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Résumé 
Les effets cardiovasculaires des alpha-2 agonistes, particulièrement importants chez les 

chiens, limitent leur utilisation en pratique vétérinaire. La perfusion à débit constant (PDC) 

de ces drogues, comme la médétomidine (MED) permettrait un contrôle plus précis de ces 

effets. Les effets hémodynamiques de plusieurs doses de MED en PDC ont été évalués chez 

le chien. 

Lors de cette étude prospective, réalisée en double aveugle, 24 chiens en santé, ont 

reçu de façon aléatoire une des 6 doses de MED PDC (4 chiens par groupe). Les chiens ont 

été ventilés mécaniquement pendant une anesthésie minimale standardisée avec de 

l’isoflurane dans de l’oxygène. Une dose de charge (DC) de médétomidine a été 

administrée aux doses de 0.2, 0.5, 1.0, 1.7, 4.0 ou 12.0 µg/kg pendant 10 minutes, après 

laquelle la MED PDC a été injectée à une dose identique à celle de la DC pendant 60 

minutes. L’isoflurane a été administré seul pendant une heure après l’administration d’une 

combinaison d’ISO et de MED PDC pendant 70 minutes. La fréquence cardiaque (FC), la 

pression artérielle moyenne (PAM) et l’index du débit cardiaque (IC) ont été mesurés. Des 

prélèvements sanguins ont permis d’évaluer le profil pharmacocinétique. D’après ces 

études, les effets hémodynamiques de la MED PDC pendant une anesthésie à l’isoflurane 

ont été doses-dépendants. L’IC a diminué progressivement alors que la dose de MED 

augmentait avec: 14.9 (12.7), 21.7 (17.9), 27.1 (13.2), 44.2 (9.7), 47.9 (8.1), and 61.2 (14.1) 

% respectivement. Les quatre doses les plus basses n’ont provoqué que des changements 

minimes et transitoires de la FC, de la PAM et de l’IC. La pharmacocinétique apparaît 

clairement dose-dépendante. De nouvelles expériences seront nécessaires afin d’étudier 

l’utilisation clinique de la MED PDC. 

 

Mots-clés: Médétomidine, Perfusion à Débit Constant (PDC), Sédation, Analgésie, 

Anesthésie, Chien 
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Abstract 
The cardiovascular effects of alpha-2 agonists, particularly pronounced in dogs, limit their 

use in veterinary practice. The use of these drugs, namely medetomidine (MED), by 

constant rate infusion (CRI), could allow more precise control of the cardiovascular effects. 

The haemodynamic responses of MED CRI at several dosages in dogs were investigated. 

In a prospective, blinded study, 24 healthy beagles randomly received one of 6 

MED CRI regimens (4 dogs per regimen). Dogs were mechanically ventilated to maintain 

stable low-level isoflurane (ISO) anaesthesia in oxygen. A loading MED infusion was 

administered at 0.2, 0.5, 1.0, 1.7, 4.0 or 12.0 µg·kg-1 for 10 min, followed by maintenance 

CRI for 60 min providing identical dose amounts for all dogs (total duration for MED and 

ISO: 70 min). Isoflurane was then administered alone for an additional hour. Heart rate 

(HR), mean arterial blood pressure (MAP), and cardiac index (CI) were recorded. Blood 

sampling was performed to establish pharmacokinetic profiles.  

Based on this study, the hemodynamic effects of MED CRI during ISO anaesthesia 

were found to be dose-dependent. Baseline CI decreased dose-dependently as MED dose 

increased by: 14.9 (12.7), 21.7 (17.9), 27.1 (13.2), 44.2 (9.7), 47.9 (8.1), and 61.2 (14.1) % 

respectively. The four lowest dosages created limited and transient changes in HR, MAP, 

and CI. Pharmacokinetics were dose-dependent. Further investigations for perioperative use 

are warranted. 

 

Keywords: Medetomidine, Constant rate infusion (CRI), Sedation, Analgesia, Anaesthesia, 

Dog 
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Introduction 

 

In recent years, pain management in veterinary medicine has become increasingly 

important. Pain assessment and alleviation is now a discipline, and is particularly developed 

in small animal practice. It brings together an increasing number of veterinarians and 

technicians devoted to the promotion, enhancement, and advancement of pain management 

in animals. 

Analgesic agents that are widely used in clinical practice, include opioids and non-

steroidal analgesic drugs (NSAIDs). In North-America opioids are the major players for 

systemic analgesia in veterinary medicine with butorphanol being one of the most popular 

analgesic drugs currently used in Canadian small animal practices. However, potential risks 

exist for adverse and at times deleterious effects in patients with opioid administration 

which may include constipation, urinary retention, respiratory depression, bradycardia, 

dysphoria, and opioid-induced hyperalgesia. 

Alpha-2 agonists, namely medetomidine (the most commonly used alpha-2 agonist 

in small animal practice in Canada; Kaartinen et al., 2007), could provide an alternative or 

additive effect to opioid protocols used in peri-operative analgesia. Medetomidine is a 

potent analgesic, sedative, muscular relaxant, and is anxiolytic as well as reversible. It is 

primarily used for sedation and pre-medication prior to general anaesthesia. However, in 

spite of its claimed analgesic potency, it has not been used to its full extent as a peri-

operative analgesic adjunct. Concerns about the cardiovascular side effects of alpha-2 

agonists after one bolus injection, especially in dogs, have somewhat prevented full 

adoption of these agents in veterinary practice. 

The use of medetomidine through constant rate infusion (CRI) in dogs is a relatively 

new approach, although not thoroughly explored. With the use of CRI, the cardiovascular 

side effects may be minimized and plasma concentrations are more stable than with 

frequent bolus injections. 

 The objective of this study was to investigate an alternative or supplemental 

analgesic drug protocol to opioids, by intravenous delivery of medetomidine at CRI in 

dogs. The hypothesis of this study was to identify a dosage level of medetomidine CRI 
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causing minimal hemodynamic changes usually associated to alpha-2 agonists whilst 

allowing precise control of both sedation and analgesia duration.  



 

FIRST CHAPTER – LITERATURE REVIEW 

1.0 PHYSIOLOGY AND PHARMACOLOGY OF THE ALPHA-2 AGONISTS 

 

 

1.1 Agonists 

Alpha-2 agonists act on alpha-2-adrenoceptors by inhibiting the sympathetic tone (decreased 

release and turnover of noradrenaline) and increasing the parasympathetic tone (Cullen, 

1999). This leads to characteristic hemodynamic effects (e.g. decreased heart rate and 

cardiac output) as well as a range of anxiolytic, sedative, and analgesic effects. 

The alpha-2 agonists available for clinical use in veterinary medicine are xylazine, 

medetomidine, detomidine, and romifidine. Medetomidine is mostly used in small animal 

practice and is licensed for use in dogs, in Canada. Medetomidine is a highly selective 

alpha-2 agonist. The chemical structure is shown in figure 1. It is supplied in a racemic 

mixture of two optical enantiomers (dexmedetomidine and levomedetomidine). 

Dexmedetomidine is the active enantiomer (Virtanen, 1989; Murrell and Hellebrekers, 

2005; Kuusela et al., 2000). The pure form of dexmedetomidine has recently been launched 

for the veterinary market but was unavailable in Canada in 2009. Dexmedetomidine is the 

most potent alpha-2 agonist available for clinical use in veterinary medicine. It has a very 

high affinity for alpha-2 adrenoceptors where it acts as a full agonist. It has a selectivity 

ratio of 1620/1 (α2/α1) which is 5 to 10 times higher than that of xylazine (α2/α1 ratio 

160/1) and detomidine (260/1) (Virtanen, 1989; Cullen, 1996). Thus, medetomidine and 

dexmedetomidine have a very low affinity to alpha-1 adrenoceptors, compared to other 

alpha-2 agonists, such as xylazine and clonidine. Medetomidine seems to provide better 

sedation and analgesia than xylazine, possibly due to its higher selectivity (Tyner et al., 

1997). 
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Figure 1. Chemical structure of medetomidine. (From Orion Pharmos Inc. info brochure of 

medetomidine.) 

 Medetomidine, dexmedetomidine and detomidine are the only clinically available 

alpha-2 agonists in veterinary practice that have an imidazole ring in their structure enabling 

these compounds to also interact with the imidazoline receptor (Murrell and Hellebrekers, 

2005). Xylazine and romifidine do not possess this property. Studies with 

dexmedetomidine have shown that one of its cardiovascular properties was also mediated 

via these receptors. Interestingly it was demonstrated to have a cardioprotective effect; an 

antiarrhythmic effect via imidazoline receptors in the CNS as well as enhancing vagal tone 

(Kamibayashi et al., 2000; Kamibayashi et al., 1995A & B). 

Medetomidine can be given intramuscularly (IM), intravenously (IV) or 

subcutaneously (SC). After IM administration, the drug is rapidly absorbed and peak 

plasma levels are reached within 30 minutes. When given IV, the onset of action is rapid 

but the peripheral effects on the cardiovascular system are more pronounced than when 

given IM. After SC administration in dogs, the absorption time of the drug is slow and 

extremely variable which makes this route of administration less favourable (England and 

Clarke, 1989). 

In North-America, the recommended dosage range of medetomidine in healthy dogs 

is 10-40 µg/kg (Paddleford and Harvey, 1999). Earlier studies searching for optimal dosage 

of medetomidine in clinical practice suggested 30-40 µg/kg for dogs (Vähä-Vahe, 1989A), 

750 µg/m2 IV and 1000 µg/m2 IM (Hamlin and Bernarski, 1989). Although clinically 

difficult, it has been suggested by the manufacturer that dosages calculated as µg per body 

surface area would be more accurate than those calculated per body weight. 
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In a clinical study, the optimal dosage recommended for medetomidine was 15-20 

µg/kg for radiological examinations and a dosage of 30-40 µg/kg was necessary for 

sufficient restraint and analgesia for clinical examinations or minor interventions (Nilsfors 

et al., 1989). The highest dosage of medetomidine recommended for dogs was 80 µg/kg 

(Vainio, 1989A). 

However, much lower doses may be adequate for perioperative use when given with 

other anaesthetic and analgesic drugs, since the sedative and analgesic effects of 

medetomidine are very potent (Bergström, 1988). Low dose bolus administration and low 

dose infusion are now preferred in clinical practice. 

 

1.2 Receptors 

Alpha-2-adrenoceptors are widely distributed throughout tissues and organs where they 

mediate the effects of endogenous catecholamines. Receptors are located both 

presynaptically and postsynaptically. Postsynaptic alpha-2-adrenoceptors in peripheral 

blood vessels mediate vasoconstriction leading to increased blood pressure. Presynaptic 

alpha-2-adrenoceptors regulate the release of noradrenaline, the sympathetic 

neurotransmitter from adrenergic nerve endings. These receptors control the concentration 

of catecholamines in the extracellular space of nerve endings. If these receptors are 

occupied by a synthetic alpha-2 agonist (ex. medetomidine) the nerve impulses through the 

synapse are decreased resulting in sympatholysis (decrease in central noradrenergic tone). 

Sedation and analgesia occur along with a centrally mediated decrease in heart rate and 

attenuation of vasoconstriction leading to reduced blood pressure. The overall 

hemodynamic response to systemically administered alpha-2 agonists may be determined by 

receptors within the central nervous system (CNS) and spinal cord (Aantaa and Jalonen, 

2006). However, it was also suggested that this response in dogs depends on the initial 

status of vessel tone (Lin et al., 2008). 

Other physiological functions have been found for alpha-2-adrenoceptors located 

postsynaptically, for example, in renal, hepatic, pancreatic, adipose and ocular tissues, and 

in thrombocytes, as well as vascular smooth muscle (Murrell and Hellebrekers, 2005). 
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Adrenoceptors are classified in three main classes (β-, α1-, and α2-adrenoceptors). 

In general, the sedative and anxiolytic effects of alpha-2 agonists are mediated by activation 

of supraspinal autoreceptors (receptors located on noradrenergic neurons) located in the 

pons (locus ceruleus; LC; Figure 2). Analgesic effects are mediated by activation of spinal 

heteroceptors (receptors located on non-noradrenergic neurons) located in the dorsal horn 

of the spinal cord (Lemke, 2004A). However, the supraspinal autoreceptors located in the 

pons also play a prominent role in descending modulation of nociceptive input (Lemke, 

2004B; Cullen, 1996; Ossipov et al., 1990). 

Three distinct alpha-2 receptor subtypes (A, B and C) have been identified (Maze 

and Fujinaga, 2000). Alpha-2A receptors mediate sedation, analgesia, hypotension, and 

bradycardia. Alpha-2B receptors mediate the initial increase in vascular resistance, 

hypertensive action, and reflex bradycardia. Alpha-2C receptors mediate the hypothermia 

that may accompany administration of alpha-2 agonists. Centrally located alpha-2C receptors 

also mediate anxiolysis. Drugs acting via these receptors may have therapeutic value in 

decreasing the stress response, for example in the case of post-traumatic stress disorders 

(Kamibayashi et al., 2000). 

Alpha-2 receptors are cell membrane proteins that trigger cellular responses to 

ligands by interacting with intracellular G-proteins (Aantaa et al., 1995). These receptors 

are capable of interacting with all types of pertussis toxin-sensitive G-proteins, although the 

most important interactions are with the inhibitory G-proteins Gi and Go. Intracellular 

second-messenger pathways include inhibition of adenylate cyclase and modulation of ion 

channels. 
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Figure 2. Descending antinociceptive pathways. Noradrenergic neurons project from 

supraspinal levels to the neurons in the dorsal horn of the spinal cord. (From Kandel 

Schwartz and Jessel, Principles of Neural Science, 4th edition, 2000, McGraw-Hill.)   

                          

1.3 Pharmacokinetics 

Pharmacokinetic studies have shown that absorption occurs rapidly following 

medetomidine (IM) administration in dogs. Plasma protein binding of medetomidine is 

very high (92-95%) (Salonen, 1989). Thus, medetomidine is present in the circulation 

mostly in its inactive protein-bound form. Medetomidine, a weak organic base, when given 
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at high dosage (80 µg/kg) presented a low free fraction (fu) estimated at 15% in dogs, cats, 

and rats. Binding of the drug to α-proteins (globulins, lipoproteins, glycoproteins) was 

hypothesized. Due to high lipid solubility, there is rapid distribution, systemic diffusion, 

and clearance. In a pharmacokinetic study with radioactively labelled 3H-medetomidine, 

serum peak concentration (approximately 20 ng/ml) was obtained 30 minutes after 

administration at a dosage of 80 µg/kg (Salonen, 1989). The volumes of distribution at 

steady state (Vss), the clearances (Cl), and half-lives of elimination (T½) after IV and IM 

administration of this dosage are shown in Table I. Similar pharmacokinetic data were 

shown in a study by Kuusela et al. (2000), in which they compared pharmacokinetics of 

medetomidine, levomedetomidine, and dexmedetomidine after IV bolus administration. 

The data are included in Table I. 

 

 Vss (l/kg) Cl (l/h/kg) T½ (h) 

Medetomidine IM 80 µg/kg 

Medetomidine IV 80 µg/kg 

(Salonen, 1989) 

 3.0 

 2.8 

1.65 (27.5 ml/min/kg) 

2.00 (33.4 ml/min/kg) 

1.28 

0.97 

Medetomidine IV 40 µg/kg  1.28 1.26 0.96 

Dexmedetomidine IV 20 µg/kg  0.86 1.24 0.78 

Levomedetomidine IV 20 µg/kg 

(Kuusela et al., 2000) 

 2.68 4.07 0.63 

Table I. Pharmacokinetic parameters of medetomidine, dexmedetomidine, and 

levomedetomidine (information obtained from Salonen, 1989; and Kuusela et al., 2000). 

Vss = volume of distribution at steady state, Cl = clearance, T½ = elimination half-life. 

 

The clearance of levomedetomidine appears more rapid than dexmedetomidine or 

racemic medetomidine in dogs (Table I; Kuusela et al., 2000). In addition, 

levomedetomidine has been shown to interfere with the metabolism of other anesthetic 

drugs in the liver, such as slowing ketamine metabolism (Kharasch et al., 1992). 

In healthy human adults, dexmedetomidine pharmacokinetic profile includes a rapid 

distribution phase, T½ of 2 h, and Vss of 118 L (Dyck and Shafer, 1993). Based on 
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available pharmacokinetic data, the T½ after bolus administration suggests more rapid 

elimination in dogs compared to humans, while the Vss with 40 µg/kg (IV) in dogs is 

similar to weight-adjusted results in humans. 

Dexmedetomidine and medetomidine undergoes hepatic metabolism with limited 

unchanged drug excreted in the urine or feces. Medetomidine is mainly (80-90%) 

metabolized by hepatic hydroxylation followed by glucuronidation in dogs, involving 

several biotransformation pathways (Salonen, 1992). Phase I reaction proceeds with a rate 

sufficient for rapid removal of the drug from the animal’s body and is therefore regulated 

mainly by hepatic blood flow. Phase II glucuronidation of medetomidine with glucuronic 

acid is accomplished by different UDP-glucuronosyltransferases presenting different 

affinity, regio-and stereo-selectivity in human and canine liver microsomes. N-

glucuronidation of levomedetomidine and dexmedetomidine thus occur with different 

kinetics (Kaivosaari et al., 2008). In addition, an O-glucuronidation pathway has been 

reported for medetomidine (Salonen, 1992). 

A phenotypic polymorphism of the cytochrome P450 (CYP)-catalyzed phase I 

hydroxylation of medetomidine, affecting the biotransformation rate of medetomidine has 

been reported in rabbits (Avsaroglu et al., 2008) However, this has not been demonstrated 

in dogs. In a report from Dutta et al. (2000), there is pharmacodynamic alteration of 

medetomidine clearance in humans with increasing dosage as a result of medetomidine-

induced cardiac output decrease, and reduced hepatic blood flow decreasing hepatic 

clearance. However, it is likely that major species differences in medetomidine metabolism 

may exist (Kaivosaari et al., 2002). 

