -th iteration. Empirical evidence

in Wu et al. (2021) suggests that FTH performs very competitively with OGD, and might be
preferred in highly resource-constrained settings.

5.3. Unmet assumptions in practice

We now consider applying the above strategies in cases where some of the assumptions in
the above section are broken. While it is difficult to make conclusive theoretical statements
in situations when these assumptions break, we propose some heuristics which we evaluate
empirically.

5.3.1. The assumption of invariant P (x | y) can break

In realistic deployments in new locations, it is likely that along with a differently skewed
label-distribution, the conditional distribution will change as well, i.e. P new(x | y) ̸= P (x | y).
In our study, we will assume that this distributional shift only takes place within the same
domain, and along (potentially spuriously-correlated) non-semantic features, leaving the
semantic features intact, a setting likely to be manifested in different deployment locations.

Heuristic 1. One possibility to adapt the above methods to settings with concurrent
conditional-shift is to estimate the confusion matrix on an OOD validation set. Intuitively, an
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IID-estimated confusion matrix is likely to be over-confident, and a surrogate-OOD validation
set can better reflect performance at test-time OOD settings.

Heuristic 2. We propose to add extra scaling hyper-parameters in the decision rule in
Eq. 5.2.2. Specifically, we add the scaling hyper-parameters λu and λy before making a test
prediction,

g̃(x; f, q, p) = arg max
y∈[K]

log Pf (y | x) + λu log p[y] − λy log q[y], (5.3.1)

where we have rewritten the rule in log-space. In this formulation, log Pf (y | x) = logit[y] −
Z(x), so we can drop the normalizing term. This results in a predictive rule that is a form of
logit-adjustment (Menon et al., 2021). Intuitively, these hyper-parameters play the role of
determining how much of the training prior to “subtract”, and how much weight to assign
to the pseudo-label based re-adjustment. When these magnitudes are learned on validation
sets representing a combination of label-shift and conditional-shift, one can hope to further
improve at novel test-time deployments.

5.3.2. Confusion matrices can be non-invertible

Existing work on label-shift based on confusion matrices rely on a significantly large held-out
validation set to estimate a robust confusion matrix. When the underlying dataset is highly
class-imbalanced with several categories and limited-size validation sets, one can easily end
up with a non-invertible confusion matrix. Lipton et al. (2018) suggests two main possibilities
– use of a soft confusion matrix, or a pseudo-inverse. In our experiments on a large-scale
realistic dataset, we find both choices to lead to degraded performance. We find that simply
using an identity matrix approximation can recover some of the performance drops (see
Appendix C.4). When using FTH with an identity Cf , this corresponds to simply using the
pseudo-labels up to time t to estimate the label-distribution. However, naively using the
identity matrix in Eq. 5.2.7 might lead to a practical problem: after seeing the first data-point,
p would be a one-hot vector, and thus enforce the same prediction at the next iteration when
using Eq. 5.2.2. A fix would be to use a “pseudo-count” to smooth initial conditions, which
is reminiscent of Bayesian posterior updates. In the next section, we use this realization as
a starting point to suggest a simpler as well as more general framework. This framework
then enables us to develop an equivalent online label-shift adaptation method for regression
problems.

95



5.4. A Bayesian perspective

If we use the vector α to keep online counts of predictions, with an initialized α0, such that

αt[k] =
t∑

τ=1
1[ŷτ = k] + α0 = 1[ŷt = k] + αt−1[k], (5.4.1)

then using an identity confusion matrix in Eq. 5.2.7 corresponds to the following update rule,

pt+1[k] = αt[k]∑K
k′=1 αt[k′]

. (5.4.2)

We recognize that this update-rule corresponds exactly to the posterior predictive distribution
computed using a Categorical likelihood with a Dirichlet prior, and using a recursive rule for
updating the posterior. More precisely, if we use

ϕ ∼ Dir(α), (5.4.3)

y | ϕ ∼ Cat(ϕ), (5.4.4)

where ϕ ∈ ∆K−1 are the parameters of the Categorical distribution, in the following update
equations

Pt(ϕ) ∝ P (yt | ϕ) Pt−1(ϕ), (5.4.5)

Pt+1(y) =
∫

ϕ
P (y | ϕ) Pt(ϕ) dϕ, (5.4.6)

then we arrive at Eq. 5.4.2 using Eq. 5.4.6, and Eq. 5.4.1 using Eq. 5.4.5. See Appendix C.1
for a derivation of Eq. 5.4.5. In practice, yt is not available to us, and we use the pseudo-label
ŷt instead, as in FTH.

5.4.1. Extension to regression problems

While adaptation for regression problems has been discussed more generally (Cortes and
Mohri, 2011; 2014; Zhang et al., 2013), an analogous discussion for online black-box label-
shift adaptation is missing for regression. We adapt the general online update rules in
Eq. 5.4.5, 5.4.6 for regression problems undergoing similar concurrent test-time distributional
shifts. A natural choice is to use Gaussians to model the distributions over the continuous
target variable,

Pf (y | x) ∝ exp
(

− λx

2

(
y − f(x)

)2)
, (5.4.7)
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P (y) ∝ exp
(

− λy

2

(
y − m

)2)
, (5.4.8)

where λx, λy are the precision parameters and m is the training set mean. The parameters ϕ

in Eq. 5.4.5 are now the mean and precision parameters for y in the new deployment location.
We use the Normal-Gamma distribution to model the posterior over these parameters, since
this is the conjugate distribution for Gaussians with unknown mean and precision (DeGroot,
2004),

P (µnew, λnew) = N
(

µnew | µ,
1

κλnew

)
Ga(λnew | a, b). (5.4.9)

Combined with the Gaussian likelihood in Eq. 5.4.6, this yields P new(y) in the form of a
Student’s t-distribution,

P new(y) ∝

1 + L

2a
(y − µ)2

− 2a+1
2

, (5.4.10)

where 2a is the number of degrees of freedom, and L = aκ
b(κ+1) . Using these, our predictive

function (in log-space) takes the form

arg min
y

λx

2

(
y − f(x)

)2
− λy

2

(
y − m

)2
+ 2a + 1

2 log
(

1 + L

2a
(y − µ)2

)
. (5.4.11)

Setting the derivative wrt y to zero yields a cubic equation (see Appendix C.2.1), which
we can solve to find roots. A positive sign of the second derivative of the objective tells us
if a solution is a (local) minima. When we have one real solution with a positive second
derivative, we use this; when we have multiple real solutions with positive second derivatives,
we pick the one that corresponds to the smallest objective; when we have no real solutions
with positive second derivatives, we do not update P(y | x), retaining f(x) as the solution.
Empirically, we find that the condition for no local minima does not arise for optimal choices
of hyper-parameters (also see Appendix C.2.2).

The update equations at the t-th step follow from the computation of the posterior using
Eq. 5.4.5 (see Murphy (2007), for example, for the derivation of these update steps) and are
given as:

at+1 = at + 1/2, (5.4.12)

κt+1 = κt + 1, (5.4.13)

µt+1 = κtµt + ŷt+1

κt + 1 , (5.4.14)

bt+1 = bt + κt(ŷt+1 − µt)2

2(κt + 1) . (5.4.15)
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Train (r = 0.99)

Validation (opposite colors with r = 0.75)

Test (r = −1.0)

(a) Synthetic variant of the MNIST dataset con-
structed by using colors to correspond to sources
with skewed label-distributions. The colors are
flipped for validation and test with different cor-
relation strengths, corresponding to (almost com-
pletely) reversing the label-skew at the sources at
test-time.

(b) Synthetic Mix-of-Gaussians data. Differ-
ently colored regions along the x-axis correspond
to training, validation and test samples, with dif-
ferent regions of the same color corresponding to
different sources/locations.

Fig. 1. Synthetic MNIST and Gaussian datasets.

The hyper-parameters λx (output precision) and κ (equivalent of the smoothing pseudo-count
α0 in classification) are picked on the validation set, along with a scaling pre-multiplier for the
precision λy (analogous to the classification setup). ŷt+1 is the prediction, treated as a pseudo-
label. In order to place uniform priors over the output range, we will simulate a uniform set
of samples over the output range. µ = E[ypseudo] is the mean of the pseudo-samples, and β is
initialized as 0.5(κ − 1)Var(ypseudo) (see Appendix C.2.3 for details).
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5.5. Experiments

We compare variants of online label-shift methods based on our discussion above on a mix of
synthetic and realistic datasets to the un-adjusted model performance (Base).

• FTH and OGD: These are the variants proposed in Wu et al. (2021). We evaluate
both for two choices of confusion matrices each – computed using the in-distribution
validation set, and using the out-of-distribution validation set (our Heuristic 1).
We refer to these two alternatives as (C-IID) and (C-OOD).

• FTH-H and OGD-H: These are our modifications of FTH and OGD using the
scaling hyper-parameters proposed in Heuristic 2. For both variants, we again
evaluate two versions each, using (C-IID) and (C-OOD).

• FTH-H-B: This is our modification of FTH, with an additional pseudo-count hyper-
parameter added for smoothing. The hyper-parameters are learned on the OOD
validation sets. We call the regression variant FTH-H-B (R).

• Optimal fixed classifiers: These oracle methods are derived by replacing p
in Eq. 5.2.2 with the empirical location-wise label distributions, providing a sense
of achievable gains if one were aware of the true label-distributions from the get-
go. We include two variants – OFC, which uses Eq. 5.2.2, and OFC-H, which
uses the modified update rule in Eq. 5.3.1 where the hyper-parameters are oracle
hyper-parameters learned on the test-set.