 In human adults with severe hepatic failure, Vss and T½ were increased and 

clearance decreased (Cunningham et al., 1999). In adults with severe renal disease, there 

was no significant difference between renal disease and control patients for Vss and 

clearance. However, the T½ was decreased with renal disease, while the perceived clinical 

sedation was prolonged. 

  In children, the pharmacokinetic profile appears similar to adults except in very 

young infants. The neonates have been reported to clear dexmedetomidine faster (Tobias, 

2007). By contrast, in another study using population analysis techniques, clearance in 
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neonates was approximately one-third of that described in adults (Potts et al., 2008). In 

addition, two studies in paediatric patients showed either comparable pharmacokinetic data 

to adults (Diaz et al., 2007), or slightly different data with respect to larger weight-adjusted 

Vss in children younger than 2 years of age (Vilo et al., 2008), indicating a need for larger 

loading doses in younger infants. 

 

 

2.0 CARDIOVASCULAR EFFECTS  

 

Alpha-2-adrenoceptor agonists have severe physiological cardiovascular side effects. They 

can produce a biphasic blood pressure response, a decrease in heart rate and cardiac index, 

and an increase in systemic vascular resistance index and central venous pressure. 

Myocardial contractility and perfusion are decreased and dysrhythmias can be present 

(Savola, 1989; Vainio, 1989A). Minimal changes in pulmonary arterial pressure or 

pulmonary capillary wedge pressure have been reported (Kuusela et al., 2000; Pypendop 

and Verstegen, 1998; Bloor et al., 1992). 

Alpha-2 agonists induce dose-dependent changes in cardiovascular function (Vainio 

and Palmu, 1989B). The effects of medetomidine on heart rate have been found to be, to a 

certain extent, dose dependent in dogs (Bergström, 1988; Pypendop and Verstegen, 1998). 

However, in a dose titration study, only the lowest dosages (1-2 µg/kg IV) induced less 

pronounced effects compared to higher doses. Even at a dosage as low as 5 µg/kg IV nearly 

maximal cardiovascular effects were observed. Dosages above this value minimally further 

influenced cardiovascular function, while the duration of these effects was prolonged 

(Pypendop and Verstegen, 1998). 

Even though cardiovascular effects of medetomidine and dexmedetomidine are 

mainly seen as adverse effects to the patient, studies in animal models (Roekaerts et al., 

1996; Okada et al., 2007) and studies on human patients support evidence of 

cardioprotective effect especially in patients who either have, or are at high risk of 

developing, cardiac disease (Aantaa and Jalonen, 2006). A meta-analysis of human trials 

demonstrated reduced mortality and myocardial infarction with the use of alpha-2 agonists 
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in patients undergoing non-cardiac, vascular surgery (Wijeysundera et al., 2003). In 

addition, dexmedetomidine was associated with a trend toward improved cardiac outcomes 

during non-cardiac surgery which was shown by a decrease both in mortality and non-fatal 

myocardial infarction or myocardial ischemia (Biccard et al., 2008). In a canine 

experiment, dexmedetomidine had cardioprotective effects by optimizing coronary artery 

blood flow (Roekaerts et al., 1996). In an isolated rat heart model, dexmedetomidine had a 

cardioprotective effect on global ischemia, which was mediated by alpha-2 adrenergic 

receptors (Okada et al., 2007). Since peri-operative hemodynamic responses are identified 

as major indicators of increased risk for post-operative cardiac complications in human 

patients, the hemodynamic stability induced by low-dose alpha-2 agonist administration 

may reduce the risk of cardiac events (Aantaa and Jalonen, 2006). 

 

2.1 Blood pressure 

 

There is an initial transient rise in blood pressure (hypertensive phase) during the first few 

minutes following IV injection (due to peripheral vasoconstriction through stimulation of 

postsynaptic alpha-2-adrenoceptors of vascular smooth muscle), followed by a 

baroreceptor-mediated decrease in heart rate leading to sinus bradycardia. After a transient 

rise, arterial blood pressure falls to normal or below normal levels (hypotensive phase) 

(Short, 1992; Hall and Clarke, 1991) as the central effects of alpha-2 agonists appear to 

predominate (due to stimulation of presynaptic receptors located in the CNS).  

 In human patients, the hypotensive phase seems to predominate even during a 

loading dose administration. However, hypertension may be seen on rare occasions 

(Tobias, 2007). The actions on blood pressure in humans are dose- and dose regimen-

dependant: systemic blood pressure increases when therapeutic concentrations are 

significantly exceeded, and transient hypertension may occur during rapid administration of 

a loading dose. With appropriate doses, alpha-2 agonists reliably control heart rate and 

blood pressure, thus augmenting hemodynamic stability in human patients undergoing 

surgery (Aantaa and Jalonen, 2006). 
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2.2 Heart rate 

 

Heart rate was shown to decrease significantly after alpha-2 agonist administration. In a 

study in laboratory beagles, medetomidine given at 40 µg/kg IM decreased heart rate by 

63% (Vainio, 1991). In another study, heart rate decreased by 63% at all dosages (40, 80, 

and 160 µg/kg) with both IM and IV administration, 2-4 minutes after injection in dogs 

(Vainio, 1989A). Decreased heart rate may be a form of sinus bradycardia. First and second 

degree atrioventricular (AV) blocks may also be observed (Short, 1992). Heart rate may 

decrease dramatically with higher doses; decreases can reach 75% of control values (Short, 

1992). Heart rates with values of 35 bpm may be seen with elevated doses. The decrease in 

heart rate is partly a physiological vagally mediated baroreceptor reflex to the initial 

hypertension and increased afterload (Maze and Tranquilli, 1991), and partly a centrally-

mediated decrease due to decreased sympathetic tone. However, lower dosages (0.5-5 

µg/kg) of medetomidine are presently used in clinical practice because they are associated 

with milder effects on heart rate. Increasing interest exists to exploit the centrally-mediated 

sympatholytic properties of alpha-2 agonists, since it may effectively blunt the potentially 

deleterious increases in heart rate and blood pressure (Aantaa and Jalonen, 2006), and thus 

increase hemodynamic stability. This may be especially important during emergence from 

anaesthesia, when heart rate often accelerates in response to increased sympathetic drive. 

 

2.2.1 Decreased heart rate and oxygen consumption 

 

Following medetomidine administration, bradycardia is accompanied by a proportional 

reduction in myocardial oxygen consumption, ensuring oxygen requirements of the heart 

(Short, 1992; Murrell and Hellebrekers, 2005). Dexmedetomidine was found to decrease 

myocardial energy requirements and oxygen consumption, in parallel with decreased 

myocardial blood flow and oxygen supply (Lawrence et al., 1996B). Lowering heart rate 

and thereby oxygen consumption provide beneficial effects in human patients with 

coronary artery disease by preventing deleterious tachycardia in response to stressful 
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situations (Tobias, 2007; Aantaa and Jalonen, 2006). These benefits of dexmedetomidine in 

cardiac patients provide cardioprotection by reducing risks of myocardial ischaemia 

(Aantaa and Jalonen, 2006). 

 

2.3 Cardiac output 

 

Cardiac output decreases and peripheral resistance increases following alpha-2 agonist 

administration in dogs (Short, 1992). A precise mechanism accounting for the huge 

reduction in cardiac output remains unknown although several mechanisms have been 

suggested. These mechanisms include a direct myocardial depressant effect, drug-induced 

decrease of metabolic demands, and decrease in response to alpha-2 agonist-mediated 

increase in afterload. Other mechanisms also include decrease in heart rate, myocardial 

hypoxia and dysfunction in response to coronary vasoconstriction, and decrease in plasma 

circulating catecholamines (Murrell and Hellebrekers, 2005; Bloor et al., 1992; Housmans, 

1990). It is likely that several of these mechanisms are involved together to decrease 

cardiac output during alpha-2 agonist administration. These mechanisms are briefly 

discussed below. 

A study with medetomidine in autonomically (pharmacologically) blocked dogs 

showed that the cardiac depressor effect of medetomidine is most likely attributable to an 

increase in peripheral vascular resistance caused by postsynaptic activation of alpha-2 

receptors in the peripheral vasculature. In that study, medetomidine did not produce any 

direct myocardial negative inotropic effect (Autran de Morais et al., 1995). To support 

these findings, other studies have been published on dexmedetomidine. One of them 

showed that dexmedetomidine in isolated dog hearts (peripheral alpha-2 receptors were 

ruled out) did not show depressant effects (Flacke et al., 1992). In addition, another study 

concluded that dexmedetomidine did not seem to produce direct negative inotropic or 

chronotropic myocardial effects (Housmans, 1990). 

It has been suggested that cardiac output decreases in response to dexmedetomidine, 

as a result of the increased afterload provoked by increased systemic vascular resistance 

(Bloor et al., 1992). However, increased systemic vascular resistance alone could not 
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account for the degree of cardiac output depression recorded in dogs given 

dexmedetomidine, because the normal canine heart maintains cardiac output when afterload 

is increased even when the heart is denervated (Murrell and Hellebrekers, 2005; Flacke et 

al., 1992).  

Drug-induced decrease in metabolic demands could account for some of the 

reduction in cardiac output. However, it is unlikely that it could account alone for the high 

degree of cardiac output depression. 

Dexmedetomidine does not seem to cause myocardial hypoxia, despite the fact that 

dexmedetomidine induces vasoconstriction in coronary arteries (Coughlan et al., 1992). 

Dexmedetomidine induces coronary blood flow reduction in anaesthetized dogs. This 

reduction was associated to increased coronary vascular resistance and increased oxygen 

extraction from the coronary blood supply (Flacke et al., 1993). However, alpha-2 agonists 

induce a reduction in myocardial oxygen demand in parallel with decreased oxygen supply 

(due to coronary vasoconstriction) in healthy dogs. Thus, the oxygen delivery is maintained 

above the level of oxygen demand of the myocardium. 

The circulating plasma catecholamines are reduced to almost undetectable levels 

after dexmedetomidine administration (20 µg/kg IV). This causes a reduction in inotropic 

support which may thus decrease cardiac output. However, this reduction was shown to 

occur without sympathetic support in spinal sympathectomized dogs (Bloor et al., 1992) 

and therefore does not fully explain the cardiac output reduction due to alpha-2 agonist 

administration in dogs. 

Heart rate decrease seems to be an important factor in the cardiac output reduction 

by medetomidine and dexmedetomidine. Nevertheless, this factor alone does not seem to 

account for the degree of cardiac output depression, since anticholinergic pretreatment 

(glycopyrrolate), used to correct bradycardia, diminished the cardiac output reduction only 

by one-third (Bloor et al., 1992). 
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2.4 Heart rhythm 

 

Earlier studies raised concerns that high levels of alpha-2 agonists sensitized myocardium to 

epinephrine-induced arrhythmias in halothane or isoflurane anaesthetized dogs. Indeed, 

xylazine (1.1 mg/kg IV followed by infusion at 1.1 mg/kg/h) was found to increase the 

likelihood of dysrhythmias in halothane- and isoflurane-anaesthetized dogs (Tranquilli et 

al., 1988; Muir et al., 1975). 

Subsequent studies in dogs showed that lower levels of alpha-2 agonists, 

medetomidine (750 µg/m2 IV or 15 µg/kg IM) or xylazine (1.1 mg/kg IV or IM), did not 

facilitate the development of re-entrant ventricular arrhythmias in isoflurane or halothane 

anaesthetized dogs (Tranquilli et al., 1988; Pettifer, et al., 1996; Dyson and Pettifer, 1997; 

Lemke and Tranquilli, 1994, Lemke et al., 1993A & B). In fact, when anaesthetic-induced 

arrhythmogenicity is a concern, selection of the inhalation agent may be a more important 

consideration than the selection of alpha-2 agonists. 

Furthermore, decreased sympathetic tone and increased parasympathetic tone 

induced by lower doses of alpha-2 agonist dexmedetomidine (0.1, 0.2, and 0.5 µg/kg/min) 

appear to attenuate the development of epinephrine-induced arrhythmias in dogs. This 

action seems to be mediated, at least in part, by stimulation of the central alpha-2 

adrenoceptors (Hayashi et al., 1991). 

The vagal activity plays a significant role in the antiarrhythmic action of 

dexmedetomidine. Indeed, this action seems to be mediated more by imidazoline receptors 

in the CNS than by alpha-2 adrenoceptors (Kamibayashi et al., 1995A & B), and this 

sustains a major interest for the preferential use of medetomidine and dexmedetomidine. 

 

2.5 Blood flow 

 

There is some evidence that medetomidine produces a redistribution of blood flow to 

preserve blood supply to vital organs (e.g. brain, heart, kidneys and liver), and reduces 

blood flow in less vital organs like skin, intestine, and skeletal muscles. A study on the 
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effects of a combination of medetomidine with butorphanol and midazolam, before 

isoflurane anaesthesia on renal cortical, intestinal, and muscle microvascular blood flow, 

showed a decrease in intestinal and skeletal blood flow, suggesting that this combination 

produced a redistribution of blood flow (Pypendop and Verstegen, 2000). 

In another study on the effects of dexmedetomidine on organ blood flow, results 

indicated preserved blood flow to the brain, heart, liver and kidneys, at the expense of less 

vital organs (Lawrence et al., 1996A). Renal blood flow was studied in a recent study in 

mice after radiocontrast-induced nephropathy, which demonstrated that alpha-2 agonists 

(dexmedetomidine and clonidine) preserved outer-medullary renal blood flow, thus 

improving outcomes after iodinated radiocontrast exposure (Billings et al., in press). 

A study was conducted to determine if medetomidine could be used to decrease 

intracranial pressure (by decreasing cerebral blood flow) prior to anaesthetic management 

of animals with intracranial lesions or increased intracranial pressure. It was concluded that 

medetomidine (30 µg/kg IV) did not change intracranial pressure despite its significant 

cardiovascular effects inducing cerebral blood flow decrease (Keegan et al., 1995). 

However, earlier studies showed that dexmedetomidine (10 µg/kg) reduces cerebral 

blood flow up to 50% in dogs, during halothane or isoflurane anaesthesia (Karlsson et al., 

1990; Zornow et al., 1990). It was found that dexmedetomidine had no effect on cerebral 

metabolic rate of oxygen. Furthermore, there was no evidence of global cerebral ischemia 

(Zornow et al., 1990). The cerebral vasoconstrictive effect, combined to the significant 

reduction of Minimal Alveolar Concentration (MAC) for halothane or isoflurane, indicates 

that dexmedetomidine might be useful if used as adjunct to inhalation anaesthetics during 

brain surgery, in situations where an increase in cerebral blood flow should be avoided 

(Karlsson et al., 1990). 

In light of these studies, alpha-2 agonists-induced blood flow reduction does not 

cause hypoperfusion of vital organs in healthy dogs (Murrell and Hellebrekers, 2005). 
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2.6 Oxygen delivery 

 

Earlier studies implied that alpha-2 stimulation plays an important role in myocardial 

ischemia induction. Further studies showed that myocardial energy requirement decreases 

at low concentrations of medetomidine, whereas moderate coronary vasoconstriction occurs 

with high concentrations (Flacke et al., 1993; Coughlan et al., 1992). Because lower doses 

of the alpha-2 agonist are currently used, the myocardial energy sparing effects are most 

likely preserved (Lawrence et al., 1996B). 

It seems likely that alpha-2 adrenergic coronary vasoconstriction could be overcome 

by metabolite-induced vasodilatation (a common control pathway of coronary blood flow), 

which preserves endocardial blood flow (Roekaerts et al., 1996). This was confirmed in 

conscious dogs (less susceptible to myocardial hypoxia than anesthetized animals) 

receiving a low dose of medetomidine, either as bolus (Schmeling, 1991) or as CRI 

(Grimm et al., 2005), giving evidence that the oxygen delivery still exceeds the oxygen 

consumption. In an isolated rat heart model, dexmedetomidine significantly decreased 

coronary blood flow and significantly decreased myocardial infarct size after 

ischemia/reperfusion (Okada et al., 2007). 

Cardiac output is one of the major determinants of peripheral oxygen delivery. 

Alpha-2 agonists reduce cardiac output thus decreasing tissue oxygen tension and, due to 

redistribution of blood flow the peripheral oxygen delivery particularly may decrease. This 

effect could theoretically result in more postoperative wound infections (Akça et al., 2002). 

Decreased peripheral blood flow and oxygen delivery have prompted studies on skin 

perfusion during flap implantations. A recent study showed that post-operative use of 

dexmedetomidine for deep sedation in a porcine model of musculocutaneous 

transplantation did not have deleterious effects on local perfusion or tissue metabolism in 

denervated musculocutaneous flaps (Nunes et al., 2007). 

Cyanosis is a frequently noticed effect of medetomidine in dogs and is thought to 

demonstrate poor oxygen delivery. However, the arterial oxygen tensions are not 

significantly changed and arterial oxygen saturation is usually above 95%. Cyanosis, 

following alpha-2 agonist administration, occurs due to increased oxygen extraction leading 



 

 

18

 

to venous desaturation. Lower heart rate and slower blood flow through tissues allows more 

oxygen to be extracted (Paddleford and Harvey, 1999; England and Clarke, 1989; Lin et al., 

2008; Uilenreef et al., 2008). 

 

3.0 EFFECTS OF ANTICHOLINERGICS WITH ALPHA-2 AGONISTS 

 

The use of anticholinergics to prevent bradycardia and atrioventricular blockade induced by 

preoperative administration of selective alpha-2 agonists is controversial (Dart, 1999). 