When using OGD, we use the surrogate loss implementation in Wu et al. (2021) since it
is both better-performing as well as much faster. This variant involves using a smooth
approximation of the 0-1 loss allowing for direct gradient computation instead of a numerical
approximation.

5.5.1. Classification problems

Synthetic: Skewed-MNIST. We split MNIST classes into two subsets: [0, 1, 2, 5, 9] and
[3, 4, 6, 7, 8]. We use different colors to correspond to different deployment locations, similar
to Arjovsky et al. (2019). In the training set, we color digits in a particular subset a particular
color 99% of the time. This corresponds to a 99% skew in label-distributions across the two
locations. The 1% cross-over instructs some color-invariance but not strongly enough to
completely overcome the bias. The validation set uses opposing colours for the subsets, but
with a 75% correlation – this represents a scenario where the class-distributions in different
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Fig. 2. Skewed COCO-on-Places: Synthetic dataset constructed by superim-
posing COCO objects (Lin et al., 2014) on scenes from the Places dataset (Zhou
et al., 2017). The 5 columns correspond to 5 sources of data, where the back-
grounds correspond to examples of particular scenes, and the skew in number
of examples per row correspond to the skew in label distribution we impose.
Different background scenes are used for training, validation, and test sets.

locations change from that in training. Finally, the test set uses completely flipped colors
in the two subsets compared to the training set – this implies reversed label-distributions,
resulting in poorer baseline performance.

Since the overall class frequencies are balanced in the training set, we drop the P (y) from
the update rule in Eq. 5.2.2 and 5.3.1. With a 3-layer CNN trained for 20 epochs to 100%
training set accuracy and 99.6% in-distribution test set accuracy, we find, in Table 1, that
using online adjustments at test-time can lead to marked improvements for the base model
in the test set. The numbers are averaged over 5 independent rounds of base-model training,
with validation and test sets randomly shuffled for 5 trials for each round of training. (More
details about dataset construction in Appendix C.3.1)

Synthetic: Skewed-COCO-on-Places. We construct a second, more photo-realistic,
synthetic dataset by superimposing segmented objects from COCO Lin et al. (2014) on to
scenes from the Places dataset Zhou et al. (2017), as in Ahmed et al. (2021). The scenes
correspond to the notion of a deployment location, albeit with significant intra-location
variation. For every such scene-represented source, we use a different class-distribution to
simulate source-specific skews in the label distribution. In Fig. 2 the relative number of
images per row represent the relative frequency of a particular class at a specific source.
There are a total of ∼ 10K training images, ∼ 2.5K validation images (each for seen and
unseen sources), and ∼ 6K test images (each for seen and unseen sources).

The validation and test sets are constructed similarly. For in-distribution validation and test
sets, the same set of scenes as for training is used (with different instances), and for new-
location validation and test sets, different sets of scenes are used. See Appendix C.3.3 for details
about dataset construction. We train a ResNet-50 for 400 epochs with SGD+Momentum for
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Table 1. Classification problems: Average accuracy on Skewed-MNIST,
Skewed-COCO-on-Places, and WILDS-iWildCam (also reporting macro
F1-score for iWildCam). Overall trends indicate that our heuristics are helpful,
and FTH-H-B is competitive or better without needing a confusion matrix.

Method S-MNIST S-COCO-on-Places iWildCam (Avg.) iWildCam (F1)

Base 82.59 ± 1.82 56.09 ± 0.66 73.10 ± 3.26 32.70 ± 0.16

FTH (C-IID) 93.12 ± 1.57 58.50 ± 0.55 71.41 ± 4.91 29.57 ± 0.93
FTH (C-OOD) 96.04 ± 1.03 58.94 ± 0.63 71.41 ± 4.91 29.57 ± 0.93

OGD (C-IID) 88.32 ± 2.06 57.37 ± 0.51 71.66 ± 4.56 32.56 ± 0.27
OGD (C-OOD) 95.75 ± 0.70 57.75 ± 0.29 73.11 ± 3.05 32.49 ± 0.41

FTH-H (C-IID) 98.21 ± 0.47 56.72 ± 0.84 73.75 ± 3.77 32.46 ± 0.31
FTH-H (C-OOD) 98.69 ± 0.31 57.81 ± 0.74 73.75 ± 3.77 32.46 ± 0.31

OGD-H (C-IID) 96.07 ± 1.76 57.58 ± 0.79 72.89 ± 3.30 31.74 ± 0.51
OGD-H (C-OOD) 98.91 ± 0.20 57.12 ± 0.15 73.36 ± 3.51 31.36 ± 0.41

FTH-H-B 97.46 ± 0.64 58.42 ± 0.49 74.10 ± 3.56 33.33 ± 1.31

OFC 99.24 ± 0.20 75.88 ± 0.33 79.19 ± 1.76 48.61 ± 0.27
OFC-H 99.26 ± 0.20 75.88 ± 0.33 81.07 ± 0.79 48.61 ± 0.27

the underlying model, achieving an in-distribution test accuracy of ∼ 75%. Since the overall
distribution of classes is close to uniform, we again drop the marginal P (y) term in Eq. 5.2.2
and 5.3.1. In Table 1 we again find improved performance over the unadjusted base model
for all variants. Accuracy is aggregated across 20 random orderings of the test set (since the
test-sets are smaller for this specific dataset), for 3 rounds of base-model training each.

WILDS-iWildCam. We use the variant of the iWildCam 2020 dataset Beery et al. (2021)
curated by the WILDS set of benchmarks for out-of-distribution (OOD) generalization Koh
et al. (2021). The data consists of burst images taken at camera traps, triggered by animal
motion. The task is to identify the species in the picture, and the locations correspond
to the unique camera trap the pictures are from. There are a total of 182 species in this
version of the dataset across a total of 323 camera traps. There is significant skew in terms of
species distribution across different camera traps, as well as the number of images available
for each trap. The training set consists of ∼ 130K images from 243 traps; the in-distribution
validation set consists of ∼ 7.3K images from the same traps as that in the training set but
on different dates; the OOD validation set consists of ∼ 15K images taken at 32 traps that
are different from the ones in the training set; the in-distribution test set consists of ∼ 8.1K

images taken by the same camera traps as in the training set, but on different dates from
both training and validation; finally, the OOD test set consists of ∼ 43K images taken at 48
camera traps that are different from those for all other splits.
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Table 2. Regression problems: For the Gaussians dataset the metric is
mean squared error (lower is better), and for the PovertyMap folds the metric
is Pearson’s correlation co-efficient (higher is better), computed separately for
average (all) and worst-group (wg) performance.

Dataset Base FTH-H-B (R)

Mix-of-Gaussians 9.17 ± 2.17 4.35 ± 1.48

PovertyMap Fold Base FTH-H-B (R)

A (all) 0.84 0.84 ± 0.00
B (all) 0.83 0.82 ± 0.00
C (all) 0.80 0.83 ± 0.00
D (all) 0.77 0.77 ± 0.00
E (all) 0.75 0.75 ± 0.00

PovertyMap Fold Base FTH-H-B (R)

A (wg) 0.42 0.43 ± 0.00
B (wg) 0.52 0.50 ± 0.01
C (wg) 0.42 0.56 ± 0.01
D (wg) 0.50 0.56 ± 0.01
E (wg) 0.34 0.37 ± 0.00

Koh et al. (2021) trained ResNet-50 based models along with their curation of this dataset,
also evaluating several methods for OOD generalization and releasing all models. We use
their models trained with the domain generalization method CORAL (Sun and Saenko, 2016),
since this model has improved performance over the ERM baseline. They released three
sets of weights, trained with three random seeds. We evaluate all variants for each of the
three seeds, with 3 random orderings each of the test set, and report aggregates in Table 1.
Koh et al. (2021) recommend evaluation with both average accuracy as well as macro-F1
(since some species in the dataset are rare). We perform evaluation with both metrics, but
use our own trained models for average accuracy – this is because Koh et al. (2021) trained
their models optimizing for macro F1. We similarly trained CORAL-augmented base models
optimizing the penalty coefficient and choice of early stopping.

We replace the confusion matrix with an identity matrix for evaluating methods on this
dataset (for methods where a validation-set estimated confusion matrix is required). Confusion
matrices evaluated on the validation sets are non-invertible for this dataset due to sparse
class-representation and we found common alternatives to perform poorly (see Appendix C.4).

5.5.2. Regression problems

Synthetic: Mix-of-Gaussians. We create a synthetic regression dataset by constructing
a curve from a mixture of Gaussians. We pick regions on the x-axis to correspond to
training, validation, and test sets, such that every set samples data from two regions each,
corresponding to two locations (see Appendix C.3.2). In Figure 1b, we depict the curve, along
with sampling indicators for the different sets and sources. The points have been placed at
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different heights for clearer visualization of overlaps. 500 points are sampled from the two
training regions, and 250 each for the validation and test sets from their assigned regions.
We train a 3-layer MLP with BatchNorm and ReLU activations and a mean squared loss
for 100 epochs, yielding an in-distribution test mean squared error (MSE) of ∼ 0.15. In
Table 2 we find that online updating reduces the OOD test MSE significantly. Results are
aggregates over five trials, with a different random sampling of all data, followed by training
and validation each time. Full results and more experimental details are in Appendix C.3.2).

WILDS-PovertyMap. We use the WILDS variant of a poverty mapping dataset (Yeh
et al., 2020). This is a dataset for estimating average household economic conditions in a
region through satellite imagery, measured by an asset wealth index computed from survey
data. The data comprises 8-channel satellite images with data from 23 African countries. The
locations here correspond to different countries. Due to the smaller size of the dataset, Koh
et al. (2021) recommend a five-fold evaluation, where every fold is approximately constructed
as follows – 10K images from 13-14 countries in the training set; 1K images from the same
countries for in-distribution validation; 1K images from these countries for in-distribution
testing; 4K images from 4-5 countries not in the training set for OOD validation; and 4K
images from 4-5 countries in neither training nor validation sets for OOD test.

The evaluation metric is Pearson’s correlation between predicted economic index vs. actual
index, as is standard in the literature (Yeh et al., 2020). Following Koh et al. (2021), we
split the assessment into overall average as well as worst-group performance, which picks
the worst performance across rural/urban subgroups. As with iWildCam, we use the
CORAL-augmented base networks and weights released by Koh et al. (2021), but with our
retrained versions for average correlation coefficient (since the validation choices for the
released weights were for worst group performance). We evaluate separately for each fold
(which have quite a bit of variance in base performance) with 5 random orderings of each of
the test sets. In Table 2, we find that while there seems generally little to no improvement for
average correlation, there are more significant improvements for three of five folds in terms of
worst-group performance. As noted in Koh et al. (2021), a wide range of differences along
many dimensions such as infrastructure, agriculture, development, cultural aspects play a role
not only in determining wealth-distribution, but also in terms of how the features manifest
in different places. Such real-world issues imply that validating for OOD performance is
bound to be sensitive to problem types and the specific choices of validation sets used to tune
hyper-parameters, and the differences that may arise between an OOD validation set and an
OOD test set. This issue extends generally to all attempts at OOD generalization.
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5.5.3. Takeaways

Our experiments are generally suggestive of the following takeaways.

• While invertible confusion matrices are not always achievable due to data scarcity (as
modelled in our experiments with WILDS-iWildCam), a practitioner can adopt
confusion-matrix free methods such as FTH-H-B, which we find to provide competitive
or improved performance. Using OOD validation sets to estimate confusion matrices
can improve results relative to using an IID validation set, although confusion matrices
estimated on smaller-sized sets can be noisy.

• Learning additional scaling hyper-parameters can be useful for further improvements.
We find this trend to not hold for Skewed-COCO-on-Places (FTH outperforms
FTH-H and FTH-H-B). This might be due to the OOD validation set being farther
from the OOD test set relative to the IID validation set, or an artifact of noise
due to the relatively smaller size of the validation set – when picking oracle scaling
hyper-parameters on the test set, we achieve an accuracy of 59.37 ± 0.89. In Table 3
we compare performance when learning hyper-parameters on different validation sets
– IID/OOD/test (oracle). In general, OOD validation seems a better choice than IID
validation.

5.6. Related work

Label-shift for classifiers. Saerens et al. (2002) provides a seminal discussion about
adapting the output distribution of a classifier when the test set undergoes label-shift. This
approach presumes access to the entire test set up front, or a sufficiently representative sample.
More recent works have investigated other ways to estimate label-shift (Lipton et al., 2018;
Azizzadenesheli et al., 2019) using confusion matrices, which partially inspired the methods
in Wu et al. (2021) that we use as our foundation. It has been recently suggested (Alexandari
et al., 2020; Garg et al., 2020) that the simple correction method in Saerens et al. (2002) often
outperforms these later methods when combined with calibration. While Alexandari et al.
(2020) perform their calibration using a held-out IID validation set for their iterative method,
we adapt this strategy to the out-of-distributions setting by picking scaling hyper-parameters
on an OOD validation set.

Test-time training. Another emerging line of literature focuses on updating neural network
parameters using test data without being able to match training statistics with test statistics,
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Table 3. (top) Classification problems: Performance when picking hyper-
parameters on IID, OOD validation sets, or on (Oracle) test sets. (bottom)
Regression problems: Performance when picking hyper-parameters on IID,
OOD validation sets, or on (Oracle) test sets. For Mix-of-Gaussians, we use
mean squared error as the metric (lower is better), while for PovertyMap
the metric is the Pearson’s correlation co-efficient (higher is better).

Datasets Methods IID validation OOD validation Oracle

S-MNIST

FTH-H 82.67 ± 1.79 98.69 ± 0.30 98.69 ± 0.30
OGD 82.75 ± 1.77 95.75 ± 0.70 95.75 ± 0.70
OGD-H 82.59 ± 1.82 98.91 ± 0.20 98.91 ± 0.20
FTH-H-B 83.00 ± 1.79 97.46 ± 0.64 98.35 ± 0.52

S-COCO-on-Places

FTH-H 57.42 ± 0.53 57.81 ± 0.74 59.05 ± 0.53
OGD 57.72 ± 0.31 57.75 ± 0.29 57.75 ± 0.29
OGD-H 57.31 ± 0.68 57.12 ± 0.15 58.10 ± 0.85
FTH-H-B 58.59 ± 1.02 58.42 ± 0.49 59.37 ± 0.89

iWildCam (avg)

FTH-H 73.52 ± 3.36 73.75 ± 3.77 74.13 ± 3.54
OGD 69.42 ± 5.10 73.11 ± 3.05 73.16 ± 3.15
OGD-H 73.41 ± 3.42 73.36 ± 3.51 73.53 ± 3.29
FTH-H-B 73.90 ± 3.93 74.10 ± 3.56 74.41 ± 3.65

iWildCam (F1)

FTH-H 31.93 ± 1.56 32.46 ± 0.31 33.81 ± 0.30
OGD 29.37 ± 2.15 32.49 ± 0.41 32.72 ± 0.06
OGD-H 32.09 ± 0.29 31.36 ± 0.41 32.72 ± 0.15
FTH-H-B 32.73 ± 2.78 33.33 ± 1.31 33.33 ± 1.31

Datasets IID validation OOD validation Oracle validation

Mix-of-Gaussians 9.24 ± 2.76 4.35 ± 1.48 1.76 ± 0.59

PovertyMap-A (all) 0.80 ± 0.00 0.84 ± 0.00 0.84 ± 0.00
PovertyMap-B (all) 0.82 ± 0.00 0.82 ± 0.00 0.83 ± 0.00
PovertyMap-B (all) 0.82 ± 0.00 0.83 ± 0.00 0.83 ± 0.00
PovertyMap-B (all) 0.78 ± 0.01 0.77 ± 0.00 0.78 ± 0.00
PovertyMap-B (all) 0.72 ± 0.01 0.75 ± 0.00 0.75 ± 0.00

PovertyMap-A (wg) 0.43 ± 0.00 0.43 ± 0.00 0.45 ± 0.02
PovertyMap-A (wg) 0.33 ± 0.03 0.50 ± 0.01 0.52 ± 0.00
PovertyMap-A (wg) 0.50 ± 0.01 0.56 ± 0.01 0.58 ± 0.02
PovertyMap-A (wg) 0.46 ± 0.04 0.56 ± 0.01 0.57 ± 0.02
PovertyMap-A (wg) 0.36 ± 0.02 0.37 ± 0.00 0.37 ± 0.00

due to the potential lack of access to training data for the same topical reasons – data privacy
and large datasets. Some examples include updating the Batch-Norm statistics optimizing
for minimum test-time entropy Wang et al. (2021), or using self-supervised pseudo-labels to
adapt the feature extraction part of the network Liang et al. (2020). Our setup here can be
viewed as a form of test-time training, but in a more constrained setting, with inaccessible
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model parameters and no resources to replicate an onsite-model by querying the black-box
model, e.g. using distillation (Hinton et al., 2015).

Out-of-distribution generalization. There has been a recent surge in interest for methods
aiming to learn stable or invariant features across different domains/environments/groups Sun
and Saenko (2016); Arjovsky et al. (2019); Krueger et al. (2020); Sagawa et al. (2020).
Such approaches have been demonstrated to be useful for certain types of distributional
shifts, such as with improved minority group robustness Sagawa et al. (2020) and systematic
generalization Ahmed et al. (2021). Our discussion in this article is complementary to this
set of methods in OOD generalization research. One can use an underlying model trained
with cross-group penalties that result in improved OOD generalization, and further improve
performance by factoring in useful contextual information.

5.7. Conclusion

In this article, we empirically investigated the effectiveness of online black-box adaptation
methods for label-shift when a key underlying assumption of invariant class-conditional input
distributions is broken. We found that while existing methods can be effective to an extent
regardless of conditional-shift, performance can be improved by adopting intuitive heuristics –
in particular, estimating confusion matrices on OOD validation sets, and learning additional
scaling hyper-parameters in the output adjustment step to account for shifting distributions.
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Chapter 6

Conclusion

In the articles presented, we broadly explored questions of how to study and improve
predictive behaviour in novel settings. Under a compositional view of data generation,
this involves two aspects – we would like our AI models to express reduced confidence
when facing unfamiliar things; and we would like them to generalize to familiar things in
unfamiliar settings. We presented perspectives about these problems with both pragmatic
and philosophical considerations, particularly with regards to meaningful benchmarking and
grounded-ness in real-life scenarios. We discussed different aspects of what makes for practical
AI systems that can be deployed with some expectation of robustness, while being able to
efficiently adapt in real-time using available information.

In the first article, we took a critical view of the problem of OOD detection, a problem
statement primarily developed with AI safety in mind. We pointed out that the perspective
of treating all possible variations as unsafe might lead to impractical directions since we
realistically wish to be robust to non-semantic distributional shift while being sensitive to
semantic anomalies, where the context of an application determines semanticity. Since this
motivation ought to be reflected in benchmarking, we made the case for measuring semantic
anomaly detection on held-out categories, when evaluating an object recognition model. Our
arguments have been cited in the development of a larger scale semantic anomaly benchmark
called Imagenet-O in Hendrycks et al. (2021).