Antimuscarinic (anticholinergic) pre-medication has been used with alpha-2 agonists to 

prevent bradyarrhythmias. However, the antimuscarinic-induced increase in heart rate does 

not ensure an improvement of the overall cardiac performance. It may actually potentiate 

alpha-2-adrenoceptor-mediated hypertension, produce tachycardia, and increase myocardial 

work (Vainio and Palmu, 1989B; Alibhai et al., 1996; Ko et al., 2001A; Sinclair et al., 

2003A). 

Cardiovascular effects after alpha-2-adrenergic agonist administration are advocated 

to be inseparable from sedative and analgesic effects. It has even been suggested that they 

can be beneficial for healthy animals and should not be prevented/treated. Bradycardia, 

after alpha-2 agonist administration, is initially a physiological vagal response to increased 

blood pressure and vasoconstriction. After this initial response, a central origin response is 

seen (Maze and Tranquilli, 1991). 

Anticholinergics used to increase heart rate when necessary in combination with 

sedative drugs, should not be used with alpha-2 agonists. Even though they may prevent 

medetomidine-induced bradycardia, this inhibitory effect is transient (Vainio and Palmu, 

1989B). 

In a study with romifidine (another potent and selective alpha-2 agonist) in dogs, 

concurrent use of anticholinergic (glycopyrrolate) was associated with a higher frequency 

of dysrhythmias. Its use was therefore not recommended. Prior or concurrent administration 

of glycopyrrolate produces increased myocardial workload and oxygen demand (Sinclair et 

al., 2002). Pre-treatment with glycopyrrolate actually appeared to be detrimental to 
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cardiovascular performance, and when used with romifidine, they produced additive 

adverse effects on myocardial function in conscious dogs (Sinclair et al., 2003A).  

It has been suggested that when the heart is forced to beat more frequently with the 

use of anticholinergics, the myocardium may suffer from a failure to meet its oxygen 

demand (Lemke et al., 1993C; Paddleford and Harvey, 1999) which may lead to 

myocardial ischemia and promote arrhythmias. Furthermore, the bradycardia produced by 

alpha-2 agonists may be nonresponsive to anticholinergic drugs. The use of anticholinergics 

in animals receiving alpha-2-agonists may promote fatal ventricular arrhythmias (Short, 

1991; Tranquilli and Benson, 1992; Klide, 1992). 

In addition, dexmedetomidine has antiarrhythmic effects, presumably via 

imidazoline receptors. These effects are associated with vagal stimulation. This 

demonstrates another reason not to combine them to antimuscarinic drugs (also called 

vagolytic agents) which would inhibit the pro-vagal antiarrhythmic effects of certain alpha-

2 agonists (Murrell and Hellebrekers, 2005). A meta-analysis of human trials found that co-

administration of an anticholinergic with dexmedetomidine did not significantly decrease 

the incidence of bradycardia. In fact, their use may decrease the potential vagally-mediated 

cardioprotective effects of dexmedetomidine (Biccard et al., 2008).  

For the reasons listed above, it has been suggested that the safest remedy for life-

threatening bradyarrhythmias is reversible with alpha-2 antagonists (Short, 1991; Pypendop 

and Verstegen, 1998). 

 

 

4.0 RESPIRATORY EFFECTS 

 

Medetomidine produces a slight depression of respiratory rate. This reduction in respiratory 

frequency is probably centrally mediated (Vainio, 1990). Intravenous dexmedetomidine in 

dogs was shown to induce a potent dose-dependent suppression in the slope of the CO2 

response curve, a significant decrease in resting respiratory rate, but no change in resting 

end-tidal CO2 (Sabbe et al., 1994). 
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Alpha-2 agonists do not induce profound respiratory depression, a common side 

effect associated with opioids. Although respiratory rate and minute ventilation decrease 

with medetomidine, arterial blood gas values do not usually change significantly (Short, 

1992; Pypendop et al., 1996). Arterial partial pressure of CO2 usually remains at normal 

levels or slightly lower and pH usually stays within acceptable range. 

In a study on the effects of medetomidine on ventilatory drive in dogs, it was found 

that medetomidine produces less depression on ventilatory drive than isoflurane (Bloor et 

al., 1989). In spite of similar receptor locations and functions with opioids, medetomidine 

does not affect ventilatory drive by the same mechanism. The effects of narcotics on the 

ventilatory drive are profound at drug levels required during anaesthesia. In comparison to 

the narcotic class, medetomidine has anaesthetic qualities with far less respiratory 

depression (Bloor et al., 1989). 

However, in a more recent study, it was concluded that IV administration of 

medetomidine at dosages of 5 or 10 µg/kg IV decreases respiratory rate, minute volume, 

and respiratory drive in conscious dogs. Thus, medetomidine should be used cautiously in 

dogs with pre-existing respiratory dysfunction, especially when given concurrently with 

drugs known to depress respiration, a common procedure during perianaesthetic period 

(Lerche and Muir, 2004). 

In addition to other ventilatory effects, IV administration of dexmedetomidine in 

dogs was shown to prevent histamine-induced bronchoconstriction (Groeben et al., 2004). 

The arterial partial oxygen tension (PaO2) may decrease during the peak effect of 

medetomidine, because of decreased ventilation associated with an increase in PaCO2. 

However, this corresponds to the period of slowest heart rates with a resulting decrease in 

whole body oxygen demand and thus adequate oxygenation of the tissues is usually 

maintained (Pettifer and Dyson, 1993). 

When used in combination with opioids and benzodiazepines to produce profound 

anaesthesia, medetomidine may increase the respiratory depression primarily caused by 

opioids, and will lead to hypoxia, hypoxaemia (Dart, 1999), as well as compromised tissue 

perfusion (Pypendop et al., 1996; Pypendop and Verstegen, 1999). Because of these 

additive or synergistic side effects, oxygen supplementation should be provided during 
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anaesthesia and is especially important for compromised patients. In addition, ventilatory 

support should be provided when using these combinations (Pypendop and Verstegen, 

1999). 

 

5.0 METABOLIC AND OTHER EFFECTS 

 

5.1 Effects on blood glucose level 

 

Medetomidine inhibits insulin release, and increases blood glucose levels (Short, 1992). 

While inhibition of insulin release is rapid and significant after medetomidine 

administration (10 or 20 µg/kg IV), lasting for about 2 hours, the increase in plasma 

glucose concentration has been found to be less dramatic, slow, and non-significant with 

medetomidine (because of its higher alpha-2 selectivity), when compared to xylazine 

(Burton et al., 1997). Mean plasma glucose concentration tended to be higher after 

medetomidine treatment (10 or 20 µg/kg IV) than with placebo (0.9% sodium chloride), but 

no significant differences between treatments were demonstrated, and plasma 

concentrations remained within normal physiologic range for dogs. 

Another study comparing metabolic and neurohormonal effects of medetomidine 

and xylazine (both drugs at several different dose levels, given IM) found that both drugs 

increased blood glucose levels, although medetomidine far less than xylazine. In addition, 

medetomidine did not show a dose-dependent increase in blood glucose levels, contrary to 

xylazine (Ambrisko and Hikasa, 2002). Moreover, it was found that plasma peak level 

following medetomidine administration shifted further in time as the dosage increased. 

Namely, glucose peaked 2 h after 20 µg/kg IM medetomidine, 3 h after 40 µg/kg, and 4 h 

after 80 µg/kg. 

By contrast, in another study with dexmedetomidine (5 µg/kg IV), plasma glucose 

concentrations were substantially decreased 30 minutes after administration of 

dexmedetomidine (Raekallio et al., 2005). Such a finding had never been described in dogs 
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before. However, it has been described in children after clonidine treatment. In the canine 

study, plasma glucose levels returned to baseline values within 90 minutes, after 

dexmedetomidine administration. It was suggested that with a longer follow-up period, 

glucose peak concentrations may have been seen. 

 

5.2 Effects on growth hormone level 

 

Medetomidine increases growth hormone levels in plasma by potentiating its secretion 

(Short, 1992; Hayashi and Maze, 1993). However, at clinical doses, this effect is not likely 

to have serious consequences (Hayashi and Maze, 1993; Sinclair, 2003B). 

 

5.3 Effects on urination 

 

Medetomidine induces a diuretic effect that last up to 4 hours (with dosages of 10 or 20 

µg/kg IV) in dogs. The most probable mechanism to cause this increased production of 

urine is the interference with ADH-mediated water permeability in the renal tubules and 

collecting ducts (Burton et al., 1998; Crighton, 1990). This mechanism has been reported 

after administration of other alpha-2 agonists in rats. 

It has been suggested that medetomidine, like xylazine, increases plasma and urine 

glucose levels, which then causes osmotic diuresis. However, other studies inferred that 

medetomidine has a very small effect on plasma glucose concentration (Burton et al., 1997) 

and a recent study showed that dexmedetomidine decreased plasma glucose concentrations 

(Raekallio et al., 2005). These findings suggest that hyperglycemia and glucosuria, causing 

osmotic diuresis, are probably not appreciable factors causing voluminous urination in dogs 

after medetomidine/dexmedetomidine administration. 
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5.4 Effects on intestine 

 

Medetomidine reduced intestinal motility and gut sounds in small animals (Dart, 1999). In 

fasted dogs, medetomidine (30 µg/kg IV) disrupted the migrating myoelectric complex 

pattern of the small intestine for approximately 2 hours. The same dose inhibited colonic 

motility in fasted dogs, although medetomidine-induced inhibition was preceded by a short 

period of increased muscle tone. In fed dogs, medetomidine (30 µg/kg IV) induced a strong 

increase of the proximal colon tone, while the activity of the medium and distal colon was 

completely suppressed (Maugeri et al., 1994).  

Administration of medetomidine (40 µg/kg IM) significantly inhibited the motility 

of the gastric antrum, duodenum, mid-jejunum, and ileum. The inhibition of motility was 

longer in the gastric antrum and the duodenum than in the mid-jejunum and ileum. 

Medetomidine also inhibited gastric contractions associated with gastrin secretion 

(Nakamura et al., 1997). 

This inhibitory action on intestinal motility is believed to be mediated via peripheral 

alpha-2 receptors rather than central receptors. In addition, this inhibitory action outlasts the 

duration of sedation (Hall and Clarke, 1991; Cullen, 1996; Maugeri et al., 1994). The 

effects of medetomidine on gastric emptying have been shown to be weaker and of shorter 

duration than those of morphine (Tobias, 2007). 

 

5.5 Emetic effects 

 

There is an emetic effect in dogs and cats particularly after IM administration. Vomiting 

occurs in 5-20 % of dogs and in most cats. In another study, vomiting occurred in 17 % of 

dogs regardless of dose studied; however, none of the dogs receiving optimal dosage (in 

that study 1000 µg/m2 IM) vomited (Hamlin and Bernarski, 1989). Normally vomiting is 

not a problem, but the potential for development of aspiration pneumonia exists. Moreover, 

vomiting also increases intracranial and intraocular pressure, which may be a problem for 

some patients with cerebral or ocular injury or disease (Lemke, 2004A). 
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5.6 Hypothermia 

  

A decrease in body temperature has been associated with alpha-2 agonist administration. 

The temperature reduction may be centrally mediated, with specific CNS depression, 

and/or in combination with non-specific depression of general metabolism and reduction in 

muscular activity (Virtanen, 1989; Verstegen and Petcho, 1993). In addition, it has been 

postulated that a direct action on noradrenergic receptors in the hypothalamus by alpha-2 

agonists may cause hypothermia in a dose-dependent manner (Cullen, 1996). After IV, and 

to a lesser extent, epidural dexmedetomidine administration, a dose dependent reduction in 

core body temperature was observed (Sabbe et al., 1994). However, in some studies with 

medetomidine only slight reductions of rectal temperature were observed (Pypendop and 

Verstegen, 1998; Pettifer and Dyson, 1993; Verstegen and Petcho, 1993).  

In contrast, alpha-2 agonists may allow for better maintenance of body temperature 

due to the peripheral vasoconstriction and central redistribution of blood, with a consequent 

reduction in cutaneous heat losses compared to other sedatives and anaesthetic agents that 

induce vasodilatation (Lemke, 2004A). 

 

5.7 Effects on the uterus 

 

Alpha-2 agonists were found to increase the contractility of the pregnant and nonpregnant 

uterus in some studies. In a canine study, it was found that the effect of medetomidine 

depends to a higher degree on the level of steroid hormones. A rise in oestrogen levels 

increases the sensitivity of alpha-2-adrenoceptors, while a high level of progesterone during 

pregnancy stimulates the sensitivity of beta-adrenoceptors and decreases the contractility of 

the uterus. Medetomidine does not appear to promote abortion in pregnant dogs (Jedruch et 

al., 1989). 
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5.8 Neuroprotection 

 

A possible neuroprotective effect of alpha-2 agonists has been suggested. The neurologic 

outcome after several types of cerebral ischemia may be improved with the use of alpha-2 

agonists (Iida et al., 2006) yet the underlying mechanisms still remain unclear. It was 

suggested that the alpha-2 agonist-induced sympathetic blockade and/or decreased release 

of excitatory neurotransmitters (such as glutamate) may account for the neuroprotective 

effects during and after ischemia. It has also been postulated that neuroprotection may be 

mediated by a reduction in caspase-3 expression (a pro-apoptotic factor) and an increased 

expression of active (autophosphorylated) focal adhesion kinase, a non-receptor tyrosine 

kinase that plays a role in cellular plasticity and survival (Dahmani et al., 2005; Tobias, 

2007). In addition, the cerebrovascular and cerebral metabolic effects of of alpha-2 agonists 

may contribute, in part, to the neuroprotective action. Conflicting evidence exists for this 

action, since some rodent studies have demonstrated it (Kuhmonen et al., 1997; Jolkkonen 

et al., 1999), whereas studies in dogs (Iida et al., 2006) and humans lack this evidence 

(Sulemanji et al., 2007). 

 

5.9 Effects on adrenocortical function, inflammatory response, and neuromuscular 

blockade 

 

Compounds that contain an imidazoline ring (etomidate, medetomidine, dexmedetomidine) 

can inhibit hydroxylase enzymes involved in the production of adrenocorticosteroids 

(Tobias, 2007). There was no evidence of depressed adrenocortical function with 

dexmedetomidine concentrations used clinically in human patients, to the extent that 

occurs, for example, with etomidate. However, higher doses can inhibit steroidogenesis. 

 Dexmedetomidine decreased interleukin-6 levels from baseline (Nishina et al., 

1999). It also blunts the systemic inflammatory response during endotoxaemia (Taniguchi 

et al., 2004). 
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 Effects of dexmedetomidine on neuromuscular blockade function have been 

studied. There was no change when vecuronium was used. It induced a significant decrease 

in the height of the first twitch of train-of-four and an increase in neuromuscular blocking 

agent (rocuronium) plasma concentration. There was no evidence of direct effects on the 

neuromuscular junction, and these effects seemed related to alterations of pharmacokinetics 

of rocuronium (Talke et al., 1999). 
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6.0 ANALGESIA 

 

Pain is defined as a subjective experience consisting of two components: perception of pain 

(which includes unpleasant sensory and emotional experiences) and reaction to pain, which 

usually results in a reaction to avoid further pain sensation. 

In sedated animals the sensory message of a painful event relayed to the CNS may 

be unchanged, but due to the sedative effect, the emotional experience of pain feeling may 

be suppressed and the animal may therefore not react as vigorously as an unsedated animal. 

When analgesic effects of a sedative drug are studied, it is very difficult to 

distinguish between true sedative and true analgesic effect (Vainio et al., 1989C). However, 

there is clear evidence (based on analgiometric measurement techniques) that 

medetomidine and other alpha-2 agonists are highly potent analgesic agents.  

Some observations from the use of medetomidine in humans at sedative doses are 

accompanied by the attenuation of the emotional experience of pain, although not its 

intensity. However, this may further complicate pain studies since the investigational 

models of pain may not fully reflect the patients complete clinical experience. Moreover, 

amelioration of pain experience is a valid goal, whether it is attributed to direct analgesic 

effects, sedation, or other processes (Aantaa and Jalonen, 2006). 

 

6.1 Pain mediating alpha-2 receptors 

 

Sedative and anxiolytic effects of alpha-2 agonists are mediated by activation of supraspinal 

receptors located in the pons (locus ceruleus). Analgesic effects are mediated by activation 

of receptors located in the dorsal horn of the spinal cord. However, there is also evidence 

that the supraspinal receptors located in the pons also play a prominent role in descending 

modulation of nociceptive pathway (Lemke, 2004B; Cullen, 1996; Ossipov et al., 1990; 

Stenberg, 1989). Previous animal studies have demonstrated a powerful antinociceptive 

effect following spinal administration of alpha-2 agonists. This effect, mediated at the spinal 

level is present after systemic, epidural, and intrathecal administration. However, the time 
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to reach the peak effect and the duration of the action depend on dose and route of 

administration (Sabbe et al., 1994). Recent evidence from an animal model suggests that 

dexmedetomidine hyperpolarizes the membrane potential of substantia gelatinosa 

(superficial dorsal horn, especially lamina II) neurons by G-protein-mediated activation of 

potassium channels through postsynaptic alpha-2A and alpha-2C-adrenoceptors. This action 

may contribute to its antinociceptive action in the spinal cord (Ishii et al., 2008). 

 

6.2 Similarities between alpha-2 receptor and opioid receptor mediated analgesia 

 

In pain modulation, there are interactions between opioid and alpha-2 receptors in the brain 

and spinal cord. Alpha-2 receptor stimulation produces analgesic and sedative effects 

similar to those of opioid receptor stimulation in the CNS (Paddleford and Harvey, 1999). 

First, alpha-2 and opioid receptors are found in similar regions of the brain and on 

some of the same neurons. Both receptors are found in locus ceruleus (LC) and in the 

dorsal horn of the spinal cord (Paddleford and Harvey, 1999).  