With the intuition that a classifier trained on richer and more relevant features can be expected
to exhibit greater uncertainty when facing unfamiliar things as well as inherit improvements
at generalization, we showed that adding self-supervised multi-tasking objectives improve
both semantic anomaly detection as well as test set accuracy. This intuition has been further



developed recently by Deecke et al. (2021), who showed that pre-training the feature extractor
on larger datasets improves performance significantly beyond our results on our recommended
benchmarks.

In the second article, we explored questions of both generalization to unfamiliar contexts as
well as recognizing the novelty of unfamiliar things in familiar contexts. With a compositional
perspective, we developed a synthetic test bed to empirically study how some existing
robustness-methods perform at different variants of out-of-distribution settings. This also
led us to developing a simple penalty that is promising in comparison to existing methods.
Related to the first article, we improved upon our notion of evaluating semantic anomaly
detection – rather than pit a held-out category against in-distribution images, we tested
for lower predictive confidences on held-out objects in familiar contexts relative to familiar
objects in unfamiliar contexts. Coupled with evaluating for OOD test accuracy, this can be
a more meaningful, albeit synthetic, test of a classifier’s alignment with the twin goals of
robustness to non-semantic distributional shift and sensitivity to semantic shift. Our dataset
construction framework has been adopted in a number of recent works (Zhang et al., 2021;
Deecke et al., 2021; Zhou et al., 2022; Roburin et al., 2022).

Finally, in the third article, we considered a specific practical scenario when people wish
to deploy AI models in the real world. Such attempts often come with several constraints,
dictated by concerns of privacy or hardware limitations. We assumed an online setting
with a black-box model deployed in novel environments, encountering a combination of
label-shift and conditional-shift at each new location. We found that in such challenging
circumstances it is nevertheless possible to find improvements over base performance using
efficiently-computed adjustments to the output distribution, although there is still significant
room for improvement.

By way of concluding remarks, a few pertinent lines of thought are presented below, which
might make for interesting future exploration.

OOD generalization in pre-trained models. It is now common to adopt self-supervised
pre-training on massive unlabeled data (Bommasani et al., 2021). Some work has suggested
that this could alleviate OOD generalization failures – for example, Hendrycks et al. (2020)
showed that models pre-trained on larger datasets can be more robust when fine-tuned on
a task-specific dataset and tested on OOD data. While it is certainly plausible to assume
that exposure to vast quantities of unlabelled data makes for richer, more “extrapolative
spaces”, we posit that this can only take care of certain non-systematic distributional shifts.
Higher-order predictive rules inferred from task-specific small-size training sets can still
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be prone to picking up non-robust/domain-specific features with high-level combinatorial
interactions. Investigating such pathological modes empirically might be an interesting avenue
for future exploration. Such directions can inspire both new benchmarks in the context of
contemporary practice, as well as methods for enforcing robustness for such distributional
shifts.

Trade-offs between IID vs. OOD performances. An aspect that seems to go ignored
in current academic discourse is the pragmatic question of how to trade off IID vs. OOD
performances. While the dominant narrative is that learning robust features is better,
attempting to learn robust models can sometimes come at a cost to IID performance, since
robust models can be harder to learn or require more specific data. This suggests we might
be able to consistently achieve higher performances when we are guaranteed IID-operating
conditions, since any domain-specific feature-correlations or modality can be expected to
be preserved. In such cases, estimating both non-semantic and semantic distributional
shift in real-time can be useful to determine which subset of predictive rules to rely upon.
Research avenues here could include real-time distributional shift detection with sequential
context (Bhaskhar et al., 2022) for specific shifts, and architectural design choices for enabling
multiple predictive rules, perhaps using techniques for conditional computing (Bengio et al.,
2013). In some cases, continual learning (Parisi et al., 2019) might be a practical approach
for staying up to date on temporally shifting data distributions.

Online updates with human-in-the-loop feedback. Consumer-facing applications are
usually trained on data obtained from a set of clients, and then deployed across a larger
number of different clients. Unfamiliar situations can arise in such deployments, and one
possibility is to update the parameters of the serving model on specific data points encountered
at deployment. A mechanism for efficient choice of examples for such updates is to simply
solicit user feedback interactively for uncertain or failure cases. This format might also be
preferable at the front-end: consider a client-facing software that asks the operator to clarify
if they meant X or Y, instead of making a false decision that requires later correction, possibly
incurring greater expense than the inconvenience. Since clients are often concerned with data
privacy, naive central-updating policies are likely to encounter resistance in certain domains,
such as healthcare. Advances in federated learning (Li et al., 2020) might inspire tools for
maintaining privacy when updating a global model with information from multiple sources in
a trustworthy manner.
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Appendix A

Appendix for first article

A.1. Imagenet benchmarks

We first sorted all candidate subsets by the number of members. We then picked from among
the list of top twenty subsets, with a preference for subsets that are more closely aligned
with the theme of motivating practical applications we provided. We also manually inspected
the data, to check for inconsistencies, and performed some pruning. For example, in the
beetle subset, leaf beetle and ladybug appear to overlap sometimes. Finally, we settled on our
choice of 5 subsets. In table 1, we list the members under every proposed subset. The sets
are collected by first resizing such that the shorter side is of length 256 pixels, followed by a
center crop. We treat 20% of the data in the training sets as validation, and the remaining
80% for training.

A.2. Experiments with CPC

CPC involves performing predictions for encodings of patches of an image from those above
them. To avoid learning trivial codes, a contrastive loss is used which essentially trains the
model to distinguish between correct codes and “noisy” ones. These negative samples are
taken from patches within and across images in the batch.

We use the same network architecture as we used for the Imagenet experiments with rotation-
prediction as the auxiliary task, but modify the first convolution layer to have a stride of
2. This reduces the computation overhead sufficiently for concurrent training with CPC



Table 1. Imagenet subset members

Dog (hound) Car Snake (colubrid) Spider Fungus

Ibizan hound Model T ringneck snake tarantula stinkhorn
bluetick race car vine snake Argiope aurantia bolete
beagle sports car hognose snake barn spider hen-of-the-woods

Afghan hound minivan thunder snake black widow earthstar
Weimaraner ambulance garter snake garden spider gyromitra

Saluki cab king snake wolf spider coral fungus
redbone beach wagon night snake

otterhound jeep green snake
Norweigian elkhound convertible water snake

basset hound limo
Scottish deerhound

bloodhound

at reasonable batch-sizes (CPC training batch-sizes are 32), but at a minor expense of
classifier performance. We use the first three blocks of the network for the patch encoder as
in van den Oord et al. (178), and append the final layers for the classification task. Unlike
with rotation, the auxiliary task works on patches while the primary classifier works on
the entire image. This leads to differences in the operating receptive-fields, and differing
proportions of boundary effects. To facilitate easier parameter sharing across the two tasks,
we make the following changes. First, we replace all default zero-padding with reflected,
symmetric padding. This removes the effect of having a different ratio of border-zeros to
pixels when the spatial dimensions of the input changes. Second, we replace all normalization
layers with conditional normalization variants (this means separate sets of scale and shift
parameters are used depending on the current prediction task). Since batch-normalization
allows trivial solutions to CPC for patches sampled from different images, we only use patches
from within the same image, and find that we can continue using it to our advantage. We keep
the same optimizer settings from the rotation experiments, but it is possible that different
choices might lead to further improvements. λ is tuned to 10.0 for all experiments, following
a coarse hyperparameter search for best validation-set classification accuracy over a range of
{0.1, 1.0, 10.0, 20.0, 50.0}.

A.3. Trivial baseline for existing benchmarks

To demonstrate that the current benchmarks are trivial with very low-level information,
we experiment with CIFAR-10 as in-distribution by simply looking at likelihoods under a
mixture of 3 pixel-level Gaussians, trained channel-wise. We find that this simple baseline
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compares very well with recent approaches at all but one of the benchmark OOD tasks
in Liang et al. (123) for CIFAR-10.

OOD dataset Average precision

TinyImagenet (crop) 96.84
TinyImagenet (resize) 99.03
LSUN 58.06
LSUN (resize) 99.77
iSUN 99.21

We see that this underperforms on LSUN. When we inspect LSUN, we find that the images are
cropped patches from scene-images, and a majority of them are of uniform colour and texture,
with little variation and structure in them. While this dataset is most obviously different
from CIFAR-10, we believe that the appearance of the images results in the phenomenon
reported in Nalisnick et al. (136), where one distribution that “sits inside” the other because
of a similar mean but lower variance ends up being more likely under the wider distribution.
In fact, thresholding on simply the “energy” of the edge-detection map gives us an average
precision of around 87.5% for LSUN, thus indicating that the extremely trivial feature of a
lower edge-count is already a strong indicator for telling apart such an obvious difference.

We found that the Gaussian baseline underperforms severely on the hold-out-class experiments
on CIFAR-10, achieving an average precision of a mere 11.17% across the 10 experiments.
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Appendix B

Appendix for second article

B.1. Dataset details

In this section, we provide more details about how we constructed our synthetic datasets.

B.1.1. Coloured MNIST

The training set, Tr, is constructed with an 80% colour-digit correlation per digit with nine
RGB-colours (with the zero digit held out, for testing semantic anomaly detection).

1 (0,100,0)
2 (188, 143, 143)
3 (255, 0, 0)
4 (255, 215, 0)
5 (0, 255, 0)
6 (65, 105, 225)
7 (0, 225, 225)
8 (0, 0, 255)
9 (255, 20, 147)

Table 1. RGB codes used to bias the digits in the majority group.

The ten colours for the minority group were picked such that their L2 distance is at least 50
units away from the biasing colours. Prior to colouring, the digits were binarised to avoid
grayscale tones potentially resulting in unintentionally similar colours.



For the non-systematic validation and test sets, ten colours each were chosen such that they
were at least 50 units away from all other colours.

B.1.2. COCO-on-Colours

We use the following nine categories for in-distribution objects: boat, airplane, truck, dog,
zebra, horse, bird, train, and bus. We hold out motorcycle for anomaly detection experiments.
For background colours, we use the same colours from the coloured MNIST experiments, and
also use an 80/20 split for the majority and minority groups.

In case of multiple instances of the same object in an image, we pick the largest one, and
filter our dataset by mask area, such that only images with objects occupying at least 10K
pixels are retained. All images are finally resized to 64 × 64.

The training set uses 800 such pictures per category, and the validation and test sets use 100
each. The colour backgrounds for the minority group, non-systematically shifted validation
and test sets are picked using the same strategy as with the coloured MNIST dataset.

B.1.3. COCO-on-Places

This dataset follows the same procedure as COCO-on-Colours, except using scenes from
the Places dataset. In Table 2 we list the backgrounds from the corresponding scenes for the
different categories.

Majority group Minority group Validation Test

boat beach kasbah oast house water tower
airplane canyon lighthouse orchard waterfall
truck building facade pagoda viaduct zen garden
dog staircase rock arch
zebra desert (sand)
horse crevasse
bird bamboo forest
train broadleaf forest
bus ball pit

Table 2. Background scenes for the in-distribution majority group, minority
group, and the non-systematically shifted validation and test sets. (The
mapping to categories only applies to the majority group in the training set.)
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B.2. Network architectures and training details

B.2.1. Coloured MNIST

We use a 4-layer CNN with the first three layers being convolutional and the last layer linear.
The convolutional layers have feature dimensions of 64 − 128 − 256, and are all followed
by a max pool, batch norm layer, and relu activation. Before being fed into the final
linear layer, there is a spatial mean-pooling operation. An L2 weight decay is added to all
parameters with a co-efficient of 1e−4.

Training is conducted for 30 epochs, with SGD + Momentum (0.9), using batch sizes of 512.
The learning rate is cut by 10 from its initial value of 0.1 at epochs 9, 18, and 24.

B.2.2. COCO-on-backgrounds

For both COCO datasets, we use an architecture based off of Wide Resnet 28-10 (191).
Since our images are 64 × 64, we append an extra group of 4 residual blocks with the same
layer widths as in the previous group, and use a smaller widening factor of 4 instead of 10 to
avoid memory overflow (starting base dimension = 64). An L2 weight decay regulariser is
applied on all parameters with a coefficient of 5e−4.

We train for 200 epochs with SGD + Momentum (0.9), using batch sizes of 384, with an initial
learning rate of 0.1 which is cut by 10 at the 120th, 160th, 180th, and 190th epochs. We use
the initially large learning rate for longer following prior works such as Li et al. (121) that
have suggested annealing schedules with longer periods of higher learning rates can improve
generalisation, which we do find to help the base network. In both cases, we apply data
augmentation of random crops (after symmetric padding) and random horizontal reflections.

B.2.3. Partitioning network

We use the same MLP with three hidden layers for all our partitioning networks, with
dimensions 64 − 32 − 16. We use Layer Norm (14) and ReLU activations after each layer.
To avoid merely memorising hard examples, it is necessary to regularise this network, so
we also apply spectral normalisation (190); this involves spectrally normalising every linear
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layer, and excluding the scaling term in the layer normalisation transforms, as in Miyato
et al. (133).

We use a separate network for each class, training for 100 iterations each, with the same
batch size as used for training the rest of the model. We use the Adam optimiser (105)
with a learning rate of 1e−4. In preliminary experiments we found a shared network for all
categories to also work, using conditional layer normalisation (14; 48). We didn’t investigate
it further for all datasets, since in general a larger number of classes in a dataset might require
larger capacity in the partition predictor to account for more features, and as the number of
classes go up, a number of smaller matrices can have a lower footprint than one very large
matrix.

Network architecture design for the partitioning network was done only on the coloured
MNIST dataset, with access to true oracle group labels for a smaller set of in-distribution
validation images (20 per category). The same network architecture was applied for the
two COCO datasets. The γ hyper-parameter was learned separately for all datasets, using
the smaller sets of validation images. We find, in preliminary experiments, that using
random partitionings lead to much worse performance. This suggests that, although not
performed for our present study, in more realistic situations one could potentially tune these
hyper-parameters by validating over classification accuracy as for the invariance penalties.

B.2.4. Invariance penalties

In all cases, we pause training of the base network after 1 epoch of training, and learn a
partitioning of the training set. This learned partition is used to drop in the invariance
penalties as training proceeds, and as in prior work (9; 109), we find ramping in the penalty
co-efficient over a number of epochs to be useful for stable training. For IRM and REx (and
conditional variants), we find it helpful to scale the ERM term down by the penalty co-efficient
when the optimal validation co-efficient is greater than 1, as implemented by Arjovsky et al.
(9) and Krueger et al. (109).

B.3. Review of baselines and conditional variants

We briefly review the group invariance methods we compared.
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B.3.1. IRMv1

In Arjovsky et al. (9), a risk regularisation method is described in order to encourage reliance
on features that obey stable correlations with the target variable across data from different
environments. The regularisation consists of a gradient penalty wrt a dummy multiplier on
the logits, with the intuition that scaling up or shrinking the logits in different environments
can only result in local improvements within each environment if the classifier uses features
that correlate at different levels in the different environments. The objective function is

min
Φ:X →Y

∑
e∈E

Re(Φ) + λ||∇µ|µ=1Re(µ.Φ)||2. (B.3.1)

Φ comprises the predictor, which in our case is w⊤fθ(x). µ is a dummy multiplier, fixed at 1,
and Re is the environment risk, corresponding to the average loss for data in a particular
environment when using Φ.

For our conditional variant (cIRMv1), we stratify the gradient penalty over classes, so that
the penalty is applied separately per class in each environment.

The hyper-parameters we search over for this method include the penalty co-efficient λ and
the number of epochs of training over which to linearly ramp up λ to its full value.

B.3.2. REx

Krueger et al. (109) proposed a risk regularisation method that aims to directly match
training risks across environments, by imposing a penalty that minimises the variance of risks
across environments (V-REx).

min
Φ:X →Y

∑
e∈E

Re(Φ) + λVar({· · · , Re, · · · }). (B.3.2)

For our conditional variant (cREx), we apply the variance penalty stratified by class.

The hyper-parameters we search over for this method include the penalty co-efficient λ and
the number of epochs of training over which to linearly ramp up λ to its full value.
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B.3.3. GroupDRO

Sagawa et al. (157) suggest an online algorithm for group-based distributionally robust opti-
misation, which effectively re-weights group losses as a function of their evolving magnitudes,
therefore putting more emphasis on groups that fare worse through training.

For our conditional variant (cGroupDRO), we compute the group weights per class, by using
the losses belonging to the classes separately in each group.

The hyper-parameters we search over for this method include the learning rate for the online
group-weights and the two group adjustment hyper-parameters. Additionally, we sample
equally from both groups for this method, as suggested, finding it to improve results in
preliminary experiments.

B.3.4. Reweight

We learn a hyper-parameter λ on validation, such that every example in the majority group
is weighted with 1/(λ + 1) (because we only want to weight the majority group down).

The hyper-parameters we search over for this method include the penalty co-efficient λ and
the number of epochs of training over which to linearly ramp up λ to its full value.

B.3.5. MMD feature matching

Maximum mean discrepancy based distributional matching of features across domains has
been shown to be effective for domain generalisation (116), and conditional matching of
distributions (usually with adversaries, for example, in Li et al. (118)) tends to work better.
We found in preliminary experiments that conditional MMD significantly outperformed the
unconditional variant, so we only ran full experiments and reported results using cMMD.

The group invariance penalty looks as follows

||E
[
ϕ(fθ(xgroup 0))

]
− E

[
ϕ(fθ(xgroup 1))

]
||2, (B.3.3)

where ϕ induces a kernel function K, which in our implementation is a mixture of 3 Gaus-
sians with bandwidths [1, 5, 10], which are the recommended set of bandwidths in Li et al.
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(116). Adding sharper or flatter bandwidths appeared to hurt performance in preliminary
experiments.

The hyper-parameters we search over for this method include the penalty co-efficient λ and
the number of epochs of training over which to linearly ramp up λ to its full value.

B.3.6. Hyper-parameter grid search ranges

In all cases, λ is searched over a range of

{1e−4, 1e−3, 1e−2, 0.1, 0.5, 1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 10000, 100000},

and the number of epochs over which to linearly ramp up λ is searched over {1, 5, 30}
for MNIST and {1, 10, 200} for COCO. For the GroupDRO methods, we search over
{0.001.0.01, 0.1, 1.0, 10} for the learning rate of the group-weights, and over {0, 1, 2, 3, 4, 5}
for the group-adjustment hyper-parameters, as recommended in Sagawa et al. (157). We also
average the losses group-wise as already done in IRMv1 and REx for cMMD and PGI, except
for COCO-on-Places, where we find this choice to hurt performance.

B.4. Different validation sets

In this section, we report results for all the methods we compare, when picking hyper-
parameters using different validation sets, as discussed in Section 4.5.4.