Second, these receptors have similar physiological influences. They suppress 

nociceptive signals with a multifactorial action on pain pathways: 1) by inhibiting 

neurotransmitter release from primary afferent fibers to second order neurons; 2) by 

affecting pre- and post-synaptic modulation of nociceptive signals in dorsal horn; 3) by 

influencing descending modulatory systems from the brainstem; 4) or by altering ascending 

modulation of nociceptive signals in the diencephalon and limbic areas (Murrell and 

Hellebrekers, 2005).  

Third, these receptors share common molecular machinery: both receptor types are 

activated via stimulation of the pertussis toxin-sensitive G-proteins (Gi and/or Go) on the 

cell membrane. Adenylate cyclase is inhibited, resulting in the reduction of the intracellular 

cAMP content. This leads to the opening of potassium channels, causing the cell to loose 

potassium and inhibition of the voltage-gated calcium channels. Calcium is blocked and 

noradrenaline release is inhibited. The cell becomes hyperpolarized (more negatively 

charged), making the cell unresponsive to excitatory input; thus, the transmission pathway 
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is blocked (Fukuda, 2005; Paddleford and Harvey, 1999; Maze and Tranquilli, 1991; 

Ossipov et al., 1990). 

Consequently, the alpha-2 agonists and mu-opioids produce analgesia by similar 

mechanisms. 

 

6.3 Clinical implications in pain management 

 

Alpha-2 agonists are highly effective to treat short-term pain in humans. They are used 

intraoperatively and postoperatively. Using alpha-2 agonists instead of opioids allows 

avoiding problems like respiratory depression, pruritus, urinary retention, and abuse 

liability. Using alpha-2 agonists together with opioids reduces opioid requirements 

(Kamibayashi et al., 2000). When using a combination of alpha-2 agonist and opioid, the 

doses may be reduced and consequently the side effects of both drugs are reduced. 

Decreased doses of opioids induce less respiratory depression, while alpha-2 agonists 

induce less cardiovascular depression (Ossipov et al., 1990). 

In studies with rats, alpha-2 agonists also have some advantages against neuropathic 

pain. Alpha-2 agonists may attenuate or even reverse the allodynia that occurs in 

neuropathic pain. Neuropathic pain is highly difficult to manage with other modalities such 

as opioids therefore alpha-2 agonists may have a potential to treat opioid-resistant pain 

(Murrell and Hellebrekers, 2005). 

Increasing evidence from human medicine, with the use of dexmedetomidine 

infusion, seems to imply that analgesic efficacy for postoperative pain may only be 

moderate, with currently recommended doses (Gomez-Vasquez et al., 2007). However this 

moderate analgesic effect in conjunction with the anxiolytic and sedative effects may 

attenuate the unpleasantness of pain (Aantaa and Jalonen, 2006). 
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6.4 Alpha-2 agonists induce analgesia dose-dependently 

 

Medetomidine and dexmedetomidine in dogs showed that the degree of analgesia was 

significantly dose-dependent (Kuusela et al., 2001). The analgesic effect of medetomidine 

in the dog was suggested to begin at plasma levels of 1-5 ng/ml (Salonen, 1992). By 

contrast, in a study where analgesia was assessed by limb withdrawal to toe pinching, 

analgesia was already considered practically nonexistent with a medetomidine plasma level 

as high as 9.5 ng/ml (Kuusela et al., 2000). In addition, analgesia with pure 

dexmedetomidine lasted longer than with the corresponding level of racemic 

medetomidine, suggesting greater potency of dexmedetomidine in dogs (Kuusela et al., 

2000). 

Assessment of the analgesic effect based on the pinprick and pedal reflex tests 

showed that analgesia observed in dogs was dose-dependent in strength at dosages of 10-80 

µg/kg IM. Slight analgesia was observed at 10-30 µg/kg IM and was most prominent 

between 40 and 80 µg/kg IM. Good analgesia lasted 1 hour at 40 µg/kg IM (Vainio et al., 

1986). Using analgesiometric technique, after a single dose of dexmedetomidine (20 

µg/kg), analgesia was suggested to last for about one hour (Murrell and Hellebrekers, 

2005). Time to reach maximal effect and duration of analgesia (evaluated by skin twitch) 

were dependent of the dose and the route of administration in dogs following IV, epidural, 

and intrathecal administration of dexmedetomidine (Sabbe et al., 1994). After IV 

administration of 10 µg/kg dexmedetomidine, the analgesic effect began within 3 minutes 

and lasted 90 minutes. Analgesic effect appears to be more potent and to last longer after 

epidural administration, with less systemic redistribution providing less systemic 

(hemodynamic and neurobehavioral) effects. 

Alpha-2 agonists were shown to produce excellent sedation, lasting longer than with 

the effective analgesia (Short, 1992). This was important when medetomidine was used for 

premedication and the analgesic effect was needed for the entire duration of the procedure. 

Thus readministration of the drug might be needed to prolong the analgesic effect (Murrell 

and Hellebrekers, 2005). 
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 Based on human studies, there are conflicting results on analgesic efficacy of 

dexmedetomidine. While some have reported good peri-operative analgesia and reduction 

of the opioid consumption (Tufanogullari et al., 2008), others have reported only moderate 

analgesic effects in the early postoperative period (Gomez-Vazquez et al., 2007). This 

discrepancy may be related to dose regimen given as well as invasiveness of the surgery. 

Healthy adults for elective orthopaedic surgery appear to benefit less from the analgesic 

effect of dexmedetomidine. In addition, the induced sedation in this context may not be 

desirable. 

 

7.0 SEDATION, ANAESTHETIC SPARING, AND SYNERGISTIC OR ADDITIVE 

EFFECTS WITH OTHER DRUGS 

 

The pharmacological sedation induced by medetomidine or dexmedetomidine via their 

action on the locus coeruleus of the brain stem has been demonstrated to closely resemble 

physiological non-REM sleep (Huupponen et al., 2008). Endogenous sleep pathways may 

be involved in dexmedetomidine-induced sedation (Nelson et al., 2003). 

When medetomidine or detomidine were used as premedication, there was a major 

reduction in any subsequent anaesthetic requirements (Ewing et al., 1993, Vainio, 1991, 

Young et al., 1990). This supports the evidence of the sedative and analgesic properties of 

medetomidine and detomidine (Short, 1992). This anesthetic sparing effect was found to be 

significantly dependent of medetomidine dose level (Kuusela et al., 2001). 

Synergistic or additive effects may be observed when medetomidine or 

dexmedetomidine is combined with other agents (tranquilizers, opioids, injectable 

anaesthetics, and inhalant anaesthetics) (Verstegen and Petcho, 1993; Hammond and 

England, 1994).  
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7.1 Synergistic and/or additive effects in combinations 

 

Combinations of opioids and alpha-2 agonists can result in profound sedation and analgesia 

in dogs (Short, 1992). Evidence of synergistic effects of alpha-2 agonists with opioids was 

found in studies with mice and rats, and more recently in studies in dogs and cats. 

In a study from Ossipov et al. (1990), evidence was found for synergy of 

medetomidine with opioids (fentanyl, morphine, and meperidine) after intrathecal 

administration of these combinations and additive effects of these combinations after IV 

administration in rats (Ossipov et al., 1990). Another study using an alpha-2 agonist, 

moxonidine, demonstrated spinal antinociception and synergy with opioids in the mouse 

spinal cord (Fairbanks et al., 2002). 

In addition, a study in cats has shown the ability of subanalgesic doses of the alpha-2 

agonist, clonidine, to have an additive or synergistic effect on analgesia produced by 

opiates, when both drugs were administered epidurally or intrathecally (Omote et al., 

1991). 

In a study on epidurally administered morphine (0.11 mg/kg) and medetomidine (5 

µg/kg) in dogs, a simultaneous administration of these drugs suggested an additive and 

even synergistic interaction between these two agents when administered epidurally 

(Branson et al., 1993). The synergistic effects in dogs seem to be restricted to epidural or 

intrathecal administration (Ossipov et al., 1990; Branson et al., 1993). 

This synergy between alpha-2 and opiate agonists was suggested to be caused by the 

activation of alpha-2 adrenoceptors on opiate-containing interneurons. This would result in 

increased release of opiate peptides (Omote et al., 1991; Branson et al., 1993). The 

therapeutic advantages of opioids and medetomidine combinations are envisioned as 

increased analgesia with reduced respiratory and cardiovascular involvement by decreasing 

dose requirements of both drugs. 

Studies with combinations of medetomidine and opioids such as hydromorphone or 

butorphanol have suggested 1) improved analgesia (Grimm et al., 2000) and 2) the sedation 

prior to induction, may facilitate orotracheal intubation, improve quality of anesthesia, and 

have similar cardiovascular effects when compared to medetomidine alone (Kuo and 
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Keegan, 2004; Muir et al., 1999). Contrary to these findings a study using a combination of 

medetomidine (10 µg/kg) and butorphanol (0.2 µg/kg) failed to demonstrate any 

advantages when compared to 40 µg/kg of medetomidine given alone (Ko et al., 1996). 

However, in a more recent study, the same author concluded that a combination of 

medetomidine (30 µg/kg) with butorphanol (0.2 mg/kg) or ketamine (3 mg/kg) resulted in a 

more reliable and uniform sedation in dogs, when compared to medetomidine (30 µg/kg) 

alone (Ko et al., 2000B). 

There is also evidence that medetomidine prevents or blunts stress-related 

neurohormonal changes produced by opioids or ketamine administration in dogs. This 

supports the use of medetomidine in combination for sedation or anaesthesia of healthy 

dogs (Ambrisko et al., 2005).  

Combining low doses of alpha-2-, opioid-, and benzodiazepine-agonists in dogs, 

resulted in a synergistic CNS depressant response, while minimizing the undesirable side 

effects of these three classes of drugs (Verstegen and Petcho, 1993; Paddleford and Harvey, 

1999). 

 

7.2 Anaesthetic sparing effects 

 

Alpha-2 agonists have highly potent anaesthetic sparing effects. Medetomidine can reduce 

propofol dosage requirements by 75 % in dogs (Short, 1992; Vainio, 1991). Medetomidine 

also produced a dose-dependent reduction of dose requirements of propofol for induction. 

With a dose 5 µg/kg IM of medetomidine, the mean induction dose of propofol was 

decreased by more than 50% from 6.0 to 2.86 mg/kg. With medetomidine doses of 10, 20, 

and 40 µg/kg IM the mean induction dose of propofol was decreased to 1.44, 1.12, and 0.77 

mg/kg, respectively (Hammond and England, 1994). 

Medetomidine extends the duration of propofol anaesthesia and provides post-

anaesthetic sedation and analgesia (Bulafari et al., 1996). In addition, propofol infusion in 

medetomidine premedicated dogs was suggested to alleviate medetomidine-induced 

vasoconstriction (Thurmon et al., 1994). In a previous study by Vainio (1991), propofol 
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also had a positive chronotropic effect after medetomidine premedication, alleviating the 

medetomidine-induced negative chronotropic effect. 

In a human study, dexmedetomidine reaching plasma concentrations approximately 

0.66 ng/ml, reduced propofol concentrations required for sedation and for suppression of 

motor response to electrical stimulation by approximately 65-80%, and 40% respectively 

(Dutta et al., 2001). 

Medetomidine markedly reduced thiopentone dose required for intubation in a dose-

dependent manner (Young et al., 1990, Cullen, 1999, Ko et al., 2000A). In a study by 

Young et al., (1990) the barbiturate sparing effect of medetomidine was significant at all 

three dose rates examined. The mean doses of 1.25% thiopentone required for intubation 

were 6.9, 4.5, and 2.4 mg/kg with medetomidine at dose levels 10, 20, and 40 µg/kg IM, 

respectively. At high medetomidine dosages (40 µg/kg), some dogs can even be intubated 

with medetomidine alone (Young et al., 1990). In another study, after 40 µg/kg 

medetomidine, the thiopental induction dose was 4.4 mg/kg compared with 14.8 mg/kg 

without medetomidine (Ko et al., 2000A). 

Medetomidine, given at 40 µg/kg IM, reduced halothane dose requirements by at 

least 30 %, compared to a dose level of 20 µg/kg IM in a canine study (Räihä et al., 

1989B). In a study with halothane, the dosage of medetomidine 10 µg/kg IM had a 

halothane sparing effect comparable to other sedatives (acepromazine and meperidine) 

while a dose level of 40 µg/kg IM of medetomidine showed a clear decrease in halothane 

consumption (Räihä et al., 1989A). 

In a study with rats, dexmedetomidine decreased dramatically the MAC of 

halothane in a dose dependent manner (doses of 10, 30, and 100 µg/kg IP) such that at 100 

µg/kg, halothane could even be discontinued for up to 30 minutes without eliciting a 

purposeful response to tail-clamping (Segal et al., 1989). 

In a study with dogs using three dosages of medetomidine (1, 3, and 10 µg/kg 

administration via right atrial port over 15 minutes) the MAC for halothane significantly 

decreased in a dose-dependent manner. Following medetomidine administration, the MAC 

for halothane decreased progressively and at the highest dosage (10 µg/kg), the anaesthetic 

requirement decreased by 90 % (Vickery and Maze, 1989). 
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In addition, medetomidine at 30 µg/kg IV reduced isoflurane maintenance 

requirements by 47 % (Ewing et al., 1993). Moreover, dexmedetomidine at 20 µg/kg IV 

reduced isoflurane MAC maximally (89 %) 30 minutes after the injection (Bloor et al., 

1992). In a recent study using three dosages (0.1, 0.5, and 3.0 µg/kg/h) of continuous 

infusion of dexmedetomidine in dogs, the MAC reduction was found to increase dose-

dependently (Pascoe et al., 2006). Significant decreases in MAC were found with 0.5 and 

3.0 µg/kg/h doses (decreases of 18 % and 59 %, respectively). 

Medetomidine premedication is also often used prior to ketamine administration, an 

injectable dissociative anaesthetic. This combination characterized by fewer bradycardic 

effects, induces more adverse effects as well as an inferior overall quality of anaesthesia 

and recovery than the medetomidine-propofol combination (Hellebrekers, 1998). In 

addition, respiratory depression is usually more profound when dogs are given ketamine 

(Ko et al., 2001B). 

When alpha-2 agonists are used as premedication, it is necessary to remember that 

due to their cardiovascular effects (decreased blood flow), the distribution of other 

anaesthetic drugs is slower than expected and it is thus important to wait before re-

administration of other anaesthetic drugs (propofol, barbiturates, etc.). The uptake of 

inhaled anaesthetics is also delayed, meaning that an adequate time should be allowed to 

permit stabilization. Failure to recognize these factors may lead to overdosing of other 

anaesthetic agents (Manners, 1990; Short, 1992; Hellebrekers et al., 1998; Lemke, 2004A).  

Because all general anaesthetics (thiopental, propofol, halothane, isoflurane, etc.) 

have dramatic effects on myocardial function and a very narrow therapeutic range, the dose 

reduction achieved by administering alpha-2 agonists preoperatively reduces the adverse 

cardiovascular effects associated with administration of most general anaesthetics. For 

example, preoperative medetomidine administration counteracts the cardiovascular effects 

of isoflurane, first, by reducing the amount of isoflurane needed and, then, by restoring 

vascular tone (vasoconstriction effect of alpha-2 agonists) (Lemke, 2004A). 
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8.0 CLINICAL USE 

 

Alpha-2 agonists have been used alone for minor procedures. They are not regarded as 

anaesthetics; therefore, additional agents (local or general anaesthetics) are needed for 

surgery. Medetomidine is a highly potent sedative and analgesic agent for clinical use. 

Relatively high doses of medetomidine alone suffice for examination, clinical procedures, 

and simple surgical operations in dogs (Vähä-Vahe 1989B). However, low doses and 

combination with other analgesic and anaesthetic agents to produce balanced anaesthesia 

and analgesia are preferred. 

 

8.1 Chemical restraint and sedation 

 

Alpha-2 agonists are useful for chemical restraint alone or in combination with opioids and 

benzodiazepines, and are reversible with alpha-2 antagonist (Short, 1992). Because 

medetomidine and dexmedetomidine provide rapid and completely reversible sedation with 

analgesia, along with almost no respiratory depression, these agents may provide increased 

patient safety in certain situations (Talke, 1998). 

 Administration of a moderate dosage of medetomidine (5 µg/kg IV) provided a 

useful adjunct to diazepam-ketamine induced anaesthesia in dogs. It improves the quality of 

anaesthetic induction, ease of endotracheal intubation, and extends the duration of analgesia 

and lateral recumbency in anaesthetized dogs (Ko et al., 1998). 

 

8.2 Premedication 

 

Medetomidine used as premedication (at dosage levels of 1000 or 1500 µg/m2, equivalent 

to 40 µg/kg or 60 µg/kg for a 25-kg dog, respectively), provided a good basis for 

anaesthesia (in terms of sedation and hypnosis) and satisfactory analgesia for surgical 

intervention. Premedication was achieved reliably with medetomidine, and provided an 
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uneventful and stress-free preparation for surgery and anaesthesia induction. (Hellebrekers 

and Sap, 1997). 

Several studies have found that medetomidine is a good premedication to be used 

before induction (and maintenance) of anaesthesia by propofol (Hellebrekers and Sap, 

1997; Thurmon et al., 1994; Vainio, 1991). 

 

8.3 Analgesic and anaesthetic adjuvant to reduce perioperative stress and increase 

patient safety 

 

Medetomidine and dexmedetomidine have been shown to control the stress response 

induced by anaesthesia and surgery during the perioperative period. They reduced 

perioperative levels of stress-related hormones (Väisänen et al., 2002).  

In humans dexmedetomidine attenuated increases in heart rate and plasma 

norepinephrine concentrations during emergence from anaesthesia (Talke et al., 2000); 

Moreover, dexmedetomidine seemed to conceal stress effects of anaesthesia during 

recovery (Kuusela et al., 2003) in dogs. These findings have increased interest in use of 

alpha-2 agonists as preanaesthetic to promote balanced anaesthesia and minimize overall 

stress response (Ambrisko et al., 2005, Väisänen et al., 2002, Benson et al., 2000). 

Medetomidine premedication in combination provides safer anaesthesia by lowering 

the dose of other sedative, analgesic and anaesthetic agents. Furthermore, when used in 

combination the dose requirement of medetomidine itself is decreased, adding to the safety 

of the anaesthesia. 

As adjuncts to general anaesthetics, alpha-2 agonists have a nearly ideal 

pharmacodynamic profile in dogs. In addition to providing sedation, analgesia, and muscle 

relaxation, they produce substantial reduction in the amount of injectable and inhalational 

anaesthetic requirements and also attenuate the sympathetic activity and stress response to 

surgical trauma by reducing catecholamine and cortisol levels postoperatively (Benson et 

al., 2000, Ko et al., 2000A, Väisänen et al., 2002, Talke et al., 1997). 

Alpha-2 agonists have their place in controlling the emergence from anaesthesia. 

During this phase, patients may benefit from the sedative, anxiolytic, and analgesic effects 
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and attenuation of the hemodynamic disturbances due to increased sympathetic drive. In 

addition, dexmedetomidine is used to control and treat opioid withdrawal after prolonged 

use of opioids and benzodiazepines (Tobias, 2006). A significant reduction in the incidence 

of delirium with dexmedetomidine after surgery in humans has been documented. 

Prevention of shivering, which has deleterious influences including increased oxygen 

consumption and potentially increased demand on myocardial capacity was also reported 

(Aantaa and Jalonen, 2006). 

 

8.4 Side effects 

 

Side effects (other than cardiovascular) reported after medetomidine use were almost 

exclusively limited to vomiting and muscle jerking in dogs (Vähä-Vahe, 1989A). However, 

vomiting may sometimes be an advantage before surgery if owners have failed to fast their 

dogs prior to sedation.  

Other side effects following medetomidine administration include cyanotic or pale 

mucous membranes, irregular breathing pattern, squalling at injection, diarrhea, panting, 

restlessness, and collapse. 

 

8.5 Failures 

 

Stress, excitement or pain may increase endogenic catecholamine levels interfering with 

smooth sedation. When possible, a calm and gentle handling of the animal during 

administration of drug is desirable. Sedation is more effective in quiet areas without 

environmental stimulation (Short, 1992). 

Cardiac or respiratory disorders, obesity or cachexia, may influence levels of 

sedation. Very young and very old animals usually need a lower dose of drug to achieve 

sedation than what would be predicted from their bodyweight alone. Small dogs seem to 

need higher doses of medetomidine per kilo bodyweight to obtain an equal effect, 

compared to large dogs (Vähä-Vahe, 1989A). 
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If the route of administration is IM or SC, sometimes the final site of injection may 

occur between fascias or within connective tissue or fat. Absorption of the drug may be 

delayed, resulting in poor sedation. 

 

8.6 Safety 

 

Alpha-2 agonists have minimal toxicity and a remarkably wide safety margin (Kamibayashi 

et al., 2000). Alpha-2-compounds are excreted via the kidneys after elimination by 

biotransformation by the hepatic system (Salonen, 1989). 

Because alpha-2 agonists are mainly metabolized by the liver, it is implied that 

hepatic blood flow, and therefore cardiac output (reduced by alpha-2 agonists), might 

influence its pharmacokinetics and further, its clearance. However, in a study by Dutta et 

al., (2000) no clinically significant decrease in dexmedetomidine clearance was found in 

humans receiving the therapeutic dose range. In another report in human adults with severe 

hepatic failure, there was an increase of Vss and elimination T½ and a decrease in clearance 

(Cunningham et al., 1999).  

In a pharmacokinetics study on dexmedetomidine in humans severe renal 

impairment minimally affected pharmacological effects. The sedative effects were 

prolonged (probably because of lower plasma protein binding and therefore more effective 

and free molecules in the plasma) in patients with renal disease although the drug half-life 

was shorter (De Wolf et al., 2001). 
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8.7 Constant rate infusion 

 

A low dose medetomidine CRI may provide more constant levels of analgesia by 

maintaining constant plasma levels of alpha-2 agonists (Murrell and Hellebrekers, 2005). 

Intermittent administration of a drug may fail to provide its effects continuously. This 

problem can be overcome by administering analgesic by continuous infusion to maintain 

effective plasma level of analgesic (Flecknell, 2000). 

 In humans dexmedetomidine infusion at a dosage of 1 µg/kg  over 10 minutes 

followed by 0.2-0.7 µg/kg/h for less than 24 hours, is approved in many countries for use in 

the intensive care setting as a sedative in adults, initially intubated and mechanically 

ventilated patients, before, during, and after extubation 

(http://precedex.hospira.com/_docs/PrecedexPI.pdf). 

A study with dexmedetomidine CRI in dogs showed that at infusion levels of 0.5 

and 3.0 µg/kg/h (with loading dose of 0.5 or 3.0 µg/kg over 6 min, respectively) could be 

used to manage dogs undergoing surgery, where the provision of analgesia and limitation of 

stress is desirable (Pascoe et al., 2006). Dexmedetomidine is the active enantiomer in the 

racemate medetomidine and was found to produce approximately similar effects, when 

administered at half the dose, compared to medetomidine (Virtanen, 1989).  

A study using a high fentanyl bolus dose (15 µg/kg IV) during an 11-hour 

medetomidine CRI at 1.5 µg/kg/h showed that even with this small dose level of 

medetomidine there were marked hemodynamic changes. Decreased heart rate and cardiac 

index occurred in most dogs within 15-30 minutes of the beginning of the infusion without 

a loading dose. After one hour, all dogs had reduced heart rates. However, stroke volume 

index was not decreased, suggesting the change in cardiac index was related to lower heart 

rate. Profound cardiorespiratory effects were seen during co-administration of fentanyl 

bolus and medetomidine (Grimm et al., 2005). 

Although medetomidine will always be associated with some cardiovascular 

changes, these effects may be diminished by lowering the dose and using CRI to maintain 

adequate plasma concentrations (plasma levels slightly lower than those obtained with 2 
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µg/kg IV). This alternative decreases the cardiovascular changes and controls the duration 

of sedation (Pypendop and Verstegen, 1998). 

Two recent studies with dexmedetomidine CRIs in dogs have demonstrated the 

usefulness of low-dose CRI administration in this species as a reliable and valuable adjunct 

during and after general anaesthesia (Lin et al., 2008; Uilenreef et al., 2008). Plasma 

concentrations were maintained, as well as sedative and anxiolytic effects, whilst 

hemodynamic effects were decreased and overall tissue perfusion remained adequate. 
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9.0 ALPHA-2 ANTAGONISTS 

 

A highly potent and selective antagonist of centrally and peripherally located alpha-2-

adrenoceptors, atipamezole, has been created for its use as a reversal agent for 

medetomidine (Virtanen, 1989). Atipamezole is able to antagonize the behavioural, 

cardiovascular, gastrointestinal, neurochemical, analgesic, and hypothermic effects of 

medetomidine (Virtanen, 1989; Savola, 1989; Vainio, 1990). 

In a study by Vainio (1990), the medetomidine-depressed heart rate was 

significantly increased by atipamezole, although not to the initial level. Simultaneously, the 

bradyarrhythmic features observed in ECG, were abolished (Vainio, 1990). 

The arousal time after IM atipamezole administration (dose approximately 5 times 

the dose of medetomidine) is more or less 5 minutes (Vähä-Vahe, 1990). Administration of 

the antagonist will also reverse analgesia produced by alpha-2 agonist (Short, 1992). 

Atipamezole can be given to reverse medetomidine in emergency situations. 

Atipamezole can reverse the cardiopulmonary effects of medetomidine in sick dogs, before 

any complications might be expected (Vainio, 1990). Usually, atipamezole is given to 

reverse the effects of medetomidine after non-painful diagnostic or therapeutic procedures, 

and is not usually given perioperatively. 

Complete reversal of the sedative and analgesic effects of medetomidine is achieved 

when atipamezole is given IM to dogs at 4-6 times the dose of medetomidine (Vähä-Vahe, 

1990). Atipamezole and anticholinergics can both cause dramatic heart rate increases. 

Concurrent use of these drugs should therefore be avoided. 

Recently, there has been increasing interest to find clinically useful alpha-2 

antagonists that specifically antagonise the peripheral cardiovascular effects whilst 

maintaining the centrally mediated sedative, analgesic and anxiolytic effects of 

dexmedetomidine and medetomidine (Enouri et al., 2008, Honkavaara et al., 2008). This 

may further increase the safety of these drugs, if clinically available selective peripheral 

antagonists become available. 
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10.0 RESEARCH HYPOTHESIS 

 

This literature review brings forward the hypotheses for the study. We first hypothesised 

that the cardiovascular effects of alpha-2 agonist medetomidine, as CRI, depend on the dose 

and that a dose level could be found with minimized cardiovascular changes. The second 

hypothesis is that this dose level of medetomidine CRI would represent a protocol for 

perioperative sedation and provision of analgesia, which could be demonstrated by 

measured adequate analgesic plasma concentrations. 
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Clinical Relevance 

This study investigated the dose-dependency of hemodynamic effects of IV 

medetomidine (MED) constant rate infusions (CRI) during isoflurane (ISO) anesthesia. 

Twenty-four healthy beagles randomly received one of six MED CRI regimens. A loading 

MED infusion was administered at 0.2, 0.5, 1.0, 1.7, 4.0 or 12.0 µg·kg-1 for 10 min, 

followed by a maintenance CRI providing identical dose amounts over 60 min. Heart rate 

(HR) and mean arterial blood pressure (MAP) were recorded, blood gases analyzed and 

cardiac index (CI) determined. Statistical analysis involved a repeated measures linear 

model. Baseline CI decreased dose-dependently as MED dose increased by: 14.9 (12.7), 

21.7 (17.9), 27.1 (13.2), 44.2 (9.7), 47.9 (8.1), and 61.2 (14.1) % respectively. The four 

lowest doses induced limited and transient changes in HR, MAP, and CI. Further 

investigation into potential perioperative uses of MED CRI is warranted. 

1. Introduction 

Medetomidine (MED) is a highly potent and selective alpha-2 agonist which has 

sedative, anxiolytic, muscle relaxant, and analgesic properties. It reduces requirements for 

other anesthetic agents and is widely used for sedation and pre-medication before general 

anesthesia in small animals1. It is supplied in a 50:50 racemic mixture of two optical 

enantiomers (dexmedetomidine and levomedetomidine), of which dexmedetomidine 

(DMED) is the active enantiomer2,3. Medetomidine has a very high affinity for alpha-2 

adrenoceptors where it acts as a full agonist and possesses a selectivity ratio of 1620/1 

(α2/α1) which is 5-10 times higher than for xylazine (α2/α1 ratio 160/1) or detomidine 

(260/1)2. 
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Medetomidine is licensed in North America to be administered intramuscularly 

(IM) or intravenously (IV). After IM administration, absorption of the drug is rapid as peak 

serum levels are reached within 30 min4. When given IV, the onset of action is rapid and 

the peripheral cardiovascular effects are more pronounced than by IM administration5. Low 

MED doses are adequate for perioperative use when given with other anesthetic/analgesic 

drugs, due to its significant sedative, analgesic, and anesthetic sparing effects6. 

In spite of the analgesic and perioperative stress response reducing effects7 MED 

has not been used to its full potential in veterinary medicine. Unfortunately, alpha-2-

adrenoceptor agonist administration, particularly IV, is associated with major side-effects 

on the cardiovascular system. These include a biphasic blood pressure response 

(hypertension, followed by normo- or hypotension) with reflex bradycardia and decreased 

cardiac index (CI), increased systemic vascular resistance (SVR) index and central venous 

pressure (CVP), and bradydysrhythmias8,9. Hence, these hemodynamic effects have 

popularized the use of low rate MED or DMED IV infusions in an attempt to improve the 

risk/benefit ratio. Several reports in the literature describe the clinical potential of this 

administration strategy10-13, however, to the authors’ knowledge, no previous study has 

quantified the dose-dependency of MED constant rate infusion (CRI) hemodynamic effects 

to determine a dose rate, which optimizes cardiovascular safety. 

It has been reported that the cardiovascular effects of MED following IV bolus 

administration in conscious dogs do not follow a clear dose-response relationship based on 

evaluation of, time-effect data5. It is possible that failure to reveal such a dose-response 

relationship could be related to inter-individual variation in the disposition 

pharmacokinetics of the drug. The aim of this study was to quantify the dose-dependency 



 

 

48

 

of the cardiovascular/ hemodynamic effects when MED is administered as a CRI in 

isoflurane (ISO)-anesthetized dogs. To our knowledge, despite the recent quantification of 

the minimum alveolar concentration (MAC) sparing effect of DMED CRI11, the dose-

response effects of MED or DMED on the degree of cardiovascular depression are yet to be 

determined, and this information is necessary to establish an optimal dose rate. Two studies 

have been recently published investigating DMED CRIs in dogs. In one, a clinical study, 3 

doses (1, 2 and 3 µg·kg-1·h-1) of DMED resulted in acceptable mean arterial blood pressure 

(MAP) and adequate tissue perfusion13. A second, experimental study, using a single dose 

(25 µg·m-2·h-1) of DMED CRI compared cardiovascular and respiratory effects between 

propofol and isoflurane anesthetic groups12. They reported adequate oxygen delivery and a 

significant effect of general anesthetic on heart rate (HR), vasoconstriction and CI. In order 

to test the hypothesis that the intensity and duration of the hemodynamic changes 

associated with MED exposure vary as a function of dose rate, we administered MED at six 

different CRI dose rates. Furthermore, identification of a CRI dose rate associated with 

minimal hemodynamic effects that still maintains what has previously been proposed14 as 

an analgesic plasma concentration of MED would be of great interest. 

2. Materials and Methods 

2.1. Animals 

Clinically healthy purpose-bred laboratory beagles (n=24; 13 spayed females and 11 

castrated males) were used in this study. Dogs were between 1 and 3.5 years old and 

weighed between 8.6 and 16 kg. They were housed in groups of 6-7 dogs in large pens. 

Commercial dog food was given once daily and water was freely available. The care and 
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use of the dogs complied with Canadian Council for Animal Care15. The Animal care 

committee of the institution approved the study protocol (05-Rech-1298). All procedures 

were performed during the day, with two experiments completed during each study day. 

Dogs were brought to single cages the night before each study day, where water was given 

and food was withheld. Dogs were fed following full recovery from the experiment. All 

dogs were accustomed to handling and instrumentation. 

 

2.2. Treatments 

Each dog randomly received one of 6 treatments (6 groups, n=4 per group), in a 

prospective, controlled, blinded design. Medetomidine hydrochloride (Domitor; Orion 

Pharma, Espoo, Finland / Pfizer Animal Health, Kirkland, QC, Canada) was administered 

over 10 min as a manual loading infusion rate of 1.2, 3.0, 6.0, 10.2, 24.0 or 72.0 µg·kg-1·h-1, 

followed by a 60 min maintenance CRI at automated rates of 0.2, 0.5, 1.0, 1.7, 4.0 or 12.0 

µg·kg-1·h-1 respectively. Isoflurane (AErrane; Baxter Corp, Mississauga, ON, Canada) was 

administered during the whole duration of the experiment, including the time required for 

instrumentation and stabilization, a resting time where baseline values were recorded before 

MED administration, the 70 min-long exposure to MED combined with ISO, and again a 

60 min follow-up (ISO alone) after the end of MED CRI. 

 

2.3. Study procedure 

Each treatment was initiated by mask induction with ISO in oxygen. Dogs were 

intubated and general anesthesia was continued with the use of a Bain non-rebreathing 

system (Moduflex coaxial; Dispomed, QC, Canada) by maintaining the end-tidal ISO 
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concentration (ET-ISO) at a constant level of approximately 1.0 MAC (i.e. 1.3-1.4% in 

dogs16), and the ET-CO2 at 35-45 mmHg by controlled intermittent positive pressure 

ventilation (IPPV) (Hallowell EMC Model 2000 ventilator; Hallowell Engineering & 

Manufacturing Corp, Pittsfield, MA, USA). During the experiment, body temperature was 

monitored and stabilized at 37.0 Co with warm-water circulating heating mats (Micro-Temp 

II 747; Cincinnati Sub-zero Products Inc, OH, USA). Following initiation of IPPV, a 22 

SWG cannula (BD Insyte-WTM catheter; Becton Dickenson Infusion Therapy Systems Inc, 

UT, USA) was placed in the dorsal pedal artery of a pelvic limb, to monitor directly the 

systemic blood pressures, cardiac output (CO), and to collect arterial blood samples. Two 

20 SWG cannulas (BD Angiocath I.V. catheter; Becton Dickenson Infusion Therapy 

Systems Inc., UT, USA) were placed in each cephalic vein: one for MED infusion, and the 

other to allow administration of fluid (0.9% Sodium Chloride Injection USP; Baxter 

Corporation, Mississauga, ON, Canada) at a rate of 10 mL·kg-1·h-1, and lithium chloride 

(LiCl inj; LiDCO Ltd, London, UK). A 20 SWG cannula was placed in a jugular vein for 

venous blood sampling. Dogs were placed in lateral recumbency and arterial cannulas were 

connected to a transducer (Pressure Monitoring Kit with Truwave disposable Pressure 

Transducer; Edwards Lifesciences, Irvine, CA, USA) that was connected to a 

multiparametric vital signs monitor (Life window LW-6000 Multi-Parameter Vital Signs 

Monitor; Digicare Biomedical, FA, USA). The pressure transducer was adjusted to heart 

level. Heart rate, lead II electrocardiogram, direct systolic, diastolic, and mean systemic 

arterial pressures (SAP, DAP and MAP, respectively), pulse oximetry, capnography, ET-

ISO, and rectal temperature were recorded at 5-min intervals with the vital signs monitor 

from baseline until the end of the 130 min follow-up period. Systemic blood pressures and 
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HR were allowed to stabilize (three consecutive measurements with minimal variation: 

HR±5 bpm, MAP=60 mmHg±15 mmHg) before baseline values were recorded. 