We note that contrary to what one would typically do in a real-world deployment, we do
not augment the training sets with the validation sets for evaluating test time performance.
This is because the presence of data with systematic distributional shift at training time
improves performance significantly (as observed in Table 1), and our goal here is to perform
an illustrative study about the potential effectiveness of invariance methods at learning to
generalise systematically.

While we could have augmented the training set with validation data when we are not using
validation sets with systematic distributional shift, we follow the same protocol in these cases
of not augmenting the training set, in order to keep the numbers comparable with each other
across different validation schemes.
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Table 3. Picking hyper-parameters only using a validation set of non-
systematic shifts for Coloured MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.61 ± 0.05 63.80 ± 3.58 55.38 ± 1.52 10.35 ± 0.43
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 98.70 ± 0.10 71.51 ± 2.61 77.95 ± 0.65 18.26 ± 2.11
Reweight 99.06 ± 0.06 77.03 ± 1.33 83.37 ± 0.61 17.10 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 99.20 ± 0.10 73.97 ± 1.07 76.06 ± 1.71 17.62 ± 2.29
cGroupDRO 97.89 ± 0.29 73.71 ± 3.21 76.90 ± 2.55 20.73 ± 4.63
cMMD 99.40 ± 0.07 97.36 ± 0.72 97.91 ± 0.19 78.14 ± 3.79
PGI 99.31 ± 0.05 98.21 ± 0.26 97.54 ± 0.41 76.00 ± 4.06

Table 4. Picking hyper-parameters using both a validation set of non-
systematic shifts and the in-distribution set for Coloured MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.61 ± 0.05 63.80 ± 3.58 55.38 ± 1.52 10.35 ± 0.43
REx 98.95 ± 0.11 72.12 ± 1.90 71.18 ± 3.27 15.54 ± 2.05
GroupDRO 98.70 ± 0.10 71.51 ± 2.61 77.95 ± 0.65 18.26 ± 2.11
Reweight 99.06 ± 0.06 77.03 ± 1.33 83.37 ± 0.61 17.10 ± 1.11

cIRMv1 99.36 ± 0.25 65.78 ± 3.53 61.09 ± 5.30 14.16 ± 2.12
cREx 99.20 ± 0.10 73.97 ± 1.07 76.06 ± 1.71 17.62 ± 2.29
cGroupDRO 97.89 ± 0.29 73.71 ± 3.21 76.90 ± 2.55 20.73 ± 4.63
cMMD 99.49 ± 0.04 96.36 ± 0.53 97.68 ± 0.17 71.15 ± 2.65

PGI 99.30 ± 0.07 98.31 ± 0.27 97.48 ± 0.45 76.07 ± 5.67
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Table 5. Picking hyper-parameters using only the in-distribution set for
Coloured MNIST.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 99.60 ± 0.02 53.26 ± 1.89 38.72 ± 2.27 7.70 ± 0.23

IRMv1 99.69 ± 0.02 60.18 ± 1.34 53.20 ± 1.44 9.71 ± 0.76
REx 99.71 ± 0.04 60.71 ± 1.38 50.87 ± 2.79 10.02 ± 0.69
GroupDRO 99.61 ± 0.01 52.21 ± 2.03 40.27 ± 2.08 7.37 ± 0.44
Reweight 99.66 ± 0.04 63.36 ± 4.60 58.09 ± 0.52 11.41 ± 0.49

cIRMv1 99.69 ± 0.01 60.43 ± 2.71 52.98 ± 2.14 10.40 ± 0.91
cREx 99.70 ± 0.02 61.06 ± 1.20 50.83 ± 2.33 9.21 ± 0.97
cGroupDRO 99.63 ± 0.01 55.53 ± 3.63 45.25 ± 2.24 8.69 ± 1.02
cMMD 99.70 ± 0.02 61.10 ± 1.66 51.06 ± 1.87 9.62 ± 1.09

PGI 99.69 ± 0.03 63.62 ± 2.05 58.18 ± 2.05 11.81 ± 1.89

Table 6. Picking hyper-parameters only using a validation set of non-
systematic shifts for COCO-on-Colours.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 40.31 ± 2.11 38.84 ± 3.78 43.24 ± 2.84 17.99 ± 3.68
Reweight 73.17 ± 2.48 48.98 ± 2.65 39.80 ± 2.61 18.20 ± 3.80

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 91.45 ± 0.39 32.43 ± 2.03 1.98 ± 0.68 5.75 ± 0.13
cGroupDRO 43.61 ± 4.33 39.15 ± 4.79 36.63 ± 4.81 18.21 ± 3.65
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25
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Table 7. Picking hyper-parameters using both a validation set of non-
systematic shifts and the in-distribution set for COCO-on-Colours.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.61 ± 0.38 32.30 ± 4.52 2.11 ± 0.30 5.81 ± 0.17
REx 91.69 ± 0.50 36.57 ± 4.03 2.69 ± 0.81 5.73 ± 0.14
GroupDRO 90.70 ± 0.56 33.10 ± 3.26 5.66 ± 0.95 6.60 ± 0.40
Reweight 90.25 ± 0.71 40.23 ± 3.32 10.60 ± 1.34 7.06 ± 0.52

cIRMv1 91.53 ± 0.31 31.11 ± 4.51 1.74 ± 0.40 5.87 ± 0.16
cREx 91.45 ± 0.39 32.43 ± 2.03 1.98 ± 0.68 5.75 ± 0.13
cGroupDRO 87.68 ± 0.59 36.40 ± 2.30 14.07 ± 2.47 9.82 ± 0.91
cMMD 89.87 ± 1.13 55.02 ± 2.29 27.36 ± 1.57 8.82 ± 0.70

PGI 85.78 ± 1.45 51.02 ± 2.32 38.85 ± 2.29 15.71 ± 3.25

Table 8. Picking hyper-parameters using only the in-distribution set for
COCO-on-Colours.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base 90.57 ± 1.28 26.81 ± 4.93 1.10 ± 0.36 5.47 ± 0.08

IRMv1 91.54 ± 0.37 32.40 ± 3.62 1.93 ± 0.36 5.77 ± 0.23
REx 91.62 ± 0.38 31.89 ± 4.08 1.98 ± 0.37 5.74 ± 0.20
GroupDRO 91.44 ± 0.27 22.42 ± 3.00 0.56 ± 0.15 5.55 ± 0.19
Reweight 91.10 ± 0.50 38.63 ± 3.23 4.35 ± 1.13 6.13 ± 0.22
cIRMv1 91.31 ± 0.43 30.94 ± 3.73 1.65 ± 0.36 5.83 ± 0.17
cREx 91.70 ± 0.50 34.93 ± 4.58 2.24 ± 0.48 5.82 ± 0.19
cGroupDRO 91.75 ± 0.60 24.05 ± 3.44 0.94 ± 0.27 5.77 ± 0.13
cMMD 92.51 ± 0.41 44.59 ± 3.28 10.48 ± 0.98 6.05 ± 0.23

PGI 91.86 ± 0.33 32.46 ± 3.06 2.81 ± 0.53 5.88 ± 0.19
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Table 9. Picking hyper-parameters only using a validation set of non-
systematic shifts for COCO-on-Places.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 76.05 ± 0.87 43.72 ± 0.43 31.83 ± 0.54 9.61 ± 0.55
Reweight 80.90 ± 0.50 44.87 ± 1.26 29.34 ± 0.99 9.59 ± 0.54

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 80.04 ± 1.01 49.02 ± 1.18 35.60 ± 0.72 10.55 ± 0.55
PGI (oracle split) 75.98 ± 0.75 47.50 ± 0.87 37.27 ± 1.40 11.57 ± 0.71

Table 10. Picking hyper-parameters using both a validation set of non-
systematic shifts and the in-distribution set for COCO-on-Places.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 80.61 ± 0.44 41.96 ± 1.00 27.19 ± 0.67 9.05 ± 0.06
Reweight 80.90 ± 0.50 44.87 ± 1.26 29.34 ± 0.99 9.59 ± 0.54

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 81.50 ± 0.76 45.44 ± 0.96 29.12 ± 0.97 9.17 ± 0.59
cGroupDRO 78.25 ± 0.31 41.69 ± 0.08 28.16 ± 0.91 9.45 ± 0.22
cMMD 79.64 ± 0.73 49.44 ± 0.99 35.86 ± 0.66 9.80 ± 0.45
PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 79.56 ± 0.64 46.74 ± 0.83 34.78 ± 0.76 9.78 ± 0.59
PGI (oracle split) 78.70 ± 0.86 47.28 ± 1.05 32.84 ± 0.89 11.13 ± 0.90
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Table 11. Picking hyper-parameters using only the in-distribution set for
COCO-on-Places.