Respiratory rate (RR) and tidal volume (TV) were also monitored and stabilized during the 

study. 

The lithium dilution method (LiDCO Ltd, London, UK) was used to measure CO 

and calculate CI, once at baseline and then every 10 min during the 130 min anesthesia. 

The LiDCO values were determined by use of a commercial LiDCO computer (LiDCO 

plus hemodynamic monitor HM 71-02, LiDCO Ltd, London, UK); measurements were 

performed according to manufacturer's instructions, and reports for small animals use17,18. 

Lithium chloride (5 µmol·kg-1) was administered for each CO measurement through the 

cannulated cephalic vein17. The SVR was calculated with the formula SVR=80 x (MAP-

CVP)/CO, where an average value of 4 mmHg was used for CVP. 

The MED loading doses were diluted with isotonic saline to a final 2 mL volume. 

Doses were hand-injected with 3 mL syringes over 10 min. All maintenance infusion doses 

were diluted with isotonic saline to a final 30 mL volume, and were administered through a 

cephalic venous cannula with an infusion pump (Harvard Apparatus 22, model 55-2222, 

MA, USA) over 60 min. 

Arterial and venous blood samples were taken from the pedal artery and jugular 

vein cannulas with syringes connected to 3-way stopcocks. The first 1 mL of blood diluted 

with the heparinized saline lock was discarded, the sample collected, and the cannula 

flushed with isotonic heparinized saline solution. Arterial and venous samples were drawn 

simultaneously for blood gas analysis at baseline (for control values) and at 15 and 45 min 

after starting the loading dose, using 1 mL heparinized (Hepalean, heparin sodium injection 
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USP 10000 UI·mL-1; Organon, Toronto, ON, Canada) syringes that were placed on ice 

immediately after sampling, and analyzed within 15-30 min (StatProfile M; Nova 

Biomedical, Waltham, MA, USA). Blood-gas values were corrected to body temperature. 

In addition to arterial and venous pH, oxygen and carbon dioxide tensions, plasma glucose, 

lactate and HCO3
- concentrations were analyzed. Venous blood samples (5 mL) were 

collected into 10 mL dry vacuum tubes for drug concentration analysis before the 

beginning of the MED loading dose, and 5, 15, and 45 min after initiating the CRI. 

Additional venous samples were drawn at 30 and 60 min after the end of the maintenance 

CRI. Samples were allowed to clot at room temperature for 30 to 60 min, centrifuged for 15 

min at 1000×g at room temperature, and serum was harvested and stored at -80 Co pending 

analysis with liquid chromatography-electrospray ionization-tandem mass spectrometry 

(LC-ESI/MS/MS) techniques (LC-MS/MS system PESciex API 3+; Applied 

Biosystem/MDS Sciex, Concord, ON, Canada). The lower limit of detection for this method 

was 50 pg·mL-1, the coefficient of variation for the analysis was ≤ 11.1% and percentage 

bias ≤ 6%. 

 

2.4. Statistical analyses 

All numerical variables were analyzed by use of repeated-measures linear mixed-

effect models. All models were built with dose, time and the time × dose interaction as 

fixed-effect variables, and the animal nested into treatment as a random-effect variable. The 

variance-covariance matrix of the data was modeled according to a strategy described by 

Littell et al.19. Briefly, a mixed-effect model containing no interaction was estimated with a 

free covariance structure. The model was then re-estimated with more parsimonious 
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covariance matrices (e.g., variance components, compound symmetry, and first-order 

autoregressive), of which structures resembled that of the unstructured covariance matrix. 

The final covariance model was selected according to the value of the Schwarz Bayesian 

Criterion19. A number of a priori contrasts were performed to explore differences between 

pairs of means: a) differences between mean values at each time during the MED phase and 

the overall pretreatment mean for each treatment, and b) a comparison between mean 

values of each treatment at each time period. Critical level of significance for all 

comparisons was α = 0.05. Data are expressed as mean (SD) unless indicated otherwise. 

 

3. Results 

There was an even distribution of gender (2 males and 2 females per group) for all 

doses except with the 1.7 µg·kg-1·h-1 dose where there were 3 females and 1 male. Body 

weight did not significantly differ across dosing groups. 

 

3.1. Hemodynamic effects 

During MED administration, MAP and SVR initially increased and CI and HR 

decreased in a dose-dependent manner (Figure 1 and Table 1). From mean baseline values, 

MAP transiently increased for durations positively related to dose (Figure 1). Their 

maximal increase was 8.1 (22.9) (not statistically significant), 20.6 (16.5), 25.7 (39.3), 18.2 

(8.3), 35.6 (20.5), and 64.8 (17.7) % with increasing dose. The effect on SVR was 

undetected for the 0.2 µg·kg-1·h-1 dose, and significant only at 10 min for the 0.5 and 1.0 

µg·kg-1·h-1 doses (Table 1). The SVR maximally increased by 1.5 (23.8), 75.8 (19.7), 32.0 
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(27.4), 133.5 (35.4), 163.6 (67.8), and 328.5 (116.3) % with increasing dose. Compared 

with baseline value recorded before starting MED administration, CI decreased as MED 

dose increased for a maximal change of 14.9 (12.7), 21.7 (17.9), 27.1 (13.2), 44.2 (9.7), 

47.9 (8.1), and 61.2 (14.1) % respectively. The differences between certain group mean 

baseline values of CI were significant (p<0.0322, Table 1). More precisely, the effect of the 

three lowest MED infusion rates on CI was not significantly different from baseline 

(p>0.11). A significant decrease in HR was observed at all doses and returned to baseline in 

a dose-dependent fashion, except for the 4.0 µg·kg-1·h-1 dose, which returned to baseline 

before the 1.7 µg·kg-1·h-1 dose, and 10 min after finishing MED CRI (Table 1). HR 

maximally decreased by 15.1 (15.7), 30.8 (9.6), 17.5 (6.8), 35.9 (11.9), 44.8 (10.2), and 

53.3 (15.6) % with increasing dose. 

When the different doses were compared, the three lowest dose regimens showed small 

and short-lived changes in HR, CI, MAP and SVR which disappeared before the end of 

each maintenance CRI. Minimal changes were induced by the 0.2 µg·kg-1·h-1 dose. The 

maximal effect on SVR and HR (10 min after MED administration commenced; Table 1) 

with the 0.5 µg·kg-1·h-1 dose was greater than that of the 1.0 µg·kg-1·h-1 dose. The 1.7 μg·kg-

1·h-1 dose resulted in greater effects on hemodynamic variables, in magnitude and duration, 

than the three lowest doses. The exception was for MAP in the 1.0 µg·kg-1·h-1 dose group 

where a higher MAP was present from 60 minutes onwards. The two largest doses showed 

physiologically and statistically greater effects on each cardiovascular parameter and the 

duration of these effects was longer when compared to the three lowest doses (Figure 1). 

 

3.2. Medetomidine serum concentrations 
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Statistical comparison of the serum MED concentrations normalized to the unit dose 

(1.0 µg·kg-1·h-1) revealed significant effects of dose and time (p<0.0001 in both cases), as 

well as the time × dose interaction (p=0.0001). Visual inspection of Figure 2 shows higher 

dose-normalized concentration curves for the 0.2 and 0.5 µg·kg-1·h-1 groups, as compared to 

the four higher dosage groups. Of note, the dose-normalized serum MED concentrations 

during the maintenance CRI continued to increase in the 0.2 and 0.5 µg·kg-1·h-1 groups, but 

slightly decreased in the four higher dosage groups. The dose-normalized concentrations in 

the 0.2 µg·kg-1·h-1 group significantly differed with all other groups (p<0.0001 for all pair-

wise comparisons). The 0.5 µg·kg-1·h-1 group significantly differed from the 1.0, 1.7 and 

12.0 µg·kg-1·h-1 groups (p<0.0485). Differences between the four highest dosage groups 

were not statistically significant (p>0.12). 

 

3.3. Other effects 

The arterial pH of some dogs receiving the two highest MED infusions decreased 

below the physiologic limit (7.35), a difference that reached statistical significance in the 

12.0 µg·kg-1·h-1 group (Table 2). The values of the other measured respiratory, metabolic, 

and tissue perfusion variables (glucose, HCO3
-, PaCO2, or lactate) stayed within a 

physiologically acceptable range during MED administration for both arterial and venous 

samples. Arterial oxygen tension (PaO2) was maintained in all dose regimens. However, 

venous oxygen tension decreased significantly with the three highest doses, with a tendency 

to be dose-dependent (Table 2). 
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4. Discussion 

The dose-dependency of MED effects on MAP, SVR, CI, and HR was documented 

quantitatively. The typical alpha-2 agonist-related increases in SVR and MAP associated 

with decreases in HR and CI were observed, and both the intensity and duration of these 

effects depended on CRI dose rate. Therefore, the results strongly suggest that a sigmoid 

concentration-response relationship exists. The hemodynamic effects were of a lesser 

intensity and shorter duration with the three lowest doses. They were greater and longer in 

duration with the middle dose (1.7 µg·kg-1·h-1) and most pronounced with both higher 

doses. The 0.2 µg·kg-1·h-1 group showed minimal effects in the intensity and duration of 

hemodynamic changes, and the 0.5 and 1.0 µg·kg-1·h-1 groups were similar. Of note, the 

intensity of effects was greater for the 0.5 µg·kg-1·h-1 group than 1.0 µg·kg-1·h-1 group for 

SVR and HR, but the magnitude of CI depression was as expected for each group. Also, the 

duration of these changes became longer with increasing dose. The maximal effects were 

seen shortly after loading dose administration with each dose regimen. These results with 

MED CRI in ISO-anesthetized dogs are comparable to those induced by a bolus IV 

administration of MED in conscious dogs5 but, by comparison, our dogs anesthetized with 

ISO had lower baseline values for MAP, HR, and CI. As a result, the initial hypertensive 

effects of MED administration were more evident in ISO-anesthetized dogs, allowing better 

differentiation of their dose-response relationships. No hypotension was subsequently 

observed. The maximal increase in SVR recorded for our 4.0 µg·kg-1·h-1 and 12.0 µg·kg-1·h-

1 groups were 163.6% and 328.5%, respectively, which is comparable to values recorded in 

conscious dogs dosed with 5 and 10 µg·kg-1 MED5. After the administration of 1 µg·kg-1 
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MED, the increase in SVR was approximately 210% in conscious dogs, which was 

markedly higher than that observed in the 1.0 µg·kg-1·h-1 group, a difference that may be 

attributed to the use of bolus administration in conscious dogs (given IV over 5 sec; B. 

Pypendop, personal communication, 2009) instead of an infusion over 10 min. The 

magnitude of the decreases in HR and CI documented in our 1.7 µg·kg-1·h-1 group was 

comparable with previous results reported with 1.5 µg·kg-1·h-1 MED where HR decreased 

by 41.7% and CI decreased by 41.2%10. Data in this study are also consistent with 

previously reported results with corresponding doses of DMED12,20. 

The cardiovascular effects of DMED have been suggested to depend on the initial status 

of blood vessel tone12. It has also been suggested that the central sympatholytic effects may 

predominate at small doses, which stimulate the alpha-2A adrenoceptor subtype 

preferentially and produce the characteristic sedation and analgesia, while the peripheral 

effects predominate when higher doses or rapidly injected loading doses are administered 

due to stimulation of the alpha-2B adrenoceptor subtype21. This has been recently confirmed 

by the IV combination of a peripheral alpha-2 adrenoceptor antagonist (L-659’066) with a 

dose (10 µg·kg-1) of DMED which attenuated the cardiovascular effects typically associated 

with DMED alone while still producing the expected level of sedation22. In spite of this, our 

study demonstrated a dose-dependency in intensity and duration of cardiovascular effects. 

The persistent increase in MAP for the 1.0 µg·kg-1·h-1 dose (Figure 1) was related to the 

individual response of two out of four tested dogs (note the high variability [SD] of results 

after MED administration for this dose in Table 1), which did not show such a response in 

subsequent evaluations (data not shown) when receiving the same MED dose under ISO-

anesthesia. Technical difficulties with the arterial line, or an insufficient level of anesthesia 
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could explain the result for these two dogs. Of note, at low doses, the hemodynamic effects 

were small and transient, even disappearing before the end of CRI administration period. 

The peripheral vasoconstriction resulting from an alpha-2B-induced increase in SVR was 

very limited in intensity and duration at the three lowest dosages (0.2, 0.5 and 1.0 µg·kg-1·h-

1). This pharmacological action governs the increase in MAP and contributes to the 

bradycardic response, leading to reduced CI. Particularly evident at these low doses, HR 

was reduced for a longer time in comparison to other hemodynamic parameters. This 

persistent bradycardia has also been reported previously even at low serum concentrations 

(< 3.9 ng·mL-1) in dogs3 and it has been theorized that this could be related to stimulation of 

central alpha-2A adrenoceptors23. Taken together, these results suggest that low doses of 

MED CRI during ISO anesthesia in dogs are associated with minimal hemodynamic 

changes. Whether these low doses also induce efficacious analgesia, muscle relaxation, and 

sedation remains to be determined.  

The infusion rates (0.2, 1.0, 4.0 and 12.0 µg·kg-1·h-1) of MED for this study were 

extrapolated from DMED infusion rates and published pharmacokinetic and 

pharmacodynamic data3,4,11,24. Two intermediate doses (0.5 and 1.7 µg·kg-1·h-1) were added 

to accurately quantify the dose-dependent nature of the hemodynamic effects. The aim of 

the highest dose level was to provide a positive control, producing clinically significant 

cardiovascular effects. Within each group, the total doses of MED given during the loading 

and maintenance CRI periods were equal, and it appears clear that the loading doses were 

responsible for the dose-dependent effects on cardiovascular function that were noted. In 

the present study, in contrast to the conclusions derived from data in conscious dogs5, 

increasing the dose not only prolonged the duration of drug effects, but also influenced the 
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magnitude of the cardiovascular effects in ISO-anesthetized dogs. While the four higher 

CRI rate (12.0, 4.0, 1.7 and 1.0 µg·kg-1·h-1) groups demonstrated homogenous 

pharmacokinetics, the two lowest dosage (0.5 and 0.2 µg·kg-1·h-1) groups demonstrated a 

different pharmacokinetic pattern. Specifically, the lower the rate below 1.0 µg·kg-1·h-1, the 

greater was the dose-normalized plasma concentration. This is further evidenced by the 

difference in decay slopes upon completion of the initial loading dose between the four 

highest and the two lowest dosage groups, with a plateau never being achieved during CRI 

administration in the lowest dosage groups. The difference in dose-normalized MED 

concentrations strongly suggests that MED systemic clearance increased with dose and 

reached a plateau. MED is mainly (80-90%) metabolized by hepatic hydroxylation 

followed by glucuronidation in dogs involving several biotransformation pathways14. 

While an evaluation of the metabolite kinetics of MED was beyond the scope of this 

study, recent publications provide indirect support for this hypothesis. The phase II 

glucuronidation of MED is actually accomplished by different UDP-

glucuronosyltransferases with different affinity, regio-and stereo-selectivity in human and 

canine liver microsomes leading to N-glucuronidation of levomedetomidine (LMED) and 

DMED with different kinetics25. In addition, an O-glucuronidation pathway has been 

reported for MED14. Hence it is conceivable that at dose rates below 1.0 µg·kg-1·h-1, MED 

is metabolized by one pathway only, while the activity of other metabolic pathways 

becomes significant at increased dosages. Alternatively, DMED may require chiral 

conversion to LMED in order to be N-glucuronidated at low doses. But with increasing 

racemic dose, DMED may be involved in direct N-glucuronidation, which would hasten the 

elimination of MED. This is supported by an earlier report stating that clearance of LMED 



 

 

60

 

is more rapid than DMED or racemic MED in dogs3. Another hypothesis is grounded on 

the phenotypic polymorphism of the cytochrome P450 (CYP)-catalyzed phase I 

hydroxylation of MED, a feature reported in rabbits26. If such polymorphism does exist in 

dogs, it would induce more rapid biotransformation of MED and different systemic 

exposure to the drug.  

In contrast to a report from Dutta et al.24 in human beings, we did not observe the 

pharmacodynamic alteration of MED clearance with increasing dose. In the above-cited 

study, the authors showed with pharmacokinetic / pharmacodynamic modeling that cardiac 

output and hepatic blood flow depression induced by MED decreased its own hepatic 

clearance. This could be explained by the major species differences in MED metabolism27 

and the possible interference of ISO-anesthesia on MED-induced hemodynamic effects. 