Methods In-distribution Non-systematic shift Systematic shift Anomaly detection

Base (ERM) 81.06 ± 1.01 45.25 ± 0.96 29.18 ± 1.24 9.21 ± 0.21

IRMv1 80.93 ± 0.71 45.17 ± 0.92 28.78 ± 0.73 9.39 ± 0.60
REx 81.25 ± 0.76 45.40 ± 0.95 29.20 ± 1.28 9.46 ± 0.98
GroupDRO 80.61 ± 0.44 41.96 ± 1.00 27.19 ± 0.67 9.05 ± 0.06
Reweight 81.53 ± 0.66 45.77 ± 1.33 29.39 ± 0.97 9.55 ± 0.79

cIRMv1 81.48 ± 0.67 45.59 ± 1.27 29.28 ± 0.96 9.80 ± 0.78
cREx 80.68 ± 0.69 44.80 ± 1.39 29.76 ± 1.05 9.95 ± 0.79
cGroupDRO 80.23 ± 0.13 41.86 ± 0.60 25.88 ± 1.20 9.43 ± 0.68
cMMD 81.11 ± 0.51 46.57 ± 0.97 31.54 ± 0.88 9.79 ± 0.79

PGI 80.99 ± 0.52 47.63 ± 0.90 31.91 ± 0.89 9.59 ± 0.89

cMMD (oracle split) 81.59 ± 0.65 45.47 ± 1.40 29.16 ± 0.96 9.15 ± 0.36
PGI (oracle split) 81.22 ± 1.09 45.16 ± 0.96 29.24 ± 0.64 9.31 ± 0.67
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B.5. Measuring semantic anomaly detection

We use the test set with non-systematic distributional shift as the normal data, and the
held-out class data combined systematically with the biasing colours or backgrounds as the
anomalous data. For MNIST, this means there is 9 times more normal data than anomalous
data, which reflects the typical situation of anomalies being rarer. Our choice of normal data
makes this a harder task than usual, since we are assessing for higher (than the anomalies)
predictive confidences for non-semantic shift with semantic factors kept the same, and reduced
predictive confidence for semantic shift with non-semantic factors from the seen data. For the
COCO datasets, we only sample 100 images from the held-out class to resemble the MNIST
experimental setup.

Anomaly detection is measured using average precision, treating the anomalous class as
positive, with the negative of the predictive softmax confidence as the score (90).

B.6. Algorithm

Algorithm 1: Algorithm for PGI
Initialise all classifier parameters θ, w and partition-predicting networks, gc, ∀c ∈ [C] ;
for one epoch do

for mini-batches Db ∈ D do
gradθ := ∇θℓ(θ, w|Db) ;
gradw := ∇wℓ(θ, w|Db) ;
θ, w := optimizer(gradθ, gradw) ;

end
end
for all classes c ∈ [C] do

Learn a partition for images in D with labels c, (Eq. 8)
end
for T − 1 epochs do

for mini-batches Db ∈ D do
gradθ := ∇θ(ℓ(θ, w|Db) + λ.penalty) (Eq. 6,7) ;
gradw := ∇wℓ(θ, w|Db) ;
θ, w := optimizer(gradθ, gradw) ;

end
end
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Appendix C

Appendix for third article

C.1. Posterior update

We derive the posterior update equation (Eq. 5.4.5), specifying the conditions under which
this rule holds. The key assumption is that in the new deployment location, categories are
encountered in an IID manner in the location, i.e., yj ⊥⊥ yk.

Pt(ϕ) = P (ϕ | y1, · · · , yt), (C.1.1)

= P (y1, · · · , yt | ϕ) P (ϕ)
P(y1, · · · , yt)

, (Bayes rule) (C.1.2)

∝ P (y1, · · · , yt | ϕ) P (ϕ), (dropping terms independent of ϕ) (C.1.3)

=
t∏

i=1
P (yi | ϕ) P (ϕ) (using assumption yj ⊥⊥ yk) (C.1.4)

= P (yt | ϕ)
 t−1∏

i=1
P (yi | ϕ) P (ϕ)

 (regrouping terms) (C.1.5)

∝ P (yt | ϕ) Pt−1(ϕ), (by definition) (C.1.6)



C.2. Regression model

C.2.1. Finding the optimal solution from the predictive rule

The required distributions are defined as

P (y | x) ∝ exp
− λx

2

(
y − f(x)

)2
, (C.2.1)

P new(y) ∝

1 + L

2a
(y − µ)2

− 2a+1
2

, (C.2.2)

P (y) ∝ exp
− λy

2

(
y − m

)2
, (C.2.3)

(C.2.4)

which gives us the objective J = − log P (y | x) expressed as

J = − log P (y | x) − log P new(y) + log P (y) (C.2.5)

= λx

2

(
y − f(x)

)2
− λy

2

(
y − m

)2
+ 2a + 1

2 log
(

1 + L

2a
(y − µ)2

)
(C.2.6)

The derivative of this objective wrt y is

∂J

∂y
= λx(y − f(x)) − λy(y − m) +

2a+1
�2

L
2a

.�2.(y − µ)
1 + L

2a
(y − µ)2 (C.2.7)

= λx(y − f(x)) − λy(y − m) +
(2a + 1) L

2a
(y − µ)

1 + L
2a

(y − µ)2 (C.2.8)

=
(
λx − λy

)
︸ ︷︷ ︸

τd

y +
(
λym − λxf(x)

)
︸ ︷︷ ︸

τµ

+

A︷ ︸︸ ︷
(2a + 1)

M︷︸︸︷
L

2a
(y − µ)

1 + L
2a

(y − µ)2 (C.2.9)

= τdy + τµ + AM(y − µ)
1 + M(y − µ)2 (C.2.10)

Setting to zero, we have(
τdy + τµ

)(
1 + M(y − µ)2

)
+ AM(y − µ) = 0 (C.2.11)

=⇒
(

τdy + τµ

)(
1 + My2 + Mµ2 − 2Mµy

)
+ AM(y − µ) = 0 (C.2.12)
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=⇒ τdy + Mτdy3 + Mµ2τdy − 2Mµτdy2 + τµ + Mτµy2 + Mτµµ2 − 2Mµτµy + AMy − AMµ = 0
(C.2.13)

=⇒ Mτdy3 + (Mτµ − 2Mµτd)y2 + (τd + Mµ2τd − 2Mµτµ + AM)y + (τµ + Mτµµ2 − AMµ) = 0
(C.2.14)

which is the equation we shall solve for y. We use NumPys polynomial solver to find roots.
A cubic equation either has one real and a pair of conjugate imaginary roots, or all real roots.
We test the real solutions for a positive curvature (implying local minima), and pick the
minima resulting in smallest value of the objective J .

C.2.2. Second derivative test for solutions

The second derivative of J is given by

τd − 2AM2(y − µ)2

(1 + M(y − µ)2)2 + AM

1 + M(y − µ)2 (C.2.15)

Writing y − µ as D, we have

τd + AM

(1 + MD2) − 2AM2D2

(1 + MD2)2 = τd + AM

1 + MD2

(
1 − 2MD2

1 + MD2

)
= τd + AM(1 − MD2)

(1 + MD2)2

(C.2.16)

When this expression is positive, we have a local minima.

For the first term to be positive, we require that τd > 0, which has a straightforward intuitive
interpretation: τx > τy, i.e. output precision should be higher than marginal-adjustment
precision. This is a reasonable condition which we expect to be fulfilled, since we typically
expect to rely more strongly on the underlying predictive model than simply the marginal.

In the second term, AM is always non-negative, for a positive pseudo-count. The denominator
is always positive. Substituting in expressions for the values after the t-th update, we have

MD2 =
κt

κt+1(y − µt)2∑t−1
τ=0

κτ

κτ +1(ŷτ+1 − µτ )2 . (C.2.17)

When this term is ≤ 1, we are guaranteed positivity (strictly speaking, τd provides the second
term with some room for negative values, but we ignore it for simplified reasoning). This
condition implies

(y − µt)2 ≤ κt + 1
κt

t−1∑
τ=0

κτ

κτ + 1(ŷτ+1 − µτ )2, (C.2.18)
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which then implies that the following range for y allows local minima

µt −

√√√√κt + 1
κt

t−1∑
τ=0

κτ

κτ + 1(ŷτ+1 − µτ )2 ≤ y ≤ µt +

√√√√κt + 1
κt

t−1∑
τ=0

κτ

κτ + 1(ŷτ+1 − µτ )2. (C.2.19)

An intuitive interpretation of this condition is that valid updates are allowed within an
increasing range as a function of the total observed variances up to the t-th test example.
In practice, we find that validation tends to pick values for τx > τy, and that the case for
no-local-minima typically does not arise for the optimal hyper-parameters in our experiments.

C.2.3. Initializing priors

For initializing priors, we might endeavour to stay unbiased, since we assume that deployment
locations can have significantly different target distributions than we might anticipate from
the marginal over the training set. For classification, we built this in by using a uniform
pseudo-count for all classes and sources. For regression, we simulate a pseudo-count of
uniform samples from the output range.

If we start with a reference prior for the Normal-Gamma distribution with parameter settings

µ = ., κ = 0, α = −0.5, β = 0, (C.2.20)

then after observing a N data-points {y1, · · · , yN}, yi ∼ U [L, H] (the uniformly sampled
points we will simulate), the resulting posterior is

µ = 1
N

N∑
i=1

yi, (C.2.21)

κ = N, (C.2.22)

α = N − 1
2 , (C.2.23)

β = 1
2

N∑
i=1

(yi − µ)2. (C.2.24)

In this view, κ corresponds to the pseudo-count (as per the interpretation of the parameters
of the Normal-Gamma conjugate prior as in (135)). α is defined in terms of κ. To improve
stability, we will set µ to the middle of the output range rather than actually estimate the
mean of our uniform pseudo-samples. Likewise, we will set β by estimating its value as a
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function of κ and using the expression for variance of a uniform distribution,

E[β] = 1
2(κ − 1)Var(yi) = (κ − 1)(H − L)2

24 . (C.2.25)

C.3. Experimental details

C.3.1. Synthetic MNIST

The splitting of digits into two sets is performed by observing mis-classification matrices after
200 iterations of training a neural network averaged across a 100 runs – digits are put into
opposing sets if they tend to be confused, while also trying to keep the set-sizes balanced.