A metabolic acidosis has been reported in earlier studies with MED and DMED13,28, 

and was sporadically found at the highest dosage rates used in the current study. Since 

lactate-free fluids were administered in our study and in the study from Uilenreef et al.13, 

the possibility of hyperchloremic acidosis was verified and changes in arterial or venous 

concentrations of chloride were not demonstrated (data not shown). Furthermore, in our 

study, this effect was apparent only with higher doses, which also argues against fluid 

induced acidosis. In this study, blood gas measurements did not extend beyond MED 

administration. However, based on previous reports, the magnitude of this acidosis is not 

clinically relevant28. This study demonstrated a dose-dependent effect on pH which has not 

been shown in earlier studies. This indicates a further advantage of decreasing the MED 

CRI dose below the level of potential metabolic acidosis induction. 
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Arterial oxygen tension (PaO2) during 100 % oxygen administration was high, as 

expected, at all dose regimens. Venous oxygen tension (PvO2) decreased significantly 

during the administration period of the three highest doses and this decrease had a dose-

dependent tendency even though there were no statistically significant differences between 

these doses. This implies increased oxygen extraction during higher MED doses, which is 

consistent with a prior report with DMED12. The underlying cause may be due to a 

decreased CI and peripheral blood flow. Our study was a minimally invasive study and the 

dogs were instrumented with peripheral cannulas only. Thus, central mixed venous blood 

samples were not available and oxygen consumption and extraction could not have been 

calculated accurately. However, based on the results available, the extraction of oxygen 

appears to increase dose-dependently, which has not been reported previously with MED or 

DMED. Even though the oxygen balance would remain positive with increasing doses 

while its extraction is increased12, these results indicate a further advantage of the use of 

low dose MED CRI when compared with higher doses. 

Arterial and venous values of pH, PCO2, HCO3
-, glucose, and lactate remained within 

clinically acceptable ranges during each dose of MED CRI, and were consistent with 

previous findings11,12. Venous values of pH, PvCO2, HCO3
-, glucose, and lactate showed 

comparable results to arterial values with normal arterio-venous differences and thus only 

arterial values were reported here. However, plasma glucose levels are expected to increase 

with MED administration due to its ability to inhibit insulin release from the pancreas29. 

This was not demonstrated in our study, probably because samples were not taken beyond 

the end of infusion. Medetomidine has been found to produce slow (i.e. peaks in 2 to 4 

hours post-administration) and non-significant changes in plasma glucose 
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concentrations30,31. Arterial lactate concentrations remained within normal physiologic 

range (below 2.5 mmol·L-1) with all dose regimens. This was consistent with findings from 

recent reports11,13 with DMED during anesthesia, implying that the overall tissue perfusion 

was maintained during our study. Again, in our study, lactate measurement did not continue 

after MED CRI, and thus potential lactate retention during CRI may have occurred. Based 

on a previous study, some lactate retention may occur when increasing the dose of DMED 

CRI to 3 µg·kg-1·h-1 13 but it was not demonstrated with lower doses. Thus, it may be 

speculated that lactate retention should not occur with low doses of MED CRI either. 

With regard to the multitude of possible clinical uses of low dose DMED CRI in human 

patients21,32 and the increasing volume of promising studies being published, the full 

application of these drugs may soon be realized in the veterinary domain. Potential 

indications for MED or DMED CRI in veterinary patients may include use as an adjunct to 

balanced anesthesia to enhance perioperative hemodynamic stability, as an adjunct to 

perioperative multimodal analgesia, and as a sedative-analgesic for use in intensive care 

units. 

 

5. Conclusion 

 In conclusion, these results demonstrate the dose-dependency of the hemodynamic 

effects of MED CRI when used as an anesthetic adjunct to ISO-anesthetized dogs. The low 

dose MED CRI rates (0.2-1.7 µg·kg-1·h-1) induced limited and transient hemodynamic 

effects and showed fewer changes in pH and oxygen extraction when compared to higher 

doses. Thus, low dose MED CRI rates may prove clinically useful in the perioperative 
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management of canine patients. Further studies are warranted to demonstrate and quantify 

the efficacy of such CRI doses as analgesic and anesthetic adjuncts. This is particularly 

important as the correlation between the pharmacodynamic effects and serum MED 

concentrations may not be linear at all dose rates as suggested by the data presented here. 
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Tables 

 
Table 1 – Hemodynamic parameters [mean (SD)] measured at baseline (-5 minutes), and 
medetomidine constant rate infusion effect’s characteristics during isoflurane anesthesia. 

 
 

Parameter (units) 
Dose 

(µg·kg-1·h-1)

Baseline 

value at -

5 minutes 

Duration of 

statistically 

significant 

effect (min) 

Peak effect value 

Zenith Nadir 

MAP (mmHg) 

0.2 59 (8) Not present Not presenta,c  

0.5 62 (7) 10 70 (10)a  
1.0 59 (2) 10 74 (23)b  
1.7 73 (20) 10 85 (6)c  
4.0 69 (14) 70 94 (14)a  

12.0 70 (10) 85 116 (12)a,b,c  

SVR 
(Dynes·second·cm-5) 

0.2 4782 (1203) Not present Not presenta,b,c  

0.5 5222 (1407) 10 9178 (1031)a,d  
1.0 4062 (1246) 10 5357 (890)d,e,f  
1.7 3797 (336) 20 8867 (1344)b,e  
4.0 3486 (295) 70 9190 (2365)c,f  

12.0 3780 (493) 130 16197 
(4396)a,b,c,e,f  

CI (L·min-1·m-2) 

0.2 2.3 (0.4)a,b Not present  Not presenta 

0.5 2.2 (0.5)c,d,e Not present  Not presentb

1.0 2.4 (0.4) Not present  Not presentc

1.7 3.3 (0.7)a,c 70  1.9 (0.3)
4.0 3.3 (0.7)b,d 80  1.7 (0.3) 

12.0 3.1 (0.7)e 130  1.2 (0.4)a,b,c

HR (Beats·min-1) 

0.2 96 (22) 5  82 (15)a,b,c 

0.5 85 (9)a 40  59 (8)a,d

1.0 93 (7) 60  77 (6)d,e,f

1.7 115 (26) 130  74 (14) 
4.0 96 (13) 70  55 (11)b,e

12.0 109 (20)a 130  55 (16)c,f
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Table 2 – Parameters [mean (SD)] measured in arterial and peripheral venous samples prior to (-10 
minutes) and during medetomidine constant rate infusion with isoflurane anesthesia in dogs. 

   Medetomidine constant rate infusion with 
isoflurane anesthesia  Dose Baseline 

Blood parameter (µg·kg-1·h-1) -10 minutes 25 minutes 55 minutes 
pH (arterial) 0.2 7.38 (0.04) 7.39 (0.04)a 7.37 (0.04)a

 0.5 7.44 (0.05)a,b 7.44 (0.06)b,c,d 7.42 (0.06)b,c

 1.0 7.39 (0.02) 7.39 (0.02)e 7.39 (0.03)d

 1.7 7.37 (0.03)a 7.36 (0.03)b 7.37 (0.03)b

 4.0 7.40 (0.03) 7.37 (0.05)*,c 7.38 (0.03)*,e

 12.0 7.37 (0.07)b 7.33(0.04)*,a,d,e 7.32 (0.04)*,a,c,d,e

PaO2 (arterial) 0.2 501.0 (39.8) 502.2 (59.6) 512.3 (42.7) 
MmHg 0.5 491.3 (73.2) 514.1 (51.6) 490.4 (39.0) 
 1.0 554.7 (4.7) 546.4 (26.4) 550.5 (13.6) 
 1.7 448.8 (220.3)   445.8 (218.9) 535.9 (38.8) 
 4.0 519.6 (33.6) 547.4 (22.6) 551.7 (26.5) 
 12.0 555.1 (26.0) 538.4 (54.0) 536.0 (56.9) 
     
PvO2 (peripheral jugular vein) 0.2 155.4 (66.6) 162.2 (94.0) 201.8 (95.3)a

MmHg 0.5 136.0 (51.0) 93.5 (19.7) 130.1 (45.7) 
 1.0 192.5 (94.4) 168.2 (119.5) 157.3 (115.6) 
 1.7 210.6 (139.6) 103.3 (18.2)* 104.7 (42.0)* 
 4.0 216.7 (56.7) 87.4 (20.4)* 89.5 (18.7)* 
 12.0 198 (110.4) 67.1 (12.5)* 78.2 (9.9)*,a

     
PaCO2 (arterial) 0.2 39.0 (5.1) 40.8 (4.8) 46.4 (3.4)*,a

MmHg 0.5 39.7 (5.8) 34.5 (1.1)*,a 33.9 (4.2)*,a,b,c,d 
 1.0 38.3 (5.4) 39.0 (6.4)b 41.5 (6.0)c

 1.7 40.5 (1.8) 45.8 (2.6)*,a,b,c 42.8 (3.2)b,e

 4.0 35.6 (6.2)a 40.7 (4.1)* 42.8 (3.1)*,d

 12.0 42.5 (4.2)a 45.7 (4.7)c 45.7 (6.9)e

     
Glucose (arterial) 0.2 5.95 (1.24) 6.18 (0.56) 5.93 (0.51) 
mmol·L-1 0.5 5.73 (0.91) 6.10 (0.71) 5.67 (0.55) 
 1.0 5.43 (1.17) 5.45 (1.10) 5.38 (0.43) 
 1.7 5.43 (1.35) 6.33 (0.55) 6.57 (0.47)* 
 4.0 5.88 (0.68) 6.33 (0.54) 5.98 (0.77) 
 12.0 5.87 (0.95) 5.53 (1.08) 5.48 (0.60) 
     
Lactate (arterial) 0.2 N/A N/A N/A
mmol·L-1 0.5 N/A N/A N/A
 1.0 1.55 (0.62) 1.58 (0.69) 1.33 (0.60) 
 1.7 1.33 (0.19) 1.08 (0.25) 1.05 (0.33) 
 4.0 1.30 (0.69) 1.20 (0.41) 0.85 (0.42)* 
 12.0 1.63 (0.61) 1.47 (0.67)* 1.47 (0.93)* 
     
HCO3

- (arterial) 0.2 25.1 (3.4) 25.6 (4.3) 28.8 (4.5)* 
mmol·L-1 0.5 27.0 (2.7)a 23.6 (3.4)* 22.2 (0.6)* 

 1.0 23.2 (2.3) 23.4 (3.1) 25.1 (2.8) 
 1.7 23.7 (1.6) 26.0 (3.4) 25.0 (3.7) 
 4.0 22.6 (3.1)a 23.5 (2.8) 25.4 (3.2)* 
 12.0 24.7 (2.3) 24.2 (0.6) 23.7 (1.5) 
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Legends 

 

Figure 1 – Changes in mean systemic arterial blood pressure (MAP), systemic vascular 

resistance (SVR), cardiac index (CI), and heart rate (HR) during administration of 

isoflurane and six doses of medetomidine (MED) CRI, shown as percentages change(SD) 

from each group mean baseline values. Time 0 (min) = beginning of MED loading dose 

administration. Time 10 (min) = beginning of MED CRI. Time 70 (min) = MED CRI 

administration completed.  

 

Figure 2 – Mean serum medetomidine (MED) concentrations (with 95% confidence 

intervals) for the six different groups, normalized to 1.0 µg·kg-1·h-1 infusion rate. Blood 

sampling were taken at Time 15, 25, 55, 100, and 140 min. Time 0 (min) = beginning of 

MED loading dose administration. Time 10 (min) = beginning of MED CRI. Time 70 (min) 

= MED CRI administration completed. A semi-logarithmic scale was used for presenting 

the data and artefactually all concentrations started from zero as baseline value. 

 

Table 1 – Hemodynamic parameters [mean (SD)] measured at baseline (-5 minutes) and 

medetomidine constant rate infusion effect’s characteristics during isoflurane anesthesia. 

MAP, mean systemic arterial blood pressure; SVR, systemic vascular resistance (see text 

for calculation); CI, cardiac index; HR, heart rate. Values of a given hemodynamic 

parameters with same superscript letter significantly differ (p < 0.05). 

 

Table 2 – Parameters [mean (SD)] measured in arterial and peripheral venous samples 

prior to   (-10 minutes) and during medetomidine constant rate infusion with isoflurane 

anesthesia in dogs. 

* Within a row, mean value differs from baseline (p < 0.05). Within a column, values with 

same superscript letter significantly differ; differences between doses (p < 0.05). 

N/A = value not available. 
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Figures 

 
Figure 1 – Changes in mean systemic arterial blood pressure (MAP), systemic vascular 
resistance (SVR), cardiac index (CI), and heart rate (HR) during administration of 
isoflurane and six doses of medetomidine (MED) CRI, shown as percentages change(SD) 
from each group mean baseline values. Time 0 (min) = beginning of MED loading dose 
administration. Time 10 (min) = beginning of MED CRI. Time 70 (min) = MED CRI 
administration completed.  
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Figure 2 – Mean serum medetomidine (MED) concentrations (with 95% confidence 
intervals) for the six different groups, normalized to 1.0 µg·kg-1·h-1 infusion rate. Blood 
sampling were taken at Time 15, 25, 55, 100, and 140 min. Time 0 (min) = beginning of 
MED loading dose administration. Time 10 (min) = beginning of MED CRI. Time 70 (min) 
= MED CRI administration completed. A semi-logarithmic scale was used for presenting 
the data and artefactually all concentrations started from zero as baseline value. 

 
 



 

THIRD CHAPTER – DISCUSSION AND 

CONCLUSION 

 

Discussion 

 

The dose-dependency of the hemodynamic effects of MED CRI on MAP, SVR, CI, and HR 

was quantified. The typical changes after alpha-2 agonist administration were observed; 

increases in SVR and MAP associated with decreases in HR and CI were observed. These 

effects were small to moderate in intensity and short in duration with the three smallest 

doses. They were greater and longer in duration with the middle dose (1.7 µg·kg-1·h-1) and 

most pronounced with both higher doses. The 0.2 µg·kg-1·h-1 group showed minimal effects 

in the intensity and duration of hemodynamic changes, and the 0.5 and 1.0 µg·kg-1·h-1 

groups were similar. Of note, the intensity of effects was greater for the 0.5 µg·kg-1·h-1 

group than 1.0 µg·kg-1·h-1 group for SVR and HR, but the magnitude of CI depression was 

as expected for each group. Also, the duration of these changes became longer by 

increasing the dose. The maximal effects were observed shortly following loading dose 

administration with each dose regimen.  

These results with MED CRI in ISO-anesthetized dogs are comparable to those 

induced by a bolus IV administration of MED in conscious dogs (Pypendop and Verstegen, 

1998) but, by comparison, the presence of ISO had a significant effect on baseline values: 

MAP (approximately 60-75 mmHg in our study, versus 120-140 mmHg in conscious dogs), 

HR (90-110 beats·min-1 versus 120-130 beats·min-1), and CI (2-3.5 L·min-1·m-2 versus 5-7 

L·min-1·m-2). As a result, the initial hypertensive effect of MED administration was more 

evident in ISO-anesthetized dogs, allowing better differentiation of their dose-response 

relationships. No hypotension was subsequently observed. The maximal increase in SVR 

recorded for our 4.0 µg·kg-1·h-1 and 12.0 µg·kg-1·h-1 groups were 163.6% and 328.5%, 

respectively, which is comparable to values recorded in conscious dogs dosed with 5 and 

10 µg·kg-1 MED (Pypendop and Verstegen, 1998). After the administration of 1 µg·kg-1 

MED, the increase in SVR was approximately 210% in conscious dogs, which was 
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markedly higher than that observed in the 1.0 µg·kg-1·h-1 group, a difference that may be 

attributed to the use of bolus administration in conscious dogs (given IV over 5 sec; B. 

Pypendop, personal communication, 2009) instead of an infusion over 10 min. The loading 

dose infusion could partially explain the apparent discrepancy observed between the 0.5 

µg·kg-1·h-1 and 1.0 µg·kg-1·h-1 groups, because the loading dose administration was not 

automated. It is possible that, in some dog(s), the administration rate was faster in the 0.5 

µg·kg-1·h-1 group than 1.0 µg·kg-1·h-1 group. The magnitude of change in group 1.7 µg·kg-

1·h-1 in HR was comparable with results associated to a CRI of 1.5 µg·kg-1·h-1 MED leading 

to decrease in HR (-41.7%) and CI (-41.2%) (Grimm et al., 2005). Data in this study are 

consistent with previously reported results with corresponding doses of DMED (Flacke et 

al., 1993; Lin et al., 2008). 

The cardiovascular effects of DMED have been suggested to depend on the initial 

status of the blood vessel tone (Lin et al., 2008). It was additionally suggested that the 

central sympatholytic effects may predominate at small doses, which stimulate the alpha-2A 

adrenergic receptor subtype (source of sedation and analgesia), while at higher or rapidly 

injected loading doses, greater peripheral effects arise, which result from stimulation of the 

alpha-2B adrenoceptors (Aantaa and Jalonen, 2006). This has been recently confirmed by 

the IV combination of a peripheral alpha-2 adrenoceptor antagonist (L-659’066, 250 µg·kg-

1) with a dose (10 µg·kg-1) of DMED, attenuating the cardiovascular effect apparent with 

DMED alone, but leading to similar sedation (Honkavaara et al., 2008). In our study, there 

was an initial increase in MAP followed by maintained blood pressures with the 1.0, µg·kg-

1·h-1 dose, while with the 1.7, µg·kg-1·h-1 dose there was a more typical biphasic effect with 

initial increase followed by decrease of MAP. The baseline values of HR, CI, and MAP 

with dose 1.7 were slightly different from the smaller doses. This initial difference may 

indicate a disparity in blood vessel tone in the individuals and may help to explain, at least 

in part, the difference of effect demonstrated on MAP between doses 1.0 and 1.7.  

In addition, an important factor influencing our results was the variability in the rate 

of the loading dose injection because it was hand-injected instead of using a constant rate 

infusion pump. This may increase the interindividual variance to some extent. In spite of 

these influencing factors, this study demonstrated a dose-dependency in intensity and 
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duration of cardiovascular effects. The persistent increase in MAP for the 1.0 µg·kg-1·h-1 

dose was related to the individual response of two out of four tested dogs, which did not 

show such response in subsequent evaluations (data not reported) when receiving the same 

MED dose under ISO-anesthesia. Technical difficulties with the arterial line or an 

insufficient level of anesthesia may explain the result for these two dogs. 