The network architecture consists of 3 conv layers with 64, 128 and 256 channels, each
followed by maxpool, batchnorm, and relu. After the third layer, we spatially mean-pool
activations and use a linear layer to map to the logits. A weight-decay of 5e − 4 is applied on
all parameters. Training is conducted for 20 epochs with batches of size 256 where training
accuracy saturates to 100%. An initial learning rate of 0.1 is used, which is cut by 5 at the
6-th, 12-th and 16-th epochs.

The datapoint-counts in the train/val/test environments are as follows.

0 1 2 3 4 5 6 7 8 9

Train
red 4889 5614 4915 38 49 4664 57 59 41 4946
cyan 43 64 53 5063 4810 42 4894 5116 4801 42

IID validation
red 989 1052 985 7 10 904 12 8 12 949
cyan 2 12 5 1023 973 11 955 1082 997 12

OOD validation
cyan 687 714 689 313 304 635 310 315 301 664
red 304 350 301 717 679 280 657 775 708 297

OOD Test
cyan 980 1135 1032 0 0 892 0 0 0 1009
red 0 0 0 1010 982 0 958 1028 974 0
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C.3.2. Synthetic Gaussian

The synthetic data for this experiment is generated with the following function

y(x) = 10N (y | x; µ = −2, σ = 0.5) + 3N (y | x; µ = 2, σ = 0.5) + 6N (y | x; µ = 0, σ = 1)

Training points: Training points are sampled from two regions on the x-axis, x ∼ N (−2, 0.4)
and x ∼ N (2, 0.2), with 250 points each.

OOD validation points: OOD validation points are sampled from N (−3.5, 0.2) and
N (1, 0.2), with 250 points each.

OOD test points: OOD test points are sampled from N (0, 0.2) and N (3, 0.2), with 250
points each.

For OOD sets, the different sampling distributions correspond to different locations. For
different trials, we repeat the whole experiment from scratch, sampling new training, validation,
and test sets, and performing validation every time.

The network architecture is a 3 layer MLP with 128 hidden units, with batchnorm and
relu after hidden activations. A weight decay of 1e − 8 is applied on all parameters. We
train for a 100 epochs with batch-sizes of 100, with SGD + Momentum (0.9), starting with
an initial learning rate of 0.01 and scaling it by 0.95 after every epoch.

We include the non-aggregated MSEs below to confirm that there are consistent improvements
over every base model/data-sampling individually.

Seed IID-Base OOD-Base OOD-Online

0 0.08 11.23 3.14
1 0.13 12.37 3.82
2 0.16 6.13 3.00
3 0.19 9.14 5.50
4 0.21 7.00 6.31
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C.3.3. Synthetic Skewed-COCO-on-Places

We chose the following objects for this synthetic classification task: bicycle, train, cat, chair,
horse, motorcycle, bus, dog, couch, and zebra; and the following scenes to simulate different
sources.

Training: beach, canyon, building_facade, desert/sand, iceberg

OOD validation: oast_house, orchard, crevasse, ball_pit, viaduct

OOD test: water_tower, staircase, waterfall, bamboo_forest, zen_garden

When there are multiple instances of a class in an image, we pick the instance occupying
largest area, such that only images with objects occupying at least 10K pixels are retained.
All images are resized to 256 × 256.

Across the 5 sources, the number of examples for training, validation, and test sets are as
follows.

Note that the pattern of label-shift is the same across validation and test subsets (albeit of a
smaller size). This proof-of-concept experiment is intended as a middle-ground between the
colored MNIST and WILDS-iWildCam experiments, in that the potential of learning
hyper-parameters to account for conditional shift is tested while keeping label-shift pattern
fixed).

We train for 400 epochs with SGD + Momentum (0.9), using batch sizes of 128, with an
initial learning rate of 0.1 which is cut by 5 at the 240th, 320th, 360th epochs. An L2 weight
decay regulariser is applied on all parameters with a coefficient of 5e−4. We normalize images
with the training set mean and standard deviation per channel, and apply data augmentation
of random crops to 224 × 224 and random horizontal reflections.

C.4. Identity approximation for confusion matrix

Degenerate confusion matrices can arise when there are missing categories in the validation
set used to compute it (leading to zero-rows), or if two or more rows are exactly the same
(for example, when multiple rare categories both get categorized the same way). Two options
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are to use a soft-confusion matrix, or a pseudo-inverse (126). Since the iWildCam dataset
is significantly long-tailed, with a large number of classes not represented in the validation
sets, we end up with a number of zero rows for the soft-confusion matrix. For such rows, we
simply placed a 1 in the diagonal element.

In Table 4, we find these alternatives to result in degraded performance for iWildCam,
generally much worse than our identity approximation. We hypothesize that part of the
reason is to do with the fact that both our zero-confusion heuristic for dealing with missing
classes for the soft-confusion matrix, as well as the same underlying effect being applied by
the pseudo-inverse results in a misleading effect: rare classes, absent from validation sets,
are in fact more likely to be confused than the frequent ones. This is one possibility for
why the less presumptive identity approximation performs better. The inherent difficulty in
estimating robust confusion matrices has been recognized in the literature, with the typical
approach being to hold out significantly large validation sets in order to reliably estimate less
noisy confusion matrices. In Table 5, we include numbers from an identity approximation in
the synthetic datasets where the confusion matrices were invertible.

On the whole, we suggest to practitioners that in difficult, real-life situations, simpler
approximations might continue to serve us well, while more sophisticated methods can pose
specific requirements to be successful.

C.5. Hyperparameters, compute, and code and data
licenses.

The hyper-parameters involved are the two calibration terms λu, λy and the pseudo-count
term α0 for classification, and λx, λy, κ for the regression problems. These were picked via
grid-search on the OOD validation sets, optimizing for OOD performance in all cases. For
OGD methods, an additional hyper-parameter is the learning rate used for updating p. This
learning rate is searched over a range from 1e-8 to 10 in steps of ×10.

V100 GPUs were used to train base models (in cases where we trained our own models), and
the online adjustment experiments were performed on an Apple Macbook Air with saved
outputs from the models.

We reused code from https://github.com/p-lambda/wilds, released under the MIT
License, and code from https://github.com/wrh14/online_adaption_to_label_
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Table 1. Training set

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 669 669 429 176 46 7 0 0 0 0
canyon 135 329 513 513 329 135 35 6 0 0
building_facade 5 34 132 322 503 503 322 132 34 5
desert/sand 0 0 6 35 135 329 513 513 329 135
iceberg 0 0 0 0 7 46 176 429 669 669

Table 2. Validation sets

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 167 167 107 44 11 1 0 0 0 0
canyon 33 82 128 128 82 33 8 1 0 0
building_facade 1 8 33 80 125 125 80 33 8 1
desert/sand 0 0 1 8 33 82 128 128 82 33
iceberg 0 0 0 0 1 11 44 107 167 167

Table 3. Test sets

bicycle train cat chair horse motorcycle bus dog couch zebra

beach 401 401 257 105 27 4 0 0 0 0
canyon 81 197 308 308 197 81 21 3 0 0
building_facade 3 20 79 193 302 302 193 79 20 3
desert/sand 0 0 3 21 81 197 308 308 197 81
iceberg 0 0 0 0 4 27 105 257 401 401

Table 4. We compare use of a soft-confusion matrix and the pseudo-inverse
with our approximation with an identity matrix for iWildCam. We find that
FTH performance drops strongly, and for OGD, the optimal learning rate is
most often zero, leading to no differences with base performance. For OGD,
we find the optimal learning rate on the test-set for all choices of confusion
matrix, reporting best-case performance.

Dataset Method Soft confusion matrix Pseudo-Inverse Identity

iWildCam (avg)

FTH (C-IID) 43.41 ± 21.80 37.23 ± 19.34 71.41 ± 4.91
FTH (C-OOD) 34.56 ± 16.71 28.20 ± 13.74 71.41 ± 4.91
OGD (C-IID) 73.10 ± 3.26 73.29 ± 3.04 73.16 ± 3.33
OGD (C-OOD) 73.10 ± 3.26 73.10 ± 3.26 73.17 ± 3.18

iWildCam (macro-F1)

FTH (C-IID) 22.42 ± 4.33 11.33 ± 0.26 29.57 ± 0.93
FTH (C-OOD) 23.73 ± 3.36 10.82 ± 4.64 29.57 ± 0.93
OGD (C-IID) 32.71 ± 0.18 32.70 ± 0.16 32.75 ± 0.17
OGD (C-OOD) 32.71 ± 0.14 32.70 ± 0.16 32.70 ± 0.16
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Table 5. Identity approximation with S-MNIST and S-COCO-on-Places,
with test-time performance using the original confusion matrix Cf for reference.
When using the identity approximation, OGD (IID) uses the IID validation set
to estimate Cg and OGD (OOD) uses the OOD validation set.

Dataset Method Identity approximation Original

S-MNIST
FTH 96.02 ± 1.07 96.04 ± 1.03
OGD (IID) 89.47 ± 1.96 88.32 ± 2.06
OGD (OOD) 95.70 ± 0.68 95.75 ± 0.70

S-COCO-on-Places
FTH 59.27 ± 0.64 58.94 ± 0.63
OGD (IID) 57.48 ± 0.52 57.37 ± 0.51
OGD (OOD) 56.02 ± 0.35 57.75 ± 0.29

distribution_shift, publicly released by Wu et al. (186). We also used data from
MS-COCO, released under the Creative Commons Attribution 4.0 License. WILDS-
iWildCam is under Community Data License Agreement – Permissive – V1.0, and
the WILDS-PovertyMap data is U.S. Public Domain (LandSat/DMSP/VIIRS).
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