It is interesting to note that at lowest doses the hemodynamic effects were small and 

transient, disappearing before the end of CRI administration. The peripheral 

vasoconstriction resulting from alpha-2B-induced increase in SVR was very limited in 

intensity and duration at the three lowest dosages (0.2, 0.5, and 1.0 µg·kg-1·h-1). This 

pharmacological action governs the increase in MAP and contributes to the bradycardic 

response, leading to reduced CI. Particularly evident at these low doses, HR was reduced 

for a longer time in comparison to other hemodynamic criteria, as demonstrated in an 

earlier report, where HR decrease also persisted at low serum concentrations (< 3.9 ng·mL-

1) in dogs (Kuusela et al., 2000). This could be related to bradycardic and potentially 

hypotensive stimulation of central alpha-2A adrenoceptors (Maze and Fujinaga, 2000). This 

suggests that low doses of MED CRI may be used during ISO anesthesia in dogs with 

minimal hemodynamic changes. The question remaining is whether such low doses of 

MED CRI could induce efficacious analgesia, muscle relaxation, and sedation. 

Four infusion rates (0.2, 1.0, 4.0, and 12 μg kg-1 h-1) of MED for this study were 

extrapolated from DMED infusion rates and published pharmacokinetic and 

pharmacodynamic data (Salonen, 1989; Dutta et al., 2000; Kuusela et al., 2000; Pascoe et 

al., 2006) and two intermediate doses (0.5 and 1.7 μg kg-1 h-1) were added to accurately 

quantify the dose-dependency of hemodynamic effects. The aim of the highest dose level 

was to provide a positive control, producing clinically significant cardiovascular effects. 

Loading doses were given at a numeric dose identical to the following infusion rate. 

Obviously, these loading doses were responsible for the dose-dependency on intensity, and 

that in contrast to the conclusions derived from conscious dog data (Pypendop and 

Verstegen, 1998), as increasing the dose above 5 µg·kg-1 not only prolongs drug effects, but 

also influences cardiovascular function in ISO-anesthetized dogs. The higher serum 

concentrations of MED immediately after loading dose administration correlated with the 
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more pronounced effects on hemodynamic data. Thus, lowering the loading dose may be 

indicated when intending to further decrease hemodynamic effects while maintaining 

analgesia and anxiolysis.  

A difference in pharmacokinetics between higher and lower CRI dose rates was 

apparent in this study: Whilst the four higher CRI rates (12.0, 4.0, 1.7 and 1.0 µg·kg-1·h-1) 

demonstrated homogenous pharmacokinetics, the two lowest rates (0.5 and 0.2 µg·kg-1·h-1) 

groups presented a different pharmacokinetic pattern. One hypothesis is that, the lower the 

rate below 1.0 µg·kg-1·h-1, the greater could be the degree of accumulation of the drug in the 

central compartment. This might explain the apparent absence of a statistically significant 

difference in the MED serum concentration observed for the four lower dosage groups. It 

has been previously reported that MED in the circulation is present in its inactive protein 

bound form (Salonen, 1989). Being a weak organic base, MED at high dose (80 µg·kg-1) 

presented a low free fraction (fu) estimated at 15% in dogs, cats and rats, binding of the 

drug to α-proteins (globulins, lipoproteins, glycoproteins) is suspected. It may be suggested 

from the results of this study that fu may be lower at doses below 1.0 µg·kg-1·h-1. This could 

explain the apparent higher accumulation at low doses and the associated lower fu leading 

to fewer pharmacodynamic effects. This phenomenon requires further pharmacokinetic / 

pharmacodynamic exploration.  

Another possible hypothesis to explain the differences in pharmacokinetics is that, 

the lower the rate below 1.0 µg·kg-1·h-1, the greater appears to be the dose-normalized 

plasma concentration. This is further evidenced with the difference in decay slopes upon 

completion of the initial, fast-rate infusion between the four highest and the two lowest 

dosage groups, resulting in an absence of plateau during CRI administration for the latter. 

This difference in dose-normalized MED concentrations strongly suggests that MED 

systemic clearance increased with dose and reached a plateau. Medetomidine is mainly (80-

90%) metabolized by hepatic hydroxylation followed by glucuronidation in dogs involving 

several biotransformation pathways (Salonen, 1992). This phase I reaction proceeds with a 

rate sufficient for the rapid removal of the drugs from the animal body and is mainly 

regulated by the hepatic blood flow. 
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The difference in clearance between doses is suggestive that at a dose rate below 1.0 

µg·kg-1·h-1, MED is metabolized through a high-affinity, limited-capacity pathway, and 

with higher dose rates, the drug is going through a second pathway presenting lower-

affinity and bigger capacity. The study of metabolite kinetics of MED was outside the 

scope of this study, but some recent publications provide indirect support for this 

hypothesis. The phase II glucuronidation of MED with glucuronic acid is accomplished by 

different UDP-glucuronosyltransferases with different affinity, regio-and stereo-selectivity 

in human and canine liver microsomes leading to N-glucuronidation of levomedetomidine 

(LMED) and DMED with different kinetics (Kaivosaari et al., 2008). In addition, an O-

glucuronidation pathway has been reported for MED (Salonen, 1992). Hence it is 

conceivable that at dose rates below 1.0 µg·kg-1·h-1, MED is metabolized by one pathway 

only, and the activity of other metabolic pathways becomes significant at increased 

dosages. Alternatively, DMED may require chiral conversion to LMED in order to be N-

glucuronidated at low doses. But with increasing racemic dose, DMED may be involved in 

direct N-glucuronidation, which would fasten the elimination of MED. This is supported by 

an earlier report about clearance of LMED being more rapid than DMED or racemic MED 

in dogs (Kuusela et al., 2000). In addition, LMED has been shown to interfere with the 

metabolism of other anesthetic drugs in the liver, such as slowing ketamine metabolism 

(Kharasch et al., 1992). Another hypothesis is grounded on the phenotypic polymorphism 

of the cytochrome P450 (CYP)-catalyzed phase I hydroxylation of MED, that affects the 

biotransformation rate of MED, a feature reported in rabbits (Avsaroglu et al., 2008). If 

such polymorphism would exist in dogs, it would induce biotransformation rate of MED 

and different systemic exposure to the drug. In contrast with a report from Dutta et al. 

(2000) in humans, we did not record the pharmacodynamic alteration of MED clearance 

with increasing dose. In the above-cited study, the authors shown with pharmacokinetic / 

pharmacodynamic modeling that cardiac output and hepatic blood flow depression induced 

by MED decreased its own hepatic clearance. This could be explained by the major species 

differences in MED metabolism (Kaivosaari et al., 2002) and the possible interference of 

ISO-anesthesia on MED-induced hemodynamic effects. 
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There was a physiologically significant decrease in pH during MED administration 

with the two largest doses only. A metabolic acidosis has been reported in earlier studies 

with MED and DMED (Kuusela et al., 2001; Uilenreef et al., 2008). Since lactate-free 

fluids were administered in this study and in the study reported by Uilenreef et al. (2008) 

the possibility of hyperchloremic acidosis was verified and changes in arterial or venous 

concentrations of chloride were not demonstrated (data not shown). Furthermore, in our 

study this effect was apparent only with higher doses, which also argues against fluid 

induced acidosis. In this study, blood gas measurements did not extend beyond MED 

administration. However, based on a previous report, the magnitude of this acidosis is not 

clinically relevant (Kuusela et al., 2001). This study demonstrated the dose-dependent 

effect on pH, which has not been shown in earlier studies. This indicates a further 

advantage of decreasing the MED CRI dose below the level of potential metabolic acidosis 

induction. 

Arterial oxygen tensions (paO2) during 100 % oxygen administration were 

expectedly high during each dose regimen. Venous oxygen tensions (pvO2) decreased 

significantly during administration of the three highest doses and this decrease had a dose-

dependent tendency even though there were no statistically significant differences between 

these doses. This implies increased oxygen extraction during higher MED doses, which is 

consistent with a prior report with DMED (Lin et al., 2008). The underlying cause may be 

due to decreased CI and peripheral blood flow. This study was minimally invasive and dogs 

were instrumented only with peripheral catheters. Thus, central mixed venous blood 

samples were not obtainable and oxygen consumption and extraction could not have been 

calculated accurately. However, based on the results of peripheral oxygen tensions 

available, the extraction of oxygen appears to increase dose-dependently, which has not 

been reported previously with MED or DMED. Even though the oxygen balance would 

remain positive with increasing doses while its extraction is increased (Lin et al., 2008), 

these results indicate a further advantage of the use of low dose MED CRI when compared 

with higher doses. 

Arterial and venous values of pH, pCO2, HCO3
-, glucose, and lactate remained at 

clinically acceptable range during each dose of MED CRI, and were consistent with 
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previous findings (Pascoe et al., 2006; Lin et al. 2008). Venous values of pH, pCO2, HCO3
-

, glucose, and lactate showed comparable results to arterial values with normal arterio-

venous differences and thus only arterial values were reported here. However, plasma 

glucose level is expected to increase with MED administration due to its insulin release 

inhibiting effect on pancreas that increases blood glucose levels (Short, 1992). This was not 

demonstrated in our study, probably because samples were not taken after the end of 

infusion. Medetomidine has been found to produce slow (peak in 2-4 hours post-

administration) and non-significant change in plasma glucose concentrations (Burton et al., 

1997; Ambrisko and Hikasa, 2002). Arterial lactate concentrations remained within normal 

physiologic range (below 2.5 mmol·L-1) with all dose regimens. This was consistent with 

findings from recent reports (Pascoe et al. 2006; Uilenreef et al. 2008) with DMED during 

anesthesia, implying that the overall tissue perfusion was maintained during this study. 

Again, in our study lactate measurements did not continue after MED CRI, and thus a 

potential of lactate retention during CRI may have occurred. Based on a previous study, 

some lactate retention may occur when increasing the dose of DMED CRI to 3 μg kg-1 h-1 

(Uilenreef et al., 2006) but it was not demonstrated with lower doses. Thus, it may be 

speculated that lactate retention should not occur with low dose MED CRI either. 

 

 

Conclusion 

 

With regards to the multitude of possible clinical uses of low dose DMED CRI in human 

patients (Aantaa and Jalonen, 2006; Tobias, 2007) with increasing amount of promising 

studies being published, the full advantage of these drugs may potentially follow in 

veterinary use. Such indications of MED or DMED CRI in veterinary patients could 

include the use as an adjunct to balanced anesthesia and enhance perioperative 

hemodynamic stability, as an adjunct to perioperative multimodal analgesia, and as a 

sedative-analgesic for intensive care use. 
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In conclusion, these results demonstrated the dose-dependency of the hemodynamic 

responses of MED CRI, when used as an anesthetic adjunct to ISO anesthesia in dogs. The 

low doses MED CRI (0.2-1.7 μg kg-1 h-1) induced limited and transient hemodynamic 

changes correlated to pharmacokinetics, promising enhanced hemodynamic stability, and 

showed fewer changes in pH and oxygen extraction when compared to higher doses. Thus, 

these low doses of MED CRI could be implicated to the perioperative care of canine 

patients with minimized hemodynamic changes. 

Limitations of this presented study where the low number of dogs used and the lack 

of some laboratory measurements such as insulin measurements, due to the finantial 

limitations during this study. Subsequent studies have been proceeded on the effects of 

medetomidine CRI on 24 hour echocardiogram (Appendix 1) and on the clinical efficacy 

during and after orthopaedic surgery (Appendix 2). However, further studies are warranted 

to fully demonstrate and quantify the clinical efficacy of these CRI doses as analgesic and 

anesthetic adjuncts. 
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“There are only two mistakes 

 one can make along the road to truth; 

 not going all the way, 

 and not starting.”  

Buddha 
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APPENDIX 1 

 

ABSTRACT presented in IVAPM congress in Montréal 2008. 

TITLE: Variable anti-arrhythmic effect of different dose levels of medetomidine constant 

rate infusion in isoflurane-anaesthetized dogs. 

Kaartinen J; Moreau M; Pang D; Di Fruscia R; Bélanger M-C; Gauvin D; Vainio OM; 

Cuvelliez SG; Troncy E* 

Laboratory of Inflammopharmacology – GREPAQ; Faculty of veterinary medicine – 

Université de Montréal; St-Hyacinthe (QC) Canada. 

 

   In this prospective, blinded study, 16 healthy beagles (1-3.5 years old, weighing 8.6-16.0 

kg) randomly received one of 4 medetomidine infusion regimens (4 dogs per regimen at 

1.0, 1.7, 4.0 or 12 μg/kg/h for 1h). One supplemental control group (n=3) received solely 

isoflurane. 24-hour ambulatory electrocardiography was performed. Recording was 

initiated at a minimum of 4 hours prior to induction of anaesthesia with isoflurane in 

oxygen. Prior to each infusion, a similar loading dose was given over 10 min. Each 

medetomidine dosing regimen was randomly administered twice for all dogs (protocols A 

and B). Isoflurane was administered alone for 1h before (Protocol A) or after (protocol B) a 

1h10 min administration of isoflurane combined with medetomidine CRI (2 week intervals 

between experiments). In the 12 μg/kg/h group only, the imidazoline-receptor antagonist 

efaroxan was administered intramuscularly 1h after the end of general anaesthesia. To 

control the effects of efaroxan, two additional dogs were anaesthetized with 12 μg/kg/h 

using protocol B without efaroxan administration. Electrocardiographic recordings were 

examined on hourly sessions to determine the indices of heart rate variability (HRV), heart 

rate, and cardiac conduction disturbances (ventricular premature complexes and 

atrioventricular blocks). Statistical analyses were conducted with a repeated measures 

linear model (P<0.05). 



 

 

II

   Isoflurane decreased HRV indices and cardiac vagal activity (decreased RR interval and 

SDNN), an effect that was counteracted by each dose of medetomidine CRI in both A and 

B protocols. Indeed, dogs in protocol B demonstrated basal vagal activity during the one 

hour isoflurane anaesthesia after medetomidine CRI was finished. In the recovery phase, 

HRV decreased significantly in the first 3h for the 3 lower doses before increasing back to 

basal level. But in the 12 μg/kg/h group with efaroxan, HRV was normal in the initial 1h 

post-anaesthesia, and was significantly decreased for the following 5h for both protocols. 

No cardiac conduction disturbances were noted in any dog.  

   An anti-arrhythmic effect of medetomidine CRI was evident at all doses during 

anaesthesia, but was apparently present only at the highest dose tested in this study during 

the post-anaesthetic period. This potentially cardioprotective effect seems to be mediated 

by binding of medetomidine to the imidazoline receptor. 
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APPENDIX 2 

 

ABSTRACT presented in AVA/ECVAA spring congress in Helsinki 2009. 

TITLE: Comparison of clinical analgesia induced by medetomidine constant rate infusion 

and/or loco-regional anaesthesia in canine orthopaedic surgery. 

MJ Kaartinen, SG Cuvelliez, AO El-Warrak, LM Huneault, R Béraud, N Chailleux, J 

Auger, G Beauchamp, and E Troncy. Faculty of veterinary medicine – Université de 

Montréal, St-Hyacinthe & Hôpital Vétérinaire Rive-Sud, Brossard; Quebec, Canada. 

 

   This study investigated analgesic effects of a low dose medetomidine (MED) constant 

rate infusion (CRI) in dogs undergoing cranial cruciate ligament repair surgery compared to 

a loco-regional anaesthesia (LRA) technique. 

   In this prospective, blinded, controlled study, 32 client-owned dogs were randomly 

assigned to receive one of 4 treatments (n=8): 1–MED-CRI with placebo-LRA; 2–MED-

CRI with bupivacaine-LRA; 3–placebo-CRI with bupivacaine-LRA; and 4–placebo-CRI 

with placebo-LRA. Standardized anaesthesia included intramuscular pre-medication with 

butorphanol (0.3 mg·kg-1) and acepromazine (0.03 mg·kg-1), intravenous (IV) propofol 

induction, constant 1.4% end-tidal isoflurane, controlled ventilation and continuous 

multiparametric monitoring. Femoral and sciatic nerve blocks were performed using 

bupivacaine (1 mg·kg-1) or saline. Medetomidine (or saline) IV CRI was initiated before 

surgery with loading dose (0.8 mcg·kg-1) and infusion (1.7 mcg·kg-1·h-1). Post-operative 

pain was scored for 24h using the composite 4A-VET scalea. Rescue analgesia was based 

on intra-operative SAP increase and post-operative pain; and consisted of additive levels: 

hydromorphone (0.05 mg·kg-1 IV) and/or MED-CRI, and carprofen. Linear model for 

repeated measures and Cochran-Mantel-Haenszel tests were used for statistics. 

   During surgery, all dogs of Gr.4 and Gr.3 required rescue analgesia, 7/8 in Gr.1 and 5/8 in 

Gr.2. During recovery, Gr.1 showed significantly more pain than Gr.2. After surgery, Gr.3 

needed significantly lower doses of rescue analgesia compared to Gr.4 or Gr.1. None of the 

dogs with LRA needed the highest level of post-operative rescue analgesia. Neither 
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surgeon, nor surgery technique (TPLO, FLO, TTA) had a significant effect on the post-

operative pain score. 

   Neither MED-CRI, at this dosage, nor femoral/sciatic LRA were efficient analgesics in 

this study. However, their combination demonstrated a synergistic effect, both pre-

emptively (Gr.2) and after surgical pain occurrence (Gr.3 + rescue analgesia). Pre-

medication with butorphanol alone for orthopaedic surgery (Gr.4) demonstrated not only 

insufficient analgesia but also a more difficult subsequent pain management. 
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